In this tutorial, we will introduce some methods about the design of data pipelines, and how to customize and extend your own data pipelines for the project.
Following typical conventions, we use Dataset
and DataLoader
for data loading
with multiple workers. Dataset
returns a dict of data items corresponding
the arguments of models' forward method.
Since the data in action recognition & localization may not be the same size (image size, gt bbox size, etc.),
The DataContainer
in MMCV is used to help collect and distribute data of different sizes.
See here for more details.
The data preparation pipeline and the dataset is decomposed. Usually a dataset defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict. A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next operation.
We present a typical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).
The operations are categorized into data loading, pre-processing and formatting.
Here is a pipeline example for TSN.
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)
train_pipeline = [
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=3),
dict(type='RawFrameDecode', io_backend='disk'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
val_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=3,
test_mode=True),
dict(type='RawFrameDecode', io_backend='disk'),
dict(type='Resize', scale=(-1, 256)),
dict(type='CenterCrop', crop_size=224),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
test_pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=25,
test_mode=True),
dict(type='RawFrameDecode', io_backend='disk'),
dict(type='Resize', scale=(-1, 256)),
dict(type='TenCrop', crop_size=224),
dict(type='Flip', flip_ratio=0),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs'])
]
For each operation, we list the related dict fields that are added/updated/removed.
SampleFrames
- add: frame_inds, clip_len, frame_interval, num_clips, *total_frames
DenseSampleFrames
- add: frame_inds, clip_len, frame_interval, num_clips, *total_frames
PyAVDecode
- add: imgs, original_shape
- update: *frame_inds
DecordDecode
- add: imgs, original_shape
- update: *frame_inds
OpenCVDecode
- add: imgs, original_shape
- update: *frame_inds
RawFrameDecode
- add: imgs, original_shape
- update: *frame_inds
RandomCrop
- add: crop_bbox, img_shape
- update: imgs
RandomResizedCrop
- add: crop_bbox, img_shape
- update: imgs
MultiScaleCrop
- add: crop_bbox, img_shape, scales
- update: imgs
Resize
- add: img_shape, keep_ratio, scale_factor
- update: imgs
Flip
- add: flip, flip_direction
- update: imgs
Normalize
- add: img_norm_cfg
- update: imgs
CenterCrop
- add: crop_bbox, img_shape
- update: imgs
ThreeCrop
- add: crop_bbox, img_shape
- update: imgs
TenCrop
- add: crop_bbox, img_shape
- update: imgs
MultiGroupCrop
- add: crop_bbox, img_shape
- update: imgs
ToTensor
- update: specified by
keys
.
ImageToTensor
- update: specified by
keys
.
Transpose
- update: specified by
keys
.
Collect
- add: img_meta (the keys of img_meta is specified by
meta_keys
) - remove: all other keys except for those specified by
keys
It is noteworthy that the first key, commonly imgs
, will be used as the main key to calculate the batch size.
FormatShape
- add: input_shape
- update: imgs
-
Write a new pipeline in any file, e.g.,
my_pipeline.py
. It takes a dict as input and return a dict.from mmaction.datasets import PIPELINES @PIPELINES.register_module() class MyTransform: def __call__(self, results): results['key'] = value return results
-
Import the new class.
from .my_pipeline import MyTransform
-
Use it in config files.
img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='DenseSampleFrames', clip_len=8, frame_interval=8, num_clips=1), dict(type='RawFrameDecode', io_backend='disk'), dict(type='MyTransform'), # use a custom pipeline dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ]