From 6a818cee7979a54756718f54716fac7e4516c1ed Mon Sep 17 00:00:00 2001 From: Ben Thompson Date: Wed, 2 Nov 2022 14:51:44 -0400 Subject: [PATCH] Adagrid, Tuning, Lewis, Lots of code. (#98) * Add skeleton lei stuff * Add lei notebook for now and poisson process fun study * Add stuff for ben to see * Add current changes for Ben once again (so needy :P) * Fixed the hang problem. * Commit what I have * Add currently broken code once again * Simplify notebook * Add working version of lewis * Add current progress * Add batching method and current logic of lei * Move lei stuff to its own package * Working on linear interpolation for the Lei problem. * inlaw -> outlaw. * Add lei test n_config * Fix settings.json * Add unit tests and update notebook with correct simulations * Update test, add simulation tests, add point batcher, share RNG * Update comment * JAX implementation of scipy.interpolate.interpn (#47) * JAX Interpolation. * JAX implementation of scipy.interpolate.interpn * Update todo list. * Add current version lol * Fix bugs and integrate good version * Fix small bug in stage 2 and clean up code * Modify interpn to work with multi-dimensional values * Add current version of notebook * WTF * Finish final lei * Fix test in outlaw * Add python notebook (weird vscode lol) * Add lei simulator batching method * Remove unnecessary files cluttering up space * Add current state * Add upper bound logic to lei example * Add ignore to frontend and update lei flow * Clean up lewis code and include some of Ben's changes * Add new script * Add new changes to make memory ok * Add full changes to everything except key * Add checkpointing * Add modified version * First pass at holder-odi bound in binomial.py * Holder-ODI, feeling more confident. * Add analyze lei example * Move lewis into confirm * Fix analyze notebook with new import structure * Add np.isnan check for holder bound and update lei analyze scripts * Moving files, small tweaks. * Pre-commit fixes. * Most tests passing. * Adagrid working nicely for validation, on to tuning. * Working on adagrid + tuning. * Seems to work. * 3D berry adagrid + tuning. * table caching for lewis. * Fix test stage1. * lewis adagrid. * Lewis + Ada + Tuning. * Symmetry * 4D * Fixing bugs in the cv_idx calculation and adagrid refinement criterion. * Bootstrap tuning. * 3D big job running. * 3D run successful. * Save. * Plots for 3D Lei. * Tweaks to cloud documentation. Also docker auto-start on reboot. * Document s3 push. * Little clean ups, leaving the big cleanups for later. * Reduce the bootstrap output to avoid storing so many results. * All tests fixed/passing. * All tests fixed/passing. * Remove the vertices array from grid. (#87) * Remove the vertices array. * vertices as property so that existing code keeps working. * Fixes to incorporate tbt/ada_tuning stuff. * Using exponential holder bound for tuning. * Latest criterion. * Running big 4D job with improved refinement rule and new EH bound and no tile vertices. * Fast test_simulation.py (#89) Speed up test_simulation.py * Exponential checkpointing. * Weird memory errors that might be due to the machine. * Separated tuning from simulation. * Working through the 4d lei job. * Fixing up the criterion (inflation?) and running 4d lei. * Refactoring the adagrid code. * Impossibility... * Moving to aws since the run seems to be going well. * 4D Lei finally working beautifully. Lots of memory usage fixes. * Working on Lewis figures. * Rename inspector2 * Bug fixes in criterion. * Inspector upgrades and a criterion that includes twb_mean_lam. * Database exploration. * Using tilt-bound in AdaRunner. * Fix test_batch. Co-authored-by: James Yang --- .gitignore | 5 +- .vscode/settings.json | 2 +- .../{devinstance => }/2022-08-22-20-33-31.png | Bin cloud/README.md | 16 +- cloud/devinstance/init_amzn_linux.sh | 6 +- cloud/images/smalldev/Dockerfile | 2 + confirm/confirm/berrylib/fast_inla.py | 5 +- confirm/confirm/lewislib/batch.py | 139 +- confirm/confirm/lewislib/lewis.py | 338 ++- confirm/confirm/mini_imprint/binomial.py | 106 +- confirm/confirm/mini_imprint/grid.py | 387 +-- confirm/tests/lewis/lewis.pkl | Bin 0 -> 15826 bytes confirm/tests/lewis/test_batch.py | 59 + confirm/tests/lewis/test_n_configs.py | 12 +- .../tests/lewis/test_permute_invariance.py | 2 +- .../tests/lewis/test_posterior_difference.py | 6 +- confirm/tests/lewis/test_simulation.py | 74 +- confirm/tests/test_grid.py | 93 +- docs/jax_patterns.md | 27 + research/adagrid/.gitignore | 2 + research/adagrid/adagrid.ipynb | 1341 ++++++++-- research/adagrid/adagrid.md | 316 ++- research/adagrid/adastate.py | 263 ++ research/adagrid/bayes2022_figs.ipynb | 365 +++ research/adagrid/bayes2022_figs.md | 184 ++ research/adagrid/criterion.py | 192 ++ research/adagrid/diagnostics.py | 93 + research/adagrid/inspector.ipynb | 2252 +++++++++++++++++ research/adagrid/inspector.md | 318 +++ research/adagrid/lewis_ada.ipynb | 560 ++++ research/adagrid/lewis_ada.md | 309 +++ research/adagrid/plotter.ipynb | 341 +++ research/adagrid/plotter.md | 165 ++ research/adagrid/rpe.ipynb | 79 + research/adagrid/rpe.md | 43 + research/adagrid/tuning.ipynb | 1271 ++++++++++ research/adagrid/tuning.md | 314 +++ research/database/db_test.md | 152 ++ research/lei/analyze.ipynb | 321 +++ research/lei/analyze.md | 196 ++ research/lei/download_data.sh | 10 + research/lei/lei.ipynb | 193 +- research/lei/lei.md | 19 +- 43 files changed, 9547 insertions(+), 1031 deletions(-) rename cloud/{devinstance => }/2022-08-22-20-33-31.png (100%) create mode 100644 confirm/tests/lewis/lewis.pkl create mode 100644 confirm/tests/lewis/test_batch.py create mode 100644 research/adagrid/.gitignore create mode 100644 research/adagrid/adastate.py create mode 100644 research/adagrid/bayes2022_figs.ipynb create mode 100644 research/adagrid/bayes2022_figs.md create mode 100644 research/adagrid/criterion.py create mode 100644 research/adagrid/diagnostics.py create mode 100644 research/adagrid/inspector.ipynb create mode 100644 research/adagrid/inspector.md create mode 100644 research/adagrid/lewis_ada.ipynb create mode 100644 research/adagrid/lewis_ada.md create mode 100644 research/adagrid/plotter.ipynb create mode 100644 research/adagrid/plotter.md create mode 100644 research/adagrid/rpe.ipynb create mode 100644 research/adagrid/rpe.md create mode 100644 research/adagrid/tuning.ipynb create mode 100644 research/adagrid/tuning.md create mode 100644 research/database/db_test.md create mode 100644 research/lei/analyze.ipynb create mode 100644 research/lei/analyze.md create mode 100755 research/lei/download_data.sh diff --git a/.gitignore b/.gitignore index b8a8be34..23b4a9d5 100644 --- a/.gitignore +++ b/.gitignore @@ -46,4 +46,7 @@ venv # Cloud and AWS stuff .terraform .terraform.* -terraform.* \ No newline at end of file +terraform.* + +# explicitly ignore a file. +*.gitignore diff --git a/.vscode/settings.json b/.vscode/settings.json index 18fdd8bf..7268d3ed 100644 --- a/.vscode/settings.json +++ b/.vscode/settings.json @@ -110,7 +110,7 @@ "matrixfunctions": "cpp", "bvh": "cpp" }, - "C_Cpp.errorSquiggles": "Enabled", + "C_Cpp.errorSquiggles": "enabled", "C_Cpp.clang_format_fallbackStyle": "{ BasedOnStyle: LLVM, UseTab: Never, IndentWidth: 4, TabWidth: 4, AllowShortIfStatementsOnASingleLine: false, IndentCaseLabels: false, ColumnLimit: 100, AccessModifierOffset: -4, NamespaceIndentation: All, FixNamespaceComments: false, PointerAlignment: Left}", "cmake.configureOnOpen": false, "python.testing.unittestEnabled": false, diff --git a/cloud/devinstance/2022-08-22-20-33-31.png b/cloud/2022-08-22-20-33-31.png similarity index 100% rename from cloud/devinstance/2022-08-22-20-33-31.png rename to cloud/2022-08-22-20-33-31.png diff --git a/cloud/README.md b/cloud/README.md index 3e3e368e..aba04e53 100644 --- a/cloud/README.md +++ b/cloud/README.md @@ -72,7 +72,10 @@ We have some S3 Buckets. These contain various important data: - `imprint-dump` - each subfolder here should contain the output of a model run. - `aws-cloudtrail-logs-644171722153-2d03f9cb` - AWS access/management logs of everything we've done. -- `s3-access-logs-111222` - S3 access logs + +Pushing data: +- To push a folder of data to an S3 bucket: `aws s3 sync ./source_foldername s3://imprint-dump/target_foldername` +- To push a single file to an S3 bucket: `aws s3 cp ./source_file s3://imprint-dump/target_file` ## Using VSCode Dev Containers @@ -139,10 +142,13 @@ TODO: I think this is one of the remaining important tasks here. See the [issue - Stop the instance using the AWS CLI or the Console - Restart the instance using the AWS CLI or the Console -- `terraform apply` to update the terraform outputs (the public ipv4 DNS url will have changed) -- you might need to start docker... `./connect.sh` then `sudo systemctl start docker`. We could integrate this step into `./setup_remotedev.sh`. -- `./setup_remotedev.sh` to re-initalize the remote machine -- Open the docker sidebar in VSCode, start the relevant stopped container. +- Run `terraform apply` . Read the plan carefully to make sure that what you want to happen is going to happen. If you used a variable file when you created the instance, you need to pass the same variable file again here like `terraform apply -var-file="gpumachine.tfvars"`. In most cases, the only thing that will have changed is the public IPv4 DNS URL. +- You shouldn't need to start docker since it's setup to start automatically on boot. But, if you do: `./connect.sh` then `sudo systemctl start docker`. +- If connecting fails there are a few potential explanations: + 1. Maybe you need to log in to AWS? `aws sso configure` + 2. Maybe your ssh key is not being recognized. Try running `ssh-add --apple-use-keychain ~/.ssh/aws-key-pair.pem` +- `./setup_remotedev.sh` to re-initalize the remote docker context. +- Open the Docker sidebar in VSCode, start the relevant stopped container. It should have a name like `vsc-confirmasaurus-...`. - Then, run the VSCode command "Dev Containers: Attach to running container". - Once the container has launched, open the existing workspace folder inside the remote docker container. Probably `/workspaces/confirmasaurus`. diff --git a/cloud/devinstance/init_amzn_linux.sh b/cloud/devinstance/init_amzn_linux.sh index 622c5621..ce9ab9c1 100644 --- a/cloud/devinstance/init_amzn_linux.sh +++ b/cloud/devinstance/init_amzn_linux.sh @@ -10,4 +10,8 @@ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ sudo yum install --disablerepo="*" --enablerepo="libnvidia-container" nvidia-container-toolkit -y sudo service docker start -sudo usermod -a -G docker ec2-user \ No newline at end of file +sudo usermod -a -G docker ec2-user + +# set docker to start automatically on boot. +sudo systemctl enable docker.service +sudo systemctl enable containerd.service \ No newline at end of file diff --git a/cloud/images/smalldev/Dockerfile b/cloud/images/smalldev/Dockerfile index b403b7a5..f462de75 100644 --- a/cloud/images/smalldev/Dockerfile +++ b/cloud/images/smalldev/Dockerfile @@ -26,6 +26,8 @@ RUN apt-get update \ software-properties-common \ dirmngr \ neovim \ + cm-super \ + dvipng \ && ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh \ && echo ". /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc \ && echo "conda activate base" >> ~/.bashrc \ diff --git a/confirm/confirm/berrylib/fast_inla.py b/confirm/confirm/berrylib/fast_inla.py index 22f67fd5..64768553 100644 --- a/confirm/confirm/berrylib/fast_inla.py +++ b/confirm/confirm/berrylib/fast_inla.py @@ -151,6 +151,10 @@ def rejection_inference(self, data, method="jax"): _, exceedance, _, _ = self.inference(data, method) return exceedance > self.critical_value + def test_inference(self, data, method="jax"): + _, exceedance, _, _ = self.inference(data, method) + return exceedance + def inference(self, data, method="jax"): fncs = dict( numpy=self.numpy_inference, jax=self.jax_inference, cpp=self.cpp_inference @@ -173,7 +177,6 @@ def numpy_inference(self, data, thresh_theta=None): if thresh_theta is None: thresh_theta = self.thresh_theta - # TODO: warm start with DB theta ? # Step 1) Compute the mode of p(theta, y, sigma^2) holding y and sigma^2 fixed. # This is a simple Newton's method implementation. theta_max, hess_inv = self.optimize_mode(data) diff --git a/confirm/confirm/lewislib/batch.py b/confirm/confirm/lewislib/batch.py index bf9f0229..ebe7efb3 100644 --- a/confirm/confirm/lewislib/batch.py +++ b/confirm/confirm/lewislib/batch.py @@ -1,16 +1,32 @@ +import jax.numpy as jnp import numpy as np +# TODO: allow batch to decide internally what batch size to use?? -def pad_arg__(a, axis, n_pad: int): + +def _pad_arg(a, axis, n_pad: int): + """ + Pads an array: + - along the specified axis. + - with the values at index 0 + - by n_pad elements. + + Padding with the values at index 0 avoids problems with using a placeholder + value like 0 in situations where the placeholder value would be invalid. + """ pad_element = np.take(a, indices=0, axis=axis) pad_element = np.expand_dims(pad_element, axis=axis) new_shape = tuple(a.shape[i] if i != axis else n_pad for i in range(a.ndim)) return np.concatenate((a, np.full(new_shape, pad_element)), axis=axis) -def create_batched_args__(args, in_axes, start, end, n_pad=None): +def _create_batched_args(args, in_axes, start, end, n_pad=None): + """ + Subsets and pads the arguments as specified in in_axes. + """ + def arg_transform(arg, axis): - return pad_arg__(arg, axis, n_pad) if n_pad is not None else arg + return _pad_arg(arg, axis, n_pad) if n_pad is not None else arg return [ arg_transform( @@ -23,7 +39,17 @@ def arg_transform(arg, axis): ] -def batch(f, batch_size: int, in_axes): +def batch_yield(f, batch_size: int, in_axes): + """ + A generator that yields batches of output from the function f. + + Args: + f: The function to be batched. + batch_size: The batch size. + in_axes: For each argument, the axis along which to batch. If None, the + argument is not batched. + """ + def internal(*args): dims = np.array( [arg.shape[axis] for arg, axis in zip(args, in_axes) if axis is not None] @@ -41,28 +67,37 @@ def internal(*args): "along their corresopnding in_axes." ) + if len(args) != len(in_axes): + raise ValueError( + "The number of arguments must match the number of in_axes." + ) + dim = dims[0] - batch_size_new = min(batch_size, dim) - n_full_batches = dim // batch_size_new - remainder = dim % batch_size_new - n_pad = batch_size_new - remainder + + # NOTE: i don't think we should shrink the batch size because that'll + # incur extra JIT overhead when a user calls with lots of different + # small sizes. but we could make this a configurable behavior. + # batch_size_new = min(batch_size, dim) + n_full_batches = dim // batch_size + remainder = dim % batch_size + n_pad = batch_size - remainder pad_last = remainder > 0 start = 0 - end = batch_size_new + end = batch_size for _ in range(n_full_batches): - batched_args = create_batched_args__( + batched_args = _create_batched_args( args=args, in_axes=in_axes, start=start, end=end, ) yield (f(*batched_args), 0) - start += batch_size_new - end += batch_size_new + start += batch_size + end += batch_size if pad_last: - batched_args = create_batched_args__( + batched_args = _create_batched_args( args=args, in_axes=in_axes, start=start, @@ -75,10 +110,86 @@ def internal(*args): def batch_all(f, batch_size: int, in_axes): - f_batch = batch(f, batch_size, in_axes) + """ + A function wrapper that batches calls to f. + + Args: + f: Function to be batched. + batch_size: The batch size. + in_axes: For each argument, the axis along which to batch. If None, the + argument is not batched. + + Returns: + The batched results. + """ + f_batch = batch_yield(f, batch_size, in_axes) def internal(*args): outs = tuple(out for out in f_batch(*args)) return tuple(out[0] for out in outs), outs[-1][-1] return internal + + +def batch(f, batch_size: int, in_axes, out_axes=None): + """ + Batch a function call and concatenate the output. + + The API is intended to be similar to jax.vmap. + https://jax.readthedocs.io/en/latest/_modules/jax/_src/api.html#vmap + + If the function has a single output, the output is concatenated along the + specified axis. If the function has multiple outputs, each output is + concatenated along the corresponding axis. + + Args: + f: Function to be batched. + batch_size: The batch size. + in_axes: For each argument, the axis along which to batch. If None, the + argument is not batched. + out_axes: The axis along which to concatenate function outputs. + Defaults to None which will concatenate along the first axis. + + Returns: + A concatenated array or a tuple of concatenated arrays. + """ + f_batch_all = batch_all(f, batch_size, in_axes) + + def internal(*args): + outs, n_pad = f_batch_all(*args) + + return_first = False + if isinstance(outs[0], np.ndarray) or isinstance(outs[0], jnp.DeviceArray): + return_first = True + outs = [[o] for o in outs] + internal_out_axes = (0,) if out_axes is None else out_axes + else: + internal_out_axes = ( + out_axes + if out_axes is not None + else tuple(0 for _ in range(len(outs[0]))) + ) + + def entry(i, j): + if j == len(outs) - 1 and n_pad > 0: + axis = internal_out_axes[i] + N = outs[-1][i].shape[axis] + return np.take( + outs[-1][i], np.r_[0 : N - n_pad], mode="clip", axis=axis + ) + else: + return outs[j][i] + + return_vals = [ + np.concatenate( + [entry(i, j) for j in range(len(outs))], + axis=internal_out_axes[i], + ) + for i in range(len(outs[0])) + ] + if return_first: + return return_vals[0] + else: + return return_vals + + return internal diff --git a/confirm/confirm/lewislib/lewis.py b/confirm/confirm/lewislib/lewis.py index f257d246..de52b615 100644 --- a/confirm/confirm/lewislib/lewis.py +++ b/confirm/confirm/lewislib/lewis.py @@ -1,3 +1,9 @@ +import os +import pickle +import warnings +from dataclasses import dataclass +from pathlib import Path + import jax import jax.numpy as jnp import numpy as np @@ -45,9 +51,60 @@ """ +@dataclass +class Lewis45Spec: + """ + The specification of the Lewis45 trial we are simulating. + + This class should not contain execution-related parameters. + + Args: + n_arms: number of arms. + n_stage_1: number of patients to enroll at stage 1 for each arm. + n_stage_2: number of patients to enroll at stage 2 for each arm. + n_stage_1_interims: number of interims in stage 1. + n_stage_1_add_per_interim: number of total patients to + add per interim in stage 1. + n_stage_2_add_per_interim: number of patients to + add in stage 2 interim to control + and the selected treatment arms. + futility_threshold: probability cut-off to decide + futility for treatment arms. + If P(arm_i best | data) < futility_threshold, + declare arm_i as futile. + pps_threshold_lower: threshold for checking futility: + PPS < pps_threshold_lower <=> futility. + pps_threshold_upper: threshold for checking efficacy: + PPS > pps_threshold_upper <=> efficacy. + posterior_difference_threshold: threshold to compute posterior difference + of selected arm p and control arm p. + rejection_threshold: threshold for rejection at the final analysis + (if reached): + P(p_selected_treatment_arm - p_control_arm < + posterior_difference_threshold | data) + < rejection_threshold + <=> rejection. + """ + + n_arms: int + n_stage_1: int + n_stage_2: int + n_stage_1_interims: int + n_stage_1_add_per_interim: int + n_stage_2_add_per_interim: int + stage_1_futility_threshold: float + stage_1_efficacy_threshold: float + stage_2_futility_threshold: float + stage_2_efficacy_threshold: float + inter_stage_futility_threshold: float + posterior_difference_threshold: float + rejection_threshold: float + + class Lewis45: def __init__( self, + # TODO: replace with just spec? n_arms: int, n_stage_1: int, n_stage_2: int, @@ -61,42 +118,21 @@ def __init__( inter_stage_futility_threshold: float, posterior_difference_threshold: float, rejection_threshold: float, + # TODO: refactor to pull the tables out as a separate class. and allow passing + # None. then move these params to the tables constructor. Also, reorder + # the parameters at that time. sig2_int=quad.log_gauss_rule(15, 2e-6, 1e3), n_sig2_sims: int = 20, dtype=jnp.float64, cache_tables=False, - **kwargs, + key=None, + n_table_pts=None, + batch_size=None, + n_pr_sims=None, ): """ Constructs an object to run the Lei example. - Parameters: - ----------- - n_arms: number of arms. - n_stage_1: number of patients to enroll at stage 1 for each arm. - n_stage_2: number of patients to enroll at stage 2 for each arm. - n_stage_1_interims: number of interims in stage 1. - n_stage_1_add_per_interim: number of total patients to - add per interim in stage 1. - n_stage_2_add_per_interim: number of patients to - add in stage 2 interim to control - and the selected treatment arms. - futility_threshold: probability cut-off to decide - futility for treatment arms. - If P(arm_i best | data) < futility_threshold, - declare arm_i as futile. - pps_threshold_lower: threshold for checking futility: - PPS < pps_threshold_lower <=> futility. - pps_threshold_upper: threshold for checking efficacy: - PPS > pps_threshold_upper <=> efficacy. - posterior_difference_threshold: threshold to compute posterior difference - of selected arm p and control arm p. - rejection_threshold: threshold for rejection at the final analysis - (if reached): - P(p_selected_treatment_arm - p_control_arm < - posterior_difference_threshold | data) - < rejection_threshold - <=> rejection. """ self.n_arms = n_arms self.n_stage_1 = n_stage_1 @@ -111,6 +147,21 @@ def __init__( self.inter_stage_futility_threshold = inter_stage_futility_threshold self.posterior_difference_threshold = posterior_difference_threshold self.rejection_threshold = rejection_threshold + self.spec = Lewis45Spec( + n_arms, + n_stage_1, + n_stage_2, + n_stage_1_interims, + n_stage_1_add_per_interim, + n_stage_2_add_per_interim, + stage_1_futility_threshold, + stage_1_efficacy_threshold, + stage_2_futility_threshold, + stage_2_efficacy_threshold, + inter_stage_futility_threshold, + posterior_difference_threshold, + rejection_threshold, + ) self.dtype = dtype # sig2 for quadrature integration @@ -134,7 +185,7 @@ def __init__( self.n_configs_pr_best_pps_1, self.n_configs_pps_2, self.n_configs_pd, - ) = self.make_n_configs__() + ) = self._make_n_configs() # diff_matrix[i]^T p = p[i+1] - p[0] self.diff_matrix = np.zeros((self.n_arms - 1, self.n_arms)) @@ -146,32 +197,71 @@ def __init__( self.order = jnp.arange(0, self.n_arms, dtype=int) # cache jitted internal functions - self.posterior_difference_table_internal_jit__ = None - self.pr_best_pps_1_internal_jit__ = None - self.pps_2_internal_jit__ = None + self._posterior_difference_table_internal_jit = None + self._pr_best_pps_1_internal_jit = None + self._pps_2_internal_jit = None # posterior difference tables for every possible combination of n if cache_tables: - self.pd_table = self.posterior_difference_table__( - batch_size=kwargs["batch_size"] - ) - self.pr_best_pps_1_table = self.pr_best_pps_1_table__( - key=kwargs["key"], - n_pr_sims=kwargs["n_pr_sims"], - batch_size=kwargs["batch_size"], - ) - _, key = jax.random.split(kwargs["key"]) - self.pps_2_table = self.pps_2_table__( - key=key, - n_pr_sims=kwargs["n_pr_sims"], - batch_size=kwargs["batch_size"], + self.loaded_tables = False + cache_is_path = isinstance(cache_tables, (str, Path)) + if cache_is_path and os.path.exists(cache_tables): + self.loaded_tables = self.load_tables(cache_tables) + if not self.loaded_tables: + self.build_tables(key, n_table_pts, batch_size, n_pr_sims) + if cache_is_path: + self.save_tables(cache_tables) + + @property + def n_arm_samples(self): + return int(self.unifs_shape()[0]) + + def build_tables(self, key, n_table_pts, batch_size, n_pr_sims): + self.pd_table = self._posterior_difference_table( + batch_size=batch_size, n_points=n_table_pts + ) + self.pr_best_pps_1_table = self._pr_best_pps_1_table( + key=key, + n_pr_sims=n_pr_sims, + batch_size=batch_size, + n_points=n_table_pts, + ) + _, key = jax.random.split(key) + self.pps_2_table = self._pps_2_table( + key=key, n_pr_sims=n_pr_sims, batch_size=batch_size, n_points=n_table_pts + ) + + def load_tables(self, path): + with open(path, "rb") as f: + spec, tables = pickle.load(f) + # TODO: currently this just checks spec equality before accepting the + # cached table as correct. this is risky because the computational + # parameters could've also changed. we should add those! it would be + # nice to have a more general caching mechanism for lookup and + # interpolation tables. This situation of needing to cache simulation + # intermediates seems quite common! + if spec != self.spec: + warnings.warn("Ignoring cached tables due to spec mismatch.") + return False + self.pd_table, self.pr_best_pps_1_table, self.pps_2_table = tables + return True + + def save_tables(self, path): + os.makedirs(os.path.dirname(path), exist_ok=True) + with open(path, "wb") as f: + pickle.dump( + ( + self.spec, + (self.pd_table, self.pr_best_pps_1_table, self.pps_2_table), + ), + f, ) # =============================================== # Table caching logic # =============================================== - def make_canonical__(self, data): + def _make_canonical(self, data): # we use the facts that: # - arms that are not dropped always have # n value at least as large as those that were dropped. @@ -186,7 +276,7 @@ def make_canonical__(self, data): n_order_inverse = jnp.argsort(n_order)[1:] - 1 return data, n_order_inverse - def make_n_configs__(self): + def _make_n_configs(self): """ Creates two 2-D arrays of all possible configurations of the `n` Binomial parameter configurations throughout the trial. @@ -243,7 +333,7 @@ def internal(n_arr, n_add, n_interims, n_drop): return n_configs_pr_best_pps_1, n_configs_pps_2, n_configs_pd - def table_data__(self, ns, coords): + def _table_data(self, ns, coords): """ Creates a data array used to construct internal tables. @@ -261,7 +351,7 @@ def table_data__(self, ns, coords): data = jnp.stack((data, n_arr), axis=-1) return data - def make_grid__(self, ns, n_points): + def _make_grid(self, ns, n_points): """ Creates a 2-D array of shape (d, n_points) where d is n.shape[0]. @@ -286,7 +376,7 @@ def internal(n): return jnp.array([internal(n) for n in ns]) - def posterior_difference_table__( + def _posterior_difference_table( self, batch_size, n_points=None, @@ -295,9 +385,9 @@ def internal(data): return jax.vmap(self.posterior_difference, in_axes=(0,))(data) if n_points: - grid = self.make_grid__(self.n_configs_pd, n_points) + grid = self._make_grid(self.n_configs_pd, n_points) - def process_batch__(i, f, batch_size): + def _process_batch(i, f, batch_size): f_batched = batch.batch_all( f, batch_size, @@ -311,34 +401,30 @@ def process_batch__(i, f, batch_size): *(jnp.arange(0, n + 1) for n in self.n_configs_pd[i]), indexing="ij" ) - outs, n_padded = f_batched( - self.table_data__(self.n_configs_pd[i], meshgrid) - ) + outs, n_padded = f_batched(self._table_data(self.n_configs_pd[i], meshgrid)) out = jnp.row_stack(outs) return out[:(-n_padded)] if n_padded > 0 else out # if called for the first time, register jitted function - if self.posterior_difference_table_internal_jit__ is None: - self.posterior_difference_table_internal_jit__ = jax.jit(internal) + if self._posterior_difference_table_internal_jit is None: + self._posterior_difference_table_internal_jit = jax.jit(internal) tup_tables = tuple( - process_batch__( - i, self.posterior_difference_table_internal_jit__, batch_size - ) + _process_batch(i, self._posterior_difference_table_internal_jit, batch_size) for i in range(self.n_configs_pd.shape[0]) ) if n_points: return LinearInterpTable( self.n_configs_pd + 1, - grid, - jnp.array(tup_tables), + grid.astype(jnp.int32), + jnp.array(tup_tables, dtype=jnp.float32), ) else: return LookupTable(self.n_configs_pd + 1, tup_tables) - def pr_best_pps_1_table__(self, key, n_pr_sims, batch_size, n_points=None): + def _pr_best_pps_1_table(self, key, n_pr_sims, batch_size, n_points=None): unifs = jax.random.uniform( key=key, shape=( @@ -356,14 +442,14 @@ def pr_best_pps_1_table__(self, key, n_pr_sims, batch_size, n_points=None): normals = jax.random.normal(key, shape=(n_pr_sims, self.n_arms)) if n_points: - grid = self.make_grid__(self.n_configs_pr_best_pps_1, n_points) + grid = self._make_grid(self.n_configs_pr_best_pps_1, n_points) def internal(data): return jax.vmap(self.pr_best_pps_1, in_axes=(0, None, None, None))( data, normals, unifs_sig2, unifs ) - def process_batch__(i, f, batch_size): + def _process_batch(i, f, batch_size): f_batched = batch.batch_all( f, batch_size, @@ -379,7 +465,7 @@ def process_batch__(i, f, batch_size): ) outs, n_padded = f_batched( - self.table_data__(self.n_configs_pr_best_pps_1[i], meshgrid) + self._table_data(self.n_configs_pr_best_pps_1[i], meshgrid) ) pr_best_outs = tuple(t[0] for t in outs) pps_outs = tuple(t[1] for t in outs) @@ -392,11 +478,11 @@ def process_batch__(i, f, batch_size): ) # if called for the first time, register jitted function - if self.pr_best_pps_1_internal_jit__ is None: - self.pr_best_pps_1_internal_jit__ = jax.jit(internal) + if self._pr_best_pps_1_internal_jit is None: + self._pr_best_pps_1_internal_jit = jax.jit(internal) tup_tables = tuple( - process_batch__(i, self.pr_best_pps_1_internal_jit__, batch_size) + _process_batch(i, self._pr_best_pps_1_internal_jit, batch_size) for i in range(self.n_configs_pr_best_pps_1.shape[0]) ) pr_best_tables = tuple(t[0] for t in tup_tables) @@ -404,15 +490,18 @@ def process_batch__(i, f, batch_size): if n_points: return LinearInterpTable( self.n_configs_pr_best_pps_1 + 1, - grid, - (jnp.array(pr_best_tables), jnp.array(pps_tables)), + grid.astype(jnp.int32), + ( + jnp.array(pr_best_tables, dtype=jnp.float32), + jnp.array(pps_tables, dtype=jnp.float32), + ), ) else: return LookupTable( self.n_configs_pr_best_pps_1 + 1, (pr_best_tables, pps_tables) ) - def pps_2_table__(self, key, n_pr_sims, batch_size, n_points=None): + def _pps_2_table(self, key, n_pr_sims, batch_size, n_points=None): unifs = jax.random.uniform( key=key, shape=( @@ -433,14 +522,14 @@ def pps_2_table__(self, key, n_pr_sims, batch_size, n_points=None): ) if n_points: - grid = self.make_grid__(self.n_configs_pps_2, n_points) + grid = self._make_grid(self.n_configs_pps_2, n_points) def internal(data): return jax.vmap(self.pps_2, in_axes=(0, None, None, None))( data, normals, unifs_sig2, unifs ) - def process_batch__(i, f, batch_size): + def _process_batch(i, f, batch_size): f_batched = batch.batch_all( f, batch_size, @@ -456,39 +545,39 @@ def process_batch__(i, f, batch_size): ) outs, n_padded = f_batched( - self.table_data__(self.n_configs_pps_2[i], meshgrid) + self._table_data(self.n_configs_pps_2[i], meshgrid) ) out = jnp.row_stack(outs) return out[:(-n_padded)] if n_padded > 0 else out # if called for the first time, register jitted function - if self.pps_2_internal_jit__ is None: - self.pps_2_internal_jit__ = jax.jit(internal) + if self._pps_2_internal_jit is None: + self._pps_2_internal_jit = jax.jit(internal) tup_tables = tuple( - process_batch__(i, self.pps_2_internal_jit__, batch_size) + _process_batch(i, self._pps_2_internal_jit, batch_size) for i in range(self.n_configs_pps_2.shape[0]) ) if n_points: return LinearInterpTable( self.n_configs_pps_2 + 1, - grid, - jnp.array(tup_tables), + grid.astype(jnp.int32), + jnp.array(tup_tables, dtype=jnp.float32), ) else: return LookupTable(self.n_configs_pps_2 + 1, tup_tables) - def get_posterior_difference__(self, data): - data, n_order_inverse = self.make_canonical__(data) + def _get_posterior_difference(self, data): + data, n_order_inverse = self._make_canonical(data) return self.pd_table.at(data)[0][n_order_inverse] - def get_pr_best_pps_1__(self, data): - data, n_order_inverse = self.make_canonical__(data) + def _get_pr_best_pps_1(self, data): + data, n_order_inverse = self._make_canonical(data) outs = self.pr_best_pps_1_table.at(data) return tuple(out[n_order_inverse] for out in outs) - def get_pps_2__(self, data): - data, n_order_inverse = self.make_canonical__(data) + def _get_pps_2(self, data): + data, n_order_inverse = self._make_canonical(data) return self.pps_2_table.at(data)[0][n_order_inverse] # =============================================== @@ -628,7 +717,7 @@ def simulate_Ai(data, arm, new_data): # pool outcomes for each arm data = data + new_data - return self.get_posterior_difference__(data)[arm] < self.rejection_threshold + return self._get_posterior_difference(data)[arm] < self.rejection_threshold # compute p from logit space p_samples = jax.scipy.special.expit(thetas) @@ -764,7 +853,7 @@ def stage_1(self, berns, berns_order, berns_start=0): # auxiliary variables non_dropped_idx = jnp.ones(n_arms - 1, dtype=bool) - pr_best, pps = self.get_pr_best_pps_1__(data) + pr_best, pps = self._get_pr_best_pps_1(data) # Stage 1: def body_func(args): @@ -809,7 +898,7 @@ def body_func(args): data_new = jnp.where(add_idx[:, None], data_new, 0) data = data + data_new - pr_best, pps = self.get_pr_best_pps_1__(data) + pr_best, pps = self._get_pr_best_pps_1(data) return ( i + 1, @@ -857,14 +946,7 @@ def body_func(args): berns_start, ) - def stage_2( - self, - data, - best_arm, - berns, - berns_order, - berns_start, - ): + def stage_2(self, data, best_arm, berns, berns_order, berns_start, p): """ Runs a single simulation of stage 2 of the Lei example. @@ -881,13 +963,15 @@ def stage_2( Returns: -------- - 0 if no rejection, otherwise 1. + The test statistic: + - 1 for early futility + - 0 for early efficacy + - posterior difference otherwise. """ n_stage_2 = self.n_stage_2 n_stage_2_add_per_interim = self.n_stage_2_add_per_interim pps_threshold_lower = self.stage_2_futility_threshold pps_threshold_upper = self.stage_2_efficacy_threshold - rejection_threshold = self.rejection_threshold non_dropped_idx = (self.order == 0) | (self.order == best_arm) @@ -902,13 +986,12 @@ def stage_2( data_new = jnp.where(non_dropped_idx[:, None], data_new, 0) data = data + data_new - pps = self.get_pps_2__(data)[best_arm - 1] + pps = self._get_pps_2(data)[best_arm - 1] # interim: check early-stop based on futility (lower) or efficacy (upper) early_exit_futility = pps < pps_threshold_lower early_exit_efficacy = pps > pps_threshold_upper early_exit = early_exit_futility | early_exit_efficacy - early_exit_out = jnp.logical_not(early_exit_futility) | early_exit_efficacy def final_analysis(data, berns_start): data_new, berns_start = self.sample( @@ -919,19 +1002,22 @@ def final_analysis(data, berns_start): ) data_new = jnp.where(non_dropped_idx[:, None], data_new, 0) data = data + data_new - rej = ( - self.get_posterior_difference__(data)[best_arm - 1] - < rejection_threshold - ) - return (rej, data) + test_stat = self._get_posterior_difference(data)[best_arm - 1] + return (test_stat, best_arm, self.score(data, p)) return jax.lax.cond( early_exit, - lambda: (early_exit_out, data), + # slightly confusing: + # the test stat for an early exit is 0 if efficacy, 1 if futility + lambda: ( + (pps <= pps_threshold_upper).astype(float), + best_arm, + self.score(data, p), + ), lambda: final_analysis(data, berns_start), ) - def simulate(self, p, null_truths, unifs, unifs_order): + def simulate(self, p, unifs, unifs_order): """ Runs a single simulation of both stage 1 and stage 2. @@ -943,7 +1029,14 @@ def simulate(self, p, null_truths, unifs, unifs_order): and d is the total number of arms. unifs_order: result of calling jnp.arange(0, unifs.shape[0]). It is made an argument to be able to reuse this array. + Returns: + -------- + The test statistic: + - 1 for early futility + - 0 for early efficacy + - posterior difference otherwise. """ + # construct bernoulli draws berns = unifs < p[None] @@ -963,31 +1056,22 @@ def simulate(self, p, null_truths, unifs, unifs_order): pps[best_arm - 1] < self.inter_stage_futility_threshold ) - def stage_2_wrap( - null_truths, data, p, best_arm, berns, unifs_order, berns_start - ): - rej, data = self.stage_2( - data=data, - best_arm=best_arm, - berns=berns, - berns_order=unifs_order, - berns_start=berns_start, - ) - false_rej = rej * null_truths[best_arm - 1] - score = self.score(data, p) * false_rej - return (false_rej, score) - # Stage 2 only if no early termination based on futility return jax.lax.cond( early_exit, - lambda: (False, jnp.zeros(self.n_arms)), - lambda: stage_2_wrap( - null_truths=null_truths, + lambda: (2.0, best_arm, jnp.zeros(self.n_arms)), + lambda: self.stage_2( data=data, - p=p, best_arm=best_arm, berns=berns, - unifs_order=unifs_order, + berns_order=unifs_order, berns_start=berns_start, + p=p, ), ) + + def simulate_rejection(self, p, null_truth, unifs, unifs_order): + test_stat, best_arm, score = self.simulate(p, unifs, unifs_order)[0] + rej = test_stat < self.rejection_threshold + false_rej = rej * null_truth[best_arm - 1] + return false_rej, score diff --git a/confirm/confirm/mini_imprint/binomial.py b/confirm/confirm/mini_imprint/binomial.py index 6c4b1074..6f36e1ac 100644 --- a/confirm/confirm/mini_imprint/binomial.py +++ b/confirm/confirm/mini_imprint/binomial.py @@ -1,8 +1,10 @@ +from functools import partial from typing import Callable import jax.numpy as jnp import jax.scipy.special import numpy as np +import numpyro.distributions as dist import scipy.special import scipy.stats import sympy as sp @@ -10,6 +12,9 @@ def binomial_accumulator(rejection_fnc): """ + NOTE: THIS IS DEPRECATED BECAUSE IT DOESN'T TAKE A CRITICAL VALUE AS A + PARAMETER. + A simple re-implementation of accumulation. This is useful for distilling what is happening during accumulation down to a simple linear sequence of operations. Retaining this could be useful for tutorials or conceptual @@ -211,10 +216,15 @@ def zero_order_bound(typeI_sum, sim_sizes, delta, delta_prop_0to1): d0 = typeI_sum / sim_sizes # clopper-pearson upper bound in beta form. d0u_factor = 1.0 - delta * delta_prop_0to1 + # NOTE: moving this to JAX is nontrivial and probably best done with + # tensorflow_probability: + # https://github.com/google/jax/issues/2399#issuecomment-1225990206 + # https://github.com/pyro-ppl/numpyro/blob/e28a3feaa4f95d76b361101f0c75dcb5add2365e/numpyro/distributions/util.py#L426 + # Also, probably unnecessary since this is fast! d0u = scipy.stats.beta.ppf(d0u_factor, typeI_sum + 1, sim_sizes - typeI_sum) - d0 # If typeI_sum == sim_sizes, scipy.stats outputs nan. Output 0 instead # because there is no way to go higher than 1.0 - d0u = np.where(np.isnan(d0u), 0, d0u) + d0u = jnp.where(jnp.isnan(d0u), 0, d0u) return d0, d0u @@ -275,32 +285,39 @@ def optimal_centering(f, p): return 1 / (1 + ((1 - f) / f) ** (1 / (p - 1))) -# def _build_odi_constant_func_numerical(q: float): -# """ -# Fully numerical integration constant evaluator. This can be useful for -# non-integer q. +constant_func_cache = {} + + +def _build_odi_constant_func_numerical(q: float): + """ + Fully numerical integration constant evaluator. This can be useful for + non-integer q. + + Args: + q: The moment to compute. Must be a float greater than 1. + """ -# Args: -# q: The moment to compute. Must be a float greater than 1. -# """ + def f(n, p): + if isinstance(p, float): + pf = np.array([p]) + else: + pf = p.flatten() + xs = jnp.arange(n + 1).astype(jnp.float64) + return jnp.exp( + jax.scipy.special.logsumexp( + q * jnp.log(jnp.abs(xs - n * pf)) + dist.Binomial(n, pf).log_prob(xs) + ) + ) -# def f(n, p): -# if isinstance(p, float): -# pf = np.array([p]) -# else: -# pf = p.flatten() -# xs = np.arange(n + 1).astype(np.float64) -# eggq = np.abs(xs[None, :] - n * pf[:, None]) ** q -# integrand = eggq * scipy.stats.binom.pmf(xs[None, :], n, pf[:, None]) -# out = np.sum(integrand, axis=-1) -# if isinstance(p, float): -# return out[0] -# else: -# return out.reshape(p.shape) + if q not in constant_func_cache: + constant_func_cache[q] = jax.jit( + jax.vmap(f, in_axes=(None, 0)), static_argnums=(0,) + ) -# return f + return constant_func_cache[q] +@partial(jax.jit, static_argnums=(2, 3, 4, 5)) def _calc_Cqpp( theta_tiles, tile_corners, @@ -335,12 +352,13 @@ def _calc_Cqpp( raise ValueError("The q parameter must be an even integer less than 16.") holderp = 1 / (1 - 1.0 / holderq) - sup_v = np.max( - np.sum( - np.where( - np.isnan(tile_corners), + sup_v = jnp.max( + jnp.sum( + jnp.where( + jnp.isnan(tile_corners), 0, - np.abs(radius_ratio * (tile_corners - theta_tiles[:, None])) ** holderp, + jnp.abs(radius_ratio * (tile_corners - theta_tiles[:, None])) + ** holderp, ), axis=2, ) @@ -348,32 +366,34 @@ def _calc_Cqpp( axis=1, ) - tile_corners_p = scipy.special.expit(tile_corners) + tile_corners_p = jax.scipy.special.expit(tile_corners) # NOTE: we are assuming that we know the supremum occurs at a corner or at # p=0.5. This might not be true for other models or for q > 16. - C_corners = np.where( - np.isnan(tile_corners_p), + C_corners = jnp.where( + jnp.isnan(tile_corners_p.ravel()), 0, - C_f(n_arm_samples, tile_corners_p), - ) + C_f(n_arm_samples, tile_corners_p.ravel()), + ).reshape(tile_corners_p.shape) # maximum per dimension over the corners of the tile - C_max = np.max(C_corners, axis=1) + C_max = jnp.max(C_corners, axis=1) # if the tile crosses p=0.5, we just set C_max equal to the value at 0.5 - crosses05 = np.where( - np.any(tile_corners_p < 0.5, axis=1) & np.any(tile_corners_p > 0.5, axis=1) + C_max = jnp.where( + jnp.any(tile_corners_p < 0.5, axis=1) & jnp.any(tile_corners_p > 0.5, axis=1), + C_f(n_arm_samples, jnp.array([0.5]))[0], + C_max, ) - C_max[crosses05] = C_f(n_arm_samples, 0.5) # finally, sum across the arms to compute the full multidimensional moment # expectation - sup_moment = np.sum(C_max, axis=-1) ** (1 / holderq) + sup_moment = jnp.sum(C_max, axis=-1) ** (1 / holderq) # Cq'' from the paper: return sup_v * sup_moment +@partial(jax.jit, static_argnums=(3, 4, 5, 6)) def holder_odi_bound( typeI_bound, theta_tiles, @@ -381,6 +401,7 @@ def holder_odi_bound( n_arm_samples: int, holderq: int, radius_ratio: float = 1.0, + C_f: Callable = None, ): """ Compute the Holder-ODI on Type I Error. See the paper for mathematical @@ -398,7 +419,8 @@ def holder_odi_bound( Returns: The Holder ODI type I error bound for each tile. """ - C_f = _build_odi_constant_func(holderq) + if C_f is None: + C_f = _build_odi_constant_func_numerical(holderq) Cqpp = _calc_Cqpp( theta_tiles, tile_corners, @@ -408,3 +430,11 @@ def holder_odi_bound( radius_ratio=radius_ratio, ) return (Cqpp / holderq + typeI_bound ** (1 / holderq)) ** holderq + + +@partial(jax.jit, static_argnums=(3, 4)) +def invert_bound(bound, theta_tiles, vertices, n_arm_samples, holderq): + C_f = _build_odi_constant_func_numerical(holderq) + Cqpp = _calc_Cqpp(theta_tiles, vertices, n_arm_samples, holderq, C_f) + pointwise_bound = (bound ** (1 / holderq) - Cqpp / holderq) ** holderq + return jnp.where(pointwise_bound > bound, 0.0, pointwise_bound) diff --git a/confirm/confirm/mini_imprint/grid.py b/confirm/confirm/mini_imprint/grid.py index b0f17a98..64317646 100644 --- a/confirm/confirm/mini_imprint/grid.py +++ b/confirm/confirm/mini_imprint/grid.py @@ -1,5 +1,5 @@ -import warnings from dataclasses import dataclass +from dataclasses import field from itertools import product from typing import List @@ -13,6 +13,9 @@ class HyperPlane: """ A plane defined by: x \cdot n - c = 0 + + Sign convention: When used as the boundary between null hypothesis and + alternative, the normal should point towards the null hypothesis space. """ n: np.ndarray @@ -22,33 +25,38 @@ class HyperPlane: @dataclass class Grid: """ - The first two arrays define the grid points/cells: + The first two arrays define the grid points/tiles: - thetas: the center of each hyperrectangle. - radii: the half-width of each hyperrectangle in each dimension. The next four arrays define the tiles: - - vertices contains the vertices of each tiles. After splitting, tiles - may have differing numbers of vertices. The vertices array will be - shaped: (n_tiles, max_n_vertices, n_params). For tiles that have fewer - than max_n_vertices, the unused entries will be filled with nans. - grid_pt_idx is an array with an entry for each tile that contains to index of the original grid point from which that tile was created - - is_regular indicates whether each tile has ever been split. Tiles that - have been split are considered "irregular" and tiles that have never been - split are considered "regular". - null_truth indicates the truth of each null hypothesis for each tile. + - null_hypos contains the hyperplanes that define the null hypotheses. """ thetas: np.ndarray radii: np.ndarray - vertices: np.ndarray - is_regular: np.ndarray null_truth: np.ndarray grid_pt_idx: np.ndarray + null_hypos: List[HyperPlane] = field(default_factory=lambda: []) @property def n_tiles(self): - return self.vertices.shape[0] + return self.null_truth.shape[0] + + def vertices(self, idxs=None): + if idxs is None: + gpi = self.grid_pt_idx + else: + gpi = self.grid_pt_idx[idxs] + center = self.thetas[gpi] + radii = self.radii[gpi] + return ( + center[:, None, :] + + hypercube_vertices(self.d)[None, :, :] * radii[:, None, :] + ) @property def n_grid_pts(self): @@ -80,10 +88,9 @@ def index_grid(g: Grid, idxs: np.ndarray): return Grid( g.thetas, g.radii, - g.vertices[idxs], - g.is_regular[idxs], g.null_truth[idxs], g.grid_pt_idx[idxs], + g.null_hypos, ) @@ -91,6 +98,10 @@ def concat_grids(*gs: List[Grid], shared_theta=False): """ Concat a list of grids. + Note: this assumes the grids have the same null hypotheses. Concatenating + grids with different null hypotheses doesn't make sense and is not + supported. + Args: shared_theta: Do the grids already share the same grid points. This can be useful if you are combining `concat_grid` with `index_grid`. @@ -102,18 +113,6 @@ def concat_grids(*gs: List[Grid], shared_theta=False): if len(gs) == 1: return gs[0] - vs = [g.vertices for g in gs] - max_n_vertices = max([varr.shape[1] for varr in vs]) - for i, varr in enumerate(vs): - if max_n_vertices > varr.shape[1]: - vs[i] = np.pad( - varr, - ((0, 0), (0, max_n_vertices - varr.shape[1]), (0, 0)), - constant_values=np.nan, - ) - - vertices = np.concatenate((vs), axis=0) - is_regular = np.concatenate([g.is_regular for g in gs], axis=0) null_truth = np.concatenate([g.null_truth for g in gs], axis=0) if shared_theta: @@ -127,10 +126,16 @@ def concat_grids(*gs: List[Grid], shared_theta=False): grid_pt_idx = np.concatenate( [g.grid_pt_idx + grid_pt_offset[i] for i, g in enumerate(gs)], axis=0 ) - return Grid(thetas, radii, vertices, is_regular, null_truth, grid_pt_idx) + return Grid( + thetas, + radii, + null_truth, + grid_pt_idx, + null_hypos=gs[0].null_hypos, + ) -def plot_grid2d(g: Grid, null_hypos: List[HyperPlane] = []): +def plot_grid2d(g: Grid, null_hypos: List[HyperPlane] = [], dims=(0, 1)): """ Plot a 2D grid. @@ -142,9 +147,12 @@ def plot_grid2d(g: Grid, null_hypos: List[HyperPlane] = []): import matplotlib as mpl import matplotlib.pyplot as plt + vertices = g.vertices[..., dims] + polys = [] + vertices = g.vertices() for i in range(g.n_tiles): - vs = g.vertices[i] + vs = vertices[i] vs = vs[~np.isnan(vs).any(axis=1)] centroid = np.mean(vs, axis=0) angles = np.arctan2(vs[:, 1] - centroid[1], vs[:, 0] - centroid[0]) @@ -156,8 +164,8 @@ def plot_grid2d(g: Grid, null_hypos: List[HyperPlane] = []): mpl.collections.PatchCollection(polys, match_original=True) ) - maxvs = np.max(np.where(np.isnan(g.vertices), -np.inf, g.vertices), axis=(0, 1)) - minvs = np.min(np.where(np.isnan(g.vertices), np.inf, g.vertices), axis=(0, 1)) + maxvs = np.max(g.thetas, axis=0) + np.max(g.radii, axis=0) + minvs = np.min(g.thetas, axis=0) - np.max(g.radii, axis=0) view_center = 0.5 * (maxvs + minvs) view_radius = (maxvs - minvs) * 0.55 xlims = view_center[0] + np.array([-1, 1]) * view_radius[0] @@ -174,23 +182,28 @@ def plot_grid2d(g: Grid, null_hypos: List[HyperPlane] = []): xs = (h.c - ys * h.n[1]) / h.n[0] plt.plot(xs, ys, "r-") - plt.show() - def intersect_grid(g_in: Grid, null_hypos: List[HyperPlane], jit=False): """ - Intersect a grid with a set of null hypotheses. + Intersect a grid with a set of null hypotheses. Tiles that cross the null + hypothesis boundary are copied. Args: g_in: The input grid. - null_hypos: The null hypotheses to intersect with. + null_hypos: The null hypotheses to intersect with. Sign convention: + When used as the boundary between null hypothesis and alternative, + the normal of a HyperPlane should point towards the null hypothesis + space. jit: Should we jax.jit helper functions? This can make performance slower for small grids and much faster for large grids. Defaults to False. Returns: - The intersected grid with split tiles. + The intersected grid with copy tiles. """ + if len(null_hypos) == 0: + return g_in + eps = 1e-15 n_grid_pts, n_params = g_in.thetas.shape @@ -203,7 +216,8 @@ def intersect_grid(g_in: Grid, null_hypos: List[HyperPlane], jit=False): Hcs = np.array([H.c for H in null_hypos]) gridpt_dist = g_in.thetas.dot(Hns.T) - Hcs[None] - gridpt_any_intersect = np.any(np.abs(gridpt_dist) < g_in.radii, axis=-1) + sphere_radii = np.sqrt(np.sum(g_in.radii**2, axis=-1)) + gridpt_any_intersect = np.any(np.abs(gridpt_dist) < sphere_radii[:, None], axis=-1) any_intersect = gridpt_any_intersect[g_in.grid_pt_idx] no_intersect = ~any_intersect tile_rough_dist = gridpt_dist[g_in.grid_pt_idx] @@ -231,25 +245,35 @@ def _precise_check_for_intersections(vertices, Hns, Hcs): if jit: _precise_check_for_intersections = jax.jit(_precise_check_for_intersections) + unit_vs = hypercube_vertices(g_in.d) + intersect_gridpt = g_in.grid_pt_idx[any_intersect] + intersect_vertices = g_in.thetas[intersect_gridpt, None, :] + ( + unit_vs[None, :, :] * g_in.radii[intersect_gridpt, None, :] + ) + precise_any_intersect, precise_null_truth = _precise_check_for_intersections( - g_in.vertices[any_intersect], Hns, Hcs + intersect_vertices, Hns, Hcs ) null_truth[any_intersect] = precise_null_truth any_intersect[any_intersect] = precise_any_intersect - g_in.null_truth = np.concatenate((g_in.null_truth, null_truth), axis=1) - # the subset of the grid that does not need to be checked for intersection. g_ignore = index_grid(g_in, ~any_intersect) # the working subset that we *do* need to check for intersection. g = index_grid(g_in, any_intersect) + full_null_truth = np.concatenate((g_in.null_truth, null_truth), axis=1) + g_ignore.null_truth = full_null_truth[~any_intersect] + g.null_truth = full_null_truth[any_intersect] + if g.n_tiles == 0: return g_ignore for iH, H in enumerate(null_hypos): - orig_max_v_count = g.vertices.shape[1] + vertices = g.thetas[g.grid_pt_idx, None, :] + ( + unit_vs[None, :, :] * g.radii[g.grid_pt_idx, None, :] + ) ######################################## # Step 3. Find any intersections for this null hypothesis. @@ -258,7 +282,7 @@ def _precise_check_for_intersections(vertices, Hns, Hcs): # Measure the distance of each vertex from the null hypo boundary # it's important to allow nan dist because some tiles may not have # every vertex slot filled. Unused vertex slots will contain nans. - dist = g.vertices.dot(H.n) - H.c + dist = vertices.dot(H.n) - H.c is_null = ((dist >= 0) | np.isnan(dist)).all(axis=1) @@ -266,24 +290,17 @@ def _precise_check_for_intersections(vertices, Hns, Hcs): g.null_truth[is_null, iH] = 1 g.null_truth[~is_null, iH] = 0 - # Identify the tiles to be split by checking if all the tile vertices + # Identify the tiles to be copied by checking if all the tile vertices # are on the same side of the plane. Give some floating point slack # around zero so we don't suffer from imprecision. - to_split_or_copy = ~( + to_copy = ~( ((dist >= -eps) | np.isnan(dist)).all(axis=1) | ((dist <= eps) | np.isnan(dist)).all(axis=1) ) - - # If a tile has been split already, we don't split again because that - # would add substantial complexity in exchange for minimal performance - # gains. - to_split = to_split_or_copy & g.is_regular - to_copy = to_split_or_copy & ~g.is_regular - split_idxs = np.where(to_split)[0] copy_idxs = np.where(to_copy)[0] - # The subset of the grid that we won't split - g_keep = index_grid(g, ~to_split_or_copy) + # The subset of the grid that we won't copy + g_keep = index_grid(g, ~to_copy) ######################################## # Step 4. Copy tiles. @@ -300,157 +317,37 @@ def _precise_check_for_intersections(vertices, Hns, Hcs): g_copy = Grid( g.thetas, g.radii, - np.repeat(g.vertices[copy_idxs], 2, axis=0), - np.repeat(g.is_regular[copy_idxs], 2, axis=0), copy_null_truth, np.repeat(g.grid_pt_idx[copy_idxs], 2, axis=0), - ) - - ######################################## - # Step 5. Split tiles! - ######################################## - if split_idxs.shape[0] == 0: - g_split = index_grid(g, np.s_[0:0]) - else: - split_grid_pt_idx = g.grid_pt_idx[split_idxs] - - ######################################## - # Step 5a. Intersect tile edges with the hyperplane. - # This will identify the new vertices that we need to add. - ######################################## - split_edges = get_edges( - g.thetas[split_grid_pt_idx], g.radii[split_grid_pt_idx] - ) - # The first n_params columns of split_edges are the vertices from which - # the edge originates and the second n_params are the edge vector. - split_vs = split_edges[..., :n_params] - split_dir = split_edges[..., n_params:] - - with warnings.catch_warnings(): - warnings.simplefilter("ignore") - # Intersect each edge with the plane. - alpha = (H.c - split_vs.dot(H.n)) / (split_dir.dot(H.n)) - # Now we need to identify the new tile vertices. We have three - # possible cases here: - # 1. Intersection: indicated by 0 < alpha < 1. We give a little - # eps slack to ignore intersections for null planes that just barely - # touch a corner of a tile. In this case, we - # 2. Non-intersection indicated by alpha not in [0, 1]. In this - # case, the new vertex will just be marked nan to be filtered out - # later. - # 3. Non-finite alpha which also indicates no intersection. Again, - # we produced a nan vertex to filter out later. - new_vs = split_vs + alpha[:, :, None] * split_dir - new_vs = np.where( - (np.isfinite(new_vs)) - & ((alpha > eps) & (alpha < 1 - eps))[..., None], - new_vs, - np.nan, - ) - - ######################################## - # Step 5b. Construct the vertex array for the new tiles.. - ######################################## - # Create the array for the new vertices. We need to expand the - # original vertex array in both dimensions: - # 1. We create a new row for each tile that is being split using np.repeat. - # 2. We create a new column for each potential additional vertex from - # the intersection operation above using np.concatenate. This is - # more new vertices than necessary, but facilitates a nice - # vectorized implementation.. We will just filter out the - # unnecessary slots later. - split_vertices = np.repeat(g.vertices[split_idxs], 2, axis=0) - split_vertices = np.concatenate( - ( - split_vertices, - np.full( - (split_vertices.shape[0], split_edges.shape[1], n_params), - np.nan, - ), - ), - axis=1, - ) - - # Now we need to fill in the new vertices: - # For each original tile vertex, we need to determine whether the tile - # lies in the new null tile or the new alt tile. - include_in_null_tile = dist[split_idxs] >= -eps - include_in_alt_tile = dist[split_idxs] <= eps - - # Since we copied the entire tiles, we can "delete" vertices by - # multiply by nan - # note: ::2 traverses the range of new null hypo tiles - # 1::2 traverses the range of new alt hypo tiles - split_vertices[::2, :orig_max_v_count] *= np.where( - include_in_null_tile, 1, np.nan - )[..., None] - split_vertices[1::2, :orig_max_v_count] *= np.where( - include_in_alt_tile, 1, np.nan - )[..., None] - - # The intersection vertices get added to both new tiles because - # they lie on the boundary between the two tiles. - split_vertices[::2, orig_max_v_count:] = new_vs - split_vertices[1::2, orig_max_v_count:] = new_vs - - # Trim the new tile array: - # We now are left with an array of tile vertices that has many more - # vertex slots per tile than necessary with the unused slots filled - # with nan. - # To deal with this: - # 1. We sort along the vertices axis. This has the effect of - # moving all the nan vertices to the end of the list. - split_vertices = split_vertices[ - np.arange(split_vertices.shape[0])[:, None], - np.argsort(np.sum(split_vertices, axis=-1), axis=-1), - ] - # 2. Identify the maximum number of vertices of any tile and trim the - # array so that is the new vertex dimension size - nonfinite_corners = (~np.isfinite(split_vertices)).all(axis=(0, 2)) - # 3. If any corner is unused for all tiles, we should remove it. - # But, we can't trim smaller than the original vertices array. - if nonfinite_corners[-1]: - first_all_nan_corner = nonfinite_corners.argmax() - split_vertices = split_vertices[:, :first_all_nan_corner] - - ######################################## - # Step 5c. Update the remaining tile properties. - ######################################## - split_null_truth = np.repeat(g.null_truth[split_idxs], 2, axis=0) - # - the two sides of a split tile have their null hypo truth - # indicators updated. - split_null_truth[::2, iH] = 1 - split_null_truth[1::2, iH] = 0 - g_split = Grid( - g.thetas, - g.radii, - split_vertices, - np.full(split_idxs.shape[0] * 2, False, dtype=bool), - split_null_truth, - np.repeat(split_grid_pt_idx, 2, axis=0), + g.null_hypos, ) # Hurray, we made it! We can concatenate our grids! - g = concat_grids(g_keep, g_copy, g_split, shared_theta=True) + g = concat_grids(g_keep, g_copy, shared_theta=True) - # After all the splitting is done, we can concat back to the tiles that we - # ignored because we knew they would never be split. - return concat_grids(g_ignore, g, shared_theta=True) + # After all the copying is done, we can concat back to the tiles that we + # ignored because we knew they would never be copied. + out = concat_grids(g_ignore, g, shared_theta=True) + out.null_hypos = out.null_hypos + null_hypos + return out def build_grid( - thetas: np.ndarray, radii: np.ndarray, null_hypos: List[HyperPlane] = [] + thetas: np.ndarray, + radii: np.ndarray, + null_hypos: List[HyperPlane] = [], + symmetry_planes: List[HyperPlane] = [], + should_prune: bool = True, ): """ Construct an Imprint grid from a set of grid point centers, radii and null hypothesis. 1. Initially, we construct simple hyperrectangle cells. - 2. Then, we split cells that are intersected by the null hypothesis boundaries. - - Note that we do not split cells twice. This is a simplification that makes - the software much simpler and probably doesn't cost us much in terms of - bound tightness because very few cells are intersected by multiple - hyperplanes. + 2. Then, we remove tiles on the negative side of any symmetry planes. + 3. Then, we copy cells that are intersected by the null hypothesis boundaries. + 4. Finally, we optionally remove tiles that are in the alternative + hypothesis region for all null hypotheses. These tiles are not + interesting for Type I Error analysis. Args: thetas: The centers of the hyperrectangle grid. @@ -458,27 +355,31 @@ def build_grid( null_hypos: A list of hyperplanes defining the boundary of the null hypothesis. The normal vector of these hyperplanes point into the null domain. + symmetry_planes: A list of hyperplanes defining symmetry planes. These + are used to filter out redundant tiles. + should_prune: If True, remove tiles that are entirely in the alternative + hypothesis space. Returns: a Grid object """ - n_grid_pts, n_params = thetas.shape - - # For splitting cells, we will need to know the nD edges of each cell and - # the vertices of each tile. - unit_vs = hypercube_vertices(n_params) - tile_vs = thetas[:, None, :] + (unit_vs[None, :, :] * radii[:, None, :]) + n_grid_pts, _ = thetas.shape # Keep track of the various tile properties. See the Grid class docstring # for definitions. grid_pt_idx = np.arange(n_grid_pts) - is_regular = np.ones(n_grid_pts, dtype=bool) null_truth = np.full((n_grid_pts, 0), -1) - g = Grid(thetas, radii, tile_vs, is_regular, null_truth, grid_pt_idx) - if len(null_hypos) > 0: - g = intersect_grid(g, null_hypos) - return g + + g = Grid(thetas, radii, null_truth, grid_pt_idx) + g_sym = prune(intersect_grid(g, symmetry_planes), hard=True) + g_sym.null_truth = np.empty((g_sym.n_tiles, 0), dtype=bool) + g_sym.null_hypos = [] + g_out = intersect_grid(g_sym, null_hypos) + if should_prune: + return prune(g_out) + else: + return g_out def cartesian_gridpts(theta_min, theta_max, n_theta_1d): @@ -512,27 +413,45 @@ def cartesian_gridpts(theta_min, theta_max, n_theta_1d): return theta, radii -def prune(g): - """Remove tiles that are entirely within the alternative hypothesis space. +def prune(g: Grid, hard: bool = False) -> Grid: + """ + Remove tiles that are entirely within the alternative hypothesis space. Args: g: the Grid object + hard: If True, remove tiles with any hypotheses in the alternative + space. If False, remove tiles with all hypotheses in the alternative + space. Returns: the pruned Grid object. """ if g.null_truth.shape[1] == 0: return g - all_alt = (g.null_truth == 0).all(axis=1) - grid_pt_idx = g.grid_pt_idx[~all_alt] - included_grid_pts, grid_pt_inverse = np.unique(grid_pt_idx, return_inverse=True) + if hard: + keep = ~((g.null_truth == 0).any(axis=1)) + else: + keep = ~((g.null_truth == 0).all(axis=1)) + return trim(index_grid(g, keep)) + + +def trim(g: Grid) -> Grid: + """ + Remove unused grid points from the grid. + + Args: + g: The Grid to be trimmed. + + Returns: + The trimmed Grid. + """ + included_grid_pts, grid_pt_inverse = np.unique(g.grid_pt_idx, return_inverse=True) return Grid( g.thetas[included_grid_pts], g.radii[included_grid_pts], - g.vertices[~all_alt], - g.is_regular[~all_alt], - g.null_truth[~all_alt], + g.null_truth, grid_pt_inverse, + g.null_hypos, ) @@ -563,43 +482,11 @@ def hypercube_vertices(d): return np.array(list(product((1, -1), repeat=d))) -def get_edges(thetas, radii): - """ - Construct an array indicating the edges of each hyperrectangle. - - edges[:, :, :n_params] are the vertices at the origin of the edges - - edges[:, :, n_params:] are the edge vectors pointing from the start to - the end of the edge - - Args: - thetas: the centers of the hyperrectangles - radii: the half-width of the hyperrectangles - - Returns: - edges: an array as specified in the docstring shaped like - (n_grid_pts, number of hypercube vertices, 2*n_params) - """ - - n_params = thetas.shape[1] - unit_vs = hypercube_vertices(n_params) - n_vs = unit_vs.shape[0] - unit_edges = [] - for i in range(n_vs): - for j in range(n_params): - if unit_vs[i, j] > 0: - continue - unit_edges.append(np.concatenate((unit_vs[i], np.identity(n_params)[j]))) - - edges = np.tile(np.array(unit_edges)[None, :, :], (thetas.shape[0], 1, 1)) - edges[:, :, :n_params] *= radii[:, None, :] - edges[:, :, n_params:] *= 2 * radii[:, None, :] - edges[:, :, :n_params] += thetas[:, None, :] - return edges - - def refine_grid(g: Grid, refine_idxs): """ Refine a grid by splitting the specified grid points. We split each grid - point in two along each dimension. + point in two along each dimension. The centers of the new grid points are + offset so that the two new tiles cover the same area as the original tile. Note that we are not refining *tiles* here, but rather *grid points*. @@ -622,16 +509,4 @@ def refine_grid(g: Grid, refine_idxs): keep_idxs = np.setdiff1d(np.arange(g.n_grid_pts), refine_idxs) keep_tile_idxs = np.where(np.isin(g.grid_pt_idx, keep_idxs))[0] - _, keep_grid_pt_inverse = np.unique( - g.grid_pt_idx[keep_tile_idxs], return_inverse=True - ) - unrefined_grid = Grid( - g.thetas[keep_idxs], - g.radii[keep_idxs], - g.vertices[keep_tile_idxs], - g.is_regular[keep_tile_idxs], - g.null_truth[keep_tile_idxs], - keep_grid_pt_inverse, - ) - - return new_thetas, new_radii, unrefined_grid, keep_tile_idxs + return new_thetas, new_radii, keep_tile_idxs diff --git a/confirm/tests/lewis/lewis.pkl b/confirm/tests/lewis/lewis.pkl new file mode 100644 index 0000000000000000000000000000000000000000..8737f3137b25ce3b9218320de13f37bd7ace08f8 GIT binary patch literal 15826 zcmeHucRbba|2Ijylr&UmNJ^hnlon6XRB1{oWOih)h6W`~iD)QkYKjKgStSX{$R6i7 z`#3adyRVDm^X>cn_WL~U`~K(t40HgSL0-Z1sR9xj$v9?qU&%VYw3yI6X9 zS#7nmoEElB`d@F;>6`rDWtI*uUUnW1l%-ps;=g{jvbD8zv-9XGrUL&ioo@MGrP6^T zB+4x9y}cZq9K3c}dNDlgJQ=P|wqc9$BAkBC|Erdry}g5tmCe7`YRaddg05QAe=jTP z-(^j={6|^J9S%yM_^oXMi9BUDS5JzCtB0kngT1|-hnpI^4j@m$iyMvFNr=_#iPV)713=15x&1&ZqOHU7* zDYkao9f%!P9v)V^!UBhT*pU|D>E+>V<7N48MWH18LtMO_-F8i}arLm9;_U6@U1*?c~$(XPJ~&nDtS^;nJP0R;s6jPLt3uua4H)dxxEsqh*K4 zqk(;0teov^Ej<}lM8n=NZ!aP{uph(9lR%K-`ZF$p~-p(zrYEukMJ^mkf1 zBJcSdEi0JP%eoy3W2gmov;PHL#-!gsYcNn*O3GrUp`+peE^e;QIcfZn16?z|sKtf} z`>}Pa3K|L^mT^mao5Fdsls zM3um3gY?y6Bt++4>iO+8QerbAw{=U$3-9Q`W4vpz(q29zNH+}=jgOkOn`Og|sk<-q zga9X(N8Va;oR1q>C+f`R3$X9aVa2@5wKz9k=}gK=9cJCbO}--?2evj~k)s;okfprx>X@QR}_Gav+RM zdO34@8G_a~Y#rXW68n=ro$}Zz!b;cI^+z%VXqawZ<`pG^?#W8QQ1?0{2DRTZ^%r3F zyt<_KLILjWxbC^Hse1EDIsU=%Oeo6~4KkJ$Fq6I9dEh_Qfw5$>1-<*iQy{ic+T!Tfn5Ml4@ne&q~ zo8WLi=hmRnEYyeQg&ck+LTmOFu@P5p*QtYYuL|(M+BI1_hl{MlQVrKwCKjwzR+ic*f>Z1Vdo@!o%%daqTYb5BP-l6p zT8@jzSA&%?f42ylpaD~gZ8kR=}! zx^rN(d9t+a=XEaZxnJ(rzTiTOF=1%iHvzIo2YdJ=@bJLc z-7z7Li?K~nMT&cBF!tkzRGkZ?A2pVoyL5~NeXT(^q%s?kwlTSRV`CHC`!C8$+985m zdc)oBlf>A%_<^;+n+3&H6IM3N6yy2zsqc25Z^HOHqYPRnixI8xSFg# z;oSbrRa4ZO;2AQPdBs75jiDya$8tH4zVJwY!ejxm?xl_1R3Jj*(8|7T;R1BC;Eav# z&V%gL?KKx2nAmq~z`|`eL>TAU`*{ZGAM13#7B?Ivw5YYA_aH7bboM=M5^>OQV999a zw+4I~H|}zXPcAeSGroM+VZr6W!7X`wHgwwDoqSuXz>AR9nrvT+@^r(NSeJ^dvHA~tE=)j%SN7Ak;%dz3@4t#YIUe@W zgH8l3&Vcmjx_-9~2%yr(|Ej`tK8AkW{p{!uJ}Tv3=ENVafUo!A@$soV1U;x7&fdev zl@ZF%--U4z#g|LSNo65IgW0gtkOSpon>Vj~!NYTfWYu}fY={enN%x9oLF-kax(vGk zbAnbM+Oe987kO{H9VGq6Fy!rk@pcVJl#*Jn7G8{5qijRUJ~g6xc-EQ;iY2(UuEN_( z@CI|N!-uQCjK|PN{l^?vX~eBj2HcDBkFmBW?4ri%9E^K4Y>=Lc2uB8lbzfIO`nUb; z+v=(!*slGSHzuwUnytIvMei42OyQ-ex2y!%h5;GJO=@p=FJfclJQuUVS3IOy zCSK7|6~Ls{_de@553kt=_Eng2(BE~TUM)D#S#dtp)1MFR2%FM=>o^dc_z-#FF&j4q z^Yx7M2xr+M&j zAyh66`z{zM!u>UqQe-Bwp`Ix_Xd*)Zzh{qJ4BiSbV>0vREJp!$>-$7{P28#?Ina3EE-<5}w`E`Y;|AvUcJa~@J z(cf{3il%7lW&v{aPiGv>RU;madZ+5r-yPTRvxDq<~R*;hPv*`!xchyNglf zH$+amO$^s^Gqwk}5g*=0lP42#7yMj zhpR{J>N!lD$}`aaTqi<-+S-!78@TwnZOE6e!CXxL8C@}W1Qddljv+1Rnr|Jo2$GJmfby*+q*JtjQ2y{TyU3UBtcZ~tLfiW@<_j-4{h zfXv}<3)T9jB2UEcQ9UymElxjtau?JgMYwiP50{5{xgh;)Pm3JvxTIQ=B$Wu8HO{k( z3dndSW3R&{^S#lvk>;0c`FJ&PPV!GOeig>cm#b}JBg87cH717-=knB{3%}-Juz%Ro z9RWNv8pftq5}dbRS@dN}J82h78LY79T#R_wvu~X=2fNo-ul{Ry4MwQh8zpG4ky`q` z=cRpo^mD&zS3imi-XJ+MV>d4DKX>b&M8@-m4GnTZr2X>)zD8bIU4^OR{2mN5=HXG) z)&O}^7IK5fNrmlYWBP%9&+qi9#+@;#a~w^oFeRzSg~&eXn0_{Iz_9IHY|q&^Zj?h2 z*vtt9t`XIcn&(qAS1uc;cje_2RJ!LJ)vzw!bG_2+$=F(B^;oW$!Y;E^7 zf7S?9ImJ}1-X!0HA5w=i=~=1`g={n)m~q;|svI@0>sz;8tAu&4F;DwGXu{hK zs+xCCiEz0lUuWzbF&ujDKec2CANk`CB)gIP}EUnBCo9S3FIC zX59;wlTY#RGkW^qquscWlHYa0xV8i(2?joL#D1kcAKX69ZNz3j?baKHe0=vd*xk>D z1;!=+X;0)DF=u^CS<34sT#WplcWY7;l&dB^TcFa6G_$R;p(O6XY3-IiBg6xxV4*>rSJ7W$jQqLj^tMwhd|q#@ zvp<03KT#ELRX2;VBgJ~2#aa>C@*8DGCkpXmvYlO#y9m8?K4zVM$VOJ6Y>*0zkEkm{ zKYm>yM$-Ky@4l1%Hsp@~?Tn*BIEy@khLb#P(f0czf`hmy-8r{rwNV3H8T=t*gPS1U z$kZQon2lRIds=856ymFU$wW&_E*=k9y~J-f7y9Csemq4k#uw!-t(E3t=YYg|nT$r1 zUpZOL-dTyyd!{~nr`dph=F`8w82kjsN?)(^BlGAQtqkV4>0~|#d~kSfBnw4KZPKH) zn3y$izt4i3#n4V=9?%TPz`lz!GREeXV^ztEeQZk>YBw3^%L{6;>FO7@;pRH*`q-ZQ z+TrdzLx+Yg6A+TSz>h2q8{&E3yO+uit$lrbKBd?WpL#6i=Ql=g|$K1 z5t{>(F{hg0IreiRHW@yPR@AITiSwvEUm2;0t6yHUuqGGN?R!~Ro{fjcdw#NYSR51` zM~^?0ngFN5o=clA)?&gc4gYZ}(fD-S^}0Mhn zS(OWm?@`GWWSzGz#csB}2@@7cr}OQPRwKe)ba|#~J)W@dC2m#YVf$IpohW4zue9(J zVZLlkR9WQh(xV#gEp>WkPbx52D{e`5`2v&%dV~Z@3Z_MR8$^#9z?@g8 zHgtO-ELLqibpA#WHhyY&;vM@4q0U23_BqBub+;pNZ;cV35Hw@D5Wq)*E^ihw@hl>Z6#`j{QEn@u2 za58>eQ&%`IKF8XvF^^$Y$Az9BYKcu?0uc)4^TQ!a;2J8A0&}*MQR)G3hnU9l7gy?P6uwReT9rSi{dRNTk&zhG_LQXd_Dw6wr?@m!9#=Fzy+!@9F+I}d^vw6 z6XVR^dw$t2g!YVxwC5UJ=v4KsV5;%aH0Mmgc(N{D`Jj9yb0r%;>?-8M)-Q3=E6QRW zLkOeN{U80S>d;FQ?GImbaNmDzU6pku2Hl>}R&P*)8SMsa?=@mP-r4fp`U}a!+#XpQ zY-q;uuXAJ4$hu(VmfijZ_rwq|w1*Zhegn}Znk?osVtd~&-(kyCchWq^Op3`*(6UlzdXb#hO7s^RSnr`;x53e zxLliIB)^ODd)B&BkF2}5H;B7`6`{vvss7ah9{j)iUQ_WBAaZr-;aIZY(U5du&JSBI zjDo#$y^D)6H7E1W{*bn!dt~2e*!kGoEn@g;j+VPc z^8WT?`6?$pn{n+^?K_+AB8(XVnJT^*!;N_E*}g2~yW1YSQ$yzWK87?ql4WF4$Kz8y5(!4 zn>6Y7>s3A$E*GI?!Qzx28#plBt2Od!CLbTc;m-~hBkhj7o2<70t($b(&*up7AS3%Y z`-}j&o=?>ha=F<3b@byS^BNH55D~L3r3qI4^EYYFVq^cgD1GaEGT&J|uN}FC-&uf*rnDDdA=q(v9H~AG*uYSZvvQcaO`hYrwPUx>PSdodKFYMN+yd1=Y zfB6)k)PPIRYi1M|CSzEwv&*PfCTbcK%N@-*IO8(!^j9+fDIAzqvr>kvZ^Qi!zRjpb z;yuL#-PAIionJm_>y{#R-qSXYc!jCQ@83I7nvT4kI^z#1J;KS2uedIU6Y>3w zSLz;;$0?_@TAZ{IQmnu_D0d>m+BH#PrlGS<&rUU+yP*#{myh&_Im0OJ-_Oc_YlwWS9>`emE)AXFMu zcj_${cNKO#&`@YZLw^&!10;{w=X9>mr`kL$`Pd{=HIt3kX)SjBk41 zZSLd_;o(e!l=~7R4l+}gE}UQ3h|`0ur!DMRi;HrXL;cqlWADsKOY>A~z^Ytrw~OqT zl-q_+P&aMFmE-mri{d%ZToGV0ko1!cYulu5o?zik8IKYFybQ|>JXiFOevMuBkvoo) zeUA$Jx`jnGTueK^`LlOhC0LqwZr|I;f^S9ijgNh+a3Uah$Uv7`Fsywy-Kc+##*nc2 z+zGjuoF1p+`{W^_L_IIfAbz&jnP=DEOvb9YA-(JsDlyzLEM`ac6YM+C(vV=0hep{e zk>f(*aC`QBuO}OlaiUbIO?IpZfnp_f z_)z|NL&==1U-UCas;%G2L3`=C;erKx$f|6xmET;3L&eKiCf0J%?_l-)ODlwE)*9hE z)QgYlmmC_)3i(*V910UvwaFMq+`K;U~4vwDf{kZK)E&AV0>oxEQ3%5?a zJ@{9DAzZ~yXVn6@C|vlpF?=&0voFruk#~s9lZz_#vdp;{5wd=`U!r{TE?L)2tsmvH zvX>Z_D|`72EF$Cc@}C-}kxkGI`<$_X>^tQp$R)la^SSX+qcNs0MYt3>WaCz`5U2WF z+8-B5aG!NK`uEUM?TR6 z>+^}MpGq??r8K@0pyE;bgwo?vNm0AyMIxd2xlUJMO%t|Em_6^1)KH8&{9di8}Fo+QnkrKy7 zaQ}AOO1%oqxRG+!m|uyD3NtTESRf|n4;rI(o@|0kKlL-COq!7sTN6HCxe3opd+$4H z)eOD)dIlxmILJ@D{xtKN7~@qM4L|lNf#y97xbRAhJ#%6k;tq&0@5INHL#IeSW^-a@ zdw&r;AL)No3TZ;pl4s4=F7U8WI^{}9vKR%So=3~JRY8BS(biYHMcCGF<>@hGA1yoR z-Mz&EAzT#sQtcH&s1~!9>5%*_IkxS`wRk?fwy#?ELR*9f5iSKLLs(Fe$y=^rz{i?^ zoAM(E5j!4xDK^;(@WNC6@ue&wW|TQGOA-XIu6@SorX+wuw7BKvda`dn_KwESHa0|; zCp|M=!$L)Dh+CYI7*Z2XrJ4O8{pD)Y!5PSwiyl+A|OD(s*NgYPOwBcoo5TlmVYBO6K$+<{b%6ln3 ze)RLYbIF}W&J9N}KD}qb%>ChuJ91*cu;@kWl_p&8K4N&ic{8N-OFnOGZ^EFNFASbo zHp5w!xy!>-h!qy@hrXMTcj{cxN@_6-KDj4)X##1zI#8!@S0|LLjJwlFqg zVy3qnKO*~5JSTGa{xKfceS_owDbDif%CHeJUkyQIksLSq30!(BcZD$ zr|bW%C{VWJ!oqJ(wf|N!S|Vh+gf5ZLWfJNnp}`XRixP%K$87*_YlcGSy%xr>-&_Tt zR}{!qfWI#tbRG38{zl-m4uK5q--!87Q2sA&6fov?ir4!G@p=-g7D%X(gqlmJjfC!z z&|l$L*eQO=Z^S?Q`wD^fzwT%J{tAJ54=JfNiIIAJ%CG5dK53vAAR2@GmntJDK%Km-1zOx~0eT2_xl+9rY-0`L(yC+?zP( zN6Hkim^lZu{$l3W4qoK|N4-Sl0P>aXDA&?@)KQo6kb0!funzqSG0%xjSsi-A!xgCx z-7Y=UK57%yZ*R|~w(54-F>&+B4nA6kd_n!7zv=cdCH2OD+C+KD#hniQ#BW+hck{_^ zpuSOmX&JSd*6;F>+D+>y2Z)Fqs}7r~PuJaaJNzR-0=1Xwr82twqjl+*;!An2yQLA@ ziNPoJ8ogHaQRq`XPLKLav7ok4e+eGC^qt~P-$^WVDKC{p->JMV|0yipD~h%BQw;{YGU_45)w9X7a2{+aATTOHUW2cDw2J>A;-Y zPU};C8e^@r-FwozW%9;v?yF^ft36N&ug9h8<+zD_^!y3G!zU`AwxP~=8+6!A`wzv7`W_%!4eBFpI}#r|`VHlyKGJyXR*31qgxW~sN%5q# z)5mcga=QGdF{Zvz`P5e;hqRY#x?MQaHb=iShV*yp8^w*bA8I?*NA01M+CyVOWz%O` zpZZPp(|4+i#-HL(`#R;JHc@*i?JV~uScy97)Ba8|CcGVSpmC>I(AamzM6RRUP1gwa z_G$zdxen~8ue7gG9n>$1bE5LXj(9MA){)qH6aN-=@X|g;_0ch-lh3pRbJ_iR z?VxR!%Ay!{j&a@{Wz?T8TWSBL_)z)OSNcq2LhE$K`kJKONr7TS;-E{%KU$CaP4#s3 zqhI4obyK~ac6jU3I+TaS`lhcK$N^NUqEM zk8{t_qXu+l`SbaMz#jzuAn*r)KM4F20>8{GjG&Hn4Y>ks`kUG1Ki6fwBvMC6=o|?( zk3 z>l`KYh=iV$&_@#bD;)pxGIfPv=T&!-D-7==;rv7XAn*r)KM4Fm;12?S5cq?@9|Zot zN8p!aQnKqrj(Gle)&^b4d)HZ0SN0kvfwW#ie^DSgWBSLnL6_Lk680|fU2B4_qpZKx Vb^M!a$3L0=eS~#5>`>U0{{=Om&F26B literal 0 HcmV?d00001 diff --git a/confirm/tests/lewis/test_batch.py b/confirm/tests/lewis/test_batch.py new file mode 100644 index 00000000..941250a6 --- /dev/null +++ b/confirm/tests/lewis/test_batch.py @@ -0,0 +1,59 @@ +import numpy as np + +from confirm.lewislib.batch import batch +from confirm.lewislib.batch import batch_yield + + +def test_simple(): + def f(x): + return x + 1 + + batched_f = batch_yield(f, batch_size=2, in_axes=(0,)) + out = list(batched_f(np.array([1, 2, 3, 4]))) + assert len(out) == 2 + np.testing.assert_allclose(out[0][0], np.array([2, 3])) + assert out[0][1] == 0 + np.testing.assert_allclose(out[1][0], np.array([4, 5])) + assert out[1][1] == 0 + + +def test_pad(): + def f(x): + return x + 1 + + batched_f = batch_yield(f, batch_size=3, in_axes=(0,)) + out = list(batched_f(np.array([1, 2, 3, 4]))) + np.testing.assert_allclose(out[1][0], np.array([5, 5, 5])) + assert out[1][1] == 2 + + +def test_multidim(): + def f(x): + return (x.sum(axis=1), x.prod(axis=1)) + + for d in range(1, 15): + inputs = np.random.rand(d, 5) + batched_f = batch(f, batch_size=5, in_axes=(0,)) + out = batched_f(inputs) + np.testing.assert_allclose(out[0], inputs.sum(axis=1)) + np.testing.assert_allclose(out[1], inputs.prod(axis=1)) + + +def test_multidim_single(): + def f(x): + return x.sum(axis=1) + + inputs = np.random.rand(7, 5) + batched_f = batch(f, batch_size=5, in_axes=(0,)) + out = batched_f(inputs) + np.testing.assert_allclose(out, inputs.sum(axis=1)) + + +def test_out_axes1(): + def f(x): + return x.T + + inputs = np.random.rand(7, 5) + batched_f = batch(f, batch_size=5, in_axes=(0,), out_axes=(1,)) + out = batched_f(inputs) + np.testing.assert_allclose(out, inputs.T) diff --git a/confirm/tests/lewis/test_n_configs.py b/confirm/tests/lewis/test_n_configs.py index 26690d79..61612d82 100644 --- a/confirm/tests/lewis/test_n_configs.py +++ b/confirm/tests/lewis/test_n_configs.py @@ -58,7 +58,7 @@ def test_3_arms_0_interim(): default_params["n_stage_2_add_per_interim"] = 4 lewis_obj = lewis.Lewis45(**default_params) - actual = lewis_obj.make_n_configs__() + actual = lewis_obj._make_n_configs() # expected values n_configs_pr_best_pps_1_expected = np.array( @@ -86,7 +86,7 @@ def test_3_arms_1_interim(): default_params["n_stage_2_add_per_interim"] = 4 lewis_obj = lewis.Lewis45(**default_params) - actual = lewis_obj.make_n_configs__() + actual = lewis_obj._make_n_configs() # expected values n_configs_pr_best_pps_1_expected = np.array( @@ -116,7 +116,7 @@ def test_3_arms_2_interim(): default_params["n_stage_2_add_per_interim"] = 4 lewis_obj = lewis.Lewis45(**default_params) - actual = lewis_obj.make_n_configs__() + actual = lewis_obj._make_n_configs() # expected values n_configs_pr_best_pps_1_expected = np.array( @@ -149,7 +149,7 @@ def test_4_arms_0_interim(): default_params["n_stage_1_add_per_interim"] = 10 lewis_obj = lewis.Lewis45(**default_params) - actual = lewis_obj.make_n_configs__() + actual = lewis_obj._make_n_configs() # expected values n_configs_pr_best_pps_1_expected = np.array( @@ -177,7 +177,7 @@ def test_4_arms_1_interim(): default_params["n_stage_2_add_per_interim"] = 20 lewis_obj = lewis.Lewis45(**default_params) - actual = lewis_obj.make_n_configs__() + actual = lewis_obj._make_n_configs() # expected values n_configs_pr_best_pps_1_expected = np.array( @@ -208,7 +208,7 @@ def test_4_arms_2_interim(): default_params["n_stage_2_add_per_interim"] = 1 lewis_obj = lewis.Lewis45(**default_params) - actual = lewis_obj.make_n_configs__() + actual = lewis_obj._make_n_configs() # expected values n_configs_pr_best_pps_1_expected = np.array( diff --git a/confirm/tests/lewis/test_permute_invariance.py b/confirm/tests/lewis/test_permute_invariance.py index ccb8e6f1..3927acf0 100644 --- a/confirm/tests/lewis/test_permute_invariance.py +++ b/confirm/tests/lewis/test_permute_invariance.py @@ -65,7 +65,7 @@ def test_pr_best_permute(): def test_pps_permute(): lewis_obj = lewis.Lewis45(**default_params) - lewis_obj.pd_table = lewis_obj.posterior_difference_table__(batch_size=int(2**16)) + lewis_obj.pd_table = lewis_obj._posterior_difference_table(batch_size=int(2**16)) n = default_params["n_stage_1"] key = jax.random.PRNGKey(10) diff --git a/confirm/tests/lewis/test_posterior_difference.py b/confirm/tests/lewis/test_posterior_difference.py index 7936d02d..42ffa25d 100644 --- a/confirm/tests/lewis/test_posterior_difference.py +++ b/confirm/tests/lewis/test_posterior_difference.py @@ -22,12 +22,12 @@ def test_get_posterior_difference(): lewis_obj = lewis.Lewis45(**default_params) - lewis_obj.pd_table = lewis_obj.posterior_difference_table__(batch_size=int(2**16)) + lewis_obj.pd_table = lewis_obj._posterior_difference_table(batch_size=int(2**16)) n = lewis_obj.n_configs_pd[2] y = jnp.array([5, 1, 2]) data = jnp.stack((y, n), axis=-1) - out_1 = lewis_obj.get_posterior_difference__(data) + out_1 = lewis_obj._get_posterior_difference(data) permute = jnp.array([0, 2, 1]) data_2 = data[permute] - out_2 = lewis_obj.get_posterior_difference__(data_2) + out_2 = lewis_obj._get_posterior_difference(data_2) assert jnp.array_equal(out_1, out_2[permute[1:] - 1]) diff --git a/confirm/tests/lewis/test_simulation.py b/confirm/tests/lewis/test_simulation.py index a5b541bb..d30cf643 100644 --- a/confirm/tests/lewis/test_simulation.py +++ b/confirm/tests/lewis/test_simulation.py @@ -1,9 +1,13 @@ +import os +from pathlib import Path + import jax import jax.numpy as jnp +import numpy as np +import pytest from confirm.lewislib import lewis - default_params = { "n_arms": 3, "n_stage_1": 1, @@ -18,22 +22,49 @@ "inter_stage_futility_threshold": 0.8, "posterior_difference_threshold": 0.05, "rejection_threshold": 0.05, - "batch_size": 2**16, + "batch_size": 2**4, "key": jax.random.PRNGKey(1), "n_pr_sims": 100, "n_sig2_sims": 20, - "cache_tables": True, + # NOTE: because we are caching tables, this code *does not* test the table + # construction! + "cache_tables": Path(__file__).resolve().parent.joinpath("lewis.pkl"), } -key = jax.random.PRNGKey(0) -lewis_obj = lewis.Lewis45(**default_params) -unifs = jax.random.uniform(key=key, shape=lewis_obj.unifs_shape()) -p = jnp.array([0.25, 0.5, 0.75]) -berns = unifs < p[None] -berns_order = jnp.arange(0, berns.shape[0]) + +def lewis_small(): + key = jax.random.PRNGKey(0) + lewis_obj = lewis.Lewis45(**default_params) + unifs = jax.random.uniform(key=key, shape=lewis_obj.unifs_shape()) + p = jnp.array([0.25, 0.5, 0.75]) + berns = unifs < p[None] + berns_order = jnp.arange(0, berns.shape[0]) + return (lewis_obj, unifs, p, berns, berns_order) + + +@pytest.fixture(name="lewis_small", scope="session") +def lewis_small_fixture(): + return lewis_small() -def test_stage_1(): +def test_save_load(tmp_path): + params = default_params.copy() + params["cache_tables"] = False + L1 = lewis.Lewis45(**default_params) + path = os.path.join(tmp_path, "tables.pkl") + if os.path.exists(path): + os.remove(path) + L1.save_tables(path) + + params = default_params.copy() + params["cache_tables"] = path + L2 = lewis.Lewis45(**params) + assert L2.loaded_tables + np.testing.assert_allclose(L1.pd_table.tables[0], L2.pd_table.tables[0]) + + +def test_stage_1(lewis_small): + lewis_obj, _, _, berns, berns_order = lewis_small # actual ( early_exit_futility, @@ -47,7 +78,7 @@ def test_stage_1(): early_exit_futility_expected = False data_expected = jnp.array([[0, 3], [0, 1], [2, 3]], dtype=int) non_dropped_idx_expected = jnp.array([False, True]) - _, pps_expected = lewis_obj.get_pr_best_pps_1__(data_expected) + _, pps_expected = lewis_obj._get_pr_best_pps_1(data_expected) berns_start_expected = 3 # test @@ -58,20 +89,23 @@ def test_stage_1(): assert jnp.array_equal(berns_start, berns_start_expected) -def test_stage_2(): +def test_stage_2(lewis_small): + lewis_obj, _, p, berns, berns_order = lewis_small # expected stage 1 data = jnp.array([[1, 3], [0, 1], [2, 3]], dtype=int) best_arm = 2 berns_start = 3 # actual stage 2 - rej, _ = lewis_obj.stage_2(data, best_arm, berns, berns_order, berns_start) - - # test - assert jnp.array_equal(rej, False) + test_stat, best_arm, _ = lewis_obj.stage_2( + data, best_arm, berns, berns_order, berns_start, p + ) + np.testing.assert_allclose(test_stat, 1.0) + assert best_arm == 2 -def test_inter_stage(): - null_truths = jnp.zeros(default_params["n_arms"] - 1, dtype=bool) - rej, _ = lewis_obj.simulate(p, null_truths, unifs, berns_order) - assert jnp.array_equal(rej, False) +def test_inter_stage(lewis_small): + lewis_obj, unifs, p, _, berns_order = lewis_small + test_stat, best_arm, _ = lewis_obj.simulate(p, unifs, berns_order) + np.testing.assert_allclose(test_stat, 2.0) + assert best_arm == 2 diff --git a/confirm/tests/test_grid.py b/confirm/tests/test_grid.py index 5a5fd2fc..e066808b 100644 --- a/confirm/tests/test_grid.py +++ b/confirm/tests/test_grid.py @@ -2,7 +2,6 @@ import numpy as np import pytest -from numpy import nan import confirm.mini_imprint.grid as grid @@ -19,75 +18,37 @@ def simple_grid(): grid.HyperPlane(normalize(np.array([1, -1])), 0), grid.HyperPlane(normalize(np.array([1, 1])), -1), ] - return grid.build_grid(thetas, radii, hypos) + return grid.build_grid(thetas, radii, hypos, should_prune=False) def test_cartesian_gridpts(): theta, radii = grid.cartesian_gridpts([-1, -1], [1, 1], [2, 2]) - g = grid.build_grid(theta, radii) - np.testing.assert_allclose(g.vertices[0], [[0, 0], [0, -1], [-1, 0], [-1, -1]]) - np.testing.assert_allclose(g.vertices[1], [[1, 0], [1, -1], [0, 0], [0, -1]]) + g = grid.build_grid(theta, radii, should_prune=False) + assert np.all(g.grid_pt_idx == [0, 1, 2, 3]) + assert g.null_truth.shape[1] == 0 null_hypos = [grid.HyperPlane(-np.identity(2)[i], -0.1) for i in range(2)] - g = grid.build_grid(theta, radii, null_hypos) - np.testing.assert_allclose(g.vertices[0], [[0, 0], [0, -1], [-1, 0], [-1, -1]]) - # np.testing.assert_allclose(g.vertices[1], [[1, 0], [1, -1], [0, 0], [0, -1]]) + g = grid.build_grid(theta, radii, null_hypos, should_prune=False) + assert np.all(g.grid_pt_idx == [0, 1, 1, 2, 2, 3, 3, 3, 3]) -def test_edge_vecs(): - edges = grid.get_edges(np.array([[1, 0]]), np.array([[1, 2]])) - correct = np.array([[[2, -2, 0, 4], [0, 2, 2, 0], [0, -2, 2, 0], [0, -2, 0, 4]]]) - np.testing.assert_allclose(edges, correct) - - -def test_tile_split(simple_grid): +def test_tile_copy(simple_grid): g = simple_grid np.testing.assert_allclose(g.grid_pt_idx, [1, 2, 3, 3, 0, 0, 0, 0]) - np.testing.assert_allclose(g.is_regular, [1, 1, 0, 0, 0, 0, 0, 0]) np.testing.assert_allclose( g.null_truth, np.array([[0, 1], [1, 1], [1, 1], [0, 1], [1, 1], [1, 0], [0, 1], [0, 0]]), ) - np.testing.assert_allclose( - g.vertices, - np.array( - [ - [[0.0, 1.0], [0.0, 0.0], [-1.0, 1.0], [-1.0, 0.0]], - [[1.0, 0.0], [1.0, -1.0], [0.0, 0.0], [0.0, -1.0]], - [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [nan, nan]], - [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [nan, nan]], - [[-1.0, -1.0], [0.0, -1.0], [0.0, 0.0], [nan, nan]], - [[-1.0, -1.0], [0.0, -1.0], [0.0, 0.0], [nan, nan]], - [[-1.0, -1.0], [-1.0, 0.0], [0.0, 0.0], [nan, nan]], - [[-1.0, -1.0], [-1.0, 0.0], [0.0, 0.0], [nan, nan]], - ] - ), - ) def test_tile_prune(simple_grid): g = simple_grid gp = grid.prune(g) np.testing.assert_allclose(gp.grid_pt_idx, [1, 2, 3, 3, 0, 0, 0]) - np.testing.assert_allclose(gp.is_regular, [1, 1, 0, 0, 0, 0, 0]) np.testing.assert_allclose( gp.null_truth, np.array([[0, 1], [1, 1], [1, 1], [0, 1], [1, 1], [1, 0], [0, 1]]), ) - np.testing.assert_allclose( - gp.vertices, - np.array( - [ - [[0.0, 1.0], [0.0, 0.0], [-1.0, 1.0], [-1.0, 0.0]], - [[1.0, 0.0], [1.0, -1.0], [0.0, 0.0], [0.0, -1.0]], - [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [nan, nan]], - [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [nan, nan]], - [[-1.0, -1.0], [0.0, -1.0], [0.0, 0.0], [nan, nan]], - [[-1.0, -1.0], [0.0, -1.0], [0.0, 0.0], [nan, nan]], - [[-1.0, -1.0], [-1.0, 0.0], [0.0, 0.0], [nan, nan]], - ] - ), - ) def test_prune_off_gridpt(): @@ -103,13 +64,11 @@ def test_prune_is_regular(): thetas = np.array([[0.0, 0.0]]) radii = np.full_like(thetas, 0.5) hypos = [grid.HyperPlane(normalize(np.array([1, 1])), 0)] - g = grid.build_grid(thetas, radii, hypos) + g = grid.build_grid(thetas, radii, hypos, should_prune=False) # np.testing.assert_allclose(g.thetas, np.array([[0.0, 0.0]])) np.testing.assert_allclose(g.grid_pt_idx, np.array([0, 0])) - np.testing.assert_allclose(g.is_regular, np.array([0, 0])) gp = grid.prune(g) np.testing.assert_allclose(gp.grid_pt_idx, np.array([0])) - np.testing.assert_allclose(gp.is_regular, np.array([0])) def test_prune_no_surfaces(): @@ -125,8 +84,6 @@ def test_prune_twice_invariance(simple_grid): gpp = grid.prune(gp) np.testing.assert_allclose(gp.thetas, gpp.thetas) np.testing.assert_allclose(gp.radii, gpp.radii) - np.testing.assert_allclose(gp.vertices, gpp.vertices) - np.testing.assert_allclose(gp.is_regular, gpp.is_regular) np.testing.assert_allclose(gp.null_truth, gpp.null_truth) np.testing.assert_allclose(gp.grid_pt_idx, gpp.grid_pt_idx) @@ -140,11 +97,11 @@ def test_refine(): g = grid.prune(grid.build_grid(theta, radii, null_hypos)) refine_tiles = np.array([0, 3, 4, 5]) refine_gridpts = g.grid_pt_idx[refine_tiles] - new_theta, new_radii, unrefined, keep_tiles = grid.refine_grid(g, refine_gridpts) + new_theta, new_radii, keep_tiles = grid.refine_grid(g, refine_gridpts) np.testing.assert_allclose( keep_tiles, np.array([1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15]) ) - np.testing.assert_allclose(g.vertices[keep_tiles], unrefined.vertices) + # np.testing.assert_allclose(g.grid_pt_idx[keep_tiles], unrefined.grid_pt_idx) np.testing.assert_allclose(new_radii, 0.25) pts_to_refine = np.array([[-2.5, -2.5], [-2.5, -0.5], [-2.5, 0.5], [-1.5, -2.5]]) @@ -155,6 +112,36 @@ def test_refine(): np.testing.assert_allclose(subset, correct) +def test_prune_and_symmetry(): + null_hypos = [ + grid.HyperPlane([1, -1, 0, 0], 0), + grid.HyperPlane([1, 0, -1, 0], 0), + grid.HyperPlane([1, 0, 0, -1], 0), + ] + syms = [grid.HyperPlane([0, 1, -1, 0], 0), grid.HyperPlane([0, 0, 1, -1], 0)] + + theta, radii = grid.cartesian_gridpts(np.full(4, -1), np.full(4, 1), np.full(4, 4)) + + g = grid.build_grid( + theta, radii, null_hypos=null_hypos, symmetry_planes=syms, should_prune=True + ) + + Hns = np.array([H.n for H in null_hypos]) + is_alt = np.all(g.theta_tiles.dot(Hns.T) < 0, axis=1) + assert not np.any(is_alt) + assert np.all(g.theta_tiles[:, 1] >= g.theta_tiles[:, 2]) + assert np.all(g.theta_tiles[:, 2] >= g.theta_tiles[:, 3]) + assert g.n_tiles == 133 + + g2 = grid.build_grid(theta, radii, null_hypos=null_hypos) + Hns = np.array([H.n for H in null_hypos]) + is_alt = np.all(g2.theta_tiles.dot(Hns.T) < 0, axis=1) + is_sym = (g2.theta_tiles[:, 1] < g2.theta_tiles[:, 2]) | ( + g2.theta_tiles[:, 2] < g2.theta_tiles[:, 3] + ) + assert (g2.n_tiles - np.sum(is_alt | is_sym)) == g.n_tiles + + n_arms = 4 n_theta_1d = 52 diff --git a/docs/jax_patterns.md b/docs/jax_patterns.md index b285d5d3..f087f007 100644 --- a/docs/jax_patterns.md +++ b/docs/jax_patterns.md @@ -1,5 +1,32 @@ # JAX development patterns +## Memory + + +This snippet is useful for inspecting the currently allocated device buffers. + +``` +client = jax.lib.xla_bridge.get_backend() +mem_usage = sum([b.nbytes for b in client.live_buffers()]) / 1e9 +print(mem_usage) +print([b.shape for b in client.live_buffers()]) +``` + +Also, to clear the compilation cache for a particular function: `f_jit.clear_cache()` + +- JAX memory profiling produces output readable by the `pprof` Go program. There's an online hosted version of this here: https://pprofweb.evanjones.ca/pprofweb/ +- **`jax.vmap`** can be dangerous for memory usage. Don't assume that a loop will be ordered in a sane way to minimize memory usage. +- [Clearing the JAX compilation cache](https://github.com/google/jax/issues/10828) +- It's possible to run into out of memory errors when too much data is stored in the JAX compilation cache. The error will look like `Execution of replica 0 failed: INTERNAL: Failed to load in-memory CUBIN: CUDA_ERROR_OUT_OF_MEMORY: out of memory` in contrast to the normal JAX out of memory errors. + +**Python not knowing about the size of JAX arrays can cause memory leaks**: +- python only knows about system RAM, not GPU RAM. +- so it only schedules "deep" garbage collection (level 2) when memory usage is getting high. +- but a JAX DeviceArray uses almost no system RAM since it’s all stored on the GPU. +- so a DeviceArray looks to Python like the kind of thing that doesn’t need to be urgently garbage collected. +- so, giant 1.5 GB DeviceArrays start to leak every iteration through AdaGrid. + +## Miscellaneous JAX development patterns that might be useful: - Pull your `jax.jit` and `jax.vmap` calls into the outermost layer of the code. This has two benefits diff --git a/research/adagrid/.gitignore b/research/adagrid/.gitignore new file mode 100644 index 00000000..ffa16e23 --- /dev/null +++ b/research/adagrid/.gitignore @@ -0,0 +1,2 @@ +*.png +*.csv diff --git a/research/adagrid/adagrid.ipynb b/research/adagrid/adagrid.ipynb index 587eeeff..0c3bb026 100644 --- a/research/adagrid/adagrid.ipynb +++ b/research/adagrid/adagrid.ipynb @@ -7,57 +7,23 @@ "outputs": [], "source": [ "import confirm.berrylib.util as util\n", + "\n", "util.setup_nb(pretty=False)\n", "\n", + "import time\n", "from scipy.special import logit, expit\n", "import scipy.stats\n", "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", "import numpy as np\n", "import jax.numpy as jnp\n", "import warnings\n", - "# import pyimprint.grid as grid\n", "import confirm.berrylib.fast_inla as fast_inla\n", "import confirm.mini_imprint.binomial as binomial\n", "import confirm.mini_imprint.grid as grid\n", + "import confirm.mini_imprint.execute as execute\n", "\n", - "import jax\n", - "# set to cpu or gpu to run on a specific device.