-
Notifications
You must be signed in to change notification settings - Fork 0
/
introduction_revamp.tex
257 lines (233 loc) · 7.56 KB
/
introduction_revamp.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
\section{Introduction}%
\frame{\tableofcontents[currentsection]}
\begin{frame}{Pharma R\&D is Growing}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{figs/pharma_growing.png}
\end{figure}
\end{frame}
\begin{frame}{Eroom's Law: Efficiency Down}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{figs/efficiency_down.png}
\end{figure}
\end{frame}
\begin{frame}{Covid Put a Focus on Shortening Clinical Trials}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{figs/covid.png}
\end{figure}
\uncover<2->{
\textbf{How can statisticians speed up the clinical trials system?}
}
\end{frame}
\begin{frame}{Add Features to Improve Trial Efficiency}
\begin{itemize}
\item Smoothly combine studies (e.g. Phase I/II, or II/III).
\item Stop early for success (efficacy), or failure (futility).
\item Compare multiple treatments or doses to select the best.
\item Adaptive sample sizing.
\item Use of outside data.
\end{itemize}
\end{frame}
\begin{frame}{Problem: Analytic Control goes Out the Window!}
\textbf{Adaptive T-Test:}
\begin{itemize}
\item $X_i \sim \normal(\mu, \sigma^2)$ (unknown $\mu, \sigma$).
\item $H_0: \mu = 0$.
\item Total of $6$ analyses.
\item Before each analysis, add $10$ i.i.d. samples.
\item At each analysis $i$, reject if
\begin{align*}
T_i := \frac{\sqrt{N_i} \bar{X}_i}{\hat{\sigma}_i} > 2
\quad \text{and} \quad
\bar{X}_i > 0.1
\end{align*}
\end{itemize}
\uncover<2->{%
\begin{center}
\textbf{What is the Type I Error?}
\end{center}
}
\uncover<3->{%
\begin{center}
Classical toolkit breaks even with Gaussian data.
\end{center}
}
\end{frame}
\begin{frame}{Adaptive T-Test Non-Trivial Null Distribution}
\begin{figure}
\centering
\includegraphics[width=0.8\linewidth]{figs/introduction_att_hist.pdf}
\caption{Adaptive T-Test test statistic distribution for $\sigma \equiv 1$.}
\end{figure}
\end{frame}
\begin{frame}{Intermediate Techniques Fail}
\begin{itemize}
\item Composite null with nuisance parameters (noise levels).
\begin{center}
\textbf{Simulating on single null point $\centernot\implies$ Type I Error control.}
\end{center}
\item Sharp null hypothesis (exact zero causal effect) is usually false (“null” treatments often increase the variability of outcomes).
\begin{center}
\textbf{Breaks permutation methods.}
\end{center}
\item Adaptive sampling renders the test statistic to be non-pivotal.
\begin{center}
\textbf{Breaks the bootstrap.}
\end{center}
\end{itemize}
\end{frame}
\begin{frame}{Simulation to the Rescue?}
\begin{figure}
\centering
\includegraphics[width=0.9\linewidth]{figs/introduction_rescue_0.pdf}
\end{figure}
\begin{center}
\textbf{To accept or not to accept?}
\end{center}
\end{frame}
\begin{frame}{Simulation to the Rescue?}
\begin{figure}
\centering
\includegraphics[width=0.9\linewidth]{figs/introduction_rescue_1.pdf}
\end{figure}
\begin{center}
\textbf{To accept or not to accept?}
\end{center}
\end{frame}
\begin{frame}{Simulation to the Rescue?}
\begin{figure}
\centering
\includegraphics[width=0.9\linewidth]{figs/introduction_rescue_2.pdf}
\end{figure}
\begin{center}
\textbf{To accept or not to accept?}
\end{center}
\end{frame}
\begin{frame}{Simulation to the Rescue?}
\begin{figure}
\centering
\includegraphics[width=0.9\linewidth]{figs/introduction_rescue_3.pdf}
\end{figure}
\begin{center}
\textbf{To accept or not to accept?}
\end{center}
\end{frame}
\begin{frame}{Simulation to the Rescue?}
\begin{figure}
\centering
\includegraphics[width=0.9\linewidth]{figs/introduction_rescue_4.pdf}
\end{figure}
\begin{center}
\textbf{To accept or not to accept?}
\end{center}
\end{frame}
\begin{frame}{Simulation Raises New Challenges}
\begin{itemize}
\item Simulation constrained to \textbf{finite} number of null points.
