Skip to content

Latest commit

 

History

History
91 lines (44 loc) · 2.57 KB

README.rst

File metadata and controls

91 lines (44 loc) · 2.57 KB

Doctor AI

Deep learning for medical segmentation and classification

Spring 2023, Cogito NTNU.

In this project we use convolutional neural networks (CNNs) for computer vision. Using the U-Net architecture (Olaf Ronneberger, Philipp Fischer, Thomas Brox, 2015) as a basis, we tackle both classification-problems and segmentation-problems in the medical field.

http://img.shields.io/badge/arXiv-1505.04597-orange.svg?style=flat:target:https://arxiv.org/abs/1505.04597UsingtheU-Netarchitecture.

Classification

Using the U-Net arcitechure we perform binary classification of

Dataset: Labeled Chest X-ray .

Segmentation

Segmentation of lungs

https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667

Dataset: LGG_MRI segmentation .

We performed lung segmentation achieving a F1 score of 0.957 and a IoU/jaccard score of 0.918.

https://github.com/CogitoNTNU/Doctor-AI/raw/main/docs/images/summary-lung-seg-small.png

Segmentation of Pneumothorax

https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667

Dataset: https://www.kaggle.com/datasets/vbookshelf/pneumothorax-chest-xray-images-and-masks

Technology used

Citation

As you use Doctor-AI for your own use, please cite the authors of the package:

@misc{doctorai2023,
  title={Doctor AI - U-Net for medical segmentation and classification},
  author={Vilhjalmurson, Vilhjalmur and Myhre, Sveinung and Bohne, Erik and Constantinos, Joel and Zhao, Ine},
  year={2023},
  publisher={Cogito NTNU}
}

License

This project is licensed under the MIT License. See the LICENSE file for more information.