\n", - "# jax.config.update('jax_platform_name', 'gpu')\n", - "\n", - "def chunked_simulate(g, sim_size, gridpt_chunk_size=5000, sim_chunk_size=50000):\n", - " theta_tiles = g.theta_tiles\n", - " typeI_sum = np.zeros(theta_tiles.shape[0])\n", - " typeI_score = np.zeros((theta_tiles.shape[0], n_arms))\n", - " n_gridpt_chunks = int(np.ceil(theta_tiles.shape[0] / gridpt_chunk_size))\n", - " n_sim_chunks = int(np.ceil(sim_size / sim_chunk_size))\n", - "\n", - " for j in range(n_sim_chunks):\n", - " start_sims = j * sim_chunk_size\n", - " end_sims = min(start_sims + sim_chunk_size, sim_size)\n", - " nsims_this_chunk = end_sims - start_sims\n", - " samples = np.random.uniform(size=(nsims_this_chunk, n_arm_samples, n_arms))\n", - " for i in range(n_gridpt_chunks):\n", - " gridpt_start = i * gridpt_chunk_size\n", - " gridpt_end = (i + 1) * gridpt_chunk_size\n", - " gridpt_end = min(gridpt_end, theta_tiles.shape[0])\n", - " sum_chunk, score_chunk = accumulator(\n", - " theta_tiles[gridpt_start:gridpt_end],\n", - " g.null_truth[gridpt_start:gridpt_end],\n", - " samples\n", - " )\n", - " typeI_sum[gridpt_start:gridpt_end] += sum_chunk\n", - " typeI_score[gridpt_start:gridpt_end] += score_chunk\n", - " return typeI_sum, typeI_score\n", - "\n", - "# total, d0, d0u, d1w, d1uw, d2uw = binomial.upper_bound(\n", - "# g.theta_tiles,\n", - "# g.radii[g.grid_pt_idx],\n", - "# g.vertices,\n", - "# np.full(g.n_tiles, sim_size),\n", - "# n_arm_samples,\n", - "# typeI_sum,\n", - "# typeI_score,\n", - "# )" + "import jax" ] }, { @@ -66,112 +32,83 @@ "metadata": {}, "outputs": [], "source": [ - "import matplotlib as mpl" + "def dots_plot(g, typeI_upper_bound, hob):\n", + " plt.subplots(1, 2, figsize=(7, 3.0), constrained_layout=True)\n", + " plt.subplot(1, 2, 1)\n", + " plt.scatter(g.theta_tiles[:, 0], g.theta_tiles[:, 1], c=hob, s=10)\n", + " plt.colorbar()\n", + " plt.subplot(1, 2, 2)\n", + " plt.scatter(g.theta_tiles[:, 0], g.theta_tiles[:, 1], c=typeI_upper_bound, s=10)\n", + " plt.colorbar()\n", + " plt.show()\n", + "\n", + "\n", + "def dots_plot2(g, typeI_upper_bound, hob):\n", + " plt.scatter(g.theta_tiles[:, 0], g.theta_tiles[:, 1], c=hob, s=10)\n", + " plt.colorbar()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGeCAYAAACgv8rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACalUlEQVR4nOzdeVxU9f4/8NewgyAooiiIggoumQmYWyotcM3MJTVTMdKrXZeyq7kURZbLz74qLpF5sXBFrqllpGmE4IIompDLRRFZVFSURdZhh/fvDzonxhlgZpwNez8fj3mUZ/mc15w5zPnMOZ/P50iIiMAYY4wxZgCM9B2AMcYYY0zAFRPGGGOMGQyumDDGGGPMYHDFhDHGGGMGgysmjDHGGDMYXDFhjDHGmMHgigljjDHGDAZXTBhjjDFmMEz0HUAVdXV1uH//PmxsbCCRSPQdhzHGGGNKICKUlJSgU6dOMDJq+ppIi6qY3L9/H507d9Z3DMYYY4ypISsrC87Ozk0u06IqJjY2NgDq31jr1q31nIYxxhhjyiguLkbnzp3F83hTWlTFRLh907p1a66YMMYYYy2MMs0wuPErY4wxxgwGV0wYY4wxZjC4YsIYY4wxg8EVE8YYY4wZDK6YMMYYY8xgcMWEMcYYYwaDKyaMMcYYMxhcMWGMMcaYwdBZxaSkpARLly6Fn58fHBwcIJFI8Pnnn+tq84wxxhhrAXRWMcnPz8e2bdtQWVmJcePG6WqzjDHGGGtBdDYkfZcuXVBQUACJRIK8vDx89913uto0Y4wxxloInVVMlBkfnzHGGGN/bwb9EL/KykpUVlaK/y4uLtbq9m7evImSkhKtbuNJ5efnw97eXt8xmsQZZdnY2KBHjx462RZjjLV0Bl0xWbNmDb744gudbOvmzZtwd3fXybbY38/WrVtx7tw5JCUlITs7G0VFRWjTpg28vb0xf/58vPbaa/qOyBhjBsGgKyYff/wxFi1aJP67uLgYnTt31sq2hCsl4eHh6NWrl1a2IVi+fDl++eUXEBG6dOmCH3/8UW6Z27dvY+bMmSgsLISTkxN69uyJO3fu4ObNmwCA5557Dv/5z39gamqqt4xpaWmYM2cOCgoK4OTkBA8PDyQnJ+Phw4ewsLDAzp07NX6l4N1330ViYiJefvllWFpays339/eX2+aGDRuwd+9emJubY9CgQbh37x7S0tJgZGSE//u//8NLL72kVpYrV65gwYIFKCkpgZubG7p164aysjJkZGQgJycHFy5cwPXr1+Hv74+DBw8iNjYWffr0wcCBA2FjY4Nbt27h2LFjOHbsGIKCgrBixQq1cjDG2FOF9CA3N5cA0PLly1Var6ioiABQUVGRxjMlJiYSAEpMTNR42Q0dP36cANC7775LAMjDw0PhcuPHjycA9N5771FNTQ0REYWHhxMAcnR0JAC0fft2vWWsq6ujZ599lgDQzJkzqbq6WiYjAOrTpw/V1tZqNNuIESMIAGVmZiq1fExMDAEge3t7Sk1NlcloYmJCtra29OjRI5Vz3Lt3j+zs7MjS0pJ+/PFHufnnz58nor+Oq71791JeXp7ccgkJCWRtbU0SiYSSk5NVzsEYYy2BKudvHmBNh8rLyzFnzhz07t0bixcvbnLZ06dPAwA+/fRTGBsby8x75ZVXAAC///673jLGx8fjypUraNOmDTZt2gQTE9mLb25ubkhOTsaRI0c0nlEVwcHBAOr34+NXUl566SUUFRVh+/btKpf70UcfobCwEGvXrsX48ePl5j///PMy/+7Zs6fCNi0DBw7EW2+9BSLCyZMnVc7BGGNPG66Y6NAXX3yB9PR0bN26tdlbMObm5s2W17ZtW01FEymbMTExEQDg7e0NGxsbufk9e/YEAERGRmo8o7IqKioQExMDAJg4caLcfKHycPjwYZXKLSgowP79+2Fra4tZs2Y9cU6h4mlmZvbEZTHGWEun0zYmx44dg1QqFdtzXLt2DQcPHgQAjBo1ClZWVrqMo1NXrlxBcHAwZsyYgeHDh+PWrVtNLu/r64tdu3Zh9erV2LRpE4yM/qpDHj9+HCYmJpg2bZreMkqlUgBAmzZtFM63trYGAFy+fFmjGQVhYWHIz8+HkZER3N3dMW7cOLi4uMgsk5KSgsrKSjg4OMDZ2VmujK5duwKof9+qiI+PR2VlJV555RWYmpri4MGDOHPmDKqrq9GzZ0+8+eab6NChg1JlXblyBd9//z1MTU3x8ssvq5SDMcaeRjqtmMydOxe3b98W/33gwAEcOHAAAJCZmSmeKJ42dXV1mD17Nuzs7LB27Vql1lmzZg0uXryIkJAQ/PLLL/D09BQbvtbU1OCnn37SaCNdVTM6ODgAgMzn2VBeXh4ANFsBU9eqVatk/r148WIEBQUhKChInHbnzh0AUFgpAQALCwvY2dmhoKAAJSUlCq/8KJKcnAwA6NChA4YNG4Zz587JzP/444+xY8cOTJo0SW7dw4cP44cffkB1dTXu3LmDs2fPwtTUFNu2bYOrq6tS22eMsaeZTm/l3Lp1C0Sk8PW0VkoAICQkBBcuXMC6deuUHjujY8eOOHXqFHx9fZGRkYGDBw+KVx969eqF3r176zXj8OHDAdS3c7l27Zrc/AsXLgCAxseFGT58OPbs2YP09HSUlZXhxo0bWL16NUxMTPDZZ59h8+bN4rKlpaUA0OSVuFatWsksq4yCggIAwO7du3HlyhWEhYUhNzcXmZmZWLRoEaRSKfz9/RVeibl8+TJ27dqFiIgInDlzBmZmZti8eTPefvttpbfPGGNPNW22wtW0ltgr586dO2RtbU0jRoyQmZ6Zmdlkr5zLly+Ts7MzdenShSIjI6mgoIC++uorAkBmZmbUoUMHSktL02vGCRMmEADq3r07xcbGUklJCa1evZoAkLGxMQEgCwsLjWRsTlRUFAEgW1tbKisrI6K/et+88MILMssK08PDw6lTp04EgO7fv6/0thYvXiz2PAoNDZWbP3HiRAJA06ZNa/S4Ki8vp6tXr9K8efNIIpHQ6NGjqbKyUo13zhhjho975RiQefPmoaqqClu3blV6nerqakyaNAn379/HoUOHMGbMGNjZ2YmNXSdOnIiHDx/K3LbQdUYA+O677+Dj44O0tDS89NJLsLGxwSeffAIA4m2MxtqgaJqfnx+8vb1RVFSEhIQEABBvzQjtYRQpKysD8FebGGUI5RoZGSEgIEBu/syZMwGgyV42FhYWeOaZZ7Blyxa8//77OHLkCEJCQpTOwBhjTyuDHmDtaXDkyBHY2dlh7ty5MtMrKioA1LeD8PHxEZe1trZGQkICUlNT0b17d/Tv31+uzIEDByIiIkJj3UvVyQgAdnZ2iI2NRVRUFGJjY1FUVITCwkLs379fHAivT58+GsmojB49euDixYvIzs4GALEx7N27dxUuX1FRgcLCQtjZ2SndvgT4q9Gso6Ojwt5TwvycnBylyvP398dXX32FyMhIfPjhh0rnYIyxpxFXTHSgsLAQp06dUjivvLxcnFdTUwPgrxNp69atFa4jjHj66NEjvWUUSCQSjBw5EiNHjgQA7N27F/v378f//vc/ABArNLogtP0QKk4eHh4wNzdHbm4u7t69K9cIVmiY++yzz6q0HaGyWFBQACKSe0Blfn6+TI7mtGvXDgCQm5urUg7GGHsa8a0cLaNGGvtmZmYCqD95CtPs7OwA1P8SB4AbN24obDyakZEBABprMKxOxubExcXBzMxM4a0ObcjNzUVcXBwAwNPTE0B9BU4Ybl7olt6Q0EB39OjRKm2rb9++cHV1RXl5Oc6fPy83X7iSJeRojlDp69atm0o5GGPsacQVEwM0ePBgtG/fHlKpFO+9957ME5aB+qsSgOJBw3QpNTVV7onPRUVFAOp7uQQGBjbaVVcdCQkJOHHiBIhIZvqtW7cwfvx4SKVSjBkzRmabwrOWVq1aJXa3Fpw4cQKtW7fGP//5T5WzLFu2DACwYMECsWs0UD/wnDDa7Jw5c8Tpe/bsQWFhoVw50dHRWLp0KQBgxowZKudgjLGnjsab3mpRS+yV05jmerwcOnSITExMCAA5OTnR2LFjqW/fvmJvEE9PTyopKdFrxuXLl5OlpSUNGzaM3nrrLfLz8yMzMzMCQMOGDdP4c3J27NhBAKhjx440YsQImjx5Mg0dOpQsLCzEZ/M8fPhQbr0PPviAAJCVlRWNHTuW+vXrRwBIIpHQwYMH1cpSW1tLkyZNIgDUtm1bGj16NPn4+Ijvf/bs2UT013EFQNxXU6ZMoTFjxlDPnj3FeQsXLnyifcMYY4ZMlfM3V0z+ZGgVEyKipKQkmjp1Kjk7O5OpqSmZm5sTAHrzzTfFLrH6zHjq1CkaO3YsOTs7k5mZGbVt21asPIWHh2s8z7Vr12ju3Lnk6elJDg4O4kP4Bg0aRMHBwU3ukx07dpCXlxdZWVmRlZUVAaCgoKAnylNbW0tbtmyh/v37k5WVFbVq1YqGDBlCu3fvFpcRjqsPPviARo0aRV26dCFLS0syNzenrl270ltvvUUnTpx4ohyMMWbouGKiBl1XTNTRcPwNQ8UZZbWE44oxxrSNxzFhjDHGWIvEFRPGGGOMGQyumDDGGGPMYHDFhDHGGGMGgysmjDHGGDMYXDFhjDHGmMHgigljjDHGDAZXTBhjjDFmMLhiwhhjjDGDwRUTxhhjjBkMrpgwxhhjzGBwxYQxxhhjBoMrJowxxhgzGCb6DmBojh49iuvXr+s7hkLx8fEy/zVEnFFWZmam1rfBGGNPEwkRkb5DKKu4uBi2trYoKipC69atNVp2dHQ0/Pz8NFomY4Lg4GA8ePAAp06dQmZmJoqKiuDs7AxfX18sW7YMrq6u+o7IGGNao8r5mysmf0pKSoKXlxdWrlyp9ZNEaGgozpw5AyJCx44dsW7dOrllfvjhBxw6dAju7u7o0KEDACAnJwc3btyAh4cH/Pz8MHDgQL1mBICioiJ8+eWXyMrKgq2tLdq2bYvMzEy0bdsWjx49QlBQEDw8PPSWMTQ0VG6asB8tLCxQUVGB8ePHY8KECSpv/+bNm1i3bh3Kysrg5OQEZ2dnVFRU4N69e3j06BF2796NzMxMBAUFies4OTnB29sbRkZGuHDhAu7duwcbGxscPXoUL7zwgsoZGGOsJVDp/E0tSFFREQGgoqIijZedmJhIACgxMVHjZTd0/PhxAkDvvvsuASAPDw+Fyy1fvpwA0I4dO8Rp4eHhBIDCw8MNImNtbS0NGjSIANAnn3xC1dXVMhnT09MpNzdXrxkVETKampoSAEpNTVV5+/fu3SM7OzuytLSkH3/8UW7++fPnieiv42rw4MF06tQpmWUqKironXfeIQDk4uJCVVVVKudgjLGWQJXzNzd+1aHy8nLMmTMHvXv3xuLFi/UdRyFVMu7cuRMJCQmYMGECVq1aBRMT2SZLbm5uaNeunV4zNqW6uhqDBg1Cjx49VF73o48+QmFhIdauXYvx48fLzX/++edl/v31119j+PDhMtPMzc2xdetW2Nra4s6dOzh79qzKORhj7GnDjV916IsvvkB6ejpOnjwJU1NTfcdRSJWMwm2SDz/8UBfRRJrcj9OnT1d5nYKCAuzfvx+2traYNWvWE23fwsIC7u7u+P3333H//v0nKosxxp4GXDHRkStXriA4OBgzZszA8OHDcevWLaXWi42NxaVLl1BRUYH8/HyDyVhSUoKLFy/CxsYGAwcOxLlz5/Dzzz/j/PnzAICsrCy9Z2xMXl4eAMDY2BiTJ09Wef34+HhUVlbilVdegampKQ4ePIgzZ86guroaPXv2xJtvvim2C2pObW0tbt++DQBwdHRUOQtjjD1tuGKiA3V1dZg9ezbs7Oywdu1aldbds2eP3LTNmzdj7NixsLa21lRElTNeu3YNdXV16N69OxYsWIAtW7bIzA8MDMSjR49Ufr+azNgY4ZZJv379YG9vr/L6ycnJAIAOHTpg2LBhOHfunMz8jz/+GDt27MCkSZOaLWvfvn3IycmBg4MDhgwZonIWxhh72nAbEx0ICQnBhQsXsG7dOqVPhN27d8f69euRnJyM0tJSZGVlYd68eQCA33//Xa1bEJrMWFBQAAC4evUqtmzZgsWLFyMzMxNbt24FAJiZmWHdunX4z3/+o7eMjRHGL1G3F4zw3nfv3o0rV64gLCwMubm5yMzMxKJFiyCVSuHv748rV640WU5WVhb+/e9/AwBWrFgBc3NztfIwxthTRQeNcTWmJfbKuXPnDllbW9OIESNkpmdmZqrdm8Ta2poAUHx8vN4yHjlyhAAQAJoyZYpcxoCAAAJAzs7OesuoiPA547EeT6pYvHixWEZoaKjc/IkTJxIAmjZtWqPHVWlpKXl5eREAGjdunFo5GGOspeBeOQZk3rx5qKqqEq8kaILQuyMqKkoj5amT0cbGRvz/mTNnys0fPnw4JBIJ7t69i7S0NL1kVCQ8PFz8f3Ubzgrv3cjICAEBAXLzhf1x8uRJhetXV1djwoQJSExMxAsvvICIiAi1cjDG2NOI25ho2ZEjR2BnZ4e5c+fKTK+oqAAA3LlzBz4+PuKyyrQbERpJZmdn6y1j165dxeW6dOkiV6a5uTkcHByQk5ODnJwcdO/eXecZH1dbW4t9+/Y9UQ4A4nt3dHRUePtFmJ+TkyM3r66uDv7+/oiKikK/fv1w+PBhWFpaPnEmxhh7WnDFRAcKCwtx6tQphfPKy8vFeTU1NUqVJ5VKAUCjjV9Vzeji4gJ7e3vk5+fj0aNHcuvU1dWhsLBQozmfdD/GxMQgOzsb7dq1E3vmqKN///4A6tuaEBEkEonMfKH3lKL3PW/ePOzfvx/u7u747bffYGdnp3YOxhh7GvGtHC0jIoUv4eFuHh4e4jRlT1IXL14EAHh5eek14+uvvw4AOHHihFyZN2/eRFVVFSwtLdGzZ0+9ZWxIuI0zdOjQJ8rSt29fuLq6ory8XOwe3ZBwC8fT01NmemBgIEJDQ+Hi4oLo6Gi0b9/+iXIwxtjTiCsmBigvLw+7d+9GZWWlzHThtkV6ejocHR0VjjiqS0uWLIGxsTHWrVuHP/74Q2ae0M155syZMDMz00c8GWVlZTh06BCAJ6+YAMCyZcsAAAsWLJC5+pKYmIjg4GAAwJw5c8Tp4eHhWLNmDRwdHXH8+HG4uLg8cQbGGHsa8a0cA1RaWoqAgAC8//776NWrF1xcXFBYWCiOl2FlZYWDBw/CyspKrzl79+6NjRs3YsGCBRg8eDAGDx6MoqIiAMCtW7fg6emJNWvW6DWj4KeffkJpaSkGDBiATp06PXF5s2fPRkxMDA4cOAAPDw8MGTIEpaWlOHv2LKqqqjB79mxMnDgRSUlJAIBNmzYBAFxdXbF69WqFZc6aNYsf5McY+9vjiokBsre3x7Jly5CQkIC0tDRcunQJxsbGaNu2LUpLS/Hll19q5Fe/Jrz//vvw8PDA+vXrceHCBZSVlQEAJkyYgN27d+u98iQQbuP4+/trpDwjIyPs27cPPj4++O677xAbGwuJRAJvb2/MmTNHbpwZ+vMh3ufOnZMbkE3g4+PDFRPG2N8eV0z0pGvXruLJ6nE2Njb48ssv5abv3bsX/v7+aNu2rbbjAWg6Y0N+fn7w8/MD8FfG8ePH66RSomzGo0ePiv+/d+9ejWzbyMgI8+bNEwe+a0piYqJcmxPGGGPyuI0JY4wxxgwGV0wYY4wxZjC4YsIYY4wxg8EVE8YYY4wZDK6YMMYYY8xgcMWEMcYYYwaDKyaMMcYYMxhcMWGMMcaYweCKCWOMMcYMBldMGGOMMWYwuGLCGGOMMYPBFRPGGGOMGQyumDDGGGPMYPDThR9z9OhRXL9+XavbKC0txdKlS1FcXIyOHTti3bp1MvPr6uqQmpqKP/74AykpKcjNzUVZWZn4tN5jx45pNZ8yGYH6J+b+/vvvuHXrFgoLC1FeXg5TU1MAQEREhEFkVGTZsmUAAH9/fxQWFsLOzk7tDIWFhThy5AguXbqE/Px8mJmZwcHBAX369MGUKVOQmZkJAHjw4AG++eYbnD9/HhcuXMCNGzdARDh37hwGDRqk9vYZY+xpIyFlnhlvIIqLi2Fra4uioiK0bt1ao2VHR0fDz89Po2UyJpgzZw7+85//yE3niglj7O9AlfM3XzH5k729PQBg5cqVcHV11dp2/ve//+HLL7/Eiy++iBMnTij8pf/w4UPs3LkTY8eORc+ePcXpp0+fxrZt28S8wcHBMDHR/EeoTEYAuHXrFuzt7WFjYyNOi4+Px9atW2Fqaoqamhp8+eWXcHJy0lvGhoqLi7F06VK0adMGWVlZAICvv/5arSsmBQUFWLZsGWpqajB37lwMGDBAZn56ejq6deuGzMxMBAUFwd3dHQsXLsSAAQMwYMAAzJo1C6dOnVJ5u4wx9tSjFqSoqIgAUFFRkcbLTkxMJACUmJio8bIFZWVl1L17d+rduzelpqYSAPLw8FB6/fDwcAJAVlZWBIBOnjxpsBl9fHwIAG3ZssVgMk6dOpUsLCwoODiYABAAys7OVivD9OnTCQCFhIQ0uVxjx9WIESMIAJ07d06t7TPGWEuiyvmbr5jo0BdffIH09HScPHlSbIuhDkdHR2RkZOD+/fsaTFdPUxmNjOrbVZuZmWkqmkidjFFRUYiIiMDKlSvRoUOHJ9p+QUEB9u/fD1tbW8yaNeuJymKMMSaLe+XoyJUrVxAcHIwZM2Zg+PDhT1RWXl4egPoKiiZpMmNCQgJMTU3x8ssvayhdPXUylpWVYc6cOejZsyeWLl36xBni4+NRWVmJF154Aaampjh48CD+/e9/Y/78+QgJCcHDhw+feBuMMfZ3xVdMdKCurg6zZ8+GnZ0d1q5d+8TlFRcXw8HBAUOGDNFAunpPkvHw4cP44YcfUF1djYsXLwIAqqursW3bNo2211E3Y1BQEG7duoUTJ05o5ApOcnIyAKBDhw4YNmwYzp07JzP/448/xo4dOzBp0qQn3hZjjP3dcMVEB0JCQnDhwgXs2LFDbGSrjvz8fPH/V6xYAXNzc03EA/BkGS9fvoxdu3bJTPP398fbb7+tsXyAehmTkpKwefNmBAQEwMfHRyM5CgoKAAC7d++Gubk5wsLCMGbMGJSWliIkJAQbNmyAv78/PDw8NLI9xhj7O9HZrZzS0lL8+9//RqdOnWBhYYHnnnsO+/bt09Xm9SYrKwuffvopRowYgXfeeUftcqRSKTZt2gQA8PLywpw5czQTEE+e8dNPPwURoby8HGvWrAEAsVdRVVWV3jLW1taKV1jWr1+vkRxCuQBQU1ODDRs2YObMmWjXrh26du2K4OBgTJw4EVVVVRq5OsYYY383OquYvPHGG9i1axeWL1+OY8eOYcCAAZgyZYpOBuLSp3nz5qGqqgpbt25Vu4zq6mpMmDBBHKxr/vz5mooHQDMZAcDCwgKdO3cGAPj6+uLIkSMICQnRRES1Mm7atAlJSUlYu3Yt2rVrp5EcAMTu0UZGRggICJCbP3PmTADAyZMnNbZNxhj7u9DJrZyjR48iOjoaERERmDJlCgDgxRdfxO3bt7FkyRJMnjwZxsbGuoiic0eOHIGdnR3mzp0rM72iogIAcOfOHfEWw5EjR2BtbS2zXF1dHfz9/REVFQUXFxfcuXNH4z1dnjSjIkOHDsVvv/2GyMhIfPjhh3rJePjwYUgkEuzatQu7d+8W12nYOPWNN96AmZkZVq1ahRdeeEGpLF27dgVQ3/hY0e00YX5OTo6yb48xxtifdFIxOXToEKytreUaA86YMQNTp07F+fPnNdqQ09AUFhY2OphWeXm5OK+mpkZu/rx587B//364u7vjgw8+0PjVEk1kVES4qpCbm6uZgFAvIxHh9OnTjZYpNFwVejopo3///gDq25oQESQSicx8oS2QMhU4xhhjsnRyK+d///sfevXqJTdK6bPPPivOf1oRkcKXcFvGw8NDnPb4CKSBgYEIDQ2Fi4sLoqOjYWtra3AZG5OSkgIA6Natm94ynjx5UuE64eHhYrnZ2dkgIowbN07pLH379oWrqyvKy8tx/vx5ufnCLRxPT0+13y9jjP1d6aRikp+fj7Zt28pNF6Y17G3SUGVlJYqLi2VefxcbNmzAmjVr4OjoiOPHj8PFxUXfkWTk5OQgODgYhYWFCucLDZtnzJihw1S6IzwIcMGCBTJXWxITExEcHAwAGm2gzBhjfxc66y78+OVuZeatWbMGX3zxhbYiGaxLly5h8eLFAABXV1esXr0aAJCRkQEACA0NRXR0NGbNmqV0uwhNKysrw+LFixEUFARvb284OztDKpWK45gUFxdj4cKFmDBhgl7yadvs2bMRExODAwcOwMPDA0OGDEFpaSnOnj2LqqoqzJ49GxMnTkRSUhKA+ltaDR/Wd+3aNQDArFmzxFs+r732GoKCgnT/ZhhjzIDopGJib2+v8KrIo0ePAEDh1RSgfqCqRYsWif8uLi4We308zQoLC0F/PvT53LlzcgN4xcXFIS4uDj4+PnqrmLRv3x5r167FyZMnkZycjIsXL6Kurk58amRgYKBYoXoaGRkZYd++ffDx8cF3332H2NhYSCQSeHt7Y86cOZg+fbrM8tXV1Qpv+wiDtQGQeWAjY4z9XemkYtK3b1/897//RU1NjUw7k6tXrwIAnnnmGYXrmZuba3QQMUPStWtXsfLxOB8fH4Xz9u7dC39/f4SHh2PatGnajthkRisrKyxZsgRLlixRmLF3795azwc0nbE54eHhTzSsv5GREebNm4d58+Y1u2ynTp3UzskYY38nOmljMn78eJSWluKHH36Qmb5r1y506tQJAwcO1EUMxhhjjBk4nVwxefXVV+Hr64u5c+eiuLgY3bt3x3//+1/8+uuvCA8Pf2rHMGGMMcaYanTW+PXHH3/EJ598gs8++wyPHj1Cz5498d///hdvvfWWriIwxhhjzMDprGJibW2NzZs3Y/PmzbraJGOMMcZaGJ09K4cxxhhjrDlcMWGMMcaYweCKCWOMMcYMBldMGGOMMWYwuGLCGGOMMYPBFRPGGGOMGQyumDDGGGPMYHDFhDHGGGMGgysmjDHGGDMYOhv5taU4evQorl+/ru8YCsXHx8v81xBxRlmZmZla3wZjjD1NJNSCnsVeXFwMW1tbFBUVoXXr1hotOzo6Gn5+fhotkzHBb7/9Bl9fX+zevRtff/01rl27BjMzMwwaNAiffvophgwZou+IjDGmNaqcv/mKyZ/s7e0BACtXroSrq6vGy58zZw4qKyvh4uKCNm3aAADu3r2LBw8ewMTEBAsXLkS/fv3E5bOysrBmzRoUFxfDwcEBXbt2RUZGBvLz82FmZoYvvvgCnTt31nhOQWhoKM6cOQMiQseOHbFu3TqFy4WHh+PXX3+FmZkZ+vbti5ycHGRlZUEikWDBggUYMGCAXjMKT7BWZO7cuRg6dKja27958ybWrVuHsrIyODk5wdnZGRUVFbh37x4ePXqE3bt3IzMzE0FBQbC3t8eiRYuwceNGWFpaws/PDxUVFYiOjsZvv/2GAwcOYPz48WpnYYyxpwa1IEVFRQSAioqKNF52YmIiAaDExESNl01EdObMGSovL5eb/s033xAA6tSpE9XU1BARUV1dHT377LMEgGbOnEnV1dVERBQeHk4ACAD16dOHamtrtZL1+PHjBIDeffddAkAeHh4Kl4uJiSEAZG9vT6mpqTIZTUxMyNbWlh49eqTXjJGRkbRw4UKKiIigmzdv0ogRI8R9GB4ervb27927R3Z2dmRpaUk//vij3Pzz588T0V/H1datW+X2FRHR2bNnyczMTKv7ijHG9E2V8zdXTP6k7YpJU7p3704AKDk5mYiI4uLiCAC1adOGiouLxeWEk76bmxsBoMjISI1nKSsro+7du1Pv3r0pNTW1yZP+qFGjCABt3LhRLqOfnx8BoPXr1+s14+M0VTGZPn06AaCQkJAmlxOOq6FDh8rtK8GCBQu0tq8YY8wQqHL+5l45BsDY2BgAYGZmBgBITEwEAHh7e8PGxkZu+Z49ewIAIiMjNZ7liy++QHp6OrZu3QpTU9NGl6uoqEBMTAwAYOLEiXLzn3/+eQDA4cOH9ZZRWwoKCrB//37Y2tpi1qxZSq3z+++/A1C8r4Rp2thXjDHW0nAbEz3bvXs3bty4AXd3d7i5uQEApFIpAIhtUR5nbW0NALh8+bJGs1y5cgXBwcGYMWMGhg8fjlu3bjW6bEpKCiorK+Hg4ABnZ2e5+V27dhXL1FdGbYmPj0dlZSVeeeUVmJqa4uDBgzhz5gyqq6vRs2dPvPnmm+jQoYPMOlVVVY3uK09PTwCa31eMMdYSccVEx9atW4fk5GRIpVJcv34dycnJ6NSpEyIiImBkVH8By8HBAQBw+/ZthWXk5eUBgEZPynV1dZg9ezbs7Oywdu3aZpe/c+cOACg80QKAhYUF7OzsUFBQgJKSEoVXfrSdUVuSk5MBAB06dMCwYcNw7tw5mfkff/wxduzYgUmTJslMb2xftWrVSuP7ijHGWiqumOhYVFSUeAsEADp37ow9e/bAy8tLnDZ8+HAA9Zf/r127ht69e8uUceHCBQBASUmJxnKFhITgwoUL2LFjh9hDqSmlpaUAACsrq0aXadWqFQoLC1FaWqqRk62qGbWloKAAQP3VLnNzc4SFhWHMmDEoLS1FSEgINmzYAH9/f3h4eMisp8t9xRhjLRW3MdGx48ePg4hQUFCA06dPw8PDAz4+Pli9erW4jIeHByZMmIC6ujqMHTsWJ06cQGlpqXgFpby8HADEKyxPKisrC59++ilGjBiBd955R6l16M/hbyQSSbPLaII6GbWltrYWAFBTU4MNGzZg5syZaNeuHbp27Yrg4GBMnDgRVVVVcld1dLWvGGOsJeOKiZ7Y2dlh2LBhOHr0KLy8vBAUFCQ2kASA7777Dj4+PkhLS8NLL70EGxsbfPLJJwAg3iJorA2KqubNm4eqqips3bpV6XWEX/VCexhFysrKAPzVJuZJqJNRW4T3bmRkhICAALn5M2fOBACcPHlSZrqu9hVjjLVkfCtHz0xNTTF58mQkJibi8OHD4oBkdnZ2iI2NRVRUFGJjY1FUVITCwkLs379fHFitT58+Gslw5MgR2NnZYe7cuTLTKyoqANS3J/Hx8RGXtba2houLC4D6QeIUqaioQGFhIezs7DRya0KdjNoiNOx1dHSEubl5o/NzcnJkpje2r6RSqUb3FWOMtWRcMTEA7dq1AwDk5ubKTJdIJBg5ciRGjhwJANi7dy/279+P//3vfwAgnog1obCwEKdOnVI4r7y8XJxXU1MDoP52k7m5OXJzc3H37l25hp1Cw9xnn31Wbxm1pX///gDq25oQkdwtmvz8fACyVz/MzMwa3VdJSUkANLuvGGOspeJbOQZAOKF269ZNqeXj4uJgZmam8DaCOqh+oD25l/AAOg8PD3GanZ0dAMDS0hIvvfQSAODgwYNyZQoNdEePHq23jNrSt29fuLq6ory8HOfPn5ebL9zCEboBAxCvhCnaV8I0Te0rxhhrybhiogNxcXH4/vvv5X7JV1dXIyQkBHv27IGlpSUmT54szktNTUVxcbHM8kVFRQDqe8QEBgY22v1UVxYtWgQAWLVqFW7evCkz78SJE2jdujX++c9/6iOa1i1btgwAsGDBArH7NlA/OF5wcDCA+ucjCaZNmwZAfl+dO3cOoaGhT/W+YowxVfCtHB1IT0/HjBkz0K5dO3h5ecHe3h55eXm4evUqsrOzYWFhgZ07d8o8lC8iIgJr166Ft7c3nJyc8OjRI/GX+LBhwxAUFKSnd/OXV155BR988AE2b96M5557Dr6+vuItnJqaGmzfvh1t27bVa8bs7GyZh+Ndu3ZN/P/ly5cjJCQEr732msr7c/bs2YiJicGBAwfg4eGBIUOGoLS0FGfPnkVVVRVmz56NiRMnirdpBg4cKLevqqqqEB0djbq6Ouzdu1fv+4oxxgwBV0x0YMSIEQgMDMSpU6dw5coV5OXlwczMDF27dsXEiROxYMECdO/eXWadl156CZcuXUJiYiLOnz8Pa2treHh44OrVq/jXv/6lsa7CT2rTpk147rnn8PXXXyM6Olqc/umnn2LChAl6TFavsrJS4e0WoL7CmJ6eLg7xrwojIyPs27cPPj4++O677xAbGwuJRAJvb2/MmTMH06dPl1vn8X1lamqKl19+GZ9++ileeOEFlTMwxthTSbOP6dGup/UhfsoSHpD3JA+f0zbOKKslHFeMMaZt/BA/xhhjjLVIXDFhjDHGmMHgigljjDHGDAZXTBhjjDFmMLhiwhhjjDGDwRUTxhhjjBkMrpgwxhhjzGBwxYQxxhhjBoMrJowxxhgzGFwxYYwxxpjB4IoJY4wxxgwGV0wYY4wxZjC4YsIYY4wxg2Gi7wCG5ujRo7h+/bpWyk1NTUVWVhaKi4tRXV0NW1tb9OrVC6NHj4azs7PC9aqrq/Hbb78hISEBd+/eBQDMnz8f3377LSZMmIC2bdvqLaO/v3+jZfn7+8Pf3x+9e/dGYGCg3jICwKNHjxAZGYkrV66goKBAnP7111+juroapqamKudYtWoVUlJSGp2/ZMkS9OvXD5mZmeK0u3fvYtWqVTh69CgePnwIe3t7+Pn54fPPP0fXrl1VzsAYY08jCRGRvkMoq7i4GLa2tigqKkLr1q01WnZ0dDT8/Pw0WiZjgtDQUHz66afIzc2Fq6sr+vfvj7S0NFy5cgW2traIi4tD37599R2TMca0QpXzN18x+ZO9vT0AYOXKlXB1ddV4+ampqejatSvMzMxkph8/fhw7d+5EmzZtsHnzZhgZ1d9dq6urw4oVK5CWloaxY8fijTfeQEJCArZu3Yq5c+eiR48esLS0hI2Njd4yKhIfH4+tW7fC2NgYtbW1WL9+PRwdHfWWcdOmTbh48SJ8fX0xffp0GBkZiRmFP5LZs2djxIgRKuUQrphs3LgRDg4OjS6XmZmJoKAgrF+/Hrm5uZg5cyZCQ0NhYlL/p7dx40YsWrQIU6ZMwZUrV5rct4wx9rdALUhRUREBoKKiIo2XnZiYSAAoMTFR42U3p3v37gSAkpOTxWlhYWEEgCZMmCBOCw8PJwAUHh5uEBkVETICoEGDBukoXT1FGe3t7QkAPXjwQC6jv78/AaC5c+eqvK0RI0YQAMrMzGxyOeG4AkBt2rSh4uJiuWUGDBhAACgyMlLlHIwx1hKocv7mn2cGwNjYGABkrgKEhoYCAD788EO9ZHqcoozNmT59urbiKKQoo7m5ebPrabKdTlO8vb0VXuESrtZERkbqJAdjjBkyvpWjZ7t378aNGzfg7u4ONzc3AEBJSQkuXrwIGxsbDBw4EOfOncPPP/+M8+fPAwCysrL0nrExeXl5AOorCZMnT9ZFPACNZ/T19cWuXbuwevVqbNq0SeZWyfHjx2FiYoJp06apvd2wsDDk5+fDyMgI7u7uGDduHFxcXBQu26ZNG4XThYrR5cuX1c7BGGNPC66Y6Ni6deuQnJwMqVSK69evIzk5GZ06dUJERIR40rx27Rrq6urQvXt3LFiwAFu2bJEpIzAwEI8ePcLatWv1lrExZ8+eBQD069dPbLejz4xr1qzBxYsXERISgl9++QWenp64efMmAKCmpgY//fQTevXqpXaOVatWyfx78eLFCAoKQlBQkNyyt2/fVliGMP3WrVtq52CMsaeGDm4taczT0Mbk5ZdfFtscAKDOnTvTyZMnZZY5duwYASATExMCQIsXL6bMzEzaunUrASBzc3MCQFu3btVbxsY4OTkRAFqwYIFWsqmTMS8vj3x9fWWWB0DDhg2jjIwMtbYfFBREe/bsofT0dCorK6MbN27Q6tWrydLSkgDQpk2biEi2jYmRkZFcG52SkhKxHYyZmZlaWRhjzNCpcv7mismfdN34taCggE6fPk2vvPIKAaBVq1aJ844cOSKezKZMmSJOFxptBgQEEABydnbWW0ZFGp6Ed+zYodVsyma8fPkyOTs7U5cuXSgyMpIKCgroq6++EisCHTp0oLS0NI3liYqKIgBka2tLZWVl4j4RKlLdu3en2NhYKikpoT/++IOGDx8uVkAtLCw0loMxxgwJV0zUoK9eOVVVVeTl5UUSiYQuXLhARESnTp0ST/DR0dHiskLFJCwsjCQSCQGgmzdv6iWjIgsXLhRz67rnkKKMVVVV5O7uTkZGRpSUlCQuK+zHqVOnylX+NMHb25sAUGxsrHhcnTx5knx8fOSu2lhZWdHatWsJAHXs2FGjORhjzFBwr5wWxNTUFJMnTwYR4fDhwwAgMwpoly5d5NYxNzcXx87IycnRS8bH1dbWYt++fVrP0hhFGRMSEpCamgo3Nzf0799fbp2BAwcCAE6ePKnRLD169AAAZGdni9NsbGwQGxuLY8eOYcmSJXj33Xfx//7f/8O1a9fwzDPPAAD69Omj0RyMMdYSceNXA9CuXTsAQG5uLgDAxcUF9vb2yM/Px6NHj+SWr6urQ2FhIQDA2tpaLxkfFxMTg+zsbLRr107smaNrj2cUhvBvbJRBS0tLAFC4j5+EMOz945+NRCLByJEjMXLkSJnpX331FQDAx8dHozkYY6wl4ismBuDUqVMAgG7duonTXn/9dQDAiRMn5Ja/efMmqqqqYGlpiZ49e+otY0Ph4eEAgKFDh+okjyKPZxRGnL1x4wZKSkrkls/IyAAAjT6nJjc3F3FxcQAAT0/PZpd/9OgRdu3aBTMzMwQEBGgsB2OMtVRcMdGBuLg4fP/996ipqZGZXl1djZCQEOzZsweWlpYy434sWbIExsbGWLduHf744w+Z9fbs2QMAmDlzpkoDnmk6o6CsrAyHDh0CoN2KiaoZBw8ejPbt20MqleK9995DZWWlzHp79+4FAEycOFGlHAkJCThx4gToscdM3bp1C+PHj4dUKsWYMWNkHih4+/ZtFBcXyyyfk5ODN954A/n5+QgMDGz0QY6MMfZ3wrdydCA9PR0zZsxAu3bt4OXlBXt7e+Tl5eHq1avIzs6GhYUFdu7cic6dO4vr9O7dGxs3bsSCBQswePBgDB48GEVFRQDqT4Cenp5Ys2aNXjMKfvrpJ5SWlmLAgAHo1KmTxjI9aUYLCwuEhoZi0qRJ2L17N2JiYuDt7S1eKcnKyoKnpyc++ugjlXKkpKRgxowZ6NixI9zd3eHo6Ii7d+8iMTERFRUV6NOnD7799luZdX799VdMmzYN3t7ecHJywqNHjxAXF4fy8nK88847Csc9YYyxvyUtN8TVqJbaKycjI4MCAwNp6NCh1LFjRzI1NaVWrVpRnz596P3332+yZ01UVBT5+vqSra0tmZqais/PkUqlBpPx1VdfJQC0efNmrT7PR92MSUlJNHXqVHJ2diZTU1NxHJg333yTysrKVM5x7do1mjt3Lnl6epKDgwOZmJiQra0tDRo0iIKDg2XKFI6rb7/9lsaOHUvOzs5kZmZGbdu2JT8/P/rxxx/V3h+MMdZScHdhNejzIX7K0udD/JTFGWW1hOOKMca0jbsLM8YYY6xF4ooJY4wxxgwGV0wYY4wxZjC4YsIYY4wxg8EVE8YYY4wZDJ1UTEpKSrB06VL4+fnBwcEBEokEn3/+uS42zRhjjLEWRCcVk/z8fGzbtg2VlZUYN26cLjbJGGOMsRZIJyO/dunSBQUFBZBIJMjLy8N3332ni80yxhhjrIXRScVEIpHoYjOMMcYYa+G48StjjDHGDIZBP8SvsrJS5omwjz+dlTHGGGNPF5WvmJw8eRISiUSp16VLl54o3Jo1a2Brayu+FD3ZljHGGGNPD5WvmHh4eMg90r0xLi4uKgdq6OOPP8aiRYvEfxcXF3PlhDHGGHuKqVwx6dixI2bNmqWNLHLMzc1hbm6uk20Jjh49iuvXr+t0m8qKj4+X+a8h4oyyMjMztb4Nxhh7mkiIiHS5wby8PDg4OGD58uUqD7JWXFwMW1tbFBUVoXXr1hrNFR0dDT8/P42WyZjgt99+Q+/evbFq1SpERUXh3r17MDU1hbu7O6ZMmYIFCxbovBLOGGO6osr5W2eNX48dOwapVIqSkhIAwLVr13Dw4EEAwKhRo2BlZaWrKArZ29sDAFauXAlXV1eNlz9nzhxUVlbCxcUFbdq0AQDcvXsXDx48gImJCRYuXIh+/fqJy2/evBkXL16Ek5MT7O3tYWlpiYyMDOTk5AAAxo0bh4kTJ+o14+NOnz6Nbdu2if/++uuvYWdnp9eMP/zwAw4dOgR3d3d06NABAJCTk4MbN27Aw8MDfn5+GDhwoMo5Vq1ahZSUFAwYMAAWFhZy80eNGoXOnTsjMzMTQUFBKC0txXPPPYe8vDy4ubnh9ddfh1QqxZkzZ7B06VL8/PPPiI2NhampqZp7hjHGnhKkI126dCEACl+ZmZlKlVFUVEQAqKioSOP5EhMTCQAlJiZqvGwiojNnzlB5ebnc9G+++YYAUKdOnaimpkacnpSURHl5eTLLhoeHEwCysLAgiURCycnJes3YUE5ODtnb21Pfvn3FzzU7O1uj+dTJuHz5cgJAO3bsEKcJ+zE8PFztHCNGjFDq2BWOqxdffJEA0HvvvSeT7+HDh9SjRw8CQNu3b1c7D2OMGTJVzt86G8fk1q1bICKFr65du+oqht4MHTpU4S/ruXPnonv37rh//z5u3LghTu/fv794FedxgwYNAhHh5MmTes3Y0L///W9IpVK88847Gs2kyYz6lJSUBAD49NNPYWxsLE5v37495s2bBwD4/fff9ZKNMcYMCQ+wZgCEE5WZmZlSyxsZGam0vCY0lTEqKgoRERH45JNPxNsl+qDqftQlZTK1bdtWB0kYY8ywGfQAa38Hu3fvxo0bN+Du7g43Nzel1klISICpqSlefvllLaer11TGsrIyzJkzBz179sTSpUtx4MABnWRSJSMAxMbG4tKlS6ioqEB+fr7GthsWFob8/HwYGRnB3d0d48aNU9hNfuDAgThy5AhWr16NTZs2iZXLnJwcfPPNNzAxMcG0adM0losxxloqrpjo2Lp165CcnAypVIrr168jOTkZnTp1QkREhHiyaujw4cP44YcfUF1djYsXLwIAqqursW3bNq000lU1Y1BQEG7duoUTJ07o9EqFqvtxz549ctM2b96MsWPHwtraWu0cq1atkvn34sWLERQUhKCgIJnp7733HjIzMxESEoJffvkFnp6ekEqliIuLg729PX766Sf06tVL7RyMMfbU0GZjF01ryY1fBS+//LJMw9/OnTvTyZMnG11+5cqVco2FZ8yYQbW1tXrPmJiYSMbGxhQQECBOExqWQkuNX1XNuGfPHlq/fj0lJydTaWkpZWVl0bx588T1xo0bp9b2g4KCaM+ePZSenk5lZWV048YNWr16NVlaWhIA2rRpExHJHld5eXnk6+srk1sikVBAQABlZGQ80f5gjDFDpsr5mysmf9JVxURQUFBAp0+fpldeeYUA0KpVq5pcvry8nNasWSOezEaPHk2VlZV6y1hTU0Oenp5kb29Pubm54nRdVUyUydgYIaO1tTUBoPj4eI3liYqKIgBka2tLZWVl4nG1b98+cnZ2pi5dulBkZCQVFBTQ3bt3adOmTWRpaUkdOnSgtLQ0jeVgjDFDwhUTNei6YiKoqqoiLy8vkkgkdOHChSaXFU6ofn5+BIDWr1+vt4zr168nABQWFqYwo64qJk1lbIyQcdSoUQSAPvvsM41m8fb2JgAUGxsrHlddunQhIyMjSkpKkls+ODiYANCUKVM0moMxxgyFQXYXZoqZmppi8uTJICIcPnxYqXWGDh0KAIiMjNRmNJGijIcPH4ZEIsGuXbvg4+Mjvhq2uXjjjTfg4+ODM2fO6CVjcxwdHQEA2dnZGs3So0cPuXJv374NNzc39O/fX275N998EwA03v2bMcZaIm78agDatWsHAMjNzVVqeRsbG5WW1wRFGYkIp0+fbnSdc+fOAah/DIEuqLofpVIpADxR41dFCgoKFJbb2DDMwvRHjx5pNAdjjLVEfMXEAJw6dQoA0K1bN6WWT0lJUWl5TXg848mTJxUOlhceHi6uk52dDSLCuHHj9JKxOUIvJy8vL41lyM3NRVxcHADA09NTZt6NGzfERzI0JAys9ncYaJAxxprDFRMdiIuLw/fff4+amhqZ6dXV1QgJCcGePXtgaWmJyZMnA6gf2yI4OBiFhYUKy9u3bx8AYMaMGXrLqA+qZszLy8Pu3btRWVkps3xFRQUAID09HY6Ojhg/frxKORISEnDixAnQY8+/vHXrFsaPHw+pVIoxY8bA2dlZnNe2bVtIpVK89957Mnnu37+PhQsXAoDGn33EGGMtEd/K0YH09HTMmDED7dq1g5eXF+zt7ZGXl4erV68iOzsbFhYW2LlzJzp37gygftAyYTwMb29vODs7QyqVir/wi4uLsXDhQkyYMEFvGfVB1YylpaUICAjA+++/j169esHFxQWFhYXiLSYrKyscPHhQ5QdIpqSkYMaMGejYsSPc3d3h6OiIu3fvIjExERUVFejTpw++/fZbmXUCAwPx0UcfYffu3YiJiYG3tzfKy8tx7tw5lJSUwNPTEx999JFmdhRjjLVk2mqBqw0ttVdORkYGBQYG0tChQ6ljx45kampKrVq1oj59+tD7779PN2/elFleKpXS2rVradSoUdSlSxeytLQkc3NzcnBwIAAUGBio94yN0WavHFUzFhcX07Jly2jEiBHk5ORE5ubmZGVlRc7OzgSAvvrqK7VyXLt2jebOnUuenp7k4OBAJiYmZGtrS4MGDaLg4GAqKysTl214XCUlJdHUqVPJ2dlZzP7cc8/R//t//09mHcYYe9pwd2E16Ku7sCo08VRcbeOMslrCccUYY9rG3YUZY4wx1iJxxYQxxhhjBoMrJowxxhgzGFwxYYwxxpjB4IoJY4wxxgwGV0wYY4wxZjC4YsIYY4wxg8EVE8YYY4wZDK6YMMYYY8xgcMWEMcYYYwaDKyaMMcYYMxhcMWGMMcaYweCKCWOMMcYMhom+Axiao0eP4vr161opNzU1FVlZWSguLkZ1dTVsbW3Rq1cvjB49Gs7OzgrXi4uLQ3R0NO7duydO++GHHzSeT52M+fn5SEpKQnp6OjIyMpCdnQ0iAgDEx8frPWNdXR1SU1Pxxx9/ICUlBbm5uSgrK4OVlRUA4NixY2rnWLVqFVJSUhqdv2TJEvTr1w+ZmZkAAC8vr2bLfPHFFxEbG6t2JsYYexpISDiTtADFxcWwtbVFUVERWrdurdGyo6Oj4efnp9EyGRP4+vqiU6dOCuf98ssvyMvLw2effYYvvvhCx8kYY0z7VDl/8xWTP9nb2wMAVq5cCVdXV42Xn5qaiq5du8LMzExm+vHjx7Fz5060adMGmzdvhpFR/d215ORkrFmzBtbW1vj888/h6OiI+Ph4bN26FUZGRrCwsMDGjRvRqlUrvWVMTEzE9evX4ebmBjc3N3z33XfiVYS5c+di6NChGsumTsaHDx9i586dGDt2LHr27Ckue/r0aWzbtg1A/eceHBwMExPV/hSEKyYbN26Eg4NDo8tlZmYiKCgIX375JTw9PeXmFxYWYt++fQAAf39/lTIwxthTiVqQoqIiAkBFRUUaLzsxMZEAUGJiosbLbk737t0JACUnJ4vTRo0aRQBo48aN4rTw8HACQH5+fgSA1q9fr9eMjxsxYgQBIAAUHh6us2wCZTIS/bUfraysCACdPHlS5W0J7zUzM7PJ5Zo7rrZt20YAaNCgQSpnYIyxlkKV8zc3fjUAxsbGACBeBaioqEBMTAwAYOLEiXLLP//88wCAw4cP6yihfEZDpGpGR0dHAMD9+/e1lqk54eHhAIDp06frLQNjjBkSvpWjZ7t378aNGzfg7u4ONzc3AEBKSgoqKyvh4OCgsFFs165dAQBXrlzRW0ZDo07GvLw8AH9VUNQRFhaG/Px8GBkZwd3dHePGjYOLi4tS6965cwdxcXEwNTXF5MmT1c7AGGNPE66Y6Ni6deuQnJwMqVSK69evIzk5GZ06dUJERITYduPOnTsA0GhPHQsLC9jZ2aGgoAAlJSWwsbHReUZ900TG4uJiODg4YMiQIWrnWLVqlcy/Fy9ejKCgIAQFBTW77t69e0FEePXVV8U2Towx9nfHFRMdi4qKEm/TAEDnzp2xZ88eme6kpaWlACB2a1WkVatWKCwsRGlpqcYrJspk1LcnyZifny/+/4oVK2Bubq7y9ocPH45Zs2ZhyJAh6NixI7KysnDw4EGsWrUKn332GVq3bo0PPvigyTL4Ng5jjMkzjJ+/fyPHjx8HEaGgoACnT5+Gh4cHfHx8sHr1anEZ+rMHt0QiabQc0mIvb2Uy6pu6GaVSKTZt2gSgfmyROXPmqLX9FStWwN/fH25ubrC0tIS7uzsCAwPx008/AQCWL1+O8vLyRtdPSkrCtWvXYGdnh9dff12tDIwx9jTiiome2NnZYdiwYTh69Ci8vLwQFBSE33//HQDEKyBSqbTR9cvKygAA1tbWesloKFTJWF1djQkTJoiDns2fP1/jefz8/ODt7Y2ioiIkJCQ0upxwtWTSpElqXbFhjLGnFVdM9Exo+EhEYi8bofHk3bt3Fa5TUVGBwsJC2NnZafw2jrIZDU1zGevq6uDv74+oqChx/2qrh1GPHj0AANnZ2Qrn19bW8tgljDHWCK6YGIB27doBAHJzcwEAHh4eMDc3R25ursLKya1btwAAzz77rN4yGqKmMs6bNw/79++Hu7s7li1bptUcBQUFABq/mhUTE4Ps7Gx06dIFw4YN02oWxhhrabhiYgBOnToFAOjWrRsAwNLSEi+99BIA4ODBg3LLX7hwAQAwevRoHSWUz2iIGssYGBiI0NBQuLi4IDo6Gra2tlrLkJubi7i4OABQONIr8NdtHH9//ybbETHG2N8RV0x0IC4uDt9//z1qampkpldXVyMkJAR79uyBpaWlzFgWixYtAlDfHfXmzZsy6504cQKtW7fGP//5T71m1DV1Mm7YsAFr1qyBo6Mjjh8/rvQYI01JSEjAiRMn5Bog37p1C+PHj4dUKsWYMWMUdvcuKyvDoUOHAPBtHMYYU4S7C+tAeno6ZsyYgXbt2sHLywv29vbIy8vD1atXkZ2dDQsLC+zcuROdO3cW13nllVfwwQcfYPPmzXjuuefg6+sr3sKpqanB9u3b0bZtW71mzM7Oxvjx48V/X7t2Tfz/5cuXIyQkBK+99ppSY3poI+OlS5ewePFiAICrq6vYYycjIwMAEBoaiujoaMyaNQsvvPCC0jlSUlIwY8YMdOzYEe7u7nB0dMTdu3eRmJiIiooK9OnTB99++63CdX/66SeUlpZiwIABMs/vYYwx9ietDYyvBS31WTkZGRkUGBhIQ4cOpY4dO5KpqSm1atWK+vTpQ++//z7dvHmz0XV37NhBXl5eZGVlJT7bJSgoyCAyZmZmis/GaewVEBCgt4wnTpxoNh8A2rFjh0o5rl27RnPnziVPT09ycHAgExMTsrW1pUGDBlFwcDCVlZWJyz5+XL366qsEgDZv3vzE+4MxxloKVc7fXDH5kz4f4qcs4eFz+nhAnrI4o6yWcFwxxpi28UP8GGOMMdYiccWEMcYYYwaDKyaMMcYYMxhcMWGMMcaYweCKiY49ePAACxcuhLu7OywtLdG2bVt4eXlh6dKlcsveu3cPc+fOhZubG8zNzcVxS44cOYLKykqN5jp58iQkEkmzrxUrVsitu3v3bjz//POwtrbGv/71LwBAamqqRvOpk7Gurg5xcXFYunQpBg4ciPbt28Pc3FwcIyYnJ0fjGRljjD0ZHsdEh86dO4dRo0ahsLAQvXv3xpgxY1BSUoJr165hw4YNWLt2rbhsamoqhg4diry8PLi5ueH111/HzZs3ceXKFezbtw93795FbGwsTE1NNZLN0dERAQEBCufV1taKo5U+PoT6okWLsHHjRlhaWsLPzw8ZGRm4evUqVq1aheeee05mnBNdZ8zIyMDw4cMBAE5OThgyZAiMjIxw8uRJAPUjwg4YMEClMUwYY4xpmQ56CWlMS+4ufO/ePbKzsyNLS0v68ccf5eafP39e5t/jx48nAPTee+9RTU0NEf3VzdXR0ZEA0Pbt27WS9XFHjx4lANS5c2eqra0Vp8fExBAAsre3p9TUVJmMwtgejx490lvGtLQ0+sc//kGnTp2SWXbHjh3iGCYuLi5UVVWltVzcXZgxxri7sEH66KOPUFhYiLVr1yq8ivD888/L/Pv06dMAgE8//RTGxsYy81555RUAwO+//66ltLKEKxHTpk2DkdFfh0xwcLCYUXiiruCll15CUVERtm/frreM3bp1w6+//ipeNREIV5msrKxw584dnD17VicZGWOMNY8rJjpQUFCA/fv3w9bWFrNmzVJqHXNz82aX0eSQ9I2RSqWIjIwEIPtsl4qKCsTExAAAJk6cKLeeUNE6fPiw3jI2x9HREQBw//59reRijDGmOq6Y6EB8fDwqKyvxwgsvwNTUFAcPHsS///1vzJ8/HyEhIXj48KHcOr6+vgCA1atXo66uTmbe8ePHYWJigmnTpmk9+48//gipVIr+/fujT58+4vSUlBRUVlbCwcFB4cPqunbtCgC4cuWK3jI2Jy8vD8BfFRTGGGP6x41fdSA5ORkA0KFDBwwbNgznzp2Tmf/xxx9jx44dmDRpkjhtzZo1uHjxIkJCQvDLL7/A09NTfMpwTU0NfvrpJ/Tq1Uvr2YVbJNOnT5eZfufOHQBQWCkBAAsLC9jZ2aGgoAAlJSWwsbHRecbmFBcXw8HBAUOGDNFGLMYYY2rgKyY6UFBQAKC+W+2VK1cQFhaG3NxcZGZmYtGiRZBKpfD395e5utCxY0ecOnUKvr6+yMjIwMGDB3H58mUAQK9evdC7d2+t537w4AFiYmJgbGyMKVOmyMwrLS0FUN9OozGtWrWSWVbXGRuTn58v/v+KFSuUum3GGGNMN7hiogO1tbUA6q90bNiwATNnzkS7du3QtWtXBAcHY+LEiaiqqpLpLnzlyhU899xzSE1NRWRkJAoKCvDVV18BAM6fP4/BgwcjPT1dq7kjIiJQW1sLX19fudsdRAQAkEgkja4vLKNNTWVURCqVYtOmTQAALy8vzJkzR8sJGWOMqYJv5Tzm6NGjuH79ukbLzMzMBFB/EjczM8PevXtl5ru6uorb3rt3L2pqavDRRx/h4cOHWLlyJUpKSvDLL7+Iuby9vXH27FlMnz4d8+fP12jWhoSKkJubm1zmxMREAEBWVpbMvPj4ePG/hYWFAIBffvkFlpaWOs/4uJqaGgQHB4ufh4uLC1atWqWVXAKhYa06x5SNjY1cbyfGGHvaSUgXP2s1pLi4GLa2tigqKkLr1q01WnZ0dDT8/Pw0WiZjT8rW1hbdunXDyy+/LHNFTVBZWYmQkBDs27cPqampqKurg5OTE1544QWsWLECTk5OekjNGGOyVDl/c8XkT0lJSfDy8sLKlSvFKxiakpWVhY8//hhmZmYICwuTu/1x48YNrFy5Eq1atUJoaCjOnj2Lb775Bl27dpX5RR8fH4+tW7fin//8J8LCwmBqaoodO3ZoNKvg+++/x+HDh/HCCy8ovN1RVVWFf/3rX6iursbmzZthb28vk3Hs2LGIjIxEz5498emnn+olY0Pbt29HbGwsHB0d4e3tjSNHjuDll1+Gj4+P2tv//fff8fPPPwMAjI2N0apVK9TU1KC8vBxEhJUrV+LkyZOIiYmBt7c3Ll68iH79+qFz587IysoS2wwBwCeffILu3btjwYIFKCkpgZOTE+7du4ehQ4fi7t27uHv3LmpqamS2n5OTg1deeQVXr16Fo6MjBg8eDABIS0vD1atXERcXx6PaMsYMgkrnb22O9KZpLXnkV1dXVwJA586dk5u3cuVKAkAvv/wyERHFxsYSAGrVqhUVFxeLywmjqn700UcEgDw8PLSSta6ujrp06UIAKDo6utHlXn31VQJAGzdulMvo5+dHAGjt2rV6zUhE9PHHH4ujvN6+fVvc3ytXrlR7+4mJiSSRSAgALV26VG6+MCqvsK0XX3yRANCOHTsoJyeH7O3tyc/PT3wPf/zxh8zIwI8fj4+PDFxbW0uDBg0iAPTJJ59QdXW1zPz09HTKzc1V+/0xxpgmqXL+5orJn7RdMfnPf/5DAGjAgAEyJ4yLFy+SnZ0dAaADBw4QEVF5eTm1b9+eANDbb79NFRUVRPTXSb9z587iCUkbTp06RQCoU6dOMkPQPy46OrrRIelNTU2pdevWlJ+fr9eMwcHB4jD+QkZNVEzc3NwIAE2cOLHJ5RRVTKZOnUoWFhaUlpYmVkwmTpxIACgkJISImj8ew8LCCABNmDBB7ffAGGO6whUTNWi7YlJbW0uTJk0iANS2bVsaPXo0+fj4kJmZGQGg2bNnyyx/6NAhMjExIQDk5OREY8eOpb59+4rPePH09KSSkhKtZJ09ezYBoCVLljS77AcffEAAyMrKisaOHUv9+vUjACSRSOjgwYNayadsxj/++EO8qjF48GAKCAiggIAA6t+/PwGg/v37U0BAAMXFxam07YyMDPFzKCgoaHLZxysmixYtkqkUCRUTc3NzsrW1pfLyciJq/nh8/vnnCQCdPXtWpeyMMaYPBlcxiYmJoRkzZpCHhwdZWVlRp06daMyYMXTx4kWVymnJFROi+srJmjVryMHBQTxhGhsbU5cuXeROsMKJr6nXiy++qPGMFRUV4hUcFxcXsrCwoDZt2pCnp6fCSkBWVhb5+PiQqampTLb3339f49lOnDih1H754osvVFp+x44dKuUICgoiANS+fXuqrKykRYsW0XPPPUfPPPMMTZgwga5evSou+3jFpFWrVtSmTRuaNWsWrVy5UnwgIwB67bXXqKamhg4cOEBTpkwRK14PHjyQ2X5xcTEZGRmRjY0N1dbW0tmzZ+mjjz6id999l1atWiWzfU3sRyKiyMhIevvtt+mZZ54he3t7MjExIQcHB3r11VfpyJEjKu0/ZaiTUZGXX35ZXDY7O1vvGZcvX97kssuWLdN7RkFFRQWtW7eOvLy8yMbGhlq1akXu7u40c+ZMunv3rl4z6vr7Ud39ePfuXZozZw65urqSmZkZtWrVivr3709r164Vr4TrO2NWVhb961//os6dO5OZmRl17NiRAgICKDMzU6P5VDl/66S78NatW5Gfn48PPvgAvXv3Rm5uLoKDgzFo0CBERUXhpZde0kUMvTt//jz+7//+D4WFhejduzeeeeYZlJSU4Nq1a9iwYYNMr4uAgAC59TMyMhAXFwcbGxuUlJRg2LBhGs+YlJQk/r+1tTUGDRrUaMb//e9/eOmll5CbmwtXV1f0798fFy9exJ07dxAWFobZs2ejb9++Gsvm6OiocL8A9WPFCCPACvvFx8cHGzduxMKFCxWus3LlSrUa5goPT7S1tYW9vb3MAHL/+9//8MMPP2DhwoXYsGGD3LpSqRRSqRTfffed3DxFIwOvW7cO33zzjczIwNeuXUNdXZ3YWHbLli0y5QQFBWHx4sUKe/EAqu9HoH5wwB9//BF9+vTBwIEDYWNjg1u3buHYsWM4duwYgoKCsGLFCoVlqkOdjI/buXMnYmJiIJFItDKmzpNkHDp0KLp37y433cvLyyAyPt6wWnhwaFpaGrZv344ZM2ZorMeXOhkbWx6oH54gLy9Po9+P6mRMTU3F0KFDkZeXBzc3N7z++uuQSqU4c+YMli5dip9//hmxsbHiQ0X1kfHx7/DRo0cjLS0Nu3btwk8//YS4uDiNfocrTaNVokY8fPhQblpJSQl16NBBbPCpjJZ8xeTevXsyjRsf93jjRkUatt8AILaZ0EfGuro6evbZZwkAzZw5U2x8KWQEQH369Gmy/YcmHT16lID69jcNtxkZGUkLFy6kiIgIunnzJo0YMULMp24bk4EDB8r8AnnnnXcoJSWF4uLiyMvLS5x+4MABmYbNEomExo4dS6WlpZSVlUV79+4lY2NjcXkTExNq1aoVhYWF0fHjxwkATZs2jQCQmZkZXb58mYiIjh07Ji4PgBYvXkyZmZmUm5tL3377LVlZWREA2rp1q8b2Y1JSEuXl5cktn5CQQNbW1iSRSCg5OVmt/ampjA0pamCs6Ssm6mQUrpioepVOGxrLaEgNq5X5rBsqKCggc3NzrXw/NqaxjOPHjycA9N5771FNTY04/eHDh9SjRw8CIDaS10fGxr7DiYg2bNig8e9wg7uV05gXX3yR3N3dlV6+JVdMpk+fTsBfjRvV0fCkP2jQIA2mq6dKxri4OAJAbdq0UdhzSGgcGhkZqfGcikydOpWA+h5LTdFExcTb21ssY9q0aXLznZycCAB17dpVrJh06tSJ7O3t5b7QhWWFV2hoKBHJHo9Cw1hhW0eOHBGXnzJlitz2v/76awJAzs7OKr83ZfdjQ7NmzSIAtGXLFpW3pw5lMipqYKzLikljGQ2pYtJYRkNqWK3q8bht2zatfT82prGM9vb2BEDuViwR0caNGwkAzZ07V28ZG/sOFwwYMECj3+EGdytHkaKiIiQlJTV5G6eyshKVlZXiv4uLi7WeSxsjv0qlUuzbtw9WVlZo1apVsyOUNkYYVRUAPDw81C5HEVUz/vrrrwAAJycncSyPhhmFh/Zt2LABJSUlGsupSEVFBX744QcAgJ2dXZPZFT3JWVUNH0j4zTffyM1/9913sXz5cvFBh0D9CLBhYWFo166dzLImJn/9CUokErlLsdevX8fw4cNx8OBBREdHIykpCdnZ2eL8YcOGydx+A4DnnnsOEokEd+/eRWRkJDp37qzU+yovL8ehQ4cAAJ6ennLlKpKfny8+Cyo7O1updZ6EMhnPnj2LiIgIzJ07F0VFRaioqABQ/5gHYSRefWUUPrtbt27JTM/PzxfHAtKFpjIKtyBHjx5tsBkbExISAgAYMWKE1o9FoOmMRkb1T3y5cuWKzH7Lz8/H3bt3AdSPB6Wvv5mffvoJAODu7i4+IFZgY2ODESNG4Pfff0dkZCTGjBmj1YxyNFIVUsO0adPIxMSkyQawjTUU08YVk99++02phkP8enpe6jY0FHoEGRkZKZx/+PBhcRvCFROJRELDhw+nESNGyLyEy85CeUIPoUOHDul9//CLX/z6+76EHoReXl5qn1cb0uoVk5MnT+LFF19Uatk//vgDzz33nNz0oKAg7N27FyEhIU029vr444+xaNEi8d/FxcVK//pTlVCj1cbIr4cPH8b333+PESNG4P79+3K1U3Nzc7z77rsYOHBgk+WEhITg/PnzciPC6iPjiRMnEBYWhm7duuGLL74QlxNGfu3duzeuXbsGa2tr/Oc//9Fo1sf93//9H65evYpp06bh1VdfbXLZVatWISUlBUB94151/OMf/8C3336Luro61NXVib+MBMKVkoYj/BIRTp8+3WS5dXV1yM3NBVB/BQuoPx47duyIWbNmoXXr1jhx4gQA4KWXXkJRURF27twp1zitrq4OQ4YMQXV1Nfbt26f083bmz5+PhIQELFq0CNOmTVO4zOnTpxETE4Oamhpcv34dt2/fhomJCT755BOd/KpqLuOGDRuwd+9ehIaGwtvbG0ePHkVQUBAAICoqSu6Kla4zhoaGYtu2bQrX6927N0JDQ5t8Yre2M169ehXvvPMOPDw80K9fP+zfv19mPYlEgunTp+ODDz7QW8bGLFu2DMePH0fPnj01ejW5KU1lzM3Nxfz585Geng4nJyf07NkTd+7cwc2bN2FnZ4fPP/9cKx0YlM34448/YvXq1XjmmWewa9cucfr169fh7++P27dvA6i/uqdzqtZ67t+/T99++61SL0WDa33++ecEgFavXq3qpltsG5Nly5YRINu4MTc3lzIzM8VaacPGjY0R2iMsWLBA7xlTUlIIqP+V37DRo9DGxNraWlxHm7Kzs8nY2JiMjY2VakOgiTYmRCQ2PP3222/l5gldVNu0adPsYG4uLi4yv1KEkYGF/RgeHi43MjAR0TvvvEMAaM2aNXJlCveOLS0tqbKyUqn3o+x+FLI0fM2YMUMnjZyby5iYmEjGxsYUEBAgTmvYLksXbUyay7hnzx5av349JScni42g582bJ2YcN26cXjM21rB669atBEC8wqdOw2pNZWyMNr8fFVEmY15eHvn6+sr9zQwbNowyMjL0mrGx73DhXGhra6vR73CDbfwqVEo+//xztdZvqRWTxYsXiwek0LixoccbNzaVD9BOwzl1Mk6YMIEAUPfu3Sk2NpZKSkpo9erVBEDsbWJhYaHxrA0JI7uOHDlSqeU1VTERGpO1atWKUlJSxOl79uwRx6hZtGiReCJ/44035MYtKCkpEStwNjY2BPw1MrBwQl25cqXcyMBERMnJyWRsbExt27alpKQkcfrDhw/J09OTAND8+fOVfj+q7sfy8nJas2YNAfW3qUaPHq10JUhdTWWsqakhT09PuQbGuq6YqLofieQr8/Hx8VpM2HTGxhpWCxkDAgIIUK9htaYyKqLt70dFmst4+fJlcnZ2pi5dulBkZCQVFBTQV199JZ7sO3ToQGlpaXrNqOg7PCIiQivf4QZZMVmxYgUBoE8//VTtMlpqxeSLL74Qa6aKBtURunI5OTk1WsbChQvFP7zw8HCDyFhQUEA+Pj4K70++9dZbBIA6duyo8awNCaO47t27V6nlNVUxqa6uJmdnZ/HE3L59e7ECAYB69uxJRLJXGFq3bk0DBw6kSZMmka+vr9hqHwAdOnRIZmRg4X0Jv1wfHxmYiMQvOXNzc/Lx8aHRo0dTmzZtCKgfGVhRS/vGqLofieSfi7R+/Xql11VHUxnXr19PACgsLExhRl1VTJ5kP44aNYoA0GeffabFhE1nFB71AMg+g0rIGBYWJla8b968qZeMimj7+1GRpjJWVVWRu7s7GRkZyfxwEPaj8MNGUa86XWUkavo7XBjVW1Pf4QbXKyc4OBifffYZRo4ciddeew0JCQky8wcNGqSLGHrTtWtXAPUD4Jibmzc6PycnR+H6tbW12Ldvn7biyWRQJaOdnR1iY2MRFRWF2NhYFBUVobCwEPv37xfbAvXp00drma9fv44//vgD1tbWGDdunNa2o4iJiQkyMzPh7++Pn3/+WdwvNjY2mDp1qly7mmHDhsHIyAhpaWm4dOkSjI2N4erqiurqahQXF2PQoEEYM2YMfHx88N133+HatWsAAFdXVwQFBWH69OlyGd5//314eHhg/fr1uHDhAioqKtCtWzf8+9//xuLFi5Vuq/Ck+3Ho0KH47bffEBkZiQ8//FDl9ZXRXMbDhw9DIpFg165d2L17tzi9YS+sN954A2ZmZli1apVWnrr8pPvR0dERAGR6XWlacxmFv3MA6NKli9x8c3NzODg4ICcnBzk5OQoHidN2xsfp4vvxcc1lTEhIQGpqKrp3747+/fvLzR84cCAiIiJw8uRJvWUEFH+Hm5qaYsuWLejWrRsA7X6HN0YnFZPDhw8DqO9iKnQzbYi0MCqjIREOzIKCAhCRTKNIoL77GNB4Y8yYmBhkZ2ejXbt2yMvLM6iMEokEI0eOxMiRIwEAe/fuxf79+/G///0PQP3oq9qyZ88eAPUnHF00GHyciYmJ0l+Ifn5+So0yO2/ePMybNw979+6Fv78/li9f3mTDPz8/P/j5+SmdWZEn3Y9C92mh4a42KJORmmlgLIyoq62/oSfdj0KDZ3UbZSujuYwuLi6wt7dHfn4+Hj16JDe/rq4OhYWFWs2p6n7Uxffj45rLKHQHbt26tcL1LS0tAUDhPtYUZffj49/hSUlJ2LJlC86fPw9Au9/hjTFqfpEnd/LkSVD9bSOFr6dd37594erqivLycvHDbkioNXt6eipcXxhKeOjQoQab8XFxcXEwMzNrcujoJ0FEiIiIAACFVxOYcjSxH4VeTsIvLE1TJmNj3zHC3w5QfyWCiLRydU0T+/HixYsAND8svUDZjK+//joAiD3AGrp58yaqqqpgaWmJnj176i1jQ7r4fmxImYzC1a8bN24oHMcpIyMDgOwVKl1nbM6RI0e0+h3eFJ1UTFh9VzYAWLBggUytPjExEcHBwQCAOXPmyK1XVlYmDo6j7T88VTOmpqbKDXpXVFQEACgtLUVgYCCcnZ21kjUuLg63b99Gp06d/jbPWtIGZfZjTk4OgoODxV/KjxOuGs2YMUNvGfVNmYx5eXnYvXu3zKCRAMQB4NLT0+Ho6Ijx48frLSMALFmyBMbGxli3bh3++OMPmXnCr/CZM2fCzMxMbxkFuvx+FCiTcfDgwWjfvj2kUinee+89uc9c6M48ceJEvWUEFH+HC1dxioqKtPod3hS9jfz6dzN79mzExMTgwIED8PDwwJAhQ1BaWoqzZ8+iqqoKs2fPVniQ/vTTTygtLcWAAQPQqVMng8oYERGBtWvXwtvbG05OTnj06JF4ZWXYsGHi+BHaIPxKmjZtmtw4Ig1lZ2fLfNELbTeA+jEljhw5gtdee02rWQ2ZMvuxrKwMixcvRlBQELy9veHs7AypVCr+wi8uLsbChQsxYcIEvWXUN2UylpaWIiAgAO+//z569eoFFxcXFBYWireYrKyscPDgQa3dllR2P/bu3RsbN27EggULMHjwYAwePFj8wXHr1i14enpizZo1es0o0OX3o0CZjBYWFggNDcWkSZOwe/duxMTEwNvbW7xSkpWVBU9PT3z00Ud6ywgo/g4/deoUgPorZ3r7XtRIc1sdaam9cgS1tbW0ZcsW6t+/P1lZWVGrVq1oyJAhtHv37kbXefXVVwkAbd68WWZsC0PIeOrUKRo7diw5OzuTmZkZtW3blvr27av1jBUVFWLvk+bGfsnMzFTY4rzhq+G4F5rW3DgmjdHFZ63sfpRKpbR27VoaNWoUdenShSwtLcnc3JwcHBwIAAUGBuo9Y2N00StH2YzFxcW0bNkyGjFiBDk5OZG5uTlZWVmJvbu++uorreRTJWNDUVFR5OvrS7a2tuKDQydMmEBSqdRgMur6+1HVjElJSTR16lRydnYmU1NTcRyYN998k8rKyvSeUdF3uPAAR02fCw2yu7AmtPSKyZPSxR/ek2oJGdWtLOhyWy1hP3JGzeCMmsEZNUNb50JVzt+GeV2UMcYYY39LXDFhjDHGmMHgigljjDHGDAZXTBhjjDFmMLhiwhhjjDGDwRUTxhhjjBkMrpgwxhhjzGBwxYQxxhhjBoOHpH/M0aNHcf36dY2WWVlZiatXr+KPP/5ARkYGcnNzQUTo0KEDBgwYgFdffRUWFhYK142Li0N0dDTu3bsnTvvhhx80mk/djPn5+UhKSkJ6ejoyMjLEh6QBQHx8vN4z1tXVITU1FX/88QdSUlKQm5uLsrIymJubAwCOHTumdpawsDDcunWr0flvv/02evToIQ7RHxER0eTwzqNHj0ZaWpr4QDyBv78//P39AdQ/w6Rfv35y61ZXV+O3335DQkKC+Bm0adMGHh4emDBhAtq2bSuzvDqfdWJiIn7//XfcunULhYWFKC8vh6mpqfjeNO1J/mYaEp7/5O/vj8LCQtjZ2ek14w8//CA+2+Vx/v7+2LdvH9566y29ZhQ0PK6Ep+XOnz8f3377rcLjSpcZhb8JRYS/md69eyMwMFBvGYH6585ERkbiypUrKCgoEKd//fXXqK6uFv+G9JkxPz8fkZGRuHz5MoqKisQnH9+/f1/ph7ZqmoSo5Tzet7i4GLa2tigqKmr0cdLqio6OfuLHxzPGGGNPg1atWuHcuXPo27evRspT5fzNV0z+ZG9vDwBYuXIlXF1dNVp2XFwc0tLS8Oqrr4qPwwaAgoICrF+/Hrdv38bgwYMxf/58cV5ycjLWrFkDa2trfP7553B0dER8fDy2bt0KIyMjWFhYYOPGjWjVqpXeMiYmJuL69etwc3ODm5sbvvvuO/EX/9y5czX+tE9VMz58+BA7d+7E2LFjZR7Rfvr0aWzbtg0AYGtri4ULF8LY2FilLMIVk0WLFqFNmzaNLnf58mUcPHgQ3t7euHjxIt59910MHz5c4bKrVq1CSkoKNm7ciNTUVGzdurXJ/VhXV4cVK1YgLS0NY8eOxRtvvCHzPnJycmBpaQkbGxuZ9dT5rG/dugV7e3uZsoTj0dTUFDU1Nfjyyy/h5OTU9I5TkjoZGyouLsbSpUvRpk0bZGVlAaj/larJKybqZBSumDQ8DoT9aAh/M4Di4yohIUHM2KNHD4XHlS4zKiLsR2NjY9TW1mL9+vUy5ek646ZNm3Dx4kX4+vpi+vTpMDIyEjMKJ+jZs2djxIgReslIRPjkk09w584djBgxAjNnzoSxsTEyMzMRFBQEqVSKKVOm4MqVK7p/eKZGB8PXsqfxWTlnz54lAGRubk6VlZXi9FGjRhEA2rhxozhNeM6Cn58fAaD169frNePjRowYIT4wTdfPglA2I9Ff+9HKyooA0MmTJ1XenvBeMzMzldrW+PHjCQDt2LFDqTKVeaZGWFiY+GA1TVFnP/r4+BAA2rJli8ZyPGnGqVOnkoWFBQUHB2v9IX6qZFy+fLnccaCv56c0llHRcWVoGRVp+MDGQYMG6Shh4xnt7e0JAD148EAuo7+/PwGguXPn6i1jXFwcAaA2bdpQcXGxuKxwLuzTpw8BoMjISI1k4GfltCBCm4HKykrk5+cDACoqKhATEwMAmDhxotw6zz//PADg8OHDestoaNTJKPyquH//vtZyaVNoaCgA4MMPP9RYmersR+HXlJmZmcZyNKW5jFFRUYiIiMAnn3yCDh066CTT41ry34w2jit1qbsfp0+frq1IchrLKLRla4qm2uk0R1HGxMREAIC3t7fCq19C+5LIyEidZGyIb+XoWUZGBgDA1NRUPEhTUlJQWVkJBwcHODs7y63TtWtXAMCVK1f0ltHQqJMxLy8PAJ7ocm9YWBjy8/NhZGQEd3d3jBs3Di4uLo0uHxsbi0uXLqGiogLOzs549dVX4eXlJVfmuXPnANSfZIcNGyZXZklJCS5evAgbGxsMHDgQ586dw88//4xHjx7BxcUFY8eOxTPPPKPy+1FnPyYkJMDU1BQvv/yyyttTR1MZy8rKMGfOHPTs2RNLly7FgQMHdJLpcc3tx4bHgb4qLooyNnZcnT9/HgDE22L6zNgY4e/Z2NgYkydP1no2QWMZfX19sWvXLqxevRqbNm2SuR1y/PhxmJiYYNq0aXrLKJVKAaDRW9FCO5DLly/rIOFjNHKNRkeexls5s2bNIgD0+uuvi9MiIyMJAPXv319m2YaXU+3s7AiAzCU4XWZURJ+3cpTNSCR7ydfBwYEqKipU3l7D99rwZWpqSitWrJDblnArR9FrwoQJVFJSonSZREQJCQniMTJ//ny5dSQSCS1ZskTl99Xcfvz5558pICCApk6dSu7u7mK+pm5RaVpTGRctWkQA6MSJE0Qk+1nr8lZOYxmFWzmKXgMGDKCSkhK9ZtTWcaXJjI158803CQB5enrqINlfGst4//598XaIm5sbTZw4kfr160cAqF27dnTkyBG9Zty2bRsBoIEDB8osK5wLJ0yYQADI3t5eIxlUOX9zxeRP+qiY/PLLLySRSMjU1JQuXbokTt+7dy8BoKFDh8os37Bi4uTkRADo/v37esmoiL4qJqpkJCLavHmzmHPr1q1qbTMoKIj27NlD6enpVFZWRjdu3KDVq1eTpaUlAaBNmzYR0V+f2Zw5c2j9+vWUnJxMpaWllJWVRXv37hU/x3HjxsmUuX37dgJAkyZNkiuTiOjYsWMEgExMTAgALV68mDIzMyk3N5e+/fZbsf2MKu9Pmf24cuVKuZPVjBkzqLa2Vq39qKqmMiYmJpKxsTEFBASI0/RRMWkq4549e+SOg3nz5okZx40bp9eMjR1XW7duFdsoPMnfjSYyNkb4W1qwYIHWswmay5iXl0e+vr5yfzPDhg2jjIwMvWZMSUkhAGRkZETJycnidOFcaGtrSwDIzMxMIzm4YqIGXVdMrl27Rm3atJE74RD99WX6wgsvKJweHh5OnTp10nrFpKmMiuijYqJqxtLSUnJ1dSUA5OXlpfE8UVFR4h91WVlZs40G79+/LzaSi4+PF6c3XO/xMomIjhw5Iu7rKVOmyJX79ddfEwBydnZWKreq+7G8vJzWrFkj/ooePXp0s40Tn1RTGWtqasjT05Ps7e0pNzdXnK7riomq+5Hor4zW1tZyx4GuMzZ2XAkZAwICVDqutJFREeH7G2i6gbkmNZfx8uXL5OzsTF26dKHIyEgqKCigr776SjzZd+jQgdLS0vSaUbgq0r17d4qNjaWSkhKKiIggAGRsbEwAyMLCQiNZuGKiBl1WTLKyssjFxYUA0KJFi+TmG8KtnOYyKqLriomqGauqqugf//iHmHH79u1ayeXt7U0AKDY2VqneDIsXLyYA9Nlnn4nTHl+vYZlERKdOnRLfR3R0tFyZUqmUJBIJAaCbN282mVedz7phRl30Emsu4/r16wkAhYWFKcyoi4rJk+5HoSdew+NA1xkbO66EjGFhYUofV9rKqMjChQsN6runqqqK3N3dycjIiJKSksTpwn6cOnVqoz8qdJWRiKigoEDsVff464MPPiAA1LFjR43k4V45BiwvLw++vr64c+cOZsyYgfXr18stIzR0FEZbfFxFRYU4iqWmxhJQNaO+qZqxrq4O/v7+iIqKEvevtnqR9OjRAwCQnZ2tseUfX0ZoAA0AXbp0kVveysoKDg4OAOrHM2mMJj5rYewNbbXeVybj4cOHIZFIsGvXLvj4+IivVatWicu88cYb8PHxwZkzZ/SSsTlCI2xljxtVKZOxuePK3NxcqeNKmxkfV1tbi3379mk8S2OUyZiQkIDU1FS4ubmhf//+cvMHDhwIAOLI0PrICAB2dnaIjY3FsWPHsGTJErz77rviOCfdunUDAPTp00crGZvCvXJ0qKSkBK+++ipSUlLwxhtv4Ntvv4VEIpFbzsPDA+bm5sjNzcXdu3fleuYIQ6E/++yzesuoT+pknDdvHvbv3w93d3d88MEHzQ7W9CSEoaetra1RUlKi0vLKLuPi4gJ7e3vk5+fj0aNHcsvX1dWhsLCwyXI19VkLlePc3FyV122OKhmJCKdPn260LKGnk9B7Qx8ZmyL0kmjqOFCXshk1cVxpO+PjYmJikJ2djXbt2mn8s1U3o/CjsrERToVh3xXtY11lFEgkEowcORIjR44EACQlJWHLli1iTywfHx+NZ2wOXzHRkcrKSowdOxYXL17EP/7xD/z3v/9tdLRRS0tLvPTSSwCAgwcPys2/cOECgPrnq+gro76okzEwMBChoaFwcXFBdHQ0bG1ttZYvNzcXcXFxAKDUcyaISHx2yuPdhpsr8/XXXwcAnDhxQm6ds2fPoqqqCpaWljKj3go0+VkLo/0Kv7A0RZWMJ0+eBNXfmpZ5hYeHi8sIzxEaN26cXjI25+LFiwAaPw7UpWrGpo6rmzdvNnlc6SpjQ8JnrOlRcx+nSkbh6teNGzcU/jgRuu82vEKl64zNOXLkCMzMzBAQEKDRjErRyM0jHWmpbUxqamrE7qLDhg0jqVTa7DrR0dEE1HfVSk1NJaK/7k+amppS69atKT8/X68ZH6ftNibqZBRG/nR0dJTbj+pmPHfuHMXGxlJdXZ3M9MzMTBo6dCgBoDFjxshs61//+pdct+SSkhL617/+RQCobdu2dPToUbFMYb2NGzfKlSlITk4mY2Njatu2rcx97IcPH5KnpycBoPnz58vlV3U/Pnz4kNavX08FBQUy04WMrVu3JgB08ODBpnecCjRxPDbMCC20MVE1Y25uLu3atUvuOPjuu+/EjI6Ojmq/V01kJFJ8XAn7sWvXro0eV7rMKJBKpWKj4bVr1xrMd095eTm1b9+eANDbb78tfubCfuzcuTMBoE8++URvGYmIbty4IXc+Fc49AOjzzz/XWD5Vzt98K0cHvv76a/FXcbt27TBv3jyFy61fvx7t2rUDALzyyiv44IMPsHnzZjz33HPw9fUVb+HU1NRg+/btGh3sTJ2M2dnZGD9+vDjv2rVr4v8vX74cISEheO2115p8qq42M166dAmLFy8GALi6umL16tUA/vq1EhoaiujoaMyaNQsvvPCC0jlSUlIwY8YMdOzYEe7u7nB0dMTdu3eRmJiIiooK9OnTB99++63MOqGhofjvf/+LXr16wcXFBYWFhUhKSkJ+fj7s7OwwZ84cjBo1SiyzsrISALB06VJUV1crLLN3797YuHEjFixYgMGDB2Pw4MGwtrZGfHw8CgoK4OnpiTVr1jzxfiwrK8PixYsRFBQEb29vODs7QyqVir/wi4uLsXDhQkyYMEHpfdgcdY5HXVM1Y2lpKQICAvD+++/LHAfCLSYrKyscPHgQVlZWessIKD6uioqKANTfRm7suNJlRsFPP/2E0tJSDBgwAJ06ddJYpifNaGFhgdDQUEyaNAm7d+9GTEwMvL29xe+erKwseHp64qOPPtJbRqD+yeBr166Ft7c3nJyc8OjRI5w6dQpA/ZUzTX13q0xj1SEdaKlXTJoaVKnhS9FzV3bs2EFeXl5kZWUljk0RFBRkEBkzMzObXb7hmBK6znjixAmllle1e+G1a9do7ty55OnpSQ4ODmRiYkK2trY0aNAgCg4OFrv0Ev31C2n06NE0YsQIcnJyInNzc7KysqI+ffrQhx9+SHfv3pUrU+iq1717d7kyHxcVFUW+vr5ka2tL5ubm1Lt3b/riiy8a/cWk6n6USqW0du1aGjVqFHXp0oUsLS3J3NycHBwcCAAFBgaqtP+U8SR/Mw1p84qJqhmLi4tp2bJlcseBs7MzAaCvvvpKo/nUydhQw+PK1NSUgPpBtzR5RedJM7766qsEgDZv3qzV5/momzEpKYmmTp1Kzs7OZGpqKo4D8+abbzb5N62rjKdOnaKxY8eSs7MzmZmZUdu2bWnQoEFaORdyd2E16GvkV1Xo60FaquCMmtkW70fN4IyawRk1oyVk1Na5kLsLM8YYY6xF4ooJY4wxxgwGV0wYY4wxZjC4YsIYY4wxg8EVE8YYY4wZDK6YMMYYY8xgcMWEMcYYYwaDKyaMMcYYMxhcMWGMMcaYweCKCWOMMcYMBldMGGOMMWYwuGLCGGOMMYPBFRPGGGOMGQwTfQcwNEePHsX169f1HUOh+Ph4mf8aIs6omW3xftQMzqgZnFEzWkLGzMxMfUeAhIhI3yGUVVxcDFtbWxQVFaF169YaLTs6Ohp+fn4aLZMxxhhriXbv3o3p06drrDxVzt98xeRP9vb2AICVK1fC1dVV4+Vv3LgRiYmJMtNMTU2xY8eORtcJDw/Hr7/+CjMzM/Tt2xc5OTnIysqCRCLBggULMGDAAL1m/PXXXxEeHq5w3ty5czF06FCN5lM144MHD7B48WIAQJs2beDm5gaJRILr169DKpXC1NQUH330ETw8PFTOsWrVKqSkpGDAgAGwsLCQmz9q1Ch07twZ8fHx2Lp1K9zc3JCZmQknJyfY29vD0tISubm5SE9PBwCMGzcOKSkpYpnFxcW4ceMGPDw80L59e5kyG3P69Gls27YNEokERISvv/4adnZ2CpdV9bPevHkzLl68KJM/IyMDOTk5Yv6JEyc2u99Uoc7fTEPC/hA0tT/UpWrGH374AYcOHYK7uzs6dOgAAMjJyRE/az8/PwwcOFCvGQGgqKgIX375JbKysmBra4u2bdsiMzMTbdu2xaNHjxAUFKTW342mMoaGhspNE/ajhYUFKioqMH78eEyYMEFvGbOzs7FixQqUlJSgffv26NKlCx48eICsrCwAgLu7OwIDA2FiornTsKoZs7KysGbNGhQXF8PBwQFdu3bFnTt38PDhQ8ybNw/PPfcc+vbtq7F8SqMWpKioiABQUVGRxstOTEwkAJSYmKjxsomIvvzyS/rss8/o8OHD9ODBAwJA5ubmjS4fExNDAMje3p5SU1OJiCg8PJwAkImJCdna2tKjR4/0mjEyMpIWLlxIERERdPPmTRoxYgQBIAAUHh6u0WzqZExLS6N//OMfdOrUKZnpO3bsEHO6uLhQVVWVyjmE95qZmdnkcsJntmrVKsrLy5Obn5CQQNbW1iSRSGjAgAFimcJ6yu7HnJwcsre3Jz8/P+rSpQsBoOzs7EaXV/WzTkpKkssvZLSwsCCJRELJyclKZVWWqhkbEvZH3759xc+6qf2hq4zLly8nALRjxw5xmqqftbYz1tbW0qBBgwgAffLJJ1RdXS2TMT09nXJzc/WaUREho6mpKQEQvzf1lXH8+PEEgN577z2qqamRyejo6EgAaPv27XrLWFdXR88++ywBoJkzZ1J1dTUR/XUuBEB9+vSh2tpajWRT5fzNFZM/abti8rjmDupRo0YRANq4caM4TTio/fz8CACtX79erxkfp4uKyeOe5AvMysqKANDJkydV3q6qFZOm9sesWbMIAPXo0UPtisnUqVPJwsKC0tLSlKqYPO5J9qOPjw8BoC1btqi0vqpUySjsj+DgYK1WTB5niBWTxzWXMSwsjADQhAkTxGmGllERISMAGjRokJaS/aW5jPb29gSAHjx4IJfR39+fANDcuXP1ljEuLo4AUJs2bai4uFicLpwL+/TpQwAoMjJSI1lUOX9zrxwDVFFRgZiYGABQeHn8+eefBwAcPnxYp7meNo6OjgCA+/fv6zWHsbExAEAikai1flRUFCIiIvDJJ5+gW7dumoymFCOj+q8RMzMznW9bkYb7Q7hdwpQn3Cb58MMP9ZxEfZpsG6Euc3PzZpdp27atDpIoJtzy8fb2ho2Njdx8T09PAEBkZKROcwHcxsQgpaSkoLKyEg4ODnB2dpab37VrVwDAlStXdJzs6ZKXlwfgrwqKOsLCwpCfnw8jIyO4u7tj3LhxcHFxUXr9K1eu4Pvvv4epqSnatGkjlnnu3DkA9SfZYcOGNVpmWVkZ5syZg549e2Lp0qVqv48nkZCQAFNTU7z88st62X5Dj++PAwcO6DuSQrGxsbh06RIqKiqQn5+v7ziikpISXLx4ETY2Nhg4cCDOnTuHn3/+GefPnwcAsX2EIRL+no2NjTF58mQ9pwF8fX2xa9curF69Gps2bRIr8ABw/PhxmJiYYNq0aXrLJ5VKAUD83nmc0ED18uXLOssk4IqJAbpz5w4AKKyUAICFhQXs7OxQUFCAkpIShbVd1jyhwdeQIUPULmPVqlUy/168eDGCgoIQFBSkcPnDhw/jhx9+QHV1Ne7cuYOzZ8/C1NQU27Ztw86dO+XK3LNnD/bt29domUFBQbh16xZOnDihkysWDfNfvHgRAFBdXY1t27ZppdG4qnS9P9S1Z88euWmbN2/G2LFjYW1trYdE9a5du4a6ujp0794dCxYswJYtW2TmBwYG4tGjR1i7dq2eEjbu7NmzAIB+/fqJnRn0ac2aNbh48SJCQkLwyy+/wNPTEzdv3gQA1NTU4KeffkKvXr30ls/BwQEAcPv2bYXzHzx4AAC4deuWriKJ+FaOASotLQUAWFlZNbpMq1atZJZlymv4C3XFihVKXXJ93PDhw7Fnzx6kp6ejrKwMN27cwOrVq2FiYoLPPvsMmzdvVrje5cuXsWvXLkRERODMmTMwMzPD5s2b8fbbb8uUuX37dgDApEmTGi0zKSkJmzdvRkBAAHx8fFR+D+pomD81NRUA4O/vj7ffflsn22+KPvaHqrp3747169cjOTkZpaWlyMrKwrx58wAAv//+u95vQRQUFAAArl69ii1btmDx4sXIzMzE1q1bAdTfrlu3bh3+85//6DOmQsLYIC+88IKek9Tr2LEjTp06BV9fX2RkZODgwYPi1YdevXqhd+/ees03fPhwAPXH3bVr1+TmHz9+HED9VTSd00irFh35uzR+FRpIvfDCCwqnh4eHU6dOnQgA3b9/Xy8ZFWkJjV9LS0vJ1dWVAJCXl5fG80RFRREAsrW1pbKyskYbDZaXl9PVq1dp3rx5JJFIaPTo0VRZWSnOb7je42USEdXU1JCnpyfZ29vL9ZDQRePX8vJyWrNmDQFQmF8bmsrY2P5o2CDSEBq/KiJktLa2JgAUHx+vpXT1msp45MgRcX9NmTJFLmNAQAABIGdnZ71lVKRhT5KGDYu1qbmMly9fJmdnZ+rSpQtFRkZSQUEBffXVVwSAzMzMqEOHDpSWlqbXjBMmTCAA1L17d4qNjaWSkhKKiIggAGRsbCz2utMEbvzawgm3ZoR7gIqUlZUBgF4v+7Y01dXVmDBhgjiy4fz58zW+DT8/P3h7e6OoqAgJCQmNLmdhYYFnnnkGW7Zswfvvv48jR44gJCRE6TI3bdqEpKQkrF27Fu3atdP4+2iOhYWFOKaKr69vk/l1Qd/7QxOEX7BRUVF6y9DwtvDMmTPl5g8fPhwSiQR3795FWlqaLqM1qeF4SqampnpMUq+6uhqTJk3C/fv3cejQIYwZMwZ2dnZiY9eJEyfi4cOHjd7y1ZXvvvsOPj4+SEtLw0svvQQbGxtMnToVAPDee+8BaLwNijZxxcQACQ0d7969q3B+RUUFCgsLYWdnx+1LlFRXVwd/f39ERUWJ+1dbbRB69OgBoH6AJWX4+/sDaLr1++NlHj58GBKJBLt27YKPj4/MS7g3/MYbb8DHxwdnzpxR+70oQxhITx+t9wWN7Y+G7XV0tT/UJTTCVva40QahYT0AdOnSRW6+ubm52DZBGFxP32pra7Fv3z59x5CRkJCA1NRUuLm5oX///nLzhUH0Tp48qeNksuzs7BAbG4tjx45hyZIlePfdd8UfbEIPvz59+ug8Fzd+NUAeHh4wNzdHbm4u7t69K9cIVmiM9Oyzz+ohXcs0b9487N+/H+7u7vjggw+0crVEINynt7a2Vur+rPALPzc3V6kyBUSE06dPN7qO0LNH6K2gLULluKn8umAo+0NdwhVSfV4FdXFxgb29PfLz8/Ho0SO5+XV1dSgsLARgOFdrY2JikJ2djXbt2hnMZyv8qGxs6HVLS0sAULiPdU0ikWDkyJEYOXIkgPq2Wlu2bBF7YumjvRZfMTFAlpaWeOmllwAABw8elJt/4cIFAMDo0aN1mqulCgwMRGhoKFxcXBAdHQ1bW1utbSs3NxdxcXEA/hoHoDmnTp0CgEbHIFFU5smTJ0H1AyTKvYRfutnZ2SAijBs37kneUrNSUlKazK8Lje2Phpf4dbU/1CX0cvLy8tJrjtdffx0AcOLECbl5N2/eRFVVFSwtLdGzZ09dR1NI+Iy18QgMdQlXv27cuKHwx0lGRgYA2StUhubIkSMwMzNDQECAzrfNFRMDtWjRIgD1XUeFLmaCEydOoHXr1vjnP/+pj2gtyoYNG7BmzRo4Ojri+PHjKo0x0piEhAScOHEC9NjzL2/duoXx48dDKpVizJgxMle6jh49Kv7SbCg6Olocf2TAgAFyZebm5jZapq7k5OQgODhYYX4A4mX0GTNm6DBVy5OXl4fdu3ejsrJSZnpFRQUAID09HY6Ojhg/frw+4omWLFkCY2NjrFu3Dn/88YfMPKGb88yZMw2iO3ZZWRkOHToEwLAqJoMHD0b79u0hlUrx3nvvyX3me/fuBaB4AE1dSk1NRXFxscw04SpOUVERAgMD9fKdw71y/qTtXjlHjhyhgQMHii/82Zuh4bQjR47IrPPBBx+IQ6ePHTuW+vXrJ6538OBBvWe8f/++zDwbGxuxZXy3bt1o4MCBtGLFCr1l/OOPP0gikRAAGjx4MAUEBFBAQAANGzaMANCwYcMoICCA4uLiVMogPGunY8eONGLECJo8eTINHTqULCwsxKGcHz58SESyvUIsLS1p2LBhNGXKFBozZgz17NlTnCc8ZkAoU3hWifDcj4ZlNkeZXjmq7MfMzEyF+YWeYQBo4cKFKu1DZajzN/M4bffKUWc/tm7dmgYOHEiTJk0iX19fsTeOlZUVnTlzRq8ZBULvEXNzc/Lx8aH+/fuL+9HT01NmCHN9ZSQi2rt3LwGgAQMGaH3YfFUzHjp0iExMTAgAOTk50dixY2We3eTp6UklJSV6zbh8+XLx7/qtt94iPz8/Mjc3JwD0+uuva+w5OUT8rBy1aLti0vDBcY29FHVz27FjB3l5eZGVlZX4bJegoCCDyCh80Tb1CggI0FvGEydONLtsY/u9KdeuXaO5c+eSp6cnOTg4iA9VHDRoEAUHB4tdeon+OjG+9dZbNGrUKOrSpQtZWlqSubk5de3ald566y06ceKEXJlCV73u3bvLldkcZSomquxHqVRKa9eulcvv4OBAACgwMFCl/acsdf9mGtJ2xUSVjMXFxbRs2TIaMWIEOTk5kbm5OVlZWZGzszMBoK+++krj+VTN2FBUVBT5+vqSra2tWEGeMGECSaVSg8n46quvEgDavHmz1ism6mRMSkqiqVOnkrOzM5mamoon/TfffFOlv2ltZTx16hSNHTuWnJ2dyczMjNq2bSv+KNL0uZArJmrQ9Tgm6tD1g7TUwRk1sy3ej5rBGTWDM2pGS8iorXMhj2PCGGOMsRZJJxWTS5cu4bXXXoOLiwssLS3Rtm1bDB48WKbFPGOMMcaYTsYxKSwsROfOnTFlyhQ4OTlBKpVi7969mD59Om7duoVPP/1UFzEYY4wxZuB0UjERRmFsaPTo0cjMzMS2bdu4YsIYY4wxAHoex6Rdu3YwMeHBZxljjDFWT6e1grq6OtTV1aGgoAAHDhxAVFQUvv76a11GYIwxxpgB02nFZN68eQgNDQVQ/wC1r776Cv/6178aXb6yslJmxLzHR6hjjDHG2NNF5Vs5J0+ehEQiUep16dIlmXUDAwPx+++/45dffsHMmTPx3nvvYf369Y1ua82aNbC1tRVfwmPWGWOMMfZ0UvmKiYeHB7799lulln38uSQuLi7itFGjRgEAPv74YwQEBIiP0m7o448/Fp8ZA9RfMeHKCWOMMfb0Urli0rFjR8yaNUsjG3/++efxn//8BxkZGQorJubm5jA3N9fIthhjjDFm+PTaK+fEiRMwMjKCm5ubPmMwxhhjzEDopPHru+++i9atW+P5559Hhw4dkJeXhwMHDuD777/HkiVLFF4tYYwxxtjfj04qJoMHD8aOHTuwa9cuFBYWwtraGv369cOePXvg7++viwiMMcYYawF0UjGZMWMGZsyYoYtNPbGjR4/i+vXr+o6hUHx8vMx/DRFn1My2eD9qBmfUDM6oGS0hY2Zmpr4jQEJEpO8QyiouLoatrS2KiorQunVrjZYdHR0NPz8/jZbJGGOMtUS//fYbfH19NVaeKudvHg/+T/b29gCAlStXwtXVVePlV1VVYc2aNbh58ybs7Ozg4eGBvLw8pKeno3Xr1li+fDk6dOjQZBnx8fHYunUr5s6di6FDh2o848aNG5GYmCgzzdTUFDt27FC6DG1mPHHiBMLCwgAAzs7O6NSpE8rLy3Hz5k1UVFSgU6dO+OSTT2Bra6v1jKtWrUJKSgoGDBgACwsLufmjRo1C586dxW0NGTIEZ8+elVvu888/R/fu3eXKLC4uxo0bN+Dh4YH27dvLlAkADx48wOLFiwEAbdq0gZubGyQSCdLT01FQUAALCwssWbIEHh4eCvPPmTMHlZWVcHFxQZs2bQAAd+/exYMHD2BiYoKFCxeiX79+Te4DbR+PDYWGhuLMmTMgInTs2BHr1q1Taj1tZ1T2ONBnRgC4efMm1q1bh7KyMjg5OcHZ2RkVFRW4d+8eHj16hN27d+st4/3793H48GGF8+rq6sSrC4GBgejdu7deMgLA+fPn8fXXX4OI4Orqig4dOqCgoACpqakgIowePRpvvfVWk2VoO2N8fDxCQ0NRV1cHV1dX2NvbIzMzE/n5+XBxcUFQUBAsLS2bLCMzMxNBQUHiOVEvqAUpKioiAFRUVKTxshMTEwkAJSYmarxsIqKgoCACQIMHD6aSkhJxenBwMAGg4cOHN1tGeHg4AaDw8HCtZPzyyy/ps88+o8OHD9ODBw8IAJmbm6tUhjYz7tq1i+bOnUupqaky0+/fv0/9+/cnADRlyhSdZBwxYgQBoMzMTKW2tXDhQlq4cCFFRETQzZs3xfXPnTunsMzmMqalpdE//vEPOnXqlMz0iooKeueddwgAubi4UFVVlcL1z5w5Q+Xl5XLTv/nmGwJAnTp1opqaGqXem7aOR8Hx48cJAL377rsEgDw8PJReV9sZlT0OmqLtjPfu3SM7OzuytLSkH3/8UW7++fPnmy1DV5/1444ePUoAqHPnzlRbW9vkstrMWF1dTQ4ODgSA9u3bJzPv7NmzZGFhQRKJhNLS0vSWMSsriywsLAgAbd++XZxeUVFBkyZNIgA0Z86cZsvR1rlQlfO3XrsL/11UV1cjJCQEALBlyxZYW1uL8xYtWoRnn30Wp0+flrtaoWvLli3DF198gdGjRzd79UYf3n77bXzzzTfo0aOHzPSOHTtiy5YtAIAff/wRVVVV+ojXJC8vL2zYsAFTpkwRr5A8iW7duuHXX3/F8OHDZaabm5tj69atsLW1xZ07dxRepQGAoUOHKvyFP3fuXHTv3h3379/HjRs3njjnkyovL8ecOXPQu3dv8QoRU81HH32EwsJCrF27FuPHj5eb//zzz+shlXLCw8MBANOmTYORkf5OVykpKcjNzUXPnj0xefJkmXmDBw/GP/7xDxCRXr/Dd+7ciYqKCvj6+sq06TQ3N8eWLVtgZWWFsLAw5Ofn6y2jsrhiogNnzpxBYWEhunXrhv79+8vNnzhxIgA0ejmTNU+47VBZWdki/vC0ycLCAu7u7gDqL5OrytjYGED986z07YsvvkB6ejq2bt0KU1NTfcdpcQoKCrB//37Y2tpqbGBMXZFKpYiMjAQAvffeVHagz7Zt22o5SeOESpGPj4/cPAcHB/Tu3RvV1dU4evSojpOpjtuY6MDly5cBAJ6engrnC9OF5ZjqMjIyANS3idHll4PwC8TIyAju7u4YN26c3KMY1Cnz3LlzAICoqCgMGzZMpTJra2tx+/ZtAICjo6NK2969ezdu3LgBd3d3vQ98eOXKFQQHB2PGjBkYPnw4bt26pdc8TdHGcaAJ8fHxqKysxCuvvAJTU1McPHgQZ86cQXV1NXr27Ik333zTIK+OAvVXP6VSKfr3748+ffroNYubmxvc3NyQkpKC/fv348033xTnnTt3DlFRUXB1dZW7gqlLUqkUAMQ2Y48TvhcvX76M6dOn6yyXOrhiogN37twBUN9gUxFhurAcU93mzZsBACNHjtTpYwxWrVol8+/FixcjKCgIQUFBGilzz5492Ldvn0pl7tu3Dzk5OXBwcMCQIUOaXHbdunVITk6GVCrF9evXkZycjE6dOiEiIkKvl87r6uowe/Zs2NnZYe3atXrLoSxtHAeakJycDADo0KEDhg0bJlZ4BR9//DF27NiBSZMm6SNek4TbOIZwEjU2NsbOnTvx+uuvY/LkyVi3bh26deuG7OxsnDlzBs8//zz27Nmj16uMwkClwo+SxwnTDbmCL+BbOTpQWloKALCyslI4v1WrVjLLMdUcPXoUYWFhMDU1xcqVK3WyzeHDh2PPnj1IT09HWVkZbty4gdWrV8PExASfffaZWFFSt8zt27cDACZNmqRSmVlZWfj3v/8NAFixYkWzlbSoqCjs2rULBw8eRHJyMjp37oyIiAh4eXmpnF+TQkJCcOHCBaxbt06/vQOaoY3jQJMKCgoA1F8Ju3LlCsLCwpCbm4vMzEwsWrQIUqkU/v7+uHLlil5zPu7BgweIiYmBsbExpkyZou84AIBhw4bh1KlTcHV1xcWLF/H999/j9OnTaNWqFV555RV06tRJr/lGjBgBAPjvf/8r184uISFBbDNWUlKi82yq4oqJDtCfQ8VIJJIm5zPVXb9+Hf7+/iAirFu3rtkurpqyYsUK+Pv7w83NDZaWlnB3d0dgYCB++uknAMDy5ctRXl6udpnCL6+xY8cqXaZUKsX48eORl5eHcePGYc6cOc1u8/jx4yAiFBQU4PTp0/Dw8ICPjw/+f3t3HxRV9YcB/NmtBORFEyilpLUEVECZUCCTgRoxiAohnURJhEELInWc1BE11rf8I8CpKYVoxkgE38pmEsQikJgERkHGFyAaFZHBGUEFFjJeZH9/+NstXECQZe+BfT4zjMO9y91Hzl72u+ece+6uXbsGlV2fbty4gS1btsDHxwcrVqyQLMdADMfrQJ/u378PAOjq6kJSUhIiIyNhY2MDhUKBxMRELFq0CB0dHcL1SmVkZOD+/fvw8/Mb9HDkcMnMzISnpyfs7e1RUlKC1tZWVFdXIzQ0FDt37sT8+fPR2dkpWb5ly5bB3t4etbW1CAoKwuXLl6FSqZCTk6P9gANA0p7QgRI/4ShgaWkJ4N8xwIf9/fffANDjah16tLq6Ovj7++Pu3btYt24d1qxZI3UkLFiwALNnz0ZzczOKi4sNdszOzk68++67KC0txbx585CRkTGo5xg/fjy8vb2RnZ0Nd3d3bN26FWfPntVH/EGLiYlBR0cH9u3bJ8nz68NwvA4eh+Zvj1wuR3h4uM7+yMhIAMDp06cNGeuRRBrGAR6sAxMeHg5bW1tkZWXBw8MD5ubmcHBwQEpKCt5++20UFRUNas0nfTM3N8eJEydgb2+PnJwcuLi4wMrKCgEBAZDL5Vi3bh2AvuegiISFiQFoJsHV1dX1ul+zXYTJciNFY2Mj/Pz8UFtbi4iICCQkJEgdSUtzOfPNmzcNcszu7m6EhYXh1KlTmDVrFn7++edHLqLUl6eeegrvvfce1Gq1ZFeJnThxAmPHjkV0dDR8fX21X5rFq2pra7XbRB7+HI7XwWApFAoADyZB9zasp9l/69YtA6bqX2VlJc6fPw8LCwssXLhQ6jgAHszb6uzshL+/v3bo/b80k2GlLvBcXV1RVVWFtLQ0fPzxx4iOjkZycjIuXbqkfYzUE4kHgpNfDUAzvFBWVtbrfs32mTNnGizTSKZSqRAQEICqqiqEhIQgNTW1z2EyKWjG9S0sLPQ2nvvfYz4sJiYGR44cgaOjI3755ReMHz9+SM9lY2MDAGhoaBjScYaiqakJBQUFve67d++edl9XV5chYw1Kf21mKJrlCe7evQu1Wq1znmgurRept/bAgQMAgJCQkD7n5Rma5sNjX0upa7bfuXPHYJn6YmZmhuXLl2P58uU9tufm5gLo/XJi0bDHxABeffVVjBs3DleuXMH58+d19h87dgwA8NZbbxk62ojT3t6OoKAgnDt3Dm+88QYyMzO1626IoKGhAYWFhQD6vjxcn8eMi4tDSkoK7O3t8euvv2qXrx8KzZv+Sy+9NORjPQ61Wt3rl+bmYk5OTtptQy3ChstwvA4eh6urK6ZMmYJ79+6hpKREZ7/mE76UGf9LrVZrhyFFGcYB/r3s/ty5c73u1wx7anqgRFNQUICysjI4OzsP++0j9IGFiQGMGTMGsbGxAIDY2Ngec02SkpJw4cIFzJs3D3PmzJEq4ohw//59hIaGIj8/H97e3vjxxx8luTyvuLgY+fn5OpOWa2pqEBwcjLa2Nrzzzjt9Xh4+mGM2NDT0ecykpCTs3r0bEydORG5u7oCHAgsLC3H48GGd3gbNCsUHDhyAmZmZzgqX1NNwvA6Gw8aNGwEAq1evRmNjo3Z7aWkpEhMTAWBAE6UNobCwENevX4ednR1ef/11qeNoBQUFAQB+//13nblPxcXF2LNnD4B/F8uUSnl5uc55XVZWhqVLl0Imk2lXIBcdh3IMZMuWLcjNzcWZM2fg4OAAb29vXL9+HSUlJbC2tpZ00pRGVlaWzuW2HR0d8PLy0n6/detWBAYGGjoaAOCrr77C8ePHATwYboiJien1cQkJCdrhiOFQVVWFiIgITJo0CY6Ojpg4cSLq6upQWlqKf/75B87OzkhNTe3xM3fv3u3xe6yoqAAAREVFwcLCAg0NDbh69ar2mO3t7QCADRs2oLOzU+eY5eXl2iXap0yZ0udVNFFRUZg3b16PbVeuXEFERARsbGzg7u4Oa2trNDY24uLFi7h58yZMTU3x3XffPfLmc8bucV4HUli5ciV+++03HD16FE5OTpg7dy5aW1tx5swZdHR0YOXKlZK/oWqIsgT9w15++WV88sknSEhIQExMDL7++mvMmDED9fX1KCoqQnd3N1atWoX58+dLmnPt2rWoqKiAm5sbbGxsUFNTg5KSEsjlcqSkpOC1116TNN9AsTAxEFNTU+Tn52P37t3IyMjATz/9hKeffhrh4eHYsWOHEG8CDQ0NOt29arW6xzYp5x1oxuwBaAuU3iiVymEtTDw9PREdHY2SkhJUVFTgjz/+gLm5Odzc3LB48WJER0frTD7t6urqtStdswAW8GCIwtzcHBUVFdqx6hdeeAHR0dE6x2xqatJ+Ui8qKtJZOEvD19dXpzDx8fFBXFwcCgoKcOHCBTQ2NmLMmDFQKBRYtGgRVq9erZf7+Yx2j/M6kIJcLsehQ4fg6+uLb7/9Fnl5eZDJZJg9ezY+/PBDYYZM2tvbtcPaUi9B35vPP/8cc+fORXJyMkpLS/Hnn3/C0tISPj4+iIqKwtKlS6WOiLCwMKSnp6O8vBxNTU2wtbXFkiVLsH79eri5uUkdb8BYmBiQmZkZtm/fju3bt0sdpVcrVqwQet0IpVIJpVIpdQxMnz4de/fuHdTP2NraDmq9moMHDyIsLAxKpRLLli3T2e/r6/vY69/018MiMoVCIdSaP4/zOpCKXC5HTExMn72MIjAxMRFi8mh/goODe70RoiiioqJG3D2ReiNOXxkREREZPRYmREREJAwWJkRERCQMFiZEREQkDBYmREREJAwWJkRERCQMFiZEREQkDBYmREREJAwWJkRERCQMFiZEREQkDBYmREREJAwWJkRERCQM3sTvIZWVlVJH6NO1a9e0/5aVlUmcpnfMqJ/n4u9RP5hRP5hRP0ZCRhHeA2VqkW7X+QgtLS0YN24cmpubYWVlpddj//XXX3B0dNTrMYmIiEai6upqODg46O14g3n/Zo/J/zk4OKC6uhoqlUrqKP26ffs2rK2tpY7RL2bUz3Px96gfzKgfzKgfIyGjpaWlXouSwWJh8h9SNgQRERFx8isREREJhIUJERERCYOFCREREQmDhQkREREJg4UJERERCYOFCREREQmDhQkREREJg4UJERERCYOFCREREQmDhQkREREJg4UJERERCYOFCREREQmDhQkREREJY0TdXVitVgMAWlpaJE5CREREA6V539a8j/dnRBUmKpUKADB58mSJkxAREdFgqVQqjBs3rt/HyNQDKV8E0d3djfr6elhaWkImk0kdR0gtLS2YPHkybty4ASsrK6njGD22h1jYHuJhm4hluNpDrVZDpVLBzs4Ocnn/s0hGVI+JXC7H888/L3WMEcHKyoonuUDYHmJhe4iHbSKW4WiPR/WUaHDyKxEREQmDhQkREREJg4XJKGNiYoL4+HiYmJhIHYXA9hAN20M8bBOxiNAeI2ryKxEREY1u7DEhIiIiYbAwISIiImGwMCEiIiJhsDAZxcrLyxEYGAh7e3uYmZlhwoQJeOWVV5Ceni51NKOVl5eHyMhITJs2Debm5njuuecQFBSE0tJSqaMZJZVKhQ0bNmDBggWwtbWFTCaDUqmUOtao19rairVr18LOzg6mpqZwc3PDoUOHpI5ltEQ7D1iYjGJNTU2YPHkyPvvsM2RnZ+P777+HQqHA+++/j507d0odzyjt27cPNTU1WLNmDbKzs/HFF1/g1q1b8PLyQl5entTxjM7t27fxzTffoL29HQsXLpQ6jtEICQlBWloa4uPjcfLkScyZMwehoaHIyMiQOppREu084FU5RsjLywv19fWora2VOorRuXXrFp555pke21pbWzF16lS4uLggNzdXomTGSfPnTyaTobGxEba2toiPj2evyTDKzs5GYGAgMjIyEBoaqt2+YMECXL58GbW1tXjiiSckTGh8RDsP2GNihGxsbPDkkyPqbgSjxsNFCQBYWFhgxowZuHHjhgSJjJtMJuN9twzs+PHjsLCwwOLFi3tsj4iIQH19PUpKSiRKZrxEOw9YmBiB7u5udHV1oaGhAXv37sWpU6ewceNGqWPR/zU3N6OsrAzOzs5SRyEadpcuXcL06dN1PhzNnDlTu5+MGz82G4GYmBikpKQAAMaMGYMvv/wSH3zwgcSpSOOjjz5CW1sbNm/eLHUUomF3+/ZtvPjiizrbJ0yYoN1Pxo09JiPE6dOntd1tj/oqLy/v8bNxcXE4e/YssrKyEBkZidjYWCQkJEjzHxlFhtImGlu3bsXBgwexZ88euLu7G/Y/MMrooz3IMPobNhBpSIGkwR6TEcLJyQmpqakDeqy9vb3O95ptb775JgBg06ZNCA8Ph62trX6DGpGhtAkAbNu2DTt37sSuXbsQGxur73hGZ6jtQYZhbW3da6/InTt3APzbc0LGi4XJCDFp0iRERUXp5VgeHh5ITk7G1atXWZgMwVDaZNu2bVAqlVAqlYiLi9NzMuOkz3OEho+rqysyMzPR1dXVY57JxYsXAQAuLi5SRSNBcCjHCOXn50Mul/c6zkvDb8eOHVAqldiyZQvi4+OljkNkUMHBwWhtbcUPP/zQY3taWhrs7Ozg6ekpUTISBXtMRrFVq1bBysoKHh4eePbZZ9HY2IijR4/i8OHDWL9+PXtLJJCYmIhPP/0U/v7+CAwMRHFxcY/9Xl5eEiUzXidPnkRbWxtUKhUAoKKiAseOHQPwYOhz7NixUsYbdQICAuDn54fo6Gi0tLRg6tSpyMzMRE5ODtLT07mGiUREOg+4wNootn//fuzfvx+VlZVoamqChYUFZs2ahaioKISFhUkdzyj5+vqioKCgz/08HQ1PoVDg+vXrve67du0aFAqFYQMZgdbWVmzevBlHjhzBnTt3MG3aNGzatAlLliyROprREuk8YGFCREREwuAcEyIiIhIGCxMiIiISBgsTIiIiEgYLEyIiIhIGCxMiIiISBgsTIiIiEgYLEyIiIhIGCxMiIiISBgsTIiIiEgYLEyIiIhIGCxMiIiISBgsTIiIiEsb/AKfSGDgm3i95AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "n_arms = 2\n", - "n_theta_1d = 11\n", - "\n", - "null_hypos = [grid.HyperPlane(-np.identity(n_arms)[i], 2) for i in range(n_arms)]\n", - "theta1d = [np.linspace(-3.5, 1.0, 2 * n_theta_1d + 1)[1::2] for i in range(n_arms)]\n", - "theta = np.stack(np.meshgrid(*theta1d), axis=-1).reshape((-1, len(theta1d)))\n", - "radii = np.empty(theta.shape)\n", - "for i in range(theta.shape[1]):\n", - " radii[:, i] = 0.5 * (theta1d[i][1] - theta1d[i][0])\n", - "g = grid.prune(grid.build_grid(theta, radii, null_hypos))\n", - "grid.plot_grid2d(g)#, null_hypos)" + "n_arm_samples = 35\n", + "fi = fast_inla.FastINLA(n_arms=n_arms, critical_value=0.99)\n", + "rejection_table = binomial.build_rejection_table(\n", + " n_arms, n_arm_samples, fi.rejection_inference\n", + ")\n", + "accumulator = binomial.binomial_accumulator(\n", + " lambda data: binomial.lookup_rejection(rejection_table, data[..., 0])\n", + ")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGeCAYAAAB8Rr70AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrmklEQVR4nO3deVhV1f7H8fcBFCScgERxACecwHnAoZwycaqwzCzN+ZaN3srK/GVzDnXrUre615lyqlSyckgxNScUpwKnDIdURBRURAYF9u+PE9yLAoLA2Qyf1/Ocx87aa+/9XW3O4ctaa69tMQzDQERERKQcsTM7ABERERFbUwIkIiIi5Y4SIBERESl3lACJiIhIuaMESERERModJUAiIiJS7igBEhERkXJHCZCIiIiUOw5mB1BSZWRkEB0dTeXKlbFYLGaHIyIiIvlgGAZXrlzB09MTO7vc+3mUAOUiOjqaunXrmh2GiIiI3IZTp05Rp06dXLcrAcpF5cqVAev/wCpVqpgcjYiIiNzEMOCrr2DSJEhJAQ8PEj79lLoPP5z1ezw3SoBykTnsVaVKFSVAIiIiJc2VK/DUU7BokfV9377w5Zfg5ARwy+krmgQtIiIipcuvv0L79tbkx94epk2D1auhRo18H0I9QCIiIlI6GAb85z8wcSKkpkKdOrBkCXTrVuBDKQESERGRki8hAcaPh2++sb4fMACCg8HN7bYOpyEwERERKdn27IG2ba3Jj4MDfPABfP/9bSc/oB4gERERKakMA/71L3jpJbh2Dby8YOlS8Pcv9KGVAImIiEjJc+kSjB0LK1ZY399/P8ybB66uRXJ4DYGJiIhIybJrF7RpY01+KlSAf/4TQkKKLPkBJUAiIiJSUhgGfPyx9a6uEyegQQPYvh2efx6K+LFUNkuArly5wssvv8y9997LnXfeicVi4c0338z3/rGxsYwaNQp3d3ecnZ3p3LkzGzZsyLFuaGgonTt3xtnZGXd3d0aNGkVsbGwRtURERESKXHy8dZjrhRfg+nV46CHYu9e63k8xsFkCFBcXx6xZs0hNTeWBBx4o0L6pqan07t2bDRs2EBQUxMqVK/Hw8CAgIIDNmzdnq7t582b69euHh4cHK1euJCgoiNDQUHr37k1qamoRtkhERESKxPbt0Lo1/PADODrC559b7/iqWrXYTmmzSdBeXl5cvHgRi8XChQsXmDNnTr73nTt3LpGRkWzfvp3OnTsD0LNnT1q1asXLL7/Mzp07s+pOmjQJHx8fli1bhoODtXn169ena9euzJs3jwkTJhRtw0REROT2ZGTAhx/Ca69Bejo0bmxNfFq3LvZT26wHyGKx3PK5HLkJCQmhSZMmWckPgIODA8OHD2fXrl2cOXMGgDNnzhAeHs6IESOykh+ALl264OPjQ0hISOEaISIiIkXj/HkYOBBeecWa/AwbZl3vxwbJD5SS2+AjIyO56667bipv2bIlAAcOHKB27dpERkZmK7+x7rZt23I9R2pqarYhsoSEhMKGnaujR49y5cqVYju+iOQtLi6Oy5cvU7duXbNDESmXKu/bR+OpU6lw/rz14aWffALjxhX5ROe8lIoEKC4uDtccbn3LLIuLi8v2b251M7fnZNq0abz11ltFEW6ejh49io+PT7GfR0REpKSxAyYDbwH2wLWGDakYEgJ+fjaPpVQkQJD3Y+1v3JZb3byOMXnyZF544YWs9wkJCcXy12Fmz8/ChQtp1qxZkR9fRG5twIABxMTE8PXXX9O8eXOzwxEpF+wvXMDy+OM0PXUKgGCg1YIFtDYh+YFSkgC5ubnl2HsTHx8P/LfHx+2vZ4LkVjennqFMjo6OODo6FkW4+dKsWTPatm1rs/OJyH9lftYbNWqEr6+vydGIlH3X1q4l8f77cb12javArlGjGLVgAXucnU2LqVQshOjn50dERMRN5ZllmV9gmf/mVldfdCIiIjaUns65J5/EoV8/XK9dI6pSJSzh4VR99lmzIysdCVBgYCCHDx/Odrt7WloaCxcupFOnTnh6egJQu3ZtOnbsyMKFC0lPT8+qGxYWxpEjRxg8eLDNYxcRESmXzp7lzyZN8PjPf7AD9rVrR8MLF3AupoUNC8qmCdCaNWtYtmwZP/zwAwAHDx5k2bJlLFu2jKSkJADGjh2Lg4MDJ0+ezNpvzJgxtGjRgiFDhrB48WJCQ0N5+OGHOXLkCDNmzMh2jhkzZnD48GGGDBlCaGgoixcv5uGHH8bX15fRo0fbrrEiIiLlVOoPP3DRy4t6UVFcAY69+y5tdu8GE4e8bmTTOUATJkzIlth8++23fPvttwAcP34cb29v0tPTSU9PxzCMrHqOjo5s2LCBl19+mWeffZakpCRat27NmjVr6N69e7Zz9OjRg9WrVzN16lQGDRqEs7MzAwcO5IMPPrDpHB8REZFyJy2NmCeeoMa8eVQHjt5xB3W2baNBq1ZmR3YTmyZAJ06cuGWdBQsWsGDBgpvKPTw8CA4Oztd5+vTpQ58+fQoYnYiIiNy206c5dddd1P3rd/2+Tp1os3EjVKpkbly5KBVzgERERKTkSlmxgkv161P3xAmuACdmzKBNWFiJTX6glNwGLyIiIiXQ9eucHTOGWgsX4gQcqVwZrx078G7RwuzIbkkJkIiIiBTcyZOc7taNOqdPA7C3WzfahoZan+ZeCmgITERERAokeelSEho2pM7p01yyWDj58ce03bKl1CQ/oB4gERERya9r14h+/HE8v/6aSsDhKlWov2sX1Zo0MTuyAlMCJCIiIrdkREVx5q67qHP2LAB7e/Sg7U8/QcWKJkd2ezQEJiIiInlK/uorrvr4UOfsWS5aLJz67DPabtxYapMfUA+QiIiI5CYlhehhw/D87jsADlarRqPwcKo3amRuXEVACZCIiIjcxPj9d87edReesbEA7L33Xtr++CNUqGByZEVDQ2AiIiKSTdLcuSQ1a4ZnbCxxFgunZs+2zvcpI8kPqAdIREREMiUnc2bIEGqvWgXAAVdXfPbswc3b29y4ioF6gERERATj0CGi69Wj9qpVZAD7BgygxblzVCiDyQ8oARIRESn3Er/4gmRfXzwvXOC8nR0xwcG0+fFHcCi7A0Vlt2UiIiKSt6tXORMYSO316wGIuPNOmu3Zg0PduiYHVvzUAyQiIlIOGZGRnK1Xj9rr15MO7H/gAfzOni0XyQ8oARIRESlfDIMrQUGktGxJrfh4ztnZEbt4Ma1DQsDe3uzobEZDYCIiIuVFYiJnBg2i9qZNAPzq4UGLvXtx8PQ0Ny4TqAdIRESkHMjYt4+YOnWovWkTacD+IUNoFR1dLpMfUAIkIiJSthkGl2fO5Hq7dtS8fJmz9vbELVtG62++AbvymwZoCExERKSsSkjg9IAB1Nm6FYB9np603LsXew8PkwMzX/lN/URERMqwjN27OVenDnW2buU6sP+xx2hz6pSSn78oARIRESlLDINL773H9Q4d8LhyhTP29lxauZLWCxeW6yGvG2kITEREpKy4dInTfftSZ9cuAPbWrUurvXuxd3c3ObCSR6mgiIhIGZC+Ywfn69Shzq5dXAN+HT2atidPKvnJhRIgERGR0swwuPjGG6R36cKdV6/yp4MDCatX02rePLBYzI6uxNIQmIiISGkVH8/pPn2os3cvAHu8vWmzZw92rq4mB1byqQdIRESkFEr75Rcu1K1Lnb17SQV+e/JJ2h07puQnn5QAiYiIlCYZGcS/+ip07457UhInKlTgamgoLb/4QkNeBaAhMBERkdLi/HlO33MPdX77DYDwRo1oFx6OXbVq5sZVCtmsBygxMZGJEyfi6emJk5MTrVu3ZunSpbfcr0ePHlgsllxfMTExt6wbEBBQnE0TEREpdmkbNxJXrx51fvuNZCDi2Wfp8PvvSn5uk816gAYPHkx4eDjTp0/Hx8eHxYsXM2zYMDIyMnj00Udz3e/zzz8nISEhW1lSUhIBAQG0a9eOmjVrZtvWoEEDFi1alK2smn44RESktMrIIG7SJKp99BFuQFTFilRftw6/7t3NjqxUs0kCtHr1atavX5+V9AD07NmTkydPMmnSJIYOHYq9vX2O+zZv3vymsuDgYK5fv864ceNu2lapUiX8/f2LtgEiIiJmOHeO0716UefgQQB2NW1Kh127sFSubHJgpZ9NhsBCQkJwcXFhyJAh2cpHjx5NdHQ0O3fuLNDx5s6di4uLC0OHDi3KMEVEREqM6z/9RLyXF3UOHuQqEPnSS3Q8dEjJTxGxSQIUGRlJs2bNcHDI3uHUsmXLrO35dfToUbZs2cIjjzyCi4vLTdujoqJwdXXFwcGBhg0bMmXKFJKTk2953NTUVBISErK9REQku48++ojBgwfTuHFjqlatiqOjI15eXowcOZIDBw6YHV7ZkJ7OhWeewT4gANfUVP5wdOT6tm34fvCB2ZGVKTYZAouLi6NBgwY3lbv+tVZBXFxcvo81d+5cAMaOHXvTtm7dujF06FCaNm1KcnIya9asYebMmWzdupWNGzdil8dD4KZNm8Zbb72V7zhERMqj999/n6tXr9KyZUv8/PwAOHDgAF9++SVLly7lu+++o1+/fiZHWYpFR3OmZ09q//47ADt9fekYFobljjtMDqzssdkkaEseaxPkte1/paWlERwcTIsWLXKc5/Puu+9me9+/f3+8vb156aWXWLlyJYGBgbkee/LkybzwwgtZ7xMSEqhbt26+4hIRKS9WrlxJu3btcHJyylb+xRdf8NRTTzFu3Dj+/PPPXOd1Su6u/fgjSQ8+SO1r10gE/nztNTq9957ZYZVZNhkCc3Nzy7GXJz4+HvhvT9CtrF69mpiYmBwnP+dm+PDhAISFheVZz9HRkSpVqmR7iYhIdl27dr0p+QGYMGECjRo1Ijo6miNHjpgQWSmWlsb5J57AYdAgql27xu9OTqTv3ElzJT/FyiYJkJ+fH4cOHSItLS1beUREBAC+vr75Os7cuXOpWLEiI0aMKHAMeQ1/iYhI4WX2+lSsWNHkSEqR06c506QJd86ahR0Q1qYNjePiqNqxo9mRlXk2yQoCAwNJTExk+fLl2cqDg4Px9PSkU6dOtzxGTEwMq1ev5oEHHsDNzS3f5w4ODgbQrfEiIsXoyy+/5MiRI/j4+OQ451NulhoSwuUGDah97BgJwKE33sB/714szs5mh1Yu2GQOUL9+/ejTpw8TJkwgISGBRo0asWTJEtauXcvChQuz/moYO3YswcHBREVF4eXlle0YwcHBpKWl5Tr8tWXLFt577z0CAwNp0KABKSkprFmzhlmzZtGrVy8GDRpU7O0UESkvPvjgAw4cOMDVq1c5dOgQBw4cwNPTk8WLF6vH/VauXyf2b3+jxoIFOAKHnJ2ps3Urzdq0MTuycsVmk6BXrFjBlClTmDp1KvHx8TRt2pQlS5bwyCOPZNVJT08nPT0dwzBu2n/evHl4e3tzzz335Hj8WrVqYW9vzzvvvMOFCxewWCw0btyYt99+mxdffFEfSBGRIvTTTz+xYcOGrPd169blq6++ol27diZGVQr8+Sdn7r6b2idPArCjQwf8f/kFSw7zqqR42SwBcnFxISgoiKCgoFzrLFiwgAULFuS47VaT6ho1asSqVasKE6KIiORTaGgoAJcuXSIiIoK3336bHj168O677zJlyhSToyuZUr/9ltRHH6V2WhqXgJj33qPza6+ZHVa5pW4RERG5bdWqVeOuu+5i9erVtGvXjtdff53w8HCzwypZrl3j3GOP4fjww1RJS+PgHXfg8NtvNFXyYyolQCIiUmgVKlRg6NChGIbBDz/8YHY4JYZx7BjRDRrgsXgxAGH+/jSLi8Plr0UkxTxKgEREpEi4u7sDcP78eZMjKRmSFy0i0ccHzzNnuGixcGTmTPx37MDi6Gh2aIIN5wCJiEjZtnnzZgAaNmxociQmS0khZsQIai5bBkBE5co0CAujSfPmJgcm/0s9QCIiki9btmzh66+/vmlR2+vXr/Ppp5/y1VdfUalSJYYOHWpShOYzjh7lbP36WcnPjrvuwvfCBe5Q8lPiqAdIRETyJSoqitGjR+Pu7k67du1wc3PjwoULREREcPbsWZycnFiwYEG5fY5i0rx5GOPHUysjgwsWCxf/+U86P/ec2WFJLpQAiYhIvnTv3p3XXnuNzZs389tvv3HhwgUqVqyIt7c3Dz30EM899xyNGjUyO0zbS04mZtgwaq5cCcCvVavSODwc98aNTQ5M8qIESERE8qV+/fq8pwd0ZmMcOkRMjx7Uio0lA9jZuzed164FB/16Lek0B0hEROQ2XP33v0n29aVWbCyxFgvHv/iCzqGhSn5KCV0lERGRgrh6lbNDhlBrzRoA9lWvTpPwcGqU97vfShklQCIiIvlkREZyrkcPasXFWYe8+val86pV8NdDvaX00BCYiIjIrRgGiZ9+SkrLltSMi+OcnR0n5861zvdR8lMqqQdIREQkL4mJnH3gAWpt2ADAXjc3mu3ejYe3t7lxSaGoB0hERCQXGfv3c65ePWpt2EA6EDZoEG1jY6mk5KfUUwIkIiJyI8Pgyj/+wbW2bfG4eJFoOztOffkl/t9/D3b61VkWaAhMRETkfyUkEH3ffXj+9Wyz8Bo18NuzB6c6dUwOTIqS0lgREZG/ZOzZQ2y9enhu3sx1IGzwYDqcPavkpwxSAiQiImIYJEybRlqHDtS4fJnTdnZEL12K//LlGvIqozQEJiIi5dulS0QPGIDn9u0A7KpZk1Z79+JYq5bJgUlxUlorUkgpKSm88cYb+Pj44OTkhKenJ2PGjOH06dNmhyYit5AeFsb5evXw3L6da0DY0KF0jI5W8lMOKAESKYSUlBR69+7N22+/TWJiIvfffz9169Zl/vz5tG3blqioKLNDFJGcGAaX33qL9M6dufPKFU7a2xO7fDn+S5eCxWJ2dGIDGgITKYT333+f7du307lzZ9atW4eLiwsAH330ES+++CJjxoxh8193kohICREfT3RAAJ7h4QCE1a5N2717qVijhsmBiS2pB0jkNl2/fp1PP/0UgM8++ywr+QF44YUXaNmyJb/88gt79uwxK0QRuUHali1cqFcPz/BwUoGdjz+O/6lTSn7KISVAIrdp69atXLp0iYYNG9KmTZubtj/00EMA/PDDD7YOTURulJHBpSlT4O67cb96leMODsT9+COdgoM15FVOaQhM5Db9+uuvALRt2zbH7ZnlmfVExCQXLhDdpw+e+/cDsKNePdrv3UsFNzdz4xJTqQdI5Db9+eefANTJZYG0zPLMeiJie2kbNxJfrx6e+/eTAuwcO5bOJ04o+RElQCK3KzExEQBnZ+cct99xxx3Z6omIDWVkcHHSJOjVC9fkZKIcHLi4di2d5szRkJcAGgITuW2GYQBgyeXLNHO7iNhYbCzRvXvjGRkJwLb69em0dy8O1aqZG5eUKOoBErlNlStXBuDq1as5bk9KSgLIdneYiBSv6+vWcdHLC8/ISJKA8KeeomtUlJIfuYnNEqDExEQmTpyIp6cnTk5OtG7dmqVLl95yvwULFmCxWHJ8xcTE3FQ/NDSUzp074+zsjLu7O6NGjSI2NrY4miTlXL169QByXfE5szyznogUo/R04p9/Hru+fameksLRChVICA2lw2efachLcmSzIbDBgwcTHh7O9OnT8fHxYfHixQwbNoyMjAweffTRW+4/f/58mjZtmq3M7YZJbJs3b6Zfv34MGDCAlStXEhsbyyuvvELv3r3ZvXs3jo6ORdomKd9atWoFwN69e3PcnlnesmVLm8UkUi6dPWsd8jp0CIAtjRvTefduHKpUMTkwKclskgCtXr2a9evXZyU9AD179uTkyZNMmjSJoUOHYm9vn+cxfH19ad++fZ51Jk2ahI+PD8uWLcPBwdq0+vXr07VrV+bNm8eECROKpkEiQNeuXalatSpRUVHs27fvprWAli1bBsDAgQPNCE+kXLi2ahVJDz6IZ2oqicDh55/nrn/+0+ywpBSwyRBYSEgILi4uDBkyJFv56NGjiY6OZufOnYU+x5kzZwgPD2fEiBFZyQ9Aly5d8PHxISQkpNDnEPlfFStW5JlnngHgmWeeyTYX6KOPPuK3336jW7dudOjQwawQRcqutDTiJkzAYeBAqqWmcrhiRZI2b6a9kh/JJ5skQJGRkTRr1ixbYgL/HRqI/Gumfl4GDhyIvb09rq6uDB48+KZ9Mt/nNNzQsmXLW54jNTWVhISEbC+RW/m///s/OnXqxPbt22ncuDFDhw7F39+fF198ETc3N+bPn292iCJlz5kznG3WDLd//xs7YHOzZjSOi6PG3XebHZmUIjZJgOLi4nB1db2pPLMsLi4u131r1qzJlClTmDNnDhs3buSdd94hPDwcf3//bCvsZh4jt/PkdQ6AadOmUbVq1axX3bp189U2Kd+cnJzYuHEjr7/+Os7Oznz33XecOHGCkSNHsm/fPho1amR2iCJlSmpICAn161Prjz9IAPZMmkT3gwex192WUkA2mwSd21opt9oWEBBAQEBA1vu7776bAQMG4Ofnx9SpU1m5cmW+jpXXOQAmT57MCy+8kPU+ISFBSZDkS6VKlXj77bd5++23zQ5FpOy6fp0LTzyB+/z5OAIHHR25c+NG2nXubHZkUkrZJAFyc3PLsQcmPj4eyLnXJi/e3t5069aNsLCwbOeAnHuT4uPjb3kOR0dH3SUmIlIS/fknZ3v0oNbx4wBs9vOjW1gY9rmswi6SHzYZAvPz8+PQoUOkpaVlK4+IiACsd3gVlGEY2Nn9N/zMY2Qe88bz3M45RETEXKnLlnGlYUNqHT/OJWDva6/R/bfflPxIodkkAQoMDCQxMZHly5dnKw8ODsbT05NOnToV6HjHjx9n27Zt+Pv7Z5XVrl2bjh07snDhQtLT07PKw8LCOHLkCIMHDy5cI0RExHauXeP8iBE4DhlC5bQ0IipVIm3nTtq+957ZkUkZYZMhsH79+tGnTx8mTJhAQkICjRo1YsmSJaxdu5aFCxdmrQE0duxYgoODiYqKwsvLC4B77rmHu+++m5YtW1KlShUiIiKYOXMmFouFd955J9t5ZsyYQZ8+fRgyZAhPPfUUsbGxvPrqq/j6+jJ69GhbNFVERArr+HHrkNeffwKwqXVr7t6xAzsnJ5MDk7LEZo/CWLFiBSNGjGDq1KkEBASwc+dOlixZwmOPPZZVJz09nfT09GwPkfTz8+Prr7/m8ccfp2/fvsycOZNevXqxe/fum4a1evTowerVqzl79iyDBg3i2WefpWfPnmzYsEHze0RESoHkRYtI9PGh1p9/Eg/sf+steuzbp+RHipzF0COrc5SQkEDVqlW5fPkyVYpwOfW9e/fSrl079uzZQ9u2bYvsuCKSf97e3pw8eVKfw5IkNZXYUaOo8dczIn91dqbu1q243rDCupQNxfm7ML+/v212G7yIiEhOjKNHOdezJzXPnAFgU4cO3L1lC3bquZdiZLMhMBERkRslLVhAUrNm1Dxzhjjgt2nT6LFrl5IfKXbqARIREdtLSeHcY4/hsWIFAPvuuAPvHTto6edncmBSXigBEhERmzIOHya2Rw88zp0jA9jcpQs9Nm3CUqGC2aFJOaIhMBERsZmkWbNIbtECj3PnOG+xcODDD+m5bZuSH7E5JUAiIlL8kpI4N2gQzk88gXNGBrsrV6bCgQP4vfii2ZEVi6SkJL777jvGjh2btY7dHXfcQatWrXj77bdJTEw0O8RyTwmQiIgUK+PAAWK9vPD48UcygI133027+HiqNWtmdmjFZvHixQQGBjJv3jwyMjIICAjgrrvu4vjx47zxxht06NCB2NhYs8Ms15QAiYhI8TAMEj/9lNSWLalx4QIxFgsHP/mEnps3Y3Eo21NQK1asyIQJE/j999+JjIzkm2++Ye3atRw5coQ2bdpw+PBhJk6caHaY5VrZ/gkUERFzJCZy7sEH8Vi3DoBdVavSZNcufH18TA7MNh5//HEef/zxm8pr1arFZ599RpcuXVixYgXXrl2jYsWKJkQo6gESEZEilbF/P7He3nisW0c68HPv3nSIi6NqOUl+bqVVq1YApKamEhcXZ3I05ZcSIBERKRqGwZWPP+Za27bUiIvjjMXCkX//m16hoVj+eui1wLFjxwCoUKECrq6uJkdTfmkITERECi8hgZgHHqDmxo0AhFWvTos9e6hdv77JgZU8QUFBAAQEBOhB3SZSD5CIiBRKxp49nPfyoubGjaQBPwcE0On8eSor+bnJ6tWrmTt3LhUqVOCdd94xO5xyTQmQiIjcHsPgyowZpHXowJ2XLnHKzo6jc+fSa80aDXnl4NChQwwfPhzDMPjggw+y5gKJOTQEJiIiBXf5MjEDB1Jz61YAtrm703L3bup6eZkcWMl0+vRpAgICuHjxIi+88ALPP/+82SGVe+oBEhGRAknfuZML9epRc+tWrgE/33cfXc6do7KSnxxduHCBPn368OeffzJ69Gg+/PBDs0MSlACJiEh+GQYJ77xDhr8/7gkJnLCz4/jChfRauRKLnX6d5OTKlSv069ePw4cPM3jwYGbPno3FYjE7LEFDYCIikh/x8cT070/NnTsB2FKjBm327MGlTh2TAyu5UlNTuf/++9m9ezd9+/ZlyZIl2GtuVImhlF1ERPKUtnUrcV5e1Ny5k1Tg5wcfpNvZs0p+8pCens6wYcPYuHEjd911FytWrNCKzyWMeoBERCRnGRlcnjoV5/feww04bmdH2uLF9Bo61OzISrx//etfhISEAODu7s5TTz2VY70PP/wQd3d3W4Ymf1ECJCIiN7twgZiAAGru2QPA5lq1aL9nD3fUqmVyYKXDxYsXs/47MxHKyZtvvqkEyCQaAhMRkWzSNm0i3suLmnv2kAJseuQRup85o+SnAN58800Mw7jly9vb2+xQyy0lQCIiYpWRwaWXX4aePXFNSuIPe3vOLF9OjyVLQHcuSRmjITAREYHYWGL69KHmb78BsKl2bTrt3UulGjVMDkykeKgHSESknLu+fj0Xvb2p+dtvJAGbH3+cHqdOKfmRMk0JkIhIeZWezsW//x27e++lenIyvzs4cO6HH+geHKwhLynzNAQmIlIexcQQc8891DxwAICf69Wj8549VNIdSVJOqAdIRKScubZ6NZe9val54ACJwOaxY+l18qSSHylXlACJiJQXaWnEP/00DgMGUDU1lUMVKnBhzRq6z5ljdmQiNmezBCgxMZGJEyfi6emJk5MTrVu3ZunSpbfcb8WKFQwbNoxGjRpRqVIlvL29eeyxxzh69OhNdXv06IHFYrnpFRAQUBxNEhEpPc6cIcbXF9fPP8cOCG3QgPrnzuGt70cpp2w2B2jw4MGEh4czffp0fHx8WLx4McOGDSMjI4NHH3001/1mzJhBzZo1mTJlCg0aNODUqVO8//77tG3blrCwMFq0aJGtfoMGDVi0aFG2smrVqhVHk0RESoVr339P8pAh1Lx2jSvAvief5J4vvjA7LBFT2SQBWr16NevXr89KegB69uzJyZMnmTRpEkOHDs31Cbk//PADNW64FbNXr154e3vz8ccfM+eGrttKlSrh7+9fPA0RESlNrl8n7umncZs9m4pAZMWKVFm9mrt79zY7MhHT2WQILCQkBBcXF4YMGZKtfPTo0URHR7Nz585c970x+QHw9PSkTp06nDp1qshjFREpE06dIqZZM9xmzwZgXePGNI6NpZ6SHxHARglQZGQkzZo1w8Ehe4dTy5Yts7YXxLFjxzh58uRNw18AUVFRuLq64uDgQMOGDZkyZQrJycm3PGZqaioJCQnZXiIipVHK8uUkNGxIzagoLgNbnnuOe3//HceqVc0OTaTEsMkQWFxcHA0aNLip3NXVNWt7fqWlpTF27FhcXFz4+9//nm1bt27dGDp0KE2bNiU5OZk1a9Ywc+ZMtm7dysaNG7Gzyz3fmzZtGm+99Va+4xARKXGuXSPub3/DLTgYJ+C3ihWpvm4dd3XvbnZkIiWOzSZBW/JYVTSvbf/LMAzGjh3Lli1bWL58OXXr1s22/d133832vn///nh7e/PSSy+xcuVKAgMDcz325MmTeeGFF7LeJyQk3HR8EZES6/hxzvXsicfJkwD81KwZPXftoqKLi8mBiZRMNhkCc3Nzy7GXJz4+HvhvT1BeDMNg3LhxLFy4kAULFnD//ffn69zDhw8HICwsLM96jo6OVKlSJdtLRKQ0SFmyhEQfHzxOnuQisG3SJPoePKjkRyQPNkmA/Pz8OHToEGlpadnKIyIiAPD19c1z/8zkZ/78+cyZMycrqSmIvIa/RERKpdRULjz6KE6PPopLWhr7HB1J2raNrjNnmh2ZSIlnk6wgMDCQxMREli9fnq08ODgYT09POnXqlOu+hmEwfvx45s+fz3/+8x9Gjx5doHMHBwcD6NZ4ESlTjKNHOdeoEe5LlgCw1s8P3/h4anfpYnJkIqWDTeYA9evXjz59+jBhwgQSEhJo1KgRS5YsYe3atSxcuDBrDaCxY8cSHBxMVFQUXl5eADz33HPMnTuXMWPG4Ofnl20oy9HRkTZt2gCwZcsW3nvvPQIDA2nQoAEpKSmsWbOGWbNm0atXLwYNGmSLpoqIFLvk4GAyxo7FIz2dC8Dvr71GwHvvmR2WSKlis0nQK1asYMqUKUydOpX4+HiaNm3KkiVLeOSRR7LqpKenk56ejmEYWWU//PADAPPmzWPevHnZjunl5cWJEycAqFWrFvb29rzzzjtcuHABi8VC48aNefvtt3nxxRc1BCYipV9KCueHD+fOv3rT9zg54fnLL3Tp0MHkwERKH5slQC4uLgQFBREUFJRrnQULFrBgwYJsZZkJzq00atSIVatWFSJCEZGSyzh8mPO9elHj7FkA1rRuTZ8dO3BwcjI5MpHSSd0iIiIlXNLs2aT4+lLj7FligbA336Tfvn1KfkQKwWY9QCIiUkBJScQOG0aN778HYKezM/V++QX/du1MDkyk9FMCJCJSAhkHDliHvGJjyQDWdujAvVu24ODoaHZoImWChsBEREqYq599RkrLltSIjSUGCH//ffrv2qXkR6QIqQdIRKSkSEwkdsgQaqxdC8COO+6gwfbtdPrrwdEiUnSUAImIlAAZv/5K3D33UOPCBdKBtZ07E7B5M/YVKpgdmkiZpCEwEREzGQaJH3/MtTZtuPPCBaItFvZ++CEDtm9X8iNSjNQDJCJiloQEYgMDqfHzzwBsq1yZxjt20KFFC5MDEyn7lACJiJggY88e4vv0ocbFi6QBP911FwEbNqjXR8RGNAQmImJLhsGVGTNI69AB94sXOWWxsD8oiAG//KLkR8SG1AMkImIrly8Te9991PjlFwB+qVqV5jt30r5JE5MDEyl/1AMkImID6Tt3EuflRY1ffuE6sKp3b7rFxeGu5EfEFEqARESKk2GQ8M47ZHTujNvly5ywWIj44gsGhIZiZ29vdnQi5ZaGwEREisvFi5wbNAiPbdsA2Fi9Oi3Dw/Fu2NDkwEREPUAiIsUgfft24r288Ni2jVRgVd++dD9/HjclPyIlghIgEZGilJHB5alTyejaFdcrVzhmZ8fBOXMYsHathrxEShANgYmIFJW4OM4FBOCxezcAG9zcaLt7Nw28vc2NS0Ruoh4gEZEikLZ5Mxe9vPDYvZsUYNWgQfSKjaW6kh+REkkJkIhIYWRkcOmVV6BHD6pfvcpROzuOBAcz4PvvsdjpK1akpNIQmIjI7YqN5Vzfvnjs3w/AujvvpMPu3VSvV8/cuETklvTniYjIbbgeGsql+vXx2L+fJGDV4MH0iYlR8iNSSigBEhEpiPR0Lr7wAnZ9+lAtKYkjdnZELV7MgOXLNeQlUopoCExEJL9iYjh37714REQAsLZmTfx376Za7domByYiBaU/V0RE8uHamjVcrl8fj4gIrgKrhw6lb3S0kh+RUkoJkIhIXtLSiH/2WRz696dqSgoH7e05vmwZ/ZcuxWKxmB2diNwmDYGJiOTmzBnO3XMPHocPA7C6dm267d5NlZo1TQ5MRApLPUAiIjm49v33JDRsiMfhw1wB1gwfTr9Tp5T8iJQR6gESEflf168T/8wzuM6aRUUg0sEBu2+/pd8DD5gdmYgUISVAIiKZTp3iXO/eeBw9CsCP9erRffduKt95p8mBiUhRs9kQWGJiIhMnTsTT0xMnJydat27N0qVL87VvbGwso0aNwt3dHWdnZzp37syGDRtyrBsaGkrnzp1xdnbG3d2dUaNGERsbW5RNEZEyKGX5cq40aoTH0aNcBtaMGcOAEyeU/IiUUTZLgAYPHkxwcDBvvPEGa9asoUOHDgwbNozFixfnuV9qaiq9e/dmw4YNBAUFsXLlSjw8PAgICGDz5s3Z6m7evJl+/frh4eHBypUrCQoKIjQ0lN69e5OamlqczROR0uraNeJGj8bpoYeofO0avzo4cPbHH+k3d67u8hIpw2wyBLZ69WrWr1/P4sWLGTZsGAA9e/bk5MmTTJo0iaFDh2Jvb5/jvnPnziUyMpLt27fTuXPnrH1btWrFyy+/zM6dO7PqTpo0CR8fH5YtW4aDg7Vp9evXp2vXrsybN48JEyYUc0tFpDSpGB3NuYcewuP4cQC+r1+fXuHhuLi5mRyZiBQ3m/QAhYSE4OLiwpAhQ7KVjx49mujo6GxJTE77NmnSJCv5AXBwcGD48OHs2rWLM2fOAHDmzBnCw8MZMWJEVvID0KVLF3x8fAgJCSniVolIaXY/4BUYiMfx41wEfnrySe47dkzJj0g5YZMeoMjISJo1a5YtMQFo2bJl1vYuXbrkuu9dd911U3nmvgcOHKB27dpERkZmK7+x7rZt2/KMMTU1NdswWUJCQp71b1dGRgYAX3zxBbVq1SqWc4hI7uzT0njl7FkmAKSlsdNiYefEibi1a8eiRYvMDk+kXDj+V6+rmWySAMXFxdGgQYObyl1dXbO257VvZr289s38N7e6eZ0DYNq0abz11lt51ikKy5YtA2DOnDnFfi4Rya4BsBTo8Nf7D4HXDIPrH39sXlAi5ditfjcXJ5vdBp/XZMJbTTQsyL651b3VOSZPnswLL7yQ9T4hIYG6devmuc/tqFChAgAvvvgiNbWgmojN1N6xg/4rVlAViAMeB5wfeoj5Wt9HxOaOHz/O66+/jpuJQ842SYDc3NxyzPLi4+OBnHttCrpv5v/E3OrmdQ4AR0dHHB0d86xTlEaPHk2LFi1sdj6RcislhaODBtE4NBSAbcDCAQNYvWoV77RqxWOPPWZufCLl0N69e3n99ddNjcEmk6D9/Pw4dOgQaWlp2cojIiIA8PX1zXPfzHp57Zv5b2518zqHiJRNGYcPc8zDIyv5+VflyjQ7d47a/v4mRyYiZrNJAhQYGEhiYiLLly/PVh4cHIynpyedOnXKc9/Dhw9nu1MsLS2NhQsX0qlTJzw9PQGoXbs2HTt2ZOHChaSnp2fVDQsL48iRIwwePLiIWyUiJdmFTz4hqVkzGiQkEAt80q8fzyQk4FqjhtmhiUgJYJMhsH79+tGnTx8mTJhAQkICjRo1YsmSJaxdu5aFCxdmrQE0duxYgoODiYqKwsvLC4AxY8bw2WefMWTIEKZPn06NGjX4/PPPOXLkCKF//VWXacaMGfTp04chQ4bw1FNPERsby6uvvoqvry+jR4+2RVNFxGxJSRzt35/Gfy2UuhmwW7qU54YONTcuESlRbDYJesWKFUyZMoWpU6cSHx9P06ZNWbJkCY888khWnfT0dNLT0zEMI6vM0dGRDRs28PLLL/Pss8+SlJRE69atWbNmDd27d892jh49erB69WqmTp3KoEGDcHZ2ZuDAgXzwwQc2nd8jIubIOHCAk/7+NE5MJAP4rFo1RkZFUeUWcwBFpPyxWQLk4uJCUFAQQUFBudZZsGABCxYsuKncw8OD4ODgfJ2nT58+9OnT53bDFJFS6vyHH+I8aRL1gRhgxeDBPHvDsLuISCY9DV5ESrerVznSpw9NduwAYIPFgktICE/df7/JgYlISaYESERKrYzffuNU5840SUoiHfiXuzvjjx3DuXJls0MTkRLOZk+DFxEpMobBufffJ7VVK7ySkjgDzHvsMZ4/f17Jj4jki3qARKR0uXKFI7160WT3bgB+sliosXYt4++91+TARKQ0UQIkIqVG2p49RHfrRpOUFNKAf9WsyZNRUTg5O5sdmoiUMhoCE5GSzzA4+8YbpLVvT72UFE4BX40dy8SzZ5X8iMhtUQ+QiJRsly9zpEcPmuzfD8AqOzu8N25k9N13mxuXiJRqSoBEpMS6vmMH53r2pElqKteBf9Wpw9N//EFFLWwqIoWkITARKXkMg+jJkzG6dKFOaiongG+efZa/nzql5EdEioR6gESkZLl4kcPdutH04EEAvre3p8nWrTymJ7iLSBFSAiQiJcb1rVs536sXTa9f5xrwef36PHPkCA4VKpgdmoiUMRoCExHzGQan//53uOsuPK9fJwr4btIkJh47puRHRIqFeoBExFxxcRzp3JkmR48CsMLBgTbh4TzcurW5cYlImaYESERMk/rzz8T37UuTtDRSgP80acKzBw5gZ29vdmgiUsZpCExEbC8jgz+ffhr73r2plZbG78DaN97g+cOHlfyIiE2oB0hEbOv8eY506kST48cB+KZCBTrv388DzZubHJiIlCfqARIRm0lZt45ztWrR5PhxkoAgPz8eSk6mrpIfEbExJUAiUvzS0zk5fjwV+vbFIz2dg8DmmTN5/rffNOQlIqbQEJiIFK+YGI507EiTU6cAWOzoSM/ISJo3amRyYCJSnqkHSESKTfKPP3K+Th2anDrFVeDTDh14JCmJWkp+RMRkSoBEpOilp3N8xAgcBw3izvR0IoAdn3zCs7t2YWenrx0RMZ+GwESkaEVH83v79vicPQvAokqV6Hv4MH716pkcmIjIf+lPMREpMonLl3Ohbl18zp7lCvB51648lpSEu5IfESlhlACJSOGlpXHskUdweegh3DMy2A/snTWLp7ZuNTsyEZEcaQhMRArn1CnrkFdsLABf3nEH9/3xB9Vq1jQ5MBGR3KkHSERu25WlS4n38sInNpbLwH969eLxxEQlPyJS4ikBEpGCu36dqMGDqTxsGK6GwW7g4Fdf8cSGDWZHJiKSLxoCE5GCOXmS39u1wycuDoAFVarw0LFjuLi5mRyYiEj+qQdIRPLt0oIFXKpfH5+4OC4Bc/v3Z9Tly0p+RKTUsVkClJiYyMSJE/H09MTJyYnWrVuzdOnSfO27YsUKhg0bRqNGjahUqRLe3t489thjHD169Ka6PXr0wGKx3PQKCAgo6iaJlB+pqRwdOJBqo0dTzTDYBRxbvpyxq1aZHZmIyG2x2RDY4MGDCQ8PZ/r06fj4+LB48WKGDRtGRkYGjz76aJ77zpgxg5o1azJlyhQaNGjAqVOneP/992nbti1hYWG0aNEiW/0GDRqwaNGibGXVqlUr6iaJlAsZf/zBsQ4daHzpEgBzq1dn2LFjOOszJSKlmE0SoNWrV7N+/fqspAegZ8+enDx5kkmTJjF06FDs83gi9A8//ECNGjWylfXq1Qtvb28+/vhj5syZk21bpUqV8Pf3L/qGiJQz8bNm4fDkkzQyDOKAHx96iLHffmt2WCIihWaTIbCQkBBcXFwYMmRItvLRo0cTHR3Nzp0789z/xuQHwNPTkzp16nDqrydMi0gRSknh9z59cH3iCaoYBtstFk7/8AMjlfyISBlhkwQoMjKSZs2a4eCQvcOpZcuWWdsL6tixY5w8efKm4S+AqKgoXF1dcXBwoGHDhkyZMoXk5OQ8j5eamkpCQkK2l5QcmzZtynFu142vt99+2+xQS72MI0eIqlEDn9BQAGa7u9P28mVaDRxocmQiIkXHJglQXFwcrq6uN5VnlsX9dTttfqWlpTF27FhcXFz4+9//nm1bt27d+Oijj1i+fDnff/89/fv3Z+bMmQQEBJCRkZHrMadNm0bVqlWzXnXr1i1QTFK8atasyciRI+nfvz8VKlQAoGrVqnh7e+Pp6ZlV76677jIrxDIh7l//4mrTpjS8coXzwMLhwxl//jxOlSubHZqISJEq8BygTZs20bNnz3zV3bdvH61btwbAYrHkWi+vbTcyDIOxY8eyZcsWli9fflOi8u6772Z7379/f7y9vXnppZdYuXIlgYGBOR538uTJvPDCC1nvExISlASVIE2bNuX999+nRYsWODg48PXXX2ddyzVr1tC/f388PDzo3r27yZGWUsnJHOnblyZbtgDwi8VCjdBQhvfqZXJgIiLFo8AJUJMmTZg9e3a+6tb76wnQbm5uOfbyxMfHA+TYO5QTwzAYN24cCxcuJDg4mPvvvz9f+w0fPpyXXnqJsLCwXBMgR0dHHB0d83U8Mcerr77KpUuX+PTTT7Ndx4ULFwLWOWV2dlraqqAyDhzgRKdONLl6lQxgbs2ajD5+HAcnJ7NDExEpNgVOgGrVqsW4ceMKtI+fnx9LliwhLS0t2zygiIgIAHx9fW95jMzkZ/78+cydO5fhw4cXLHDQL8dS7OLFi3zzzTdUrVo128/f1atXWblyJcBt/UyUdxc++ohKL75IAyAG+GX8eMbPmmV2WCIixc4mGUFgYCCJiYksX748W3lwcDCenp506tQpz/0Nw2D8+PHMnz+f//znP4wePbpA5w8ODgbQrfGl2LZt20hNTaVbt25UqFCBZcuWMXHiRO6//36uXr2Kn59fjhPiJRdXr3KkSxfcX3yRO4Cf7exI3LKFh5X8iEg5YZN1gPr160efPn2YMGECCQkJNGrUiCVLlrB27VoWLlyYbQ2gsWPHEhwcTFRUFF5eXgA899xzzJ07lzFjxuDn50dYWFhWfUdHR9q0aQPAli1beO+99wgMDKRBgwakpKSwZs0aZs2aRa9evRg0aJAtmivF4MCBAwB4eHhw1113sWPHjmzbjxw5wrfffnvTUgtys4zffuOkvz9NkpNJB+bWrcuYo0dx0BCwiJQjNlsJesWKFUyZMoWpU6cSHx9P06ZNWbJkCY888ki2eunp6aSnp2MYRlbZDz/8AMC8efOYN29etvpeXl6cOHECsA7P2dvb884773DhwgUsFguNGzfm7bff5sUXX9QQWCl28eJFAL788kscHR2ZO3cunTp1olWrVmRkZHDt2jWGDx9OkyZNspZXkBsYBrHTp+Py2mvUB6KBnc89x9+CgsyOTETE5myWALm4uBAUFETQLb5sFyxYwIIFC7KVZSY4t9KoUSNW6dlEZVJ6ejpgXQLhs88+Y8yYMXz00Uekp6cTEBCAi4sLy5YtY+bMmVmTouV/XLnCoZ49abZnDwCh9vY03rGDwA4dTA5MRMQcNkuARAqj8l/r0NjZ2TFy5Ejgv3d/jRgxgurVq7Ns2TI2bdpkVoglVtqePZzp1o1mKSmkAfPq12fc779j56CPv4iUXxoTklLB29sbsC6I6OjoyKFDh9i3bx8uLi488MADWdtjY2PNC7KkMQzOvvkmae3b45WSwilgzcsv87djx5T8iEi5p2/BW7l2zewIBLImul+8eBHDMPjqq68AGDx4MM7OzlnrTLm4uJgWY4mSkMChbt1o9tdSE2sdHGi5Zw+DND9KRARQD9CtBQRAPucgSfHx8/Ojfv36JCcnExYWxuLFiwHr8BeQNfTVtm1bs0IsMa7v3Mmfd95Js4gIrgOzmzTh3uRkPJX8iIhkUQJ0K3v2QJs2EBJidiTl3iuvvALAmDFjOHnyJJ6envTq1Ys9e/bwj3/8A4Ann3zSzBDNZRhET55Mhr8/9a5d4wTw85tvMv7wYQ15iYjcQAnQrbRvD5cuweDB8NxzkJpqdkTl1vjx4xkyZAiHDx8GwMnJid69e9OlSxcuXbrE+PHjeeihh0yO0iSXLnGwRQs8p0/HEVhVoQKVDh2i7xtvmB2ZiEiJpAToVtauhUmTrP/96afQtStERZkbUzllZ2dHcHAwzs7OAERHRxMeHk779u358ssvmVVOVzG+vm0bp2vUoPmhQ1wD5rRsyYDUVDyaNjU7NBGREksJ0K1UqAAzZ8KPP4Kb23+HxL75xuzIyqVKlSpx9epVDMMgOTmZxMREtm3bljUXqFwxDE79/e/QrRt1rl8nCtgyfTrjfv0VLBazoxMRKdGUAOXXgAGwf7+1B+jKFRg6FCZMgJQUsyOT8ig+noM+PtT95z+pAHzv6Ei1qCh6/zVPSkRE8qYEqCDq1IFNm2DyZOv7f/8b/P3h999NDUvKl9SNG4n28KD5H3+QAsxr3577kpNxa9DA7NBEREoNJUAF5eAA779vnRt0553w66/Qti0sWmR2ZFLWZWTw59NPY9+rF55pafwO7P70U8aEh2vIS0SkgJQA3a6+fa1DYt27w9WrMHw4jBsHSUlmRyZl0fnzHGzYkHqff44DEFKpEjX+/JNuzzxjdmQiIqWSEqDC8PSE0FCYOtX6F/jcudCxIxw8aHZkUoakrFtHTK1aND9xgmQguGtXAq9epVrdumaHJiJSaikBKiwHB3jrLVi/Hjw84MAB6NABbniivUiBpadzcvx4KvTtS830dA4Bv82ezcitWzXkJSJSSEqAikrv3tb5QPfcYx0GGz0aRo6ExESzI5PS6Nw5Dnl54TVnDvbAsjvuoO7Zs3QaN87syEREygQlQEXJw8M6Ofrdd8HODr780tobFBlpdmRSiiSvWkWspyfNzpzhKvBV7948lJiIS82aZocmIlJmKAEqavb2MGUKbNxonSN0+LA1CZozBwzD7OikJEtP59jjj+M4cCA1MjKIBI4uWsSI0FCzIxMRKXP0hMTicvfd1rvEHn/c2is0fjxs3EjF2rXNjkxKorNnOdS2Lc1iYgD4unJl7j9xAidXV5MDExEpm9QDVJzuvBNWrYLp0609Q4sXM2HuXFqZHZeUKIkrVnChTh2axcRwBVg0YABDExKU/IiIFCMlQMXNzg5eeQU2b4Y6dXCPjycMqL50qYbEyru0NP4YOhTnBx/EPSODX4E/V6zgsR9/NDsykVJlz549TJ8+ncGDB1O7dm0sFgtOTk5mhyUlnIbAbKVrV9i/n8OdO9P06FE8333X+giNWbOgalWzoxNbO32aw23a0PTCBQCWVqvG4JMnqVilismBiZQ+77zzDitXrjQ7DCll1ANkS25uLHr4YV4ADAcH6xPl27aF3bvNjkxs6MrSpcTVq0fTCxdIAL558EEeuXhRyY/IbercuTNTp07lhx9+IOaveXQit6IeIFuzWPgYeObLL2kweTIcOwZdusCHH8Kzz2qBu7Ls+nWODhlC47/+Ut1rsXDHjz/ycP/+JgcmUrq98sorZocgpZB6gEyS3LIl7NsHgYFw/To8/zw8+CBcvGh2aFIcTp7kiIdHVvKz2N2dlleu0ETJj4iIKZQAmal6dVi+HD75BCpWhJAQaNMGdu40OzIpQpeCg7lUvz5NLl7kErDiscd49Px5HO64w+zQRETKLSVAZrNYrENf27dDgwZw8iR06wb/+IfuEivtrl3jSL9+VBs1imqGQbjFwsUNGxi8cKHZkYmIlHtKgEqKdu1g714YMgTS0uCll+C++yAuzuzI5DZk/PEHR2rUoMnatQAsqlmTdklJ1O/Vy+TIREQElACVLFWrwtdfwxdfgKMj/PgjtG4N27aZHZkUwMU5c7jSuDFNLl8mHvhh/HgeO3sWO61LIiJSYigBKmksFnjySQgLg8aN4fRp6N7dupp0RobZ0UleUlI41Ls31cePpyqww86OpG3bGDRrltmRiYjIDWyWACUmJjJx4kQ8PT1xcnKidevWLF26NF/7LliwAIvFkuMrpzUfQkND6dy5M87Ozri7uzNq1ChiY2OLuknFq3Vr2LMHHn0U0tNh8mTo3x/Onzc7MslBxpEjHL3zTpr9/DMAi+rWpVNSEnW6dDE5MhERyYnNEqDBgwcTHBzMG2+8wZo1a+jQoQPDhg1j8eLF+T7G/Pnz2bFjR7aXm5tbtjqbN2+mX79+eHh4sHLlSoKCgggNDaV3796kpqYWdbOKV+XKsHCh9UnylSrBTz9ZE6PNm82OTP5H3Gefkdi0KY0TEzkPrHnuOR7780/sHB3NDk1ERHJhk4UQV69ezfr161m8eDHDhg0DoGfPnpw8eZJJkyYxdOhQ7O3tb3kcX19f2rdvn2edSZMm4ePjw7Jly3BwsDavfv36dO3alXnz5jFhwoTCN8iWLBYYOxY6dYKHH4ZDh6BXL3jzTXjtNetDVsUcyckc7NuX5lu2ALDV3p5GO3fSr107kwMTEZFbsUkPUEhICC4uLgwZMiRb+ejRo4mOjmZnEa17c+bMGcLDwxkxYkRW8gPQpUsXfHx8CAkJKZLzmMLXF8LDYdQo61ygqVOhb1/Qsu+myDh4kD/c3Wm+ZQsZwKL69emSlERNJT8iIqWCTRKgyMhImjVrli0pAWjZsmXW9vwYOHAg9vb2uLq6Mnjw4Jv2y3yfedwbz5XXeVJTU0lISMj2KnHuuAPmz4fgYHB2hg0brENiGzaYHVm5cuGjj0hu0YJGSUnEABtffZXHjh3DrmJFs0MTKZdWrVqFv79/1gvg2rVr2cpWrVplcpRS0thkCCwuLo4GDRrcVO7q6pq1PS81a9ZkypQp+Pv7U6VKFSIiIpg+fTr+/v5s27aNVq1aZTtO5nFvPFde55k2bRpvvfVWvttkqscfhw4drENikZHQpw/83/9Ze4Uc9Hi3YnP1Kgd69aLFrl0AbHZwoMW+ffT29TU5MJHy7fz58zeNJBiGka3svG4gkRsUuAdo06ZNud6RdeNr//79WftZ8njIZ17bAAICAnj33XcZOHAgd999N08//TRbtmzBYrEwderUfB8vr/NMnjyZy5cvZ71OnTqVZ0yma9bM+siMceOsK0a/8w707g3R0WZHViZlRERwzN2dFrt2kQ4satKE7ikpuCv5ETHdqFGjMAwjz9eoUaPMDlNKmAJ3FzRp0oTZs2fnq269evUAcHNzy7H3JT4+Hsi5x+ZWvL296datG2FhYVllmXeE5XauvM7j6OiIY2m7a8fZGWbPhp494Ykn4JdfoFUr+OorCAgwO7qywTA4N306lV97jQZANHD0zTd57I03zI5MREQKocAJUK1atRg3blyB9vHz82PJkiWkpaVlmwcUEREBWO/uuh2GYWBn999OrMzjRERE0P+Gp2xHRETc9nlKvEcfhfbtrUNiv/4K/frBq69ae4U0JHb7EhOJvOsufP/qyfy5QgXaRETQvUkTc+MSEZFCs8kk6MDAQBITE1m+fHm28uDgYDw9PenUqVOBj3n8+HG2bduWNeENoHbt2nTs2JGFCxeSnp6eVR4WFsaRI0cYPHjw7TeipPPxsa4enXmb//Tp0KMHlPShvBIqbc8eTri747t/P2nAYl9feqWkUF3Jj4hImWCTBKhfv3706dOHCRMmMHv2bDZu3Mjf/vY31q5dy8yZM7OtATR27FgcHBw4efJkVtk999zD22+/zXfffcfPP/9MUFAQ3bp1w2Kx8M4772Q714wZMzh8+DBDhgwhNDSUxYsX8/DDD+Pr68vo0aNt0VzzODnB55/DN99AlSrWZ4i1bg26+yH/DIPoN94grX17vFNTOQ3smjGDRyMiwE5PjhERKStsNj6yYsUKpkyZwtSpU4mPj6dp06YsWbKERx55JFu99PR00tPTMQwjq8zPz4+vv/6aDz/8kOTkZGrUqEGvXr14/fXX8fHxybZ/jx49WL16NVOnTmXQoEE4OzszcOBAPvjgg9I3x+d2DRkCbdvC0KHWx2kMHAgvvgjTpkGFCmZHV3IlJBDZpQu+Bw4AsL5iRfwPH6ZL/fomByYiIkXNZgmQi4sLQUFBBAUF5VlvwYIFLFiwIFvZxx9/XKBz9enThz59+hQ0xLKlYUNrD9DLL8Mnn8A//gFbt1qfNu/lZXZ0JU7arl1Ed+uG7/XrXAeWt2vHI7t2qddHRKSM0rd7WeboCEFBEBIC1apZb5tv3Rq++87kwEoQw+D0q6+S3qkT9a5f5ySw/5NPeGT3biU/IiJlmL7hy4MHHoB9+6zPE7t0CQIDYeJEKG0Phy1qly4R2bQpdWbMwBFY6+TEnadO0eHZZ82OTEREipkSoPLC29u6TtCLL1rfBwVB165w7JipYZnl+vbtnLrzTnx//51rwDdduhCQlIRznTpmhyYiIjagBKg8qVgRPvwQfvgBXF2tE6TbtIFly8yOzHYMgz9feAGja1fqpqURBRyaM4eHt22DW6xILiIiZYcSoPJo4EDYv9/aA5SQYL1r7KmnICXF7MiKV3w8EY0aUe/jj6kIrHZ2pnZMDK3GjjU7MhERsTElQOVV3bqwcSNMnmx9/8UX0LkzHD1qblzFJHXjRs7UqIHfsWOkAst69qR/YiJOHh5mh1YsevTokedz+tauXWt2iCIiplICVJ5VqADvvw9r14K7u7VXqG1bWLLE7MiKTkYGJ556Cvtevaidns5R4NiiRTz088/lYsjrwQcfZOTIkTRs2DCrrEqVKtSuXdvEqEREzKcESKBvX+szxLp3h8RE67PFxo+H5GSzIyuc8+eJ8PbG+4svcAB+rFwZrwsXaPboo2ZHZjMffvghI0aMICoqir/97W+A9Xl+fn5+JkcmImIuJUBi5ekJoaHw+uvWnpE5c6BjRzh0yOzIbkvKunXE1KyJ36lTJAMhAQEMvHyZim5uZodmUykpKTz55JM0b96cl156yexwRERKDCVA8l8ODvD227BuHXh4QGSk9SnzX35pdmT5l5HBsbFjqdC3LzUzMjgCnF62jMA1a8rFkNeNgoKCiIqK4osvvqCCHoMiIpLFZo/CkFLknnus84GGD4cNG2DkSPj5Z/jsM7jjDrOjy925c0S2aYPv2bMAfF+1Kv1PnMChWjVz4zLRf/7zH5o0acI333yDWznr/RIRyYsSIMlZzZrw00/WSdJvvgnBwbBrl/VJ876+Zkd3k+RVq0i47z58MzJIAkIDA7lvxQqzwzKdYRgcPnyYw4cPZ5VduHDBxIhEREoGDYFJ7uztrXOCNmyAWrWs84E6dIC5c8EwzI7OKj2dP4YPx3HgQDwyMjhgsXB+9epyn/w4OjoCMGPGDJKSkjhy5EjWHKC4uLhbPpRYRKSsUwIkt9ajh3VI7N57rYsljhsHI0bAlSvmxnX2LJGenjRatAg74Ds3N5olJODVr5+5cZns1KlTbN++ne7du/Pyyy9TqVIlfHx8ePrpp7PqvPHGGySX9rv8REQKQQmQ5E+NGrBmDUybZu0ZWrTIOkH6119NCScxJITY2rXxjY0lEVg9bBgPXLiAnYuLKfGUJE899RTXrl3jiy++yHG7k5MTly9fJiwszMaRiYiUHJoDJPlnZwevvgrdusGwYfD779YnzP/zn/DEE7a5yyotjSOPPkrjb7/FBYiwWHBdv57+vXsX/7lLiR9//JFq1aoxYcKEbOUpfz3q5Pr164A1UQoPD8dFSaOIlENKgKTgunWzDomNHAmrVsGECdbHasyeDVWqFN95T5/mQKtWtIiPByDEw4P7o6KwK8l3ppnk0qVLbN68Ocdt6enpABw+fJi0tDRbhiUiUmJoCExuj5sbfP+99enyDg7Wu8PatrU+Yb4YXPnmG+Lq1aNFfDwJwPoxYwiMiVHykwPDMHJ8HT9+HADLXz11p06dolo5XiJARMo3JUBy++zs4MUXYcsW8PKCqCjo0gU+/bTo7hK7fp1D991H5aFDcTMM9tnZcfWXX+gzd27RHL8MCgsLY+PGjRg3XIPTp08D1gTpvvvuo06dOmaEJyJSImgITArP3x/27YMxY+C77+C556xDYnPnQvXqt3/cP//kYKtWNL90CYAVtWvzwNGj2FWqVCRhl1WHDx9m9OjR1KpVCx8fH2rWrMnp06fZvXs3ABUrVmT27NkmRykiYi71AEnRqF4dVqyAoCDrU+ZDQqxDYjt33tbhLn35JRe9vGh+6RKXgJ+ffprBp08r+cmHTp06MWHCBGrVqsXBgwdZvnw5kZGRNG/eHAAvLy9q1KhhcpQiIuZSD5AUHYvF2vvTpQsMHQrHjlknTM+YAX//e/7uErt2jQODBtFi3ToA9tjZUX/XLnq1a1fMwZcdzZo14/PPPzc7DBGREk09QFL02reHvXthyBBIS7POE7rvPoiLy3O3jKgoDrm7ZyU/y729aZecjKuSHxERKWJKgKR4VK0KX38Nn38Ojo7w44/Qpg1s355j9fjZs0lo1IhmV64QD2ydNIkHjx+HihVtG7eIiJQLSoCk+Fgs1jWCwsKgcWM4dQruvts6JJaRYa2TkkJEjx64/u1vVAN22dtj/9tvdJs508zIRUSkjFMCJMWvdWvr+kDDhkF6unU16QEDyAgL44i7O35/LdgX0rgxHZOTqernZ268IiJS5ikBEtuoXNn6/LDZs8HJCdauhc6daXL1KheAsNdfJ/D33613kImIiBQzJUBiOxYLPPYYv/v4ANYfPgOo8vzz+L/xhqmhiYhI+aIESGwm49Ahfndzw+e338gATlarhgWoGBQEAQFw7pzZIYqISDlhswQoMTGRiRMn4unpiZOTE61bt2bp0qX52rdHjx5YLJZcXzExMbesGxAQUFxNk3w4949/kNS8OT7JyZwD9k2bhtfFi7BgATg7Q2gotGoFP/9sdqgiIlIO2GwhxMGDBxMeHs706dPx8fFh8eLFDBs2jIyMDB599NE89/38889JSEjIVpaUlERAQADt2rWjZs2a2bY1aNCARYsWZSvTQx9NkpTE/rvvpvVfD0ndWrEibQ8epF3DhtbtI0dCx47w8MMQGQn33AOvvw5Tp4K9vYmBi4hIWWaTBGj16tWsX78+K+kB6NmzJydPnmTSpEkMHToU+zx+2WUu4f+/goODuX79OuPGjbtpW6VKlfD39y+6BshtyYiM5Fj79rROTSUd+KFtWx7YtevmxKZZM+sjM55/HubMgbffhl9+sU6a9vQ0JXYRESnbbDIEFhISgouLC0OGDMlWPnr0aKKjo9l5G8+Lmjt3Li4uLgwdOrSowpSiYhhEv/ceKX5+NEpN5Sxw8JNPeGDPntx7dZydrXeILVoELi6waZP19vmffrJh4CIiUl7YJAGKjIykWbNmODhk73Bq2bJl1vaCOHr0KFu2bOGRRx7BxcXlpu1RUVG4urri4OBAw4YNmTJlCsnJyXkeMzU1lYSEhGwvuQ2Jiexv1QrP//s/nIFfHB2pfvIkfs8+m7/9H33UumZQq1Zw/rx1cvRrr1kfqSEiIlJEbJIAxcXF4erqelN5ZlncLZ4RdaO5c+cCMHbs2Ju2devWjY8++ojly5fz/fff079/f2bOnElAQAAZmasP52DatGlUrVo161W3bt0CxSSQtncvx9zcaB0RYR3y8vfn7qQknOrVK9iBfHysq0dPmGB9P20a9OwJp08XecwiIlI+FTgB2rRpU553ZP3va//+/Vn7WfJ4Enhe226UlpZGcHAwLVq0yHGez7vvvsuECRPo2bMn/fv359NPP2X69On88ssvrFy5MtfjTp48mcuXL2e9Tp06le+Yyj3D4PTrr5PWrh0Nrl3jNHDk3/9m0I4dYHebObaTk/U5Yl9/bV1EcetW65DYqlVFGbmIiJRTBZ4E3aRJE2bPnp2vuvX++svfzc0tx16e+Ph4gBx7h3KzevVqYmJieOWVV/K9z/Dhw3nppZcICwsjMDAwxzqOjo44Ojrm+5jyl4QE9nfqROvDhwHYVKkS3Y4do84Nd+bdtocfhnbtrP/u3QsDB8JLL8H772vVaBERuW0FToBq1aqV451XefHz82PJkiWkpaVlmwcUEREBgK+vb76PNXfuXCpWrMiIESMKFAOA3e32RkiO0nbt4nTXrrROS+M6sK57dwb8/PPt9/rkpmFD61PkJ02CTz+FDz+09ggtXQpeXkV7LhERKRdskhEEBgaSmJjI8uXLs5UHBwfj6elJp06d8nWcmJgYVq9ezQMPPICbm1u+zx8cHAygW+OLimFw8uWXSe/UCe+0NE4CJ4KDGbBpU9EnP5kcHeGTT2D5cqha1TpHqHVr+O674jmfiIiUaTZZB6hfv3706dOHCRMmkJCQQKNGjViyZAlr165l4cKF2dYAGjt2LMHBwURFReF1w1/3wcHBpKWl5doDtWXLFt577z0CAwNp0KABKSkprFmzhlmzZtGrVy8GDRpUrO0sFy5dYl/79rSJigJgg4sL3aOicKhRwzbnHzwY2rSBRx6BXbsgMNC6ftDMmVCxom1iEBGRUs9mY0IrVqxgxIgRTJ06lYCAAHbu3MmSJUt47LHHstVLT08nPT0dwzBuOsa8efPw9vbmnnvuyfEctWrVwt7ennfeeYdBgwbx8MMPs3XrVt5++21Wr16tIbBCur59O3+6u9MmKoprwJp776V3QoLtkp9M9evDli3wwgvW90FB0LUrHDtm2zhERKTUstmjMFxcXAgKCiIoKCjPegsWLGDBggU5bjty5Eie+zZq1IhVukuo6BkGx55/njqffko94ARg+fZb+j30kHkxVawI//gH9OgBo0bB7t3WnqG5c8HMuEREpFRQl4jkLT6efd7eNPj0UyoC66tWpV5cHF4lJckYNAj27YMuXSAhAYYMgaefhpQUsyMTEZESTAmQ5Cp10yZO16hBmz//JBVYd9999Ll4EbsCLFtgE/XqWR+d8eqr1veff25NiI4eNTUsEREpuZQAyc0yMvh9/HjsevakTno6f1gsxP34I/euXAkFWLTSpipUsK4YvWYNuLtbe4XatbPeKi8iInIDJUCS3YUL7K9bF585c6gArKtenQbx8XgOGGB2ZPkTEAC//grdu8OVKzBsGDzxBNziWXAiIlK+KAGSLCnr1xPt4UHr6GiSgQ0PP8y9cXHYVatmdmgF4+kJoaHw+uvWHqtZs6BTJ/hrtWoRERElQAIZGRweORKHe+/FMyODIxYLCevW0fvrr0vukNetODjA22/DunXg4QEREdYhsS+/NDsyEREpAZQAlXfnzvFrrVo0/fJLHIC1d95Jk4QEPPr0MTuyonHPPbB/P/TqBUlJMHIkjB4NV6+aHZmIiJhICVA5dvXHH4mpVYtWsbEkAZtHjiTg3DlwcTE7tKJVs6a1J+itt6yP6liwADp0gMhIsyMTERGTKAEqj9LTOfjIIzgNGkRNw+CQnR2pW7fSfcGC0jvkdSv29jB1KmzYALVqwaFD0LGjdeHEHFYdFxGRsk0JUHlz9iy/enjQ/OuvsQfW1KpFsytXqN61q9mR2UaPHtYhsXvvtd4ZNm4cjBhhvWNMRETKDSVA5UhiSAixtWvTKi6ORGDbE0/QLzoanJ3NDs22atSwrhf0/vvWnqFFi6B9e+vt8yIiUi4oASoP0tKIfOABnAcPpoZhcMDOjrQdO+j673+bHZl57Oxg8mTrCtJ16sDvv1tvlf/PfzQkJiJSDigBKutOnybizjvxXbkSO2BNvXq0SEykmr+/2ZGVDN26WVeNHjAAUlPhySfhkUeszxUTEZEySwlQGXZ56VLi6tbF79IlEoCdEyfS7+RJqFTJ7NBKFnd3+P57+OAD6/pB33wDbdvC3r1mRyYiIsVECVBZdP06v/XrR9Vhw3ADfrW3x27vXjp9/LHZkZVcdnbw0kvwyy/Wh6tGRUHnzvCvf2lITESkDFICVNb8+ScRbm60XLsWgNUNG9IqMRGXNm1MDqyU6NzZOiR2//1w7Ro8+yw89BBcumR2ZCIiUoSUAJUhF7/8kngvL/yuXOESsPe11+j/xx/g5GR2aKWLqyuEhMA//2l9yvyKFdCmDezaZXZkIiJSRJQAlQXXrrGvVy+qjxyJK7DXwQHHAwdo+957ZkdWelks8PzzsH07NGgAJ05YJ0x//LGGxEREygAlQKVcRlQUka6utNm4EYA1TZvS9upVKjVvbnJkZUT79tbJ0A89BNevwwsvWIfH4uPNjkxERApBCVApdv4//yGhUSN8r14lHvjtnXfod+gQVKxodmhlS9Wq1jvDPv8cHB3hhx+gdWtr75CIiJRKSoBKo5QU9nbtyp1PPkk1YHeFCrj8/jst/+//zI6s7LJYYMIECAuDxo3h1Cm4+26YORMyMsyOTkRECkgJUCmT8fvvHHJ1pe1fvQ9rW7ak/dWrVGzc2OTIyonWrWHPHhg2DNLT4ZVXYOBAOH/e7MhERKQAlACVIjGffEJikyY0S07mAnDwgw8I+PVX651KYjuVK1ufHzZrlvUOuzVrrInRL7+YHZmIiOSTEqDSIDmZPR06UPP556kC7HJ0pNrx4zR/6SWzIyu/LBYYP956a3zTphAdDT17wnvvaUhMRKQUUAJUwmUcOsSR6tVpt3s3GcBP7dvTMTERB29vs0MTAD8/CA+Hxx+3Jj7/93/Qty+cO2d2ZCIikgclQCXYmRkzSGrenCapqcQCf/zrX/QND7c+r0pKDhcXCA6G+fOtz1kLDbUOif38s9mRiYhILpQAlURJSYS3akXtV1/FBdjh5IT76dP4PP202ZFJXkaNgt27oUULiImBe+6BN9+0TpYWEZESRQlQCZMRGcnv1avT4bffyADWd+lC58RE7GrXNjs0yY/mza3zgsaMsa4Y/dZb0KcPnD1rdmQiIvI/lACVICffeotkPz98rl3jLPDn3Ln02bYN7O3NDk0KwtkZ5s6Fr76CO+6AjRuhVStYt87syERE5C82SYCuXLnCyy+/zL333sudd96JxWLhzTffLNAxYmNjGTVqFO7u7jg7O9O5c2c2bNiQY93Q0FA6d+6Ms7Mz7u7ujBo1itjY2CJoSTFJTCS8eXO83nyTO4Dtd9yBR3Q03mPGmB2ZFMbw4dY1g1q2tK4TFBBgnSSdlmZ2ZCIi5Z5NEqC4uDhmzZpFamoqDzzwQIH3T01NpXfv3mzYsIGgoCBWrlyJh4cHAQEBbN68OVvdzZs3069fPzw8PFi5ciVBQUGEhobSu3dvUlNTi6hFRSdt3z7+qF6dDocOkQ5s6NmTLgkJ2NWqZXZoUhSaNLGuHv3EE9Yhsffeg1694PRpsyMTESnXbHI7kZeXFxcvXsRisXDhwgXmzJlToP3nzp1LZGQk27dvp3PnzgD07NmTVq1a8fLLL7Nz586supMmTcLHx4dly5bh8NfdUvXr16dr167MmzePCRMmFF3DCsMwODZ5MrWmT6cRcAYwFi2i96OPmh2ZFLVKleDf/7auEzR+PGzZYr1L7MsvoX9/s6MTESmXbNIDZLFYsFgst71/SEgITZo0yUp+ABwcHBg+fDi7du3izJkzAJw5c4bw8HBGjBiRlfwAdOnSBR8fH0JCQm6/EUWoMnCxXz8aTJ9OJWBr5crUiomhjpKfsm3oUOuT5du2hbg4GDAAXn7Z+pR5ERGxqVKxoExkZCR33XXXTeUtW7YE4MCBA9SuXZvIyMhs5TfW3bZtW67nSE1NzTZElpCQUNiwc1QrJoY9QOPTp0kDFjVvjsOrr3IyNLRYziclj92zz9JmyRKarlsHH3zA+ZAQtj3zDFfd3c0Ordz49ddfAYiOjmbv3r0mRyNS/hw6dMjsEEpHAhQXF4erq+tN5ZllcXFx2f7NrW7m9pxMmzaNt956qyjCzZlhwBdf8Lf583EA/gSGAmEHD1pXEZZyJxCYB9z5xx/cPXEio4HvTY6pvPniiy/44osvzA5DpNyqXLmyaecucAK0adMmevbsma+6+/bto3Xr1gU9RY7yGkK7cVtudfM6xuTJk3nhhRey3ickJFC3bt0CRpmLS5escz+WLcMBON2uHTvHj+cZFxeeKZozSCm1KTaWbv/6F+7HjrESONy3L/uGDSNDq30Xu+vXr+fYWywitlG5cmUaN25s2vkL/C3bpEkTZs+ena+69erVK3BAOXFzc8ux9yY+Ph74b4+Pm5sbQK51c+oZyuTo6Iijo2NRhJtdeLh17sfx49ants+YQZ2JExlSiDlRUsY8/TRMngwffUTTn36iaVwcfP01NGhgdmQiImVWgROgWrVqMW7cuOKIJVd+fn5ERETcVJ5Z5uvrm+3fiIgI+t9wd01ERETWdpswDAgK+u8kV29v6y+1jh1tF4OUDhUrwj/+AT16wMiR1sdptGkD8+bBgw+aHZ2ISJlUKlaCDgwM5PDhw9lud09LS2PhwoV06tQJT09PAGrXrk3Hjh1ZuHAh6f/z/KWwsDCOHDnC4MGDbRNwfDwEBsLf/25NfgYPhn37lPxI3gYNgv37oXNnSEiAhx6CZ56BlBSzIxMRKXNslgCtWbOGZcuW8cMPPwBw8OBBli1bxrJly0hKSsqqN3bsWBwcHDh58mRW2ZgxY2jRogVDhgxh8eLFhIaG8vDDD3PkyBFmzJiR7TwzZszg8OHDDBkyhNDQUBYvXszDDz+Mr68vo0ePLv6GhoVZ/3pfudL6l/2nn8KyZVCtWvGfW0q/evVg82ZrzyHAZ59Bly5w9Ki5cYmIlDWGjXh5eRlAjq/jx49n1Rs5cuRNZYZhGDExMcbjjz9uuLq6Gk5OToa/v7+xfv36HM+1bt06w9/f33BycjJcXV2Nxx9/3Dh37lyB4r18+bIBGJcvX87fDunphjFzpmE4OBgGGEbDhoaxe3eBzimSzerVhuHubv15qlzZMJYsMTsiEZESL7+/vy2GYRimZV8lWEJCAlWrVuXy5ctUqVIl78oXLsCoUbBqlfX90KEwaxbcaj+RWzlzBoYNs64eDfC3v8E//2ldXVpERG6S39/fpWIOUIm2dat1yGvVKnB0hP/8B5YsUfIjRaN2bfj5Z+tDVC0Wa2LdqRMcPmx2ZCIipZoSoNuVkQHTplnv3Dl92vrQy127rH+h6xZ3KUoODvDOO/DTT1CjBkREQPv28NVXZkcmIlJqKQG6HbGx0K8fvPYapKfD8OHWW5e1qJoUpz594NdfrU+Tv3rVuoL4mDHwPzcRiIhI/igBKqhNm6xP8l63zjoPY94861O9XVzMjkzKg5o1rT97b70FdnYwfz506AAHD5odmYhIqaIEKL/S0+Htt6F3bzh7Fpo3t67yPHq0hrzEtuztYepU2LABatWyJj/t21uTId3TICKSL0qA8iMmBu69F954wzr3Z/Ro63yfFi3MjkzKsx49rAsn3nsvJCdbh8NGjoTERLMjExEp8ZQA3crGjdCqlfVOnDvugOBg67DXHXeYHZmIdVL0mjXw/vvWnqGvvrL2Bv32m9mRiYiUaEqAbuWBB6yTnv38rBOdH3/c7IhEsrOzsz5MddMm623zR45Yb5WfNUtDYiIiudBCiLm4fPky1apV4xRQZeRImDFDi89JyRcXB088AevXW98/+KB14UStSyUi5URCQgJ169bl0qVLVK1aNdd6SoBycfr0aerWrWt2GCIiInIbTp06RZ06dXLdrgQoFxkZGURHR1O5cmUsRXiXV2ZmeurUqVs/YqOUKuttVPtKv7LexrLePij7bVT7bp9hGFy5cgVPT0/s7HKf6eNQpGctQ+zs7PLMHAurSpUqZfKH+n+V9TaqfaVfWW9jWW8flP02qn23J6+hr0yaBC0iIiLljhIgERERKXeUANmYo6Mjb7zxBo6OjmaHUmzKehvVvtKvrLexrLcPyn4b1b7ip0nQIiIiUu6oB0hERETKHSVAIiIiUu4oARIREZFyRwlQEbpy5Qovv/wy9957L3feeScWi4U333yzQMeIjY1l1KhRuLu74+zsTOfOndmwYUOOdUNDQ+ncuTPOzs64u7szatQoYmNji6AluUtMTGTixIl4enri5ORE69atWbp0ab727dGjBxaLJddXTEzMLesGBAQUV9OAwrVvwYIF+WpbJjOuHxSujStWrGDYsGE0atSISpUq4e3tzWOPPcbRo0dvqluc17AwbSjpn7FMt9vGknKNbuV221daPmdw+20sDd+VUPjfeaZ/Fg0pMsePHzeqVq1q3H333ca4ceMMwHjjjTfyvX9KSorh6+tr1KlTx1i4cKGxbt064/777zccHByMTZs2Zau7adMmw8HBwbj//vuNdevWGQsXLjRq165t+Pr6GikpKUXcsv/q06ePUa1aNePf//638fPPP2e1c9GiRbfc98CBA8aOHTuyvTZs2GBUqFDB8Pf3z1a3e/fuRoMGDW6qf+jQoeJqmmEYhWvf/PnzDcCYP3/+TXFfu3YtW12zrp9hFK6NHTt2NO677z5j3rx5xqZNm4yvvvrKaNasmeHi4mJERkZmq1uc1/B221AaPmOZbreNJeUa3crttq+0fM4M4/bbWBq+Kw2jcL/zSsJnUQlQEcrIyDAyMjIMwzCM8+fPFzgB+uyzzwzA2L59e1bZ9evXjebNmxsdO3bMVrdDhw5G8+bNjevXr2eVbdu2zQCMzz//vHANycWqVasMwFi8eHG28j59+hienp5GWlpagY+5YMECAzDmzJmTrbx79+5GixYtChVvQRW2fZlfzOHh4bc8lxnXzzAK38Zz587dVHbmzBmjQoUKxtixY7OVF9c1LEwbSvpnLFNh2lgSrtGtFKZ9peFzZhhF/31Zkr4rMxXmd15J+CxqCKwIZXY93q6QkBCaNGlC586ds8ocHBwYPnw4u3bt4syZMwCcOXOG8PBwRowYgYPDf59m0qVLF3x8fAgJCbn9RtwiPhcXF4YMGZKtfPTo0URHR7Nz584CH3Pu3Lm4uLgwdOjQogrzthVH+3Ji1vWDwrexRo0aN5V5enpSp04dTp06VaSx5qYwbSjpn7H/jfN221gSrtGt2OKzVpqvYU5K0ndlpsL8zisJn0UlQCVIZGQkLVu2vKk8s+zAgQNZ9f63/Ma6mduLI75mzZpl+yH83zgKet6jR4+yZcsWHnnkEVxcXG7aHhUVhaurKw4ODjRs2JApU6aQnJx8+w24haJq38CBA7G3t8fV1ZXBgwfftJ9Z1y/z3EV5DQGOHTvGyZMnadGixU3biuMaFqYNJf0zlqmor5Otr9GtFEX7SvLnLPP8RXUNS9p3ZVEoCZ9FPQy1BImLi8PV1fWm8syyuLi4bP/mVjdze3HE16BBg1vGl19z584FYOzYsTdt69atG0OHDqVp06YkJyezZs0aZs6cydatW9m4cWOeT/i9XYVtX82aNZkyZQr+/v5UqVKFiIgIpk+fjr+/P9u2baNVq1bZjmPr65d57qK8hmlpaYwdOxYXFxf+/ve/Z9tWXNewMG0o6Z+xTEV5ncy4RrdSmPaVhs9Z5vmL6hqWtO/KolASPotKgHKxadMmevbsma+6+/bto3Xr1kVy3ry6E2/cllvd/HRJ3m77ChJfXtLS0ggODqZFixb4+/vftP3dd9/N9r5///54e3vz0ksvsXLlSgIDA/M8vhntCwgIyHbnxd13382AAQPw8/Nj6tSprFy5Ml/Hy+//R7OvoWEYjB07li1btrB8+XLq1q2bbXthr2FeCtMGW33GCqsorpOZ1+hWbrd9tv6cFUZRXMPi/q40k9mfRSVAuWjSpAmzZ8/OV9169eoVyTnd3NxyzGbj4+OB/2bAbm5uQM5/QcTHx+eYKd/odtqX3/jyY/Xq1cTExPDKK6/ke5/hw4fz0ksvERYWdssPtdnty+Tt7U23bt0ICwvLKiuK6wfmttEwDMaNG8fChQsJDg7m/vvvz9d+BbmGuSlMG2z5GSuMorhOZl6jWynqz1pxfs5uV1G1sbi/K81SEj6LSoByUatWLcaNG2fTc/r5+REREXFTeWaZr69vtn8jIiLo37//TXUzt+fldtrn5+fHkiVLSEtLyzaufWN8+TF37lwqVqzIiBEjChQDkK8uXbPb978Mw8gWc1FcPzCvjZm/WOfPn8/cuXMZPnx4gWKA/F3D3BSmDbb8jBVGYa+T2dfoVorjs1Zcn7PbVVRtLO7vSrOUiM/ibd8/Jnm6ndvgP//8cwMwwsLCssquX79utGjRwujUqVO2uh07djR8fX2z3Uq5Y8cOAzC++OKLQsefk9WrVxuAsXTp0mzlAQEBBbqt8+zZs4aDg4Px8MMPF+j8M2bMMADju+++K9B++VVU7ftfx44dM1xcXIwHHnggW7kZ188wCt/GjIwMY+zYsYbFYjFmzZpV4PMXxTUsTBtK+mcsU2HaWBKu0a0U9WetpH3ODKNo2lhSvytzUtDfeSXhs6gEqIitXr3a+Pbbb4158+YZgDFkyBDj22+/Nb799lvj6tWrWfXGjBlj2NvbGydOnMgqS0lJMVq0aGHUrVvXWLRokbF+/XojMDAwx4WhNm7caDg4OBiBgYHG+vXrjUWLFhl169a1yUKI1atXN2bNmmX8/PPPxvjx4w3AWLhwYbZ6ObUv0/Tp0w3AWLduXY7n+OWXX4y+ffsa//73v41169YZ33//vTFhwgTD3t7e6NWrl5Genl4sbTOMwrWvd+/exltvvWWEhIQYGzZsMP75z38anp6eRuXKlY2IiIhs+5t1/QrbxmeeecYAjDFjxty08NrevXuz6hX3NcxPG0rrZ6ywbSwp16i42ldaPmeFaWOmkvxdmSk/v/NK6mdRCVAR8/LyMoAcX8ePH8+qN3LkyJvKDMMwYmJijMcff9xwdXU1nJycDH9/f2P9+vU5nmvdunWGv7+/4eTkZLi6uhqPP/54jougFaUrV64Yzz33nFGzZk2jYsWKRsuWLY0lS5bcVC+39hmGYfj4+Bje3t5ZC2jd6OjRo0b//v2N2rVrG46OjoaTk5Ph5+dnvPfee8X+pVWY9k2cONFo3ry5UblyZcPBwcHw9PQ0hg8fbhw5ciTHc5lx/QyjcG3M6+fby8srq15xX8P8tKG0fsYy3W4bS8o1Kq72lZbPmWEU7ufUMEr2d2Wm/PzOK6mfRYthGMbtD6CJiIiIlD4ld4aUiIiISDFRAiQiIiLljhIgERERKXeUAImIiEi5owRIREREyh0lQCIiIlLuKAESERGRckcJkIiIiJQ7SoBERESk3FECJCIiIuWOEiAREREpd5QAiYiISLnz/1GammiKz1kLAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "thetas = np.array([[-0.5, -0.5], [-0.5, 0.5], [0.5, -0.5], [0.5, 0.5]])\n", - "radii = np.full_like(thetas, 0.5)\n", - "def normalize(n):\n", - " return n / np.linalg.norm(n)\n", - "hypos = [\n", - " grid.HyperPlane(normalize(np.array([1, -1])), 0),\n", - " grid.HyperPlane(normalize(np.array([1, 1])), -1),\n", + "n_theta_1d = 4\n", + "theta_min = -3.5\n", + "theta_max = 1.0\n", + "\n", + "null_hypos = [\n", + " grid.HyperPlane(-np.identity(n_arms)[i], -logit(0.1)) for i in range(n_arms)\n", "]\n", - "g = grid.build_grid(thetas, radii, hypos)\n", - "grid.plot_grid2d(g, hypos)" + "theta, radii = grid.cartesian_gridpts(\n", + " np.full(n_arms, theta_min), np.full(n_arms, theta_max), np.full(n_arms, n_theta_1d)\n", + ")\n", + "g_raw = grid.build_grid(theta, radii)\n", + "start_grid = grid.prune(grid.intersect_grid(g_raw, null_hypos))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGeCAYAAAB8Rr70AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLJklEQVR4nO3dfVgU9f4//ucKukjrzQFSRFFERJQbSUtBTVGjg6gpFOENFoieI35OfdW8yQg00bwri6tPelJRthDsiCB5BFNIzVQItWNgan4IyduDgLqiiALz+8Pfbq3cy7Kzu/N8XNdetu95z8zr3Ti7T2dmZ2SCIAggIiIikpA2YhdAREREpG8MQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ55mIXYKhqampw7do1dOjQATKZTOxyiIiIqAkEQcDdu3dhZ2eHNm3qP87DAFSPa9euwd7eXuwyiIiI6ClcvnwZPXr0qHc6A1A9OnToAODx/8COHTuKXA0RERE1hUqlgr29veZ7vD4MQPVQn/bq2LEjAxAREZGRaezyFV4ETURERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSo7cAdPfuXSxevBgvv/wynn32WchkMixfvrzJ8xcXFyM0NBQ2NjawtLSEt7c3srKy6uybmZkJb29vWFpawsbGBqGhoSguLtbRSIiIiMjY6S0AlZaWYvPmzaisrMTkyZObNW9lZSXGjh2LrKwsxMbGIi0tDV27doWfnx+OHDmi1ffIkSMYN24cunbtirS0NMTGxiIzMxNjx45FZWWlDkdERERExkpvj8Lo1asXbt26BZlMhpKSEmzdurXJ88bFxSE/Px/Hjx+Ht7c3AGD06NEYOHAgFi9ejJycHE3fRYsWwdnZGcnJyTA3fzy83r17Y/jw4di2bRsiIiJ0OzAiIiIyOno7AiSTyRp9Lkd9UlNT0a9fP034AQBzc3OEhITgxx9/xNWrVwEAV69eRW5uLmbMmKEJPwAwbNgwODs7IzU1tWWDICIiIpNgFA9Dzc/Px4svvlir3cPDAwBw9uxZdO/eHfn5+VrtT/Y9duxYveuorKzUOkWmUqlaWna9Ll68iLt377ba8km6SktLYW1tLXYZkmaK28AUx0Ti69ChA/r27Sva+o0iAJWWlsLKyqpWu7qttLRU68/6+qqn12X16tX44IMPdFFugy5evAhnZ+dWXw8REZGh+/XXX0ULQUYRgICGH2v/5LT6+ja0jKVLl2LBggWa9yqVCvb29s2ssnHqIz8JCQno37+/zpdP0pWeno6oqCjExMTA399f7HIkyRS3gSmOicR37tw5hISEiHo2xCgCkLW1dZ1Hb8rKygD8ccRHfYi2vr51HRlSk8vlkMvluii3Sfr3749BgwbpbX1k+s6dOwfg8UX//LslDlPcBqY4JiLASG6E6O7ujry8vFrt6jY3NzetP+vrq55ORERE0mYUASggIADnz5/X+rl7VVUVEhISMHToUNjZ2QEAunfvjiFDhiAhIQHV1dWavtnZ2bhw4QICAwP1XjsREREZHr0GoIyMDCQnJ2Pv3r0AgF9++QXJyclITk7G/fv3AQDh4eEwNzdHUVGRZr6ZM2fC1dUVQUFBSExMRGZmJl5//XVcuHABa9eu1VrH2rVrcf78eQQFBSEzMxOJiYl4/fXX4ebmhrCwMP0NloiIiAyWXq8BioiI0Ao2u3btwq5duwAAhYWFcHBwQHV1NaqrqyEIgqafXC5HVlYWFi9ejLfeegv379+Hp6cnMjIyMGrUKK11+Pj4ID09HdHR0Zg4cSIsLS0xYcIErF+/Xq/X+BAREZHh0msAunTpUqN94uPjER8fX6u9a9euUCqVTVqPr68vfH19m1kdERERSYVRXANEREREpEsMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5egtA5eXlmDdvHuzs7GBhYQFPT0/s3Lmz0fl8fHwgk8nqfd24caPRvn5+fq05NCIiIjIy5vpaUWBgIHJzc7FmzRo4OzsjMTERU6dORU1NDaZNm1bvfBs3boRKpdJqu3//Pvz8/DB48GDY2tpqTXN0dMSOHTu02jp37qyzcRAREZHx00sASk9Px8GDBzWhBwBGjx6NoqIiLFq0CMHBwTAzM6tz3gEDBtRqUyqVePToEWbNmlVrWvv27eHl5aXbARAREZFJ0cspsNTUVCgUCgQFBWm1h4WF4dq1a8jJyWnW8uLi4qBQKBAcHKzLMomIiEgi9BKA8vPz0b9/f5ibax9w8vDw0ExvqosXL+Lo0aOYMmUKFApFrekFBQWwsrKCubk5+vTpg8jISFRUVDS63MrKSqhUKq0XGY779+9jz549CA8Ph4eHBzp27IhnnnkGAwcOxIoVK1BeXi52idRKbty4gfnz58PZ2Rnt27eHlZUVBg8ejMWLF4tdmkE4fPhwg9dJql8rVqwQu1TJ2bBhAwIDA9G3b1906tQJcrkcvXr1wptvvomzZ8+KXZ7k6eUUWGlpKRwdHWu1W1lZaaY3VVxcHAAgPDy81rQRI0YgODgYLi4uqKioQEZGBtatW4cffvgBhw4dQps29ee91atX44MPPmhyHaRfiYmJmD17NgDA1dUVfn5+UKlUOH78OJYtW4akpCQcOXIEXbp0EblS0qUTJ07A398ft2/fxoABA/DKK6/g7t27+OWXX7BhwwasW7dO7BJFZ2trizfffLPOadXV1UhISAAAvPjii/osiwB8+OGHuHfvHjw8PODu7g4AOHv2LL788kvs3LkTe/bswbhx40SuUrr0dhG0TCZ7qml/VlVVBaVSCVdX1zqv81m5cqXWe39/fzg4OGDhwoVIS0tDQEBAvcteunQpFixYoHmvUqlgb2/fpLqo9bVr1w4RERGYP38++vbtq2m/fv06xo8fj59++gnz5s1DYmKiiFWSLl27dg3+/v6orKxESkpKrf33xx9/FKkyw+Li4oL4+Pg6p2VkZCAhIQH29vYYNWqUfgsjpKWlYfDgwbCwsNBq37RpE+bOnYtZs2bh999/r/caWGpdejkFZm1tXedRnrKyMgB/HAlqTHp6Om7cuFHnxc/1CQkJAQBkZ2c32E8ul6Njx45aLzIcb7zxBjZu3KgVfgCgW7du+PzzzwEAKSkpePjwoRjlUSt49913cfv2baxbt67Of7wMGTJEhKqMi/roz/Tp0xs8Ak6tY/jw4bXCDwBERETAyckJ165dw4ULF0SojAA9BSB3d3ecO3cOVVVVWu15eXkAADc3tyYtJy4uDu3atcOMGTOaXQN3ftM1cOBAAI+v42rO6VQyXLdu3cK//vUvdOrUqVn/4KE/3Lt3D2lpaQD++IcgGQ71UZ927dqJXIl06SUVBAQEoLy8HLt379ZqVyqVsLOzw9ChQxtdxo0bN5Ceno7JkyfD2tq6yetWKpUAwJ/Gm7DffvsNANC2bdsmH00kw3bs2DFUVlZixIgRaNu2LZKTkzFv3jz8z//8Dz777DP897//FbtEg5eSkoJ79+7hueeeg6urq9jl0J98+eWXuHDhApydneu8Ppb0Qy/XAI0bNw6+vr6IiIiASqWCk5MTkpKSsH//fiQkJGiScHh4OJRKJQoKCtCrVy+tZSiVSlRVVdX7r8GjR49i1apVCAgIgKOjIx48eICMjAxs3rwZY8aMwcSJE1t9nCSO2NhYAICfnx/kcrnI1ZAuqH8h07VrV7z44os4ceKE1vSlS5di+/bttW6tQX9Qn/56miPmpFvr16/H2bNnce/ePZw7dw5nz56FnZ0dEhMTeXZCRHq7CDolJQWRkZGIjo5GWVkZXFxckJSUhClTpmj6VFdXo7q6GoIg1Jp/27ZtcHBwwEsvvVTn8rt16wYzMzPExMSgpKQEMpkMffv2xYoVK/DOO+/wL5mJSk9PR1xcHNq2bYuYmBixyyEduXXrFoDH/1KWy+WIi4vDK6+8gvLycnz22WfYsGEDQkJC0K9fP83tNOgPN27cQFZWFszMzDQ3nyXxfPvtt8jKytK8t7e3x1dffYXBgweLWBXpLRUoFArExsbi+vXrqKysxJkzZ7TCDwDEx8dDEAQ4ODjUmv/ChQsoLCys9xdjTk5O2LdvH65cuYIHDx6goqICP//8M9577z0eFTBR586dQ0hICARBwPr16zXXApHxq66uBvD4l58bNmzAzJkzYWNjAwcHB3z88cd47bXX8PDhQ/4Mvh6JiYmorq6Gr69vrccFkf5lZmZCEATcunUL33//Pfr16wcfHx+sWrVK7NIkjYdFyChduXIFfn5+uHXrFhYsWID/9//+n9glkQ516NABwOMfL9R1j5uZM2cCeHwTQKqNp78MU+fOnfHiiy8iPT0dgwcPRlRUFHJzc8UuS7IYgMjolJSUwNfXF7///jvCwsLw0UcfiV0S6Zj6KLCtrW2dR3DV04uLi/VYlXE4d+4cfvrpJygUCkyePFnscqgObdu2RXBwMARBwN69e8UuR7IYgMio3L17F+PGjcP58+cRGBiILVu2NPlGmmQ8nnvuOQCPrwWq65pA9e0O6nocjtR99dVXAIDAwEBYWlqKXA3Vx8bGBgBw8+ZNkSuRLgYgMhqVlZWYNGkSTp48ib/+9a9ISkriHVRNlLu7O3r37o2Kioo6H5asPvU1aNAgPVdm2ARB0NwNnae/DNuRI0cAAH369BG5EuliACKjUF1djalTp+LQoUN48cUXkZKSwhuImbglS5YAAN5++22UlJRo2k+dOoWPP/4YADBnzhxRajNUR48eRVFREezs7DBmzBixy5G0o0eP4uuvv651A+BHjx7hs88+w1dffYX27dsjODhYpApJbz+DJ2qJ//3f/0VqaiqAx4eO586dW2e/jz76SHNomYzb7NmzkZWVhV27dqFfv34YNmwYysvLcfz4cTx8+BCzZ8/Ga6+9JnaZBoWPvjAcBQUFCAsLg42NDQYPHgxra2uUlJQgLy8P169fh4WFBeLj4/nMSRExAJFRUN8XBoAmCNVl+fLlDEAmok2bNti5cyd8fHywdetWfPfdd5DJZHj++ecxZ84cnuJ5QmVlJZKTkwHw0ReGYNSoUXjvvfdw5MgR/PzzzygpKUG7du3g4OCA1157DW+//TacnJzELlPSGIDIKCxfvhzLly8XuwzSszZt2mDu3Ln1HvGjP8jlcs0Dpkl8vXv35n1+DByPkRIREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeToLQCVl5dj3rx5sLOzg4WFBTw9PbFz585G54uPj4dMJqvzdePGjVr9MzMz4e3tDUtLS9jY2CA0NBTFxcWtMSQiIiIyUub6WlFgYCByc3OxZs0aODs7IzExEVOnTkVNTQ2mTZvW6Pzbt2+Hi4uLVpu1tbXW+yNHjmDcuHEYP3480tLSUFxcjCVLlmDs2LE4efIk5HK5TsdERERExkkvASg9PR0HDx7UhB4AGD16NIqKirBo0SIEBwfDzMyswWW4ubnh+eefb7DPokWL4OzsjOTkZJibPx5a7969MXz4cGzbtg0RERG6GRAREREZNb2cAktNTYVCoUBQUJBWe1hYGK5du4acnJwWr+Pq1avIzc3FjBkzNOEHAIYNGwZnZ2ekpqa2eB1ERERkGvQSgPLz89G/f3+tYAIAHh4emumNmTBhAszMzGBlZYXAwMBa86jfq5f55HoaW0dlZSVUKpXWi4iIiEyTXgJQaWkprKysarWr20pLS+ud19bWFpGRkdi6dSsOHTqEmJgY5ObmwsvLC2fOnNFax5+X+eR6GloHAKxevRqdOnXSvOzt7Zs0NiIiIjI+ersIWiaTPdU0Pz8/+Pn5ad6PHDkS48ePh7u7O6Kjo5GWltakZTW0DgBYunQpFixYoHmvUqkYgoiIiEyUXgKQtbV1nUdgysrKANR91KYhDg4OGDFiBLKzs7XWAdR9NKmsrKzRdcjlcv5KjIiISCL0cgrM3d0d586dQ1VVlVZ7Xl4egMe/8GouQRDQps0f5auXoV7mk+t5mnUQERGRadJLAAoICEB5eTl2796t1a5UKmFnZ4ehQ4c2a3mFhYU4duwYvLy8NG3du3fHkCFDkJCQgOrqak17dnY2Lly4gMDAwJYNgoiIiEyGXk6BjRs3Dr6+voiIiIBKpYKTkxOSkpKwf/9+JCQkaO4BFB4eDqVSiYKCAvTq1QsA8NJLL2HkyJHw8PBAx44dkZeXh3Xr1kEmkyEmJkZrPWvXroWvry+CgoIwd+5cFBcX491334WbmxvCwsL0MVQiIiIyAnq7CDolJQWRkZGIjo5GWVkZXFxckJSUhClTpmj6VFdXo7q6GoIgaNrc3d3x9ddf46OPPkJFRQW6dOmCMWPGICoqCs7Ozlrr8PHxQXp6OqKjozFx4kRYWlpiwoQJWL9+Pa/vISIiIg29BSCFQoHY2FjExsbW2yc+Ph7x8fFabZ988kmz1uPr6wtfX9+nKZGIiIgkgk+DJyIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIiIiIskxF7sAqUpPT8e5c+fELoNMyLFjxwAAe/bsQWFhocjVSNOZM2cAmNY2UI9J/feLSBcMYf+QCYIgiF2EIVKpVOjUqRPu3LmDjh076my5Bw8exMsvv6yz5RERERmrAwcOwNfXV6fLbOr3N48A6Zm1tTUAICYmBr179xa5GjIle/bsQXJyMsaOHQsfHx+xy5Gkb775Brm5uRgyZAgmTpwodjk6cfjwYWRlZeG1117D5MmTxS6HTERhYSGioqI034liYAASib+/PwYNGiR2GWRCCgsLkZycDB8fH7z//vtilyNJ165dQ25uLgYPHmxS2yArKwsDBw7E9OnTxS6FTMTp06cRFRUlag28CJqIiIgkhwGIjMapU6ewZs0aBAYGonv37pDJZLCwsKi3/zfffIM333wT7u7usLGxQdu2bdGlSxf4+/tj3759eqyciKSmuZ9Xy5cvh0wmq/f17rvv6rF6aeApMDIaMTExSEtLa3L/L7/8EikpKXB1dcXQoUPRoUMHXLp0CRkZGcjIyEBUVBRWrFjRihUTkVQ19/NKbfjw4XBycqrVPnjwYF2URX/CAERGw9vbGwMHDsQLL7yAF154Aba2tg32j4yMxBdffFHrIrucnBy89NJLWLlyJaZMmYIBAwa0ZtlEJEHN/bxSmzVrFkJDQ1u3OALAAERGZMmSJc3q/9xzz9XZPnToUEyZMgVbt27F4cOHGYCISOea+3lF+sdrgEiSzMzMAADt2rUTuRIiIhKD3gJQeXk55s2bBzs7O1hYWMDT0xM7d+5sdL6UlBRMnToVTk5OaN++PRwcHDB9+nRcvHixVl8fH586Lx7z8/NrjSGRkfr555/x9ddfo23bthg7dqzY5RARaXz33XeYN28e5syZg5UrV+LUqVNil2Sy9HYKLDAwELm5uVizZg2cnZ2RmJiIqVOnoqamBtOmTat3vrVr18LW1haRkZFwdHTE5cuX8eGHH2LQoEHIzs6Gq6urVn9HR0fs2LFDq61z586tMSQyEnv37sXu3bvx6NEj/P777zh+/Djatm2LzZs382aURGRQvvrqK633UVFRePXVVxEfHw+FQiFSVaZJLwEoPT0dBw8e1IQeABg9ejSKioqwaNEiBAcHa05JPGnv3r3o0qWLVtuYMWPg4OCATz75BFu3btWa1r59e3h5ebXOQMgonTlzBkqlUvPewsICn376Kd544w0RqyIi+oOTkxM++ugjjBs3Dr169cKtW7fw/fffY/Hixdi9ezeqq6uRmpoqdpkmRS+nwFJTU6FQKBAUFKTVHhYWhmvXriEnJ6feeZ8MPwBgZ2eHHj164PLlyzqvlUzP+++/D0EQUFFRgby8PMycORMRERGYNGkSHj58KHZ5REQICQnBO++8gwEDBuCZZ55Bjx49MG3aNOTm5sLa2hp79uzB8ePHxS7TpOglAOXn56N///4wN9c+4OTh4aGZ3hy//fYbioqKap3+AoCCggJYWVnB3Nwcffr0QWRkJCoqKhpdZmVlJVQqldaLTIuFhQXc3Nzw+eef46233sK///1vfPbZZ2KXRURUr27duiEsLAwA8O2334pcjWnRSwAqLS2FlZVVrXZ1W2lpaZOXVVVVhfDwcCgUCsyfP19r2ogRI7Bhwwbs3r0b33zzDfz9/bFu3Tr4+fmhpqamweWuXr0anTp10rzs7e2bXBMZn5CQEAB4qhuVERHpU9++fQEA169fF7kS06K3i6BlMtlTTfszQRAQHh6Oo0ePYvfu3bVCysqVK7Xe+/v7w8HBAQsXLkRaWhoCAgLqXfbSpUuxYMECzXuVSsUQZMJsbGwAADdv3hS5EiKiht26dQsAeBG0junlCJC1tXWdR3nKysoAoM6jQ08SBAGzZs1CQkIC4uPjMWnSpCatW/0v/ezs7Ab7yeVydOzYUetFpuvIkSMAgD59+ohcCRFR/QRB0Fz8zMdh6JZeApC7uzvOnTuHqqoqrfa8vDwAgJubW4Pzq8PP9u3bsXXrVk2oaY42bXjPRykpLi7Gxx9/jNu3b9eadvDgQSxevBgANOfWiYjEUlJSgi+//BKVlZVa7eXl5YiIiEBOTg5sbW0bPItBzaeXU2ABAQHYsmULdu/ejeDgYE27UqmEnZ0dhg4dWu+8giBg9uzZ2L59O7744otmf2Gpf/7Mn8Ybv3379iEmJkar7eHDh1rbNioqCuPHj8f9+/excOFCREVF4fnnn0ePHj1w7949/Prrrzh//jwAYP78+Xj11Vf1OgYikobmfF6Vl5fjzTffxFtvvYX+/fujZ8+euH37Nk6fPo3S0lJ07twZycnJsLS01PcwTJpeAtC4cePg6+uLiIgIqFQqODk5ISkpCfv370dCQoLmHkDh4eFQKpUoKChAr169AABvv/024uLiMHPmTLi7u2udypLL5ZrnPR09ehSrVq1CQEAAHB0d8eDBA2RkZGDz5s0YM2YMJk6cqI+hUiu6efNmrVsmCIKg1aa+pqdLly5Yt24dDh8+jLNnz+LkyZOoqalBt27dMGXKFPz973+Hj4+PPssnIglpzueVtbU1lixZguzsbPzf//0f/vOf/8DMzAy9e/dGaGgo5s+fj+7du+u1finQ20XQKSkpiIyMRHR0NMrKyuDi4oKkpCRMmTJF06e6uhrV1dUQBEHTtnfvXgDAtm3bsG3bNq1l9urVC5cuXQLw+KeCZmZmiImJQUlJCWQyGfr27YsVK1bgnXfe4SkwExAaGtrkpyRbWlpi0aJFWLRoUesWRURUh+Z8XnXo0AFr1qxp3YKoFr0FIIVCgdjYWMTGxtbbJz4+HvHx8Vpt6oDTGCcnJ+zbt68FFRIREZFU8LAIERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUmOudgFSFV6ejrOnTsndhlkQs6cOSN2CWTCzpw5gx07dohdBpmIwsJCsUtgANK30tJSAEBUVJTIlZCpKi8vF7sEMiHqv0/JyclITk4WuRoyNervRDEwAOmZtbU1ACAmJga9e/cWuRoyJXv27EFycjIUCoXYpejM1q1bER0djRs3bkAQBLRp0wb29vZYtWoVpk+fLnZ5BiMhIQEJCQn4+eef8d///hc1NTUAAEEQ6ux/+fJl7N27F4mJiTh16hQePHgAAPDy8sLHH3+MYcOGafqq/z699tprmDx5cusOhCSjsLAQUVFRmu9EMTAAicTf3x+DBg0SuwwyIYWFhSb1L/S3334bn332GQDA0tISf/nLX1BSUoKioiKEhITg5MmT+OSTT0Su0jAsWrQIN27caHL/3bt3Y/78+bXac3NzMXLkSOzatQsBAQFa0wYOHMjQSTpz+vRp0c+E8CJoIjI4ly5d0oSfOXPm4N69e7hy5Qru3LmDMWPGAAA+/fRTFBQUiFmmwfD09MTIkSMRFRWFvLy8RvurT2spFAocPHgQo0aNAgBs2rQJZmZmCAsLw61bt1q1ZiKxMQARkcH5+OOPATw+8rNp0yZNu1wux86dO2FmZgYAOHz4sBjlGZyMjAwcOXIEK1asgJubW6P9T5w4AeDxqfiXXnpJ0+7u7o45c+bgzp072LZtW6vVS2QIGICIyOCcP38ewOMA9KRnn30WHTp0AAD8+uuveq3LFDx48ABZWVkAHl/X8yR12969e/VaF5G+MQARkcEqKSnBv/71L622EydOQKVSAQAePnwoRllG7fz586isrMSzzz6LHj161Jquvjbx559/1ndpRHrFi6CJyOB06dIFwONTXsHBwVi/fj369OmD69ev44cffkC7du3w4MEDXL58WeRKjc/vv/8OAHWGHwB45pln0LlzZ9y6dQt3797VZ2lEesUAREQGZ9SoUUhMTISVlRXkcjlOnjyJkydPAnh8Wuz+/fsAwC/op6C+ALqu04tqzzzzDG7fvs17SpFJ4ykwIjI406dPh42NDa5fv447d+4gKSkJ169fx9atWyGTyTT9/vzf1DTqewM19P+uvvsHEZkSHgEiIoNz7do13L59G2ZmZrh16xamTp2qmdazZ0/Y2tqioKAAZWVlIlZpnNQXkN+7d6/ePuojbKZ0U02iJ+ntCFB5eTnmzZsHOzs7WFhYwNPTEzt37mzSvMXFxQgNDYWNjQ0sLS3h7e2t+RXDkzIzM+Ht7Q1LS0vY2NggNDQUxcXFuhwKEbWynTt3oqqqCjNmzIBSqcRbb72FiIgI/POf/0R+fj5cXFwAAJWVlSJXanx69uwJALhy5Uqd0+/du4fbt2+jc+fOmrBEZIr0dgQoMDAQubm5WLNmDZydnZGYmIipU6eipqYG06ZNq3e+yspKjB07Frdv30ZsbCy6dOmCzz//HH5+fsjMzNTcwAsAjhw5gnHjxmH8+PFIS0tDcXExlixZgrFjx+LkyZOQy+X6GCoRtZD6y9nKygpvvPEG3njjDa3p6p/JW1hY6L02Y9evXz/I5XLcvHkTV65cqXUx9OnTpwEAHh4eYpRHpDd6CUDp6ek4ePCgJvQAwOjRo1FUVIRFixYhODhYc2OzJ8XFxSE/Px/Hjx+Ht7e3Zt6BAwdi8eLFyMnJ0fRdtGgRnJ2dkZycDHPzx0Pr3bs3hg8fjm3btiEiIqKVR0pEumBrawsAmguf/+zIkSOaO0A/99xzeq3LFLRv3x5jxoxBRkYGkpOTMW/ePK3p6sepTJgwQYTqiPRHL6fAUlNToVAoEBQUpNUeFhaGa9euaYWYuubt16+fJvwAgLm5OUJCQvDjjz/i6tWrAICrV68iNzcXM2bM0IQfABg2bBicnZ2Rmpqq41ERUWuZNGkSAOD777/XuhP06dOntW7eV9eN/KhxCxYsAACsXLkSFy9e1LTn5eXhiy++QMeOHREeHi5WeUR6oZcAlJ+fj/79+2sFE+CPQ6z5+fkNzlvXoVh129mzZ7WWUV/fhtYBPD7VplKptF5EJI5BgwZpTs3MnTsXnTt3ho2NDQYPHoySkhIAwN/+9jetxzhI2fLly6FQKDQvtT+3LV++XNPu6uoKW1tblJaWwsXFBceOHQPw+P9pZWUlunbtis8//1zfwyDSK70EoNLSUlhZWdVqV7eVlpa2eF71n/X1bWgdALB69Wp06tRJ87K3t2+wPxG1rmXLlsHV1RVt27bFnTt3UFpainbt2uH555/Hjh078MUXX4hdosG4cuUK7t27p3mp/bntzxc9V1ZWap4eX1NTg6qqKq3lXbx4kQ+aJZOnt4ugG7rnRGP38mjOvPX1bWwdS5cu1RwWBgCVSsUQRCSiWbNmYdasWWKXYRS2bt2KrVu3Nrm/g4MD7/VDkqeXAGRtbV3nERj1PTzqOmrT3Hmtra0B1H00qaysrMF1AI9vuc9fiREREUmDXk6Bubu749y5c7UOs+bl5QEA3NzcGpxX3a+hedV/1te3oXUQERGRtOglAAUEBKC8vBy7d+/WalcqlbCzs8PQoUMbnPf8+fNavxSrqqpCQkIChg4dCjs7OwBA9+7dMWTIECQkJKC6ulrTNzs7GxcuXEBgYKCOR0X6durUKaxZswaBgYHo3r07ZDJZvfeBqampwdGjR7F48WIMHToUXbp0gVwuR58+fTBnzhwUFhbquXoikpLmfF7V56WXXoJMJoNMJtNcs0W6o5dTYOPGjYOvry8iIiKgUqng5OSEpKQk7N+/HwkJCZp7AIWHh0OpVKKgoAC9evUCAMycOROff/45goKCsGbNGnTp0gUbN27EhQsXkJmZqbWetWvXwtfXF0FBQZg7dy6Ki4vx7rvvws3NDWFhYfoYKrWimJgYpKWlNanvb7/9hpEjRwJ4HI6HDRuGNm3a4Mcff8QXX3yBxMREpKenY8SIEa1ZMhFJVHM+r+oSHx+PrKwsyGQyXq/VSvT2KIyUlBTMmDED0dHR8PPzQ05ODpKSkjB9+nRNn+rqalRXV2ttbLlcjqysLIwePRpvvfUWJk6ciOvXryMjI0PrLtAA4OPjg/T0dFy/fh0TJ07EW2+9hdGjRyMrK4vX95gAb29vREdHY+/evY3+a0gmk+Gvf/0rjhw5gitXrmDPnj1ISUlBQUEBQkNDcffuXUyfPh2PHj3SU/VEJCXN+bx60s2bN7Fw4UK8/PLLmkeXkO7p7VdgCoUCsbGxiI2NrbdPfHw84uPja7V37doVSqWySevx9fWFr6/v05ZJBmzJkiVN7tunTx/s37+/VrtcLsemTZuQmpqK33//HcePH68VpImIWqo5n1dPmjdvHu7du4eNGzdi7NixOqyK/kxvR4CIDIWFhQWcnZ0BPH7qOBGRofj222+RmJiIyMhI9OnTR+xyTBoDEElOdXU1ioqKAPzxzCkiIrHdv38fc+bMgYuLCxYvXix2OSZPb6fAiAzFzp07UVxcjGeffRbDhg0TuxwiIgBAVFQULl26hEOHDqFdu3Zil2PyeASIJOXy5cuap1+vWLGCF8cTkUE4ffo0YmNj8eabb8LHx0fsciSBAYgk4969ewgICEBJSQkmT56MOXPmiF0SERGqq6sxe/ZsdO7cGR999JHY5UgGT4GRJDx69AivvvoqTp06hREjRiAxMVHskoiIAACffvopTp8+jbi4ONjY2IhdjmQwAJHJq6mpQUhICL799lsMHDgQe/fuRfv27cUui4gIALB3717IZDIolUp8+eWXWtPU9xAKDAxEu3btsHLlSt7AVUcYgMjkzZ07F//617/g7OyMAwcOoHPnzmKXRESkRRAEfP/99/VOP3HiBACgpKREXyWZPAYgMmnvvfcevvjiC/Ts2RMHDx5Ely5dxC6JiEjL4cOH653m4OCAoqIiXL9+nbft0DFeBE0ma8OGDVi9ejVsbW2RmZnJW8oTEZEGjwCR0di3bx9iYmK02h4+fAgvLy/N+6ioKIwfPx7/+c9/sHDhQgBA7969sWrVqjqXOWvWLJ5PJyKda87nFYmDAYiMxs2bN5GTk6PVJgiCVtvNmzcBALdv39Y8VPfEiROa8+dP8vHxYQAiIp1rzucViYMBiIxGaGgoQkNDm9TXx8dHE4CIiPStOZ9XDbl06VKLl0F14zVAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDl6C0Dl5eWYN28e7OzsYGFhAU9PT+zcubNJ86akpGDq1KlwcnJC+/bt4eDggOnTp+PixYu1+vr4+EAmk9V6+fn56XpIREREZKTM9bWiwMBA5ObmYs2aNXB2dkZiYiKmTp2KmpoaTJs2rcF5165dC1tbW0RGRsLR0RGXL1/Ghx9+iEGDBiE7Oxuurq5a/R0dHbFjxw6tts6dO+t6SERERGSk9BKA0tPTcfDgQU3oAYDRo0ejqKgIixYtQnBwMMzMzOqdf+/evejSpYtW25gxY+Dg4IBPPvkEW7du1ZrWvn17eHl56X4gREREZBL0cgosNTUVCoUCQUFBWu1hYWG4du0acnJyGpz/yfADAHZ2dujRowcuX76s01qJiIjI9OklAOXn56N///4wN9c+4OTh4aGZ3ly//fYbioqKap3+AoCCggJYWVnB3Nwcffr0QWRkJCoqKhpcXmVlJVQqldaLiIiITJNeToGVlpbC0dGxVruVlZVmenNUVVUhPDwcCoUC8+fP15o2YsQIBAcHw8XFBRUVFcjIyMC6devwww8/4NChQ2jTpu7Mt3r1anzwwQfNqoOIiIiMU7MD0OHDhzF69Ogm9f3pp5/g6ekJAJDJZPX2a2jakwRBQHh4OI4ePYrdu3fD3t5ea/rKlSu13vv7+8PBwQELFy5EWloaAgIC6lzu0qVLsWDBAs17lUpVa9lERERkGpodgPr164ctW7Y0qW/Pnj0BANbW1nUe5SkrKwPwx5GgxgiCgFmzZiEhIQFKpRKTJk1q0nwhISFYuHAhsrOz6w1Acrkccrm8ScsjIiIi49bsANStWzfMmjWrWfO4u7sjKSkJVVVVWtcB5eXlAQDc3NwaXYY6/Gzfvh1xcXEICQlpXuFAvae/iIiISFr0kggCAgJQXl6O3bt3a7UrlUrY2dlh6NChDc4vCAJmz56N7du344svvkBYWFiz1q9UKgGAP40nIiIiAHq6CHrcuHHw9fVFREQEVCoVnJyckJSUhP379yMhIUHrHkDh4eFQKpUoKChAr169AABvv/024uLiMHPmTLi7uyM7O1vTXy6X47nnngMAHD16FKtWrUJAQAAcHR3x4MEDZGRkYPPmzRgzZgwmTpyoj+ESERGRgdPbnaBTUlIQGRmJ6OholJWVwcXFBUlJSZgyZYpWv+rqalRXV0MQBE3b3r17AQDbtm3Dtm3btPr36tULly5dAvD49JyZmRliYmJQUlICmUyGvn37YsWKFXjnnXd4CoyIiIgA6DEAKRQKxMbGIjY2tsF+8fHxiI+P12pTB5zGODk5Yd++fU9ZIREREUkFD4kQERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeTo7VdgpC09PR3nzp0TuwwyIWfOnAHw+Hl9JI6TJ08CAE6dOlXruYTGSv336cyZM9ixY4e4xZDJKCwsFLsEyIQ/33CHNFQqFTp16oQ7d+6gY8eOOlvuwYMH8fLLL+tseURERMbqwIED8PX11ekym/r9zSNAemZtbQ0AiImJQe/evUWuhkzJsWPHsGnTJrz22msYOHCg2OVI0pkzZ5CcnGxS20A9poiICAwfPlzscshEFBYWIioqSvOdKAYGIJH4+/tj0KBBYpdBJmbTpk2YPHkypk+fLnYpkrRjxw4kJyeb1DZQj2n48OEmMyYS3+nTpxEVFSVqDbwImoiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkR28BqLy8HPPmzYOdnR0sLCzg6emJnTt3Nmne+Ph4yGSyOl83btyo1T8zMxPe3t6wtLSEjY0NQkNDUVxcrOshERERkZEy19eKAgMDkZubizVr1sDZ2RmJiYmYOnUqampqMG3atCYtY/v27XBxcdFqs7a21np/5MgRjBs3DuPHj0daWhqKi4uxZMkSjB07FidPnoRcLtfZmIiIiMg46SUApaen4+DBg5rQAwCjR49GUVERFi1ahODgYJiZmTW6HDc3Nzz//PMN9lm0aBGcnZ2RnJwMc/PHw+vduzeGDx+Obdu2ISIiouUDIiIiIqOml1NgqampUCgUCAoK0moPCwvDtWvXkJOTo5P1XL16Fbm5uZgxY4Ym/ADAsGHD4OzsjNTUVJ2sh4iIiIybXgJQfn4++vfvrxVKAMDDw0MzvSkmTJgAMzMzWFlZITAwsNZ86vfq5T65robWU1lZCZVKpfUiIiIi06SXAFRaWgorK6ta7eq20tLSBue3tbVFZGQktm7dikOHDiEmJga5ubnw8vLCmTNntNbz5+U+ua6G1rN69Wp06tRJ87K3t2/S2IiIiMj4NDsAHT58uN5fZD35+s9//qOZTyaT1bvMhqYBgJ+fH1auXIkJEyZg5MiR+J//+R8cPXoUMpkM0dHRTV5eQ+tZunQp7ty5o3ldvny5wZqIiIjIeDX7Iuh+/fphy5YtTerbs2dPAI9/qVXX0ZeysjIAdR+xaYyDgwNGjBiB7OxsTZv6F2H1rauh9cjlcv5CjIiISCKaHYC6deuGWbNmNWsed3d3JCUloaqqSus6oLy8PACPf931NARBQJs2fxzEUi8nLy8P/v7+Wn3z8vKeej1ERERkWvRyDVBAQADKy8uxe/durXalUgk7OzsMHTq02cssLCzEsWPH4OXlpWnr3r07hgwZgoSEBFRXV2vas7OzceHCBQQGBj79IIiIiMhk6OU+QOPGjYOvry8iIiKgUqng5OSEpKQk7N+/HwkJCVr3AAoPD4dSqURBQQF69eoFAHjppZcwcuRIeHh4oGPHjsjLy8O6desgk8kQExOjta61a9fC19cXQUFBmDt3LoqLi/Huu+/Czc0NYWFh+hguERERGTi93Qk6JSUFkZGRiI6ORllZGVxcXJCUlIQpU6Zo9auurkZ1dTUEQdC0ubu74+uvv8ZHH32EiooKdOnSBWPGjEFUVBScnZ215vfx8UF6ejqio6MxceJEWFpaYsKECVi/fj2v8SEiIiIAegxACoUCsbGxiI2NbbBffHw84uPjtdo++eSTZq3L19cXvr6+zS2RiIiIJIJPgyciIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQAiIiIiyWEAIqPy4MEDLFu2DM7OzrCwsICdnR1mzpyJK1euiF0atbKysjJ06dIFMpkMLi4uYpdjUHx8fBp8LuP+/fvFLlFyTp06hTVr1iAwMBDdu3eHTCaDhYWF2GXRn+jtZ/BELfXgwQOMHTsWx48fR7du3TBp0iRcunQJ27dvx7///W+cOHECffr0EbtMaiULFixASUmJ2GUYtFdffRUKhaJWe/fu3UWoRtpiYmKQlpYmdhnUAAYgMhoffvghjh8/Dm9vbxw4cEDzQb9hwwa88847mDlzJo4cOSJyldQasrKyoFQq8be//Q2bN28WuxyD9dFHH8HBwUHsMgiAt7c3Bg4ciBdeeAEvvPACbG1txS6JnsAAREbh0aNH+OyzzwAAn3/+uda/chcsWAClUonvv/8ep06dwuDBg8Uqk1pBRUUF5syZgwEDBmDhwoUMQGQUlixZInYJ1AheA0RG4YcffsDt27fRp08fPPfcc7Wmv/baawCAvXv36rs0amUffPABCgoKsGnTJrRt21bscojIRPAIEBmFM2fOAAAGDRpU53R1u7ofmYaff/4ZH3/8McLCwjBy5EhcunRJ7JIMWlxcHEpLS9GmTRs4Oztj8uTJ6Nmzp9hlERkkBiAyCr///jsAoEePHnVOV7er+5Hxq6mpwezZs9G5c2esW7dO7HKMwsqVK7XeL1y4EFFRUYiKihKpIiLDxVNgZBTKy8sBAJaWlnVOf+aZZ7T6kfH77LPP8OOPP2L9+vWwtrYWuxyDNnLkSHz11VcoKCjA/fv3ceHCBaxatQrm5uaIjo5u9CHURFLEAERGQRAEAIBMJmtwOpmGy5cv4/3338eoUaMQGhoqdjkGb8WKFQgJCYGjoyPat28PZ2dnvPfee9izZw8AYNmyZaioqBC3SCIDwwBERqFDhw4AgHv37tU5/f79+wBQ5z1QyPjMnTsXDx8+xKZNm8Quxai9/PLLeP7553Hnzh1kZ2eLXQ6RQeE1QGQU1Bdy1nfHZ3U7L/g0Df/+97/RuXNnREREaLU/ePAAwONrvXx8fDR9GXzr17dvX5w8eRLXr18XuxQig8IAREZh4MCBAIDTp0/XOV3d7uHhobeaqHXdvn273htbVlRUaKZVVVXpsyyjc+vWLQA8Okr0JJ4CI6MwfPhwdOrUCQUFBfjpp59qTU9OTgYATJgwQd+lUSsQBKHOV2FhIQCgX79+mrbOnTuLW6wBu3nzJo4ePQqg/ltIEEkVAxAZhXbt2uEf//gHAOAf//iH1rVAGzZswM8//4wRI0bghRdeEKtEIlFkZ2fj0KFDtX4IcOnSJQQEBODevXt45ZVX6r2FBJFU8RQYGY33338fmZmZOH78OPr27YsXX3wRRUVFyMnJgbW1NbZv3y52iUR6d/78eYSFhaFbt25wdnaGra0trly5glOnTuHBgwdwdXXFli1bxC5Tcvbt24eYmBittocPH8LLy0vzPioqCuPHj9d3afT/YwAio2FhYYFDhw5h9erVSExMxJ49e/CXv/wFb775JmJiYmBvby92iUR6N3ToUERERCAnJwe//PILjh07hmeeeQaenp4ICgpCREQE2rdvL3aZknPz5k3k5ORotQmCoNV28+ZNfZdFf8IAREalffv2WLFiBVasWCF2KSQCBwcH3vPpCf3798fGjRvFLoOeEBoayntYGTheA0RERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSo7cAVF5ejnnz5sHOzg4WFhbw9PTEzp07mzSvj48PZDJZva8bN2402tfPz6+1hkZERERGRm83QgwMDERubi7WrFkDZ2dnJCYmYurUqaipqcG0adManHfjxo1QqVRabffv34efnx8GDx4MW1tbrWmOjo7YsWOHVhsfmEhERERqeglA6enpOHjwoCb0AMDo0aNRVFSERYsWITg4GGZmZvXOP2DAgFptSqUSjx49wqxZs2pNa9++vdbzVoiIiIj+TC+nwFJTU6FQKBAUFKTVHhYWhmvXrtV6XkpTxMXFQaFQIDg4WFdlEhERkUToJQDl5+ejf//+MDfXPuDk4eGhmd4cFy9exNGjRzFlyhQoFIpa0wsKCmBlZQVzc3P06dMHkZGRqKioaHCZlZWVUKlUWi8iIiIyTXo5BVZaWgpHR8da7VZWVprpzREXFwcACA8PrzVtxIgRCA4OhouLCyoqKpCRkYF169bhhx9+wKFDh9CmTd2Zb/Xq1fjggw+aVQcREREZp2YHoMOHD2P06NFN6vvTTz/B09MTACCTyert19C0J1VVVUGpVMLV1bXO63xWrlyp9d7f3x8ODg5YuHAh0tLSEBAQUOdyly5digULFmjeq1Qq2NvbN7kuIiIiMh7NDkD9+vXDli1bmtS3Z8+eAABra+s6j/KUlZUB+ONIUFOkp6fjxo0bWLJkSZPnCQkJwcKFC5GdnV1vAJLL5ZDL5U1eJhERERmvZgegbt261fnLq4a4u7sjKSkJVVVVWtcB5eXlAQDc3NyavKy4uDi0a9cOM2bMaFYNAOo9/UVERETSopdEEBAQgPLycuzevVurXalUws7ODkOHDm3Scm7cuIH09HRMnjwZ1tbWTV6/UqkEAP40noiIiADo6SLocePGwdfXFxEREVCpVHByckJSUhL279+PhIQErXsAhYeHQ6lUoqCgAL169dJajlKpRFVVVb1HoI4ePYpVq1YhICAAjo6OePDgATIyMrB582aMGTMGEydObNVxEhERkXHQ252gU1JSEBkZiejoaJSVlcHFxQVJSUmYMmWKVr/q6mpUV1dDEIRay9i2bRscHBzw0ksv1bmObt26wczMDDExMSgpKYFMJkPfvn2xYsUKvPPOOzwFRkRERAD0GIAUCgViY2MRGxvbYL/4+HjEx8fXOe3ChQsNzuvk5IR9+/Y9bYlEREQkETwkQkRERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSo5cAdPfuXSxevBgvv/wynn32WchkMixfvrxZyyguLkZoaChsbGxgaWkJb29vZGVl1dk3MzMT3t7esLS0hI2NDUJDQ1FcXKyDkRAREZEp0EsAKi0txebNm1FZWYnJkyc3e/7KykqMHTsWWVlZiI2NRVpaGrp27Qo/Pz8cOXJEq++RI0cwbtw4dO3aFWlpaYiNjUVmZibGjh2LyspKHY2IiIiIjJm5PlbSq1cv3Lp1CzKZDCUlJdi6dWuz5o+Li0N+fj6OHz8Ob29vAMDo0aMxcOBALF68GDk5OZq+ixYtgrOzM5KTk2Fu/nh4vXv3xvDhw7Ft2zZERETobmBERERklPRyBEgmk0Emkz31/KmpqejXr58m/ACAubk5QkJC8OOPP+Lq1asAgKtXryI3NxczZszQhB8AGDZsGJydnZGamvr0gyAiIiKToZcjQC2Vn5+PF198sVa7h4cHAODs2bPo3r078vPztdqf7Hvs2LF611FZWal1ikylUrW07AadO3euVZdP0lNYWKj58/Tp0yJXI02muA1McUwkPoP4DhT07ObNmwIAYdmyZU2ep23btsLf//73Wu3Hjx8XAAiJiYmCIAjCjh07BADCiRMnavX929/+JrRr167edSxbtkwAUOt1586dJtfZFL/++mud6+GLL7744osvqb1+/fVXnX7HCoIg3LlzRwAa//5u9hGgw4cPY/To0U3q+9NPP8HT07O5q6hTQ6fQnpxWX9+GlrF06VIsWLBA816lUsHe3r6ZVTaub9+++PXXX3H37l2dL5uotLQU1tbWYpchaaa4DUxxTCS+Dh06oG/fvqKtv9kBqF+/ftiyZUuT+vbs2bPZBdXF2toapaWltdrLysoAAFZWVpp+AOrtq+5XF7lcDrlcrotyGyXmBiciIqKnCEDdunXDrFmzWqOWerm7uyMvL69Wu7rNzc1N68+8vDz4+/vX6queTkRERNJmFHeCDggIwPnz57V+7l5VVYWEhAQMHToUdnZ2AIDu3btjyJAhSEhIQHV1taZvdnY2Lly4gMDAQL3XTkRERIZHbwEoIyMDycnJ2Lt3LwDgl19+QXJyMpKTk3H//n1Nv/DwcJibm6OoqEjTNnPmTLi6uiIoKAiJiYnIzMzE66+/jgsXLmDt2rVa61m7di3Onz+PoKAgZGZmIjExEa+//jrc3NwQFhamn8ESERGRQdPbz+AjIiK0Qs2uXbuwa9cuAI9/Xung4AAAqK6uRnV1NQRB0PSVy+XIysrC4sWL8dZbb+H+/fvw9PRERkYGRo0apbUeHx8fpKenIzo6GhMnToSlpSUmTJiA9evX6+0aHyIiIjJsMuHPSYM0VCoVOnXqhDt37qBjx45il0NERERN0NTvb6O4BoiIiIhIlxiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHL0didoY6O+P6RKpRK5EiIiImoq9fd2Y/d5ZgCqx927dwEA9vb2IldCREREzXX37l106tSp3ul8FEY9ampqcO3aNXTo0AEymUxny1WpVLC3t8fly5dN9hEbpj5Gjs/4mfoYTX18gOmPkeN7eoIg4O7du7Czs0ObNvVf6cMjQPVo06YNevTo0WrL79ixo0n+pf4zUx8jx2f8TH2Mpj4+wPTHyPE9nYaO/KjxImgiIiKSHAYgIiIikhwGID2Ty+VYtmwZ5HK52KW0GlMfI8dn/Ex9jKY+PsD0x8jxtT5eBE1ERESSwyNAREREJDkMQERERCQ5DEBEREQkOQxAOnT37l0sXrwYL7/8Mp599lnIZDIsX768WcsoLi5GaGgobGxsYGlpCW9vb2RlZdXZNzMzE97e3rC0tISNjQ1CQ0NRXFysg5HUr7y8HPPmzYOdnR0sLCzg6emJnTt3NmleHx8fyGSyel83btxotK+fn19rDQ1Ay8YXHx/fpLGpibH9gJaNMSUlBVOnToWTkxPat28PBwcHTJ8+HRcvXqzVtzW3YUvGYOj7mNrTjtFQtlFjnnZ8xrKfAU8/RmP4rARa/p0n+r4okM4UFhYKnTp1EkaOHCnMmjVLACAsW7asyfM/ePBAcHNzE3r06CEkJCQIBw4cECZNmiSYm5sLhw8f1up7+PBhwdzcXJg0aZJw4MABISEhQejevbvg5uYmPHjwQMcj+4Ovr6/QuXNn4Z///Kfw3Xffaca5Y8eORuc9e/ascOLECa1XVlaW0LZtW8HLy0ur76hRowRHR8da/c+dO9daQxMEoWXj2759uwBA2L59e626Hz58qNVXrO0nCC0b45AhQ4RXXnlF2LZtm3D48GHhq6++Evr37y8oFAohPz9fq29rbsOnHYMx7GNqTztGQ9lGjXna8RnLfiYITz9GY/isFISWfecZwr7IAKRDNTU1Qk1NjSAIgnDz5s1mB6DPP/9cACAcP35c0/bo0SNhwIABwpAhQ7T6vvDCC8KAAQOER48eadqOHTsmABA2btzYsoHUY9++fQIAITExUavd19dXsLOzE6qqqpq9zPj4eAGAsHXrVq32UaNGCa6uri2qt7laOj71B3Nubm6j6xJj+wlCy8f43//+t1bb1atXhbZt2wrh4eFa7a21DVsyBkPfx9RaMkZD2EaNacn4jGE/EwTdf14a0melWku+8wxhX+QpMB1SH3p8WqmpqejXrx+8vb01bebm5ggJCcGPP/6Iq1evAgCuXr2K3NxczJgxA+bmfzzNZNiwYXB2dkZqaurTD6KR+hQKBYKCgrTaw8LCcO3aNeTk5DR7mXFxcVAoFAgODtZVmU+tNcZXF7G2H9DyMXbp0qVWm52dHXr06IHLly/rtNb6tGQMhr6P/bnOpx2jIWyjxuhjXzPmbVgXQ/qsVGvJd54h7IsMQAYkPz8fHh4etdrVbWfPntX0+3P7k33V01ujvv79+2v9JfxzHc1d78WLF3H06FFMmTIFCoWi1vSCggJYWVnB3Nwcffr0QWRkJCoqKp5+AI3Q1fgmTJgAMzMzWFlZITAwsNZ8Ym0/9bp1uQ0B4LfffkNRURFcXV1rTWuNbdiSMRj6Pqam6+2k723UGF2Mz5D3M/X6dbUNDe2zUhcMYV/kw1ANSGlpKaysrGq1q9tKS0u1/qyvr3p6a9Tn6OjYaH1NFRcXBwAIDw+vNW3EiBEIDg6Gi4sLKioqkJGRgXXr1uGHH37AoUOHGnzC79Nq6fhsbW0RGRkJLy8vdOzYEXl5eVizZg28vLxw7NgxDBw4UGs5+t5+6nXrchtWVVUhPDwcCoUC8+fP15rWWtuwJWMw9H1MTZfbSYxt1JiWjM8Y9jP1+nW1DQ3ts1IXDGFfZACqx+HDhzF69Ogm9f3pp5/g6empk/U2dDjxyWn19W3KIcmnHV9z6mtIVVUVlEolXF1d4eXlVWv6ypUrtd77+/vDwcEBCxcuRFpaGgICAhpcvhjj8/Pz0/rlxciRIzF+/Hi4u7sjOjoaaWlpTVpeU/8/ir0NBUFAeHg4jh49it27d8Pe3l5reku3YUNaMgZ97WMtpYvtJOY2aszTjk/f+1lL6GIbtvZnpZjE3hcZgOrRr18/bNmypUl9e/bsqZN1Wltb15lmy8rKAPyRgK2trQHU/S+IsrKyOpPyk55mfE2trynS09Nx48YNLFmypMnzhISEYOHChcjOzm50pxZ7fGoODg4YMWIEsrOzNW262H6AuGMUBAGzZs1CQkIClEolJk2a1KT5mrMN69OSMehzH2sJXWwnMbdRY3S9r7Xmfva0dDXG1v6sFIsh7IsMQPXo1q0bZs2apdd1uru7Iy8vr1a7us3NzU3rz7y8PPj7+9fqq57ekKcZn7u7O5KSklBVVaV1XvvJ+poiLi4O7dq1w4wZM5pVA4AmHdIVe3x/JgiCVs262H6AeGNUf7Fu374dcXFxCAkJaVYNQNO2YX1aMgZ97mMt0dLtJPY2akxr7GuttZ89LV2NsbU/K8ViEPviU/9+jBr0ND+D37hxowBAyM7O1rQ9evRIcHV1FYYOHarVd8iQIYKbm5vWTylPnDghABA2bdrU4vrrkp6eLgAQdu7cqdXu5+fXrJ91Xr9+XTA3Nxdef/31Zq1/7dq1AgBhz549zZqvqXQ1vj/77bffBIVCIUyePFmrXYztJwgtH2NNTY0QHh4uyGQyYfPmzc1evy62YUvGYOj7mFpLxmgI26gxut7XDG0/EwTdjNFQPyvr0tzvPEPYFxmAdCw9PV3YtWuXsG3bNgGAEBQUJOzatUvYtWuXcO/ePU2/mTNnCmZmZsKlS5c0bQ8ePBBcXV0Fe3t7YceOHcLBgweFgICAOm8MdejQIcHc3FwICAgQDh48KOzYsUOwt7fXy40Q//KXvwibN28WvvvuO2H27NkCACEhIUGrX13jU1uzZo0AQDhw4ECd6/j++++Fv/71r8I///lP4cCBA8I333wjRERECGZmZsKYMWOE6urqVhmbILRsfGPHjhU++OADITU1VcjKyhI+/fRTwc7OTujQoYOQl5enNb9Y26+lY/zHP/4hABBmzpxZ68Zrp0+f1vRr7W3YlDEY6z7W0jEayjZqrfEZy37WkjGqGfJnpVpTvvMMdV9kANKxXr16CQDqfBUWFmr6vfnmm7XaBEEQbty4IbzxxhuClZWVYGFhIXh5eQkHDx6sc10HDhwQvLy8BAsLC8HKykp444036rwJmi7dvXtXePvttwVbW1uhXbt2goeHh5CUlFSrX33jEwRBcHZ2FhwcHDQ30HrSxYsXBX9/f6F79+6CXC4XLCwsBHd3d2HVqlWt/qHVkvHNmzdPGDBggNChQwfB3NxcsLOzE0JCQoQLFy7UuS4xtp8gtGyMDf397tWrl6Zfa2/DpozBWPcxtacdo6Fso9Yan7HsZ4LQsr+ngmDYn5VqTfnOM9R9USYIgvD0J9CIiIiIjI/hXiFFRERE1EoYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIcv4/oDxIXm/JlqoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "theta, radii = grid.cartesian_gridpts([-1, -1], [1, 1], [3, 3])\n", - "null_hypos = [grid.HyperPlane(-np.identity(2)[i], -0.1) for i in range(2)]\n", - "g = grid.build_grid(theta, radii, null_hypos)\n", - "grid.plot_grid2d(g)" + "seed = 10\n", + "\n", + "target_hob_cost = 0.001\n", + "target_hob_rel_bound = 0.3\n", + "target_sim_cost = 0.001\n", + "target_sim_rel_bound = 0.3\n", + "# N_max = int(2e5)\n", + "\n", + "iter_max = 100" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1. , -0.33333333],\n", - " [ 1. , -1. ],\n", - " [ 0.33333333, -0.33333333],\n", - " [ 0.33333333, -1. ]])" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "g.vertices[1]" + "from rich import print as rprint" ] }, { @@ -181,134 +118,1055 @@ "outputs": [ { "data": { + "text/html": [ + "
{\n",
+       "    'iter': 0,\n",
+       "    'cur_bound': '14.0176',\n",
+       "    'n_tiles': 16,\n",
+       "    'total_sims': 80000,\n",
+       "    'new_sims': '0.1m',\n",
+       "    'total_sims_so_far': '0.1m',\n",
+       "    'n_add_sims': 2,\n",
+       "    'n_add_sims_because_expensive': 2,\n",
+       "    'n_add_sims_because_loose': 0,\n",
+       "    'n_refined': 16,\n",
+       "    'n_refined_because_expensive': 16,\n",
+       "    'n_refined_because_loose': 16,\n",
+       "    'simulation_runtime': '0.80s',\n",
+       "    'iteration_runtime': '0.87s'\n",
+       "}\n",
+       "
\n" + ], "text/plain": [ - "array([5, 6, 7, 8, 9])" + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'14.0176'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m16\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m80000\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'0.1m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'0.1m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m16\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m16\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m16\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'0.80s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'0.87s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" ] }, - "execution_count": 7, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 1,\n",
+       "    'cur_bound': '1.3553',\n",
+       "    'n_tiles': 67,\n",
+       "    'total_sims': 430000,\n",
+       "    'new_sims': '0.3m',\n",
+       "    'total_sims_so_far': '0.4m',\n",
+       "    'n_add_sims': 2,\n",
+       "    'n_add_sims_because_expensive': 2,\n",
+       "    'n_add_sims_because_loose': 0,\n",
+       "    'n_refined': 67,\n",
+       "    'n_refined_because_expensive': 53,\n",
+       "    'n_refined_because_loose': 67,\n",
+       "    'simulation_runtime': '0.49s',\n",
+       "    'iteration_runtime': '0.56s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m1\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'1.3553'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m67\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m430000\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'0.3m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'0.4m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m67\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m53\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m67\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'0.49s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'0.56s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 2,\n",
+       "    'cur_bound': '0.2705',\n",
+       "    'n_tiles': 281,\n",
+       "    'total_sims': 1883750,\n",
+       "    'new_sims': '1.5m',\n",
+       "    'total_sims_so_far': '1.9m',\n",
+       "    'n_add_sims': 61,\n",
+       "    'n_add_sims_because_expensive': 3,\n",
+       "    'n_add_sims_because_loose': 58,\n",
+       "    'n_refined': 230,\n",
+       "    'n_refined_because_expensive': 78,\n",
+       "    'n_refined_because_loose': 230,\n",
+       "    'simulation_runtime': '1.04s',\n",
+       "    'iteration_runtime': '1.11s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.2705'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m281\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m1883750\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'1.5m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'1.9m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m61\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m3\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m58\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m230\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m78\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m230\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'1.04s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'1.11s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 3,\n",
+       "    'cur_bound': '0.1499',\n",
+       "    'n_tiles': 1135,\n",
+       "    'total_sims': 9387500,\n",
+       "    'new_sims': '7.5m',\n",
+       "    'total_sims_so_far': '9.4m',\n",
+       "    'n_add_sims': 23,\n",
+       "    'n_add_sims_because_expensive': 8,\n",
+       "    'n_add_sims_because_loose': 15,\n",
+       "    'n_refined': 624,\n",
+       "    'n_refined_because_expensive': 76,\n",
+       "    'n_refined_because_loose': 624,\n",
+       "    'simulation_runtime': '2.15s',\n",
+       "    'iteration_runtime': '2.22s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m3\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.1499'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m1135\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m9387500\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'7.5m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'9.4m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m23\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m8\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m15\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m624\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m76\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m624\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'2.15s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'2.22s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 4,\n",
+       "    'cur_bound': '0.0868',\n",
+       "    'n_tiles': 3200,\n",
+       "    'total_sims': 32388076,\n",
+       "    'new_sims': '23.0m',\n",
+       "    'total_sims_so_far': '32.4m',\n",
+       "    'n_add_sims': 103,\n",
+       "    'n_add_sims_because_expensive': 17,\n",
+       "    'n_add_sims_because_loose': 86,\n",
+       "    'n_refined': 2156,\n",
+       "    'n_refined_because_expensive': 93,\n",
+       "    'n_refined_because_loose': 2156,\n",
+       "    'simulation_runtime': '6.12s',\n",
+       "    'iteration_runtime': '6.20s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m4\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0868'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m3200\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m32388076\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'23.0m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'32.4m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m103\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m17\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m86\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m2156\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m93\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m2156\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'6.12s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'6.20s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 5,\n",
+       "    'cur_bound': '0.0750',\n",
+       "    'n_tiles': 11240,\n",
+       "    'total_sims': 129579264,\n",
+       "    'new_sims': '97.2m',\n",
+       "    'total_sims_so_far': '129.6m',\n",
+       "    'n_add_sims': 85,\n",
+       "    'n_add_sims_because_expensive': 29,\n",
+       "    'n_add_sims_because_loose': 56,\n",
+       "    'n_refined': 722,\n",
+       "    'n_refined_because_expensive': 121,\n",
+       "    'n_refined_because_loose': 601,\n",
+       "    'simulation_runtime': '18.61s',\n",
+       "    'iteration_runtime': '18.68s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m5\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0750'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m11240\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m129579264\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'97.2m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'129.6m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m85\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m29\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m56\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m722\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m121\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m601\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'18.61s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'18.68s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 6,\n",
+       "    'cur_bound': '0.0655',\n",
+       "    'n_tiles': 13254,\n",
+       "    'total_sims': 163719454,\n",
+       "    'new_sims': '34.1m',\n",
+       "    'total_sims_so_far': '163.7m',\n",
+       "    'n_add_sims': 108,\n",
+       "    'n_add_sims_because_expensive': 18,\n",
+       "    'n_add_sims_because_loose': 90,\n",
+       "    'n_refined': 152,\n",
+       "    'n_refined_because_expensive': 136,\n",
+       "    'n_refined_because_loose': 16,\n",
+       "    'simulation_runtime': '33.92s',\n",
+       "    'iteration_runtime': '33.99s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m6\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0655'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m13254\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m163719454\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'34.1m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'163.7m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m108\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m18\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m90\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m152\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m136\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m16\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'33.92s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'33.99s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 7,\n",
+       "    'cur_bound': '0.0608',\n",
+       "    'n_tiles': 13502,\n",
+       "    'total_sims': 180692457,\n",
+       "    'new_sims': '17.0m',\n",
+       "    'total_sims_so_far': '180.7m',\n",
+       "    'n_add_sims': 86,\n",
+       "    'n_add_sims_because_expensive': 59,\n",
+       "    'n_add_sims_because_loose': 27,\n",
+       "    'n_refined': 194,\n",
+       "    'n_refined_because_expensive': 182,\n",
+       "    'n_refined_because_loose': 12,\n",
+       "    'simulation_runtime': '26.62s',\n",
+       "    'iteration_runtime': '26.69s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m7\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0608'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m13502\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m180692457\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'17.0m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'180.7m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m86\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m59\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m27\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m194\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m182\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m12\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'26.62s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'26.69s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 8,\n",
+       "    'cur_bound': '0.0589',\n",
+       "    'n_tiles': 13812,\n",
+       "    'total_sims': 210256713,\n",
+       "    'new_sims': '29.6m',\n",
+       "    'total_sims_so_far': '210.3m',\n",
+       "    'n_add_sims': 139,\n",
+       "    'n_add_sims_because_expensive': 121,\n",
+       "    'n_add_sims_because_loose': 18,\n",
+       "    'n_refined': 113,\n",
+       "    'n_refined_because_expensive': 104,\n",
+       "    'n_refined_because_loose': 9,\n",
+       "    'simulation_runtime': '37.66s',\n",
+       "    'iteration_runtime': '37.74s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m8\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0589'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m13812\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m210256713\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'29.6m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'210.3m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m139\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m121\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m18\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m113\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m104\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m9\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'37.66s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'37.74s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 9,\n",
+       "    'cur_bound': '0.0577',\n",
+       "    'n_tiles': 14061,\n",
+       "    'total_sims': 230644352,\n",
+       "    'new_sims': '20.4m',\n",
+       "    'total_sims_so_far': '230.6m',\n",
+       "    'n_add_sims': 86,\n",
+       "    'n_add_sims_because_expensive': 79,\n",
+       "    'n_add_sims_because_loose': 7,\n",
+       "    'n_refined': 134,\n",
+       "    'n_refined_because_expensive': 116,\n",
+       "    'n_refined_because_loose': 18,\n",
+       "    'simulation_runtime': '35.93s',\n",
+       "    'iteration_runtime': '36.00s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m9\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0577'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m14061\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m230644352\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'20.4m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'230.6m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m86\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m79\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m7\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m134\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m116\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m18\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'35.93s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'36.00s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 10,\n",
+       "    'cur_bound': '0.0579',\n",
+       "    'n_tiles': 14411,\n",
+       "    'total_sims': 259889872,\n",
+       "    'new_sims': '29.2m',\n",
+       "    'total_sims_so_far': '259.9m',\n",
+       "    'n_add_sims': 25,\n",
+       "    'n_add_sims_because_expensive': 22,\n",
+       "    'n_add_sims_because_loose': 3,\n",
+       "    'n_refined': 4,\n",
+       "    'n_refined_because_expensive': 4,\n",
+       "    'n_refined_because_loose': 0,\n",
+       "    'simulation_runtime': '42.86s',\n",
+       "    'iteration_runtime': '42.93s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m10\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0579'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m14411\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m259889872\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'29.2m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'259.9m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m25\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m22\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m3\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m4\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m4\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'42.86s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'42.93s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 11,\n",
+       "    'cur_bound': '0.0569',\n",
+       "    'n_tiles': 14417,\n",
+       "    'total_sims': 262528902,\n",
+       "    'new_sims': '2.6m',\n",
+       "    'total_sims_so_far': '262.5m',\n",
+       "    'n_add_sims': 27,\n",
+       "    'n_add_sims_because_expensive': 18,\n",
+       "    'n_add_sims_because_loose': 9,\n",
+       "    'n_refined': 356,\n",
+       "    'n_refined_because_expensive': 330,\n",
+       "    'n_refined_because_loose': 26,\n",
+       "    'simulation_runtime': '2.77s',\n",
+       "    'iteration_runtime': '2.84s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m11\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0569'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m14417\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m262528902\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'2.6m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'262.5m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m27\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m18\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m9\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m356\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m330\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m26\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'2.77s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'2.84s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 12,\n",
+       "    'cur_bound': '0.0573',\n",
+       "    'n_tiles': 15223,\n",
+       "    'total_sims': 336251816,\n",
+       "    'new_sims': '73.7m',\n",
+       "    'total_sims_so_far': '336.3m',\n",
+       "    'n_add_sims': 20,\n",
+       "    'n_add_sims_because_expensive': 20,\n",
+       "    'n_add_sims_because_loose': 0,\n",
+       "    'n_refined': 13,\n",
+       "    'n_refined_because_expensive': 5,\n",
+       "    'n_refined_because_loose': 8,\n",
+       "    'simulation_runtime': '80.06s',\n",
+       "    'iteration_runtime': '80.12s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m12\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0573'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m15223\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m336251816\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'73.7m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'336.3m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m20\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m20\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m13\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m5\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m8\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'80.06s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'80.12s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 13,\n",
+       "    'cur_bound': '0.0564',\n",
+       "    'n_tiles': 15260,\n",
+       "    'total_sims': 339508828,\n",
+       "    'new_sims': '3.3m',\n",
+       "    'total_sims_so_far': '339.5m',\n",
+       "    'n_add_sims': 25,\n",
+       "    'n_add_sims_because_expensive': 25,\n",
+       "    'n_add_sims_because_loose': 0,\n",
+       "    'n_refined': 4,\n",
+       "    'n_refined_because_expensive': 4,\n",
+       "    'n_refined_because_loose': 0,\n",
+       "    'simulation_runtime': '2.70s',\n",
+       "    'iteration_runtime': '2.71s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m13\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0564'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m15260\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m339508828\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'3.3m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'339.5m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m25\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m25\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m4\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m4\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'2.70s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'2.71s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 14,\n",
+       "    'cur_bound': '0.0558',\n",
+       "    'n_tiles': 15266,\n",
+       "    'total_sims': 344239801,\n",
+       "    'new_sims': '4.7m',\n",
+       "    'total_sims_so_far': '344.2m',\n",
+       "    'n_add_sims': 12,\n",
+       "    'n_add_sims_because_expensive': 12,\n",
+       "    'n_add_sims_because_loose': 0,\n",
+       "    'n_refined': 0,\n",
+       "    'n_refined_because_expensive': 0,\n",
+       "    'n_refined_because_loose': 0,\n",
+       "    'simulation_runtime': '3.50s',\n",
+       "    'iteration_runtime': '3.50s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m14\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0558'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m15266\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m344239801\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'4.7m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'344.2m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m12\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m12\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'3.50s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'3.50s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 15,\n",
+       "    'cur_bound': '0.0558',\n",
+       "    'n_tiles': 15266,\n",
+       "    'total_sims': 346644023,\n",
+       "    'new_sims': '2.4m',\n",
+       "    'total_sims_so_far': '346.6m',\n",
+       "    'n_add_sims': 11,\n",
+       "    'n_add_sims_because_expensive': 11,\n",
+       "    'n_add_sims_because_loose': 0,\n",
+       "    'n_refined': 0,\n",
+       "    'n_refined_because_expensive': 0,\n",
+       "    'n_refined_because_loose': 0,\n",
+       "    'simulation_runtime': '1.61s',\n",
+       "    'iteration_runtime': '1.61s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m15\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0558'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m15266\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m346644023\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'2.4m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'346.6m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m11\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m11\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'1.61s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'1.61s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 16,\n",
+       "    'cur_bound': '0.0558',\n",
+       "    'n_tiles': 15266,\n",
+       "    'total_sims': 348637011,\n",
+       "    'new_sims': '2.0m',\n",
+       "    'total_sims_so_far': '348.6m',\n",
+       "    'n_add_sims': 9,\n",
+       "    'n_add_sims_because_expensive': 9,\n",
+       "    'n_add_sims_because_loose': 0,\n",
+       "    'n_refined': 27,\n",
+       "    'n_refined_because_expensive': 27,\n",
+       "    'n_refined_because_loose': 0,\n",
+       "    'simulation_runtime': '1.37s',\n",
+       "    'iteration_runtime': '1.44s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m16\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0558'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m15266\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m348637011\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'2.0m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'348.6m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m9\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m9\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m27\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m27\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'1.37s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'1.44s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 17,\n",
+       "    'cur_bound': '0.0566',\n",
+       "    'n_tiles': 15317,\n",
+       "    'total_sims': 357245143,\n",
+       "    'new_sims': '8.6m',\n",
+       "    'total_sims_so_far': '357.2m',\n",
+       "    'n_add_sims': 3,\n",
+       "    'n_add_sims_because_expensive': 3,\n",
+       "    'n_add_sims_because_loose': 0,\n",
+       "    'n_refined': 2,\n",
+       "    'n_refined_because_expensive': 2,\n",
+       "    'n_refined_because_loose': 0,\n",
+       "    'simulation_runtime': '8.68s',\n",
+       "    'iteration_runtime': '8.73s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m17\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0566'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m15317\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m357245143\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'8.6m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'357.2m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m3\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m3\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'8.68s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'8.73s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'iter': 18,\n",
+       "    'cur_bound': '0.0557',\n",
+       "    'n_tiles': 15323,\n",
+       "    'total_sims': 357988021,\n",
+       "    'new_sims': '0.7m',\n",
+       "    'total_sims_so_far': '358.0m',\n",
+       "    'n_add_sims': 2,\n",
+       "    'n_add_sims_because_expensive': 2,\n",
+       "    'n_add_sims_because_loose': 0,\n",
+       "    'n_refined': 0,\n",
+       "    'n_refined_because_expensive': 0,\n",
+       "    'n_refined_because_loose': 0,\n",
+       "    'simulation_runtime': '1.35s',\n",
+       "    'iteration_runtime': '1.35s'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'iter'\u001b[0m: \u001b[1;36m18\u001b[0m,\n", + " \u001b[32m'cur_bound'\u001b[0m: \u001b[32m'0.0557'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m15323\u001b[0m,\n", + " \u001b[32m'total_sims'\u001b[0m: \u001b[1;36m357988021\u001b[0m,\n", + " \u001b[32m'new_sims'\u001b[0m: \u001b[32m'0.7m'\u001b[0m,\n", + " \u001b[32m'total_sims_so_far'\u001b[0m: \u001b[32m'358.0m'\u001b[0m,\n", + " \u001b[32m'n_add_sims'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_expensive'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'n_add_sims_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined_because_expensive'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_refined_because_loose'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'simulation_runtime'\u001b[0m: \u001b[32m'1.35s'\u001b[0m,\n", + " \u001b[32m'iteration_runtime'\u001b[0m: \u001b[32m'1.35s'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "done after 19 iterations\n" + ] } ], "source": [ - "LL = np.arange(10)\n", - "LL[LL.shape[0] - 5:]" + "# plt.subplots(\n", + "# iter_max // 3, 3, figsize=(10.0, 3.5 * iter_max / 3), constrained_layout=True\n", + "# )\n", + "\n", + "A = execute.ada_setup(start_grid, n_initial_sims=5000, delta=0.01, holderq=6)\n", + "cur_bound = np.inf\n", + "\n", + "report_history = []\n", + "for ada_i in range(iter_max):\n", + " # np.random.seed(seed)\n", + " start = time.time()\n", + " old_total = A.total_sims\n", + " A = execute.ada_simulate(A, accumulator, n_arm_samples)\n", + " sim_runtime = time.time() - start\n", + " assert np.all(A.sim_sizes == A.target_sim_sizes)\n", + "\n", + " # plt.subplot(iter_max // 3, 3, ada_i + 1)\n", + " # dots_plot2(A.g, typeI_upper_bound, hob_upper)\n", + " if ada_i == iter_max - 1:\n", + " break\n", + "\n", + " typeI_upper_bound = A.typeI_est + A.typeI_CI\n", + " cur_bound = np.max(A.hob_upper)\n", + " worst_tile = np.argmax(A.hob_upper)\n", + " should_refine = (\n", + " A.hob_upper[worst_tile] - typeI_upper_bound[worst_tile]\n", + " > typeI_upper_bound[worst_tile] - A.typeI_est[worst_tile]\n", + " )\n", + "\n", + " hob_target_bound = np.max(typeI_upper_bound)\n", + " hob_expensive = A.hob_upper > hob_target_bound + target_hob_cost\n", + " hob_loose = (\n", + " A.hob_upper - typeI_upper_bound\n", + " ) / typeI_upper_bound > target_hob_rel_bound\n", + " hob_tiny = A.hob_upper < 0.2 * hob_target_bound\n", + " which_refine = hob_expensive | (hob_loose & (~hob_tiny))\n", + "\n", + " sim_target_bound = np.max(A.typeI_est)\n", + " sim_expensive = typeI_upper_bound > sim_target_bound + target_sim_cost\n", + " sim_loose = (typeI_upper_bound - A.typeI_est) / (\n", + " A.typeI_est + 1e-9\n", + " ) > target_sim_rel_bound\n", + " sim_tiny = typeI_upper_bound < 0.2 * sim_target_bound\n", + " more_sims = sim_expensive | (sim_loose & (~sim_tiny))\n", + "\n", + " report = dict(\n", + " iter=ada_i,\n", + " cur_bound=f\"{cur_bound:.4f}\",\n", + " n_tiles=A.g.n_tiles,\n", + " total_sims=A.total_sims,\n", + " new_sims=f\"{(A.total_sims - old_total) / 1000000:.1f}m\",\n", + " total_sims_so_far=f\"{A.total_sims / 1000000:.1f}m\",\n", + " )\n", + "\n", + " # if (np.sum(which_refine) > 0) and (should_refine or np.sum(more_sims) == 0):\n", + " A.target_sim_sizes[more_sims] *= 2\n", + " report[\"n_add_sims\"] = np.sum(more_sims)\n", + " report[\"n_add_sims_because_expensive\"] = np.sum(sim_expensive)\n", + " report[\"n_add_sims_because_loose\"] = np.sum(sim_loose & (~sim_tiny))\n", + "\n", + " A, did_refine = execute.ada_refine(A, which_refine)\n", + " report[\"n_refined\"] = np.sum(which_refine)\n", + " report[\"n_refined_because_expensive\"] = np.sum(hob_expensive)\n", + " report[\"n_refined_because_loose\"] = np.sum(hob_loose & (~hob_tiny))\n", + " # elif np.sum(more_sims) > 0:\n", + " # A.target_sim_sizes[more_sims] += 5000\n", + " if np.sum(which_refine) == 0 and np.sum(more_sims) == 0:\n", + " print(\"done after\", ada_i, \"iterations\")\n", + " break\n", + "\n", + " report[\"simulation_runtime\"] = f\"{sim_runtime:.2f}s\"\n", + " report[\"iteration_runtime\"] = f\"{time.time() - start:.2f}s\"\n", + " rprint(report)\n", + " report_history.append(report)\n", + "\n", + "# plt.show()" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "5" + "(100000000, (4598126, 4))" ] }, - "execution_count": 8, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "10 - 5" + "n_arms = 4\n", + "n_arm_samples = 100\n", + "ys = np.arange(n_arm_samples + 1)\n", + "Ygrids = np.stack(np.meshgrid(*[ys] * n_arms, indexing=\"ij\"), axis=-1)\n", + "Yravel = Ygrids.reshape((-1, n_arms))\n", + "\n", + "# 2. Sort the grid arms while tracking the sorting order so that we can\n", + "# unsort later.\n", + "colsortidx = np.argsort(Yravel, axis=-1)\n", + "inverse_colsortidx = np.zeros(Yravel.shape, dtype=np.int32)\n", + "axis0 = np.arange(Yravel.shape[0])[:, None]\n", + "inverse_colsortidx[axis0, colsortidx] = np.arange(n_arms)\n", + "Y_colsorted = Yravel[axis0, colsortidx]\n", + "\n", + "# 3. Identify the unique datasets. In a 35^4 grid, this will be about 80k\n", + "# datasets instead of 1.7m.\n", + "Y_unique, inverse_unique = np.unique(Y_colsorted, axis=0, return_inverse=True)\n", + "(n_arm_samples**n_arms), Y_unique.shape" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 1.43 s, sys: 133 ms, total: 1.56 s\n", - "Wall time: 1.54 s\n" - ] + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6fc8bcce7a9a49b497f7f4d7ecb73d65", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5xcdfX/8dfn3jtte8lueu891ECoofcOQaqAgoigoiAiKmDDLl9ERUBBgdAR6V06oaZCEkjvfXezdWbu/fz+uDOzWUCY7C/MCnk/H49xs3PnM3dmcHfnzPmcc4y11iIiIiIiIlIATlc/ABERERER2X4oABERERERkYJRACIiIiIiIgWjAERERERERApGAYiIiIiIiBSMAhARERERESkYBSAiIiIiIlIwCkBERERERKRgFICIiIiIiEjBKAAREREREZGCUQAiIiIiIiIFowBEREREREQKRgGIiIiIiIgUjAIQEREREREpGAUgIiIiIiJSMApARERERESkYBSAiIiIiIhIwSgAERERERGRglEAIiIiIiIiBaMARERERERECkYBiIiIiIiIFIwCEBERERERKRgFICIiIiIiUjAKQEREREREpGAUgIiIiIiISMEoABERERERkYJRACIiIiIiIgWjAERERERERApGAYiIiIiIiBSMAhARERERESkYBSAiIiIiIlIwCkBERERERKRgFICIiIiIiEjBKAAREREREZGCUQAiIiIiIiIFowBEREREREQKRgGIiIiIiIgUjAIQEREREREpGAUgIiIiIiJSMApARERERESkYBSAiIiIiIhIwSgAERERERGRglEAIiIiIiIiBaMARERERERECkYBiIiIiIiIFIwCEBERERERKRgFICIiIiIiUjAKQEREREREpGAUgIiIiIiISMEoABERERERkYJRACIiIiIiIgWjAERERERERApGAYiIiIiIiBSMAhARERERESkYBSAiIiIiIlIwCkBERERERKRgFICIiIiIiEjBKAAREREREZGCUQAiIiIiIiIFowBEREREREQKRgGIiIiIiIgUjAIQEREREREpGAUgIiIiIiJSMApARERERESkYBSAiIiIiIhIwSgAERERERGRglEAIiIiIiIiBaMARERERERECkYBiIiIiIiIFIwCEBERERERKRgFICIiIiIiUjAKQEREREREpGAUgIiIiIiISMEoABERERERkYJRACIiIiIiIgWjAERERERERApGAYiIiIiIiBSMAhARERERESkYBSAiIiIiIlIwCkBERERERKRgFICIiIiIiEjBKAAREREREZGCUQAiIiIiIiIFowBEREREREQKRgGIiIiIiIgUjAIQEREREREpGAUgIiIiIiJSMApARERERESkYBSAiIiIiIhIwSgAERERERGRglEAIiIiIiIiBaMARERERERECkYBiIiIiIiIFIwCEBERERERKRivqx+AtAuCgJUrV1JaWooxpqsfjoiIiOTBWsvmzZvp1asXjlP4z3ZbW1tJJpMFPy9ANBolHo93ybnl80sByP+QlStX0rdv365+GCIiItIJy5Yto0+fPgU9Z2trKwMGlrBmtV/Q82b16NGDRYsWKQiRraIA5H9IaWkpEP4CKysr6+JHIyIiIvloaGigb9++ub/jhZRMJlmz2mfOgr6UlhU2+7K5IWD04GUkk0kFILJVFID8D8luuyorK1MAIiIi8jnTldunS0silJUUePtXEBT2fPKFoSJ0EREREREpGAUgIiIiIiJSMNqCJSIiIvI5ZwIwQWG3gBntwJJOUgZEREREREQKRhkQERERkc87a8JLoc8p0gnKgIiIiIiISMEoABERERERkYLRFiwRERGRzzkTmC4oQtcWLOkcZUBERERERKRglAERERER+ZwL2/AW/pwinaEMiIiIiIiIFIwyICIiIiKfd0HmUuhzinSCMiAiIiIiIlIwCkBERERERKRgtAVLRERE5HPO2PBS6HOKdIYyICIiIiIiUjDKgIiIiIh8zhnbBW14lQGRTlIGRERERERECkYByDayefNmLr30Ug466CBqamowxnDllVd29cMSEREREfmfogBkG9mwYQN//etfaWtr45hjjunqhyMiIiLbk8B2zUWkE1QDso3079+fTZs2YYxh/fr13HTTTV39kERERERE/ucoANlGjDFd/RBERERkO6U2vPJ5oi1YIiIiIiJSMMqAdKG2tjba2tpy3zc0NHTho5H/Rcunb+LZ387D9Qx+q08s7hK0+sSiDolSj71/PIbimnhXP0wREelqQeZS6HOKdIICkC70i1/8gquuuqqrH4YUyGuPLGPG86s5+Mwh1PYr4V/Xvku82OOob4zk/WnrmfbgMnY/rh+Dd6riif+bT6rV5+0bF1G3rBlrwSVMWUYMOFhKo9CyvoX+42JUja5m4NGDWfXEezTMW0vfEyYQKfJYed80YjVldD9iRxpnzKV51vuU77ML8f69uvrlEBERke2UApAu9P3vf5+LL744931DQwN9+/btwkckn5XFczZxxTFPY4An//E+ex3Vjyf//gHWQlNdkod+9R5+KuCx6+dx3LdH8dA172KAmkQU+6E9toEFYyAIYOWLK2h8uREsJDdsZtEfnwID615YQOWgKHWvLwBrCZqbqLv/AcCy6bnXGH7TTzGu2wWvhIiIiGzvFIB0oVgsRiwW6+qHIZ0QBJY3nlpBUUmEsXt0/8jxuS+sJdXmM+aAHhhjaKpPggULNG9OUb+hDUwYSNSvayWdDPPYqbaAhnWtZHsaGO+jzQ1s5hJYsOkAouH1rWubcrdJNbSSbvAzt4R03WaykUzQ2oYNLEbxh4jIF4YJLKbAbXELfT754lAAItIJt/zkHW796TsAXPGPfTnwS4Nzx/5z8wJu+uo0AE76+XiOumw0o3av5cwf78BbT6/ghG+PYfC4KvyUJVHsccZPdmDouGqev2MRk08fxMRj+tJSlyLZ6rPmhQ0YsmHElizGgfLRNXSvTlI1pprR396ZaKSNzXPXMvjcScQqIiz+y1PEasvpdcaBbKqJ0jj9PaoP2wcnoh99ERER6Rp6F7INPfbYYzQ1NbF582YA3n33Xe69914ADjvsMIqKirry4ck29O60tbkMxtw31nUIQBa8vgHjhAmHhW9sAMI2zSd/bywHnj6Y7v1LMMZw8U174EUcSipjHPDVIUw4uBfd+hXhug7n3DARPx1wy7EvseSV8D623IrlGYOHpd+etexy3mBiVXG8mMewC/YiWddCokcZAMMuPxYnEcUritHt6P0o32snIjVVhXuhRESkMFSELp8jCkC2ofPPP58lS5bkvr/nnnu45557AFi0aBEDBgzookcm29opl45j3lvrSZREOOrcER2OHXjBUGY8tpJUm89hF48EoLE+ydd3/TcrF2xm35MGsMcR/fndl1/C9Ryuenh/7vjBdN5/fQMjJtXwpR+N47dHvEDgB/SMRXL3a4HshqyUDQOS+fcuYsnNbxLvFufA2w9g+rfuJbmxmf6n7kRZ3wSLr38CJxFlzO9PY+1fbiW5ah0lu46j73e/UqBXSkRERKQjBSDb0OLFi7v6IUiB7LhvLx5ac9rHHus3rpL/W3pMh+vmTlvHygVhZuw/dy+mdWMaG4CfCnjy5vd5//UwyzH3lXU8d/MCgnSAteAUOdDiA+EHTSZzcYC0NSTXNxKLQOv6Vhbc8S7Jjc0ALP/XLKoHhT/eQUuS9Y9NI7lqHQCNr88kaG3Diav+SERERApPgwi3MyuWNHD0Tnew78C/8/oLK/Jel2zz+fpxD7Nbj79y+59mbNU5/+/K19i19q9c/pWnCbaiYO3J+z9gj943cco+97JpQ0ve696fs4FDR/+TA4ffypx31ua9rrEhyfkHPMRBvW7l8Tvez3tdPobv0o2aPuEWvN2O6MPeUwYA4LiGfU8bRP9xFQAM2rGKvU4bgHHCXEfQ5OfuI1sL4tCe9XYqSwCIVsQYeOJIImXhTJBeh4yk5oCx4W2iHtUH7EykphKA4gkjMbHoNn1+IiLStbKT0At9EekMY+2Hm3xKV2loaKC8vJz6+nrKyso+k3P89vKXufl3b4OFnffqzT+ePi6vdc89vIivH/cwAJGow4zNX8eYj3Zo+rBNG1qY1POm3Pf3TpvC6B1q8zrnwSP+wdKF9QD84Pd7c9oF4/Na94Nzn+Ff/3gPay2HnDCU391+SF7r/v33ufz03OcBqO6e4LHlZ+S1Ll+tzWlWL9pMv5EVOI5h7ZJGIjGXyh4JUkmflfM303t4GV7EoW5VC+lUwG1TXmHxaxuB9uAjgiXhWmIuTPzOSHY+ewCJ7kVES6OkG9toXddI8YAqjDG0rNiIVxInUl5E0JYktXYD0d7dMY4+exAR2VYK8ff70869dvYgykoL296wYbNP7ZiFXfK85fNNW7C2M8PHdsNmPj4fOb5b3usGDK3A8xzS6YAho6rzCj4ASsqi9OhTwurljRSVROjZpzTvc46Y0C0XgAwdXZ33uuFjq3OZluFj8183aFQlxoS1FUPH578uy/cDbrjyTT6YtYGzv78jRcUR/nblW/ToX8pXf7YzD98wl7efWckx3xjFwNGV/P37bxMv9jjn1zvz1r+X8/Jdi9nrlIHseFhv7v7BDFKtPmvnN3Y4RwBYDK0BJCKWdW+v582Va6ge3Y1x396BRf98g4a5axh09m7EyqMsuekZYrXlDDjvAOqeeYXGGXOpPHgvSnccvdXPT0RE/oepCF0+RxSAbGeO+NJwqmoT1G9s48BjB3/6goyBwyu5b9oU5ryzjv2OHJj3ukjE5a6XT+KlJ5ew0x69qKpJ5L32l38/iAOOWkCfQWXssFvPvNed/o3x9B1Ujp8O2O/IQXmvGzOxO39/+VgWz6tj32Pyf45Zzz2wiFuueQdjYOGcTfToVsy8t9djA/AiDvf+Zg4A059fzV6H9eOVB5YCEEu4PPunD8DC9CdWcei5w3jpH4sA6F7cvlXKp70I3RAOItwwYx3JOU2seHoZDklWTn0VDDTMW0v14Cib5ywHa4kkLI1PPQ5A8+z5DLvllziR9gJ3ERERkUJRALIdmrR/v06tGza2G8PG5p81yartWcxxZ47a6nXxhMeRpwzf6nXGGCYfvvUBBMCoXWoZtcunbxFrbU7z4A3vUVQa4bCzhuG6DoniSO788WKPeLGHwWCxFJdFM8cgGneJF2V+9CzESyI4rsH6FsdziBV77S2vApsr/rC0f9gUDiM0WIfc8UhpNqAwuIkITjySO+YWxbMvDibiYYy2YImIiEjXUAAi0gnXXzKNf984Fyy0NqU58ZtjmHRIX77/p71YMGcTU74xhljc4+7fz6J7vxKOv3A0/YaVM/0/qzns7KH0HFhKZY8EseIIJ1wymh3368m0+5ex+wn9oC1g4weNpNMBK15aT1imZXLDCAMs2VAj3quM6kHVlHSPUbvPIEp7RGmYt5Z+U3YkUuKx8s5XiNaU0fOE3SgZUk3TrHlU7DsR42kMuojIF4kJwkuhzynSGQpARDph/comTKYn7vpVYetbYwy77NebngNK6dm/BOMYdj+8H916FeE4htGTupMojtBneDnxIo9dDu9DvNgjEnMZtGMV6WRA0+pW/n5qOEU9wGKBGBChvQuWxeBnUiJrZ9SzYTaUJFJ88MBijn7gAOLdSyjqXY5xDVWThhGpKsG4DkXDBuBEPWJ9enTNiyYiIiKCAhCRTjnv57vSWJekqDTClG+H7W4XzN7I6bveRzoVsN9xA6mtKebBG+biOIaf3L0/vz7rRZobUgzfpRv7HDOAf1z+DgAX37oHd/9gJhuWN1Nd3j6bIxtwZOd/OIR1IBZIZ25jM//r+wa/zee1r9xNzGujZp+hlA2Is/r+aWAMI35yIutvupWguYXYgD4MuObSvBsJiIjI54Al7KJS6HOKdIICEJFOGDCyguueO6LDdXPeWEs6Feaj33p+Fd27FQMQBJZXH11Gc0MKgHlvrKeyPKzJMAbefmIlG5aHWZT6TW2UGS9X8wHtw3rczL8N7T+4nmOJuGAcC56LSxKATW8txW7KbNSyloY33iVoDmeptC1ejk2mNAtEREREuoQqUUW2kb2P7M/AkZU4ruGcy3fktO+Nx4s49Ohfwpe+O4Yxe3bHGDjxO2M49tujiBV7lFbHOObiUUw8vi8Ag8ZW5iKPbH5iyy222euy4wkDG+ZJrDX4SYtbWwOOYeBXJtHnlL0wEZdobTndT9iXxKghAFQeti+Ogg8RkS8UY9vrQAp2UQZEOkmDCP+HdOUgI9k2rLX4vsXzwtje9wMcx+S2O/npAHeLY8YYHKf92Lzn1nDdwS9gLThYHCBJGHjEAQeTG0QYd8F1LI5jKS9uI1IcYcqbJxArj+FkzmH9ALY4v/V9jKsCdBGRbel/YRDh+rcHUVZS2M+VGxoDuu2oQYSy9bQFS2QbaWlKccXpz/DBzA1c9MvdKSuL8rtvvEKPASX86LbJ3Pz9t3j76RVMuXQcoyfW8rszXyJR4nHpnXvz3F8X8MI/FzJgSHluC2+AwQVcLGm2nANiSAYQdy1+EG7jSqZc3NYUb37r37BpI0Mv3IdETYwFv3uIWG05Q394AhvveYim6e9SdeQBVB66bxe9SiIiIrK9UwAiso08e/8iXnxoCQC/+eZLdO9WzMpFm1m5cDO3XPU2T9zyPgB/+vY0dj+wD8vn1oOBO38yk9f+vhiAzctbKSbMUFgsbVvcf5QwAEkD2RyGYyyOydQeOg6Ns5bieQFzf/U0lYM82lZupG3lRlbf8RQtL74CwNp/3Ef5/pNwotqGJSLyhaFJ6PI5ohoQkU7YsKqZX537In/8zms0N4bF5X0Ht6ef+w2roN/wilw9x9AduuFGwvxFbb9i+owIMx02gP5jKkiUhQXj8UTH7VEf/nsSNWHGI5W7xuA44ZyQdNKQ9sP1Rf0rSfSryd0qMbB3bvaHV12B8fTZg4iIiHQNvQsR6YQ/fuc1nr9vcTjlvDzKWT/akXGTevCXZ49k4ZxNHHzyELyIw84H9KZH/xJ2PagPI3bsxuxX1rDnsQOoqIkzcGwV8RKPScf1Y+LhfZnxxCpss8+Dl80CtuxuaHEweJlMh4MlZmzuNtZCxPUxxjDu54fjtDbR46CRODGX8h0GEq0tp3LXoZSO6k3L3AWU7Doe4+izBxGRLxJjC18UriJ06SwFICKd4LiZflSWXBE5QDppSbcFBL7FupBuC0gnwxxGKhmQagsI/AAbWFJJHzdpsBbSqYB0m08y7dOMj0OY+XAwZOYd4ltwDLgYAps5OeAHDoE1xNwAUj5B0scGFqwlSPnYZBprLdb3sakU+MqZi4iISNdRACLSCd/47W6UVsRIlEaYcnE4iHD6S6v45iGPAvDsfYvoXlPEy/9eCsA3r9udP31rGn7a8sAf32Xfowfw7+vmArB+eTMPXz2HtqY0XswhvcVHSh4GN1eU3i57C5sJRMJ2vDDryseIRdOsfvI9KgbF2Pj8HAAGf/tQNt05FfyAjY8+x+Drf6IsiIiIiHQJBSDboSXv19G4OcmoHWq2ahr2hrXNLJ5fx7iJ3YlE8m/l2tKcYvabaxk+rhtlFbFPX5ARBJaZr6+mtlcJvfqV5r0O4IN3NxL4AcPGdtuqdWtXNLF6yWZGT6zFdf/7G/TK2gTfum5Sh+tWLW7M/Xvlogb8zX5unPniOXX46TBs2LCymZULNmMyd79iXj1tTeFs83TbR7MTZouvYVakvXjLMWCMwXUsxjW4Tri+ZUUd8Vgkd/7WpatzmQ+/rgGbTmNUhC4i8sWhInT5HFEAsp156cklfO3Ih7AWvvXT3fnqpTvltW718kaO3uEOGuuT7HVwP/7y0FF5rfP9gFP3vo95M9dT26uYh2aeSklZfm98f/7tF5j651l4EYepL53AqB1q81r38NR5fO/MpwC46i+TOeHs0XmtW/TuJs6ceD/JVp/DTh/Kj/42Oa91WZOPH8jLjyzh/ZkbueAXu1JaFuP/LnqVngNLOOuqHcDCW0+t4ORLxzFi525sXNlCotTj1Csn0LtvKS/+cxG1A0uY/czqDvebzXb4tP/ABplrwwxIgB9AkLaU7TgQ6jYy5Bv7kKiOsfDah4jVVtDztIPYWJTKteFVBywRERHpKgpAtjOvPbs89+8XHlucdwAy5621NNYnAXjl6WVYa/PKntRtaGXezPUArF3ZxMJ5mxi3S/e8zvn8I4uBsD7ijRdW5h2AvPL0MkymYPvlJ5fmHYDMeGU1ydZwxvgrjy3La82W4gmPq2/fn1TSJxYPf7RueP0ovKiL4xguum43kq0+sUR47LevHIrjGFzP4YQfj+OoS0fRuDHJLw59lvVLmvAch6DNkmgJ8DBEMuexQNSEqQ3HtXguuA6YeIQdf3U40RIPNx7eetxfzse4DsZ1qP3yidhUSsGHiMgXkTIg8jmiTeDbmSO+NJzS8hhexOHUr4/Le92u+/ZmyKgqAM745oS8t25V1SQ4bMpQAHbasycjxue/JerL356AcaC2VzEHHjs473XHnzWKeMIjFnM58Sv5BR8Aex3Rnx79SzAGTrk4/9cma+PaFqaMupvJ5X/ntt/O4NG/zeewin8yZeBdLHmvjgsnPcwRpf/k+m+/xhuPLOekqjs5pcddzH9zPb896nnOKb6Hf1z4FufduBsRx8VPWqpw8DKbsLb8PZ/MpEVskJmiHjikm31ePOk2ntv7dyz6+6use+Jt3jjyat750q9pWbKaZT/+LR+c+W3W/O3OrX5uIiIiItuKsdaqidr/iIaGBsrLy6mvr6esrOzTF3RSKuXjpy3xxNYlwILA0tKcorhk6z9Bb9qcpKgkslU1JwDNTSlicfcT6zE+TrLNx1qby0Tky/cD2lp8ikoin37jD/n33+byi/NeBKC8KkZttyKWz28A4LCzhvLE3z7I3Xa3A/vwzlOrMAb2OXkgM25vz0ztNqUf0+5eirXQqzJGcmP71A+HcAhhxFhKIhbHBLguxCJpYgmH/j1X4boWtzhK9RCXlsVrAeh55DhaX3s+dz9Dbvk9TkyZEBGRbaFQf78/6dwbXxlEWUn+9Znb5NyNPlWTFnbJ85bPN2VAtkORiLvVwQeE7WY7E3wAFJdGtzr4ACgqjmx18AEQjblbHXwAuK6TV/CxcNZGvrb7g1x88KNsWNUMwNjduhONh7/8dz2wD7se1Ce8T8+w5zEDKKkMX7tRu9cw4YCeQFjDsevhfeg2oBiA2kHF7HBEb7IfC9iWINeGN1NPnitGD9dnsiOBQ7rNkrJxAKonDqB85zDzhGMomzgGpyQ8R3xwf0x06wMsERERkW1BNSAinXDjFW8y7+31gOHuP8zm/F/uysBRldw15yRWLt7MuEndcRzDPscPoKpnEb0Hl/G3OcexePYmRk+qJRr3GLt3D2JFHv1HV7Dzob1Z9OZG+owp576rZzFwt0pca6ib34htCQcRZqWxFBkIMnNBDJZ4NI0Tcdn9limYdBsV43tjXIeqPUcRqSwh3ruaklE/JLl0JfFhAzsVDIqIiIhsCwpARDqhe/8SbABg6d43zCxYa3nx34tZMHsTVbUJ4gmPp6cupMeAEk66eAxvP72S6c+tIl4codfgUv4zdRGJYo+TLh/L/JfX88a9SzFRh2dufB9smOmI4RA3UJQJQKwFjKHFWuIYLBBYQzpwiFufVU/Nx21rJFqRIFIaYcOz04l2K6fnlL1onjWP5lnvYaIREsMGddErJyIinwkVocvniAIQkU44/1e70n9EBUWlEQ48dQgALz2ylN99+1UcxzDj5dV071bE7FfWEgSWZEua266egTHw4v2L2evw/vznzsVgLelkwH9+9z42sPgEue1XH5ej+HDiwjEW17G5Xr3Lbn+NaDRg01tLqBwcYfPMRRBYjE2y+eEHwRg2T3uHITf+GuMVdq+wiIhIY2MjV1xxBXfffTcbN25kxIgRXHbZZZx88smfunbt2rVceumlPPzwwzQ3NzN+/Hh++tOfsv/++3e43b777svzzz//kfUHH3wwjz/++DZ7LtJ5CkBEOiEW9zj266M6XJdOhh8FWWtJJX1SyQCbiQxSbWF7Xwv4aUsqlfnYyITHgiAMIixbTDknd5OPyF7nOpZYxOK5YcokkychSAXYtJ+7E5tKZ/5hIQi2uHcREflC+JxkQI477jjeeOMNrrnmGoYNG8Ydd9zBl770JYIg4JRTTvmv69ra2th///2pq6vj2muvpba2luuvv55DDjmEp59+mn322afD7QcNGsTtt9/e4bqKioqtf8DymVAAIrKN7HPMAL565U4smL2RMy6ZQKLI49afvkP3fiWc+eMdqeldwvTnVnHk10bQf2QFsYRHvMTjtJ/swNjduvP6PUvxil1euG1Rh/v9cKjgAJ6xGJMdRhjgOBaspcfRO+K2NtD/jN2IlkVY/o9niNaU0+OUA2joXUrz7LmU778nxtOPvoiIFNajjz7KU089lQs6ACZPnsySJUu45JJLmDJlCq778dn5m2++mdmzZ/PKK6+w++6759aOHz+eSy+9lGnTpnW4fSKRYLfddvtsn5B0mt6FiGwjjmM4/mujWLu8iSHjwpkpp39/AuXd4kSiLgecNphRu9UyaFwlrucw5ftjicRcikoj7HR0b3oMLWXd4kZevm1ROGzQGjyg2BgcwknoABEg6hiinsUxkA5c4iYgmjAMPG0Crk1TPLgWDPQ+dTJuaQIn6lG25y7Eh/Yn1rd317xAIiKyXXvggQcoKSnhxBNP7HD9WWedxSmnnMK0adOYNGnSf107fPjwXPAB4Hkep512GpdffjkrVqygd2/9ffu8UAAiso0s+6CeL+/6AM2bUxz9lRF071bEHb+YSSTm8POHD+Sa019k0+oWdjqwF3sfM4A/f30axjF8/759+Nf3Z7LyvQbKu8eIbdEdu9yYXAesbBteC6SDzG4qwoxI2jdEkj7TzvgHUZrpftg4yvoXseIfz2I8l+G/OJ0Nf7sZf1M9iVHD6HXZt9QJS0Tki2TLPbyFPOdWmD17NiNHjsT7UBZ+3LhxueP/LQCZPXs2e+2110euz66dM2dOhwBkwYIFVFVV0dDQQP/+/Tn55JO54oorSCQSW/eg5TOhAESkk7IzPLNv5N95fhXNm8Ohgc/dv4ieVWF3rFRbwDN3LGTT6hYA3npqJV5mgjnW8tJdi1n5XjiwsH5NG64hV4iethDN3DQKWBNeh4WWlCEeCSeDeG6AE3Vw/RZwYf3z80j1D2d92LRP3Qtv4W+qB6Dl3fnYtiQmHvsMXx0REdleNDQ0dPg+FosRi330b8yGDRsYNOijXRirqqpyx/+bDRs25G73aWv33HNPpkyZwogRI2hpaeGxxx7jV7/6FS+99BLPPfccjqMxeF1N/wVEOuGNp5ZzePU/Ob7fVBbO3gjAbof0pbpnEQDHfW0UR31tBAAllVGOPH8EfUeUA7D/aYM56JyhOK4hEnc5+LyhDNurBoCaAcW54AMgskWSwhJOQTdkt2MZUr4DWNK+Q5AMsEXhJNpex+5I9yN2BcAtjlN96J5Ee4fDD0t22wVHwYeIyBeKCUyXXAD69u1LeXl57vKLX/zivz/OT8i+f1pmPt+1P/3pTzn//POZPHkyhx12GNdddx3XXHMNL7zwAg8++OAnnkMKQxkQkU6463ezaN6coqUxxSM3z+PC3+9Obe9iHvjgZBrrk1TWhCneA04bTLzYIxr3uGH60dSvb6WyewJjDBMO6oXrGRIlEUY9152GNa0smb6JPxzxPAThpwO+DYMQQ3vwEcHiOZk5IZE0RXGfWDSFl/CYdOeX8SKGaCb7UrXfeNxYBCcWoejnV+A3bMYtL+uiV01ERL6Ili1bRllZ+9+Wj8t+AFRXV39slmPjxvCDvI/LcGyLtQCnnXYa3/3ud3nttdc49thjP/G28tlTACLSCeP26sGbT6/EWhgzqTsAqaTP7771Cu/P3Mh5V+9MaUmUv1zyOj0HlHLh9btx1zWzefvpFRx/8RiGTqjmLxdMI17iccENuzFt6lJeum0R1b0ye1NNmPHwaG+5a0128rnBt5aIA9Y6GJMmCByCtjTv/uIZTOMmBn51b2KVUZb+5VGiNRX0/+ZRNDz2JM0z51B+8P6UTtq1K142ERH5rHRhDUhZWVmHAOS/GTt2LFOnTiWdTneoA5k1axYAY8aM+cS12dttKZ+1W9L2q/8NCkBEOuH0709g7KTuJIojjNgl3D717H2L+NeNc8HAT85+nl7VxSycuZE5L6+ltCrGg9e9B8Cvv/wikw7uy6z/rAYMd/xoBq/+NWy9u+StTWQbEGaLzLPzPVJhp12cLTLQBks67eCaAGsMm15+D88LePfqh6gaGKHp/RVglxCvjtD60hMArL3xVop33gEnGinIayUiIgJw7LHHcuONN3LfffcxZcqU3PW33norvXr1YuLEiZ+49utf/zrTpk3L3S6dTnPbbbcxceJEevXq9YnnvvXWWwHUmvd/hAKQ7Uwq5XPb/82gfmMbZ31nB8qr4nmvffzu95n+2mpO/MpoBo/65FTnlma+vpqH75jPXof0Z69D+ue9bvXyRv75f9PpN7iCk84dnXfXptaWNLf87h38dMBZ39mBopJoXuustTz093ksfHcTJ10wml4D//unOcYYdti34y+7qu5h9sIA1d0TVHZLwMzwWG2/YkxYrkFpZZTKHolw8KC1VPVKEIk7pNoCXM+EkQYdp55nP9hKAVGbzYQQZj6CgCBwsOnwKyYgWlWMV9X+vCM1lbSasLrdKUpoCrqIiBTcoYceyoEHHsj5559PQ0MDQ4YMYerUqTz++OPcdtttuRkg55xzDrfeeisLFiygf//wfcPZZ5/N9ddfz4knnsg111xDbW0tf/rTn5g3bx5PP/107hwvvvgiP/vZzzj22GMZNGgQra2tPPbYY/z1r39lv/3248gjj+yS5y4dKQDZzkz90yx+9/1XMY5hxZIGfn3bwXmtm/n6ai457UmMgafuX8DTi87MKyBoaU7xlYMepLUlzV1/mc2jc0+j94D8ahAuOfUJZk5bQxBYyqtiHHLi0LzW3fCzN7j512+Dgc31SS773Ufb9n2cVx5bxs/PewHjwFvPreCfb52Q17qsXfbrzc/u3J+FczZx1DkjiMdd/v3nuXTvX8IBpw1m4JgqZr2wmv1PG0xNnyJ6DColVuxxyLlD2eWQPrz94HKsH/DYL+dmaj1C1nRsuWuNxTM2lwmxFowTTjcf8s0DcNoa6XnUBLyEx9qHphGtKaf6wB0oGdaDlvfmUbr7rhiloEVEvlisgSC/D+q26Tm30v33388PfvADfvSjH7Fx40ZGjBjB1KlTOfnkk3O38X0f3/dz3SYhrCt55plnuPTSS7nwwgtpbm5mwoQJPPbYYx2moPfs2RPXdfnJT37C+vXrMcYwdOhQrr76ar7zne9oC9b/CAUg25mmzSlMpoC5qSGV97rmxvC21rb/Ox9+2tLW5mMzn/a3taS34rEmc798tuacTY2pXHDUtDmZ97rm7G1t+Dp1Ru9BZaRTAWWVMVzP0HdEOTV9ijHG0L1/MXUjyimviRNNePQeXka82MP1HCp7Jeg1oozWhhTuFnM/cv+bCULSgGcNKQtFboAxlnTgYm0ax4WS/hXQFsMrjeNEHBL9uhGpLsMYQ6S6Er9nd9zy0k49NxERkf9fJSUlXHvttVx77bX/9Ta33HILt9xyy0eu7969e24r1X8zZMgQHnnkkf/fhymfMQUg25nTLxrPqmWbqd/Qynd/uUfe6yZO7sPXf7Qr77yyii9fvEPe26FKyqL88h8Hct/f3mXykQMZNDL/rVs/vfkA/njlNPoPKefIU4fnve5rP9iF+o2t+GnLhVflv9dz8vGDOPWd9SycvYlzrtgx73VZc99axzmTHiQILLsd3Ice3Yp5+rYFAFx269784WuvkGzx6TeynH2OGcA9P58dPt7rd+XhH86mcUOSRHH7j6RPpr4v8wHQloMI/Uw9SPifISDtO0T8NNO/cx+xaJKKnQZQMTDGhiffAmDgZcdTf/ut2GSSSI/u9PnFlcqCiIh8kQSZS6HPKdIJCkC2MyVlUa6+Yb+tXmeM4fwrdunUOQ85cWje26e2NGqHGv704BFbva6qJsEv/3HQVq/zPIcLr8k/YFm7vIlozKEi03J3wexNBEEYLcx7ez0N1S252856aQ3JlnB6x7J59Xzw1oawuNzAvFfX07ghzL60NqbxMlkPl45NTRzAzbbkNWAxuCYg6lkcYwkcD9cJM0yN81cTTbf/eDe/uxCbDM+RWr0Gm0pjYvnVxoiIiIhsS/oIVKQTHrtlPicNvJPj+9/JO/9ZCcC+xw5g/J49KK2IcsEvJnLWT3airDrG0B2qOfUH45l0dD8SpR5fvnpHTrp8HFU9E/QYVMoJl49hr7MHEilyGLhze4bo4z5YyuadfBuGJr41WGuxQJAKiPbvhVsSY9AF+9HrzIPwyopIDOpJ7QkHUrzzjph4jMrjjsJR8CEiIiJdxNgtK3ykSzU0NFBeXk59fX1e/bSl61x88GO8/exKjIFjzh/FN6/dvdP39devvsZ/bl5ItNiluSlNBEhYFxeIY3JteV3CjImHpShiSUQsDgGeZymKp4gUe5z05knEK/PvbCYiIv//uvLvd/bcm54cQllxYTscNjT5VB70gd63yFbTFiyRTjjo1CG889xKXM9hn+MHANBYn+TiIx9n4ZyNfPM3u1NREeP3575Mbb8Srnpgf/500TSmP7eKKd8by/i9evCrk18glnBpXNgKQLIp3KKVMhC3Fh/TIUVpCTMgBkNbGooi2Wssad/BaUnz5nl34DasZeDXDyRek2Dx7+4l2q2cwVedQd2dU2mZ8y7lhx5M5TFqQygiIiJdQwGISCcccsZQdjmwN17Uobw6zDj854FFzHp1DQB//sHr9KgqZvOmJJs3bWTqz2fw2sPLAPjHle+w2wF9qFvTigGqSmO0bU6H26iwuJmcpEeY9cjWgniZ/VdhDUi2Mj0MQjzPx4tBevlK8AIW3/A0Zf3i+JtbaNncwvp7nyT59nQA6v71EOWHHoQTi33mr5OIiBRI0AVteAt9PvnCUA2ISCdV9yzKBR8AQ8ZW4WSGc4zYqYYRu3TLHRu3T09iiTA13m9EBUN36RYOIgwg1ZjGEP4wGsLuV9AedDgmLDp3DEQccJywAD0UZkCCwAE/IB2EnykUD+tJ0bA+ufMXjRqKiYZ1H16P7piIpqCLiIhI11AGRGQbGbFTDbe8fixL5tex5+H9cT3D7kf2o6ZPMSN2rWH4Lt2Y98Z6djmkN8XlUYbt0o1I3OUvX3qZxg1JbKbfVTa0yIY27aFGeNwB4hEf17F4no/rgOsEuK5PyZjBuK6PKS+n9oTdKd9lONFuZRSP6EfJqD60LVhEYuwYteAVEfmisaZTgwH/v88p0gkKQES2oSXz61gwexPjdu9ONOaxePYmmjenGL5LN1Yt2Mzi2ZsYskMVXsRhyZw6ojGHSKMlhgkzIgZM5hd6EigmO+sDstkOA2HNR8zHGIPrBoAhlYyw5tWVYVASWU7Tsk0MOKgbtrWJouF9Sa9bT3LlCqL9+uKWFHfFyyMiIiKiAERkW3n9mRX88JRnMQZefWwpPbuV8NbTK7ABNGxo4+bvvQnAE39/n72P6s9TN32ADaCPGyVmw4xE2ga59rsBtKc/Poa1EATQPi2kvaGdwdK6dDVr73wbrCVo3szmB+8Ga9n8/Iv0+/1vMG5hu6WIiIiIgAIQkU6x1jL9mVUkSiOMmFgDQN26cPCgBTatayURuLmYYP3yJrINrxvrktStaQ0HETrgRhzS6QCb24SVKTTP3tkWxeeOCbdgZUpNcIwNr3MsjhvgOAHGWBwsnpOtJgF/Yz3ZBxC0tGCDQAGIiMgXiAnCS6HPKdIZCkBEOuGOn87gtqumA/C92/dm3ymD2O/4Qcx4aTUfzNrIuVftTElxhBsufYMeA0s48+odKCqN8tZTKzjh4jEMGV9FssUnGnNZ8e81uaxHuMkqZLNXZL4zW2ZDMoMIA2uwNsDJ/BUIAoPnWTAWU1JB0YhiojUVVJ90ONHKCC2zZlN24AE4KkIXERGRLqIARKQT5ry8FggzGHOnrWPfKYPwIg4X/WY3GuuSVPcoAuCHd00mURIhXuRx6hXjOfzcYVT3KsIYw3fv2AvXM/xkhydYt7ApF3g4BhwLUbbMdhg8Y8OsCRDxLJ5rMSbA4hCJpPDcAM/zcTLF6eVjetD/4v1x4lGcWJSKIw6nbJ89ccorC/+CiYjIZ0tteOVzRAGISCec+N0xzH9jHfGSCId+ZTgAa5c3ctZu/2LjmhbOvGwC3aoS3HDJGxRXRPnVEwfz69NfZMX8BiafMojdD+vL709/GS/iUNpisFgMpkMGJEXHEpCAzLYsLKm0Q9iw1wAB6bSD5wYEgQlb8mJpeGcB87/yLE4izoAff53Ge/6Iv2YFsQm7UXHmRQV6pUREREQ6UgAi0gk7HNCLezec2uG6155YzsY1YR3IAze8R8/qsNNUU12Sh/48lxXzGwB47o6FNK1pwwaWdNLHrYjRVJfCmHAIoWcNlRj8TLbDATDtc0IAPC8AA9FImljMJ+KlcD1LNJLGcS2RSJqI0wRA0NJKw3+ew65ZAUDb9NewJ5+LibXPMBEREREpFA0D2M6sWrqZkybezcFD/8HbL6/Me12yzefbUx5j3z5/4+6/zt6qc/75p2+wd6+buerrzxEE9tMXZDz774XsP+AWvrz/A9Rvas173cL3NnL0+Ds4YvRtzJuxPu91TZuTfPPQRzmi7208ddeCvNdl7bhvL4rLwtqK/U8cxL4nDQQgGnc54PTBVPVKALDTwb3Y44T+ABhjaKpPkenCS9i/KgwzPAyOCdvwbpkJcUxY62EMBNbBMRaTKRCx1snkUcCacPCgiXiU7L47TkVV+HiGjYGopqCLiHyh2C66iHSCsdbq/z7/IxoaGigvL6e+vp6ysrLP5Bx/+MGr/O23b4OFnffuzd+eOiavdc8/sphvHPsIAJGow1ubv5Z70/tJ6ja0slfPm3Pf3zXtJEbtUJPXOQ8beRvLFtQDcNnv9+LUC8blte7H5z3Lv26di8VyyAlD+dVtB+W17uFb5vGzr74AQHWPBA8vOy2vdVuq39jK+pXNDBod1lksnVtPWXWMytoEzZtTrFqwmQFjK3Bdh9ULNuNGDT/f82nql4aZEwdwMESBIgwJN+xyFXbFsrhuQMSFeCxFLBLgOJZEPEUsliQS8UkkWvA8H8/z6TZ5FAPP3Qe3OIFXUUbQ1oq/fjVej77qgCUisg0V4u/3p5277t/DKSsu7O/2hiafiqPmdcnzls83bcHazgweVYXNtFwaOqYq73V9B5fjegY/bRk0ojKv4AOguDRCTa9i1q1sIlHk0b13/gPwho6pygUgg0fmXzg9eFRVLtMyeFT+z7H/8AqMCRtMDRqd/7qsILDc98c5LJi1idO/N56i4gi3Xz2d7v1KOOMnO/D0LR8w89lVHP71EfQbVcHdV88kGnNoXNGGs0WOwxJWd7QAxVtmP0wmw2ECUmmPRCyJ42Ra6wYugR8eDz9T8GlZso4N9z5MpLqS6ilH0vrG8yTnzyIx6UBiI8Zv9fMTEZH/YSpCl88RBSDbmSNOGUZltzj1G9s46ITBea8bNKKSO185kTlvr2P/owflvS4SdZn68gm8+PgSdt6rN9W1RXmvvebWA3ny3gX0GVTGTnv2ynvd6ReNp/eAMvx0wAHH5v8cx+7enRueP4ol8+qYfPzAvNdlvfCvxfz9J+9gDHwwcwM9q4uZ/+Z6bACOa7j/l3MAmP70KnY7vC/T7lsKFrp5UQLfEtAxm20Ig6GOsZ4lCMgFHrkVmba8jpO5F2Px6zbQOG0tWIsb80m/dh8AyXkzqPnZ3zGefvxFRESk8PQOZDtjjGHPg/t3au2ICTWMmJDf9qktde9dwgnnjN7qdYmiCEefMWKr1xljtipI2tLY3bszdvfun3q7tpY0j980n0RphAPOGILjGCIxN/sAiMZcInEXQ9jhKpZws4fwog7R7G0teBZ8DA6WdPY58NEh6CZTD2IxBJlPnbLXkWnVazJDCY1DxyxVJFvzYTCu94kT1kVE5HPImvBS6HOKdIICEJFOuPGSN3jkhnlgoWVziqMvHMWkw/ry7WsnsXDORk66aAzxhMe9v5lNbb8Sjv32KHoPKWfmc6s4+CvD6DmklPKaOJGYw6u/+QAybXizGY0o4Jktsx82FzMYY7fYemUIrMUYi7W5YeeAwautoWK34XjVFVQecQBt/buRfH82iYmTwyBEREREpAvoXYhIJ6xb1pTJPBjWL28GwozDpMP7MWBkBb0Hl2Ecw94nDKSqZwLXdRi/Xw/Ku8XpP7aCaNxljxP7E4m7TPv7YlpXtWEJt2EZoNTJZDPIBiEGY8Jp6K4TXrJ83yMIAlzPUj6mJ5G4T7SiiH7n7I+brsctK8M4DtGho3DLivB69iv46yUiIiKSpQBEpBPO+tlONGxoo6g0wrHfHgXAojmb+NrEB0m1Bex74kBquxXxyPXzcFzDD+7fl+vOfIWmuhTDduvGnsf0487vTQcyOY9MesOFcNtWtvbDtFeFhNeFWRK/Q+FfOIDQBgHByoWYaDOJvmNpff0/bH7qKTCG7hedT/LR32NbGnF7DaHk3F/l3UhAREQ+B4LMpdDnFOkEBSAinTBgTCW/f+nwDte9N20dqbbwt/Hbz6ykR1XY8SvwLa89uIymuhQA819bT0VpNLcuUR6huT48ZoAIYI0hCGvJO2Q7INxq5brheVw3wPMsruvjRB0iTtjOt3HG+0SasnUmlrbZb0JLIwD+yg8gldQsEBEREekSGkQoso1MOrIvfYaWYRw45bJxHH/JaFzP0K1PEcd9dzTDdusGwBHfHMEhFw0nmnApqmwPPrJ8wFqLJRw6mJXdioWBIAh/dIPACcvcrUOQDAjKuoMx1J6wP+WHHgKui1tRQdHkI3D7jQQguuthGAUfIiJfLNki9EJfRDpBgwj/h3TlICPZNqy1pFMBkWiYfUglfVzPwXFMeCwZ5LplpVMBjgOXjn6ElfM357IfCQw1xgEDERPkgpCIa/HcgIhricdSRKMBnuvjugGJeBtescf+T55NtCSKEwmTmzadBsfBOJn5IH4a40W64JUREfni+p8YRHjvqK4ZRHjCu3rfIltNW7BEtpG2ljQ/P/N5FszcyHnX7EJZaYy/XDiN2gElXPzPPZn6g+nMfGoVx1w6muETa7jxy68RSbjUzWskkemAVYohlqnNCGvctxxQaAmsA8YnmfKIRZMEgYPjWNK+i9uaYtHPbsdrXUP3U48gWh2jbuo/cCurqTr7XJIv3kb6g7eI7X4c0Z0P//gnISIiIvIZUwAiso08f99iXnxgCQDXXvgqPaqKWT6/geXzGpj64xk8feMHANx04RtMPLg3y2fVAVBc7JFq8rEYIoRF6L4NC9KxNteKNwjCFrwGcEy28i/86jg+xoPk+3OxEZ9Vf72HiqEu6dWrSK9eRdMT98B7jwHQ+sRfiYw/ABPRNiwRkS8Kaw22wJPJrbZgSSepBkSkEzataeG6C17l5u+9SWtzOD6w54CS3PHeg8voNbQsN6h8wLhKHC/8RV3dp4geQ0rDuR0B+C1+GFTQcRJ6QFgDYnIXg7UOmZnnmVuF7XnBgcDi+2H6PdqjG15Nj9x9eT36gxN+3mBKqkBzQERERKSL6F2ISCfccPE0XrxnCdZa4sUep/5oAmP37MFvnjyExXPqOOCUwUSiDuP370FtvxJ2ObwPQ3ao4r2X17HrUX14+55lTDikJ2nHMu+ZNQRtAa41pDAYC56xuYAkDFvaMyHWguelwdjMUMIAz0uBgT4XnYyb2kz5XjvhxCLEho3ArawkMW4H/IH9SS+bQ2TEJIxT2H3CIiLyGdMkdPkcUQAi0klbzu/IMsaw5XgNxxhMtorcGBzH8J8/f8BTvw2nqCdNQBuWKAYLtAFpIG5MJsDYYhAhNpPtMKTSHkUJH8dkJqhbB9dN47rg5oIVi3FpP79jcFxA8z9ERESkCykAEemEc3+7K0VlURIlEY7/zmgAZr+8hu8cGNZZ/OfeRfToVswr9y8F4Bt/2Y2/XfgGfspSVRLLlJyDYz+6D3LLbVgfDRUMEGT23drcinAQIay8/p/EE0k2v/wmJQPitL49DYCKU84geOk6CNKY1x8gcf7fMUY7MEVEvjA0iFA+RxSAbIeWL2qgaXOS4eO6bdW6ug2tLPmgjtE71eJ5+b95bWtN89476xgyupqSsuinL8iw1vLu2+vo1qOI7r1LPn3BFhbPryPwAwaNrNqqdRtXN7N2aRPDdu6G4/z3TEFVjyIu+vOkDtetXNiQ+/eK9xtIb/DJRhoLp2/ET4UBQ3NjioR1MICHg0tYcO5kvobT0DPBh+mYsDDG4hjwHB/HgONYsrupAhvBdX0AkqvXki5qf639NYsxQVirYhs3QDoFKkIXERGRLqAAZDvzytPLOP+IhwgCy8W/2J2zvrNjXuvWrGjkuB3upKGujX0OH8AfH8ivjWsQWE7f537ee2cdPfqU8K8ZX6K4NL8g5JffeYnb/ziTaMzl9hePZ8SEmrzWPX73+1xy2pMAXH3jfhx75si81i2dW8f5u/ybthafQ84ayndv3DOvdVl7Hz+Qlx5cwoJZmzJteKP8+RvT6D6ghFOuGg8py4ynVtO/bymLXlpPdgJPe3yRrfawH7km/MbmjttMZBNmQoKwMN0PcAeNxGtbRbcvHUO0Mk79XX/HrawmccBJpBOt+AvfJLLrCeqAJSIiIl1GAch25tWnl5KdPfmfhxfnHYDMfnMtDXVtALz4eFh8bfKoJdi0voX33lkHwOrljSycu4mxu3TP65zP/XsRAMk2n9efX5F3APLiE0sxJnzb/uJjS/IOQGa9tIa2ljCD8OpDS/Nas6V4kcdV9+yPn7Z4kTBDdP2so3E9gzGGr92wG37a8sotC1n44no+PAHUIQw44gYyswoxxuJmkk2OAdcNiEUDopF0mP1wfBzH4roBXlGEAZedSbQ0hvHCO6i5/JpwEKExuAdfiPXTGHXAEhH54lERunyOaBP4duawKcMoLo3iuoYp543Je90u+/RmwLAKAE65YFxewQdAVU2Cg44fDMD4id0ZMT7/bV+nXTQeY6C6e4L9jx6U97pjzhhBNO4SiTgcd1Z+wQfAxMP6UtOnCIDjLhqd97qs+vWtfGXMAxxZ/E/u/8McnrllASeV3sFXBt7Pinn1/HjPJzk9NpWnrpsfFpdvsTYGlBgoMxAzJpcd2XIXmAWCwMFaSKXDACPbg91aB781xYJLfsfCc77BpkeeoOXNF1l32ZlsuPobpNcsp/XO79Dyh8Npe/ZPW/3cRERERLYVY7Mfh0uXa2hooLy8nPr6esrKyj6z8yTbfNIpn6KS/OsxAHw/oLEhSXllfKvWWWtp2NRGWWUs78Alq7EhSSzhEolsXdvY1pY01loSRZGtWuenA1qa0pSUb91rA/D43+bz+3NfAaCsOka3qiJWzg/rQg46Zwgv3bQQANdCxDiQKUB3MESBKIYE4DjgGItnLHHP4mQ+JjBYHMdSWpTE8wKKE204TkAk4uN6Kby4w4DBC/C8ACeRoGywh796OQDFe+2BWfhQ7rEmLnoQE9m6/44iIvLxCvX3+5POven2cZQVFbbFekOzT+WpM7vkecvnmzIg26FozN3q4APAdZ2tDj4gbE1bXhXf6uADoKQsutXBB0A84W118AHgek5ewceiOZv4xt4PcekRT7BhdTMAIybW4EXDH6kJ+/VkwgE9AXBcwy5H9qGoInw8Fd3jmMx+q2wDEUumgUlu1ofBtx1b+rZXpYfHs8dMthVv2iflJwBIjBpOdNjY7A3whu8KsbCQ33QfCp5qQERERKRraDO4SCf89QdvMGfaWgyGe/4wm69dsysDRldy85xjWbVwM2P37oHjGiYd34+qXkX0HlbG0DndWDpzE8ve2sR9V8wE2rdhRWn/YQwsRDIZEGvJzfRwM3NBHGOJxZJh4OGEs0Ei0RTGc+j/44twg2YSI4aC4xAbszNOWQVebS9s/xsJ1i3E6T2mU8GgiIiIyLagAESkE2r6FGNtuL2sW6+wbsRayxtPrGDx7E3U9C0mlvB49YGl1PYvocc3RzDvhbW8++wa0o1pXMKJ5i5h/UcEg2faMyHGhIMJjcnukAwHEzpO2AErmYwQj/nt09EDBw+fxnfmEPE34VVV4BbHSL47Dae8GrfbEQSrZhIsexuTKMZ0z782RkREPgdUhC6fIwpARDrhgl9PpO/QcorLohxy5lAApj2ynD9+4zWMAzOfX01NtyLefWktNoBkU5qHfjwHYyAWMRhr2md9ZKagt/tQWVZmlkgYjFhcJwizHyb7tb1xb8PDjxCNp2mZ8x5lQ2KkFswGa3Foxsz+K2AIPniW6Nn/UjcsERER6RJ6ByLSCbGEx4nf7NhFLNUWtvDFQrLVJ9nq5461NWWGAFqwQZj5yMre6iPlHplpH07mCgeL61giXoDjBLiOxTg+jhtmRsKhhRasxaZS2FT7PdpUa/tMET/NR4IcERH5fAtMeyFhIc8p0gkKQES2kUnH9OOUH4xn8ZxNnPy9cSSKPaZeOYPa/iWcfPV4anoU8e6za4g5DjP/vSKs78guNu1fTDbwyGQ3jAm3dxknrAcJLHhOgDFBJhvi4zgBWEvRpL2JBBspP+wQvLIYzU/ehVNeTXzfUwhqy/CXvYU75iiMu/UF+iIiIiLbggIQkW3EdR2O+9YoNqxspv+oCgBO+8kESqpiRKIu+35lMKP26877z61h+oMrgPbhg9jwg6SIAccYPMdmBg9uMYjQAeO0z/7wIj6elw7b7jo+TtSl+pj9cE2KSK9eGGMoPuTksObDi+CMPBTTezymsn/BXxsRERGRLAUgItvIqoWbuWCXf9NUn+LI84fTrVsRd189i2jC5YeP7MeNp73KphUt1PYtypZ1EBBux/IJfxgtNpP/CLBkBxGG26XCone2GERoCYLMbS3YVJqlV1xD3GugZK+9KO5fROszU8GLUHzmFdhXroamtZjeu+Ad+mt1whIR+SKxFH53rXbzSicpABHZRqY/t4qm+hQA/7lzEd2riwFItvg8/8+FbFrRAsD6pc3EcMIAA4tD2IbXNeEPpGMCErHwL4nn+Xhu2I7XdQIcx1JcFA4gdN0A1w1rQFw3jRdziLAZgKY33iBSn6k0Safw330ap2ktAHbFG5BuhUiicC+OiIiISIYGEYp0wtvPruSomtuYMvAulrxXB8DOB/emojYc1HjYucM56NywO1ZReYSDzhtG96GlAPQcXIox7R2wAHzTPmcwd8SA69