\begin{center}
\textbf{How do we deal with composite nulls?}
\end{center}
\item Simulation has Monte Carlo error.
\begin{center}
\textbf{How do we deal with Monte Carlo error?}
\end{center}
\item Bounded computing power.
\begin{center}
\textbf{How many points in the null space to simulate?}
\end{center}
\begin{center}
\textbf{Are the simulations even tractable?}
\end{center}
\end{itemize}
\end{frame}
\begin{frame}{Intuition of Our Approach}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_1.pdf}
\end{figure}
\end{frame}
\begin{frame}{Partition $\Theta$ into Tiles with Representatives}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_2.pdf}
\end{figure}
\end{frame}
\begin{frame}{Simulate on each Representative}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_3.pdf}
\end{figure}
\end{frame}
\begin{frame}{Extend Simulation Information to Tile}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_4.pdf}
\end{figure}
\end{frame}
\begin{frame}{Divide-and-Conquer for Guarantees on All of $\Theta$}
\begin{figure}
\centering
\includegraphics[width=0.95\linewidth]{figs/approach_5.pdf}
\end{figure}
\end{frame}
\begin{frame}{Our Approach: Proof-by-Simulation}
\textbf{General Workflow:}
\begin{itemize}
\item Let $\Theta$ be a (bounded) null hypothesis space.
\item Partition $\Theta$ into tiles $\set{\Theta_i}_{i=1}^I$
with representatives $\set{\theta_i}_{i=1}^I$.
\item Simulate the design on each $\theta_i$ and output test statistics.
\item Use our method \textbf{Continuous Simulation Extension} (CSE) to
\emph{extend} information at each $\theta_i$ to any other point in $\Theta_i$.
\item Divide-and-conquer to get guarantees on \emph{all of $\Theta$}.
\end{itemize}
\end{frame}
\begin{frame}{Method 1: Validation for Point-wise Confidence}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{figs/validation_scheme.png}
\end{figure}
\end{frame}
\begin{frame}{Method 1: Validation for Point-wise Confidence}
\begin{itemize}
\item \textbf{Validation}:
Construct bounds $(\hat{l}(\cdot), \hat{u}(\cdot))$
for the true Type I Error, $f(\cdot)$, with confidence $1-\delta$:
\begin{align*}
\forall \theta \in \Theta ,\,
&\prob\pr{\hat{l}(\theta) \leq f(\theta)} \geq 1-\delta \text{ and } \\
&\prob\pr{\hat{u}(\theta) \geq f(\theta)} \geq 1-\delta
\end{align*}
\item Point-wise guarantee is appropriate since
there is only one \emph{true} value of $\theta$.
\end{itemize}
\end{frame}
\begin{frame}{Method 2: Calibration for Type I Error Proof}
\begin{figure}
\centering
\includegraphics[width=\linewidth]{figs/calibration_scheme.png}
\end{figure}
\end{frame}
\begin{frame}{Method 2: Calibration for Type I Error Proof}
\begin{itemize}
\item \textbf{Calibration}:
Select a (random) critical threshold, $\hat{\lambda}^*$, such that
\begin{align*}
\forall \theta \in \Theta,\,
\EEE\br{f_{\hat{\lambda}^*}(\theta)}
\leq
\alpha
\end{align*}
where $f_{\lambda}(\theta)$ is the Type I Error at $\theta$
using threshold $\lambda$.
\end{itemize}
\end{frame}
\begin{frame}{Random $\hat{\lambda}^*$ is acceptable}
\begin{itemize}
\item Guarantee is \textbf{overall} valid (regulators want this!).
\item Practitioners \textbf{already use} simulations to evaluate designs.
\item Our approach is \textbf{strictly stronger} because we can give guarantees.
\end{itemize}
\end{frame}