jcv8ncPtyCFXbRstZkemgZbNrHj1YAULL33sR2OTBcEkvgjT8cyvuF9zBwX4yCDxGRLxQbmC65iHSGMiAinXDnb2bRWJekqSHJQzfO5Ru/242aPsX8c+EJbN6YpDozG2SfUwcSK/Z48ufv4TYG9B9YSltdKpe2dgnDjRiWiBN+IuBk2u06HxpEGLKk0w7xWBtAWPuRKUg3UY9+P70cN2rwKioAiIzdExONY6Jx7Al/h+aNUFxTsNdJRERE5MMUgIh0wujda3nzqRXYAEbuGr6hT6cCbrz0TRbN2MgZV+1AUUmUf37vbcqronxw7+rcWocw8EgT1n64gG8+PBHEENiOmQ+ymQ5raG6Jk0ikwDq54zaZZv0d9+Kl1lF+xDFEKmO0PXMzTlk3ogedD/OmYle+ihk5BdP/gM/2BRIRkcLSIEL5HFEAItIJZ1wxgVG71VJUEmH07rUAvHTfYh7+01ww8Osvv0iP6mIWz9gEAdR6Ufx0QHbzVEAYUkSBhANepvQ823bXNUGuPZbJDSIM1ztOOAckvDLIPKIA40By5jSCiM+Gv/2VylEOwar3CbA4ZXHcZf8EwL40F9tnL4wbK+hrJiIiIgIKQLY76XTAnX+aRf3GNk7/5jjKKuN5r336/gXMmLaa484axcARlXmvm/PWWh698332PLgfux/QN+91a1c2cccfZ9JvSDnHnjUy765Nba1pbvu/mfjpgNO+OZ6i4vxmXlhrefq2BSyes4mjzh9J9/4l//W2xhh2ObB3h+vKquOZY1DeLU5Zt3huvkfaDwOFTA4DN3PANWEAEm69Ci/G2LDlrglb8JrMyHTXASfTnje8XRjMmOz3WGzggAlwSkowRV77FPWianIPJlIEZstRiCIiIiKFowBkO3PXn2fx6+++jHFg2cJ6rvnHgXmtm/3mGr5z8hMYA0/c8wFPLjwzr3WtLWm+cuCDtDSluOOPM3l03mn07Fea19pLT32SGa+uJggspeUxDjx+cF7rbvz5W9z0y7cAqN/YyiW/2TOvdW88voJfnfUixoG3n17Jn988Oq91WTse2Ivv3b43S2bXcdi5w4nGXR6/fh7FZREevmQm9kPtCg3gWPAzW62stWCytR8W1w2zHGFNSBh8uK6P6/pEIikw4e3D7EdYN1J+/Em4fj0le+2Dm4iQfPNhnLJueOMPgt4DsGvewgw8BOPoR19E5AtFk9Dlc0TvQrYzm+uS4URtDA2b2vJe11ifBMIZFI31yXAydx4ZiVTSp7UlHc6p8C3NjamteKxt4ZtyoKEu/8faUN+We2wNdcm812WfIxYat2LdlgaMqsRzHMq6xXA9h0Hjq0iURzARB78twCGc/REAkfBUpALAMWEbXpOZD2IdggA8L52ZBRIOJTTG4LoWxzGZgCTAcTNbt1xDvH9P3KAEt7QUXBev1wBMSTXGGGx5b0xQB0XdOvXcRERERLYFBSDbmVMvGseyhfXUb2zlu7/OLzMAMHG/Pnz1+zvxzsurOPuSHfPeDlVaHuNnf9ufe2+aw35HD2LwqKq8z3nVjZO57ofT6DeknCNPG573uvMu35mNa1tIpwO+ceWuea/b+/gBzH19HYtnb+KMH++Q97qsD97ewHd2e5TAt+x0aG+61yR44dZFGKDIuh0GDmZlRgyG2RGT3aIVBhTW2i2K0skdtEAQZNeFgwghvHLDn35LvKiF6LCxFA2J489+DIDo4d/DvHcl+C1QMgAOuAdj1IVbROQLw9IFReiFPZ18cRhrP7wxRLpKQ0MD5eXl1NfXU1ZW1tUPRz5F3eoWvJhDSWVYzP303z/g2q+8AkBZTYweVUWsnNsAFvokovgt4XRzjzBksEDUQNzNDCQ04BqL5waUl6QwxhKPpnAz5Rquk8ZxLImiNlzXp6SkBddLE4mmcd00bsyhtu8yXC/AJIopHeFgNywCwNvpQNz1d2UeucEc+SLG0ywQEZFtoSv/fmfPvfHGnSgrKuznyg3Naaq++pbet8hW00egIp3w/D8Wcm6f+zm31/28+8IaAHY7th/Dd+tGotTjjJ/uyElXj6eoIkLf4WX4LWGWIttMN7utKuiQ5QhrOoJca92wGD3zsVbmOoO1EAThVxt0HERoqwZhonFKDp9CZPczIVaCqR6AO/4M6LkvuDEY8VUFHyIiItJltAVLpBNeuG0hWPBTAa/du5RRe3enpCLKb14+rMPtJp7Qj3TK5+re/6ZpfTJT3xEWn3vZDlgmU09O2BUrHCwYdsDKDiLMtucN2/IGRKMpwOC4FhONYGwLiSF96PH9r+PE2rt+JYbs0f5gdvttAV4ZERHpErYLitA1B0Q6SQGISCfsMWUAs55Zg+MZdj0mbC3c3JDkmqP/w5JZdZz1250oq4jxt3Nfp7I2TvP6sKg9mwEJCNOPqQAimTa7mUa6WBsOG/SDsPOVyR6zJvNvh1QqQiyWJt6/lsrEB0R696b7BWfQPPVqgtWLiB90Jl63IvwXfwnFNXgH/hwW/RI2vgz9zsYMOK/gr5mIiIgIKAAR6ZT9zhnCuAN7Eom7lNeG8z+m3b+Md19YC8A/L3ub2qoiNq9rY/O6NnrFPYLWIFsuDoQT0I0Jg5G462MMxKNpLIaIm4ZMNsTzfKw1OCbAGIh4KYxjcd00pn4F1jaTfP99Gp94ELN4FgCtT95KYpgHrZugdRPBezfhbH4iPPGi67B9z8C42oYlIvJFYS0fafdeiHOKdIZqQEQ6qVu/4lzwAdB3TAXZxlIDJlQxYKew45cL2NZwirlLuM3KzQwPDG9uscYQ8cBzIRYJcBxwHUsk4of/di2Oa3HdsN7DmMwswWhReEJjiA0ZnplaCE6PgZhuw3KPzVTvCE7msSb6gaMp6CIiItI1lAER2UaG7FzNL6cdyoq5DQzfs4b7fjuHfgdU4zoOq59dR0XaYDLTyMPgw+JlOl/FPB/PDbMd4barcOhgOG8lUwNCgOv6OE4QDiK0ULLzWGomHUSkdy9i/fsS7fVb/HXLiAzfFTwP22c3KO6G030ctvtIaJgBVXurBa+IyBeNNV3Qhlc1INI5CkBEtqH1i5tY8/5mXvjXYl791zKCIBNAWEPURCil/Ze1YzLV5zhYG+CYMDzJlHxgMTgOuRoQ44C1DmDw0x7E0wTNrdhNKwmKPejfF5pX4bQsgeQocGKYYCGkmrB2LNasJoguxmUsUNkFr46IiIiIAhCRbWb2s6v5/QkvYgzYCqd9b2ymi67tMLHJbhGK2Nwl25J3y9a82cJ1Otw+zIq0vDubzWuWht+fNgXe+D1g8Be8RGRYHNa+kDn5RtKpXwCWoGEqkf4vY4y7TZ+/iIiISD60D0O2a8nWNK8/upzVizZ/5JjvB7z15AqWvFv3kWPWWt57fg2L3tqYu65+dUvmGNhUmNxwMDjW4GKIZDZgOWxZAxIOIPQy9R2uG9Z+OE64NcsxFsexuE4YnGTb8TpOgGMCPKe1/fFuXJd9dNjmTdC2PvO9waZWkBt/GNSDTW+Ll09ERP5XBKZrLiKdoAyIbNeuPPZZ3npqJdG4y1/eOZreQ9snuf7xgtd4/Kb5GMfw6+cOYfQe3XPH/v3zOdzzw5kAXHjXnkw8sR8TT+jHu/9Zw5KZdbQYn/lvbAjneGTWtFlLnMwQQgvWZLMgFj8zWDCwYYBiLZCpBckyTvhvazM5EGNxug8i0rOESN8BJA48mXRRHXbt+3i7fRlTnsC++2tI9MD0vQhncwLb/AJO+VkYFaGLiIhIF1EAItu12S+FU8yTrT4fTN/QIQCZ+fxqAGxgee+1dR0CkPcy7XaNgXkvrWXiif3woi5n/XEXmhtS3PebOcx/fQMGiODkMiBpwLOZ+g8MxgSZrzYz3dyErXqNyXXUyg4g9LywVa8X8fEiaRwDpeOHUn3iaZh4Ecb1iOz9DUg2YRLl4eJd/g+cOMaNYSovgorTwVR/hq+oiIh0hewMqUKfU6QztAVLtmun/nACjmsYulM1Ox/cu8OxL10+Di/q0HNwKftMGdjh2GEXjyBW7FFWG2fyV4cAsGllM98c9G++Vns/r967JFfZ4WdqNtq2WG8zRwMbpkN8PywuD78PsyG+72S76obHMqlua8FPh/Ubm199k41XfZVN11yIv2YRbf88jbabjyP16s3Y5VPhxT3g5X0JGufQ0nAMzXV70tZ06TZ8BUVERES2jjIgsl2bculYTvzuGBzno5/iHHD6EPY7dXCmDW7H4+MO7sWN9Sd2ODb90ZVsWhnWgTSsas3tvcruooqQq8IgW/7tYDHG4LrhkQ51HsaGW7hyp7bYTGW744QjDb3kCgCC+o20vf4ITmNYB+LP+hdedq9XuoFg4x3YkvfDY8mHsPYqjCn6/3jlRERERDpHGZDtzJrljZy2570cOep2pr+6Ku91qaTPpac+yYEDbuX+v727Vef8xy+nc1Tf2/jthS/n3kDn4+VHlnDc4Kl885BH2FzX9ukLMpbOr+PMne7jtPH3smDWxk+9/ccFH1se+3Dw8d+Ojdy3O/GSMKZPdIvmrs8+42Tm3+ZDX8ESBGEGJNuDN6wHMXQ8tUP2Rza8PaScWgBMLEFk3L4QCYMKZ9BeUHNQuMxEcMoPx5ia8Jg3EdAUdBGRLxQVocvniDIg25k7/zyL2W+uBQt//PHr3PTk0Xmte+WpZTxxzwcA/OKbL3LsWSP/6xvzLTVsbOWGK94A4P6/vMuRZw9n2A7d8jrn/333NdYsbWTN0kaeuP0DTrhgdF7rbv/NTBbO3oTF8s9fTefKf+6X17r/Xz2GlPKHhUexcVkzT/1jAQ9e9x7QHuWXYIgZcLGZLlgWL5Pt8FwfzwswWBwnwHUCotEkxgmHE0LYDctzfSKRNJFoEsdNUzJxEhWHnYZTWYNTXIp3xm3YzWswNUMAA7UHQaQCJ1ZLwj5G4C/CcUfk9d9ORERE5LOgAGQ7M3B4JTbcvcOgEfkPo+s7qAzHNQS+pd+Q8rzfwCZKIlT3SLBhdQuxhEu3Xvlv+xkwsoLlHzQA0G94ed7r+o+oIAjC3EK/Yfmvy0eyzeemH7/JhlUtnPPjHWlcn+SB381hyE7VHHPxKJ674QOWza6jeVUr1dbDBpY4DmXGEDcm7ICFIcDiERacRzKF6NmL7ztEvADf94hEWnJZEMeAtS6QIp2OEE34JJcto/k/7+P1GkB83yMJ3n0Eu/4D3B1OxhTHYOHfIN4dO+QbpNOPkE69TCR2Mp43aZu+LiIi0sU0CV0+RxSAbGeOPH04ZVVxGja2cujJQ/NeN2hkFbe9dDxz3lzLAccNzntdJOry15eP4ZVHlrLDPj2p6p5/APLjf+zH03ctoPegUnaa3PvTF2Sc/K2x9OhXgp8O2O/EQXmvy8eDN7zH1N/NwjGG9auaqJ/bwsaVzbx0zxLaGtI8+rN3MQ6UFHnEMtukioBoZgYIWDwsAeG8D2PAzW2EDLMfWPC8NNmaD9cNa0EcNzzmuH4mU5ImWD6ftrZVtM14DWMacd79G2AI1rxHdHgU6qYDAX4RtJXeQDhF/XmKy97AmCgiIiIihaYAZDtjjGHfIwZ0au3onWoZvVPtVq/r0a+E484ftdXrikoiHHXOiK1e5ziG/U7IL/DYuLqZZ25fyNAdqpmwX88Ox5rqkzx5y/v0GFjK7kf1A8D1nFwBh+s5OK7JFXN40faSKtc4WBMO7HCNxXPCrVjGgGfCKeaeC45jiWSGEIaPPbPVygtwnIBIJMDJ3K3r+uH2LDfIbdNyvKD9Abtb/DgbF5z2743Z8kfdpX06iYiIfBGoDa98nigAke3a5Yc+xaJZm8DAH187gqE7tden/OqMF3j9keUA/Oj+/dj9qH4c9dUR1G9sZcOqZs74/g40bUzy0P+9x+CdqpgwuQfr399Mw9o2mla1snZWA4ZwCjqEHbBca3PzPbJdr8BmumnZ3HYray3GBB0HEZoPFfAbQ6T/SOLDRuD1HkBs94OwFTGC9R/gjj8BiuKw8EaI98DpeTax9AD89CtEoidiTOSzeUFFREREPoUCENmurV3aGP7DwrrlTR0CkDWLG3PZjbVLwtt5EYeDTh5C/fpWanoXUdU9wQFnDCaacPn+To+TavFz6yPWUISb64IV2DDkiJn2rVeuY3EMeE6A52YDkbDWI9sxLDuI0BiLE3EoGdmLaCxNrKaUHl8+EqdlDW5VDxzHwQ7eE1MzCFPZN8yC9DkKolUYx8ON7IFxa3Cc/Ir5RURERD4LCkC2kcbGRq644gruvvtuNm7cyIgRI7jssss4+eSTu/qhySf41g17cOuP32bkxBp2Paxvh2Pn/2Eif/7WNHoOKuWAM8Nhg9P/s4pLD3qCILCcctk41r/XyOv/WkY05hC0bpGtIBxAaLGkbdhW1+TGD9rcBqggMLiOT7Y7cZj5yAwpDJwOWQ9rDTbtE9n0Lq6bpniXg0g+dwup2a9CJErZGd8l+M/3wW/DDJyMN6AElv0dcPB3uI7myGVYNuE64ymK36VOWCIiXyRB5lLoc4p0ggKQbeS4447jjTfe4JprrmHYsGHccccdfOlLXyIIAk455ZSufnjyX+x9wgD2PmHAxx4bP7knf5lxTIfrZjy/miATLUx7bDmN85sBSLYGxKIu6WT429gATibMcLAEGOIGTKYWxMm13w3wImF73VxGxLFEvABjwmyK42TqQ1yfSLGHY9IANM+YjZsIhwuSSpKa9zKuH85Lsctfh9Lsj3dA0PQUtmITAH4wA2hFs0BERESkK2gQ4Tbw6KOP8tRTT/GnP/2J8847j8mTJ3PjjTdy4IEHcskll+D7/qffiXwu7HfyICq6xXE9wwnfHs3Rl4wGA9V9inLBB4R16kFm81U6c12u2e4WiYfAmkwdyJbZiDBjYjG54CO8U4PfksYUlYPjUHHoAcT3Cue4ONU9iU48Fsr6AAZ3/Jeg31mAC5Fq3IozcZ3xAES8kzFGwYeIyBdKtg1voS8inaAMyDbwwAMPUFJSwoknntjh+rPOOotTTjmFadOmMWmS5i58EfQdXs5dy6bgpwOi8fDH5+jvjqK5Ick3B/+btkwNiAHiGDyg2IQzPBwsTmZ7VcSzeK4l6qVxM12vXCfIDBr0cV0fz0uHW7ey27BMgBuFxg0RYqVVrL3jUXp9+2wqf3wkeBGM4+Cc9E/wkxgvDoCtPRRrPIL1PyHaMBdTejxu7ZUFf91EREREshSAbAOzZ89m5MiReF7Hl3PcuHG54wpAvhgaNrTyizNeYMPKZr71p0k0rGjlzh/NoEfvYoqbIYELWOIYHGNIWmgDiiGT5DAYA2kfIq7F9x1c1ycIDI7jAAG+7+B5Bt93M9mSbGssBz9p8VtStLYFmOJW1t92D2WVK/B6D6LomK/iv/w77Pr5eLuei6lMYBdcjY1VYKOvhnfRcA9UngfR/oV/8URERERQALJNbNiwgUGDPjp3oqqqKnf847S1tdHW1pb7vqGh4bN5gLLNPHLjfN56cgUAf/7u6zTObaGpLsnq9xro5kYwvsVgwpkfFuK0/5BlBxEayExEb89uZAvPs1+zF2sJhxMCmABMpj2v42NMgN24kMDfQHL9StyqBO7ipwFIv/gbvDEeNH8AzQG2RxRMEkwxeDWf/QslIiIFZQODDQo8B6TA55MvDtWAbCOf1FHovx37xS9+QXl5ee7St2/fj72dfHbmT9/AT7/yPPf/5d1c29us1Qs38+fzXuO+a2bj+2EQ0L1/cVifYaHnwFJqBhQDYUBhfcuH/0tHTDj2D8glMrb8v4PF5OZ/OKb9htl2vK4b5P7tOJni9extHANOLHdfbk2/3L9NaQ+I9yEcnQ44qcyJmyFQoCsiIiJdRxmQbaC6uvpjsxwbN24E2jMhH/b973+fiy++OPd9Q0ODgpACu+TYJ1i3solHbp1Pv+Hl7Dy5d+7YtWe+wvzX1mEDqOyRYL8vD2byyYPwoi4bVzVz8JeH0taU5sXbF1NWFuHur77V4b5NJtuRHZZuCDtaGSdbjB7WfGQzI47j47gBNsgc89JYa3HcMOIJMyEWTHvJemzUTiTGHIDXcwCRIeMIamqwGxbgDD0IIlEo3xm8Ymi8grAc3gUT/cxfVxERKbCuKApXEbp0kgKQbWDs2LFMnTqVdDrdoQ5k1qxZAIwZM+Zj18ViMWKx2Mcek8Lw0wHZSYF+umMGJEgHHW9HmM0qKorQWhzB9Ry8iEOiyMMrcmk2Pq4Nt19lZ5zHTZjhcDMZDAi7XjnG4rrh/TmOxXUygwYdi3EzQYcxuF6QWUduEGHFrsPwIm3EB/al8qA98Be8iYmGQYWJxCAaBccNL5E4RIpIJxycNASeS8Qo8SkiIiJdRwHINnDsscdy4403ct999zFlypTc9bfeeiu9evVi4sSJXfjo5JP88t6DmHrtLEbuXMOuB/TucOyiWyZx909m0X1gCZPPHAzAS/ct4ZopzwMw+4U1bHqviQWvbwi3SNlwyGAaiACRXPE4YMIhg2SmmtvMgcDClpOcwq5Xmdts2QEry/dh0etYL8B0i9Jy/2/xl80FoPikr2PeuCo84cIncEYUw8aHsS7Y3uBHDAQprG3BULHNXkMREel61hpsgTMShT6ffHEoANkGDj30UA488EDOP/98GhoaGDJkCFOnTuXxxx/ntttuw3XdT7+TAlq1dDPNjSkGj/r4rWH/TcOmVpYtbGDEhG64bv6foifbfD6YsYEBoyopKonkvc5ay6IZm6jskaCyx9bNrVi1YDM2sPQaWvaJtxs9sZaf3rH/xx7rPbycb9+2Z4frls+tx5gwplg2t56GeeEgQgIo8zxs2hJg8YEo7VuvgPZBg6Z9EKHrBjguuE6AY2zmEmRqPoLcti0IgxE35uaK0lOrVhGJLs89tmDVfNxsOqd+KbREc4/NRmNhETolGKcin5dQRERE5DOhvRjbyP3338/pp5/Oj370Iw455BCmTZvG1KlTOfXUU7v6oXUw7dnlHDb8No6bcCf/+MP0vNetW9XEESNv55Td7+U7Ux7Pe10QWL4++SG+useDnD7hXpobU3mv/dslb/HNnR7mnMH3s2jmprzXvXzvEs4d/gDnjfgXz/5jQd7r8nHwV4Yyco9aegws4ayf78SX/29nqvoUMXKPGoJ0QIDN5TeyeY1sDiPIFK+Tu43d4ns+dOtMBsSxHa4Pkj5ev8G43bpRecKJJA4/F1NWjTd8FyJ7nAZ994SiWpyJ38b0vRSifbBlYzPBB0AjNlizTV8TERERka2hDMg2UlJSwrXXXsu1117b1Q/lE730xBJsuO+HZx9cxBnfmpDXupnT1lC/MWwZ/PwjS7DWfmLnr6z69a2898Y6AFYvaWTxu5sYtWttXud85f4lAKRafWY8u4qB4yrzWvf6w8swhLVxrz+8nP3OGJzXunxUdk/wy+cOzrTHDZ//HqcOoHFDGxcPCAcROjbMfiQyna283CDC8KvrgOfZ3NewDiTAOBbXteEQQtfieJmC9EwCzRjwKkrocfmlOK6DyRSHRMbsgcnUdTj7/xJrg9z3jH0KE/i4q/fFL96A21QFpX222eshIiL/I6yBQrfF1RYs6SRlQLYzh04ZSqI4guMYTvjKqLzX7bJPL/oOLgfgpPPG5BV8AFTUxNnrqHDo3YiduzFkfHXe5zz8ghEAlHWLsdvR+XcH2++MwXhRB89z2P/MbRd8QNia99xBD3By6VRevmcJD//qXb4cu5MrJz2Zm4IemDCn0ZxJXmTiPSwQ2LA43ffD1y/8arHWgcz+3SBwsRYC36G9Xjw8lq5rZNXll7Lq21+h+c1XSU57gKZrjqH5pgsJGlbiP3YawV17EMy9g6DuYYI54+C9/Ygt3ERiliG2sA7TumybviYiIiIiW8PYDw8/kC7T0NBAeXk59fX1lJV9cu3C/4/WljSppE9p+dZ14EqnAxo2tVFVs3X1GNZa6ta1Ut4tnssa5GvzxjbixR6R2NbV0bQ0prAWikrzrznJx11Xz+DOq2eChYETKqmf30xbUxoAL+Lgp8LWuzFriAPljsElzHbE3ADHsUS9AM+1RKM+nucT8SyxaBuOY/HcNK4bEIulcVyfRFEzrpupAXF9vCKP7j2XhtmQXn0oii+AtiYAorvtj7vmzvCBRkpgXBza3ocATHMx2BZwK2Dn53FcdV8TEdlWCvX3+5POveaafSmLF3ZjS0Nrmu6X/adLnrd8vikDsh2KJ7ytDj4APM/Z6uADwlazlbWJrQ4+AEqrYlsdfAAkSiJ5BR+vPrKUr018kGsvejXXajdr/qvr+MGkx/m/016mNRNkDN+9fYr4mH17MGLv8Hs3YvBT2d5W7d2wst9DtiYkLEv3g/BrEIRNe611cBwyGY9s9yyD69rcIEJjDLYtje+Hf2CiQ0fi9h0d3tb1cAfuCk7mOddMgOJs9zUDtIRfgjpMau2nvi4iIiIinxXVgMh27RdffoHGuiTz397Azgf2Zo8j26eJ//X811k2u473p21g2O7dOOSC4Uw4sBd/eOcI6te2MmZyD/xUwLvPriFa7PHb/Z7D8S0u4Q9WuOXKEsnO8cDmpp6bTLerqJfOXBfgGD+cA5IJYVwvlWlxaNtvE49S+70rMMlmosNGQeDjL5mBU9UHp7IHtuYuaFgC3XcO54CU7481pdg5Z2L8FqybwETyq6URERER+SwoAJHtWlX3BE31SayFqtp4h2OVPRMsm10HQEX3MPPj+wHTn1rFptUt9BtTQfOmFLMeW0VJRYSYD9nshQc4WCwG31qimcxGtuuVMQZjILAOnklnZn84hPulwoxHEHhAkmz9BzbAJpMk35uB8RvxevXG+I3YFa8RtA2B8oMwm97ANszDlPeGeAI/9SLWLaF1SDPuZotf1kKxacJQ8pm/tiIiUjg212mxsOcU6QwFILJd++WjB/P4re8zfKdujJzYsTvXRbftwVM3vE/tgGImHh8WwT990wfccslbGAeWv1dP/dwm1i1qxPiQ+NCORpsJRgLCQvQt6/azpVfhF9O+Twv7ka/hMEIDJhxk2PTkPbgRi79qGYniedi6FYAl4q+Dpb8FDHbdq6RHVWFbX8EGPvHm8C6DIsDox15ERES6jt6JyHate78SzvzhDh97rLQ6xnGXj+lwXWtzOlei0dqYorUx3f4JULhbKicbb1hrSFuIWnJdrbLBSHbSeXb6eXZ7lnHAmADXtZlBhBbjBLiuk1sTJFux0dbc+WyyMXdO/BYImgCL00au2ivW0B+nJv9OZCIi8jkRdEEb3kKfT74wFICIbIVDzhvG6gWb2biyhVN/OoH5z65h2t1LKYp5vP/0Jxd3Z0KN8F+Z3unZGg+bKU631uQCDNjy3+H31g+I7TgZk26g5LCTcWwd6TfvwNQMwdnhDHjfh/q5mCHn4JWWkq77LaRmQSo7fDCNiIiISFdSACKyFWJFHqdcNYGWhhRP/n4uz/zx/fB6a3Az5ePZH6rshizHgGMsnrE4JtxSFfHSQNh215js1yCT9fDDInXHJ7DgmkwGxAR4ZQlKjz4J4ydxq2qxtjeRvc6HomqM42EHnwVt66CoP44xeJWXk277LqTDAMRufUMxERH5HLCZWVKFPqdIZygAEdkKC97cwI/2eZJUa0BtdXvRuk8YcLhkut1mrovm9mEZfOvgWIvjpAkyBedB4OC5SQAcJwxUwsxHABhcr701sONYbHMT63/6TTynhaJDTiHqLiB4798QK8M7/OeYOedDqh76TCHVr5Z042/BWky263L0s319RERERD6NAhCRrfDWwytItYVBQXqLuSEOYeCQIgxEonQcshNOP2+v/XCdgEgkk+1wyQQc4aR0YwMcN2zTGwQGx8neg8VJRHBoAaDt7RfwKt8L77CtAbvwIUyqPvx+1cP4mVoP6xGmYQA8fVolIiIiXUuDCGW7du91czi4/FYu2u8RmhtTHY69dvcSzqm4h8smPErd6vBN/y5H9yGWCPcxRSLt+5mC9vJvAjIzQDLfb9nXKgjCbVp+4GSCEZPZuBX+KBrAWjcsE7Fmi85ZBmsdguYUgQlbAsd32Q9n+GHh4XgFZsixEKkKv+91LG7i+Mx5Tdjd19/y0YiIyBeKNV1zEekEZUBku3bjFW/S2pxmxourmfb4ciafMDB37J4fzaSlIcXSmXW8fPtiDv/OSAbuUMUNy4+jtSnN7d96i7fvXQ6EW68s4RBCF5MpKQ+1/3q2RNyAsKTDkkw6FBdlhg2aAOP4GCcIhxGaAM9LYwODccP2u44TEO1VQ7cfXYnx07jlVVhrccedGAYgkTh2r8chuQnYjLP4e0RtH9KJ1WDD4MokFYCIiIhI11IGRLZrw3fqBoAXcRg0puOE8CG7hccwMHCnMLPQ2pjilovf4i9feY2509fTZHwa8WnApx4/sxEru2EqlHvLbwwp3yUIDEHgYK1Da1skc9ABnA4ZjyBwCQKXohH9qN6hitojdmXQL75O29P/pOXB6/BXL8aueQf/1Z8RzLiRwE9il16HXfB9giVXQct72NZl4KewXmYrln7kRUS+kGxguuSytRobG/nWt75Fr169iMfjTJgwgTvvvDOvtWvXruXLX/4y3bp1o6ioiN13351nnnnmE9e0tLQwbNgwjDH85je/2erHK58NZUBku/bLhw7itceWM2hMJf1HVHQ49tW/7srOR/ehul8xgzIByJM3vM/zty4EA7FSL9xmZcDH4mJwPibB4GBxAJNttrvF7+ts0bkNLEEAxhhcNxu+WAyW1JIPiBS10LhkEUU1KYJ3ngZjaH7ozyQq3oOW9djVb2HiPjT8LXxA0Sh44flsBAIvPLHCDxER6UrHHXccb7zxBtdccw3Dhg3jjjvu4Etf+hJBEHDKKaf813VtbW3sv//+1NXVce2111JbW8v111/PIYccwtNPP80+++zzset++MMf0tTU9Fk9HekkBSDbGd8PuPuGOdRvbOXUC8dRWh779EUZz/17ETNeW82xZ42k/9CKvNfNf2c9T921gN0O6ctO+/bKe92m1S08fP1ceg4uZf8zB2NMfp+0pNp8HvrjXPx0wFEXjSSW+O//N08URzpsu9qSF3XZ5di+Ha4rLo9iM1PNsxdrw0oOJ1PN8WHGgOuA55AZKtjO5jZoOeGnSY7F902H+zduBEw4cNApLcvVlphECURLoGUDYCFeDQ2ZgxEPHIPFhsFHxHzofCIiIoX16KOP8tRTT+WCDoDJkyezZMkSLrnkEqZMmYLrfny/+JtvvpnZs2fzyiuvsPvuu+fWjh8/nksvvZRp06Z9ZM3rr7/Oddddx+23386JJ5742T0x2WoKQLYzd/1lNr/89ksYA0s/qOfntxyQ17o5b63lWyc8hjHw2F3v88SCM/Ja19aS5oL9H6alMcWdf5jFPfNPpke/krzW/upLzzPnpbXYAIrKIkw6rn9e6+76+Szu+tlMDNCwro1zfrNzXuvyMfnswaSSPnWrWnj70RUsn16HDSBuDIFtLzw3hA2nDDaT5QiDD88NO1+FE859PNfPLLBgwvJ1x/HDoMYJwEDppF0pqbUkRo2gaNwokqUxgob1xHY/EhM0Ecx/AFM5FGfQQdjyCmzTXLCLoDGTlnY6pFy22WshIiL/QyyFLwrfyrLCBx54gJKSko8EA2eddRannHIK06ZNY9KkSf917fDhw3PBB4DneZx22mlcfvnlrFixgt69e+eOJZNJzj77bC644AJ23nnbvQ+QbUM7MrYz9RtaMeF+IOrWt+S9rmFTGxB+2t+wqQ1r8/utk0oGtDalsRYC39K8OZn/Ode35X65Naxvy3vd5g1tYbbEGBo25L8uH45jGDaxG8N2r6G2uoh44JLAJW4dSnEwGNKQ2XIFEcfgGnANeK7FcyHihYFIJGIzLXbBGIvrBrnOWEHgEvjhaMNY90oSwwYS7dMT4zh4fYbi9RuBiZdAogqndgymelh4RyWjMOU7YBPVWCfAuhYcG/5NMgZrVIQuIiJdY/bs2YwcORLP6/j597hx43LHP2lt9nYft3bOnDkdrr/66qtpamriJz/5yf/vw5bPgDIg25lTLxzH4vfrqN/QxiW/2TPvdRP368PZl+zA2y+v4pxLd8x7O1RJeZQf3LwPD/z1XfY5ZiCDRlflfc6LbprErZe/Ta8hZex3xuC81035wVg2rmzGT1tOvWp83uvyMf3xlfz88OcAqCmPhW/obbi1yWS6X2UL0XNTQixgbG5ibNgEK7xlYLPXtN/YZq4LbFg1sumxZ2l9ag0mHqfHeSfT9sCvAYjsfDCxovmw8jUwLmb/q2HFhWDT2NKqTNE5+JFsAbr9yBYwERH5YujKSegNDQ0dro/FYsRiH93ivWHDBgYNGvSR66uqqnLH/5sNGzbkbvdpa6dPn86vfvUrHnroIYqLi1m3bl0ez0YKSQHIdqasMs4v/3nQVq9zHMM3f7b7p9/wYxxy2lAOOW3oVq8bPrGGnz9z8Favq+pZxA/un5z37dcub6KiJk409tF9p3WrW4iXRogXhz8qH7yxIdfmKp0NHAy41uJgcpmPqGlvv+u6logLrpMtLA8zHo4JBxIaA67r4zjh8EHHCXDdAMcNwtiktR5KwLa20jav/dMhf9lcqMoMIrQ+rH0VbDr8Pr0Z4plgJ2JzW68CZUBERGQb69u3Y73kj3/8Y6688sqPve0nfYD5aR9u5rM2nU5z9tlnM2XKFA4+eOvfQ0hhKACR7dofLnqFB/78Ht16F3HT68dQWZvIHXv4V+9y12UzSJRHuOq1g+g5vIx9zhjIC7cvon51C4mER7IufMPvYzr8MIWF6uGb/WyWI9eW19pcBiT8GhAEDq7rZ6IWp/1OALfXYGiaS2L0KEr2P4rmNTMJNm8gvs8UjLsC+/YfoWIIDDkHlkyH5nlQ3Af898P78bf4hZ1n5kpERD5nAhNeCn1OYNmyZZSVleWu/rjsB0B1dfXHZjk2btwI8LEZjq1d+4c//IGFCxdy9913U1dXB7RnaFpbW6mrq6O0tPS/FrtLYSgAke3aI3+fD8D6Fc28/dxK9p/SvtXruRsXANBSn+KtB5dzxKWjqOlfwv/NPQqAG09/lVduXxzWehC24vWBOCbsemUsMTes/XAccE1Y++E4hBkOJyASSWe+9zEmCFPoxg8zJG4YgFQftjfdDvpW7nGVXnh9xycxfItivpH3AGDXXoff8D6EMw5xmy3WAVu8TV8+ERERysrKOgQg/83YsWOZOnUq6XS6Qx3IrFmzABgzZswnrs3ebksfXjt79mzq6+sZOvSjOy9++MMf8sMf/pB33nmHCRMmfOrjlc+OitBluzb5xLAFb1lVjHF79uhwbNKXwq5b0SKXcYf0BGDTqhZ+sOtjXNDvAT74zzqi1hCxhhagmXDLUxvhP3I1H7a9NiQInNx1YPAzhebWZjdvgbUu1hoC3wEDm55+iVWXfp1Nf/8zQcN6Wm/7Js1/ORV/4RvYJQ8RPHoAwcvfIEhuIL3sbNLv74ZZ+wzuBgd3vYPXBI4PTgqc/PsOiIiIbFPHHnssjY2N3HfffR2uv/XWW+nVqxcTJ078xLVz587t0G43nU5z2223MXHiRHr1Ctv8X3bZZTz33HMdLlOnTgXga1/7Gs899xxDhgz5DJ6dbA1lQGS79v2b9+ZL3xlHbd9iisuiHY4dd9VYJp06gJLqGKXdwnTyczd9wMK3wnSvLYvRQhDWfGBwMRQRBhquCWs+HMfiOT6eY3FdizHgeZkMh+OHtR9ugOv4Yf2HmwYMjuvjGIshwK54F1vRTMubrxKttpjV8wBIvvh3YtXvQaohrP9Y9GewLwIQpJtwgjDwMeGgkvDfadWAiIh8EVmb27lb0HNujUMPPZQDDzyQ888/n4aGBoYMGcLUqVN5/PHHue2223Lbos455xxuvfVWFixYQP/+4YeBZ599Ntdffz0nnngi11xzDbW1tfzpT39i3rx5PP3007lzjBgxghEjRnQ47+LFiwEYPHgw++67b6efr2w7yoDIds0Yw8DRlR8JPrLHeg4vywUfAH3HVmSHlJN2LIETllj4EE5CxxAzYc23YwyOAeMYXBccJ7yQGTDoZL86ASZzzHXA8zLteB2LcQw2kklrexEi/YbnHotTOwjKsp/iOFCxA9kfaRMUASYsOs/UpWMJH6iIiEgXuf/++zn99NP50Y9+xCGHHMK0adOYOnUqp556au42vu/j+36Hlv+xWIxnnnmGyZMnc+GFF3LkkUeyatUqHnvssf86BV3+dxmb70AH+cw1NDRQXl5OfX19XnsppWvMfnY19atb+M+NC5j3/FqMhRgGF4coloSBhAOxiE/EhYjr47lh3Yfr+sSiPp6XJuoFeJEkkUhANJrCmADXtbhuGi+SxvXCgYU9T9mX8sEJooOGEOnRG3/pDGzjBtxhe4JNwspnoWwIpnIUtmUWtm0+bHiLYMN9pHpacDOdgH1wTT+ifZ7+1OcoIiL568q/39lzL/vBwZTFI4U9d2uKvj97Qu9bZKtpC5bIh/jpgKdu/oB0KuDgrw5l3eImXrt7CaP3686wSTVsWtlC/eoW/NYAN9tVKlPnkcLgW0sC8AOHmBeQ69sLmVqPgCBww9kguGQnh2QbcgSBizHp8D6dgKClhaChFdvYGHbQat6AbV4PfgpsC6TWQrIivP9gPdauJV3dgjXgpCwkIYgYbBRScfhorkdERESkcBSAiHzIfb+aw+0/nA4G1i5p5LVbF7N5fRv3/cRwyjUTuO2774CBivL2t/KZXVlEaB9AmN2Pm80xhm15s4FIpuA8CFdnb9d+m/YZI02vvIA7az2NjkPVKccSvHo9YAhWvUukYi40zA3va8fvkW7+UXisqAw8i/HBOibMgjgQFPbDMREREZGPUAAi27Vkm8/M51fTd0Q53fuVALBxRTMmUx21fmkTjRuTAARpy9qFTe2jNLaIE8I5H4Y4uZl/mZ5WJnd7x4SF6NA+I8QYmzturckUqofXGWMxWFybaV0VBPgb1+QGHNrGdRBfm3sutmVJ7rE4ybYwonHCzAwpIGIwaURE5IuoC+eAiGwtBSCyXfvx8c/wxuMriCZcbpp+DL0Gl3H8ZWNY+X4D6VTA6T/bgV0O6s1j185lpyP7cPh3R7JpZTMbV7bQsqaN1vp02HI3Exb4tE9Az+Q6chkQa02uoC6bAQkFmdvYTBZki/XG4A4ahxdZRmz0eOKTjyDlr8ZuXkd03wswzjrs/OuhfCSm/4WYDQ3QNhu8GEFyBjhgXfA9wGl/bCIiIiJdRQGIbNdmPr8agGSLz/y3N9BrcBk1fYv5wYOTsQHEiz16Diljl2P7UlQRxXEMF07dk1RbwK3nvc7rS5aCAad9xxQO2S5XYW2Hk8mmbJntyGZAPC8cTBiJpHPZDzfmEikvwo36RCuL6fXVk4iUxzGJIozjED30ckgnMbFiYCRUTQC3CON4mJqrwTaT3vw3rD8jF3G4KfAT6NMqEZEvqPBDrsL+ji/0+eSLQwGIbNdO+f54brnybQaNqWLng3oD8O4La/jpYc8S+JZL79uHl+5YzMt3LGbQTlWc+9eJ/PTAZ2iqS1HbLZ67n4Aw8AgAnzDT4duw+DwIDK5jM38cwttnf2mn0y6RSIogcHDdsEdukPSJx5og8Olz1nG0PHcfm15/Ea93fyrPPJvkA5dAayOR/b+JG18EC2+AeC/sxOtp3fxVCFZi6Nee7sg8OOMDETW9ExERka6lAES2a6dePp4pl4zF9Qwmk5547taFpFp9rIUnbpjP9IdWArDwrY08ft08GjclwUIyGeTux2Q6WXmAi8Ux4Dk2M3AwnPORKzC3FtcNMCbAc9Ph/A83nTseKY9CKgXWsunJl4iufQmA9IoltE17BNO6Ofx++r9we/0/9u47PI7qauDw707ZplXvsmRbbnLv3dhgMM0FjOm9Q6gBkkCAJJCEJIQUAnxASOi9hmZsio0xGNvYuPfebcnqfcvM3O+PWa0sICATsFzu+zxCOztzd2bXSNqz5557VroXENqNU/wc+N1rlc4e97qc2FQuG4SuPq1SFEVRFKXtqUaER5i9u+u56Jg3OLXviyxfUNzqcdGoze2XfMSJXZ7lzWfW7Nc5n//bMiZ3epF//Gwe+9N25svpu7iy6E1+M2EG9dWRVo/bs7GWW4dO42cD3mPHqqrvPN4wtXjwATDgpLx4bfmQU/LpOjwDgNQ8P8PPbI+mu8caevOYphqQfZ+dlE0F6GKfYwRCa97nSM0NXqQWKzwHqyaCdNxHCg7ujdmpGwBaYjKe3qNAc9fr1TuPhMxY8yU9gEgbDyLgbmtp7jkFYIA0YrcVRVGUw5Rwf9EfyC9VWah8T6oR4UHkQDQyeuBX83jir4tBwpCj2/HEh5NbNe7TaVu5bvJ7AHh9Ogurr27xpv2/qa4IcVL2c/HtZxZOoVv/9Fad86oeb7J7g/tp/08eHMrEa7u3atyjV83n46c2AjDqrI7c9MJRrRq3rz0barAtSX6PZKJhmy2LK8jvmUwg2RNbGSvMW3etYMm7u9GAZAkOGn4kXg08usRrOJiGxIzVeRh6FFN3ME0H04ximg4+bwjDkJhmBN1wi9F9OUn0e/B8sB28BTlIyyK6YwtGdh5aIAGndi801iAyOwMOVK8Gfx7Cm450ypH2LqyG97Dqn3K7rtO0BK9A6O1JSP5ov18PRVEU5b87GBoRbv/leJK8B7gRYThK+3unqUaEyn5TGZAjTPuuKUjHXaG1Y7eUVo/L65CIFltftl1hUquCD4BA0CQ1y62V8Pp10nP8rT5nu67Nv8xyOye2elxu10T3OTru7f1VXxPh7UfW8Ob/raa6LMTqOXt556G1zH9rB1bEZsY/N/DBg+sp2VgHwi2xiAqBV4AmBDZuhiNqa4DAiRd+azhSBwSWbQKCqGXS1IiwKVsSLmug6v3ZVH4wC6umlujWdTTOmU54xQKkbWGvmoq9/D/Imj1Qux52vAB73kU6Dlb4LSLh57Cd9W7dhxX7irpX4Hjs/X49FEVRlINfUxH6gf5SlO9D1YAcYSZf1J2kZC/VlSEmnlfU6nFdeqXz7OwprPxyLyee0aXV40yPzhOfT+bTd7YxaGwe6TmBVo/9xQtj+OSFzeR0SmTgCXmtHnfKz3qSkR/AtiRHndex1eOavHTPMt55eA0CQTRsM/el7UTDNp+9spXidbVM/fNqhIBgkideVK4hEYj/kox2azv2bUTYNLCpdsR2BMIWaJpEaFD54acIATISQd/xMUTChJfORYS2wYoXQGg4NXvwZK6G0B4ofg/bW0vE6zYpFLYfnOYe7LF6eKT6yEFRFEVRlDamApAjjBCC4yZ3+l5j+w3Lod+wnP0el9sxkbNv7L3f4wKJJuN/0vogqYmmCY46t7BVx1bubWTWS5vpOjCdPqPd57Zvdkfg1mU0vZEX8Rst39gLQN/ncZvGQdOSvF+/L34gIKWG44CmWWjaPrMiWxwomwfE9+0b8ogWN4XtDpGme78WARkV4G3VS6MoiqIcSlQjQuUQogIQ5Yh2+8kfsmlZBQh45ItJdB2YwTl39sW2HKyowwV39ee487sw48mNDDwxj6PO6oCha1TtaWTjvFJC1e7cJj3e99zNhgCxZEdT74+mzufubRkLKERTdiR2PVKC40hSTz4GbIv0MybglA6mcf7HeLr1wTtwFJZPQn0Z+uALQFTDtmchsQg9+wI8kSCOtQYnUooUc9CiIE3cn3QJeggIHoAXVlEURVEU5b9QAYhyRNuzxS1yR0LJ9nq6DswgIcnDyVd2w7YkSek+uo/IxDA12vdKxvDoHH1pJ+oqwtQWN1K82h3fFEDosToQLbb8rhZrSOiucOUGHG5GJLZPi2VchLukrxDgSQ+SMm4UODZGUhAZ6IrQNPTsfIRuYPQ4CRmqRiRmA5mQfyb4891jPBPQzH5Y4n3sxjlulZdJPP2ilpxQFEVRFKWtqQBEOaL99JGRPHPXYroPzWTY+HwAPn1tC386dzYANz46gplPbmLDgnJSc/zc8O8R/PXU2Ti2JD29uRFhBPDQVO0R09SIUAr0r0yfaircs20NKffNgAgiJTVsu/V3CAEZF5+NWD8Ta9s6RDCZ5AuuwP7gDpA2+sDz0BM2QPF00Pw4wx6gXl4LNKLZWQiNWFt2mqdyaaoIRFEU5XAkJQf8Qyb1oZbyfakARDmiHXtOJ449p2VNzJcf7HILwCXMn7qDDQvKAagsbmT+69twYj06bKf5N6+OxIkVhjT189C0psxHLLsRC0+kBF2LNTEUEsvW8ehOfHqWmWwiNPcCGpatwLt3HQCyrpro2s/RZKxj+ta56Flr3cdxGnEq34eURndTVsZrUmQ89pEI9ddCURRFUZQ2pj4OVZSvOOHirnj8BqZXY9I13Rl7oRugdB2azvgbuxNM8yA0gWk2//hYTc0GRayyQ4IdK86TsaWn4o0IYw0IAaTjfnecpscSRKujYHjA0Ek+7mi8Q8YCoLfrhGfIqeBLBqGh9z0DOlzkDvO3Q8u8GCHcLI4m8kCALUA4Er3RQQu1wcdjiqIoygGhluFVDiWqEeFBpC0bGSktRUIWUoLX7yYJ66sjBJJMhBBYUQcr4vD0FQv48uVtaAgSAUMIDCSmLvFqbiNCw5B4TBtNk5i6jWE4mKaNaViYpo3PH0bXHYRw4tmSYGE6A5++EqRE83gAcBobEF4fQtOQtgVOFGG6PVWkVQe6HyF0pLSBRiKhJ4k0/B9GA/GPGQTgeHIIZH56wF9PRVGUw9nB0Ihwy88mtUkjwsK/vavetyj7TU3BUpSv2Lu9jr9dNgcr4nDz46NY/UkJ7z64liET85lyay8eu2Q+lXsaiZZFELGJVVHcZXglAssBj4CorWEYDrajoWkOEi3WlNDGsnVM0yEaMTACYZrrQwT12yrYde//gW2RfdWFOLtW0/jZO3iKBuA/bgrWx3+Gur0YY36KMPbC5gcgsSey25002r/DlivRnACOV0LIfUwRX5hLfd6gKIqiKErbUgGIonzFq/etYOWnJUgkz/5mMV++sQvpSHauqSZaa7H0vV0AJCd64mPc/uYtu3I0laM7NtixlbGEkDiOwNCd+DGOrSE0O1Y3YmEEPDSu24gQUPbqW3hLZoF0CO3dhe6pQ2z9HBBYnz2ImbsaohVQvwErJYFo6n/cR5V+hOVegiMAb6xlu9BRFEVRDkNSxBY/OcDnVJTvQdWAKIeFz97bxu+v/oSFs3Z9bd/KOSX87ao5fPafrV/bt3VFJQ/9ZB7vP74+fl9mfgKOI5EOZLUPkpjuBhq6KcjtmuiuNILb8DDeSJBv+mFq7jrozpXVYvNlRXMNiNRiZRkiFoAAVjS+nImZkY4IxtLamoaW1o74GROzwdvcGFL4movpNduLHtZACqRPIHWBNAWSyHe/mIqiKIqiKD8ilQFRDnklO+v42envI6Vk2gvr+WjXxQST3Xbf4UaL28d/SLjR4v2nNvDUqinkd0uOj/3tKR9TtqueDx7fQF6XJPoek8MZP+9NcqYPK+Jw4uVdGX9lEXNf30afsTl0G5ZBao6fqj0hlryynS0LKhC4rTbA7fWhx+Y7Nf1XE00rXoGmOYim+VBIdMPe55m4LdU1v5esy88D2ybpmJHImtGEl8/FLOyJ0aEIJykJWV+G3nMCyAYofhuCReiOl+D207ATKpCyBFtUIyRIIXF0ByFF87UoiqIohxdHIFUndOUQoQIQ5ZBnW07z0ri2xLab6xykBCvqxBd/sqIt34BHI3a8cUc07AYDmi5IynADEN3Q8AUNktJ9JCR7EEIQTPdiRyWGV4dYNsQRuI0Fmzt6NPdGFwJdl2hCIqWGEBaa5gAC6Whopk1K/3Z4EwWe1ARyzxiBqCtFRqMIXQePFy0hEeFPQAiB8CeDEwXNAHzgTQWrAZZej8DB0CR2Thgn0T2/47dBd5f/dcIq6akoiqIoSttSAYhyyMvrmMTdT4xl1ltbGH9+N5LTmhsE+gIGd79+LNOeWM/Qk/Pp2Cu1xdg7XzuGN+9fTZdB6Qw8IQ+Atx9aw79uWQjAeb/qy6fPbKFsewMev85V/xjCU1e5+1JTTDRiAUgsEOGbPgyS8f/ENmVsKpbEicVD0W3bEHo9dtBPdEAyFS+9AUBkxy70rR/gVO4F3STp7Itx5twLgLPzS/SMNVCzGGyBaJoE1pxwcWkyfofUo/vz0iqKoiiHiLZYFlctw6t8XyoAOQLt3V1PY32UDl1T9mtcbXWY3Vtr6don3a1/aCUr6rBpZQUdilLwBVr/v5yUku2rq0nJ8pGc6fvWYydeWMTEC4u+cd+wCQUMm1Dwjft6jMyix8isFvdtX13ldhEHtq6qomxHAwCRRptNC8vj7+wNKeIZDzO2vpSUsUyItk8jwth3TbhZED0+FQt03Q0OhB0GHey6RsJbdsU7l0d27sRbVeqe0I5i717XHFhUbIHAJve2kCB0hLSRuoxfPwKwBMTPo/5YKIqiKIrSttR8jCPMwtm7OKHLM0zs9QIv/N+yVo8rK65nQo/nOWPIK/z8vA9aPc5xJNce+y6XDH2T8we8TmN96z+Bf/r2xVzX7x0u6/QGW1dWtnrc/2rKzb1o3yOFvM5JnHtnPy744wCSMr0ce2lnTr+rD12GpZNeECAx6IYdsqkLOrhZhli383jOQ7b41lRfDhDPgPiKumAkJZB1xtGkn34ynna5mFkZpE6eiP+kCxAJSXgGHI056gJEdi8IZqEPvxrR6XYwMyHYFyktNwxy3EaIOGCZNkadgVltotcY4KjPHBRFURRFaVvq3cgRZva0rTixGokPXt/I+df3a9W4ZfNLqCwLATDz7c1IKRHiuz9NryoLsWL+XgB2b65l86pKeg3N+o5Rrs9e3QpAuNFm6Yw9dOyd+u0DfiD5Rck8svQUAIQQdO6fxmm/6Bl/vnfNPQEpJU9cNI/tL2xDAJmAJtxJULoQgIOuAUi02BQoTcivZD4khuGAELS/9FhSBraPn6Pgj7+Kn5/CDviOOiW+Tzvt4Zavf9YkpFUNC44F2YjjdcDjdkCXhnBnYAnQpEA69QfiJVQURVEONLUMr3IIUQHIEeakM7vw6mMrCYUsTr+sV6vHDR6TR16HRHZvq+X0y3q0KvgASM30MXJ8AXOn7aBb/3S69E1r9TlPvrobz9y5hMQ0D8MmffMUqh/DxsXl/GbiDOyow2/ePJYFb+1g6oNrGXBiHpf/fTB/O/kTqktCJCS6a19JoBGI1XwjcefhWhZ4DNHciDC+FC/YtoZpCixLxzCibH34fZzibaQfN4DcM4dRcv8/wLLIuv465LYvCM99G6NTXwKnXIE1/efQUI5xzO0I/07klr+ANw9kIwBaWMPGAY2v/TupRbAURVEURWlrKgA5wvQenM0nOy8lEnZISf/2uop9Jaf5mLrqfCrLQmTlJbR6nBCCv751IqW7G0jP8aPrrZ/1d+ZtfTj+0i74E028/gP3v+rUf66juiyElPDG31ax5B23t8iiabvIzPJTuqUeJJhm83MxiaUZJCCaaz6A5mV3hZv1EKL5Pnc1LAhv3YHpkZR/tBivvwanthakpPqD6XjLZwNgbVpKdMEriJrd7vbiZzHyV4GMQmgraCbIKFIDHHe2lXSTMe6lCUBrbp6oKIqiHD5UEbpyKFE1IEegQNCzX8FHE9Oj71fw0UQIQVa7hP0KPpqkZPlbFXw8/49lXDzyDd58YvXX9n30/EZuGPkuL/xxGVLKFvsWTd/FraOm88QtC7FtNxjoOSIT6QASeo3OJr+H2zckIcWk34l58bH7FuJb+9SAgFvj4TT9Ym7xXcSK1d37HCf2mngDAJjpSST07hYvEvF27oaW1SF2jB+946Dm8+f0haQBsfPqQNQ9v3QL4rUogIajg6OB1AUIFYAoiqIoitK2VAZEOeRt31DFP26dB8DqRaUcc0ohqZl+ABrrovz18jk4tmTtgjKGjc+nS//0+Ni/XziHusoI6+aX0WdsDkMnFXDCpV1p1y0ZO+rQ5+hsTrq8KytnFdNlSAbp7QLkdk2kZm+Yj/6+ls0flSCApnDOrc2IZTlwb7tZDrcqXNOaytXdbIjpiYKQdLhuAr5Ug8TeHTGSE/Dk5SGtKL6iIggfQ3TLCoy8zmjJGTjpT0B9OSJ/MGBB5Vyk4YfVl4O03alXgG3i/oQ7+3RsFy0DMEVRFEVRlANNBSDKIS+Q6MEwNWzLwes3WmRMdFPDn2hSXx1B0wTBlJYZgORMH/VVEaQkvtRvJGSz8tNiohGHroPTKd5Yy8rZJRgendQcH2s/K6VqTyOyNIJXiH1bfAACW8amZGlNCQnhrqortNiqV3ZsmV2BbRkYRpSGLSVEd4QxkgIEu+cTXr8OGY3i7dgRWVmMvXUFQhOIpDRk8TKoL0VkdAWtDln7BXiTsFMiEBVIjySSDrYfNGufS5MSaaikp6IoyuFIOu7XgT6nonwfKgBRDnkZOQH++dEk5ry3nXFndCIQNOP7PF6d+2edzMcvb2HQuDxyOia2GHvX9OP46IkNdBmUTtHwTABe/uNyXv7TcoSA6rIQc5/fSmNtlPf+by0X3tWfN36zAqFBXpL3a9fSVNsh4p3Q99m370ZsilVT7LL3rbmYZoTSqQvoeMkA6j6YBkJgV1dh7P4QQg1EvphKYMJZsOyfIDRkxSa0nFXQuAWpO8hUwHAzK3oYvFWCcFpszV9duAuk6CoDoiiKoihK21IBiHJY6D8yl/4jc79xX2GfNC7v882rb2V3DHLB7we0uK+hNoom3FqN+qoI4UbLjRck1FZEmnoEfrXBOSDRIDbtqrkIvXlv83bTYzQFLNJxQIK0bOy6hvgBTmMDRMPxE8nGajeQkRIZqQOrrvliNBE/i1EvcDQwqmMNEk2JE/xqtkZRFEU5bKhleJVDiApAFOUrzr2jL9WljVgRh8v+NIjRkzsw/dH1DJrQjhOv6ka03qJydyPhtXVUVLlznETsv9JdhHefR4tFLvGjYoHEV6KXlNF90UNVpI8bQOrIIiqsRmQ0SuoZZyH3DiC84D3MLgMxhp6Eo9VD/V70IT8Boxy581EIpIH9NiIMeq0OQiIDEnxuLOPYTU0P1R8LRVEURVHalgpAFOUrkjN9/OT+Ydi2JC3HT1pegI59U8lon4Dp1Tnn3gGE6qK8e/MSKja5jf2a39YLhNAQwkHXQdNB05r2yHjmQ4t1B2zKkmSd1J9gh2S8OWkIXSftnHPAttFTUpCpqWhZ7dGSMxGGiRhyNUQbEMFspCxEdL7bnfC16wO06kjsXBp6vYNlSjBAs0FzwBaqBkRRFOVwpJbhVQ4lKgBRlK9YOH0nvzvtYxxHctvzY/j0mS0sfX83uV0Tue7xEdx30iwiDTaFGf6mUg5s4bb5kMJdftdtNuh+l45AarHcSKwkw11+18a2dUxstv7jLYzGEgLdCsi/dCxl//cQ2DZpl18BGz/BWrcQLS2H4NnXYn90M1ghtKHXQsoGKHse6Qki/WG+Egq5JxMC24PbH0StvK0oiqIoShtTAYiifMWcN7bh2BIp4eMXNrPy/T0A7NlQy6wnNhFptAGojzqEY2OE+z4fc59GhAKJbQuE4S4TIvaZjtXUgFDTbLdJYHU5eKBh/Q5qPp3XNF+KhgXz8JQuBMCpKCa68n00K+Rur5+G1mUlgFsPkmCCboHddFGAIZA6CDs27Ustw6soiqIoShtTH4cqhzwpJb+9chaj0x7n77+Y+7X9T/9mMaekPMcfzv8k3mywyfRH13FB6ivcfcIMwg1uPcdRp3dwl7zV4NjzO9H/BLe4PbdrImMv64zp0wEw9lnS1iZW7SGAWKajqeNHU7NBGWtEuO99jqODBJHkFsn7uxaQNHp4vAg9MHQERtFgALTUbMzeJ4Lurr6ldT0Z0ia7F+AJAlGsNIn0ShzTIZrk4PjADgjshFhmxFFrJiqKohyOmqZgHegvRfk+hPxqa2ilzdTU1JCcnEx1dTVJSUltfTmHjI0rKzhn4Kvx7elbLyQz1rG9vjrC5PQX4vse/HwiPYZlxrfPTXqZcL0bePz8ldGMPMPtOl61txHHlqTlBnAcSfHGWpKzvDx5zUI2LazAq2uESiOEKiNoCPy4MYMXiU+XeHSJqTv4PA6G4bjZESOKx7TxmDZCOPh8UbzeCLoh6Xf/mSQUJOHNTUfoOnZtLdK2MFJSkY6DU1GMlpyBMD3IcC1E6hGJOW5n98gOHCTO5gkIK+xOtTLB8sW6nwO2F9AEji+T5MCcH/cfRFEU5QjTln+/m869/idnkug1v3vAD6g2HKXbP19T71uU/aamYCmHvOz8BBJTvNRWhcnIDZCc7ovv8yUY5BQGKd5Shz/o3t5XYf9U1n5eim4ICnomA1BdGuLxWxYSjThcdf9QNnxRxgf/XE9qlp/5r2wH3DyGX2o05TQswIztiThgamA7GiBxHIFhSEBz60JM263PQGBZBroRpfSDpVRGy0k7dhDJw7pT9epLyGiUlLPORe7dQPiLaRhdBuAddjL2l49BfSn64KvBqEDufhQ8aWiRCG72RboXY4NwAN29LTWpFsFSFEU5XKlleJVDiApAlENeYoqXl748g0Wf7mHYuHw8Xj2+Tzc0Hpo7iS8/3EWvEVmkZvlbjP31e8ey8N2ddOibSkHPFABe+cNyPn1lGwCmR2fh69uxoxIhwWyatShbfPtG4qt7Y81ERGzkvjUZ1Z8vxuuLUrd8I/ln9KVxwRexJ6Bh7PkYbAtr83I0uxix4W1AYIWr0dutgeheN9LwNi/zixN7aAnRBJC+2ELBjkp4KoqiKIrStlQAcoSxbYc3nlxNTUWYc6/tQ0Kip9VjP52+lWXzS5h8cXcKOiW3etyG5eXMeG0TI04soP9R39ws8JtU7W3kvX+uI69LEsecW4gQ//2Tlpz2iUy4IPEb96Vk+hh3fudv3OdPNBlzXmGL+wJJZmz1KAgkm3j8BiEr6pZlNJVQxN7rf/WK9u36Ed8Zbzq4T4Ag3AxIfP6s0EFEEbqOFvDHV6/S/H6E6UXabpWJ8DdncIQnCHoAok0n2qfRYdMNww0+RKxHiZSqBkRRFEVRlLalApAjzKv/WsUff/opQsDmdZX88clxrRq3ekkp1536HkLA1BfX8cGGi1o1LtRocc2x71JfE+H5vy7jzQ3nkpUf/O6BwL3nfcqK2cVICd4Eg5Gntm/VuP/VWXf0xfTpWBGHKT/vxQmXduXT5zfjDxi8e++arx3v9hqPFZ4L0CQ4UoIE2wFNjzUfBIRwcLMg7vem1bAyThmN12wgZVRfEooKMBJ8yGiUxBNOwqkaQ2TJx5id+mIUDcYJ+KC+FK3P2SBqkSUvIswk5N4H3AsS4OiADnbzbLTYtC+VAVEURTkcNS37fqDPqSjfhwpAjjDlJQ009aIrL25o9bjK0kbA/WVTWRZCSvmtGYkm0bBNfW3E7YthSWqrImTlt+6cVSWN33j7x+bx6fQdm4sVsfElGOR1TaTP2BwKB6bh9Rusmb0XEZFUbq6jeldsSVwkNgIzFoRYjoYQEt0W6LoE3c1gSKlBvHKkeb5uoDAbf6qBryAbYZp4i3ogrSjC50NPzcHs1Ac9txNCaGh5/ZENZeBNBhIQScORRgBKmoo9YrUfFkhNuFkbrSlQ0r/hGSuKoiiKohw4KgA5wlx4Yz82r6mgqiLMrX89qtXjRowr4KKb+rF4zh6u/OWgVgUf4NZn3PnY0bzxz1Ucc1ohnXuntfqcNz42kid/+SV5XZM47sJvnkL1Y/jwqQ08eOU8AC7/yyA+e3ILO1dXE0gx+cmjw3j77pUgITXFw1cnP+07wcld8dfBcZqnW0kJjsSNUmhejnfbw+9hOrWYGckUXj2KymefBiB5yumILR/ilGwDr5/g2VfB53cCElF0OiJlA1R9gtQ0MOzmi4h1PpdCuqtfiaYrUx9XKYqiHI5UJ3TlUKICkCNMcpqPv79y8n6P0zTBL+5rfcCyr4mXFDHxkqL9HtdzZBZ//XR8q451HEl5cQMZuYGvBUdSSiqKG0nJ8qHrX299U1XSSDDVg+FxswNr55UiNDfbs/LTvexcXQ1AQ1WU5R/s2edxm6Y1NRecx5INsWV3JaYBht7UiJDYd4GIFZ8LzXF3hBvAhGhZNQ0r1rkPICXhjevxlLkF8YQbcbZ+iRY7lyxZitDXxl6ApnW4os3nkbEr0+1Yxx8JVqRVr6eiKIqiKMqPRTUiVA55VtThyjFvM6nDC9w0YTr7traRUnL3mR9zdsErXDv0XcKNVouxz978Jdfk/oebur1DTak7nWr81UUkpfsIpng47ZaeTLipO0IT9D8pj1Nu60lmxwQ8AR2vz3ALu5Hxta3ADUKkBMt2Mx5NlxMLOWL3xdbCctxAw9shHzRB2rgBpEw4Hi0xEeH3k3TCSXhGTQahYXTujzH4HAjmge5F63sJIv8GEAb4OgJRd/qVJSAi3DoQiVuU0kSzURRFUQ5Dso2+FOV7UI0IDyKqEeH3s2FZORcOfiO+/fbm88gucAvdayrCTMl6Mb7vgU/H02tkdnz7osDLREPum/IbXxrFiLM7AsSDmKZsyldrXqSUPHnhfBa84GYnvICGwETiEeDVwdAcfKbE77MwdImhWZimg2lY6LqD1xvF5wtjeCT9HjqP1IHtW5zvu86/7z5pV+GsPgbREAJHIAQ4XodwHlgp+yzd5SSRHFj0/V9sRVEU5WsOhkaEa684m0RP61e2/CHURiJ0f/wV9b5F2W9qCpZyyCvolkz7rsls31BN0YAMMvIC8X2JqR56j8pi5ed7ye6QQMfeqS3GDp1SwOcvbiUh1UO3UVkA7FxXzR/P/gQr6nDbC0ez4qM9vPv3NQya2I5zftuPh878nKrdjXis5tjdJjb1CoEd6/HhSHfVKcvSMHQbhIjXfLgZEEE0amCYEXY+/TE7/rKLjBMGkzVhIHsfeRQnEiXrJ1fC7sVE5r6J3mUgvnEX4sz+FdSXoI28DfzFyF1/QQZycQIN6DUGIpZdEbqDiNK0/JZ7ofLAdslVFEVRFEX5KhWAKIc8n9/g2S9PZ+uaSjr1TmtR5yGE4K8zTmbLigryuyXjD7Z8A37tsyOZ+PMeZHRIIJjqBeA/969i2+oqAF76wzKWvrkLJHz85CZMTWPT/DIkkJpkYhCb5RR7vChNHdFBFw6G7qBrDgKJEA5CuMvyasJBaA5arD6kYfUmTNOm+NXZ6OE9RHbuAqDqnXfwV80AKbGWfYydJBF7lwPgLHoU0XEV2NXI2hJIdGtY3AlhsVW24tOvHHdbtJyCpiiKohweVBG6cihRNSDKYcEXMOg+KLNFF/QmhqnRdWDG14IPcIvrO/ZPiwcfAO17pCAdkA506JlCer6bUTF9Op0Hpzc1NMcrNDQh0N2ycsCtJ2+qsnAQ6BpompuAEEIgtKYehCJWZx775W2459cT/fg6tqOpeMTMa4dIynSP0U1ETrf4dYqUTuDr4t7W3DPbKW7BuTQc7ITY1CvNcQMR4YBUP/KKoiiKorQtlQFRlK849cYeZLZPwIo6HHV6ByZcXcTCd3bSc0wWBT1TyOyQQNWeRhY9uYX1n5YicH+QNAQGzZ02dAGWDabhAA6a5sQbDzZV7mmxDEXBFSfgCUDSoK54slMxszOR0SgJQwYjG8ZirfsCvaAHelYHnOQsqN+LKBwHhJFV0xFmInLnzYgIWGkWmgQrkXjPFyDWekQVoSuKohyOVAZEOZSoAERRvsJxJHWVEayog2NLwg02dVURGmstpJTUV0aor4wQijjYsebiTUHHvovyWo5G1Abdkvh1t1jccQBsvGkBMgen4vE6ZB/bjaTuGdQsXIcTioCUOPUNyEgUbBuiYZyGOrRwo1ucHq5DhusQjgUigojUIi3QK90FerWwA6nuxUgASwPDcTdsteaEoiiKoihtSwUgivIVr/9lFc/8ajEAxZtr+eyZLdSUhtFNwWV/HsSLNy8BIDW5eUqXQ8vVCG0HtK98MNS0JK8jwQpFKf10KwCJPfIp/vejOOEoxa/OouNFw6l68y0AoiUlmHumI+sqCWsaCadciPzyfvfxSlagZa2BhlUtOyDiNlgXuP0OhdTB0mMXqKZgKYqiKIrSttS7EeWwUFMZZsHMndTXfr3RXmN9lMUzd1NdFvraPitis3pWCRW7GuL3le6oQ9Pceo2SbXXUlocBsKOSPetrYvUcsffz+0QdkuZmgxZgx5fSlfscAY6tgaa7B2uChp3VOOGou68xQqSkrKloBKu8DFnvNkLEcXAqdsYeSyBriyHS3BgRTXOnXMUeWlhfafshAPH1GhlFURTl0Ccd0SZfivJ9qAyIcshrrI9y/oDXKd1VT4duybyw9EwM042tHUdy05hpbFpWQUqmj6dWTyFxn4LzB874jCVTd+MN6Pxp+QSyOgU589Y+bF9TjR1xuOi3Axg0No93H1jL0En5nHZrTyq3N1K5uxG7PEJ5VctVpRzc6VgCsKVbGB5vRBhblhfAtgWZvXLQE0y6XjOKyu4eymcuJuP4waQf2wenohQZjZJ6+hQo7kZ43lsYXQZijDgTJ7obWV+CPuKnCE8pcsffwcyByjmxEwEaaFGwTdyUiy5irdvVj7yiKIqiKG1LvRtRDnk7N9VQuqsegG3rq6koaSAr321EWF8dYdOyCgCqSkNsX1PVohHhqpklAIQbbDYvLCerU5DsDkH+MP14pASPTye/KJnR5xbiTzQQQvDT/4zGjjo8e8UCyrZtB8CDO+VKx32vb2qgaxJNCEy9ueC8qR1HWp8shv97PEITaB6dnLOOIWviCLSAFyEEOT+7ESklmscDebmYPUeB1++upDXuHrCjCNPvPljSUKQdgsXHg9MIpkA2BTo6GLUgDYmtAQnq0ypFUZTDkhTu14E+p6J8DyoAUQ55nXqlMvyEfOZ/uJNxZ3Yis11CfF9iqpeTLu3K+09toM/obLoNzmgxduKtPfnP71bQrkcyfU7MBWDVnBJ+M34mjiP51RvHMP+Vbcx+Zgtdh6Vz1aPDuO/4WTRURkhNa86kRAFf7Lakqd7D/cUctXUMw2qxWkjF0hKmDX8U3aMz4t+nUfrK+9Qs2kDy0CLyLxxFyd8fQFo22df/BLZ9SnTJDPS8LgROvwZn5g0QqUYbdhvCtwO58yEwMt3gA9BDGpEUG2GBMAQYIjbbS2J/pVZEURRFURTlQFMBiHLI03WN+6eeTDhk4/N//X/pn//7KG54cDgen44QLT+tmXJXHybe1hPTq8X3ffT0RiKNFlLCe4+sY+VUt85iwxflfPDAOurKwyAhGmkusJBAVMZ+oASEHfBrEke6vdFtB3RH4gi3MFz3ashGB8ty2PLiEpylGwCoXrCOYJaFDLurYdXMmoW/ehYA9u6NWEvfQAtXAuCseQUtZ517/uheZIIBWgRs0BvB9tGiMEUgvl4ZryiKohwW1DK8yqFEFaEfYUqL67n0+Dc5bdBLrFxU0upxluVw5xUzOKn7c7zz/Nr9OudL/1jOlK4v8eBt891lZFtp0Ye7uLLXm9w9eSYNtdFvPVYI8Y3BRxOv3/ha8NHkq4HJwBPy4nUbQya0o/OQNACSs30MOb0ALfYmft+O602rYEnRXJceia3RaztuVYiUGkiBEAIr1Pw65BzbBW+uew5vuwwSB/el6QL8ffqi5xe5zzGQjN51TLyQXOSPgpQx7oOYHtAj7tK7BggZqzlvkO7yv0hsTbo7FEVRFEVR2pCQ+/OOUPlR1dTUkJycTHV1NUlJST/KOR749Twe/8tipJQMPSafJz+Y3Kpxn07fyjWnTgXA69NZVP2T//qGfl/VFSFOzH42vv3swil065/xLSOaXdHjP+zaWAMSrntoOBOv6d6qcT+EHWuqsC1Jxz6pREI2GxeU0b5PCsFUL6Vb6qgtCzP1tytZ/t4eBBDAzTD4kBgCdA28hoNHlwT9UTQNTD2KYTgYhiSjfxZD/zga3WcQLEzFbgjTsGk3gS556H4vkd17kJaFt30B0opi71qPltkeLZCIrNsDoQpI7wk4ULsMR/fgbDsThIWtubGI1MBOcv+NHBOkIbAT0kn2zz1gr6OiKMqR4ED8/f6uc6+86AISPZ4Deu7aSITezz7fJs9bObSpDMgRJr9TMo4jkRLad05u9bjcgsR4V+28DomtCj4A/AkmKRludYTHp5OWHWj9OTsnxtMJ2R2DrR73v2qojfL+Ext4/4n11FaEWT+/lI8e38iiabuxIjafPr2FWf/eROnW+nizPxv3h0ki4rcdRwCCqKW7xedCc7MgQENxHdteX8n2/6zCaoxSs2wzpdO+pHb5FpxQiNpPP6d29hzs2jrsXeuJLPoQa8OXSMdCbpqGs/4dqC+G0AZk5StQ/Tbolrv6VWxmmNRBi0q0KOghEI6kuWWioiiKcjhpmoJ1oL8U5ftQNSBHmCmX9CAhaFJdGWbyRa3PKHTtnc4zM6ewYmEJE87u1upxHq/O43MmM/udrQwZm0dGbusDkF++cDQznttEbqdEhpyc3+px/6uX7lnGWw+uBiBUbzH/5e1EG21mv7CFkjU1vPvH1QgNkhNNfLjBx779PwwJ0RaNCJv7gEgJQjhYDRG2vroCpEQ6Ng0zPwIpKZ+1jI7n96N25kwAnFAI794PIBomunw2IrQFse4JQMOu3YXIXwORnUjhNFfBA9LrztRyNDf7oYdji5UI9ZmDoiiKoihtSwUgRxghBCed2fV7jR00Ko9Bo/L2e1x+5yTOv7nvfo9LSPZw6vU9WnXsljWVLJixi6MmtKddp5Zp4JLtdcx9Zzv9xuTQqW9ai321ZWG+eGUbHQak0nVkJgDSaQoYhJstcppDCNuW8WgjIAQWbstxR7oL3zqAjUBI0CT4W/RHdwdqwl2iN969XMpYAYl7SPP5ASdeXRLbtvd5KId9W6DHu4wI4okOzQbHB44OdqApN6MoiqIcbtzVFw/8ORXl+1ABiHLIqy4PcdmIN2mst3jinkW8s/X8eEG6FXW4YdRUKvY0Yno1nttwJhl5zVmYv5w0i22LKxEa/PbLk+jQP5Vzf9WPaMTBijpc9LsBHHtOZ2Y8sZGBJ+Ux+tyOaEBVcYjKLyrYVVWDkKDHggsR+3KnYwG4vT9kLIYQmhvAaF6D9pN6YgRMiq4bQc3wDCo+W0n60X1IHtQJTZfISIS0M05Flg0hsuhDjM79MPodg+Ozob4Urd9loFch9z4BZjKy5nkE4BjNGZmmi4qkSNBAqHS5oiiKoihtTAUgyiGvoqSRxnq3I3lNRZj66kg8AAk3WlQWu/0xomGHsl31LQKQkg21AEgHSjfX0aF/qpt5uaEHtiVJzvDR6+gsAokG+T2TMb06467tSl1FhLd/s5y6tdUgICDBQGDiNiJ022+4KY14uUzTClQSEgqS6HzRADSvgZHgIXloNzyZSfgLc9B8HpKPPxZpW+hJSchADzymFz0zH6GbaN2mQKgKgnlADiLjEqTmhZpXQEYRDvFIKB5vxNYHlrJ56WBFURRFUZS2oAIQ5ZDXsUcK593Sl49e3shpV/ckPac5wEhI8nDVn4fwxoOrGDmpPd0GtVyB66KHB/PGr5bTeVg6/Sa408vmvLGVP54zGyT89F8jmP3kZtbPKyM1z88Nj4/g76d8ih2VJKd74jOjbNwfJgk48RlVAikdLFtg6E0Fgu7+6rXlzDr1eRAw5IEJlL3wLqGdZfjaZ1J45Rj2PvIYAOkXn4e29UPsbasRwRSCZ1+D/OQX4FiIvhcjkjdAxTtgeMDrLlUsbHcFLCnA8oE0BVpEIHGQPjUFS1EU5XCk+oAohxIVgCiHPCEEN/55ODf+efg37j/zlt6ceUvvb9w36oJCRl1Q2OK+hdN3xesp5r29g/XzygCo3N3I3Je3YVuxqMMCLxoSMGKRSFN+wRHQXNQhsW2BoQscCZZl4PUYEHKP3fPheuyd7jlC20upmb+EpnlbjUuX4at2C+JlXRX2+tlojpvtkds/RRTE9lkh8JtAFBmb/yUstxmhwJ16JdAhYoG/1S+toiiKoijKD059HKooXzHuws6YPh3D1Bh/VRFHndMRgE4D0zjh+iISUjwIDXyeWENA3GxH82235sOKfTLkSA0QOO4yVAgB0UYQukD3GXQ8uz+J/dwgKGlgF1JPHIMwTdB1Eo8Zg9nvaAC0nI4Y/SaDJwkQaD3OgOyL3PN6M4BYBqSpbp3Yalix5+XGRN/e0FFRFEU5RDmibb4U5XtQjQgPIm3ZyEhpKdRgIR2JP2gCUFMWIpjmRdME0bBNNGTz4tVfsviVHfFFp9wviV+XBHTwmDamDrruuI0IDQvTBEOz6HpBDwbeMQyha+g+AyklVk0DRlIAIQROOALSQfO5a+s69TUIfxChaUg7AnYE4XF7o0irComDs/VUsIpxdIFw3FW5GvNAj7oBkABsI4OkpDlt8IoqiqIcvg6GRoTLzr24TRoR9nvpGfW+RdlvagqWonxF2c56HrhyLlbE4YbHRrD6s728++Bahk7K59Sbe/CvK76gak8jsjgSzy40L5QrCDsQ0CW2reExnNgcWUnuyCyoq6VwSnfyx7Xni2vfxgiY9Pv98VTOWkz5jKVknDiQjLG9KHviaWTUIuPSC5F7VhOa+w5m10F4j56MM+fPyPq96MNvRHjKkDsegIReiA5vEon8Gkuuw9i7w12dKyTc6VwCpJRIQyU9FUVRDkeqBkQ5lKgARFG+4rU/r2TZzGIkkmd/vYT5r+9AOpKtyysJVUT48q0dAGQkeQnhoAFeRItpWFEbhJDYDuhCIjWoXLQL03BYef8C6lbuoGLxbhCw/uHPCX8+G4Ad/5yGKNtM46o1AFS8/gbe0lng2ISLt6F7qhBbPwEE9rx/oOevBqscGlbjJPqIJH8AUdCkHlsIK/bHId4gRP2xUBRFURSlbamPQ5XDwtz3t/Pnaz9j8ae7v7Zv9by9/OO6uXz+zrav7du5upqnrlvI7Kc3x+9Ly/W7DQglZLQLEEz1uL07DEFWp2C8b6Al3E7jlmguPm9qRigRWI6GlAJHakhHIGM/bt40H76coHu0I/HnJCE87mcBms/EyEiNd5QyUlIRfneqFUJDS86JX6dIyARPFk1BhfC0d79LEa9FEWG5T8ghVR8QRVEURVHanMqAKIe8vbvq+fmpHyClZOqz65m+60KCye482EjI4taTPiDcYDH1X+t4evUU8rsmx8f+ZeInlG2vRz66gazCBHocnc0Zt/YmMc2LFXU4+apunHRlN+a8spW+x+bSUBFm6OkFhBss9qyqoa4qgiYFDhInlm/Y94fKkdLteg70/+VwNCtM+0ldCeQkkNA+BSNg0v60XjQcW0DV/LWkjuyBv2M2ZmoiMhIlcezRyJqjia6Yg1HYC71DT2RiErK+FK37KSAaoPQ/EOiOkTyWgJOHbc1B4jYl1GyJY9lIjwaaQLMiB+4fRlEURTlg1BQs5VCiAhDlkGdFbBwntgxu1MG2nPg+25ZYEYempRaiYafF2HCDFd8XbnDzGJouyMhPwLIcdFMjmOIhoyCBvZvrePSSeS3Ga4AhBLYURGla4VbEakIkUmpI6eZE/FkBNGniSfKgmRr+3EQMvwmawEgK4MlMRk8MgKZhpKUho1GEoYMvgEhORyQkI4RAJmQhhAaGFxDgyQUzM3Y92UiyEBYgQbfAMQFNxBIlLZ+/oiiKoijKgaYCEOWQl1eYxJ3/GsPH/9nChIu6kZzui+/zJ5j8+pVjmPb4eoaenE9h79QWY296bTTv/mUNnYek0e+kXACmPrKOx366AIDz7+7Hx09tYu/Wejwe7WtzFpsCjaaVb20EGk0zqNyJUI47m4p5P5+FR4uytlMKHScUsOnxLwHoc+cxVLw+Fbu2ESMpQOEVw6l46VUAUk4Zj7H9A5yKYjA8BM+8DDn3HgBE15PQMtZCzQJAw+n9Z+rMnyMsh4Dc5wIdEBHpdkX3qh95RVGUw5HKgCiHEvVu5AhUVtJAqCFKfmHydx+8j/raCLu319K5Rxqa1vpfOpblsHVNJQVdk/H6Wv+/nJSSnetrSM70kZTm/dZjJ13anUmXdv/GfaNO6cCoUzp8477uo7PoPjqrxX1bV1QiYs38Ni2tYO/WesDNnviExr4LVze9Cnas6aCNRCDwCtCEdBMPAtAEwrFAg9otVdSsbeoQKKhatQe7thEAq6aBxk07YoMkkR3b0SqK3ZNYEezdq+NBkCzfCP51sS0Hp2ERJDtIw+2ELhy3GzqaiJefy4j1ra+joiiKoijKj00VoR9hFn62i7GdnuL4omd54dHlrR5XVtLAiT2e5ZQBL/KLiz5o9TgpJdce/y7nDXyd8wa8TmN96xvhPf3rJVzR600uLHyNbaurWj3ufzX5pz3I65JEVscg59zel/N/149gqocewzP4atec5s1Y08HYfY4EO5b5QIJjQ0qfPMxkL/1uG0G3nwzDn5NIsDCVLlcOJ+vU4ehBH9lTRpE+5STMnGyM9HRSJk3Ed/wFCF8CZp+jMIefBxndwZ+OPuQqRMfbwEiF5JFoadegO8MQIoVwdiGRIESS3GAE2/0SagqWoiiKoihtTDUiPIgciEZG9902h6f/sQQpYeDIXF745IxWjfvorU3ceNY0ADRNsLLxOoT47ixIeUkDJ+c/F99+6vPT6DU061tGNLuw02vs3e5mH67+6xCm3NSrVeN+LDWlIe4a8xF7NtRgeDQcS6JbYCDQpbvkrQH4ECRo4NUdPLrEazgYXo0LFkwkpdOP8+8qnUacdedA4xqkaeL4IkQTJVLX0GxAF7H5YokEsr/8Ua5BURTlSHUwNCJcfNblBM0D24iwLhph4KtPqEaEyn5TU7COMCee3oUX/7mcSMhmyiU9Wz1u8Og8cguC7NlRx2kX92hV8AGQluVn+An5zP9wJ116p9Glb1qrz3nyFd145jdLSEjxMGxCQavH/a82LS3n16fOxIo43PXGsSx+dydTH1jLgJPyuG3q0fxl/CdUl4RISDGoKQ4DsSVvY+MjQEBC1BF4dLAcgRZ1+PiKj4nsLKPXtQPIHZnFl7e8h+E3GfroqZS9+QnlHy8n4/gB5J4xhD1/exgZtcj96VXIbV8S+uwdzC59SJh8Kdb7t0J9GcYxtyN8u5Bb/oIM5ILcAICIRhFeMBrBSsANPmLNCHFU0lNRFEVRlLalApAjTL+hOczZcQXhkEV6VqDV41LT/by/+iLK9zaQkx9s9TghBA9MHU/x9joy2yVg7Ecn7vPu6MeJl3QlIdnEl2C2etz/6p1H1lKxpwEkvPaXFSx/Zw8AC97eSWq6j5KNdSDB0JonNO37rDSa3+9L6daCCA3q1pdiGJIVDyyibnUm0aoQ0eoQm55cSHThEgBKp3+Jx6zGrqwGKal87wN8ZZ8AEF23mOh8P6JqOwDWoqcw8teAE4K6TRAwQUaRmoQoOD5AE0i5T62K4UNRFEU5DEkRK/w7wOdUlO9BfRx6BAomefYr+Gji8erkFiS2OvvRRAhBbofE/Qo+mqTnBVoVfLzy0EquHPM2U59e97V9M17exHVHT+XFv3695mX5h3v43dEf8cKti3FsN5woGpqJdNzgoceITPK6JQLgTzLpc2xOvPBj39dh33mMDvE+gu62FO7jGe7zSClKI61/Tnxg+qB8jJQEAMy0RBJ6do4P9nXuhJaV7x7r8aF36B8/j5bdC4J93GvRDIS0EAiE416XFhI42NimxBESW3OQhvrMQVEURVGUtqXejSiHvB0bq7n/lrkArJxfwlETO5CS4X7S31AX5Q+XzMaxJSvnljD0+HZ06ZceH/t/531OXUWEtZ+V0mNMNgMntmP8Fd3I75qEFXUYcFwuE64sYvmMYroOyyCzfQLZXRKpKQnx0QPrWDujBAGYsd4fJsRWwAIhJJqQ6MINJsY8MhZd2uSMzsdMNEntl4vuN0kf2I6csR2pXbGVpL6FmKlBvO1ykNEo/t49kKGjsTYuQ8/vgp6ahZOeB/VliPbDQFpQ+RnSCMCmq9ztpuyLDmaDRjhdYnvda2gKThRFURRFUdqKCkCUQ54/wcQwNWzLweM3ML3NmRbD1PAHDRpqogghSEhqWaAXTPdSXxlBSgimxbqnh23WLSwjGrHpOSKT0m31rF9YRiDZJD0/wJaFFVQXNxKqiKIJt7i7KQjRcTMg7uq3AiEk0g0HqFhdiRYJkdQ1hQQ9SOXyveh+g9Q+OYR3l1O/dieezGSMRB+hTVuR0Si+rp1wqkqxdm4Ejw8tJQNZuhZZX4ae3Quog5oViGB36P4KdvVz2EYlDsXYYg1GOHYxTSkalfNUFEU5LEnH/TrQ51SU70MFIMohLyM3wEMfTGDO1G0cd0YnEhKbgwyPV+eBGROY8fImhhzfjtzCxBZjb5t2DB//exOdBqfRbaTbTfzlPy3nxT8sA6CypJF5z2+loTrKO/ev5qLfDeSNO5cjNEhKNFu8t28iJTgCtNg0rKZGhCvu/xKPx2Hz6+vpNCGP7f9ZDRKsuhC1772PtG1K3p5Hx4sGU/3edBACu7ISY+dHyMZ6mPMuwVNPhyWPAgJZth4jYw00bAIkdq9f0Jj4trtP+NFCAprafjTN0xVq0TtFURRFUdqWCkD+R7W1tfz+979n6dKlLFmyhLKyMu666y7uvvvutr60I8qA0bkMGJ37jfu69k+na//0b9yX3TmRc+/t3+K+2sowQrhTqmrKw4TqrHg/j+qSUHNFN8SzH1/lxIKQpuyHbDpKQrQuSqQqFK9Uj1Q2Ii3b3R21sWrrY40Iwa6vR4+E3IESZH1V8/lCNWBVN5/UKoVYv0YhHYTtNiNEiuZAScUfiqIohyXVCV05lKgA5H9UXl7Ov/71L/r168fkyZN5/PHH2/qSlP/ReXf0o2JPI1bU4fI/DmL0pA5Me2QtgyfkM/7aIsLVUSp3N1K1sY7G6ihCuoFGLEYBmpsRuty3//kTuiAra+h+eR/SeqUhLQfdb9L9hpFU9Q9SNnMZGScMIP2o7uwN1SEjUdLPPh1Z3IfQ3PcwiwZgjjwZW1RD3V70EdeAVg7bHoFgT/Ssn2JGHBxnNVrFLvSqBqQRS3o0BUpqCpaiKIqiKG1MBSD/ow4dOlBZWYkQgrKyMhWAHAZSs/389J8jkY4kOcNHZkECXYdlkN4ugGFqXPDAIML1Fi/c+CW7t9RBbLqVBeg0l1wEUk1Ssk0026Ld8EzG/G0YkaowCflBhBD0v2ccmqHhSfaROX4ISYO74c1KRugaWZedj7RtjKREZMZw9Had0ZLSEIaBGHkDRBsRCelAF6S/PZipCM2L13sTTmgdlJ/pPhkbhOV+QuXmQVQEoiiKcjhSGRDlUKICkP/R/i5Jqxz8Fn24i1+fOgNpwx0vHc3sZ7ewcOpO8rsncePjI7n3hFmE6y3SMn3IWM7DpinwiGVCJAifQXhnDZ5Ek4HXd2fqiW9Ru62WDpMK6TShHV/e+hGaoTHq35Mofm4a9Wt3EuzVnsIrRrH7r/8ExyHnukuRG2cRWbkAPSOXpPN/gjX15xBtRB91Dbp/M+x4DjzpOEMepjF0NURKm2ZiAbEMSNP/p6pgUFEURVGUNqYCEEX5ik9e3YJjSaSEj57dyLKpbiPCnWtrmPGvDYQb3MrucNSO13jrSJx47kO45R2hCACR2iirn1lP7bZaALa9uwU9XAsSHMth2xsrsdbuBKBu1XYqZ5rguI1IaubMw1u2AAC7bA+RJe+jRRsBcFZPQ89d7V5ApByn9FUIlrtrAMcCI0eL3ZTxC1UURVEURWlTaj5GGwqHw9TU1LT4Ug6smY9t4KqM1/nz+FnxwGLU5A5uZkvAMecU0u84t2lgdqcgx1zcOb7Mr7ZPY0XnqzUgEqTXbTxo+HW6n9uFQJ7bbDB/XAEFE7sCIDRB/sTuBDq550jomkfK0YPiGYvgsMGY3fq750vJxOx3HOjuKl9a0fGQM949oZGMlj4FRDLogmhWOrYfnJaLfjV3R1QURVEOK01TsA70l6J8HyoDso9PPvmEsWPHturYJUuW0L9////pfH/605/47W9/+z89hvK/eeEXSwjVWSx7fw9Lp+1m2BntGT6xgOe3noltS7IKEjj6rEJ2ra0hu1MQr9/goe2TaayO8sKtS/jyzZ0ICQYSgcDAbURoCsBy8Bemojk2K5/fwikzp9Cwp56UrikITZA1PB/No+PLTCBr5NWEdpbjK8hAM3QKH7wHaduYGWnIo4Zi792FnpaF8HjRL34FInWI5HZIKaH9heDNQjOCBAIzkc5eIuE3iHj+jacmFhTFMiFCLYOlKIqiKEobUwHIPoqKivj3v//dqmPbt2//P5/v9ttv55Zbbolv19TUUFBQ8D8/rtJ6BX1S2DCvDE0XtOuRBEBNeYinfrWIaMThqr8MYePCcqb/ax2DT87nhMu68MbdK6gqbmTnympw+xBiS4GGWwfS1IgwXB6hvDqMJiTVm+vQsbBrGuh5eU/SipJZft989IBBv9tHUTV3DWWzVpA5rh9pI7qw9+V3kZEoWReehrNnM42ff4Sne1/8I48jOu95ZF0Z5qhLEaICufFJSOqO7HYVsvJxZGg1dkojwomVfDRVxje1R1cURVEOO1Ie+KJwlVRXvi8VgOwjNzeXK6644oCdz+v14vV6v/tA5Udz27Rj+PLtnXTol0p+rxQAXvjDMmY+vxkATRfMf2U7VtRh0fTdVGyp56NHNyAEBBJNPI7AiWUVvroEr0bsl3Ps78Gm1zZgmpLiuXvocnI2uz7aAoDp12mY9TEAVQs30vGc3tTMdus+EGDunAVWlMjapWjhPcgVb4MQRBoq8aSvgdBeKPkUvGEc65HYID/CAmG4F6RF3bulR/21UBRFURSlbakakCOM40hef2oVT/xtMfV1kf0a+/lH23n4ngXs2rp/tSqbVlXw2O8Wsmxe8X6Nqy4L8eKflvHJq5vdqUatZEUdZjy8ng8fWEc0bH/rsYFkD2Mu6kSHfqnx+3wBEyklEok/wcDwam5JhgB/ohmPNLxomELgRYvXdjuxL8k3LDgVqyvRvTpGwK0PQUr0gAm6BgKErqP5TJpOonu9CMOM14QIn7/54Uw/6L7mxzeCTXvQIzpa7EK0eDd0iXDUfF1FURRFUdqWyoD8AKZPn059fT21te4qR6tXr+b1118HYPz48QQCgba8vBZe/tcKfn/jbISAjWvK+dPjx7dq3OolpVw58W0k8PZza/hw3cWtGhcOWVwx9i1qqyM89eclvL3uPLLzg989EPjDeZ+wdNYepASPT2fkKR1aNW7qn1bz5t0rQEDl7kbO/nP/Vo1rct6dfTFMgRWVnHVrb068uCszn93EwBPyGDoxH3+CSdWeRjbOKGHHiqp9qiokUQS6dLv+CdwMiBP76n1dX0QoRNdzu5HUIYgvM4ARMCm6cgC1Y7Mp/3Q1Gcf0JrFXPobfgxO1SJ98PE7ZMEILPsHs1gdP70FYARNZW4Y5+EygDrnlJURyEbLdqei1KcjwGhxtF7JxlvsRgwNCAxDY+rcHZIqiKMohSgr360CfU1G+BxWA/ACuueYatm3bFt9+7bXXeO211wDYsmULHTt2bKMr+7rSPQ1omkAi2bu7vtXjyvc2xOd6lpU0IKVsVQ+USMimriYC0s1M1FaGWx2AlO1uaD7/nsZWX2vV7sbYG26oKm79uCZev8HQ8QVYUYeEJA8FPVMYOiGfzgPT0XSNfiflUlMaonh1NdYK4sGGAMJSYiPw0pQFEQgJtoTco3LQHYfkzskYAYPcsR3R/Qa6VyehSy5O2CbQJQfNY5IwsA8yGkXz+xDZ7TB7DMLM74jQdLT2Q5H1lZCQCk4SIv0YSGqPpmlI/3DQctCiH7v/Xg5oDRLpkTgeAUI1AlEURVEUpW2pAOQHsHXr1ra+hFa76IZ+rF9ZRlV5iNv+fFSrx40cV8AF1/dj0Zzd/OT2wa1uwJiY4uWOh8fw2j9XcezkTnTundbqc9786Egeu3Uh+V2TOP7CLq0eN+nOnpRurcO2JKfd1afV45p89OxG/nrZHAB+8vehzHxyI9tWVBFM9fDTx0bwwFlzQEJKqhch+dq6Uk05BodYBgT3ff/0Cz5Bt6Jk9k+n6LQ8lv9lIQAj/n4MJc9NJ1Jagzc7ma7XDGfPoy8BkHXhKci1M7F2bkf4A6RdcgnhN/8ISMwhkzC9G2HXZ6CZiGPvwSm9FmQEJzETHImQscJ4G4Qt0Os1SNjvl0RRFEU5yKlO6MqhRAUgR5jUDD8PvzFxv8fpusadfx/zvc552uU9Oe3ynvs9rs/oHP5v3qT9HpdekMAv3m/dcsoAteVhAskmeqyvx4rPShCx1a2WfryHbSuqAKirjLB42q74OE2CN7awrRVrQCiRGIAQIrblErqAcAR0KF1aTkpO7Je2gOLPthMtdetqwiXV1C7Z4NZ8SEnDqg2Ye7YDIBsbiKxdTFPIY29djpm6zn0cJ4rc+xng1vWISDXScB/f0QFdIByJKvtSFEVRFKWtqXcjyhHthVsXc1Xm69xc9A41ZSEAJlxVRDDVgz9oMuWmnky4rggE9Dsuh1N/3ou0dgFMr4bf68bvAtBiS10JBDbEithdEpC2JNgpxX2c63vR44q+GAEDb6qPbpcPIGOsG6BljutNxmlj0BP8aD4vaRPHEjjmJAA8XXvgHzMZkZQJuoFn1FmI3pe6BR7JnRGdLwFvN0AHX4G76pUhwBAgBAIR65KuKIqiHG5UI0LlUCLk/iwvpPyoampqSE5Oprq6mqSkpLa+nCPCRYGXiYbcSVM3vjSKEWd3BNzVwgC02Bt223bQdTdel1IiHcm/Lp7Ppy9sRQgwpZv1SJJgomEKMITE1NzvhldwxeLxpHQKojU9jhMrVo9NZ5O2g4jvc2s1hNa8Hb8tJUgHoemxfXb8trvfxq58GKvqITCF2/qjacqcKMCfM+MHfx0VRVGOZG3597vp3PMmXkvQPLBL+9dFw4yY+sh+Pe+6ujp+9atf8eqrr1JRUUH37t355S9/yTnnnPOdY/fu3cutt97K1KlTaWhooF+/ftxzzz0cd9xxLY678847mTZtGtu2baOhoYG8vDzGjRvHnXfeSYcOrVvQRvlxqSlYyhFt0KR2zH9tO4Fkk64jMgHYtbGGe879BCtic8fzR7NsRjFv3b+aIRPzOe83/Xjw7DlU7WkkGnKaGxEK94dJIuK1HzZgEluaNyqZeeN8GnfWMPCm3uQOTWfuTZ9gJJgc9fCxlE79kpL3l5MzoT95p/Rh+33P4kSitL/lfKytq6j9aDq+Xn1InjyF0Bv34dSU459wLZrYi7PkYUgrQht5B3LPHdC4CieQ7NanWLHPF2L9SISuitAVRVGUtjNlyhQWLlzIvffeS7du3XjxxRc599xzcRyH884777+OC4fDHHfccVRVVfHAAw+QlZXFww8/zEknncSMGTM4+uij48dWVVVx7rnn0qNHDxITE1m9ejX33HMP77zzDqtWrSI9Pf1APFXlW6gMyEFEZUAOPMd22LKkkqzCIInp7idH/7jmc6Y/sQGJZOSpHVj05s54pfnEK4uY/e+NSCCQZNJQHQXcuYwGGikSdDQ8gC4kHh10JIYBCb4ohu7Wg3Q7OZPdn+wAIehyemfC8z6PX1OHKV2p+cwtUE8a0gNj15x4u9mUE0birJjqnjOnE76UtRCuBkAMnAzOE+7z8phIza0HsX2A3jRFrABf3swf6dVUFEU5Mh0MGZC549smAzJyWuszINOmTWPChAnxoKPJCSecwKpVq9i+fTu6rn/j2EceeYTrrruOuXPnMmLECAAsy6Jfv34Eg0G++OKLbz339OnTGT9+PE888QSXXXbZfjxL5cegakCUI5qma3QenB4PPgDyuyXjOBLpQIfuyaTnuX1cTK9G4YBUNxaQsd4a8emvItaEsHk+rGxanLepoj22NnAwP4GkLinxlunJ3dPQE9zzG0Ev/o7ZbsAhJZ78bPTU2MphuoHRrmPztWfkQ1JB/PwiuUfzBWkBt+YD3OCjaZqXynkqiqIobeTNN98kGAxy5plntrj/0ksvZffu3d8aRLz55psUFRXFgw8AwzC44IILWLBgAbt27fqvYwEyMzPjY5S2p/4VFOUrpvy0F5n5CUQjDmPPLmTiVd354p0d9BqdTWHfVDILEqja08jspzex8fNyt5s5AgNadEQ3aCpGlzgSjrl/OEQtOk1ojz/DR1qPNAy/ScHJHWk8IZ/KLzaTNqIzvnapeHNSkZEoKWMG4NSOonHpIjydu+Ip6ICemo6sLcfsczQ4IeTWmYjUzoisfsjUPGRoPSKyGFn9trsKlpBoCKQAO6CmYCmKohyODoVleFeuXEmPHj2+FgT07ds3vn/kyJH/dezo0aO/dn/T2FWrVtGuXbsW+yzLIhqNsnbtWm666Sa6devGlClT9uualR+HCkAU5SuklIRDFtGI49ZyWE5s20ZKSaTRJhKy0RyBLtwshy7dFbD2XfnKAvTYfVLi1oyEHRzLLWK3Gh0QNkhwog5WyMGJOiAlTthCRm2kI5GWjR223W0pkdEoMmKB44B0kFYUrKib73Ai4ITBduI9B7VGAX6wEmww1YoliqIoyg+rpqamxbbX68Xr/fp0sPLycjp16vS1+9PS0uL7/5vy8vL4ca0ZW1xcTG5ubnx72LBhzJo1i2Cwdc2QlR+XCkAU5Steu38l/7r9S8AtSJ/97GYqS0IYpsY1fxnC0zcuAiA1xYMOOLFmhLHG4/F5jU25BhkrAP/kFwsxhGTpY2vpdXoua59YDUBDcT1lr8zAboyy5YnPKbqmPyXPTwegcedeWDMbu6oKdJ3Mi6YQef8xAKytq/AkrIeyNe6JjrsFWflL95yeRNAEUko03O7sSI2vt01UFEVRlP9NQUFBi+277rqLu++++xuP/bZGxt/V5Hh/xmZkZLBw4ULC4TBr1qzhvvvuY+zYsXzyySctAhOlbagARDmi2ZbDunll5HZNJDXHD8CeLXVomttGcPfmWqpK3f4gVtRh++rq+Iq2uhSYTnMjwqYAxMb9wWoKRETTfxwJOtQXN1KzrZamEpHazVXYjW4xu90QIbSzPF6zES0uQ6uujl2sjVW8s/naK0rA2R3fdqo37lOSEkaabrDhmIAmMerA1jQ4sDWKiqIoygHQllOwduzY0aII/ZuyHwDp6enfmOWoqKgA+MYMx/cdaxgGgwcPBmDUqFGcdNJJFBYWcu+99/LAAw9829NSDgAVgChHtL+c9SkL3t6JL2hw/9KJZBcGOefnfdi8ogIr4nDp3QMZdHQeb/1jNcMm5XPO7X0p31xPxe4GjGqHyior3ojQLUJ344qmjAhN3yXkH5NL485aBt3ci7wh6YRKGjACBn1vGUxJd53i91aSO6kv7Sb2wCrZixOJknPByVhbO1Hz/vv4+vQh4aSJNNbvxqkuIzD+MjRKsRf9E5FehNb9WuTuPdC4GgIBiKzCiV2FFALNAbMOSDzwr7OiKIpy+EpKSmrVKlh9+vThpZdewrKsFnUgK1asAKB3797fOrbpuH21ZixAfn4+eXl5rF+//juvU/nxqWV4DyJqGd4D75yEl4jEGhHe8uJRHBVrRGhFHaSUmB63rDzUYOH16wghsG23jmP5u7t5/qoF6KZGbU0UGZHojlvwbQIBv0ZyogEhi7zBaZz11mg0XcMMuL907YiN0ASaoSGlxAlZ6H4TAGm79R+a6R7rhMMIjwchBNKxwbYRpsc91gqDbiKEhpQOOBGc8n8hS/4PgEiGwPGCCEl0pz2+fNWIUFEU5Yd0MCzD+9mJN7TJMryjP3io1c+7aSncl19+mbPPPjt+/8knn8zy5cu/dRneRx99lGuvvZb58+czbNgwwC0y79+/P8FgkPnz53/ruTdu3EhRURHXXnstDz300H48S+XHoDIgyhHtlJ/14PU/rCSvKIn+J7hzQlfN28ttEz7Ath1+/8Y4Pn91Kx88uZGeo7K44eHh3H38TOoqwlz/xAiOvqmIN3+7gsx2ARp2hKCp6BzwpHupKg6RmO3jxIcG88akmZQsqqD/T7rR+YRsPr7iYwyfwYmvnMiOpz+l9LNNZB3Tha5XDmbDr55AWjadf3Uh9toF1M3+BE+nTmRcehG1T/4W2VBDwmnXoMvdWPOfQqS0wzzld7D+GmjcBhn58UyM3ihxfBoY8XYiiqIoinLAnXzyyRx//PFcc8011NTU0KVLF1566SXef/99nn/++Xjwcfnll/PMM8+wadOmeOfyyy67jIcffpgzzzyTe++9l6ysLB555BHWrVvHjBnNH6wtX76cm2++mTPOOINOnTqhaRorVqzg/vvvJz09nZ///Odt8tyVllQAohzRzvtdf067tRfegIGmuXNZ33tiHY11USTw5sOrWfKuW2ex+vO9vHX/aqpLQyDh7b+voXZ9PUgo3dFAkqljR913+AKI1ESRtqRmdyNz/7GOkkXuPNWl/1xPaFs5TsQhEo2w5vGVNM7bBMDeTzYSTIviNIbdx33nczx73CaFkc2bqZ81DVlXBUDos3fwBjYBElm1E2fNS2iRre4Tq90NQiCERAZBRCVYsnmdYEVRFOWwcigswwvwn//8hzvvvJPf/OY3VFRU0L17d1566SXOOeec+DG2bWPb7sqPTbxeLzNnzuTWW2/lhhtuoKGhgf79+zN9+vQWXdCzs7PJy8vjb3/7G3v27MGyLPLz85k4cSJ33HHH1wrmlbahGhEeYcpKGrj05DeZMvxlVi/Z2+pxluXw62tncnKf55j68rr9OufLj6zktF4v8dCvvmB/ZvwtnrmbK/u/xd1nfUxjXbTV40q31vH7MTP47aiP2LO+5juP9wfNePABMOi4vHizwSEn5NNloFvYlpzpY8SpBfEi9IEn59H7+BwAvD4tHnxALPPgdd/ta4agx+R2eFPdKVN5wzPJH9sufmD+8e3x5bmpa39+CqkjiuIFJImDuuEpLHQfJxjE13dQvKGhUTQArWCQe6DuQbQ/BjQ3/S6MFLcRoRRoIbcloeaAsFUKRFEURWk7wWCQBx54gD179hAOh1m2bFmL4APg6aefRkpJx44dW9yfnZ3NM888Q3l5OY2NjcybN49x48Z97ZjnnnuOjRs3Ul9fTzgcZtOmTTz66KMq+DiIqBqQg8iBmEN6/2/m8dh9C0HC8LEFPP3+aa0aN/v9rVx1yjsAeP0Gy6qu+c7l8gBqKsOMzXkqPvXn5YVn0K1fRqvOeUnPN9i5oQYk3PDQcE69pkerxj159QI+ecLNKIw4twPXPPfNTY2+zeYVFVhRh24DMwg1WKydX0ph31SSM3zs3lBDbVmYbsMzsC3Jhs9L8fg1/nrUx1iWRAdMBANOb8exNxeRmOsnvVOQhtIQZauryBuWieHTKVtahu7XSS1KJVobpmZNMck9czCCXhq3FuNELRK65uNEIkQ2bcLMz0dPTMQu34NTV43RvsjtA7JnJSI5DxHMRIaLoXEHsm4u7HkEgGga2EGJFgKht8erakAURVF+UAdDDcinJ9zYJjUgYz58UNWuKvtNTcE6wuS1T0TGGlTkd2z9L4vsvCBCuDUEufnBVgUfAL6AQVKql+qKMKZHIzXT3+pz5nQMsjOWwchu3/rGQentE+LPMb0godXjmjTURfnopU1EIza5hYlsXVnJRy9uYnBZHqNP68icV7ZSWdxIekGAxsooc57fSmKqh6jlRlkWYCAp39bA4ue3kdohgaN/UcTWmXvYMbsEw2+Q1jnIhtc3YQRMBtycSOWSXeyZsR4n6pA2qB0VHy/FiVp4c9KwivdQM2ch/l61BIcNIrR0Pk51BYHkDIRdh71uBiKjM1rvUxB7Z0HtOig4DwJ5RKIfIq0VaKFytzGhmoKlKIpyWDpUpmApCqgA5Ihz1uW98AcMaqrCnHFpr1aP6943g2c/msKyBSVMOqdbq8d5vDpPf3oaH7+1hWHHtSMzr/UBwZ0vHMMHT28gr0sSwye0Pm068bYeJOf4cGzJmEu/3nH1uzz3x6W89LflCAQNtVE+fWkr4UaLD57ewCV3VvPGPSsRGpRsqqNibR3lO+rBBu8+MxolULahlrIllbgLU9ksu285CNjw9g56Tc5m05tb3M7mlkX5W3OQUrL7vdX0vKI7Ze/MAcCqb0SunYMMR6j9bC6ycgfhT14DIbBL9+D3r0PW7gEpMUUFovh+QENULKCxXyaOWIgWjqJZ7nUJle9UFEVRFKWNqQDkCCOE4JTzun+vsUPH5DN0TP5+j+vQLYVLbx2w3+MSU72ccfO3r+v9TXRD45jLO7fq2NqKMHNf20bhgDS6DXWnhllRx62fiN22bSc+hSwadmjq9mdFbeyo843NxZtWwmr6bMgO2/F9juXgWLEUjQA74i75i3QzTNJqPlZGbbCd5uWrLKt5n20hHSt+fmk31clIkBZuLgY0C/Ta2LlVhlxRFOWwpDIgyqFEBSDKEe1342eycWE5QoO/L5pIx76pXHRnf0INFlbE4ao/DGbcWZ2Z9sR6hpzYjuMv6IJwoHJPI+fc3Y/6sjDT/raGxFQvn/9rc1NzczQgpWMCHXslk9o+gWPv6kVWez/bZ5fQ/6qupHdPwvAbGAGDQb8cRNnoFPZ8sI68k3uQNbI9mrBxIhbtLjmR6O6+1Hz8Gf7ePUgcMxJNt3BqKggcfwaaU4215FW0jM5ofc+GbRrUroUOl+ELJBAJ/R96dCHC2gOA3tiWr7aiKIqiKIoKQJQj3K611QBIB/ZsqKFj31QSU7yc94u+2JYkNcvPwOPySMn0UVCUjMenc8pNPaivipDbORGnMMik23vhMQWLn9oaXwlLA9r1SOLY23sQyPBieHR6nFtIzpAMsvqmoBka/W7sg+7V8QRNso/uQqBdKold09G9BllnHIO0bMy0RIykIrRAEE9uFsIw8I8ej9NQj56RA2RjDDwfkZiJ0AxkuzMhVAyJ3RAIPN6rkWzH8e0GAZqagqUoiqIoShtTAYhyRLviH0N54ddL6Do0g0ET3Olln761ld+cNRMp4ZePj+bDpzayYk4JmQUJ3Pqvo/jjpFlYUYfzft+fkrU1fPb8VoIJBp4Wy/AKNszay8pXdmB4Na54bwwfXP459SUhOo7LodeUdnz2i/kITXDCM0ez5ZHZ1G2uILFrOr1vHsz6u18BKen0s0lEl8ylYdV69NRk2t14HtWP3we2RfCkKXjEFuxVH4IngOeMu9BWXgN2PeSdSrQwG6vh/zBw4ksHO16p6tAVRVEOR1KAc4CnRKkpWMr3pAIQ5Yh27CWdOfaSlvUic6duj9+e/eZWVswpAaB0Rz2fvLQFK1a/Mfe1bZRvqAOgrs4i3WNiR5x43YfV6NZyWGGHpS9upb4kBMDWGcX4TLc+Q0rJ5re2Ur/ZbVJYu6Gc0hmraSrsqPxsNdq29QDYldU0fDEfbHds49Iv0IPuPiINyI0fusEHQMkM7Lz05icVKysRjkqBKIqiKIrStlQjQkX5ihPO74Lh0dBNwcTLihhzRkcAOvVNZeK1RQQSTRBw0k+6cfw17opgaZk+7IgbmLgF6BIj6Mb3/jQPw6/tSlqRWwHe6/xCel7UDaELdK9Oj4uLSBvkNiZMH5pP7mkDEaYBukbWxCEkjnSbDXryc0kcOxbhDwAQGDUOvd8k96KDGWg9Twdvlrvd/hwM/3mAAEdHSBBSqE+rFEVRDlNNRegH+ktRvg/ViPAg0paNjJSWGmojOA4Ekz1IKaksaSQ504eua4QbLSKNNolpbsOn6r0hwg1RftFlKo7tttowEPQ+IYcrXxyBJ8HA9Ok4lkNDWZiEbB9CCMLVETRdYAZNpCMJlzfgzQgghMBuDCNtiRH0IaXErq5FTwoiNA0ZiSCjEbQEtzeKbKgCbwJCN5FOFKxahMft3i6dSpzdDyLLXwAk0vBg9lrVNi+qoijKYepgaEQ469hbCBoHuBGhFWbsx39X71uU/aamYCnKNwgkeuK3hRCk5bhZh7Kd9fx89HQaqqNc98gwSjfU8c59q0lINHEc3GV1JWhI1nxSwh86TSWQ7uGGucfxzjmfU7K8kv6Xdqbb+Fw+vGI2ulfnlLeOZ/1Dcyn5fAe5R3eg1w0DWXHz80jLocfvT6fu/fdoWLUOIy2VdndeTeVf7wIrSsLJk/FqG3HWzABvAub5j6B9fjZYtcj8SdgdM3GqHwZLoBluBkR6o9i176AnntJGr6yiKIryY1DL8CqHEpUBOYioDMjB764JM1j0wW4AfEEDvVbG+3B4mmY0SvAAAkFyrPq7ff9kGldXxh8nu6NG494wAGlFiXgqd8X35fbRie4pcx8zy0uqp7kmJZCjYdixxxGClE574vu0TB9m0o74drRPo3sxDghbIhyQGugdPkT3FP4gr4eiKIpycGRAPh77szbJgBw762/qfYuy31QNiHJE+/L9nVw/+B3+79p5X9u3+ctybh8ynfvP/ixeeJ6WF4jvDySZGKb7IxT/QZItvsWltN+nA7wG3tTmPxL+LH+LYz0ZzceasWlW8aFJ+2xrLdezEglpXzlrLMEpJcJ2L0rYQGQXiqIoiqIobUVNwVKOaHdP/hjHkmxeWkmHXilMuq5HfN/vj59JQ3WUzYsqSEz3csUjQ7nhseFIKSnf2cD1j42gencjL/5yKYlpHpa+7fbaQLrfAikmXQelkd4lyOmPDGLB39eycdouRt7ei5z+qXx8/Vw8QYNjHx7Fzmkd2Pr6ajqd3Yv8E7uw9g9v4YQsuv36FOq+WETlWx8S6N+TrMvOovLBP+HUVJJy6fXoVjGRWf+HltkFzym/xVlwM1SvhT6/xEhJwyq7GaH5Ibq2+UmLA/sJmaIoivLjk9L9OtDnVJTvQwUgyhFN2s2/PWvKwy32WbFVrQAaqiIAaJpG54FpBFJNkjN9mKZGXu8keo/NITXbz+K3dyLDDilZfi58dBBr3tlNdo9kNE0jvXcKZZvrSOmUiC/VS2rPNLxJHgyfQbAwjUDHDBI6pYFHw1fYDrsxihHw4WlfgEzJw1vYGV3XEblFOLIYPS0TIj4cXyEio5/7fIIDodaChM6gBzGsTjhGKoh9AhAt8Ud8RRVFURRFUb6dCkCUI9oVfxnCy39aTvseyZx9R98W+655agRP3bCQlFw/V/xzKADP/GYxL/9xOQBfTt9F464IjTVRPvznBiZeX0RtSSyI0QWvXv4lFVvcvhzFSytZ+e+NACx7ZiudRyZR/EU5AKXLy6n+dDVI2PzKGrpNyaH0Y7e/R+WS7Xj3LgWgfsUm6ufPwdroBhM7fn4HaQXbQDrYW5bB3gWYDZ+45596NvRpAFkPSDDdbwggugX83X/w11JRFEVpQ22xLK4qQle+JxWAHIE2r6+kpjJE/2G5+zWuoqyBVYtLGTWuAE1rfflQJGLxxcxdDBiVSzDJ890D9rHs02JyCoNkFwS/++B97FhZiW1Bx/6p33rcaTf15LSben7jvpFndWDkWR1a3LdmXmn89t7tdRj1zb98V84sjt+ur4hQXdOcQdk4e2/8th1xqNxQG98uWVyOrykRI6FqVfOx9dtL8fqaz9+4ZTdm06GhEMjmczjF66CpBlDaseAjNivMis8OA9/gb3y+iqIoiqIoB4IqQj/CvPjYck7s8xxnjnmNmy96v9XjNq4tZ0TB41w26W2O7f5Mq8c5jsNx+c9ww6nTGJv3FJVlja0e+9Ox73HzcdM4t9OrzJ+247sHxLx213Ju6zudOwZO57lbFrd6XGtcdu8gPD4dIeDMX/ThqHM7ApCQ6uH650fhTzJAwOhLO3HMLd1AgBnQOfupYQRz3Eii0wk5jPp1P4QGmik4+q9DSOrqBkrJ3dPoedtYhK6BJuhyzbF4st2O5sJjkHvNBfFrSRg6GK1dkbshNMyT7wAR+5FO7w1J4+PHin2/133yg74miqIoiqIo+0Mtw3sQORDL+J024mVWLnY/YU9INFladk2rxt135+f8+6+L4tvrGq9vVRZk0+pyTu//anz77n8fw+SLe3zLiGbjfE/hxGo0Rk5qzz3/GdeqcTd1eYe9m+sASG3n5+Edp7Vq3OHKitTBhgHNKZCuSzA8+5dRUhRFUf67g2EZ3hljfkHCAV6Gt94KM+7Tv6hleJX9pqZgHWHOuqxXPAAZN6lTq8dNubA7T/x9MY4jKeiU1OopWIXdU0lK9VBTGcH0aBwzqfX9J/oclc2y2e60pklXtb5mYfSFHXnjtysBGHlOh+84ev+s+WIvPzt2OtGIwwV39KN0fR2fv7qNQLLJ7z8axx/Gfky4zmL0RYVkZfr5+G/rMLwaN348llfPmEN9SZjCY7PoOzmPj3+xCKELTn15NKvvm0vN5mqSu6Uw+PZ+LP3Fe0hH0vvOcdS89x7R0iowdbrcejoljzwBQMKQAQS9G3B2bQShEbj4VsRnP3enZWX0QO/ig/IZ4LGhKd4QIOqmQ9qZP+jroiiKoiiK0loqA3IQOVCfoGzbVEVdTYReA7L2a1xVRYi1K8oYOjpvv2pALMvhy9m76Tssi0Bw/2pAVswtIbdjIhn79N9ojV1rqnFsh4Le314Dsr9+Pm46yz5xgyKvX8dsaK4B6dg9mdI1buZFCEg3DOyI++OV1z2Rxn3qPjJzdEIV7spaqYUBvLXNtSXZ3TWiJdUAeNIN0v3NfTv86WA4+zxOYXPdiZGh401qbkyod3WL3B1sSHYbEqKBKJqP7kn/314IRVEUJe5gyIB8NPrWNsmAHP/ZfSoDouw3VQNyBOrQOWW/gw+AlDQfw4/O36/gA8AwNIYfl7/fwQdAn5HZ+x18ALTrkdyq4OP1v67krMyX+NnoafFmg01mv7SZ87Je4bq+b1MXW4a37+ic+P6cwkQCyWZ8u/+JefHbwQwvqQXN191tXHb8tu7VSOve/Is6d3hGiyKNtH7NxyYWtvx38nfJj98Wfl+LZoR6wT7F9EIHLRi/KRyBQCAcAfUL/vsLoiiKoiiK8iNTU7CUI9pTty9CSnd1q5f/sJwL7uof3/fglfOINNrUlod55Nr53PriGC66awAZ7QLs3lzLRb/pT31VhDfuXUWfsTkMO7WA7iMz2TC3nMm/6onh0Xn/d6vJ6ZXI8Is70X9yO9a8vYtRPysiuV2AufeuxJfsYfAN3SlfUcTGV9bT5dzupPdKZ1PvL7EbI3S5ajiNm45i9zPvkz5uEGnHDKDs1beJ7Com+8qLIFJDw9R/Y3bph2/kJOxVvXB2LUAbcQt4E2DjneBNhbpXmp+0r/OBf6EVRVGUH5Vsg2V4D/iyv8phQ2VAlCOapjf/8kzJ9LXYZ3qbfzwS09zsjWU5LJ1TzOqFeynd1cDujbWsW1TGqnklAKyZs5f1C0op3lRP5Y4GNi0oZ/3sUhzHYccX5excVEnJihoaysLsnFfOtjmlWCGL0qUVlCyupHx5OVZDhNKFJZQuKiVSFaJmxU6q11VSsWArtm1Tu2wz9RuKCRfvJbprG6EtewitdnuD2JuWY+/cCXs3Qf12KN6MKN4Oub/CMROJpCViiS9+7JdVURRFURTlv1I1IAeRtpxDeqRa/NFunr5zET1GZnHNP4a12Ld5aTkPXzOfnE6J/Oy5o9A0jfsu/5T3n3UbCqbl+LHK7XjH9JETC1j2zm4APH6dLL+X+nJ36lb/ibnsmBarzxDQvmcCFevcWo72ozMIrdwZP2+nY5KoWuY+TlLnFAING+L7UooCyLLY4xg6GbnNNR++zhl47DXxbU+XKrcBCBAtzCfabmN8nz/4JbquVsJSFEX5IRwMNSAfHnVbm9SAnDDnz+p9i7Lf1BQs5Yg28Pg8Bh6f9437OvVP52/zJrS4r2Jvcx+TxvooWrR5X/muhvhtK+IQib35B6jatU//EwmhWE0JQENZuEUqMlQZit+O1IcI7JPhtmoaiVd92C1rVpz6Gtg3iSPt5n165VeeXSPNS2MpiqIohzrpCKRzgKdgHeDzKYcPNQVLUfbDzx8bTU7HIMEUk188dhQX/LY//qBBYf9U7v7oOAp6J+NPNDj/z/05/5+D8SebZHZO4Nr3R9PhqAw8CTqjbu7GKU+NxJfuIZjr47SXR9NxYgeMgEGnyYWMfOgkvJkBPCk+Bv/5ZJKHdgEh8Oak0OXP1yC8HtA0Ms8Zj2/YWHfJrUCQwNX3gzcJEGg9T4Zu1wIaaH6MnBcQoh2goemj0fXMNn4lFUVRFEU5UqkpWAcRNQXr0FBR3EBtVZgO3d1VtjYuLievSyKBJA91VRFKt9ZS2N9d5nbXqmqSsr0kZviINFgUr6omf1AqmqZRvqEG02+QlB/AsRz2Li0nq386mqFRv6sWx3JI7JCMbdtUzNtMSv8OmEEPoeIKoqXVJPZxe6o0rFqFNz8fPTkZu64ap2QzZucBANjFSyAhGz0xD9uuhoZFEDgaXde/+ckpiqIo++1gmIL1/ohfkmD4vnvAD6jeCnHSvHvV+xZlv6kpWIqyH2a/sYXfnjMLgGPOLGTv+lo2L61EaHDbM0fx0EXzkA4UjcwkN83v1oQIuOzpobxz5ZfYUUlqhwD9T81j4cNubccJf+vP8r8sIVpnYSaZHHVHd5bd6xaKF13el5qP5uCE3elcXa8ezN5XPgbA3ymXBO9WZE0NAOnnTkLOdZsUNiakEOgmocqt+4gOuQjE390nIbzo3VYemBdMURRFURTlK1QG5CCiMiAHv5uOfY/ln7krXnl8Oto+pR0duiVRuq7e3RCQoZnYUffHK7drkNDG+vixGRkGoUq3gCSlQwC9vDq+L6ebRmSv29DQm66TYjQ3KUxItzHs5sdJb9e8z5sBCQl749uBwuZ9sosDaRXxba3wY3RPwf6/AIqiKMrXqAyIet+i7B9VA6Ic0e677DNOMJ/irHYvUVMRarHvmbsWc4LnKU5Ne55dG9wA4YQLusT39xuTQ06nWCG3gEnXd4/vy++RTKcRGfHto6/rgoj9tCVkeOg6vl18X98LO6J53J26T6fT6c3nyDmmEPZZKjjj+D7x256cNISv+Y+Nf/iY5ov3BiC4T3F9wuR9npkO+jcX3iuKoiiHpqY+IAf6S1G+D5UBOYioDMiBd7zxVPz2mbf04qr7hsa3Tw48E19id8Qp7fndf44DYPPKCsp3NzDkhHwsy2H+OzvoOiid7A5BSrbUsm15FYMnuQHGyveLySxMILdHMjXFjWz5tJRek9theHS2zi7BEzTIG5ROpCbC1hm76DiuHZ4kD+XL9mKHLLKG5RGti7D7zUVkHdcDf14KtSu2ENpRSub4odi2Td3Mj/EVFeHt0B57zyas7aswBk9A13Xs9W9DUnv0nAHYkR1Q+z6knKuW4FUURfkBHQwZkOnDb2+TDMjJ8/+k3rco+03VgChHNF+CQajera/oMTyrxb7ULB+lO92ldYsGu9mMmooQ91w6m+qyRm771xjKt9bz/O+W0r5nCr999zgeumwuuzfUcmHNAFJTfTx3zZck5/i5ddZY3rxuEdvmllG+uY7ux2fz1hULMP0GF047msX3r2DjuzvYM7mMQTd0Z94tn2BHbcb883h2vzaXvTPWUPLRGvo/eBab//ACdkMYAD20k5oPPsRISSHrrl8Revk+nNpKvLU1ePKTcOY/CGYCTHkatt8AoQ1QtwE63HfgXmRFURTlR6c6oSuHEpUBOYioDMiBt2dLLc/9fikDj81l3D7Tq8ANNh6//Us69kplyo29ALh9yofMeXc7AAnJHrQaBxlrx9FreBab5pUDoBuCDNNLpN7txdF1WBoVC5p7ceS291G7y53yldM3icim8vi+DoN91G106zUScv0kyuYmhUn5GqKuyt0QgvS85poPX54Pn7Yrvp3QvgKIXVyhBy19R/OT67EA3ZOyH6+UoiiK8t8cDBmQacPuaJMMyPgv/qjetyj7TdWAHGEsy+FX187kmjOnUra34bsH7OPff1vEJePfZMn8Pd998D4+m76Nq058m7eeWfPdB+9j16Yabp30AY/+csF+jYuELB668HP+cc4cQnWRbz02tzCRW58c/bXgAyApzcctjx0VDz4AvP7mpKFhCoTW/OmPN9C8T2gC3Wje59lnHwI0s/lHz/C1XBLX8DUfq3la7hPmPtua+Mo+T8snIPbd/5XuuLr61EpRFOVwompAlEOJmoJ1hLn18g959+X1AGxcU85HKy9u1bhpr6/nvjs+B+CL2btYU399q8bVVIW4fvJ7IOGLWbvo1jeDngNa1wTv6pFvU1sR4Yv3d+Lx6Vx+96BWjfvzxE9Y+bG7UlXZ9jrumXtSq8a1xu1PjKGmMkxFcSN3PDGa8u0NPPWrxXQdmMHNT4zgHxfOZfvKKi75yyCSkj08c/WXpLdP4Pr/jOTdny1jw4wSjv1ldzodlcnr583DTDA49z9HseLf61j7yhZ6nN+J3hd34dOrP8AJ2xz18DiK313Erv8sIblPPn3+OJk11z+EVdtAx5+dgagvpurNNzGzski97VZCT92JU7EH33Hno+Uk43z6B/Alox31BOy8EeoXQ/oF6HryD/aaKIqiKIqi7A8VgBxhdm2vjd+uLAt9y5EtbV7XPH3Ishwcx0HTvjuBVlsZhn0m+e3aXN3qAKSxzorf3rmhptXXWrG7eW3c6pLWP8fW8PoM/j7t5OY7BsCIUzvEN8dfV8T6L8roOSYbw6Mx+vJO5PVMwvAYDL2yE0nt/PSY1A5/isnAKzvjS/HgS/HQ7cyOSE3Q7YxCfGk+ul3cm2hdlGBBEu1OG0h9SYj8Sb3Q/R4yp4yhYcteEgd0gWhHItt24u/bB4/HA6PPILJ+MWaf0eDxQPuTEemd0D1+ZOqVEHkbUs/+QV8TRVEURVGU/aFqQA4iB2IO6ca15Zx33BuEGi3u/dc4xp/RrVXjIhGLycNeZtumas67qjd3/vXoVp/ztgs+ZOZbm+kzJJsnZp7aqsAF4NUHVvL4r78kKd3Hv784hdSsQKvGrft8L/dO+gTpSH72xhj6HJfb6mv9X3zx9g7unfIJAOkFAbKT/exc4S7fO/nOnnz2h7UgwZOg0/3oDDa+72Zphl/bmU3Pr0faEqELhlxdwKYX1wKQd1w+kWWr4kFcx4ntqZ67AgAjJUBayk6w3EAt5Zh+iE0z3AN1E39BFELu+fU+wzF4M3alAo5ajlDd0BVFUX4QB0MNyNQhv2qTGpCJC+9RNSDKflMByEFEFaG3jZIddaRm+/B4vp4QLNvdQDDFgy/w9X01e0MYPo1Aklt78eClnzPr2c3uTgGpenMjwnbdEgmta24gmJZhEqpwGxGmdgyglzZnePKKdMIlbqbKl24SpCy+L5hhYzp18e2s/OYidG+GIOBv3vbnNDc3NDpE0ZOaH4ehMxB+1QtEURTlh6ACEPW+Rdk/qghdOaJdd9S7nNvpVSYkP8euTS2nef323I85q8PLTEh5lqWzd7fY9/KtS7gh502uSXmDz55xg47Tbu2NbroFeUMm5jPygkIAhC445/4BeIJuENNuYAqjbixyH0jAcb/tTSDb/aORkOdn4C/6x8/T/Yp+GMmxPyiaoPO1x8T3JfYvxMhpXjo4+Yxz47e19DxEu+bHofNNxH/c9RQVfCiKohxmVBG6cihRGZCDiMqAHHjHmk/Gb0+5vifX3z88vn28/ylsy/3xGHZyPn9654T4vmsz3qC+wl1hq6BvCvcsdetCHMch3GDhD7pZkVBdBE/AQNM0HMchUmfhi2VMIiELTRMYsZWuwjURvLF9VsQCp3lFrHBFPUayz20uGIliRyw8QT8Adl0d+P3uPtuGUAN6QqK7L1QHpgdd9yBtG+xqhCftB34VFUVRjmwHQwbk3cG/bpMMyKQvf6/etyj7TRWhK0e09LwA5bvd5YiPPrOwxb5OfVLZsMTtxzH2zE4t9nUfk8Wit9z+HANPdbue15SF+OmAqVTvDXHKzT3JTPfx2q+W408y+c2ccTw5+XPKNtQx4OwC+p2Sx2uXLkA3NS57/2jm/Hopu+aXUXBUJmN/24sPz/8QaUnGPDyGzY9/QfWaMswkD0f96ySW3/gc2JK8KQPxRbdTv2QVwjRo/8ebqX7gLrCieHr2x98hgL14Gggd/4V/Qqz4CVg1yOTuaGNe/rFfWkVRFEVRlG+kMiAHEZUBOfAiIYsPn9tE71FZdOyZ2mKf4zh8+Nwm2ndPpuewrK+NXfD6dhJSPfQ6LgeAh6+ex4ePbwRAaJBqeLDCbiPADr2SqV3ZvAJZepaHhlI3g5LRJQF7R/O+9n1MGne408H8mR68kar4vuQcGyMaO1ZAdruS+D5vpoFfL41vB7OraapeNztYmEnFzRc/7gM0f3arXiNFURTl2x0MGZB3Bv2mTTIgpyz6nXrfouw3VQOiHNE8PoOJVxZ9LfgA0DSNky7u+o3BB8DQM9rHgw+ATgOapzb5gibBtObGgAX9UpofVxckt/PHtzO6JbZ43JTC5m1fbkKLfYH2zb/gNY/RotmgJ3efgEIIMMz4puNt3/LiPeoPhaIoiqIobUNNwVKUH8jJPyki3Gizdl4pF/9pAP4Ek+dvWkxejySm3NWHL47fzIq3dnH8HT3J7pHEO9cvxpdiMvHv/dnyYTFLn9jIgKu60HFsDl/85gusRosRfxhBybztrPnHfNqd1IUe1w1l1a/fILS7kp6/Px0aqtnz2EsEenQm57KzqH79GSKb1pJ8zuXoSUHCb96LSM3Ff9ptOOsegz0fQffr0XT/dz8hRVEU5ZAhpUA6B7YoXBWhK9+XCkAU5QekAboQgPtL2RCC/2fvvOOsqM4G/JyZuf1uLyy7S+8d6VUpCohdwd5b1GhM7CW2JEYTP7tRE3sDe1dsKBZQQQXpvS9lYZctd/e2mTnfH3P3FgQFooDmPL/fwsy+p8zMvXfvec/b9MSxFAJLiCYRlgZN3xW2BFsKmhwiTUvDtHRsQNoa0ZgL03Y+rnHTRSzmcv7wS4FtubAtJ5DdtjRs00h8CQksS0dLyJC6M6n1yz8HhUKhUCgUip2hYkD2I1QMyK+b9x5ewn9+PwsAX7ZBsd9L7QanEvvgk1sxe9JaADRD0KZnNhtmO3U6uo4vYdMHG5PjdD+igIpPnPOC3nlYK1OyskEBIssqnHE8Bs2bV9CktWT3ao62aYHTUAiyykJgOnEm7k6leDwzUxd75BfKCqJQKBQ/E/tDDMgbfW4ioO/lGBArwlHf3aLWLYrdRllAFIo9ZOarawnkuuk2yokDWTl7W1IWCZk0hGPJ83Xfp2S2KaldH06eb1maCkAHqFmRKjQYrmjAnSZrWFNLU/1yO2YmlQ+AWEUl3iahlGDGkzIRXQuetIFi9eBTCohCoVD8VtgXdTmUC5ZiT1FB6ArFHnDXsZ9xz4QvuPXgj3n55rkAnHprb/Ka+9ANwVGXdeXovziFCQMFbi58ZSjNOmWh6YJ+J7Xk6Hv6YHg0PEGD458YQPmQQoQuaHlgMYc8OBjDb6B7NIb9czB53QoAcGW7GfjgEaA7f/BbTOhNsG8XAITLoOz6PyQDz73de+LqN9a5WKFjjLgdjERwe05nNN+OA+sVCoVCoVAofmmUC9Z+hHLB+vVwXuHLyUKELXvmcvuc8cAOChE2mri9WqoQYaOJN5hWiNDQMAxnHyASiuMNOgrE9oUIw9VhfPmJwoMxCysSw53tnMfqQuiBtEKE4TB6MOi0DYdAd6O73Y4sFkL35eyNR6RQKBT/M+wPLliv9b55n7hgHTPnZrVuUew2ygVLodgDRpzVlnfuXAzAoX/qDMC6RbVcdsDbmHGb/keUU1zo59PHVyJ0wWVvDufBE2YQDZm06pPHwCNb8NZN80HAmU8P4OOr51K/MUJ2uY/D/96V9y+YCRKG39KLpY/NIbYthtAEB95xAItu+wSAgoHl5LpWEKvYCkCrKydQ8+SjABglzchq4Sa+ciEAWRPPQF94G0gb252D65R39vYjUygUCoVCoQCUBWS/QllAfl3UVkbQ3RrBXMeicd9Z0/nk6ZWOUECO7sKKOx+v5h2DbF6aiu0oyPPQWO3EaBS28mOtbUzKytt7CFc45/4CF55Yql9eMxOX1ZA8b9GmInnszdfw6NXJ82BBKrbE1yqCJ7A1ea5NfBk9mKpholAoFIo9Z3+wgLzS65Z9YgE57vub1LpFsduoGBDFb45FX1YysXASE/InMXvqhl3uF6qJcWn7Nzgj8Dyv/X3+T7bPKfYmlQ+AgUeniv0VlPlp3jn1x7j/hJbJ9LuegE7rgamihd0Oa45IxHVohqDdmOZJWbMBhcl+AM0PLE0eu/K84NKT503xIAAYBgRSBQ1l8cC0KxfgK/rJ+1MoFAqFQqH4JVAuWIrfHPecP4OGGse6cN/vvuSJ5cftUr/nr5nDlpWOdeHlm+ZxzHXdd2vegUe14NZPx7D0q62Mu6gThlvjoweWUtolm55jSxl4fEu+f2cDB53XjmC+m+mPrsKf66Lv8S0Ze0Vnvp+8ht6ntCKvVZDWB5UQa4jT88z2hNaH+O6O2bQ/vj2lQ5uz5qW51C6totuVB0IsRsUTb5PVpxN5Q3sS+qYH4XnzyT9+IrgMGt95Fr15K/yDRmNtHItc/h7igLPRdf2nb0ihUCgUCoXiF0ApIIrfHHklPtYtcmps5Bbvujm6eYdg8tjt2/0Fum3bvP3QElbP20bLnnlk5biY+uQKClsG6DqymGmPrmD+R5vIKfXReVgRnz6yAk9Ap8uYEmZPXsN3z6xBGBoDzm3LrIeWYUUtWo4sYelzS1j5zjoat0Zp1qeAZU/MIV4ToXh4a7S6TVR/uoiG5ZUE+ndm21sfEd9cibtlWzzN/DR+8zVaYBGePsOxv38BuXk+mqcIBpy32/enUCgUiv0XlYZX8WtCxYDsR6gYkJ+HWMTknvNmYMVtLn10CP6g+6c7JXjxhu9Z+U0Vp/xfH1p0y92teZ+9aQ7P3+qk5DXcGrkeN+FaxxLTfWQzlnxS6TQU0KJ1kK0rnTiPtgPy2TYrVSek08AcKr9zzvPb+RFbU7KSzjoycS50QVlZysUs0DqI0bA+eR4sCoFtA+Br58XnXZ6U6We8g+5OKVwKhUKh2HP2hxiQl3v+ZZ/EgEyYe6Natyh2G2UBUfzmcHsNrnrmwD3qe/xfe+1Su1jEZPI1cwjmuTnmhu5omkak0UzKpS2xTTt5Hk2TIcGMpmTxiJUxtpl2bkWtjA+pHbGSISHb7x3IWJzMX6TJZTRTZmXOqVAoFIpfOfvAAoKygCj2EBWErlDsAX8dMZX371vKK7fM599nfw3A6bf2pvvwYvKae7nk34P5w6Rh5JX5aNs3nz9/OIp+R5eT08zL8bf24sLXhlPQ2k/zLtn8/q0DGXRBO4LFHoZc3IETXj+Igo5Z5LTyc8zLB9F+Qls0t0ZB9zzGvjMBd74PzaPT86ZRlJwwAlw67ma5tLvvSozCfDAMco8YR9bEs8BwIQLZBM/+FxS0B81AtB+raoEoFAqFQqHYZygLiEKxB1SuTKXGXTevBgC32+CPjw9l1dxtDDyiHIALHhlEUasA3qCbMx/sz5IvKul7ZBmG2+CspwbhCRoUtAww/vaetBlRTJfxzfEGXRz+5GBiDRbNDyig4J+DyOtSQNsjW+IrCtL37vGEVtfSZmJXLKsLWm42WT1b4w4GaPbHCwkvXE7OmOHouo6UBq5mJejBHBj9N+yVn6N1O2JfPDKFQqFQKBQKQCkgCsUecfytPXni99+gG4JT7uwDwLxpm7j24A8AaNk1h+I8P4s+d+I+zri7L89d/h3ShqwiD/3HlTHj6dUAHHlTV2bcvgQzamN4NcZe0ZHpty8CoMfpLdn45kqkKZlx43f0/30r1jzvpAhe/OC3FAbXYDc67lXlJw+g4cP3Adj60ttkl4O1dQsAwUOG46mYDIA141G4YIrKhKVQKBS/IVQQuuLXhFJAFIo9YPR5HRh9XoeM3334VCrIe+2iWmq0VMHA9x9cgkyEfdRviTLn7VQBwRlPrE7GhJgRm9nPrE7KVry9AZ+ZiuVY/vJKXInjhnX15LdKxXZsfW8WTcm7ZGMEa2uqECHLPgB/4lhaEKqEnFS9EYVCoVAoFIq9hYoBUSRZt6CGU3yTOUF7jn+f99VemfP2wz7mJO05zsp5gdrKyF6Z85fi8Is6IRKbQZ0GFtJrbKpo4LHX90B3OcLCVn4Gn9I6KRv9pw54spy9AE+2waCLU4pNz9PboXtTH9Ou56SKDeZ0LsDIDSTPm008KHms5WRhlJanznsem7pQ3Y2ulA+FQqH4TdFkAdnbPwrFnqDS8O5H7Os0vHdN/IyvX1kHgKYLJsdP/sXnPEl7Lnl8xFVdOfn2A37xOX9JQjUxNq2sp32fAgDWzt9GTrGPnGIvkUaT9fNqaNs/H03T2LysDsOjU9AygGnarJ9VTXn/fAxDo3ZdA2bEoqBDNpZlseb9CkqHluDNcRNaV0tjRYjiQWUAbJu5jED7Etz5WcS21RJbs55g724ARJYsQi8oxFVYhBUJwYa50Gqgcr9SKBSKn5H9IQ3vi91uxb+X0/A2WhGOX3C9SsOr2G2UC5YiSa+xpUkFJL/c/xOtfx582S7CdU762B6HlOyVOX9JgrnupPIB0LJ7HuAUKbxt/Cesml3Nwed3oM+4Uh44cTour8Z1H43inRsWsHDKBnocUcb4P3fliTHTsOI2J780lG/vWsDqqRvJbhFg4lvDmTL+TayIRa8r+iBqKln/+nxc2R6GvnQ6C3/3AFYoTOG4fuS2d1Pz6lsIl4uSv1yP/dq1yNpKtLZ98R9/y756RAqFQqH4BZC2QIq9HANiKwuIYs9QFpD9iH1tAQGY+do6Vn1XxVFXd8W7GwX89pTaygjv3r2I7geX0GP0b9ct6P2Hl/LY72clz4uaeand5MRvlHXJJrQwFS/StnOQ6qVOlq2cUjdadTjVrwWIkFPAEA2KCmqSsmBzHU98a/K8sKwqWQskq42Fz7sxKfNd/Ax6MP/nu0GFQqH4H2Z/sIC80OXv+8QCcsKi65QFRLHbqBgQRQYDjmnBCX/tvVeUD4CcYi8n3XbAr075qFwX4qqR73HzkR9lFCAEaKyL8X/jp3H7qKnUbHKUh4KylEVJCMfy00RWoSejvz/t3JWT+Tp481Lnmp758XXlbWe10lJy6cnKlLl9O7s1hUKhUCgUil8UpYAoFHvAdYd8wPzPNzPz3Qr+fvy0DNm9R33OvPc2smhaJXeM+QSAfkeUc8ItPWk/sICrXj+IP087hO4Hl9Dv6HKumDKSk/7dj9YD8jnl0f6c8/4IuhxZSvsxzTjv49GMvKMPgRIv3U5ty4QvjqGwTxH+sgBjXzucA+44Ak9xkKLhbRn03O/IHdARV2E27W88kebXXY5ekI+nXVsKrvo/9B4HQzAf18G/Q1cKiEKhUPymUEHoil8TKgZEodgDIg0pq0eoJpYha6yNp9qFUu06Di2iZkuEFj1yCRZ66DC0kECuG6/foGW/fCrm1dCyfx5uv0HL4UVEGyz8hW7KhxSzfMpGWo0sQdd1ioa0oGZJDTltcjGbefG3bU5ev5YABHp3Im668HVsiTvgRi9ri6vM6ae36INVXYdR1v0XfjoKhUKhUCgUO0fFgOxH7A8xIIpdY+60Tdx+yqe4vTq3fTSW5m1SLk4Vi2r5v3HTsEybP7w8jPaDi1g+ayvXDHoPAMOj0aV/IUs+d+I1hp3cigWT1iMlCA0GTSxn3ovrAWgzopDaGZXJsTsfms+WGU4shyvbRYGvCmk5H+GyQ8oIf7fAaahrFLWuQzY6qY1zB7XCV/tFcpzgn19EN/aOm51CoVD81tkfYkAmd7p9n8SAnLTkGrVuUew2ygKi+E2yZkkNtiVp0zVvt/ptq2xk/fJ6egxp9qPteo4oYVLFCTuUlXXJ4e41R2X8bv6nm5PHZtRm/cLa5PmyL6uaYsWRNqz5ujop2zK/hnQ1YfO31Um/yXh9HOlO7R9sm1NB8qvHspPKB4DcvBjSv5dCtZBb9KP3qFAoFAqFQvFLoGJAFL85Hv/bd5zc/SVO7fUyD1y96wUV532xiePKn+fSg97hwsFv/KzXNPaCDuQUOxpAj1ElHHdjT4QAzRCcdm8fijsGASjpms2Rd/VG6AKhwSG39CS7pRNcrns0Rt8/MDlm60Nbktut2DnRoMdfDwPN8ccNdC4lOKBnsq3/mAtAd/YbRE4RulI+FAqFQqFQ7COUC9Z+hHLB+nmY2Ol5NqysB6Cw1M8ba07ZpX5/P2MaH01aCTiZqqbGzv7FrlGhUCgUvx32BxesSR3/sU9csE5eerVatyh2G+WCpfjNMeak9jx562wARk1os8v9DjunMx9NXgkS2vX6COomvAABAABJREFUeWtkRBpNruzwFjUbI/Qc15x+R5Qx6ZJv0TTB798YzqtXzmHjgjrKeuZw7K09ePzYGUhbcvzD/Zh1xyK2rWzA8GmcMHkg75/2KUhof2wrjPotVH+3GaELDnx6PAsunwSWJLtHGYUdNWo/nwMCWl5/JrGX/wlmHK2gGYXX3fuz3p9CoVAoFArFrqIsIPsRygLy87F8bhWWZdPpgN1zNdqyPsS6JXX0HlmCpv18Horv3LmI56+ckzzPz3fTUOVkyypqE6B6VaoQYfPWAWpWO8UGs4pcGNtSWbXyi0ALJ7JuCSjOr0/KgsUCr9yWPC8orkoe57SM4HOnzguuvx89X7lhKRQKxc/B/mABebbDP/DrezfFeqMV5tRlygKi2H1UDIjiN0n7ngW7rXwAFJUH6TO69CeVj3lfbOLkli9wVqdX2LymPkO2cVkdf2r/Bn9o+Rorv3EW/R2HFCblhlujWcdU1qzWA/MhkUpdCGjZLxU4X9g5s4Bgs14pmStgIPRUDva8nmmB87pA+NIKHJa0zbyBYM6P3p9CoVAoFArFL4VywVIo9oC/n/Qp1RudKue3n/o5d38+Pil74MTpbFnpWDTuP+EL7l5xFB0GF3HFuwfx7WvrOfSKzhS1CfLGDfPw5bgYf01XVv5xK9MfXcnw37WjZZ88PrptEbEGi3F/6c7Gb6qZev1cep7aij5ntWP6n7+hekktB/97CFZ9jG/+PI2SoS3ofEEf1jw9g+pZq+l09Thc2W7W3TMZT3kzys4+ksavPyb67ecEDj0R3a1S8CoUCsVviX1RGFAVIlTsKcoColDsAR6/njz2ZWXq8b5g6tztSx2vnVfDukW1bFkZorEmxpr5Naz+fhuxiMnGxXWsX1zHhsX1mDGb9d/Xsn5eDdG6OBu/r2HLihDrv9mGZVlUfFPNliUh6tc1UrO8hm0rG9k827G0bJ2zhZoVDdSt2EZ0Yw2hlXXULazEsiwiy9bTuKae6NqNv/DTUSgUCoVCodg5KgZkP0LFgPx62LymnttO+Qx/los/vzQCfzBlUWioiXHfhM+JRy1+P3kYBeV+Zr9bwR2Hfwo4xQZbdMpm4yLHdavLyGKWfrwl2b/78CJWJYoUlnTPIrww5eLVqleQ0LIaADSPRkEwBIlPcHHPIOa6Dc6JgKLSWohbAOR1CeAJL0+OU/rAw8oKolAoFD8T+0MMyDPt/7lPYkBOW36VWrcodhvlgqVQ7AHNWmVxzxeH7VAWyHVz7UejM363ZXUqyFza0FAdTZ7XJFy5mqjfnDoPV0UzZA1pMjtuJ5UPgMiWxtQHWgKmlWrbWJuMM3EGDoNSQBQKheI3g3LBUvyaUC5YCsVe4OAL2tNhcAFun86Yizty3hOD8ee6yC72cMlLwzngqDJcPp2+x5VzzgtDCRZ58OW5OO2ZwbQdVQwCcsp9nDJ1FIZPBw0GXt2DNse1BwGubDejXpmAkeUBAWVHdKX5ySNBCITHoPTPf0LLc1ILezp3Qc9RQegKhUKhUCj2DcoColDsBTRN48p3DmLeJ5vpf0QZhmHwx3cPxJftpqxrDuc9P5j5b1fQ+2hHdvFHB2FGbVr1L6DlkBzevXI+I6/tRn6Zn0OfHsqm76oZcp1T6VzL8tL26LYEy3Lo969jqJiynB5XHwRAzHKR26OcYKsS9Cuvo+rVj8k6bceWG4VCoVD8epHSsbDv7TkVij1BKSAKxV5g+ewqLu/3LgCaIWjfI49Vs52aHYMntGDRi6nA8AFHNWfBG5sAaDkgn82zqgH4+sGVtOjgJrLOccP68tYFFGRHAFj0n0UUdvHAZid2ZNXTc8jJdWJH1gH+lm58UWfMmvdm0P3Vu37hO1YoFAqFQqHYMcoFS6HYCzx9zXfJY9uUrJxdnTyf+dr6jLbz3kopI2tnVWfIqlemxYtst/NUtyKzHkk67sZNmeN8/u1PXrNCoVAoFArFL4FSQBSKPeC28z5luOtRhrse5ZWHFmTIXr1jHkfpz3CU/gyPXPo1AEdf0S2jTVHLQPK4/YD8DFnLPqlzf0lmgJ8vR2dnePJ2HlTeoGUWNPT167rTtgqFQqH49dEUhL63fxSKPUG5YCkUe8C7Ty1LHj909UyOuzClYDx349zk8TsPLuW8ewfS55BS7vhqHB8+tpwzbj+AYK6Xl/42l+wiD2N/14nNy+uZcvtCDv9zNwpbB/nsX0sJ18QZe303KuZV8+SRnzPyqi4MubAj75w7nc3fb+Okz0ZDGN467C3aHN2G/lf3Z+F906l4dynDJp0IPph3/lNkdSqly5+PZMuUL9j62se0vvYcfL69m6pRoVAoFAqFogmlgCgUe4DHZxBtNAHIL8lczGcVeNiWSK3rDaQ+YrdOnMbWDY1s2dDAqJPbMvmvc9EMQbsBhTxx9kzWzathxZxtnHl/XyZfPgdpS4q6ZPPCmV8Trbd48fezadW/gNlPrwPgpcOnY1bW0bAuxuZFS2h3ajvm3jMPgA+OepnCdjo1cxvZMnc5zY6uYNXdU0DCgksfpd+bN+2Nx6RQKBSKvYQtBfZetkjs7fkUvx1UIcL9CFWI8NdDzdYIF496i2COhwc+GY9hpBQN0zS5asj7xCMWt88YQyDo5d4LpvP+o6lCgC4EJP5wu70a3nDKG9Lv1rCjzsdSA3xpBTyCmsSb5oWV4zeTxx53jOxgLHmeldWYPM7Nq8blSn3UO91/ATmdW/wXT0ChUCgUTewPhQgfb30nfm0vFyK0w5y9+nK1blHsNsoCovjNEQpFmNj/RSxL8vyMieQX+ne57+/GvsWKBdXc8ugIho5rtdN2uYVenp07cYcywzC4a2Zmqlu3Z7uPmiAZRC60zB0koaU3243dpR9puv02g2Go8C+FQqH4LaEKESp+TahViOI3x5j2z7B2RR0Vq+sZ1/GZXe532XFTmPVJBdWVYS45csrPek0X3juQFp1z0A3BqFPbctNbo3B5dbxBg7u+GU+n4UVohqDLyGJumDUWT0DH5dW4dOpBBIud4HJhwGVLxiTH7HhUKfldEwUFBUxYdHRSCcnumEvxqLbJtj2eugwSio6e4yfQvuxnvT+FQqFQKBSKXUUpIIrfHI2hePI4EjZ/pGUmq5fW/AJXk+Ksf/Sh97hSTr25N33GlXPQGW0Y/4dOlHfK5fh/9KLLuGac+H+9KeuWy4F/6MCAs9vQZVQJJzzRHz3PxUGXdSK/fT6lBxbjLvZyxNP9OfTpoYgsL22Obk1+fj6lh3aAgJ9BD4yh+9/HouVkk31AS3Ja51N43HBsb4DWVxz3i96nQqFQKBQKxY+hYkD2I1QMyM/Ds/fP4bbLvwDg0r8M5Pxr+u9Sv3Urajim2/PYNvQZ3pxHpx71s13T9DfXcPOxHyfPC4u81G5x4jXa9Mxly/ehpKxd11w2LKgDIJinQVopkPwAaJHUeZbHSh3nW/hkNHmek52KAfHlhQm6U+cHvHuNyoSlUCgUPxP7QwzIoy3v3icxIOeu/ZNatyh2GxUDovjNceolvTn1kt673a9Fu1y+iVywy+03rK7FH3STW/jDP/hVm0LYJhSVBwF4++HFGfKaLdFkfMfaBbX4SEWWVyyqTcpC1TbBNENltAF8OykFEg/Z+AI7lvn0xozz0KyV+A7stuPGCoVCoVAoFL8gygVLodgDzhr+Kkd2nMzBpU9x28WfZsjuOP0zTi1/mdNbv8y1Y94D4MK7ByblLo9G92HNkuejz2iXCiAXMOTklklZ51HFGWM375mmYWz36S3ul5f5i/TYwGaZMR9FSvlQKBSK3xSqEKHi14SygCgUe8C8ryuTx289vZRrHzgoef7ZS6uSx99P2wRAy065TImcxoYVIVp2ygVg6/oQhtcgt9DLxQ8OZOPSEC26OrKT74pgmza5JU4Gr9mvraXzuCJ8Ph/VFY1ULa6hw+hSAJa8uYaWw4rx5fsIV4fZMruSlqOdDF6bZqwhp1UWvrJ8wuEwoVkrlfKhUCgUCoVin6IUEIViD8gv9lFd6RQb7HxAYYasVddcVny/DYDCUkeBiERMjsl/jnjMpnnbLIYf2YLX7lkEwJ8eG8Jzl82moSZOMN/N6bf25vELvgHgiGu68MntS5Mpe4+6tgPT/+FUYfcVuHFHY9gxG4BD7u3Btzc4/TS3RmFJnNg2JyakzUXdqX/JiYtBvMHIGdf9Eo9FoVAoFAqF4idRQej7ESoI/dfF7Zd8Rn6xj/Nv+GGQ+5M3fEu4Ls6F9w4C4KbjpjL9jbVJuUGqxodhCDzxVGCHV9cgkbxLSAikxYcEAF+a61WW204eu10mQV8qKD03oxBhDWm1Eun+fxMoGtpxt+5XoVAoFDtmfwhC/0/5vfj2chB62A5z/vpL1bpFsdsoC4giSSRick6rl2mojXPKLb2ZeHWPX3zOBy/+ig8eWUZBmZ/HVv660sNec/+BO5Wd+de+GeddBxVlKCAuj4aZqHbuz3FhbU0pEr5sF+FqJ5WwS9MhJUL7EXdb8SMy09IxjJRyEmxduPPGCoVCoVAoFL8gKghdkeSKge9StzWGFZc8fd3svTLnlIeWYpmSyjUN3DZx2l6Zc19wwpU9GX1yW3KKvPzxoSE8vuQ4ilsFaNklh6fWHM9RV3Ylq9DNsdd14/71x9C8UxaFrQPcVXEEXQ91Atazyzz8peFIdLcGAo55qj99LuwAgCtL54+1p+HKcvYUup7biQNuPRAECLfGiOl/wFXkZOTKHdwWX1n+vnkQCoVCofhFkHLf/CgUe4KygPyXfPzxxzz77LPMmDGDdevWkZubS79+/bjxxhvp27fvTw+wH2GZ9k83+gWJRa2fbvQr5tqnD8o4f2rFxOTxabf34bTb+yTP71h0RPLYnW8Q1Wy0LAOfz0fUEMTj4Mt3423mJWoJdJfzUY7jJhIDd0EAV46faNyFbuj4fD5MESAciZPrV2ZyhUKhUCgU+w4VA/JfMnHiRKqqqpg4cSJdu3Zly5Yt3HnnnXzzzTe8//77jBo1apfH2tcxIA2hCGe3eJVIg8WxV3TjjL/3+elO/yV3nv45nz2/muxCD0+sPRbDUDpxOtUVDVze4s3keRBwpxkuc/TUx9fjtvG7UkpkXk44eez3NeD1phS8kR9fhC9fFSJUKBSKn4P9IQbk4eb37ZMYkAs2/kHFgCh2G7Xa+y/517/+RXFxZq2GcePG0b59e/7+97/vlgKyrwkEvbyw7eS9OuflTw/n8qeH79U59zUfPruUlfNqOOfWPj9QuL57ez1zp2zkxDsPwOs1WDlza4b8x2xEtgW4dixLj/8AqJ1fge/A9ntw9QqFQqFQKBT/HSoG5L9ke+UDIBgM0rVrV9atW7cPrkixP/OPMz/jn2dO5+U7FzCh2QsZsil3LuLeIz/nk4eWc2HOywD0O6ZVRpsDf9c2eezNNhBp+svQG7omj4UBRjCljeQdk2nNKlHKh0KhUCj2AaFQiD/+8Y+Ulpbi9Xrp3bs3zz///C71rays5Mwzz6SwsBC/38/gwYOZOnVqRpu6ujpuvfVWRowYQUlJCcFgkB49evCPf/yDSCTyS9ySYg9QFpBfgNraWr777rtflfVDsXf48q2UUtpQG8uQffyfFcljO55yrXrCPonqihD5ZU4Q+VF39SQchvyEC1V1RSP5ZU69kQOv753RtraiBne+B5/PB38dSbiiWgWgKxQKxW+QfVGZfE/mO/bYY5k1axa33347HTt2ZNKkSZx00knYts3JJ+/cCyMajTJ69Ghqamq49957KS4u5l//+hfjxo3jo48+4qCDnDjLtWvXcs8993Daaadx2WWXEQwG+fzzz7n55pv58MMP+fDDDxE/ljZSsVdQCsgvwO9//3saGhq4/vrrf7RdNBolGo0mz+vq6n7pS1PsY466qBOTbpsHQLNWgQzZhFt78ODxMwDHutHEydqk5HGP/vlsmFkLOFaO7LS8AZ0OLWDLtFSF9ry8SNJnq6BvHnJFSvk5auEffp4bUigUCoViF3n33Xf58MMPk0oHwMiRI1mzZg1XXnklJ5xwArqu77DvY489xvz585kxYwaDBw9O9u3VqxdXXXUVX3/9NQBt2rRh9erVBAKp79hRo0YRCAS48sormT59OsOGDfuF71TxUygXrDSmTZuGEGKXfubMmbPDMW644Qaee+457r777p/MgnXbbbeRk5OT/GnRosUvcFeK/Ymz/tqPZ5ZP4O7PDuXZFcdnyAZOaMX9lcdwxfsH8e8aJ0PWjBdWZbRZMbM6eSzNzLFXfbAl8xdpYR/m0kx3wPUfLtvDO1AoFArF/ogtxT752R1ee+01gsEgEydOzPj9WWedxYYNG5JKxM76durUKal8ABiGwamnnsrMmTOpqKgAIBAIZCgfTQwYMABAucfvJygLSBqdOnXikUce2aW2LVu2/MHvbrnlFv72t79x6623cvHFF//kGNdeey2XXXZZ8ryurk4pIT8DLz61gCt+9wFIuPGOAzn3D7uWDnnD+nqGdXoM05SMGNuap988ZpfnPK/Zy9RtiZJX6uPh9cf+aNuS1lmUtM7aoSy70EuPQ0qT5wccWZIhd7s1iG3fy8HwaolI9B8S0VwEiCfPC4aV/+g1KhQKhULxczN//ny6dOnygwQsPXv2TMqHDBmy077Dh/8waU1T3wULFlBWVrbTuT/++GMAunXrtkfXrvh5UQpIGs2bN+fcc8/do7633HILN998MzfffDPXXXfdLvXxeDx4PJ49mk+xc667+CNIhFDceu3nu6yAnHbYq5im03Ha+6t3eb537llE3RbHlW7bhjDTn1/F0BPb7NY17wyfz8fvnh7IE7+bxcCJLbjwyaHc1nsK1asauXbVeGoX1fH0oZ9TPqiAcz4YyYtHTGXz11s5dspo8tsEeGXIy/jL/Bw79Ti+ufZ9Nr6/nJ43jnRiQhQKhUKh+BnY3oV8Z+ubqqoq2rZt+4Pf5+fnJ+U7o6qqKtlud/vOnTuXf/7znxxzzDFJhUWxb1EuWD8Df/3rX7n55pv585//zE033bSvL+d/Hq8vlf3J7d6xL+mOKGu1ZznMm3fO7Nes3Y6tG3vKCzd+T2PE4vMX1lJd0ci67+toqDN558q5vHPVXMIhi2UfV1JdXc3KqZU01NlMvfxbZtzyLQ1VNlvmhqiuqGP1G6uI1Anm3jXrZ70+hUKhUOx79mUl9BYtWmS4lN922207vc4fCwD/qeDwPem7evVqDj/8cFq0aMGjjz76o+Mr9h7KAvJfcuedd3LjjTcybtw4DjvsML766qsM+aBBg/bRlf3vMm3h6YwfMBnLsnlr+q7XNXn6zWM4fOgkVi+v4e8P7HoGsz7jyhh5Tju+emkNB57Whvb9C/fksnfI6nnVbF3jFBQ0YzZXlL+OF0ep+vLx1WQ3/b214e7i9wkkPtEbvqomvGBTcpwpg5/F7XaOIxsaqF68lfzOP991KhQKheJ/l3Xr1mUUItyZd0dBQcEOLRXV1U58444sHP9N3zVr1jBy5EgMw2Dq1Kk/Or5i76IUkP+St956C4D33nuP99577wdyVWh+71NYGGTmyvP2qO/bu6GwpHPBI4O44JFdUzavP/FD1i+r4853xlJYEsyQPfr7r1k0rZI/TB5Kq575hOuiOxnlh/zYvtH2G0Px+l0fV6FQKBT7P/syDW92dvYuVULv0aMHkydPxjTNjDiQefOc7JDdu3f/0b5N7dLZWd81a9YwYsQIpJRMmzaN8nIV+7g/oVyw/kumTZuGlHKnPwpFOheNfJNpr6xm+dxqjm2bWXjp0d9/zYcPLWf9ojqu6j0FgC5Dm+P2pT6mV340Inncom8ugWapXaZLFo9NHvubecjvkZs8H/7MUcljzaPRrP/OA/UUCoVCofglOOaYYwiFQrzyyisZv3/qqacoLS1l4MCBP9p38eLFGZmyTNPk2WefZeDAgZSWphK4rF27lhEjRmBZFh9//DGtWrXa0ZCKfYiygCgUe5GVC7Ylj614poI6/+PNO+xz95LDufXIaZz6t950GV3K6Bs6seLLKq76cDThcJj7R37OwDNaU9Q+n5H39GXOM6s5/aPh+Hw+Xhj/IaUDC2lxYBny34cx+x/fMPKJ0b/oPSoUCoVi77MnaXF/jjl3h0MPPZRDDjmECy+8kLq6Otq3b8/kyZN57733ePbZZ5M1QM455xyeeuopVqxYkVQezj77bP71r38xceJEbr/9doqLi3nwwQdZsmQJH330UXKOyspKRo4cycaNG3nssceorKyksjJVI6u8vFxZQ/YDlAKiUOxF/nTvYP5y+qcAHDCieYbsD88N5dp+jhtfSUcnkD0cDnNuy9cB+Ovh02iW6yG+zUm1e5Y2Gb90rCNrvt7Gx39ZgNzi5Oi9LetNcr1Ou4rPtrDkmUW4wk4syWsDXuH45SerTFgKhUKh2Ou8+uqrXH/99dx4441UV1fTuXNnJk+ezIknnphsY1kWlmVleJJ4PB6mTp3KVVddxSWXXEJjYyO9e/dmypQpySroAAsXLmTlypUAnHrqqT+Y/6abbuLmm2/+5W5QsUsIqfyE9hvq6urIycmhtrZ2l3wpFb99PntxJXeeND157pMCH6nMXk0KCIAbyEpL+tWkgADkBsOkF5cd9uBBtDuq/S9yzQqFQvG/xr78/m6a+97CB/Fpe3djKWyHuXTrRWrdothtVAyIQrEfc+DxmfnS85t7d9o2v/XOa8pouZnB7kr5UCgUit8W+zINr0KxuygXLIViP+f50ARuP/YLTvlrbzr2K2LqQ0tY8XUV5z/pVIt9+NjPGXpuG3qML2fxlPV8++gqTnnFqRb77vnTKR9aRM8zOlI5ZzNz7viW4Y+O3Je3o1AoFAqF4n8c5YK1H6FcsBQ7YrzxVPJYtyGLVKHFQJoLVk5v0L5PBQTmu+20UaIU5KTOztt85i9wpQqFQvG/yf7ggnV3/kP7xAXrT9UXqnWLYrdRLlgKxX7MGe2ezTh3/8hHNjxn5+PkBDLPH2n95J5flEKhUCgUCsV/gVJA/gf44yXvUVJwJ6ec+MoPZHf8YwbNC+/kkJHP/ED24uQFlBXfRd9e/8E0zQzZjBlraVFyN53bPUAoFMmQrVlTQ5sW99Km/F5WrqjOkIVCEQ5o9xAdmt3HzBnrM2SmaTK89+O0LbyHF5+b/4PrOWLkJNoU3MOdf5/xA9n5J75Fh7z7uOKCD34g+9sVn9I9/1+cfeTrP5A9ed9sDsh7iOMGP/8D2QevL6NPwUMc0uWpH9z/25MX083zAN09D7B2dU2GbOn3lQx2/4dB7v/w6ZsrM2Q1NREO9jzOKNfjPPfP2T+Y86jAM4w3nuL2U6YB0HFYcYb8xxIe/pgp07Yzz4UKAVEoFAqFQrGPUArIb5z58zbz+KNzaGyM89Yby3hx8oKkzDRN/nrzZzQ0xPn6qwr+dOn7GX3PPfst6utjLFtazaGHTM6QHTZmMrW1UTZsCNG/92MZskH9HqNqa5iqqjBDBj6RITvwgCfZUBGirjbKUQdnLvonjHuJpYuraAjFueScKRmy6y//iJlfVtDYEOeff5meoRC8/fJS3n1tGeFGk+efmM+82al6GhvX1/PE/XMIN5h8+v4annogc9F/2xWf09gQZ/63lVx+emYl+0uOn0JDfZy1K2o5btALGbKrz/gIEgF44ztlWilO7/+6E5gn4erjPsqQTWw+OakMPHZ95rWcWPI88agj/OyFNc59PzUmo83Z93ViZzwoT9yprPSsnIzzcz86c6dtFQqFQvHro6kOyN7+USj2BKWA/MbZXNmQcb5q9badtIQ12+3kp7N1S+Y4lpXabw+FYhmyeMza4TFAqD7V1rYz9+y3VDbudP61a+oyztMNEttbIDZvDCWPa6szrTPrVmeOk87GdfU7ldVUR3cq+0EU1Y+YImxr58JwKL7D38exkz/jLx5ATNjEhE2f04rwlEpiwvkBiEnnxygBTy+NqOX8HHPXMUSiRvJHoVAoFAqFYl+hFJDfOKNHt6V9+zwAipsFuPraYUmZYRgMHuJUAw0EXUx64biMvhOP7wKAy6Xx1nsnZciuvnYwALoueOHVzH73P3goQoAQ8MBDh2bIJr1xHJru7Jj88eqBGbJXPjgBl9t5Sx59fOZO/xPPH0kwyw1A/0GleL2pRfRFVwyguMQJcmjdLpeDx7dLyjr3LKJjt3wA8gq8/Pn/DiKdwaNbAOD16fznrSMy7/+crgAYLsHTHx6bIRs2rmXy+I9/y7yPk6/okTweNaF1huyGSan52/XKy5D9e35q/pxiJ6Xuyw/MzGhzpP5k8virZzdTvzElO1ekrFSNG6Huu5TsH+5MK81rr72GQqFQKH47SAnS3ss/Ko2RYg9RWbD2I1QWLMX2HNPsCUJVqXOv1PCkFSIMyNSxS0IwbU8hL83Qke2JY2xn+Lik5ocVYhUKhUKx++wPWbD+L/dhfGIvZ8GSYa6ouUCtWxS7jbKAKBT7Ma9tPivj3MLeSUvYsQOXQ912HmRK+VAoFAqFQrGvUM7gCsV+zofmWT/dSKFQKBT/00gpkD+aK/GXmVOh2BOUAqJQ/Ezcdskn/Offc4gIi0LLSw5utmoR3FKjZ/sCFi3fRkiY5Ntu/LrORhlBl4LWWX5qa03qNJMc26BtXhbrahqRQKHhQpqSGiwCaORJmzAu4kCBBn4dquIaPk2SZzVgu4JETI0CX5x8b4yqej8u3cLvqkUjC8vW8bjiaJqeduVx/J7UmasTsNJJHuAp9mFWpYL620xozaa3lwIgPBouPQqJwPrSCd3Y+ub3TkMB3myJHXbsMjkjOhP9+vvkOL4WAcxKJyGCp10pPlmBXVeH8PspPG0CoUn/dtqNPBR71bfYm9eB4SLrzCuIv3oDSInWYQi6Xodc/w0IDf3of6DNuhCkCbndEMXtYMPLgMDufg9UXgGyAVxlyOYnYm+7EwCt4M/EYo+C3AxkoeXcQsz6k/Ms9NPweW74r98bCkU6llxDY/x3SBrwG/dCaDZm/cNoniEYuddjbr0YaVZg5P8VrbEBueY28HeEdnfC0uugfj6izZ9AK0fOuQk8BdD/LuS8h2Hj54iOJyOKh2FOvQk0HePgW7GWvoe9+G20dqMQ3U/EfPtmZKwB99hrsTYuJzZjEnrLnrhGX0Tkpduxt23Ce9iF2FGLxrefQC8uJ3jin6h/+d+Ya5bhH3sCemFz6iY9hBbMJvusywi99xrRud8SOGgsnp59qXniXhCC3LP/SOS7L2n84iO8vQcSOPhIah69G7sxRO5pFxLfuJ7QlFdwt+1E9vFnUfPkfVhbNpF93BmAoO7lJ9GLm5N7xiXUvvAEsZVLyRp/LEbzFmx76mG0QID88/5I6IO3CM+ZReDA0fgOGEj1Y/eDbZN/7h8If/8NDZ9+iLdnX3JPPhuhKQcQhWJfomJA9iNUDMivm+7G/WwywiDBhUa+7SUinIV8M9vDZj3hByUhxzao1ZxUXsW2h5CWyhbW0vRRpzmuVlloRCBZAKRcGtQmdpx8OIUJzcR5ucckFHE0CUOzKXJbRGLOHkNhTiPEHZmU4PWYCNG0cyXxe1JpxQzDIilCouspty9DN3G5UuduTyqrmRB2psydLrPweFNz6K4YTd//uhEjkBtOyjy5oFmJc03D5UnJjFwXhqhJnQdTWc5EjgcjmErBLIImJFzWpDuAzEllgLOCbhDO9UnhxQqkfNRMrx8MJ+ubayO4awVSgPTaoAkkEsunIT2gbwMjJJAuG+kS2F6ZbIMAqQkwJFJzg1GG0LOwtUbQvWALvNHDENJJRiB1wCUQ3p5orrYoflmkrMeS89FFd4TIypTZUeyGGUhqsN0S0MAGGZ4B0fkIy4Mwo2DpCFtDRE2sHB+2rxFEAGQjIu5GmCbCtBFV2VAhQPNjR+LY3X1E230ESHQxHGPTVzS9V7XACciQk/ZbGO0wNtVBPBEIVnQSVCRSgusBiHeE2oWAgJbHIJe+mbqHvEOQa6Y747Qbjb18auoG2xyGvdBJJS5a9MZcuRBs52+Q1uNw4rOclOwivzlmSCLrnHpO7gFjicxIpBZ3udGatcFcvQwQeAeOoHHGZ8kpPL37EZ37TeJ4INHZXyVlvgEHEZ75OUiJq31n4quWgeXM7xs2mvB0Zw4tvwgk2NVbHdmQ0TR+8XHi/g2MVu2Ir1gKQuAbNJzwl6n5vX0GEJk9yznu3S95DFB49V9wt2i9w/fFnrI/xID8I/s/+yQG5Oq689W6RbHbKAvI/wB9cx5kSyRCju5mXuPFGbKR5Y+xckstPgzm1J6P1+tNyib0mcSsBZtwo/HJkjMpb52blP3x2Hd4/e0l6Gg8NPkwxhzXISl78JavueNWp1jg5VcN4uK/DU7KPn1jJRdOfBsLyWHjO3DX6+OTsvWraxjb8RliWPTu2oyX5qQyb0UiEfrmPEJEWrQoDDJtw7kZ99HH/xAhM06uz8PM2t9lyIbmP8LW+jB+3WB25KIM2eFtnmH1+lrcQmdG3VkZ93/W0Ff4ZuZGdDRe/GYCHXuligIe13ESy1dtQ0Mw8cwuXPfISLyG7qTgFeC1dbxoSQVEs0FoIIUTSO6WWlKpMCQYUmAKiSEFLkRS5rKdxW8UiSYzP7BuAV4hCVkCkBgiUXwEgcew8bgsIjGXM4dmEZcSIQRC/HjeYClJU0AyEcaP7FfoOzfFS5G525i+7WGZeobMKG6GvXG1M58/CFZKAdGat4FNifopuhu0eHLhJAo6QrRJARGgB8Fy0i5Lfzvgm7RrbQb2usSEpcCq1Bx6G2ycQpiuWpDYCCmQFqA5F66HbUyPhpUnMUISYYHQpJMVRpNggajVEEisgAR3FAKrkRZIQ0IYvOsEwkrV5RFIbEMibIFtOeNYAedFl4Dtg3hQOItGAUKS+UJZEhFz3mvYICywPGD7nPeTAKd2TXo3m+R7zTIkTn4D5z0kErqk1CVYInnvwtaSbxlpWE4kobTB1BHOSXJQiaO0ZbzHmt4KTW9XKZw3RNObO5b4rMTBsDRsDaTLuXAtJNFtkAikOzGqy5nLNiRNORm0WomeuAbbKyAusX0g4hLvFmfyaJGN5RFotjOx1ijBxMnmIJ1nY7tACuE8jzhoJmiWRNigxZ3/iYEtwXJrkJZ1XArQ4xJpglhU4PwCIKajTdehlQRDoouuCGMj0lwFuNHdfTFJKCDuzuCrhfgM55lm9QFeci7O3wHolFBAJOT1AP0DsCLgb44o6IBc84UzTkFHqPgOwtvAHUAr7oy94EPnvgvbIbbVIavWgGZglHdJKiB6szYQtIknFBCjVWf46mOwbfRm5eilrRIKiMRo1R7xzdfIWBQtNx+jrDXR751Fv6usFfEVi7HrahAeL0ar9vC1oyy4Slshw2HMijWg6bhbd0gqIK7SFiAF0YQC4m7bkcYZn4JtYZSU4ipv5SggUuJu1ZbIdzOR0Qhadi6u8tZEvnOyCLrKWxFbtRy7ZhvC7UHPzUehUOxblAVkP+KX2EF57v7ZXHTl+84XtYAzx3bnvtcPB5xFfWnuvZiJ3dq+hUV8su6cZN8Szx00CgsEtNWzmBP6fVLW0nMXNYkd5FLpY3H00qSsnfsetmjOznSR7WVF7I9JWU/3A2wWzoIyW7pYliYbEHiINVYIJHilzprYZUnZIa2fYO6mrc4iBMGizReTm+soC5cf/y4vvLE4ucb5y18P4uyr+wIw7c2VnDbh9eT9j+rXkqenT0iO29F9H1bi/lvlZPFx5dlJWVf3/USxQUCB8DAzckFS1sv1L0LC2dHPlW6+jV8IQH/vg0RMmzP/2JM2bXP5v0u+xKULPo2dz6G5T1BXH6PvsBIuuncAv+v3JgLB61uP55JeU9i4voHyVkHu+W4c5xY413zfiqO5uv2rmOgYCJ41T+d3rmeShQ6zpY3l1jA0mzsaz+CvWU9iSw2hhcmxQuDNRdMkl2w5l383+w+2baBpcYIj86j7yHmNSh7Jou7iVMX645efzBt9JiFNyRHTjmXp0wtZ9tg8cjoXMO7t45ky9GHi9TEGPnwUkc01LLr1AzxFQUZOuZDpxzxIdFMt7S4dRVavchZe9Biaz82Qd69h4SX/onFZBQXjB1By6giWnnsbaIKOz9yEvXgJte9OIevgUfj79aP++UexQ/XknPUHrE1raXz3KdzdB+IfdjjRqY9gV67EfdjlYEexPvk/REl3XIPPwV7yBGz+AnpejfCXwPzLwdcC0eVGrOpXoOolaHYxBAZgb7kM0NCK7kbGvyDe+CCG71RcviMIR6/DtjfjXTQdiYVAYHtSygAamNnOQty7HmzdkVk+533mWuZJLDgl6BKrLIo0wNYEegS0SGIhn4ZEItJ1sShYeTa2y1E+EAJhgrQlZq6GkCLp7S0Tb35bt3HXCbCcxbPtEskFetpEDsnOqa8A2yOTY2Gnja9LhKUhdRthas7vhUBiI102IBFRzXkwmnSUDDuhhGi2o/FI53OWkfrESlyISMiE8zsR19BjqUu0dIl0AVKgRWynja4hjbT7ECSsFc7zcFcLR26D7XGeoXejRMRT9xQpFQhbTz4XI2RjNKR9JUrnOUaLBcIUjgISlQhLokUdJU+YgCmINxPb3ZtEjwAmaN/mQVx30qTGDfDkwUmXIrQIhhgLdi1W+BM0Ty80V3vsyCyktRHNPxZsE6o/BF9bRLAnMrQQGpZAwcGgeWHDR+AtRBT2R9avQW75HtF8CHjzHQVE6IiWQ6BhC/b6WWilfSCrBHvtNxBtRGs/DKINmMu/Qi/piFbUGnPtQuyazbi6DAEpic3/Cr2oFKNFR8wNqzE3rMbdrT/C7SE6dyZaIBt3x+6YlZuIrVyCp0tPtKwcovO/A03g6dYHu3Yb0cVzcbfvglHYjOjiediNDXh79UdGwkTmfYurRRtcZS2JrVqGtXUT3l4DAIh8Pwu9sBnuNh2IV6wlvm413p59ER4vkTmzEP4g3i7dMbdsJrZ8sTN/Ti7RebORUuLt2Qe7rpbowu9xt+uEUVzCz81+YQHJ+g/evWwBicgwV9crC4hi91EWkN84+UU+kvuPEoI5ngy5lpLiD7h2IHPQt9vd1lKbnGjbbZenfwdvvyeuaSK5ANpeprtSO4jbe+f6/alr04A0QwW5hf6MMXMLUsKcfE/G/Wdtd//p1+DxZH4chExZIjQt82pFRrvUcWtPLhHTJAsvHtOgBUEMXRCJRGjrz6G2PkLL7GzMKmgls50FZ8RNy2A2Likoy84hUgPNhA9pQ+P6CDlWIDn+zJkzybPcqftz2c7NJZ5boafpyfnIy5Y05cZ6vu3DRE2DuCVwGTqb37DBdMaJ3B7F3Jb60gpXW2ys8IKEyvkNrP0yRFV1gPpFNuFwmE1rPUjTzYZvqglX1LGlMhet1pl3wzIDO5yL9+s6msmtVG3OBR3C4TCbF1uY23Iwv60l58Batm3KdtyUtoapW15P5SIDu0UI/wEWlXPiWI0QrGmgcU0NW+YZBEQDnsEWNfMbMTcLCgfVI+MRar/XMbY2UDAYootqMddqeIq3oRf5iX4nIBDC09FCLtuCXGWj9dgCbcOIb+pA6HBIGG19BZ4VjdCiAtkphnd2BcTrsLvcjaj4G7a1DTQ3uFsgY6uwPDaIQoxKieWuAl0HXxtsYy2yJobLTJi7hARbIuqBILhiQFhDhDXwSHA3vXkkCIlEpCwVGo7bjwtkQomQAmcBrQtntz75fhTYmqMM2GhoCKTuLJZt1/bv2DRkwtoB2CKpemSS5o6XPG36zIumfySalbA4aMmmafMkm2Uep42bpk0ldZHkJTTVG5DO51LqICyZcHFrsrbI5GjCTPQ3E6NbzoC2AUbiudm6dJ5nUsuR6PUSos4cWlRzFC+XjcjBsR5aAuHuh8CL5u8AlhdpzkOYflzuvtj6YqS1BWG0RpOFSPGd80AOGoDYUAlmBUK0QOs0EVH5DViNUBqHcAP6+mooqEEWSsSWbYjGamgTBdPEWhtC5NejB8GuqkduCaEHIuDSiVc0IAJujAKJta0Rc10jruwImssiWtGA0HU85TZWfYTo2gjuQCNGUBLd0IgdbiTQ2sQMRWlYHcVjhPEWSqKbGolXRshqG0dakoa1UdxWmGALiFSGiayJktM6hoZOaF0EI8fA1UESrY4QWh1FK4vh9tuE1kYcBaSzTbwuRv2aKFn5EfR8m9C6CGZ9DHcXE6shRmhdDL8vgqsMGjdEiFTEcXU0AUlobQS32Yi7DYQrIzSujmO0jaELw5k/S8PTySa2LUL92ghaWRRP0KZubRQkeLpaxGqj1KyKk50XI1iMQqHYxygLyH7EL7WDMrrV46zeWEdRto+vtma6Jx3f/3m+/X4TQbeL79MsHACXHT+FN19fgkfT+LYm0z3rwVu+5u5bv0QXgne/P4W2nQuTsg9eWcbFJ78LwAOTxme4Z61aXMVRPSdhIfn9VQO46G+DkrJIJMKg3MeI2hbjD+/Ana9mFjHsE3yQhlicnj2a8dK3J2bIhhU9SlVtmNLiIFPXZ2aNOrzDM6xcXUNu0MOMbednyM4Z/irffLURr8vg68bMZ3Pz2R/z+jOLMTTBR5vPSlpcAK488h2mTlmDJgU3PXogR5zZjVNLX6B2cyqWwJ9Wo0MToMvtlZjUuStN5iZT+ctQknBcr5rISY+5MEz8vtTHOS87VVl+Sz1sqs4FwNBtTGszHq15QmrjS9M9NSFJxWdKPGlzGIaJkbZL73KlfE6EZuHSU/N7PanEwELY+HypZ6MbZtocFv60GIxA6yzimxyfd83vwbBTFeqDHQuRm9ckLlTD5Ykmd/C97Uox6hem5ghqYDrjisIyXPbS1IVnZyGiCauPvwhNq0jJ8koRkaY5/OBKzW8VtgfRNIdOtFQnpTV3RsrFUAX+RWkaspDYeY3gB2EKRMhwXJqiBqlVuIUMmNhGwpXLADvbcSmyfQLSXh8RAzNHOBYGO7Eq1yS21wIb3JV6UjHQLEfPlE36pRRoEZnc5bddEM8CDOFYcZqUhybXKA0yFAQJWlxLulXZuuX4EEY1XKaOrUlsV7oikxjTwukjyPS/E461Bikdtysbx/JiCLSwTH4OTMNRzRyLQ0IRsppcsJzxpS2RHse6JHUwLOHI7UR/F0gDjFoQ0iYeAD2iYXscpU5Ewd0IwhYJa07TI7OJtBBID7h81xOP/N15ufXOaLTAjjmxHC7/Ndhb/+FcjJaP5j0cWfe00zb3D4h1j4AdBuFB5P0esfJ+56GWHo9cOQMiWwANelwG39/pyEqGYG6MIysXOe+44X/A+vw+5/7zWmP7O2It/sKZf+R5hN9/Gmwb4ctC6zaG6OdvAeAddRyN095DRiNgGPhHH0/9Wy8B4Bs8gvrZS7Cqq0EI8k44kernHBcwb/euxEMWkSUrASg663g2PfoKAO7SYrxtW1H7xTcgofjUI9nw1Htg2ehBH3mHDGbLq58AUDxxFNVTvsBujCAMncITx7PhifcAyD+4H9GlS4lvdj7zzc4+lvUPO7EswR5tMVw2DfOXA1ByzrGse8iRuUvyye7ZipqPHTevZqcfTuWkKUjTQvN7yR17IJtemObIJh7E1ikzsUJhhK7R/YmrcRfm8HOiLCDKAqLYPZQF5H+AqWvO3qnsxVkn7lR214uHcheH7lB20U0DueimgTuUjTmuA0vTXLLSadO5gLmxS3Yo83q9zIn8focygO9CF+1U9sWWc3cqe3vZaTuVPfb5sTuV3fz4KG5+fNQOZXe8edgPftewLbaDlg52k3v9jtiNLYAfayozt5W3E+o0rSBNS8OTYWLK7Lez+A/gx6veyh+Z/8eufLv54rUpxcmOxjMW32Z1beo52plleK1tVZnFFq20yiiN2yBNJyDekDqO1WfKottSx/Z2BVRimx0t0JkgUyYT8Se5CXeqxHOVkkQfgahPXGDy+SdW/JqGEDo6NpgCK2gjtESzuHRcqRIvjNZo4wpLLL+GsU2gRyTR5jYiBkaNcBQ7G2xNIjSBEcOJU9CcOAlXjUSLJqwIUYntEUjpuBg1WR8cHcRG6gINLWlBkJrTQNhOvIuI6WBINCmwhI2UoMWbLCEy4TaWsFCYTXcsHG8smbCWCBDx5NNyLsAGDA3bkggJekJu4yge4FhFBI7ioIeduA0RcvSyeHbaO84AT23iSQsSblsa3qrEWy+EYyhs2gQQIIV0LC1IpK4h3c69SLk+9XLblaS/OaW1LvWesGuR5qbUC21WOMoHgIxCdEPqtY9uSnvP2dCQmoPGzciG1AaArE0pyrJxK9JqimUQyG0bnc8EICMh7NqtyfeMXbPVUT4ATBOzektSZtVUY9XVJQaVmFsqk3NY1dswQ6n5Yxu3JI/NbbXEq2qcByYgtrkaLKet1RAhvnVbco7YlhrsRmd+aVrENqdk8a01mNvq0ubYmjyOV9Ui0zY5MmTb6oltSRunsgppOm3txgixyvT5a7EaEvNbNmZ948+ugOwP2BLsvZyG11Zb2Io9RCkgCsXPxO2fHcIVgz4AIJjnIj/oZetaZzF9zkN9efrC7wDQ3YL2AwtZ+rnzZTrmso58cvcymoKLD7qgPZ8/tAKATgcXs/Sj1IIgRtr6dzvi5s6LFG7aFiIv6CIcM8jyxairb54mzVQcup/dlgVPJHY8e+VRt6Qqua4a+I8+fHe9cx/eQi/EI1iNjnDAvQcx+3Jnx1PzaHhLAkQ2OQv9NpcMZNOjnyeny+3Tkro5awEoGNkNtlQQXrkZT1kBbS87khU3PQqWTek5hxOeM4+GuUvQsgI0v/73VP79VojHCY4ahWY1EP7qM/B4yLnkr0SeuAwiDRidB6KXt8H84hknW84xf4fP/gwNm6GoK1qPY5EzbgEEYuhNsPwRqF0M/nLEgJth5rkgLeh0KdR9BdVfgJGD6PoccuWRICOQdzK6W2LFXgS8uAKTiTWcAHodVtsIYrNjibCz4+ARoJMMjJZCEu0QRcQFWthGBiS2W0PYEryghWUiyBz0OGh10gkGN514BikFvlU6tstZxbsrE25KfkmsyFmUk/DOE1Ziba2BLkGLJBQZ07EQiLgTvyJsHJemJl1HpNnhdOctIuIiZRRp0gTjAltz+ghNYAtnPKRzHVpC0RBaImYi8Y4TtvOTtIrEQE/Et0s9bQxbJnVbzZKQiH2RAjTpKEIxHxhRwIK4H/SwwPYLbLdEi0vsPJKKbpM7pvA787u3JtwtAVsHKwiY0gnqFwKZ3RXNJdH0rri9l4JsxLYW4PZdiiCPeMPfEFpzDP+l2JYPO/wpetZZaO4DMO1qEF70/EuRdERWvYLIPwqRezSENzsuWO0uQ+QtRS59GooHQedzIVINDesRPS/H1SmG+dWjiIK26APPATOKrFyM3v9M8BYR+/AhRDAf14GnIV3ZxJfMxDPwCPSW3QmFahGaju/gE4iJUszFX6K164tnyIGE11RhxyK4hx1OoGwTjV9+il7aFv+IQ2hYXYNdW03g0PF4ozY173yIVlBE1iGjadgYJV6xjpyDD8TVrIBI7TsIX4DsMSOINLppXLyUnMF9yOrTkdC6OoQmyB9/EMHOrah6bzo5Q3tTMG4osa11WPUNlJ17OPGNm9ny0kf4u7Wl2cnjiNeGiayvpOzswxBCsunpt/CUFdPs5EOxTAgtWEXJCaPxlhVQ8fDLGFkBik8ah5GXQ+30ORQcOpRgn67Eq0NIKSk7fQxZ3dtQ+dYM8oZ2x9f6548BUSgUu4dywdqPUGl4f/1sWl3D3CmbGHNhZwA+eWQZbQYU0LpXPjU1ET57dAVHXtENgC9fXkUwz0OP0aVEIhHev3cZYy/tgNfrZcHUjYS2xRg4oRUAl5W+ynmvD6TLgDLevOE7Fr69iWtmOxnE/tn+TQ68vhODzurEzKcW8d0/F3PBgmMAeKzkCQDO2XQWl3ofpMTl5tp6x1p0VfAFfDlwS8UJzJw5kzcHr+LIL9swYMAAlkxZT7gqRu9TnXSwn986l34XdsCX76Piu61s+qqSvhd1BeDb++bRZnwZ+e3zqV5ezap31tH30l4ALHx6AbmdcikdWEa4Osyyp+bQ809OVrR1UxahuTXKRnfCsizqFmwiu1sJuq4T3RrCisTwlzs7vPVLNuBvWYjucxOrDWHV1ONr5ShR4dUVuAvz0YM+rFgMc+MmPK1aAhDbuAE9EEDPzsGKxbA2rkUvb4Ou61jVm0Fo6HlFWJaF3LQcUdLekYWqIdaInl8OgLV5CeS1RHf7sGIhaKhEz3OejV2zFPzN0dxZ2FYY6lch7RnYVf9wkim5AE3DWJ+FLnOQZgNmqY94QRQjZKHZbmLBKGh+hNmAHg+gNTaAZiRclOJOsLFsxHZnYXlDgBdj81bMZs7OPwmrhwhrWAXFaA31aJFE/RbhxJM0xSoZVaBZiVTBEsxcQHfiI5JKhSYcpSDRJxm2kYiFarJWCE0kVVctlEhTbOBYVVyg10mwwcoWSLczpl4v0Zp05bTxkwHqAue+bZlyBwMsnwBNOEHgpkQzJdIQyZgP10YdLS6SSle8yEu0rRdh2SC8SBpB+JEyhGZngYyg2QK9QcfYFgXhQ0YbsYoDSK0BpBshPLiK7kZorUEPIDQDaZtgNSBczg66NEOguRGaGyltiNch3LkJWdixAulepJQQqwN3tqPYmFHHXcrtuMzIcD14AwihIa04mDGEx4n/ssMNCLcHoRtIy0JGw2j+YEIWRhgGwuVC2jZ2YyN6MCGLREEIFt/8GlVfLAFNYJuJ55v46pdSw7YFaJrzzEWiTcJSZVkaNprjJqc39dewTbClhm1rjkVL09AwEbrz2tlSYMZ1hJBoHo3hTx5NTvtcjGwfQgjsqIltWhgBZ0slXhfGCHgQuoZtWtjhOEaWY5qM10fQfS40Q3csGKEorhznuZkNUYSho3sMpJSYtRGMHC9CCKxI3HnP+dxIKYnXRnBlexHbxfT9HOwPLlh/D/wHr/Dv1bkjspHrGpQLlmL3UQrIfoRSQH7dPPmHr3n/AcdXGQEuoTk+7UDL3jksn5Ny7fH6dWIJy0FeuYe69Sn3rcISD3UbHfchT9DADKXVzwA8aSb2rDRXKgOLYJorUV5Wyn2osi5MrZlDOG6Q64sRjqQC2SEzrgTAnUi5qrk1DCvlAlHQyUvDqsbkPeppEfj5XQOElqVcKbweM7l4DLTyw5ZUpi1/roUdccY1gi40O4I0nQVs2zP7su6Zr535hrSjYdEqrJBzL+0uHcGmJ95xxm9dgksLEd/kWJKanX0UdS8871xadha+8iJiy524j+wjjyL80cvOostw4et/AOYcxyLj6j8aFn8AlglC4D7oGOyZiXFa9UHULISoEweiH3Q+Yva9zk3ktEbzRyCUiBfpfhksvcM5duVCWWvHegLIFn+EyMcQngPZYxC5JyJXOVnVRNuHsUPPIxveB29vtJIbidadDbIBd/B24vo8YtaTaKI1fte/aIidhaQSV30zsLekXNg0geUpwHZV4qltiwivTrk0pQeG26A1gBYG6cEJctdSHkhNL65I9E3/gmiqsiykRLpJWimIOxLbIxyFS4AWw3FtEmDlpb1RbekoEfHkoE1TQuI6tAhoVsJdKmEVsd2OEqPFnPS3IpZI8ZuwtLg3pBn0LZC6j3CPKODCk/Uo8cgDWOaX6MYQXO6LiG87F2Qcd9692HUfIutfRbg7oxf8E7nsDLBqES1uRoSqYPVD4GkOPR+Cby+GyAZoez74SmDxX8DIhj6PIWffBHVLoPwwRPMxyFlXOIrkwAeQ856BjV9BcV/odhHxN68CM45r7J8xV3yHNe89RGFr3OOvIvrStRCuwzXqQsyaKOGPXkDkFJB1+nXUPH4ndnUlvpFHoueXUTPpcYTPR8El11D11DPE1qzBP2AAvv5D2HjXf5BCY/OqVNpZ226yQaUUECmd/5NtrERFbel4dVmJTGFCpPrbluO6Z9l6QpcRaMJG05rGhXjceYNoBuS18yOqN5Ldo5z2lx7C3EufxYrE6XzDUdQtqGDDy7PwtSyg69+OZd6fJhGraqDt70cjpWDFAx/jLgjQ896TmH/ta4TXVlN+fD+yuzZn4V/eRve56H3/SSy7ayq1cysoOqgDZRP6MPfyl5FAzzuOo+L176mcupTs7qX0f+RkNNdOnWL3CKWAqHWLYvdQCsh+hFJAft2c4p6EbaY+TsZ2ubxiZLpIpUv1NKXCkDh+90lZChc4dUISpCsgLs0m4E7Nn6GAhGFTXeqLySeqsClInmcqIBJ3WhC6O+0CdM3GZaSfp8eO2LjS6oR43WaGzO9LKVludywjCN3lTj0bV1CDaGJ1qglceqqfN0+gW6nK7F5/qhChkeXCZacUIMNjJXd5hc+NQaqfEbARdmIOw4XLnZJpQQPNblKyNDRP6jmKoBtdq021TXvGuAIgUvOTHyNVCDEX3CkFjMAYqHXqMJBzMLb1QVIkC4/FtN7EWbj1IuqdS1PKK5d2PHH7Reey63y4t4WdBb4O6AbRItNx9WoAVw0Z6Jt0Z+e3USADEq1R4BTV0BLFQxKLUpH4vylsqMn+IRKyhGuXHbCQCX9A0bSrHgMrAAiJntBbrYRFwwg5qXBF2HFzMhocdzIt7rg+NcVz2G6BvkkDv8T2SbS4c4nOcxSIOpB+QHNc1wCkDcbSIDQa4LGg0cAu8xHrsRkQ6O7xmPF3Ui+VOBQ7PMV5xu7hiJpPU6+pdwJisxNojbcd2tZtYCUSETSbAOteTTzQAASaQ8My57zkGOSqt1IPvHAYbJnuPLvSMcil05Iiu/hwrMXTAIko74O1fF7qdeo+Fmt+ohBgbimRTRLZ6Mzv7nswjTMS47jckNMKc72jAHsHDqf+s6+T4xid+9Lw7XwQsHVbaxq3WgghnTCRhCIhBFiW418npYZlaggN4nEdXbeJx13omoktdWczRYBpagmZga7bmKaBpiWChLDRdUdpEQJicReaZqEJQV5eHZ5EYopm47pT+cE8kJDdo5y6BRXJYIKSIw5g01uzAfAUZWFLjWilc//Nj+jNhje/T7xQguxuzambtwGEM+amd1J1dYpGdGTLp84GROGBHaj8ZHlSNuDJ08jpXsrPiVJA1LpFsXtsn+1UoVDsAtd0e5sztMmcoU3m36c51Ya7jth5bsdAQWa4lZ6uOPgyP4autAhxsRufUPEj0YCaNHEl/F4C7jjhH9122Ll7gid75xfkztl5SJnuz9xtTN9tF67MMQsHtUkeB9oUZjysgpFdU2PmBND8KZNP1uC+qUFcBnpBKjObt0fvtAkFeou2qXFadyb9nvX2qXFEXrmzg51Aa5eWlMCdDa60L9yyMek3Bd6WqfOcUeBKLHi83SDnYJr8i0TOIeBx3PIwStF845LXo7sPxtBGJAbJxqUfTlMUkKsxy3GrskG3QLNM9Jiz+DBizZJZ1pr2u3GDFtbQpEALOaYGYemJ/7VEHESTD5SW0Bwg9WxSz0jgNBGJYHKEY7HQpJM0TDeTt4cRB1fI6aOHnRmMkCPTI4AFeswp8ickGBEQQkM06uhRkbg+x23M6S/QQ05MTZMBTotp0JgwvUSd4iAiFTqF7hrruFEBQmuL7hmbek29oxHeAYmGhWjZhzmvHzivTWHi+Ws+KBkPemKBVzwCikcnHogBJePAk3jP5fWGkqbXDWg+GrKd+clqgdb2oNS1tR2K1rK3c+LLQe98IOjOe07vMARXl/6OzOXB3WsowuO4Hnm69sHXK/Fe1TT8fQei5+YC4G7blkBfxw1S2tBY5WgPjpVDS2h0AjuRBcCxgiR+Zzmap2k6z9GyXQk3Ky0psyxHZib+t209ObYzppYc27Z1JAIZcK7N2zyHolFdaAoQLxzeifzB7QEwsrwUHdwVze3cf8GBnSgc3tG5RbdO8SFdkm5ZBUPaUXRQp8TzFzQb3Rlvc+fzGOxYTNGIjsn3YNGIjmR1ceI+PM2yCLRJbb78lpBS7JMfhWJPUBaQ/QhlAfn1cIY2OeP8Kdup2v7M1d/y7RvrufmrsXi9cFO/j+g4tJBz/j2I9x5azNv/t4hr3hlJeedcbhjyHtnFXq58fQSz3ljLc3/8jjMf7EfvQ8u5a/w0wrVxrp9+CK/e8C1T/raMoo4+/r7kKP7oeQEZg6vWD2PTTMlrE6bjydO4YetE7i17gXiNxaGThvHVuqnwN+f6ztl0Fnfk/AcTF9G6MDfLi7hKc1Jt/tM+gZuLX8CsApEDf60+gacOmUq4KsoF341n07xqXjxiGv0v7cTgP3Xj3XM+Z+OsrZz89TgIw+Th79Lm0DJG/t8gpt84k5VvrOawd8fhy3fx7iFvkdspj9GPHcKSp+aw9OHZDLx/DMX9yvj0hGfRPTrDnj6JcGU9a5//lvJjehFokcem9xcQ29ZAyxMHEAuFqXhuBoUju5LVsTk1MxcTXllB8cQRYFlUvT4Vf+e2BHt2Irx8OY1z5pF75GGg64Q+fB9Xs2b4D+hLbFMFka8/JzD6UPRgDuGvPkRoGt4Bo7FC1cS+egt3nzHo+c2JL/4UGarC3e9YrFgY+5vJaO2GojfrhFUxE6rmQ7czEFiw5Ako6InWbDD2tnmweRq0PQvNHcSueBzczdGKDkVaIYgsA19XhOZBRpxAf+Fti7SjyOhChKcDQgtiWxUgQ2hGJ6Q0seR8NNEKTeRhyy3YchNi6/vI6n8DjgUB3Y1e/rxTnbx+HvbWv6TeoBL0zQZaVCNpiGvS6wQgEoHeSW0l0SnNopWUJfrbPhuZSPssTBCWcOpuCCcYPumdZwLx9KTTO0Ck2gpbQJ3haDM+O3ObTDpjIYVjgclOXIwFYkEOwmzy1xJQOgwx7AIQHjS9JVKGsa3FaHpnhPBhm2tBxtBc7ZEyhowuQLjaIfRsZGwTmNXg6+JMWr8AvKUIdwEyWgXhDZDT1XmI9YvBnYvwNkfG6yG0CnK6IDQXsn4FCBci2BJpRmDbMshrjzB82LUbwIzRUGGx4Zn3wYximTqa14/ZEHHWzpoXaQmwY9imhhbwE6uPogmwcTkxOPE4liXQAz5ioTiakFjSQHO5sBodC13D2hriIdN5NJaG4TKJRQ1HSRACTXMsGratYRgWkUhCiROgaRZx08CyNAzDJhbTSCS+ciwhpoEQEl2TTpxLop+uW8TiTuVOTZdktcnGFXRj2QJ30E28Puqouj4XZkyCbSEtgTvHQ6w2CkiE2wVSIuMWtgXuHC+xuoiT1tzvZtCNB5CVD3rAja80F7MhSsOKrQQ7NUP3GDSuqUYiCbQqwI6Z1C3eTLBdYTLu5Odkf7CA3Op/ZJ9YQK5vPE+tWxS7jcqCpVD8lzRZKWpqIrx850KQcNPoDyku8rN6YS2rF9Yy9k+deejSmdgWXDf6A0ac1Jr5XzspLb94eRUPnPkVsbDFP074nIseHsCs95x0m5Ovm807ty8BAWuXNfDqDd/SEHNWdje3/Bx/otp0fZXNzJkzqdoMoPPCcV+S6019yd6VP4ktMR8RWxDw6fxOPJ+U/c77PEY0sQLcBjOfWcl3HzlxFS/+fhbzX1hPuDrOuivm0/Lg5sx4cgMAz4yfQXhzhKqlJquXrKHnnzoy7XZnUT1p5DSadQ+yZrYJs7fQ+aKtfHTZPLANNh77Gb3Pb8eKzxzXqrynFlD99QY2fLyWjXMi9LtlMDNvnIkVtXCXl7B1+irWvLiYrKmVDH78OOb/7WPitWFsXyHEGlj3xLe48pfS49HWrLrrTaKbqok0Bgh2bM76pz5H83pod2d7Nv77FcLL1pBdYZE3Zggbn3wPhKC0pBN1771LZM4cPPOqyT/jdLY88QoyFiff247Y8oU0fjYdo9lK8v90IzVPPYPdUE/gsBboeozIRx8jAt/h/V1PYi89gr1tA65+2bjbdsT88FVweTEm9kNsmoO9djpahygUd8P+9nUAtH7nIbcsxF76LlrLodDmIJj/KkRrkN3Ph2gl2soXEHk9sFsfj1jxOlrDamh7BqKwBXLTh+hGNqL8YsSWr6H2Wyg7BVF0P3LTK6C70JqdguBzZMMSRLAX5ByArJzsBBY3mwgNi6DhW/C2g/xDYNMkkI1QeATEtkLdF+BuBoUToOp5iG9F5ByM8LiQNVMQvhzIPwWq3kLE1yJyB4GrFbLqZXC7EYWnImq+QIYWI7J7ILP6wsYXwLagZCIivAS57RtEdhvIGwebJoOoh/zDIF4H2z4DTzEUTYCNL0F0K1rhCKTPC5XvgTsLRp+CWPUBMrwWkTcAWo6H7x8Hw4vsdiFs/gpR8SGUH4IsGgjzXgYriuzxO+S2Vcglb0Bpf2h3KOZ3U5ChSoz+uRANE5/1LlpRW/R+xxH/9jOsTSvxDPYjvAEin36AlpWPZ8SJxObOxFw+B3d/gV7cisYPp4Lhwj/mBGLLFhKZPQNvz0bcXXpT9+GnyGiE9e9vIF7luO5J21GuTFNDyibLAshEoLdjmdCdnWc7pS06MRwCyxbJoHKnjRP848ScJ2I3bJ1IxLF8OUHmqRgO2xZEY3panAiYlo4tBbZskqX+9pm2TlOKsozyLkgsW0vujlsW1CxvABp2mMrb3i4Gpeme0gOQmq4xnY8umE7HMXm4c730+FM/1n20jvUfrqHtsRZFfZux8LGFICU9Lu9P9fdbWPnyEkpHtaTNMR1/eBG/AZw0vHt/ToViT1AWkP0IZQH59bD6+2pu6f8Bhktwf9VReL1ejs+aRLQxFbDt3e4LtVGkZI6TQrpLS+rYJberQr9dfIgrbUvYny4DAmmeTrne1HxbbJMNERcg0QC3jAK+tL6ZX+zpOxPp8SEGThHu5H2kHyNJ96ZKL2AosPGmxad43PGMGBCvJyXzF7uIVzs1EzSPhotUnEVWCw92dU3ToPj84aTM2zwItak6AS6vlaxLYOQHIVSTkuXoEHHiRzS/D91KxW7oeQEIJeI8dANdpBVQLMhFNDTVQhC4A6n5RU4BNKT8fjwFURLphCC7BC263rloTUd0OBS55G0QAtHxMOTyd53FOBKtzwmw9BmnbfMhiMY5EKsBJHQ8D1b8B9Ag2NZxX6tfAtjQ7nyoeMjpZ2RBdn+o/sTpV34GcuOTiQvVoGwCbHEsYBQeC1Vvgow7bZudDxsfcebIHgzRJRDf6sjKLkJu+Zcj87QGIwjh+YCNKLwQuTExv+aH7AOh9n1AIorOhLVPJ56MBs1Ogg0JJbj4CETle2DHnDnanIus/LfTLmsA1K6D6ObEfVyIWP2wM4e3HNyFUPu9c/8tz4fljzky3YvMPhjWf+j0a38CrHyBZDxLqxORy15MHI9BLp+eKFopoetZmDMng9AQJd2wq2uQtc78Wv9TiU57CRCInEK03GZYaxeAlLiHTiD66WuJN5gbreMwYolEB97BY2n4dKqzihYCz5DDCH3sxABVbS0nXC3RNBvb0hBCOtmjNBvTdIO0sS3DSSiQUECEANPU0YSNbesIYSOlhmkKhBCYlo6m2cn4DoGjnCAdhQKc7FaasDEtI7m4tywBwvlfAHZCuXCyXaXaNCXREsJRNDStKT2BRAhnPk2TxE3nPqTUEAlFyIkPcbJkacIZu2kOKaVj3ZGJpFyWkwyhKSCe5LzOaTBfx6+FQEo6n9eLBQ/Pc6wzukaHEzuw4vnFALQ7vhOrXlmKbToBTId/fCJZbXL4OdkfLCB/9e0bC8gNYWUBUew+ygLyP4Zpmlw6+F3qqqPcMXUcJa2zdrnvP0/+jLmfbuL8u/px4Altf7pDgjfuWciL/5zPgRNb8bt7d1y8cEcs+qqSvx3/CeUdc/jHR+N2uV8oFOGyQVOwTJt7vzqMYFoF85/ir4dNZfXcGi59agg9RzXfabvWvfJ5IpZZxPHHCvjta/bna9uezGvd7sL38D6E0DJLIYoM4XZtU6llfzDfjz3IH8h2di4y2wqRKWNnMn7YL2POdIVXkBlAtJ3sB+fp42rbHYvt2u5knF3u13Q9TcHt27X9wXXvaI4d9dtuvp3dv9i+7Y9ca9Pzd9bhiKYxReJakq+PTEvt2tRnu3tKS30r0mTRsAcz5mwWNG0HSimQpkjGXTgxFwkFxNKSvvemNEgVABVJy4dla1iWnpxSSg3Lavrf+Sw09Ze2SFogUtaNxO8S/9t2QtZULyWRiEAmLCNYjuLQFHDuXCeOFSRxvQI77b4T95KYw0kJ7dyHlZjfspw2EjLuMb1/3NKTL236R2X7j80PPiu/or+Hu0Na5uy9OqdCsScoBeR/jHO7vs7GlU7Gn3O6vMo74TN2qd/j137LZy+uBuCfp3yxywrI1vUhHrniGwDe+tcSugwp2uW+lw1/FyRUbwhz7Zj3uO2DXVNCzmn3KnVVjnvP6W1e5tVtp+5Sv39O/JTZ720E4OZDpvKqtWv9mniq8lhODL6ElNChfwHNSvx882YFCLh3xWFc0OktLFNS0MLH6FPa8urtCwG45rUDuefUGUQbLHzZBhc/MpD7jp8BwHG3dOf1m1KZXU74v+68eoXTD52MYtwnfN2Gt4es2uG1FXoMTGkStQReQ1LTmLJ+4AdSxcc5+/mBPH2ik01n+B/aMe/5dTRuiYEGly8+hHs6OTu3bUYX07g5zJYFToaaP1SO4aESJ5tTXvsgJT2CrHzbcdc68bNxvD52CljgynXR64LOzLvHyfwz5M7hVH29gfUfrqZkaBl9bxnCJ8e9ghU1GfLgoWyZsYrVk+aS3bGAIY8dw1cnP068ppGOVxyCiDWy5tGPcBdk0/3f57Pi6oeJVmyl2YSDCLRrzrp7nkPzeWl712VsvP8pwktWkTOsL3ljh7LhH/eBEJRd9yfq3p9C+Ntv8XTuTOFpp7L5H39BxmLkn3cRseULCU/7AL2kjPxLr6fm7quQ9bX4jzwNXcSIfPgUWlYe/gvvIfzkVdhVFbgHHYXRqgPmh7c6LljHPIConIO9Zjpah3GIos7YupMKWetzFrLNQdjLpqC1HIpoNRypC4jWIrqdA9EtyFWTEXk9ka2OQxheZGgVot1ZzqJq1WPgbwltzgZ/EdR9B6UngacU3HlOithWFyFyeiCrpiKKj4DsA5CaAdJGlF0MBYcht7yCyD0I8sY6drL4VkTZRWBWIzc/jQj0QBadhDD8EFmOKD4XhAu55d/gLkcUnQ9GKYS+RhSeDJ6WSFcOaEFE84vB1xdZ9QGi6HDI6ocUOthxRKuLofgo2Pgy5A+DokOd7e94JaL5hRCvQ1Y8jQh2RTY/BbQANCyFFmeC7oPVj4C3BFqdD55WUP01tJiA8LdBuoKgexFdz4fivsiKDxFlY6CwHwgDrAii+/nQ5mjsJW8iSvsh2owBXMhQJXq/UxwXrG9edVyw+hwN7qDjgjXoKMcF67MX0LIL8QyfiJZXRnzFXDx9D0YrbkGjx4swXLgHH0l9TQH2puVQ1A6zrDNmqwYwLeKr6zDNaMKK0bTAb0qD61gFLKtJ2ZOOAmE7CoPQZCIdrpMRwLac+AzTcqwS0hKJrFcCy9SQif6akJhWKog4PTOWJhzDYVLJSbiFWbZj/XSUlSbrSJOCg5P9SjpjSwTSTrgEJSwWIk3pbFInZNKq4Zg0ZLpimqDJapKhCCIcncTtIrtva4RHJ6tPS8pP1KlfXkVuzxKyexcQXBkFCVn9W1PqzaZm3kaCbQrQfoEYEIVCsXsoBeR/jJrKVNpSM77rWxdLZ27JODdNE8P46bdPxdK6jPNFM7bsuvUk7fK2H+fHaKyLJ4/TXaJ+irXza3a57Y7wer28bp62U/nr0UzZabemsi1d9LjFo5d9ywUPDGDwka14d9RSGmrjTLihF9XVIabct5L8ci+HXt6Tp6+ZBxb835oRVMy0eei4L3BnCQYMGMBL/tXE6yUnvzoUyjbwTkIhuSV0Ar/Xn0HqkngE/i1P5Hj9OQBebDiFs/ImEa91PGf6ntCat+9bQqg6zoR7+3HAqW24/7BPOfCCthS2z6fsqFLWzqrm5DcGEa6W/F+/D+g6vjn5+fl0Or8d816p4Lg3h5Bd5uOBbh9Q0Cmbsr6F9LiyDzPuWspxjw6kw+hSZr9Qicun0/nkztQOKSfmzqbH+R0IlmbR7uJhNFZGKB5URlbHfOpq3LQ9ujW6z02ri8axdU4lzcZ1BQuqV8UpHFCO2+eh5MxjqPx0OQVHDEP36fgOPhR/WT7unCAFJ05g87uzKZgwDHdBEPeoiWi6jqe8lODhxxEKl5J1RF/0vHxco84gtrUWX5fuuFu0o25TgMCQruhuN/rI82lcvIa83sMAiC2P4u3cDt1wow2/mPA33xPoOx58bqLl56DnF+AJ5mPrg7ApRS9ui3C7kW2OBUB4sqC4FzIWhJJWCN2NXX4MMtKI7isCTz6y6GREfhmapmMXH4H0bkUEWgEgC09GBAoQQkfmjUXSBRHo4hStyz8ZXH6nEF72MIiXQFYnhO6F7JMdBcTIRQb6IMI+yGqH0NyQOzFRNK8EXEUQOAWyy9E0HRk8CsQm8LQFBMJ3CngLEMKA4BiwOjqB9roLgqc4CoDmQ2YPQdiFkNUZYfiQeSeBbSJcucisXhB1Q25bhOaC7IkQrQF3KbiaQc4pkN0cTdOQBUcg3RsR/nYgNGTByQhfrlMksHAkUmuLyOqEMNzI8olguJ35CgYgzQJEQTuEy4dscSzSjKN5cpEF3ZCtXIjilgjdcFzkQrWIrBIISrTOR6AVFKNpGkbXAxHFXdCKW4EQGD0PQ8vKQugGRscByGAZenkbhMuFu99YpKaz4MrnaFxViQSs+Bwk30OTZcHSMS0XUmroiUx1lt2UXchRDmzL+VsrcVynpHTqcDiIlAtVmgUkU5YoKChFsjaRnZbFyE6Lr7CQyRgUgLjVZHVpuoJU2yakhLjVJBcZxobUDrmkyVzRJG+SNVlbdoREJiwoPzQybl0bpXKNs9n0zeTUd5R8owZbCqzE+F+/+GVSplHHdy9t5tIl4zHSc4wrFIq9iooB2Y/YGz6kn7ywkttP+QyAcWd34E//GbpL/Wq2Rji9/CVsU1LeOZuH5x+9y3OeWvYiNZsjuH0aL247cZcUF4Drxr7P7KkbQcA9Mw6jU/+iXer3yl3zePSqbwE46c+9OP3mA3apX8WSGv7Q/W2kDZ2GFHLb57vu9vXfMP+LTVwzIlUHwusSWInSF0IjuWAA0LeLAfGmHbsl+NLOc9K+WytljK04CYkCAhrSx5Hg3u7LPxmTIjMLH/oCGlZD6k9G+te3N0vHDqUUPl/akLpfkJ7716PbyfgRYUhcaeN0OKI5q6c4Qfj5nbNpXLsNmaiv0u3UNqx5dYlzv/kefEYDVoOjcLac2Jktb89xxnTp+Ev8RDbWAlB8cGdqPpvbdHP4u7QgNN+ZI/uAVjTOX5Gcv+CgTtR84ViZvC0KMSu3JGNJ8sf1oXbqTAC0oA+fvxHZ6MSBZI8YTP3njuUKQye7lQdrqxMT4h0wFHv1XOzaaozSlniHj6du8n+cfif9juhXb2NtWI2WU0Dw2LNpfP42kBLvqJORmxdiLZ8FHj/eY68h+sotYMUxeo1DeAT23DdBM3Ad8RfiH/4NoiG0lv3QW/XCnuXES2gH/xXrywcgtBny2qD3Pgn5hZMlSwy5BrnsVaheDL5CxMBrkJ9eBdJG63ku9tblyLWfg8uPPupW7GlXghVFtDsMvAFY8jxoBmL4ndif3gLROijpg9Z6CPK7e51307BbkXPvg4YNkNUaOvwO80MnRZt+4J9g3ZuwdQF489EGX4899RqQFqLnGdhVFciV08DwYoz9O+b714IZRXQ4BOErwP7+BdB09LG3EX//HxCpRZT2QGt3INZnDzovx6F/JjbtaWTNBkReKcaQM4i+/k/nfTTmAuLzvsBatwjhz8F75J+oe/KfYFt4DzoKa1s10e+mg9tD9plXsu3f9yJjUbx9B6HnFxN6/y3QNPIv+CPVTzyBXV+Hu207vAOGUP3sJKSEjatKnUV0Ir6jSbEQQmDGDWzbURo0IROxE85nUybiI0zToKlEi2k5LmNmXDhuX5IMBQSE0z8RKNFkQXAsHWmxHIn5m2JDZEJZceJLEsoJztiRuBOJ1mSxEKQsGzS5/ciU7UKk/nyk+jWRMmQkZZKEQkRKltY8zYpCRpsm2fa/swAhBXH5Q28rIRw16MqKI8kq8fFzsT/EgNzseXSfxIDcHD1XxYAodhtlAfkfY+QJbRm5G/EbTeQWenkzsvPd/R/j2Yrj96jf398f+9ONdsBxl/XguMt67Ha/sk65vBLfdber1YtrCORqFJX88I/uptU1RCPQqnPuD2Q1NRFq1jTSulc+AM/eNDtDHo/JZBB6uvLxU/zYToKmgZkYq0FCAIj9SPudEW2wfxCwnpTVW7h24lttNcqM4PV0LwtpkvGXaN20TcnjbcvqcOupO1v9zprk7LHqKO5Aytq1+YNlSfVLxi0im2qTsqovl6eUJQkNSzYmZfUL1mcoUrWzUgXLIhVVGFrqRaj9IlUwzg6FkaSC0Otnpr2OpoVVldqRjS2cjRZ3rsfcsJbogu+SsuiCb7E2rHbGrK0iNv/L5IotvvQbRNXiRMNGzEVfgOXcs7V8Jpq/aQvZxFr+GUQd90p77bcI0ZCcQ67+zFE+ALatQq79jKYlm1z3haN8AIS3Itd+nJzfXv8FsmqNI4s3Yq+aCpYTlC/Xz0D4vMn55dqPHeUDYNN32EZqT1uun+YoHwD1q7HXfJ6c317zJVp1ws0wUo1c8wnIREzEuunIrYnrNiNYKz5OBIuDXPsV0puXmN/CXjENIs4zlhvmYetNbjYCe8V0ZI0zv9y2AWvpl8n5rRWzsNYtcmSNtcQWzEgkBID4om8wqxPvo1iUyHdfIWPRxOs2By03sSli24S/m4Vd79x/bOUKbE/QmV0TWO4sGrdKhLCxLC2ZlUrgBJObpoZlO4HjmiYTNTQgFjOSAeZN92ImLB/xuIGm2ZBYuDfFfwhBQhFxlBUhZDJrlmOpEAmlREMI22lDk3VFkAz0JhWEbkmRXOjH7YQMgZYIEE8Giif+bVJCrESguWOJSX2OHb3J6W8jsGzn/6ZRUmUNBXqaetE0k5Z2ZiMwpcRCYCQC3WPSUTLSymsm/zZoEvJa+AgU73psoEKh+PnRfrqJQqHYnmPzn+XC7q9zevmrXHTA6xmyczu+wrnt3+T33d/kpOLnM2R3HPYJl+S/xg0HvM+ZHkd2xXPDMtoUlKW+GH3ZmXsEP6aP/JizmbDBn1gN5gmI7eJH3/BmtmveNZg2aGbbsj7bJTRI65rbIXNXzpOVWvK78wy0ROl1YQgOuLhzUtb6kDI8ee7kfAdclbJm5XYtINA6N3ne8ZKUNc9dGCD3gFQhwFanDkluy2oeF8VjeiZlzQ7rjXAlrkcTlByfGienX3v0nNS1Nz/tkNQ9tCrBVVaSPC+YeHjq1rOzcHfuljz3jz4MVxvnvjy9BuEbeohTydrlxjf0YNw9hwBgtO6Ed8hhCG8ANB3PwMNw9T/Kuf2Cclz9j0JkOcXuXP2PwTjgOOfBBPIxDjgWkd8aAL3XMejdjgNNB7cfrdtxiOa9nXFaD0frchzobtDdaJ2PRbRJKPuF3dE6n+CktRUaWpfjEV0TGwjZLdC6ngCBZoBA63oSotNJzvzefETnEyCvnTNH52PROx3nxFm4/IiOx0OzRLG/0uFoXY8FwwO6C7370Yi24xMPsSui8/HgyXHm73o8Ws+JiflL0XtMhCznmes9j0fvOdGZ35eH3msCosgpaKd1Pwyj15FOEUmXF7330WhtHJdHrU0/XP2PALcXdAN3n/G4DnBeV615O7yDD0cEskEIfMMOw3/QYY4sv5jgiHHohY7SERg5juDIMSAEWjCL4KgxuFo5z98/ZBg5o0aCYSANN41bncV3U7G/JoVCklhICxxFQqbJEi5YUurbFX1rigchrZBg0++b+qX3T7lTObbN1BzJ/snA+VQ/O228lOqQ6J+QJduQGr9prGSbZP8dyBL/p4LTU22aZFbG2Oy4f0JmJWROyDvJZ+y0TVGzPkz9xjC/NZricfb2j0KxJygXrP0IlYb318OhxpMZ51PMM5PHhxtPZ8jeNk9PHp+mT84wVTyTKGAYiUSY9uwaRpzaCq/Xy9JZmwnXW/Qa5VTPvqTna1wzZQBlZWW8cdf3zHt/E39OWIhuHvwu46/qwYBjWjDztfV8/o/5XP6V4z52U/4LtBqSw9lvj+OBB55h8aXwgOVYss4tf45gnpt75k1k5syZ3Dd4OX/4sj0DBgxg8RebCNeZHDC+HICPH1pC7xNakp/vY8PyatZ8WcPg0xxL2vTHltNlXCn5ZX6qKxpZ8t4GBp/jLAS/f3E1hV2yKeuRTzgcZvajaxhyibMQX/reerxZBi2HlmBZFtuW1JPXKQtd1wlXh4k3WGS3cBSebUtryG6dhe7WiYViRLeGyWqdA0BodTW+ZkF0nxsrZhGu2EawjbNID2+oQc/24A76sCyL8Joqgm2divWxKsda4C5w5mhYtRlvy0J0XSdW24AdieNtluuMs7YSd0kuutuNFQ4Tr2nA29yZI7ZhM3peNrrPhxWLYW6pwlPmZFAzq7ci3F70YBApJTISRvM5Co2MOzYo4XIULDvciPD6nCxcZhxsC+F2lFEZbQS318nmZVsQjyI8iXFiYSfOQdOR0oZ4GOEOODIzAkJH6C5nBzregHAHEzJnJ18YnsQ4IXAFnPltE6w4wuVLyBrA5UvNb0UQrsQc8UbQ3U4Mxi7Mn5zDioGUuzh/Ixge5x5ty3HBcvt3PH8sjPAE0u5ROPEgUkKsEdz+1DOWNsKVmD/SAJ6EzDLBNKmbu4q1974EQhBvjCM8AcxQDM3rxoomLBNCJx6x0X0ezFAE3e8l3mAi3G7smCQeF1gRi1iDs3dvWQJdd9JIWZZTJdy2wbadGhua5gSKO+5SCSuVdOI3hJBEY05mMFuKZMxIPK6haSQsCFoy1a1pNfVzanHY0rGgCAERU5BSW1IWBSEcKwfJxX3CSiGdhb4pmxSnTOtC+n6EBskMXDvaNBFAnFSOM0d5gHia5cJOG1viGEmbUvSSNn4iebPzHJDogJuUUrL9/BqQV+blxrVHoqXnEf8v2R9csG5y7xsXrFtiygVLsfsoBWQ/Qikgvx4OdT2Z/Nbz+HVer0u5px0TeIZ4NLFXp8FbsZQCcnHpa9RuSiUCaFJAhrsfTfprjz+jI+89uQyAXgcWs/jTqmT7ghJo2JiyHvjTao10GBSk8svU2Hlp361zRJh8IWhEkiMEVXbmF296XMmI01vz2dOrAWjZI4cNC+qaPGI45bYevHSt4y4TLHATbzSJh52v+LOf6MMzZzpuSIZHI7fQTV2Fs8gdc3NHpt681BlEQKfB+az9shqArkeXUrcsROXCOvLaBDj6P/14Zvxn2LZk3D97sfLdDayZVok3380ZH4/ghZHvYUVtepzXES0SZsUrK9C9Oke+fyQfHvM6ZihO6cEtye+ez6IHvkUYGiMmHcE3f3yfSGUDud2KaHniAcy4/DOEEAz/10gW/utbahdXEygPMuCO4Uw/622kJel++SCqZ61h65frMLI9DH/2OKaf/Bx2zKLFcT3xGGE2vzMH4THo/ei5LLj4UayGKLkD2pPfpzmbJ70Hmkbbv11AZMEi6r+aTd6Y4QQO6Mamh54BoOTC02j8fgE1H35K1oADyBl7EFWPP45dX0/+6adjV22i/t3XcbfrSPbRJ1D7/BOYmyrIPuYkhC4IvfkMemFzsk44n4YpkzBXLsQ/+lj0ZmWE33oQ4c3Cd8wlxGd9QGzeF3gGjMXoPIDG1+4DaeE/+hLMlXOJfvU2ri6DcA8+gsgb92GHtuE77EKoryT62XPoZZ1xH3wu0Sn/wq5cjWf02WC4iX74CFpuCZ7D/0D0k0mYK7/HM2wCevM2hN++H+Hx4zvqMsy57xOf/wmuXmMxOg8j8vbdYJp4D78Uc/VCol++idGxH55hxxF5817suiq843+HrK8h8vEk9LL2eA89l8Y3H8XasBrf2FMQXj8Nbz6BlltIcMJFhD54jdjiuQRGHY7Roj21kx5FuN3knn4BDV9Np/Gr6QQGD8fXfzBVjz+KjMUoOPMsIstXUvve+/h69CDniMOp/M/TmFu3EdqiEd1Q5SykLQ3LTASDS1IB3JaecH9KfYZSgeKOMmBaTpVxaafS4GqJUvFWQvFIKRwiOb6VCP5uis9oiu9IBY6DrkknhiThbiU0x4OsKUWuowSIZByIZTnjRa0mBYOkZUHgpNNNV0CalI2mWI2mwO70hX3KJuOQVEDS+m1PokIOBillw0xTWLZXHjTAENvtuAuIpp2bSGzAS6p+0o7GEcBfNx1FVrOfzw1LKSBq3aLYPZQCsh+hFJBfD5FIhIt6vk1WgYd7vzziB/JL+79NpDHOvxcc8wPZ7WOmsmFxPf9cOg6v18t1Ez/g89fXJuXOl3lKQfDIlMLhBKHvWAFxSYE/TZaugGzRolSkfQ0bEtKXDK7tXLKSZzKzEKIO6GltM6pJyMyChtsHtqfHWXjILGKYXuzQm2MQq3OWJ5pL4LJS151TbGDXp5SsoD8VyeIrcCFDKbcK3WUlVx7uHHcyWBwgYvkxE4qT7tfR4qlxvDk6VkPCOqALXHoqzsST78aqT+UszspKxVkYOV5kQ+o8kBNuyh+KKz+AFq5O9RvWl9AMJ1FC1pC+NHw1KynLGzOYhi8+debr2BG5cWky7iAw4hAaP3USFuj5Rei+/2fvvOOkqLK3/63qPNMz3ZNzHoaZIeeMgIAgSVREFBV1DavirmmNq2veXcOac46gGFFBVDICguTMwAwwwOQcOlXV+0eF7gFU3J+7ur79+MGu6nPvPbeqq3vuuec85yhI1SqfxTHsNLyrF2iTsWAr6IRUqhLvrb1H41v3taHD0vMU/FtVHZbiwfh3fGus7Kz9TsP//UJVR0ZnqC8Fr3rN5r6T8a/7VL030fEI1gjkGvXZtfSZiHetpt9kxpTXHXn/95q+MUhbFwbvVZfRBLYtVpsWDMK3bV2I/nH4v1fHEVM7IddWoLSr3ipLv0l4VqkywelGiIxBOnoAULANHE/rMu0aRRFz5974tm1S782AYbSsXGXotw8YRtu3amYke4+etG7canxWzhGjaFi0AgRo98fSVqN6E2QZpIAFKWDCZA7g91oQTDIBv+rdURQTkgRms4LPa8FkkvD5LQjIapYrWfUZBCSTOp6kptH1+81apie1VodJ1NLoClohP0GTadwLr9+EIIIUEBBNilYRXeWNyIqCyQQ+v4DZFOwvKYLB7/BrOtoDwcS4JgBBQEbBLIBXVn+DJE2mGyGAQewO8jQ6GiCioBopZkDf55CUYLsAYEH1gOiZxHUjJBAypohitFG9M+qxH8Xor74GDSkJvVyjKpO1eenj6t6V6BgrDxydgtn2y2XB+i0YIHdafh0D5B5/2AAJ4+cjTEIPI4x/A3a7nVf2nP2D8sfXTfxB2S2LTu1w3nN4SgcD5MfwY8wN4YT7jCoUWVYzahH84/9Lf/n1jDj/VzgTbNRpBogl0gRNQQMkOtNBw3atgrlFCK4oAGeGk+adIQaIzYzUro5jT4qgvTQos0RZCbSr49jcNvzVIQZIgp1WzQAR7WbwBw0QR4qTFs0AEUxCh5gQW7ILz76gASJYzSgedVxzrBulshElICFGOrAmxBoLbkt8LGJkBHJrG5hNmJMSDZk5Lg6pPQapSiXmmxODxTFNsXGIdgwDxJSQasSliFExCK54YxwxJhnMFgj4wRaBGBPUIboTEBxOlLZmEM2IsSnoH6ToSkQJNKN41edTjEsLXl90ghoGphkgQly6oV+IdCO6EpANHclIZisEfGB1ILiSgvpdSQgR0SitjSCKiHEh+t0JKP6AYYCICUH9ojteM0DKtOtPRk8bJzpdmGKC12+KT1RTH/t8CDYblviEDvfYFBWF1KjqtyQnqQoU8PvsyLJfDZcKiAQCar42yWtClkSUgJq9SvUumFBk1TCQZYFAwGxUEJelYPrZYDYqEUUStPS4GB6UgKTaQlKIBwMl6MFQU/cCCMgBdbktGx4ZNWGb/g/UuchaHQ9Z50pIalhVkKSt6AlyjRCrAEHvgW6EEPIeBD0X+nsGmV37ZyIYTiWF9NP5aroOPRwr1FMhhfTV9evjSCFtdBMi9KdHQQ3N0g2l0HAxgKZGH9426Rc1QMIII4yfh7ABEkYYvzLOmd2NBa/voWRLPZ17x3Hfx6M4P+cDZFnh6ZUTuG7wQuMv5/MHx3BVprpznN0zmsaSVrzNqvB15XyuFOYCYI0SwKMYcQ5XrCnmhcG78AlgUWSsxQ7Kd6iL7Ik35fHlQ6XGfF6qPosrkj5AUeCORSP5/KFdbFlUQVSClSfLJnJVzCcEfAozH+tJ9b5WvnpyL9YIkRdbpnN19Pt4myUGX5JNweB43vnD94hmeKhpMvflfUnTUS95w+M585GePDXgaxDglgOT2PVhOWue3Evvi3MYckNn3hi3FG9jgPM/HcaRtTUsuX0LeeNTOO3RPsyfsZSGkiZOe3kIssfPqhtWEdsllpHPjWTtLcuoXHOUPncNJjrXxcorF+BIiGDYqxPY9dQ6Dn2+l86X9SZtbCcWnfcFgigw5t3xHPhoL7te3kL2mQUUX9mTFZfMx9fgYcgLE2jcUcnOR1eSMDiL7neM5PvrP6GltI4e949HRGLP/R8TmZtI0b3TKHn0Uxo3lpFz1VgicxMove9VLK5Isu++HF/ZYVq37CSqfw+sSQlY4tUsaK4Rg3CdMoCWdRuJ6FqELTcTszsauaUF57BhKG2ttK1bhTUrD1vnYkwxsQQqjxIxcDiIAp61SzDFJ2Pr1g9zcjqBg3ux9RyKGBmFLzkbweHE0m045rweBPZuxFI0ADEuFTE6DhQZa69TsfYejX/Hasy53TGldUKMikFpbcDaewyKt43AtiWIyfmYc3oiRicg1RzE0n0MgmjCv3kRgjsZS+FgTIk5BA7uxNptGEKkG39CBlgjsHQfiTm/N9K+9Zg6DUSMS0eMjlfTCfcci7nX6fi3r8Sc0w1TemfEqFjk5jqsvcag+Dz4Ny9FTM7Bkt8L0ZWIVHkQW68RYLHg/W4xYkw81q4DMaXk4t+/G3uvQYjRbixJKQhWG0JKZ6S9EnJDNYIrnrYWF1L2UBRJps2fhJQ3Aqm6EiJjaKp1IOcPR/F7UfbXg1KvfjGEUOaDiuCiN+S9ExrhJ7bOT9T05GIShGNeT9T/x/gNx8p+av4nB+H/2P+noGgeDv1MNVB02vrJ8zlMFhGT+Zfjf/xWICtB8v5/U2cYYfw7CBsgYYTxG8Cr68/qcP5N+yXG8dQ/FfLJk7sp6BtLWloazngrrY0+Lnt8ABU7m3j56vXEZ6lk3bg8B3UH2pj2SG9SiqJ4ZtRy7C4L/fv355mIvbS3BkjrGcOD30/poO+KvwczPwUCAboNTKS9yU9+nzjGXNGJ6j0t9D87A4fDQfFpSRzd3UyP09Noqfex/vMjdBoUB0Dv6ZnsXFLJkEtyic+KILbISVxmJA6Hg74X57DmnQMMvCKXxMJoonu4MNtMRCdZSeodQ0y/WJL6x2IyCyQNT6K11osjzkpskYvofvEkDlSzD8UNSiEQGUFkaiSyX8ZWmIa7j6o/qnsGDfUWIrNisMXZcBRm48yIxGQy4SxKx7TDT2R+MuZIM3F9UxFEEbPdjLtLAq6uKcT1SEIwC8T2zcBT04bN7cCZG0dkUQau7iohP7pXDordiT0pGhQFc24n7MXqrrmjMJ+WWjPW1CRMUZEIGV0R450qsdkSiU+IB0sEiCJ+kzpnRBHFYscnxOHQSNiSKRY/dhBNKCYbXjkRk0kNb5BMbnz4cZisCAJ45SSsYiw2QBZdeANJWE12EM14pSRMigOLICCLUXgDSZjESERRxE8iyBJW0YRiisQnJSGK0ZgFgYAQhyRbsApmFNGO15+IVXBjBiQhFr/kxWKyoggiPikRsxCrhryI0fiVRCyiA0E045MTEbFjQUAWovD6knEIThBEfHICyAHMggnF5MCvJCKaQvWbsIoWFBE8gURsQoyqw+TGr7RjNamkdD8JmMUYBEFANkfjJx6bSb13ATEOATP7bnyZQKPunQp6GxUFlOWlBocjEDiMIm8PySqlIJpEwwMhaVXHZVlNayvJAopsMor6oQTT4erVzHU+iJr6VsvwpBUSlOSgh0LRUtYavA19HM0Doiggabp1/oei/U9WUFN2a+FPSsiiUD1X+RWSxjPTQ6L0eyAKan+TEPQ0yFqolU4Yh6AHQjHOlSBHBDV9uIyCWc9EpQS9JPqr7nHR++lJgHWvhp5qV28bJMkrx2T6U/sFBNU2FI9pr5t8cshY+vuiKKgezDDCCONXQ5gD8htCmAMSxrFoaPAwPT6YytcqCiAF/3BGhPBDHGYRmz8os4fshFUL7VSKMoqgckVeKZlKWkgK21D8Oedjag6oYUbWCBFfWzAwIiEvkop9ajiMIBIM8gbSCqOp2tVsnNtMohYiAvG5EdTsD3InIqJM+JrVcaOSbLRWeY1VTc+z09k0rxyAjN5uarY1IvlU4dBLc9j0quqtiUp1YJP8eOrUMKdef8hl5xtqDQ+zw0RMpoOGErUuQ8G0bPbOKzXmnTYsgYpVan2J9BGpVH97yNCfe0YWhz7fD4C7KJaW0npkn7r0yTu3gIMfqDUjbPEOLKIfX70a2pU1rQvlH6mcC9Fqwp0fSdv+GgCSJ3ajbtk25HY/llgnqWf1o+yFpQBkX3YKVZ+twV/bgmi3kHP1GA4+ofIsEib2x1NSSvv+IyAKZP55Gocff1e9/t6FiDYTzd9tU+//7HM5+twckGRsGclE9cqj8UtVR8Ksc6iZ8wmKx4sp2ol7wijq5n4MQOzUiTQtW4FU34BgtRA/cxq1b6gEeefwoQTKD+ErKwNBIO7ii6l79WX1+ouKER0O2jeoPI/YWZdQ+8YbIEmYk5Kwd+9B8yKVrxJz3gwaPvoYpb0d0enENX4c9e/PA8A1cSIt336LVFeHYLEQc94M6l5XM8lFDh6Mp7wWb8l+EAQSL7+Q6hdeA8BeWIAY7aZltao/8bKZVLw4FyUgYUmKJ7J/L+o+XoyiQGuLEzmgZpiSJQFBVIzVsCyLRp2MQEAtEhgIiFrWZrV+hayFVwUCZm1xryAF1O+eLJtUg0HRq4ULSAH1exGQTWp/rY2euQnA51f766R0RVFjJNVChOp+vl8SNQND+55p2axAICAHMz0pgCIHQ6pUnoaWilbRwpk0I0RfjOu8CH1Rr6DuSJpRDY5QfkdoaFQgxAuhh1vJmjdCX/TbNH+EfMw4odDHFIxzlekRrN+hHNdL0vSoxoZqqOiGjUkzfo7trwABISRRsCIgCvBk9Zk442z8UvgtcEBuN7/8q3BA7g9cGl63hPGzEfaAhBHGbxh71lR3OJckpQMpPBQBv4yNE8c0ywjoaxg/Ct/PO0DajW4aGjz8ffRihpybxaQb1boVjZVBkneo8QFQezCkuJ3ccXlQvb+lo85AcG+j/lDHnPu+Fp3CCq21vg6xKIc31Qf1lbUaxgfAgTU1xnFrtQfE4J7o4RBZoF2i5WjQ4KnaFMwkpsjQtK/JOG8oaeygv25bsG3r4RbD+ACo3VgZvIZ6D4o5yA+p23jEOJZ9Et7KoI6W3ZXI7Wpbf10LrSWV6HVJWvdV4ddSAsseP627jhiEmvaySryHqrRBFdp2B3fvPQcrjPopAO17DxoV271HqrDGaxl+BAFP6SEUjxpyJzW14C0rN/R7yw8j1Teo98bnx1taZqyU/eWHCRzVijYqCt7S/cF7fORIsBAhqDJ1dUyguhrf4XJDv//AQZR29RmQW1rwHgrq9x0+jFSnEvQVvx9faZkxpv/wYfxH6oP69wVDBX2HjyA2Bj9jz74DKAGtgGBVLd6DR7VHTEAWHQT8KuNA0vgYoqiEELwFFFkk4FeXtvqCX9GMCtXroSBLZvRFrT6OooghBHOV6ixrng1/wKxyQBSd7g2ioC6P/X61vock6zJB//gMPkdA45foBQEh+KhKIbU9ZK1EeUAJ4YSgFuQL5WwQcvxD2aZkgh6PEyHUC6HPRdQMh6AHQkBCMTJdgcrVODZTlk48l1HU3yetAqKA6tUI/X1RNG8HmixS0yNohoeAQCsy/pBoN0EAWVGQQ7/ggkJ0gg17tOVHrjKMMML4TyNciDCMMH7D6D8uQ1+nATDx6gLj2BlrxRSSPurMu4OF70xWAUds8A/sqHOziJJFzArEKiYm39gDgD/GfsCBDfW885dNPHTGUgDOeaCn0W/4rBxcyeoiUzDBH98OhmoVnZJIRleXeiLAtR8MNlYMSQVRdD09SJie9Uo/lTQOOOOtjJjdyZBNuLOY3MFxIEB6Txfnv9wPi0NENAtM/UcPepyVDgK4Mx2c9+4gbC4zggjDbyqkz1WdEUSwx1qZ/NZQIpLsIELReTkMuL0HgknAHGFi9LNDcOdHqzpOSWbwff0RLSKiVWTI3weSNCBZ1VHoZuDDwzHZTQgmgZ5/6UfmxDwQwJEcyaAnxmCOsoIo0OnSXuRd1BtEAUu0jd4PT8CWEAkCpI4vJO/KEQgmAdFupuCWcaSc0QeLO4KsS08h6+LhRGTFEZEZS9bFw8i4eCRmdyRJk/uSdsFIIjulYk2KIX3WGNKvmIzZ7cQ1qCvJM8bg7NEJc2w0qZdOIeXiKZjjXER2zSdx2liiBvXE5I4i+eIziT97EubEOGzZ6cROHY9rzCmYop3ETh1P3NTTsaQmY0lOJPaM04k9ewpiVBRRI4binjIRW0425rg4Ys46k9gZMzC5XDh69sQ9eTL24i6YXG7c088l5uxzMMXEYCsowDVxEhH9+yNGRxMzfToxU6ZgTkjAmpGBa9JEokaPRoyKwjXhdGImTcSSmoo5MRH3pEnEnH0WYlQUkUOG4J48CVteHqa4WGLOPov4mdMwuaKJ6NkN95TTsXYuQox24Z46lZipExHdbiw5ObgnjyGiX2+EqChiz5pA3OQxmOPjMScn42sOdAhr0g0LWdZJ3np4VHDxbxDAUe0qvaCfooU7BVPxqlma9LayJtO9Hap3QyeQ60UD9fdCZeo8jDFD9Iem/Q2OE6I3lKyuHE/I1v/JWnBTaAiU9vVV535cm44BEqrHQUHWWult5ZC2gmGCcEzf43HcVorwY8KQsQTdZFMbiehZsoKeIgR1vsIJxmmq9tJc4/1hBWGEEcZ/HOEQrN8QwiFYYfwQPB4Pdrv9hOc/R9bQ0IDb7TbOZ4hvG8eiWeBt33mAygMBMJvNxrl+fOz5/0UWqkOWZURRNI6BDuf68Yna/ruyH9LxS+oPHUdRFKPqs/7TG3p+MrITtf0x2X9Dx39Dv+zxsfWqF2g/UI0impG8IJgVRBPIPgXBYla9VWaLWiRQMCNLguqdEESQ1SWyXqRPUYKF91QuhpmAX0uRK4tBXgcyimJCltSaHYbxoggIgqwWENRS3EqSyvuQZXVsWUufC6qXxJAJCv6A5nnRjQbDo6Go81FCs1QFeR+gZrA60V9uSQmGRUGwuF9omJVO2tb5F0HfDIbXQtGOZQEiTCKRDjPtLX5aTTJ+rRCIFOKRAJVH4pZMRLlttDf6MUea8KkFRTBbRaSWAA6XhfYGPw6XGW+rhGARkQXw+SWskWbaG/1EuC14Gv3YIy1IPhkUta5Qe4sfm9tCa6OfqCgLYquMWfMABnwylkgTNU1eHG4LbY1+HE4LAZ+MpMiYbCKelgARLgttDX5GXprH5S8OPP4G/h/wWwjButX064RgPSiFQ7DC+PkIh2CFEcZvHKMsrxjHg8alsmGBmpLVYhexeERjITLs7HS2vqfKBAFEOwQ8qjBzUDRr1lTSJsi4FBOfSRcfr+cytbL5K7d+z4cPqcUG+45PZduKSjwt6hLmsof78soNasx9Vlc3bQ0+asvVMJjLnurLa9dsAMCVZCMp3cn+9WpozfQHujH39q2ggMUh0m9CGus0nsfIK/PY9U0llXtbiM2IYMZjvXhm2ioUGc66vzu7vqxg77JqHG4Lsz8ZyotjlyH5FAZcnovcEmDLuwcx20UuXnQKcyYtx98SIG9cCik93az55w4Ek8C0j4ez8PI1tFV5SOjmptdlnfjmuu8AGPvsIDY9sZWGPU1EpjgY8a/+LLpwKYqs0PfmHlSureDoiqNYoiyMeWM0X567ENknUzCjAJEA+z/Yi2gVOfWt8az4wwICrX6ShqaT1DeeXc+sB1Fg8PMTODRvC1VL95M5rRvpk4tZN/sjAPo9eQZHPt/Jwfc3kzA8l6I/DWXjte/jb2qn632TaSutpOyl5UQVpVL0tyls+8tc2g/V0en6cZisAvv+NR97spvCB89n/z8/pHnHIdIvGIGzcyr77p+LKdJGwYOzOPrmN9Sv2k78aX2JH9+XfXe+jiLL5N99EfUrtlA1/1tcfTuTftkESv/2PIHGVjKvPw/f0Woq3voCR146GTdeyMEHX8Z3uIqUS6ci2Kwcfvo9LIkxZP/1co48O4e2HftJOGs0EUU5lD/yKqLdRuYdV1L13tc0rtpMzKh+xIwfyv6/vYISkMi94yKa122jZv5ynD0LSP3DmZTc+RKB+mayrj8Xb1UDh19diDk+lvYDjerzLQcAE0oAQFa9DX5tmR0IAFo1PtkUdEEQQmjWUt4G1/Darr0WkqW/o3oYTCHeh2A6XdVrYurQL3SzXdYCDEQBJDl0vz6oX6+Z0RH6XFA9GxiRSYaPQYRjCNmhPTGuTfUKEELwDso6Xr8+59CwKq1mRm4kdWWtuHIdNISEWcrH9lUgpns0VTuaGXVNPoPOzeLRycsQBIHrPzuF5a/uY9nLpfSamsq0+3vwj9OW0Fbv4+o5QziwoZ6P7t1G3pB4/vjmIP45cSmVJS1c/FRfAF69Zj1JxVHc9NkInp65in3rajnrrm5k9ozhqRmriEixcOOXo5hz+2Y2zD/MyMvzOGVWLg9NXIZZMXHT/FNY+U4p3zxXQu9JaVz6bP8T3L0wwgjjv4mwB+Q3hLAHJIxjsfLTUu48a4lxblLAHBI56VCCewgWWSAyhAOiCMGvdgM+akIK6s3+ay/OubMPAG/e/D0Dz0qnU381k9PUyLfwe49dXmj6zUKHAPHQGE6LVQBfcAlkDsnEY7IISP7gfNRIei18wiyo7FgN8TmR1JSqXJMIt4VAfTCSPKMwisbdLUY/q6Ko2X+AxKIomvYEeRcOp4i/TV16xeQ7aS4NEuSjUm20aRXpnakOfFVBbos7L4KWA1rhuygLSlswVMPVKZqmEm0RbBKwWiQt/h9c+dG0lgb5KxExAoFW9WZFF8TiKQ3yR5LH5FG5WCXMJ4/Kp3LxXkOWeUYRFV+oxpqrexptew+hBNSLTJnSi4pPVSPPGh+FNULGW9EAQNLEPlR/oRU0FAVc3TNo2VoGAsSd2pO6bzYaOmKGd6Vh5TZAwTWwmMa12w1Zwmm9aFjyHSjgyM/Ae+goik+9jtjTBlL/1RoATC4not2O76jKvYkdM5CGxauNcSJ75NO2dQ8IAtFD+1C/OKg/alBv6lduBUUhun8RbRu2Bu/xqAHULlKNXEduKu2H65HbvcgytLa6kLxgMgcI+M0IouojEDRehV7cz+czYzLJBAJm1RMhiyiKgihCIGBCNMkG4VsPaZIVjQMiqCR0UVCQZLVEnl4IUJZUY0QUZQIaB0TSxgaRQEDNdiVJetYrUQ1R0uqBCEBAVg0Pn0Y0D8iikblKRkEUBPyyyvXyK0JINicVel2MY2tnCKjeDhG1BkbQSFG9Gn5UKyag6AVFQwwijYMhKQrtgkIABbMi4BEkYiJsKG0yMjLtdoV2r4RFUYsUioIeAgUmUcAqCUah0j5T09jw8WEA+p6Vwbp5h4zPeOiFOax6sxRFgc7DEti7usbgjJ1yWS6LX9wHQFyGuptfe0jd5Bh1WR7fvKh+b0wWgbz+cexZVYMgwLALc1j+epAjNODsDNZ9oG5y9J2azncfBvXft3Ycef3i+CXxW/CA3GJ65VfxgPxduiS8bgnjZyPMAQkjjF8AHz2+nWsHzuez53b9rH5bvzzKfYMX8da165ECxy/6+45N6XBu+5HCWY7IH5ZZBQVRW+PbFIGx1+YZsgv+0ccwPgBS86OM40h3R6JmTje3cWyyCB22XHN7xQZPBDDbgz8v6cUd/zBFJViN47iMCEQtJaYgQpfRyYYso0cM1pDr6jYx1TiOyY7AmeIwzgsnB4vU2dwW4gqDOnPHphhzFS0CyX2Di4/UgQnBlJwCpI8I3vPYIjfmyKCRlzk2wziOTI3EkRIZvMYxWcax2WkhKj94PxIHZ2Bxq6FwERku4vqlG4H5sX0ziMhwA2Bx2YkbmG1sQ7t7phPdVU3/K9rMxA3KM0rIu3pmENVN0ykKuPvnI9rUz8tZmEZUt2xVpkB073zMLnWu1iQ3UT1yDYJCVLccbOlqimOT00FU7wJDf2SXXCIK1XEEixlnryLQwskii3KJLM7V7puAs08hgk39XO15GUQWac+YohDZvTNmt/pcWeLdOHvkG14JZ5ccbBnqZy5G2InqVRi8x12ycRZlAiArVgIeEUUR8fssKjFcMqlpcCUziqwaB7KkZ7Iya4aDSQtvMmkeC0EzJLRigIqoZaBSadSKrL7q/WTZpGW40tohIGk6FON9XYdaKFAlgouaByUYzqWS0UWNeB7SBr1+g6gRzsWQUKhgQT79FyJUFuR3qJCOkYV6NSRU/oTaX+nQVwYCAvgF1RjxiTKyCERpYXAmgTafpMk6MsQV1AGs2ncluVMUhcOTDI5L0SmJJOaqz19UvI2uY5INz23noQnkD1C/j1aHiZ7jU43fg87DEug8TH02RZNAj/GpWB3q70F+/3iKhiXpjxjdRqcQpWW1Ssx1UnxKiP7hiSR3Up8/Z6yVpDwnYYQRxq+LsAfkN4SwB+R/ExWlzVzc6QPj/O1D5xCbcnK7UH9K/pCmKnWH/ep5Q+l7ZsZxbRa+vpsn/rSW4Wdmccsrp3B1n0+oOtDCM9smUVXSxv0Tl9J5UDx3LRjNQ2MWs39tHX/+YihJ+dHcXvwFcdmR3LNhPFflv8+R/a2MuTiPq18e9qPzenTWCprrfNz+4SmUbW3g2WvWMnpWPuMv68yrf/meku9rufWD4XhaAjw6cyU9Rqcw/Y4efPLQdtbPL+fqVwfhTrLx6JkrSS1yMevxvqx4Yz+Lnt3LBY/2JrdfDE9NW4Utwswf3x5C5d4mlr28j8Ezs0nvGsOKV/fTUuPhtBsKaa7ysviJPXSbkEr+kAS2fXSII1saGXFzIXJAYeVDu8gYEEfn01MpXVJB2ZIqBvy5M/ZoC2se2YkrK5Iu52ZTuamW3R8epMelnYjKiGDz83tUovnlnWksbWL76yV0OjuHhK4x7JlbQmtFOz1md8FT62X7i9tJH5lOyqBkDiw8QO22Wrpf1R1Zltn5wlZiu8WTMSaLyjVHqFxZTsEl3bBG29j7ygYcSU4ypxTiqW6hfksFcX3Tsbrs1G1Qd2dje6fjb/JQu/4Q7m4p2BOcNO2swN/YTmz/bGRfgPp1pUTmJuBIi6G1rAbPkXpi+uWCAI3r92FLchORk4inop62fRW4euch2i00bdyHKdKOs3M6/rpmWnYeJKpbDuboCFq2l6HICs6u2UitHlq27CeicwbWuGja95cTaGjB2bMAxR+gZfMebBnJ2FLi8ZZX4q2owdmjM4Io0LxxN9aEGOxZKfiq6vCUHSayWwGi3Urrtj2Y7HZaqmUOvrcRua0dwe5AdFjx17WgKGCNcSJ5/arMZsXsjFBlkozZ5USWZKSWNqSASOOmci0USuVumEySZgwoRp0NtRq4CZNJwuezaIRwwQhjkmQRi1lSU+2KaqCSLKnGQ0ASMYky/oCoGgt6HQ40krjWRg9w0vWpfBAFKSAihZLHNe6GgKBm0dKqm8uKVosjJMRK0jgfukGg8ajVtoZGFaE1NUJlgRCjQpfpdTAkQNK8GyZFwK5lkEJvI6i8jhZBNt6TUJhwVQEDT8vA5jJz6+lf4WtX/SqiguHtEFE9Kje9PxyTKFI0IpEIl4XdK6oRRIHOQxNorfexc1kV+QPjcCc72L++ltZ6H11OTcbXLrH96woyurtJzHFSvqOR6tIWumkbMFsXHSUhx0l6sYuq0hYObqmn6+gUrA4T276pIDLGSl7fOBoq2tm7poaiUxJxxtjYtbIKFCgclkhrg48dSyvJ6x9HbOov7yUIe0DC65Ywfh7CHJAwwvg/wu60qCRLv4zVYcIWcfJfK2eCjeZqL4oC0Qknzkk/7qLOjLuos3H+dEgRwWcu/47mZh8bl6ipUncur0LyK3z+j11kFrkI1AeoamykocHDtrJ6vKLMx3P2/KQBcv1rQXl+r3geWTXBOL/4n32C83fDA0vHGedfvVFCZWkrq+YdIKPIzY611ezf0cD0+7vy1at7KdlSx5I39mGLLGDj0gpMZpGzylrY/HUF6788giPBRnxuFKs+OEBbo5++52RS9n0d6xcewROQyR0Ux3fvl1Nd0kLnCSlIXpnNnx+l6mAbncYls+nDwxz4toaUwfHE5TjZ8ulRnEk2Op+Zwc7PK9jxRRVReS46jU9l0wdHEUQoODubfd9Usf2zKgSnHVduFJvnHMZT7yNncg41OxrYMb+aliaRpAGJbH//MPV7m0gZ2QiSzM5PK4nd7SHt1Az2fnqYI6uqiOpWQ2ynaPbMr8QW00DqafnU7mjg8LJqzDHRxBSZKV+upliOLkqmYV8Th5ZVI5vsJA+J4Oi3lXjr23F2TsFb18bhFVXENgukp7qpXldJc2k9juxkBBGOrqogMsNDZnYCdVuqqd9YiSUpAXuik8rVFZijbETkptC0t5aqbysQotxEFVioXnsERZKJyE+j9WADlauPEqfYiRvopOa7I/jq2rDlZuJvbKdiVSXRxSJJyXHUbKikdX8NGanpiBaRqjUVOFLbSc1MpnFHNQ2bKkmJTcKeHEXdunIEs4UdT39vpDPWMzqpOD5FkZ6VSkGAkDA+NUtVx++W7onQDRC9vxQwEfCbNY8Dx/QRg/0kRQvDAr3AoF44UPVeBDNSSbJq2HSYK8FsVbIsGuTx0F093UDRs2zphHNZu0a1KKDSwVuhezNMqKV2QgsP6oZJqPfDmAsda2MY7wv6eIJqpFigx/hUZBm6j0+lobKN/evriU11UDgmibUfH6KtyU+3MSn0m5DGN8+VkFYUzWOrJ/DJv3bQVOEhd0Ac0TE2Ni86is1hYtwfC/B7ZTYsPEJ0qp3MLm62LqtAEAWy+8RQvruRjUuPYo4U6RZvY8vySprrvGT3iaW+op2Ny47i8UkkZEeyY1UVh/c2kd7dDcCmZRWkHYkmrSiavetr2bm6isROUcQkO9i8rIKoWBvZPWMo21rPpqUVRCfbyeoew6alFSiKQnbvGA7vaWLT0gpMDtN/xAD5LUBRjufm/Dd0hhHGv4OwB+Q3hLAH5H8XO9dUsXb+IQZPzaKgb/xJ96s92Mryl/aR2SuGPlOP9378FCaZ3jCObQhEhnBC7CGLt700c8ii1mEwIfDuV5PpdUowZOiXwINnLWXNx8E4a4sgGKugiBgrbfW+oMwiIGlcErvTjLc5yPPoPDSe3StVXkFibiQNpW3GH7k+Y1PY+6VaF8PuMmPyKfi1Hdni8cnsXaiS8EWzQEyijeajKs8jd2QiB5ZWGTqSukVTtVXli6T0clO7OcjdyBoeR7mmPyozgvYjrQbPJGdsMge/1pIAOM2YBImAxjPJHpNC+WI15l0QBWIyrbQeUWPX00alUbWiHEVRMNvNFJxfwM5XVN5F0SVdKJmzi4AngCAI9LiuJzueWAeiQMa4HBq2VtBe0QIKdL1pIDse+VYNuSpOwGqH+i1HQVYo/PNQdj22EgSwxUWQMDCNo4t2g6yQd/kgyl79FkVWEK1mss7pycF3VL5I+rTeHJm/FUmrU5J/5RBKX1wBgkD8sHya91TjOdoEikLeNSMpeXIpiAJRnRKwRlto2HwIZIWcP45g/zPLQACLy0HSKZnUfLUFRVZobHYR8AmYRJlAQMRkkpE0vgaKaGS8UmQQRNWToLZRs1LpxgCoWaxMooIki4iirJG/ZbUSuqzyOjxes1bQz4yo9cfggIhG5iuTFpeooM5D0j0oARGTScEvmbRMV6Ja1VszMkRRQZLApI2noGihVpqxonExAoqAiGJ4PQRUDoagCLQrYFIE/BjRcGrBPAUkQTBCJnUOR9D4EAyeB5qxAboHRH3PD5hQkDTjTA5+FfGjIJjBEhAQRYFB52WxZVGFsREy7YHuzLltM4IInYck4GkLULaxDkWGGX/vydu3bEIQIS4jksy+Maz9+CCKDOfe1Z2596q8HluEmTGX5LPgqd0ATPhTIV+8sAdfu4QgCky7rRtz792CIMLQaVlsX1FF/dF2FAUuerAXr9+6Ud0c6K/+lu75rgZFhgsf7MUbt25EECA21UHRkARWzdP039md9+7fiiIrWB0mxl7WiU+fUIuGTrymkG9e2Ye3LQCCwPN7zyAp+5cNw/oteEBuFl/B9l/2gHiVNv4hhz0gYfx8hD0gYYTxC6BoYCJFAxN/dr+4zEim3tP9pNr+Y9xidi6tYtp93ZlwY/Fx8h/bSpAE2UijI6NwtLSVXqfA2k8P8Mi5K0jv4ubRdRM79Gmo8fCP8UtILYxi9ptDO8gCgQD/GL0Ue4SJP306DLPZTENVx2KDodvAfk+gg0iWggElAV/HPbvWhqCh4m0NdLiulpqgLOCVO5DXW0Ly+stS0DABaK/vmPPf1xKcT6jxA+BpCLLsA20Bw/gA8NSG6PDJWgiPpiNEpsgKgRD9/kafQVaXvBLeJh8IagCMt8mH5JPUXX9FwdfgMRwDviYfgZZgoUZfnXaPFYVAiw8xoBgfvK9Bl0Gg1Y+/RZuPAIEmD4qWbkn2BfA3e9FdBoFmL7JXMnT4G4P6Ay1epFafocPf0Bai34soSoYsEKJfavcjtWoFLQUBv2RH8svq7rsiqImqDHq1XgMjmOcJBPwBPSNVSBv9mdHS6GrDo1cgN+p2yAJKQDDCs7QgKMPw0NPhgoJJDPaXZM2AkFSihMHvQA37UsOvNC9DSPiVLKveB8MQUlTjw6+l+hU1L4YCWoiWgk8tVNHB8+HVzk2KOtqx/A5QDQsIhmuFZsMKaMwOSc/rICiGcaNDAcwmEUF7Htoa/B2+Zy36c6xAa6Mfb5vfGECvnaHI0N7kp63RZ3wGzXXBZ9znkdTvsfYctTb48HlkdS6SQku9D0FzTrU2+mlv9hv6G2tC9Ou/BZqsSdevQHtzgBbtuyoI0FLn035XwOeRaW30qUYt0Nrow+eRNO+aohoiv0OEesT+mzrDCOPfQdgACSOM/wG8eOlqti1SsyjN+ctmTr0mF7vdTmyKg7qj6sLvoQ3jubv3VwC4U+0kpkRwcL26s//g+8O5cfpy2gUJp2Lm9FmqAfP3qcsBKN1Qz7XdP+WJLZMNnVelfYjkV9j/fR115e3ctWSMIZud+DFt2h//mws+55H9U7j7qzFclPQ+npYA/Senk9PVzYcPbsdkFvjHd6dz9+ivaKz0ktcnlnFXd+a5P6wBAW6cN4x1nx5mzfsH6HV6GjPu78E9p36Nt03iT+8MYfeyKr58Yjc5vWOZ/f4Q/jV8CY1HPZzzRG8CrQHm37KF2OxIrlw8glfHr6ByZxOjbi4ipUs0H1z6HXa3hYs+P4XPrvme0qVV9JqVQ4/zsnln6goEEc6dN4QNz5Ww/b0D5I1NYdSDPXh33GJ8zQEmvzaIo+tqWPfEThK7xXDGe0N5b+xiWo62ccqDvUGWWfXXDUSlRzJl/mgWnLuYuh0N9Lq2C4k9Ylh+7QrMTgujXh7FwQVlHPyijIKZnUkelIKkGWV9bu1H2sh0St7ZRcZpWeRNK0Bq8+Ota6fnbYNpO9LMnpc2ENcrmc5X9kGRFJr311E0ewCiSWD3U98Smemm8+zBmCOt1K4vJ29WXyKz3Ox6ZAmWaDudrhqKMzeWyq93kzalG/EDs5E9fhRJptPsU0gYnk/5BxuJH5ZP2hk9kDw+fLUt5M8+FW91M2Wvr8HVJZXkM3rTdLAVX00jyRO6Y7abOPLxBsyuSOLHdqetLkB7WRVxpxQS3SmetroAiBb8X9WiyIJmLISGXQlG6JSs1csQtOxtkqwmORA0HoUii8G22koraHyoCC3OZ/wjWBpPLz5otFUEzUOiLqplY4569fHg3IKpeIPcDRRVJmvHiiAghJyHhk4ZBQe1uegGSWiWK/1YPVe0lkEZ6MZKsERgaDtF83bIKMEOQtAE0xHwyQyeno2vTeK8R3tzdHcTCx7dReEpiZx+YyE+j0TlvhbOua8Hkl/m/bu2kN7FxbR7e2Cxm9izpobJfykmLiOC1/6yAVeijfPv60lynpPvPi3ntMs6UTws0fB4nP9AL7qemsLXr5YwcGomI2fm0N7sp7nOyyUP9aFifwsfPbKdLkMTOfPmLgT8Mod3N3L+3T0BePuuTaR3dnH+vT1wOM1sX1nFmTd2ISnHySs3fU90nI3z7+1Baudo1nx0kDGX5NNtZDLetgCyDBc90Ju+49JZ9NJe+k9OJ7PYTRhhhPHrIhyC9RtCOAQrjB/C1Skf0lQZ3GG/fflICocm4/F4eOC8FYyd1Ymhk7NZ++lBFr+6j+veHYTdbuepC1ZQMDiBsX8s5PPXtvPMX9bx9HdnkJ3tBmCq6U1jTJNFYJ5npnE+PaRIYWSMlVdqpxnnF5neNba+zFaRlz3TATiwo57vF5Yz+doizGYzi17ZQ0p+NN2GJ1NT3sKSt0uZ9Kci7HYzK+eVYXWY6T8hHZ8vwLYlVRQPS8QeYebw3ibam/3k945DlmW2Lqkgr088TreVmoOt1B1qo2BIArIss3dlDYn5TmJSI2iu8VC+pYHOIxIRRZGydbU4423E5zjxtPgpXV1Lp5GJmM0iR7c1gCCQ0sVFwCexb0kVOcMSsEaYqd7bjLfRR3pfVf++JVWk9YohItZGY3kb9WWtZA9Vs/OUrawmNjeS6NQI2mo8VG5uIGukqv/IulocsVZi8qKQfBJNB1px5ToRTSKtlarhGJnkQJZkGktbiM6MxGQ14an3EmgP4EyNRFEUmkqbiUiOwBJhxtfix1vnISpTzerTfKgZm9uGNcpKoD1AW0UbUdlRCIJAW0UrJpsJW4wd2S/TcqgJZ1Y0oknEU9OOoig4EiJQZIWWA41EpEVhsprwNXoItPmJSIlCURRaDzaBAF9O/gB/k77rHfzTIaCoO9qhK2oNOok7EDAZYrWv2lAUFcP4UKGFRSloHA61rdLBURZMIKvvpKvGiZZWV9KzTglGsT9jHCV0DL0QISiISAHdOFG9GmqWKsUwPCTNC6OSxvXrEwwTQFY0HdoFSCGGhmRcvQpP6D0KuWWhBsiJ4vn1O6JyQFSDQ4dfUVAEtZ9+N/UxYlPsRERb8fklJl5XxOBzs/F7JGLTIlAUhcp9LcSmObA6zLQ1+Wmt95KQpYYpVZa2EB1vwxFlwdsWoP5oO0m5TgRBoKa8FXukGWeMDb9PoqqsleQ8JyaTSH1lO4IA7kQHkiRzdF8zSdlOLFYTzXVevO0B4tPUZ/zovmbi0iKwOcy0NflorvMZYVKVZS1ExdmIiLLgbQ9Qe7iNlDz1Ga853IrNYSYqVtVfWdZCSl4UJpNIQ5Ua1hWTdLz+Xxq/hRCsG4VfJwTrYSUcghXGz0fYAxJGGP8DuG3JKG4pXqCeCFA4VE1bOtH5LgDfflpOdl40dSXqova8yHnYtK3PVW8f5Nnb1rC9tRGPIDO501ts8V8DqFwJPf/+lc8P6KCz85B4dq9SuRCz/tWng2zwzGy+fbMMgNOuVwnyS97Zz0MXrgDgtTs24nLbaahUw3CGTMtk1fsHAXjj9o1kd3NxcIvKweg6MpGSdXV4WgJY7SZm/K07r9+yEYBTL8pjyzdHqS1vQzQJXP3sAF65TOUuFI9MJNAsU7auDgS45OV+vPGHdSgyJBVEkdXNzSatDsC0J3vx8fWbkPwKEbFWBl2czdJH9gAw+rYi1j69F29TALNNZNwD3fjihs0A9Dw/i4Orqqkva0MQYerzffnk8vUAZA9LAEnm0OpaAKa82JcFf1T1x+RGktE/lp3aNY9+rA/bXtxL7a5GMoYn0vOPnfnsfPVeTXxrGFtf3EX58kpiC12MfLQfC6Z/heSVGfrPAVRtqGHPnH1EJDk47fWRfDljEb4mHz2u7Y5oFdj0yCYsURZOe/c0lly+mLajbeROzSV1aDJrb1mBaBEZ9fo41t+zhoZddST2S6b4ym6svHIRiqww5KnR7J+zg8pV5UTluun3wCmsvPhTJK9EjzuG0rSnjtL3dmCKsuFrVL02ghbaY0DfptcOlRBDRM/khKCoKW4FLbzoGA+G/ioIQcNACVnwq406hl0d+6p7VELHFDQOhr7475AVS+9PaJ8QWYj+UPL8ieamaPMLhsEEZXKITND7czyCRogSYmIpx7URNTL5sXJBUI57V0AlsptMIlW7W8js4Sa9yMXVaR8R8Mlc9uIAtnx9lG/nHiAuI4I/zx3K/eMW094c4Jy/dae91c8nD+0gMsbKHV+M5MGpy2io8DDq4jxyesfw3OzvsNhN3L3gVJ6+ag3lu5roMSqZ8VcW8Pdzl4MAt78/go8e28G25ZVkdXVz5b/6c+fEr/F7Za55ZiDbV1Wx5O39xKVFcPv7I7hj/Fe0Nfo59zY1PHXOA1uIdFm494sx3DdtCXVH2hk1M5eiQQk8dfUaLDaRez8fw7N/WsuB7Q10G57E1D8Vc9+0pQDcNvcUPnt2N5sWHyWjyMWT303C5ggvf8II49dE2APyG0LYAxLGz8Vo86vGsUURcITsKdhCQkgOCM2Um4McjTtuHMjl9w/6RedyZfdPOLijwTg3hegPNXQgSKYFNb+/HFIOOiErguoDKtcgwmXB0xjkZGTmR1O7t9UY0xIILvKSO0dRvTtYbDAywmwUIozPi6RuX7DYoCvJRovmUYpOtePRyOoAsdkRNJSp+m1RZnwhHJGEAid1e9UihYJJzVKk78zHFzhpLAnqj3CZ8Gtck/iiaBr3NBqyvEnp7PtMNY7yJ6RTtuCgIetyXjYlH+wDBRL7xFO9uRZFu3dFM/PZ+65qODkSHZisAq2H1esqmFHA3jl7jBucOiie6nWVIED2lHzKPi4xdGSdnkX5l6WgQNroLI4uLjVkOWd24uAnu0EBd5cEmkrqkL0SsgztgQgCXhBFCUVRSeWhngRFEVQSuRQqA0kROyzYBY3DYbwigxAsFqin2TUK+cnBCuRqmJTeXytAqI0tiopGEFe9Hu1eM6IgIysmTIKMIEJAEgxiuqh5cXwBAUknmAuqCSGKGAUMZT30SvX1AAp+Wbe7VE4HCAQI2mKhRQJlQjggBLNYQUdDRDbeU0I4HrqFpHbUw7r8GmE9NKItoLUNKLLxvqIoyCJEyiajiOnA87L49t0y9Bod25YFi2SOvDSPxa+ohQATsiPxtAVorFK/H6deksdXmsxsEUnv6WLvuloEAUacn8vit/cb4/SfnM6a+WpSisFnZPLtR8FnfNT5uSx5Zz+KAsWDE9i1pgZZu7Cxl3Ri0StqYc64NK0Q4WH1+3jaJfl8+Yr6HIuiQKf+sexaoxYiHHleR/2Dz8hk9ScHUYBBkzJY/WkwQca/Vk2gcEACvyTCHpDwuiWMn4dwIcIwDDTXerltwAIuiXufVXPK/is6Fz6xi0vc7/HAad/ga//PEwOrD7Uyu/t8Lkh6j+8XHP6P6/tvIjX3mKwuIQuTpGg7di0lqUu2/OLGB8D0W7oZx2aLgDvJbpwPCs3wJUBmV5dxWjw0AbtTNZysdhPjrwymHB50RiZx6eofVNEkMCWEfF84NIGsPjHGmONu6myE4yR2ctJlfLCg4Mg/F6iFE4GIWCt9zs80ZP0vysEWreo320QGX51vyIomp+HOUvULIgy7KVgkL3NQPOn9gwUNh9xYaOh350SSPz5YNLHnZZ2IK1SvOX1YIsXn5SAI6oK66Lwc0rSCajGdXRTOzMdkVQcqOCePTmepxf4ikhwUzizAGq0W+ys4txOdpncCwOK0UHB+ARFa/ZncKbnknlWg3jezSP45BbgL1cKICf2SyDmzAEFUORbZZ3Qiaaha7DAq103OtCJMWohK1tTOZE7WxnE6CGhRgOrCXDAK6kGwSF9oIT/07FUGf0LQ3hM7vmIKkanjyZoMI5VuMBPWsf1VI0RLnxvynj4Pg7ehZ9JSRCNES0HQPCKqW0K9Jl0/GJ4Tw/ggqDPk/Njos6Ax0ZGnAqGejh+GPrKoN+yoWu0vnLhP6PvaZRGdrhbtzOju5pSLczFZ1OsbOjOHQeeo34e49AhGXZqHI0r9Poy4KJcRF6rPX6TbwujL8nEnq9/rYednM+oCtdik2WZizCX5pGvFP3uMSmbUzFxEQc20derMPLpqz3hWFzdjZuVj1p7xUTPzOOXcHFV/qoPTLs0nIlotqDn6wjxGX6jqiHRZOO3SAmJT1es4ZUYOoy9Qv6tmq8jYizuR1cUNQLfhSYy+IA9BEBAFgVMvyKPHSNVrnFHoIqd7zI/c+f9dKL/SvzDC+HcQ9oD8hvBre0AWPrWbV69Vw0sSsiN5av8Z/3GdFzjeVbMZAdd/OJx+Z/z8VLQ/B+/evZk5924BBTr1i+PhNaf/R/X9p+HxeLh3+jLGXpDPKWfnsWpeKUveKOXG9wZjt9t54rzlFA5LZOwfC/nwmc28dOcGnlk/1eCA/NI4lgOy4IXdpBe6DA7IN2/sZ8r1xdjtZpbP2Y8twsyAyZn4PAG2Lq2ky/AklQOyu5H2lgD5fVQOxpZvKsjrE0tUrJ2ag63UHmyl89BEZFlm9/JqkguiiEmNoKnKw+GtDXTWOBila2txxltJyIuivclH2epaOp2ahNkscnhLPaIokNLVTcAnUbK4kuyhCdidFqr3NuNp8JHRT+OAfFNFWp8gB6Rufws5w9WsZ2XLq4jJdeJK/2kOSGNZK+68k+SAtAVwpp2AA9Lsw1vnJSpL44AcbMYWE+SAtB5tRUbky8tX01btQZEVLJEW/K0+TFYRySdjiTAT0Ax+s0M9NllE/F4JW5SVQKsfswVMZgE5ICOaBPxtEq0VrSiS6p3QSc+CFlNkMrgcoMjB+CuDdG6EJwWX6cEwKC3jlaKm0SUkpMoIY1LUN1WDQV2Rm0RJ81yozAid6yFJgmFwhC729XW52aSm0ZW0dwKy2k42dIFJ4JjsVarXTvdcyCHt9YWYB70oX1Cf/hrq0VA4xkAxxlQLBcqoabVNCEZ7BTUdb0gysI4QIKAoIII/hDAjoYAocM+CU0nKcJKQ68RsEWmq8RDwygYHpKKkmbj0CJUD0uijpd5HYrYTRVGoKm0hOsFucEDqjrSTnKdyQKoPqRwQnYMRygGpq1A5ICfiYDTVevC1S8Snq8/4kRKVA2KPUDkgTbVeknPUZ7yitJnoOBsR0VY8bQHqjgQ5INXlrdgcJqLj7MdxQOorVZ5TbHLE/xcckBt+JQ/II2EPSBj/BsIGyG8Iv7YBsmtlFXed8hUoMOCsDK5/f/h/XOdfBy2kZG0tJovIP7dMILXzf/a61356iAemLgVg/B8LuPKpAT/e4X8Y9w74kgPf1QNw8bwe3HbOCtoFiSjFzDfSZb/y7H4ZLH6phHdv3UhCtpM7lpzKo6cvp3xHI5NuLSazyMXrF68lIsbKDUtHMffq79m7pIqBs3LoOzOLp6asQBAF/vTFKSx/poTv3j1Al9NSOOuhHjw+cjHe5gAXvT2QsjW1fPPoHtJ7urnso8E8OXwJjYfbmfqvXiiSzPwbN+POjODqZSN5deJKKrY1csqNncnoE8sHF63BFm3h0sUj2fXxYXZ9XE7vS/PIPiWBhddvAGDco705uKKKTS/vo2ByOt0vyGHxX76nrcbLiAd60VzexrpHd5A6MJ7+N3Xh279tpG5XIwNv74FoEvju/o248qIZdHdvNjy+g8OrqlBEEwe+OXoMcTtYrO9kIAgKFtOJmQonGkcI8ad31KvzIwCClcVD3w9mqwoZO8SdoGhjKsetvBVjzNDsWv6A5rEI4WTof+lEgiR41bAIEsVDXwEsYvBcr0huzJuObQG8qG3MHG8j6LfEII+HjKH/k1Dwh5D7HYrYwTjxCR0/j7iMCJJzInFEW5n6t64sfnk/ZRtr6TE+lU6DE/jw71sRRIEZ9/akYk8zi1/fx+Czsxh6bjav/Hk9rY0+Zj3chyO7m/j0sZ10PSWJSdcX8dLN6zm6r5mL7ulNwC/zxt0bySp284cH+2K2hAMnToTfggFyHb+OAfIvwgZIGD8fYQPkN4Rf2wAB2Le+lqr9LfSZnI7V/svvEh2LtiY/Gz8/TFaPGNKLXT/d4RfAzlVVNFR66D85HZP59/vH9A/CHOO4TGjisNmrb0rz6IunMm7W8bVE/tcw0/oOksaPyO8XR9k61eBCgHiXlbZ6lT+S0cvN0Y1BDkZ0bgTV+1XuRFInp8ErAcjo7uLIFrWtM8FKS3Ww9kh2vxjKNR0mm4hJUZB8qv7M/jEc0fUD7ngrbbVq34yBcVR8p5LVBZNAj5lZbHmzFIDuM7PZ+W6ZUaej3+xObHx2D4IAmSOTqd5Qi1fjwfS7rpCNT+wAAdx50VjtULerARTocU0x3z++CwDFZKJNK9khajvoAhhVv/WdffVVqzgh6EX+NKKzlm5J53IYxQJRMIuKUZBPVkREQedsgGgCn0/AYpKRFNHor3Iv1ExSoggBrZCf7r3Qs0iZRYzXgFYsUEFAkjDamERNlwgB3fuBgCKrMr+kMoz8ioCgqCRsQcEwbkQ0LoYCAS1ZgyIEM1sdG/EkAz5FQUIt9mdD7SeidKjD4SdonJg0HfrV6ely/ZrMh6JWOtc0Kpq3w4xgkMzNCB0MEL+gdJib02Ul0BwABcb+uTOf/Uv9/E0WgX7nZLBizgFAYdTF+Xz9aolhGJ5+dWcWPKsWCew7IZ0ti4/ibVWv5PQbCnn/0W0IAmR3jcHTHuDIviYUBW55YzinnpdHGMcjbICEDZAwfh7CaSDC6IC8vnHk9Y376Ya/ECKiLQyZkf1f0wdQNOTnFwz8X4eohbeAmkEnJUfli9x32VI+e20PNoeJZU2X/oozVPH67RvYsaKSCx/oTZehSR1kCx7bxXfzDnL6DUX00zglJouIFFAXTlHxNqOtaBKw2E2oyz2IdFs7jGWNDBrXtihLB5nDFTy3OMwIos9YuEXEBccxW0RERVGLCAKRcUH9ggnMjqAOu8uCoBW8M9tEbNEWY0fe7rJiton42yUEARwxVmMFbIu2YI2y4G1Si8HZY1Udgiaz2IKZnByxGudGgIAg4te387U3TYKiVdcWjJSw0nFL7WCRSEFNXUVAVg2HUEiaTEtvhSAEq20EJPBL4JdEzcBQ4/ADRi0NQFLDpfwShKbIVfurfo6AoOtXOvQP1a+myhWQtfArEQVJCXo8AopqMCmydv0GKV7RCOVK0IMR4uEIRWh4lZ4OwYdeELBjm9B/xzLa9FqLfs3lowjBNnqIlaiAVaNmiqB5QwSjv55yVw9dCz2PjLEaqZAtdpP2HKs3I9JtwWw1EfBKCCaBCLdFqzoPDpcZe6QFX5taqC9Kf8YFlXchWox4OyK074osySx+YR9tDT7GXFOAI+Q7pCgKq94po2JvM6P/2Al3kqPDfdjwWTl719Qw4pI8knKjOsh2rahi04IjDJqeRVaPjjyNA5vrWT33AD3Hp1I4rONveOX+Zpa8so9OA+PpMzG9g6yhsp2vnt1Lcqcohp6XrWVZCyOMMH5thA2QMML4nWLsTZ1Z9NBuBBHeq53JWXFv4hVkoq0Wepyikk4/e03NmuRtlxif9gYLDl/4q8134Yt7mPf3bQDcMeYrPmoP1iTZvbKKt7WQpcdXr+ClxrOxO63c+uUo3vjzejK6urnilYG89acN7FlVw7QHupOU4+S1i9YSnWzn8vcGsejvu9n0YTmjrutE8fhUnp/+LYIIV74/hI3zyln69F76zchk1LUFvHzOt7TW+bjozQEc2dbIF3/bTsHIRKY+3IO3LlhL1e5mzn66D8gKH87eQFJxNDNe68/86zdRuryasfd0I7FzFB9cvJaIOCvT5w7m4PJq9n5xlG4zskjq5sIRqy70Bl9fSNdzM9kx5wB541LJHpWE1WmhvdZL90vz2fhGGRXraohIcmBLc5I+JQd/o4+0oclqximHHXOUBUtqFLnndqKloo2GKj9N6+q09WfQgJAVQeNvCAbHQhTUTE66GSDqu+56W807AEEPgl5UUK/WLSuC5rnQFv5aNilJEjCrnHK10J9uE2lhT0YYkqZAn6ekgFnQihQqAopu62hrfoP8raht9fPQMCoBwZAJgKAEPR2ColcS7xiipWeokjXPhiKAGQW/EuR+6PdJDmkbmvUqZJrGq6h31Pv8wBpY+IHjH0JiTiS9x6TiSrYzZnYBmb1i2LLoKMMuyCGlMJroBDsms8jkG4rpNyWDVe8doP/kdIqHJ+GIstDW6GfKDUXUHm7n65dLKB6ayMAzM4hwWanY38zUPxUjBRQ+enIHWcVuBk5UDf+vnynhzT99jyBAxd5mLn9loDGn9Z+U8/QF3yIIsGNZJXeGFDDdt76WhyYvAwG+nXOAx0umGLLa8jbuPfVrZEnhy6d383zFWVi1VLm+9gB/G74IT0uA+Q/v4MnSM4hNC+703zfmG6rKWkGBB9eNI7dPcBPtsekr2bWiCkUBu9NMvyn/WZ7hr4nQZ++/qTOMMP4dhA2QMML4nWLs9QV8/UoJCdmRuN12UvOjOVjSyMjzck/YvqXJd8L3/1uoPhAMgwr4O5II6g4HUwijgKdFwu6EzJ5uiielUNAvHlEU6XVWOqLbRE7/WCKirRRNSSUhOxKz1UzxxGRaPAHyRiTijLfS/aw0RJOAM9ZGwamJHCltpsvEFKwRZrqdk05jhYe4nEhsURYKJiTTbVwKoijSbXoGBzc2kNzNhQB0mpRKVp8YRFGk+Mx0hEgzmQNjsbut5E5Ow5XqwGo3k9jdTXubRGxBFJYIMxkjVA+PJcJMbEE0qcOTiO/mRjSLpA1Loq3Wx8fXbGD350cBdUH63Stlxm3Y+lkVEFy0b3xHzeqmKOBV1AW4xTA8MDgYZgHNYxEK1SOg8xxUnkSQNyEY/IrQ+hQY+gOyGvakE8ElY8YCkqBgRdGK/WmGgkYmlxSdg6GeW0W1l1cW8KNgM2maQor96deoaOPIYHg9jl22yxxf5C90xaTfFt27YBQX1LxD7ZpXQg/ZsqAbXaqBEjRiFLTLN7JOKSGGG0BW7xiskWZs0WZsTjONle3IMriS7Pg8Eq0NPqwRJuJiHLRUe/H6AkTG20CB5lofFrtIZIKNxhoP/jaJmFQHZ93ZjdryNlyJdkSTSGbPGLwBiaROUdgjzRSPTMJkFrHaTaQXuegyKonMbm7MFpEuI5Job/IT6bZitop0GZVITvdYBEGg67Ak9XcjyYEiK/QYlUxqbrThPWiq8hicn8bKYAprgKbqYMFUPX2vjuYar3Hjm6o7ytoafUaqbm9rAL9Xxqo5T3weCW+rGmomBxTaGv3Eph2jUzlevz7X4HFHWRhhhPHrIWyAhBHG7xTXpH4CwIG6BsaZX+Sg4EEyKbz9+nYue7gnbrcbd5yNhlr1j/Kb687+NafL9Du7se6Lco6WNHPmTV06yAZMy2Dpi0mUrK1hyPk5uJPVlcnlXT42agRM/0s3PvjHdgA+f3Y3uTkuSr+vB2Dv6mq+froEFPjikZ10m5DC+o/VOhw7llWy4cPDyAGFz/+5k1FX5LHkObXWwab5hynf0oCnOcBnD+xg/F+KWPgPNc5+1RulCAGFuoOq/nE3F/GNJlv61F7Surgo04oUlm+sZ9MbZbTW+ojPdzLs2gI+ulb16JzxRC/WPLGX2pIWIuKsTHmiN+/PXAOAOdqMrGjLan2BGzxEDDESIKT+hNIxJSxgLB6N8QhyQYSQhT0IyFqNCfUs6F0Q0F0imi7dM6H1lREM/aGhQ6rxgdEP3UhRdGNCJ4Srng9QF/z63EKv49hxQo0LJfRe0fFeneieGP2OOZd1U0kJejqClcWVY16DPRUhyBlBqzWi66wqaaG9yY8r2c5ZD3TnuUvUz3jaPd357uNDlG6ox+40c9WrA3l8+koUGUb9IY/mWh87VlRisgj8+b1h/OvclQS8Mt3GJPPVS3uZ//guEOCGd4fx1JWraW3wk1HkYsyl+bx4k5rV8JpnBjLvH9uoOtCKO9HOJf/ow79mrQJgxp3dWbfoMLvX1mCLMHP960O489zFyLLCuIs64W0NsGReKSazwHOrJlPQO55x13XmyK5GWuv9nPdwrw73c9jMbErWVHNkTzPn/6OjrPvYFCZcX8juVdWccVvXDrKMLm7OfaAn6z46yKlXFHQIm3TG2LjshYF8/dweBpyVeRxfcPZbQ/jowW10HpJA97EpHWSXvziAd27ZRGpBFMMuyOH3DN3g/m/rDCOMfwdhAySMMH4ByLJCzdFW4lMiEY8NmP8J1FW0ERVr+9mpIRc8sZPoeCtDToIU6lEUJJUAQLsg8ckTJVx0Z18WVlx00vpaGjys+eIwI87Jwmw++Z+OQCDA6vcO0uv0VJxu+w+2s1rNPLFh0glloihy69enHvd+3dE243j1J8FCZy31Po54m4zzzQuPGqtMya+wb22NIduzqtrYeVUU2LqowpAd2tqAN6QQ4aZPyoO6D7Qhhqz+N38SrCvjaQpwdFuQ9L7rq0paNUJ6TUkLJcuqjEXyvqXV1JaoxQ3ban3s/arCWCnLgmDwDo5dOQsCiMcsqvUdfD/HF3myKKrB4FcwDAB1717AjMqzMEbSeBmKsfwPyVCl6CaJgCwrWviT2sav6El2g98BvyLgkYPv6uFIPkX3JQSNAL+ikcU1jW0yxtwkJejjEISQjFWEprhVISra/dHPNdmxHA+9v3RMf/0TN4VcjUKQAwKKRjhXkEM/AP1z0PoY5pEArU0+RAQaKzxs+6ZS5QTJKu+hdKNqKHtaAmxeGMxetnN5FS316nMj+RU2LjhipC3f820N9XXB3f2NXx6htUGd4aGdjWxdoRahFIDNSyqo0jyMDVUeNn19xPBwbVtRyZ516vfB2xbguy/LjaKAW1ZU4GlT74YUUNi1voaC3vE4Y21c+/4wTgSrw8wVL5+4zpAoCsx8uM8JZQBTbunClFu6nFA28pI8Rl5y4t+6vpPT6Ts5/YSywiGJ3LNi7A/qDCOMMH4d/H5TAIURxn8JgYDMJSM+ZlzOW/xx/Hzjj/fJ4KWb13F++ntc3OkD6ivbf7qDhksi5/D2nzfy7My1zE7/8IRtzLbgIrD/wCScshkUiJWsXHRn35PWBVC6o54z4t/l7xcuZ3zEmz+r78zI93jygtVcEvcBJetqfrrDz8CI6Wo4mcUmMvu5gdgjVcOoz/hUxl6jFdAzCVz4RG+iE1UCd0Z3N2fe2V1dnAnqDnRKoUqGdac6OO/h3giaLXjadYUUjVQJr/ZoMxc9398oEjj4wmwGzswGVGL5zOf7YNMKuBWOSeKUa/ORkVFEhcl/70rx5FQEEQZdmcuIGzrjiLHgiLEw4oYCBlyVhyBC4aQUht1USHSaA0uECVlUF7n6fxASNqQEORe6HRTaViVmK4ZcX8AHw5f04nxqGJQqC3pCjOrf2qteKDBYVBDtONhP0Ar7KSHzCs5RlwlGv+DYHDc3Y94a2ZyQuRl9jrl+Hfqd0q8/9CsZvI+h91Xp0LMjjg1WC9blOIa/f4I5BE8yeroRRBg4I4tJfynCleTAEW1h0k3FTL21C6JJoMvIJKbc0oXkgigsdhNn/rUbZ9/VHZNVJLOHmym3diGvXywmi8C0u7px9q3dsEWYSMyK5My/dKXv6WmIosDkPxVx1vVdcLqtRMfbOeuGLoy9JB9RFBh6dhZn/aUrMSkOHFEWzr6pKzO0lM5dhycx4+buZBS4sNhELrqjFxff2RuLVSS3awzDz8w+wf0J47cC5Vf6F0YY/w7CaXh/Q/gtpOEN4+dj3/Y6pvV6zzifv/s80nJO7vOb6n4LT4u6w3jT68MYdf7JpbicKb7T4fwt+bwTtvN4PNjtQa9DQ0MDbrf7pHSE4q9Tv2b1/EPG+TPrJlHQK/4n+zXUeLg86QPjvNupSfx10eifrf/HIMsyoiie8PynZMAJ2/6Y7GR0fPniXp65eq3x11kQwS4LRLlstDX6MUeZ8PtkBAWsNhNKs0Sky0p7gx+ny4LUIiFaRSS/jOw/vvqFoIU66Sle9UV1aJE8nRRt1o4DBL0lVjqSqvVXk9ZeJ2Mf68zTx9Sh//XwEQw90r0celc5RPZjf2yUkLah8wpeY8d5mELm02FOxjhq4T51LoIRMqWcoJ8+vg8FPZdZx9AzNeSqXgzg0wwPWVGIFEzYRBNyQMFsEwl4ZUw2EZ9XwmRWFSgyRLgt3L3yNNKKgjwK/U9v6HlohqbQ8/+L7Id0/F/0h3E8fgtpeGf/Sml4nwyn4Q3j30A4BCuMMP6PyMh3kd3ZTdnuBgq6x5GU4TzpvkPPzOLrN/YR6bYel3b2xyCaQdbiRByuE3+NL0iYQ0udGpIxdGY6b7+zg1ZBwiVb+S5w5UnrAjjnpq4dDJDcbu6T6ueOt3eIEZpy0y9be+SZG9fy4ZPbccZYeXzJBG4Zs4j6qnbGXJBPQbdYXvvLBqx2E/csGcMzF67myO4mup6azKlX5PPI+StBgFveO4VPHtnBzhVVZHR188dn+3Pv2MUEfDIXP96X3cur+Pa9A8SkRnDbgpH8bdgi2psDTLqxCEWCzx/dSYTLwp3LR/PwactorGinzaF0WDErslpHoq3BrxabCwnrknwKZgXaGvwIQGujH4uihrzoQ5xo6ddxwX4sNTy4uFaNkWC4E6ihRMIx4+qL8GOL7YXiRPHe+oL+h/rpH/9PGR+hx6HzOpHOUAMrVId+HNpPbxt6j36on1pAsOPd1tv4OKYQoAAR6TZiZAuuFAez3xvMnJs3s31xBaNv6UK30Uk8P2stZpvINXOGsPTNfSx+dR/Dz89h3NUF/GPactqaA9zw1lB2r63m/Qe20XN0Chc/3Ju/n7ucqrJWrnp6AJ5mPy/duJ6srjHc8OZQnrjsW/asq+Wi+3sx+qL84wyD0PN/V/ZTbcMII4ww/q8Ie0B+Qwh7QP534fUE2L+znrziWKy2k+dyyLLCgW31xGdEEhVj++kOIfjnhCVEJ1i58rUhJ5RPNQVDpSppo9KsxYsrcO8Dwzjvxt4/S9/+LbV8/tIeLr6n149yOY6Fp8XLu7dv4ZRZueT2+mVrzIy2vYLmrCCnOIby7UHeRWykzfAupXWOpmp3iyFzptmo1TJrJWRGGkRygLROUVTuVdtGuC201wcj/zOKozm8Q+WWiGZBTeeqES8yurio2K7KGvHhPaZqtVkBG2YUggXl1CdFwKYImFGrXpsBUREMr4X+NAUX0up7+sJfCTFBgtwDdcc/tL9ucMjae7IxTrC/qOkPHNNGZ4voc7JoryJaXYuQcY7lXYR6GwSClcKlEB26GaBfo4JgFPLTjQLdfNLnFkoM1w0cvb9fm6tPe1WMPiqnJujlUQiEeEYkFEyCmqLXrOiFAdX5BJBoMEkh16EQH23Hqj1yIy7LY/EL+4yb3WtiKps+OwICDDovm2/e1mTAsAtzWPLWflCg19hUNn111AjdPO2KTnzxgpoeO6PIRUudl4YK9bt7+h8L+Pw5VRYRbeG9uhmE8dvAb8EDcvWv5AF5OuwBCePfQJgDEkYYvwBsdjNFvRJ+lvEBKikzp3vszzY+AP7y+cgfND6OhUUJZjWyIjL4bJU7cVa3d+lrfY6+tudoaPD8yAiQ2z2O2U8M+lnGB4DdaePix/v9pPEhyzI3TVjI2VnvMv/FXcfJ/3nRCmakz+WtezYZ7zljgplyugwOFiezRZiIC6kTkB9SF0AQIbVT8A9leudoQjd4c3rGGMcJmZGYbcGfyU6DgmFnUXE2ImOtJ5QFQmOQUI9lASRBISCoxGW9EJ3uddDNlQAgCwoBvY3WV9aOFQEk/Zzg4l4fQw110ojTWp9ASB+0Y+UE/WWC7/m19/RX/Vj1BqhtfCj4hWAbJWS8wDGvug79GpUQmURwTpKAYTzpbY5FQOsTOrY+jj5H/T77Q/7p990fcj+lkHsU0GSSAF5RTa3rDWkT9KpoxpBJMayf3P5xWOzqsxKfGUFGN7fKT5Ehq2cMTu1ZiXBZyOsViyKrIWyZXd0k5aleU7NFpFO/4HOU1dVNVrHbeIY6D0hA0OLi0jsHn+Ftiyt4+KzlfPH48d+bso11PHHOCj742xZkqaM/qXJ/C0/NXMWb13+Pr73jnW6oaufJP3zL01esprmuY/paT6ufZ/60hocuWk7VwZYOMikg89odG3hwxlLKttV3kCmKwryHt3HftCVsW1l53Fy/fG0vd5+1mNXzDx4nWz3/IHeftZgvX9t7nGzrikrumbaE9x/ZxrF7qqXb6rlvxhJeueN7pEA4Z1MYYfxWEA7BCiOM3ynuWzaGu0Z/TaTLykeVFzA6+mWa2/x06RlPdrYbgAO7te1bBSbmvMXK+j/8avN96++bWbdIzST16DWrmHRZoSH79pMDxg7ym/dsYtJVhbji7by04UxevmM9Rf0TmHxlEd0HJ7Hh66Ocf2cPYpPsvHrD9yRkOZl2WzeGTc9m1ZwDTLiukKweMbx+8wZEES54sDf71tXyxVO7GXFhLj3GJPNB8TYajnq44JHe1B5q5cP7ttHr9FSGzsghq3sMpRvrOe/vvVBkhTm3bSKndyynXdOZ4hFJbF14lG07qynZWNfBCBFCPA3Ge1p8j/4ausuvH5tDgqXUondBToioWRnBkCS1j2i0OCZ0RgnyGSRtWDFkvRbqHdHfVj0RHYvtdRhdCXIuQj0wAhDQrkIPAQudjxQSEiaH1CUxKXpv/fpD5xM0THQOjC7zo+AV1Hy/iqDyXPSRJBS8yIghXBBdL4qAxZh1x3sVegdPFJrVaUA8p0/LJyYtgi6jk8kbEM+eldX0npxGdKKN9K5uLHYTfaak0ffMdDYuPEKPMSkk5TpJzHHS3hxg6DlZTL2xmLUfH6LzwASyu8eQlO2k6mALw87JRvLLrHz/ABlFLooGJ5Je6GL/5jqGnpWlXoMk89AZy/C0Blj30SHy+8dRMCjBmOdTM1ZRubeZ7+YdIq3YxcBzsgzZy1d+x/bFFSgKxKZFMOGGIkP29l838c3r+wEFq8PMZY/1M2Qf/msHnz2zCwSBtmY/d30YzFC3+J39zP37FgQRDu1u5JkNUwzZ5iUVvHzLehBgy7IK3qsKenAO723i0T+oqYHXfnGI9ytnEBmtGm2tTT7uPWcJkl/h208O0nVIEmkhmwh3n/kNzQ0+Vn10gE694+g5MpiK9+8XLqN0Wz2KDOkF0Yy9sBO/VyhwXEKG/4bOMML4dxA2QMII43eKo/uakQMKntYAHo8Hr1ddetUePXG2LbP5143zttmDP0fHxpxbHR09S3oRtNZmHzU17VRVqCFU1RVt1Na20dLgxRFppqamDWwCsixTX+2hpraNxhovAZ9MbVUboiggB2Qa6zzU1bbTUOtBlqH6SBuNNR58bQFaG3zU1bYbWcpqKtqpq/HQ1uwHWaG2xkOUpr+2so2amnaueHgA7z28hZJ1tYhmgW4jk3DabNQfbSMp20l0moOStTWgQMGABJqPtlO9v5WAX2LbN5XBDDMCpPd0E5fkQEZh48KjHe6DBJg0j8GxKWZDF8yhDhkBNb1sQCuaIQta6ltB80ToBhFB74xRAyPEhjApqg6T1lIWQtLgqtaU6nFAC21SgqR2RdEMIE0WnLNqFFi0M0O/EpyPfl9Cs/DIKDQhaUm6VMPGp0A0FhQUWjXZscslBQVZVFAUEZuW5UsQoc/4NOSATFavWCSfzJHtjdjdZjL7xrJnQw1t9T4yesQw8YpC1n94CJPDhKIotDX5aKzz4GkLEBmw0lTvxWIzocgK7S1+muu9tLf4URRorvPR3uJHCih42yQa6ry0NvlQFIXGeg+NdV78XomAX6Gx3ou7QU3H29zgpaHOg6ddwhkDCAJmq4igFgLHbO0Y2GDWqzsqPyDjh2R6oN8P9xMAyzFeX4vRVjgutbjRTzh+TJNZvfcoYDKJHdKZi6KAySQiB9TP0XTMb5XZKhpphS3HjGuxmowQPvPPTHUeRhhh/OcQNkDCCON3iqe1Qme+dokxEa9zxOwBERqrfezadJTCnin0GJLM5lUVCCIsPHT+rzrfaX/uQsnmWnZ/X8Mf7ulYK6Dv2HTOuq6YNZ+Vc8bsIqJj1TCwywd9QluznzULDnG4pJFlc8sA2LT0KCnJTirL1PCQmkOtrPtU9a5s+uoo+QNi2bVWLRJYcaCFXSurAdj49VGWv1vKhi+OAHBwewPV+1uQAgqbvjzK7jU1fPu+Gh6ye3U1iqzQ2uDn+88PU7m/hTVzVdm2xRUkZzqhSkYGbF4Tq+aVEfDJRMZYGXdlJ7bNV42JvG6xrJ5zkNY6H6KJDjv0IFC5r4UjGxsN74fqiVDrb4R6K/R/uodD9y+obQSj/oas1fEI9aQQYnCox+qKVZ+JXu1b6CDrmFkqNFWwjMCxvGVZ0JkkofqCvXSfh+7VEFHT+urhWLoRJYe01wNqJBTD8EBrg6CmHlaQDZneR69/os9H1u6GDAgybPvsCIIgEGG3UF3eSun6OgC6DE9mi1ZxPlAZ4O29baz98BAoMKuiD2/cuAE5oLDgid0MOS+bzx9TQ6LqjrTxwUPb8LQEeP+BrZx9ezfeuH0jCFC+q5Fv5x+kprwNQRS44rF+PH3tWhBg89KjNNV62blGfT5nPz2Qx69eDaiehhc2nYEoCty6YBRfP7+X4lMSye3TMdTxT/OGseDRXaQVu+gzpWOtjMte6M8nD+7AlWTn1Cs7egZm3tcTq8OEaBI45/ZuHWRn/KkYX3uAlgYf597avYNs+Dk51B1t53BJE2ff0LHYYNehSfz5xSHsWlPFxD8WdpAl50Tx1/dGsvbzck49PxeH02LIHE4L9302mm/e3s/Aiekk50R16Hv/52P49NldFA9MpMuQjsk8bn9nBO89spW0/GhGnJNDGGGE8dtA2AAJI4z/D6CH2wAEFIXt31ZT2DOFl5ec8WtOqwNEUeT210f8oPzyh/pz+UP9O7ynF0kDKNvZYBz7vTJNtUFOy5F9waKEigI1R4JeoNryIAEd1Lh4HU3VXqRA0CA4rIesAe3N/g4b6uU7gzLJr9BcE4ybr9rfQsCnLpdbG3xUlbYYXpzqslZatWJzfkk2PAMoGqG6XTLCq7wmRS1SpyjIgupVsBHc1dWNEAmVawIqmdqiL64BUVBrY+h6QveEQ40WOrwfmskqxCzRrIyAohjeClCLB4bm59KNi9AIfPWaBJUEHnLNeh9FARsCXhQ8ooxVFgyCOARTBQP4kLXq47pRo3prfIKMomg1UbTGsq5Hq+huGDaawWKxiirJBag50Ert4VZjzod3BT/j2oNtSLpzQYAje5qNgpbNNV6qDwQ/46rSFiMhgq9N4ui+Zo3LoVB5oMXwrimyQrmmQwAqD7TQXOczdB4M0V9VHpxXfr848vudmGOVUhDNJc/1P6EsJjWCWU+euCZQpMvKxf88cdFAq83EzLt6nVAmigJnXnfiYoIAp13cidMuPnEY1JAzshhyRtYJZT1GpNBjRMoJZXk947ju+RPz4VJyo/jT04N/cD6/J4QroYfxv4QwCT2MMH6niMtwGMez7+tOjGTBpogkyDbOuqr7j/T838Eld/bCYhNJynTy0PyxZBREY7GKTPtzF/742EBsDhOuBBu3vz+CwkHxmK0iQ8/J4rqXhuCIMhMRbeHG14YycEoGZotI1+GJ3PTuUKLibNgiTFz5dH9Ov6ozZqtIRrGL2+ePIjbdgcUucv59PTn3nh5Y7CJxGRHcNn8EaYXRmK0i42cXMOupvlgjTETF27jqjUGceXtXUjtHc/FjfTnn3h4UDE6gYHAC59zTnYse70NqYTQ9xqUGL05QQ81yB8SRVhxN19NSjArZ+mJafwUtnAgFWZANb4mieUxk9PdkzVsQ9JHo7wVfg4UMO3pjjkEov+UkovdO1EQ4VhBiKCuGgSQY4Vw/NI56s/QjoUN/rfuJJxNqlKBeh98nUzQqicwebmY+0Yc/vDiA9C4uhlyQzbR7uzP0whzSu7j4w4sDmPVYX7J6xtBnYhrT7+3OhOsLSS2M5g/P9mfGfT3J7x9P8fAkzvlbdy78R2/SOkdz3r09Of/unnQfmUSnvnHMeqA3f3p+MBlFLibPLuKCe3ox+IxMcrrHcs0TA/nzc4PJ7upm5IxcZt3Tm9NmdSKr2M0NL55cAoowwggjjN8iwml4f0MIp+EN45fGgR31uBIduOPteDwevp5bysSLin66Yxg/CJ9HDT2JTVazbNVVtOF0W7HazQQCMo1VHuJSVVljjQeLXSTCadU4An4iXVZtHNVfYLWr/obWRh+yJPP3Kcs4tL0Bi0XE4bRww7zhJOdHIZoF/nnucrYvq8QaYcLvl7EpIlaLCU+rn2avn4C2Ax/qUDAhhJDSQ70c6lLdi2x4S0DldjgUk2q4CBDlsBDtstLe7CPCbaWtwY/NaUbyyphEAdEs0NYWwB5tobnBS2S0hUCbjMUmIksKUkDBHmmmvcmHPdpCe5MfR7QVf7uEJCpgEfG0B7BFmmlr9hHtsiE1S9itJkQZWmUJs8OE0hTA4bbS1ODF4bTg90qYTAKiKNDs8WOONtPc5MMRZaatxY/TbkGUBKSAjBgp0tTsxRFtoaXJT0SUBV+7hCgKWMwCQrsa5tPa5GPURXnMergPkl/GHqmGAbU1+7FFmDCZRCRJxtsmERGlyjytfsxWE2aLiKIotDf7idDI0972gKrjZ2bHC+N/D7+FNLxX8Ao2/stpeGnj+XAa3jD+DYQ9IGGE8TvFxQXzuLL7J8xInsM//7CU7tEvcNXlC+lqeerXntr/LHatreas6He4MH0e95+9hHvOWMyF6fM42/Uua+cfZFrUO8zKmMd1Az7j+T+tZWbSe0x3z2H53FJuG7mI82Ln8s9zl7P5myNcED+XC+LnsuWbozwyYwUXxL7H36cu45LH+yKIAs0NPs69rwcr55RxgXsuf+n3BRc/2JsYlx1PlZ/zbu3BuXf2oLXaqxk/J95L+iEvhu4BCRxTr0QSglwMAHemg6ajHuJSI7l54SicsTaaKr1M/EsxZ97dneZqL5GRFm5dMJKMfBctR30MnZnDJc/2x9MkISgCf/5wGPkDE2g84qXLyBRmzxmC4lNQWmRmvzyI4VOz8B3xUVAYy22fjUS0CNTXeTjznz0Yd01nmo60E5Fs46aFI4iKt1Ff0c7p1xcx7d4eNNZ4ibRbuOeL0eTnufEd9jNuej7XPj8YpUnCKgnc/v5I+g5OJVAeYOCQNP42dxQunxlHk8CNLwxjxLQc2g57yS2IYcxlnbgwax5nx7zLwpf28M59mzkr5m0uLfyQAzsbuKT4Q6bEvMWb92zk61dKmOGey8Xp8yjdUscNA79geswcnrjsW9Z9Uc60uHeZnjiHnaurfrmHMIwwwgjjd4AwBySMMH6nqAjhMsx7fSceUd1xbxL9rF54gEHjThxrHcYP44OHthlhUGvnlxs1B2RJ4ZWbNxg8j5L1dZTv0ngnCsy9fwvlWpHCVe8fQPHL+D1q/qcvnt3Ndx+VA7BzZTWfP7Gb1gYfKPD5k7vZv0Elyx/e2cRnj+8yOCufPboTq1lEkaGlxoM5QsTbHsyFFUrqDmgcCT1TkMp7UAsfEpKRSu8XQDG8JjUlLZgRqNjTzMLHdlGrFW384tFdREZbUGRorPDw5eO7Obi5AYCvn97LkR2NSH4ZT0Dmyyf2sP1rte7DxvmHsdpFfG0BFAW+eWYvGz9XSf/719Wx4LFdNNd6QYEFj++iSnuOK0taWPD4bqrLVO7D54/uxJXoQJGhqcrLF//aRenGelX/CyXUlbUS8MlIfplFT+xms5ZBbNOCI0RGW/C2qvq/emaPISv9vo7PHt9JY7XKH/ro8R3UHlH1VZa28NFj2zmyrxmAef/aTlamC1lWaKrxMv/xXexdr35WX71SQk1FUP9Xr5dQNChYpyaMMP4TOJZn9d/SGUYY/w7CHpAwwvidwhYRDPso7pqAWQuKdygmeo1QM8XMHDKPntZn6W1/loP7Gn6Naf6q+OBvW7jI9i7XpH1IY1XHQoxLXirhYsccroh7n/LtDQAMm5ZtyNMLozvUIhh9YZ5x7EqwUTgwWIthyNlZxKWroRE5PWLoOyldzdevQL8J6WT3iAEgNs3BoDMzDE5F34lp9Bir8kIc0RYGnZ2JRSuM2HtCKr0npQEgWkS8HinIoRA0DkRIulr0VyFYrBDoYHzobRStvyCAM0nNOGaPMjNgWiYWLSVyzwmp9Jyozs1kEel/doZRbK9oZCI9J6QZ4/U7M52EnEgAUgqj6T0l3ahX0HNCKnkDVAK1K8nOgLMzjRSsvSem0WO8qsMWaWbQOZlYtee65+mp9Db0CwyclklUvFrQs3BYAj1PTzX0952aTnK+WuwvuVMUfc/IMO5JzwmpFAxWi/9FxdsYdFamkea1/4R0+o1XM0fZIswMn5aDPULdt+s3Po1+E1WZaBYYcnYWrkT1XnUeGE//01WZokDvMepc/F6JJ89byXUFn7Lm/QMd7rssK7zy53Vclf8xC57ZzbH44O/buDL/I965c9Nxxfa+enkvl3f6iKevXI10TLHBdfPLubrwE/45bRneto7FBnd9W82fu8/nb2O/NowuHQd2NXDpwI+4bMjHlIckcQCoOdrG7NGfMav3h+xaX33cXMMII4wwfgphDshvCGEOSBi/JAKBAE9dtZbcnjFMvqqYNx/dxLtPbOGf74+haz81m0xP67NG+7wuMXyw8dxfa7q/Ci60vIssqT+Bwy7M4YrXBhmyy9zv097kB6BweAJ3LB0DqGFYB7bWc+qsfAC+ea2EnB4xFPRL4MCOerYvr2LUhXlY7SLL5pQRm+Kgx8gUWht9lG2uJ79fHDaHmYOaUZPZxY23PcC+9XVkdXMT6bZSsa+Z1gYfub1jkQIKJd/VkNIpGleindryNmrL28jvry7a96+rxeo0ceOIhbTUBzMm6RAUtRBgaPpbQQGLtv/UTsAgeOtNHIrJIHPPfKAnXYcmkZTvxJXkoO5wG7UH28jrH4sgCuz/rhZ3ioO4zEiaa7wc2dVEXv9YzFYTBzbVY40wkVIQTXuznwMb68nuE4s90syRnY1IAYWMbm58HonSdbWkd3UTGWOlqrSF5hovuX1jkSWFfd/VkpjrxJ3soO5IGzVlreQPiEMQBfatq8WV5CAhK5LmWi/lOxrJ7x+HxWbiwOZ6LHYTqZ2j8bT42b+hjtzesdidFo7sbiLglcjsHoPfK7Hvu1rSu7hwxtqoLGuhoaqdgn7xyLLC7rU1JOc4iU2JoPZoGxWlzRT2T0A0CZSsryU6wU5StpPmOi8HtzfQqV88VruJ0i11mK0mMgpdAKx5/wCPT18JQGSMlZdqpxn3fc/aGm4bvFD9DER4o366kYq29nAbl2V+aLR9atdkUjXjVwrITHO+g+RXn+N7Fo2mx6nBbFGXZX5I7WHVa3XNy4MYNStoKN86dCF71tSAANPv6s45dwSTU9x94RK+mluCgMCEWQXc8vxwQ/bc7et45+HNoECfU1P514LTj3vu/n/Db4EDcjmvYP0vc0B8tPFCmAMSxr+BcAhWGGH8TvHFC3v45s0SVn5gYfg5uTx1xxpa/QFuOmsRCw5edFz7gm4nTuP5e4Y9ykxbg2pkpHdzdZBFJ9oMAySls/qH1ecL8NrfNlBR2kJcZgRSQOHdh7eSkhfFvZ+M5q37N7Pru2rMDpHsrm7eenATTreNBz4fw/pFh1k9/yBjvPl07hfPZy+ru9wX3tmTPetq+frNEgZMzGDwlEy+fHUvTbVeZtzRnfqjHha8sJfCgfGcdkUBy94p5fCuRiLcXRBEgc9f2E1KfjRPrp/I3Pu2UnOwla4jk4hPj2TFu2VYbSJjLstn01cVHNzWQF7fOAoHxLP4lRJkGUZenMf+zXXsXVNNSoGL/pPS+eqFvXhbJU45P4e0omi+eHIP+f3iOO3KTix/t5RDOxo5w1WM2Wriyxf3kpjjZOotXVj7yUG2L6/iNLETyXlRLHxxL44oM9Pv7M7mr4+y+sODDG/JoXhYIl++XELAJ3PuXd05sLWer18poefYVIZOz+br1/dRd6SNcxK70VLv44sX9pDXO5YJ13RmxdwyyrbUMyWqGIfTzIIX95KQGcm0W7uydv4hNi+uYJzQifTOLha8uAdbhJkZd3Vn8+IKVr5fxrBzsuk+KpmFL+/B1y4x464eHNrZyIKXdtPz1FRGnZfLojf2UlXeynkJdtqb/Xz20m5yu8dy5rVFLH5vPyWb67BFmnG6rHz60m7iUyM4/7YerP7iIOu+OswEpTPZxTF88tIurHYTs+7sTYTTQkK204iNS8x1dnjeYlIcmCwikl/GlWg3khMARLgsRLgstDWqZPioOJshE00C8emRVJa2qMcZkR3GTcpzGgZIUk5Hncn5UexerRbETDqmtkZqbhSKrHrKUnM7LixTc6KMUMT0vPCi87eCcBreMP6XEDZAwgjjd4pnr/0OgECjj0mZb3BUagcBdlbUsWdzFQU9Enn609O56/KlFPdO4ME3xvzKM/7v477vx/POjRvJ7RvLhBuKO8juXjOW16/5npg0B+f+oycAz13/Hd9/pfIV/nb2YhRZzWZ1uKSJm8cuZMtylefw8B9W4k5yUF+h1ne4a+o3bF5egQAsn1fG2Ivz+eLFPQD4PRJfv1aC5JdZ8u5+zrmpK/Me2g4C1FW0s29NLU3VHpa+tZ/GKg/v3bMVQYT9G+pQrLB/Yz2KrBDwSix9ZT+CAGUb6ukyIokti46CAmkFLr54QjV4di6vwv+HTkaxxbjUCFa8VYbfK7Hz62qiXDbWflyOIIAgChzYUk99RTtL39xPc42HuZr+vd/V4nRZ2PtdDYoMAb/M3Hu3IAjw3fxD9DotldXzDoKi1rf45F87UBRY9V4Z4/7YmQVP7wYEvK0BVrxXir9dYtnbpZTvbuT9B7YhiAJVZS0c2dtMTXkrS97cT0uDjzl3b0EQYee31cQkO9j5rVoQUgrIzLlP1b/2k4MMnJLJ8ndL1RS+ksInT+xEURSWzy1j4jWFzH9yJyDQ1uxnxUdleNsCLH57P0f2NfHW/ZsRRYEjJc1UlbdSUdaMIkNrk5dX792IIMKWFUdJy3axZVkFsqwgSTJvPLgJQYAVHx9gxFk5LHq7BAUFi9XEZff1Ja9fHH/9ZjRlm+oZen52h+ctITOSB1adxvZllQw8MxOTORgh7XBa+Mfqcaz//DC9TkslKjZogAiCwIPLTmPle2UUDkograCjQXDzB6ew/O1S0gpddDmlY5G+K58ZQOcBCbiT7AyYmtFBdvEdvUnNjkI0CYw9L7+DbNKlnXG6rDTXexl34YlreoQRRhhh/BjCBkgYYfwPoqHGwy3DFmKLNPPImnGYzT/+Vf6hQMsh47L4+gTekBPh/uuWsejDEv58zyCmXlT80x00fPVeCU/etJYhEzO5+elhJ92vqc7D0zesJSnTyay7eiGKJ0dZk2WZd27dRFO1l0ue6IPdaf3Btok5Tv78wYnn5Iy1c/U7HWstKCHbfYpCh1h8PZQr2FYJaasWvVM0Erg+joCALGsy0BbLekVzAUVWOowTqkOR9eIYGhG+gz5dvyoPlaGAFDqmrHR4QJRjdOhclRPpl39wbiHXL/zQ3AjOTTFUhIyjyvR7d9zcFF2/ckw/VYesX7+gHPNZdNRvXOMx+hXt3vzQ/Ze1a1ROpB8FWZZD2gZlxSOSKB7R0RDQkdcnjrw+J/ZEpnV2kdbZdUJZXFoEU6478XcyKtbGhNmFJ5TZIsyM+2PBCWVms8iEWZ1PKBMEgVHTck8oOxZtjT5Wv3OAlM5RFI9KPqk+ALIks3rOQQQBBk7PRDSdPGV1++IKju5uZvD52UREW366w+8EoXyv/6bOMML4dxA2QMII438Qf8j9AG+rpB1/xGsHpx3f5p99ePW2DVgdJt7dey5jMl+jzR8gLdFJQY+fl5Fn7kvbeOvpLQDcdtk3jDkrF6fT/pP9AoEAd56/BICPX9hFer6L8687uSKIfxw0n6P71YxDbU1+rvnXwJPq98wla1j+ZikA+zfU8vCmiSfV76Tm9Fh/Du1ppLKshaseHwAyPHPdWlJyo7jn01H888KV7F5fw/m39SCnWwz/mLUCp8vKXfNGsW6hGoI19sJOFA1MMHa4Z93dm2FnZPHVG2oI1tAzswFoqvUy866e1B1u47Mnd1EwMJ7xfyzAYjNxZHcTU2/ugmASeP9BNQTsnNu7EZccwc6VVYy/ujOJ2U6iYjcT6bYy4289yO8dx5qPDzFiZg5FQxMxm0WkgMyMe3syZFo2S17dR6/xqQyenoUCNFS2M/2u7jRWefjssV3k94vj9NmdsTjMlO9oYOpfumCxmZh3/1aScpycfUc3YtMi2L68kvF/LCA5P4pIlw1HlJkZd/ekYEACqz84wPDzcug6IglBEAj4ZGbc04MRM3P46qW99BybyvDzcxAEgbojbZx7Z3ea63x88q8d5PaKZcp1RdgizZRtqWfqjV1wOM3MvW8rCZmRTP9rdxKzItm8uILxVxSQUeTCEWnGFmnm/Ht6UjwskRXvlTF8eg49RqcgCALe9gAz7+nJ6Ivz+eLF3fQ6NZXRF+aDANXlrcy8oyetTX7ef3Qbed1jmXZDFxzRFko21XHOdV1xum28dd8m4lMjuODOnqTmR7Pu63Im/aGQ3K4x2BxmrHYTM2/p8Ys9g/9reHr6KrYtqgDglm9GUTTyxMbXsZj/953M+6v6m1NT1srk2364unoodiyp5MHRiwH4/pNybl448t+YdRhhhPGfRpiE/htCmIQexslisvkNY9fWajfxQev5/1F9N164kM/n7DXOP996PrmdY3+yX0ONh/EpbxrnQ07P4OFPxp2UztPdb+BpVbP29BqZwiOLxp9Uv9sGLaTkOzUdqjPWyivVxxtn/0uQAjJ7vq8lLT+K6Dg7tUfbqD3cRn7vOAQBSjbUEpsSQVxqBE11Xo7sbaJTnzhMZpGybfXYI80k50TR3uKndGs9eT1jsTnMHN7bhCzJZBS6VRL2xjoyi11ERFupOthCS72PnO4xyLJCyfe1JOdG4Yq3U1/RTk15K3ma/v0b63AnOYhLi6Cl3svhPU3k9Y7DbBE5sL0eq8NMSm4UnlY/pVvqydX0HylpIuCXySxy4/dJ7NtQR0aRi0iXlepDrTTXesnpoerf930dSTlOXAl26ivbqT7YSn4fTf+mOlwJduLTI2lp8FG+q5H8Pqr+MH59XJ/9iZG6+eLn+zHisvyf6KHi+VmrWfVWGQBDLsjhildPbgNi8QslvHKlGn4anxXJY6VTfv6k/w38Fkjol/5KJPSXwyT0MP4NhD0gYYTxP4jT/1jA58+oHIKL/9nnP67vvhdG8+UH+wj4ZRKSI07K+ABwx9tJyoyk8mArJrPA394ecdI6/3BfX577y3fYHCZmP3Zyiw+AS57oxz2jvybgk7ngn71Out9vFfecs4RvPz2IM8bKnXNHcueUb/C1S0y8sjNmq8jHT+zEYhO5d/5o7j93Gc11XvqPT6PnqFReuGkdoihw5wcjee7676gobSGnewzTb+rGPy9YDsB1Lw1hwQt72P1dDfHpEcx+dhD3TF2MFFC44O6elG6tZ+W8A0S4LPx13kjumbwYb7vEaZfm44y28vGjOzFbRf46fySPnL+SphovPUen0HtiGs9f9x2CCHfMG8nLf1nPkZJmsrq4Off27vzj/OWgwLXPDWLx6/vY+W01sSkO/vTyYO6ZshjJrzDjzu4c3tPE8jllOKLM3PHRSO6dsgRPa4BTL8ojJtnBvH9sw2wR+ev8UTx80Qoaqjx0H5HMg1+NRRCEn7i7YfynMfOJPrxz3QZSi10MOPfkaw9NuqULB7c0IAgCk24++ZDPQTOy+P7Tco7sbGTmv/7zv42/JYRJ6GH8LyFsgIQRxv8grnxyIFc+efKL8sNlDaRlu08oa2jw4HSaf5RHYreb2dp69c+dJgAf7zvv3+p35jXFnHnNyS88dOT3i+ONxukn3d7rCWCxiifkmPg8Acw/IAv4AiCKmM0nkAVkkGXM1uPvqaIoyJLSgWT8Y7K1Cw4B0FLvY+ncUnxascFvPzlo7PL7vTJL55TSXOcFYN2Xh2lr8RtjrphXRkWpWtCvdEs9qz46oBYlBFZ/cpDd39UAUFPexor3y5A0PsPqTw5yYEcjAG2NfpbNKTWKHa759BDOKKt2L2RWzj1AU42qf9PXR/HJWlFEBVa8X8aREjWc7sD2Br796KBRKHHN/EPs/FatJVF3tJ0V75UhaVXd13x8yAjDa28OsHxOmeEVW/vpIaPuRsAvs2JuKQ1aLZctSyvwe2Ujk5QUkBFNwgkNkh+VSTKCIBh1SUKh81NMJ+Am/NzP+Nj5/Cdk/83rD0Xvyen0npz+o21OhNTCaO7fcHJez1A4oizc9NmIn90vjDDC+O8i7KMOI4zfOQaan2Nsp7foY36WzSuPdJANz3iZIYkv0SPiOb79+sAPjPD7xd9mLGZs1OuMcb7O/m11HWTP3fwd46LeYIzjNdYuLO8gW/TMHi60v8eF1jl8/fzeDrKNnx3mEvtcLra/z9xbN3WQNVS0c1Pnz7gk4j2+ea5jP0+Ln7sHLuJS+1w+vHOL8f6Uq4oASOsUzRmzi4lNcQBwxuxizphdDAK4E+2cMbuIDI2kPPHKQiZdWYhoErA7LUy6qoiuQ9XY+wET05l4ZWcsNhNmi8jpV3Rm+DnZAHTqG8ekqwuJdFkRRYFJVxcx+RqVwJyc62TS7CLi0tQQj8mzi5g4uxAEtfDihNmdyeyi6j/t8k6cfkVnTGYBe6SZSVcV0k3LwNTntFROv6IAi13VP/6yAkaclwNAbq9YJl5TiNNtRRBhwtWFTJqtXn9idiSTri0iPkPTf20RkzT90XE2Js8uIrubG4Axs/IN4+Pzh3ZysX0ut/VYQOsxdVJWvFXKhc65XJ39MVVlLR1km746wsyYucxKeo99WjV6Hfs31jEr+X3Oj5nLxi87fqeqDrRwWd5HnBP1Lovf2NdB1tLg49ren3Gm423m/XNbB5nfJ3H76EWcYXuL565d20GmKAoPXrCMcfbX+dtZ33RMKgC8dNt6xjte50/DPsNzTLHBj5/awemRb3BJ1w9pOKbY4LJ5pUxyvcmMrPco39vYQbZ+xWEGJb7I4OQX2by2ooOsZHstIzJfoV/s8yz5rJQwfhtQfqX/wgjj30GYA/IbQpgDEsYvjQ2Ly7lg3MfGeX68i0+OXGCcd7E+ZRxnd3Lz+faZ/83p/eoYYXvZyEh16vRc7nwrSFgN5aAUD0zgqRWTDNm1OR9Tc0CNa0/IieTxfcE487sGLmK/xkGxR5t5sSHIQfnq6T28Mft7AGLTHTx+8AxDtuHTch4/YwWg1nZ4xTfd2JVuqvMS6bJgMokE/DKeVj9Ot5qKtaXBiy3CjMVqQpJkWhv9RGtpWtua/ZgtAla7GUVRaKr1Eh1nQxAEdaGqKNgjLSiKQnOdF2eMDVEU8Hsl/F6JiGjVw9Fc7yUiyoLJrOsP4HSrstZGH1aHydDf1ug30sS2NfsxmQVsjhPrV2TFKLbXVOv5Qf0t9V4cmn4pINPe7McZYztOvywrtNR7iY4LJki43D3PqOdy5RsDGTIzx5Dd2O0zDm1XF97n3teDqbd1NWT3T1nM+s8OIwgw9vICrnxmgCF7/pq1fPncHrXK+fhU/vrZqYbsg39u441bNwKQXhjN09uDz8bSd/bzyAVqIUJHlJn3GoLewe0rK7nllC+N87n15xrXX3mghZl57xuyl7ZMJavYDajen9MjXjc4YQ98NoZ+44Ieh2mp7xqeoeueG8zpfwhmtrp64KfsWV+LIMB5t/Zg1j29DdkN5y3kyw9KAJg8s5AHXh5tyB66eSWvP7YJRYF+w1N57esz+f8dvwUOyCxe/lU4IK9xaXjdEsbPRtgDEkYYv2MUD47Hpqhfc1EROP2ijjn7Q6MuxpyVx/9vSMoMFmYbPLFjHYS87kGeS//TOoaQdB6SYBwXDk3oIOt+WjDVaFaPmA6y/IHxmCzqTS8e1TEbUFbPGGyRashWwdAEw/hY+lEps8d8xmPXraatxccDly1j9tjP+X7JYTYuP8q1p33B/Zcuo63Fz5M3rmH2mM/45v197Ntax/UTFnD79K+pr27njX9s4poxn/HhszuoPNjCbWd+xc1TFnFkfxNfvLKH68cs4PV7NtJU5+Hu85Zww/iF7NlQw6pPD3Dj6IU8ee0a2lt8PHrFKm4as5DvvzrM1pWV3DR2If+YtZzWJh8v3bKeG0cvYPGc/ZRur+eWSV9y1zmLqatsZ87DW7l+zAI+fHIH1eWt/PWsr7l1yleU721k4Wt7uXH0Ql67cwMtDV7un7mMv5z2JbvXVbPms0PcOHohT1yzmvZWP/+68ltuGrOQdQvL2bG6ipvHfcnfL1T1v3DrOq4fs4Cv3i4x7mvRCDXjm9kmktO3Y4rbLqeqn5UgdvxMAbqeosoUBboM65g1rsuwJGPB33VEx9SyhYMSELS/rN1HpXSQdeobj0XzzOjj60gvdOGMUQ2O7O4x2J3B9LGxKQ6StSKCcakRJGYFiw2aLSJFA9W5O/5fe/cd31S5/wH8kzRt0733BAqUXfaGMmUvQUFBBBkXBUWvgAiKXufvil5R2SpDhpS99xBllj1aVgct3TtdaZrk/P5ISYktcgI0XZ+3r/gKffLt85yek/Z88yw7c9Rpbjg/K6SHl/51we0Mj7FlSZkA6HvIHmrTzadkqWldkvGo1p299cffLtT44VVEROwBqULYA0IV4a+dMfhq0km88EoQ3l5kuK9FWnIe5k06im4vBGDsjJDKaWAlKlKqsfXHmwhu44ZWPQxvsrRaLbYvjoC7nx26Dis7efbEqihIpBJ0H192P4TwbfHISihA77fql5k/knIvF2mx+WgU6l5mzH7mgwIk3MxBw+7u+iFEvR1XobCkJ2bUjKbY/OMNQAJ4B9pBZiFF3J0cQABGzWiCzT/eBKBbGa1FVw9cOKobHjTkjWDsXHlLX8+AV+vjyMZoAEDoyDo4uSVG3xM0ZFowdi6LBAA07eSBuBs5yM/WDV0a/nZjbP8hApAA7r42sLY3x/2IbAgCMHx6I+z4SRcns5AipJcXzh/SDV0bMLEB9v58R1//C68F4fC6KAgQ0HV4IM5sj9PvozHkzWDsXqpra8N2bki8p4Aio8iwfuhuyp3crRB9LROCAAx9KxjblujqNzOXYl/2OJhbmEGt0iDyRCo8G9jpdiI3OMcCIv5IgaOnFXwbGe6xIQgCbp9Jg7ncDPVald2bI/pyJlSFajTs6FZm/sSDWznITCxA01DPMvMnUu/n4cFtBZqFesDcwsygLCulEFGXMtGkq7u+Z+ihvOwiRJxJQ3A7V4MeHgBQFqhx/WQy6jR3hqu34Sfg6mItrp5IglddO3j/bddyQRBw7WQKHFwtEdjEMFkGgGvnkyE1k6Bp67JL596+lo48hQqtOntxsj+qRg/Ia5XUA7KWPSD0FDgJnfQEQUDY4puIv5eDV2Y2h3egXYXXGXM9E7tX3Eajdm7oM07c8ozPQqPWYtv/IpCVXIiRs5rC2dOqwuu8dy4df66ORtM+Xmg7wu/JAc9Zl6F1sHdonXLL3DxtsWKPaZaprIos5TK8Mqv8PRqkUilenNG03DIACJ3w+B6jfzrPHkF28Agq/73l7GsNZ1/DGwgXL2s8iFJAAsA3SPcHXgLAzccGMgsp4u/kQADgW9deP7HcxcMKbj42+k0EvQLtYG4pRbFKC2tbc7j72+rmEUgAN19r2DlaQpFVBDOZBF4BthAEXe+Ym68N8tNVyM9R6XZUr1dav6uPNaztLXA/IhsA4B1kD4lU94m5o5scbn7W+vo9/G1hITeDqkgDubXMoH53XxvYOVkgJ6MIZmYSeNW1e6R+axTlq6HILNLVX3L8kACu3tZw9tIlIADgVdceUqkEWkGAg4ulPrmTWZihWV/DnoiHpFIJmvYof3M8iUSC4E6P3y+nbsvHrwTnG+wA3+DyNw10D7CFe4BtuWVOHlZo09+n3DJbR0u0619+b4PcWmYw7OpRMnMpWvcp/3tKJBK06P74zQGbt3t8WcPmro8tIyJ6EiYgpHdkSzS+ffcUpFIJbpxPwerTFT+u98NBh5GRVIDdS2/Bq64dmnYWt0nV09q/8g5Wzb0IqVSCxHsKfLKz15ODnoFapcHXfY+hKE+Noyvu4b83B8L7MTcmROVZdHAgDqy7g0Zt3dG+jy9cvawRdycHgyc0hEQqwe5fb8Gnrj16jqyLgEZOuHE2Bf1erQ9HNznqNXaGraMlBoxvgDY9fHDmQBy6D6uDgGBHuHnbQKPWYvDkYAya0BAntsSgVU9vNOnoDkd3K2SlFmLw5GDk56hwaO09NGjtinb9fOHma437EdnoP7EBzMyl2LvyNjzr2CJ0VB3UaeKEG6dS0OsV3RK5fg0cYW1njn6v10fbPr44uz8eXYb4I7CJE1w8raFWaTBoSjAGTw7GibAYtOzhhSad3eHoZoWMxAIMmtIQhXnFOLjmHoJCnNF+gB/c/WwQfT0L/SbUh4XcDHtX3oa7vy16vFwHQS2dcfVkMnqNrlfuyk1ENRl3QqfqhAkI6RUV6oZ5CIKgX2qzwussUOvHEqtMUGdRgbrkU2IBRX9bLaYiaLWAukirP8ZiJVdNJ+N4+tvi9Q9LJweHDjfszRo3O0T/vG0vH7TtVfpp9+hHdp1v1NYNjdqWzgEY9q9G+uf+wY54bX7pnikvjCudK2Rjb4Gx80rr6Dw0AJ2Hlg5JGzOntI6QHl76OQcAMGpmaQ9SwzauaNim9FPzIVODS+twtICLrzXs3XQT1F18rQEpYGFlBkgAZx8rOJX0Vjp5WsElqwhWtjKYmUvh4msNFx8rSCQSOLjK4epjAxsHw+FLRERUtTABIb1+Y4IQHZGF+Ls5mPyRaTZwWrClF7Z8dwONOrihZa/yh0k8TwOnBSM1Lh+ZSYV4/YtWTw54RhZyM7yzpSuOLLuLFv28EBBSdpw1UW2m0WjxVpddSIrNg6WVGd75oRP+O1m3Gtil4w0QdzsHN06nQCqV4MPV3fDF+D8gCMCh9V5w9rTGkQ26pW7n/toN3755CiqlBr5B9vgtYiTnJlCtwo0IqTphAkJ6MnMzvP21+M3tnocW3T3/cQzy8ya3lmHaovZPfuFz1HKQD1oOKn8MtimkJSvw/ouHMGFOK4QOMZwwrVar8f0X59CjXx20bu/9mO9Az1NuVhGyU5XwbWBf5ga5MK8YKffz4N/IscwQIpVSjYS7ufALdtBvQPiQRq1FXGQOvIPsYGll+GtdqxWQeEsBFz9rWNkZ9gwIgoCku7mwc7GEnYtlmbamxuTBwsoMjuXMlcpMKIBWI8DV36ZMmSJNiUJFMTzqlZ3rUpCtQk6yEp4N7SCRSFBUqEHyfd0eHEWFGtw8m4KHuxTevZKBxCiF/jiun0rR9yZGXctEVkqh/vveOJMClVLXi5oQrUCxSgsLSzMIgu74nbytYO1gUaY9SXcVsHGygL2rvExZ6v08XS+Ld9mJvZlJBVCrtOXO58hJVyI/SwXv+mUn5RYoVEh/UAC/Rg5lzr+yQI2k6Fz4N3J44gZ/RETVGX/DEdVgSqUSXfxW4+iFOEwYuRNbll03KK/v9BO+//Ichnb7HauXXq6kVtYe8bdz8EqdMExosg0rP7hgUJaVWojxDbdgcosd+PLVEwZlRYVqvNV6F95suROzeuw32IhOEAR80Ocg3my5E2+23AllfrFB7OLxp/Hvpnswo95OZCUVGpRt+ugq3g3ejbcCtiP+ZrZB2ZFldzGz3i7MCNiBm8dTDMou7U7AzICdeLfOLpzeEGtQFnU+A+/678Ts+nuw75tIg7LU6Dy8X2cXPmy8F+vf0e2HYm1rjjf+0xp2Tpbo82o9jJ/fEg1bucLFyxqTP2+DtxZ2gIOrHG37+mD8x63Qupc3HN3keOub9pj8RVu4eFqhUTs3vDa/JXqMqgM7Z0tM/bItLCx1K0z9PPU8ZjXZi3fq7UJ6XL5Be7Z9cQMzG+7Gm/7bEX3JcCPKI6vv4Y262zAxcCsuHkgwPP5DiZgQsBVv1N2Gw78abigZfSUTEwO3YmrwDmz87KpBWVp8PibU24p/Nd+JRVNOG5TlK1SY1Hw7poTswNwBh8AFKomoJmMCQlSDXTudhnypbq5LsUTAkk/CDcqLVaUd6D//yASkol04nIDCPN35OFqyDO5DEWdSkZWi2zDuz633DW5A4yNz8OC2rifg1tk0ZCWXJhI56UW48acuQUi8l4uY61kG3/fs5jgAQG56EW79lWpQ9ldJ8lBUoMGVA0kGZWfC7gMAtGoBF3ca7gR/YXu8fsZr+NZ4g7KrexKgLrmuzmyMNSiLPJaCwhxdgnR2433918d+EILdqWMxb3Uo3H1tsfzsUGyNG4N2fX0xYEID7Ex6Fd/s7Qdndyt8e6A/diS+ir5j66PTQH9sjX8FS08NgZu3DRZs6IndKWMx+t+l81LObNLVk5+pQsQJw0Tqrw26XbyLlVpc2W+4o/mprbo4QSvgzI44g7KzO+MglCSBf229b1B28UCCfj7biQ2Gu4RfP5mM3JLd2E+GGf5soq5kIqVkN/bLR5NQoDBMJImeRIAAQWLiB6eh01NiAkJUg7Xr6Qc7rW5IjoUgxaz/Ge4DIrcq3YfgnXmmHZpWG7Uf4Ae7ks3mBk5qYFDWrIsHPEo2mOvzWpDB8Bz/Jo6oF6Jb9rVlLy84e5UOiXJwtUSbfrohfoHNnFC3heHysKETdMPunH2t0STUcJW5XpN1S19bO5qj9WDDYYLdX68LSHQb+HV4yd+grOPoAEhlUkjNJOg8NtCgrPUIP1ha66657m8YLlXc9AVP2Lnphnp1n1RatuTD8+hm8wtmDT+IB1EKvNQ4DL2cV+OPnbHY/NMNdLf7FZO77kRyfC4mdtyBUPtfsW15BI5uiUZPp9UY02wzEmMVeHfQfnSz+QUrP72o/949Supx9JSjWW/D4Z69JumO38pOhjZDDZex7Tm2LiRSCczMpej2suHE/64vBcLMXAqJFOg51vAY2w/xg7W9bqhbv8mGG3+G9Cw9d30nGpbVb+0C/5K9SDoN8dd/DyKimogbEVYh3IiQKoJSqcSnk07i9VkhaNii7L4Gm9bcQLsuPqhTjxPkTUFZoEZetqrMhnEAoCrSIDulEG5+NmXmB2jUWqQnFMDNz6bM/BBBEJAalw9XH+symxsKgoCMBwVwcJfD3NJw4zsAyEwsgLWDBeQ2ZacE5qQqYW4pLXfuRH6WClqtUO7ckcLcYhTlq8udO6IqVCM/UwUnH93x5+eq0Nt5jb588ISG2L36NiAADUJc8CBKgYJcXW/AsCmNsGOFbliXg4slnNytEBuZDQAY8kZD7PrlNgDdHiIncifqh2FlPCiAnaulfnPHR2UnF0JuKzPYeVx//OlKmMmksHUse/x52SpoirVwcCs7d6QwrxiFucVw9irnHCs1UKQr4epbdu6MuliLjMQCuPuXPf9UtVWFjQhH42dYSEy8EaFQgN8xifctZDT2gBBVQ1u+v4He5qvQx2IVzu6N+8fXyuVyfLWub7nJBwC8PL7pE5MPtVqNDp4r0MjiR4xou9Gotr7RaQc6mq9Eb5fVUKvFL318clsMhrqvx6sNwpCeWCA6LikmF6/UDcMIjw24cOjBkwNKqNVazOl0AK86bULYZ9dExwHAr5PPYarDZnw/7OQTXyu3lpWbfACAhaUZ3P1ty735NJNJ4RFgW+7+FhKJBB4BtmWSj4dlrn425SYfAODsbV1u8gEADu7ycpMPALBxsig3+QAAKzvzcpMPALCwkumTDwCwsjFHQEPdJ/829uZo09Nbv7lAs44eaNJOd93KzKVo39sHZjLd8Tdp745mHT1KjlG3BLFVyXHUbeIEc4vSn4WLr3W5yQcAOHpalZt8AICDq7zc5AMAbB0tyk0+AMDK1rzc5APQrYxXXvIB6I7RI6D88/+o3Iwi/Dj6L/x3wHEk38v9x9c+SqvRYsPsS/is+2FcO5j45IBHHF59D7O67sfOHyKf/OJHRJxOxZyeB7B4+lkUq8QvtZ6ekI9PRxzFpyOOIj0h/8kBJYpVGvw4/Qxm9TqAm6dTnxxARJWCPSBVCHtASKw+FqsglEzfsLQ2w17FaxVa38fTjmLzLxH6fx+IHIeAeo5PjFNkK/GC22/6f/caWQefb+wtqs7BLr8hv2QcfNsXfPB/e14QFTez+17cOKW78XB0k2NL0hhRcZs/v46NC0onDW/TjBUVlxaTh/fr7db/+9093REygCuKGSM3uwjhRxPQuK07PP1tEXkhDRkpBejYzw/FRVqcPRSPwGAnBAY7IiYiC/fvZKNjPz+YyaQ4cyAe7j42aNjSFUmxuYi8mIZ2vX1h+5jEqSbY9OEV7Pmv7v3YcpAP3tvRXVTc5b0J+HbwHwAAG2cLLE8fKSouJ12Jsd5h+t85yyOHwaecFb7KMyl4G5KiciEIwLu/dEaf8UGi4hZNPYVDq+4B0A1Xe2dZJ1Fxh9bcxbdvnIJEAngH2ePXyIrfUBdgDwjvW8hYXIaXqBoyk0n1E30f98nu8+Rbx3D3dluRG71ZyA1/xXgGll2W9XEsrWX6BMShnCVSH8fOpfS1xoyjd/Iu/cReKhM//MXyb70H9m7l9wrQ49k5WqLni6VLRDdqU7phopm1FKHDSudg1GnshDqNS3vsug4q3RTRK9AOXkZcY9WVrbMlBK2u58fOVfz1ZuusS8okktLnYljIzWAhl0FVqIZUJoGVrfhbB3sXSyRF5wICYO9sRFudLKEt+Xz04bwpMewe1iHR1V2bcB8Qqk6YgBBVQ0vODsJ7PQ/A3FKKlVeHV3h9U2a3wdnj8bhyJhljpjaDi2v5Q0j+Ti6X4fW5Ifj9hxsIbu2K6V+Jn+i+6MRAfDP5T7h4WWP2z11Fx320oTu+HHcSeVlFmLO6m+i43hODkHhHgZsnU/HKZy1Ex9m7yzFlbQcc+fEO2o8JQN22LqJjiZ5Gv5kNYWYuQaGiGP1mBj85oET9jm54e3MXRIdnosfkek8OKGFla46vjvbFX5tj0Xag72OHl5Xnw7BQ7F16G74NHdBukO+TA0qM+yREn0wMe7uR6LgOg/zw/qoueHBbgcHTGoqOIyLT4hCsKoRDsKgihJzbI1EAADW8SURBVC27jm9nn0a3fv74Jqy/QVlMVBbeGrcX3XoF4IPPxN/k09O7dzUDiTG56NDfTz9J+qEHd3Nw72om2r3gA2s7w0990x7k48bpFLTs4QVHN8P5FTkZSlw6mogmHd3h7me4MV5hXjEuH0hEQDNH+DQ07MkqVmlwaV8C3AJsUbel4epZWq2AKwcSYe1gjuDOhvOHBEFAxIkUaNQCmvX2LDNn4d75dOSkKNFygDekf9tQL/5GNpLuKBDS3xsWf9s0MSU6DzEXMtD8Ba8yc0+ykgpx62QqGoe6w8HD8PjzslS4cTgJ9dq5wC3Q8PiLCtS4sj8RPo0c4NvY8Pg1ai0u7k2As481gtoYJo6CIODyoURYWMnQtJvh6mEAcONkCooK1Gj1gneZ4797MQPpCflo29+3zKaR9yOzcT8iG+36+0JubXj8yffzcOt8Klr39oGdU+369L66qwpDsF7CSpibeAhWsVCAMEw26rjz8vIwf/58hIWFITMzE8HBwfjggw8wevToJ8ampqZi9uzZ2LNnDwoKCtCiRQt8/vnn6NWrl8Hr9uzZg7CwMFy+fBm3bt2CWq3m3jpVDHtAiGowpVKJuW8fRZFEi007IuE4zQrzlobqy7s1WQVBAK5dTIWyUI1PFvaovMbWAjfOpODN0N0QtECPkXXwn42lfzQToxWY2Go7VEoNGrVzw9JTQ/RledlFmNRqO3KzVHD3t8FvkSNhbqFLXjRqLd7suBtJMbmwcTDHutuj4PDIMLTPBh5D5F+pkFlI8f3VwfBpUHqT8NMbZ3ByQwwkEuDz433RuGvpjXbYgqvY9uVNAMA76zuj8+hAfdnRFffwy7TzAIBX/q8lBs9qrC+7tDcB3ww+AQDoO70BJvzQVl8WczkT89sdgFYjoNUgH8zaFaovy4jPx5zme6Eq0MC/uSO+utxff2OvzCvG3JB9UKQVwdFLju/vDdEnL1qtgE+7HEJCpAJyWxm+vT0YTo8sU7xwxElcO5QEM3MJvr7QH/7NSodvrXjrPI7+rJtn8NGBXmjRx6v0+L+8jnUfX9Ed/8+d0HtC6dyFY2uj8L8Jp3TH/0kLjPmotMfsytEkfNjvECAAfScEYebK0qWvY29m4V9tdkJTLKBlLy/892A/fVlmSiEmtdyOgtxi+DVwwKrrI8pdcICouhsxYgTCw8Px9ddfo0GDBtiwYQPGjBkDrVaLV1555bFxRUVF6NWrF7Kzs7Fo0SK4u7tj8eLF6NevH44cOYLu3UvnQm3fvh1nz55Fy5YtYWlpiYsXLz72+1Ll4CpYRDVY5IUMFJWM0tVKgGO7DDdGe/QDoeOHYk3Ystrp7pUM/UTem+cMV+iJjciGSqlbJejO5QyDT+uSY/P0G9ilxuUjN7NIX5aXo0JSjG4lpPycYt14+0fcu5ABAFCrtIj72yaFd86lAdBdB1F/2wn8ztl0AIBECkSVfI+HosMzIJHq5hJEhf+t7EIGUHLffPdMuuExXs6CVqM7rrvnDMsSb+dCVaA7/rjr2dAUl44uz0wohCJNd8zZSUrklGzYCACqQg0SInWbNCrz1Ei++7fjL6lHUyzg/rVsg7K7Z0vbEHXR8DjuhKcDEt3x37mQXqZMIgUgAe6cNyy7eylDv4pX5Nk0g7Lo61nQFOsKb4f/7fjvlS43HH8nB8p88SvGEQGlc0BM/TDGvn37cPjwYSxZsgRTp05Fjx49sHLlSvTp0wezZs2CRvP4ldJ++eUX3LhxA2FhYXj11VfRp08fbNmyBQ0aNMDs2bMNXrty5UrcuXMHmzZtQocOHYxsJZkCExCiGqxlFx84wQISAbDRyrBk30CDct+A0gm7360Ut8oUPb0eo+qifogLrGxlmPxpG4Oy1r280aqnFyyszDDpP60NhvXUbe6MnqPrwkJuhhHTG8PZs3SYhYOLHC+91xQWcjN0HxmI+q0MhxKN/SIEFlZmaNLdAy37Ga7O9cqnIbCykyGguSO6PtLDAQDDP2gKW2cLuAXYoPcUw03zXpjREE7e1rB3l2Pge4bj80Mn1INXA3tYO5rjxY+bGZS1G+GHeu1cYGkjw8ufhxiUBXd1Q4v+XjC3MsPIBc0gsygdnubVwA7dXq8DmaUUvaYEwTWgdA6S3EaGYfOawFwuRavBPqjf0dXg+47+IgSW1mZo2MkVrQcbzkF4aUFzWDuYw7exA7qPq2tQNuLfTeDgaglXXxsMfNNwnsWAaQ3h5mcDexdLvDirqUFZz1frIqCxI6ztzTHuE8Nj7DDQD006u8PSWoYJn7UyKGvU3g2dh/jDQm6GV+Y0h7UdNyKkmmf79u2wtbXFqFGjDL4+YcIEJCYm4ty5c/8Y27BhQ3Ts2FH/NZlMhrFjx+L8+fNISEjQf10q5e1tVcc5IFUI54AQERFVP1VhDsjISpoDssWIOSAdO3aERqPB+fPnDb5+8+ZNNG3aFMuXL8eUKVPKjfXy8kLXrl0RFhZm8PW9e/di0KBBOHjwIPr27Vsmbvr06Vi8eDHngFQxnANCREREVM0JJf+Zuk5AlwQ9ytLSEpaWZRdSyMjIQN26dct83dnZWV/+OBkZGfrXGRtLVQ/7qIiIiIjoqfn5+cHBwUH/+Oqrrx772r+vGie27FljqWphDwgRERFRNVeZGxHGx8cbDMEqr/cDAFxcXMrtqcjM1C2CUV4Px/OIpaqHPSBERERE9NTs7e0NHo9LQJo1a4bIyEio1YarvF2/fh0A0LRp0/LC9LEPX2dsLFU9TECe0ZUrVzBw4ED4+/vDysoKzs7O6NixI9atW1fZTSMCALz1wi40s/gJvX1WlSnbvjECTTwWY2i3DZXQMiIiqk2GDx+OvLw8bN261eDra9asgbe3N9q3b/+Psbdu3TJYKUutVmPdunVo3749vL29HxtLVQ+HYD2j7Oxs+Pn5YcyYMfDx8UF+fj7Wr1+PcePGITY2FvPnz6/sJlItlpaswN7jUVBDQFaaCm+9sAuLD5ZucDfj9QMAgIvnkjHppV34OWzI474VERFVYYJE9zBpnfr/idO/f3/06dMH06ZNg0KhQFBQEDZu3IgDBw5g3bp1MDPTLb/9xhtvYM2aNYiKikJAQAAAYOLEiVi8eDFGjRqFr7/+Gu7u7liyZAlu376NI0eOGNRz//59hIeHAwCioqIAAFu2bAEABAYGok0bw2XQyfSYgDyj0NBQhIaGGnxt0KBBiImJwYoVK5iAUKVKic+H5uFfBwkQey/7sa+Ni8kxTaOIiKjW2rZtG+bNm4ePP/4YmZmZCA4OxsaNGzF69Gj9azQaDTQajcHSuZaWljh69Chmz56NGTNmoKCgACEhIdi/f7/BLugAcPz4cUyYMMHgaw/3Hhk/fjxWr15dcQdIonAfkAoyaNAgREREIDo6WnQM9wGhitDWdhmyVEWQC2a4kDsJcrlcXzZmwBb8eTQOMnMpLsROgqurbSW2lIioeqoK+4AMkayAucTKpHUXC4XYJUzhfQsZjXNAnhOtVgu1Wo20tDQsWbIEBw8exJw5cyq7WVSD3bmchrjb2U98XXjev3BP9Q5uFE83SD4AYOO+kXhQ9B5i82Y+MfnIy1PixL6YMpMHxTixLwZ5eUqj4xLuK6DINj4uO1OJlIQ8o+OUSjXui/iZ/p1Wq0VsRBbUauPXoMnNKkKxSmN0XGFeMQrzio2OK1ZpoMgsMjpOqxWQnVr4VJt55WYUQV1s/M+mQKFCUYHx15tKqUF+tsroOK1GC0Wa8dcbACjSlNBqjD/G/GwVVErjz7+yQI0ChfHHqFFrocgw/hgFQUBWaiG0WuPPvyLz6a7xgrxiFJjwGici02EC8py8+eabMDc3h7u7O95991388MMPmDp16j/GFBUVQaFQGDyIxJjacScmt9uFcU234tNXj1V4fdG3M9HWeSWmDduDFnbLjIptYbMYbw3bi/bOPyPicqrouA/fOIK+9deio/vPOLIjSnTczrWR6Or5C3rXWYMv3/lDdFx8VA56Oa3Cy03DMK7NFtFxWq0Wo/x/x8QW2zHEdR0K8sTfFG765jqGu23AmMAwpNwXnzBdOpKIFz02YIT7BoQfeCA6Lu1BPsbV3YJR7hux4curouM0ai3mhx7EBK8t+GzQMaOSkLVzLmG8+2ZMD96JHCNu7s9suY/X3TZjosdm3D6TJjruQWQOJvtuxXjXMBxcdkd0nDJfjdmt92OS51b8NP606DgAWPLGGUzy3IpZrfZBacQN85EVdzHRbTOm+GzFgwjxQyBvn0vDOM8wjHHdhD/DYkXHKTKUmNJoB17xCMPPsy6IjhMEAfOHHsEo798xs/teo5LJDf93FcM81mN03TCkxIm/xsMPP8BQj3UY6rEOF44kiI5LicvDqLqbMNhjHdb/V/w1XhNoK+lB9DSYgDzixIkTkEgkoh5XrlwxiP3www8RHh6OvXv3YuLEiZg+fToWLlz4j/V99dVXBhv3+Pn5VeDRUU1y62K6/vnJHfcrvL5vPzylf67VCLh1TdwNYWZ6AdTFpTer330o/sbuwJa7+udrF4m/kVj30zX98z0bxN+AblsWAY1a19a7VzNFx0Vfy0JWiu7GWpmvxqmdcaJjty+OAABkpypxepf4uENr70Kt0kJdrMWhtfdEx53dE4+s5EIAwK7FkaLj4iNyEHlKd84vH0hEenyB6Nh9i28DAFJj83HtSJLouCM/34NWLUBVqMGfG2JEx53Zeh/5WSpAAA4suS067u7ZdMRdzwYAnFwXI7rnRaXU4MRq3VDb+Bs5uHM2/QkRpQ4suQNBCxTkFOPMFvHv4xMbdO3TagQc/Fn8NX7laBJSYnRJwN6l4n826QkFOLdPl+hGnElD7M0s0bEPr/GslEKc2SP+Gt+/5i6Ki3XX+IE1d58cUOLU7jhkpeiu8W0ldRNR1cME5BENGzbEypUrRT38/f0NYv39/dGmTRsMGDAAS5cuxZQpUzB37lykpT3+Rm3u3LnIycnRP+Lj4yv6EKmG8PC30T8PbutW4fWNf6elwb+DGjuJinN2tTb499gZLUTX2bKDl/55v5eDRMe98GI9/fO23X1Ex/UdHQSUrCDj5m39zy9+hH9jB1ha6VZuMZNJ0KaP+KUguw7Xre5iYWWGkB5eT3h1qQ6D/CAIAASg/UDxH1y06O4JS2tdWzsNCxAd51XfDl5BdgCAgOZOcPYWP8687RBfAIC1gzkadhJ/rbYdqouDBGjVX/x5bNHHG2bmuj9tHUb4P+HVpeq0dIKjp26IYpNQD1iUnNMnMbeUomkPDwCAg4ccdVqK3wyt/QjduTOTSdC8t/jz36a/D1Cy63P7IeLPf6OO7rBxNNfFDfYVHefsZYV6Ibrj8qprB98GDqJjuwwLBABYWpkhJFT8MXYa6A8IgCAAHY24xluGeunfj12Hir/Gici0OAm9gqxatQoTJ07E2bNn/3Fd60dxEjoZY9V/LsLeyRIvzjDN5kvXL6Rg44prePc/HeHmKX6yemZ6Ab6fdwbDxjdCq07ib861Wi2O7oiGp58dmrX1MKqtl08nIiejCKGD6xgVFx+Vg+unU9D75bqwsBC/SGCeQoU/t8WifT9fOHuKT14EQcC9K5lw8bIyKg4AEu4pIAgCfOuLvxkEdJ9EpycUoF6IM6RS8Wt2KvOLEXcjG4EtnGEhF3dzDgAajRYxl7PgHmgDe1f5kwMe8SAyB+ZyM3jUMW5xhIyEAuRmFCGgmSMkEvHHWJCjQuJtBQJbOkNmLv7zOXWxFrGXM+Hd0B7WDhai4wRBQNz1bNg6W8LF17jznxKbh6ICNfwbOxoVp8hQIiUmD3VbOsPMTPwxqpRqRF3NQmBTR1jZmIuO01/j3tZw9jBugvSDu7phacZe45kphUhPzEf9EBejzv+zqAqT0AdKllfKJPS9wlTet5DRmIBUkNdeew3r169HcnIy3NzEferHBIQqQnefX5CQlgsrMxmuF043KJv77mGsWXEVDo6WuH5/GmQyrsxNRGQsJiC8byHj8G7jGU2ZMgX29vZo164dPDw8kJ6ejs2bN2PTpk2YNWuW6OSDqCJE38rAnfRMaCVArlCMESEbsO3KK/ryX5deAQBkZigxrPcm7DnxaiW1lIiInkVlTArnJHR6WkxAnlHHjh2xatUqrFmzBtnZ2bC1tUWLFi3w22+/YezYsZXdPKrldENlJHi4Ve0/DSuRyTgljIiIiCoeE5BnNGHChDK7bRJVFb6Bjmjm44qYB9mwkZkjLHy0Qflb/26L5YsuwsXVClsOjKqkVhIREVFtwgSEDCTF5SIlIR/N23sYNUH1aRUXa3D9XCoC6jvAxcO4SZhP60GUAjkZSjRu62aSCYpFhWpEhKehbhMnOLgYNwn3eTgU/fpjyz7+IhQffxFqsrYQEVHF0EKAFqad1mvq+qjmYAJCereupGNcl60oVmkxckpjzP+pe4XX+e9RB/HXvjhY25lj8+WX4OVvV6H1XfwjETP67oVWK2DivFaY8kmbCq1PEATM6LUXkeFpcHSTY/2NkbB3Nn0SQkRERFRVcNA36V36KxHFKt2Usr/2id8w6lmcPazb3KogtxgRF8Tvdvy0Lh5PhLZk4bdTJjjGwrxiRIbrjis7TYloIzbwIiIiEkuQVM6D6GkwASG9nkPrwsPXBhIp8Np74jeMexZjZzYHANRt5IR2PcVvNva0+rxcDw7OcpjJJBj9TrMKr8/azgIDJzQAADRu54ZGJtg0kIiIiKgq4z4gVUhV2AdEo9FCVaSBlbX4jaaeVUFeMeTWMpPMOQEAtVoLdbEWcivTjUAsyCuGlY3MZJtiERGR6VSFfUB6S5dWyj4gR7TTuA8IGY1zQMiAmZkUVtam7RiztjVdsgPolps19ZKzpj7GRzW3WYwstRJWggznU6fC0bF0Dsqg0PUIP5sIMzMJwm9PgY8v/4AQERFRxeIQLKIa7Hp4ElLUBVBJtMiRqjCq1UaD8vCziQAAjUbAq0O3VkYTiYiIqJZhDwhRDeZX3wkySKEWdIsLBDd//ByUhk1cTNUsIiJ67gQIJl8Wl6P46emwB4SoBnN0lOOVEY3gAjlCAtzx445BBuWrNw+Fq5sVuvcKwPK1QyqplURERFSbMAEhqoZys5UY32IrpnbaCbVa/Y+v/WbjAEQUzcDBO+PLlPUf3AA346cjbO9LT6zzmzl/oWe9Vdiz8bZRbT284x561VuNL979w6g4RbYSH009imVfhhsVp9Vq8eOCs/jPmydQUKAyKnbn2kh88NphxNw2brnk62dTMP+Vo0Yv7VyQV4xdv9zCpT8SjYrTagUc3xKNo2FR0GqN+wTy6p9J2P3zLeQrjPvZPLiTgz1LbyElNteouNzMIuxbcRu3zhm3zLZGrcXx9dE4szMOxq6VculQIg6vvoeiwn9+b/xdzLUs7Ft6G5lJBUbFZSYXYPeyW4i6mmlUnEqpxoHVdxF+MMGoOEEQcGrXfRxZHwV1sdao2Fvn07BnxS3kZCiNiku6n4utSyNw/3a2UXH5uSrs+DkSl/9MMipOqxVwZHMUjmw2/hq/dDIRO36JRH6ucdd4daetpAfR0+AQLKJqaGTgJijzdTdXY+pvweaY0RVa35Zfb+LX/10GAMwafwihgwNga/vkDRXVajVmvnQAALBh8XX41rHH+LdbiqpzdKfNuH8vBwCQk1mEOQu7iIpb8K/j2LH6FgDg2vlkbLkg7mdzdEcUPp50HABwbEc0ziumiorLU6gwtdsuCAJwdHM0Nl4ficBgJ3FtffUoTu+LBwD8cHggWod6i4rb+N01LJurS8wSohR4ba64n+nVv5Lxds99AIA/tsVi4b5+ouJyM4vwdvs9KMwthr2LJdbEjILcWtyfj48GHsGd8HRIpBL8cH4Q6oU4i4pbM+8ytn17EwDw1pIO6D+lgai4Mzvj8MWLJwAA144n499rxF03qffz8F77vVCrtNi68AZW3h0hamU+rVbAzG77kBSdC5m5FKsiR8AzUNyGqt9PO43Dv0UBAD7e3ANdhweKitv/6118N/UUAODe5Qz8a2E7UXHR1zLxdhfdRqx7f7mDpefE9XoWKdWY2GEHstOVsLKVYfu9MXBwEbeh6rwxR3H2oO4aX3J0EFp1E3eN//bNFSydr7vG3/wiF6/NDhEVd/GPREzrvRsAcGJHDL7fPUBUHBGZFntAiKqhooLST3az0437JPNpnD5m+Ml+UlyeqDhFtuEnkOeOPRBdZ2pSvv757WvpouPu3Sj9FDo5Xlw7AeDmIxthFik1ouPSE/Px6Af0xmw2GRuZrX8edyv7sa/7u/uR2ZBIJZBIgfu3ckTHxd8ufe2jdT9JVkohCnOLAQCKjCLkZ4v/ZPlBSZ2CVkBSlEJ0XHxkNiQSQCIFHhhxjA9u5QASABLg/s1s0XGp9/OhLtmINS2u9PmTqIu1SInNK31+P/8JEaViI7IBCSCRAPFGHGNcZDYkUl3cfSPOY0KUQt+b8OC2+PryslX63zOFeWpkJIvvIYqNLH0/xBlRZ6z+Gpcg1pj3xiM9NDGR3PiVqKpiAkJUDQ2eHKx/Pvnz1hVe33+W9YDMXPdpsIu7Feo3dhUV5+xqDQ8fGwCA1EyCL1f3EV3n25+2h5lMAms7c8xe2Fl03AffdYGVtQwycyne/aqj6LiJs1vB3dsGUqkEQ14LfnJAicBgJ7Tu4Q2JFKjXzAmhIj/FBoC3F3aAh58N2vbyQZ8xQaLjXnm/Oeo0dkRAsCNendVcdFzPl+qgbV8fuPnaYMa37UXH+QU7YNg7jeHoIccr81vAxdtadOy0Re3h4m2FjkP90W6gn+i4MR+1gHd9e9Rt4YwhbzcSHdd3Yn007uwOjwBbTPy6lei4Rp3d0Ov1enDytMIbC9vAQm4mKs7C0gz/+rYdnD2t0GdcPTTt4i66zslftYFngC0ad3JH/zfE9fAAwPAZjVG/pQu8g+wxfoG43i8AaD/AD12GB8DF2xrTF3UQHefiaY1JH7eCs4cVXprRBHUai+vhA4CZ33aEh58N2vfxQZ+X64mOe212COo0ckSdRo4Y9774jXH7jg5C+z6+8PCzwcyFnUTH1QRaCJXyIHoa3IiwCqkKGxFSzZSdrTTY/+NRSqUacjlHYxIRPa2qsBFhqHQxZCbeiFAtFOKE9i3et5DReNdBVMM1tFiEbIkK1oIMu0+NRtO2Xvqy5oFLkJKsGzKyef8odOsRWEmtJCKiZyHA9Ivi8hNselocgkVUg50/FodsqQqQAAVSNd4ats+g/GHyAQAfvH3E1M0jIiKiWog9IEQ1WPNO7pBrzaCUaiAVJBg0xnCcuUQC/QTqfkPEz0EgIqKqRSsRoJWYtk+Cc0DoabEHhKgGk8vl+HnDYARa22Hq6y0xa2FXg/KLd6eiUzc/fPRFN3z8RWjlNJKIiIhqFfaAENVwfUbWR5+R9cst8/G1x/ZDFbuHCBEREdGjmIAQERERVXOVsSwuh2DR0+IQLCIiIiIiMhn2gBARERFVc1yGl6oT9oAQ1XDZ2Uq80WsHzh+LK1OmVqvxwzdnce1KciW0jIiIiGojJiBENVxr96XYc+ouRvTfjK0/3zAoq+PyA7746E/06fAb1v5ypXIaSERERLUKExCiGuz8sTjkSdUAgGKJFos+OmNQrirS6J8v/S7cpG0jIqLn5+EkdFM/iJ4GExCiGqxdT3/Yas0BABaCFP/+v84G5ZZyM/3z6e+3M2nbiIiIqHbiJHSiGu6m4l+YNfoIps5rjaZtvQzKotPfxpqV19C5ux+CG7tVUguJiOhZcRleqk7YA0JUDW1ZegOdLFais3wlzh958I+vlcvl+HHHoDLJBwDIZDK8Ma3VE5MPtVqNEJ9l8Lf8HwZ2Wm9UW18M/R3+lv9DM48lUKvVouOO7IlCa5/l6Nl0NdKS80XHJdxXILThKrTzW4FTR8tOvH8ctVqLl3tsRmuP5Vj+zQXRcQCwYMZxtHJbhumj9xkVdy08GRP6b8dnM09ApdI8OaBEWnI+Zo7Zj7df3ofUxDzRccXFGnz53klM7LcDl88mGdXW35dfx/he27BjbaRRcReOJ+CtvnuwZN55aLXib1YSYxSYNfwgFow7hpxMpeg4ZYEaX009iXcH7ce965mi4wRBwG//vYLpvffgjx0xouMA4M9dsZjeew/WfH0ZgiD+GKNvZOK9Qfvx1dSTKMwvFh2nyCrCf8Yfx+zhB5EQrRAdp9UKWPZROKb33YvzRxNExwHA7nW3MaHXdmxcet2ouGvnkzG530589e5JFBcbcY0n5ePd0fvx7uj9SEsS//5XqTT44t0/8Eb/Hbh6notrEFVV7AEhqob+N/MMBAEQNMCcFw/jeM6ECq3v45knkJleCAC4fjEV8bHZ8At0fGJcdrYS4Wd0N7o52UWYOeEgfvptoKg635t4ELk5KmSmF2L2lMNYtWuYqLh/TziI+FjdTdm7rx/A+fgpouJWLryIS6d1bV340WlMndVGVFx8TA42rNDdlB3cfg9/HIhF936BomLnvHEYMbezcPpoPBq3dMeL4xuLilv8+Xkc3h4FALB3tMTny3uJitsfdhe//XQVEokuUTsY+ZqouPjoHHw24w8AwMW/EtGtfyCc3axExX706lFkpStx8XgimnX0QNdBAaLifvzgHE7viwMggYefLd78UtwQwe0rIrF71W1AAuTnqLDiz6Gi4iLD07Bsnm4e1I0zKTiU+TosLM2eEAWoi7X46JVjKC7S4PIfSWgd6o2mHTxE1fnN9L9w/UwKBAEIDHbEmHebi4rb+N01HPr9HgBAKpXg6619RcWdPRiPNV9fAQDcvZqBgynizn92hhLzJh2BoAUu/JmIzn384B/kKCr2wwlHEHcvB2ePPUCTVu4YMi5YVNxP/zmHIzuiAQAOznJ8sqSHqLh9v9/BusXXIJEAifG52H9jnKi4mkBb8jB1nURPgz0gRNWQVFb61rWwrPi3sZevrcG/rWzFfXYhlxu+zsvHTnSdcqvSWAdnueg4e0dL/XNra3PRcc7upTfUZlKJ6DgrG8M6HJwsH/PKshwcLSGR6OqydxAfZ+9gCUEQIAiCwfE+iV3JayUSif65GHJrGWQyKSQSwEJuJurG/CFbBwuUHCLsHC2MaqsAQCsIsDUqzgIPOyHsjDgX1nbmkEgAiUR3TqVm4q4BiRSwspHpY63txF9z+nMg6H5OYtk6WkAoufMz5hht7C30bTamPnMLKSwtdcdoJpNAbsT7yv6Ra9yYa87ukWvczoj3xqPXuDHvDSIyLYlgTH8xVSiFQgEHBwfk5OTA3t6+sptDVdity2mY3nsvzC3M8Nvl4XD1tH1y0DN6qU8YroQnY8zEpvj0u56i47768CRWLbmKxs1dsePkGNFxUXcyMXvKYbh72mDR2n6wsBCX9BQUqDBz7AEosovw7aoX4BMg/r305ayTCP8rETMXdBDdiwEAW9bcxLol1zBgVH1MeV9czwkAJD/IxW+LryGwgSNGvt5Yf6P2JMpCNdYsugytFnh9ZgisRN4QCoKA7WsjERWZhVffbA5vf/EJ4bkTD3B8Twz6jQxCSIeyw/keJ/5eDraviESj1q7o83KQ6Lh8hQobv78OuY0ML89oCnMLcUmPVitg27IIpCUW4OW3mxoklk9yau99XDyeiP7jGqB+CxfRcfeuZWDf2jtoFeqNLiJ7eAAgK60QmxbdgKuXNUZMawypyMRXXazF5p9uIF9RjNEzmxmVTBwJi0LEhTQMmxQM/waOouOunkvGgc33EDowEO17+IqOS47PxYYl11GnoSOGjW9k3DX+/RUAwPiZIQYfSPwTQRCwbU0kYm7rrnEvP/HX+LOozL/fD+tuY7YIMon46/15UAuFuKB5h/ctZDQmIFUIExCqCDvXRuDzt0+i16BAfL2un0FZXGw2/jV+D3r2qYP353d+zHcgIqJ/UhUSkNZm31dKAnJRM5P3LWQ0zgEhqsGUSiXennwASokGazZfh5OrFeZ8311f3q7RSggCcPFcEvLzi7Hgq9DKaywRERHVCpwDQlSDRVzIgFKiW3lGKwH2b7lnUP5o/+ehvVGmbBoRET1HQiVsQihwGV56SkxAiGqwVl184KS1gEQAbLQyLN872KDc26d07sj/lr1g6uYRERFRLcQhWEQ13C3VO48tuxw1zYQtISIiImIPCD0iJ0uJ13ttRw//VTiy3TTDcbasvImePqsx88X9KFKK36TuaaUl5uP1jtswuM46nD/2zxv4PS9h/3cdoz1+x7cT/oJGw1XTiYjo+dNKhEp5ED0NJiCkt3/TXVz8MxHpyQVY+MFpk9T5zfunkJlWiBO7Y3H6UHyF17fz11uIvJiGlIR8LJ0fXuH1FeYVY/X8S1BkFOHob1G4fS69wuskIiIiqsqYgJBevUbO+uf1mzj/wyufn7rBTgB0m1v5BzlUfH2NnXQTrwUgqFnFH6OFlRk8Amz1z90DbCq8TiIiqn20lfQgehqcA0J6bbv7YO2JEYi7l4O+I+uZpM5l+wfj+K4YBLdwRb3GFZ8Q9BxRFz8dHIjM5EL0Glm3wuszM5Pi278G4PzeeDTu5A5XHyYgREREVLtxI8IqhBsRUkWYNmwXDu2Pho+3HU7GvGFQtmNrBN55+xAaN3bF/sNjK6mFRETVW1XYiLC57DuYmXgjQo1QiGvq93jfQkbjECyiGiw1OQdhB24hTaLElaQ0TB6406D8tbG7kJWpxKm/HuC1V7dXUiuJiOhZmXoPkIcPoqfBBISoBkuOz4f64ShdCXD3VuZjX3v3zuPLiIiIiJ4XJiBENVjztt7wltlADjM4ay1w4OYYg/LOXXwBADKZBNt3v1wZTSQioudAqKT/iJ4GExCiaio6IhOJsYonvi4ybwZSlbMQW/Qe5HK5Qdn+w2OhKPwAmblz4Olp+5jvoKNUqnHm5NMtlXz+9AMon2Kfl7TkfOTlqYyOy1UUIT21wOg4lUqNhPtP/pn+nVarRXxMDrRa49eEyVMUQa02Pk5ZqIay0PifqVqtRZ7C+J+pIAjIyVLiaaYN5uWonmoPnML84qfaH6hYpUF+rvHHqNUKUGQVGR0HAIqsImi1xv9s8nNVKFZpjI5TFWlQmF9sdJxGo0VutvHH+EznX6GqFtc4EZkOExCiamhy1514tcVWvFh/Ez6dcKzC64uNykYDhx/xcp8tqGPzvVGx9ewWYWSPzWjg8CMirqWKjpsz9TDaBaxEc9clOLJH/MaYOzfeQojbMrT3W4nP3v9DdFx8TA5aOC9DaIPVGN5po+g4rVaLbvVWoWfwGrRyX46CAvE3Pqu+v4Q2bssRWm8VEuNyRcedO/EAHTxXoL37Cpw6Eic6LiUhD73rr0Zb1+VY+c1F0XFqtRYT+u5AJ4+fMX3EXqNuQpfOP4/erqvxUuMw5GQoRced2BGDvm5r0d9rHW6eF3/d3L+djcH+69HHdQ12/nxLdJyyQI2J7bajv/tafDlF/HUDAF//6yT6u6/FhLbbjEoKdv96C/1c12KI33rERmaJjosMT8NAr9/Qz20tjm+LER2Xk6nE6Cab0ddtLRbPPSc6ThAEvDNqP7p4/IIJvbajuFh8wrTq20vo5LYSLwStRfKDPNFxZ47Go5PHSnTyWImzx8R/8JEUn4teQavRzm05fv3ukui4moBzQKg6YQJCVA3dOFd6Q3Y0TPwNyNP6cu6f+ucatSA6kUhPz0OxqvSTz88/OCm6zl2bbgMABAFYYcSNxC/fl75269oI0XHrl1+DuljX1hsX00TH3bqegZTEfABAfm4xDu+IFh27etEVCAKQlpSPI7vEJ1lbV0dApdSgWKXB1lXij/H43hikJOjauuaHK6LjoiMzEf5HAgDgxN5YJMWLv5Hc9OMNAEBCtALnDj8QHbdjxS2oi7VQ5hdj/7q7ouOObolGTkYRBC0Q9tMN0XE3z6Xg7tUMAMDeVXegLBD3yXuRUo3dv+iu1XvXMnHjrPhkacvim/pel2NbxF83BzfcRWFeMdTFWuxYLv78hx9NwIMoXQ9f2E83RcelJOTj+C7d75mLfyUh6qb4+WK//XAVggCkJubj+G7xv6u2rY6AqkgDVZEG21ZHio47ticGqYn5EARgzaIrouOIyLSYgBBVQ+6P7CfSsJVrhdf3+rQWBv9uIHLPFldXw2Fdr08LEV1nSFtP/fMBLwaJjus7tHQPm7adfUTH9RteWoerh/ilLIMaOcFSbgYAkJpJ0Kmnn+jYnoPrAAAsLM3Qrpuv6LhuLwRAEHTJWbcXAkTHteniA0srXVt7DgoUHedXzwE+gbolNoMaO8PdW/x+Np36634e1nbmaNrBQ3Rc5wGlP8f2fcX/bNr29IGZTAIA6DZE/M8mqLkLnNx1QxRbdPHU/5yexMLSDCHddNeqo5sc9Vu4iK6zy2Bd+8zMJGjdQ/y12q6vL6A7RHQa4C86rml7D9jYmwMAOvYTf526elqjflPdcXkH2MG/vqPo2NCS68xCboY2Xb1Fx3V95BrvasQ13rarj/792KPk/UVEVQ/3AalCuA8IGeOnuedg72iJ1+aEmKS+86cf4Lfl1zD3i67w9rUTHZeSnIfP55zEmNebolMP8TdLWq0WezbfgZePLdp2EX8DCgCnj8chK0OJgSMbGBV371YGLv6VhKFjgyGXi9+nNTtTiX2b76DHoDrw8hH/s9FqBdy4lAoPbxt4eP/zHJy/i76VCUEA6jUybgPP1KR8JD/IRdPWHpBKJaLj8nNVuH09A41CXGFlbS46TqPRIjI8Dd517eHsbtweBfeuZ8LSygx+QQ5GxSXH5SE7rRANW7lCIhF/jIqsItyPzEZwG1eYW4hLQADdnJNbF9IR0MgR9k6WouMEQcCdyxlwcLGEZ4D46wYAHkQpoMwvRlBz8QkPAGSlFeLBPQUatXWDTCb+M0hloRqRl9PQoJkLbOwsRMdptQJuXkyFh4+tUYkrAERFZkIikaBusJNRcamJeUhOyDP6Gn8WVWEfkIay/1bKPiC31bN530JGYwJShTABoYrQNfAXxCblwEZmjlv5MwzKPnj/CJYvuwhnZyvcjn4TMpn4m24iItJhAsL7FjIOh2AR1WD3bqXjenI6ciQqJGrzMaTVeoPyJYsvQKMRkJZWgIF9xU+8JiKiqoWT0Kk6YQJCVItITDQcgYiIiOhxmIAQ1WBBwa5o5ukKB8EC3lIb7LzwikH5m2+1gUwmgZubNfYeGvOY70JERET0/HDAN1EN92fsG48t+3phb3y9sLcJW0NERBVBC0Bi4iFRxm8vSaTDHhAiIiIiIjIZ9oAQERERVXOCBNCaeJofp6DT02IPCBERERERmQx7QIiIiIiqOd2SuKaeA8I+EHo67AEhIiIiIiKTYQJCREREREQmwyFYRERERNUch2BRdcIeECIiIiIiMhn2gBARERFVcxoIENgDQtUEe0CIiIiIiMhkmIAQEREREZHJcAgWERERUTXHSehUnbAHhIiIiIiITIY9IERERETVHHtAqDphDwgREREREZkMe0CIiIiIqjmNRAtBojVpnVqYtj6qOdgDQkREREREJsMEhIiIiIiITIZDsIiIiIiqOe6ETtUJe0CIiIiIiMhk2ANCREREVM1pK6EHxNT1Uc3BHhAiIiIiIjIZJiBERERERGQyHIJFREREVM1pJAIkEg7BouqBCUgVIgi6N7JCoajklhAREZFYD/9uP/w7XhkEFMHU+YCAItNWSDUGE5AqJDc3FwDg5+dXyS0hIiIiY+Xm5sLBwcGkdVpYWMDT0xPJyV+btN6HPD09YWFhUSl1U/UlESozXScDWq0WiYmJsLOzg0QiqezmVBkKhQJ+fn6Ij4+Hvb19ZTeHwHNSFfGcVD08J1VPRZ0TQRCQm5sLb29vSKWmn16rVCqhUqlMXi+gS4Dkcnml1E3VF3tAqhCpVApfX9/KbkaVZW9vzz/iVQzPSdXDc1L18JxUPRVxTkzd8/EouVzOJICqFa6CRUREREREJsMEhIiIiIiITIYJCFV5lpaWWLBgASwtLSu7KVSC56Tq4TmpenhOqh6eE6KqgZPQiYiIiIjIZNgDQkREREREJsMEhIiIiIiITIYJCBERERERmQwTEKpWrly5goEDB8Lf3x9WVlZwdnZGx44dsW7duspuWq117NgxTJw4EcHBwbCxsYGPjw+GDh2KixcvVnbTaq3c3FzMnj0bffv2hZubGyQSCT755JPKblatkZeXh5kzZ8Lb2xtyuRwhISH4/fffK7tZtRrfE0RVCxMQqlays7Ph5+eHL7/8Evv27cPatWsRGBiIcePG4fPPP6/s5tVKS5cuRWxsLN555x3s27cPixYtQmpqKjp06IBjx45VdvNqpYyMDKxYsQJFRUUYNmxYZTen1hkxYgTWrFmDBQsWYP/+/Wjbti3GjBmDDRs2VHbTai2+J4iqFq6CRTVChw4dkJiYiLi4uMpuSq2TmpoKd3d3g6/l5eUhKCgITZs2xZEjRyqpZbXXw1/rEokE6enpcHNzw4IFC/iJrwns27cPAwcOxIYNGzBmzBj91/v27YubN28iLi4OZmZmldjC2onvCaKqhT0gVCO4urpCJpNVdjNqpb8nHwBga2uLxo0bIz4+vhJaRBKJBBKJpLKbUStt374dtra2GDVqlMHXJ0yYgMTERJw7d66SWla78T1BVLUwAaFqSavVQq1WIy0tDUuWLMHBgwcxZ86cym4WlcjJycGlS5fQpEmTym4KkUnduHEDjRo1KvOBSPPmzfXlRES1HT8ypmrpzTffxPLlywEAFhYW+OGHHzB16tRKbhU99NZbbyE/Px/z5s2r7KYQmVRGRgbq1q1b5uvOzs76ciKi2o49IFRpTpw4oe8Wf9LjypUrBrEffvghwsPDsXfvXkycOBHTp0/HwoULK+dAapBnOScPffTRR1i/fj3+97//oXXr1qY9gBroeZwTMq1/GurDYUBEROwBoUrUsGFDrFy5UtRr/f39y/z74dcGDBgAAJg7dy7Gjx8PNze359vQWuRZzgkAfPrpp/j888/xxRdfYPr06c+7ebXSs54TMi0XF5dyezkyMzMBlPaEEBHVZkxAqNJ4eXlh0qRJz+V7tWvXDsuWLUN0dDQTkGfwLOfk008/xSeffIJPPvkEH3744XNuWe31PN8nVPGaNWuGjRs3Qq1WG8wDuX79OgCgadOmldU0IqIqg0OwqEY4fvw4pFJpuWOvqeJ99tln+OSTTzB//nwsWLCgsptDVGmGDx+OvLw8bN261eDra9asgbe3N9q3b19JLSMiqjrYA0LVypQpU2Bvb4927drBw8MD6enp2Lx5MzZt2oRZs2ax96MSfPvtt/j444/Rr18/DBw4EGfPnjUo79ChQyW1rHbbv38/8vPzkZubCwCIiIjAli1bAOiGLVpbW1dm82qs/v37o0+fPpg2bRoUCgWCgoKwceNGHDhwAOvWreMeIJWI7wmiqoMbEVK1smrVKqxatQqRkZHIzs6Gra0tWrRogUmTJmHs2LGV3bxaKTQ0FH/88cdjy/krpnIEBgbi/v375ZbFxMQgMDDQtA2qRfLy8jBv3jyEhYUhMzMTwcHBmDt3LkaPHl3ZTavV+J4gqjqYgBARERERkclwDggREREREZkMExAiIiIiIjIZJiBERERERGQyTECIiIiIiMhkmIAQEREREZHJMAEhIiIiIiKTYQJCREREREQmwwSEiIiIiIhMhgkIERERERGZDBMQIiIiIiIyGSYgRERERERkMkxAiIiIiIjIZJiAEBERERGRyTABISIiIiIik2ECQkREREREJsMEhIiIiIiITIYJCBERERERmQwTECIiIiIiMhkmIEREREREZDJMQIiIiIiIyGSYgBARERERkckwASEiIiIiIpNhAkJERERERCbDBISIiIiIiEyGCQgREREREZkMExAiIiIiIjIZJiBERERERGQyTECIiIiIiMhkmIAQEREREZHJMAEhIiIiIiKTYQJCREREREQmwwSEiIiIiIhMhgkIERERERGZDBMQIiIiIiIyGSYgRERERERkMkxAiIiIiIjIZJiAEBERERGRyTABISIiIiIik2ECQkREREREJsMEhIiIiIiITIYJCBERERERmQwTECIiIiIiMhkmIEREREREZDJMQIiIiIiIyGSYgBARERERkckwASEiIiIiIpNhAkJERERERCbDBISIiIiIiEyGCQgREREREZkMExAiIiIiIjIZJiBERERERGQyTECIiIiIiMhkmIAQEREREZHJMAEhIiIiIiKTYQJCREREREQmwwSEiIiIiIhMhgkIERERERGZDBMQIiIiIiIyGSYgRERERERkMkxAiIiIiIjIZJiAEBERERGRyTABISIiIiIik2ECQkREREREJsMEhIiIiIiITIYJCBERERERmcz/A3esPNDGBMHiAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "%%time\n", - "n_arms = 2\n", - "n_arm_samples = 35\n", - "fi = fast_inla.FastINLA(n_arms=n_arms, critical_value=0.99)\n", - "rejection_table = binomial.build_rejection_table(n_arms, n_arm_samples, fi.rejection_inference)\n", - "accumulator = binomial.binomial_accumulator(lambda data: binomial.lookup_rejection(rejection_table, data[...,0]))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "n_theta_1d = 4\n", - "theta_min = -3.5\n", - "theta_max = 1.0\n", - "\n", - "null_hypos = [\n", - " grid.HyperPlane(-np.identity(n_arms)[i], -logit(0.1)) for i in range(n_arms)\n", - "]\n", - "theta, radii = grid.cartesian_gridpts(\n", - " np.full(n_arms, theta_min), np.full(n_arms, theta_max), np.full(n_arms, n_theta_1d)\n", - ")\n", - "g_raw = grid.build_grid(theta, radii)\n", - "start_grid = grid.prune(grid.intersect_grid(g_raw, null_hypos))" + "%matplotlib widget\n", + "plt.figure(figsize=(8, 8))\n", + "plt.scatter(A.g.theta_tiles[:, 0], A.g.theta_tiles[:, 1], c=A.hob_upper, s=2)\n", + "plt.colorbar()\n", + "plt.show()\n", + "# plt.figure(figsize=(20,20))\n", + "# plt.scatter(A.g.theta_tiles[:,0], A.g.theta_tiles[:, 1], c=np.log10(A.sim_sizes), s=2)\n", + "# plt.colorbar()\n", + "# plt.show()" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ - "seed = 10\n", - "sim_size = 100000\n", - "delta = 0.025" + "def optimal_centering(f, p):\n", + " return 1 / (1 + ((1 - f) / f) ** (1 / (p - 1)))" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.00501504e-15, 1.77440961e-10, 4.74576291e-09, 3.50607449e-08, 1.49562941e-07,\n", + " 4.69707819e-07, 1.21314631e-06, 2.73574660e-06, 5.58436990e-06, 1.05626975e-05,\n", + " 1.88128661e-05, 3.19162180e-05, 5.20171214e-05, 8.19745950e-05, 1.25547381e-04,\n", + " 1.87619190e-04, 2.74472090e-04, 3.94117471e-04, 5.56695689e-04, 7.74957321e-04,\n", + " 1.06484109e-03, 1.44616561e-03, 1.94345446e-03, 2.58691590e-03, 3.41360037e-03,\n", + " 4.46875928e-03, 5.80742749e-03, 7.49624791e-03, 9.61554822e-03, 1.22616645e-02,\n", + " 1.55494819e-02, 1.96151250e-02, 2.46186731e-02, 3.07466977e-02, 3.82143126e-02,\n", + " 4.72662894e-02, 5.81766266e-02, 7.12457837e-02, 8.67946222e-02, 1.05154001e-01,\n", + " 1.26649019e-01, 1.51577198e-01, 1.80180564e-01, 2.12612711e-01, 2.48903446e-01,\n", + " 2.88925389e-01, 3.32368400e-01, 3.78728352e-01, 4.27315845e-01, 4.77287742e-01,\n", + " 5.27700019e-01, 5.77575706e-01, 6.25977922e-01, 6.72076721e-01, 7.15200035e-01,\n", + " 7.54862930e-01, 7.90774163e-01, 8.22823252e-01, 8.51053835e-01, 8.75629837e-01,\n", + " 8.96800186e-01, 9.14866287e-01, 9.30154682e-01, 9.42995848e-01, 9.53709009e-01,\n", + " 9.62592211e-01, 9.69916635e-01, 9.75924102e-01, 9.80826828e-01, 9.84808656e-01,\n", + " 9.88027173e-01, 9.90616278e-01, 9.92688899e-01, 9.94339675e-01, 9.95647478e-01,\n", + " 9.96677712e-01, 9.97484365e-01, 9.98111808e-01, 9.98596358e-01, 9.98967610e-01,\n", + " 9.99249581e-01, 9.99461670e-01, 9.99619471e-01, 9.99735453e-01, 9.99819523e-01,\n", + " 9.99879507e-01, 9.99921533e-01, 9.99950362e-01, 9.99969655e-01, 9.99982192e-01,\n", + " 9.99990055e-01, 9.99994778e-01, 9.99997464e-01, 9.99998888e-01, 9.99999576e-01,\n", + " 9.99999868e-01, 9.99999970e-01, 9.99999996e-01, 1.00000000e+00, 1.00000000e+00])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# stop adagrid whenever hob is below this\n", - "target_bound = 0.02\n", - "\n", - "# if we can't get below 0.1, refine until the edges are less than 20% above the\n", - "# sim pt\n", - "target_grid_rel_bound = 0.1\n", - "\n", - "# if we can't get below 0.1, refine until the edges are less than 20% above the\n", - "# sim pt\n", - "target_sim_rel_bound = 0.2\n", - "N_max = int(2e5)\n", - "\n", - "iter_max = 9\n" + "optimal_centering(np.linspace(0.001, 1, 100), 1.2)" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(400000, 16777216.0)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "def dots_plot(g, typeI_upper_bound, hob):\n", - " plt.subplots(1, 2, figsize=(7, 3.0), constrained_layout=True)\n", - " plt.subplot(1,2,1)\n", - " plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=hob, s=10)\n", - " plt.colorbar()\n", - " plt.subplot(1,2,2)\n", - " plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=typeI_upper_bound, s=10)\n", - " plt.colorbar()\n", - " plt.show()\n", - "\n", - "def dots_plot2(g, typeI_upper_bound, hob):\n", - " plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=hob, s=10)\n", - " plt.colorbar()" + "A.sim_sizes.max(), (4.5 / A.g.radii.min()) ** 2" ] }, { @@ -317,105 +1175,40 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 16 16\n", - "0.1649272041161282 -10.925548609839902\n", - "1 67 67\n", - "0.0035945956985602504 -2.1219237210410298\n", - "2 281 281\n", - "0.00044968027573463715 -0.7175529589046117\n", - "3 1360 1360\n", - "0.00013785643953700808 -0.30101630053644435\n", - "4 6065 6065\n", - "7.273057858994805e-05 -0.13851853809806047\n", - "5 28144 28144\n", - "5.2074069281076755e-05 -0.06651985660365378\n", - "6 125513 125513\n", - "4.388932880566258e-05 -0.010554762496078895\n" - ] + "data": { + "text/plain": [ + "(6710.8864, 0.306004755)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "# TODO: don't recompute for unrefined.\n", - "# TODO: refine n_sims too! \n", - "# TODO: why is this slow??\n", - "plt.subplots(3, 3, figsize=(10, 10.0), constrained_layout=True)\n", - "new_grid = start_grid\n", - "unrefined_grid = None\n", - "for ada_i in range(iter_max):\n", - " # TODO: is setting the seed inside the loop okay?\n", - " np.random.seed(seed)\n", - " new_typeI_sum, _ = chunked_simulate(new_grid, sim_size)\n", - " if unrefined_grid is not None:\n", - " g = grid.concat_grids(new_grid, unrefined_grid)\n", - " typeI_sum = np.concatenate((unrefined_typeI_sum, new_typeI_sum))\n", - " else:\n", - " g = new_grid\n", - " typeI_sum = new_typeI_sum\n", - " print(ada_i, new_grid.n_tiles, g.n_tiles)\n", - " typeI_sum, _ = chunked_simulate(g, sim_size)\n", - "\n", - " typeI_est, typeI_CI = binomial.zero_order_bound(typeI_sum, sim_size, delta, 1.0)\n", - " typeI_upper_bound = typeI_est + typeI_CI\n", - " typeI_lower_bound = scipy.stats.beta.ppf(\n", - " 1 - delta, typeI_sum, sim_size - typeI_sum + 1\n", - " )\n", - " typeI_lower_bound = np.where(np.isnan(typeI_lower_bound), 0, typeI_lower_bound)\n", - "\n", - " hob_upper = binomial.holder_odi_bound(\n", - " typeI_upper_bound, g.theta_tiles, g.vertices, n_arm_samples, 6\n", - " )\n", - " hob_lower = 1 - binomial.holder_odi_bound(\n", - " 1 - typeI_lower_bound, g.theta_tiles, g.vertices, n_arm_samples, 6\n", - " )\n", - " print(np.min(hob_upper), np.max(hob_lower))\n", - "\n", - " plt.subplot(3,3,ada_i+1)\n", - " dots_plot2(g, typeI_upper_bound, hob_upper)\n", - " if ada_i == iter_max - 1:\n", - " break\n", - "\n", - " need_more_sims = typeI_upper_bound > target_bound\n", - " likely_to_fail = typeI_lower_bound > target_bound\n", - " more_sims = (typeI_upper_bound > target_bound) & (target_bound > typeI_lower_bound)\n", - "\n", - " # criterion = ((hob - typeI_upper_bound) / typeI_upper_bound > target_grid_rel_bound) & (\n", - " # hob > target_bound\n", - " # )\n", - " criterion = hob_upper > np.max(hob_lower) - 0.01\n", - " refine_tile_idxs = np.where(criterion)\n", - " if refine_tile_idxs[0].shape[0] == 0:\n", - " print('done because no refinement')\n", - " break\n", - "\n", - " new_thetas, new_radii, unrefined_grid, keep_tile_idxs = grid.refine_grid(\n", - " g, g.grid_pt_idx[refine_tile_idxs]\n", - " )\n", - " new_grid = grid.prune(grid.build_grid(new_thetas, new_radii, null_hypos))\n", - " unrefined_typeI_sum = typeI_sum[keep_tile_idxs]\n", - "plt.show()" + "(4.5 / A.g.radii.min()) ** 2 * A.sim_sizes.max() / 1e9, A.total_sims / 1e9" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "48.59017608897127" + "(0.0009334792926380883, 0.0009915550360346803)" ] }, - "execution_count": 44, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "(4.5 / g.radii.min()) ** 2 / 21580" + "hob_cost = np.max(A.hob_upper) - np.max(typeI_upper_bound)\n", + "sim_cost = np.max(typeI_upper_bound) - np.max(A.typeI_est)\n", + "hob_cost, sim_cost" ] }, { @@ -428,7 +1221,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.10.6 ('base')", + "display_name": "Python 3.10.5 ('confirm')", "language": "python", "name": "python3" }, @@ -442,12 +1235,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.10.5" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" + "hash": "b4c6ec5b2d6c7b38df115d547b82cd53ca25eea58d87299956d35a9dc79f19f1" } } }, diff --git a/research/adagrid/adagrid.md b/research/adagrid/adagrid.md index 0c145c6f..ac8d9726 100644 --- a/research/adagrid/adagrid.md +++ b/research/adagrid/adagrid.md @@ -7,124 +7,59 @@ jupyter: format_version: '1.3' jupytext_version: 1.13.8 kernelspec: - display_name: Python 3.10.6 ('base') + display_name: Python 3.10.5 ('confirm') language: python name: python3 --- ```python import confirm.berrylib.util as util + util.setup_nb(pretty=False) +import time from scipy.special import logit, expit import scipy.stats import matplotlib.pyplot as plt +import matplotlib as mpl import numpy as np import jax.numpy as jnp import warnings -# import pyimprint.grid as grid import confirm.berrylib.fast_inla as fast_inla import confirm.mini_imprint.binomial as binomial import confirm.mini_imprint.grid as grid +import confirm.mini_imprint.execute as execute import jax -# set to cpu or gpu to run on a specific device. -# jax.config.update('jax_platform_name', 'gpu') - -def chunked_simulate(g, sim_size, gridpt_chunk_size=5000, sim_chunk_size=50000): - theta_tiles = g.theta_tiles - typeI_sum = np.zeros(theta_tiles.shape[0]) - typeI_score = np.zeros((theta_tiles.shape[0], n_arms)) - n_gridpt_chunks = int(np.ceil(theta_tiles.shape[0] / gridpt_chunk_size)) - n_sim_chunks = int(np.ceil(sim_size / sim_chunk_size)) - - for j in range(n_sim_chunks): - start_sims = j * sim_chunk_size - end_sims = min(start_sims + sim_chunk_size, sim_size) - nsims_this_chunk = end_sims - start_sims - samples = np.random.uniform(size=(nsims_this_chunk, n_arm_samples, n_arms)) - for i in range(n_gridpt_chunks): - gridpt_start = i * gridpt_chunk_size - gridpt_end = (i + 1) * gridpt_chunk_size - gridpt_end = min(gridpt_end, theta_tiles.shape[0]) - sum_chunk, score_chunk = accumulator( - theta_tiles[gridpt_start:gridpt_end], - g.null_truth[gridpt_start:gridpt_end], - samples - ) - typeI_sum[gridpt_start:gridpt_end] += sum_chunk - typeI_score[gridpt_start:gridpt_end] += score_chunk - return typeI_sum, typeI_score - -# total, d0, d0u, d1w, d1uw, d2uw = binomial.upper_bound( -# g.theta_tiles, -# g.radii[g.grid_pt_idx], -# g.vertices, -# np.full(g.n_tiles, sim_size), -# n_arm_samples, -# typeI_sum, -# typeI_score, -# ) -``` - -```python -import matplotlib as mpl -``` - -```python -n_arms = 2 -n_theta_1d = 11 - -null_hypos = [grid.HyperPlane(-np.identity(n_arms)[i], 2) for i in range(n_arms)] -theta1d = [np.linspace(-3.5, 1.0, 2 * n_theta_1d + 1)[1::2] for i in range(n_arms)] -theta = np.stack(np.meshgrid(*theta1d), axis=-1).reshape((-1, len(theta1d))) -radii = np.empty(theta.shape) -for i in range(theta.shape[1]): - radii[:, i] = 0.5 * (theta1d[i][1] - theta1d[i][0]) -g = grid.prune(grid.build_grid(theta, radii, null_hypos)) -grid.plot_grid2d(g)#, null_hypos) -``` - -```python -thetas = np.array([[-0.5, -0.5], [-0.5, 0.5], [0.5, -0.5], [0.5, 0.5]]) -radii = np.full_like(thetas, 0.5) -def normalize(n): - return n / np.linalg.norm(n) -hypos = [ - grid.HyperPlane(normalize(np.array([1, -1])), 0), - grid.HyperPlane(normalize(np.array([1, 1])), -1), -] -g = grid.build_grid(thetas, radii, hypos) -grid.plot_grid2d(g, hypos) -``` - -```python -theta, radii = grid.cartesian_gridpts([-1, -1], [1, 1], [3, 3]) -null_hypos = [grid.HyperPlane(-np.identity(2)[i], -0.1) for i in range(2)] -g = grid.build_grid(theta, radii, null_hypos) -grid.plot_grid2d(g) ``` ```python -g.vertices[1] -``` +def dots_plot(g, typeI_upper_bound, hob): + plt.subplots(1, 2, figsize=(7, 3.0), constrained_layout=True) + plt.subplot(1, 2, 1) + plt.scatter(g.theta_tiles[:, 0], g.theta_tiles[:, 1], c=hob, s=10) + plt.colorbar() + plt.subplot(1, 2, 2) + plt.scatter(g.theta_tiles[:, 0], g.theta_tiles[:, 1], c=typeI_upper_bound, s=10) + plt.colorbar() + plt.show() -```python -LL = np.arange(10) -LL[LL.shape[0] - 5:] -``` -```python -10 - 5 +def dots_plot2(g, typeI_upper_bound, hob): + plt.scatter(g.theta_tiles[:, 0], g.theta_tiles[:, 1], c=hob, s=10) + plt.colorbar() ``` ```python -%%time n_arms = 2 n_arm_samples = 35 fi = fast_inla.FastINLA(n_arms=n_arms, critical_value=0.99) -rejection_table = binomial.build_rejection_table(n_arms, n_arm_samples, fi.rejection_inference) -accumulator = binomial.binomial_accumulator(lambda data: binomial.lookup_rejection(rejection_table, data[...,0])) +rejection_table = binomial.build_rejection_table( + n_arms, n_arm_samples, fi.rejection_inference +) +accumulator = binomial.binomial_accumulator( + lambda data: binomial.lookup_rejection(rejection_table, data[..., 0]) +) ``` ```python @@ -144,106 +79,153 @@ start_grid = grid.prune(grid.intersect_grid(g_raw, null_hypos)) ```python seed = 10 -sim_size = 100000 -delta = 0.025 + +target_hob_cost = 0.001 +target_hob_rel_bound = 0.3 +target_sim_cost = 0.001 +target_sim_rel_bound = 0.3 +# N_max = int(2e5) + +iter_max = 100 +``` + +```python +from rich import print as rprint ``` ```python -# stop adagrid whenever hob is below this -target_bound = 0.02 +# plt.subplots( +# iter_max // 3, 3, figsize=(10.0, 3.5 * iter_max / 3), constrained_layout=True +# ) + +A = execute.ada_setup(start_grid, n_initial_sims=5000, delta=0.01, holderq=6) +cur_bound = np.inf -# if we can't get below 0.1, refine until the edges are less than 20% above the -# sim pt -target_grid_rel_bound = 0.1 +report_history = [] +for ada_i in range(iter_max): + # np.random.seed(seed) + start = time.time() + old_total = A.total_sims + A = execute.ada_simulate(A, accumulator, n_arm_samples) + sim_runtime = time.time() - start + assert np.all(A.sim_sizes == A.target_sim_sizes) + + # plt.subplot(iter_max // 3, 3, ada_i + 1) + # dots_plot2(A.g, typeI_upper_bound, hob_upper) + if ada_i == iter_max - 1: + break + + typeI_upper_bound = A.typeI_est + A.typeI_CI + cur_bound = np.max(A.hob_upper) + worst_tile = np.argmax(A.hob_upper) + should_refine = ( + A.hob_upper[worst_tile] - typeI_upper_bound[worst_tile] + > typeI_upper_bound[worst_tile] - A.typeI_est[worst_tile] + ) + + hob_target_bound = np.max(typeI_upper_bound) + hob_expensive = A.hob_upper > hob_target_bound + target_hob_cost + hob_loose = ( + A.hob_upper - typeI_upper_bound + ) / typeI_upper_bound > target_hob_rel_bound + hob_tiny = A.hob_upper < 0.2 * hob_target_bound + which_refine = hob_expensive | (hob_loose & (~hob_tiny)) + + sim_target_bound = np.max(A.typeI_est) + sim_expensive = typeI_upper_bound > sim_target_bound + target_sim_cost + sim_loose = (typeI_upper_bound - A.typeI_est) / ( + A.typeI_est + 1e-9 + ) > target_sim_rel_bound + sim_tiny = typeI_upper_bound < 0.2 * sim_target_bound + more_sims = sim_expensive | (sim_loose & (~sim_tiny)) + + report = dict( + iter=ada_i, + cur_bound=f"{cur_bound:.4f}", + n_tiles=A.g.n_tiles, + total_sims=A.total_sims, + new_sims=f"{(A.total_sims - old_total) / 1000000:.1f}m", + total_sims_so_far=f"{A.total_sims / 1000000:.1f}m", + ) -# if we can't get below 0.1, refine until the edges are less than 20% above the -# sim pt -target_sim_rel_bound = 0.2 -N_max = int(2e5) + # if (np.sum(which_refine) > 0) and (should_refine or np.sum(more_sims) == 0): + A.target_sim_sizes[more_sims] *= 2 + report["n_add_sims"] = np.sum(more_sims) + report["n_add_sims_because_expensive"] = np.sum(sim_expensive) + report["n_add_sims_because_loose"] = np.sum(sim_loose & (~sim_tiny)) + + A, did_refine = execute.ada_refine(A, which_refine) + report["n_refined"] = np.sum(which_refine) + report["n_refined_because_expensive"] = np.sum(hob_expensive) + report["n_refined_because_loose"] = np.sum(hob_loose & (~hob_tiny)) + # elif np.sum(more_sims) > 0: + # A.target_sim_sizes[more_sims] += 5000 + if np.sum(which_refine) == 0 and np.sum(more_sims) == 0: + print("done after", ada_i, "iterations") + break -iter_max = 9 + report["simulation_runtime"] = f"{sim_runtime:.2f}s" + report["iteration_runtime"] = f"{time.time() - start:.2f}s" + rprint(report) + report_history.append(report) +# plt.show() ``` ```python -def dots_plot(g, typeI_upper_bound, hob): - plt.subplots(1, 2, figsize=(7, 3.0), constrained_layout=True) - plt.subplot(1,2,1) - plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=hob, s=10) - plt.colorbar() - plt.subplot(1,2,2) - plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=typeI_upper_bound, s=10) - plt.colorbar() - plt.show() +n_arms = 4 +n_arm_samples = 100 +ys = np.arange(n_arm_samples + 1) +Ygrids = np.stack(np.meshgrid(*[ys] * n_arms, indexing="ij"), axis=-1) +Yravel = Ygrids.reshape((-1, n_arms)) -def dots_plot2(g, typeI_upper_bound, hob): - plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=hob, s=10) - plt.colorbar() +# 2. Sort the grid arms while tracking the sorting order so that we can +# unsort later. +colsortidx = np.argsort(Yravel, axis=-1) +inverse_colsortidx = np.zeros(Yravel.shape, dtype=np.int32) +axis0 = np.arange(Yravel.shape[0])[:, None] +inverse_colsortidx[axis0, colsortidx] = np.arange(n_arms) +Y_colsorted = Yravel[axis0, colsortidx] + +# 3. Identify the unique datasets. In a 35^4 grid, this will be about 80k +# datasets instead of 1.7m. +Y_unique, inverse_unique = np.unique(Y_colsorted, axis=0, return_inverse=True) +(n_arm_samples**n_arms), Y_unique.shape ``` ```python -# TODO: don't recompute for unrefined. -# TODO: refine n_sims too! -# TODO: why is this slow?? -plt.subplots(3, 3, figsize=(10, 10.0), constrained_layout=True) -new_grid = start_grid -unrefined_grid = None -for ada_i in range(iter_max): - # TODO: is setting the seed inside the loop okay? - np.random.seed(seed) - new_typeI_sum, _ = chunked_simulate(new_grid, sim_size) - if unrefined_grid is not None: - g = grid.concat_grids(new_grid, unrefined_grid) - typeI_sum = np.concatenate((unrefined_typeI_sum, new_typeI_sum)) - else: - g = new_grid - typeI_sum = new_typeI_sum - print(ada_i, new_grid.n_tiles, g.n_tiles) - typeI_sum, _ = chunked_simulate(g, sim_size) - - typeI_est, typeI_CI = binomial.zero_order_bound(typeI_sum, sim_size, delta, 1.0) - typeI_upper_bound = typeI_est + typeI_CI - typeI_lower_bound = scipy.stats.beta.ppf( - 1 - delta, typeI_sum, sim_size - typeI_sum + 1 - ) - typeI_lower_bound = np.where(np.isnan(typeI_lower_bound), 0, typeI_lower_bound) +%matplotlib widget +plt.figure(figsize=(8, 8)) +plt.scatter(A.g.theta_tiles[:, 0], A.g.theta_tiles[:, 1], c=A.hob_upper, s=2) +plt.colorbar() +plt.show() +# plt.figure(figsize=(20,20)) +# plt.scatter(A.g.theta_tiles[:,0], A.g.theta_tiles[:, 1], c=np.log10(A.sim_sizes), s=2) +# plt.colorbar() +# plt.show() +``` - hob_upper = binomial.holder_odi_bound( - typeI_upper_bound, g.theta_tiles, g.vertices, n_arm_samples, 6 - ) - hob_lower = 1 - binomial.holder_odi_bound( - 1 - typeI_lower_bound, g.theta_tiles, g.vertices, n_arm_samples, 6 - ) - print(np.min(hob_upper), np.max(hob_lower)) +```python +def optimal_centering(f, p): + return 1 / (1 + ((1 - f) / f) ** (1 / (p - 1))) +``` - plt.subplot(3,3,ada_i+1) - dots_plot2(g, typeI_upper_bound, hob_upper) - if ada_i == iter_max - 1: - break +```python +optimal_centering(np.linspace(0.001, 1, 100), 1.2) +``` - need_more_sims = typeI_upper_bound > target_bound - likely_to_fail = typeI_lower_bound > target_bound - more_sims = (typeI_upper_bound > target_bound) & (target_bound > typeI_lower_bound) - - # criterion = ((hob - typeI_upper_bound) / typeI_upper_bound > target_grid_rel_bound) & ( - # hob > target_bound - # ) - criterion = hob_upper > np.max(hob_lower) - 0.01 - refine_tile_idxs = np.where(criterion) - if refine_tile_idxs[0].shape[0] == 0: - print('done because no refinement') - break +```python +A.sim_sizes.max(), (4.5 / A.g.radii.min()) ** 2 +``` - new_thetas, new_radii, unrefined_grid, keep_tile_idxs = grid.refine_grid( - g, g.grid_pt_idx[refine_tile_idxs] - ) - new_grid = grid.prune(grid.build_grid(new_thetas, new_radii, null_hypos)) - unrefined_typeI_sum = typeI_sum[keep_tile_idxs] -plt.show() +```python +(4.5 / A.g.radii.min()) ** 2 * A.sim_sizes.max() / 1e9, A.total_sims / 1e9 ``` ```python -(4.5 / g.radii.min()) ** 2 / 21580 +hob_cost = np.max(A.hob_upper) - np.max(typeI_upper_bound) +sim_cost = np.max(typeI_upper_bound) - np.max(A.typeI_est) +hob_cost, sim_cost ``` ```python diff --git a/research/adagrid/adastate.py b/research/adagrid/adastate.py new file mode 100644 index 00000000..b61f84e2 --- /dev/null +++ b/research/adagrid/adastate.py @@ -0,0 +1,263 @@ +import os +import pickle +import re +from dataclasses import dataclass +from typing import Dict + +import jax +import jax.numpy as jnp +import numpy as np + +import confirm.mini_imprint.bound.binomial as ehbound +import confirm.mini_imprint.lewis_drivers as ld +from confirm.lewislib import batch +from confirm.mini_imprint import grid + + +@dataclass +class AdaParams: + init_K: int + n_K_double: int + alpha_target: float + grid_target: float + bias_target: float + nB_global: int + nB_tile: int + step_size: int + tuning_min_idx: int + + @property + def max_sim_size(self): + return self.init_K * 2**self.n_K_double + + @property + def sim_sizes(self): + return self.init_K * 2 ** np.arange(0, self.n_K_double + 1) + + +@dataclass +class AdaData: + unifs: np.ndarray + unifs_order: np.ndarray + bootstrap_idxs: Dict[int, np.ndarray] + + +@dataclass +class TileDB: + data: np.ndarray + slices: Dict[str, np.ndarray] + + @property + def n_cols(self): + return self.data.shape[1] + + def add_field(self, name, n_cols): + new_slices = self.slices.copy() + J = self.n_cols + new_slices[name] = J if n_cols == 1 else np.s_[J : J + n_cols] + new_data = np.concatenate( + (self.data, np.empty((self.data.shape[0], n_cols), dtype=self.data.dtype)), + axis=1, + ) + return TileDB(new_data, new_slices) + + def get(self, name): + return self.data[:, self.slices[name]] + + +def empty_tiledb(n_tiles): + return TileDB(np.empty((n_tiles, 0), dtype=np.float32), dict()) + + +def test_tile_db(): + db = empty_tiledb(3).add_field("a", 1) + assert db.get("a").shape == (3,) + db.get("a")[:] = 1 + + db = db.add_field("b", 2) + db.get("b")[:] = 2 + assert db.get("a").shape == (3,) + assert np.all(db.get("a") == 1) + assert db.get("b").shape == (3, 2) + assert np.all(db.get("b") == 2) + + +# TODO: remove +if __name__ == "__main__": + test_tile_db() + + +@dataclass +class AdaState: + g: grid.Grid + sim_sizes: np.ndarray + todo: np.ndarray + db: TileDB + + def __getattr__(self, attr): + if attr.startswith("__") and attr.endswith("__"): + raise AttributeError + return self.db.get(attr) + + def index(self, which): + return AdaState( + grid.index_grid(self.g, which), + self.sim_sizes[which], + self.todo[which], + TileDB(self.db.data[which], self.db.slices), + ) + + def refine(self, P, which_refine, null_hypos, symmetry): + # TODO: would be nice to wrap null_hypos and symmetry into the grid + # itself. + refine_tile_idxs = np.where(which_refine)[0] + refine_gridpt_idxs = self.g.grid_pt_idx[refine_tile_idxs] + new_thetas, new_radii, keep_tile_idxs = grid.refine_grid( + self.g, refine_gridpt_idxs + ) + new_grid_subset = grid.build_grid( + new_thetas, + new_radii, + null_hypos=null_hypos, + symmetry_planes=symmetry, + should_prune=True, + ) + + # NOTE: It would be possible to avoid concatenating the grid every + # iteration. For particularly large problems, that might be a large win + # in runtime. But the additional complexity is undesirable at the + # moment. + g = grid.concat_grids(grid.index_grid(self.g, keep_tile_idxs), new_grid_subset) + + sim_sizes = np.concatenate( + [ + self.sim_sizes[keep_tile_idxs], + np.full(new_grid_subset.n_tiles, P.init_K, dtype=self.sim_sizes.dtype), + ] + ) + todo = np.concatenate( + [self.todo[keep_tile_idxs], np.ones(new_grid_subset.n_tiles, dtype=bool)] + ) + new_db_data = np.concatenate( + ( + self.db.data[keep_tile_idxs], + np.empty( + (new_grid_subset.n_tiles, self.db.n_cols), dtype=self.db.data.dtype + ), + ) + ) + new_db = TileDB(new_db_data, self.db.slices) + return AdaState(g, sim_sizes, todo, new_db) + + +def init_data(p, lei_obj, seed): + key1, key2 = jax.random.split(jax.random.PRNGKey(seed), 2) + unifs = jax.random.uniform( + key=key1, shape=(p.max_sim_size,) + lei_obj.unifs_shape(), dtype=jnp.float32 + ) + unifs_order = jnp.arange(0, unifs.shape[1]) + bootstrap_idxs = { + K: jnp.concatenate( + ( + jnp.arange(K)[None, :], + jnp.sort( + jax.random.choice( + key2, K, shape=(p.nB_global + p.nB_tile, K), replace=True + ), + axis=-1, + ), + ) + ).astype(jnp.int32) + for K in p.sim_sizes + } + return AdaData(unifs, unifs_order, bootstrap_idxs) + + +def init_state(p, g): + sim_sizes = np.full(g.n_tiles, p.init_K) + todo = np.ones(g.n_tiles, dtype=bool) + tile_db = ( + empty_tiledb(g.n_tiles) + .add_field("alpha0", 1) + .add_field("orig_lam", 1) + .add_field("B_lam", p.nB_global) + .add_field("twb_min_lam", 1) + .add_field("twb_mean_lam", 1) + .add_field("twb_max_lam", 1) + ) + return AdaState(g, sim_sizes, todo, tile_db) + + +def load(name, i): + if i == "latest": + # find the file with the largest checkpoint index: name/###.pkl + available_iters = [ + int(fn[:-4]) for fn in os.listdir(name) if re.match(r"[0-9]+.pkl", fn) + ] + i = -1 if len(available_iters) == 0 else max(available_iters) + if i >= 0: + fn = f"{name}/{i}.pkl" + print(f"loading checkpoint {fn}") + with open(fn, "rb") as f: + data = pickle.load(f) + return data, i, fn + else: + return None, i, None + + +def save(fp, data): + with open(fp, "wb") as f: + pickle.dump(data, f) + + +class AdaRunner: + def __init__(self, P, lei_obj): + self.lei_obj = lei_obj + + self.grid_batch_size = ( + 2**6 if jax.devices()[0].device_kind == "cpu" else 2**10 + ) + + n_arm_samples = self.lei_obj.n_arm_samples + bwd_solver = ehbound.TileBackwardQCPSolver(n=n_arm_samples) + + def backward_bound(t, v): + q_opt = bwd_solver.solve(t, v, P.alpha_target) + return ehbound.tilt_bound_bwd_tile( + q_opt, n_arm_samples, t, v, P.alpha_target + ) + + self.backward_bound = backward_bound + + self.batched_invert_bound = batch.batch( + jax.jit(jax.vmap(backward_bound)), + 5 * self.grid_batch_size, + in_axes=(0, 0), + ) + + def step(self, P, S, D): + S.alpha0[S.todo] = self.batched_invert_bound( + P.alpha_target, + S.g.theta_tiles[S.todo], + S.g.vertices(S.todo), + self.lei_obj.n_arm_samples, + ) + + bootstrap_cvs_todo = ld.bootstrap_tune_runner( + self.lei_obj, + S.sim_sizes[S.todo], + S.alpha0[S.todo], + S.g.theta_tiles[S.todo], + S.g.null_truth[S.todo], + D.unifs, + D.bootstrap_idxs, + D.unifs_order, + ) + + S.orig_lam[S.todo] = bootstrap_cvs_todo[:, 0] + S.B_lam[S.todo] = bootstrap_cvs_todo[:, 1 : 1 + P.nB_global] + + twb_lam = bootstrap_cvs_todo[:, 1 + P.nB_global :] + S.twb_min_lam[S.todo] = twb_lam.min(axis=1) + S.twb_mean_lam[S.todo] = twb_lam.mean(axis=1) + S.twb_max_lam[S.todo] = twb_lam.max(axis=1) diff --git a/research/adagrid/bayes2022_figs.ipynb b/research/adagrid/bayes2022_figs.ipynb new file mode 100644 index 00000000..924c657f --- /dev/null +++ b/research/adagrid/bayes2022_figs.ipynb @@ -0,0 +1,365 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Type I Error" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.spatial\n", + "tree = scipy.spatial.KDTree(g.theta_tiles)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = worst_tile[0]\n", + "ng = 300\n", + "t1 = np.linspace(-1, 1, ng)\n", + "t2 = np.linspace(-1, 1, ng)\n", + "TG = np.stack((np.full((ng, ng), t0), *np.meshgrid(t1, t2, indexing='ij'), ), axis=-1)\n", + "TGF = TG.reshape(-1, 3)\n", + "nearby = tree.query(TGF, k=5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "running for size 2000 with 5161 tiles took 4.826196908950806\n", + "running for size 16000 with 2366 tiles took 15.737522602081299\n", + "running for size 32000 with 87 tiles took 1.1202466487884521\n", + "running for size 64000 with 26 tiles took 1.1076807975769043\n", + "running for size 128000 with 13 tiles took 1.11198091506958\n", + "running for size 256000 with 9 tiles took 1.1044256687164307\n" + ] + } + ], + "source": [ + "idxs = np.unique(nearby[1])\n", + "typeI_sum = np.zeros(g.n_tiles)\n", + "typeI_sum[idxs] = batched_many_rej(\n", + " sim_sizes[idxs],\n", + " (np.full((idxs.shape[0], 1), overall_cv),\n", + " g.theta_tiles[idxs],\n", + " g.null_truth[idxs],),\n", + " (unifs,),\n", + " unifs_order\n", + ")[:,0]\n", + "typeI_err = typeI_sum / sim_sizes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFgAAAOYCAYAAADhTEefAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd1wT5x8H8M8lbBECuLfBvQ24t4Kjrqrg3gOsHdbaQm1rl79WobWttVXBWq1Wq4KzbnBvBdw4wb0VgiIgktzvD5qQI3eXCwkS8Pt+vXi9uLsn99zlCeHue8/zfRiWZVkQQgghhBBCCCGEkAKTFfUBEEIIIYQQQgghhBR3FGAhhBBCCCGEEEIIsRAFWAghhBBCCCGEEEIsRAEWQgghhBBCCCGEEAtRgIUQQgghhBBCCCHEQhRgIYQQQgghhBBCCLEQBVgIIYQQQgghhBBCLEQBFkIIIYQQQgghhBALUYCFEEIIIYQQQgghxEIUYCGEEEIIIYQQQgixEAVYCCGEEEIIIYQQQixEARZCCCGEEEIIIYQQC1GAhRBCCCGEEEIIIcRCFGAhhBBCCCGEEEIIsRAFWAghhBBCCCGEEEIsRAEWQgghhBBCCCGEEAtRgIUQQgghhBBCCCHEQhRgIYQQQgghhBBCCLEQBVgIIYQQQgghhBBCLEQBFkIIIYQQQgghhBALUYCFEEIIIWZJTk5GcHAwvL294e3tDX9/fyQnJ1u0z+joaHh4eFjpCEuuwMBAxMbGFvVhEGIkPDwc4eHhRX0YhBBSpCjAQgghhBDJYmNj4e3tDQBISkpCUlISwsLC4O/vX+Cbq9jYWAQGBkKpVFrzUEscHx8fKJVK+Pn5FfWhEGIkJCQEa9asQXBwcFEfCiGEFBmGZVm2qA+CEEIIIbZPrVbDw8MDKpUK8fHxnG3Jycn6AEBUVJTkYEloaKg+MJOUlERBFgH+/v5QKBSIiooq6kMhRJDueyAoKAhhYWFFfTiEEPLa2RX1ARBCiE5gYKDFwwxM2b17NxQKRaHWUVLpboSlvH9qtZpulkug0NBQAMCMGTOMtimVSsyYMQMRERH6J9jBwcHw8/Mz+swkJCRgzZo1iI6O1q8LCwujz4uA4OBgxMXFITU11aL9hIeHIyIigrPfkJAQSw/vjRcZGYmIiAio1Wr9uoCAAAQHBxfqZzo5ORlhYWFITk5GXFwcgNy/Q19fXwQHB0OlUhV435GRkYiKikJcXBzUajWUSiVUKhVmzJghul9dgNXf3x8tWrRAQEBAgY+BEEKKI+rBQgixGR4eHvoLVIVCAT8/PyiVSnh5eelv0NRqNWJiYjg5CJRKJYKDgzllnj59iuTkZCQkJHCCNvHx8RZddL7J1Go1kpOTkZKSwrmw1wkICMCQIUP0NxT0PpcsycnJ+qFBQpcOarUaNWvWRGpqKpKTkxEdHY2YmBijwKlKpdJ/Vnx8fHh7xJBc0dHRCAwMRExMTIGHBiUnJyMwMBAA9L2LdD0NBg8ezAm6EOkMh7YtXrxY/52nVqsRGhqKyMhIhIWFWT2Ipdv/2rVrMWPGDPj5+UGlUkGtViM2NhaTJk2CWq2Gn58fIiIizAryREdHY9KkSfD09ERoaCgGDx4MhUKB5ORkxMbGIiwsTFJgTheQp0A7IeSNwxJCiI0AwAJgw8LCRMulpqbqywJgIyIiRMvHxMSwCoWCBcDGxMRY85DfaBEREZx2ICWbrr2VSqVoOT8/PzY+Pl7SPlUqFQuATUpKssYhlkgKhYL18/Mr8Ovj4+NZAKxKpTLaFhISwgKQ3F4kT1RUlOD7qqN7f4OCgqxat0qlYkNCQgS3JyUl6b+XlUolm5qaKmm/QUFBJo9Xd95S/mYt/ewSQkhxREluCSE2QddzJSQkxOSTsfzDDTw9PUXL+/n56fMWGHbhJpYx9b6TkiUmJgYATD6NViqV+uEKYsLDw5GQkEBDg0QEBwfreysURHJyMrp16waFQoHdu3cbbff39wcA6sFiJrVajUmTJgEA7/uqo/tsR0ZGcobDWSI0NBS+vr6i+U2USqV+u+4zYEpgYCAiIyMREBAg+HkIDg7W94SScj4zZsxAbGwszXpFCHmjUICFEGITUlJSAPDndrAG3XCjws7xQkhJZTh8T4y3t7fJQGZycjJCQ0OhUqkoB4gAtVqNyMhIqFSqAg8N8vf3h1qtxuLFi3nbTRckXbt2rSWH+sbRDcEJCAgw+fegC47pAjKWCg8PR2RkpL5thRjmPklISEBCQoJgWV0AyFQSZSmBU0NBQUEAQLMKEULeKBRgIYTYBF0SvcJMQOvn54enT58W2v4JIaYDMAA4+UAIv9mzZwMoeNA5ODgYycnJUKlUgolGDfNWUfBZGrVare+9oesBJGbw4MFGrysowzaKjY3Vf0b45O8VJhQcUavV+gCIqc9aWFgYFAoFVCqVPngiRqFQICgoSJ+/hRBC3gQUYCGE2ATdjUBh8vHxoSFChBSQ4c24GFNJLWlokDSRkZFQKBQFmoUlISEBkZGRACB5qlz6bpRG974CpofLAdyAo6VDsfLX5+XlJfm1QkM6DYefmQqa+Pn5ITU1FfHx8ZIfhuiCNzRlMyHkTUEBFkKITUhJSSn0my0aIkRIwen+PnXD+YQkJycL/i3T0CBpoqOj9bPAFIRuOIqp4UWGQRX6bpRGl4sIAHx9fSW9Rvf3YI1eHDExMQgICDA5OxHfzF356Yah6bYXRg9S3X5jY2MpiEcIeSNQgIUQYhPUarVZT+MKQqlUmrw5JITw0w2HMHUjnpCQIBhgoaFB0qxZswaAtCEo+cXGxurzbZjKfUFBFfMZDrWRGpAw/Huw9D3XJW03FaA0DOaoVCrev0nD3DsFDeZJoQtEUa4fQsibgAIshBCb4OfnV6Cu8OYwnFmBEGIeXaJotVot+CRaF1zhu/GkoUHS6W6OpfaQMGQ45EOX/0OI4c1+Yea/KkmkJns2ZFhWLNmsNRn+rxMKaBr2xmnRokWhHYsuUGhYHyGElFQUYCGE2AShJ2zW5ufnh9jYWDAMAw8PD94fhmF4X+vj48P7Ot1T+fDwcAQGBsLf3x8+Pj767ToJCQkIDAzkbPP39+eM6TdXbGwsAgMD4e3tDW9vb3h4eMDHxwfh4eEF3qctK8j58rWLYc+A6Oho+Pj46PeZf1+Wvp6PbqiM4eu8vb0RHBxschhBYRyPVLqbd6HP7OzZs3mnFKahQdIlJCTob+LNzUtlOFuMn5+fySDAyZMn9b9T0Mu0gvY+Mcx/8jp6UYaGhiI5ORkKhQLx8fGCbWv4XWOYYyk4OJjzHevv729Rgl5d7xhKdEsIeSOwhBBSDAHQ/0RFRZn9+vj4eDYqKopVqVScfUVERLAxMTGCr/Hz89OXVSqVbEREBJuUlMSyLMuGhISwfn5+rEKh0JdRKBQsy7Ksn58f6+fnx9l3UlISGxQUpC8nVC+fpKQk/bGHhYVxtkVFRbEKhYJVKBRsfHy8uW+NZFFRUZz3rjBZcr5BQUFG7eLn58eyLMuGhYWxAQEBbGpqKud8DD9Tlr6e73gAsCEhIfrPjk5ERASrUChYlUpltK2wjsdcKpWKVSgUbGpqKme97u9J6DUABM+J5ImIiOC0qTlCQkI432WmGH6G8rcnMRYfH2/03S6F7m9earsURGpqKhsfH88GBASwAPTfA2LlDb+/4+Pj2fj4eFalUhn9L9J9JsW+l0zR1UPfAYSQko4CLISQYsnSAIuO4UWmUqmUXN7UzY9SqTQKxAjRXbxKvfhOSkrS3xiJBYMK+4L2dQVYrHm+uv3ogl2G7Wh4ExQUFGT116empuoDDWLBtNTUVFapVEoKkFl6PgWhOz7Dm62IiAhWqVTyvve6z3f+wBjhpwuSBAQEmP1aw4CJqb/7pKQks777CMvGxMQU6D0z/Fu05t+B7m/R8HtYoVBI+p9o2P66AItYAEV37gqFokD/U0x9hxNCSElBARZCSLFkrQALy7L6J35Sbkp0ARZTT3sNe7pIuaA2PAZTF6C6C2pTN826i/qC3KhJ8boCLNY8X127+Pn5sSqVitOO8fHxrFKpZJVKpWBgw5LXC/XA4aO7+TF1M2Pp+VgiLCxMX29ISAjv34TuPIR6thiiHhS5dG0aEhJi1usMb/51wTmxn7CwMH35wvqOkMKw101h/hQ0MGDIGgEWc9vVHLqea7oefWLfNYZBad1nwNT/Ht15SPl7zk/3PV5YPXgIIcRW2IEQQt5wM2bM0I8vDwsLQ0REhGDZtWvXIigoyGRuA8PtUnJOhIWF6Y8hODgYSUlJvOV0Y+t1rxETGBiIyMhIREdHIyEhwex8DrbA2uera5e4uDijHBUqlUrwfbf09boEr4C0z4NSqdTnCwoODhZMDmnp+VgiJCTE5LnoZrERSrKZkJCgb2PdNOqhoaEICgqy+vEWF7ocHebOqmb4GVGr1fDx8ZH8WqHZihISEjB79mzOfv39/a2aR2fIkCFW25cYLy8vm8gzU5hTFSsUCgQEBEClUsHf3x+hoaFYs2YNdu/ebfQ/K38umISEBJMzCem+YxMSEhAZGWnW36mu/sL8TiKEEJtQ1BEeQggpCFixBwvLspxcLGKEhkHkZ9gjRSrD1/A95TMcziT1CSIK8alpYfdgKYzzNaenkDVfbziURyrDoWNCdVl6PoXJ1NAgXW+A/NtVKtUbPZyooE/6DXvNSflONDWcSNd++Xs/8fWWelNYoweLNYfriTF1rIbbpf6PyJ+3xRy6z+frOn9CCCkqNIsQIYQgtxeLjtAMKbopaAvrKajhU2S+J/6GMzBInb5V14ujoLNfFKXCPl9L21Hq66Ojows0K4zhOQv1ACnI8bwOuplIhGYN0vWE8PPzM9q+e/duREREFMvPrDXoehYYzjwjheHfi6meCMnJyZzPZP7PTkJCAoKDgxEREWH0mY2JiUFycjImTZpk1vGVNAWdDeh1TYetm1YdyJvFy1D+z5eUaZoVCgXn+M2ZFUh3LK9jFiVCCClKFGAhhBAAAQEB+gtHoaEoQlPQWovhTU5cXJzRdsMhAN7e3pL2qbuI1g1PKU4K+3xfV4DF8DzMGfZh7o2MLQVYdFOXCwWGdH9HfH9PCoUCYWFhJoeElXTm3IgbDjtRKpUmX2s45a5uGJchXfBEaAhIUFAQoqOj37hpd63xN2bu0C9LBAQE6H8PDw/nBC3zf0aknpthYKYg/1cKc4gUIYTYAsrBQggh/wkKCtJfhMbGxnKeAqvVaklj1C1heIHLdxFqeHE8e/ZsrFmzRtJ+VSqV5B4gtqQwz9fSp8jmvF7spkaM4Y2Mqd4cr+upuBSRkZGIjY1FWFgY701bcnKyvpeY0N9TQEAAJk2ahLCwMJs6t9fJnBtRw8+HlF5Shnmm8gdRkpOTTeZs8vf3R3h4OCIiIgr1O9HWGP5NmtM+hr02XmcgNH9gOjY2Vt/e1jiOp0+fmv2aN/XvmRDy5qAACyGE/GfGjBkIDw8HkNuLxfDGITIykvdJb1EJCwt7oxKBvmnnW1yZGhoE5PXGMXWD5+fnp0/e+ybx9PSEWq02ayiFYVlTQz2Sk5NFE0frereItY8u0PCm9WApaHDA3ACYkNDQUISHh0OpVCImJsbk31D+YUD5E8zqEku/DgUd+kYIIcUNDREihJD/KBQK/c1cbGws5wllREREod/gm+rpYLjuTehmXVLOt6DnYXjTXFye+poaGgQA8fHxAEyf0+u8+bMlBZltJf8QITG6YVkKhYI3CHby5EkA4jfCumNUq9XF+m+zIAwDflI/n4blCtpzJDk5Wf8AgC+nSkEYBnsK8rdmznAn3eekuHyXEUJIQVGAhRBCDBhetOqmJ42OjoZKpSr0C0PD8ex8T+0Nn0wXpGt2cVNSztcwebE552F4w1MchniZGhqkozsvU0+yvb2938gpXXXvnTmBC8PvJrHvqeTkZH0PFcPE3oak3AibM3zNlNDQUDAMU+g/Hh4eVgnYGf49S92f7j21pDdW/rqkfD7y94LKP2TIcIpsqediuE9zzke3/9eZg4YQQooCDREihBADupkXdHkiwsLCEBER8VoSbhomQzW88NUJCgrSB4DM7ZqvVquL3ZPDknK+gwcP1g8vMycppGFZWxqexketViM0NFR0aJCOrbSLrSrIbCuGAS2x4Jbu70msncyd5cXSWWH4vusKg5eXl1Xyjhh+L0kJShiW0fXwKgjDY9clgjZF11tMZ/DgwZxlwyS4UoKZhj2WFAqFWcOddJ8TS4ZIEUJIcUABFkIIySc0NBTBwcH6m8aUlBSLLgql3OwnJCRwclMYXvjqKBQKBAUFITIyEgkJCUhOTpZ0wxAbG4vQ0FCji21bV1LO1/A8dEPPpAQZdEl9hT4PtiQwMBBqtVrSdNK63g+mbsyTkpIkTR1b0uh6GZjTg0U3c5DYkJ2EhAR97xWxdnrdQ35UKlWxuunWDSWNjY1FVFSUyaGjuvdc9z1QUEqlUp/A2zBJsRjDwLThTHmGdN9Na9euNbnftWvX6n8396GD7nNVHHrjEUKIJWiIECGE5GN4ERweHm5x7wHdjCliDIcmid38GA6/kDoGPzg4uNhOeWvt87X05rGgrzc8D93QMzGxsbH6Hiy2dDPMRzddr6mhQTo+Pj4ATB+71IBaSWOYB6ogrxMKXOl6T0hJjmoOW/gMvm66QERsbKzJXiy6sqa+g4ODg8EwDHx8fATf08WLF+sDtaYYHptCocDixYsFj08XnDOcvluoLJAbFDMnWGTYG496sBFCSjyWEEKKmdTUVBaA/iciIsLqdQQFBbEAWIVCUaDXBwQE6I9PqVSyMTExgmXDwsL0ZcXK6SQlJbEKhYIFwIaFhZk8jpCQELOPX4qIiAhOOxQWa56vn5+fRcdryeuTkpJYpVLJAmCjoqJEy+nOV6ycpcdjDampqaxCoWBVKpVZr9Edc2pqqmC5gv7tlQS69o+Pj5f8mpiYGBYA7+df931k6vPEsiyrUqkE96Nj2IZSvrNKoqioKBaA6Gc/JCSEBcAGBASI7kvXdrofsfde970r9l1o+B2iUChMfo7i4+P1dQuV1Z2LUqkU/bvlo/sfZ+p9IISQkoACLIQQm5aamsrGx8frf6Kiojg3lboLyIiICDYmJkZfLikpyaJ6k5KSTF7oijEMsKSmprIqlYoNCQnhXJgmJSXpy6lUKrOOOTU1Vf9aPz8/o5uciIgIVqVSWTX4ZNgWERER+mCB7icgIIDTBtZkyfkmJSXpj9nweIOCgvTHK/beW/p6ofMICgrivE+pqan6GxGlUin4HlrzeCyl+1s0tz7dzZrQDX9EREShBQaLA91nxFRAMb+goCBWoVDo2yM1NZX18/MzGeQ1pGvToKAgwTKGARZr/60XJ1FRUfoAY/6/ZV2QXux91DEnwMKyuQERlUrFKpVKNiQkhI2JidF/LxgG7M35vxIfH68PyhjuMyYmRv+Z8PPzMzu4wrJ5n+fCeBhCCCG2hgIshBCbprtINQymiP0YlrOU4Y2KuQwDLDq6IIBSqdT/6IISBRUfH88GBQXpgx0KhYJVKpVsUFCQ1W+ydTfFYu1g2FaFcZNfkPM1LCt0zEqlUrBOS18vdB4hISGsUqnU70f3eTDVy6AwjqcgdE/wzQ0CsGxezxe+49T19CnIjVxJoXtvC/LEPywsTP/9olKpzG4f3XeXWN26AHRh/Z0XJ7rAqOF3u0qlMvs7WPe/zpwgRkxMDBsQEMAJduu+Dwv6f0V3LobfJZbsj2XzemS9yX/ThJA3B8OyLMs/eIgQQt5cupwShjP7mCMwMFA/np2+ZklJo1arUbNmTSiVygInE05ISEC3bt3g5+enzzOTnJwMf39/hIWF2Xxi38Lm4eEBAEhNTX2t9YaHhyM0NBR+fn6C33+xsbH66Yrp+42ISU5Ohre3t+jniRBCShJKcksIITzCwsIkJ1Ul5E2jS54pZdYgISqVCtevX4enpye8vb3h7e2N4OBgREVFvfHBFSB3Sl0piUetTZcsVyx5qy4JK7UTMUWX3Jf+nxJC3hTUg4UQQvLRPUVPSkoq8D6oBwshxBK6J/8qleq1Tznu4+ODhIQEpKam8s76EhwcjMjISMTExOgDMoTkp1ar4eHhAaVSadH/U0IIKU6oBwsh5I0UGBgIDw8P3qfDERER9LSNEFKklEolQkJCkJCQwJnm9nXQ9Trgm2JerVZj7dq18PPzo+AKEaWbkt7UFNWEEFKSUA8WQsgbR/dkGIDR02Fr9F4BAH9/f8TGxgKgHiyEkILz8PCAr6/va89focvFkr+Xir+/P5KTkxEfH8/bu4UQnaL67BJCSFGiHixFKDAwEOHh4Vbfb3R0NPz9/Tk/hVEPIcWVUqnU/57/CWxgYCAiIiIsriMlJUX/uy5fASGEmGvx4sWIjY3VB2xfl5CQEMTHxyMiIgKBgYEIDAzUX1MkJSVRcIWICg8Ph1qttsr/U0JIyREaGgpvb28wDANvb2+r3g8HBwfrh+gb5hFTq9VISEjQ1y2WY8waqAfLa6RWq5GcnIw1a9YgMjISarUaISEhVu066e/vj5SUFERFRelvItVqNSZNmoSEhATExMRwbi4JeVOFh4djzZo12L17NxQKhf7vpEWLFggJCSnQPpOTk6FWqxEXF4fg4GD9+oCAAAQHB8PT0xMqlcpap0AIeUMEBwdj7dq1uH79OgU2iM1LSEiAj48PJawmhOglJycjMDAQwcHBGDx4MBQKBRISEjB79mxER0dDqVQiKirKoutkw/yHQl7H9xIFWF4ThmGgUCjg6+urf0KekJBg1QBLYGAgYmNjBS/AfHx8oFarKdEYIf+Jjo7G7NmzoVaroVAoMGPGDIu+dHVRcb6/P10vlqSkJApyEkLMpnuA8roT3hJiDrVaDR8fHwQEBFDuFUIIgLzvBaEH/aGhofpeLJZcJ4sFWHTfSa/jGpwCLEVEl5/BWgGW2NhY+Pv7i+4vOjoagYGBVu81QwghhJDC5+PjA19fXxp2QWwWfUYJIfkFBwfD399f9CGmh4cH1Gq1RTPnBQYGYsiQIfreMUBurkVfX9/X2vuTcrCUELp/ZP7+/oJldB9qvlkBCCGEEGLb4uPjkZKS8trzsRAiRXh4OIYMGULBFUIIx9q1a032EJ8xYwaA3CGGlvyPUyqV8PPzQ0hICEJCQuDn5/fah9ZSgKWE0HWHMtXtSZdrgi7OCCGEkOInKiqKpkcmNkl3Q0MIIToJCQlQq9VgGEb0/tMw90pxn3mMAiwlgOGH1VSARbdd122KEEIIIYQQQgixNsMZe8R6t3l6eup/L+6zb1KApQTQBUukdH/SfXhPnjxZmIdECCGEEEIIIeQN5ufnB5VKBYVCwZlhM7+UlBT9797e3q/j0AqNXVEfALHc06dPzX5NcY8MEkIIIYQQQgixXQqFQlLSWsPRFZZM1Qzk9poJDQ0FkHvPm5KSAj8/P8yYMeO15GOhAEsJYE6wRPehMowSmuvOnTui27OysnDp0iWUL18eZcuWhZ0dfcwIIYQQQgghlsnJycHjx48BAI0bN4aTk1MRH5H5cnJy8ODBg6I+DF7379+XdP9WpUoVq9arGz6kUqksyjM2e/ZsqNVqREVFcYIpgYGBolNFWxPd+ZYABQmWWNKDpWrVqgV+LSGEEEIIIYRY6sSJE2jRokVRH4bZHjx4UOzvp1iWtdq+YmNj9blaFi9ebPH++JLkRkVFwdvbG97e3khNTS3UniyUg6UEMEwKRAghhBBCCCGEFAe63CxhYWEWDQ8KCwtDVFSU4HbdVNG64UOFhXqwlACve27v27dvm9zetm1bALmR5YoVK76OwyKEEEJsRmbGK/w65zi2rLuCrMwcAEDdhmXwwaet0LJdZavUcfrUfbw/ZQceP87Qr1N4OCH8x27o2KmGUfmcHC1CJu5E3IH7wH8PH2VywO9tJb74sTNvHQt/OolVC86B0eQus2Dh6CrH/JVvoX6Tckbl799+hvf6bkW2WgsGDABAy2jReVhNfPx9O946Zo7fjdN7HujLs2ChqOiEhTv7wNXN0aj8xVOP8H3wQagfZelf4+Jhh49+aoeWXazz3hJCbNP9+/fRsmVLAEDZsmWL+Ggst+dwJZSvIC/qw8DDBxp0bXcPwOu9fwsODkZycjLCwsIsnubd1NAff39/hIeHIzIyEmFhYYV2D00BlhLAy8tLclnd0CBLPlDmjLmrWLGi1cfoEUIIIbYsJ0eLob2icezAPQCukOfGAHAtMQcfjT+KFZsHoEO36hbVcTHxMUYN2wONxh4yxl2//pkaeGfSIWzdVQ3t21fjvKZvi5W4ciYT9lDgv7gEoAX2rk+BNjsBkev7ccr/NOsIon67BQfD8gDYF8C7Aw5i79VxqFzNTb/+RXo2BtbaCrlGASeGsysc+ycNES5XMGtRV876if6bcGlfNpwYbm/crAfApLb7sO/pWMjleTcfSYkp+DIwHtC4wIlx0a/XqIHwCWfwe2wV+HSkIAshb4KSkOexfDkHVK5kA+ehzdH/+rru3yIjI/XBDkuDK1IYBmDi4uIsyvUihoYIlQC6YImUvCq6fC2FndyHEEIIeVNt23AVxw7wJ4TPydHim5D9Fo9fnxK0DRoN/z5YFng3eBtn3YFdN3HljPCsg/u23MCt62mcdRGz4/Q9RPJjWAYTB23irPto6A7INfyXlgwY7PzzKjQajX7d08cZOL/voeAx5bzQYt7nJzjrvpmwF9Dwl2dYBrOC9gvujxBCiG2IjY1FcHAwIiIiXktwBeCm1TCctcjaKMBSAhgGS0wFWXTbKcBCCCGEFI4t666Ibr90/gmSLqdaVMfp0+IzUFxPVkOr1eqX/5wnfjHJAIicG6dfjj9+F8gRLg8ASee553DmgHCwBADkrAxRfybql+fNOCoYwNHZtpz7Xl47LZ7Y/0FSOue8CSGE2JaEhAQEBgYiKioKQUFBFu9PrVbDx8cH3t7e+mS5piQlJVlcrxAKsJQAvr6++t9NzSik+9D5+/sX6jERQgghb6q01CzTZdSmy4gR6r1iKCMjL0KSlvrSZHn107xjupGUJlIyF6vlHoP2lenAxp3rz/S/pzzKNFk+O4vbXUWbI37eDBhkZpiIDBFCiI1gWIDRMkX/Y71JgUQlJyejW7duiIqK0iedNaRWqxEbG2vWPmNjY5GQkIDk5GRER0cLljO8T/b29jarDnNQgKUEUCgU+ozLYlE7w/wrhTXmrCDS0jIxYdxmdGizFCOGrseDB+lWr+Pq1acY2G8tOrRdiqnv70B2tkD/Ygvs2X0dPf3+Rqd2y/Dzj0etvn8A+CMyHl07/AX/LsuxacMlq+9fo9Hg8093o0Pbpej71j84e1r8aWRBUHtLR+0tDbW3NNTe0lna3nUblhHdbm8vw/UbqZg07l9MnrQFx47wDycSU7q0g8k6XF3zyjRoKn5MAODTtpL+907+1cFC/IrbwZmbmNFZYS9angUL/wF5F7VtupueprRsFRfOslNp8VwFMnsGpVzF3xtCCCGvn1qthr+/P3bv3i14LxoXF2f28B3dfbBKpeIN2ugY3icX5r0ww1pzEmsimb+/P2JjYxESEoKwsDBJr1Gr1YLJaaOjoxEYGIigoCBERETwlomMjERwcLBZdRbEnTt39HO73759WzRJ0rSpO7Ek8pTR+r7962Dl6oFWOZ6uHf5CXNx9o/XfzOqEaR+3sXj/mZnZaFR3EWcWBwCws5Nh05ah6NCpmsArpUtMfIRObf/Cy5fcG4nSpR1w+kIQypZ1tbiOVSvP4Z1JW5H/G6FWLU+cPD2Bk2SwoKi9paH2lo7aWxpqb2ms1d5XLz5FN9VyaLX8l1hyZwapL7k9SrxreWD/4TFwc3OSVMfH03YhcpHwRWi//nXwt8H7nvIkA22q/AEIdDKxc5ThXNoUyGR5z95aVI3As4fCPV9GTG2CL3/orF9eFXEWv753TDhviyuDI6kTOetaOy3Wz1CUHwsWC/f3RfO2ebNZhE09iI0LhAOQ7QZUw49rewhuJ4QUb+bcZ9gqw3NIvFIDlSuLB6dfh7t3X6FBnRsACud9VavV6NatGxYvXiw6FXNoaCj8/f15AyBi98I+Pj6Ij48XPYbQ0FCEh4cjICBAdDpnS1EPliImJTEtAAQGBsLDwwOBgYG82wMCAhAQEIDIyEjBXiy66agKM7hijkUL4ngvxgHg301XMCPEvO5hfAIHRPFejAPAVzP3Y8/u6xbX0bRBpNHFOJCbyLBPr1VIT8+2aP8ajQbtWy0zuvkCgOfPs9GsYaRF+weAy5eeYPJE45svALh2LQWdOyy3uA5qb2movaWj9paG2ls6a7V37fpeCFvgB5mMJ9AgB1KzjIMWSddS0andX5KPNXyuHxo24p+itGo1N/y5nDsjkGcZF3zxSyfe8owMmPfPW5zgCgBsPDxMcL7JSnVKc4IrADA8uAm823ry9nzRyLRYvLe/0frv1nSDlqc8CxadBtfgBFcA4JOf26F6Y3ej8gBQppoLvv+7G/8BE0KILWIZ2/kpRN26dYOfn59+GA/fj24KZb5coabuhcPCwhAcHCxYf0JCAsLDw6FQKLB48WKrnRcfCrAUgYSEBMTF5SaSi42NlZSMRzeeTGxc2eLFi+Hn5wd/f3/OPnXdsQCYjOy9Tt98KZ7pX+zJnBQajQa7doonMMo/y4K5TiXcF+0Cz7JA0Ph/Larjixl7kZMjPK79+fNsrF+XKLhdijGjNopuP3PqIdLSTI+VF0PtLQ21tzTU3tJRe0tj7fYeNq4xdp4cidFBTeHbphI6d6+BfsPq4Jk2G0J5XZOupeLI4VuS9i+TyXD4+DjM+r4zqlZzg6urAypWckXIp21w7uJkODgYR0ZGTW6KqKOD0bRtBbi42aOUwgFtulfFjguj4NfH+IK2cjU3xD+aDJ9ulcA4MGBlgKObHSZ+5oO958fxHtfK/QEI/tEXdp4yaORaaO1ZeLfzwPY7o9CwmXFAqFt/JdZcCETVxu6AHcDKWbiWd8DM5Z0RtrI773mvigvA5DktUKaaCxxd5fCo5ISRnzXBpqvDeM+bEEJI0fH399cHOAIDAwV/QkNDoVareQMspu6F/fz84O3trR8loqNWqxEZGQkfHx/4+fkhPj5esBeMtdB/odfE398fcXFxRj1WkpOT9Ul2FAoFBg8ezDvEJywsDLNnz8aMGTME61AoFIiJiUF0dDSCg4M50zf7+/u/timwpHrx4pXo9levtMjMzIazc8HGUsfsSOZ9Ymvo/v3nBdq3zk8/mB6bf/CgtItlIRs3XDZZ5vdfT2LgoAYFruPqFfHkyACwOOIUPg5pW+A6qL2lofaWhtpbOmpvaQqjves3Kovv5+f1qOjh97dgcEVn2Z9n0LadtKFIMpkMU6e1xtRprSUfUxOfCli7b7Dk8q6uDli1XXhMO59xU1UYN1W4C3h+Nep4YG2C9GOSyWQYM70ZxkxvZtZxEUIIeb2io6PNSlorNHxIyr1wSEgIAgICEBYWhtDQUCQnJ8PT0xMqlUowqW5hoADLaxITE2PR60NCQiQHSHTDhUoCjQW5CzOyxC/4AZi8YDfl1SvTB5h/lgVzCY3h5xyHiVkVTGElzGjJN4TB2qi9qb2lovaWjtpbmtfR3hoJbflKwkw8hBBCSgbdLD5FrbCOISAgANZI+Sr1XlipVArmI31daIgQKTKOjuJJFWUyhjMDgrn69K1rsoyHp3OB9w8AE4N8TJZp3KS8RXV0lJBUcfiIRhbVUaVqaZNlxo1valEd1N7SUHtLQ+0tHbW3NIXR3k8fZ2Dh3JP4YNx2fP7BbtSr7QUTE/MgILC+WXXs2X0d3bv+jUb1FqJL+7+waaP4DFQpTzIQMnEXutVfBv9Gf2HWx/uRkSGeW2b2FwehqrQIjTx+R8d6f2LPdvGhzfFH7qFf45Vo67EYHcsvwTfv74VGJMKWmZmNj4ftROcyf6KjxxIMbxWF5EviPa+OxtzG+E4b0a/2Soxusw6x68WHkBFCCCGvAwVYSJEJmizefbhf/zoW7d/BQY6mzcQvhr8P62pRHX7dlSanylyyrK9Fdfz6e08wIkFlBwcZJk/xtaiOhZG9RbdXreaGSpXdLKqD2lsaam9pqL2lo/aWxtrtvWfHdbSttwTffXYQ61ddxF8RZ7Bx+SW4yuwFgyxly7qgd1/p79XQgGi83WcNjh29g1s30xAffx+jhm2Ef5cV0GqNe8Ls3X4d7aouwabll3An6RluXUnD37+eQcsKkTh/6pFR+czMbDT2+h3Lwk/hxZNsvHqhwcPkdEzu/y9G9l7He0whY3fh3U5b8PhSBth04FWKFjsWXUM79yV4ypNA+OLpx+jisQyHo2/hZZoGr9K1uJ6gxvDG0fj9mxO8dUwbsB3T3tqOi0ce4/GNDFyNS8HMIXswvuMG3vMmhBBCXhcKsJAi892cbujQkf/pbaNGZbF81QCL69h3aDQqVOSf4nT4yEYYPqKxxXUci58g+PT21997Wnzj4uzsgFVrB/LehMntGOzZP8ai/QNAu/bVMO1j/jH87u6OiDs9kXebOai9paH2lo7aWxpqb+ms1d73bj9H8LB/8SLdeGiTTMOglNx4Sk53hSN27x8t+Vjnhh/Ftq3XeLcdP3YX0z/kDk3OyMjGuwFboNUYR3deZWkxyt84YNLLZyWynxv3PGHA4ETMHSyeF8dZv3tzMg6svME7TTPzksGgZmuM1k/ssAmMhqc8GKz432ncuJLKWb8kLB7HttzhrePi0SeY88Eho/WEEGKrGK3t/BDrYFhrDIoixIC589PHxd3Dh+/uwIMH6fD0csacH/zQtVtNqx7T2jWJ+H7WQaQ/f4maSgUWRPZG7dpeVq1j1tcHsGrlOeS80sK3RUUs+qM33N0t67JuKDMzG+9N2YGD+25BJgP6vV0Xs8O7Qi4X75pvjnt3nyFo4hZcuvgEzs72eH9qSwRNNt1t3hzU3tJQe0tH7S0Ntbd0lrZ32JeHMD+Mv/cFALiUsseI95pg/76bkMsZDAqsj6DJKqNpksXUqDIPKU+FZ39ydrbDw5SP9ctzZhzE0rn8U2nrzP7TDwNH5iZUTk/PRnPPhZCJZOV1crfDmcdT9Mt+Nf/CizvCw41YsPjnQgBq1vEEAGxfcxXfjNzLGyzR8W7hib+PDMqro8IyvHgqnJPHzlmGg88mCG4nhBRv5t5n2CLDc7h0QYnKlY2D7q/b3buvUK9h7vDP4vq+2goKsBCrKwlffIQQQkhBDesVjYN7xGcc2nxwGFQtKxa4DneXOSYT+z54+hFcXHKHPQ1qvxrnTxgPAzLUI7AWfl35FgBg09pLCBm5S7S8lmFx9eVU/XJLlwjIX4kHiQZ/2hDTZuXOWPXB21txcus90fIObnLsfzpev9zaIRIMK56McU/aWDi7FP0NCyHE+krCfQYFWEo2mkWIEEIIIcSKnJxNX15JKSOGYRiTMzM4OOTV4SihPudSeWU8vUz32GHyjW1jZKZnoXDzdDKoz/RNhdwuXx0MI5oomAULewfr9fwihJBCpf3vp6jZwjGUEJSDhRBCCCHEivx6K0W3V6vhjroNLBvWVPu/YTZCKlZ0hZ1d3mXekPENRcuzYDF6SjP9codu1cHKxAM4FZXcGaq8m3mIltdAi+GT82bFeuerFmBNTKvUtjc3t0/luuJ5cDwqOXPOmxBCCHmd6D8QIYQQQogVDRxeH3XqCwdQPvmmLeRyyy7BfprXQ3QGqvyzKvUfVh9lq5QSLF9fVQ4Nm5XjrOszoq5gAEQLFvNX9OIe05qe0IhkSmzcrQKcnfNmaqpRxwMV6ohMI24HfLmoM2fVp/Pbg2X4j4kFiw/D+RM6E0IIIa8DBVgIIYQQQqzI2dkeq3cEoEuPGpz1XmWd8dPiHhgwtL7FdXToWA1/LO0LJyfu0B97exnC5/phUGADo9dsTRiBGvUUnKAJC6BJm/KIOhBoVP6nJT3RqX9NaPMFWVg5EL68O5r4VOCsr1C5NObt6AWtA7e8Fixqd/DEkh39jepYd3YwKtR1zXdMLOQuMqw8NQgO+Yb7+HaqjK+Wd4adE/cSVmbPYOrPbdBjSG2jOgghxFYxrO38EOugJLfE6kpC8ilCCCHEGq5fS8XF809QurQDWravDEdH66a/02q1WLs6EefPPYR3LS+MGtPE5BCZy+efYMvaK5DbMQgY0wBVqruLlk9Pz0bYF4dw/85ztO1SFePfVZk8rg0rLmL3xmR4lHXGh7Naw6usi2j5W0lqRPwvDpkvctB/TF106i0++5RWq8X2f67hytknqFZbgf5j69HQIELeACXhPsPwHC6ftZ0kt3WbUJJba6AAC7G6kvDFRwghhBBCCLEtJeE+gwIsJRuF+gkhhBBCColWy+LJowxkvHhVaHVkZGQj8fxjPHuWJfGYtLhxNRV3bqZJruP+3ec4fugOMjOzJZXPztYg7uBd3LkhvY7kSyk4c+wBNBqNpPKZGa9w9fxTpD97KbkOQgixJQwLMFob+KEuF1ZD0zQTQgghhFjZq1caLJwbh78WncbD+y/AMEDXnjUR+m17NGhS1ip1JCelYviQ9Ui88Fi/ztvbA3+tfBtNmpbnfc3n7+7GxuUXkfMyNxmtYyk7jJ/WHB9+2Ya3/Jrl5/HN+3uRk6kFAwYsWHhWdsGGQ0NRsbJxgtpnaVkY2ioKT5MyIfuvPOsATPpWhYnTfXnrmD31ADZFXAbzX1xFCxbeKg+sODIQcrnxlMu3k9LwccBO3Dyv1h9TxVqlMfsff9RrVkb0PSOEEEIKE/VgIYQQQgixIpZlMWXkVoR/dRgP77/4bx2we/t19O/0D07HPbC4jrt3n6GVzx+c4AoAJCWlolO7ZUg8/9joNWPeWo/oxRf0wRUAePkiBwv/dxIzJscalV+15CxmTtwNTSYLBrlTFjFgkHo3E51rL0VaWianvEajQfcqK5CalAWZQXlZNoM/Pk3Ar98cM6ojdMQubFpwSR9cAQAZGFxPUKN7lRVG5R/eeY5hTaNw63wa55geXEvH+DYbcPX8U6G3jBBCCCl0FGAhhBBCCLGi3duuY/vGa7zbMjNy8OVHey2uY9L4LXj5kn8ojUbDYvzYzZx1p4/fx9HY24L7W/9nIp4+yuCs+3bqfn0Qw0gOMGEAt46QMTFgBEYpMWDw9/dnOOtepGdj39obgnVkPHmFpXNPcdbNHLsXmpcC0zTnAF+M2s1/AIQQYou0rO38EKugAAshhBBCiBVtWH1RdHvC8fu4kaS2qI7jR++Ibk+88BhabV5Pld9mnxAOlvxnQfhJ/e/nTj+ENlsrUho4d+whZ/nIv8IBHACQa2XYuOqSfvmXT4/qe7oI+eeXs5zlC0ceiZa/eV7NOW9CCCHkdaIACyGEEEKIFT3J1xOEz9PHpsuIefXKdBAhIyMnr75HmSIlcz28m67//dL5JyYDMloN94mnxkRABgCuGQzhuXfjucnyWS+4vXQ0Js6bAYNMg/MmhBCbxv6X6LaIf0AdWKyGktySIqfRaPDz3ONIiLuPevXL4PMv2/MmtbNEVlYOli89g7v3nqNdu6ro3tPbqvsHgMePXmDZ0jPIzHiFfm/XRbPmFaxex+VLTxC1NhF2djKMGNUYVau6W72OgwduITYmGV5ezhg/sTlcXR2sun+tVot1URdx7uwj1KrtiZGjG0Mms26sl9pbOmpvaai9paH2zlWzlgcO7xPuzSGTMcjO0eB/3x4ocHu7uNhxAij5yeUMp32VdRVIjBPv/VGvcV6C2LYdq4IFKxpksXPktq1jaTvkpAoHQFiwaOdXVb/crF0FJOy8L3pMinKOnGUHFzleZYgEWeRAKSt/rgkhhBCpGJZlKV5FrMqc+el//vEovv5yP/J/Ct993xezw/2scjzffLkPv/x0HBqDJ21u7o5YHT0I7dtXs3j/Wq0WQwPWYcf2JM76atXdEbN3JCpWNJ5lwVxqdRa6d/0bly4+4axv07YK/t0+FA4OlsdKE88/Rp+3/sETg6eqMhmD0WOb4Nffe1m8fwBYF5WIKcHbkJmZd1Pg4CDH7LCumDTZxyp1UHtLQ+0tDbW3dNTeec4mPMRbbVYKbncqbYdHL7g9WMxt76AJ/2L1qguC2zt3rYHNW4fql+/dfoYu3ssEy8vsGJxRv8Opv2m5BchSCwdxeo2sg1/+7Klf/v27E/j76zOC5VknFseeB+mXNRoN2rksAaPlD+KwYBG20R+detfUr5s5djdiVyYL1tGsWwUs3NFXcDshpHgz5z7DVhmew5WEmqhSyb6Ijwi4c+8V6qiuAyi+76utoCFCpMhERyXiq5nGwRUA+H1+HH6ZazzbgLnmhh/F3B+OcS7GAeBZ2kv07fkPblxXW1zHkEHGF+MAcOtmGlqpliAnx/Kx4G1aLDG6+QKAo0fuoHvXvy3ef0pKBjq1X8a5+QIArZbFsj/P4JOPYiyu49ChWxg/ZjPn5gsAsrM1mD4tBuujxXMWSEHtLQ21t3TU3tJQe3M1UZVHyDfteLcxdsDjdOPhQea2928Le6FSJVfebQoPJyxf+TZnXaWqbgj61BesQD/wL3/tbBTc+XvXIGgZ/vKuZRwwd7E/Z927n7eEh7cTb3kNtJizllteLpfj/bmteI+JBYsGHcpxgisAMDOyEzwq89fh4mGPsNX+vNsIIcQmaW3oh1gFBVhIkfnog12i27//30GL6/gh7LDgNo2GxYcf7LRo//fvP8fOHcYX4zpqdRbm/XTcojrWrL6Au3eEx6knxD/A2TMPBbdLMSNkj+BsFACwZHGCxTeSH32wizeYpj+GUMtnfqD2lobaWxpqb+movY198Gkr/LNtEHr09UbV6m5o0KQseg6shTRNNliBUTfmtLeDgx3OXpyMcROawc3dUT8kKHBIA1y6NgUKhXEQYvq3bTFvzVuoWtsdcnsGcgcZajfxwvLYgRg2sbFR+cbNymP35TGoUs8drIyFFiwYe6BLgBInbk/iHc677dIo+E3wBuvIQgMtNIwWCqUTlp4ciM69ahqVH/FeU8zd2gOlKzpAy+TWYVdKhpGfNcWfe97mPe+NV4ah96Q6cHK3AyMHHEvL0XVYTWy5MQJuPOdNCCGEvC6Ug4UUGbVaYC7H/2RlaZCdrYGDQ8HysZw/91B0fDpgehYGU5YsPmWyTNTaREwPaVPgOv5aKtzdWidiQRx+j+hd4Dp2xwh3twaAnBwWWzZfwdsD6xW4jiuXn4puv38vHTk5WtjZFSzuS+0tHbW3NNTe0lF78+vQrTo6dKuuX36rxyqYyBtrVns7ONhh3m89Me+3nqYL/6fXgNroNaC25PLVaiiw++wYyeUBYNairpi1qKvk8u26V8euW9LrcHCwwxcLOuGLBZ3MOi5CCCGksFGAhdi0zMxsODg4F+i1qakvTZbRaCx7avsi/ZXJMi+zLJvNICvT9OvTX5g+DjFSZqN49sz0+ylGSrqn7Owc2NkVLDkhtbd01N7SUHtLR+0tzetob0IIIcUHo2XBaIs+JaotHENJQUOESJEx9SSTYQB394IFVwCgRctKkMnEHxVWrWbZLB29+5l+Ctjcp6JFdbRtV9lkmR69LJtFo3YdL5Nl/HsoLarDw0O8LZ2d7eDiUvCZH6i9paP2lobaWzpqb35ZWTlY/89F/G/GAfw65zga1DfdFua297VrKRg7aiM6t1+GYYPX4fw58SFGOTla/Pb9cQR2XIMhXdZixaIz0GrFg1Ob1l5Cl0ZL0bJaJAZ1Xo3rSami5R8/eIHxPTaia9VleKveCqxefM7keSycdQK9a/2NHtWW46PBO/AiPVu0/M2ranw6PAaj2qzDRwE7cOWscR4jQggh5HWjAAspMoFD6otub9/BshkhnJzs0LFzddEyM7/qaFEd7dtXQ4UK/EkGgdwg0azvO1tUx2czO4gGo0qXdsDQYQ0tquO7OV1EtzduUs7i2VKmvO8run3o8EYW7Z/aWzpqb2movaWj9jaWcOI+2tVbgg/Gbsein+IQ/tVhbFx2Gc6wg0CeWbPbe9oHO6FqHIn10ZeQEP8AW/+9irYtl2L08A285c+cfIDmXgsx/+vjOHvsIU4ffoD/fbAfLSpG4s7NNKPyGo0GrWsuxicjd+LeledIe5CF80ceoUf95fgkmD+P2s8zj6BP1ZW4uOcxMh+8QmpSFuZNOYYO5ZYgM9M4aPLg7nO0K/0Hln97Bik3M/Hs/ksc3XAbXT2WYcPSRN46vn/vAIY0WIv9UTdwLS4FRzfdxmif9QgZKp7bjRBCCClsFGAhRSbij76oW5f/aV6Fiq7YvG2IxXVEbwhAjZoK3m0TJjW3KOeAzq49I+HqavxklmGA3xa+hcqV3Szav4uLA1atGQC53PjpraOjHFt3DodMZtmfcqvWVTDji/a828qVc8HWncMt2j8AhHzaDj0Fnsy2aFkJP//a3eI6qL2lofaWjtpbGmpvriePMjCq33o8vP/CaJu9VgYnxji3mLnt/efiU4J5YzZuuIz/fbOfsy4nR4uRfuuQnWmc8Dg9NRsB7dYYre/XbjVS72aCyZc4hgGDTUsvYt0qbgAk7uBdrJ5zHjKeRDM5qVoMaGJcx5AmUdBmGUecZGAwJ+gQHj/gvofRkRewOeIS7zEdXHcTv39lWeJpQgh5rVgU/exBWggG/on5GFbKwGlCzGDu/PTLl53Bd7MOIk2dBVdXB3wwrRU++LCVVY/pz8WnsDgyAc+evURNpQe++bYTfFpUstr+s7NzMPt/h7Bp42VkZ2uhUlXAd2FdUbWqZV3WDT1+9AJffLYXRw/fhkwug393Jb76thPvzUBBXUx8jC8+24vLF5/ApZQDRo5ujPc+aGHxDZ6h2JhkzPnuMO7ff44yZVwwbXprq9wYGaL2lobaWxpqb+movXP9Ouc4wr8SnvWotLsD2r1VDSeO3y1we9ep+RsePEgXrqO0A+4++ki//Nv3xzH/a/Hgw2/Rb8G/Xy0AuVNsN3T9jTdYolOqjAMS7k3WL79VbwVSk4QT2GvBYtONYahQObfH1OFdNzG9906jYImhhp3K4Y/Y/vrlXtVWQH1fuA7H0nLsSxkvuJ0QUryZe59hiwzP4erxGqhS0b6Ijwi4c/8Vare6AaD4vq+2ggIsxOpKwhcfIYQQUlAjeq/D/tibomW2HB6OZr4VClyHu8sc0amxAeBR6sdwcsqdzyCw4xqcPSaen6XXkNr4ZUUvAMDW9Vfw0dAdouVZhsWVl1P1y61cIiF7JZ4rZ9gXjfHBV60BAB8M3IaT/94VLe/oLse+J3kBk9YOkWCE5rkGwILFvufj9edNCClZSsJ9BgVYSjb670MIIYQQYkUyniFf+fENC7P6cRh0TpJ0THZ5ZRwcjYcxGcm/SwmnZO+Qt197e9O9pxiGMV42EViyYqcsQggpVAyb+1PUbOEYSgr6F0QIIYQQYkWd/GuIbi9fsRTqNSpjUR3Vq4sPWfL0coaDQ95ztD5D6oqWZ8Fi8Li8ZMRde9aA1sQVt2dFF85ypbriOWq0YDFiSmP98vgQFVgT0ZImHbm9fMpVLyVa3tXLgXPehBBCyOtEARZCCCGEECsaMqYhKlUVnpnp/dBWsLeX0ENExHdzuopu/zxfYuMRQY3h6iGc46WqtztadczrEi6Xy9Gmu/BsfixY/PAHN3nxD6u6QwPhKZ+rNneHm7uTfrmhTzm4VXQUroNh8f1f3Tjrpoa3FgzKsGAx6SvxGa0IIYSQwkQBFkIIIYQQKyrt5ojV2wPQsGlZznpHJzk+ndUeYyY3tbiOvv3rYtb3nSGT5R9CA0yd1hKTJvtw1stkMmw6MQwe5Z0561mwqOLthvVHhxrVsfzfAajjW8YooKEFiw9mtUKHbtyps2vV80ToH+2hYbhBFhYsPGs7Y83RAKM6Nl0ehlJlHYyDJnbAvB1voVS+xL9d31binTktgXzxKZZhMXR6Ywx5x7IpwQkh5LUq6tmDDH+IVVCSW2J1JSH5FCGEEGIplmVx8sg9JJ59DFc3B3TrVRMens6mX2iGjIxs/PTjMVy59BTVa7hjekhbKBROoq+J2XwNW6OuQm7HYPC4RpyeK3ySr6Tgy2l7kfI4E419y2PWL13h4CDcA0ej0eCHTw8jbv99lHZ3wEdz2qKxT3nROg5sv4E/55xCdlYOurxdE5NmiPdEycx4hWXhp3D9khqVapTG+E+bw83EeRNCir+ScJ9heA7XjthOkttabW8AKL7vq62gAAuxupLwxUcIIYQQQgixLSXhPoMCLCUbZQEjhBBCCCGEEEJeM0ab+1PUbOEYSgoKsBBCCCGEWBnLsli7/AKWLjiNxLOPUdrdAb0H1MEHn7ZCleris+1IlZKSgXGjN+Pg/lvIydFCLmfQomVlLF3RD5Ur89exKPwk/vgpHs9SXgJg4FXBGR/NaovAMQ15yx/dfwvvDtuG9Ccvc8+LAWo39cLaPYPh6mqcNFej0WCs30ZcPvwEMpYBC8BeIcPMiM7oMbAWbx1/zz+DRV/EISdDk7tCzqBtv6r4aW1P3vJpKVmYMSIWp/fdhzaHBSNnUL9VWcxe2Q3lqwgnFyaEEEIKGw0RIlZXErruEUIIIZb47P3dWB55xmi9ZxlnrN89BLXqeVq0f7U6C43qLsCzZ9lG25yc5Ig/G4SqVblTOU8ftwNbVl4xKs+CxTuftcS0r9tw1sdsTcKUAVsgA2P0GrmzDKcfv2OUi6VD+SXISTF+FKoFi2kL2mDopMac9XNDDiPq5wtgeOooV6sUNl0czln3TJ2F/t7/IOtZjvExOckQnTgYFURmcCKEFG8l4T7D8BySDtnOECHv9jcAFN/31VbQLEKEEEIIIVZ0eN8t3uAKAKQ8ycQXH+6xuI6g8f/yBlcAICtLg9HDN3LWXU18in9XXuYtz4DBojkn8fzZS876D0ds5w2uAIAmU4tJAZs56755fy9vcAUAZGDw09QjnHXZ2RqsFQiuAMDDa+nYsDSRs27mmD28wRUA0GRpETokhncbIYTYJBYAy9rAT1G/ESUHBVgIIYQQQqwoakWi6PZDe2/h7q1nFtWxd88N0e0J8feh1eYFO37++qhgIAMAoAUWhp3ULyZfScEr3ZAdAcd33+Ys7/w7SbS8/JUMuzZd0y/P/+KYYAAHyA38RH4bz1kXv/ueaB1X4p5yzpsQQgh5nSjAQgghhBBiRffuPDdZ5sG9dIvqePlSPPjBskBGRl5Pj3u3TR/TzWtq/e/xJ+6LB2QAaHK4jzxzssSPCQDOHn+o/z05MdVk+Rdp3F46OS9NBE9YIDODv4cLIYTYGobNS3RbpD/Ug8VqKMktsQl7dl/HoQO30FxVAX371y2UOvbuvYE7t56hdZvKqF3Hy+r7z87OwfZt1/DixSv4+ytRtlwpq9ehVmdh544k2NvJ0PMtb7i4GCcYtNTNm2oc2HcL5cuXgl/3mpDJrB+HPXvmIU6feoC69bzQqnXhjPGk9paG2lsaam/pqL2ByhJygLiUtsea1RcK3N6OjnLRIAvDAC4ueZd5lauVxsX4x6L7rFHbQ/+7T8uKYMGKBlnk9tzPj72zHNrn4lfpzVtX1P/u3cgLCTvvi5Z3VXDfFztHGTQvReqQAc4udHlLCCGkaNB/IFKkoqMSMXniFmRn5z2RktsxmB3WDZOn+FqljiWRCfh8xh7Ok7yq1dywftNg1K1Xxip1TJ+6E38uOQ2NJu+iz8enIv7dMYx3lgVzZWfnYGD/KBzcfxO6tNQyGYMBg+phybK+VrlJunv3Gfq9tRpXr6To1zk6yhEyox0+CW1r8f4B4NChWxgzfCMeP87Qr3NXOGJRZG/07lvHKnVQe0tD7S0dtbc01N55Bo9uKDpMqLSHA1q3WGJRe3fzq4ltW68JbvdtUYmzr2nftEHMhiThgIkMmPJpC/2iso4n7EvJkfNCuMdIW/+qnOVeo2tj6+/GSXR1NPZadOun1C+/921LrPnpHGQs/zGxYDH5G+61QAv/yji25Y5gHXVbeBVK4JAQQgiRgv4DkSKzf+91jB+9mRNcAXK7HIdMj8WqlecsrmPZn6cxbeouzsU4ANy+9QztWy/F40cvLK7jnaAtWBx5inMxDgDx8ffh2zTSKmPBO7RZhgP78m6+AECrZbEu6iIG9Y+yeP8ZGdlo2fwPzs0XkNsFfdbXBxA+57DFdZw/9xB9evzDufkCgDT1Swwfsh57996wuA5qb2movaWj9paG2purTceqGPtOM95tMjmD++p0i9s78s8+cHd35N3m7GyH5ave5qyrVc8Lb4+uD5YnkyELFu/ObIlS+QJIv6/pDa1A5kM7FxkWrenLWffFL51g78V/aakFi09+b89Z5+Agx9CPG/MeEwBUrOeGfqPqc9bN+qsrnBX8zwftnGUIW+3Pu40QQmyS1oZ+iFVQgIUUmfFj/hXdPn3qLovr+OKzvYLbXr7UYOr7Oyzav1qdhVV/nxfcfu9eOpZEnrKojl07knAx8Yng9t2x15GcZHocu5iZM/bi+XP+2SgAIHz2EYtvJKcEb4NWy38RzbLA1CnbLdo/QO0tFbW3NNTe0lF7G5v1cxf88mdPNGtRAY6OcniVdUaXXjWQpn0JrUAnEnPa283NCecuvQP/HkrY/zdURy5n0K5DVZy+EIzKld2MXhP+R3eEhLeHexlHfUijbGUX/PBXd3zweWuj8p2718SqfQEoXc4RWrBgwULLsKjjWwZx94OMpmgGgL13x6Je5zLQyHJfoQULe08Zvl/nh8BxDY3KT/u+DabNbwt7V9l/NbCAHdBxcHVsODfUqLyrmyM2Xh0G356VILNncocx2QGNOpbDuktDUb4KTdFMCCGk6NAQIVJk8j/pzO/Fi1fQaDSQy40v4KS4fOkJnqW9FC2zf+/NAu1bJ3JRPOcpJJ9lS89g0mSfAtfx2/yTJsvM+/k45v3Ws8B1/Lv5quj27GwNdu1IQs+3ahe4jnNnH4luv3EjDVqttsBdu6m9paP2lobaWzpqb2MMwyBgRAMEjGigX9ev92oIjIbRM6e9FQonrNs4WFJZnYkf+mDih9I/sy3aVkbcnWDJ5eVyOZbGDDDrmIZMboQhkxtJLu+mcML8f3ubVQchhBDyOlAPFmLT0tKEn7qa8uCB6RkasrNNz3ggJuVppskyL168sqiO5yZuKgAgNcX0cYjJyjI948KDB5Z1v8/f5Z5P/q7/5qD2lo7aWxpqb+movaV5He1NCCGk+GBY2/kh1kEBFlJk5HITj/EAeHo6F3j/Pr6VwJioonwF1wLvHwA6d6lusky9+pbNcNFMVcFkmfYdqllUR/Ua7ibLdO5Sw6I63Nz4cwXoODjILUoYSu0tHbW3NNTe0lF789NqWRzedwt//JqA1cvOo35904l4zW3vZ8+y8OXnezE0MBoh02Px5Il471AA2Bp9Be8N24qpI7fj8G7TPX8Szz3GkO5R6K5ajg/H70BmpvjDj+xsDb55fy8GNP8HIztHI/7IPZN17N6UjJFt12GIz1r89tVxaDTiAbP0Zy8xb8YxfDRoO36YdgipTygwRQghpOhRgIUUGT9/pej2ps3KW7R/V1cHqHwqipaZ/kkbi+ro+VZtKDycRMv8b3ZXi+qY+XUHyGTCdxZOTnJMDG5uUR1fftNRdLu3twdq1FRYVMeoMU1Et/fuW/DhCQC1tzmovaWh9paO2tvYtUsp8PddjiE9ovH1J/vwcfAubF99FY6QQyCnq9ntPTf8KKpVnIdffjqObVuuYdGCOHhX+xWffhLLW/7W9TS0rBSBj4bvQMy6JOxYexXje21C5zpLBXvOvNXyb7ztswqn993HzfNqbP/7Cpq4L8RPs47wll+9+Bzau/6BHYuu4cH5dCQdTsW7nbagZ+0VvEGTF+nZ6Fp+KT4PiEXSyRTcOpuGld+fRbtSS3B4F3/wZ0lYPPzLLsfqH8/h6OY7WP/bRfSqtAI/TD8k8Z0jhBBCCgcFWEiRWR09EGXLuvBuK+Vqj937R1tcx4Z/hwj2gnmrTy2Mm9DM4jo2/TtEn2Awv5lfd0StWp4W7d/T0wW/zO/B+/RWLmewau0gi6ek9O/ujbHjm/JuK1XKHpu3GycaNNd3c7qgWXP+oFmNmgosWdbP4jqovaWh9paO2lsaam+uZ2kvMfStaFy+8JSz/lW2Fo5aORx4Lr/Mbe+N6y/hm6/2GyUXZllgwW9xWPg7N7+PVqvF263+QdoT42FK9288x8A2q43Wj+y9DkmnU4ymdpaBwaJZJ7FnezJn/ZULT/DzlKOQs9xzYMAg7UYWAlsaz5L0dr1/kJmSY1QHo2HwUZ+dRsOqYtYlYfEX8UYzXjAsg3W/JmLV/DNGdRBCiM0q6pmDaBYhq6MACykycrkcSbc+wJT3fOHqag+5nIGLix2Gj2yEOw8+5J2dwFwKhROuXH8X733QAhUrucLd3RH16pfB0uX9sDoqwApnATT3qYhL197FoMD6KFPWBQqFE1q1royYvSPxSWhbq9QxdnwzHD0xAR07V4eHhxM8vZzxVp9aOHtxssmeQFL9+nsvRG8IROMm5eDu7ojy5Uth/KRmuHrjfVStanqIgSkymQwHjozDjz/5o6ZSATd3R1Sr5oaZX3fE6fNBsLOz/OuI2ls6am9pqL2lofbmWrPsPB7cFc4bU9HTFe07VrOovcVmVQKAOd9zp99evvAsXqiFh/bcvf4Mx/bf1i9rNBocj70jWJ4BgxnvcHvKhIyMgQzCPbLunn0GtUFPmTPHHuD5Q+G8NDKWwedjuHXM//SYUTDG8Jj+/J9lM3sRQgghlmBY1lTOfELMc+fOHVStWhUAcPv2bVSpUqWIj4gQQgh5fUb1W4+9O2+Iltl+bAQaC/T6kcLdZY7JWY+epH0MB4fcCSOHdFmL04cfiJbvPbwOflqWO4PRrs3X8H7ANtHyrIzFlayp+uVWpSIhyxZPljP622Z4Z0YLAMBHg3fg6IbbouUdFXbY93icfrmN42LRJ60sWBx4MV5/3oSQkqUk3GcYnsP13TVQpULRf1/deZCDmt1uACi+76utKPrWJIQQQggpQbQSZlXKP7SnUI7DIBAh6ZgMyrzKkdBfPP8uJZxSjsF+pcw+lT+KxLKsYA8WHS11dSeEFBe2MjzHFo6hhKAhQoQQQgghVtS6o/iTP4WnE+o2ND2jkJgKJmZNcnNzgJNT3nO0zr1qmtxnv6F19b/79/GG1kTEpHQZblJgr+r8edV0tGAxdFIj/fKQdxqCNVFHbRX3ffKoKD67oLObPee8CSGEkNeJAiyEEEIIIVY0fHxjeHgJz0g06QOVxUGAGV+0F93+7gctOcvBn/jC0UU4t5lnBWd07Z2XA8bBQY76LcoKlmfB4ou53BmqZi3pKhqU8VQ6o2yFUvrltn7V4OQu/D5oweL75d046yZ96SMalBn6YSPBbYQQQkhhowALIYQQQogVeZV1wd//DkTFKsa9TMZNaYb3Q1tZXMfY8c0weYov77aAwQ0w43NuAMbOToZVewN5gyxuXo5Yd3iI0foNB4bAq5qLUUCDBYtBQQ0wYGh9znqftpUw8sum0PD0NXcoI8emc8ON1kedHwK5s/GQHy3D4vM/O3ACMgAwcEIDDHqvAe8xdRlaE8EzWxjtixBCbBXD5s6CVvQ/Rf1OlByU5JZYXUlIPkUIIYRY6uXLHOz6NwmJZx/D1c0BvfrXhrK2h1XruHlTjf99fRDXr6tRqZIrPv+yA+rWEx5+lJOjxZJf4rF32w3I5Az6DauLwWMbik4PvX3TVcz98gjSn2Wjem0FfvqjBypXcxMs//RxBj6fEItr51Lh5GKHcSHNMGhMQ9HzWBKegI1LLiInW4smbcvj6z86w9nZQbD8vZvPseDLE7ib/AxlK5fCO1/7omY9y6ZNJ4TYvpJwn2F4Djd21UCVCvZFfETAnQevUKP7DQDF9321FRRgIVZXEr74CCGEEEIIIbalJNxnUIClZKMsYIQQQgghhBBCyOvGwjZm8KEuF1ZDARZCCCGEkEIQsysZEQvjceHcI5R2c0T/AXUxeYovvLzEZ8KRKjs7B9Pe34mNGy7jxYtXcHKyQ49e3pi/oCfc3PiT7G5ZexlzZx7Bg9vpAIAadRT4Ym5HtOtWnbd88pUUjB+wCXevPQNYQGbHoH3PaoiM6gu5nD9p7qfjY7B3zXWw2SzAAIqqzvhhdXc0bVGBt/z+rdcxK+gAnj96CQCwd5Zh0HsNMe37NoLn/f27B7Fv3XW8zNDA3kmGNr2qYmZEJ7i6OYq+Z4QQQkhhoiFCxOpKQtc9QgghxBJzvj+E72cdMlpfo4Y7tseMQOUqwjlMpMjKykGT+ovw4EG60TZ3d0ecSQyGpyd32uSwzw5iyY8JYGCcVPbL+Z0wIrgpZ92pkw8wuP0ayFjj8i6e9oi7G2QUZOlZewXSbmQZlddAi7CN/uhiMFMRACyfdxoLPj5hdEwsWNRtUwZ/HRhodN4D6vwD9X3jOpwVdthweRjcPYVncCKEFG8l4T6DM0RoZw1UKW8DQ4QevkKNHjcAFN/31VbQLEKEEEIIIVYUH3efN7gCADdupOHjaTEW1/Hu5G28wRUASEt7idEjNnHW3bmZhj9/PMUbXAGA/314AFlZOZx1Y95azxtcAYCMlFeYNn4nZ92v3xzjDa4AgBwyzBgSy1mn0Wiw4BPj4AoAMGBw+egT7N18nbN+VtA+3uAKAGSqcxAy1PL3lhBCXhutDf0Qq6AACyGEEEKIFf219LTo9m1br+LBff7giFRbNl8R3X744C3O8tyZR0XLazUsIufG6Zfv3nqGrLRXoq+JWZ/EWV7723nR8ngJHI7NO67I7+PBCARwgNwgy08fH+GsO7DxpmgVZw88ED8GQgghpBBRgIUQQgghxIqSk1JFt7MscPNmmkV1ZGbmiG7XaFikp2frl69fFT8mALhy/qn+9yMHbgv2dtHJyeY+8sxO14iWZ8Dg6J7b+uXzxx+ZPKa0Jy85y68yxeuABnhhcN6EEELI60QBFmITHjxIx7+bLuP2bcsuOMXcv/8cJ0/cRUZG4V14XbuWglPx95GTUzj97LRaLc6eeYiLiY8LZf9A7vj2kyfu4uZNdaHVoVZn4fixO3jyJKPQ6qD2lobaWzpqb2movYFy5V1Nlilb1tmi9ra3F7+EYxjAxSVvLoOyFVxESueqWKW0/veGTcuBNTGthEzODcDIHU1fVtZtUkb/e2VlaZGSuZxcuTle5CbOm2VYOLvQHA6EkGKCtaEfYhX0H4gUqRPH72JQ/7VIS8t7QuVSyh7L/uqHnr1rW6WOHduu4r0pO/Do4Qv9uuaqCojeEIiy5UpZpY6f5x5D+OzDePEitzu1XM6g51u1sGLVANjZWR7H1Gq1mBK8DWvXJCLnVe7FvpOTHd55zxffzOps8f4BID09GwEDonD08G3oUl97eDphdng3DB/R2Cp1XL3yFMMC1+HKlRT9umrV3fHXiv7waVHJKnVQe0tD7S0dtbc01N55hgxriOi1iYLby5Rxhm/zPyxq7zbtquLAPuHhMg0aloVMlne8733WCvu33hDulcIA74T65r2+cVnIHWXQvhS+6m7SpjxnuX3/6ji0SviYNHIt+g6tq1+e+n0bbFp4GTKRnjIjpjXhLDdqXx5n9woPA6rRSME5b0IIIeR1olmEiNVJze597txDtGu5VHA/G7cMQdduNS06lm1br2JowDrebaVLO+By8ntwdXWwqI6vZu7Dzz8e491Wv0EZHI+faNH+AaBX95U4fPA277bhIxth0eI+Fu0/J0eLet6/4dEj/ifO837riXETmllUx82bavg0WYzsbOPu3XI5g/2Hx6JJ0/I8r5SO2lsaam/pqL2lofbmYlkW40Ztwvp1l4y2yeQMtBr+Sy9z2vv+/edo2iDCKDEtANjZyXD4+DjUb1CWs35c3w04stP4s8aCxZDgxpg1vytn/Zrl5zFz4m7+oIw9EP9wMuc912g0aO/5J8DzUWPBYtTXzfDu5y056z8bG4s9K5N563At74CYO2M46x7de4FBdVcjJ8u4ZxFjB6yIHwTvBp7GB0AIKRFK2ixCN7fUtJlZhKr3yU0qXlzfV1tBIX5SZAYPjBbdPnbkJtHtUrz3znbBbc+fZ2P6h7ss2n9GRjbm/XRccPvFxCdYs/qCRXUcO3JH8OYLAFb9fR737z+3qI7vvj0gePMFADNCdlu0fwAImrCF9+YLyM0VMHHcvxbXQe0tDbW3NNTe0lF7czEMgz+W9cM3szqjcuXcYTByOYO27aoKBlcA89q7YsXSOHl6Iho3KcdZX6eOJw4dNQ6uAMDSfwdg2JTGsHfKu/xzLm2Pqd+0MQquAMCQ0Y0we5k/7Fxk+uFCLFh4VXXBwaTxRgEtuVyO2Ltj4FXHBZr/pqRgwYJ1YhH8o69RcAUAvl/mh8BpDTl9qrVgUaulJ3bcHGlUvlylUlhzfjBqNvPgHFPluqXx18mBFFwhhBBSpGiIECkyd++IX0Sq1VnQaDSQy+Wi5YTcuK7Gk8fiOQC2bb1aoH3r/BF5ClqteCewhb+dxJChDQtcxw/hR0yW+emHY/jhJ/8C17H6H/GbhoyMV9i79wa6dKlR4DpOHr8nuv3SxSfQarUF7tpN7S0dtbc01N7SUXsbs7OTYdrHrfHh9FZITc2Ci4s9Rgxdb/J15rR39eoKHD4+HtnZObh16xkqVXKFi4t4L56vf+mCr3/pgvt3n8NOLkPZCuJDqwYNb4BBwxsgNSUTt6+noV7jsnBwEP6/XMrVAVsujIBGo0Hi6SeoUNnVZB3Tw9theng73L/1HM/SslCrgafo//5K1Utj1ckAZGfn4P7NdJSrXArOLkX/BJgQQgihAAuxaWlp2fD0dC7Qa6/fUJssk2ViFgZT7tw2/aRRrX5psoyYpxISRT58YNl0n+kSZly4kawGuhS8DimJIjMycgrcxZ/aWzpqb2movaWj9hbGMIz+/1hhtbeDgx1q1TKv50bFyqYTzBry8HSGhxn/j+VyORr7mDcsrGK10qgI6cfl4GCH6rUVZtVBCCE2xVYSzNrCMZQQNESIFBmZTHz6RwAFDq4AQNOm5UyW8fQq+P4BoEXLiibL1KipsKiOuvXKmCzTtFkFi+qoWNH0BW3rNpUtqsPFxNNFuZyxKH8Ctbd01N7SUHtLR+0tTWG0t1arxfJlZxAyPRaRC+MlBbtOn3qAmZ/twTdf7jM5pTQApKVl4sN3dmBY/2jMnys8jMrQ6sXnMLnfZnw6PgaPH7wwWf7apaeYOmIbggdsxtZ1V0yW12q12Lj0In6YdgirF5wrtNm9CCGEEHNQgIUUGVMXs961PCzav6enC+o1EL+YDX7Hx6I6BgXWh0sp8RuLr7/tZFEdX37TEYxILMrOTob3P2xhUR2fhLYR3V6pkivveH5zvD2wruj2zhYMTwCovc1B7S0Ntbd01N7SWLu9V608h/Kec/HeO9uxaEEcPv4oBuU8fsRvv57gLZ+SkoHmjSPQse0yzPv5BOb+cAzNGkWgS4e/kJ3N3wNoxMB1qF9uAaL/TMTBHbcQ9tlhVHb5CatXnuctf3DXTbR0icC8KcdwZvtD7F9xA32qrsSIjvx51zQaDbrXX45BTdZgf9RNHN96F58Ni4WP+yJcSXzC+5p//76Mjm5/IizoENb/dhHzph5DR7clWPHLadNvGiGEEFKIKMBCiszmbUPh4sI/Ss3eXobd+0dbXMe6jYFwFqjDx6ciPvpY/MbDFJlMhhWr3hbsjTNhUnM0a27Z0+fKld3w6eftebcxDDB/QS84OFg22i9wSEP06OnNu83eXobojYEW7R8Afv29J6pVc+Pd5uXljBX/DLC4Dmpvaai9paH2lo7aWxprtvf+fTcweeJWvHzJTS6ck6PFZ6F7eBPytvH9E0nXjHusxMfdR5cOy43WB4/dgn1bbxhNo8xogI/G70R8HDf3zt1bzzC9zw7IX3EvL2VgkHw0FeP8NxjV0avRSjxKesGZRYgBA00mi0CftUbJk0/svYPvxu2HJt/00ewr4PdPTmDbP6Z7vxBCiM1gGUBrAz+s6ZEFRBoKsJAi4+zsgFv3p6F7DyXs7HI/irmzLFTBzXsfWjQ8SKdqVXdcvDoF/d+uA1dXB9jby1C+fCl88VUH7D4wyuL9A4B/d28cPTkebdpVgZOTHRwc5FB6e2Dp8n74+dceVqljxuftEb0hEPXql4GDgxyOjnKofCogdt8ojBjV2Cp1RG0IxI8/+aNyldKwt5fBxcUePXp64+zFyWjU2LLpVYHcsfKnL0zGlPd84enpDHt7GdzdHTF6bBNcvPauxdOrAtTe5qD2lobaWxpqb+ms1d7Tp4rPmvTFjD2c5VUrz+H+feH8LufOPsKp+Pv6ZY1Ggy1rLvNP0YzcoMnkUVu4xzR0J+Ss8KXlhX2PkJmZlxPo2qWneJgkfEyMhsGMoFjOuvD3DwkeEwMGv4bwT7NNCCGEvA4My7KU0oZYVUmYn54QQgixZYpSYSZnPUp5HqJ/gNGr+0rRKcEBYMSoRlgY2QcAsHtXMsb03ShanpWxuJs5Xb/cyjUSspfiT0EnzGmOidN9AQBTR2zD/qibouWdPe1w9MEk/XIbx8WASLoVFiwOZU7UnzchpGQpCfcZhudwc7MSVcoV/Sxodx69QvV+yQCK7/tqK2gWIUIIIYSQYkbK87Hs7BzY2eX2HnqZpTFRGsg0mIkpLc30jEn5D4HVsoBA7xKd5+q8HixZGaZnftLk5BsKxLKCPViA3F4sr7I1FGAhhBQPWogGjV8bWziGEoL++xBCCCGEFDOmZk1ydrGDi0ve0KwOnaqZ3Gev3rXzfu/jDa2JeTtLuXOHfrlXcBItz4LFwLEN9MsDRtUHa6KO6vUUnOXSZRxFy9u7yOBsYlYrQgghpLBQgIUQQgghpJj54MNWottHjW7CWZ7xeXvY2wtf9rm7O2LI0Ib6ZWdnB1Sr7S5YngWLkK/actZ9Nr+DaMDEubw9qnsr9Ms9B9aGnbPwMbFg8eNf3TnrRkxrIlA6V++xdUS3E0IIIYWJAiyEEEIIIcXMtOmt0a8/fzChbfuqCJ/rx1nn5GSHNesCYGdnPLzG2dkO22OGG63fe3I0nN2NR5OzYNGxZ3VMmsKdGrtLbyW6jlXy9nxhnYHoU0OM1v9zNACsnKc8WAR948sJyADA2E+ao92AaryBnEYdyuGTn9sZrSeEEJvF2tAPsQoKsBBCCCGEFEN/rx6IbTHD0a5DVdRUKtCqdWWsXTcIO2JGQCYzvsTz81ci+fZUjJvQDLXreKJuPS98+FEr3Lz3Ie9sUs7ODrj66AO8P7Ml3Ms7wbG0HarUdsM/Owbhn00BvMf0/WI/RB7phwqNXCErzcChrBz9P6yLw6nj4VXWxah8nQZlcDItGN2GK+HsaQcHNznqtPLC5ovD8e6Mlrx1/Li2B37f3RuNOpZDee9SqN+mDMI2+mPxnv68500IIYS8LjSLELG6kpDdmxBCCCGEEGJbSsJ9BmcWoQ02NIvQAJpFyBpoFiFCCCGEEEIIIeR10zK5P0XNFo6hhKAACyGEEELeOP9uuozpH8bg0aMXYBigajU3/LG0H1q2qsxbPi0tE8MC1+P4sbvQaFg4O9thUrAK337XRbCOn388irk/HEN6ejZkMgZNmpbH6uhBqFDBlbd8YuIjjBm+CdeupYBlAQ9PJ8z6rgtGjuZP7KrRaPDu5O3YsO4SXr7Mgb29HP7dlVj299twcJBb7bxHB25EwpH70GpYOLrYYczkZvjqu06C5x0ZHofl4aeR/VwDyAFlM0/MX/8WylYoxVv+SuITfDh0B+5efQawQClPB0yb3QaBYxryltdqtfgz7BQ2RF7E85SXcHGzR6+RdfDurJY0PTMhhJAiRUOEiNWVhK57hBBCSq5PPtqFiIUJvNvm/NANU95rwVl384YazRpFQKMxvmSqqVTgzIXJRus7tVuGUwkPjNYzDLDv0Bg0V1XkrF+/LhFjR27mPab+b9fBin8GctZpNBrUqPIr0tQvjco7O9sh6dYHcHXlTqNs7nnfuqFG2wZ/Ahrj8hW9S+Nk4iSj9UPaROFmXCoYcJ+Gahgtlhx9G419uLletq67ghnDYiHLV54Fi44Dq2P+6t6c9VqtFoObReHuxWdGdXtWcca6i0Ph5ETPDwkpqUrCfQZniNA6b9sZIjQoCUDxfV9tBYX5CSGEEPLGuH07TTDIAACffrIb2dnciEKXDn/xBlcA4HqyGiHTYzjrFi2I4w2uAADLAm91X2W0fsKYfwWPadPGKzh86BZn3dt91/IGVwAgMzMHfp2Xc9YV5Lx7tl/JG1wBgPtJzzFjeixn3YrfzvAGVwBAzsoQ7GccQPpspHFwBQAYMDiw/iZOHrrDWT/ng0O8wRUASLmTic9GxvJuI4QQm8QytvNDrIICLIQQQgh5YwSN32KyTOgneTfpjx+n48mTTNHyfy07w1me8/1h0fIvXrxCXNw9/fKC304KBnB0PnxvJ2f54P5bAiVzJV54wlk297yfPH6BtMdZouX/+fM8Z/mP7+J5gys62nQWZ07mBZ6Wzj8FRiNcngGDr6bs46zbteqa6DEd33ZHdDshhBBSmCjAQgghhJA3xrWrKSbLnDx2V//77pjrJstnZeZwlp+l8fcsMbR5w2X973tiTddx995zzrJWa3qEd0pKXmDI3PPeE3NdNFgCANmZ3O4tmepXouUZMIjZkKRfPhIjHiQCgMd3MzjLWc9zBErm0r5i8SI92+R+CSGEkMJAARZiM9LTs6HRCPRFtgKtVousLPELM2vUkZ1duHVkZ+cgJ0dbqHVkZeVAqy3edVB7S0ftLb0Oam/bqMOS9i6VLy8JHw8vZ/3vtep4mSwvk3EDEXZ2prtaK7099L+XK8ef/NVQQfKKuLvnnau55+1dx9Nk+fznLbM3fVlZzdtd/7tneReT5R2cuMl6ZSbeWxYsnF0oBwshpHhgtLbzQ6yDAiykSN28oUaDOgvg5jwHlcr+BA/XH1Crxq84e/qh1eo4FX8fLZovhqJUOMp5/AjP0uEYMigKGRnWe8K1LioRdWr+BkWpcJRx/xEVvOYiZLp1x4F/P+sgqpT/CWXcc8+hZtV5WBIpPJ7eXDk5Wowfsxll3H9AOY8foSgVjiYNFmH/vhtWq+Pxoxfo6b8SilJhKOfxIzxcw9G5/TLcuK62Wh3U3tJQe0tH7S1NcWnvkBltTZYJ+7Gb/ndf30omZ6Zp1LgcZ7lT5xqi5RkGGDWmsX75G5EZeXRGjeHOJCQ0E5FO6dIOkMvzghPmnrePbyXARN7FOk24wafmXSqIltcwWgwaWz/vmL5vBxbiPXEGjKvHWa6tEg94VaxVGjIZXd4SQggpGjSLELE6qdm9b99OQ+N6i3i7OTMMcPDIODRpVp7nldIdO3IHPf1X8tZRvnwpXLjyDhwcLHvStfD3kwj9eDfvtvYdq2HbzuEW7R8Axo7aiPXRl3i3Tfu4Nb6Z1dmi/Wu1Wvg2W4xrV1ONtjEMsGrNQPTuW8eiOp48yUDjegvx4oVxF3IHBzniTk9CjZoKi+qg9paG2ls6am9pilt716r+Kx49yuDd1qBRGRw7OZGzLnzOYfzvm4O85RkGuHh1CipVdtOvy8zMRuVyvwj2RpoQ1Bw/z+vBWde/9z/Yu+cmb/lSpexx/8l0zroTx+/Cr/MK3vIAsGLV2+g/gBucMPe85845ip++OsI7VIiVsTh5bZLReXfyXAp5jnGAgwWLXpNr46v53Gmtx/bagNO7+RMC27vKcDIlmLPu+uVUjGgWDZavA5MMWLi3D5q1rcizkRBSEpS0WYRura1lM7MIVRucm+OquL6vtoJC/KTIvN1njeAYcpYFBvZfY3Ed40ZvEqzj4cMX+Cx0j0X7z8nR4vMZewW3HzpwC7t2JAlulyLx/GPBmy8A+GXuMajV4okITZk/7wTvzReQ2xaTJ221aP8AEDxxC+/NFwBkZ2swZuRGi+ug9paG2lsaam/pilt7X05+F/XqG/eEaNe+qlGQAQBCPm2Hz2e2h1zODTS4uTni0PFxnCADADg7O+BMYjC8yjhz1stkDILfURkFVwBg09Zh6NO3Nph8sYxq1d1x9cb7RuVbtqqM6A0BcHbmBpUcHGRYEPGWUXAFMP+8p3/aBtO+agMYVMGChbO7HXaeGMl73hsuD4NDWTmnZ4pGpkWfd+saBVcAYNn2AWjbvyq0TF55Fiy8qrtg761xRuVr1vXAH4f6w7OKs74OFizcyjngpy09KbhCCCleWAbQ2sAPzSJkNdSDhVid1Miym/Mck/tKTf+E08XZHHfvPkP9WgtEy3h6OePGnakF2j8ALF4Uj+nTYkTLtGpdGTF7RxW4jmGD12Hrv1dFy0yd1hKzvu9a4Doa11+ImzfSRMvs2j0SrdsWPJpdxv0HoylADTEMkJoeUuCu3dTe0lF7S0PtLV1xbe/09GxErb4Aewc5Bg9tCAcH0/9v9uy+jksXn8C/hxK1a5vOz3L7dhq2/nsVVau5oXcf0z2FNBoN1kVfhjo1EwGDG8DT09nka86efohDh25BpaqA1m2rmixfkPPet/sGLiU+gV/Pmqgl4bzv3nqGPZuvo1K10ujWT2myvEajwdaoq0hLfYm+Q+pAIeG871xPw5UzT1GzngI165nOGUMIKf5KXA+WNbVRpawN9GB5/ArVhuRejxTX99VWUBYwYtPS0rIlXVzyuXLF9IwJls40cFXgqbChx4/5u2NLdT/fzBF8TN08mSLlCfnFi08sugETu/kCcp+kZ2TkwFVCIkY+1N7SUXtLQ+0tXXFtb1dXB4yb2Nys13TtVhNdu9WUXL5qVXdMnuIrubxcLsfgIQ3MOqYmzcqbNaS2IOfduVsNdO5WQ3L5ytXcMOq9ppLLy+Vy9Btq3OtGTJWa7qhS0910QUIIsVXsfz9FzRaOoYSgAAspMgyTe9EtxnAGBHM1qF/GZBk3N8cC7x8AGjQ0XUeFiuKJCE2pXkOBhHj+8ek6depa9uSujJcL0tTi04o2szAfjpOTHFlZwjdhMhkDFwtmfqD2lo7aW2Id1N6SFdf2vnlDjSWLT8HeXo7J76pQtqx4e2o0GixZfBrJSano9ZY3OnUxHWg5cfwu1kdfRKXKpTF5iq/J3iLp6dn4/dcTePbsJUaPbYq69Uyf+7+bLuPggVtQ+VTA0OGNTZYvyHkvXXwG16+lokdvb3TsUsNkHWeO3cf2qGsoX8UVI95tIum8//r1NNLTsjFoXH3Uqme6l8zpY/dxIe4xajX0RKsu9LSVEEJI0aMACykyDRuWxfnzjwW3V65cusDDgwCgfAVX1KjhjhsiT39HjDJ9ISpm9Ngm+HhajOjT289ndrCojplfd8SGdcI5GmQyBh9Ob2NRHe990ALTpu4S3O7l5YzmPpaNa+/ewxubN10R3N6yVWWLZn6g9paO2lsaam/pilt7p6dno0Xzxbh7J68H0Q9hR9CgYRkcPj6O93/PJx/tQuSiBP2DgQW/xcHJSY6o9QG8gZZz5x6ie9e/8SI9LzfNFzP2YuCgulj29wDe4+rp9zeOHL6jX54/7yS8yjjj6MkJvLMGrVp5Du9N3s5JpvtO0DZ89U0nfDi9tVXO+9NpMVi+8Cxk/43PXzb/NOycZVixYQBvoOXSuceY1HEzXqVr9MlxF4WeRIeA6vhxlXHuGQAY1XUdzh56qC+/6uezcCvjiHUJQ1CO57yP7r6Nz4bHIislL9OtvZscn0d0RI+AWrx1EEIIIa8DJbklRWbLzuGCU1/KZAy27hxmcR2r1g4UrKNGTQW+nmV6akwxMpkM837rKbi9d9/a6NCxmkV11KrliXETmglu//KbjgXudq8zIUiFZs35n2DLZAyW/d3fov0DwKI/+sDD04l3m4uLPVasetviOqi9paH2lobaW7ri1t71a/3OCTLoJF54gmaNIo3Wf/7pbkQsTDDqdZmVpUHft9bg6tWnnPVpaZno0HoZJ7iis37dZYwdtdFofef2f3GCKzpPn2Sicb2F0Gi4gb7YXcmYPHGr0UxFGg2LL7/Yh+XLzhjty9zz/urTvVixIC+4AgAMGGgyWQzttQ7X8p3387SXGOO7ATnpWs7MQzKWwaGom/h45E6jOga3W4tzhx5xyjNg8PxJNt6q/bfReSeeeoRpb23nBFcA4NUzDb4avgeHd90yqoMQQmxWUSe3NfwhVkEBFlJkPD2dce3m+2jQsAxn1oSa3gqcuRAMpbflCesaNS6PE6cmokXLSvrZH1xc7DFiVCMknA2y6ImqzohRjbFxyxDUqu0BmSy3Dk9PZ3z1TSf8s3aQxfsHgHm/9cTcn/1RrnwpMEzu8Kpq1dywfOXb+Ohjy55u6+w7NAZT3vNF6dK5N3MyGYMmTcth36Ex6NS5hsX7d3V1wIXLU9C7b204OuY+JbW3l6FLtxo4d3EyyvM8pTQXtbd01N7SUHtLU5zaO3JRPNLShIdM3byRhri4e5x1C36LE93nyKEbOMsjhm4QnPEIANZHX+IEDu7dfYaE+PuC5V++1GBGCHeWpKAJ/4oeU8jHsZzlgpz3H7+e4p2iGcgNmowbsomz7sPAHZAJXKQzYHBw7U3OeT+4+xyXTz4RPKaclyxmf3KIs+7boP1ghOpgGXz/7gHB/RFCCCGFjWYRIlZXErJ7E0IIKZmaNFiIG9fFEwe371AV23aNAAAcPnQLvfxXiZaXyxmkpofql8sqfsDLl+KJf8Pn+umT304avxlr/kkULe/l5YzrBrMkSZmJ70naJ/rcJ+ae95FDtzC4W7RoeVYO3M34SL/ctvRisCZyKr/7c0uM/C/57SdjdyJmVbJoedcyDjh0b4J+ubXTYjAiby0LFocyJwr2diKEFG8l4T6DM4vQqjq2M4vQ8NyhvsX1fbUV9N+HEEIIIW+MzMwck2WeGfT0uH3L9CxO+XuraDSmn13dv5+u/z01xfRMTy9NzNTEJ91gZiVzz/vOrWcmy7P5zlsr4RAfP3iRV1+KePJlAHj1kjsECiI9g4DcnjIvs0yfKyGE2ASWsZ0fYhUUYCGEEELIG6Nhw7Imy3TqUl3/e/eeppOmurhwnz56CuSjMRQwuL7+9z796pgsX626G2dZN0xKCMPkDmfTMfe8/Xp6gzUxb6dTKe5cCaU8xZ/CsmDRa0ht/XLX/qZnYapYgzu8zMldfH4GxpFBKQvzFhFCCCEFRQEWQgghhLwxFv3RR3Q7wwDfftdZv+zp6YyKlcRzyEx5rwVn+dvvu4iWd3d3ROPGeYmHx45vZnJIy8KI3pzlnr28Rcs3V3FnhirIeZep7CL6monvqzjL789uJRqUcVDYoV7jvEDPkAmNIbMXDhSxYDErsitnXd+J9USPqePA6qLbCSGEkMJEARZCCCGEvDEqVHBF6GftBLdH/NHbaLriQ8fGwsGB/5KpabPymPl1R8664SMao2u3Grzl5XIGew6ONlofvTGQk/Dd0NjxTY0CJn+vHiAY+HF3d8SuPSM56wpy3ruPj4bM0figWLCo09wLn33Nnab87VH10dS/Im+QhZWzWH7YeHrqXzf1Al8eXRYs+k+sh8Y+3Bmwpn3XGrXbePGeQ4W6rvjfn914txFCiE3S2tAPsQoKsBBCCCHkjfL5zA6I3TcKtWp5wt5BBgcHOZo2K4/T54MwdHhjo/Jly7ri3uPpGDioLlxc7GBnJ4NXGWf8+LM/Dh4dx1vHxi1DEbmkN8pXKAV7exmcne3Qo6c3bj+Yhtq1jQMEXbvVxOXk99C6TWU4Osphby9Dteru2LhlCH79vZdReblcjstJ7+GT0LZwd3eEnZ0MrqUdMCm4OW7c/UCf3NaS8y5TthSuPfkAPQO9YV9KBsYeKF3GAd/M64I9x8bwnnfEtr747K+OcK3oANgDMmcGqrcqYfeTsahRx8OofHu/6th1cxQati0LO0cGMnsGZauXwu/beuPbBV2NystkMiw/MBAhf7RDhXqucPayQ9lapfDOjy2w7uwQSm5LCCGkSNEsQsTqSkJ2b0IIIYQQQohtKQn3GZxZhFbUtZ1ZhEZdBlB831dbIZ4pjBBCCCGEEEIIIdZnKzP42MIxlBDUj5IQQgghpBD8u+kyGtRZgLKKH1CxzFyMHr4B2SLTLaekZKJ/739Q3utHlFX8AJ+mkTh25LZoHb/MPYaaVeahjOIHVKv4C76auU+0/LlzD9G6xR8o5/EDynv+CP8uy3H7tvBU1BqNBlMnb0etsr+imtvPaFxjIVavPC9aR8ymJPTyXoE2rovR3mMJpg/bIXre6pRMTOi1ES0UkfAtHYHejf5G/JF7onXsjL6Gwb5r4V/1LwxquhrRSy6IlieEEEJeBxoiRKyuJHTdI4QQQiwxLDAaW7dcM1pvZyfDqXNBqF5DwVl/7Mht9PBbCb6rsinv+WLOD35G6xvVW4hbN42DI55ezki6+Z5R0tpf5h7Dl1/s4z3eFaveRv8B3Bl60tIy0aT6ImgyuQfFgkWT1hWwff8Io/18MGgbTmy+AyZf5lrWHohOHIwqNdw56+OP3MOELpuQPy8uCxZD3m+Ez+ZyEwgDwET/Tbiw75HR+qpN3LH6ZABkMnp+SEhJVRLuMzhDhJbXs50hQqMvASi+76utoP9AhBBCCCFWtHZNIm9wBQBycrTo2HaZ0fo+vf7hDa4AwILf4nDu3EPOurEjN/AGVwAg5Wkmevmv4qx7/DhdMLgCAGNGboJGw+1l0tl3uVFwBQAYMDh77AHmzjnKWb9l9RXe4AoAMK+Aka3WG62f1H2zUXBFV8ea+edx8dxjzvr5Xx3nDa4AwO2zafgqaB/vNkIIsUUsC7Bapuh/qMuF1VCAhRBCCCHEij7/dLfo9tTULCQm5gUJVq08h+xs8Tky35m4lbO8edNV0fLHj93lvn7SNtHyWi2Lb78+qF9OS8vEw1vpguUZMFjw40nOunkhR3mDKzpZKa9w5cIT/fKGvy9Cmy18Vc+Awefjue/l+oWJguUBYPeaZNHthBBCSGGiAAshhBBCiBU9fZJpssyaf/ICBRuiL5ksf/26mrOckyMekGHZ3CCJzpkzD0VK59oTe13/e8yO65CJBEsAIDP9FWf5+ZNs0fIMGGz954p+eWc0fy8fQ/euP+fWqX4lUDIXm8UiM0O8DCGEEFJYaBYhQgghhBArkssZ5OSIlylfvpT+dzeFo8l92tub/0zM2dlB/7uTk+lLvlKl8vIAVKzgarI8I2PyLZs+Jq/yLvrfXd0dRErmktvnC/LIAAjnywULFvYOcuEChBBiS2gWoRKHerCQIpWeno3O7f+ColQY3JznwN1lDlr5/IEHD4S7JZvr9u009O65CmXcf4C7yxxUKf8TPp62C1qt+NM/cxw7cgetfZfAwzUMilJhqF1jPhb+ftL0C82wcsU5NKi9AIpSYfBwDYOqSQR27Uiyah3ffrUf1Sv9AneXOfB0C0e3Tstx+dIT0y+UKCsrBxPGbkYFr7lwd5mDch4/YmhgNNTqLKvVQe0tHbW3NNTe0lB75/HxrWiyzMQglf73L78yTuSaX/+B3AS0np5OouWdne3gYBBomBSsEimda+bXecfRrlM1sDLxQfnVa3MT1tZt6SVaXgsWQ4Mb65enftMKLF8CFgN+A705y1UbuAuUzOVR1Rl2dnR5SwghpGjQLELE6qRm905Ly4R3tfm8487lcgZnL05G1ariF1KmXL70BO1aLeWdHrJOHU+cODXR4tkG1kUlYvyYzbzJoQYF1sfS5f0t2j8AfPpJLBb8Fse7LezHbnjn3RYW1+HfZYXRmH0gty227xqB1m0tyyaekZGNxvUW4fHjDKNtpUs74EziZJQp48LzSumovaWj9paG2lsaam+ux4/TUav6b4JJA/v0rY1Vawdx1rVtsQTnzz/mLW9vL8Oj1OmcWYG2brmCYYHGSWN1fvzZH0GTfTjrKpadixfp/MNnKlcujYvX3uWsC5m6CysXnePNq6JlWOxOGI36Dcrq1z19nIG3Kv8NmcCT0Jb9K2Ne9FucdQN8V+P62VTe8jIHBifTJnHO++zxBwjqsBkMTx0sWMze4I8ufWry7o8QUvyVtFmEbi6rjyplTPfmK2x3nmSj+tiLAIrv+2orKMRPikyfnqsFk/ppNCx6+q20uI6hAet4L8YB4MqVFHw/6yDvNqm0Wi3eCdoqeBG9Luoijh25Y1EdN66rBW++AOCz0D3IyBAf927Ksj9P8958AbltMWKY8EW8VO8EbeO9+QKA58+zMWr4BovroPaWhtpbGmpv6ai9ucqWdcXuA6Ph7Gw8LKdnL2+j4AoAHDk5Ac1UFYzWu7s74vSFYKMpl3v3qYOf5vlDLs83TIcBQj9rZxRcAYBL16agXDnjQJd3LQ+cvzzZaH34vO4YNKYBtAz3TWEcGCzf+DYnuAIAXmVdEHm4H2QuDKdnihYsVL0rGQVXAGBD3FDU9vHklGfBwkVhjy2JI4zOu0mrCpizwR/2btz1chcGny7pSMEVQkjxorWhH2IV1IOFWJ3UyLK7yxyTU4I9y/y0wMfx+NELeFefL1qmXPlSuHbj/QLXseKvs3h3svjMDB06VcPWHcMLXMe40ZuwLuqiaJlPP2uHz2Z2KHAdqiYRuHaV/wmizoEjY9GsufHFv1TlPH5EVpZwUgKZjIH6RWiB90/tLR21tzTU3tJRewuL3ZWMDesvonx5V3zyaRtOXhQ+jx+n46cfjuH582yMndAMvr6VTNaxfNkZHDtyB42alEPwOyqjoER+iYmPELEwAQ72MnwwrZXJ3qIajQY/hx3HrRtp8O+pRN+BdU0e06FdN7EzOgle5Z0R/JmPyfN++jgDkeHxePE8G4ETGqJpC9Ofx8O7biHx1GPUrOeBrn1rWNyDiRBi+0pcD5Y/bagHy3jqwWINlOSWFBkpob2UlEx4ejoXaP/nL/B3tTaUZmFugHNnH5ksc+f2M4vquJ4sfmMEABcTTZ+rGKEnz4ZOJTyw6AZM7OYLyJ0iND09G66uBfsnQ+0tHbW3NNTe0lF7C/PrroRfd6Xk8mXLumJ2uJ9ZdYwe2xSjxzaVXL5Bg3KYN7+n5PJyuRwff9bWrGNq37062nevLrm8V1kXzPjBvEBiu+7V0K57NbNeQwghhBQmCvUTm+YuYYYBIbVqeZgs42IwY0JB1FSazhFjad6BChJmcqhazbJcNe5upmewqF3X06I6TM2AwTCAi0vBY77U3tJRe0tD7S1dcW1vrZbFrZtpuHvnGWrUdDNZviDtnZKSidWrzuHYkduSyms0GsTuSkZ0VCLS06UND0tOSsGqleeQmGg6SAQA2dkabNpwCTu2XoVGIzIlj4HT8Q+wdtV5PJSYhF6dkomNqy4h/sg9SeU1Gg0O7rqBrWuvSD7vJw9e4Oju27h/+7npwoQQYot0swjZwg+xCurBQopMTW8FriepBbd7lXE22c1ZTNWq7qhQwVV0RqK3B9QT3CbFhEnN8VnoHmg0wt1xPvq4tUV1fPp5e2zbek1wO8MAH4e2saiOMeObYdbXBwS3ly7tgPbtLXtK2L5jNezdfUNwe6PG5Szq3k3tLR21tzTU3tIVt/ZmWRZ/RJ7CL3OP4fZ/vVLq1PUEw4j3rjSnvR88SEfHNss4xyyXM3h/akt8+10X3tdMGr8Za1cnco6hVi1PHD4xlneIzcH9tzA4IIqTuNbJSY5Ff/TGwEENjMprNBp07rAcZ0495Kz381di/ebBvMe04NcTmP3ZIbD/VcGCRWkvR2zZPwy1ahvPGvT4wQsMbRWF9HvZkP2XHFcj12LwR43w8ffteOv4ZOxOxPyTDF0aFhYsKtd2w7q4wbznfeX8E0wftBOPk1+AQW6+F0VlJ3z3tx982pseUkUIIYQUFurBQorMhk2DwYh8AtdEB1hcx5K/+oERCMh6eTkj7EfzumHn5+Bgx5nWMr8WLSuhd986FtXRrHkFvNWnluD24Hd84elp2VP06Z+0RrXqwk/J5y/oZdH+ASDyjz5wFniCbW8vw7IVls/GQu0tDbW3NNTe0hW39p719QFM/3CXPrgCAFcup4gGV8xp7+xsDRrWWWAUENJoWPzy03HMCIk1es3ggVFY80+i0TFcu5aC2jV+Nyp/KuE+evdcZTQrUFaWBmNHbsaOrVeNXtOwzkKj4AoAxMYko1O7ZUbrF/x6At99clAfXAEABgzSn2ajU5NlePL4Bad8drYGfbxXIuPeK31wBQDkGhmif7iAOZ8YB/reGfAvdq1KguFszQwY3Lv6HF2r/WVU/laSGmNabsCT5Az97EYMGKTdfYl3u23BuZPG50cIITZLy9jOD7EKCrCQIqP09sSJ+IkoX6EUZ72npxN27R6Blq0qW1xHh47VsDN2JGoqFfp1cjmDzl1r4ExiMJycLO/E9dHHbfD7ordQpmzeTZCjoxyjxzVFzN6RFu8fAFZHBeCDD1vAxSWvC7y7whH/m90F4XMtu4kEAJlMhoSzk9C7b23Y2eV9LVSp4oa16wZhYEB9i+soX8EVCWeD4ONbkXOT1LBRWRw5MR616xg/CTUXtbc01N7SUXtLU5za+8YNNeb+cFRwu6OjHJ5ezpxlc9t7zIgNePVKeEqGBb/FcYbmpKRkYsf2JMHyz569xOzvuLMkDQtcJ3oMkyZs4SxHRyXi3j3hHkCnEh7g8qUnnHWzPzvEO0UzADBaBsMHcGeg+mjYDsiyBcqDwfpfL3LOW52SiSNbbwvWkZmWg/mzjnPWzRy/B+CfaRqMlsGX4/bwbySEEEJeA5pFiFhdQbJ7azQa3LyRhipV3eHgUPBhQWKys3OQmpKFsuVcCm2mgfT0bGRl5Vicl0FMSkoG7OxkcHNzKpT9a7VaPH2SidJujla5QRWq4/GjDHiVceHc8FkTtbc01N7SUXtLr8OW2/vnH4/hq5n7RMssWdYPvXrXKnB7l/f8EZmZ4ol/f1vYS5+Y9r13tmH5srOi5cuWdUHSrQ/0y27Oc0weR2r6J/qhtqrGkbh2LUW0fNduNbBxy1AAuTlX+rRdJV6BHXDnxUf6xTZui4FM8Zd8FNkWgeMaAgC+mLwbW/68IlrerZwjDtwZn1eH82JA5K1lweLIy4k0oxAhJVSJm0VocUPbmUVo0gUAxfd9tRWUg4XYBLlcDqW3ZUkWTXFwsEN5CQklLeHq6lDgWTKksnS4gCkymQxly5UyXdDCOgq7Lai9paH2lo7aW3odttzeKSkmIgD/lbGkvcV6r+hcu5oX7Hhw33Ti2EwTMzXxSUvL1s/E9/z5S5PlnxjMOHXl8hORkrm0+fITaV5pITfROfrmVbX+98f3XggX/M/LTG4SXlbDCvZ4AXJ7ymRm5KBUIf+tEkKIVdhKgllbOIYSgsL7hBBCCHlj1JEwY1KdupYNaSpd2vTN/Vu983LvtO9gOslwhfLcgJJMZvpiWBdcAcAZWiWkmSpvqu5OXWuAhXgnZwcnbo9TJzfx53YsWHTpU1O/7NvJdEJarwrOnGX7UiZ6udqBgiuEEEKKDAVYCCGEEPLGGDCoPjw8hYdg1artiU6dq1tUx/QQ8ZmfnF3s0LptVf3yh9NbmwyY/PyrP2e5TVvx7tt18wWJFi3uLVoeAH6a10P/e/kKrihdRnyK70Ejufl7xnzaXDQow7gw8GmbF1SZNN1X9EqUBYuZ8ztx1nUbohQ9Jp/uNIsQIYSQokMBFkIIIYS8MVxdHbB0eX84Oxv3tvD0csbS5f0k9Q4R88GHrdCgURnebQwDbPp3iNH6BZFvCe6vR09vdOpSk7Nu09ahcBXoKePgIEfsfm5SXqW3J0aNaSxYx5ffdDTKgbZl3zCwMv6ASZmqLpj7Ww/OugnTVKjY2I23vIbR4rftxkGer/7ozBuUYcGizVtV0aZrVc76L37rhLK1+Ie5uZZ3wA//dOfdRgghNom1gdmDtDYyTKmEoAALIYQQQt4oXbvVxNG4CZg8xQdNm5VHc1UFfBzSBsdOTkDTZhVM70CCYycnYtrHrVGqlD0YJnfGowaNyuBs4mRO7xWd4SMaY8/B0ahR0x0yGQOGAdzdHRE+1w9RGwKNyjs4yHH7/lT07V8HDg4yMAxgZydDl67VcfvBVLi7Oxu95vdFvRG5pDe8vJzBMIBMBlSq5IqNW4bg45C2RuVr1fbCmVuT0aBFWcAO0DIs7JxlGDKpIU5fm8x73hsShiIwtAEY19ygikauRYXGpbH+ylBO7xWdASPrY/nhgShfs1TuVSkDuCjsMf3ntli0sa9ReTs7GTZeGIohIY1QqpwDGEcGzl526PNOHWxNHgFng9m4CCGEkNeNZhEiVlcSsnsTQgghhBBCbEtJuM/gzCIU0RhVvIo+b9Sdp9moHnwOQOG+r6GhoYiOjkZycjKUSiVUKhVatGiBkJAQq9URHR2NiIgIzjp/f3+r1iGGerAQQgghhBBCCCGvG2tDP4UoOTkZPj4+8Pb2Rnx8PFiWRVRUFIDcoIu3tzcSEhIsrsff3x+zZ89GREQEYmJiEBMTg6ioKJw8eRLe3t5ITk62uA5TaJpmQgghhLxxsrM12PrvVRw5fBtyOYOufjXh56+0OP+Kobt3n2HmZ/tw/vwjuJZywMTg5hg+QjgPilarxYLf4rB29QVkZ2vRqnVlfPVtR9Hpu3ftuIZPP9mDJ08y4K5wxMyvO2HwkAaC5VNSMhE8YQtOnrwHGQN086+J3xf1Nsq/YmjR/Dgs+iUOGRmvULGyK35a1AM+vsLJZK9dSsHn43bjXvIzODjJ8fbE+nh/ZivB8hqNBrM+PIA9G65Dk6NFrSZeCFvqhwqVSwu+5nz8Qyz4+iQe3kqHZ3lnTPrcBy07Fb8n2YQQUtKp1Wr4+/sjJiYGSmVeonKVSoWoqCiEhoYiPDwcPj4+SEpK4pQxR2BgIOLi4nD9+nUoFAr9eoVCgaioKPj4+MDf3x9JSUmWnpIoGiJErK4kdN0jhBBScl2/rkbA22tx9UoKZ71vi0qIWh8ArzLCAQ2pFv5+Ep9+shv5r7KqVXfHiYQJcHHhdgm/f/852vj+iZSUTM56uZzBsr/7o//b9Yzq6NrhL8TF3Tda713LA6fOBRutX7smERPHbjZaL5Mx2LVnJFq2qsxZn52tQZOaC5H+JJuzngWL7gO9sfSft4329b8P9+Pf3y9DBm6giikF7Lg5Cm7u3Bmcrl9JxaDma6B9xX2jWLD48Ic2GDe1uVEdM8bEYu+qZDAGdbBg0bxHRSzcYpy3hRBScpSE+wzOEKFFNjREaHLhDBEKDg6Gv78/AgICBMt4eHhArVZDpVIhPj7e7DpiY2P1w4DCwsJ4y0RHRyMwMFC0jDXQECFCCCGEvDE0Gi2GDIo2Cq4AQNzJexg/xjgAYa6zZx4i9GPj4AoA3LqZhr69Vhut9++8wii4knu8LMaM2IQnTzI466d/uJM3uAIASddSMXhgFGddZmY2Jo3jPzetlkVPv5VG67u1+ssouAIADBjsWp+Ev/44zVl/OPYWb3AFANgXwIAmxuc9pGWUUXBFV8cvnxzFvVvPOeuXzzuNfauuc4IruvKndz7ADyGHec+REEJsEatlbOansKxdu1Y0uAIAM2bMAAAkJCQgNjbW7Dp0OVf8/f0Fy+iOITIy0uz9m4MCLIQQQgh5Y+zakYRLF58Ibt+75wbOnX1oUR2hn4hfHJ48cQ+PH70wWL6LW7eeCZbXalnM/GwPZ91fS8+I1rFrJ3ec+TuTtvIGfHRycrT4Ze4x/XJmZjaSElMFyzNg8P3Mg5x1307exxtc0Um/l407N9L0y7Gbk/AyI0e0jk9G7+SsWx4uft6bF18S3U4IIeT1SUhIgFqtBsMwooETlUql/z0mJsbseqKjowHA5PAihUIBtVpdoCCOVBRgIYQQQsgb4/ixu1YpIybxwmOTZXZszxsDvmGd6aBA/mPKztaKltdqWaSl5fWIOXLE9DmtX593HNu3JIkGSwDgeSq3d0vqPeMeOIZkYLBuaaJ+ed3SRKOeKPklnecGedIfvxQtn5OuRWbGK9EyhBBCXg/DpLL5Z/Yx5Onpqf9drVabVYdhsMRUgEW33RoJdYVQkltCCCGEvDHsRZK56oglfJXCTm76+ZWLS94lmJOT6csxO3vzj8nZOW9cv52d6WNydMgr41badE4Ahsm/bLqLuXMp+7z6JJy3TJ6/EojOdsGCldTGhBBiE1gm96eoFdIx+Pn5QaVSITk5GcHBxrnBdFJS8obtent7m1WHLlhimNhWiC6Qc/LkSbPqMAf1YCFFSqPRYPTwDSij+AHuLnPg5RaOAX3XIDPTeMx3QT17loWgCf+iWsVfUM7jRzSovQC/zz9htf0DQHJSKvr3WY2KZeaivOePaOnzB7ZtvWrVOg4euIX2rf9Eea8fUaHMXPTo9jfOn7OsG3t+K/46iyYNFqGcx4+oUv4njBy6ntON3VJarRbffrUftWrMRzmPH1Czyjx88lEMsrOFu4ibi9pbOmpvaai9pSku7d29h/iFm0zGYOXf5yxq7w6dqolul8sZ9O5bR788ZnxTk/vs1682Z7m0iQCIg4OMEygaOqyhyTo+nN5a/3sX/xrQMuLzIJSv6spZrtZIIVpeAy1GTGmiXw7+zBesiblBW/lxE++W93YVKJnLtZyjpGASIYQQfvfv38edO3dEf6RSKBSIj49Hamoq/Pz8BMsZ9igxHC4kxdOnT80qD5jfS8YcNIsQsTqp2b2zszWoWWUenj83DqY4Ospx7eZ7cHd3tuhY7t9/Dp8mi5GeblxH2/ZVsSNmhEX7B4D9+27g7T5roNEY/ym990ELfB/WzeI6fp57DF99sc9oPcMAf/7VD4MChafklGrUsPXYtPGK0XpHRzkOHRuHuvXKWLT/nBwtWjRbjKQk4zH95cuXwpnEYKNZNcxF7S0dtbc01N7SFKf2ZlkWQwKisWMb/zSNDAPeXCXmtPfjRy9Qt9bvyHnFP4xnxKhGWBjZh7OuV/eVOHzwNm95V1cH3Lj7ARwc8np8LPvzND54d4fgMXwS2hYzv+6oX9ZoNCjvOVdwaJHCwwm37n3IWTdu2EbErE/mLa8Fiw17h6BV27z/8XdupGFg7dWQCzy/827ngb/3cRMd+tX6C09uZfCWhww4mjqB0xPn4I6b+KTvTt6hRSxYhP7RHgPGWP43QwixTSVtFqEbvze1mVmEarwrnuPKkLVDCN7e3khOTi7QLELBwcGIjIyEQqFAaqpw7jAgdyrn6OjoAs9WJAWF+EmRebvPat7gCgC8fKmBf+e/La5jUP8o3otxADhy6DZ++9XyJ93DAtfz3nwBwG+/nrT4KfTDB+n4euY+3m0sCwRN2IKcHPGx+KZs2niJ9+YLyG2Lgf3XWrR/APho6k7emy8AePjwBcaN2mRxHdTe0lB7S0ftLU1xam+GYfDnX/0RMLgBZ4iLvb0M9vYywUSw5rR32XKlsH3XcN5eJv3frmMUXAGAf7cNQ5u2xjcK5cq54NCxcZzgCgCMHd8MUz9syVv/sBENOcEVAJDL5TiRMJEzNEnH08sZ5y4ad91e+s/baNGlErT5epmwMhb/+7ULJ7gCAFVquON/0d2gkXM/s1qwqNS0tFFwBQC2JY6EVxVno54scgcGKw4P5ARXAKBDz+r46Pe2gD1nNVg5i3HfNKfgCiGkeNEytvNTRGJjY/W5WhYvXmz26w2HF0lFPVhIsSI1sqwoFQatVvzj9yzz0wIfh1qdhWoVfxEtU7lyaVy89m6B69i4/hJGj9goWsbPX4n1mwcXuI53g7dixfJzomVmfd8ZU6e1Fi0jprXvEpNJGU+emmjRU+6KZebixQvhxIN2djKkPA8p8P6pvaWj9paG2lu64treN2+qcezIXcjlDNLTs0V7hAAFa+91UYnYu/cmvLycMeVdX5SvID7EJTkpFYsjEpCR8Qp9+9eBn794wr7sbA1mhMTiwvnH8K7lgbAf/eHqKv40dP26RCxdcgZ2chk+/KglOnWpKVr+4YN0fPHJHjx88AKt2lbGp1+2g1wunuckMjwOh3fegruXE6bPbovq3grR8ufiH+L3WSeQmZGDPsPrIHCs+JCmnBwtVv1+FkkXUlG1ljtGftBEUi4bQkjxVuJ6sMxvZjs9WN4/DQA4ceIEKlasKFremu+7rvdKWFgYQkLMv1YoSA8WpVKJpCT+nqyWov9EpMiYCq4AQEpKJjw9CzZM6NSpBybLPHki0C1ZoiOHTY9BTE4W/0M3JfGC8HSiOvEn71tUx727z02WOXL4jkU3YGI3X0DuxXJ6erbJGwMh1N7SUXtLQ+0tXXFt7+rVFaheXQEACJluesrGgrT3oMAGZg3zUnp7YHa49KFnDg5yzP2lh1nHNHBQAwwcJP2YyldwxeIV/cyqIyjEF0EhvpLLN/Ypj0Ub+0oub2cnw+ipzcw6JkIIIaZVrFjxtQWugoODLQquANKS275ONESI2DR394JHdKtWdTNZRsoMBmIqVhJ/EgkAbm6WRaU9JASYypZ1saiOUqXsTZapWs30+ylGStJBvq7rUlF7S0ftLQ21t3TFub1fvsxBdramUNv7yZMMs5L9ZmRkQ63Oklxeo9Hg5g01srM1kl/z+HE6UlLEp1U2lJmZjdu306DRSK/j7q1nZiWtf572Eo8epEsur9Vq8fRRhsXD6AghpMiwyJtJqEh/Xv+pR0ZGIjIy0qLgCgB4eXlJLqsbGlSYQRkKsJAiY+pi1s3N0WQXZDG1anma7P1iajYJUyYFqyCTiY9ZDH5H+hM8PtM+Nj004KOQNhbVMSiwnuh2Z2c7dO1Ww6I6VD7iXQ1r1/GETFbwryRqb+movaWh9pauOLb3ls1X0LXjcpRV/Iiyih8QsyvZaNrh/Mxp7+zsHIwcuh6ebuFQVv0VZdx/RIM6CxCzS7hL8soV5+Bd7VdU8PpJP1PS1Pd2QKvlDyBcvfoUdZS/wcP1BzSuvwhl3HNnb4qLuydYx4ih66EoFQbvar+hRuV58Cwdjukf7hQsv2XTZdQq+ytqKeajTa0lqOryC1o1/EMwOJOZmY2BPqvR0j4CAd5r0MVtGdq4L8baJecF6/j1m2NQuS5C+7JL0L3aCjRzXIgx3TcIBnMe3XuBUR3Woa3TH+hTeSXau/yBwb5rcfOqWrAOQgghtiM2NhbBwcGIiIiwKLgC5AVLpORV0eVrUSrFh99aggIspMisXDNQdHvEkt4W1/HTvO6C21xK2eOX+cLbpXB1dcDkKT6C271reWDEqMYW1dGhYzW0aFlJcPvAgHqoXNmyp89fftMJnl7CNy/f/K+zRTdHALDoj96ws+ffh0zGYNFiam+A2tsc1N7SUHsb+33+SQwfsh5xJ3MDESwLHDpwS/Q15rS3VquFb9PF2LzpCmcmoTu3n2FQ/yhsXH/J6DXzfj6Gd4K24vHjvKFOWVk5WLrkNHp0W2lU/uYNNVo0W4wH97k9Pp4+zUTXDst5gyytff/Av5uucIbo5uRosTjiFAIHRBmVj16TiKDBW5D1LEc/a48MDO5ee4am1RcZ9U7RaDToVmk57p99rp9JiAEDZABzJx/Bkp8TjOr4csoeLPkuAdpsNm9mIBY4s+8B/GutMCr/9FEGBtZfjWvHUsCwueUZlsHtM/9n77zjo6i6BvzMzJZsekLovffeRUUFBMGKYO8NG2LH8torNuwF7F1AVASkiqig0hFEeg8EElI32Toz3x+bbDLZ2RIIGPju429l586ZuffM3d3MPXNKAZd0nSqMLAKBQFDDWbVqFaNHj2bq1KncdNNNR3y+isaSaEaWsv3CwCI4IenVqwE/zr44xH09Lk7hw0/PZcTZbY64j5Gj2vPxZ+eRlh5naG/fIYOVa28kOTkuzJGx8/yLg3ngoQGG5HqyLHHG4Ob8tfL6Iz4/wPxFV3D+BW1RlPLHqzabwphbevLxZ+cf8fltNgtr1o+hZy/jU+jkZBuvvj6Um289sqf0EHgC/euSq2naLMXQXr9+IjPnXkrvPg2PuA8x37Eh5jt2xHzHxvE03/v3FfHow4tM9+k6xDks2O3l3pOHM98TX/qLnTsLwu6//ZbZhm2v188Tjy4OK//Xn5nMnrXF0Hbe2d8QxrEFgIsqGUwWzNseMefP3Dnb2JdZaGi756a5yCblkAF0r85lF0w3tD1y8yJ0p7mfuYzEew8uN7S5XF5+eH+TacllgNxMF5+/87eh7eFrF6KWhFHcB+Mvm2++TyAQCGoieg2oHqSVhgkdA7Zv386gQYOYOnUqo0aFVpbLz89nwYLoOdEq0qtX+X1MtIpCZdWKhgwZUqU+qoKoIiSodg4nu/eWLYf4Y8leuvesR+fOdY/KuLZsPsSuXQX06FmP9PQjy2lghqZprF6ZRaHTS//+jY5KNQOv189ff+7DapHp06/BET91NqOw0M2K5fupVzeRDp1qV/v5AfbvL+Kf9dm0bpMeTDBZ3Yj5jg0x37Eh5jt2avp8v/n6Mh4a/3NEmU++OI8mjVMOe747tXuH3bvCG1gA5iy4jJMGNAHg3bdXRE2y27tPAxYuviq4nex4Puo48pz3BUNt+/Z8n383RE6qPHxES76eNhqAfzdkM7j7p2GNHwBYYa/z7uDmSamT0Ysjj+mRrwYyfFTgAcrTdy9m2psbIsqnNYhj0c5ry/tImIweIa2LLuksdd9wVL4/AoHgv+eEqyL0Wncapdv/4xHB3lwPzcatBo7edc3Pz6dnz55MnTqVHj16mMosWLCAVatWVTlsqGfPnqxatYr58+czePDgsP2npaXFVG3oSBBVhAQ1gtata9G6dewJig6rjza1aN3m6PUhyzI9e4d39a8ObDYLp5za5Kj2kZwcxxmDIpfsPFLq10+ifv2ko9qHmO/YEPMdG2K+Y6emz3flkBozDmQVc8HI9od1foCCgugJajdtzA0aWLZvy48qfzhVkgoKvMHcNYcORT9+z+5yD5a1qw9ENq4Amt/4jM7v0YKhQeHYsCo7aGDZvSWyEQqgpMhYocoQSmSCpEu4SvwkHGbFKoFAIDiW6Hrg9V9ztMeQn58f9FwJZ1wBmD9/fljvkvz8/LDJaR988MFg2FE4A8uUKVMAqiUsKRLCwCIQCAQCgeD/Dc2ap1aLTCRq146nIN8TUaZ7j3rB95271Il6zoaNjLl4JCn6DXHFxMANGiZz8EBkI0vb9uWluk8a0AidyMYMi81oTLElKKgF4Qelo9P3tPKnoh161mbZ3MyIY0quFBKmOGQ0V4Q+ZF0YVwQCgaCGMWjQIAYPHsz27duDYTqV2b59O5MmTWLMmDEh+0aPHs20adMYNWoUU6eG5gwbNWoUo0aNYtKkSYwfP940x8qECRNITU1lwoQJR65QBISBRSAQCAQCwf8bRo5qzyMPLaK42Ge6v2HDJAYNPjIvn7Hj+jLu9jlh99euHU+37uUGlsuv7MTd4+bi8YQvgfy/R082bHfuXIe//z4YVr5RpdLWr70xlIEDPok47omvlycKbtIslbgkK56i8OWlB59tvIE9/6b2fPti+JAf3QannNk0uD32kT58/NyasOVBdXTuet5Yaavf8MYs/TZ8QuIOA6IbqwQCgUBw7BgyZAirVq1i1arQROdmmBlHpk2bZvjXjMmTJ5Ofn8+QIUOYP39+8Dz5+fmMHh0If125cmVVh19lRICqQCAQCASC/zekpzt44+2zDEmFy3A4LLz3wdlYrYrJkbFz7fXdwlaHUhSJz74639AmyzJvvzc8bJnokaPaBcOJypg171KstvCVm36ad5mhrXuP+hENR9ff1J2UFGO1qc++Px9NMrd+xKVYmPzZ2Ya2e58dQHwDq6m8isZjn5xmaFMUhVue7IUexsLSunsthl9oTHj/9IdnEF/bvA9rksyLXx9Z9TCBQCA4puhSzXkdBaZNm1alpLXhwodi8T5JTU1l/vz5TJgwgTFjxjB69Ojga8iQIWzbtu2oVg8qQyS5FVQ7J0LyKYFAIBCc2KxYvo83Xl3GkiV7UGSJQUOaM+6uvrRtlxH94BjQNI0nHvuVjz5YQ0G+G0WR6da9Hm++fVbYBMO//76be8bNY/OmQ2iaTu3a8dx1bz9uG9vHVL6gwMU5w79h7ZosdC0QNtS2bS2+n3kxDcKU937q8V958/VluFwBz5SkJBtPPD2QG24yL0m+ft0Brrrwe7J2O0EHSZHoO7AhU2eOCibQrYiqqtx16Vz+nLkHySeho5PUwM6znw6m70Dz+4FZUzbz7B2/4swNZK+12GTOu64dj75+mqm8q8THYzctYumPe/C7VGS7TM9B9XnqwzNITQ9fklwgEBz/nAjrjIo67JjYo8YkuW1+V8DD5Hi9rjUFYWARVDsnwg+fQCAQCAQCgUAgqFmcCOsMYWA5sRE5WAQCgUAgEAgEAoFAIDjWaFLg9V9TE8ZwgiAMLAKBQCAQCP7foes6f/2RGQwROmNwc7p0rVutfbjdfl54bgnLlu0jNcXO2Dv70Ldf5KeC8+Zs44PJq3C5VQYNbsZtY/tgsYRPmbd9Wy5jb53Drl0F1K+fwCuvD6Vz5/B6qKrKow//wqyZW1EUiSuu7Mxd9/aPOKZfF+3kiYcWU5DnoU37Wrw+aRgZtRPCyjudXh66cQEbVmUTn2Tltkd6M/S81hH7+HLy33zx5t94PSp9zmjEY6+ehs0WPhdOTlYxbz+5nN1bCqjXJJFbHu1Nw6bmYVECgUAgEBwrRIiQoNo5EVz3BAKBQHDikn2wmCsu/Y4/lu41tI84uzWTPzqHxGoo8zt92r/ccO2P+P2aob1nz/rM/+XKEKOJ0+llQN8P2bE939AeF2fh+5kXhSS5Bbj8kun8+MPmkPaTBjRizoIrQtqX/L6bs4d9haoab/3sdoW/Vl5Pi5bphnZVVRnQ9SP2bCkwlGvW0Ln+ju489eIZIX1MenkFbz64DLmCvI5Ocj07C7deE2I0yc91MaT1p/iKjNdJl3Se/XIwIyoluQV49eE/+PrFdUi6sY+h17bmiUmnh8gLBIIThxNhnWEIEXq5Z80JEbonUGHneL2uNQVRRUggEAgEAsH/GzRN55LR34YYVwBmzdzCbWNmH3EfW7fmcu1VP4QYVwBWrtzPRSNDy0wOGvhpiHEFAl4w5w7/hsJCt6H9uWd+MzWuACxdspfbbp5laPN6VUYMDTWuAHg8Kv17fxjSfu7gr9m7pdBgXAGQkfjw9dX8OH2ToX3t8izeqmRcAZCQKMrycm73L0P6OKvD5yHGFQBJl3jw0gUcyi4xtM/4fCNfv2A0rpT1Me+jrbz/QmxlQAUCgaAmoOtSjXkJqgdhYBEIBAKBQPD/hsW/7GL5sn1h9383fSNbtuQeUR/3372ASP7BCxdsNxhMNqzP5t8NOWHlvV6VJx/71dD26st/RRzDl5+vN2zfPW4umhZ+UC6Xn08/XhvcVlWV1UuzwspLSDxw50JD2/hr5ocYYyqyf0uRwWDy5+K9lOT6wsrLSNx7zTxD29uPLI/Yx+cvrgm7TyAQCASCo40wsAgEAoFAIPh/w2+Ld1WLTCRWrdofcb+uw8wftwS3v/5qfQTpAL/8vNOwXVZmORyqquN0eoPbC+Ztj9rHh++vCb7/aebWEE+UyuRnuwzbWTudEeUlJD5/9+/g9qdvroloLAHYsOygsc9MVxjJAO58P2535GsjEAgEAsHRQiS5FQgEAoFA8P8H6ei7QcfSg3wMxlER6Rj3Fw5FqRnjEAgEghqBqCJ0wiE8WAT/Oc889RtN6r9KreQXaFjnFe6/Z361nt/v13j2qd/o1O4dmjd+jZP7fcic2VuiH1gF8vPd3DZmFm1bvEnLJq9z9llfsX7dgWrtY+vWXEZfMJVWTV+ndfM3uPaqHziQFflpYVX57dfdnHHqpzRv/BodWr/NQ+MXVvuTwC8+W0efHu/TvNFrdO/8Hu++vaJazy/mO3bEfMeGmO/YOR7me+BpocliK7No4Y4jmu9evRtE3C9JMPzsVsHtSy/vFPWcZwxuYdh2OCI/I7NYZEOy3jPPahm1jxtu6h58f9bZrdCkyHUQ0us4DNsNWiRFlNfRufTGzsHta8d1QydyH537GSsipTVyhJEMEJdmJS5OPD8UCAQCwX+DqCIkqHZize6tqiqd2r5LZmZRyL6UVDvbdt0RsURjLDidXrp1eo+DB4pD9l04uj0ffXreEZ0fYP26A5x+yqd4PGrIvmcnnMHtd/Q54j6+/nI9Y26YGRLTb7FI/DDrUk45NfqCIRr337PAdDGUnGJn5ZobqVsv8YjOr2kawwZ/yZ9/hCaWbNuuFn8svz5iKdJYEPMdO2K+Y0PMd2wcT/Ot6zpDB31hOlYAWZZMc5VUZb537sinW6f3wuY8GXZWS6ZMH21oO6nPB6xfl20qb7Mp7MwcZzCYvPD8Ep5+4rewY7jmuq68/tZZwW1VVclIeck0yS0EDDYHcu81tJ075CtW/Woe7qSj8/60cznrnPLyy/+syeayPlPDhv00aJfE7L+N1Y1Oqv8+JYfM87Boks6v+68lNb3cqDLzq008fdVi0z50dMY835tr7+kesk8gEJwYnGhVhLa/0LvGVBFqcf9y4Pi9rjUF4cEi+M+46vIfTI0rAAX5HoYN+vyI+xh57hTTm3GAb6f+yxefrTviPs4562vTxRfAww/8zM4d+Ud0/sJCN7fcNMs0YaLfrzPq/CloWmgFhqqwaNHOsE+aCws8jBj21RGdH+CJx34Nu6DZtPEQt9w4y3RfVRDzHRtivmNHzHdsHE/zLUkSX34z0tRwZbPJYY0iVZnvZs1T+ezL87FaQ2+z+vRtyNfTLgxpX/DLlbRqnRbSHh9vYdbcS0NKR9//wABGXtjWtP9TTm1iMK4AKIrCT/MuMw3RiYtTWLbqhpD2GfMvpWm7lBAvEw2dm+7tZTCuAHTsVps7X+6PVkleRyelYRw/rr40pI85G6/Alhz6MEWTdV6cMsRgXAE4+9K2XP5QV3QptI/hN7YRxhWBQHB8oUs15yWoFoQHi6DaidWynJY0AdUf/uMnSVBQ8sBhj6OkxEv9jFciVnJo1jyVvzfcfNh9LJi/nZHnTokoc+55bfj865GH3cd9d8/nvXdWRpR59fWhXHfj4d9Unnbyx6xaGb5aBMC6jTfTtGnqYffRuP5ECvI9Yffb7QrZ+fcd9vnFfMeOmO/YEPMdO8fjfOu6zorl+1n6+x4URcKRYOWusXMjHlPV+fZ6/bzy0p/89UcmKal2xt3Zl+4960c85ueFO3h/0ircLpUhQ5sz5paeyHL452F79hQw9paf2LmzgPr1E3n1jaG0bZcRVl5VVZ558ndm/LAJWZa45rpu3Hp774hj+mvpXh4d/wv5uW7adc7g9feGkpISPlTH5fLyv1sWsX75QeITrdzxeF9OP6t5xD6mfvIPn76+Fp9b5aQhjXn45VNQlPBerHk5Lt55ajm7txZQr3EiN/+vF/UaRQ5REggExz8nnAfLhD41x4Nl/DLg+L2uNQURpCr4z4hkXIFAlYWCAlfEm7hILF+2L+LNOEDWfnMPmliJpSrDP+vNXb5jZcXy8OVEy1i8eNcRLcC2b8+PKrNo4U6uua7bYfdRWBB+8QXg8aiUlHiJj7dFlAuHmO/YEfMdG2K+Y+d4nG9JkujdpwG9+wTypTxw34Kox1R1vm02Cw88dHKVjjljUHPOGBTZGFGRxo1T+H7mJTHLK4rCo08M5NEnBsZ8TN+TGjH3tyuiC5bicNh4+eOhMcsDjL66I6Ov7hizfFqGg4deO7VKfQgEAoFAcLQRBhZBjcbhOLybcYA6dRKiylgsR5bjJTUtLqqMI/7IvmaJSdGvQUrKkVm+7fbo16F27fgj6kOWpbCx/2XYbId/rcR8x46Y79gQ8x07Yr4FAoFAIKg6OhJ6DQjP0WOqfyeIBZGD5T9i2rRpDBkyxPB64YUXquXcY8aMYfTo0UybNo3t28ufwObn57Nq1SrGjx9Py5YtDfv+C2plRPZMiY+3HFGS2/YdapMUZfFy6sAjSx55w009olb8vPLqLkfUx8239IwqM3bckSXaHD6idcT9VqvMWSNaRZSJRoeOtSPub9Ik+YiSYIr5jh0x37Eh5jt2jsf5/uuPvVx20bc0a/QaLZu+zoZ/onunVGW+NU3jwfsX0qjuRJIdz5OWOIFT+n/E32vDVyRatGgnvbpOIjVhAinxz9O88Wu88tIfYeVzc12c1PsDUuKfJ9kReHXv/B579hSEPeaRB3+mduqLQfn6GS/z5ut/hZVfszKLri3epYH9ZRraX6ah42XOGfwlXq95biJVVbnp/Bl0dbxNV9vbdLG9zYCGH/D7gl1h+5j++Qb61p5EV1vgmG6J7/DgmPAeRcVOL3dcNJueye/R1fY2PRLf5cazZ5CX4wp7jEAgEAgExwJhYPkPGDJkCM899xzvvfce8+fPZ/78+UydOpXly5dXi+EjNzeXadOmMXr0aFq2bIkkSUiSRFpaGj179uSFF15gwoQJtGjRIvrJjiLvTR4Rcf/zLw4+4j4efzK8C7TVKjPxjaq5MFcmIyOekaPah91fp24CY2JYQEVixDltTBMflnHKwCa0blPriPp45vkziI+3ht1/1z19I+YAiIU33z4LWQ6/Wj3SuQAx37Ei5js2xHzHzvE239989Q9DB3/BzB+3kHvIRfbBEr6fvimiDlWd7zNO/ZS33lhOYWEgfEpVddauOcCpJ33Mb7/uDpH/8ot1nDf8azZvzkXTdHQdDuW4ePyRxVxxyfQQ+dxcF62avsH69dmG8KltW/Po3O5dtm/LDTnmnOFf8dqrywyJm4uLfTw0fhG33zI7RH7J4t0MH/AFhzJLkJEC/2kSq3/Lon2DN1HVUCPLac0+ZtnsTCQ1IC8jUZzt5bbhs5jx9cYQ+dee+pMnrvsFT4Fa1gN44aePtnBury9D5IudXs5s/Rm/fr8L1a0hIaF5dZbPy2Ro68/IzjJPhCwQCAQCwbFAGFiOMaNHj2bFihUsXLjQYOBITU1l6tSppKamMmTIkKPW/6hRo9i2bRujRo06an3EypnDWvH2e8NDnmrKssSjT5x6RPkAyrjx5p48O+GMEBf5evUSWfTb1dSvf+QJ8T769Dwuu6JTyI15p861WbHmxiNeuAAsXXY9ffo2NLRJEgwf0YofZ8ceex+OxEQbf626nqbNUgztFqvMPff143+PxR6rH47uPeszfcZFpKYa3fATE2188PE5DDmz5RH3IeY7NsR8x46Y79g4nub70CEX426fY1otSNN0HA5LiOdSVef7w8mrwyYW1jSdqy7/rlKbxrjb5oQ934wfNvP770ajzDnDvsTvN68wpWl6SHWoFSv2sXhReC+STz/+m4ICowfIlSO/Qw7juu4pUrnu8h8NbRMe/I2iA15TeQmJR29YZGhTVZUPnl4Vtqzzrr/zmTllk6HtoesXUnzIvA9vscpdl4a/jgKBQFDj0GrQS1AtiCpCx5AFCxYwZMgQ7r//fiZMmGAqU+Z5EkkmGqNHj+biiy8mNTWVVatWAdCjRw969epFamrq4Q4/Zg4nu/f0bzew5Lc9dO1Wj6uu6VrtY9I0jVk/bmHv3kL6n9SYbt3rVXsfJSVevvt2E8VOL2ed3YrGjVOiH1RFDmQ5mTljM4pFZuSodiQnR88ZUFU2bczh54U7qFMngfMuaHdEbv3hWLpkN6tXZdG2XQaDh1S/J5WY79gR8x0bYr5jp6bP9+T3VnHPnfMiynz6xXkUF/sPe767d36PbVvzIsos/v3qYEWhTz9ey+23/BRRfsApjflp3uXB7ZT456Mm/i10lVfiO+Wkj1i7Onx4EsDIC9vy8ecXALBjWx4nd/gwrPEDQLZL7C68K7jdJ2MS3kLz0KEyJv4wLFhR6OVHl/LZ82sjyqc3cfDz1muC272S38PvjrASkGGN+5aI5xQIBMcvJ1oVoW3P9aVRWg2oIpTnoeWDgXDR4/W61hREtrZjyHvvvQcQ0UOlzLNk0qRJh21gAWjRogU9evRg8OAjD7M5Foy8sAMjL+xw1M4vyzLnnNf2qJ0fID7exuVXdj6qfdStl8j1N/U4qn20bZcRscRndXDSgCacNODI8mNEQsx37Ij5jg0x37FT0+d71878qDJZWcXcfGuvw+4jJ6ckqsyaNQeCBpb166Lnf9mXaaySFMvjsdxcF+npgXxn+/dFr7K0ZXN5WNFff2ZGNK4A+L1GQ4e3JLJxBWD5b5lBA8u/q6PrXZRnrFDlc6uRx6UFwogSEg8/Sb5AIBAIBIeLCBE6hkybNg0gau6T1NRU8vPzWbAgeslIgUAgEAgEsVO/QfRQogYxyESicqiUGe3blxu6WrUKn4enjNq1o1dSqkxKSrmRISMjeqWoJk3LPXW696yHTmQrjmIxGjos9ui3lV161Q2+b94mNap8fLLRUKLYIvehS7qo9iQQCI4fdKnmvATVgjCwHCMqGkuiGVjK9peF9wgEAoFAIKgeRo1uj9Ua/vYnvZaDM4cdWc6Y627oHnF/coqdfieVu19fd2P3qOFa997fz7DdqlV6RPnateNRlPJ8NRNeHBRRHmDiG8OC79u2y8DiiDymvqcacwedeXHkalS6ojNsZHlVq/ueOxktihHnpgeMXl09T28QUb5191rVkhtJIBAIBILDQfwFOkaUGUtiyYGSnh64aVq+fPnRHJJAIBAIBP/vqFsvkWcnmBsbFEXi9TeHERd3ZB4Q4+7qQ8uW5l4pkgTvvDfc0GaxyDz5zGlhz3fSyY0ZNtxYbvuH2RdHrHo07fvRhu2BpzenS5c6YeVHnN2KevUSDW2vfTAsrAFEtkt89u0Fhran3joNW7JiKq+jc+cL/Q1tNpvCBWPahfWUSW/i4PIxxrxsL3w0BFuCeR+yTeLlL468YpVAIBAcK3QNdE2qAa//+kqcOAgDyzHi0KFDVT4mPz//iPrcvn07o0ePZvTo0QwZMoSePXsyfvz4Iz7v3r17I772799/ROcXCAQCgeBoMuaWnnwz7UL69W+EJAUMK4OGNGf23Ms49/wjz+cjyzLL19zIyFHtsNnKjQHNmqXw/axLTHPI3H5HHyZ/dA5165WHAjniLdx0cw/mzL88RL5x4xRW/X0jDRsZw5lq145n8ZKr6d6jfsgxv/91HSMvbIuilBtmrFaZ28b24qupodUFz7+wPR9NPw9HiiVoBNHQadIuhXV7bsbhqBS+oyj8vu96mndPQ5MC8jo61kSZxz48jWvHhnr2PPHGGdz0RC9kO+V9yDrdh9Q3JLctIy3Dwax/L6fTgDrBu1hd0mnVI53v1l5C05apIccIBAKBQHCsEFWEjhFjxoxh0qRJpKamkpcXubLA6NGjmTZtGj169GDlypVV7mv06MBTq/z8/GDp54r7Vq1axfz586OGKoVDqly/MgIiC7VAIBAIajJ+v1ZqZDl6z5ycTi9xcZaYqzb5/Rper5/4+NgTtebmukhJsRnCgqKNSVEIMZKEQ1VVCgq8waS5sZCf6yI+0WYwMkXC61Vxu3wkp8ReQavY6cURbxFhQQLB/xNOtCpCW5/uR6O06q8aWFX25rlp9b8/geP3utYURBawY0Rubm50oUocqafJ/PnzQ9qmTp1Ky5YtadmyJXl5ecekbLNAIBAIBDWVo1GqujKJVaxoY7HIWCxVO6Yqhg+o+pgURalyH6lVlLfZlJiNMWWIakECgeC4pqYkmK0JYzhBEOb+Y0RZXpVjwYQJE5g6dWrY/WWloMePH39Y59+zZ0/E17Jlyw7rvAKBQCAQnEj4/X5uv2U2XTu+wyn9P2Llin1Rj9m0MYd7xs3ltjGzmPXj5qjyublOund5j/q1X6Zju7fZtjX6A50vv1jHWUO+4OyzvmTenK1R5ffsKeCyi75lyOmf8uD9C1DVyOWYfT4fV1/4HZ0bvk3ftpP5ffGuqH2sWprJtWd9x2WnT+PTt9ZElS8oKOHik6ZwSoMPOL/HV2TuLoh6jEAgEAgERxsRInSMGD9+PC+88EKVQoRatGjBtm3bqn0sCxYsYMiQIQBHxYvlRHDdEwgEAoHgSHjn7eWMv2dhSHudugls3Tk2pN3v1xg66HOWLzMaYWrVcjDv5yto3aZWyDED+n3IurUHQ9obNU5iw+bbQtq3bDnEyX0/wuXyG9pT0+JYs36MqYfKsMGfs3TJXkObJMFzLwzi1tt7h8i/8OTvvPbMX0iUPw3V0UlItLL50B0h8l6vyqDWH3Nwf7Gh3WKV+XzhhXTvF5pL5urB01nza1ZIH806pvHD6ktD5AUCwYnDibDOMIQIPdW/5oQIPfIHcPxe15qC8GA5RtSqFXpjFI6y0KCjFb5TMffKihUrjkofAoFAIBD8f2X9ugOmxhWAgweK6dL+nZD2EUO/DDGuABw65OKUkz7G6zUaRa698jtT4wrA3j1FDBr4iaFNVVX69fwgxLgCkJ/npmuHd0PaL7vo2xDjCoCuwwP3LeS3xbsN7Sv+zAwxrgBISJQ4/XRs8FbIuYa0+yTEuALg92lcetpUXC6vof3J2xeFGFfK+tj5Tx5jzpkRci6BQCCoqei6VGNegupBGFiOEWXGkljyqpTlazncJLTRqBiuVFY+WiAQCAQCQfUw6vzwYboAO3cWkJ/vLt/ekc8fS0MNGWWUFPt47unfDW3fTtsUsY/ly4wV/Z549Fd8vvB1OAsKPPzw3cbgtqqqzJq5JWIfN93wo2H7inOnhxg+KpJ/yE1OTklwe8Oag2TtdYaV1zW4/xpjPrnpkzeG7UNC4s+5mRHHLBAIBALB0UQYWI4RFY0l0YwsZfuramDJz8+nZ8+etGzZku3bt8d0zNEIQRIIBAKB4P8z+/eHNxqU8exTvwXff/rx2qjys2ZGz5VSmdzc8nFMnbIhqvwbr5XnUFs4fwfRgsj37zPq6SzwRZSXkPjfXT8Ht9+bEN2L9s9FRsNT9Mh2nYKCkigyAoFAIBAcHYSB5RjRq1ev4PtoFYXKjCNleVJiZcGCBaxatYrt27czbdq0sHIV+2/ZsmWV+hAIBAKBQHDkOIvKQ18qh/+Y4fdHTixrhrdCdI2qRk+5563g4eIs9kaQDHA4afyKnRX09kTXSdOq1oeEhC+ynUcgEAhqDroEWg14iRChakMYWI4Rqamp9OjRAyCid0nF/CuDBw+uUh9l5+/Ro0ewUpAZFfuvah9Hg4cfWEha0gSSHc+TmvA8N11X/fHT5539NSnxz5PseJ5ayS/w1uvVW+nI6fTStcM7JDsCfTSo/TJLfo9eNaEqrFuXRZP6E4N9tG3xBllZ0Z+SVoWp32ygduqLJDueJyX+eU47+SO83ug32VVBzHdsiPmOHTHfsSHmOzZKSnyc3O9DUhMmkBL/PC0av8aqldGr/1QkOdkeVebOe/sG318wsn1U+f79q55wsF69xOD7k09pHFV+1OjycZw1vFVU+dRKiRmtcZFLLOvo3P/4gOD2Rdd3jNpH284Zhu1IIUhlfWRkxEc9r0AgEAgERwNhYDmGPPjggwARSyhPmTIFgJtuuimsTLgQoxYtWtCjRw9WrlwZMbxo/vxAPPOoUaOCRpn/ijppL/LGa8tR/YEnVJoGX3+1gbTECdVyfqfTS7LjeRYt3Bl0dfb5NB4c/zMtm7xeLX3Mmb2FBrVfYceO8hKRTqePs4Z8xXlnf10tfdw2ZhYD+nxMfr4n2LZ/fzFtmr9ZbYuL7l3e4/prZuApfaKo67Bq5QEyUl6JqexnLIj5jg0x37Eh5jt2xHzHxq+Ld1Kv1sv8vfYgmqaj65CT4+K0kz/l6iu/j/k8b7w1NOL+pCQbbdqUGw569m5As2YpYeUVReKJZ043tHXqXDtiH3XrJhi233r3LKQItgmrVeaOO8uNPg6HjQ6dMsIfADxVaUxPvnIaOuE9Tqw2mc5d6wa3Tx/RgvhEa8Q+XvrkTMN2l1PqRuyjYaukiOcTCAQCgeBoIgwsx5BRo0YxatQoJk2aFNaLZcKECaSmpjJhgvkN6ejRo0lLS2P06NFhjx8zZkzYMaxatSpYLnry5MlVV6Ia6dltEm63uXuwquo0a/jqEffRtEH4c2Rnl3DFpdOPuI+LLvw27L5FC3eyeNGOIzp/VpaTzz5dF3b/g+N/DrsvVp575je2bQlfPrxHl0lH3IeY79gQ8x07Yr5jQ8x37JxzVnij2XfTNrLsr/CJaCty/oUdOH9kW9N9FovMP5tvDWlfuPgqamWElklWFInPv7ogxCtj6bLrSQxjnLDZZLZUKgXtcNj46LNzTY0siiIx9+crQtqX/HktGbXNvUFGjmrHVdd0NbRdeX1X+p7a0NwAIsGKHaH3Jz+uugyL1fx29OGJp9KgSbKh7dOFI0mpHRfSh46OPUFh9oYrTc8lEAgENRJdqjkvQbUgDCzHmMmTJzN48GCGDBliMLLk5+cHc66sXLky7PFluVXC5VgZPHgwLVu2ZMiQISxYsMBw/kmTJtGzZ08GDx7MypUrj1oZ6FjZsinyU9PcXHfE/dHIzXVGrJgAMOP7zUfUx8MPmJfhrMglo4/spn/gSR9FlTnSJ+kTnl0Scb+uc8QLSTHfsSHmOzbEfMeOmO/YePH5JVGTul4cweBWmU+/uICly66leYsU7HEKSUk2br61J7lF95OaGhciX7tOAtt2jeWlV4bQq3cDOnepw00392DXvnGMOKeNaR/7su/h6WcHYrMFbucsFpk77+5DTsH9pvIjL+xA5sG7Ofuc1mTUjqdO3XiuvLozB3LvpVevBiHyiqKwffcdvPbGUJo0TSG9loOu3euyZNm1fPzZ+aZ9TJ9/CT8svoS0jDhkBSw2ibMvasNe992moTuNmqXwd+EtXD22K7Xrx5OWEceAwY35I/MGrrqtm2kfv2Zex8Nvn4o9UUFSwOqQue3p3vyVF977VyAQCASCY4Hlvx7A/zdSU1OZP38+06ZNY8yYMYbyzUOGDOH++81visqYMGECzz33XDDcyIz777+fUaNGMWHCBMaPH8/27dtJT0+nR48eTJ06NWJ+lprG7t25NGmSHl3QhOeeWVrNownl6y//iSpTXHxk2fYOHCiOKhOpvGcsaJHXLQA8/eRvDDy9+RH1Ew0x32K+Y0XMd+yI+Y6Nzz75O6pMbq6rSufs1Lkua/+5JWZ5WZa56Zae3HRLz5iPueOu/txxV/+Y5RMTbXw55cKY5QGuvaE7197QPWb5Xv0asi4z1EsnHIqi8NDLA3no5YExH3PRDZ246IZOMcsLBAKBQHAsEAaW/4iycKGqcv/990c1wkAgH8t77713OEOrUaSnJ0YXCkOdjIToQkdI2VPD/xqLcvTd+lKSQ5+4VjdivmNDzLeY7+pGzDfY7ZETtAJIkZKYCAQCgUBQRXSdqN6Tx2ocguqhZtw9CgRhSEy0Hfax4+7pHVVGOcKFy8TXIycyBGjU+MgS7vU7KXrliLF39jmiPuLjo9taJ300/Ij6iAUx32K+Y0XMd+yI+Y6Nl187M6pM23ZV88C5+orvSEucEKwO1bLJ66xZsz+s/KaNOQwb8gV101+iduqLdO/8HtOn/RtW3utVuWjkVGolv0Cy43nSk15g+Jlf4HSGrw61YP52+vZ8n9qpL1In7SVOP+UTVi4PXyXpYJaTYX0/p0n8RBrZX6FF8mvcfeOciHo/eP8C6qa/VFpNagK9u01my5ZDYeX/XLqHDm3eJiU+UOGqYZ1XePXlPyPqffMFM+iY8CZtba/TIf4Nrhz8bUS9BQKBQCA4FggDi+A/4+pru0Tcf+ppTY7o/DabLeriZ+Lr0W+oIzFseGsslsg39b//efUR9TFnfmjiwYpIEjz48ClH1MeM2ZdE3J+cYjuip88g5jtWxHzHhpjv2BHzHRunDmxGXJQyw/N+vjzm87Vs8jrffbsJVS1/LJidXcKp/T9hxvebQuQDho8PWPr7HlwuPx6PyrateVxz5Q/ce9e8EHmvV6Vpg1eZ89O2YH4av1/j99/20LThq6bhTC88v4SR507h3w05eDwqbreflSv2c8bAT/nyi9Bky5s25NCz+STWrzmIVqqH16My5dMN9Ghm7iXbp/tk3npjBS6XHwBN09m06RA9u0zmt8W7Q+Q//XgtZw76gr17CoNPcouKvDz6v1843yT/kNer0rfuJBbN2om/VG/Vr7Ps10z61ZtEfhXDuAQCgUAgqE6EgUXwn/HG28M56WTzp7et26Yz86fLjriPDZtvM63KAHDZ5Z245rrYY8rDkXXorrCLsE++OPeIFy4AC34xX4RJEmzafvsRn79P30Y8+L8Bpvvi463szbr7iPsQ8x07Yr5jQ8x3bIj5jp3Mg3eGNbJM+2EUKSnmFXUqc/8988nOLgm7/+orvjdsa5rGlZd+h6aZ+2hPencVa1ZnGdrOOevLsDmAfF6NwQM/M7Tt31/EM0/+Ziqv63D7LT/h9foN7Ree8Q16mBw+B/cXc9/NRsPPxJf+YOPG8J4qoy6YYthWVZU7bgvvDfPzwp0smGesunjN0O8oiaD3xadMDXs+gUAgqHFoUs15CaoFSddFxJWgetm7dy+NGzcGYM+ePTRqFNkF3uv1MnTQl2zfnk/9BonMnntJtSxaKrJtay4XnjeFvHw3PXvWZ/qMi6v1/AA/ztjIvXfOx+vVGHVxe158+ciepprx3DO/Mfm91cgy/O/RU6plQVGZqy7/jl9/2UVCko3PvjifHj1DK0scCWK+Y0fMd2yI+Y4dMd+x8fPC7dx313zcbpXLruzEw4+cWqXjM1JfxOsxL1tdxldTRgarA307dQPXXjUjovwZg5vz/Y/luqYmTAhrkCmj0PVA8P3NN87ky8/XR5R//KmB3H1vIGHu/swiereYHFHeHqewrWBccLtJg1fJz4tcMeqn+Zcx4OSAR9PEl/7gsUcWR5Rv0TKNNevLyzu3i3s9rNGnjE3eOyILCASC45aqrjNqIhV12PzIKTQyqSx3rNmb76bNUwEj/PF6XWsKwsAiqHZOhB8+gUAgEAgOl5T456MmDLzokg68/9G5ANx/zwLefXtFRPnKhoZkx/NRx7Ezcxzp6QGvn9NP/oSVK8PnfwE4/4K2fPrlBQBM/ewf7rphbkR5SYI97nIPqPSkF/D7I1s/7ry7L08+czoAI8+dwoL52yPKJybZ2HewvI+2ttcjygP8lXUjqenm3k4CgeD45kRYZwgDy4mNqCIkEAgEAoFAUI3IsmTIvWJGhw61g+8bNoru5ZOSYq/yOFJSyhMLp4cJr6pI3Xrl42jboVZUeVk2upRbrXJUA0ubtuXnjSVJdLyj6reqSSmHn1BZIBAIjim6hK7XgPCcmjCGEwSRg0UgEAgEAoGgGunes35Umbvv6x98f+OYHiHGisrcOtZYSalho8jGiZRUO4pSnk/mnvv6xTCmcpkuPethtUa+TezSs65he/CZLSLKyzJccVV5QuSnnj0t6phuuqWnYbteFGNUcqrNoLdAIBAIBMcSYWARCAQCgUAgqEZmz70MKYK9ZPRF7Q3b8fE2xo4LX4q6XfsMLr6ko6Htm6mjIo7ho0/OM2yfNKAJ/QeEd/m+5LKO1K9vNNo88kL43DOyLPHJDxcY+/z0PGy28LeWY+8wlhxPSXEw4uxWYeVTU+O4/wFjguZ3pp8dVh7glc/PirhfIBAIBIKjiTCwCAQCgUAgEFQjcXEW/tl8C0lJxlAVSYIrruzMB5WMHwBPPXsGjz0xkPgEa7BNUSSGj2jF0mXXhch36VaXeQsvD+nDEW/hi68vMPUm+WneZVx8SUcslvLbv7g4hTvu7M2kD84Jkb/u1h48OfE0rJWMJrVqO/h1/TXB/C5l2GwK/269NcS7xmKRuW/8STz13BkhfXw1dRRXXNk5xIOnXftabN01NkS+Q7c6fPXLhSQmh+r95tQRnHJm05BjBAKBoMaiSzXnJagWRJJbQbVzIiSfEggEAoGgOsjPd/PtlA20bZfByac2iemYTRtzKCz00L1HfYMxJBz7Mgv588+9dOtWjxYt06PKa5rG2tUHsNpkOnSsjSxH72PThhy2bsyl/2mNQwwrZjidXhbO307z5ml06VY3qjzAn0v3cCjXxZAzW2KzRQ/zycp0svqPfXToXoemLVNj6kMgEBzfnAjrDEOS24cH0rAGJLnNzHfT5plAVbfj9brWFISBRVDtnAg/fAKBQCAQCAQCgaBmcSKsMyrqsOnB02qMgaXtc78Ax+91rSmIECHBMcPt9nPLjTMZPvQLXn/1z5iO+fTjNQwf+gXXXvU9+fnuqPK7duVz6UXTOGf4l8z6cXNMfTz5+GLOGvI5998zH7/fH1X+9193c/7ZXzPqgimsX3cgqrzQW+gdDaG30DsSQu/jW+9ZMzdz/bUzePiBhTid3qjy+flu3npjGS88v4R/N2TH1EdV9d65I5+XX/iD1yb+yYEsZ1R5r1dlwqO/c/vVs/j2iw0xjamqemdlObnnzrmMueFHlvy+O6Y+PnpnNbddOYu3XlqGqqoxHSMQCAQCwdFEeLAIqh0zy/LwoV/w+697DHKSBK++MZRrr+8eco45s7dwyehv0SpVe+zYqTZ/LL8+RN7v99Oxzbvs32+8UbRaZX7/81raVyiHWcaj/1vEqy//FdJ+yWUdTWPRs7KcdGn/Dm638SYuJdXOlh1jiYsLLSUp9C5H6C30LkPobWwXehs5UfT+c+kezhn+NR6PsY9Bg5vz3Y8Xh8hrmsbVl3/PjB82U/HOrGWrNOYtvILadRJCjqmq3k6nl6GDPmfd3wcN7aee1pTvf7zYNBzp9qtn8f3XmwxtFovMu1+OYNh5rUPkq6q3qqqc2v9j1q0zGpOSkmwsXXYdTZulhhzz/hsrefL+X9G08gslSXDrvb158OlTQuQFAsGJg/BgOToID5bqQxhYBNVO5R++u8b9wdzZ28LKz1l4GSedVB6XvmtXPp3bvRtWvlu3uvz6x7WGtlbN3uDggWJTeUmCQ4X3YrGU3zB/MGkVd42bF7aPO+/py5NPn25oS0ucgKqaf10SEqzsz7nH0Db6wqlCbxOE3gGE3uYIvcsReodyvOidleWkbYs3CXeHNeyslkyZPtrQdsnoacyeudVUPj3dwfY9Yw25Ug5H707t3mH3rgJT+d59GrBw8VWGtgdum8/n768L28e8FVfQoXOd4Pbh6N235/v8uyHHVN5ikcnOv8dQdnnW9M2MuXRm2DE9/tJAbhjbM+x+gUBwfHNCGlhSoue1OtpkFriEgaWaECFCgqNOpJtSgMsv+s6wfd6IryPKr1lzALe73AV6/boDYW/GAXQdLrrwW0PbA/cvjNjHG68uM8rfuyDszThAcbGPGd8bn/AJvc0RegcQepsj9A4g9DbneNH7qsu+C2tkAJjz0za83nIPjwNZzrDGFYDcXBevTaykRxX1nj7t37DGFYDly/axYb3Ri+TLD9dH7OPmS2cZtquq9/ZtuWGNKwB+v8a42+ca2sbfOj/imJ5/ZEnE/QKBQCAQHE2EgUVwVJkzO3rc/KFDLsP2jh35UY95+onFwff33R35Zgvgt8XGeO7KrsuVUVXdcNP/xefhn+CV8fgjvwTff/9t9Bh1oXcAoXd4hN5C70gIvQPURL1XrcqKesykd1cE338weXVU+W+++sewXVW9P3g/eh9vv7U8+P73n3cbQnDM2Lkt37BdVb2ffvK3qPI/zjDeR+TneSLKu11+gxFHIBAIBIJjiTCwCI4qWVklVT8ohqC1gwfLz+t0+qLKR3paGQ6nszwJo8+vRZAM4HKV38hm7gv/BDYsQu+wCL2F3pEQeseO0PvY6K3FMMbs7HKjTFFR9CSwngrGklipqHdJcfRrW3Ec2QejJ7+tHGVeZb0Lo+vt90Wfr8q4XNHPKxAIBDUBXZdqzEtQPYRmcRMIqpELLmzHC89FdjG2WCTG3DCTHdvzadAwkbg4i+Hm1owxt5THV4++uD1r10Su/pCWHsclo6eRl+umfccMJImIbswAGRmJwfetW6dH7aN5i1TOOzuQ2K9vv4aRT04gYWNF4uOtFEe5AU5JtTN86JcoikSLlqlRx1S3njEpYix6v/zCX6xauZ/kZDv16iewfWt+RPnTTm8afH/5lZ15MIrbupjvAGK+wyPmW8x3JI6H+c7IiCcrSnWeyy7vFHw/bHhL3npjeQRp6Nq9rmG7qnr369+IlSv2R5QfNLh58P2Qs1tFPjmQkGSr1F/V9L5wdDvmzokcftWiVZph22KR8UcwkkkSpNSAfAYCgUAg+P+JSHIrqHYqJ5/q32sqBQWRXXqrgt2ukJ1/n6EtJeF59Ko/5ApLq1ZprFo3JridleWkTfM3q68D4Mabe/DyxDOD2++9u4L77lpQrX0s+OUK+vQtT1J11pDPWfL73mrtI7fImHCycb2JYr5NEPMdG2K+Y0fMd2z8F/M9/dsNXHPFjLDy6elx7My80zjOKMl912+6hcaNU4Jt0ea7st5Op5fG9SZGTO6befAuQyLd/m3eZ8+uwrB9jH9yAGPH9w1uH47eGakv4o0Q7vTnyuvo0KE8ke5tV87ihymbwsr3GdCQ6T+HVisSCAQnBidaktuND5xeY5Lctnt+EXD8XteagggREhx11m28BUWpHrczSYK/VoaW9Zw+46JqOT9AnMPCstXGPurVS+SOO3tXWx+tWqUZbsYBxtzciz59G1RbH6Mvam9YfAH8NP8K0tKrrxTcm+8MMyy+QMy3GWK+Y0PMd+yI+Y6N/2q+R17YgfPOb2Mqb7XKLF12XUj7nAWXEx8f6lgsSTDxtaEG4wpEnm8zvRMTbXz8+XnIcuj82WwKM2ZfYjCuAMxfdRUOkzFBwJBR0bgCh6+3HOZudNydfQzGFYC3PhtBs5YppvK1ajuYOn+U+ckEAoGgJqJJNeclqBaEgUVwVLnt5lm0bv4GkgQ2u4IsgywH3MhjwWqVkeXADabdLqMoMn16fsDZw77A7faTk+PklP4fcdEF07BYZWx2xXBsLFgsgTEplsAY/T6VhnVe5c6xcwBYuWIfHdu8zdtvrsRqlbHZys8bSx9lOpfpbbPJ7NyZT6O6r/DO2wGX8Clf/UPThq+yauV+rFbZoHcsi5mK19NqlbHaZL6bvpHWzd9g8S87AXj80V+on/EyRYUebDY5qLfFGlsfcXHl19ZmU7BYZe66Yx69uk1m1658/H4/l140zXS+K16zSNhLjzmc+a44vsjX6v/3fCuWQD/RqKhrVedbfL/FfFfGbldITbUjy4G+Bp7ehAO599KiZXqI7KBBLdi+53a6dquLxSKhKBK168RH7aN2bQcOhwVZBnucwnU3dONg7r0hRiKAp58bxK9/XE3DRkkoSqCPJk3NF+0VadIkGZstMH9JSTYmvDzI4CVSkc++Gsn0Hy6iWfMU4uIUkpJsXHp5R/bn3EODhskh8q1apbN9zx3cNrY3zZql0LBhEsNHtGL1ujFcd2N30z52Zd7J3ff1i1nv885vx79bb2XkqHY0apRMkybJXHNdV7buGkvvPqGhUImJNjbm3MbVN3clOcWOPU6hQaNE3vpseFgvkarq3atXA3btG8fQYS1JSLDicFho174Wi5dczVPPnWHax+8brufJiaeRUScee5xCWq047n2sP2v33mIo6SwQCAQCwbFGhAgJqp2Kbm8J9geQJeNNqyyDVgX376rKHw4Wi4TfH/pVqM6+w53rWPStKJKpW7jNJuP1xt5JLDH/R9qH1Srjq2JSQ0UBtQpFI/7L+Q43F//lZ606OZ6+34fzeQ7Hf/n9Pl7m+2DevcTFHV7qtz+X7uXMQZ9HlHE4LBzIvfewzg/wyEM/h5RCrkzrNumsXHvTYfchEAgEgiPjhAsRuv+MmhMi9MLPwPF7XWsKIsmt4JhT1UXF0V58AWEXIdXZd7hzHYu+w8XcV8XwAYe3GK1qH1U1rkDVjCvw3853uLn4Lz9r1cnx9P2uzscL/+X3+3iZ73BhILGgxOIVdYTezbISfYBSLO5AAoFAIBDEiK5X7/3IkYxDUD0IA4tAIBAIBIKjSnNLAv1S3qNA82JBpm39ND78YyQZ9RNN5f9de5A7zpwFhzQkXcITp5KiWymQwldicigWUuMnoOk6sgS9ezRg9qJLsVqtpvIzP9vII7cv4pDbhYREnQQHdlXGo4SzjkKdnDiG2j8CDWSbzPBb2zD2xf5hx/TkfYv56O3VuFQ/MhJNGqTww5KLqVs/yVR+y6ZDXHrOt+zeW4CuQ3KinWdePp1Lruocto9hAz5n+apMVF1HkiTat8rgl5VXYrPZTOWX/L6bW8fMZs/uQiQJWrdN55PPzqdtuwxTea9X5Zorvmfhgh34fBpJSTbuub8/d9zZ11Qe4JH7fub9d1bj86tIkkTDBknM+f0y6tUPDREC2LOngCsv/Z716w6gaYEKWRNfPZNhI1qH7ePyEdP4deFudD3gjdatZz2m/zI67HwLBAKBQHAsECFCgmonWoiQQCAQCP7/0MqXxDZLEXol5490zcZ38y6m+0Bj7o+v3v6br8auJlE3LpT9aKxXctlrKTGeSA84r1Q+P4AsSezLuZv4eOO5bj93Jl/O+we/ZLwFsukyCZqFPMVrPI8KvbW6WCulrtPRiW9g49vdl4X03afZZDZmHQrxrHHoFr6fexH9BzYxtE/7agM3XTsTv2Q08Eg6DBvUkm9mjTa0e71eGqa+hkcPdeGzILE7+y4SE41GlicfW8xLL/wRIg/w9nvDueKqLoa2rCwnHdu8bepZ2KFTBn8uvyGkvUvzd9i5vyBEb6su88Pcizl5YFND+4J52xl53hTTMV1xZWfenjTC0Obz+Wid+pZpqWZJgk25Y0PmWyAQnDicaCFC/95Xc0KE2r8oQoSqA5HkViAQCAQCwVGhgT/O1LgCkCt7uWro9JD2j8auCDGuAFiQ6aimE6cZb10skmR6fgBN1+nY8i1D245NeXw1b0OIcQXAK2l4ZQ0q2Sy6aRkhxhUACQnXPh9PX/uLof3J+xabGlcAXJKfi4ZNC2m/5bpZIcYVCBiO5izcxi8Ldxjau7ecbGpcAfCj06GxUe+sLGdY4wrAbTfPRq0Ub3lq/4/Dhm1uWJ/DY4/8Ymh75L6fTY0rAD5J48Kzpoa0X3Rh6LUo4/PP1rFixT5D22mdPjU1rkDAxb1380lhzycQCAQ1DV2XasxLUD2IECGBQCAQ1EgyLDAsVaGTQ0aWYKNL56d8lf2+/87x0o5EPyWBTooDOxL7dR9L/cXs0r1hj2kjxdFbTqSWZKFE11inl7BSc+KvpjHJOrTTEmmnJZKgWyiQfGyQnWyVimmGg05qMqm6Fbekslku5h+5iHTdSlctmXqaHb+ks0MqYa1SiNtkgX/Y45IlHBYrOu6wMnsoZumsXZw0IuDV8Oy4xWTo4UtNW5Hp4KhFp8sakHOwmK7d6/Hc079HHMehfGP/Nw79AV8EPYslP0O7NiOpQzwul4+T+zZi5vh/I/bx21c74aPy7Y/eXh0xJ0yh7mXBrG0MHtESgJeeXoqnslWnAroEd1w/h7933hJs25tdFLGPfJfHsH3jdT9G1EHX4eEHFvH8i4MByM11kZXljHjMpHdW8sRTpwW3338nst4uzc+8WVs5c0QrAD56f3VYY0kZt988mz9XlHvK7NpZEFG+IN8Tcb9AIBAIBEcTYWARCAQCwTElSYYu8TJ2GXZ4dHZ4Qg0mrewSDzSwEl+hjHEjG3R2SIzf48P7H9lYzrak0MuSENyujZX2soNXPAfIN1kgN8DKZUoGcllyVAmaYMehS/yiF1XLmNprSZyhlufPSNWtNFXjycVLOhVCRHQr9dU4uqnJJGFBLlsJ61Bbt9NBS+I7637ypeox/Twz4XReuWdJRF9ZTYLp7/wTNLD8MWsPSVGca6USnTffPiu4Hc3AArBndwGNmwTCVfdnRzYaAOzZWcSfyy8B4OtX1iJFyaBb+ZK5VH9EQ4MuwWfv/h00sPz045aoY8o5ZAyNivoVkGD71lxatAqUwt64ISdqH7//ujv4ft6crVHlS0qMOXF8fjVysmEJPnxvTdDAMmtmdL137y6MKlOZzN0FNGwiwpMFAoFAcOwRBhaBQCAQHBMkYFS6wtlpCtYK1Vg2ujTezPKRW2qfkIFxDWzEK6Hn+PyQ+p8ZVwBm+wvoojiwSeVGgF/VIlPjCsA+fKzVS+gulRtl8nU/v1WTcQXgH7mILloyGbox34bBuFKBFMzzUyRiYZC/Nt9a91fLuFJTHVhiiESu17j82iSkWgmJz6mELlf9A1ArIz743mZRILzDEQDx8eW3R43bpUY9f+URyTGUNGrQpDzRbVp69Ph7SwxVjioPqk698iTC8QnR85KkpJZ7DzVrlhpVXpaNesZSZalh4/JEt7Uyouttt5n8EEQhrcJ8CwQCQY1GkwKv/5qaMIYTBJGDRSAQCATHhHPTFC5ItxiMKwDtHDIPNLBilWDAyY2Y996Z1DJZU+X5dVYVH4O6zhFwobNOdQW3dV1nmb844jErNKPHxBqtOIoJoYpIASNLddBAj6OWVj0JQj96fw1t66dFlEnSrIx7/aTg9nNfDsEb5eq0ObW2YdtqiXwrI0sYkp5eck3HyPI6PPjKqcHtAcObokbxF0lsYDRmNWkQ2XvCpis8+erA4PYr755JNLvR0FJvlzLscmTDg0WSDElu77wrfNWfMp545rTg+34nNUZRIt9wt21fy7DdsIF5daTgmHSZ5189vby/p0+PIB3gksuM82WJUrJbqjTfAoFAIBAcS4SBRSAQCARHHbsE56SGXxA2sssMqhfHT/OvwLxYLGT59OhhEceAHL08HsSHTiGRjT6HdGP8SI5eXdlXysmPUL64qqSG8XCpKlu35vLhHyNJ18w9adBhUKfGhrK6zdukU1A3/PU5ILt4a5axqswrr5wZcRx339XPsD3+tVOpT3gPhxZxKQy50GjMOPnypoT79GnovDhnmKHthyUX49DDOAnr0KtTPYPeTZqm0qZ5LXN5IF6y8M4nww1tjz55Svg4IR2uvbaboenaG7qTmho+v02Llmn06tXA0DZ2XJ+w8pIE30wdZWib8/tlWPUwt5Y6dOlcx6B3vXqJ9OnbwFweiItTePo5oxHmqYmnhZUHuPWu3hH3CwQCgUBwNBEGFoFAIBAcdVrGSYZ8KmZc0D6Nzav3Y6sULrHPrbLbpZJcyT5jAdNlshWoJUlUNudIQDqSqfkgGTBbeqYikV4p3CNBUihWNXJUH5KqY6uwXwHSUAxHxCPj9ek4fSpun05ChfAiNEjWLCGVcQAsOlhNFtCKLmHXZcPi2qHLqOi4UNFiNEOpqBzEQ0GleBkXGnYNHEfoLFSrloOM+ol8N+9imuoJBg+NJM3K+R1b8OnKi0KOm7//WvIa+yipkAbYj0amvYSPNo00LNABrr6xGw/ef1Ll0wBw7VVdebSCV0YZy7JuoLk1GaVC1QSrLtMxqRZ/ZYeWHn7kk9Ppc1Fjw7XV0VEVjYenn0aLDukG+br1k/h+7kWkYKNisSKbrnBSp4bMWXFl6Jj+vZGu7eoaxiTpkO6IY+Xmm7BYjAabsff247YxvZArVX6QdLjwnLa8/PbQkD42bb+VJk1DvWu6dqvLyrWhej/5zOncNrYXlSN/HA4Ls+ddRtNKYUT16ifzw9yLcUgWw+fTosv06FyPX5ZfE9LHgl+u4tTTmoS016kTzz+bb0FRjN/kK2/qzrgHzL1xLrm6Iw8+d4rpPoFAIKiJ/NeVg0QVoepH0nW9JjwQFJxAVKztnmB/AFkSieYEgv/vdHZIPNgwjCdDKX8UqbxxwI9DgqGpFvx+WO3SyCytMlJXkWlildnl1XDIErv9gcCNFFmitqzg9KvUtVrZ4PPiA+KQ6Gi1scvnoakljo1+D8XoKEAT2cIOzU8n2U6m7ievtNxtI9mKA4kEZHJ0lb16wDOkrmShpWzDo0FPSwKNJRuyJFGg+/lbLWGl6uQM0mlOHFZJxq1rbMfFL1o+F+h1ScOKhISOjg+daRygC8m00ROC5hgXKr/LuWThxY9OrhzoO1W3EKcr+NDprabRRHMgI1GEn3+UQnZLxQzUMqir27Ei40EjW/JQW7djN3mOoqHxq3KInbKbotLsrLU1G620BHLxsk0pCZYwlvSA0ch/GPddDz1yMg88dHJwe+msXUx/5x/qNU5g3OsnhRhKKlNU4OLZO36jKM/LjQ/3pGvf+lH7nPzmCubP3c5JAxpz5wP9o8pv/SeHNx9dhtWmcN8rA6hTPzGivN/v54sX/2b3xgLOuLgFA4Y3jdrHglnb+Ozdv2nQJIknXx0YVW+n083zjy+lMN/DzeN60qFznah9vPz0EhbM3Um/kxry2ITTosrvyyzkow/XYrXKjLmlBykpkXOhqKrKF5+tZ+uWXIaPaEW/kxpH7WPerK18+N4aGjZO5vlXT4+qt8vl5b23V1FY6OGKqzrTomV6RHmAD95cxaI5O+g7oCFjH+wXVV4gEBz/VFxn7Nmzh0aNGv3HI6o6FXX4564hNIzyG3wsyCxw0XHifOD4va41BWFgEVQ7wsAiqNnopS+pwnbgfWD5G/o+EmbHSKXvtSjnNfZhPo5IyBWOCTxZlwEdubRvCUrDGgLtUiW9D69viU5JPm5p5aaOXcerwUGXjNMr49NlVuUrzDyoUNlBMlmG15vZsMnhz/1Rto/5BdHdJtraFDZ5Q/N0WAGzQJm6skKupobsa6fY2aiGlnRVgLqylX1a6NmGKcmcYkkOaXepOpIqU7mEikfXwaRd1ykNLDK2a+hMlw+wS3ZRmX7+NLqpqSHt+yUXjfS48kpFpfjQsJoYWLxofGXNpLBS6RtZh1q6jWzZJANsxY9OjO1zZ19K/zOiGyAEAoFAIIgVYWA5OggDS/UhQoQEAkEV0Cjz+x7VIQvQaZZSwkWdDgI6zVNLePbM7Uw6bxNj++0uldXo2zAP0Dm9WS6vDN3Oe+dspVOdIkDHofhpnFQC+Lm6ywGu7hI4b4NENw2TPDRLcZFiDyx0myW76JBRjITK2a1yOb9tLue3PVRqOIBe9QrpmFGMIkWyG0uATKNEH3UcfgI/g2UmEZlkm0abVA86MnGKTqdabkDCIkP3DHdQtuIxPWu7gYBpY1jjEv48fy/LR2byxoAc4hQdHZlB9Yppm+xHr9Sfgk7nVF/IOOJk6JjsD5o9yl4S0DXFD0hoyFzQ0MP8UwqxSRJDa3v4pncJcweUMH9AMfMGFNMoTqd1vMqkbiXMG1DCD/2K6Z6iGsYBMokKNHMExmqXoU2CFtBbgpuau1g06BAA49sW83r3Ejoka2TYdRo4dLqlq5xUx8eAWn7GtvQxsZOHJEWjTRxM7SAztYPMB+1k7Er4ecnz6/xeGFtMyhavSpLJoj5cFpIDmkpTi/HpeWfZ3LgCgRo2xbp5otV5aiGFJjlUHIqEme3ILkmYRUZJkvkfYBmJwVotzD7Cy5Q8igntu77u4KAUqouZcQXAhswAf6h3gCaBS1LD5vUwTcIazl4mwTUjvzc0rflrP/dc+ROvP7oUny96zhifz8drdy3h6Wt/ZtfmvKjyALOnbOKuy2cz5YP1Mcln7i7gfzct4Mmxv1BQUBL9AGDyKyu5+8qfWLpwV0zyq/7ax+1XzuLFx5bErPcjdy/ijmtns3VT9NLKADOnbOLOy37im/fXxSS/d3cBd980hwfGzo9Z7zde/osbr5rBLwu3xyS/8q9Mbr9yJi9UQe+H7l7IrdfNYuvm2PR+6q5fOKX5h9xz9ZyY5DN3F3DvTXN5aOzCmPWeN2Mrb720jE0xlLkG2LUtn0kvruDHrzehqtHTWft8Pp69azEPXDuf7ZtyY+pjx6Y8Zn6zmY1/xzamYqeXBT9s55dZO/B6Y8sB9fdfWfw0ZQv798SWQDsnq5ifpmxh2eK9aFr033JN0/htzi7mfruVwnx3TH3s2JTH7G82s+ko6r3uryzmfrOFrCroPfebLaxYnBmz3r/P2c38b7dVSe+fvt7M5iro/fP32/l11s7/V3ofv0ig14BXDA/2BLEhPFgE1U4kD5bW9fOZ8dBv1E3xlD/5LP3X7Gvt8so89nVnJi9oDcDEa5Zzxam7CVarDH56Kxxd5qCABDrofgk0hWd/bMvLP7UJ6ePkVgf55IY1JDv85ePRqfCDY+wrbIyi1Y/SJRvJpgXl1Zw41E21Q+LXDWPX4aDTxuDX+nGgyG5+7hiwyBrfXPk3/ZoWErwepbqEG7MesH8AcuB9qc5l8nqFc5SdM9elsLvQwut/NKJWvMqMjRl4/DL3DtjNtb0OkGQP6N/5tR7EW1VqxausPxjH62ftZESbvODcNZvYkx71i8gsjEPSNV4fvoteDYpp+3pXkh0ah1zGBfGTA3dzeedDDP2iLXYL/JNtzL7Rs56TlVkJmH2S0uJ8KLJGTomdVKuPegk+cr0WvH4Jh6LRr0Exvep40IHlB+L5eU8iSFDkVbDJGrXi/OwvsSGh0yLZy7bC0HnqkeFiVU7gCcSN7Qq4uUMhANN3JPDM6nR61fKw4lDocX1qeVhm0h6Ndkl+NhYFcjLc1drFFzusvNbNQ4bd+JN+3UoH97b20CE5MC8vbrEz76C5q36CEvBdcaoSVkkn1apTz6Hydp8CAJ5cm8iD7Tzmn2dA08DvD5z7j1yZr3fH8VRz2bBfUxX0kCSYOo/t9bHFHfufo9Y2hS0mXizhqCXLHKpwE9hRsfNPGANLGfUkC1kmxpQRSgonWUKrpagq+FSTkBzdvD2cFwvA18o+Mk2MJgP86XRWQ70CsyQ3jU2zyJijoTPJugufiSWnlmblkBy6IE7WFArl2K+5rEO++wH+WZHFkIFf4FR9QVVlHQb3asa03y8xPfaS1l/j3eYloTRjjg+N/Dgvn20bTW2TMJ73X17Jkw8vJh9vsI9kzcYtt/Xg4VdOC5EvKfHRrdE7ZJWUGJzZWtdKY2XmGNMx3XzBj6yfmUVyaTlsDZ1Dipvnpg5h8LktQ+TXrNzPJSdPw6YqwbLNXlRa963FD79datpHv7bvs2nXIdQKIVrJVhvLN99AvfqhnlOTX1rBSw8tDWm/8rYu/M8kGWxJiY8uDd/BVeIrNdcGfNnSMxysy7zVdEyXXfAti2bvQCk12OnoqLLOh9+cy/BzQ/+mrlmZxciTv0ZRpaDePjQ69anDjN8vM+2jR7v32LozzzAXDpuFNZtupH790M/7jed8x8K5u/CiBY+x6jKdOmfw48orTPXu1vAdSkqM3+eMDAdrMm8xHdOLjy/hjQnL0LTy70hCopWp80bTpWe9EPm9OwsY2fdrCvLKv7eSBBdd15En3xlk2sewNp+xf2eRYS4sNpmftlxhGq629q8sxl30E3n7XcFjEmvZePajQZw6rFmIvN+vcccFs1k1dx9S2d91Cwy+rAVPf2A+pu8+2cDEu/7AV6QFx1S7ZQJvzRpBk5apIfKHDpYw5swf2ftPQXBMskPihsd6cu093U37ePG+JUx/a0PQKq5LOu361+adn87GYVIB6u+/srh39DwK97uDfThqWXni49M5ZViol9zh6P3DJ/8y8a4/8BSpQb3rtUzkjVkjaNwy9DN46GAJt545k13/5AfHZHHI3PBYT66+p5tpHy/fu4Tpb/+L5tODenfoX4e3fhphqve6v7K4f/R8w3wn1LLy+MdncPKw0LxFfr/Gnef/xMp5+4L3mJICgy9vyZMfnHHC6H3iebCcScPkGuDBUuii48R5wPF7XWsKwsAiqHbCGVhO77SPb+/9A91tBX/p03NJR7L50TWQdBkpzodU6Sm3rsPsVfXp1KiAxhmu0MVdNCMLcCA3js7jh4Ysch4YvpF7h20PPVYrP1YPnsvYVjYOXQcpyY3S6ZDpwlPzSajLKv1IVTynBE/Mas1bi5uFHlxFejUqYMb1fxP8VlfQIxwBI4uEpkmgKuXD06SgnpX10nV4f0Vtnvm1GToS57XL5qXhO7BbyueuyQt96F6/mNX7E3ny9J1c1a38CcTOfAsXftUeJJlDLiufnLeFU5oWoWpw6scd2e80GhzOa5PDK2fu4au/U/hmY13WHUww7D+9aT6LdqVG1LNb3WLWHCgzyoRek5EtC3ik7wFsCqw4EMenG5JYuDcN8PNOn0LaJWlBD4Wy66LroOlS6VzKhnAJucLCVdMCFkTVr6NrFsqMf1a7j8TUIhSLhl+D77clMXt3ErXsGtlumS0FMkPq+dnvVij0SaTYdNKsKvtdFtqnuclyKxx0KzSO9zO8kZsUq45Xk8h2y/RI8ZJoUQJjlXVy3TobXTJ1HCqKrAcMaZqMW9X4PSuefwpsuFWJenEqJ9f20jBOZ+UhG6vzrRT6JJItOgkKZLoUEhTok+pndGMXFdMq6Dr4fIHwIJ8Gf2bZ6ZpgNezX9YAxT9ek4FRIks7t2/zkVKG4ThubwuYqGFjiJYmSCn/uWsk2tmomoTAVaCxb2WMSJjRQSeRMS2pIu6qBz29uSPGaGFgA1Aq/UxX5QT7AVjn0CXsPfwp91FDvk2zJQwOqZqj72LonmIOlInU1GwdMwoQSdQWnVIUC0zrs3HsHrRq9EczpUnn/kB5N+Xap0dhwYeMviM80v145spsZrisM+Ty+//xfbrzhRzxS6FNUiy7xxEMDGfuoMT9Hw4SXKTKZ28C+RP7Nud3QduvomWz7LqdS+uIATny8u/JcOnQtz5WSk1PCKQ0+xB6SajmwgGnaO5UZS4zGhu7N3mHbgQLTMTlQ2Ft4p0Hv7z7fwAPXLTCVB7j1od6Me9yYh6ZJ/EQ01fy2z5FoYcuhOwxtV42ezsIZO4KLnIqoaMxbdgWdu5YbG3JySujTYJKp95SOTpveGcxccrmhvWPzt9iTZf7UXEHiYOHdBr0fvnk+n3+4PmiEqoisB0q9f/WzMXly0/iJqGH0Tky0sfGQcb5feXoprzz1p6m8JMGfW66nYePyxafT6aVP7ffC9jH6ug48/e5gQ9vpTT8ib3+YJ/kSLHfeYNB7y4ZDjO45BbMq5rqkM3n+efQ5taGh/eLeU9i9xvwz1fvshrz+nbEy1YzPN/Lstb+azrfskJi5/XLSMsoXgm63n6GNPsVbEDooHZ2bnu3Fdff1MLQ/eesv/DR5i+mY0ps6+HHzZchy+edn64ZcrujxLWY/Pbqk8+aCEfQ6Qr1//HwTz1y72FRvi0NmxvbLQvQ+q9FnuAtCfz91dG5+tjfX3Gc0Lj1962JmTd5sOqaMpvH8sPlSg97bSvUON99vLRhBz0p6X9Z7GjvWmHv79Tu7ERO/O8vQdrzqXbeFfkIZWNbfObTGGFg6vToXOH6va01BhAgJjiprHvmFrBfncODFuUy5fg3+7ATUIjuqy4ZaYkV12vEfSsCfm4jvUDzezFQ8u9Pw7E4NvDKT8WYmM6SRkwZ2Dd0voTrt+HLj8WYl4N2bgjcztfSVUvpKxptvK7Vf6Pi9MPfPxiHGlV7N8rh32DZACpy3xIrfaUXzlbvJVTSkhDWuSKB0NDeuAMhWHalZLt58B958B74iW6nxQkL1WvA57fy0vna1XO8Ve1PIdgZuyHR/QA9NlfC7rfhKbPiKbfjdFvTSdYjfrYBeblzRdQlNA12V0fyleurg91jxltjxldhQfYEFw/U9s4O5Oi7oeMhgXAHo3aCQ1fsTAZXTmhUa9hW4LHSu6+KQy8pJjfI5qXHg5nrW5iT2O0MTod7Z9wCSBP/kJIYYVwCW7A19sluZNQcS6F2/iHAGp+nbUnhxZWAeetV1c2V7J+Bn4Rn5dErRsMggS4GXIpf/a1V0LIqOLOnIFWQqhvXIMuiqBpqVwDNdCUmS8HttFGSn4fdasSkwunURd3fLYeF+B3/nKXRL15ixz8HyXBubiqwsO2RjbpaD5ikepuxMZHFWPPXidP7XpYh+tX20T/XTNd3H4AYeCjSZTFdgTJuLdCwOP4MbuehSy0vHNB8d073UcXiZ+E86n+9IYnWunX8LbCw64OCp9Ql8sj2ByTviWZFnZbPTwop8K4sPWYm3aqwtkpi8x8a9fyfhqrBGrfgdsMogWcwX45IEsqIHXrKOR9cxuT+PiGa+jglLsmT8/sdL0f/8uXRzt+daknn53XCPK8INNdLjjQITwwdAsmYtd7Kr0O6PUCpa0wOGHE0v79OHRonZHSzgDtNuGiIUAQWJ8/p/ZW5cAZBg4apdhvCRvdvyUDLDd5ShxTH+3HmGtvFj5psaVwD8ks4rzxkXyhPu/TWscQUg0+lk8awdhrY13+8zNa4AJGLlusHfG9rO6/eVqXEFAoF+W5fnGvTetS2PHVnmC0IIJEC+6rwfDG3/u2lhWHmAd55bbth+7N6fwxpXAEqcPubO2mpomzdju+niC0BB5vwhUwxt5/T7ImxomoTEv8uzDXrv3JbHnv3hQxJUdC47/ztD29cfbjA1rkAgzG3Z7/sMbU/e+0tYwwcEjCMLZm0ztL323F9h5XUdrh05w9B256WzI/Yx7aMNhnChXdvyyN0fmmepvBO45bzZhqaHb1houugEkHSJR8f8bGhbMm93WCMDwLKZe9mzw7j/lbv+CDvfmkvnqdsWG9pefegPU+MKBOb7/SdXGcJHigo9zH7ffLENkLvLxbT3NxjaHrvhZ1PjCgT0fuKmXwxth6P3xLuWhtXb79J49rZfDW1vPPinqZEByvReadDbWehhVgS9c3aVMP39fw1tT1y/KOJ8P3WTcS6Wztsd1rgC8MfMPew9AfUWCGoiwsAiOKrIMlgsgcWU7lcIpI+UAwt5v4LqsaB6rGg+C7quoOmgqTKa3xJ4ea1oqoLqsuE7lIxnTwbe7CTUojh0nw1D3gpdwltiwVsUj/dAOsWb6+HcXA/3zrp0TnfRLNV4M3P1ybsDRg6XFX+RA81jRVcVZAU0n4xzXwrFe9Nx7kmnODOd4sw0ijPTKoQKlS4oHe6oYYtK/WL8JTb8XhlJktA1CV9hHGqJHd1nocRnfiN+OJR4ZfyugJHC77Gguu3oqgK6HLj2qgVfSRyaT0aSwVPowOeMQ9ckvCV2dF3C77UEroNfwVMUj99tQ/NZUH1WfCVx+IoDoQijOh4AoEV66FO4WvGBv5Bd6xbTJNX4NLxrfTdF3oDOA5sWBcOG5m6rhdnFrJcYuCFXTX6ymiaXhPUOqEyaI/IqfsqWVA65AuPqXc/FK30PYYthaqRSL4xw+P06mmrDTDddlynMTQ54cUnQuZaXs5oUclZ9H3/khHokDKpfzIzdCehI1IlTebxbvukYmyep5KkymqaS4NCoFx+q+/N/12JTYah77rC6Kn/kmocR/V1goWNS4Fx/O2Ve3xy+6krlYYULVfu1QMdXhcW7Q4LdvqpZZPIrxYg7NbNPUzl1JAs5JnlY4pDoJJs/aVI1c/3CtZcGgYS078dNNqEeJG39ibTSE9Eg+FJLz5NospjXdPDq4CXgie8tfak6/Cs7TRepcbpMgemjYiisivcK0LpWMhv3Hoooo0nw/L1LgtuPX7oorGGijA0/HzRs50YJ9crTPYZF/fsfrIkojwQP3F7uGTJzyiZS9cjeQUq+cfvQnsj5PWwoPHnfb8HtMZfPJMzHJMjixbsM235/5C9NwKOsXO/Po+RnkZB4sILe303dgCXKbWJxgfFzmrXHGVHegswT95Uv2q6/fEbUv5+LKusdwZgIgSTOJSXl1/+z9/+O3AHwwG3lxqqVf+1DjXJtN/1jzAmxbHFmRHldh6kf/hPcvveyeWEXtsFxLDIairasifxd2r+tyLC4/ey1tRHlJSQ+fml1cHvHpjw8+ZHdCFcuMI5p0fQdYSQD6G6d3+fsDm5//c76YMhOOKZPNi64t68ObzQAyN5WfMR6u6LovaKKeqtunSUV9P7mnfXhLe2lVNZ765rI+XiytjkNen/xauTPuYTEJy+VX5sTRW+BoCYiDCyCY0NZCAWlYRVeC7rPUrrolwLhCqocCFHRKxhNNBndZ0X3W8oTMOkBI4HmV4JPY3UdfE4rqNbgsRVfrdP9zLxmLV3qld/8tapbiO6zoLnLF5KSrKF6FEqyUkrDZULPZdQJyHCH9V4pP3Gp/n4rflXD77SX6hmgc/3IN6Wxkh7vo65dC3igqHLgupkNRwK/O+CNonqt6LqMz21D1/Ry45Ym4SuxY3b3q6kKqtvGqPaBGz6zBaRdCfwBdJuETADBcJuKx6bYzf/Yl11qi8kjdH+0VUkFIua+LT3XyoMVFs9WNfDZ8lgoKXLgLEyguDAeZ0ECRfmJFBfG4/VYg5/DkqI4nIXxlBQ58Lqt6Frgs6n6A59LTZPweqyUlDgoKQ68ioviKSpIYv/uerhL7EgSPNA9jw0mhg8AtyoHPYfObVyCPcJatGu6j99zLbROCX1af7BE5q9s80Xjv0Xmn5synGr5NV9WIFO2hqvokZHvgxbW8vPkhonGKfTB19mhN0sKYHYFLATKNZudrrKXSsVj3JXu8rbrPjoqdtMlTkJZuJfJmM6zpGKXQi/6Ib9qakAq1FRTb5vy/CtG3KjMUXJMF52qhOmizINGmm70/NJ18KKH9KETaN9BqAHAooNb0swXvJV+/gwnNEHW4frR3VFjiELetbV8AVV0KLKxBAi5cNEW3Jqkk13BW8Djix6L5iwu/4TFklDTUjmvUAwGw51b84Pv83KjJ31Uq+q2BWTvL59nvz/6oqSkuPy3Yv3fByNIBqj8kYj2Gwuwo4LeubkRvDhKqbyY0qJcXF2Cf9eWGyN8vuh6u0rK57vivIQfk3EMsVzbPTvKPXUKc6N/zis70GlRjD4SEq4KOWaK8qL3kV/h+3ZwX3FUeZ/XOChPSXSj64EK5809GH2+S5zGv1d6BM8gOHK9s2PS26in2xX9N+TgvvLvXix6u4qMeh+N+S44VP47czzrHcs4jis0qea8BNWCMLAIjiqenARcB5JwZyfjzknAnZ2AN99RWrbUjEpf7khZrXUZXQucR/MFvGMCnjEyfrcFv9uK32MJ5npIidOZedU6tt25jKU3rqSZZsdXaEwKqWsSrpxEdD3gZeL3KvhcpeE1Lis+d/mCMbiYKjZfCFdGUwO6aMXxBuMKwHU998d0jmhc1X0fcvCahF8ke10WSnIT8TrjUdWAnlpp/hWt1JtG9ZYZq8xRfQEjDMDmQ6FP9Ee0y0FCZ9OhRDblhCbfbJoS+EM/a0sqHn/gPGP77kcyuXnelR8wBHSpE3pDkOl0kGCNfpMnoZNZFH2uDL1L4Cp24HY5UFULuiajaUppHhEJVVVwlzgoccYjSXogeasekPF67JQ449F1CVnSUVUZV4kDn88WMBzqpS8CnzV3STz7djagMDeJRKvGnmJzy0mWq7y9dXLkmwxFCiwuzVifa8cT5o/pnpLIfxr2ucr35/oksjyB86hqwEsKYFW+QrGqsKFY58dscKgW/KWfmUAOFlD9Mg7dwuXpVhLkwJEKkKYEvFSaWGU62y2kKxLpskQHm0Jji8LOMIsZp65xut1BE8VCqiTT0mKli9VmUncnwDrVQyvZRnPZRookky4ptJPtOIAkZHrL8aRLCmmSQnfZwTV6XWq7E/jVX8QBzUe+7udf1cWH3mzeUPfzl17IAd1Lke5nv+7hNz2f1/VMtuMuzT9TanDTwK3BId1HIT40dFR09uLiYzmTXMk8fGWr4iRXCjUtWZFx6eAvDQPy6+AKk9sl0CrRU0ujnmYnQVdI1i3U1+zhvLIjE+YnQpPg/bdXEa9ENtahw0XXdwpu9hjcMIJwACXB2KlDj9xHnK7QoEl5GGH9WuG9rsro0qlu8P2oaztENeK45Eqfsqhq61xyfcfg9qlnhCasrEyiSTLIaDRoUp4nJK1W9Bj/dp0ygu8vv6YLegzGDAOWyDfoOjqXVZjv0wY1izqmBIfReBjNq0bRJXr2bxzcrpURi97lYboDz2waVT7OYZzg5JTo+Y+GXlCeCLnPoOi5DewJxr8BcUmRP1SyVSIhsfxatemaEUE6QLcB5flzOvSsjR7FQpZa1/i3vE6T0JDdiujo9BlY/p3uPbBB1DE1bZti2LZF0RsrR653lM95Wh3jZ6huk8i/ITo6vSroWjlHjBlN26Uatqs+37Wi9tFtQPnv2vGsd3xCaCi5QFCTEAYWwVEmkGtCkgLhQpIMiiU2175Y0i9rPgVNlVA9CpomoXqsAY8MTQksYlUl6KkBpf0r0CBJxSHpSJU8IjSvBd0fONbvtpV6zpR52cigKeilHhkSemCMuQlRx6rmx+F32/F7Lei6jFbJq+PkJkU8fPouU+NCrAxvncttvbIozxVjfqPrLozDV+xAkkHzS4EwLH/ZjZwcrPBS3hYOCak0zOeTFbUpcBvlh7Ut4OSmgdwrc7emhhx9/4A9NElx809OIot2BhY/9ZNU2mWEPll/fHFDNB0u6pjHKU0KQ/YPaFRItEfG/RsVsT4n8s2BRdLpUaf8iUuyoqFG8AIqQ/Vb8LjsIddc12U8Ljt+VcfjNvcGkiRKP4c6IJGTlYHbZSPeYq5PXIUk0E5/9KcNWpjPQao9/HI6XN9m+2V0kiw6qiqhaQpFfph9QGHCVju3bNF5bJdOK6sVWQoYplS/Bb/Pit9vRdMCXmKnJluQKA95yVPBqcM2n8YZCTYm1E1mQr1kLkh2sMMfftwakKur3JOczhOpGdyRlEZeFFfiLZqXHZqXAl0jV1fZqHnIQWMbXpr4krjO15jrfY0Z5K1LmuogDgv5Pnjdd4AXvVl87j/ENt2DD5hHPpPI4lX28T4H+IVCdBnmyjm4NSn48pYajpN1G58p+5ho2cmrlp18Y8miOEqVnl0miW8h8Olx6lCoB/6NRoZuJ0/yUSypFEoB80EUz/0qs1cu5sbrekT8ajokhTNHtg5uj3/vVPJNqieV4Udj3DsDDG2tG6VFHEfDROP3/pMfzo84JkmHj+eeF9xu2jKNXFtkD5P2p9cxbF94ffuIixe3rDLigrbB7RffHYo1pLqWcUwvvTnE0FavUeTFbWKy0SDz+YwLIo5JR2fq3FHB7RYt04liu6L/aUZDwSXXd4zYh0/WDHpPfGdY5EAZHV5980xDk02OfOtqq3Rr++mM8yPKA3w9d2TwfUbtBDLqxEeQhitu6GLYvuOxfmEkA8QnWunSu3xR/9S7Z0Sdi/+9daqh7ewr24aRDnDyCKOR7o6n+qJHSJwk2SUuv61zcDsp2U6LHqEJtCty5T1dDdu3PtE7oh61WyTQtHVqcPuMc1tgSwl/b6Gjc9fzxsTMw65oFXFM/c5ubNiuqt6JyXZa94xsnLjiXqPet0TRu26LRIPep5/XnLiU8F8mHZ1xz/c1tJ11Zesw0gH6V9L7tqf7RlzVKXaJS05AvQWCmogwsAiOPbH4EJcLR91fsLN2IFzIbwl6tFRG81lKPUjA51Zw5cfjcdpDbrJ1XQ4aasL1XXwgOeAVIxM0tqhZjvAJLnXIm9WhwjhkPEWh8jf33cf869dyQ+99DGmVy7nts7mgQzaDWubSo0ERvRsVcmbLQ1zYIZuBzfJokeaiTa0Szm+Xw+cXbuKts7dhVSrobzIev7/cM0XXA+FARt9/KXhgmPyeBpolq9RL9LJ0bxoTfm3E7nzjU4Wnh2zllCYFTPyjIR+trk2hp3x8dZI07um/l7a1Srjrp2bM25aCT4UfLtpEqzSXQYG/9iXz1rI6+FR4cuAuBjUrMPQzf0cqw1vmhTFQ6ZzcqJDxzd38eXYmf47Yw58j9vPH8CzD67chWcw/tQA9uxYHd9fhwO46tNQTsVjdKBYfisWPrPiRlUDWC00LGLHKvBICBhSTa+6z4HHFm5QmdjNIkgABAABJREFULkcyOGpJHMrKoEuquRdDl7Ty9kX7I5flPeCSaaNIlJgYYjokaDRPNO+jc3LkRX7T+PIPR4dEnZc22vlqt51Pd1u4YaWd17Ybr4Uthr809jBxdt4KXxRvDCES3kpfLN8RFMoL57VgqaIlwhfhhtQS9TcutjEdDhX7rtLPcoz40XnsjdNpXSvF9PdI1iWmTBsV0n7Rs10pMfE7UtGwdbJx5qXGG/AFG6+kjmTupZCu21m87WpDW7tudbjg1LbmRhYd7rquj6F6C8Cnf1wY1vCTk+jmkwoLdIBn3hiMtY5iuhjxovLWt8ND2p948jQUs8+WDj3a1+WCSzsYmhdsugpZCeOlJMHPlfTu1LUu/U9rbDomHZ3Lb+wSovfcpZeH/cwpCTLfzTGW2X72jSHE17GZ9uFDY9K354S0P/Xk6WHnokv72lx4aUdD8+rcG7Dr5ot0u66wcKuxTHPHrnU5+bTwi7Irru8covespZeihPHGadE6jcdePM3QdtnNXejWr76pvCTDFz9fGNJ+29Pmi1UdnaYd0jjn0naG9odfOYVmnVNN+8hoEs9LnxsNUWkZDsa92t+8D1nnma8HGaq3ALw1cwT2NPMFcfdh9bn0ls6GttNGNGfwVS1N+1DiZd6ec3ZI+2szzzKN/9TRufLhbrRoZzTyPDDxZBp1Nk9kn9bUwYTPjdWZDkfv12cOxxFG755DG3DxLZ0MbaeOaMaZV7Uy7cMaL/PWnBEh7a/OPAspjN5XP9yN5pX0vm/iAJp2Tgk9gMB8P/u5sdx0WoaDO8PojQzPfHVi6n0iUNHD9b9+CaoHUaZZUO1ULD224e7BNEwJ3PjqOrgKHDhSS7DERY+fDJRHjhAiBKhehcK9qTjSigj4ZIeXlWQVS5yf4uzkUiMDJNTNw55U/mTS77bgKYhH1yJ5b+jY0wuJS3GjSxpoMpKiITXPRanvMlQY0v0Sh37oBM7ym39JVtE1BXtyMUppaIse1p0/4NVQ/rdMQlfLr4lmVoa5NPtuIGmqcV9xbgIEdVMpS0Oq6zrWeG/p2AN9qh4ZOcLTSx2dgnwbSwp1tuYl4vUrOCSV1hleLDYVl09i9b5ENE2mvl1ln9uCxeKja103DkUDTWJXkcwBpw1VlynyWamf4KFthhurAlmFCvN3pONRJYa1zOP8Nnl4VJ2sojgcNo1V++PZU+BAQqKuTeWgTwY0ir0WMousSDLUjvPTJxl6JQX0tNo8WCxayDXzeWT8vtAktH4/aFro58rvp7zccgz4/eWhM2Gvp0bQCKPqOpkU89hmBwU+43FfdvHy8A6JHUVWJHRe7ZNH39rmCU7m746nf7LOCo+PwY2MsdDOgnhm7rczcVMCaqVF3YttvDy93UKBSf6cFKuGDOT5ZOJknTsbSKQeqk2eT2GSP4s8oJcWz2BLKrIuo0oazvg8+tcJOVWQfL/O2N2Vs6SA5If7bPXxeAIGG7vVx6v+TLwWOM2XTnsSUSQJp6YyXd5LoQXOk1Ko5U5F0yUUWWerPZfFehFpPiunqHWxoaCh8Y+SzyZr+Ool6HCj2ogUk1iP7+QDbJOjx5aX0VRzcK6/Xkh7MX4+su6pkufIEF8dmmmhngt+HYNJwkogRCwcJfj50lbed5pmJU8OX1nncGigOtjoHQfAgzfM45Mv/8ZVmly4eUYK0xdfTJOW5t4na5fs5+Fz5kGBjoyE16px4X0dufGpPqbyPp+Py0+bzrKV+/DqGlZJpmPbDH5YcUnI4rmMz99Yy/8e/pkCb+D7k+Fw8N4nIzjj3Jam8rk5JVzY5xtce7xYkPHIKj2HN+Td70KNBmXcfcMcZn2xBVmV0NFJrGNj2uKLaBZG77+WZHLl+d+SWxT4PsRZFO64py/jnzg5gt7f8veKg8Gb4xbt0pixMrzek99cwTMP/o6/NJ+GPV7hrU+GM+xc8yfHOTklnNH3Ew7uLQ6Y4GU4Y1hzvvwu1GhQxl03/MQPX2yEUr1T68Tx3eJLwur955K9XHLBVPKKAkYsm0Xh7rv78eATp5jKl5SU0L/BxzhLAiF2EhBntbAi+zri4829Tz54cxXPPPgr3lK94+MtvPnJcM4819xDwun0cuNFM/jzt72ofp34RCvX39ad+x4fYCoP8NGrq3j7ueU4C7zIikTnXnV5e9oI0mubj2nF75mMPX82JYWB755skbjmvm6Me6K/qbymaXw0cQ1fvbOOolwP8ck2zr+6LWMf6xuyeC5j/coDvHT3Unasz0OSoX3f2jz42ik0aZlqKu92+3n5/iUs+nYnHpef9HoOrhnfjQuu7mAqDzD/u628+/hKsvc4sdgVBoxowv2vDCAp2fzBw8F9xTw77lfWLs5CVXUatU7mzgn96DPQPHRK0zQ+mbiWqe/8U6q3lbOvbsttj/WuVr1fve8PFk3fjqdEJb2+g6vHd+O8q9uH1XvB9G1MemIFB/cUY7UrnDSiMfe9MoDECHpPGPcbaxZnofo1GrdJYdyEfvQaaB5Ko2kan038m2lvl+s94po23BJB7w0rDxr07tCnNuNfP4XGLc2NFsej3hXXGcdrOeGKOqwbO6zGlGnu/MYc4Pi9rjUFYWARVDsVfzSWXTmSBkkJSLJWmphQwpboxlErtqSugfwp4VcJJYcS8RTEE5daHD3RLDqy1U/entoBTxdJxxrnIb3FQeRSd1JfiRVPQULEPsvOZYnzYk1yodj8oGtIciCJqd/ugzhwb6sFbjMPg4ABwxrvxuoI3NjrFQwoEbokYGApk5MqWJzNn3oGbC3l+4pzkirI6lQ01MhWFWswyaxOSV4ccUm+sNdVU8FTHE9+djKUhoEBWKwerDYtmNOlMorVhz3ejc9txZFahMXkKWHAuBZGLwLGiLwDqfi9dqO8BIFKmKUJiiv+ukl+4hx+gwGsDHdxXLCviu0+X6DqVeV2v68sW0hs+P1SVHlNk4IxGj5NJzHewzqXn0/22Pi3QsLb77v5OaT7eH8fLM+JQ5Hg9vZFhoS3mcUKGw7Z6UQyicmFWCw6fxb76FbLQ21HYHFRUmzF5Uxmbq7GtL1x7C4OGBKsss43HeBfj4/Ps2RDwts2iX4KfBIHPAotHBrnp8t0tznYuCMdsCBLGhoqHp/RA0xCJyHOS6sm+aa6f3PIx4+VSj829ts4X2tA5c+ArmsoCiRWsnv4ddjvoXSpVfEYHR8amomBS0XjW2W36dPUNlo852qhVqE8fHyoZFbJKHKery5N9NAF1lIll5VKgckR5iRrFkb7GiGHXBOo7FshATYI+/1dpuSy1lKhbx1SdSv51WhkGd2kBR9suqjazicQCAQCgTCwHB2EgaX6iBJdKxAcGV6XHbdsQ1FUbHF+QMLrjMMa78HiCL2RD5Y+LkPSwy60/W4rnsJ4ygwN0Q0skLsnA29xoLyzJOv4fQqHttclteEhrA4fkhKrvVEK5FSpFBaiBz1Kog/G57JhifOWlvgtW8CXGz3M0ZEUKKseW2Y8CdhJpYpipfsD+4JGFkmvkGihwgJYAtVrAR0sdn+pvAV3kURckjcoE+groKenOD7glVTsACQUi4rVHgil0dTwPy2qz4quebHa/fjcViyJXsqNG1JMxhWQ8HttgUopHlswtw3o2ByeYIWiiuex2tSAnn4Zv9dSmv+j/GKVVfhRg9WjdCzWwKJfU2U0TQ62Vx3d5MMdKhLE4kVDp0u8hZfbamxzFZPpg4ZW8Os2ass2HmwE2Q3cbPeppEgyO/Ymc1BSUZBopjnoJCuAjtcbyDvUL8GKt0Rm6aGArbOJohIv6QxNlxmS6mJ9CRSoOq0cEronkQ5xNp5tBjs8Xvb7depbJBRNYbdXJ03WaSYHvCgCUTuW0vflOXyMqkk43TZ27kuiWQOj18hap8aiwlCPNjPjCkCcBdPKSYe8oJt6CUlYkPEROnMKMuepjfjButfQXk+zM0itFdK9quv8IReEGFcsukR9LY49itGrRdKhp5pGY80Rcq58/KyXQj1o0jUbPjSKKiVNjdcVhvjqmhhXdHxmlb7QcUoq8SgolfbvlVxslCvlMpIgQVPQNSioZGRJ0BUcmkKOYvSUUnSJelocmWZ6K7WEcUUgEAgEgigEHpZWcxK0wxyHoHoQBhbBUUXXZNAsaFLFnA4SxQdTsCeXYEtyI1s0dFXCW2zH57JjT3ZhiQvcyPvdVtwF8VhsKrYkF7Kio/kDOUzc+QlBY4HmtSLHRX7y6vfJeIvLXet1LVBuuOignaKDqdgSPFhsXhJTimON/AhBkokhd0nAiODMTcaZm4Q1zoti9WJPCoQXqT4JxVqagFYDi03H79WQFQVJ0fAWW7A5NCQ0VFVGQsbvlZAtgcWu6rFgdfhQ/SAhI1s0vCUWrDYdFD/4w2dfV31WVJ8FWdFA0kC34C6yIFl8WK1+dF0qraQU+Olwl1hLrTiBRK+aKuNIKCHaBfR7rdjjPeTnJFKUY0OxBowyJUWOqMfKioojwYWmSXhccZWS0JZ60pgYaGRZR/XLeN2VQ4EkVFXC7YoLaddL9arcXlUsFvD7S42FJkYW3RDqpZOaEPBHKCvv3NJhoWXpw41AOdCAEa+2bKN2BRtfmh4wBgUsTDqyrGKxWND1wHfDJit0Dn4FFHw+P7puQZYVulTIA+qXXXjdgblobrfRvEIfjewSLle551BWtjGBqCQFQlNCK2tKlLjtrC0swq7o+DQJyWulkRzHvQ6N1aqLvboPKxLd3GmYX2c9bD4XT4SbEwkJBd20mpAdC4OsddjjKcYiSTSTEkj3OyjRA9UKLKV5X2zpNq6fdSrjO6Tw0MCZLF0XCEXJkOw4JAsuWaKpnsRB3Y0LlWTFyjVjujHm1X7MevJvfn52I/h0dAmKZJ39kkp/6uLUveTobixIdG9Rl5d/G4G7wMe402ay6WAeOlBXisOhWshGJ14GW+lvjGyROHtCV864qx0TBy9iy8+BMBEJcCngliSc+FB1FYsuoUnQrEc63yy7mKXfbOfJ635mv8+FBYkGxKOrCkjg030cxI2OTqP4RF6YMYxmvTK459SZ/LkuEx86qdhIkqz4ZImWahIHCOidJFm46JKO3PWJMUHnktm7ePqGXynK9SBbJPoOachzUwdjsZjfhjidbu4ePpd/V2Sj61CrXjzPTRlMh97hY80+fGElH0xYjbvEj9WucNGYDtw9IXw4x45Nedxx/mz27SpCkqBlh3Te/ekc0iJUnfnfdQuZN20bqk8jIcnKfa+czDlXhE8++uNX//LIrYtwlwS857r2qctnC0eGDd8pKCjhkpO/ZcfmPACSUuy8OXU4fQeGzyEy4f7f+Ozttfh9GooicfalbZnwwZlh5f9em8X553zDoZyAYaxxk2TmL7qc+vXNQwgARp73DYsW7kTTdOx2hcefOo1bb+8dVn7KV+u5Y+wcXCUBg32vPvX5ad6lYfXevTuH7p0+NJRUfnbCadx+R/jksY+N/5l331mF16dischccklH3pgcmtumjD17Crj+6hmsX5+NLEG//o344JNzSEkJP9+PPfILn360FrfbT+068bz0yhDOHBY+6eqfS/dw+60/kbm3CJtNYeTo9rz0ymAUxdyD0eXy8sB1C1iyYDeqqtOsdSovfXImLduFTz469ZN/eOuJZTjzvDiSLFx7T3euG9cjrHzm7kLuvWouW9flBT6DJ9Xl5c+GkpwSPofXy/9bwncfbsTrUkmrE8eDr57KaWc1Cyu/cuk+HhuziIN7i7HaZYaMbskjr54aUe8Hr1vIXwv2oqk6jVun8Pwng2kVQe9vP9kQ1Ds+ycrV93Tj2nHdw8rv213EfZX0fumzoSRFqPj00v+WMP3Df4N6P/TqqZx+VvOw8iuWZvJoBb3PHN2SR18dGFHvR65bxIr5mWiqTqM2yTz9yaCQvDMV+e6Tf5n0+IrgfF9xb1euGtctrPz+3UU8eOUCtq8LhAh1PqkOz302JKLer/3vD2Z8sAmvSyW1bhz3vTqAUyPM9+ql+3lyzGJy9gT0HjS6BQ+8dvJ/qrdAUJMQIUKCaqei29tvIy+nfkIiFrsbqy2c5SHwEQx4L8iGtrJFLppsaAtB0rAnlxCuuICuQ/b2OlS0Kepli9FKxCWWkFy7wLyfGIjFi8VdbMdnlhQ1jOeGrpl7tqiqucdA+XlCj0tMKzR1pNAq5AAJJMMNJA2WLSpogQoxssUPOmiqBUn2k5+bitWi4fMq+L2Bm7XktHyiVWa12LzEJXgoyk3A5UzA5ijG64pHjeD5UhGb3YPPp+DzhN4g2hzukKf8ALLVjeYzr+TjKrFX8GgppyxfTnXh90voumL0BtIrhDJJOgmJThQlsM/nrRiKJAWfLpSHQVVo1zF42ciKnziHD9CwWDRkWTc40eg6qKpSWjY50FjuSQWqH7weh6EPv1/B67UGvqvAgZwE8otC84GoGvhNSkDLkk7DDPPcJZsPxuEtvdYOSTP1RlEknQRr6J8snw/2hy39XqovOuaZauCSid3wFPiZ9fg/pvuv+aIvfS5rZmhzOt1cUPsrVH/oeJp3SuWD1SND2h8YPIe/fzkQ0i7J8Mn2C8loZDRW/f3rfh44Y57pmIZe14pxk0KNBzfVn0bBgdBkrHGJFj7IvTDEoPHFk2v44sm1pn3c9+kpnH5ZC0Pb4eh9+5CZrPwltBS9JMN32y6lbiW9V/26j9sGzTId0znXtuGhSQND2s9o/DG5B0I/W/GJVn49eE2I3u88tZz3nlph2scznwxixKVtDG1Op5uBdT421btVp3Smrbo4dKw9v2DzukOmfcz/96qQXBCLZm3n5gtmmsqffnYz3p1+bkh79/S3KXGGmg6tVpnV+WNCDBr33jmXSe+tNu3jpZeHcNOtPQ1tBQUlNKn/uumTzYaNkvh3y20h7Sf1fp/163NM+1iz/iZatDQuqp56YjEvPv+HqXztOvFs23VHSHuTjInkOz0hP+cOq4W9h8aF6P3R+6sZN3ZuyHkkCb79/iIGn2n8nLtcXlo2fRNnUeivxhmDmvH9zEtC2m+8bgbffLUhpN1uV9iw5RZq1zZ+zjesOciF/b9BC7VGc+vDvRn3WGgelrO7fcGeDQVIlRRPbRjHwq1XhSxwv5z8N8/f9nvI30RN0nnzx+GcemYzQ7vL5eW0Rp/gKTJ+pnR0eg9pyPuzzgsZ033XzGXel9tCxqTYJeZtv4palfLPbFiTzeX9pwU9cSv2cf3DPUwrMp3b7Ut2bcgP6SO9oYP5W68M0fvryet47rbfQuSR4I0fz+IUE71PbfQxviLjoHR0egxpwEezzg8Z0z3XzGWBid6SHRZsvzpE73/XZHNtv++Q1EpeiOhc+b9u3PZYaH6pUV2/Zu+GwpA+UhrGMWvbZSF6T538Dy/dusR0vl+ZOZQBlUqQu1xehjb83FTv7kPq887s0PxSD12zgJ+/2G6it8SPOy47Jnrv37//hAoR+vv2YTRMjly57FiQWVhClzdFiFB1IKoICY46uh5IRhseM2NErG1lncg4cxLx+yTDjWBZjpK83WlUzIERyR3P7Yyn4GBShZCdUH0iIcllx5kf63ba8LnDe5FUBekwSn848+LR1FA9ZBkkScNdbMNbnIDqi0NTbfg9cfh9cWiqNfDe6wi89zpITPQQ5/CRlOImNSOfuPgSPB7zJ5QVUSxaILzIGfAacRfHblwB8Hmt+L3m1zDcJdF85pWhfF7J1LgChK1KdbhYLDoSeiChrRbIY+P3S/g1CZ9fwq9KHDiQxqZNjdi+vQEHs9PZsbMuu3bVpSDfQUF+PAX58bhdcTiL7DiL7OTlOdi9pxbbd9bhwMEU9u5LZefuWuTlJ5B9MIl9mRlkZ6dw4EAqu3Y2InNvBhs3NuSvZW1Y/08Ttm2vx+o1zfl3Y2OyDyazb28tsrJqUZCfRF5ePHl58WQdTGTH7jrs2FOLrOx4tu5JZ9OOOqbGlciE/7zqMRg0I3/aD/9ZgabpYY0rAB9f/ldI2xUtp5kutgF2rM/n3fHGY+Z8uNnUuAKBz8IN7b8PaX9wsLlxBWDuh1vZutq4iH166EJT4wqA2+lnfLefDG35Oe6wxhWAF6/6LaStqnrP+HCjqXEFAnpf3GFKSPvtQ8yNKwA/frSZjauzDW03D//R1LgCUOL0cVHPaYa2vBxXWOMKwMNXLwxpG9Hqy7B6b12fyyvjlxjaJr+0IqxxBWBYp89C2sIZVwAWzdzJit8zDW0X9P3K1LgC4PNpDGr9qaFt//6CsMYVgHvvmR/S1rr522H/5mXuLeLmG380tL32yh9hjSsAPbtODmkLZ1wByD5YwqR3lhvaBvX7hPziUOMKgMvnp3tbYx8FBS5T4woE/g6OHjk1pL1/749MjSsAPy/cyZuvGz/ns2ZuNjWuAHg8Kn17fhjSfsmpU02NKwBvP7M86MVUxvgb55suOgHyM91cN2KGoa2wwG1qXIFABa+x580OaR/Zc0qIcQUCXoDL52fy0WvGz8+CGdtMjSsAqkfngm5fh7Rfder0EONKWR8fPLMqRO+HblzAbhOjEkBuposbRhg/g0UFHp6/7XdTeXS447yfQprP7/l1iJGhbEyr5u/jw9dWGdoXzNhmalwB0D1wbrevQtpvOOWHECNDWR+fPb2GnZX0fvSGhWRuKDLtoyDTza3Djb+TRQUeU+MKBOb7nnND/55c0mNaWL1Xz9/Pp6+tMbQvmrHD1LgCoHt0Lu4W+l062nqfEOhSzXkJqgVhYBEcE1R/XFTDRNj9MaybdHS8JTZy99QjZ1cdinLjKSmII29PGtk76uNXzVxhw/+QeIoTyd5Zl0N70ygpsOPMC7xcTisupyVQ6rnEgqvAis+t4C6S8JYoeF0KrkIZn0cJyBbKeN0KLqdCSYGDkvwEVJ/tMGItJcyczSRJD5afrqyaz1ueS8SIheKCZJx58biKLRTkxrN/Zwr5OQkUHkpCDammY/6+LHdMxe24eC/o5mMtF9Sw2Hyl811mVKnaT1FFrwuTDsK0mxtR1Gr0UIkJqex/AY+trINpOIvi0XUFr9fGpr0ZbM1OZlNWCrsOpKFpFjRdITc/mf0Ha7H/QC2yD6XiV62Ahb05KWzKTmJzbgKbs5NxuuMAK25XAj5fPGDFVZKIqyTw9PTgoRR2HUin0GXnQF4imdkpaJoFn9dKZlY6ew+ksWdfKlnZgb49fiur96WxOtvBulwHm/MdAc8XXSdX1dnh09nq1cn067g1HV3XydN0dmoqWzQ/uzQVZ+nnwWox/1x4/BI7dS9bZBfbZDdFpcE8Xl1jt+5ja+lrp+bHY1Kq2Wot+6TrOCU/mbKbXYqLfbKHEgI3jyVoZMte9ilusmQPTskfLDW57LMdIefU0HGj4UTFicpjvedQcMCFz6Py09sbUXM0EjULDk1BLrWnWnSJeE0hUbMw65VN/Pv7QQC2r8zlo1uWk6gpxGsK1lKvJUWHJE2hlmol0Skx5aE1eEr8OPO8TDj/F+L9Cgmagl2XTQ2H48+Yy56NBei6zvLZe1m2IJMSyY9LUvGXeQaio6LjR2fnhgL++HY3Wuk1fPzsBVE/rq/dXG44cOa7KcwN5wcUYPobxkXma/f8GVHe41INBpMpb6yLGmb54GijIeCvhXvDSAbY/q/xBv72c6PfoD95yy/B9/n5bgpyzQ1XZXz55nrD9muPRdZbVXWDweS1x8MbGcq4dZTRALOhkqGpMgf2FRu2hw0OXfRV5rKLy41ROTkluF2RK/599YXRMPnk46FGuYqoqs7SJbvLxzQk1NBUmXvvNhq8Vqw1N9iVsXufMb/QzTdEnm9V1XnumfJxO51etm/Li3AETHh2qWH7nnHhjaEAOdklbNlSbnCb+c0mPG4TK0MF7rvGaBSa++XWiPJrFhmvy/jrF5gutsuQVInXnir/nDqdXvZtLQwvj8Skp42GyWfHmXiJVKAg220wmMyashlfBL0lJMZfa/x+z4mi9+pKej9wfaihsCK6Cm88VW4gczq9ZG0NX3hBQuK9Sno/Pe7XiHo7sz1s35wb3P7pmy2o7vA/bBIS/7vmZ0Pb/C+3h5UHWLsoy7D9v+t+jjLf8M5Ty4LbxU4vB6Lo/eFTRsPShDvCGK5KcR70GAwmx0JvgaAmIgwsgqNPWWUUt4Vw1pJw6/HyhKcRO8DnsaDrAc8JXZNx5SfjPJSG3x8+xjg6EqovDmduGiX5gZcrPwn8dnwuB7onDl0LvNf8Cfg9DvxuB5o/Hp/LgbsoEXdxIt4SB5rPURpqIpWOMZInjIkhRS4LB6rULoGzIKG0XLOREmccqr8sZMSkF93CwT11yD9YG687lYKcWsiyFAwTcZXEUVwUj9djwVVix1kUb/BO8fkUXCU2igoSKCmOC4afOBK8FBU4zPWTdBwJgbLYOXvL3cTDeQuFJ/wf+KoGPVos/gh9HwVrfoWuvF6FkpI4DuakcOBgCv/uTeVgkQOnx0KR28refAebDibgdFnIK0jE5bbh8tjIK0hg7/50DuY72JiTQIHXgtOnkF1iZcOhOHLdMjZb6MIor8BOXkE8VgksMlhlkHWZIo9CUYmV/CIHLo+VEreN7LwEdu1PYfmuNFw+C5IuI+kyLp8NTVLZ6oM9fijUoFiHHBU2+WCTT2ebppGPTjGQh85WXWWfpmIJU6HmL6fOQVnFKWkUSirrZB+5up89aKjIKKUvFZmNPp0SMyMLKvtkD3sUD4WySomkUSD72WVxs1N2sdvipkj245Y0SmSVg4qXLNlDSiM7OVtKDOdS0SlCwy3p+CXwS7BlZS53t5vJPT1nMXnsCqzIWJCxo5CkW0nULSTqVmwoWJCxajIPD5zH46fN53+956D4Asl2bcgk6BZSNAt1NBtJugU7MnEozHtuI490+on7Osxk7Yx9WJGxIuPQFRJ1JeRj6iryc0vX77n31J947NyF+CUdVQK/pOOSVTySil+CsgJVugQvXvQrz56zCJ9HZfe/BVE/rqvm7Au+n/vZtqjyfp9xkCXF0asSTa1gnJj9+Zao8jn7jPMVy3c+L6fcw6WywcWMJXPLjQCzP9scVd7vM/4I+3xRrETApBfLF20zvtoUVb4wL7KRx4wD+8sTKe/dE37xXMZvv+4Jvn/vnfBePmVUvvax6D3xpfJF/bI/90WQjK3PEKSAt04ZK1dEX5DNnlW+iJ/zU+QFPUBhoXEuDh4sCSNZzlefl3/OZ34dfb53bM43bOu+yIpLukRhgTu4/c/yg1H7+GXmzuD7xbN3Rlw8A7gqJSTPP+AOI1k6JiS++/zf4PbMrzZF7WP3JuPvkhrtM6UHvDfK+Gd5ZMMjwOIKev8ye8dR0ntjcPunrzZH7WNPJb1jme+Kem+MQe/fZu4Kvv911q6oY3JX0rvgYHS9Z3xW/tk+Wno7C6v+WygQHEtEklvB0ae0EpDP40DXJWwOH0g6EuVlhl1FcVhsGhabPyQ/iKrJwaowxqo4OroeqPzic8cdxiLdPK9JJAKeE7HJKhYfqt+Oz+PHYtMMesmKhjPfQVyCD8VivHkIJKkMHZszPwmr3Ut8ghukCmFOkkbhoRRsDi92hztYctoe76YwLxFbnA97nBulgveA3ydTlB9P+U+Aji0ukGS3qDCBnAPplZLHlhPncFOnfja6LrNnR0NUVQnMq81LvUYHSUh04fdaycu2kpzmxGLVkGUN2aJitXtR/QqH9qdT8edHUcryisRGpIpLXo+CPU6NqaoUBBLQHqs/1QHDWqmRTYfMzHIjk8ttx+8J9abx+BX25juoG2+8QJomk5+faOKjJLGzwE7G/7F33vFRVF8b/86WdEgh9N57b9J7R0SkgxSlCIJiwwqKYkPEggpIkd6RLh0B6V16lx4gISQhdcvM+8cmuzs7ZRMEfsi7D5/9sPfkzN77zL0zc++Zc88JTSF7gOuYhGQz9xLU9/iaDZBqFxQPBJvdSKgRYjxsNceTDZqepKlSujeJx9/vIJGcaqRJdtd4t4lw/r6Ju2mAe9YcEe4iYdLICnTBKlHODCaDq5ITxjTUnLkAUgzqE/QUg8iJu/FU8M8O6Z4uEhJJiKr84uPTuKcysRMQMKmMRUGCcztUJr0SBGFQTDwlJG78c1+17lRBVL1diXY4vUdZhyCBQeMdyuH1N1n82XGMKinSPWEOcI3J8NxZTyOp5kPnidAIlyE8IMj7tEQwZO2+DRAY4jIOm0ze3y35ufGOyP1vDPXaCA13/a5/gHdPusze09yRzS2QqSET583P7Do3ufOE6Gg+OMIjXOPIYMjMCMkiJAgNdd3r/NTSjnkgKNA17iIivI9zwaMzMnNuw9z6OzAoE1tpjVnrcAmJgEDX75r9vPMOdLveQiO0g6A64dEkIROvad3HeWBwZrYQZ523v1v/ZYa3+30mLML79e157QmGTNzXwl3n87HwzsQ493fv7xwP1t/e7+ePnrdfwFO2fBUFJJW4df+LdvjwcODzYPHhkcPxYHLckm2WAJLjs5EcF0TS/UCS4wNJScgGkhlrir9DHhdE0j1/EmP9SYwNISUhhKT4EJLiA0i8H0BSvJnEhAAS4wJJig9xM67oQALl9pasTepEUcBuN2NN88ea5oc1zQ9Lqh+WVH/nJy0l4xOA3ZbxkDFhs8h1rWn+mP0kku8Hc/9edhJis5MQE0pCTBgJMWHEq3wkyYAlNYC4u+HExYQTfzechNgwBBwGjrTkABLuhhEXHU5cdDgp97MBBiyp/tyPCyUuJsz5uR+XHYeBwzW5NRpFEu8HcftGLk3jCkBqSgA3ruRFEh1xW0wmOyBhsfhx7Z98pCQHYDKJSJKJ+Ngw7t7OQXRUJHdvhRMblZO4OxFudXt2kvc+yehrgzHjGE+YnIa7zMLfPyVTdf8bSBLY7A7ekgSJSf7YPUwa2f3squ1ItRtQe4lnMkCI6rYbgYNXwzhxMxvn7gRz7EY2rtzWXyz5GVDd2hVgAJNbm9Kw68ZLcWTsUf97kihwONbMmQQTx+PM7Ij253qKiSAP74zAdO8QLUgI7LNZOG63cNpuYbc1hSzY52SwWkTKPZfXWbahPseQkPD+bl4ONaOLQ47qWz0R9S3QIhLWLI5PrbozsGHKORp2Ler1d14cU8X5vWnXYtqK6cgWIY+NlKeI90X6Sx9XdX4fMUEZ2NMTVernlpXNWqml0iEYIMBtQt6mu3YWmAy8+okrQ07rrqV0NB3wXJyGZWLx8tEPDZzfP/25qVf90pUiZWWtoO7uCHJbyLdu5533+6NcbRowUDszTQYCAuX3sBw5vBsnvpnQzPn9i6+aeNX391g4mo36xA2CnHeffpW81vHuB/Wd35s2K+rVcFC4aKisXLmKdnarDAwc7BrnaoFcPdGkvfx6CwzTX6waAwz4uRkXOr1UVldfQmLoh65xXr95Ya+rgrxF5ddzyaraWX8cdUDPVyo4y8NH13ZuzdRCg3aFZeXgMP2YdeYAo4z385ng/cqHNZzl+s0LIxr025Q7i7xFJHq9UtFZHvJxTa+867YrJCtntb+fe0k7mxk4eA/80BXEum7zQkheeOcqJuddvIp21h9w8O76Snln+XHw9sGHJxE+A4sPjwWCQUS+cDSB3ZXu17UgFkAyAOb0D27HZRwTAKL8WJUaXV/1woF4ebg4f0ICm80kM8qo1et6y+E9oIzBKOEfmIbRZMNgEMHgWFw76nB8JElynhv5b7v+JooC6Uszx790uUMH3Y97e5KS/Ll7JzxT58NuN3EvNszJ2WgU08+JgTtRObBa3W8tEma/VMxm0a1uQdEWd35a7RVFV7Yjx//qummp/tisBq/8Mz5GE/j5pwBipo/JysduF7BajEiiI/V29N0Qbt5STtCMBtB6mWPVcM/wN2qNNYE7if5cjwskJskfs5e7vUFA04Dg3iar46d1ofVnCbhrMXIt2cStVCP2dGuCI9m4W31qmbGULeamZOeqZOd+Jtqk19iA0oEI6W+L7VrbGB+gDi11rX3yWudfRHqAuvUPSIy10O29ihh03pL7Bxpp1E2+yKvWLK+GtgMfL5AbCn5Y10ZXv1j5cEJCXG+Qy1TNqf9mVYBxK1rLRCO+0F+sdh9SUVb+YGIjXd4BgSaFUaV2s/y6dXwzX54Wec7mF3T1c+cPlnlZ1KifX+ZNoIb527rIyoPeraGh6UA7Dw5z5j2v6wVjMgkKo0qlyvqGgxmz5FlG1m7ooaufP3+IjPegIdqpnjNw+oI8U9Hbb9fRfcR271JeJhr5Xj0CA7XPbc6cQTRtJjc29uhZQUPbgZmzn5OV58zXP7dNmhYmMNBlKChaKpwiJcM09Y0mgc8mya+lD35soLlYlZAYNEqeAerV92thDNRuVLZc/g6jihta9yqhW8e4ufJx/v3C1rr3phrN8ip45y+ZXVNfMMGnHrzfyyLvoe/XxByo/QwJzRWQJd4iEuM9eP+4sA2izku6ah68i5QKJ0+pbJr6mGD05MYy0ds/1tPl/dIo+bU68P0aXvu7bnO5MaN5r+K6vL+c21wm+2ZRS13eVZvleey8ffDhSYQvTbMPDx3uqcd2PO9I0yyJIEogOP0LXQ8BeTwSIX2LjEvFlfHHtbXCPdWs+3fHF8F5rCiSvr1I/aEjCFYMJkhL8XdNjtyuCEfdhvStQUYCg5IxGEVnm9J3KjnqFhxtEUWBtFQzRqOE0WhHEiUEg4AhfSEsufOXMuoRnPVbLUZSkvxR7uCTNHlk/K7N6jJKOYLc6lv5rTZXmmebTUISM5/dSBBE57GSBFara7tRQqIfYCRXznjdSafN5gjymoHsIckEB+kH0UxKMeOvkvI74X4A95NU0jabbWQPUW7rkDzGoTuuRIUgpnML9LcRnk2/TclpRtR2HdxPMxCV6Dqn+UMsBGgEes3AP/F+iCpuDLkCbQSqHBudaiBWN0uXA3n87QR4sVtYbGBQ6bBoq0BaepuSsZPmZbFvR8KqNgmTIEDDrn/bkOr03gixGwlB/y3WfcFKksHu/F3ggY0sn69oTsnyEYwpvY5ki40UlbaLSFiy6PXmJwmqxhSzJGBWkds06rAjcd+gH2xUWbdBN+AhwOyYLiTGWxlUbjk2i/yaCgwxMev6CzLjRwaG1l3FmQPKTDFDx9ek8+sVFfKtSy/xUc8tCqN0wZLZWXxKmd7YZrPxbMEFxMXI9/sbjAJT/+pAuZrKRf9Xr+9g4SRlJqhmzxfl20WtFfIbl+PpWGEhVg/eQSFmNl7trcq7d72lnFCJc/DO+Lr0eq2yQr5o2nFGD/1TIc+RO5Dd1wYq5FarlZo5p5KSLO9rQYBZG5+ndqOCimNG9FzHuqXKuDU1GuRl3pYuCvm5czHUqjpNEbfLbDZw6dowmfEjA1UqTFEN+vrOu3UZ9UlDhXzm9MO8NkwZ9DVXriAuqKRcTk5OJk+OHxVygC++bsyw15QGtIG9VrFo2Sn5NS9Bk/qFWblZaeS5dSuRmlWmEh8vfxbkyxfCkRODZIvCDPTsuow1q+Xn1mgUmDL9Wbp2K6fQ3/7nP3R6bokiDk3degVYv7m3Qt9ut9Ou8jxFrJXAIBPL9najeBmlEX7S1/uZNPogBrdnhIhEl2HlGDWhsUL/zq1Enq20gNQ4q9PoKiERnj+Qdad6qfIe1mUtf62Ux+cQjDDmt6Z06K70ktiz9RqvdliLaHF7AYVEpfq5mbNVaWi02+10qLyA6+cSZG3yCzKxYO8LlFDhPeXrA0wafVBhWOs8rBwfTWikyrtjpYUkxVlkdeTIH8TaUz1VeQ/tsoZdK6/KeEtGic9+a0qH7mUU+ru3XmVoh7XgNj2QkKhQPxfztnZW5d258mKizt6XtckUZGT2vucpVkbpHTLt60NMG3UIwaO/Ow0vy7sTGij0o28l0aXiYkV/h+UPZPnpbqq83+i8jj0rr3nwhlG/NVKkqwfYt/U6I55dp+BdrkEuZmzt+Fh4u68z/qvphN05/D2kHfmy/e/TNN+8n0zlSY6g4P/V8/qkwGdg8eGhw/2msbbxEHIHerytEEFtJeTwxFBbEEiqi3T3BbIkqcszC4PRhsms/v44w5hitxmxpPrr1uEpDwpO9rpv3mYzImYqHXBWDCxgtahtw/Gs2+A0JNiskBEoOKuQG1ggKdmI1eZHmk0gW9B97t0PJchfxGiQsNkFUtIM5Iy4y62YSAL8JExGCVGClDQjOUITiInLRqrVhM3uMDyZjSKhISkkp5mISw4gI8apAGQLsBASlMbdhGAs6YGATQYJs1HEINlJE834Gx3uenYJLCLkCUvgZnw2/AUBU7rnRpoI4SHJRN8PxM8g4C84zniK6AiEaxUFYtM8tvSY7RjNVq6n+GHFoW8C/IFC/lbOpJll80EjUCXYRqDGaU62CkQlKSdABkGiQLAyPhHApfsmrJnISpXdJBJh1r7dW0Rkk/YM2CWIsrquTRvePUYsiKrbbAwS+KkYWNKwc8/oCoYqiJBL8tf1wog2pGF3N0boXx662Gp9yfl958xLTHp5r8IYICFhQcpSFkOjBGYVvgYNQ5OERIqKt4qExH3BlqXt0UZJUK07A5Wa5eGTja63k7uWX+b3705hNBnoO7Yq5evm1jwWHBmFxg3YSfSNJKo1zcfAz717Iswdf5Styy4TmsOf9yY3IHcB/e1D54/F8MM7e0lNstFxYFna99V3gbfZbHw1YhenDt2haOlwRk1uLNsapIYtKy4y+7u/MZoMDPusFtXq5tPVj4tL5dOB27h9I5HaTQvw2ljvWz3Gvf8Xm1ZcJDQ8gAlzWlOoeJiu/pG9N/lk2DZSU2x0H1Ce/m9U19W3Wq282Xsjp/+OplDxMH5a0k62RUYNc2b+zQ/f7XN4SnzZhJYt9bcPxcQk06v7Mm5FJdGgUSF++qWtrj7AqA+3smrFOcLCA/htVgeKFdffXjBz+mHeeWsLdrtI85ZFWLxMaXxzh9VqZVCftRz/+w7Fiocxc9HzXnn/tf0qU6ccwmQ28Mbbz1CxopdxnmhhzOhtXL+WQKMmRXhlqL7XEMD8ecdZveIsOSKD+PjThuTMqT/Or1yM4+ex+0lJstKpb1matNPfime325n09UFOHLxDsTLhjPikjtctE3u3X2f+5GMYzQYGvVOdshVz6uonJlr47qM93Lp+n9pNCtDn1Sq6+gDL555m84qLhEcG8sZndciRU3/BeOViHL98vp/kJBud+pSlSTv9LYt2u53JXx/i5ME7FC0TzuufPOOV977t11kw+ThGs8CATPKe8NFuoq4n8kyTAvTNBO/f555i04pLhEcG8lYmeF+9GMeUsQdJSbLxXN/SNMoE72lfHebkoWiKlgnn1U9qeeV9YPt1Fk0+iclkoP/IKpT2wjsp0cKPH+7l1vUkajXJR69hSoOxJ1bNOc2WFZcJzxnA8M9qP1bePgPLo4HPwPLw4DOw+PDQoWtgkdD0tf9fGlgkCUxmGwajPBit3LjiSl+cWQNLQGAyRi/OBZZMGEIyA1EUZLFTHB4s+oYbi9WV2chmA0l8sLaIomMLFTjOQUqqkQwPHIeRRP6bNhukWE0Eqnii2OxwN8Ff4cUhCSIWu1pWJHX3BVESCTajujXGLoHaDoF4K4SqzM9FCe5YwOKxdSUNOymCtre6FqqrGFlECW4mmkmzKxucI8BGiIpxJDZNIDpNbQGptDYISOT1F1ELVyFJkGYHk8qFFmsTSPZY2d/H7kikrHIOxXRDhFo3mSUwegQ3kJC4a7Bg8/DcyG43EaQRhz0JG/eNHh4del4sWsYXCRo8V5gxy5rJxCs+P8HiUccU6nYkrAZJtcMNRgHRrrDKEGQ2InpmRZAgwGjAoBI4xqrh/WNFJNloV92aaDAJiDa1uk3KugG/QCNjt7WkRA39OAI++OCDDz748KTBZ2B5NPAZWB4efDFYfPgfwLthwu0vqr+gNKg8ODLqtlnNpKWYsVkF7DYBm03AkmoiNTkg3XNFaczxhtQUP119baNS1iF6LMwFg3rAVK26Tf8iKLvdrW4HX9ePmYxOq5oTCSlmVeOKQx+yBclTu9pELeMK6TKl3M+oblwBdeNKghWya5wDgwARZvDkYVFIMoejSSbZuEi1CVhyZUdU5FyRCI00Yvc3YXM7XTYR4uxG7LkDFfoGI5RpFJmeicolF4DACuGkeGTCsogQWicnNkHAPfuxXYK0QCPxZsERAyQdIhL+ZiMFK3h4pkmOoJsFq4XJDaLptpZ6HQoQ6GFcMQF5iwQ7vnicSP/8RqxBkiwmiohEmslOQKQRo7sBTgJ/wUDt1h5xMtIPrVAnp3M7nzvqtC2gMK7YbDYK1Ayl5RulCMvrCtgZksOfnp9X4YNVjSlYLtQp9wswUrtLQVp+WIoy9V1BSAUBanYowGd7W1G3R2FZpoRitSJoOrY0tfoXxj/ENehyFg9h6IK69JtYQ1F386EleGF0BQqWldfddnApvt3RhkqN8sjqrtY6Hy98UZ4aHQrI6i5ZO5JPt7RQGFdsNhu7Nl/h0O4bZBZXLsaxefVFEhP1U3dmIDXVxsbVFzh3Srm9SAtHD0bx54Z/sNkyt0UqJiaRdSvOcfO695TE4OC9Y/Nl9u++nuk2/XPxHhtXX3iieEdFxTNn5t9cuhibKX2bzcaWLZfYvfuqd+V0nDp5h/lzjxEf7z0lMTi8Xoa/spb5c//OdB07tl9m2ZJTWK3e03sD3IpKYNHM41xW2cKkBqvVyqrlZ9m80XvK8QzcvJHArp1XSUnR3yqaAYvFzq6dV7lyOS7TdezcfoWVS05nmndCfCp7t1/nbnTm+sJut/P3gVucPu49lW8Gbt24z8G/bmSJ98G/bnD9cnym67hwJpaje6OwZzKN4P34NPY/AO8z/3HeCfGp7PPxfnohCU/Ox4eHAp8Hiw8PHZoeLBreK54xVtz+AijT43nGa1H+LfM3CM/fymiHJJGeMk3Z1gx99d9SWej7p2AyKb1wXF4f//6GZrcZEEWlq4xj24+yDlFybE3ylD+IF4vNZnBucfL0XnGvT3Lz/khKNeKvs11FkuD2PX8ystU4vFcyHzXeJomE+UFWsrkm2LQNLBm4lSZgSX8ApWEn+V903ZvTanH4twv8cziOBLcfMggieQsFUqR2DjpOr01QiGPL0L2riawcfoArB+5yK8qC6LSPSwSHGCnTNBdN3ihLycYul/e17x/hxB9RXD0ZT4pbkFx/AUpXD6Nsm3y0+tSVYePSX7fZ8vEJzh+K4fJ9m2sYiBAe7kfx6hH0/KEaBcqFA47Fyvw3j3J0SxRHztzGPct0uMlMrbr5qNejKC0GlHTKt009z18zLnHsyG2u213xEAwSFC2WnWpN8vPKd7Wdrv63rybyy9C9nD8Qw73oZExCumeUZCMg0EyJGhF0eacitdq7gvct+PoYu1df4cL+aHDbficJIkWqRFCrTQFe+lTp6v9Shd+5dsZtsihBmeqRvDm5HgXKhzrTYEqSxI2zCUz6Yj+/LziNPT3tPECAycC3M1pRvXEBwvO4jCQJMamcPxzD8J5/cDfBtTA3Al26lGXQB7XIWza7M92rzSpy41Q8X7y1ne3br7rmPRLkzRPCpCXtKFwunKDsri1ld64msnPNFb4euZM0t9gifkaBYaNq0bJ7SfIUUwYcbFNpDpfOyBeoNRvkY+4WZRwBgF/HHeS70btlcTyCQsysONCDwirbX2JiEmlcYRZx91z9LQjw8rCqfDK+iWodA7quYv3KCzJZvgIh7D77EiYVa/CuP6/w4nPLsaS5GmUyGfh+Zis6dlHPKtK48m9c8OBdu35+lm1R35ry07h9jPt4l4x3cIiZ9ft7U7R4uEL/cfBes/osvbuvQHSzjgoCfPtDS80sQDWqTOXc2bsyWb36BVi3SRknBODD97Yw8YcDMpnZbOCvPf0oV14ZD+fokZs0rDtbIS9UKBsnzr6qkAO0aj6HPbvkxr3QMH8uXR2G2ax0K1y/8gJDu6/BaHfEOZKQsBpEPv2xKS8OUt/eUKnoJK5H3ccmODrQLBkoXy4nOw73V9WfO/sYb76+gdRU12Iwb74Q/tzRh3z5lYFa4+NTaFh3Fv9cinPK/PwMfDS6ISPeUt9K9lzT+RzadctZlpDIFubP8euDVXkfO3SLwe1WkxzriLEhIeGf3cSEha0UgVsz8GLLZfy9/bZzC6hkkGjatRjfzVbGJgJYNusk44fvRkpx3NdEJLLl92furk7kya+8fyTEp9K99hLuXkxx9oXkBwM/rcaAt9S3VI0dsZ1Vk89gTH85Y0ekcLVwFu5+AaOK2++JQ3cY1nYtqW68zdmNfLWoBfU8Ardm4KUWKzi5/Y6Tt2iQaNS1COPmtFTVfxJ5Hz90m1fbrsESa3fyNmY3MG5RS03e/Vss5+T2OxjT51x2g0jDrkUYP6fVU8P7qfNgeaX9k+PBMnkN8N89r08KfAYWHx463G8aaxoPIXdAdiR7hqFEkAWmdU1UDU65IzOMgEElw4+ngcPTkyVjK4peIFxHHfLfEiXSLbcCkiQgpceJcd9ZkKHvud3F9TfPuiVMZitms81ZZ8ahLqOE63x46ojpaZA9s+xkyDP07TajLNisOz9BALsdRLsRQXCcY7sopHuvGBTnBgHsNkAyIEmOh56Y7oGQ8buQEczX4bniCpIrYLWpB8mVJJyxXgBSLcZ0zxZt3Inzw56+OBYRsaoYkLRgk0QivGdJlSHJDsFeqoi2CKSkb5dJTd8e9KCYbenKCP9l6WNNiTovF6H3tNoy2TcNN3PhL/W34OYAAz+ldJXJLh2IYWytzZpteHVZPap3kgfOfCnnEhJj1d9g5S2VjR9Od5DJZow9xNQxh9UrEGDdzRcJi3QFDLXZbDQM/k2T97P9S/HBr41ksncbr+fUX3dU9f0CjCxL6iWTnT0QzYg6a9UrAD5a0ph6zxeRyTrlmsd9Dd4FSmXnt1PyYI1j39jGnJ+V24gysONKf3LndU1ObTYbFUN+UQQXzcAL/cvyxZQWMlnPJks4tCtKVd8/wMixBPli9cTB2/Su+7tmm75d3JJmHYvLZLXyTCE+VhkEGqBoyTDWn+wjk/38+T5+HLNPvQIBdt94mRyRwU6RzWajWLYfNXl371+B8ZPlC55OTRexf5e6J41/gJGL8a/LZEcPRtG+3gL1CoCpi9rTpqM8WGOFvD8Tp8G7WMkwdpx4SSb7/vM9jP90j3oFAhy9PojISFesjcfBe8f2y7RvvVC9AuDnSW14sZ/c2FA4//fci1X3vClZMoJDxwbJZCPf2sjkXzSub+DspSHkzevyqtILWAuQM1cQFz0C3daqOpUzZ+6q6huNAvcS35XJdm+/wostlqumcrcj8vmvzejWTx5suXD4d9xLVe/vQrmyc+LKUJls5oyjvPbqevU2mQQuX3+N0FCXAdVut5M3coLMGOOOdz+ox4duKbABGlX9jQunYlVjTRmMcDX5TZnswpm7dKq8SDVWlojEr5s68Ewj+YKoZdnZ3LmYpNqm8g1zMm+z3Ii6ePoJvn1lt2qAbLtJZPOtvmQPdd3P7XY79cJmIKgMKQmJnh9VUqSkfqv3enYtuqrK2y+nke035dfexTOx9Ky0VJP3xM1tqeXB+9my84i5oO71UKZhJL9teV4mexJ5XzgTS89KS5yGElmbEJm4uR21PXi3LTuXexdSlI0CSjXMwawtnWSy/yrv/MXxGVgeAXwGlocHn4HFh4cO95vGoqojyekfqtCRJFdwV6PRjjF9sW2xmLhxMwd2UcAg4JS70t0CgiOdrbvBISNeh5/JTv586hO1DNxPDCAmNhuCIDm8VASXccImGpBEAUGQMLjd2yVJwiCISAIE+lvJFXnfeUyG94bB4IrfEn03hNj4YCTJ0dYMTwpRcsQkET3kfmYrhfIpXZwlCS5ezYk1PdirUXDxzpcrHn8/pft4XEIg8UkBjrgyRjs5w5JkXDxhsxmIiQ9OP+cSJqOr7jSLAZuorDvNKmATHQaoAJONXOHqE9cMiBJYbUZsooDJKJJmcXmw2EXHOTEYwOzW37di/cmIg28URCyiy+CTsWYx4DqHkpSRrBokRMLdPFjskuM4o6Dt1ZIZD5aoNLClj7UUxH9lYKlRPzcXNYwlGT/7o72r06MhPiaZd3KuUug4knM7eDceUoLev7iCjQ4JXUpKgjV9E5WrsRnHmPwMTEtzva1fN+kMM4YddKtDcOpnnPNvDrWhWBXH9hJJkqjvN83lnKbCI1+RbCw9390pG1h/Baf3xjh+U1DqA+xMGyDj3T33YgCMCB5tcvB4dkhphv5Ux/k7nXPMJyle283Z7G9gVZLLcLBuxlkmDNqtqQ8w9VhHipRzeSmU9tNeRAJE5Apgz3XXYlXPWJKBsxbXwjMuLpXauX7V1e87vDIffOsyRjXIOZ37Orz9/A3svz/YWV4y4wQfvbJVt441R3tSspxr61MZ/x91tz0WLhHGxlOuc6tnNMjA9TTXQjIuLpUKuX/R1R8wXO4BUi7XzyTEa9+D/PwNXEoY4SwvnHGct4ds0q1j65E+lHLjXTBggi7vIsXD2HnKtVB4HLxzhn1DWpq2q73BIBCX5DJOzJ55lGFD1I0GGdh36GXKlnMFxMwe+JWufs6cgVy86jL8RIaOw2LRsCqlIyHlPef3mJhkihXUv5a6divHtJkuw27J7D9i0NmdZTWKXEoZ4SxPnLCPDz/4U9MxU5Bg+66+VKnuSkHujUeduvnZsOVFZ7nfiyv4fekZTX3PvoiJSaZy/km6gbyf616an2e1c5ablZzF3SvaWyUCI0zsueXKTrV51UXe6rxBsw4JiTXnelKwSJhTVjvkVww6aeJK1I9gzp8uY/Nbvdeze9E1TX27QWR/muuek5RooUn4bxh1IhS8/FVVmSdE25JzuXdZ3WgA4B9hYtttlxfSllWX+PCFzbq8l57vRoEirrnpk8i7dck5xF/WHujmCAM7br/sLHvjLSKx7CnhPf9Qq6fKwHJ08LNPjIGlypTVwH/3vD4p8MVg8eGxw2o1Eh0dxq1bObhzJ5yoqBzExGTHZjNwLz6ImPgA7t0P4G5CALEJ/lisYLEJIIDZDGaTYyuP1ebw/jAYJPzNIv5mEUkSiL0XojsRtlqN5Ml5n9yRieTOeZ+Q4GQkUSQpxURisomkVBOJKWaSUozY7QIgEhmWSGR4MjnDkvE320lLM5KWZiYhIZj79x2fhIRgUlP9sNvhWnQIMUlm7iabuZNoIj7VgMUG95KNxKaYiEs1cTfZSHyqAbsI2UPUHyb37gcQk+TQv5di4l6KkTSbgNlkw8+sNK6IIlyJDuJ2gh937vsRFRdAqkU/q8LdRH+i4h36txL8uZNgxmITsNkFJATMRjAZHAYKiw0SLQJ2ScBkcMQ4sdpNpFm1byVpVgPXYwO5HBPk+D86iOQ0B+/o+2auxQYQFR/AjXsBRMX5k2YVuJ9m4I5dINYucNcucM8GoiiRKkGaBDYcnzQJh0yE+5LjkyhBkmQg1e6IVXLPInDXYuCe1UCMRSDOKuAZixQ8vZqUf0u2QQACoQbHJ5dgwEvGZU0EZTdzabfSEJiRgchfcHw+zrOCo4uv8uek87xXcA0iyD42JJKRSBIkkgWJPyafZ8bQA1w8eJfPm28h/r4FiyCRhuTI7IOIBdFRFiSSrXZG1dnAmV13mP3eYaYOP4gdnB8RyRFcFTspguPzeu21LBl3nH3rr9Or9BL8MRKAkQAMmNOndn4YCEyX372cxKjOm7l49C7jXtzB9b1xZMdMKH5kk0wYJQETAgEY0n/HSKd88/lzySV+n3yK54osJM5gJc5gJVawkIyNNOzECVbupcvnTjnBN8N2kpLkiF+gZ1wBsKaJstgWMz7UfkOfga9e3O78vnXtpXTTjjZi78iv6aN7b2loujDju0PO7++/pExz64nF0+VpifWMKwAWD94TRml4ZLjhnb6uduzfcd1rDKorF+Nk5UN7b3qtY8p3LqPeGy/rGwAA5k0/LivrGVdAyfvL0Tu91jG83zrn9907rnrlfdltWwg8Ht56xhVw3DPdY3qMGb3Dax0DX1rt/L5u7QUdTQeio+ULX2/GFYCmjWY5v3fvstSr/u/L5IYLMVW/DqNdkPGe8Ple3V2vkgAv93QZr48dve2Vx4H9cmPpuj/0z5UoSiyc7+q//i8s1zWuAKxZdk5Wjr6i7omSgeRYqyy2xYSP9ujWISDw6Wuu+9rJo9EI+pcSZ/fKXwrsXq292AYwigZWzHf13/j3d+kutgHmf39CVr57WT/+RqoH758+3OeV9xev/eUsP6m8Y73wTou1y3j/8OFeXd4GBMb+B/o7q7x98OFJxL8Ia+mDD1mH1Wrk9u1wWTwOEEhN9ef2bTO3YoNwnwk5vD0MBHgERDUaJYxGsFgFAvxcM1+DAVJTA4iLh/CwREX9MfeCCfJ33ZgFAUKCrPib7dy/4QpkC2AXDSSlCkSEpso8QMwmEbvNjM1taw44Yoykpvpz734AKVb3S0sgxWokxeoZpFXAYheITxUoGqh8yqVajFy6FeqMQwJglwQS0oxkz6ZM/yxJcPl2NtLcMglJCFy+HUDRvCKBfsoH0v0UE1Ee59xiNxB930xogA2z25YZoyHdc8iGLBiqQYCoOD8KRKQ6vV+cv2UTuHo3yCMjkMDdZBP3LSZFeuo0m4GoeH+SQcbbihEBEQOCjHfGdytSeoBYF2Jt4C8Ist8BAYsI9ywQ4SfJvFkCJccxOVTsUWl2h3eTe3BcgyBgyHDdUJvT6Mg7jSrL2nfki2MzyuC7yTEW5nTfQ7Ik4Rn6UMJhZPL0Atk8+Txbp12QZ5URHAYZi0qbLu67y2eNt5Bqtyv+JuI4t+7dZ7dLTPvgEDaDKFt0CjgMJUYk2SRPQGDXyqvs++M6Rovck8aEgWwIWCRRVkfC3TRG99yKzcOIIQmQLNgV51YCfp9ymitn4/hhvff0sQDxMankyOPY0pGS5D2QaHyMy2ByYOd1r4sjT9hF79a4U3+7JrM3r973qm+1ZH2SGReTSqSTt/eAmrExrgX03/u9G4k87U6Z4X3yb9f2rxuZ4u19Ee+JuzGp5E7nnZwJ3nfdeB/9D/OOikqmUCHHG+ukTPCOcQsmmZUAuFnBxQuuQLxRN5TPaU/Y7XLeatsZPP9+OyqZAum809K8X98Jca5n8ImT6tsR9dqUmb45ddJ1fd+6qW8sAbB7ZAbzdscRELgfbyEswrF16X6cl9UzEB3l6u9zx2O839c8bjl2i+h1AX3hhOtlws1/vI/zNI/7cdZ5ew/SGvOf4O19nLvzTswUb9d97b/MOzEhc4F4/yuQRDS3TT/udvjwcODzYPHhkSLmXrAj3ogEicl+3IiK8DCuuCBJBoID5Hdzs0lUGFfcYTJKqM1jk5MDiL4bgs3miDOSlOLH5esRXL0Zwf0kZXAOs1kkIlTNai4Ql6Dutmc0qmfpCTBJmI1qCx/1h4ZdEjhzLYLkVEdmGYvNwM27wRz/JxKrTT0oyI2YEGIT/LGLDq+VuCQ/zlwPJ0alrXbJzLkbody6F4gl/XykWg3cuBvERQ8DTgYkBJIs6nV7ZgWyWiHBauJ8TDB3k8zYxHSPD4tBxbiSfgwGhXHFBQGzyjGCzu3KqPJINmJQ5QYgIhBjEUhLb6tNglsixNoFblogJV1ulxxbh9Lsyt+xiNqpivEiX/LBCYxuKY4c26A06RGgITfhcG/3hCJlr5c2SXYJk8YfzQiyYS4hYUPUfKOvNTmyWUWFwSRD3zOWgqMOnQWqBo9D26LYvuKy9nFuyDCuAITn1jrDLhQoHeb8/my3MlnOHmXWSmnlhmbtizq/V62Tz6t+cDb1mEd6iHTjnSN3oI6mA0VLubZFNXu2mFd9z+2ImeHdsn0J5/caz+TV0XQgJJu+V54acrvxjszl3RW7hBvvVh2K62g68KTyzjCuAOTKBO+SpSOc37t0LZfl+jKDFi1d46haTe+8/f3l7wLtXq4+O6LTuAIQGuo9IFfBwi79Bg3Vg4e6w89P/nwMDvHeN82aF3F+r1wjj7ZiRh0B8jo0pk5OiEjOxTZA3sLKAKWeKFnRlU2sVqP8Xj3zDP7ym69/Nv33tBIS9Zq74nxVqee9v0Nzyfsrq7zzFA7R0XageEXXOH9yeXsf53LewTraDpR4SniHhnt/dvngw/8SPgOLD48U16MiOHyiMAf/Lsqpc/m8vnkK8Igp4m/Wf0NrMDi8XDwhCBAbl41jZwtw5FQhzl7KQ2x8CCCQoGJgAcgeov62R5QMWGzKS8URmFZlwShA9qDMpdbMQFKqH39fysXe0/k4dC4PV26HYtPJmiMhcCEqjEPnc3PwfG7OXQ/nfrLaYkvCJjq8gKLuBXPyagRH/4nk9LUI7sQHpWdNUodVNKgarzIC8mYgNb09FruB6/EBnLyVjWNR2TgfE4zNrn6LMXt5aWIW5GtoI8psUp5t8qzJ281NlOCqReBCmsA/aQLW9BqTRIHr6fJLaQLxNkE1sHECSu+RzMJiEanzkmsx7S18r0EQVHUE1OUPAqOHIcW9DvdzKfHgmfxEjcmcZ93eFlB62LrsH3IX1Z9gh4TLr5X35zTS0HTh498bO7+Xq5JLN64RQJlKkbLyC/30F6sGA7Tp7ArE+tF3DXS0HXhvXH1ZOX9R/QVV9nD5ve/b2epZJdzx8zKXR1Cx0hGY/fSJewab7Na3vK6+wQDt3Xh/+l1jr20a9bW8vwoWUWZ0cUeYB++fZnv3cpq29Fnn9+KlcnjlXbeRPFj04+CdI4f+IiMgQL4YmjbzWQ1NFxYsdgXBrFQ5j9dxXrFSTlk5T17vi9tpvz3n/D5jZnuv+qM/kY/zbJH6hkVDoLzRk2a3UzVEZ8AoCSzf1MVZLlgw1KtRplPnMrLysOE1NTQd8Pc30qiJ654/aXYb3cWthMQ7n9SVycrUjNTQdiB3MfkCe+yUprp1iEh8+nNjZzl/oeyYw/SfKI27FJWVu79eUUMzHQFQp6nLYDVoZDXsBu2XZhIS73xbTyYrWTOHhrYDOYvLeY+e0sgr79E/N3SWn1TeJWpGaGg7EFlcbjD9ZEoTzWcsOAwTH//suoc8Lbx98OFJhM/A4sNjhd4iGcDgMQvKTJpdLSOBmvEDSM+go1K3zkPArmLE0YPRiwX+8eIBV8NoxyRx/0U9T3it/s5qizKj76njbax5/lmLhtZNMmsmNCV6TKpBUIRZtS1q0HaIefD+fdx4HFdFYlwaPx1pnxG7WgkBJh6QLzTLPZOLcnVzahwATXsWIyRE7uXyyzLthaHBKLB0TxeZbMxPTQkN1160fTmtuaxsMpkYNLK6pn6RkmF08ljELzrUWXtBLMCCffJMSFVq56NaHe03jM/2LK3gPeOPjpr6/gFGpq+VZ5n66qcWCgOHO76dJjfymEwmho3UXqwWLRFGt74VZLJNh3rr8l63V55lqnrtfLoeI516lFHwnre2k4a2g/fcNc/LZI+D99GTAzW0Hdi5r5+sXKt2AWo/k19Tv2v3cgreCxarp+oGR4afbTvlWabOXRqm26b2z5aQlc1mM336V9LQdnjdDHtdnpVkx+l+WAT1ly8W7Kw7IO/vxs2KUqF0TnUDsgQtmxcjNFS+aFu7vqfmMyRHZCC/TJEb6d79oD5Fi4Vp8pi3UD4+zGYz3V+qoGoIkJDIkTuQISPk42HWxo4YAjQaZYJ52+TXd6lykTR6oYhmHb3frkRgoNxYNXlTB+yC+lzIL6eRz6c2lcle/bAW4cXVPQDtiHy1WJ4ZzWg0MvzbZ1QNARISpRrkoEk7uafc1E3PImjYEiUz/Lato0xWqnwk9ToX0uTd9Z0K/wne0zc9Bxq87WaRWdvk96RS5SOp27mgKm/xKeb9VEASnpyPDw8FPgOLD48UCVaJ02kSp9Ik/rFASqrj4k2wwMHbAeyLCuLQ7QBS0reGJ6cauGqRuJIGV9IgNl3faoWTsSb23A5gz21/rie6bgJXEwV23wpg160AzsS53tjdSTFwIU3ifJrElTQJq9Vxg7cINrZeCGfj2Uj+vBjurDsxycSF9LaeTZO4b814IEianjRaxp1Uy5NzaXkarTILAUnTwOVuePETQGvprGV88RY5QpTkv5iZbaGeOt5CIHjqZ9WQEgQPbDHIOK/f3O1E2TZ5MvVM0zoHem+ssgL9t6ku6HS3V2idY8+6/43RqHjFHISEBLA4tjsFy4TK/parcDALorqTp4jS0+OHHe3p/FZ5jG7uVX4BRoZ+V4v3Zys9XJq2K8bSPV0JDJZ7CRQtHc6xhFcwm5VbBvbfHkzDVoVkxp/sYf7M2dyJjr2VHi5vja3H+FktZXUYjQKd+pVhg0f6ZICQkAB2xPSnaJkwmTxv4RD+vNGP/EVCFccs2N6Fl96oisltS4t/gJEPvm3A+JlKD5daDQuw5mhPInK6ZsCCANXq5OVw7GBMJqUL+Ylbr9KkVREZ79AwfxZv6kyXXkpPj/c+a8DEma0JCnadQ6NRoFvf8vx18iWFfkhIAKeih1KiTLhMXqBwNo5eHyTLkpKBFdt7MPiN6greY75tzI8zlR4udRsWYuuRPuTw4F3jmbycvfvq/4R3aGgQ1269Rp48cq+R8PAAzl4aQqlSSo+HTX++yGsjasq2MAUEGPn622ZM+62DQr9NuxJs29mH4GD5eC5VKoI7995UHecJKe8RGKh8M/7Oe3WYr2Kw+emXtoz/toWsLwQBWrcpzgWPlM4ZvI/eGUy2fP5YEbEjYkXEP4eJPVdepngppcfDrr9fpu+LlQgUTJgkAZMkEGww8/4H9Vm0potCv1KV3Bw79QqlS+dw9p/ZbKDj86W5cHkYRqOS398nX6FPv0r4+xudHIoUDWXnnv60bF1Cof/tpFZ8+l1jjGYBKf0fAjRtW5RjV4cq9AMD/dh1+yUqNs6FZEzPomaQKFEzgh1R/cmVR+k99OOCtrz+zTP4ZTci4jgmKNLM53ObMfKL+gr98lVy8vu57uQsE4zd4Di3olnimc4F2HqtryrvP868SPOXiyP5S9gRsQsiYcUC+O1AJxq3KarQf3FYZcavbUVQXjN2wVGHEAw9PqjI7K0vKPQDA/3YcrsvZRvndPIWjRJFa4azKaoPOfMot8Z8u6A1r4yviTm7waEvSARGmhg9rzFvfVFXof+k8t56uy9lGkdiNzr07UaRwjXD2BzVV5X3dwvaMHh8DYzZBWeb/CKNjJ7XiLe/qKfQf1p4++DDkwZfmmYfHjrcU489x48ECfLJTigSoRgxur0eskkS9wU7IZIRs5tclCTisZOMgGdIqwDSA3d6yP1wLOQ88/KYcWRoicCgqDtesJGgstHXD6iSzUaBXMpAXaIoYLMrJ9VWm8D5qGya8T8eN8wGEatmvBNtBJpFQlTi34giWD22/txNE7Cr8DWivh0oWYQgnSalpmcHcocf2h5NkgSeG7y06s5AiiQpxo4WcghgUnmdeVW0k0XnJgDyFQth/AXXYub+7VS+KLEWi0awVaskoRYhSEQiNX1S/m9hQ8KmYoyzI2H1eMNlQUR8AMOdWTI4tgMp6hZldUtIpD2A6choElhwrAsFSyoNCT744IMPPvjgw38f7uuM/2o6YXcORwZ0eGLSNFed5sio9l89r08KnpzX7D78v0AAEO5hXAHH4jVUMioWVAZBIFwwqaa7SkVpXCFdppb02AqkoFyLmgSBcMmEWog6C3A6RSm32gykWZStsotw7W6ginFFwmRU90FQD4gLZqOImquA0aAuBwmjiqunVQSTxvYnNf0MeZBJ+TebCGk25QI5yCBhUGmTHQmrig03yOAIJKsGq4pxBRz9p2YOliT1cWAH1XTM4DCqqR2jFb4tTgK7SuXhgOpuMElDDviZDHx5uo1Mli13AL3nP4MpQPm2KLxIEOZcyq0GgaFmcpTJphjQggFK1Fbfs166vvo2mMJVw1Vdz3MWCSY4tzLeQVioP4VKK40YggHK1lavo3K93KoPnGJVIzAEyP8iIFCwcHYicin9hENC/SisUrfRKPDh1EY+44oPPvjggw8++PCfgSQJT8zHh4cDX5pmHx4rwjCoBgwFhzFF1HCoCsdAcqY2iujDDiQikd1jVWoQBEIlgRgVI8F9m4m7CYEE+VuRJIEkqx8XE/wRjBKFA9IIMDkSBFskI9U+qE7b9oWY3mAL8bccS3iDUcDmJxBtgzx+IoLNkfnIaICC9XPSd1MLFnbexoU/bmK3p8cOMQvcsAlkN0uESiIZGXSDIsz0WNOMhOspLOuzl9Qkh3HGaBK4Z4AUSaCAQUJK395kNAlUfakErb6rwpQam4g5nYAoOTxBLGaBG4KRPKKI2SYhio4UyCG5/BlyvA0HJp5j37enMNjtgEAqAkcNVgKNUMzqh1+6x4HdYKDpuEqUey4fv9TfSuLtNCTAYBC462fnJnaK2f0JtDmMDqIABRvk5LVtTZn63A7OrY3CIDq8kdLMcMGYRk7RQJjFjJjunOEXaOCV9Q25eTKe5cOPOPcYiQJE+1uIN0oUtfg79/MYjFBvUHE6/VCZcVU3E30qAUFybC9N8rNzwT+NYql++FuMiDjqCM3lz0en27B2zAn+/OkCNtEhNxjgROA9/DBRMS0bful9IQYY6fpjNYrWzcGndbaQnODYayYIkOBv4bIxmbK27JitjsxNgkGgdINIPtwm36N8/XIcg59bw40rCWQLMtO8en5ymgIwBRgp/2w+avQtijXNzl9TL3Fq0y0kUeLK/ftsv3SdtFsi5UvkoEaxPNhS7BSuHE7zISXJVyY7R9be5K85/xAXlQIBsPPEdU4dO094rgAaVCiAySoQksOfuj2KUKtTAaKvJrNh8jnOH4jBaDZw8noM26OuYwCqVMpD4RzZkSSo2DA3bQaVJiTcjy0LLvLX8iskJVhIMdjYdvIqJ0/do2D+EBqUK4Q9WSRPkRDavlyayg3ycO5ADH9MPceNc/GYAw3sOxPFhvP/EBhoola1fGQz++EXYKRu+0K07FMCS5qdVdPPsH/zDSRRIjohmeMX7nDlRgJFimWnbPGcWFLslKycg06Dy1KkrHyLyI7Nl3l78EbuxaYSkt2Pz75tKgss6onUVBv9Oi7nyIFbCAI0aVWUibNaq27/yMD0nw7zwxf7SEmxkjtvCL8ubE+5Srk09a9djqNPxxVcv5KAv7+R/q9W5a1RSpd1d4wcupHVS85ht0uUKZ+D2as7ERamnfnIx/v/F+8tWy4x7JV13ItNIVt2f74Z34yOL2gHVU5NtdGl02IOHojCIAg0b1mU6TOf1eXdusUcdu+8ATjucT9MbEm/l6tp6p87F8OzbRYSfScZk8lAn74VGf+9flDlnt2WsnH9JSQJChUJZdPWF4mM1H6ru/L3M7w1dCPJiVYCAk188lUj+rxcRVPfYrEzfOgfbPvzCgaDQMfnSzP2yyaq2yCcdSw+w7ef7uF+QhqFi4Xx/fRWFCkerql/51Yiw/ut49ypuwQFm3nlzRq8OLCyLu8vP/+LubOPY7WI1KydjynT2hMSoh3I99DBm4wcvonbN5OIiAxk7PgmNGxSRJf3iCHr2fXnVQSDwLPPl+KTrxrp8v59yWnGjdlF0n0LhYqF8tO0thTV4X37ViJD+q/l/Km7BASbGfZmTfoOqKLL++uxO1k0+yRWi0i1Z/Ly87S2/y94T/hsN8tmn8JmEan8TB4mTG+ty/vIgVt8NHwLd24kEp4zkNHjG1G/aWFd3iNf2cTeP69hMAi07lSCD79q4HWcf//pHpISrBQslp3x01vp8r5zK5HX+63n4qlYAoJNDHqrBr0HaMdSehy8ffDhSYJvi5APDx16W4SK6BhYwOFZoLYVA+CqZPcauyMzCAJyC8oHjU2SuKZhxBn0a038TEZm9d+v/KMA7+xoSon68km2zWbj9fAVpCUqt32Ub5WHN9Y3Vsin9d/DrlmXFXKTn4GJMc8T4PEwunXhPiPLrFHNXd/5s4o892EFhfy9Cmu5cSpBIQ/PH8iP1zoq5OtnnWPcgJ3KCgT4YVtbKtaVp5u02Ww8l3M+KSq8a7TMx7i1rRXyr1/ewYbZFxRyk5+B3293VwRevHExjj7lflfl/dJn1ej9XhWFvGflJfxzKk4hz5k/iFWXeynkv886yfsDtygrEGD+ny9Qva48WKTNZqNWrqkkJVoVh9RvWYjpazoq5O8N2Mjy2WcUcrOfgb23Bih4/3PxHo0q/IaowvvdMXUZ/t4zCnm7ynO5cDpWIc+dP5gd/7yskC+adYK3Bm1UViDA71u7Uquu3GXUZrNRKO8PJKrwbtaiCMtXdVfI3xiwniVzTinkfn4GjkW98lB4N6kyk/MqvPPkD+HgpUEK+YPwLp97kmp/N25ZmLmrlXvLfbzl8PH+97xrVZvKmdN3FfJ8+UI4c1EZcHbe7L8ZMnidQi4IsG5zT+rWlacoTk5OJk+OH5UNAgIDjdyOfUch7/L8Yjasv6SQGwwCV24OVwSUPXXyDs/UmKFax9BhNfjqm+YKeaVik7h7I1kWr0lCIjDMzIXbyrgt69eep1uXZQovSJPJwPbdfalYMbdMbrfbqV1yGrduJCl+q3u/8oyfojQWfT16JxO/Vs4RQsP8OXh5oCLA6M0bCVSpMIXUVOXM5qdJbejTT2mY6dRmEfu2XlfwLl05kq37+yr0N6y9wEudVyJ4Bvc3w/o9vaigwrtayanE3EhS1NG5fzl+mCz3vgT4/OMd/PzVAUWWyKBwM3//M1iVd51y07F7uKqKgsS4yS3o3U+5UH8aeEfduE/TsjMRPXkj8emvTenRT5mhp0frpRzaekPRphJVcvDH/t4K/U1rL/JqpzUInp4IJli+rwflKso9TO12O/VKzCBW5Vp6rn9ZvpnSUlHH16N3Mu2rQwregeFm9lx++bHwftq2CB1++bknZotQtekrgf/ueX1S4Nsi5MNjhZ5xBR5KKAmveBCLYlKcRd24kv6D3zTcqhB/UGytqnEF4OSGW2z49rRMdnjldVXjCoDNIvJmwVUK+Xvl16oaGQCWjjpO9OVEmeyXXrtUjSsA926k8GmDTTJZaqpN3bgCIMGIxn8oxL1KLlM1rgAc3HiTRd8dl8l2rbqialwBB+8eRZYq5P0qLtfkPWPUYW5dlsfM+fjFrarGFYDoG8kMbiw/t6mpNnXjCoAEvZosU4iblZqtuvgC2LnxKjO+OySTbV59UdW4AmC1iDQuOlMhb1J5luriC+Drj3dz7XKcTPZWn/WqxhWA2zeS6NF4iUyWmmpTX3QCSPBC08UKccWyU1SNKwBbNl3mx+/3ymQbV19QXXSCI311rWLTFfKs8h7e9w/VxTbArRuJPN94oUz2ILzrlp6h2d/bNl5hyncHZTIfbyV8vOXIKu+X+65UNa4A3LyZSKumc2Sy1FSbqnEFHFst2zSfr5BrGVcAUlLsNG00SyabP/eYqnEFQBQlShT+WSGvU1PduALwy08HOXcuRibr3G6RwrgCjq2FqXE26lWRn1uLxa5qXAGw2USa1J+lkLevt0DVuAKwcOZJls2T9+2+nddVjSsA8XFpNKk8WyGvWXWaqnEFYNiQddy6JX9+f/L+NoWRARy8z/19lwG9V8rkFotd3cgAYIW29ZT93bL+XM1zu/S3Uyyef0Im373zKr+oGBkAku9ZqV9lpkLesMpMhXEFwCAJjBy8idtPKe9WlecojAwABgRGD9rKHQ/en7+/XWFkyGjTxaOxDO21Ria3WOzqxhUAG3Sqs1Ah7lBvIfdupKjWsfK30yybrxzn01WMKwAp96y0qDxHIX/UvJ8G/K+3Bfm2CD18+AwsPjxSWJFIFuwkCTZSsZOaPsNJReI2dm5g4w520tLNHhYkotPlt7A7twU5gnw6fidZsGF1xM9HQsKCSJJgI0mwpQfGdPyzIsrqzgiZaUJQrTsViRQhow47NjdvlpOrr+sTlWD5B0cdXyWJg2uuc+taEmmIWDOyA+Cw2FsQSUNk4XtHiTrnMHZEX0nipx47sSJhTY/07/hZCVu6LCHewubJ5xHtItY0O9Ne3Uey1Z5eh6iaBeabNtuc3y8diWX7wsukIjqClHq0KRWRE7vucGZ3NAD376UxpNpKzOkZFwySg6cjvojgkIsCH7bfSGqSFUmS2Lv2GveuJWOWBIySoGrN+m30YVn56wF/6Z7apHgLNy7GOcubF1zAbtU3k73bXr542rT4oq7+sV23ZeXBzymNWe6QJPj2o13OcmqqjVvXE3WOgO8/lhsaPhiwWVf/fryFK268ly84hc2qv02ud4flsvIfi8/p6h/eHSUr9+u4XEPTAUmCr0a5+is11caN68oA0O4YO0bev28O3KCrnxCfxj8X7znLD8J75WJ1w1UGDuy5KSs/CO+bXvp73Ce7ZGUfb3X4eDvwILyXLT2toenAnj03ZOUunZSGI3dIEnwyepuzHBOjFlpbjoP75feQEcM1DFfpSEuzc+rkHWf5118OqRo+3NGu1QJZeeeWa7qZxi6evicrDx/6h24dFovI5F8OupXtHD9yR/sAYMw722Vlb/19/UoCUTdc98rNGy9x/75+mPWX+sgNB7/9ckSX97rf5c+5EUPWqxsZ0iGmSUz9xWX4t1jsnD4co6kvIDD6nW0y2euDNui26dbl+9y84Xqps2XjJVIS1A2V4Fh0D+qzWiZ7Gnhv2/gPqV54D39R/sJq7s/HdOvY/LvckDnylU3qxpV0SBaJGT+75l8Wi51zXnh//vYOmeydgRt123TncqJsnD8O3j748CTCZ2Dx4ZEi2WDHIohYBYlUg8gNwcpt7PyDjVhEEpC4i8glbNyV7NxGJCZdfg+RK9i5iY2bgo0Ug+N3LIJEksFOomDHgp1kgx2rIGEVJFIMdhIEG4mCjSSPuhPSDTPR2FXrviFYSRMy6hBJNNhJFmyEhBu5flh/EQmwf95VLCk2xrXfxoQOO7AJYBdwtCs9K0qqIDnlaXaJt8utZWLPXbxZajWpqSIijlgkVhzGJguOcCMZ8hlDD/BRnY28UWUtf0w+j01wZH6xCBIpbkaTDNy5lIgkScx85xBv1/gDKxL2jHOFSCp2UnBwtqf/1gcNNvDZs1sZUGY5t88lYsSACQN+GPHD4PwY0z9H1kcxuMIK3m26gU+f24opXW7GgD8GRbBXi8cbu8Q477l85n/tenu07IeTXvWjLsm9dLS8XdyREOcKjXzswG0dTQfWLHQZL36fpf6m2h1pHrwT4jzzHikxZdwB5/epEw/raDpw9VK8rKz1NtwdcW68jxy45VV/+ULXYnbe7GNe9T3f0MZngvfP3zzZvBfPOqGj6YBnf/t4a8PH+/HwPnggSkfTgSULXfey/n1WeK/AA6mpWontXfj0E9ei7eefNDxD3XDnttyTxODlLasRQWYc2vbnFa91LJjn6uNNa/QN8gD3YuXR729c9T5HmDfd5b057ddDOpoOHPtbbuSxpnrpcLtEYqLrebrrz6te61js5omzYc0FVc8Ed9yPlY/rW154CwjMnu56Tvw2Rd9YAnDqaLSs/DTwnjP5b6+8Tx+VGzvsWeS9989r+vrA8nmu+9qmNRe98k68K+d9+6q+oVlAYL7bOH9UvJOSMpsD0gcf/jfwBbn14bEiKd1bQg13BBE7kiKNa3y6N4on7IKESoIfJAH1WC0CJGHHH4Pihn9HELGouFtYBIkYi5WCBu3gYM6fNwrMe+cIf69TmcRqtEkSJfYsVJ/8qSenkTh7MAa1+aUkQKokEujGTxAEts68xKoJKm86tdqExJ4/rqnu19J6GEdfSyb6mvJtp4CAGQNpkqi5/0vA+7Yts5/rYKM5E3ZhL1vR1GBwuxtm5nD3IRGgkv3nYcDPz9UosykzvLNehymrvN1yZT8y3m59/CTy9g94NI9OH28fb138S96GTBA3Gl06gYGP5vo2+7l+15QJ3g9wO8fslhbQvS+1YDK5dPz8M8Hb4ycz00ZZf5szMad4gFeg7nFMhUzwdu/vTPH2RCZ4u/e3+3fNn8xEuz3xpPM2ZYJ3ZsapJ9x5Z+b4LPNWjHNB1VvaHSa3cf6oeBueNvcASUB1Yv+/aIcPDwVP2xD14QmHp/HEE1p/NaG+3STLE04BbBoPB6PG5ZCabKd0s0ivP91gcDG2zXi0rosS+vc/T+NSwUphrP5e343cE3akhxoMR0Bw9F86AkPki5Xw3MpUvJ7o90l15/eXxlTX0XSgeKVwWdlo8jLuBGQBJxu28h6pvs+wKs7vHXqV9qofHCJPBB6Z23tAs+Ef13J+Hzmmnlf9cpXkAeyyyrtJq6Je6xgw3JU5pFvP8l71Qzx458wd7PWYNz92BfN8Enm/0KuMV33P/vbx1oaP94PxNmWRd/OW3nkPGV7D+X3mnGe96nsiWzbtrCAZGDe+qfP7mM8be9UvXCRMVhY93SI9YEeSBdLt+Lz3+/OQYTWd35u2LuLVYJI7r7x/i5eO8FpH36GuoLVvvlPHq379+gVl5YAQfUOfwSzIAow++7x2Bi1wvEwZNNz1PG3euiiioH9uIz14FysdrqHpgIjEgCFVnOXX337G6wK9dgN5APmngfer79T0yrtGg3yysp8X3oIH79adSujqS0j0H17VWW7auohX3hF55fOUwqVDdfVFJPq5jfPHwdsHH55E+AwsPjw+SNoeEBnQ+qs3F8OsNUP9Zq95MQgQUTNM1+hgMAkUq58Lq0bAuoeFzCSqdt8mNGJlfa6eiHvodWQV7v331pT6sr+N/b2Z7rGR+YMIi3QtEqo1zUdAsP4D+Jt18gwP3Ucoo9S7o+kL8oXH+NktdfvbZBLo6zZRMZlMlKmUQ/sA4NPJcp6Tfm+vq58nfzA5Il2TunpNChMUbNY5AuatlWcy6f+6dhpVgNYvyCdkE2e19sLbwMvDqrmVTVSoqJ2iFuDHX+TZF2Ys66Crnzd/CJGRIc7yg/Ae9Lq+Ea79C/IJ+IPw9lzseuLryfLMJz7e6vDxduBBeA97vZaGpgMdO8kNC9NnPqtrODCZDAwZ6jI0BAUFeX1T3KmL3Pi0YEknXf3QUH/y5nUt0to/W1r2xlsNW7b3kZW79imn+RyXkKjTRJ75YuyXTXQ9ZUKy+dG5iyuttdFopFHLIrpt+naq/BkzaV47Xf0KVXIRGup6mVC1Wl5y59E2wgkCTP1NPoZGflJPl3c/twU9wCdfNQKdIRWQzUynLmWdZaPRSIOW2i8XRCR+mCrPAvjr3GcVW5PdUaZqpIx3lep5iMir/VJFMkhM+k3+bHwaeFeqnocwPd6CxPcz5c/KEWO0jVESEr2GyrMtffhVA919Cf7ZTDzX1XW9Go1G6rQspKkvIfHNNHkWoZ/mtdPlXapqjsfO2wcfnkT4DCw+PFZ4s2Q/qchbLDvv7Giqvm3GJPDZ+Xb4PSJ36geCAMMW1yU0Z6DXt7sqhz4yPDekDE27FpPJytTMxYCx6oaA7BF+zL/QWSFffL2r5vkevaAxIWHy9KfDvqxNnTbq6ebK1sjJ2AXyxZHJZGL+ny+oLkZMJoENp15UyFce7EW+QtlU6+g1pBLtu8oXeRVr5OGtsXVV9cMi/NlyXpl68vDVgQRo8J48rz1hHrzf+bIejduoTxwr1sjF9/PbymQmk4nft3bV4G3gr5P9FPLd+1+iYMHsqnUMfKWabOECUKVGXt77TP1tfXhEAHvOvaSQZ5X3h180pGnrIqr6lWvkZtI8+QT+QXhvPPAi+TX6u9+QynR0m8CDj7cafLzlyCrvT8c2oWXrYqr61arnYdbc52Uyk8nEus09NXkfOaFMZx2X9J7q7wPkyx/CzNkdZbKGjYow/PWaqvoBgSYuXVOmjv7n2jDZ1gV3/PhTSyIj5W/Rf5zSlvK1cikWeiIS+YpnY/l6eWp4o9HI9t198VPZrhCSzY/Dx5S8567qROXquRVygHc/rUejZkVkspJlcvDtry1Vz23R4mGs3d1DIT92ajCRkcrFp9EosGptN0JC5G/pXxleg24DyqvybtqhKJ9901QmNxqNrN/TC4O/vFESEv7ZTOw+oRyDi1Z1pmyNnIq5mihIvPNpXRp78C5dJpLxU1sqPCEkJPKXyM6mXcpUwvtPDyB7Tn/lfNAEC/544anlvf1MP0I0eM9Y11HBe8Dw6jw/oJyCt4REww5FGP1NYwXv5ft6IKjw9stmZMtJ5Zxi9urnKVUjUskbidc+q02DZvL5Q8kyORg7rRmSCu+8JbKxSmWcP2reTwMkCSRR+N9//ptLtCcSgiT5TqcPDxfuud0bGyYQKLhcZ82SQXebkFoMFkjPdCM8HN8KsySobgeyIWJTcZcUJFhrdz2Yln9wlP3zriIYBZq/UYqmwx1vCUW7yIjiq4i56j3zwoNCQnJkPdKxgjTuWoTXFri8RL7suI0D3rIgucGOhPUhnesMFKwUyg+72xOgE8vAZrPxxYs7OLHnDkHZzLz2Qx2qNc2nqQ+wce455oz9G0uaSJ12BRjxk76bfVxMKu912cjNf+4TmTeYsQuakq+IunEgA99+tIs1C89hMDq2Bbl7rqjh5JE7vPfyRuLvpVG2UiQ/LGrnlffbfTZyZE8UQdn8GPV9I+o21X6rBLBk3kl++HwfljQbzdsW44uJzXX178YkMbzLH1y/nECuvMF8P781BTzc7j3x1ai/WL7wDAaDwIDh1WRv9NVw9GgUrwxYS9y9VCpUysXcBZ288h7edz0H99wkOJuZz79vSr0m+luzsso7JiaRQV3XcvVyPLnzBjN5XjsKPmTex4/c5o0BG4i7l0q5ipH8uqiDj7cKfLwfLe9e3VZw5XIcefKGMGteRwoXDtM95pPR21iy8BRGo8CQ4TVknitq+HXSAUa+vQVRhKAgEyfODlUYPtxhtVrp+Oxijh29Q2CgmQk/tqD9s/pbdX756QDjx+3GahVp3LQIc+Y9r6sfFZVA57ZLuX0zkfAcAcxf0YmSpfS3807+5SAL5p3AZBIYMqymwgDsiYvnYhn1xp/cjU6mcvXcjP2hmaqhJgN2u52x7/3Fnh3XyRbqx6gvG1Kpeh7dOjauv8D4cXtISbXxbIdSjHxP/zkWH5/C28M2cfHsPfIXzsb4iS3JnSdE95ipvxxi8TxHfw8aXl3mwaGGC+fv8v4bW7h7J4UqNXPz1XctvPL+5L3t7PrrGtlD/fnki8ZU8cJ78/qLfPf1XlJTbbR9rhRvvae/bepp4b113SV+/no/qal2Wj5XnNfff0ZXPz4+hQ9e3co/5+6Rr1A2vvipGbm88J7x82GWzzuD0SjQf3hVmeeKGi6di2X0G38SG51CxRq5+ez7pl55f/7eX+zbcZ2QUH8+/LKB13H+MHm7rzOuXbtGgQLqL9CeZLhzONjvefKFeN9W+qhxMzGJGjMd2er+q+f1SYHPwOLDQ4eegUWQwE8lyCy4vFs8/5aRclkn616moVW/lJ7lR9EsCcrWjuTb3fruvxnYOe8ffnlxj3rdAqrWYcGQuSw3GbAiYtc4Fw17FmHEHPkWnEtHYvmg/gZF9h6tuqV0A8vDMrEUqxzOd7vbYX6QQHI++OCDDz744IMPPviQDp+B5dHAZ2B5ePBtEfLh0cLDoCAIkKt0iLprb6Vsig1EEhLhhQPSrRPy3w0KNmEyopCbDALZcqhvwC1QWlmHiES+itmVJh8JCpcPy7RxBaB+r6IMnvEM2XPJXbmrd8jPm8sbkre03FuiWI0I3l7dmLKN5HEsIgsHM3xhPer2LCyLiB8c7ke/8dXp9F55/IPcI9QbaPNqaV6drnwDVKxqBKPWNSW/R93Fa0TwwaomlPeoO1fhEN6b34jGPYrKoruHhPsx4JsadH23Av5Brje2Jj8Dz75ahtem1CHMg/czzxbk8/UtfcYVH3zwwQcffPDBBx988IAkCU/Mx4eHA58Hiw8PHe5W2cN7TzPvrUvEXE/GGp1GjmQjRiBJsHI/1EhIrgDKPJOT16Y9gzk9r+LPr+7l+NYo7idaSLiTislmQBIgIKeRwCA/wnIG8Pr0uhQp7/CMObz5BjPePkR8dApijJUwiyNnTZLBSkqEkew5A2ncoyg9R1UBHK7LX3bewdVTcSTcSSUgQSQAEyKQECISktufvMWy8+6S+mQPlbtAfz9gJ4dnX8VsFZAAWwA0e6cUfT+VB1m0Weyc3RXDqd23WTvhNFKsiAGwChKhpQLp+UkVCpYLo2DFMIT0Tds3Tsdz40w8c8YcIeZ4ImZJQATE7NB6aGmqNs1P6XqR+AU6jBtJ8RbO7o5m+8rLbJl3EXuKw+dEMkKNDvkZu6SFrE2SJHHhwF0unYhl+meHib6W5PTYCc8dQP/3q1GiSg5KPROJ0eiwvd69mcyFQ3dZOvkkh7fcRLQ7bhcmPwMNOhamdc9SlK4dSWh6EFqrxc6pXXc4tucWc78/RsI9C+CwjxWrFM6UbR0IDlFGf7fb7fRpvpzDu6MQ029J2UP9GTulKa06lVQdZzMmHua7UXtIS7YBYDAKNO5QlMmL1DNfRN24T6/my7hxMQEJCQGByALBzPyjIyXLqAeofXfwRlbNOYvd5ji3fv5G+r9Vjbc+UY+dsnf7NYb3+IP4mDRAQhAESlbKwcI/uyj2GWfw7tF8GX/vvkXGrTgk1I/PpzSjTSf1TAjTJh7iu1F7sCaneyQZBRp3KMKvi9SDat68kUDHlou4fiHBmRI7V4FgFq3tTOky6u70r76ylgXzTmJL5+3vb+S1EbUZ9UlDVf2/tl+lT6/l3L3rSJwuCFCxYi7Wb+mty/vo7ltOt66gUD++1OE9eeJBvhq9U8a7eYdizFrY8T/F+7kWiziyJ8oZTToo1MyEya14tpP69okZEw8zYdQeLOnjXDAKNHm2KJMXa4/zns2XcuNiArjxnvXH85TQGecr55xFTOdt8jfysu44v8qwHutIiEl1CAQoWSmSRV7GeVb6O6u8b95IoEuLJdy+cB8DAiIS4QWDmLe2E6U0+vv1V9axbO5pJKujTcYAA6+8UYMPPmmgqr9r+1Ve7rmKhJg0x5gSoEylSFZt7fHQ+vtBxnmbVvP552KcU5Y/fzZWrOmmOc6rVpzMxQtxMtkzdfKzcasythTAqhVnGdB/FaluXpD58oWw99AARVwYcGyLqlllGhfd2mQ2Gxg3vjkvD1LfgjX0lbXMm31c5uVZvGQ4R44NVtU/ffIO7estIDXF5qrDz8i8Nc9Tr5H6FqysXt+nTkQz4KXVnDxxB0kCPz8jbduV4NcZz6puCxNFkeFD1rF0yWlSUmwIApQsGcFPk9ryTF31N8G//HSAMR9vJyV9nBuNAm3bl2TeQvVgwQ/S34/jvta25Xz27rnh7L/QUH9+mtSG555X35ryNPB+kP7esPICn7+1g9tXE5GQCM7uR4/BFRn5eX1V/XuxKYzovY79225gt4kYjAKVaufhh3ltyJtfPSbU5HEHmDbhEAmxaYBAjjyBvPlZXbr0Vc/6d/ZEDG/128D543eRJAmzv5Em7Ysy/rdWmuP8/Vc288ei86Sl2BAEgcKlwvhySnOq11Xf1v2weT9tHiwH+nZ6YjxYas76HfjvntcnBT4Diw8PHZ43vltHRWY9uxuzyraglCD44V5nxV7PgZWWc/dkkkLfLki8t6oRddrKY1T89s5+Do6/pJqlyFjKn+/PdpTJ7t5K5u2CK/GzKfWtgsTo460pUl6ehu+dumu5t+e+Ql9ColSPvLw7v7FMvmfNFSY9u1uWothZR5DE9HtdFbx7Ry7EGKu8JO1IdJtUlWcHy/cP/zRyL2snnFHdchVRMoi5p7vIZDG3kulaZKE8l3MGBJh6pCPFy8vTTQ6sv4KL+2IV6hIS9bsW5rN58vgAO9Ze5t2Om1QqAP9AIxtjlMEGa+f+lbh7qarHjPm5Cd0HyrMAff7uDmZ9d0SVd/4S2dl6qp9MdudWIg2LzkDS4L3qSE9Kl5NP0l5osJAT++4o1CUkWnUtwcS5cs+mLWsvMvT5taoc/AKNHIp+RcG7eu7JJKYboTzr+PjnJvQaKI+WP/bd7cz+7qgq77wlsrHtVH+Z7PatRKoX+1W1v0VBYsvhPpQtJ8+O0qzRLA7sj1Ll0alzGWbO6SiTrV97nq6dl6nqBwaauHbrDQXvarknk5QF3h+/9yfTvjus2d/7Tg6QyZ5U3qXyTiQ51qpsExJf/tyMvgOqyOSfv7udWRr9rTXOGxSdocpbEiRWH+mlGOfPN1jIKc1xXpKJc+WBkDevvcjQ59eotskUaOBI9JB/3d9Z5X37ViL1ik3HqHI/txlE1hzupejv1g3nal7fbbuWZOocucFyw9oL9O+0UvUZYwo0cO7O8H/d31kd57duJVK2xM/Y7SqxwwTYc/AlypWTeyjmjfyWpCRlmwAKFMjGqfOvymTzZv/NkMHrVPWNRoGomLcUi7DIsG+wpKln1Pvgw3q895HcgPVs2/ls//Oqqn5AoIk7sW/LZOfPxtCk0mxVfQmJ+X+8oAhCm9Xr+9CBmzRvMkf13ObPn43jZ4YoMhPVqj6NM6diFPqCAEt+70LL1sVl8g/f28LEHw6otqlY8XCOnpAblx6kvx/Hfa1Qvu81n98/TGxF/wHyuGVPC++s9ve8KX8zZvh21RB6dVoUZOZaecyh+LhUGpf4jeQE5fVqDjCw8WQf8nkEmH+r/3rWzDun0JeQGPJBLd74RO7l/PeBW3RruARJ5dzmLBDMtnP9FeO8TZU5XDp1T0lCgMkrnqVJG3lWxkfBWxQSfAaWRwCfgeXhwbdFyIdHjhnd96gaVwACk+G757fJZIu+O6ZqXAEwSgIT+u6UySwWO/u+VTeuANjOpbJpuvyB81mzTarGFXAEwf2y5RaZ7PhfUcTuSVDVFxA4syCKuGh5cNtfuqsbVwDMyQKfd9oqk/3w6i5V4wqAEYF5rx2WySwWO2s0jCsAd88nsXrGGZns9RZr1Y0rABK81UY+kT7yVxQX9t1VVRcQ2Ln4CrEevEf33KqqD5CWYmfkCxtksk+GbdWcnAGMfX27rGyx2DWNDADXL8SzaOYJmax3y9/VjSsAEvRrs1wm2r/zOsf33VZVFxDYsPgidz14j+i1XpODJcXOK51XyWQfDd+ialzJqEONt9aiE+DmhQQWzDwuk3VqtUizvw2SQNe2S2SyXTuvak5KAX5feobo6ESZrG+flZr6KSk2enaVT1o/HLZFdbENDt6fvb5NJrNY7Ez9Xn3RCY7+njvzmEz2JPJ+57WNqottcKSv/3CE/Lrx1t/XL8Sz+Df5OO/Vcpkmb0ES6KsY5zc4qTvOzxMTLb8Xj+i1XrNNthRRMc4fpL+zyrtbqyWqxhUAk2igdxt5X+zeeVX3+l6rwntw7zXaz5gUkb5d5Of2Qfo7q+P82dYLVBed4HAUeq7dIpls8i8HNI0rANev3+fM6WiZbNhQ7fua3S7RvLHc0NGty1JN4wrAl1/skpWTk62axhWA1BQb772zWSZrW2e+pr6AQJ/n5H3xINf3i71WaJ7bGzfu89H78v776cf9qottcPTFgJdWy2QWi13TyABw6eI9Zs/8WybLan8/jvvaG69v0H1+v/WG/GXL08I7q/1ts4l8/uYOzfwEuzddZcfGKzLZW/02qBoZAKypIsO6/yGTnT91l9XzzqrqCwhM/uoA9xPSZPLhPf5QNa4ARF9P4sv3/pLJpn1/SN24AiDB2/3k87vHwfupgPQEfXx4KPAZWHx4pIi6lIB/kv4Ve3mzfEL3xySl9d0d9liRE3tck+N5Hx7CrLNvUEBg1Rj5wjPhtH6mH/tNK3a7a5I4bfgBzYkvOAwgPw/Z6yxfPxePSd1G5MTFTXLe++ZqTzIB/K0G/lpx2Vn+9aMDmhN+cPCe8+lRmSzqrNIDxx3xUaky3t+P2K3LW0Dgm1ddBq/L5+JIS9aeXAMc2nJTVl41X7+/rTaRTSsvOsvfjNqlo+1o04+f7pPJrpyN0z3mblSKjPcnI7Z54e1YOGbg0rlY51YlLezdIs/kpDURyoBok1i/8ryzPG7UTq/97cn7nyzyfucNdc8jd4wYvtH5/fz5u04Xby38ufWyrLx6vj5vyeZwJ87A56N3YPByfY//bLdM9iTyXjbvtH4FVliz0nVuvhm10+u198Nne2Uyb+M8NirZY5z/6bWOj151LSQvnbvn3LKjhd2e4zyL/f0gvK+didetIz4qTcb7gze26tZhQOCt4a4xceH8XdeWHQ3s3CK/f2e1vx9knJ87p278zsDtW0ky3qM+2KbfJqBDu4XO70ePRmkubDNw/JjcC2jT+osamg5IEvw2/Yiz3K3zEh1tB6b9Kn+5kKxjJAKwWUWsVpdOVq/vqKj7XL+m/kIlA4sWnJSVf518WEPTgbh7qezb67o2xoze5rVNX46Vv0zKan8/jvvawvkn1BXTYbOJrHYb508L76z296Lpx7Fbta8lAYGfvpA/v/dsuaZbx8mDdxBFVzqC7z7Zo3tfQ4RJX7uMW7dvJnLrqv6ccPV8+Uu6+ZOPa2g6kHjPwuG9rjne4+Dtgw9PInwGFh8eKS4fvqt/wwcMHjff5Fj1t53u+Oeky4J+46T+RAjAEi9/eBq9WGmNCCTFuyZoiXfSdLQdiL7keiNyau9tr7wFjzmimOL9gXHGzaX98qk4r/op8fJKvO0IFBC4H+86/3G3U7zWcdON9/F9t7zq223yNqSl6k9sAI66/e6FU/qTLYDEeHl/eeeNjHdsJnhfu+Ra1B3eH+W1vz15q2V18oQ773OnlNu0POHJWyXruAwGBOLdeN+J9mIVBC5fcl17B/bf1NF0IGP/ewYy099H9rnePp7JRH/f/w/wzkx/H9rv6u/zmehv9zELeH37JCCQ4HZMzG3vKeWv/eM2zvfd9DrOxX/Z3w/CW88wAY77uYz3He+8r16Kc34/+Iiub/f+fpBxnpkN3u7j3GLx3iZ3b4RtW6/oaKq3webFIAOwa6drAXXJIxaMGqzWrC2mBARuR7n6OKvX95kzmXjGJMrH4L173p8Zp066PB5OZ6K/4+PlniFZ7e/HcV9LzcT17f67TwvvrPb3xbMaXh9u8Lwf29K8jHsJmWHo5jV9YwnAFbfr7cJp7/PzpPvyOWR8rLa3UgbOnnD18aPi7R576WnA/zqwrS/I7cOHz8DiwyNFkWo5nOmXtSCa5Rd0cIQymJgnild0xQkpUDHMq75fmDyrkFaaY+ffkQgOdR2TLY+/1zpyFQ9xfi/3TG6vvCWPREeGIO+XY7k6uZ3fi3rEiFFDkAfvjIC6mm1CIluo6/yH5QnS0XYgf3FXoLWKtfN41Tea5TwDApVB1DxR7Zm8zu+lKqgH6nRHtlB5f3nnjYx3jjyBXusoXDzU1b5aeb32t9FjnPsFes+sVP0ZV8C40hUidDQdyBYm5+3tWSkiEerGO3cu73uAixV3jbuatdQD2rnDc/+2fyb625132fLqAQzd8d/g7b2/a8n6OxO8Qz3ulV54S0hkdzsmZyau70Lu47x2vkyM83/X3w/CW/RiUbN78s7tnXeR4mHO7zUe4PrOan8/yDj3clsDkI1z/0xkcwsPdwWtbdxUPVisXhtMRu+NatjIFUOtREnvzzGzOWtTVQmJ3HldfZzV67uMRjBod4Rkk4/BiAjvz4wKFV1xgMpnor9DPQIIZ7W/H8d9LVAlCKonatfJ7/z+tPDOan+XKOv9+e15Pzb5exn3Bgh0y+iYv5B60Ft3FHG73kqU9T4/D/YY56E5lEGtPVG2oquPHxXvzMwbffDhfwmfgcWHR4q8xbKTFqL/dCzaSh6crP0w9ajzGTDlMFCutuuYnp9VxaozwZaQ6PiZPEhq9vL6E2xTfjNGo2syOmBibd0HkR2JV6e4Mm4UKBWKzQvvkq3lvOv21Z/MpplF6nVw6Qz8rIbuwkJCou8YeXC5fGWza2g7EJYvUMb7zR/r6PKWkBg5yRUFvkipMAKC9CfxNVvIJzPPvajf32aTgWYdijnLb42pp6svITHi02dksqJl9SfxkR68x/zQxAtv+OIXV3DfYqUiCAjSf+DXbVFQVu74YlkNTQcMZoEWHVxB8t4ZU99rf78xRh7ArrhX3kEy3t9+31JXH+CHn9s4v5csmYMgL7ybNZcHvHveC2/Bg/cHYxp45f3eGHkmgieRd5cXy+lXYIY2z7oyZr01pi5SFvvb2zjP4cHb+ziXPMZ5OP7BWRvnWe3vB+FduFyYbh1h+QJkvL/6vrkubxGJb39u5SyXKJkDv2D9+1rDFvL7d1b7+0HGeWkvhoA8eUNkvL/8qql+m4A/NvZyfq9SJS9GLwaTypVzy8pt2pXQ1RcE6NOvirO8YElnr20aMqyGrBwUYtbQdMBsNjizEkLWr++8ebNRqJD+s7JHzwqy8itDq2toOhAeEUDNWi5Dw6gxjby2yTPbTVb7+3Hc13q9WFFD0wGTyUC79q5MYU8L76z2d9f+FTD6aS+5JCRe+6i2TFavRSENbQcq1syNweD6zTfG6M/XMMDQ92o6i7nzhZC3sL5R5rne8vnZi0Mr6+pni/CnSm3XC7HHwdsHH55E+EaoD48cA5fWx4K6y19qMIxYKn/gdn6tApGV1N9A2A0Sb8+RZyDw8zNS590SiBoPFr+ygTTrI0/1+8nWFlhM6vpWg8QHm5rJZBXq5SayQajqw0tCotyL+QmNkFv2X1taH5sGb2uwxPtLmshkw36oiz1SfTJrR6LPJPkk08/PSId3ymo+UHOWCaFtH3kq0B83t0XQmkcIMGF9G5moct28lK6bU5N3o55FCfN4k/P5kuYK3Qz4Bxn5arF88jP6+8aE67wV+eRn+Xny8zPS/+2qmrwLlw6jc295OsJ5m17AYNJYKAgwa708NWSNuvmpXDePJu92PUsqeE9c3E6h62xzkJFfPNJHj/m+CdlyqHtrSWjwfkubd8EyoXTx4L18YzfQ6G/JILFknTzL1DN1C/KM29tGT3TrUU7x5m7uAvW0muB4uzbXI+3mmO+bEKLJW+LTn5S8B79VQ7u/y4TRvZd8sfMk8v7quxaavEUkvvpJft34+Rl56a1qmrwLlQ6j84vKca7JW4A5quNc3TvDMc5LEe7B+6dF7TTvteYgI5NUxnlW+zurvBdv7IJd435uM4jMX/+CTFa7bgGq6Fzfz/UsrejvaQs7aPI2BRn4zSON8oP0d1bH+doNPTQNIIIAq//oLpO9PLg6ITrGicKFs1O8hPyN85Sp7TX1jUaBjX/KUzvPW/iCrqfMRx/LF89BQWaaNi+iqR8UbOKzz+WGoU371dNJg6P/5q2Vj/MHur4XdtI8twUKZufTz+XjdsirNSlfIaeqviDA9JnyrFR+fkZGvFlbVR+gVOkIevaSGy+y2t+P4772zYSWRERoP7+/n9hKVn5aeGe1v00mA6O+b6Rp/mjQpjD1msmNtN/ObEVwmPo9xC/QyMSF8gxvJcrkoGMf9TmhhMSro2oR7JFu+ufF7TXnRrkLhfDuF3Kjbv/hVSlRUcMrxQATZreWiR4H76cCT8DWIEkSvLv/PkR06dKFcePGPbTfGzx4MF26dGHp0qVcunTJKY+Li+Pw4cO8++67FC9eXPa3RwmfgcWHR46qrfLz6s6m2HKbsCIhIpFmEAmumY0J0Z0Uqe8AJh96jnqDikCwgIiE3SCRo0IwX+5sRa1WBRX6fb+sQbtfqpCWzTF5FZFIM4kU7ZGHCaeeU+iH5Qxi/LXnCCgTgE2QkJCwIWEsYubT020ppPIm+Osdbak6tDAWP9FZhyVIovnnZXlndkOFfs1WBRi5sxnkMWLHUYfVIBJWM4Sp0crU1ACzorqQp2kYFoOIhIQdCXsOgSEr6tH2pdIK/aFf1GbgTzUxhBjSa5AQTVCrWwFmn1C+GYzIGcSif7qTp1QIjoDhjn8RhQL57UQn1Tfgk7d3oM3gUghmwalvDBDo82lVPpmlfCNat2UhJm1vT1gu16RLEKB0jRysu9Vblfeu6y9Tu3EBDAbXzT0sPIBflranc//yCv33vmjA6ImNCAgxOdtkMAm07FqcTcf7KvRz5Axi+6X+FCrl2O6QMQHJXSiYdcd7U1LlDdmSbd3oOrgCRjfe5gADw8c8w3cz2yj0G7UswrxtLxCWK8B5bhGgTI2c7I8aqMp73/WBVG+cD8GQ0RcQEuHHz0vb0a1fBYX+B1805KOJjTCHGJ1twgTNuxZny7F+Cv3InMEcujiIgqVDEdPHuYhErsLBbD/Wj9JllO7aG7e+yMuDqsrc8gMCjHz0cQOmzuig0G/eshgbt/QiZ06XV5ggQNVqebh8/TVV3vuvD6Ra43xIBtcYDA734+el7enaX8n7488b8dmPTfDz4N2mawl2//3yf4b3yWtDqNE4H5LB1abgCDPTl3agd79KCv33vmjA6B8b4ec2zjFBy64l2KwyziNzBvPXpZcoWCrUdT9AIlehYNYff5ESquO8K10GVZBd36ZAA6/pjPMF2zoTmivAqS8JEmVqRHJAY5xntb8fhPeuSy+Tu3QINiHj3ikSVjiQjcf7UEqlv9f+2YuegysimF1tMgYKvDmmLpN+UxoVmrUsxvI/uxGayx8x49wKEmVr5OT0zaEPpb+zOs5z5gzh9IVXKVlKvuApWCg7B/8eqDrOb0a/RZmyynHQqElhjp8ZqpB37VGexcteINDDJb9gwexcu/W6IkUzQFTMG5QqLa/D39/IT5Na8867dRX6K1Z35+WBlRVbQcqUycGtmLcV+kWKh/PnsT4EBLnGh4SE2c/A71u7Ua+R0hs0q9d3lap52HvwZapUze18LgUEmOjctRxHTwxSbBkB2LWvP/1frkJQsMOIJQhQtlwkm7e9SPMWxRT6n37ehAk/tCA42GX0MhoFOnUuw8GjgxT6D9Lfj+O+dvHqcBo0LCR7foeHB7BgSSf69FN6PDwtvLPa3z0GVGTy8vbkK5oNBMd9JzjMj1c+qMn0lR0V+tmy+/PnuX7Ua13IOQ8xmASqNczL5tN9yZtf6X0yblpLRo6rT2ikv9OokTN/EN/MaslrHz6j0K9QNRerD/ekTLWcznmIOcBIm24l2Xyqj+o4X32gJ50Hlsc/2OSc5xQvH86i7V1o2FJ57T0O3j48+XA3dISHh7N06VLu3vUekymziI2NZenSpXTp0oXixYsjCAKCIBAeHk716tUZN24cX3/9NcWKKa/NRwFB8hb90Qcfsgj33O6+POo++OCDDz744IMPPvjgw8PA07DOcOewv3dn8oZ4jx30qBGVmEStuUuBh3teBUEgLCyMGjVq0KVLF6ZMmcLhw4cZOXIkX3/99UOpI8N7RQ2dO3d+rMYV0HQm9sEHH3zwwQcffPDBBx988MEHHx4VJFFAEv/3GXweVRs8fTmWLFnySOpZsmQJYWFhHD7sSKNerVo1atSoQVhY2COpTw++LUI+PDacPR7NgBYr6VJ1ER/230xKin46ZovFzqfDt/NC1UX0afw7h3dH6eoDbFp5kZ51l9K5+iJ+/Hgvdrt+Wsq70cm83vkPOlVdyJD2a7h51Xuau+nfHqJrzcV0f2YJK+ac9qp/5ng0L7VYwQtVF/H+S5njPWb4nzxfdQG9Gy/l0G7vKQQ3rrxA97pL6FR9IT98vMcr75joJF7pspo2VefS/9kV3LjqPdX1lG8P0qHWfDrWWcDSuae86p86Hk23lktoWW02I15anyne77y2kYbVf6Ndk3ns233dax1rVp6lZf05NK45ky8++StTvPt0XU6DajPo1mEp167F6+oDTPx2H01rzaJ53dksnHfCq/6J47fp2GohDav/xtCX1/5neX//7V7q155Bw3ozmT/vuFf948dv067VfJ6pMY3BA1Znivcbr2/gmRrTaNl0Dnt3X9PVB1i98iyN68+ibs3pfPbJDq+8o6MT6dl1GbWrT6NTh8U+3jrw8f7v8j57OobyRX6mQPYJlM4/kf37vN9Dssp79+6r1KgylZJFJ/Js2/kkJuqna01OttK8yWzy5ZpAsUI/sHiB93vnlHEHqZVnCtUjJzH4+ZVYrVZd/asX42hZbhbVIibRpMQMTh2947WOXs8to1DYBAqHf8dbQzd41c8q7wfp79EfbiVPjvHkDPuGlk3nYLHoj6n/r+P8SeRts4n89ON+enRdxpBBazh7JkZXH2Df3uu83G8Vvbv/zpxZxxBF/bTECQmpjP7wT7p3WcrItzYTE+M9zfzvS0/Tp+dy+vdZyZ9/Xvaqf+VKHK8PW0+PrssY99UuLBb9NMhPKm8f/n+jWLFiNG/enJEjRzJy5EiaN2/+PzGugG+LkA+PAGque91rLuHy0XsIbnlERST6ja7CkFG1FL+xaOoJJry6G4NbwCUJiYgiQaw+00MWMR4gKdFCu+LzSI21yuqQjBLjV7Wivsq+0I8GbmHTzIsYkNdRrU0+flml3IN/6mg0L9ddAR5zPmOIgaUnupJHZV9o15qLuXo0TsG7z+jKvDpKGeht4dTjTHh1N0bJZfuUkAgrEsjaMz1VebcpPgdLrF1Wh90o8u2q1jRQ4f3OwI1smHVBxltEokbrfMxY1VGhf+LoHXrWW4rBKrdsG4IF/jjRS5V321pzuXD0roL3kFE1eXOUcg/+rGlHeX/YFkV/5ymSjf2nXlbwTky0UL3kryTGpnn0N8xe0ZFmLZVugK8NWsfSWacU/d2wdWEWrFTGqzl29Dbt6s9D8uhvvxAjO4/1J19+ZZaJprVmcfbvGAXv10fV5t2P6iv0n1TeTRrOwmqVT36Cg80c+nugKu/6tWdw7JhycfP+R/V4/8MGCvlv044w4rUNeD59ChUO5e+Tg1R5ly/9C/di5Ysbo1Fgye9daK7Ce+igtcydo5xQt2xVjKUruirkPt4+3vDf412r/FSuX0hQXN8hOf04e334Q+FdpvhP3LyZqJD3e6kSP/6sDDj59ogN/DrliELu72/kZvQIWYYfgJiYZBoUmIbaemvU9w3pPbSKQv587QWcOhKtkOcvnI2t5/sr5CsWnaZf35V4vqA1IvDnzhepUl2ZqjervLPa37duJVKq6E+K3wEYNboB77yvzJj3/3WcP4m8N66/SK/uv5OWJjcMNWhUiNV/dFdkuklNtdG4/ixOnZSP22zZ/Fi7oSdVquZR1PHtuD18NmYHoug6uYIAQ16twVffKBMKXP4njiYNZnH3bopMXrhIKNt39SUiQplBs0/P5axYflYmM5kM/DS5jSLg8JPC+2nbIrSvZ5cnZotQ7fkO75JHeV5btGjB5s2bH/oWoffff59q1ao9lN/7t/B5sPjwyDGk7WqueBgZAAwIzPr0KDvWXZbJz52MYcJQuXEFQEDg3uUUutVS7rHrUGY+abE2RR2CXeCt9hu4H58mk//23RE2exhXMuo4vO4mn4/YIZPb7XZeqrNcYVwBsCeKdK6wWCEf3HY1147Gq/Ke8+nfbFfh/d3QPTLjSkab4i+n0qWW0qWufZl5WGNFRR1Gu4G32q8nIV4+gfn1u0Ns9DCuZLTp0PqbfDziTwXvHnWVxhUAMUmibcV5Cnnvdsu4eDRWlffkzw6wdZ08gvfpU9G8/+oW1f6+fTmRZs/MUdRRu9w0kmItKv0NL3ZYTny8fHLx83f7WeZhZMioY8f6K7z3xiYF77b1lMYVAEuinfqVflPIu7RfzLm/76ry/vGzfWxef/E/wbtR/ZmKSSlAUpKV6pWnKuQd2y9UnZQCfDl2FxvXX5DJTp26w+vDlZNxgKtX4mnwzEyFvEr5yYrJuKO9Ei90XKzg/eP3+1Qn4wAbN1zinTc3evyOj7cnfLzleBJ593x+GTc8jCvguL4Toy00qDHD43eyzvuZGtNUjQwAM2ccY4GHV8DWLZdUjSsAaWl2ihaYqJA3LDRd1bgC8NmIHdyOknuWvtNvg6pxBeDGlfv0bCJ/HlssFlXjCjgy9DWtr7zXZpX3g/R36WLqxhWAzz79i6tXY2Wy/6/j/Enkfe1aPF1fWKowMgD8tf0qfXquUMhbNZurMDIA3L9voWXTOSQny71lVvx+hjEfb5cZGQAkCX756SCTfj4gk4uiSIM6vymMKwBXLsfTuN4shfztNzYqjCvg8FAZMnAtRw7JPcefRN5PBTIy+DwJHx8eCnwGFh8eKex2O4c3a2/tERD44hW5MeO93psVE0Z3XDsWT1ys6wHy994okm5ru3EaJIH3+m6WyaaPOaxYpLq3afWv8gfO1+/sQrBpt8mWaGfNwnPOst1u56gX3p978B7Ze5Mu7xvHEmS8j+6NIuW2tgu1UTLwbl/5AnrSpwd0eS+fKt/yNHbkDow6vO2JIisXnnGV7Xb2bdZ2TxcQeH+IvC8G9V6ty/vcsbvEuvE+uO8GcbeVE4gMGCSBof3/kMnGf7ZHl/fcqfLJ20cj/wQdD9m0RBtLF7m2SdntdnZt1naJFhB4c4h8Evgk8n5/5Fbsdm2nxqQkK4s9eG/dcllTH2DY0PWycv8XV+nqnzgRLeO9f98N7tzRdg2WJBjYf41M9sXYnbp1TJ96VFb28VaHj7cDTyrvLev+0b2+zx+XL9Czyttms3HqpL7r/5uvy+9rvbuv0NVPSLBw9apra8eaxWex2/QdqXs2XiYrr16gXBC649CuW7Jy63oLVI0rGbBJEu+/7nouPQjvrPb3zBlHVI0S7mhSf66s/P91nD+JvN95c5PCAOCONavPk5jompeeP3eXI4dvaeqnptoZO+YvmeyjD/7U0Hbgqy92ycq/Tj5MvMfLRHdcvhzPXzuuOsuiKDJzxt+a+pIEb78pn0M+ibx98OFJhM/A4sMjxb4tNxRv6D0Rd0v+JiPqnH4cFAMCC6ecdJZ/m3BUc5KZgRO7bsvKtiT9vb5YJdne2x0rLuuqCwgsmOharG5be8Ur7/gH4L1gimsf+4wJRzLBW/5Gxp6kv+dVsCLjvWXFP/r6CMz6yfWA3rL2H6+8792SGwkun4/T1Tcg8NuvR53lid9pG4kysH+XPG5NWpL+fmLJo7/Xrbygo+3gPfWnw87yxj8ueeUdc0s+qXwSea9edU5H24HJP7neHq1fd1FH04Hbt+VvgS+cj9XQdGHar65z+8N3+7zq7/GIW5OcpB+7wWYTfbzx8dbDf4G30cs9x4hAbKyrXVnlPX+u97gpSR7n3n1xpYUP39/q/D5xjHfeN6/IY4RlZmN7fLzrfnvylJfYLAIscOP6ILyz2t/ejAYA0dHyZ8b/13H+JPLet/eGrr4oSqxdc95Z1vLAccfGDXLv3mtuhkg13ItNlcVKWb7sjI62A7N/c83XDh2MwmLRnwufOCG/dp5E3j48GkRFRXH9+nXdz5OIS5cu0aVLF7p06UKLFi2oXr067777LnFxcY+1Hb4sQj48Uti8BC0DwGOyJEl4WUaC3eb6XVHnTYX7b2YVolvTvcTiStdxVWK3ZeIAzzZloo02t9/NHO+sE3fvMikzNNx4Wx8Zb/f+zkwd/5a39+Pd+9um4orsCcWYfgJ5672Zcupnkbfa9e29Te7j3HsdD3J9+3j7eOvqPyW83eOlZpW31ZIJ3g8A2fM7Ew/XB+HtHh83M8e76zwI7yz3dyb64kHw/3WcP3bemTgk67yzTtz98tHz2nHqyOapmbkwPIpPIO+nARIC0hOwPUdym6nWqqWMj6nQf8LCuH755ZfExcU5swlloEuXLlSvXp1NmzY9tlTNPg8WHx4pnmlWCNHLSjIk0l9WzllYGYTLHRISXQdWcJa7DamA5KWOktVyyMqGAC83MiMEh/g5izWbKQPgeaJDv9LO743bF/XKOzjST1bO4YW3iER3N949hlTMBO9IWdkbb9EIIW68azfNr6sP0KlvGef3Fu2Le+WdLTJAVs5bWBkk1x0SEv0GVHGWX36lmlfeFarlkpXNAfq3OsEoyHg3aKoMDuyJHn3KO7+3al/CK+/QHE8+7yZNi+jqA7zY1xX0rk27kl71c+QIlJULFlYGF/RE/5erOr8PfKW6V/0q1XLLygEBRg1NB4w+3oCPtx7+C7ztXu4HdiTy5AlxlrPKu1efSl71Pc99QKD393affNbY+b3/CO8BCXPm0X82qiEy0nVM0SJhXvXbtC3u/P4gvLPa30OH1fSqHxoqnxv9fx3nTyLvylVza2g6IAjQ1u13u3Qrr6PtQINGhWRl92tXDdmz+xEQ4LreWrUprqPtQNduZZ3fa9TKh9GoPycsWSpCVn4Sefvggzs2bdqkyByUkRa6ePHij82TxWdg8eGRws/PSMmaOTT/LiHxxrd1ZLIx05vqLiQjiwWRM48r2na95oXwC9O+2YpIfDVbHm29y+vldeto1K2IrPzxpCaIBp3JrD/0GOx6YPv5GSleM0JTXULizQnybDqfTW+qu0iPKBao4G0K076E7YiMm91CJuvxmr5RpllXuWX3i0nNsRu0XxVI/vDi4CrOsp+fkbI1c2rrI/HRtw1lsolT2+jyzlcsG7ndHriNmxUhKNSsqS8iMXmmPAvUgOH6xol2XUvJyhN+aaXb3wZ/gZcGuxYGfn5GKtTMpakvIfHpt01ksieR948/t0HQeSr4+xsZMMg1QfbzM1Ktel7tA4CvxsvH4JRf2+nqFykaKptgNW1WVLHQ8MS03zrIykO8LF46dSkrK/t4q8PH24EnlXfV2rl1r29PI25WeQcEmChYSH8B/fGnjWXln35urasfEGCkVCmX4b/n4EoIXt53zNr4vKzcoFUhDU0HSlWQzzm27O+LoPP4NkgCk+c+69bGrPPOan+/+XYdHW0H/tjUQ1b+/zrOn0Te48Y31x23DRsXJizM9VKlUuXclCqlPSc0mQx84jGm3lfJPOiOV1+Texi88dYzBAZpz4Vz5w6mdVuX8cNkMtCpc1lNfYAvx8nnzk8ibx8eDfbv38+1a9d0P08Svv76a6chRQ2dOzuyZr777ruPpT0+A4sPjxyz/upIeKFAxURQQqLdoFK06yFf5FWrm5cXR1dWXXwGRJr4/XgPhXzZ8W4YglQy3QgS789oIDNMALwxti5VW+VTbVORGuF8PaulTO7nZ+Tb1RqLbjPM2ve8Qjznr+cJKxSgWkebQaVo313Ou3rdfPQeXRk7SoOGX6SRlcd7KuTLj/cAlZd7dkHk/RkNFbzfHVufaq3yKc6thETRGuF8P0s+OfbzM/LTqraqRhbRLLF4nzLN7/Id3chRKEiV9wuDyvF8d/kDvXbdArw+qrZqf4dE+rHr75cV8p3HXsIUpLx9iYLEhBmtZIYJgFFjG1G/VWHVNpWtkZMpHoYJPz8jc1Y+j6TS34IZNuztrZCv296TnIWCFXVkeB517lZOJn9SeS9b3hWDypPBbDawfXdfhXzL9t4UKKi+GOk/oApdPXg/U7cg73+kTD8KEJEjkINHBynkB44OJFDjzfjkae0Ub7zGfNaY5i3U3UCrVsvDdI8JvI+3Ut/HW44nkff6HS8SEumnen0bggWOnBsskz8I779PDiJbdj/lAUCrtsV5dbh88du1RwXadyihqm80Cly+MUIh/+NYL819wS+/VZVipeUGk2mrO5KvkPpb7tBwf1Yf7iWThYT4MebjhqpGFoMECxYrn99Z5f0g/b1rfz9VfYC+/StRsaI8fe3/13H+JPIuXSaSSVPbqXqAVKiYk+Wruinkm7f3IX8Bpeeqn5+RZau6ygwTAP1eqsIrQ2uotqlz13K8/6HcEGEyGdiwuTdBKkaWiByBbP2rj0I+dUZ76tYvqJALAoz9sgkNGsqNmU8i76cBkiQ8MZ8M5M2blwIFCuh+niR42/rTooXDSPrrr78+Fi8WQXrSNlD58J+HVn76LSsv8cuo/SQlWClQMjufTW9K3kLa2yTuRicz6uWtXDwei3+QiX4jq9CpbzlNfYBp4w6xYvpprBaRivVy89nUJgQGqk+SAM4cj+azV3YQfSOJsJwBvPdDA6rV1X6TYbHYGfvadvZvvIHBKNCiWzFeG1Mbo1HbhXXTyosy3mOnNyOfF94fvryZC8fvERBkov/IKrzQV9/N8tdxB1k+/TQ2i0ilerkZO7WpLu9Tx6P5aMhWom8kEZ4zgNHfN6JGXe3tQBaLndGv/8mejVcRjAbadC3B22Pq6PJet/I8347eTWKChcIlw5gwrRX5dd4KxkQnMXzAOk4djyEwyMRrI2vTs09FTX2AH8bvZe70Y1gtIjXr5uPHX1vr8j5x/DZvDd3ErRv3yREZxJffN6N2Xe2HhMViZ+Trm9i+6TIGo4GOXUrzwZj6urzXrDzLVx/v5H6ChaIlw5k4rQ0FC4b+53i/+foGtmz+B6PRwAtdyjL6kwa6vFevPMtnn+wgPiGNEiUimDytnS7v6OhEhgz8gxPH7xAU5Meb7zxDby+u+d+N38NvM45itYjUrpOfSb+21eV9/PhtXh+6nhs375MzMojx37XgmbrKyaSPt4/3f5n3yt9P89rA9aSl2DH7GRnzdWNeGlxVU/9BeP82/Qhjx/xFcoqV/PmzM3/x8zJPFE9cuhhLh3YLibqZiNls4OWBVfn8q2a6vN/svZ7Nqy4iihKFioeyYMcLhIZqbw/aseEf3um3kcQEK4FBJj7+sRHP9tB+I5+YaKFlnTlcvBSLIAhUq5aXFZu74OenfW6zyvtB+rtTh0Vs+/MyoiiRL182du7rS0SE9jaJ/6/j/EnknZCQyhef7eTQwSiyZfNn2Os1adqsqC7vZUtOMfO3v0lLtdOwcSFGvlcXPz9tz5MrV+IY+8lf/PNPHPnyhfDh6AaULqM9Bm02kYk/7Gf9ugsYjQa6ditHn36VMKhZnNKxb+91Jnyzh7t3UylfISejPmko22b3pPHWWmf8l+DOYU/37uQNDvZyxKNHVFISdRYuBB7teW3RogWbN29m5MiRfP3114+kDk9cunSJ4sUd2+g2bdpE8+bNvRzx7+AzsPjw0PE03Ph88MEHH3zwwQcffPDBhycLT8M6w2dgebwGlri4OMLDwwHHdqKRI0c+0vp8W4R88MEHH3zwwQcffPDBBx988OExQ5KenM9/DXFxcVSvXp3ixYtz6dIl7wcAFy96T83+b+ELw+zDY8HFc7H0e34Fly/GIUlgNAk0bV2UaYuf1XTXHP7SH6xecg6bRQQB8hYMYcr8Z6lWU30Lz8a1F3l78AZio1MB8A800n9oVT76oqGqfkqKhR7tfufw3ihEu4RggLKVIpm/5gUic6pbkieO38ePX+4jJdEGQPZwfz4e35huvdW38Fw8d5c+z6/gysV4SOfduHURZizuoMl76MtrWb34HPZ03rkLhjBtwbNUr6GeyWjD2gu88coG4qJTQQK/QCP9X63Kx5830uTdpd1Sjuy9hZTOu3TlSBav7qzJ+4fxe/nhy32kpvMOifDj0/FN6N6rgqr++fN36dppKZcu3kOSHHuDW7YqyrxFnTR5Dx6wmqVLHNu7BAHyF8jO7PkdqaHBe/3a8wwdso6Y6GQAAgNNDB5SnU8/b6Kqn5JioWP7RezfdxO7XcJgEKhYKRe/r+pCzpzq7tjfjd/DuK92k5TkyPkZFh7AV980o2cv9S08Pt4+3j7ePt7uGPfVLib/coh7sSkYjQZq1MrHT5PaUKKEeuDHebP/5o0Rm0hNcdxrjUaBF7qUVQT+/De8s3o/P37kNj3bLePeXcezFQEqVcvFqh3dMZnUp5HdWy9h17Zrzgl7tux+TFnQnobNi6jq//bdIb75YLcr1azgCOQ+Y21HVf34+GQaVJzJjTuJ2BExIpAzNIgNu3tTuHi46jEfvrmF3349SorNhgAE+fvx7sf1GP6metDMqKj7DB30B7t2XsVqFcmW3Z8+fSvy6edNNLdbZLW/Dx24yYjXNnDqZDSi6Mj6NPL9evR/uYqqvsVi443hG1ix/CxJSVYCAky0alOcib+0Jnv2ANVjli05xZjR27l2LQFBEChRKoKvxzenSZMi/zPeT8v17YMPPvxvsXnzZg4fPgzA0qVLNT1TYmNjnd8ztgo9Svi2CPnw0OHpuhcTZeTZBgtULaNhEf78ff0VxcOrdump3Lh8X/X3Z/z+HC3byS+OKT8c4LORfyl0JSSqP5OPVdvlgXETEy1UyjcJS5pdcYzBJLDv3ADy5pfHSXmp6wo2rLyI4BGNTwIGjajGx183lskPH4iiQ4MFqCV5CI3w55gK7+qlf+X25USFvojEb78/R6t28uCBv/y4n7Hv/IVB0SaJynXy8Mc2ebC/xEQL5fP/jD1VpVEm2H9uAPnyy+Ok9Om6nC0rL6nwlhjwRjXGfCWfEB08eJNmDWer9nd4RACXrg5X8K5QZhJXr8QrDwAWL32B1h5pFH/6cR8fvPunqn7tZ/Kx6U95MLfERAtFC/xAmkp/G40CJ88OUfDu2XUZa1afV61j+Os1FfEEfLyV+j7ePt7w/5d3u9bz+Wv7VYW+ySSwaeuLVK8pNy599P4Wfvz+gGqbihYL5e+TQ2SyB+Gd1fv5js2X6dnud9U2+fkbOBc7TGFkKZfrZxLi01SP+fbXlnTrKzfkvPvyRlbMOaOqHx4ZyN6bA2WymJhkyhb4mTRBydtPMrDzUH/KlJdns2tTfy67Dl5XBNMVJOjepTxT5jwrk1+4EEudGtNVz2258jnZvb+/wtiQ1f5eueIMfXquUB1TPXtXYPJUeRDy1FQblcpO5tYt5RwhNNSfv08NJiJCHjdj9Id/8v2EfcoKgO9+aMnLg+Rpsh8H76fl+vbhf4enbYvQ7m5Pzhahuov+W1uEMmKrVKtWjSVLlmgGu928ebMz0O2hQ4eoVq2aqt7Dgm+LkA+PHD3aLtN0O4uLTeP1l9bLZOM+3aVpXAEY3GO1rGy32xn7rtK4AiAgcGjvTdavkj9ou7RarGpcARBtEs83WySTnTx+hw0qk1JHHTD1+8MkJlpk8p5tl6kaVwDiY9MY7sH7q093qhpXAAwIDFTh/fm7SuOKo00Cf++5xTqPCUan1ovUjSsANujQbKFMdOL4bdXJeEYdU79T8u7YbpFmf9+LTWXQgLUy2eef/aW5+AJ4sdcKWdlut/Phe+qTM4B9e2+yds05max96wWqkzPH70m0aj5PJjt+/Lbm5Axg4g8HfLzT4eOthI+3C/9fec+bc1x10Qlgs0l077LMQ2bTNK4A/HMpntkzj8pkWeX9IPfzvh1XaLbJkibSvY2cx9uvbNQ0rmT83R1Wq1XTuAJwLyaFqeMPymQNK85QNa4AWASRVnXnymR7d19jt4pxBUASYPGSU8TFpcrk3V5YqnluT52M5usvd8tkWe1vURQZ9NIazTE1f+4JDuy/IZO9+sofqsYVgPj4NPr0WimTXbkSp2lcAXj7zU2kptpkskfN+2m5vn3w4WHif505SC2L0JMGrcw/xYoVo1q1ahw6dEg3k9CmTZsAR7rmR21cAZ+BxYdHjKibCdxPsOjq/LH8gqw846cjuvqWNDvbt1x2lr/7cq/uvkEBgU9GbpfJThy6o1vH9X8SZOW3X9molUXSiXeHb3Idfy2e+wnak0yAdcvlE4DpPx3W1beniWxz4z3+yz0IonarBARGvSOfyJz0wvvmP3LD1ptDNqpOxjNgQOCd4a4J87Vr8SR44b1q+VlZefLPBzU0HUhLs7N1yz/O8rivdnvdJ/reO1tk5SOHo3T1r1yWLwCHD1mvoenCG6+5dHy8teHj7YCPtzqeVt7fjd+jq3/7dhLH/r7tLL/5+kYdbQc+fF9+P88q76zezy+eu4vVKurWsW+n3AiwbO4pXX1JhBVLTjvLr/fw3hcTP5UbCW7dS9LVj0+TzzmG9VuH3rrBLki81M1lnIiJSeb8uVjtA4AZU+XzlKz298IFJ0lJsekcAWM+3iErr1l1TkPTgV1/yQ0dn3oc7wm7XeL7CXud5cfB+2m5vn3wwYd/j8ymS+7SpQvh4eF06dJF9e9ff/01gwcP1jz+8OHDjBs3jrCwMKZOnfogTc0yfAYWHx4pDu3RfzACWC3yNxMp6ftltSAg8NcW10Ti8P5bXuuIjUmRlTOzMS421nXMzWvaHjUZOHfyrvP7ru3XdSeyAFaLfOKakqQ/2RIQ2L71irOcGd73YuRv5dCfK2NAyDLvs268/9qh/ibLHRaP/k5M0jfAAWzbetn5/cA+72Pq7t1/19/Xr2u/cc/A6ZMxzu8+3trw8XbAx1sbTyPv23f0jQAAhw66uB484P1+npQofzY+iueY+/18wyrvgQAlj2eK1eblIQNsXesyqJ0+Gu1V39Pb1K7lGpoOUZC4ftXVxzExyV7ruHT+nvP78eP6LyIAhcdLVvv76OHbOpoOXL8mf9HjzSBjt0syz4yLF/SNJQCnTrjO/+Pg/bRc3z744MOD4fDhwxw86Hjxsnnz5kwFpl26dKnsf080b96c4sWLO7ceZSAuLo5ff/2V6tWr07x5cw4dOkRYWNi/J5EJ+AwsPjxSlCqXw6uOwSg3RJj9vO9zLVc50vm9cNFQr/pBwWavOp4IDfVzfg+LUA8e5448+VyB1ipUzonkZRJo9OTt7/1yLF/Jta+8cNHsOpoOBIXI98Z78/6TkOS8w/291pEnv4t3xUq5vOobjXKe/pno7wqVcju/Fy3mvb+D/2V/R4QHetXPm88Vo8fHWxs+3g74eGvjaeSdPbv3e2fx4mEc+/s2p09FU7iI9/u5n3/WY0D8m/t5jbrqAYhl8HimGA3eXcwrVnOdT/f6tGA0yX9TbVusrEkS5M7rikUSEuJ9vETmcukXKxbmVT8wSP6bmenvEiVdAV8z09/h4fJ5h9msP0cQBAgKcj3zc+f2HtMhfwFXOx4H76fl+s4MRFF0Xt+PCqmpNg7sv8GVK3GPrI64uFT27b2eKUPlgyIq6j4H9t8gOdm7Qf6phAiIwhPweTT0WrRoQXh4OIIgUL16dafnSkb8FEEQCA8P1/RC+frrrwkLC9ON1zJy5EimTJnCkiVLqF69OuHh4VSvXp1NmzaxZMkSNm3apLuF6GHDZ2Dx4ZGiVNlIr5PC6rXlk7iWHfSjOxsM0KlbOWf5w8/VswS5Y9CI6rJyAS/GidAc/rKAZh9+3tCrweTLia6gaeUr5vLKu9oz8mxILTuU0NB0QDJCZzfeoz9vjOilTa+8XkNWzlckm4amA9k8eI/6vJEubwmJr39s7ixXrJjbK+9aHv3drkMpXX2DQaCrG+8xY9WzDLhj+OvyrBCFi+hP6iIiAmS8Px3b2GsdE35s6fzu460NH28HfLzV8bTy7t2nkq6+yWSgY4fF1H/mN2pXn86mDd69RV7yyCyTVd5ZvZ/XqlsAwcsssWjxMFm5Zj3vRpmBr7meSxOXtdfRdKBtF/kYyu7vp6HpQLDRjNnsWqR/NLahZjw0AIMEk2a1c5YLFw4jlxfjRIfn5G3y1t8hIX40aFjIWX55YDXFSxZPvP5GbVm5Tr2CuvrlyueUBaAd+V49XX1BgLdG1nGWHwfvp+X61oMoirwycA2RYeOd13eu8PF8PGpbpn/DGxITLbRuMY/cEeNp1mgOFctMpnD+75k/7/hDq+P8ubvUqPwrhfJ+T4smcylW8EcqlJnEoQM3H1od6/84T4kiEyld7GeaNZpDnhwTaFRvJtGZ8Izy4b+DTZs2ce/ePSRJ0vzcu3ePKVOmqB4/cuRI7t27p5khKAPFihVjypQpHDp0iHv37nHx4kWWLFlC586dHwUtXfgMLD48crgbHjxhMhmYvep5mWzijNb4B6o/7CRgxKg6MllIiB/P9SytOXGMyB3I0DdqymTzVj2vGvAuA9MXy1NitmxXnKIl1VM/SkjUaVKAAgXlk4Avf2quqg+ON3JzVnaSyX6Z3gZTkPolKSHxxkfPyGTeeIfmDuDVN+QTlYWrX0AU1PVFJGZ48G7VrgQFS6pPbiQkajctQEEP3t//2EpVHxz9vXRFV5ns12ntCAzUzhj//ofySWJIiB/depTT0IZcuYJ4bYR8Yvr7qq4IOv09b5G8L1q3K6mZXhKgUZPCPt7p8PFWwsfbhf+vvN99vy75C2gbtG02EZtbfBOLRd9YHhho4ouv5c/SrPJ+kPv5u2O0F+mCAKt39ZTJFq57QeGV6o7eA+UpciMjgyhVUdvT1WgS+Gam/Nwv/qMrJg13TKMk8OMUuX73PhXJn0OjLySoVDY3JUvL2/Dr9Paa5zY8PIDx37WUybz194Qf5PoBASbe/UD73FatloeOncrIZFNntCcgQP1aMpkMzJglf35Xr5mP5i2039i+NKAqkZHyrEOPmvfTcn3roV3rBcyfe0J2faem2vhu/F5eGbgm07+jBZtNpEr5yezeeU22fepebCqvDFjLb9OP/us6rlyJo07NGZzziMlz9Uo8zZvMkcXVeVD8sfY8/8feWcc3kbRx/LdJKqm7UqgDxUpxtxbXUpzDnbvD9e6Aw/Vwdz2guNPidrhTrIXiBUqNahp5/+hLku1aqoQyXz79kJ19dmefnexk9plnnqdj+7349JFuTLlzOwb+ZVczAhEXZb53YNsfIcjtjwYxsBAKnE49y2LxhqaQmtAHBi7FzHE9qh/MzOizUWKxGPfeDoa7j5W6TAUVDIxEmDS3DkZOpBtYAGD5xhYYMLwSw5W4fFVH3Hk5gCHv5WuLkze6w9pO44KrggpmlobYHRaC6rWZM0WXHvZB7UA3mmFGJAJCfvFD6Anmj2/nHmWxaGMTGJlIaEYQZzcz3Ijqz6r3wzdDUMzHQu2ZooIKImMKf8yrg9ETazLqWLmxJfqNCAC0PGqVlAplqjrg/kumq523jy3CbnSHuZ2h+ppUUEFqKUFoWAfUrF2ccczVh/1QI6gYzTCjEgPtfimNfcc7MeS79yiPNetbMNrbtZg5Ip4PYdU76vXvjAGRkZEYM+c0wLiJtRl1rN3QGr8NqwKJhN6FVa7sjKcvhjLkfXxscelab9ja0V2HLS2NcPREV9Ri0fv2gwFo2MidNrATiSh07V4Wh491YcgTvYneRG+it+ZcItx5MBCBQZ40TwUbG+HlC9kpUcIS7z4NZ5TnRu+c9ue/jq2Gv2bXZXhbmJkb4sqTPrCyoi9jkUgkuP9+MGxs6ddEiYCBIyph9rIgRh2Hb3VD9YbMdKBWtka4lziIUV6tliv2HuoIM5EBvqlBqQATSoKVq5ojpHtZxjGP3w1FgJ8TDFSa75QhRGjS0BMX7vRmyDds5IFDxzqjmJvG25WigBq1iuFexCCGoYOrvR2dTLH137bo3JV5TeMn1sbCxY1hpbUUyMBAhE6dy+DsxR4MeWdnc9y424+xpMXX1waX/uuN0n72jGP2HeqIAYMCYGysmbQyMzPEX1PqYiGLUaEw9C4KzzcXV6+8xeWLbzj379j2EB8+CMdC4mPG1Av49Il7uc6Esac59+nKgL5HOOPOKBQq9Ot9mHVfTvh18HHOfV+/yjBquHDgbwJBX6FUKl3CRxEIusOXnz4uLg1vXyaiVDl7GOqwNl+hUODh3c9wdjWDg5PwWm0gK4NPYkIGSvnZ0txGuUhLk+Hxwy/w8rWCpaVug99nT77AwEAEDy92r5bsxMWl4c3LRJTOgd4P/q+3o456v3mTiMSEdJT2s9NZ74hHsfD2sdZZ76dPYmFoIM6R3q+iE1CmrIPOet+/9wnOLuZwyoHeCQnp8MuB3o8excInh3obGIjg6cU9K6YN0ZvozQfR++fSW6lUIvplImxspejb6xDCT/IH9Rs4uBL6D6qI2NhUVK3qAomE2wPoG7nVOyf9+ceYZEQ+/oJKNVw5PSm0kcvluHbxHYp7WMLN3UqnOiLufkLsxxTUaFiMtsyHi8TEVFw68waVqjvDyVk4rgkA3Ln5AUZGYviVE469AWQtx/j0MQXFS1gyjAJsaLd3dgMUF7GxqUhJkcHNzYK2zIcLmUyO16+T4OJiBhMT3V7+371LgkQs0nlMURh6F4XnW5v2bXfr9HzP+4dpaNSV0j7L8e4tv5Hm4LHOaNDAPdd12JjPhVwgYHVCylidvqtsRL9MQHm/VbwyllZGePNhBOs+vveMHwVtHS617wpnU92ey4LkQ0oyau/dAeDHva/6AjGwEPKdotDxEQgEAoGQ39SvvQm3b/FnDGrbriS27GjHK0MgEPSPwni+3ZwXIjGBP6304mVN0TtbzKacYCGdLSjz/vNInT17snP2bDTaNN/JK2NkJMbnhDGs+4rCe4a2DheDu+mNgaXOvu0Aftz7qi8IT0EQCPlEYmIapo+7iI8fklGjrhsGj6oieMyWdfdw8nAkbGyl+GtmXUEvlmdPvmDBtCtIS8tESDc/tG5fildeoVBg7t//4cHdj/D2scafs+oJzlicDXuBzWvuQSIR4bcx1VChkhOvfGJiGqaOv4iY919Rs64bho6qyisPAJvX3cWJw5GwtpNi8ox6gjNOT5/EYt70y0hLlaNDNz+0bV+aV16hUGD21Mu4f+cTvH2tMXlmfUG9T4e9wKa1dyGRiDBsdHX466D3H+PPIuZDMmrXKY7ho6rzygPAxnV3cPTIc9jaSfH39AaCs9xPn8Ri1vSLSE2Vo3O3Mghuz722G8jSe8bUS7h75yN8S9pg6owGgnqfCnuB9WtvQyIRYeSYGqgY4MwrT/QmegtB9P659J49/SKOHHkOaxtjuBYzw+1b/PLunlaY/vd5pKbK0bK1D2rWYi6B0CY3eue0P4+NTcaIPmH4FJOCGnWLYcp84WClC6ZdQdjhKFjbGGPeqiBBL5Zr599gym/nIMtQoN0vpfDrn/z3NjMzE/1DjuL5oy8o5mGBjQfbwsSE3+tl84o72LjsLkRiCuOm10aTNvzB5fPa3stWNkeJEla88rduvsfEsaeRliZHt57lMHBQZV55pVKJbVse4OGDz/D2tkaf/hUFPUzu3onB3tAISCQi/NKzAjwFvJZSU2VYvfI2PsYko2o1VwSH8I8pACDsRBTOnH4JG1spBgyqJOjFUlSeb21KlrITNLCUKmWH40efIyNDgYqVnAS/HyqVCnduxODtqyQ4OpvCyclM0MDi7WWNYweeQyyiULW2K6wFliZmZipw9cJbJMSnw8vXBiYmBkhNzeSUF4spxLxNxuOHn2Fmboga9dwEvdq+JmXg6oW3yJApUMJLhyxaNsa4ff2DWu8qNV0h0iFLGYGgDxAPFkK+w2ZZ7hm8H6ePvqTJiUQUFqxpjA6/lGGc42zYC/RqdxAKOf3r6V/NCUcudGXIKxQK1Cm3Ca+iEtUhUlRQwVgqwdErXVGKZW3y/OmXsWj6NUZ2gW4DymHOUqb75od3X1HffxOSk2Sg/l+LCirYO5nivyd9IJUyLfk9gvfhzNHobHoD89Y2QafuTL1Ph71Az+ADgNbvmhIqVKjuhOPnu7HqXaP8BryLTKJdk4FUjONXurGuyZ4z/RIWT78GkVYwKyVU6DawHOYtacyQf/8uCXX9NyEtKZNWh42zFNcf92PVu2NwKE4cp2fFEIkorFjTHF27lWPInwp7gY7t9zBcUqtWc8Gpc8y16AqFAgEV1uJlVAKtXCqV4OylHvDzY7p+z5pxEbNnXEb2Hq/vgIpYuJi5Fv39uyRUqbgOX7/SA605OpnifsRAorcWRG8NRG+i9zd2//sI/fseZlwTHxQFhryrqznCznZnBOYEcqd3TvvzpjW24eHtT4zyiTNqY8ho5oTB/n8j8HvvE4xrKu5hgStP+jHkMzMzUcluDTLSssV8oICNx9qgZqMSjGP6dziEywdfwxCaF+xMKFGypi32nevMkH/y6BOCKm9DokqmjqNGqQBbiTHuvBsAS0sTxjH51d7uHpa4HzGYIS+Xy+FVYhni49Jp5WIxhZOnu6FqNebs8Y7tDzBs6AlkZGjulUQiwtQZ9fHr78y2iItLRaN6WxEVGU8rr1TZGSdPd4OhIfOleOK401ix7CaUSo0iZmaG2L47mHXZyd07MWjTYifi4zV6UBTQuWtZrF7HzBJVVJ5vNt69S4KfzwrOZ14koiA1kSAlOWuQR1FA23alsGRFU1haMg1S927FYGS/k3ga8UVdZucgxavPSVCwJSxQATZSY6gyVFAosvYbGYvRZ2hFjJ9WmzXd9JF9zzB55Fl8/KAJNmttb4zXsUlgi3lKqQBXa3MkxWmMPNa2xpgwvQ669mHeJ5VKhWVzr2PZ3Os0vY3MJfj0NZU14YRIRaGEvQW+fEpTl5XwtMTclUGoVb848WApIIgHS/5BDCyEfCd7xzf7j3s4sPMpp/yRS13gX0Uzq/D2TSKqe6/nlK9W3xV7T9KD8dX0W4/XUYms8iIxhciE32kzHXt2PMLw3idZ5VVQYfSUmhgxgR5M19NyMWTp7EG/rO2M8eDdEFrZkJ5HcXDnE/UgNjuHLnVBgJbeb94koprPOprhQ5vK9V1w4CR94Fi1zFq8j+RYiysGXiQMo+m9e8dDjOh9kvWaVFBh5N81MWo8Xe8SlguhSGfvJsztDPH43a+0sr69DyF0ZwT7NQE4c7EHKlfWpDx88yYRZXxXcsrXqVscR0/SjWoVyq5iDM6+IRZT+Bg3mqb3zh0PMKDvUc46/pxch5HS0sF6HtI52tvWToqXb4bRyoje7BC9syB6s1NU9X72LBaVK6zjlM8pFhZGiH43jOapkBu9c9qfhwTtwtUL7zjr2HE0GHUD3dXbUc++oF65zZzy3qWsce4ePahsecvlTOOKFncSBtM8U2b/dRE75jyAiOV3TAkVaoW4YeWOVrRyV+MF+Eqxz8jbiIwRnTKcVpbf7e1b0hY37/anlZVwXcQwrmjzKX40zSvg/LlotGrGvaxi7cZW6NSZPnFT0nMZPnxIZpUvV94Bl6/1oZXNmnEJs6ZfYpUXiSjcvNefFrA6NjYVpbyWcwZE7d3XH4uXNaWVFYXnmw++e8hFrdpuOHqyK81DIzoqAc2qb8PXJGY2HUoEfFVlMrJCmkICsZLdm6nvrxXx9wK659np4y/Qq90BVoMQJQaSlDK6kUUFWIgMAY7HddGGpgjpRvdEWjrnGuZMuswqrxSpkKzKpBlZKBVgKTKCUsG8KCMjMQ6c7wxr+8wiZWC50K673hhY6u7fBuDHva/6AskiRChQFAoFDu7iNq4AwJBf6D+c/TvzRye/du4d0tI0PzjPnnzBKw7jCgAoFSqMGHiCVvbn8LOc8hQoLJl1jVY2f/plTuMKAMTFpuHUCU1gM4VCgcO7nnIaVwCm3n27HOI0rgDA9Wx6P30Si3eRSZzyUADDBtKjtP8x/AznNVGgsHjWVVrZnOmXOAfjAJAUm4FTJzQzPgqFAnt2cQ9SAKBPj4O07V+6HOCVv3jhNUNvrsFZ1jWoMHQQ/d6OGXmKt455s6/QtmfNuMg5OAOAL7FpCDsRqVUn0ZsLoncWRG92iqre7Vrt5pUHAG8faxgaimFkJEbZckxvQ22SkjIwfy5dj5zqndP+XC6X8xpXAGBwN3pbdGu5j1c+8kk8kpM1RoVr59/wGlcAoFMd+r3cOP8uq3EFAESgcHZvNK1sQMdDnMYVAIhTpGPDUs26rYJo72dPv9D0vnXzPa9xBQBC2u6ibY8axp9V5c8JZ2jbO7Y/4DSuAMCD+59w59YH9bZSqcSiBVc55ZVKFUb8Tp+YGjf6FKdxBQC2bLoHmUyu3i4qzzcfE/6ojT37O6BUaTv1813B34E3Xf3lS29wKpweHHfF/BusxhUAUCmBSmWd4FrMHAYGIpiYGKBWdTdO4woAbFp5Fx/eaSbkVCoV5v99hdPbRqUAaldzg42NFAYGIlhaGqFODTdO4woAzP/7ChQKjafi16QMLJt7nVNepKRQu0YxmJkZwsBABEdHU1QPcGU1rgBARoYCi2Zyf0cJBH2BGFgIBcr1S+8E3aPfvqJ7YDy5Hyt43g0r7qo/L5h2hceMkcXZ49G07eRE9h+tb8gyFLRBw67Nj3jlKVBYOltjlLlw+pWg3u9e0Y0jQnqLQGHdijvq7XnTL/MacADgzAn6sqyURO5BJgAo0pV0vbcI671wjubH7qwOer/OpvfDBx/5DwCwesVt9edZ0y8KyoedoA9UEhP51ytnZGvvbVseCNYxf+5/6s9Eb26I3lkQvbkpinq/fcNj/P4/jRt7ITZxDD4njEHzFvyxQABg/94ntO2c6p3T/vxw6DPBa8oeC+Lda+EUtPOnaO7tlN/OCcpHPvpC2zZQ8A9djVRiWvyI7L+DDChg2Zyb6s2Cau/pUzReDRN1SKV77ep72nZktmU+2fkYk0Jbhrd1833BOtas1hiW7t/7hLQ0OY80cPM6/ZrOnY3mlVcoVDhy6Ll6u6g830I0buqF67f7qZ/viX/WEby32ZcnnT7On43oxZN4PHo6BF+SxiLmyygENvTglVcoVDgf/kq9/fFDCh7cYS7900akpBD9bhi+JI3Fm5gRsLcy5ZV/+yoJT7We16sX3qqXBXFRsZwz3n8eiS9JY/E8+jfEvudOQQ0AZ46/pC1fIxD0EWJgIRQoSRzWd22yr1LTpeNM0jKQpKXxd94AaBZ1XaBA0WZV5ZnCx6ena348ExN00Zu+rZPeSZqBRloq/481AEYMGyFDVHa9M2U50zshkX9GDmBrb8FDaHqn6qC3UHpBNnKqdxrRm+jNA9E7i59Vb11I1DqvLnrzeQpwkZf+PO6LsN65QdsoI8sQ1in7rdXld+yr1r3V5Tuo/RtfGO0t9LINMMcEutSp7S2SwePFwXYdySnC4xZFNs8CXcZGycma8/5Mz7c2GTp8zzPS6fcmPZ3/XmVmKmljW13aW7sOXZ697OfMfo1saF93hg59VnpG3vQuGlBQqb7/n3DvStAVYmAhFCh1A/mzHwCAuYURbdveid9CrgLQuadmnXGH7mWgyh6pNhtepWxo2xJD/q8+JQIsLTVR1wOq8UeeB4CmWtkImrTyFJQ3t6QHWbNzYgbZ00YFFbr20AQQ69y9bI71Fhnyd55KkYqud3VhvZu38VV/btFSeBbWIlt7Owq0NwB019K72y/CweZKlrSlbRsY5Ky9q1QTXmvdqjXRm+jNDdE7i59Vb13Slw79XZNJr3WbkoLy2WNA5FTvnPbnnXrxZ3UBAINsv6WmZvxZfACg/+8B6s/tdajD0oZ+bzPB/3IlgwKOzubq7RLuzODA2andyE39uTDau2fvCoLyLi7mtG0bW/5MMFITCUxMNNdRp57w+KtZCx/156pVXQSztBQvQb+XpUrbCdbRpKmX+nNReb5zSkAlZ1AC766Vq9CvO6Aq//NaPsARBgaaWDVC8gB9LOta3ByOzvz9c8Uq9OxiQmNhUzMDlPTTtJ9/JSdBvStWoZ8zp3oTCPoIMbAQChSp1BCePvzpAEdPoQdVnbmkEa/hwNZRCg+tFIOtgkvCmGdtKwAs39Sctt2+O/+grlZDN9r24vXNeOVFEooWFFcqNYS7jxWnvAoqjJpck1Y2Z3Egr95WLHobSLl/ZJRQYdWmFrQyQb0b0fVevq45I4gaDQloQXGlUkNaADw2/phUh7a9cBEzc5E2Dg4m8PTSnLNNu1K8a5kBYN0meoDDLt3K8spnz4zAlvlAG7GYogXVI3pzQ/TOgujNTlHVe+78RrzyUqkEZcs5qrer1ywGV1dzTnmRiML0WfQAlTnVO6f9uZmZseBL/cDhlWjb2YNoZkcqlcCvvCZLzJAJVQUnTVftp7e3bxVbDsksrNzo2Vj2nusIQxX3cNdEJcGKHZrvRGG0d98BARCL+RX/NzSYtv378Gq88r/0KE/bnvBHbV7jhKWlES0orqGhBA0b8S8z+XtaPdr2zNkNeeUrBjjBUSsde1F5vnNK8RKWaNuuFOd+RydTdOhEH58NGFaJQ/r/+7M9e4EtPHnH2zXqFUO5iprvoFgsQp9fK3LKSyTM/d36lYeJKbcRtXu/8jDVMjYWK2GBFsG+nPIOTqZo15l+X3KqN4GgjxADC6HAOXmjG8wt2Gd3GjZ1R58hAbSyxi280KFnGVZ5Q2MxztxipvU8eqUrRByDlVFTatAMEwCwYGVjlCxny2rQcC5uhu2H6AMbMzNDzFkdyHp+igK2Hw5mlIff6A4zFr1VUKF+U3f0y6Z3kxbeaN/Tj/WaxFIK52/1ZJQfv9INYLGxKKHCqL9rMvRetLIpvMvbsNZhX9wUOw+2p5WZmRli7qogKFnkVSIVdhxh6n35ei/O2Z7GTTwxaEhlWlnTFj7ozjGrZWwsxn83+zDKz17qwTk4/XNyHdoLGwAsW9kcZcuyB5Es5maBvQc70MrMzAyxbCW7UY2igAOHOzLKid5MiN4aiN5MirLe3XpUQMNG7qzyIhFw635/RnnY2e6sdYhEFFavb0l7UQVyp3dO+/Mrz3pzvqSXqWCP8dPoL56depbl9FwViYDzD3sxyjcea8MqDwBNgr1RsTp9Zv/Q5a5QWYL1d0xmpMD5J/TfShs7E/z+WzUYsBhZjFRiLFzONAIWRnufPN2NVR7ISj+sbZABgBGjqqN1G/aX1Zq13TB3AX2MYmwswa69IZBImM+SVCrB8fCujPKde4Lh48tubBjya2W0aEWvv1IVF0z+ux6rvLOLGQ4fZ6bMLgrPd25YsqIpatV2Y5Q7OpkidF8HhhdUnUYl8PeC+qz3avgf1dGmI93rTSIRYdO+tijO4rFV1t8By7e0YJQPGlEZXfowDVhGxmIs3dwMJf3oHkouxcyxdlcr1jF983Y+GDu1FqN87sogVKvjyih3cDLF5gNtaQYZIOd6FwlUlP78EfIFkqaZkO9w5af/Z/oVbFl9H+lpcjg4mWLmkkao3ZDbhfX2jQ8YNTAM714nwchIjOCupTFpdl2IxexeGzKZAiMGnsDZ49FQKJTwLm2DZRubM4wM2hzY/QQz/riAxPgMmFsY4rdxVdFrILdF/1NMMgb3PIpHtz+DEmXNCCzZ0JzXPXj+9MvYsuY+0lOz9J61pBHqNCzBKX/r5nuMGHgS7159haGRCCFd/TBldj1evYcNPI4zJ15CIVfBu7QNVm5swav3vtDHmP7HBSTGpcPMwgjDxlVFn4EBnPIfY5IxsOcRPLrzCZSIQvW6xbBiQwtevWfNuIj1a+4gNU0OJ0czLFwShHoNuGfHbt58j18HHcPr/7d35y5lMH1WA169hw46irATLyCXK1GqtC3WbmjFGJxpsyc0ApP/PIf4uDRYWBhh9Lga6DeAezYkJiYZfXsewr27H0GJgDp1imPNhlZEb6I30ZvorZPep0+/wKB+R/ElNg0SCYVmLbyxflMrSCTss/hyuRLz517B/r1PIJMpUKWqC6bNaMAwruRF79z052OHhGH/jifIzFTCwtIIM5c0QssQ7pnpC6eiMazvCcTHpkMsodC4pReWbm7KqXdqaiY61dmNyEdfoFJlLQtatb8Vw7iizYJpV7B+7m0oMlUQSSgE9y6FGUvZJ0IAIOppHLo02YuYj8mgAHh6WmHv+U6wseNenlvQ7Z2eLkdI2124dvU9lEoVXF3NsWN3MMO4os2lS68xY+pFvH/3FQ4Ophg1pjqaNvfhlE9ISMfkP8/h0sXXEIkoNGvujYl/1aGlgM7Oju0PsHrFLSQmZsDT0xpTZ9TjvabIyDj8NfEsHkfEwtTUAL16V0DfARUhErEb54rK851TlEoVToW/wInjUchIl6NKVReEdPTjvabXLxMRuu0R3r5KgpOLGYK7lIZPaW4vrvR0OY7sfYZrl95CLBKhXuMSCGrhRUvxnp17t2JwaPdTxMelw6ukNTp0LwMHnuWd8V/SsHf7Y0Q8+AxzC0O0CPZFlZouoDjWAymVKpwLi8bpYy+QniFHQFVntO1UimFc0VVvrveMHwlamua2PeBk8v3TNMekJqPugS0Aftz7qi8QAwsh3ykKHR+BQCAQCAQCgUDQL4rCewYxsBRt+BdCEggEAoFAIBAIBAKBQMh3VMqsv++NPlxDUYEYWAiFQmJiGrp02IdrV99BoVBBKpWg/8AATJ3BHRBv4fz/sGDeVSQnyyASUShfwRE797SHE4erdETEJ/TsehCRkXFQqQBrG2NMm9EA3bMFfvuGQqHA0EHHsX/vE2RkyGFgIEZQY09s2tYWhobsbuuHDz7FqOHh+PQpBRQFuBW3wLqNrVG1GnN9KdGb6E30JnoXRb1TU2UYP+Y0Dh98hrQ0ORwcTDBidA307uvPqffe0AjMnH4J795+hZGRGIGNPbFgUWNYWRlzHlPQXLv6FhPGnsGTx7GgKCCgsjP+WdQYPr7s7vexsclo0mgHIp9ntYVEQiE4pDTWbWzNWYc+tveRg08xYdgZxH1KAwC4lDDDyk0tUJmjvWNjk9G+YShePIuHSgWIJRTadCiJJdmCx2szaeQZbF1zH5mZSlBUVsaS0LAOcHO3YpW/d+0DRgSfQNznrJS5RsZiDPyzEvqMZV8CkpmZiY619uD93SQYqkTIhBJWPlLsu9kFJibsQTgPrY3A6jE3IU/OeoswspZg4ra6qN6EfalybtqboD8URn9OIBAIbJAlQoR8J7vrnkJuBv+yq6FQML9qHp5WuPdoEKO8Xq1NuHM7hlFOUcC5Sz1RMYCexm3f3gj06n6I9XratPXF1n/pwfsUCgXciy1BYkIGQ14qlSDq9e+MNbFjRoZh9crbrHXMntcIQ36tQit7FZ1A9M4G0ZsO0ZsO0Vv/9f78KQUVy61BUhKzjvoN3XHoKDOoZZ+eh7BndwSj3NhYgqs3+8KTJ15UQbFy+Q2MG32aUU5RwLZ/26FVtrTJjyM+o1ql9aznsrY2xqv3wxnl+tje40eEY+uK+6Cype5RQoVJ8+th0G/0YJ7PImLRsOIW1muysjbCw5ihjPJqPmvx7vVX1mN2nWiPWg3oMch2rnyA2cMuscqXr+aALRfpwdczMzNRw3w9HOTMDEdfROk4/v4XRlyVP0LCcfvAO4beKqjQakxpDJlFz9CTm/Ym6A+F0Z8Tvh9FbYnQ+db6s0So3iGyRCg/IFmECAVOgzqbWX+0AODliwSMHRVOK1u14ibroBQAVCqgeeMdjPK+PQ9z1n/wwDNcvvSaVta21W7WQSkApKXJEVifPqB88yaR88caAMaPOQ2ZTEErI3ozIXprIHozIXrT0Ue927XexWpcAYBzZ6KxasVNWtnRw89YjStAVjDGNi13ctZfUMTGpmL8GKZxBchqi949DkEup/tK16u1ifN88fHp6N5lH61MX9t7C4txBQBEoDB1zHlGezevuZ3zmhLiMzCgM/2aZ/91kdO4AgBdW+xjlHEZVwDg/rVPOHf4Ba0syHcbq3EFAGyVxmhechutLPppPKtxBQAoUDg07zHS0+W08py2N0F/KIz+nEDIT1QqSm/+CPkDMbAQCpQvX1IQG5vGK7N50z3a9uyZl3nlU1IycfPme/X2imU3OH8YvzH815O07YvnX3NIZhHxKJa2PaDPEV55ABg35pT68+fPyURvDojeWRC92SF6Z6GPeiclpeP+vU+88ksWXadtz5h2kVf+VXQiIiPjBK8jP5ky6Tz4fHdlMgXNUPT2bSLS0xXcBwA4evg5bVsf23ton2MQsRgZviFSUfhDy6vn/dskpKfx633yUCRte+0S7hdbAFAoVLhwKlq9vWjCFV55AJg66DxtW/5WziGZhTSRvjTqz+BTrMaVb4hAYUoXjd65aW+C/lAY/TmBQCDwQQwshALl0gX+ASAApKfRB0tJiewzctoc2v9U/fnMqZeC8u/e02fUlErhlXFxcZof3Mjnwi8AN66+U38+HS58TUTvLIje3BC9id58FLbeXB4Z2nz+lELbfvuG25vhG0KGgvzm0X1+IxEAXNfSe9+ex4Ly2Y0j+tjeL5/FC8rfuvpB/flw6DNB+ex6Z2TwGyYAYM82jUfTf6feCsonxtPvpYmKP3ygFBK8e52k3o57mypYR9QdzbOQm/Ym6A+F0Z8TCAQCH8TAQihQ3D2F19aLRPSZJYlE2EVNe82+g4OpoLyxcc7jOVtaataum2Zbx86Gta3GZdmbI0iiNkTvLIje3BC9id58FLbersUsBOWNjOjXJDURvsZibuaCMtlRKpWMZR26YmktHFjX1s4ESqUSMpkcZco55LgOfWxvEx3a28pWc29Kl7PLcX0iHTzMPX00elvbsy/10UZiQB+qysGf6kIBJRycNec1MGYP9quNiaVhntpbVxITU5Gamllg5weylt4plQWbDqSg68jL810Y/bmuyGRyxnLD/KYotLdCoUBysqzAzq/vfO9lQWSJUP5DDCyEAqVCBSdIJPxfs7LZBjP16rvzylMU8EvPcurtv2fUE7yOX3rSMzBwZXD4hrm5IcRizaBs7ISagnXMmd9I/blyZReiNwdE7yyI3uwQvbPQR729vW1gJWCcaBTkQdsObl+aV97YWIxGgR68MtrcufUBVSquhZXpXDhYz4eN+Vx0ah+K1FTdB+fDRlYTlDm4/ymsTOfCznI+unXcLyjv6ko3Eulje4+YWJ1XXgUVZixoqN6uG+gOnpU1AABnV/o1+JUXNk78Ok4TYHTKGuEMLUHtvWjbSUb8Boo4cQYMDDSZhDqOKccjnaX39U/v89TeQlSrtBYW0tlwc1oCJ9sFsJDORqvmzDg8uUUuV6JPz0Ows5wHB+v5sDKdi/J+q3D+XHS+1fH5UwqaBm2HlekcOFjPh7XZXNSvvQnRLxPyrY78eL4Loz8XYua0iyjm+A/sLLN08HBbjPVr+JfP5YSi0t5hJyLh5rwQ1mbz4GL/Dyyks1G14lokJvIv2SIQ9B1iYCEUOOP/qMW5j6KAXXvoGQK27GjD+2PXp39F2qDR3t4MDRqW4JQ3NTXA39Pq08q27WzHe80rVtPTT3btVg4ODiYc0oBfWTv4+dF/gIneTIjeGoje7BC9s9BXvef9E8QpL5VKsHBJY1rZ39Pr8aZinvR3PYhEug1Frl55iwZ1t+Dpky/qMrlciePHolDBbzVkMt1mvBs0cEfFACdemdhYzbISXTwOjp7sQtvWx/bu3K0sLB2528K7nA1K+9nTynr0Z08P/Y3d4R1o23tOh/AaZYJaekIi0XjiOBUzg1cZbk9XsYTC9A2NaGVTNjZAOtjbWgYFek8JoJV1G10B4P6aIxEyvEvQLG3LTXvz4ea8EI8jvjDKz599jYrlV+t8Hi6USiWqBqzFnt0RtOCt0S8T0Lr5Thw9LLzUS4jY2FSU91uFK5feqJemqVTA7VsxqOy/Nl9euvPr+S6M/pyPXr8cwOyZl5GUpDEKfYlNw4hhYZj81zmdz8NFUWnvg/ufIKTdHkag7idPvsC7xDKkpf28Hi2EHx9iYCEUOGPH18Iff9WGWEwfdVlYGOHStd5wcaW7nUulhrgXMRC2dnTXYZGIwsDBAVi4uAmjjoNHu6BlKx9Q2QZ2xUtY4nn0bwz5qtVcsWd/CKRSusu1oaEIK1Y3R5t2pRjHPH0xFKVKM11Ja9V2w9Ub/RjlRG+iN0D0JnpnUVT07tS5DNasbwkLSyNauY+vDa7f6QcbG/qLjaGhBLcfDEC5bJ4NpqYGmDO/EX79vSqjDi569zjIGXfk48cUTBx3Rudznb3YA81beNNc/yUSEeNeC2FgIMKJ013h6WVDK9fX9r7/ciA8/KyghOY+KqFCQF1nnL/ZmyE/c2kguvdneoAYGIiw72xHeGRLsW1mZozz93vCiGVZTtM23ti4ty2jfO+dzihbxZ5Rbm5piNPvezHKW3YsiZ4LK+KLKB2q/+uhggpxVDoCR3ljyATmd+pQXDcYO0rU8t+O+UKl46GB7kGWudqbi62b7nFmegKAqOfxePYslnO/LixdfB2Rz9nj66hUwKD+R/N0fgAY2O8IUlLYDU8ymQI9ux/Icx35+XwXdH/ORcTDz9i35wnn/kULriIhIV2nc3FRVNp7QF/uYMQZGQp06fDzZOr63suCyBKh/IdSqfhi6RMIOYcvP/2Z0y/x5HEsgpp4wsdHeN3rmzeJOHr4OdyKW6BFS19BeYVCgb17niIhPg0hHf1gYyO8vvv+3Y+4dOk1AgKcUL2mm6B8crIMoTsfwcBQjI6dy8DQUHh9N9Gb6M0H0ZvozYe+6n3/3ke8ik5A5aoucHYWXjIRG5uKa/+9hYOjKapUdRWU1+bduySU9l7BK2NjK0X022E5Om96uhwXzr2CxECEp49jMY4jffM3qlV3xcAhlXD/3kcEh5SCv7+zYB362t57d0bAwFCMkM5+OrX3gdDHeHTnM1p3KIlyFR0F5aOefUHo1gi4e1ihcx/+ZToAIJfLsWvFI8THpqPzkDKwE1gCBQCnj77AqYNRqNHADa27MA1K2fmakI7QJY9gYCzGV8MMjJ9wllc+N+2tjYvDP0j+yj8T7+FphXuPBuXovNqUK70Sr6ITeWXCTndH9ZrFeGX4sLOcx0htrA1FAfHJY3X2RstOQT3fhdGfa9Ol417BDFPDRlTFtJkNeWX4KArt/fRJLKpUXMcrY2Agwpeksaz7+N4zfhS0dTjTojecTIT7u4ImJjUZDY9uBPDj3ld9gRhYCPlOUej4CAQCgaA/nD0bjTbNd/LKGBmJ8TlhTK7rGDvqFC09MxueXta4+3Bgrusg6A+F0d425nMgl/MPsy0tDfEmZmSu63BzXsjrJQMAi5c1Re++/rmuw0I6W1Dm/eeRMNMhwCwbhfF8Fwb1a2/C7Vv82dbatiuJLTv4l/fxURTae8f2BxjUj9/ThqKAxNTxrPuKwnuGtg6nm/eGk0nOg73nNzGpX9HoGDGw5Ac5D0lPIOQShUKB9Wvv4kVUPJo190K9BsKBDa9fe4d9ex7DxdUcg4ZUFpx9SE6WYfmS60hKykCPXhVQspRwFoTDB5/i4oXXCKjkhM5dhWfZXkUnYP3aOzAwEGPQ0ADY2/NbnYneRG8hiN5Ebz70UW+lUokTx6Pw9nUSatYuhrLlhD0anj/7grOno+HgaIqWrX0FA0tq41daWGcLCyNBmew8jviMBfP+g6GBGL4lhZd9ODqZ4tjR5znSWx/b+3V0AjauvQcDAxEGDA2AnT1/FiO5XI4F067ixbN4tGpfEi1DhD1xzp58iZ2bHsLFzRzjptYWzIKUkJCOZX9ew9eEDPwyvALKVha+t+vm3sTZk69QpYYzhk8XDm766NZHLJ90HRIDEdyrC2c5tLM3xtQp5xH5PA7BwSXRtr2f4DHamJoaIlEgZbdQsGI23rxOxOvXiXB2MYedrYngC3fJkja4dvUdxGIK5co7MLJ9ZUelUuHpky+I+5IGL29rGBuLkZ7O7dEgElFIS5Xh/t2PsLA0gl8Ze8HMO3K5Eg/uf0JGuhxuOmQoy83zXRj9uTYl3K0EDSy69DN86NLe/v7Czw4furS3iQ4Z4rioXl3Yg9HAgESxIPy4EA8WQr7DZlkeMzIMa1bdhva3zdhYjNB9Iaw/YA8efETjhtuQkkxfAxrcviQ2bWO3/DcN3IYrl9/SymztpPjvRl/WAcyO7Q/w66DjtBR6YjGFyX/Xw/BRzGwLyckyVKm4Fu/efqWV+5Wxw+VrvWkBC79B9CZ6E72J3kVN75XLb2Dyn+doA3BnFzPsPdCB1eDw6lUCWjXbSQuMaGAgwohR1fDnZOHsOd8oX3olonlc44ePrIapM4Sz0gBZL/NlfFfgq8DyjewYGIqQKdPcWz699bW9a/tvwOc3KaD+H41WCRW8y9rg7PUerO3dr+MhnDgYSSsTiYAVW1uyGlquX3mLjkGhDM+NKjVcsP9cZ1a9W5fZjtfPk2hlRsZi7LvfCa7ulgz5BRMuY8bCS5BTmjrEKgr9O/lj7mZmfJv42FTU89iIN5nJUPz/GAOVCA5KKd4hBRBeOQIgS+9NW1rrbGjZv/8xenY9yCvz8OlgFC/O1JGNqKh4jPz9JM6eiVaXeXhY4SVP0FGpVAIDAzGSkrJeyu0dTDBydA0M+bUyKJagQ5cuvsbYUeF4+OAzgKyXaUdHU3z4kMxZh529CRIT0pGZmfU99PaxwYxZDdCshQ+r/Pat9zH974t49y6r3zExMYBYTPE+jzl5vgujP2cjMjIOAeXWcO4XiSi8/Tgi154fALB+zW2MGBbGud/WVoqXOVxKlZ3unffh0EHuYLnVaxRD2JnuearD2W4BZ5wXAGjZygc7drMHFyYeLAUD8WDJP4iBhZDvZO/4Vi57iqWLb3DK37rfn7bONTExDSVclnAGOwsOKYVNW9vSyurX3ozbtz6wyhsZiRHzZSTtB/VU2AsEt9nNeU3LVjZDj14VaGVuTgs5Z6JKuFviwePBtLI/xp8merNA9M6C6E301uZH0ZtvcG9oKMaDJ4No8VhSU2XwKr6UcyA9dkJN/DmpLuc1a/PwwUfUrbmZZkz4hruHFe4+HKBzTABbi7nql8G8wqa3vra3j8MSpCWyZ2Nx8jDDzScDaGVDfzmCg7u5X7SOX+1Gi8cSG5sMf1fuF8yqtVyx70wnWlkzn6348Ir95Z0SATeS+9MyD/274j4GjjzGnq1IBfzxa02Mm0//TvlKlyAGqSwHAC4KE7wXs+/j4sJ/PXWOx+LrsQwxMez6+Qc44sJlZnBhNj68/4q6tTbhY0wKY59ITEGpyNlw/o9JdTBuAj17ztUrb9Gy2b+s8TdEIor1+8xVTlHAzj0haNbcm1a+Yd0dDP/tJOs1URTA9laS0+e7oPtzPob9egIb199l3TdlWj2MHF1Dp/PwUbfmRty985FRLhJROHi0k2CaeCGSk2UoU3IF4uOYAXlNTAxw79FAOObC80qb82dfolXzXaz7TM0M8DZmOKshDCiCBpZmffTHwHJ8A4Af977qC8T/ilDgrFjGv8a5e+f9tO1unfdzDkoBYN+eJ1AoND/+798lcQ5Kgaxo5BPG0qPPD+h7mPeaxo4+Rdtes+oWr5vvq+hE3Lz5nlZG9GaH6J0F0ZsdoncW+qr3pD/PccrLZAqM+J3+4jRx/BneWcpFC65BqdTN0FG2nCOu3+mHKlVd1Nk+TEwM0O2Xsrh9X/eXr6lTzgsaV5ycTdVLHGxspDA05D43m9762N7rVt3mNK4AwIeXX3ErW3vzGVcAoEcb+ve8Q6M9vPLXL7+DXK65htdRCZzGFQBQKYFx3eh6jBl7ijsVNAUsWH6NVjRtyFlO4woAfBClwtPRnNbeQoS05ddTm2cvf0WdevTAwxQFdO5aRmfjCgAsXniN1bgCAEqFCj6+NjA3z/KMEIkowaUo8+dcwZcvabSyyX+d4wxuqlSqUNrPDkZGWS+9BgYilPaz4/yeq1TAXxPPQnseNy0tE1Mmnee8JpUKKFXKNk/Pd2H053wsXtYUCxYGwcHRFBSV1dbFi1tgy/a2+WJcAYBzl3piyK+Vae1dvoIDzl3qmWfjCgCYmRni0dMhaNHKh9beDRq548HjQXk2rgBAvQYeOHOxB5ycNecSiShUr+GKV++4jSsEwo8AMbAQCpQb199BITCr8uzpF9r2tf/eCZ537eo76s+T/zonKB+6K4K2HRubxiGZRWpKJm2QsWzJdcE6Jk3UZCO4fOk10ZsDoncWRG9uiN76qffjiM+CS2ounn9N2xbKqCGTKXD8aCSvjDbe3jY4fb4H4pPHISltPGK+jMLKNS1zFM9l3erbgjLm5kZISMmq43h4V8hk/AaZ7HrrY3uvXsz/EkmBwtSJmpffsMPC7fL5I91wEflMOOXx/L//U3+eOpj7ZfsbF4/T722SnP87mK5SIDVVY9Tbu/0xr7yKAqyVJur2Xr6qmeA1ffrIbujg4uiJbkhKG6/+S0wdjzXrW+XoHIcO8Bu73rxOwpuYEUhKG4+ElHHo2LkMr3xGhgInT2ja+POnFPx35S3PEYClpTE+J4xBUtp4fEkaC69sabqz8+zpFzx5rElDffHCayTE86cprt/QPU/Pd2H050L0H1QJkdG/ITE1q60fPh2CtsHCWa50RSQSYfa8QLz7NFLd3peu9oF/Rad8q8PMzBD/7m5Pa++DRzrD3oE/XlNOqFzZBc9e/Kp+LhJSxiHszC86ZXsiEPQZYmAhFCjv3yUJymSf/RD6oQNAWwvM5sKYnQyedHNcJCdrBnFpadyzft9I0poxefOaP4UeQPT+BtGbG6I30ZuPwtb70yfhl8rss98ZGcLX+PlzzpZn5BWZDkuDUrTuU2701sf2Ttehvb8maORfRibkuD5dFp1/eKfR+2s8f7BOAFCwLAnjhcqKufINtiVl2dF+FqKihI1E34PkZP57lZ4up+kqlB4aAL4maWS+Jusg/5V+Dck6HaOR0emachgXKTuF0Z8TCPmJSkXpzR8hfyAGFkKBUlcHV0UTEwPato2NseAxIR1Lqz+3bC2czaB4CXqE+m/up1xQFN1NuEwZe8E66jUoof7cuKk3j2QWRO8siN7cEL2J3nwUtt6VKruAJSYmDWdnuuu4h4eVYB0NGrkLyuQn7ixBU7NTo5Zm7Xlu9NbH9i5VVjgbUZ2GxdWf23YRnnEXS+jXIBXIFAQA3fppshw1aiscPNTajr5kR8y5PigLSgW4agWNdXEUjm1QoZKD+nPHzmUF5SWSwn8RKVeePzNMqdJ2tJl/IXkAqFBBI1OsmAWsBb635co7ZNvmr8PISAzfkprYJdmP16WOnFIY/TmBQCDwQQwshALF2loKZxf+tZpDfq1C2546kz9KvKWlEcppZWzo1cdf0H105eoWtO2mzbx45SsG0IPXrVrXkleeooCpM+qrt21siN5cEL2zIHqzQ/TOQh/1NjMzRJWq/Ok1x4ynB82cMr0+u+D/8fW1QYkSVrwy+c2uvSGCMms3aO5NbvTWx/Zetq45lOCeiVeJVJg0QxMc1tHJDKZm/C+WId3o2XRG/MnMXKSNgYEIVWtqjFcD/qgiaLyauakRbbuiJ/9LvYc13YC2+nhrGKq4762pSoJlh5urt5100LtzF2EjTH4zcHAl3v2DhtD3t2rjCxcXbuNSBX9HVKuh+V4bGorRp29F3joGDKLX0ad/Rd50ul26lYWVlcZo4+Nri4aB3EY1S0sjdO6at3tbGP05gUAg8EEMLIQC59LVXpwBAiv4O+KvKfRo/127lUNDjhlNsZjCmYs9GOV7DnTgHKT16lOBMdDctrMd5w+qpaURI/2ck5MZxk2sxSoPAKvXtWAE5CJ6MyF6ayB6MyF609FHvfcd6gB7BxNW+XbtS+GXnuVpZQ0auGPAoABWeQsLQxw+0YWz/oKiRAkr9OhVnnP/9Fn1aVlrgJzrrY/t7ehkht//qMZqZFFChYXrmzDa++y9npzX5OxqhgVr6CmRh4yuyuspc+gis71nbW3EIplF7WbFUbUhPZPFyXvdYC0xYpU3pSS4EtWPVuZR0hrdW5SFhMX93UglxoTRtWBgQDeo3LjTj1NvV1dzrFjTgn1nAdKqjS9GjWEPktqrTwX06uNPKzM2lmD7rmDY2DKD9pYoYYnN29sy0jSP/6MWmjZnGu4oCpi/MAiVq7jQyr28rLFqbUtWI0vNWsUwY3ZDRvmqNS1Q2o/5HTEzM8TWf9vpFGSYj8LozwmE/ESF7780SKWioBLwDiToDknTTMh32NKnyWQKDOhzCCeOR0EmU8LSyggT/qjNmA3RZueOB/jrj3OI+5IGiUSEuvVKYOPWNjAzM2SVj4lJRo+u+3HndgyUShWcXcyxZHlTNGzEPVsybcoFrFl1CykpmTCWStClaxnMXRDIGb38+rV3GNTvKF69TgAFCqX97LB5Wxt4erFH6yd6E72J3kTvoqa3XK7E7BkX8e+OR0hJzoRrMXP8MakOmrfw4bym8+eiMeWv83j5MgFSYwnaBpfC5Kn1YKzDkpKCIvxkFAb0PYK4uKxgsS4u5gjdH4Ky5dg9JHKjtz62981r7/Br3+N49+orKArw9rPB+u2t4cERsDQ9XY4uTffg9vUPUCpVMDQSY8DwShj3d23Oa1q98CYWTPsPaamZoEQU/MrZY+fJEJo3gzbvohMxqNkRvH2ZBKgAMwtD/LG8Dpp25F46NbjdYRw4+RQZKgUMKBEaVnXHlvC2DGPJN8J2P8OEgWcQm5oGigKcLcyw+lArlK/OHhg0PV2ONs3/xfXr76FUqmBkJMavw6pi0pR6nNdUGNy88R5bN9/Hq1eJcHY2Q9fuZVG7TnGGseQbX2JTsWXTfVy+/AZiMYVGgR7o2r0c53dQqVTh5PFIhO5+jLi4NJQsaYveff1RqjS34ezFi3hsWn8XDx58goW5EdoGl0KrNr6cXlnp6XKE7nqE40cjkZ6hQJWqLujdx5+WUSavFEZ/Tvg+FLU0zeFN+8FJqgdpmtO+IujEOgA/7n3VF4iBhZDvFIWOj0AgEAgEAoFAIOgXReE9gxhYijbfb+qIQCAQCAQCgUAgEAiEnxSVMuvve6MP11BUIDFYCIWCQqHA0EFH4erwD+yt5sHXYxl2bH/Ae8zhg0/h57sC9lbz4Gy3AD267mekwtQmLi4NbVr8C0fb+bC3modKFdbg6pU3vHUsWnAVHsUWw85qHoo7L8Lkv87xyj948BHVq6yDg/U8ONrMR1CDLXjzhjvFH9Gb6C2k97Wrb9E0aDt83JeifOmVmDr5PG9a0eRkGUYNOwk/3xXw9ViG9m134+mTWN469u15jJpVN8DbfSmqBqzDpg13eeVfvUpA1057UdJrGUr7LMeg/kcQG1u4qXQJPzcymQK7dz5C7x4H0a3TPixacBWxAumcc/o9Lwz0sV979OATGlXajJKWS1DSaila19+Bt6+TOOXlcjm6t9oLd7NFcJP+A1+bpVgx/zpvHdvX30Np+2Vwk/6DEqYL0bbev0hP506fGxuTjPYVdyJAugoVjVeivstGnD8WzVvHmJ4n4G2yGMWN/4GXdDH6tzrAK3827AWKOyyEpXQ2LKWz4eO2FA/vfeSUl8vlaNd6J2wt5sLKdDac7RZg0T9XeesgEAgEAoEsESLkO9ld98zNbeHjvgzp6cxBZdVqLjh1jhnsr0uHPTh6JJJRLpGIcOfBAJRwt6KVX73yBk0Ct4Pt2zzk18qYPS+QUV621Eq8fsV8WbaxlSLq1a+M9euLFlzFpD/PMSsAsHVHW7RpR09pmZiYRvTOBtGbzl8Tz2DxQuaLirW1MW7e7Q97B1Na+dMnsahbcxPS0ugvKhQFzFsQhAEsWSZaNN2Bi+dfM8rLlrPHpau9IRLR7ez79jxGn56HoFTSb66BgQhHT3RF9ZrEZZRQsMR+TkW71rtw7y795dfKygg7Q0NQs7Yb45icfs8LA33s15YvuI6FE/5jpDpWUEos+rc5WgbTY57ExiYjwG0NlCw23+IeFrjypB+jvEWt7bh3k2m4oCjg9O0e8M0W4PT8sWgMa3ucWQGAoGBPzNvZhFHuZ7kMb2XJjHIHSorHiUMYcVgG9zqC7bsestYxdXI9DB9PDx4bG5sM7xLLWPV297DE/YjBrOciEAgFT1FbIhTWWH+WCDUOI0uE8gPiwUIocGpU2cj60gkA16+9x9zZl2llu3dFsA5Kgawgg3VrbmKUt2z2L+ugFABWLLuJBw/og71e3fezDkoBIO5LGpoF7aCVff6czPmyDQA9ux+EQkHXkejNhOit4eKF16zGFQCIj09Hy2b/MsqbN97BMK4AgEoFjBkVjlevEmjl0/8+z/rSCQAPH3zG0EHHaGVJSeno24tpXAGAzEwl2rbeBSXbGweBkI8MHniUYVwBgISEDHTptBcJCem08px+zwsDfezXYj+nYOGEKwzjCgCIVSIM63qM0a/VKb2J1cgAAK9fJmHib6doZWuX3GQ1rgBZ/VTT6tsY5cPbsRtXACB83wvcvvKeVta8wlZW4woAfFKloa7HJlpZdFQ8p3EFACb9fR6ZmZm0sgpl2I1KABD9MhEjhp3kPB+BQCDkiO+dPej/f2DJtEbIHcTAQihQkpLS8PYNt+sxACz65xpt+4/xp3nl4+PTERHxSb29Y/sDyGT8L32D+x2lbR86+JxX/trVd/Tj+/MP0JVKFaZOuajeTkwkenNB9M5i0h9neeUfR8TSliOdPRuNzzxLJFQq4K8J9HOuWX2Ht449ux/TtmdOuwSFgtupMTUlE1s23ec9J4GQF6Ki4nHyeBTn/vi4dOz69xGtLKff88JAH/u14f1OQMwz7JMoRZg9WWMIjo1NxtckGW8dOzbQDRfzpvzHKy/LUOLWNY3BZOP8O5xGpW+M7xZO277/5BOHZBYvY+lGp3bNd/FXAOCXkAPqz7rovXnDPcFzEggEAuHnhBhYCAXK+XP8a8cBICWZPpD5EpsmeMyufyPUn/fveSIo//JlAm2bL8YFkPWympiouY57POu0v3Hm1Ev155MnXvJIZkH0zuJn1TsqKl7wmNPhmvOG8bx0fuPBffqLR2K2mf7sZGQokJqqua7sL2RsnD0TLShDIOSW+yyeK9m5dzeGtp3T73lhoI/92uO7nwXruBD+SnNNO4SvKfs1pKZmckhq2LJaY5w4uZvdy0ebuI/0e5lKccdy+bb/44ev6u037/mN3wBw9Zqm79v1r7BBTujeEwgEAuHnhWQRIhQoDvamgjIURXdJE4spyPnHT3B01JzXwspIsA4Dg5zbEqVSQ/VnY2PhR8XUVLPm29nJTFCe6J3Fz6q3kaGYQ1KDra1U/dnCUlhvYyn9ukUiitcjBQAMDTXHmJoZ8khmYW4uLEMg5BYTUwNhGRO6TE6/54WBPvZrhlIJAH5Dk6mZ5t4WK26R4/ooCoIeKQ5OGr1NLYTbWySh950iUAC4KxGpAHNLY/W2RCyCTMAgYmyk+X64ueVcbwKBQMgt6iU6enAdhPyBeLAQCpRqNVwhEvE/sN4+1rTtSpWdBc/bb0CA+vOkyXUF5dsE0wOS2tgYc0hmIZVKYKj1Atx/YACPdBZ/TdFcR516xYneHBC9s2jSzItX3sBAhGYtfNTb/fpXFLymLt3K0rZLlbbjkMyiWDELSCSanwFd6hj6WxVBmW+kp8vRt9chONkugKXJbDhYz0fnDnsYMTTywps3iWjRdAfsLOfB0mQ2ijn+g9EjwvI1VszVK29RvfJ6WJvNgZXpHPi4L8XK5Tfy7fwAsH3rA/j5rICV6RxYm81BQPnVCDsh7LWUE6ZOPo8SLotgaTIbNhZz0ajeFsEMVDkhP9q7dh03WAoYE7dvfQAL6Wz1n/Z3mI3s33Mh8qO99bFf6zGwAq+8CiqM+buWertZW18e6f9fg72Utu3uaSV4zKhJNdWfJy6pIyhfvSE9qLGViP/7YQkjmhGufXBp/gpUWQaxb+09aniY4DXZZdNbiKZB22jfWQvpbPTreTBH5xDiR3i+hSD9ue4UhfaOiPiEsqVWqp8Ja7M5aNtyJyMWFIHwo0EMLIQCp29/f979W3a0pW1v/bctKJ531ZatfGiDxhLuVihb1p5T3sBAhH8WBdHKlq9uzntN02Y2oG3/PrwabWYvO66u5qhVuzitjOjNDtE7i5lzGkIq5Z5VH/pbFdpLob2DKVq34X7hsbWT4tff6caPJcub8t7b+dnuU9vgUnD3sOKUr16jGEr7cd97bVJTZSjjuwKhuyKQmpoJlSprwHbsSCTK+K7Il7TPT5/EomLZNbh4/jVkMgVUKiApSYY1q26jasV1+TIo3xsagSaB2xDx6DMUChWUShU+fkzBuNGn0btH/rwgjR9zCoMHHMXbt0lQKlVQKFSIfB6PkHah+TbwD2qwFfPn/of4+HSoVIA8U4kb19+jeuX1uHrlbZ7Pn1/tbWpqiIl/8b90p6TQl6FkZPAPxrN/z/nIr/bWx35t8IgqEJlzD/ss3aSokS1DU5NW/IbgjXvb0LZ3nQzhlfev4kjzEPTys4W9swmnPEUB/+xpTCsbP602DFTseohVFHr2oRuSlm9oAT77NwXgzYevtPYWYmdoe0GZb3i4LcaVS8xnbPfux6heZZ3O5+HjR3m++SD9ue4Uhfa+euUNqlfaQAvUrVCocOZ0NNxdlxAjC+GHhhhYCAXOgkVN0P2XcoxyA0MR9uwPgZ+fA63c3t4Mpy/0YH35bNrMCzt2Mwc2V270hX+AE6Pc0tIIdx8NZKSqbNHSF/8sDoJYTB91URQwbmItDBjETHf7JHIIHByYA0Evb2s8fDqIUU70pkP0puttYWGMy9f7wLUYPTWfWEzh19+rYOoM+ssRAGzbGYz2HUozXtx8S9rixp3+jFS0Vaq6Ytee9oxlPVKpBCvXtEBzLQ+Zb1y92QcVs91bigIaBXrgxKmuDHkuBg84xhmU9+tXGX7pul/nc3HROWQvZDL2QdizZ3GYOe0i6z5dUSqVGDzgKOeSh72hj/M8mI1+mYAVy25y7p847kye44ds2nCXM76OQqFCty778nR+IH/be/DQyvhncWPYaz1/hoZiXoMFAMbzzfc9ZyM/21tf+7WrL/rCxNEQSq0lNkqo4OBjhqvP+jLk1+9pg7qBxRnlFAUs3NAElaq50Mpdillgx9FgiMTMxiob4IAjl7oxysNf9YSTG3M5sYGhCPvud4ZEQr+H/UZVwm/9KsNcSTeCm6ok6NKiDKauaMg415OoITBg8WISgW+xEROKAlava4Gq1XRLXxq6K4I3Hk/Ew1i8fh2Xgytg8qM931yQ/lw3ikp7t28byrkvMTEDfXseynMdPwrfO3sQLZMQIV+gVCqh1bIEQs7gyk+vUCgwf85/eBWdiCbNvNCmXSm+0wAAToW9wP59j+HoaIYx42vQ1pOz8flzMv6ZdxVfv8rQq68/Kld24ZUHgC2b7uHqlbcoW94BAwcHMAax2YmI+ITVK2/D0ECE30dUg5ubJa880ZvoLcTdOzE4c/ol7OxM0LlrGcF4EUlJ6di14xGSUzLRqo0vvL1tBOs4Ff4C9+58hG9JG7Ro5cMwxmTnzZtE7N/7BAYGInToVAZ2dtyzzGw4WM9Hejp3EAqRiEJCyrgcnVObz59S4FViKf81OJoiMvq3XNexdfN9wRS/deoVx9ETuhuestO7x0HsDeUPqjl+Yi1Brw4+AsqvRuRz/qDKF670gn9F5su9rhREe2dkyHH75gekZyggNRajcaPtvPKUCNh7oGOOvufaFFR762O/9jjiMzauuAMDAxEGj6gqGG9FLpfjz+Fn8fplIpq29kaPgf6C17T/3wjs3fEY9o6mmLaoPszM+Jc0xbxNxj9jryDlaya6DSuHmiyGnezMHH0eNy+9R+ny9piyvB4MDPhjulw4HY1ZUy9BIhahVoPimDnzEq98jVouKF3aAdEvE9CqtS/6DhBePqqNo+18pKXyB+Mp5maOiGdDc3RebX7U51sb0p/rTlFo71fRCShXehWvjKGRGLEJY1j3cb1n/Eho63Ci0UA4Ss0Fjih4PqZ9RdPTqwH8uPdVX9A7A0tSUhLGjRuHU6dO4cWLF7CyskJQUBBmz54Nd3d3muy8efMQHh4OiqIQEBAALy8v9OvX7/tcOEFNUej4CARC3rCQzhaUef95JMx0CKzLxtmz0WjTfCevjJGRGJ85Bmi6MHbUKaxawT0bCQAenla494jp0aQr9Wtvwu1bMbwybdr6Yuu/wbmuw815IRITMnhlFi9rit59/XNdR0G396J/rmLSH+cE5ZLSxufq/EDhtDdBfyiM9rY0mS0Y9NfYWIxP8bnvp4rC8036c90pCu29Y/sDDMqWdj47FAUkprL350XhPYMYWIo2erVE6PTp0/Dw8MCaNWsQFRUFlUqF+Ph47N69G97e3ti/n+6SNmbMGISFhaF///6YM2cOBg0igx59587tD9i54wFiYpJ1kt+9E5wAAQAASURBVI+LS8POHQ9w9Ypwumcgy3vgVNgL7AmNQHKybm6YL6LisGP7A0REfBIWBiCTKXBw/xOcOPpc5zWiRG+iNx/JyTKcPxetc4A6pVKJu3dicOnSa95ZJm0+xiTj7NlovHmTKCyMrDSkV6+8xa0b73O19l0o4wlFASYmOcvsolKp8OH9V0RHJ8Ddnd+TCMjKSJOcLENUVDwSE3ULzKdUqvD6VSLevU2Cu4dwNhE7OxPExaXhxYt4ndtCGycdMlC5FRfWlQ9LC+EMNT4lhb2g+CiI9tb+nleqIjwbS1HIcXtr4+EpfJ9z6skF6G+/dnzfM5w6GqVzv3b57CusXngTb6ITdJL/GJOM1Qtv4tQx3YJ7yuVynPj3GXYvfYAkHQNpPrwWg5UTruLGad2WdqSmZmLtzOvYsug2irkJt6WdnQnOn4vGkkVX8epVgk51aKNL5idzc+Hnk48f9fnWxtvbWlBGlwxjfBTU860N6c91w7+io6CMWKxXr6gFyvdeFkSWCOU/epOmOTExER06dEBCQgICAgLQqVMnWFlZISEhAeHh4Th16hRCQkKwZs0a9O1LXyccFJQV+E3PnHF42bNnD1avXk0rCwoKwtixY3+oOnRl2ZJrmPzneWRmal7UbGyMEX7uF/j42DLkY2KSUbfGJtoLqlhM4bdhVVljUwBA/z6HsHtnBG22yNvbBpev92J1yb54/jU6hoQiJVkTMNHYWIxV61oguL0fQ16hUKB+nS24d+cjrTwwyBP7DnUkehO9c6x3QkI6glvvxq2b79V6WFgYYdrMBpyzT7NnXsLC+VeRlpb1Mi8SUWjYyAM79wSzLi2KePgZnTvuRfTLBHWZi4sZNmxpjZq1mC74SqUSfXoewsH9T9Wpbw0NxejTryLmLghkvSY2atctjrOnozn3ly3nkKPlG2EnozBtygXcu5vVHo5OpjAzM+R9AbWxkcLddTFkMgXEYgqtWvti2qwGKFHCiiGrUqmwbs0dLFpwFW/eJAEAfEvaCKadzciQw911MYCs1N3dfimHyVPr6fzSNP6P2jh2NJJzP0UBo8fV0OlcXPTs449pUy5w7jc3N0Tt2sLLMfjI7/Zm+54LYWZmqHN7s9G3f0VMHHeGN+XzyNHVdToXoL/9WtuaO/H0TiwoZN1TFaVCzcbFselwO9Zrmjb+PNYsuqW+pmnjL8DQSIyD5zujHMuL0pvoBDQK2IrUbMGIg7uUwpJN7IF5fw06glvnPqi3F468CktbI+yJ7Mi6tOjopsdY1v8qrBVGEIPCpTkvEC/KQIcp5dH7T2bsmczMTDR12QrzLxKY/H/o+5XKhIfIDC8l3IbwG9ffo1WzLM+KPyecg5GRGOHnusPfXzhLFACMG18L06byxw4J3c8fGFiIH/H5zo6bmyWcnMx4JyXa6rDclo/8fr7ZIP25bvj5OcDISMwboLxGTeI9Qfhx0ZslQoMGDcLu3btx5swZ+Pv7M/a/ePECAwcOxJkzZxhGlsTERFhbW4OiqB8i6nRQUBDi4uIQGhoKT09PAEBCQgL69++P27dvIzw8XF2uz3Vwkd1178C+d5g47iyrrEhE4Xn0UNjba6z+MpkCznYLaC+p2gz9rTJmzaW/6HUMDsWJ4+yzZBYWRnj7cQSt7M7tD6hXazOnDrv3tEfTbIERS3ktw/v37D/+FQOccP5yL1rZsiXXiN7ZIHpr9JbLlfDxWMoZAHHBwiD0zxakcuK401i2hD0LgY+vDW7dG0ArexEVjyoV17LeW5GIwulzv6BSFXp8h6AGWzkD6IV09MOGza1Z92XnY0wyypdZxRp/wMBAhKs3+8LHl2l0YuPAvifo2f2AoKu9NiIRBaWSeYCTkxnOXuwB12J075Spk89j/tz/dK+Ap44qVV1wLKwrjIx0m8Po3GEPjh1hH5QPGlI5R4YtNpRKJcr7raZla9Bm09Y2CA4RSGUrQH62N9/3PKdwtTcX/8z/D1P+Os+6r0pVF5w+30On8+hrv1bTYx2+vGMPXlmqsh0OXqHHn5g2/jxWL7zFWcf1qH5w0bq36ely+Fgt4XxWW4X4YuX2lrSyXtX24entL6zyEgMKF1PpS78vHHyJRe0uwhRMj4Z0KNB+QTl0HkHPJFTPZC1c05mBdAHgiSgBkQZJ7BfMQcTzwShWTDdPBDvLeZzBW21tpXj5dliO6s7Oj/Z8c3Hxwmu0bLqD9btjayvF48ihtAxUuSG/nm8+SH+uG7t3RaBfL/ZAtgYGIrx6P5xzCVJRWyJ0rMFgvVki1PzsSgA/7n3VF/TG/+rmzZvYs2cPq3EFADw9PREeHo5Zs2ZhwIABOHuW/UVG3+nQoQNu3ryJ06dP0wwcVlZWCA0NVcec0fc6csLkP9l/zIAsd/wO7fbSynp22885KAWAFctu0gxpcXFpnINSAEhKysCsGfQZpC4d9nJIZ9G/7xHa9p7QCM6XbQC4czuGsbyD6M2E6K3h70nneLNL/DnxLG1pTnKyjDc7wfNnWUsEtBnY7wjnvVUqVRjYj673pUuvOY0rALBndwTevdPtRcTRyQy37w9ApcrOtOwvZcra48r1PjoPzmQyBcaMCuc1rri4agxXYjGF4iUsWQ0fQJZXwZxZl2ll0dEJWDCP27hiZCSGja2Utu3ias5Zx43r77F96wPWfWzsDA3B78OrwMRE88JoaWWE6bMa5HkwDgAikQi37/dHi1Y+tNTfxYpZYPfe9nkejAP5195C33MAyD5xamTMHdCVrb35GDm6Bpavag47e81SASMjMXr0roDws911Po8+9muHdz9F7DvuFMSPb35G5BO6oWPNIm7jCgAEN9xF227faBfvs3p4zzPI5ZqXttiYZE7jCgDIM1WYNYg+Wz+zyzlW4woAGEOMTWNv08pW/H0VLuncSz+8lRawM6c/30I0EQi4rE1s4hjWjHS+pWzybFwBfqznm486dYvj5Knu8PC0UpeJxRTqN3THvYiBeTauAPn3fPNB+nPd6NjJD1t3tIWZGf1Z9vC0wpOoIbmO70Ig6AN648Hi7e2NyEhutzptTp06hU6dOuHMmTOoUKHCD+PBcurUKfUSnTlz5rDK7NmzBx06dOCV+d51CKFtlT1+7CY6BofzyovFFOKTNdHIHW3mq93CuVi2shl69Mqaofp18DFs2XSfV97e3gRRr39Xb+sSwCs+eYw6E0NAuTWIjORPpdiwkTsOHOkMQHhmESB6f+Nn1bu093K8e/eV95h9hzoiMCjLSLpwwVVM/vMcr7x/RUdcuNJbvW1jPhdyOX/8lISUsWpX3+DWu3Eq/AWv/IBBAZi/sDGvTHaUSiU+f0qFrZ0JbUCoC2fPRKNNC/7gh7/+XgVTptVDfFw67B1M4F92DW1JVHbMzQ3x9uMIUP8fOS6cfxWT/zrHW8f6Ta3RrIU30tPlEIko9bIgLmrXccOxMGZKWiHi4lIhkYhgYcGfcSW3KJVKfIlNg7mFUb68sHDVkdv21vV7fiysC6JfJqJUaVsElF+Xo/bWleRkGdLT5bmKy6CP/Vqjspvw9hm/gbRaUDFsOZoVgPPy2Vfo1JTfiAMAbzNGqj8XN1kIJc8SDAAY93dN/DY+aynGiJbHcfUkf/wUI6kY55L6qLfbi7aql/mwkQkltmZ0VGcUqm+5Di5f+dswsYQcux50Rnq6HI8eflIvC+IjNwGVb996DxMTA5QqbZ/jY3VB359vXZHJ5Or+PC9LUfjIy/OtKz97f64raWkyfHifjBLuloIZ0ADiwVJQEA+W/ENvPFhyslwlMDAQ4eHhCAkJwatXrwrwqvKXb/FQ+LxHQkKy1uKuWbNGb+vICVECL6kAGLPAfLN+34h8rjlvzAfhQKJpuQg+mZioie3w9St/xHYAiP2scbvWJVgp0TuLn1XvlGzxCdh481rzMvRRh4C5SUn0eCRCxhUASNVyAY6P4/ao+canj9wz4FyIRCI4OpnlanCmyzXFx6fD0FACRycziEQiwWO+fpXRvndxOtQRF5cGMzND2NmZIEGHAJzx8TkPsgoANjYmBTYYB7Lawt7BtMAG49/qyG176/o9NzMzRtlyjpBIJDlub1351t65QR/7teQk4YC5Xz5p7uXDu59zXB+XV5c2z59o9P4Sw75cSRt5tntpIDB0NYAIXz5onj+VTPia0r7K1e197y5/Fpi8EFDJpcCMK4D+P9+6ot2fFxR5eb515Wfvz3VFKjWEp5eNTsaVoohKpS+Bbr/3nSg66I2BJSAgAGfOnMmR/MmTJxESEoKXL18W4JXlH3v27AEgbEz6Ftz31KlTellHTqjBEkQzO9l/GMzNhd0Cm7fwVn+uXUe4DidHemR3XQIm2thoXIa1XVa58A/QZLmo39BDUJ7oncXPqrezi3C2gZq1NLMHVau5Csp7etIzMZgKZF2QSEQ0N9xSfsJuvxUr6RbcMb/w8RXOhuCbzV1ZyH3Z3cMKhoaagZyvDhkXfEtqzuniYi7ovpz9mgi6kZvveU7buzDQx36tuA79WrlKDprra+fNI/n/axDTr8HQUHhY2bpjSfXngHrC/YmZJf1eplL8hqZUyOFUXDMbbGQt/PLp4qORb6NDMFWxOGfeUAQCgUD4edAbA8vs2bMxduxYtUfK+PHjYWtry0jNrI2npyd27dqFfv36ccroC9qGDCHjx7f9t2/f5pX7HnXkFAcHU1rsAjY6dytL2x41lj/CutREguo13dTbw0dVFxxoLlxC9+gRik5esiR9wL5qbQteeQD4Z3ET9WcnJzOiNwdE7ywm/FGbV76YmwVKlrJTbweHlBZ8qZ86ox5tu31HZhYRbQKD6IahKVPrg28VhYGBCL8Nq8p7zvymXHlH3pduY2MJunan39u+AyrynrNff/r+du1Lw9qGe5bR28cG9eqXoNXZ7ZdyvHX06e/Pu5/ATm6+5zlt78JAH/u1eeuDoAL3FKUKKkxd0lC97eZuxRvfBgAaNnGnbfcc5M8rLxZTCGzupd4evqAmrzwAjF1G7yslzvwGkzQL+lLxefubQgbu5ePJyMSa023V2yVKCOsd2KRgkgQQCAQC4cdHbwwsALB79270798fgwcPxty5cxEfH4+dO/nXwXp6euLUqVPw8BCeQf6efDNkWFlZCcra2GTNpt64kbMsCoVRR24IP9udc+DoWswci5c2pZX9Prwa/MrascpTFHDwcCdG+Yo17KkfAaBJUy/Ua0D/fhw82hlmHDOMhoZinDpPD3bm6WWDX3pyv1BN+rsuY4aU6M2E6K2hbXAptGztwypvZCTGfpZU0Nt3B3POnA79rQrKlqOnTF20pAk8vaxZ5R0cTLBpWxtamaOTGSZPrccqT1FZhqeCdBPmYvX6lnB1Za5PlkhEWL2uJRyd6DP7XbqW5TSANGvhjcG/VqaVmZkZYuOWNpBKmS9uNrZSbNzSmtG2k/6uiypVXRjyADBmfE3Uq+/OpxKBh5x+z3Pa3oWBPvZr7l7WaNe7NKuRRQUVhk2rwejXDpzrzHlNZuYG2LSfntp58tz6cHBiz9YDAOv3MLOQDZ1VhVPet6ItGobQjRnbnnXEZzH7Erw4UTo2P6anPa5QzRlGVY2hAHPZlgwKlOrsRAtICoA34Km5uSFC93bg3E8gEAg5QkUBSj34UxHPvPxCrwwsnp6eCAsLQ0hICMaOHYsBAwZg9mzhIG5WVlaIiopC//79C+Eqc8eXL9xR8rlISEjQuzqArMBMfH8fPnygyfv42OJ59FAEVHKGWEyBogCpVILe/fzx+PlQ1jqu3uiHEaOrw9TUABSVNevlV9YO9yMG0Wb9vtG1WzmcudgD7h6WEImy6rC0NMLcBYEI3c8cCBkaivHmwzC0auMLQ0MRKCrrZa1BwxJ4EzMMlpZMb4Tlq1pgzfoWsLWVgqKyMlm4uJjhwJFOGD2WOQtH9CZ6C+m9Y1d7LFneFCXcLWFkJIa5uSFatvZBxLMhNO+VbzRo4I4bd/ujXoMSMDU1gLGxBL4lbfHv7mDMmtuIIS+RZGUbGDG6OuwdTLKy4dhI0X9ARUQ8HwITE+bL2cjRNXD4eGeULecAqVQCExMJqlV3xcX/eqNDpzKsehQ0Xl7WuHStD/6cXAeVq7igXHkH9O7rj8vXeqNde6Y7v0hEYcXq5tixKxhNm3vBr4w9GgZ6YN3GVtixKxgGBszZ6YaNPPDfzb4YNKQSKvg7omKAE0aPrYGrN/qigr8TQ97c3AjHwrpi0dImqFO3OMqUtUe74FI4fLwz/ppct0Duw89CTr/nuWnvwkAf+7U5qxtjzsbGMLczgooCVCLA1tUE64+3xdBxTO+0chUdcT2qH4qV0Bg4RWIKgc098CT2N1a9b78aiPbdStOMZA5OpjhzpwfNe+Ub3Uf7Y/HxZjC30vRHEkMRfhlbAZuvBzPkTUwMcDi1O1SlRIgTpSOZykQ8lYH04irs+tIF9s7M5Zfbr3ZAzYmeeG+YgkRKhgRKhnfGKei4siLm7mjCkPf3d0bE88FwK65JQS0WU2jS3AvvPo1kyBMIBAKB8A29ySJU1Bk4cCDWrFkDKysrxMfH88p26NABe/bsQUBAAG7d4k+RWNh1AMhRJgYShZpAIBAIBAKBQCDkB0Uti9DRekPgaGwhcETB8zE9CS3OrwDw495XfaHgwk5rcebMGbx48QIJCQn48uULvLy8YGNjA09PT/j7+xfGJXx34uKEs+lkJ6feJYVRB4FAIBAIBAKBQCAQ8s63LD7fG324hqJCgRlYkpKS0L9/f3VWGz4CAgIQGBiITp06FVmDy7eYJz96HUCWVZOPDx8+oGpVpqvximU3sHTRdaSkZsLF1QzLVjZH5crsMQyArNS3A/oewcuXCTA2kqB3vwqY8EcdTnmFQoHRI0/h0P6nkCuUKFvWAWs3tISLK7dVOOxEJMaPOYPY2FRYWhnhryn10LETd2DQuLg0DOx7BDduvIeIAhoFeWD5qha8GSp+Vr0JBD6SkjIQuisCDx9+goW5Edq0K4mAQs5QRPi5SU6WYcbUizh/LhoiEYWWrX0xemxN3jhDhw8+xdLFN5CQmA5vb2tMndEA3t7cv7362J/Hx6VhdJ+TuHstBiIRhdpBxTFnTWPe/nzGxAvYuuYeZDIFrKylWLS+CeoGunPK3735AQO7HMHnjymQSMRo27kk5q5ozCkvl8sxocMp3Dj9HkqlCi4e5ph3oDHcvKw4j9m29C6mTb6Ar+kySA0kGDasKn6fyh00N+b1VwxpdAgv3iZABKCsnz1WXWzHiL+izaQ/z2L9mjvIkClgbW2MVetaoFEjEuCWQCAQCNwUyBKhly9folKlSkhISICnp6c6Y01cXJzak4VxIf9fduLp6YkOHTpg/PjxsLD4/u5S+cW4ceMwd+7cHC3f8fT0RFRUlF7VoQvZXfccHJzh67kMcV/SGLJt2vpi67/MNdZjRoZh9UpmhiMTUwM8jRrCWFv+/PkXVAtYD7mcGcRu5pwG+PX3aozyhnU24+bND4xyL29r3HkwkFG+e1cE+vU6xCgXiSiEnenOyHQikyl+Sr0JBCEuXXyNbp33IT6OHqiyY+cyWLmm+XeLmUH4ebh44TXattyJzEx632lqaoALV3oxUj/L5UrUrbkRDx98Zpxr1JjqmDy1PqNcH/vzAzsfY2yPMFCgz1SqRMDO8yEIqEY3/qeny1HGcTky0plZeCpVc8LBC10Z5f06HsKJg5GMcrGYwq3X/WFnR4+R8uTOZ/SpdgBso9GuI8vjtzlMvf1dVuJFXCJoaqgAJ6kJnsX/zpBfN+k6Js+5gK8ieopna6UhNm5tjYYd6Smp09PlcHNeyKp31WouOHWuB/NiCQRCoVDUlggdqTtUb5YItbywHMCPe1/1hQIJcjto0CBMmDABSqUSkZGRCAsLQ1hYGG7evIm4uDjEx8cjPDwcY8eORUBAAABApVJBpVIhKioKc+bMgbW1NYYMGYLo6OiCuMRCx9bWVljo/3wzQOmSDaiw68gNtatvYDUyAMDBA8+wcd0dWtmZ0y9ZB6UAkJqSiSoV1zPK61TfyDooBYCJ487izZtEWtmo4SdZB6UAEBUZj47BobSytDQZ+vdmGhkAQKlUoWngdkb5z6o3gcBHzIdkdGq/h2FcAYDdOx9hxtSL3+GqCD8TMpkc7VrtYhhXACAlJROB9bcyyrt33sdqXAGABfOuIuwEfaJCX/vzsT2ZxhUAoJRA1wZ7GeU1fNayGhkA4Na1GCyYdoVWdiD0MatxBQAUChVq+m5klPetcZDVuAIAO/65j1dPE2hlnevvwov4bMYVAKCAmPRU1C+5gVacnJiOyXMuMowrABAvkmHAL0cY5WVLruDU+/q195g9nfRTBAIhf/i2REgf/gj5Q4EYWL58+YIxY8Zw7re0tESjRo0we/Zs3Lx5EwAQGhqqNrh8M7asXr0aXl5eWLBgQUFcZqHyzZChS8yTb7FUvnn+6FMdOSUtTYYnj/mzG02ZdJ62/duQ47zyMR+S8So6Qb199MgzpKYyB07a9O1JNxJs3niPVz7s5Ava9uD+RzkHgEDW7OaiBVfV2z+r3gSCEBvW38HXrzLO/evW3EFKCvd+AiGvzJ11GTIZ+8szAMTHp2PfnsfqbZlMjhPH+T09//rjLG1bH/vzMX3DQfEMoFVyFVYvuKHeTk5Ox+dP7JME31g+7zpte8KQ07zyqSmZeBYRq94+tOEJlAp+R+rRbU7Stk9de8Urf+8V3RA2oPYBfBVlcsp/EqVjag/NdScnp+PTp1TeOhbMJ797BAKBQGCnQAwsuYkFEhQUpDa4xMfHY9WqVfDw8IBKpcLYsWPh6+uLV6/4f1T1GW1DhpAB5Nv+nBo/CqOOnHLmdLSgTEICfSb7w/tkwWO2bLqv/rx5A/8gEwAiHtEHXDIZ+yzhN5RKFRITNQPLK1feCdaxb98T9eejR9hn8LQpinoTCEJcu8r/nUpKysBjrRcwAiG/OXtGeCxx+NAz9efr17PigvDx8kUCbVsf+/NbV94L1nE09Ln6865NEYLysgz6NSTzGE+/sXqRJnPhvtXCdcS8/kqvU8Wvt4JS4dMHzTHPX/AvmQaA8yei1Z+3bnkgKJ+RwW2gIxAIBMLPTYEYWAICAvLkdWJpaYkBAwaolxc1bNgQkZGR8PT0xNmzZ4VPoIdUrlxZ/Vko28+LF1mzTkFBQXpXR04xM+UOHveN7GmfRTp8K83MNOc1NhaO1SwS5/yrLpUaqj/zBT38hpGhRsbC3JBHMouiqDeBIIQugZFJ8GRCQWKgw/fLyEgjYyoV/h0TifW/Pxfr0J8baultYW2U4/p0wVRLb+36uKBEOXRbVwFmlsbqTV0O1/6ts9I6lkAgEAoalUp//gj5Q4G8GU2YMAEzZszIl6U9gYGBCA8Px82bN+Hv74/AwMAf0shiZWWljjfzzbjBhnZslMDAQL2rI6fUrlsclMDgxrWYOW27dBl7wfP2H1RJ/XnMBO6sAd9o2LAEbdtcwABiaCiiveR17lJGsI7ho6qrPzcK8vgp9RZCqVRi6uTz8HZfCgfrefAothhjRoZDJuN3jc8JSUnpGND3MIo7L4KD9Xz4+azA8qXXhQ/MAS+i4tGm5U442y2Ao818VK20DseOPhc+MAdcvPAatatvgKPtfDjZLUCTRtvw8MHHfK1j6+b7KO+3Cg7W81HM8R9077wPnz+l5Nv52do7JZl/hrtYMQv46fAsfIO0t+4UdHvLZDKU8loGC+ls9Z+76yLExQl7c+hKfrR3125lBWX69q+o/lyhoiOMjfkNARUDnGjb+tift+lakldeBRUGjtJM1LTrxC8PAOYW9GtwdjXjkNQwcpJG16GzmRkHs1O6Mv1emoj4jVGGlIiWGaheQ3f+ClSAyopSP9/z5l4WvCYLC+FJFG1GDQ+DpYnmubAynY0lC//L0TmE+B79Ofn9Zqco9OeF0d6fPyejUb3NsDGfC0uT2XC0mY9Rw08KH0gg6DkFYmCxtLTEmjVrMGbMGDRt2jRflvYEBATg1q1bGD16NEJCQpCUlJQPV1q4TJgwAUBWvBkudu/eDQAYMGAApwzf8p/8qiO/EIvFaN3Gl1dm/cZWtO1tO9rxylev4QozM83gplw5R7gV546+LRJRWLm2Ba1sxuyGvHUMG0E3GvwxqTYMeTw1rKyN0aKlRs+fVW8+5HIlKpVfi/lz/8OnjylIT1fgy5c0rF55C2V8VyI1Ne9xNz58+IpSXiuwc8cjJCSkIz1djrdvkzBh7Bk0DcqfgLznz0WjUoU1OHs6GikpmUhLk+NJRCw6h+zFxHH88Qd0ZeGCq2jRZAfu3/uEtFQ5UlMy8d+Vt6hVbSP2hgq71OvCL132YeigY4h+mYD0dDmSkmQ4dPAZ/HxX4OmTvC/R4WrvSxffQCzmtj5O+LOWTp5TAGnvnFDQ7Z2cLIOd5T94n21pTFxcOtxdl+H1a36vSl3Ir/bu3qMc7B1MOPeX8rNDlaqa7GgikQhDf6vCKS8SUVi0pAmtTB/785GTa0BkyP3smVkbIai1l3pbIpGgUjUnTnkAWLq5GW1722Fmdjxt3L2sYGWl8RCpUNMZphb8HkILjtDTOw8bVBngmmlVASHNStGKZuwNhJOS2yuluMIUV1/GqJ/vyGcJvNcDAOuy/X7zUbH8aqxdfZs2O6xUAn9OPI/g1rt0Pg8f36s/J7/fTIpCf14Y7f38+Rf4uC/HjesfIJcroVIBaWlyrF19B36+K/J8fgLhe1Jgvv0hISHYvXs3wsLC4OnpmW8ZgebMmYNx48Zh1qxZeb/IQiYkJAQhISFYs2YNp4fJnDlzYGVlhTlz5rDu79ChA6ytrdGhQ4cCqyO/2fpvMOrWL84opyjgn8VBqF7TjVZewt0K23e2Y30JK1fOHmFnfmGU33kwkOERAmQtNTh7sQfNTRoAevXxx7Dh7DNnXbqVwV9T6tLKxGIxrt/uBxMT5syZja0UDx4z02H+rHpzMXLYSURFsa+F//gxBb1/Oajzubho3yYUyRweElcuvcGyJXmfCevSYR8UHEEZly25kedZqo8xyZjy1znWfSoVMKDvEc5MI7py8MATHDzwjHVfRoYCwW125+n8AH97KxQqWFvTX3gsLIwwd0EgfulZQec6SHvrRmG0dynvZbz7A8qty3Md+dXeIpEIV671YTVolC1nj3MXmSl4J0+tjz79/RmeiVKpBDtDg1GylB2tXF/78+P3usPARAyVloVCBRXMbA1x9llPxnkOXugKn1LscfWGT6yGwOZetDJfPzvMWdGIVd7JxQyXIvowyo+86w4Tc6aRhaKAJSebwcyM3ldM+Kc+QhqWBJX9sVQB9csVw6p9rWnFBgYG2He+M4opTWiGGUoFlJCb4g2Vs1n/cRNqoGlzH51kz599iajn3DFgToW/5PxO68r37s/J77eGotKfF0Z7N26wjTO21ds3SRgx7CfyZNGD7EEqFQWQLEL5BqVSFeyKq1OnTqFDhw5qj5OgoCCMGzcODRo0UMuIRCIkJCTAwkL3HOBNmjTByZM/3sOXkJCADh064MWLFwgPD1cHmeUqz4523A6upstrHXmFKz99TEwyxo85hY8xKahRsxj+mFQbYjG/2/XC+f8h7OQL2NhKMW1GfXh68QdQvnP7A2ZOu4TU1Ex06lIGPXrxv6zJZApMGHsKjx5+hpe3NebMD6LNKrKxb28ENq6/B4lYhOEjq6JeAw9e+Z9V7+w42y1ASgp3JgeJRIS4r2NzdE5tEhLSUdx5Ea+Mq6s5HkcOzXUdB/Y9QY9uB3hlAoM8se9Qx1zXMXTgUcEgi9Nm1mfMTueE6pXXMwJmZufGnX6Ml8acoEt7n7vUEw8efIKlhRHqN3QX/A5qQ9pbdwqjvS2kswVlktLG5/r8BdXeVy6/Ruiux5BIROjZuzzKlnMUvI5lS64jJiYFVau6oHuPchAJBFzRx/786J6n2LHuISQSCgNGVkathszJAG3eRCdgWJ+TiP2UgkrVXTBvVSAkEv6lOpNGnsG5sGhYWRtj9vJA+JV34JW/ceYtlo2/jow0OZp080bv8QG0/U+vfsKghgcQqfiKNEoBM5UEHiozJJhnIi1Djk/ydMihAgXA3tAI2/e3R5pIieVLb+DmjfeQGhvA3dECma9keJ+airdpyYIxB2rWKgaVCoj9nIqq1VywdGVTQb21cXVYgK9fuftBAPApaYNbd3PvUawv/Tn5/S46/XlBt3dMTDJ8PfiN8lKpBB/jRrPu43rP+JHQ1uFQrd/gYKz7O3BB8Sk9Ca0vLwXw495XfUH3X4lcEhgYiOjoaPTr1w979+5FeHg4wsPDAWR5Y3Ts2BEURTECfgohFMRVX7GyskJ4eDj27NmDgQMH0lIrBwUFYexY/g5rzpw5mDVrlnopUEHUUVA4OZlh09a2OTpmxOgaGDG6hs7yFQOcEbqf3buHDUNDMRYsaiIsqEVwez8Et/fTWf5n1Ts7fD/WQJZLanKyLEcv2drcuRMjKBMby596U4grl98KyrzQIWMFHxGPhN17b934kKc63r/7Kihz5fLbPA3QdGlvTy9rlK/A/0LLBWlv3SmM9taFqMg4eHnnPMsgUHDtXbNWcdSsxW9c0MbKyhh/TqorLKiFPvbnLUJKokWIcIyVb7i5W2HfmU45qmPqP/xLmLJTpWExbL7OPqB/cPY9WjfdiS8imdr3Oo6SIQ5xME4RIZ1SAv8fRqoAfMrMQOMWO7JNyKbh7dskSCQinb0IYmJScPeh7p6a2UlO5u8HAeDNq8Rcnx/Qn/6c/H4Xnf68oNv7zOmXgjLp6fkX64VAKGwK3MACZMVkCQ0Nxe3btzFu3DicPp21zjE0NFQdKyQgIACBgYGoVKkSKleuDH9/f9ZzJSUlYdasWblKBa1PfFvKk1PGjh2rs4Ekt3UUJGlpMsTGpsHFxUzQi+Mbb94kws5OynCP5iIxMQ1paQo4OQkH2wMAhUKBt2++wtnFXOfsJZ8/J0MsFsPGRqqT/M+qtza6DGpNTCRITc2EkZEYYh0zZmRmKqBQqODmJmz9NzKWQKVSITU1E1KpAUQ6ZqfIyJCDoig4uwjfWwsLQygUSmRkKCCVSnQ2Hn/T21qHe2tvb6LWW5fsIwBoepuaGjDShGfHrbiFWm9dvx/aehdUe6uvT8f2zgu6tnde0LW984Ku7V3QuBXXrW9iPbYA2zspKR0ikUjnlwWZLCvmgY2NsaD3yjf0sT+P/ZwCsVik03cQAJKT0/HxfQpKeFrq7MXx4mkcHFxNGMt8uEiITUd6ciac3OlLpQY2PZRlXGEhnWLvZ7i83XOyRMPCwhDJyel4/z4Znp5WOfJeAbJ+9zIz+euTSvPWTxXG861rf55bSH+uO0WhvX1L2grK6Do+Kwqol+jowXUQ8odCMbB8IyAgAOHh4bhz5w5mzpyJvXv3qvdFRUWxxgzx9PSkeWC8ePECnp6eai8Ywo/B4YNPMaj/UXz9qhkgeXpZ48yFHqwv62lpMjSquxUPH2rcIKUmEsyZF4heffxZ65gx7SIWzv8PMlnWjwJFAbXrFMehY51YjRrPn39Biyb/IuaDJiijra0UoQc6oHJlF9Y6unXeh6OHn6vXjUokIvTuW4Fz9vBn1ZuNgErOuH7tHed+e3sTBJRfixdR8TAyEqNla19M/LM2fHzZf4hv3fyA2TMv4VTYCygUKpQr7wBTUwPemRdnZzN4lViK2M+psLIyQueuZTFuYm3Y2rIPio4ceoZ/5l/FzRvvQVFArTpZWbH43MqlUgO4OixEamom3Nws0Kd/Rfw2rCrrS49CocSaVbexeuUttd7Vagi7ZD57HgcH6/lqvX8dVhWdu5RhNeZ8/ZqBBXP/w5bN99V6l3C3xDueWTBDQxFmTruImzc+gKKAevVLYMz4mqhTtwSr/JvXiZg14xL27Xmi1tvJyQxv33IHI89pe2fH29sGNjZSxMWlcco0buLFuU8X+g8MwN+TznOuEweAgYMrc+7ThRGjq+NUOHfWNwAYOVZ37wc22ncohSWLbnDul0olaNjIPU91iERZgTv5MDTM/ctLQbT35L/OYc3KW+o+w8raGOMm1MTQ39jjmly7+haD+h1VxyYQiynUa+CObf+2YzXO6Gt/PqjjYZw59BKUMiv+ikhCoUO/spi2hN3jZPv6e/jj97O0Fy5rG2OcutMDjiwGoOTkdDQrsw2fPmg8DsRiCkP/rIqhf1RjrWPegEs4sekZrW8tXsoS6+60gVKpRCT1fRIbPLj/CS72i9Tb1jbGuHarn86Gr159/LF29W1emdXrWublEgvl+Rb6/fbxtdHZ2MgG6c91pyi0d+XKLoJGnNx6txII+kCBx2ARYu/evdi1axdu377Nm1oYyFr6MmHCBIwZM6aQro6QG7KvjbxyOQn9eh1ilTUwFOFtzHDarJ5CoUAxx0WcL8rTZzXA78Ppg7Tfhx7Hpg33WOVdXMzwJOpXWtmr6ARUKLOK84XgzMUejMFp9crrON0/mzT1Yrh0794V8VPqzUVkZByqBqyDXGA2TxtLSyMcD++GsuXoa/fPnY1GSNtQyGQKnc8lElGsAytvHxuEn/2FYWRZvvQGJoxlZhXgM7CIxRRrAL3GTb2wa097mpeGSqXCwH5HsHPHI53Pw6fH6LE1MOnverSylBQZmjfegTu3me7XXOfhQiSisHFLG7RrT8/Q8fJlAoIabMWnj8xAkULGqOxwtTcX+/Y8Ri+OYHsmpgZ49mIoLCx0mznnYvyYU1ix7CbrPi9va9x5kPvlA99oVG8Lblx/z7ovOKRUjpcYZkcmk8PXcznivrC/vMxdEIhBQ/L2YrF1yz0MHXicc//oMdUwaWoDzv26kJ/t3aXjXhw9zJ6adehvVTBrLj1Q68ULr9Gq2b+sz4ydvQmeRA6BoaFmzkpf+/OmAVvx8iFzGYQKKtRpXgLrD7Slla9dchN/j7nAen6KAh7HDqF5p8jlcpS3WAmFnP3B7zXMHxPm0ZdYTWgdhmvH2ZdvSM0kmHswCDWabGbd/z2gKODdp+E6e+VYmc7mbCNjqQSfOOJM6EphPN98v98iEYXws91pmbdyA+nPdaOotPeiBVcx6c9zrPtEIgrPo4fC3p7dkFnUYrAcrPm73sRgaXNlCYAf977qCwWWRUhX2rdvj927dyMyMhLx8fEIDw9HaGgo5syZg7Fjx2LOnDkIDQ1FVFQU4uLiiHHlB+TXQUc592XKlOgQvIdW9tvgE7xeCJOzdchpaTLOQSkAvH+fjDWrbtHK2rTcxTvb2rEdPc31qbAXvGtrT56Iwvt39Bm2n1VvLry9bXDhck+UcLekldvYcA+YEhMzMHpEGK1MoVDi9yHHeY0rFpb02WR7BxNOY0Lk8zjMm32ZVvbh/VdM+uMsq7xKlTUoNjLSzCaLRBTs7U04jSJhJ6IQupuenvHM6WhW4wqQlWXH1lZKy0BiYCCCubkhpx7z5/6HJ4/pbbVqxS1W4woAKJUqODiY0srMzAw4UygrlSoM//0E0tLo39G/JpxhNa4AWffK1o5uuMppe/MRHFIam7a2gXW2c5b2s8Ote/3zPBgHgNnzAjF+Yi3aUiyRiELDQA9cu9U3z+cHgPCz3dG2XUnavTc0FGPg4Ep5HoxnnUuCuw8HolJlZ1q5hYUhFi1pkufBOAD80qMCps+sx7pv4JCAPBtXgPxr77t3YjiNKwCwYtkNxMXR4z3063WI89mL/ZyKsaNP0cr0sT8/HxaNFw/Z49dRoHDx2Ct8yObZNm0cu3EFyHq+W9XaSSsb0Powp3EFADYtvkvbTk5O5zSuAEBashznj72AgR65rqtUQIM6W3WW/xQ/EsbGTO8jGxvjPBtXgMJ5vrl+v52dzXDkZJc8v2wDpD/XlaLS3sNHVcfU6fUhkdBfRa2tjXHtVl9O40pR5HtnD6JlEiLkC9/dg4VQ9NC2yp4+fQdtW5zglc8ejdzJbgFSBQJsbdrWWh1wdeyocKxacYtX3snZDM9eaGb/dMl4EZ88Ru2SXa3SOjyO4A9e1ryFF3buyfLmiIj4hOqVNvDKF0W9deXDh6949PAzfHxtMG3KRezeyW5o+MaDJ4NQooQVAODypddoFrSDV37k6Oro9ks5vHqViIBKTmjccDuePf3CKW9tY4zot8PUS2yWLbmOiePO8NaxeXsbFHezRFKyDGX87FHSaxmngQUAGjRyx8EjndXb/XofFtT79v3++PAhBQYSETLlCrRo8i+v/MjR1TFlWn31dmX/tYJ6348YiFs3Y+DkaIYzZ14K6r11R1u0aZflxZKYmA5318WCeq9a2yLX7a0rz599Ube3jU3e1rizoVQqcedWDJKSZahRo5jOsW9ygkwmx7Wr72EgEaFqdZc8uWBzkZSUjps3PsDJ0Qx+Ze3z/fwAcCo8Cnt2PUaT5p5oF5z7wNh85KW9O3fYg2NHInllfh9eBdNnZXmxvHmTiDK+K3nlrW2M8erdcPW2PvbnTfy3IjqCP4hn3ZYlsHZfGwDArWvv0abuTl55igLepI9Ub/tJl/L2BwDw1+K66D7YHwAwueNpXNz/ilfe2FSCT6nJeCYunGVCf02ug2l/X+SVoSggMTVnWbHi4pIxY+oVGBuLMXlqnTwtmeOiMJ5v7d/vnPbTukL6c90oKu19/do7PHkci8AgD7i4CntyFDUPlgM1humNB0vb/xYD+HHvq75QqDFYCD8fj7TWnnOhUNCn4DIyhCOH3739UT0wjXwuHPU9+WuGoEx2EhNl6jgpX74IR69/81oz+Lt756OgfFHUW1ecnc3h7JwVxDDmg3BE/JgPKeof9pgP7N4SNPmYZPj42qrjeWjHJ2AjPi4dmZlKdZwUIXkA+BiTgnbBpQEAUVHxgi8VH2Po162L3l++pKNO3awMJ3tDHwvKx8TQr1sXvaVSQzRslJVye8d2/vSSAPBB65yxsWk66Z2X9tYV7fYuCEQiESpVYY9pkV8YGkrU7V1QWFgYq9u7oAgM8kJgUN7iJQiRl/bW5fl+Fa3J7BIZKdzXZjem6GN/Hs+xpECb9280z+e1i8JZV7JP0Sl0WHZ499pHdB/8//qihH8/MjMUaNPCB/OP32IPXKuCOoOQTuUCGOgQJDg3U5M2NmZYsKhxzg/MAYXxfGv35wUF6c91o6i0d9VqrqhaLe9eMT8q+uI9og/XUFT47kuECEWbKjr8gBkY0AczpiYGgsfUracJtlkxwElQ3saWPgOiS2IX7SC0uljUS5bWpMSrVctNUL4o6p0b3D2sePdTFFBcKyJ+dpdVNkq408/p7sF/jLOzGS0IrdA1ZZdxcjKlLRlivyb6NRC92cmuN4GQ33h4WgvKlPbTzAaXLSM8M2xpaUTb1sf+3MlV2OXeu5QmQ2Ngc09B+ezXkN3dn416TTR6+wQI/34Ymxog9NhTzqxAnEaUXL4rJCcLG7J0TA5HIBAIhJ8QYmAhFCjF3CxhZs7vBtu8hTdtu0+/irzyhoYiBDbWDPwm/lVLcLAzdQY9NkA5gSCaxbKlDFy8VDhbzsIlmpmpEu5WP6XeueGXnhV49zdu6gVnF83sSaXKzijD4workYjQtXvZHNXRozd9f3BIaZiacr8gubqao1GgZtbI1NQQIR35l0L07EWvg+jNTna9CYT85q/JdXn3i8UUho/SBKC1dzCFpxe/UaZHtu+5Pvbn05c3hArcrhdKqDB1mSZWjq+fnaDBpFI1ehyIZh18eOUpCmjVRRMoe+RK4Ywqv0woizeUsOdifrFx3T1BvX/m2XYCgUAg8EMMLIQCJ3RfCOc+CwtDbNzamlY2dUYDODlzz7St2UBPaSgWi/HXFO4Bc4WKjmo37G8cDesCA0P2r79IROF4WFdaWcUAZ9qLZXb6DqgIS0t6MM+fVe+cUq26K0aOrs66z9XVHPMXBtHKKIrCqrUtYGVlxHrMnPmBjOUlffr5o3FT9iUL1aq7YvhIejYPGxsplq5oxhrwVSqVYPX6lgwPpKnT68PH14YhDwA9epVHs2wGNaI3Eza9CYT8xtPLGgMHV+LcP21mA5iY0A3k/+4OhoEBe9/p7WONPyfXoZXpY39evpITajR2YzWyqKBCxwFlGf35mp3cKYQNDETYc5oef2v+piYw4THS/rmIrqNEIkGbwaU4pAH7Yqao3KgYFFThhQtMTcvE1h1tOfcbGIhwPLxLoV0PgUAo2qhUFFRKPfgjS4TyDRLklpDvsAWfevDgIzqH7FXH6xCLKdSuWxwHDndUB+DTRqFQoEe3gzh+NBJyeVasEicnM6zf1Bp16rGvad0TGoFRw8IQH58OICtqe8/e5bFgEbsXRmJiGlo134V7d2OgUmbNrJUsaYsDRzpxLo2ZNuUCli25jrS0rPX15uaG+Ht6PfQbwD5Y/1n1zikqlQpHDz/HmlW38ODBJ5ibG6FdcCkM/a0KHBxNWY+Jjk7AkkXXceJoJNIz5KhS1QW//l4FdeqWYJXPzFRg88Z72Lr5Pl69SoSzsxm6diuLfgMDIJWyvxDcvPEeSxddx+XLbyAWUWgU5IFhI6qhZCl2t/aEhHSsWHYDe3Y/RlxcGkqWtEWffhXRsbOfOoAu0Tt3ehMI+c3Wzfcxc9pFdVwhDw8rzJrbEE2bs3thvHqVgEH9j+L61XeQy5UwMzNEx85lsGBREGsAS33tzxdMuYINC28jMy0rE5vUwgBjptdE90H+rPLXr7xFzzYH8DVJpi7zKW2D8JvdIZEwQ/nJ5XJ0q78Pd2/E4JstR2oqwdyNQWjclv3e7l36CGsm3EBmRtZ9oiigZks3TNsXhMzMTLiZL0IqxZ05DirAXCWG6P/rghIpea6XCJUsZYsbd/rjypXX6NhuD5K09C5V2hZXrvdm1ZtAIBQORS3I7b5qI+Bg9P2XRn/KSELwtYUAftz7qi8QAwsh3ykKHR+BQCAQCAT9oKHlOtyUcWe0o1Sgx2j5NrLNhZHl5r1+8PXNW2wxAoFQcBSF9wxiYCnakCVCBAKBQCAQCAS9pYynLTjDx2Q3rgBZhhUK3MfwQIwrBAKhMFGpNJmEvu/f974TRQdiYCEUGufPvkSdmhtRrvRKdGgXis+f+VNlJifL0KPrfpQrvRI1q6zH4YNPBevYuO4OqlZciwplVuH3occhk/G4FAN4ERWHFk12oGyplQhqsAUPHvCnV1YoFPhj/Gn4l12NShXWYOH8/wSv6WfVm0AgEPSZn7k/nzHuPBr6bUJg2c1YOe+64DUd2fMMVb3WoIzjcjSttg3v3/KnV05ISEeXeqGo4rAadUqsw651DwXr2D71Lrq47EJH+38xudUppKdrUl2HR7zKVbag3Axyfx96TP35wN4IlPZZDjfnhahTYyPevk3kOZJAIBAIBLJEiFAAZHfdc3Z2RmX/dYiKjGfIDv2tMmbNDWSUL1pwFZP+PMcod3Q0xaNnQ2ipZQEgLi4NZUuuQHJyJq2cooCNW1szggMCQLfO+3D44DNGec1axXDiVHdG+eVLr9Gy6b9QKOiPjJGRGNdu9YWnFz3Qp0Kh+Cn1JhAIBH3nZ+3Pr196h1+C9gLZbDZiIwrH7naHe7ZsSXK5HBWLr0H8l3TGuVqF+GLldmYQ3JmjzmPz0nuMcqmJBFdjBsDYmB6/5EtMMnq574NCzhyODl5SFdVbFoO373LuNM0CmCkpJIt0H+paWhnh5Zvf4O2+HHFf0hj727Uvic3b2uXuYggEQp4pakuE9lYdAQcjy+98RcCnjES0v06WCOUHxIOFUOA0C9rBOigFgOVLb+Lg/ie0sps337MOSgHg48cUVK+0nlFesexqxqAUyHK769X9EGOWcdaMi6yDUgC4cvkthg46SiuTyRRo0YQ5GAeAjAwFalTZwCj/WfUmEAgEfeZn7s9/CWQaVwBAkaFCi4DtjPL65bewGlcA4PCeZ9iy+i6t7PKpV6zGFQBIS5Wjvgfz3vbx2s9qXAGAlb9fx9snCbk2rgCAKIdDXaVChcr+61iNKwCwf+9TrF9zO/cXRCAQCFp8/6VBmj9C/kAMLIQCRaFQ4Op/73hlRg0Po20P6H2EVz4yMo420Lx4/rU64wIX/bOdc9GCa7zyO7bR3ZlHDjsJpZJ7BiwtTY4tmzSDyp9VbwKBQNB3ftb+fNLvZwAlt7w8TYndGzXHyOVyREcl8NYxbdwF2vaoX07yysd/SUfM26/q7cv7o9WZg7hYM/Y2bJWGvDIiFeCiNIKz0giuSmNYKrO8ZCgV4KQwRH25LWrLbVBMaSwYl6VigBNeCOg9cfwZ/pMQCAQC4aeFGFgIBcqZU9GCMp8/p9K2X71KEDxm3Zo76s8rl98QlL918wNt+1u6YS4UChWSkzWpGU+FvRCsY8O6u+rPx45ECsoXRb0JBAJB3/lZ+/MLJ18J1rFj3QP1512bHwnKZ7+GhDh+IxEALJuhMQyFzhWOzfLuaSICLHiWoqqywrC8F2XggygD70TpSBTJ4aI0gqPCAE1UTiintEBFpSXayZ3RRu4EA56Z2hat2FNJayN07wkEAoHw80IMLIQfEhFVuG5sVCHXx8XPqjeBQCDkF/rSrxV+f16o1XEiFud86CmGGE4KI1DZvE9E/zeuKFh0ey/KgBllwCgvrpKivoJkCiIQCPrB914WRJYI5T/EwEIoUBoGugvKODiY0rY9PK0Ej+nT31/9eejvVQTlq1R1pW1LpRIOySwkEhHMzDQuyY2beQnW0W9ARfXn5i29BeWLot66sH3rA1QNWAePYotRsdxqrFpxM0fHCyGXKzFz2kWULbUSHm6LUbv6Bpw49jxf60hISMfQgUdR0nMZvIovQctm/+KhQOaOnBIZGYcO7ULhXWIJfDyWonePg/gYw5+xJKdcvPAaDetugYfbYvj5rMDEcadpmTvyA9LeulEY7T1qeBisTGfDQpr151V8CWLyuY4fob1/1v68fjMPwTq6Diin/typZxlBeakJ/Rqs7YwFjxk8XqNrpwnleCSzcCtthRtJnxEjzoAJxHBWGMNJYQQnhTEcVEa88Vk+iDKgYAk646s0halKzHIEMGPqRcFrMjFhGm742LrlHmwt5qqfPUfb+Th/9mWOziEE6c91o6j050WhvWUyBfr0PAgnuwWwtZgLT7fFWLfmVr7WQSB8D0gWIUK+kz26d//e53H50htO+X9Dg9Gipa96+/7dj6hdYyOnfMmStrhxtz+tzL3YYs6AdBQFvHw7DDY2UnXZ3NmXMf1v7kFUrz4VsGR5M/W2QqGAneV81qCIQNZA92PcaFpZs6DtP6XeXCiVSjQN3IGr/71l7CtZyhb/3egLiSRvNt/kZBn8y67Gp48pjH3tO5TGxi1t8nR+AHj44CMa1NmCjAzmoH3mnIb49feqea5j546HGNjvCLL3zhIJhYNHu6BO3eJ5rmPsqFOsgyULSyPcutsfjk5meTo/aW/dKYz29ii2GF84+orDxzqhXgPhl28+fqT2/pn7cz+z5axBbgHAwESMhwlDaWV1y27Ai+cJnHXMXxmEzn00RpLrF97il8B9nPI29lL8946ud1uzbZClc6einhXWEHVaMAPwAoClSoJEiv+lspXMAe4wZZQflXzEC1EqyxHCLFvZFD16+esk27LZDlw495p1X/+BAViwqHGurkEb0p/rRlHpz4tCe8fFpcHXcxlkLG3hH+CEC5d7cR5b1LIIhVYepTdZhDrcXADgx72v+gLxYCEUOMfDu6FkSVvWfcNHVqMNSgGgvL8jZs9rxCrv7GKGq7f6MMrvPRoACwtmEDyRCNj2bzvaoBQAxo6vheD2JVnrqFO3OG1QCgBisRjHw7pCLGZOlRkbi3H9dj9G+c+qNxd/T77A+mMNAE+ffMHg/kdZ9+WE4Na7WQdnALA39DG2b33Aui8ntGq2k3VwBgB/jD+D6JcJeTp/UlI6Bg84yhicAYBcrkJI291QKvmDQgpx9mw050xUUmIGWjT9N0/nB0h760phtPdvQ45xGlcAoFXzXXk6P/BjtffP3J9vP90eYHF8kUhFOH6Xmdb5wsM+sLWXMg8AENylFM24AgBV6xZDv1GVWOVNzAxw8VVvRvmm6BCIDdjdUH5bWR2u3laMpUHfEEHYpd2QY6irEIp2y0HHzn46G1eePP7MaVwBgLWrb0Mmk3Hu1wXSn+tOUejPi0p716q6gdW4AgB3b8dgxjRhT7KiwvdeFkSWCOU/xIOFkO9wWZavXnmDiePOIC4+HWXK2mPF6mawtGQfuAFAWpoMvw89gZs3PsDM3BB/TaqDxk35XbW3bbmPZUuvQ5auRKMgd8ye1whiMbsbcNb1JeK3wccRHZ0IZ2czLFraBCVLca/NVigUmDH1Eg4dfAqRiEKvPv4Y8iu/a/fPqnd23JwXIjEhg3O/kZEYnxPG5Oic2qSmyuBs9w/rwOYb7h5WuB8xKNd1nAp/geDWu3llWrfxxbadwbmuY8zIcKxeye8iu2hJE/Tpn7OlWdrUr70Jt2/F8Mo8eDIIJUpY5boO0t66URjtbWkym/c+AcDm7a3RLtgv13X8iO39M/fn//z9H07uj4JYTKFT37Lo81sA7zWdOhaFP4efRcpXGTy8rbBhf2vY2XHPkicnp2Nw8FE8exALY6kBRkytjrbd6d+vL+9ScWzZU9w79QEqpQoSqQhvopKgVCpRprYjJuyqC4kkyxrkZ7gY70Rp8FKawUdhBhOI8ZWS4zOVjjviRLipjFFWYQFrGCANCjwTpeCx6CssVQboLmfOwsqgxAaD18jkstz8n6rVnPExJhVJXzPg5W2D3XuDefXOjrvrIsQJBP4NqOSIc5eYhiddIf25bhSV/rwotHdiYhrcnBbzypiaGeDD51Gs+4qaB8vuSqP1xoOl4635AH7c+6ov8C/gJRDykeo13XDmYk+d5aVSQ6zd0DpHdXTvUR7de5TXWd7NzRIHjnTWWV4sFmPS3/Uw6e96Oh/zs+qdnaRE7h9rAMjIUCA1VQYTE/50nFzcuP5e8CUy5sNXfgEBdMk+8ujh5zzVcfPGe0GZ8+df5WmA9uJFgqDM2dPR6NXHP9d1kPbWjcJob12mUZYtvpEnA8uP2N4/c38+ZmptjJlaW+djApt7IbC5cOyab5iZGWNrWHvO/ZE3v2Bq09NIjqd7bxiZiDHxQH2Ub+RMK29SpgTe3o9HcZWJusxGZYgSMIG30gyOKkNaEN9iCilKKc0Qq2I3bjwUJQkaVwDgS2w6HjwZLCjHRXyCcFaliEdfcn1+gPTnulJU+vOi0N7HjwpnZktNyczVuQkEfYAsESIQCIWCSKSDK7dh7m2+2YNMsiGRcM8C64KVtXAAx+xBH3OKmbnwgMXS0ihPdRgZCd8He3sTQRk+SHvrRmG0ty44u5jn6fii0N6EwkGhUGJBl4sM4woAZKQq8E/XS8hIpcdV+fg4iWZc0cZKZQi2RRcuKmOUhxXrMY4q4WcbyPvzLdbluTDK21Cc9Oe6UVT686LQ3m7Fhb019CXbW6GgB0uDVCoKvBHDCTmCGFgIhcKd2x9QymuZOoK+lekcNA3cBpmMff2lQqFAh3ahsDaboz7Gs/gSnDnNHXV/x/YHcHNaqJa3tZiLoYO414nGxaWhZpX1sDTRZNWoWG413rxJ5DzmrwlnYG81Ty3vbLcAy5ZcI3rrgF8Ze979xYtb5CloWmk/e5gLDG7q1stbcLl+AwIEU53+0lP3mWc2Bg1mj1+gzW/D8haIr3kLH979BgYiNGshnDmFD9LeulEY7a3LgH7D5pZ5quNHbO+ftT+fNeEi/MyXwddwMXwNF6Oc9XKsW8y9rOHy2VcoabsUxYz+Uf/VKbOBM2OJXC5H56qh8Ddcqf6rZrkGJ3Y/AwDcC4/BxxfcGVWSYjPQ3XwnZjQ9AwCQyWSwkPG/VOY0d4qryhg2SuFMQM+exanvq4V0NgLKrc5RppbmLfn7WgCYPrOBzudjrYP05zpRVPrzotDetWoXZ42BpY1vSZtcn59A+N4QAwuhwLl4/jXq1dqM9+81AyqlUoUrl9/C3XURFArm4LSk13KcPBFFy/IQ+zkVbVvuwu5dEQz5WTMuYlC/o0jUcmvMzFRi6+YHqFllPUM+Li4N3iWW4uHDzzS31KjIeJQrtQovouIYx7Rq/i8WL7pOC5CWkpKJiePO4tfBx4jeAixb0Yx3VmTh0iY6n4uLKVO5Xf0NDER5rsPOzgTBIaU59zs4mmKgDgMsPlq08oW3jzXn/jr1isPHlz3Ypq7MmN2QN83oiFHVIBLl7eeBtLduFEZ7n7vEv6TF1dUMhoa5c/X+xo/W3j9rf96t6V5sXHAbigwlqP//k6UoMHfMJYwfFM6QP37gGTo13YuUZLq7/svIBJSyXQq5nGlsqG23EU/uxtLKMtIUGN/9NLYvuYd3T7mNP99QqYD7YR8wqNg+RN+Kh6nAivbcBBO0hrCBJXsQzsjIeLjYL2DVm41t//LH8xCLKfTqk/vlIgDpz3WlqPTnRaW9Bw3hv9fbd+U+Fg6B8L0hBhZCgdMxJJRzX3JyJnp0O0gr+2vCGXz6yJ06cXD/I7RthUKB2TMuc8o/fPgZe0Lpg9lWTXdALmeP5K5UqhhR2G/efI/zZ19x1rFl030kJtKzdPysenNRsZIz9h3qCCsrupuumZkh1m9qhaDGuq/v56L/oEqYOachw4XWyckMZy/2hLNz3pZBAMDGLW3QtXtZxuCjbDl73LzbP88DGwC4cr0vqlZzpZVRFNC8hTcOH9M91gIXZmaGuHa7L0q40910JQYijBpTHX9Ozn2snW+Q9tadgm5vL28bbN7OHgfE2dkUjyN/zXMdP1J7/6z9+b0bMbhx5i0olsw7FCjs2xDB0HtwN27vGblcheAG9KChE3qEIz2V2/gwf8wVmNvovkQi/n0aHp37iEzWRUAacuPYniZwTi7kchUaN9qhs/yzl7+CrZswNBThY9yIXF2DNqQ/152i0J8XlfaeNTcQfQdUZHgVGRmJceBIJ/j45M0Q9SPxvZcGkSxC+Q/JIkTId7QjY1+6eB/NgvjTuRkaihCbOFa97erwD75+5U9buGd/iDoTw9TJ5zF/7n+88m7FLfDo6RD1ti5ZNZLSxqs/16m5EffufOSVD25fEpu2tQMAvIiKg3/ZNbzyRVFvXbly+TXu3I5ByVJ2CAzyzNGxuqBUKnH08HO8fZuEGjXd4F/RKd/rSE2VYf/ep0hJlqFZS2+4ueV/BPiPMck4cugZxBIRgkNKwcJCt7gBOeHpk1icOf0SDg6maNOuVJ7cfrkg7a0bhdHe61ffwtp1d+DibI4tO9rBzCxvnits6Ht7/6z9eatq2/HsDn9A1aAQLyzb0QIAEHH/ExpX2cYrT1HAm/SR6u3Kpqsgz+S/qD+X1sXe0feRkcq+tAqqrAwM3wxBUgsJZF/T4KziztYkBsCR6ZmVr5Bjs8Eb1pADg3+rhJVL+TPBUBSQmDqeVyY758++xF9/nIOBgQjLVzVHqdL8yzByA+nPdaOo9OdFob0VCgVWr7yNly/i0aSpNwIbC9dR1LII7ao4FvZ6kEXoc0YiOt2ZC+DHva/6AskiRChQbt/mTyUHZLlAa5OaJhw5/NLFN+qB6V2BgTIAxMfRZ+V0MSvGxaXBxiZrQPfhvXD0+ufPNO7YV6++E5QvinrrSs1axVGzVt7WU/MhEonQqk3JAjs/AJiYGKLbL+UKtA5HJzP0HcCfPjWvlCxlx5vSNT8g7a0bhdHefQdWQt+BeXODF0Lf2/tn7c8/vk8RlH/5PF79+VxYtKB89muQy4Uv6s5/H1A9pDjOb2GPRaOCCpSWg3VGqgIVG7kiJvwLR+BLFSQsPiwqqJACOcyyLQVSQYVHoiT2eI4U4Owk7CmRm6nJeg08cOGKR84PzAGkP9eNotKfF4X2FovFGPJrlQI7P4HwPSBLhAgFSvnyjoIyYjH9a2hsJGz3q1RZk8JRl0BY5hY5j9puaamZ2bWzE47IXryExvpcqZIzj2QWRVFvAoFA0Hd+1v7cxp7bA+QbriUs1J9r1ncTlM9u79Ala45fgD0uHXoFGZRQakVPUUKFTCiRQdHLDY3FiA6PgwwUFCqNcUP1/89GoFiDl1Kg8JVieslQoFBKac4euEUF6OLY/TMlOCEQCAXL914WRJYI5T/EwEIoULy8bWBszB/9v05d+iCufQfuIGRAVlC4Nu1KqbenzhCOwD9mXA3atrc3/2DW3t4EYrHmuufMayRYx8KlTdWfS5ay+yn1JhAIBH3nZ+3P/5pfDyqecLAqqDB9WUP1tn9lZ9bYIdr4+tHjJFQPFDbKFHO0QEpiJpSUCjIokQ4F0qGADEooKBVAAXKt6wwa6vH/qwMyAWQAyFBl/S+h+I0dDiojyFhirVjBAM4qdoPVquU3BfUuXbpgvQYIBAKB8ONCDCyEAmfVuhac+wwNxdi5pz2tbPGyJrzp+mbMbkjbNjQUo+8A7ij8xdws0G8A3SX+4LFOvBHS9xzoQNuu18AD5cs7cMq3aOkNJyczWtnPqjeBQCDoMz9rf16rYXH4VGA3DKigQv3WHnDIpvfUf7gNPxQFHLzQiVa2eH8TSCTc19RrVAXEfdAK/ktl+/t2PVSWgUVqIUGVZiUYgXm/mV+EBrFiUMgAe6wXE7AbzZK+yjBnQSDnOSkKOHW+u0DNBAKBoBsqFQWVUg/+iAdLvkEMLIQCJ7i9H3bvaQ9LS/pskW9JG0S9/hVSKX0QKhaL8fLtMFSoSF9eZGpqgFXrWrCu1Vy4uAn+nFyHFn2eEgENG7kj4tkQhrybmyVu3+8P12L0tdb/Y++846Mo2gD87LX0SoDQe+8dadJBmoCAigpSBERA0Q8Qu6IiCIIgKr2DFOkgVUB676HX0EtIQurl7vb7I6Rcbm/vkgsQwjz87sft7Ls7OzfZ2dl33pIzpyfbd3WnSlVbk/Cd+3rS8bVSaLUpA5Ber+GDgdVZuKSTaLdAIBA8J7yo4/naA2/RrFMx0CYqVWRkJL1Etw8rM2Wpbaapd9+vwtgpzdHrraeLgTk9OHK9D97e1oE7dTodO8N6kzu/l/XvoZP48MfafDSyDnmKOY5xIskSBcr7MSv8dYrUDrCyvJFInLxKYGWbEikncJs4HmDE8tjNJyn70DUplptSHOZU54lAOdtRzpye9O1XnT8mv2LT7qCcHly8NsCm3QKBQCAQJCGyCAkyHbXo3mazmYgIY3LQPWcIC4vF29uAwaBuop2E0WgmNtaIn1/66vDzM1iZU6sRFWVEq8VmUm2PF7XdAoFAkNUR47lz7TaZTDy4H0fudFgt3r8dhbe/O+7uKTFpEoxmehT/m7CbsYrHuHvrmHetM56+Kdf1gXYRkgX0QGqjHVkGk2TikWQmZyqXn0gSSJAsxEtm1ujuYHl8jIesobY5gJyyG4t1NxXzO2/d0Y1q1fNatfv+/ThhrSkQZBGyWxahhZU+Jafh2cczvGeM4M1jPwHP7++aVRBZhARPFa1Wm65JKZBueYNBi8HwZOtIb2rTF7XdAoFAkNUR47lz6HS6dClXAIIU5PUGLRXq5Wb74iuKx5SqEWSlXAEoVjuQ67ttswhJEujQEiRbT2d90WOWZTZpUpQrALGSha26B3hZNIrKFcBKuQKJ7RbKFYFA8KTIKgFms8I1ZBeEi5DgqREaGkHXLn/TrNEchg/djNms7BedhNls5ocRO2jWaA6dOyzh7Jn7DuvYuzuUV1svpEWTufz5+0GH8rGxRga8v46mDefQq8cqwsKUV9RSs2D+CV5pNp82ryxg4/oLDuVf1HbHxCSweuVZ5sw6xp5doQ4zM8iyzKGDt5gz6xjL/z5DZGS8wzoEAoHAFV7U8Xzp3FO83mQJXVssZes/lxzKXzz3gDb15lO3zHTef2sNJpOye00SJpOJz/puomnp2XSouZATB28n7wu7FcPOZVftHnts621+7bvLquz6njA7KZoTswIpPV20SFS0+CseE62xDXybxA/fbU/+fu7cfRrVn02lcn/Q/e3lDtstEAgEAoFwERJkOkqmey2bzmP3rutWcpIEI0c3UfRFX7okhN7vrsZisf7zLFM2iH2HetvIG41mypf+g9u3oqzK9XoN/2x6i5q18tkc8+mQzfz+m+3ktVOXMsyY/apN+fnzD6hXayaxsdYTLP8Ad46e7Ku4eviitnv+3OMMH7qF8PAUJUm58jmZPqsdZcvltJG/ciWcnt1WcfDAzeQyLy89n39VnwGDatrICwQCgSu8qOP5pXMPaVtjPqbYFAWDjIx3gBtbTncnQKHd9cvN4PKFcJvy9z+pzuc/NrApnz3xCD9+ssOmPCi3J7tCe7Nhxnl+7bPbZr8NEny7ugnFK/szIs9ah6mR7TlGzTRcJV6yr1BJS0CgO1dvfETVCpO5cOGhzf6PPqnFd987zvokEAieDNnNRWhBxeFZxkWo6/GRwPP7u2YVhAWL4InTtcvfNpNSSPSd/nTIFnZsv2ZVfuliGD27rbKZlAKcDrlPk5dn25RXKvenzaQUICHBQvPG84iNNVqVT5tySHFSCrB08Wm+/nKbVZnZbKZ2tek2k3GA8IdxVCr7p035i9ru1SvP8n6fdVbKFYBTJ+/RttVC7t6JtiqPijLS7pWFVsoVgOjoBD4b9i+zZhxVvF6BQCDICC/yeN666jwr5QokWoBEPzTSuPQsm/O0qTdfUbkC8MfYg/yz4pxV2Znj9xSVKwD378TQpNRMYqMSFPfbIMPXbbZw51ykQ+WKGnp7vkB2SDCaaVR/tqJyBWD82H2sWnE24xckEAgEqZDlrPMRZA5CwSJ4opjNZtauOa8q06f3aqvtbl1XqMof2H+LqKiUiebxo3e4cf2RXXmLRaZPzzVWZV99sd2OdCK/Tdhvtf3tV/+RkGB/BSwiIp6Vy88kb7+o7ZZlmR9G7LQrf+9uDFMmH7Iqmz/3BFeuRNg95qcfdmEyOb/6KBAIBGq8qOP5z1/uxmK0P4OODjfyz7IUhYnJZOLogTuqdQzuvdFqu8+rq1Tlr19+RHBJx1mEUjPlsyPJE/84zIRoIjmkfcg5zSOMj7MEychc0ERxUPuQk5oIoh9nCIrBRLSdNM32KFUqB4cO3lKVeb/P2nSdUyAQCAQvDkLBInii7PzvmkON6K2b1it2p53wUZ/6Z8pL+pjRjk2Nt2+zXl2MemS0I5lIgtFitVq4ZHGIwzom/poymd2y6fIL2e5bN6MIOXVPVX7zxstW25s2qvv/37z5yOE5BQKBwFle1PF8zaJzKtKJlixTxx1O3l6+yLGVRtpruHsz2o5kCpvWX6Ro5UD7Aml+6wuHw9B5aTmtiWSBIZRd+gcc1oWzXX+fhYZQrmii2aq7y2b9PQ7qwtmpD2O+IZSj2nBOah+R3riNXd8u51DmkYPfXiAQCAQvLiKLkOCJEhPr2BQ4bRgg2QljhahUJsZGo+OgcxZL+i0gUscuNJsd280ZU62IRkU7nnxlx3YnmByvFJrSyCQkOD7GaEzfCqRAIBDY48Udzx0fb0rV7ujIJ6NEiIkxEpzDkytymFWGHwBJBndZQyyW5Cw/siwTXlhm58UHNucyShY26e7aZASySLBX95A8FjebYxxhdOI5JhAIBJmFRQZLFsjgo+DRKsggwoJF8ERp2KiwQxn/AHer7bz5HJsPv9urUsr3HpUdypcrbx1Y1eBmLxxeIhqNZJXCsl79Ag7r6NS5TPL3V1oVdyifHdudP78v+Ry0o1y5XIwauYv+fdcy4tv/KFkyh6q8n5+bYmBcNZYsOkWjerOpUmEynTssIeRk5lrAmEwWfh61m5dqTKdapSn0e28N9+46XrlND+HhcQwetIHqladSs9o0vv1qG3FxmZvB4srlcN5+YxlVKkym/kszmTH1SIZe4tTYu/s6bV5ZSJXyk2nRZB6bNl7M1PND9ujvEyduUzDPOHw9fsLX4ydKFZ3I7du28ThcQfR3Ii/qeF6zvm2Q3LS0eb1U8vdO75RRkUy6ButppLev49TP7dqVImTTHXxkHR4WLXpZQi9LeFg0+Mo63NCiS6UxyV3Imy3nbePfJKPyXhIlmW0sYhwx4ZcDDmXcHPz2aRH3t/Nkh/FcPL+dZ8zo3ZQoPJF8uX6heuUpNvGsBILnEZFFSJDppI3u3anDekJO2jeX/u2PV+j2bspEc/vWy7RttciufL58Ppy+8IFVWZ6gsURH27eWOXXufQoUSInQPfSTTfz5+yG78m3almDB4teSt2NjjQTn+MWumbher+FB5FCrsto1pr2Q7f79twN8OmSLorxOp0GWZZsVZDc3LfHxyquG/xtWh6++sc1UoYTJZOGlGtM5e8Z2pXPAoBr8OKqJU+dR48aNSGpXm05EhHUQX41GYuqMNnR+3bF5uSP+3XKZTu2X2MSe8fDUsXV7d8qWT5/CSYlxY/fy9RfbbMrz5fPhwNH3rF7MMkq3rstZsdzWzaBeg4Ks29DV5fNnl/7+oO9a5s45obhv5KjGfJAJmbREf6fwIo/nlfz/QLKzUirpJc5ED7Qqq1poMndv23/5HPZtHQZ+Wjt5+5+l5/io63q78l4+en76rgmzBqqnn47DTNzjVMrf/9OUhu3mqsqr4SFriE1HFiFn+PKbBgwZVscpWXF/O0d2Gc/F89s5jEYzxQpNICJNQgSAlq8UY/GyznaPzW5ZhOaWH05Og/+zvSDgnjGcd06KLEKZgbBgETxxdu3tQVBOT8V9HTuVtpqUArzcqAj9B1RXlPf2MXDg6Hs25XsP9kKvV/5zHj22qdWkNLGsGbVfUl7NK1Uqh9WkFMDDw8DMue0UMxlotRIb/n3bpvxFbff7H1Tng4G2KUs9PHSYTBZF8/z4eDPePrYTgrfeqcBnX9RTvF4l3uz8t+LkDOC3CQdYu1o9BoEzNG0412ZyBolBKN/ruYY7Lq5KxsWZ6NzBdnIGEBtjokWzeS6dH+DIoVuKkzOAGzce0bblQpfr+HXcXsXJGSTGZhry8SaX68gO/X37dpTdly+A4cP+den8IPo7LS/yeD5ufktkSUGzpIVF22xfaPZf7IW7h7K1Rs26+ayUKwCvdCpJy47FFOV1Ool/L/ZIV0agzkPLk7+UX7qtUJ4kL9XJ77RyRdzfzpMdxnPx/HaeOjWnKypXANb/c5E/f1dXwmYnZFnKMh9B5iAsWASZjj3N8sxpRxg7Zi9RUUYKFPTl98mtqFAht93zXLoYRt/eazh//iEe7jr69KvK4P+9ZFfebDbz+adbWbb0DAkmM5Uq5WbqzDbkzOlt95jtWy8z5OPN3L0bjX+AByN+aEjbV0vZlY+KMtKn52r27r2BRgMtWhZj3ISWGAz2zYVf1HafO/uAv5eeJuxBLCVL5WDN6nNs3XLFrnzFSrno068aJ47fxcfXjfYdSlGxkv3fKS1Go4lcAWMV06ImUap0Dg4csX2xcZa9u6/TvIn6BOmNruWYMr1thuv49qttjP15r6rM9FltXVppa9F0HnsUUs6m5vzlAeQOtv835IiiBSdw/16M3f2enjpuP/hfhs+fXfq7VNGJ3Lqlbp7eqElhVq55I8N1iP5W5kUezz/psZ7Du28haSQatSrMiIlNVNs9dsRupk88Qny8iRxBHvw2txU169hf3Txz/B4Duqzjzs0o9HoNHbuV5YtxLwNw40wEQ8qqZ+HxKubOyK3NCcqf2O7ibuO5q4mzKx8k66lo8SEAA7GYOSNFcUmKxRcdkZhU3YjUKFc+J9dDI4mLNxEU5Mn02W2pU6eg08eL+9s5sst4Lp7fzhEbayR34C+qMn7+boTeGqy4L7tZsMwp91mWsWDpdupH4Pn9XbMKQsEiyHSyw8AnyHwK5h1P+EP7E2SAB5FD0OvT59uexM6d12jVbIGqjLu7jrsPMz4p+GzYFn6boO6fX6x4AEdO9M1wHY0bzOHggZuqMh07lWbW3PYZrqNQ3vE8dNAXaV0e0ouf508OM6/cfvAxnp4ZM2XOLv3t7/UTjtzm3T103A3LeDtEfwuyGqNabeXYeuVUyEWqBfL9/hZIqUxdBlRfxpyT5xQVJVXNvjSUA5HS7LwgRXOQCG5olVfJnUHc34lkh/tbPL+d50n399IlIfTspp7SXZIgIuZTxX3Z4T1DKFiyNyKLkEAgeCq4u6kPN3q9Bq02416L3l6OH/QarWvmj56ejodMvcoqsDO4uTs+3sPDtaFbZ8cNITWu+nBLkmSTWSUtBkPG25Fd+tsZdC62Q/S3ICshyzJR12LRymBO02UaGeJvxWNOsKBLdW9duRypqFzJZ3GjkawcKL247IU7GhZxO8PXKu7vRLLD/S2e387zpPvb38/doYyUHl/C552s4p6TFa4hmyBisAieCrdvR1H/pZkEeI/C1+Mncvr/TP8+6ibCw4duJnfgGHw9fsLfaxQ1Kk/l/Hll/1yAvbtDKVvyd/w8f8LP8yfy5fqF8WPtm2oajWa6dFxCDt/R+Hr8RKDPaFo1n09UlP3UlHNmHaNQ3vHJdZQoMpH1a8+LdqchLs7ElD8P0bzxPGpUmUrXLn9TvmIu1XZXq5GHnt1XUaPKVBo3mMOEcft49Mj5lceKlXI5nLhUq57H6fMp0aN3FYcy7dvbN813hrffqehQpk/fai7V8XLDwqr7tVqJNu1KuFRHseIBqvtz5fZCp8v4Iyi79HdtFTeLJAZ+5FoQTNHfyryo4/m8WccplWcied3Hktd9LBUK/86GtRfsyodeCadG0Snkd/uF/G6/UMDjF7q2Xqra7o+6rqOMx0RKGSZQyjCBl/JN5dSRuwCc3X6XW6cicUOD++MMQnpZwl2WcEdD+I1Y3vBewOSP9yWf70iUcoDhVyzqAUPz4Y7Ghfi2N0IjkzP/+Hv9RPs2f6XreHF/O0d2Gc/F89s5GjUp5DAWU/4Cvhk+v0DwrBEuQoJMJ63pXmSkgTo1Zir61gYHe3Pu8gCb8ppVpnLGTrCzteu7Uv9lax/oObOOMeD9fxTlGzcpzIo0/s1Go5lCeccrZmzQGzScvzyQwEAPq/K+vVezcP4pxTqGf1GX4Z/XtyoLCbn7QrY7IiKOV1sv4vAhW/Nvg0GL0WibLUirlRSD35YslYN1G7qSK7eXYv1p+XHEDn76cZfiPo1G4sCR3pRwkBbaEW1bLWT71quK+3x8DFy+PsillR2AEkUmcsdO5o7yFXKye38vl85//34MpYr+RkKC8pvHuz0rMWHSKy7VsXXrFV5tZf9lZMr0NrzRtbxLdWSX/vb1+MnuPjUzaWcR/W3Lizqe9++1lpXzzti408jIDPqyFsPSBBU/tO8mrzZQ7ldPLz3nwgbalNfJP5UHd2MVj5m4+BU0Vy389dERxf1JPJJMPNKYKVTen+HzGlC+xmRFuQ9Nha1SOiuxQHOTW5qMuwmlxctLz637nzgtL+5v58gu47l4fjtHz+4rWbr4tN39m7e9Q81aykG8s52LUNnPCcoCLkL3jeF0C/kBeH5/16yCsGARPHFeabrAbuCy27ejGPD+OquycWP22J2UAnTqsNhq22w2M+gD+2kh/91yhc0bL1mVtX1lgd10mAlGC01ftk4Jef78A7uTcYCR3+8iNtZ6xfBFbfe3X/+nqFyBxBeCAgWtVyXy5PFWVK5AYqDc9ESr/+zL+vQfUB2NxnrC7eWlZ+mKzi5PzgBWrnmdlxsVsinPk9eb3Qd6ujw5A9hzoBdFi9muIFWtFsy//3V3+fxBQZ5s3voO/v7WZrqSBK+/Uc7lyRlAo0aF+WNKa5vAmTqdxIgfG7o8OYPs09+bt9lmrYHE/jh7yfbFPb2I/rbmRR3PL5x/oKhcAZCQ+PX7fTbt7txssY1sEjHRCbzTbplV2feDt9tVrgB8+OZ63H30dvcnkfRLXz0ZzvEdd9DYWQq0OJFeKAZbpb4rREcn0PFV+ym40yLub+fILuO5eH47x4zZr9K8RVGbco1G4rc/XrGrXMmOPOvMQSKLUOYjLFgEmU5qreyB/SE0brBSVd7dXcvdh0OSt50JhvrPpq7UrZe4+jduzB6+/nK7qnzRYgEcPZkSuMzfa5RqtHqAyNiUVaVmjeawb6964LJ3uldg0p+tAbh5I5LSxX9Xlc+O7Y6NTaBogQl2J/0A7dqXZOCHtbh2NYI8eb1ZujiEGdOO2pXXaiXOXRpAzlzOWbFAYpaMyb8f4tatR7xUJz+vdS7r9LHOEhoawYypR4iONtGuQ0nq1XM+s4SzHDl0i8WLQtDpJLq9WylTJphpWbf2PFu3XCEwhwd9369KYKByKtqMYrFYmD3zOKdO3qVY8QB6vVclUyaxqcku/T3yhx1MnXwEjQa++Ko+7/Z0bNKeXkR/v7jjeauG8zm+546q/Gs9yvDrn4kvaJcvPqR+2Zmq8hoNXIv9OHm7vM9vJMSr++SMnd6c1b2OY7azAg9wR2PE/DidtE+ggZCI+9yUYqhs8aO02RtPtERKJgwSBKFHwjpEi/z4E4eFSbprqteTlvYdS7JimXpKYI0GwqPTZ3ki7m/nyC7juXh+O0dYWCxffPovN28+4uWGhVSzrCWR3SxYZpf5IstYsHQ//T3w/P6uWQUR5FbwRNmzRz2VHEB8vPXqUtQj+77jSWz452LyxHTHf6EO5e/etTbXdDQphcRBP8m8+srlCIfyx46kTFy3bVM2QU1Ndmz3zZtRqsoVgIsXHlKrdj5q1U5cnRhlxyQ4CbNZ5tKl8HQpWLy9DXwy1PFD2hUKFPDj6+8aPtE6qlTLQ5VqrvmdO6JV6xK0au2av7YaGo2GHr0qP7HzQ/bp7+Gf17dxTclsRH+/uON5qBPtPnH4bvL3f5bbj0eTcg3W2wlGxwFPtm25StXO+TmwQFnxEYs5WbkCEBOZwDuty3Bh5U1y4pZcHiQbQJaRNJDG6AEJkGU4KCm32Q8tEXYsW6pWy+tQweIoM5AS4v52juwynovnt3MEBnrw+5TWT7QOgeBpI1yEBE+UEiUCHcqkNQfVOxEhvWSplJWA/AV8HMp7ZiBqu59fShR2Xz83FclEUisAypQJciifHdsdEODuMHBZ2pgAOXJ42JFMJRPkWEYgEAic4UUdz72daHdQ7pQV8ErVcqe7vrS/gxLFSwZwZMstjFiQU7n4yMgYsWABUulX0Bk03Fn7wEq5koReslWuJCFJUA2fx/YtifihpaM2kLd09vtUpxNm8gKB4OnxrN2CnoWLUOfOnRk9enSmn3fp0qU0a9bM6vMk6nGEULAInijlK+R2ONGsWi3Yartpc1ufzNRoNPB2t5RI7SN+bOjwOvq8bx21PV9+9cmsn78bWm2K7+nnX9VTkU5k9C9Nk79XqZrnhWx3YKCHw3Z0ft3a3LdTF3Xz3ypVgyle3LGiTiAQCJzhRR3Ph31dx0qhkRYZmR9/aZy8XbeR40wfBQpbx9Sq6IRSpmrpPETejcckQSwycViIw0IsMiYpMT2rPtX09OU3C2FIUL5uR5l7vdAySA6mtzYX7+tyM1iXh8oaL4IlA3kl5Vgwf0w65LDdhQv7qQsIBAKBIJnw8HAOHz7MsGHDCAgIYOnSpTx4YD9OWUZo1qwZI0eOZPLkyWzatIlNmzaxZMkSDhw4QLFixbh06ZLjk2QSQsEieOL88FNju/s0Gokly7tYlc2c8yoGg/0/zYGDrFMa+vl50LpNcbvy/v7uDP20rlXZoiWd1C6ZmbNftdru+FpZ1clsjZp5KFHC2r/2RW339z82wtdXeaW0Vu18dH27glVZqzYlaNmqmKK8u7uO0WOaKu4TCASCjPCijuftXytDrgL2XS0r1MpN8TTt/mBIDdU6Vmy3zmw0e3NHVeVEmzdKcv9qKlcnCSyPP6mDqCQFtdUZNLTvXQaNI42HHSQkzBIU1LiRRzJYncfPjpd8WFgsg/9XW/W8G7e+k6HrEQgEghcNSZIoUqQIw4YNo1ixYhQtqr4AkRE6d+7MwYMH2bJli9X5/f39WbJkCf7+/jRr1izT67WHULAInjj9+ldn9NimNpPNoJyeHD7+no3LiMGg5fSF/jYTYJ1Ow5BhdRgx0naiu3BJJ95+p4KNeXLpMjm4cNU2jWTFyrnZuOUtfHwMVuUenjrm/9VBcfXx5Jl+VK9u7U8rSdCqdTG2bLeNDP+itrtM2Zxs2vo2LV4pljzR9vV144OBNVi++nWbqPQajcTcBR0Y8mkdAlO5CzVsVIh1G7tS6yURZEsgEGQuL+p4fvDse5Srmcsq+45FkmnYphDr/7PNdvPpiPoMGFrDRmni7qFl44G3yR3sbV3urmPbxR54pc0UJEHHd0szdk5LAvM7DsRpkcA/tzuLw94kdzk/LKnyMcRg5r5kJM4mhoqMlBzeNqlExiBL3JUTCJNNpM7r8MhODBZ/P3e++a4hHw+prdBuHbv39yA4TbsFAoEgo8iyhGzJAp8n5CIkyzIPHz5k06ZN9OnTh8DAzLVK37x5M0uXLqVPnz74+/srygwfPpxLly4xbNiwTK3bHiKLkCDTUYvuHRJyl/Nnw6j/ciGbCakSUVFGtmy6RJEiAVSs7Jw/+N7doTwIi6VZ82I2L/NK3LwRyd6916lcOZiixRzf9GazmS2bLuPmpqVeg4JWJtj2eFHbHRERR0R4PMF5vJ26JpPJws0bj/DxdSMgwN2hvEAgELjCizyeb910BYOblroNCjjV7kP7bnLq6F1avFrcRrGiRHh4HOsWnaN4mUBqNkiZB8THmBhYcAVRYcqBgLV6iV8utiNn/hRrm0/0i4i1GNmhC+OqJjENtEaGjpbcFMUdnUZGI5GsELHIYDJLRGNhuvYGsSRGpc2JjqZaf4IkHRNNtxXr/3tFZ5q1SLGq3L/vOieO3aV1u5JCsSIQZAGyWxahmaW+Ikjv/2wvCLifEE6Ps98BT/Z3bdasGZs3b2bo0KGMGjXK5fN17tyZpUuXsmnTJpo2tW/1LkkS/v7+PHz40OU6HSEULIJMJzsMfAKBQCAQCJ4Mv3Xfza65l5GwXTEt1zyYz9dbW/iM6byV0asPECdZp+/xsEgM1OTDTbI1yJZlmfWWMA5qom325UDLAzsWLKlTWwsEgqxHdnjPSN2GGSW/zjIKlp7nvgWeLwWL9FizfvHiRVX3o4CAAMLDwx0qYjID4SIkeGoYjWa++3o7vXqs4q8FJ5w6Zu2ac/TqsYrPP91CVJTjtJe3b0fxyUcb6Nt7Nbt2KqeATMuUPw/Rs/tKxo3Zg9msPOFKzfGjd+jfZy2DPviHSxfDHMpn1XYLBAJBViYuzsSO/66yaeMl7t21fUnODLLLeP6kn2NxcSYG915Pp2aLmDzuoFPXNHXMQdpUnUf3ln9z/35McvmjsHh2Lr2KERkzcvI/8+MsQoc23WTd1LNW55qz6pSNcgWggcZPUbkCiZPu8hrlmDP2lCsAf/x+IPl7XJyJ999bQ6sW85kwfq9qewUCgUDwdNm8eXPyd0exXZL2Hz58+IleEwgLFsETQEmz3KvHKpb8FWIlp9NpmD3vVdq+WsrmHHt3h9K21V/Ex1tPgpo0LcLy1a/byJvNZhq8NIsTJ+5Zlfv4GNi9vyeFCvvbHPP7bwf4bNi/WCwpt4AkwUef1ObbEQ1t5MPCYqlWaQoP7sdalRcq7MehY30UzbizYrsFAoEgKyPLMpP/OMRPP+4i7EHieKvTaXjzrfKMHtsULy+DgzM4JruM50/jOdap2SL2/nfDqkyS4KdJTXirVyUb+VULTzOk+yZkZCsLleAC3my/2JOtsy8yseeelAOSLj2VMUusZMJkkJly8FVy5fMkf+5fMUu209X3CCZYUv97GC+H8kgle1JagnJ6cOnah7RqMZ+d/4Va7ZMkGD+xBT16VXH6fAKBIHMRFixPhufRgmX06NEMGzbMKdefpHo7derEkiVLXKrXEcKCRfDE+XDgeptJKSTG23jrjeWcOHHHqvz27ShaNJ1vMykF2LL5Ml062t4UdWrOtJmUAjx6ZKRKhSk2K3orl5/h0yFbrCalALIM48bs5fffDpCWsiV/t5mUAly9EkH50n/YlGfFdgsEAkFWZ9LEAwz9ZHOycgUSx825s4/z1hvLyYx1oewwnj+N59i7HZbbKFeS6hjWfwv7d1+3Kr949gFDum8CsHH/uR0aRZNSs4gKT2PFkyaDEIAkS5gTZHpVXsHNC5GKyhUAg4KLUVp87GQLskdsrInOry2xUa5AYrs/HLCB3buFpahAIMgcZFnKMp8kbt26xfXr11U/WYGMpHoODw/P/AtJg1CwCJ44s2ccU93fvetKq+1uXZejNn9e/89FjMaUieali2GcDrlvV95ksvDhgA1WZYM+WK96Td9+td1qe/zYvcREJ9iVv30rih3brSdcWbHdAoFAkJWJijLy0w+77O7/d/Nltm296lId2WU8fxrPsc3rLqvW0bvTaqvttxr/rSp//XIkuYo5DhSbrFCR4c/P9uNlUVaSRCS7+shoJBmtJvH/JLOYONnCHey3WYlCBf3YsO6iqsxbXZan65wCgUDwPFGzZk0KFCig+skKpEdZkpRhKCzMsVusqwgFi+CJsmf3NZvVtbRcumRt0nX4sHJk/9RM+TPFB/z773Y4lF+96pzV9sOHcarysbEmq8nvtKlHHNbxw4j/kr9v33o5S7ZbIBAIsjI7d1wjMjJeVWaNi+NadhnPn/RzbM1Sx79zaisjgIf31K8JYOmyEPKW8LG734JMAinxVk7uuk85jwBF2ZNEI0kyBn3iR69L/N9Nn6hsuUCsSrQVZXq9V9GhzIMHtlZAAoFAIHi6ZERZ8jQsWNJnNykQpJP79x1PttKae1vMjs2/791Lmdw8inQcNNCUYBsczxGxsUYMhsQUnPHxJofy0alWBu/cdTz5yqrtFggEgmdFbIzjsTY2Nn0WCWl5kcZzV55jt25Gprs+Zwi7F0vxMv7cPP9Icb8F2cplyGKWqVYlF/sP3LNxJbpILJLOjCZNoFtJAr1O5qIcA2l+tkBJS1mNOzvNyoGTjQmO3Y4EAoEgs0jrnvMsryOJ/fv3kydPnmd4Nc4RGBj4rC9BEWHBIniiNG5S2KGMt7d1gLqgIE+Hx3R9q3zy99c6l3YoX7S49eqXTqf+py9J4OfnkbxduXKwwzqaNU+JXt2qdXGH8s+i3Y6IijIyfOgWWjSZR+cOS9i+7Uq6jneG0NAI+vZeQ/PG83j3nRWcP5d+/0lHHDpwkzc6L6VFk3l8NGg9YWExjg9KJyuWneHVNn/Rstl8Rv6wE6PR8ctLerBYLEwYv49WLRbQttVC5s4+jsWSuQoz0d/O06XjEgJ9RuPv9RPlSv9OWFhUpp5f9HcilarkdiiTI4eHS/2dXcbzJ/0c69ytvIrk42vQa9Jsq78kyECnN8tycLV9/30dGrSpJvqBwZ6s2n/RRrkC8JLWG4OdLEIAjbS+vCR5UkDSU1RjoLXOj0GGXDTV+eJmJ37LvNnq7mAAen36ps9Go5HqVaYQ4D2KQJ9RNG88F6PRsVItPTwP97cziOe3c2SX/l6/9jy1qk2jTIlJtHllATdvPBnFriB95MmTh/z586t+sgJJbj9ZDZFFSJDppI3u3bLpaq5djbAr/9W3Dfjf0DrJ28v+DuHdt1fZlQ8MdOfKjY+syoL8f8aoEEwwib2HelK2bK7k7Z7dV7J08Wm78nXq5mf95reTt8PCYimc71e78hqNxIPI/6HVpmRgKF/6jyzXbjX+WnCS9/usxZxm5bV8hVz8t/tdh5N5Zxg+dAuTJtoGXnz9jXJMndnW5fNbLBbavPIXO/+zjiMgSfDDT40ZMKimy3WEh8dRp+YMrodaTwLc3LQsXdGZlxsWdrmO48fu0LzJPJt4CTmCPNi5twf58vm6XIfob+c4ceI2dWvOUtzXo3clfp34ist1iP625o3OS1m35oLiPp1Og8lk/aKS3v7OLuP503iOlc01icgI+y5b775fie/HN0ne/u37vUz4bp9NgNvkOrQwflxLJn+w3+45ITGLUPzjtMwjlzeieadFKC3wfqDPRV6Nehahe5Z4cmttZWYZ73PWou6OZo/3+lVl7LjmTsn+MmYP33y5XXHf4r9fo2WrEhm6htQ8T/e3PcTz23myQ3+bzWYqlZuiOK726lOFcb+2sHtsdssiNK34t1kmi1DvC18D2TuLUNWqVTl06JBL9TpCWLAInjh7D/bCw1PZG61O3fxWk1KAjq+V5dX2JRXl9XoNu/f3tClfv/ktNHb+mj/8qKaNkmHG7FcpUsxfUT4opydrN7xpVRYY6MGPoxopVwDMX9TBalIKWbPd9jh/7gF9e6+xeVgDnDxxl46vLnbqPGrMmXVM8WENsOivU/z0406X6+jba63N5AwSMz98Nuxfdu50PfND04ZzbSZnAPHxZjq0W0xkpGO3ODVMJgvNG89VDEb54H4sjerNcen8IPo7PdhTrgDMnHaMM6dts76kB9Hftkz6szVVqtpaWxgMWhvlCqS/v7PLeP40nmO7z/VCq1VWlhQp7m+lXAEY8EVtipQIsJsUecXBNxX/DtMiPdamNH6jKIXLBCoqVwA0TmQRsmeb4MyxShQvHuC0ciUqymhXuQLQ5TX1oMDO8Lzd3/YQz2/nyC793azhPLtK6+lTjrB0iW3WtuyKRQaLLGWBz7P+JdJPkgWLM3FVkuK1FC1a1IGk6wgFi+CJ4+1t4ObdwbzXtwp+fm64u2vJl9+HGXPaWa2upWbuwo4sW9mFwkX8cHfX4uNj4M23ynHr/ifkVdD+V6+el6s3P6RFy2J4eenx8NBRukwOtu/qzoiRjRXrOHayH6PHNiVXLk/c3bUE5vDg8y/rcenaIJtJJsCAQbU4dPw9KlXJjYeHDk9PHfXqF+Dc5QG0bmM7kc6q7VZiyCebVTNebN96hfBw1yYeP4xQD+L426/KD3NnMZks/L1U/YE8fMgWl+o4eeIO587aN5E1JVj4+gv7k2ln+PWXfcSoxKG4fTuK9evOu1SH6G/nmDBuj0OZ5o3nuVSH6G9bcuTwYPO2d5g9rz1vdC1Hh46lGfFjI4dp59PT39llPH/SzzF/f3cuRg6kRdti6A0aNBrw9tHz7diG7DhlqyQC2HCqG1+Ob4DBPbF+SYLSFYM4Ev4+pcrlpEzdnIrHpcY9UMeYDS35Ym5DchfzI6cl0QIlh6ynvjmAV8xB1DH7c/2xBUqkbGK7KZKlCQ/4x/SQG4/Lw2UT18zxLE14yIqEcM6a47DIMmZZJtTi2EWnYEFfDI/b7eNjYNTYJhw+0dfhcUnUqzXDoUyPd1zLSPS83d9KiOe382SH/jYazRw8eEtVZugnm12qQ/BikFpZ4kjJkrT/aShYRJBbwVNBq9UydnwLxo63b/KXlqbNi3I85H2n5f38PFiyvHO6rqtf/+r061/dafkSJXKwY3cPp+WzarvTcvSIesYLWYZ1a8/T9a0KGa7j9i31mBWRkfHExZlwd8/YsHRw/01MJnX1u9rkyhkWLTzlUOa/7a6lkF3/j7JrRGoWLzrtklm56G/nmODEJDI8PGMuBkmI/lZGr9fS4bXSdHgtMTbJ3t3XcaBfSXd/Z5fx/Ek/x3Q6HdOXvpqua3qnf2Xe6V9ZcV+RyoGUrZ+LkB13FfcXKOvHuGNt0GhSLEwaFsjDrWsR1Jb9rWQjjEaOSlEsN4VbWarsNEdTU+tJsKxnlSXFYmGfOZqiGgPlJA+i0ka/VcDNXcf9iKEO5exx5Uq4Q5l/HKSEdsTzeH+nRTy/nSc79Pc/ax0rmR7cz/zYO4LsR/XqKc++sLAw1Zgsly5dAhJdhZ40woJFIBAgOWEprdU++eHCnnm8M2h1TjTCxSDtGid+A8mZH1OtDo3j47VOyKgh+ts5nOkLVxH97RxPo78FTwdZliFORlJ4n5ZkkOJk0i7RF4v1sFGuAFi0Zv5Oo1xJYr85hnuSravGJYuRNWb78XSsrsfF8dw5xP0tnt/Okx36O21wbEVepPH8cRahZ/2x64uZhfH396dq1apAigJFiSTrFX9/f5o2bfrEr0soWARPBaPRTNcuf5M7cAyBPqMplHc8E8bvUz1mzqxjFC04gUCf0eT0/5lXWy8kIsJ+uszQ0Aga1ptNkN9oAn1GU6bEJNY70JJ/Ofxf8uX6hQCfUeQJGsuA99epmqHv2nmNSuX+JNBnNDl8R1O7xjTOnrn/3LU7LbVq5VPdr9FItG7jWiC+AgXUA7sFBLhjMGTcqK5a9TwOMzuUK+dcTBp7vP2O4xWh1Fk4MkL7jqUcX0f3jK9MgehvZ/nsi3oOZYJyOs4Wo4bob2ViYhKYMe0IXV5bwqut/+KfdRfQOXgJS29/Z5fx/Ek/x+LiTLSpN5+CnuPI7/4LRX3H8+3QbarXtGDkUVr7zKGZfibNDTN5r9Jywu8nui1cPPCAS/sfYEBCL0toZdDKoJclDEjcvRjFAN+l7JmVMlmOv6Ps8nBE80jVDuWUOU7xPc3ZUAPh4bEEeI/Cz/Mncvr/zGfD0uemUrpskEOZ17uWTdc50/I83t9pEc9v58kO/d3ylWIOZXLn8s7w+QXZDzX3n+HDhwOwZMkSuzKLFyfGJurTp0+mXpc9hIJF8MS5fTuKPEFjWbP6PLGxJkwmCw8fxvHF8K3UrjFN8ZjWLRYw4P1/uH8vBpPJQny8ma3/XqVQ3gmKE8HNGy9RruQfHD50C6PRgslk4cb1R3Tp9Df9+6y1kTebzZQoPJFfx+/n0SMjZpNMdHQCc2Ydp2CeXzEabSen3329nVeaLeDypXBMJgsJCRZCTt6nRpVpzJtz/Llotz1GjW2quvLSqk1xmzSk6eW7H+wHVwQYOryO6n5HaDQaur1bye5+SYKx41wzCyxRMgeVVdLIurlp+fKb+i7V0ff9avj6udndX6iwn8uZDkR/O8e7Pas4XC3ctlM5/oaziP625dbNRzSoM4uPBm5g/bqLbP33CmNG7UFtSTO9/Z0dxvOn8RwLvRJOCf8JHD1wB4tZBhmM8Ram/nqYqoUmK7a7Z/llzPzyCMZYM8ggW+DKqXA6By/kzIF7XNib6OohIaFFQo8GPRq0SMnZh2JjzMztcYAJLbZx52wEduLsckNWj6MSiYXCLnjD370Tg9ksI8uJgVB/m3CAEkUmOn38f7u6OZRxNRPZ83Z/KyGe386THfpbq9XycqNCqjK//dHSpToEWR9nAtMCdO7cmYCAADp3Vnaf7dSpE506dWLKlCl2rVhGjRqFv7+/y1mLnEUoWARPnAYvzSIhQXmNKeTkfb7+cptV2ZxZx9ihEEkewGKRadzANgp7l9eW2q1/3twTHDx406rszc7LuHMnWlH+0SMjTRpa13H7dhRjRtsPePlBP9sVw6zYbnsUKuTPX0s6YjDYBkWs16Ag8xZ2cOo8anTsVIYvvq5v88IqSYkxBD4Y6HoKxnETWtDuVdtAjTqdxO+TW1OlWh6X69j47zuKq5Le3gY2bX0HT0/XJjYajYb/dr1LYKCHzb6CBX3Zvqu7S+cH0d/p4eylAXb3fflVfQoWDHTp/KK/ben33lrFeAsmk0Ux/Wh6+zu7jOdP4znWpOpcuwE1796O5sOe/1iVLRh5lNAz9t1vPmqwFr277d9hWpL+jM5svEPo4ft2r0HrhB9BvNP2Ks5x53Y0fXqtdkrWYDAwZUZru/u37XSsgHHE83Z/20M8v50ju/T36nVvUr68csDrYZ/VpXnL4i7X8bzwrF2DrNyEnjCHDx/m4MGDAGzevFnVrSeJpUuXWv2vxNSpU2natCnNmjWzOmd4eHhyzJUnnZo5NZIsq8WiFgjST+rc7sePn6NuTfU0hF5eem7d/yR5u2jBCdy/px7caueeHlSsnLgSMXPaET4cuEFVvmy5IPYe7J28HeA9ymGqyMjYT5O/t221kO1b1YOf9R9QnZ9+TvTrCwuLpXC+X1Xln0W7HWEyWZg0cT97dl3Hz9+dDz+qRVk7D8CMEhkZx+iRuzh/LowCBf0YNrwuOXN5ZWodVy6HM+bnPdy/G02lKsEM/qR2hoOx2WP3rmtMm3KU2NgEmrcoRvceFdG44pSswJJFp1i5/CxanYa3u1WgWXPHZrXpQfS38wwbuonZ049hMstUqJCTDVu6YjC4NhlPi+jvxECW1StPVZUZ8mkd7tyJznB/Z5fx/Ek/x+7cjqJaoSmq8lqtxNWYwcnbrX3mJFquqPDVXw358429yCo5QX1kTbLyxDfYDf29ODSSTIgUxSlNFFGY8Zd15Ndp2WmJJr9GB0hEyxYMSHhKGq5ZjARLem7ItnFY1Kj9Uj727rmhKqPVSjyMGpau877a5i927wxFkiTadyjJlBnt0nW8I56H+9sZxPPbObJLfx8/eodhQzbz4EEMFSrl5teJLR1a4KR+zwgNDSV//vyZek1Pg9RtmFxkBDn0Ac/4iuBBwkP6Xv4SyNzftVmzZhw8eFDVYsXf358uXbowebKtZeTo0aMZOXIkw4cPZ+hQ9aDjS5cuZfLkyVbpm5s1a+bwuMxGKFgEmU7qQeO3CRsZPlRdYyhJEBGTMgkM9BmNyaQe3X/w/2rz7YiGAHRqv5iNG9Q1oN4+Bm7e/Th529fjJ1V5gCs3PkxehShReKLdlcIkKlbMxc59iWkr/1pwgj691F10nkW7BQKBICuzbOlp3n1nparMW+9U4I8p9q0CHJFdxvMn/RybPO4gIz79z2Ed1+NTrqmZfqbDACdN3y5Gbh9PNk46p7hfL0t4pTKw1ugkyr4cyO87TnJNYx2LJQCJHBo9FxRSLueSdORFy1E5fZm+vh/ZkC+Gb3Mol1p5JRAInh5CwfJkeFIKlhcRkaZZ8EQpUMDPoUxaX1KtVsKklBIgFfny+SR/zxFka4qZFjcFU0pHpNage3rpHcr7+bsnfy9c2N+hfFZtt0AgEDwrfHztxy9IlvFxzXLoRRrPXXmOFSuV/gm/JNkkALIhVwFP3vm6Knp3LevGnUZO0kPJYEDCI43bj0YnsXr/ZRvlCkCwxsBpi7IC5a5sIkCrBQfpvdPi4YQLk0AgEGQW8uNYVc8aYXKReYgYLIInStXqedHai073mFJlclht16mrrjGVJOj1XuXk7W+/Vw/GBfBG13JW2zkdZP7w8tJb+bd+NLiWwzq+/aFh8vfadQpkyXYLBAJBVqZ+g4IEBLqrynToWNqlOrLLeP6kn2NNWzl2acgVbO0uUKiMv8Nj3vm6Mlqdhrd+rsKPB1riJWvwlDX4osETTXKg2yTKvJKLo8ZwxXPFqOYQgstmY7pXEv+YdNihTO7gzHWTEAgEAkH2QShYBE+cgR/aD4YlSbBoSSersjkL2qtGSO/yRlm02pRJY3CwNzVr5bUr7+6u5fuR1pPXqTPbql7z2F+bW2336F0Ff3/7k/6ixQKoXt36GrJiuwUCgSAr4+6u4zsVZcOr7UtRu45rZsvZZTx/Gs+xjm+qK7P++uc1q+2ft6hnxKnUMBidLkXlUahKIHmKemFAQqMQsFbSQNNhJYmWlM1QHjlY9jUiE0T6LFJu3Y6iyxvqqZNXrX0jXecUCAQCwYuDULAInjjf/dCIDwZWt4lG7uGhY93GrhRKY37t5+fBvkO9bMzAJQlef7MsUxUCw23e1o0GDQvalOfK5cmpc+9bTWQBGjcpwrRZ7dDrrW8BrVbip5+b0PWtCjbnOnupPwUL2bo8Vaqcm0PHbAPJZsV2CwQCQVane49KTJnRhoIFfZPLvL0NDPywJtNmtUVylDvbCbLDeP40nmMTZrWibSfbzC4arcSMpe0omSYji3+QOxP3tEGrt+2jSg2DGbPZVgHTeXYNDAVt3ZckvUyX3yuTu7QfejvZLdwdZBGSgKh0+gh5eRmYNrMdHV4rZbNPq5VYuLgjZcpmbjBRgUDw4vKsMwc9zSxCLwoiyK0g07EXfMpsNjN/7kkunA+jVevi1K5TwOG5jh+9w99/nyZfPh96vVfZocIgNtbI5N8PExkZz9vdKlC0mOMUqhvXX2DnjlCqVc/Dqx0cm57fvBHJzBnH0Os19H2/Kn5+6r7zWbXdAoFAkJUxmy2EnLpHXJyZMmWDHGaWyAjZZTx/0s8xk8nEH2MOcv5MGO26lHLKfejYf7dYP+P845grla0sVwB6VV7G5VPhVmU+3nrKBfhx97J1BiYLFlZqr5GQRg9TTuPGKTsxWAAKafRctaQvi9Dkaa1587FyymQyMW7sfs6euU+nzmVo2apEus4lEAgyn+wW5PaPQt+TQ5cFgtyaHvL+1S+A5/d3zSoIBYsg08kOA59AIBAIBIInQ+f8C3lwJ1ZxX6BZh79sq0yTkVmivQqplCw6IKek45ZsG1HYHYkgtFzHQbThVKTNBiUQCLIe2eE9QyhYsjfCRUggEAgEAkGWQ5Zlzp97wMkTd4mLc/4lOT2EhcXy+28HmDblELGxtql+lVi75hzjxuwhJOSuU/KXLoYxbsweFi8KwWx27K5iNpuZNeMoE8bv4/btKKfq2L/vBmNG72b71stOyYeFxfLnxIPMmHzY6Xb/NeMEX338L4f23XRK/tLxB/zx4V6WjT+JKVVKpRM7b/PgtrJyBSBMY8KkkOtZQqKZOdiqzAREyybKad1we+wupAGKaAwUQodRSt8aoizD0iUhVmVzZh1l6Ceb2L/verrOJRAIBM5gkaUs8xFkDsKCRZDpZAfNskAgEAieHcv/PsOIb//jwvkwAPz93ejdtxrDP6+LXu96bCmj0UztatO5cCHMqrxW7bxs2tpN8ZgR3/zH2J/3YLGkTJu8vfWs3dCVKlXz2MhfvRJOgzqzePgwJb2wJCXGmJkwSTkYbOcOS9iw/qJVWb58Puw91FPRjWftmnO8+/ZK4uNTFDd6vYax45vzbs/Kiu1uUHUm185HJAeVtSBT+aVg1m17S/GaPumzgUWzT1mV6XQS89d0pG6jQrbtDnnIwBqrSYi3DkBb45V8fLe6GW8UWcTd69GKdSWRw6zHT7aNyyIjs8T9quIxOiC/pOOhbCbisYJGA3gA6rVZkzvYi/OXB9K/z1rmzT1hXYdOYvnq13m5YeF0nFEgEGQm2eE9I3UbJhX8IctYsHxw7XPg+f1dswrCgkUgEAgEAkGWYeGCk3R/e0WycgUgPDyeMaN20++9tWTGulCpYr/ZKFcA9u29Sc2qU23KR/6wg59H7bZSrgBERSXQsN5sQkMj0pQbqVx+spVyBRItJGbNOMaA99fZ1NG6xQIb5QrAjRuPKFV0ko31y66d13iz8zIr5QpAQoKFQR+st7HEAKhU5A+un4+0ytijQeL4njvUrzLDRn5o/402yhUAk0nm9ZZ/c/HcA+t2h8fRr+JKG+UKwIF/bvBl601ERzi2mDHbsTxRW181AVdkU7JyBcAC+EvpU8hFRRkZ9ME6G+UKJLa77St/ce7c/XSdUyAQCOzxrAPbiiC3mY9QsAgEAoFAIMgSxMeb+PzTf+3uX7IohP17b7hUx5xZx3hw376LypnTDzh+9I5V2eifdtuVl2V447WlVmXduq7AbLavCJo7+7iVwuTevSh2/HfNrnxMjIlvvthuVfbu2yvtygMM6v+P1fa8Wcd5dN++cuNSyEObdi+YcVK1jtdb/G21PazxBlX5gxtuEJTXU1UGQCcnqoDSTlLVVGsBkoaCWh3BmhSFih64L6cvi1Du3F7MmnlcVaZty7/SdU6BQCAQvDgIBYtAIBAIBIIswc4dody/F6Mqs3zZGZfq+GXMXocynw3fkvx9/74bmE3qVjMhIdYWDTt3KLuxJCHLMCfVS/zXn29XkU5k/jxri4o7d9QdX6KiEqyUOBN/3q8qLyHx9adbk7e3brisrtEAbt+0jhFz+eRD9QOAl1qoZ16SZAiQtRiQ0CNhINH9ByBUo9xmf0nDQ9nCNbOJ2xYz/pKGAhodZXVu2M8xpMz7/as5bPetW87FxhEIBALBi4fOsYhAIBAIBALBkyciPM6xTER6X5mtiY5y7KISHpZyHZcu2roSpSWt65DJgUIG4PLl8OTvd+86jhISF58+SwyAiAgjgYGJsVtinGh3RFjKb3su5IGKpDLOeG9F3FPvYw9Zgy7V+p+EhBbQIHNCsnXN0QPhsrVLUrhsIVK2kFuT/ng98cb0/84CgUCQUbKKe05WuIbsglCwCJ45MTFGfh23nzOn71O4iD+DP6mNv797ptZx69Yjxo3Zx927UVStlof+A2qg02WuAdfxY3eY8uchYmJMtG5TnNc6l83U8wOsX3eev5ecQauTeLdHZWrXydwAVBaLhZnTjrJjxzUCAjz4cHAtChfxz9Q6RH87j+hv59i86SLv9VhDdEwCBQv5sm3Hu3h726Z5dQXR387han+XKRvkUCZ/AR+GfrI5w/d3iZKBDq0/Xqqb8ts3aVbE4Tk9PKynU35+bjx4YN8NCaBdh1LJ35s2L8rGDZdU5fPn87Ha1molVTckIFm5AlC0VACHbt9Sla9ZN2/y97adSzLi0/9U5bVa6wm5wU2LMU5dQeHmrU20ELEzl4/RWIizWHBPY2QtIfGapQDbtLeItFjIodXiJUkcT1BWHFmAe+l0DwLYvNFxJqa07XaGHu8s5591l9BooEevyvzwU5N0n0ON5+H+dgbx/HaO7NLf588/YNgnW7h3P5qq1fLw89hmGAyuBzIXCJ4lIouQINNJT3Tv3ybs58vPtlpNEiUJPvqkNt+OaJgp1/Nej9Us+ss6SJ/BoGXytNaZ8lA1Gk00bTiXo0esfdf9/d1Zv+ktypbP6XIdoaERNK4/x+aloFjxALbv6o6vr+sPvK1br/DGa0uJjbVOh9q0WVGWruiERuP6BEf0t3OI/nae4BxjiYlJsClv2qwIy1a97vL5RX87T2b1d6vm89m5I1Rxn06nwWSytlZI7/0dGhpBuZJ/2N0vSRD2aAhabcokv3ihCdy9a9916YOB1Rk5umny9rQph/j4w0125b289dy694lVWYD3KFWFycYtb1G7Top7Tfs2f/Hvlit25cuXz8nuA72St0NDI6hVfJpVgNvUWCSZ0OiPrNpdwn+Czd9Matp2Kskf89skb8/55ggLvz9mV16jk3AL0BF+X90KKadZT5BsqySVkKmWJ6UfxkSGEWpWT+GdQ5J4kMlT3Q6vlWL2vA5Oya5edYa3Xl+huG//4V6ULuP6GPI83d9qiOe3c2SX/m5cfzYHD9oqfb8d8TKD//eS3eOyWxahiflHZpksQgOvDwee3981qyBisAieGWtXn+OzYf/aTChlGcaN2cvUPw+5XMfwoVtsHtaQmKqyZ/dVHD92R+Go9NGy6QKbhzVAeHgcjRrMJi5OffLnCIvFQr1aMxVXXC9eeMjLdWe7dH6AGzci6dh2keJEevOmS/TsvsrlOkR/O4fob+cpWnCConIFYPOmy/wyZo/LdYj+do7M7O/J09pQpKi/TblWK9koVyD993eBAn58MLC63f0//9LMSskAsHVnd7ur6MWLB1opVwB696lGrdp5FeUlDWzY9LZN+Zz57e1eU8dOpa2UKwB/r+xMYKDyy5qnp44t/71jVVaggB+9BlVBVggwYkHmu/GNbNq9fv9bdi1NAnN4WClXALp9U4U8Rb3ttmPkxuYkGG370OZ6nDQQSXBCceKRyVPdHDk8nFauGI1Gu8oVgJpVp7t8Pc/b/W0P8fx2juzS3507LFFUrgB8/eV2/t3i2JIsu/CsMweJLEKZj1CwCJ4Zw4duUd3/4/c7XTq/xWJh6uTDdvfLMvxvsP0VRme4dPEhBw/ctLs/NtbEjyN2uFTH9ClHbFJ9pubihYfs3mU/+4QzDPl4k+rK6YplZ4mJcey/r4bob+cQ/e0cRqPRYTDU7752HDhUDdHfzpOZ/V2goB879/bgp5+b0LBRIWq/lJ8Bg2qg0dif/KX3/h45uilLl3ciXz4ftFoJrVZKXmHu06+a7TUV8OParY9o1LgQBoMGjUbCx8fAkGF1OHyij2Idm7Z248dRjfAPcEejkdDrNdR+KR8XrgygYuXcNvJtXy3FoePvUbZ8EDqdBq1WIlcuT6bNasesue1t5LVaLRevDeTdnpXw9NSh0Ui4u2vp+FopbtwdjIeHrQXIiJ8bM3tle4Lye4IW0EH+Er6s2/0WvftVtZEvVjIHJ2/3p1S5HEiPf36dXsPr3ctx/Ob7VrIxUQmsnX2O6p0LUvLlnEiGxwdIkKeYD3OudKJigzyUqenYSsBDVp6eaoD/4qNZE/uI3fEx5Neqe7r7SBpuZMBNKInAHB7J7dbrNbz9TgUuX//Q6eMbvzzPocywoa49l563+1sJ8fx2nuzQ32azmY0bbFPSp+aDvrap7AWC5wURg0XwzLh2LVJ1/4MHsRiNJgyGjP2ZHjl0G6ODYHXHj93O0LmTmDvbvil0Ev+su8B3PzTKcB1Ll552KDNrxjHq1C2Y4Tr27lFPe2qxyKxdfZ7Or5fLcB2iv51D9Ldz/KySNjcJi+OFclVEfztPZve3j48b/QfUoP+AGgAcOnCT3yYcUD0mvfd385bFOX2huNPy3t4GVq59M111DBhUiwGDajktX6JEDvYe6O20vFarZcKkV5gw6RWnj2nashhHLxZzWt7f350th7uryuzffJ0v3/qXyFRBcjUaiZ5fV6HnF1WRpBTl2A+rmtDCc67dc+llCW9ZKQaDzAHtfU7FpFgH5NOqx2ooo9Wx35Txl82cOT25kg6FSlpOHr/rUGbOjOOMGt0sw3U8j/d3WsTz23myQ39vWn/JYUDsW7ceZejcAkFWQChYBM8MZ8L/uPKCFG90bOrp6gtYQoLjlTGz2bVKHKUHTbwO1+qwOAiUCGB0wqxbDdHfziH62zkio5RdgzIT0d/Okx3ub0HGCD0fwZAOG22C21osMtO+O0zOvF6061U6uVyv16OxPHYDSmuUJEM+sxuSwg43ZOIl606+YTYjYT+r8gNcywjk6v3tDBYX48OI+9s5xHjuPE+6v2PiHD+/X6QIobIsYckC7jnCRSjzEC5CgmdGrtxeqvu9vQ24u2dcB1izVn6Hkf6Ll3AtqFSnLo5XCOrUy/hKBUDT5o4zWHTqXMalOipUyqW6X5LgldbOr3gqIfrbOUR/O8eXX73sUEZyca4g+tt5Mru/zWYL69acZ9AH/9C39xpOHL+Ho7iN6b2/Q0MjaN54Lnlz/UL+3L/Qqf1iIiLUM/98/eU2iuT/lTxBY6lY9g82rr+gKr93dyjVK08hT9BYCuUdz+APN2A223/Ri4010q3rcgoEjyNPzrHUrzOTs2dsUxOnZt6c45QpPongoLGUKDyR3ybsU5UPDY2gdaP5FAuaQPFcE3jz1aUO2/1hz38o5vcrhTzHUS73JJbMT4mVsWjiSdXMQaP77eS7V7dgMiW+RH/bfjOWpL6UrT/VJC1FtRLukgUJGQkZLRYCtTK53aGZbJtlSu09LMzi2lua2SKTK+BnArxHUTDPOBbOP5Gu4wsU8HUo06x50YxeHvB83t9pEc9v58kO/d2mbSmHMgGpMqAJBM8bQsEieGZ8Oryu6v5+/W394NODTqehXXv1QfyHUa6lSaxcJZhixew/9LVaie++d/wiqMbH/6ut+iDLmdOT1m1LulTH6DFNVV9G69QrQGCgp0t1iP52DtHfzuHMBK/buxVdqkP0t/NkZn8/fBjHK80W8Ebnv5k14xgL559kyMeb0OvV3UHSc3/PnHaEciX/YO+eG0Q9MhIZaWTjhksUzPMrmzfapkuOjTWSN9cvjBuzlwcPYomOTuDK5Qg6dVhK+zZ/KdbxXs9VNG8yn3Nnw4iOTuDhwzimTzlCcI5fuHcvykb++NE75M05jhXLzxIREU90VALHjtyhRpVp/GAnNkTNqlPp33cdN248IiY6gTt3ovls2FZKF/tNUZEze9pRahWfxrHdd4h/ZCIuwsSO9dcok/t3tii0OyoqjsJe4/l7/mni48yYzTIR4fEM7rmBptXmAHB0h7rrhhmZvWuu09FjAfevR3F48+PAlpL1x0/SEKQzoNdDLjco4C5TwF0mnzt46xMP8VCJw6PEQ4sFHxc0rZcvhhP3uN3h4fH07b2W2tWnOX389t3dHMrMW9gxw9cHz9/9rYR4fjtPduhvg0FLJYU4VKn5cVRjl+oQCJ4lQsEieGb06lOVHr0qK+5r92pJvvrWtQcdwMw57ahR0zaTgyTBl980oFGjwi7XsWnbO+QOttX26/QaFi/r5PKDzmDQsXbDm4oPbT9/N7ZsdzyBc0SZsjn59beWikEkS5bKwco1rqe7Ff3tHKK/nef6nUF2rRqKFPFj4u+tXK5D9LdzZGZ/D+r/D3v3XLcpj483K2bySe/9HRERy4cDNyjuk2Xo3HGJTflLNWYS9Ug5lse/W67YWI2sXXOORQtDFOXj483UqjbDprxpozl2g1eO+nEX588/sCrr32ctZ04/UJS/eTOK9m0XW5VFRMQyfMAWxTTNGlmie/sVNuUvlZihmLkJ4MzJ+4z4dLtDyyJI1KHIFuhbeiX2dSSOrU0yYo/ijLtDegg5dZ8vhqsHAU0iMNCb/w2xH4Nn+qx2Ll/P83Z/20M8v50ju/T3tp3dCM6jnHGs69vl6fpWBZfreF6Q5azzEWQOkpzZTx7BC09689NfuBDGd19t5+rVCPLk8eazL+tTsZK6Zju97PjvGmN/3sPDsFjKlA3i6+9eJk8en0ytY+7s48ybexxjnJl6DQow/It6eHraZnHIKEajibE/72XThktotRKvdS5Dn35V0Tgzu3WSsLAYvvvmP44evo23jxv9B1SnVesSmXZ+EP3tLKK/neeTjzYyc/pRzGYLXl565ixoT9NmrplIp0X0t3O42t9XroRTqeyfqhO9AYNqEBJyP8P395udl7J2jbprz/Av6jL88/oAREUZyZvzF1V5Pz83Qm8PTt4uXew3bt60tVJJzaHj71GiRA4Ali4JoWc39fSqVavlYdvOlGCzOXxHq8ZzkCSIiPk0efudzsvYuuqKah0Dv6zJsC/qAYmpa8vn/l1VXq/X8PEHL7Hgl+N2ZbSyhL+sT46rUqNdXratuYYkg4esxe1xxqAEyUJlnR4vFSuVewkyU/S2WViCdRLeGg1xFhm9lBiV5XKChZwaDffSGSyieIkALpx/qCqj12t4EDnU6XOGhUVRv84cboQmBg8tWy4n23a+g8GQeWPI83B/O4N4fjtHdunvxYtC+HHEDqIexVOkqD+/T2mdPC7aI73vGVmR1G0Yn2cUgTrXXOAygzDTQz66NQx4fn/XrIJQsAgyneww8AkEAoHg6bNi2Rm6vbVCVead7hWZ9GfGrZNKFvmN27fVlR+VquRmx+4egHPKj7TKjECf0XYtP5L439CXkleCu3Rcwvp/1NOW+vgYuHH34+RtX4+fVOUBQm9/iJ9fYiyDCoX/4OEt9VgrparmYMueRCXO9N8O8/Un2xzWcehCH7qUXWw3Dou3RYt7qpwKjbsVZdPs8/hgQKsQzLaEXsJTQclikmGu+RY3ddaWRCUNWs4pZKAppNegNcMlBQWLmwTxdma/P4x6mc+HOU7xHhn7qUMZgUCQ+WSH9wyhYMneCBchgUAgEAgEWQI3JwInOiOjhsFNPZYLgKdHSh2BTgRblNIERVAy30+Lf4B7Sn1eeofySu5RjvDwSFmVd6bdHh4p15Ejt3NBJm9dfaQa5Nac5qdw85HwRq+gXAGQuJAgY04TnNZsgdgEKKGxvqZiemXlCsDVBAs+euvfTAO09NMyKLf9vyGD3nFfCAQCQWYhyyBbpGf/ESYXmYZQsAgEAoFAIMgS1KtfAG9vdVP9Vq2Lu1SHM8GPh31WL/l74yZFkBzMlgoV8bParlRZPdMHwHt9qyR///yr+g7lX0nTbj9/N1V5d3ctBkOKUqVrD/WYBjIy//u8TvJ2eyeynfgHurH0d+VYM0nEYUZOFT3l+OY76FSmnzISFxNkYk0ScSaJ6ASJaJOEjIZKpgB6+3nS2dud/v5e6Bzosc4bTQwP1tA9SMd7OXVMKGygW04dVby1BOuVD5490767UxIBge4OZQQCgUDwYiIULAKBQCAQCLIEPj5uDBlWx+7+Bi8XpHETx6lQ1Rj6aV08PNQzfaSt482u5VXPOWvOq1bbcxd0UM300ahxISvrkhIlclC8eKBdea1OYsKkV6zKxo5voXpNwz+vZ7X9yacvofOwP+3zz+VOwyaFrcrqN1FPWzt5QRsungxTlZElSHLSKVjOjwdXYlTlAeKQSbBIGC0SZjkp1VBikNtaXnqa+7pRxVNHmFndDStGBqNFRwt/LY38tASm0sgUMCh30JXLD2nYuJDqeefMb++wDQKBQCB4MREKFoFAIBAIBFmGjz6pxXffN8TXN8VCQ6OR6NSlLAsWv+aU+40jjoX0w8/P1gIkb15vTp7tZ1P+59Q2tGlrG0BSq5WYNqsdVarmsT5PPl9WrX0dvd52mlWnbn5Wrn3TpvzA0V6UKGmrZPH01LH3QC8raxSALq+X5atvGygqcvr1r8bg/71kU77vTG88/PVWFiUyMjnyeXLw3Hs28gvXdaJyDeWgll//3IC6jQrh7es4OKgE5C3hw6Tjr6JzwlXJ2cmpwYkUzIE6ZSVMjEXZHt7NXceqtW9SrXoexf0jRzfh5YaFnbxCgUAgUEeWpSzzEWQOIsitINPJDsGnBAKBQPBsiYoysmf3deLjTFSpGky+/L6ZXseO7deYOvkQOr2Gwf+rTYUK6hkyoqKMfPvVNq6HRvJyo8L061/dYR0L5p9g9Yqz5Ajy5OvvGpAzp3Jq0iQuXQxj1MhdREUl8M47FWjpIDOI2WxmzKg9HDl8i5Klgvji6wY2ypi07Np+jemTj6DTaRg0pCblHbQ7PDyO//XZyK0bj6jfuCCfjkhxaVow7jgTh+6ze2xgoDuzD3UgKH9iu9dPPcPsvoeSswopkRPwlmzbYNYa+ctwkwizTJBWQ0G9hgNxJrvnKazX8GMh25gqESaZAVeMKEVv+X5kQwZ9VBtIbPcH/dZy4/ojGjYuzDffNbRbl0AgeDpkh/eM1G34JfdoArX2LRifFmHmMD6+k5gd7Xn9XbMKQsEiyHSyw8AnEAgEAoHAMVGRRtoXXkD0owSbfZIEv6xqSe2WBazK22vn4Cnbc9OyUERSCjQrM1lzBWOqw7wAExBv50xtfDR0zW17rj/uJLDjkbJli8gOJBBkbbLDe4ZQsGRvhIuQQCAQCASCdBMbm8C9u9GYHcTBSMJikbl3N5roaKNj4aeE2Wzm4MGbnDhxx+ljbt6IZNfOa8TGOtcOo9HMrp3XuHol3Ok6zp65z/59NzCb7WfnSU1ERCw7tl/j3j319NNJmM1mjh24zekT95y+pssXH7Jx9QWiouKsyvetC8X8yGyTFUgCDLKG1VPOWJVfOxtOpGwiigTMqVyVLMhEYyIIGUi99pe4vVhzw0q5AuCllewqVwB2xshoPVMULIY8Pky4bV+5ArB92xWr7UsXw1i7+pxNuwUCgSAzsMhSlvkIMgfXch0KBAKBQCB4obhwIYzvvtrOmtXnMZksBObwoEfPygwdXscqzW8SCQlmxv+yj6l/Hub27SgkCZq3LMZX3zSgQkV115QnSesWC9i541pyakqNRqJjp9LMmP2qovy8Ocf5+MMNxKVKSZwnrzdb/+tG3ny27ksREbE0qDOby5fCk8sMBg1ffNWAjz6prVjHkI83Mm3KEczmFAVDpSq52bajG1qtrcvMkcO3aN92EQ/DUl7+fXwMzF3YwW4w4DebL+XQ9htIjyfTsgZe6VycX+e2UpT/bfQ+Rn+9C0sqnYSXt571+9+mSLEA1s8+j4SEAQk5VXQXzWOFy+7V16ijn0qXQeX4aGwdvmi3CbQQhZkoixnDY2eheGTQwEkgvwXyPc41FC8nsMD9FlEKBteRduKoJBFulik0vh15fQ1o3XS06baKI1HqCsH3+6wj5Fx/fvl5D999s92m3bv29qBosWe/2iwQCASCrIlwERJkOtnBdE8gEAgEtpw/94CmjeZavdAn0eDlgixf/Tp6fYoiQJZl3nlzOatWnrOR9/TUs3ZDV7vBRJ8klcr/yeWL4Yr76tYrwD+b3rIqmzXjKIM+WK8or9VJXLk+CD8/j+Qys9lMnqBfrJQxqRn2WV0+/9I6NfO776xg2dIzivI5gjy4HPqhVdnZM/epWXUa9mZxa9d3pf7L1lmAGpWZyc2LjxTlK9fPw6Itna3Kxv+whzHf7VGuQIKj1/vwv0YbuHYmQlnmMXGPbVXa9ijJniXXiI6ydSdKTW6LnrxyYvBcSYpniuGmopwWFOOoAJR2l6jtreXlyrm4hsSk3be5G+PYIsjLW89HH9fih+92KgtIcOnaAIKC1GPpCASCJ0N2eM9I3YYxuX7OMi5C/7s7BHh+f9esgnAREggEAoFA4BSfD/9XUbkC8N/2ayxaeMqqbP0/FxWVKwAxMQkM/WRTpl+jI9auOWdXuQKwa2eojTvP/wZvtCtvNsl06bjUqqzXu6vtKlcAfv5pt9V2VJTRrnIF4MH9WMaP3WtV9lr7JXaVKwBvd11mtb1p1UVuXIy0K39kx01Cr1grSsaOsKNcAZChfYPF5MznZVUmPf6kFKVYtayeeQ7/IHcreZ0soZMlK68gPTIeOjNeejMS4JUqW1CgFooYJHw1oE9l0e6tgaLuEKyHQbl1fJXfQHN/LW5XHlDiyn1GBWup7uV42hsQ4MGPI+woVx5fc7OG8xyeRyAQCJxBlrPOR5A5CAWLQCAQCAQChzx8GMeGfy6qyqRVsCz+65QdyUQO7L/JpUsPXb629PDNF9sdynzyUYpC5fjROxiN6m4lB/bfstr+Z90FVXmLReavBSeSt7/8fKvDa5o08YDV9rWr6lYjD8PirGK4jP5ip2rmHgmJrwf9m7y9+79rDifcVy6F07J7CZBBL0u4ocENLW5oMcgaJBmrOCsAtV8rABbwsGjJaXEj6PEnl8UNL4uWfDqom8NMsaA4iuSIo0wuEzXc3Minlxiex8CEQh6MyO/Ob4XcaeGnxUcLA/NomFxCy8jCOsYV1lPbx9adyk0jMTBYh0LMWyv69a/qsN2XUrl9CQQCgUCQGhGDRSAQCAQCgUPCwmIdvnjevx9jvX0vxo5kCvfuxlC0aIArl5YuwsMdByu9fSslWOzJU3cdyqcN9JvgQCEDEHLqfvL3q5fVlSUA0THqbjVKREQYCQxMdF2KDFcLB5vInVsp/XV0/23HFchQq1V+AnzdiI20TpesQcKAhnjZQmq9zr1bMQRjSAz+kka+sF5DFX8zUioTGEmCmjoDb+QGb23KiTSSxGsBOpoFQk7D43gyMsgqgRr1kkQzPy3z7tu3LrI4EbNZrPQKBILMQpYl1XHraV6HIHMQChbBM8dsNjNu7D4OH7xF6TJBfP5VPcVgfq4QF2dizsxj3Lj5iLp1C9C8ZbFMPT/AvbvRzJp5jNiYBNq1L0XlKsGZXsfZM/dZsjgEnU7DW+9UoEABv0yvY8d/19i86RI5cnjQs3cVvL0NmXp+i8XC30tOc+L4XYqXCOTtbhXQaDLXmE70t/M86f42Go107riMkJP3KFzEj7Ub3sBgyNw6RH87jyv9nSePNx4eOmJjTXZlihT1Z8miU8n3d9Fi/mzfdtWuvEYjUbhw+trpan8XLOTLnTvRqjLlKuRM/l6/QUEVyUQMButnlpe3nggHCo0mTQsnf69dJx+bN11Slc+Z09NqW6NxrAxIUq4A5C3kS/htdeVS6fI5kr+3aFeMHz9XcZV5fA0bZ1ywUa4kISHhgZYoUvYHu3twTlYa82VK+ZqQFOb4ei+jlXIlCZ1WJqcubbn6S0IxNw32I7fA6RDHmZUy8siaPvkQY8fsRauV+HF0Y9q2K53+kzhAPL+dQ4znzvE0+jsqysj33/5HaGgkTZsWoUfvKpl6foHgWSCC3AoynfQEnxo3Zg/ffLXdZjXog4HVGTm6aaZcz7dfbWP8L/ussjL4+rnx19LXqFfP8cTZERaLhTc6/c36NKbzBQv5sWnr2+TJ4+NyHeHhcTRvPI8zp+9blb9UJz+r/3kDg8F1XWnIyXu0abXQasVZo5Ho9m5FJkx6xeXzA/y9JIT+fddZvaAZDFpGjmrMe/2qZUodor+d42n0d8d2i9i86bJNecXKudi5p2em1CH62zkyq78/HLCemdOP2t1vMGis3Gl0Og0mk30tQNt2JZm/qKPT9WdGf4eE3KV2tRmqMnfCPsbDI+VlpUDwOCIi7CtM3nyrHJOntU3eHvXjTn5QiePh5qblXviQ5G2z2Uyg78/IKgqTxUtfo2XrEsnbTV6ebeOalJoiRf05dqpf8vbZkPu0rTzfrpuQBZnjEe9btbuIz3hVa5x6jQqQ95EXZ/apKyXCMSJLIGmgioc/DyNtrXG8dRZeCrJNfW00WQjKEYVeY3vdWp0JjSblb0GWwWJWX6A5EWNh5M30WwOl5uVGBVm9rqtTsidO3KZuzVk25RoNXAodQGCg68FyxfPbOcR47jxPo7/feXMZK1dYx+jSaiWmzmxLp85l7R6X3YLcjg4ak2WC3A69/z/g+f1dswoiBovgmbF0SQhff2mrXAGYNPGgTUC/jDB29B7G/rzX6mENEBkRT9uWC7lyOdzlOl5/zfZhDYn+8bWqTld9uXCWl2pMt3lYA+zZfZ3mjV0PthcWFsPL9WbZmPNbLDKzZhxjyMeuB6LcufMaPbuvsln9NhrNfDJ4E8uWnna5DtHfzvE0+nvIJxsVlSsAx4/epdOri12uQ/S3c2Rmf38zoiEVKuayuz9trBK136dIUX9+/qWZ03VnVn+XLZuL9h1K2d3/0ce1rJQMkJiRR8myAhIz/Pw+2TrF8bDP6lGkqL/dOub/1cFqW6vVMupn+4sKdermt1KuAKxZ/ybu7srKBJ1Ow4Ytb1uVlSobRLPXiqUKOZuCjEyv/1W1aff8tfaVX27uWuat6UB0pK1SJC1JP92X018mIV75b8LGEOUxZlBUrgBWrkQpqK8bHop2nElIDXd3LctXdXFaXkm5AonWR0Xy/+bStYB4fqcHMZ47x9Po7/591tooVwDMZpme3VZx/Ogdl+t4XpBlCUsW+AgXocxDKFgEz4yPB9nPygDw4/c7XK7j51G77O4zm2U+GrTBpfPfuvWIDevtB30MD4/j11/2uVTHor9OceO6clpNgMOHbnP8mGsPouFD/yU+3v6kc/rUwy5PPD4etFHVb334sC0unR9EfzvL0+jvyb8fVt2/caO6O4QziP52jszs74AAdzb++zbf/9iIKlWDKVTIj6bNi5Ivv/rKb2AOd1q3KUGhQn5UqJiLL76uz7ad75I3n/MrxpnZ33MWdODHUY3w8UlRKOTI4cGMOe347odGNvIVK+fmeEg/SpXKgfR45qTXa2jfoRQXrgxQdGs9dqof3d6tiJtb4j5JgsJF/Ni5pwfNWxa3ke/XvzrLVnYhd7BXsjLH01PHkGF1WL/5bRt5Dw8DV29+SP0GBdE+dp/RaCSqVsvD5esDCQ62tYyYtLANQ3+uh7uvDsvj/D4+QW6MndeST3+sbyNfp0FB/j3SjRw5U1yNJAmq187D2QcfoNPpKFTOH0hU0piRMWHB/PjskGgZ4+VvYNKW1rzydklyFk7JOmSWLSQ8/oQlgOXxMyImDh5E6LkfoSc2Rs+taOWHh2xJeiGQARlJktFo7P8t3zJa2B7p/Njm6ZlibSBJUKt2Pm7eG4xO55wVQttWC1X3yzL8MkYlU5MTiOe3c4jx3HmeRn8vmH9CdX+3t1e4XIdA8KwQMVgEzwxHgQbj4swYjWYb33ZnOXniDjEx9mMFAOzbcz1D505i+tQjDmWWLA7hk6EvZbiO2TOPOZSZ/PtBJk1uneE6tjjw/TeZZNasOkf7jhn3GT939oHq/ls3ozCZLOh0GdP7iv52nqfR384QFWXMsM+46G/nyez+9vIyMGhwLQYNrpVc5u81SvWYsAdxzF3YIUvd3wMG1WLAoFqOBR9TqLA/B46+l646fvujFb/90cqx4GOaNi/K+csDnZb38DCwdoNzripJ9P6wGr0/dN7Ev2TZII5df9/u/rb9S/Pf0iskYMFqAVSW0SHRdVgl3v2hanLx8APNec9nMUbJOs6tGVh3R09VNwmzSUvqWCrxt3Mh+UUTHJR21V6DRmtCkuQUCyONDGaZBJMWbSqzo+MxFibfSSA+HY7xhYsEsPdgL+cPSMPO/645lBk7ejcf/y/jY4h4fjuHGM+d50n39/atlx3Gj8oMiyWB4FkhFCyCLE1srBGDwcOxoAIPHzrOmJA280N6iY5y7McdH6c+aXBEnEpAySSiol3zJ09IcPw7REY6/j3VcCbck9FoQqfL2Au36G/neRr97QxhYVF4e2fM71j0t/OI+1vwJAku6gMeEnLaNRMJTMgUrOhvVeztbSBBo+zII0sS54wSRSWsXLJMZg13w73w8jTi45lyz4SZIFBvwZDGf0urlYm1GPnxuoSXRuK6UeZ2QvpDDrp6fztzXyRk4Lqsjxf3tzOI8dx5nnR/37kbmynXkF1IzH72rK8ia1xDdkG4CAmeGY4035IEfn4ZU64A1KiZF40dv+0kChR0Lap763YlHMpUqZbHpTrq1M3nUKbFK65F2S9RModDmWYtirpUR0CAel96eOjw9Mx4BHzR387zNPrbGQoWzHhQN9HfzvMk+vvKlXDGjdnLl59tZe7sY/j7u6vKZ8X722g007f3akoV+40yJSYxfOhmzGb1+BxLl4RQtcIUShSeSPPGc7l0MUxV/vbtKNq2WkiJwhOpVO5PZk5zvIo+8ocdlCv1OyWL/MZbbywjKko9xsnBgzepX2cmxQtPoHb1aWzfqhz7KImMtPuP3w9QJP+vBOcYS+Xyf3LyRIqbw7LfQjDG2T/++27bmPrtgeTtOUMOofaK+AgZpeTeFouGa3d92Bdl4mysmR2PTByLN2Kw83dxKgZOx8ocjLZkSLkC4O2tt9tuZwgK8nQoU72maxlsxPPbOcR47jxPur9btbZ1kUyLj49bhs8vEDxrhIJF8Mzo/HoZ1f316rsWMd7dXUeDhoVUZb78uoFLddSrV1DRzz0JSYIRPzZ0qY7Pvqyvqozy8THwxpvlXKrjh59sYw6kpkLFXC5H1+8/sLrq/je6lnfp/KK/nedp9HfhIuqTYT8/1yZPor+dJzP7W5Zlvvt6O5XK/snXX27j13H7+KDfP8Q5WPnNavf3+rXnyen/Mwvnn+LWzShuXH/EpIkHyek/lhMKL9Fms5nSxX6jZ7dVXLgQxp070ezdc4PK5afwQb+1inV89/V2Shb5je1br3LnTjSXL4Xz4cANFMwznthYW6XJzRuR5Ar4mZHf7yL0WiS3b0exeuU58ub8hTmzlF0P2rZaSOP6czh25A5378QQcuo+bVstol4t5SxJ6W23yWQib86xDPtkCw8exBITk8Cli+HUqTmTDu3+AuDQ5ht2f2cALDDj+6M08JpOVFQcW2faj4ORxCM7gWoli5aJdxMYccvI5HsJlHz8HvjAZOJOggmLxcTJKAv/hlnInwkz3GPH7tpttzP8u8M2dk5aVqx2PmCuEuL57RxiPHeeJ93f3t4G1SDgAEOH13GpDoHgWSIULIJnxuRpbSlVSlkTH5zHm1XrXne5jqXLO1G4iL/ivl7vVcmUGBMb/31bMY6EJCX63+fL5+vS+T09DSxY1CE5iGFq3Ny0rN3QFY3GtVu5Vu38DP+inuK+XLk80+3jr8TQT+vS0s7KTY2aeRk3obnLdYj+do6n0d/HQ97HYFC+To0GLl77wOU6RH87R2b297QpRxgzeo+NKXFsrMnuCnRWu7+NRjOvd/5b0RzaZLLQqN5sm/KG9edw82aU4vnmzj7BXwusAzbu2nmNMaOVg5eGh8dRo8p0m/IaVaYRZ8cSZMD7/3D7tnX9Xw7/l+1bryrKHz9+l3ffXm5VlpF2VygzmSg7rhVbNl1hwvi9WMzOWYckGC10KLwIi8WxvD33gLSl96V47uuiKZIjjhJBccR5xBOKkT9uW/go1KnLSjdJ7XaGggUDea2T/YxVX35VH4Mh45YAIJ7f6UGM587xNPp778GeeHnrFfe93KgQgz5yPj7W8478OINPVvgIMgdJfpGc3ARPhfTmp58z6xg/jNhBRHgc3t6Pgydm8sA6Y+oRpk45TGRkPEWKBvDtdy9TrUbeTDu/0Whi5Pc7WbniLEajhapVg/lhVGMKFHDNpDU19+5G88VnW9mzKxSNVkOz5kX5+ruXMxwkVInTIff44rOtnD19H08vA293q8CAQTVcnhCkZvOmS/z0wy5u3XpEUJAngz+pnenBVEV/O8fT6O9+vdfw18KTWCyJk9gWLYuxeFnnTDs/iP52Flf722KRqVjmD65di7Qr07ptCe7djcnS93ff3qtZOP+UqszosU3p1z9xFddoNBPk97OqfI4cHly+/mHydqVyf3L5UrjqMWcu9Cfv4xe6zRsv0dFB6vJ69QuwbuNbyds5/X9WzSai1Uo8jBqWvJ3edsfFmcgVMEZV3t1dy+dv12Xln2fsyliQiU/lFNS+TXH2rboBcuIqn/ZxMFsLMmYACYppNAQ8VtjJiTFrAQm9PoGRcqLFzHsF4+mY14ySXm/zPS0/X8iYlVzOXB7ccxAjwt1dy92HQ5w+566dV+nUYWlyHJDAQHe2bO9GseIZd5NMi3h+O4cYz53nafT3l8P/Ze6c48TFmciZy4ufxzS1SUmflvS+Z2RFUrdhZMAvBGgzbyzIKA/NYQx/+DHw/P6uWQWhYBFkOtlh4BMIBAKBNdeuRlC+9B+qMpUq52bHnh5P6YoyRqliv3HLjjVKElWqBrN917sArFx+hne6rlCVlySIiPk0eTvQZ7TDVKnDPqvL518mpkZ+o9MS1q1Vd53x9XXj+p3BKdseP6nKA9y893HyS1162z19ymEGf7jRYR2njr1Pr8rLMdkJvmnEgjmV7UnbHiU5NC0UPRIarLUjMjIaZCoYNEipAtfKMpgtsFa6y0lNLD6SmRnV4vHVA1iSA+Imzmg1WGQYcsrAyUfpz+UwclRjhg/716FcZOynDmUEAkHmkx3eM4SCJXsjsggJBAKBQCBwiJLZe1ocBarMCjhzjTpdioybQetQPk0SG5ttJfR6TarvTtSRgYVpbarTprfd7u6OrwkgNioBs4oyyaZWyYIbktIeJCT0SuUS6LQyQVJi+qGO+U346kGrNaHRyFYKFlk2YzJpaZbTnCEFi04n1h0FAsHTwyJLWLKAe05WuIbsgojBIhAIBAKBwCF58/lQukyQqkyTpkWe0tVknPYd7MfESOL9ATWSvzdrWdShwiRt8MwSpRyvRvZ9v2ry94+HvORQvl69AlbbXl7K8QuS0Os1eHikuCSkt92vd3UcjNPbW8/y30JU03vq0lqpnDehpFxJwghEKuprJF7W+gPgo0tUrmi1slXfSFJijCedzoxXBpcQlyw+61DG207sCIFAIBAIhIJFIBAIBAKBQyRJYtjwunb3B+bwoE+/ak/xijLG9yMbqWb68PYx0Klz2eRtrVZLk6bqaU9/n9Laanv23Paq8pUq58bPLyUVapWqecgd7GVXXpJg6sx2VmVffqOeVaVPv6pW2+ltt06no3yFXKp1TPj9Fc4cuq8qIyElq1Ny5fPiyuFwVXmAGAWFjY9nLPlzRvBpsAFTrIWFVzxYcMmD0ChbZY1GAz569cxW9jgdct+pdgsEAoFAoIRQsAgEAoFAIHCK1zqXYdyEFjbBGouXCGTlmtcJzmM/DWpWQavVsn13dwwKrj/ePgYOH+9jU75sVReqVA1WPN9X3zagcRNry51SpYP4fXIrRcuXosUC2Lazm0358ZC+BAV52JRrtRKr1r5u85v3H1CDd3tWUrym1m2KM3J00zTnSX+7d+/vSYECyplV3utXlU6dy+Lu4dhURAZ8A934+0IXdHrHU8/UEjqdiVJF7pIv9yMktzj+i4tj+h13pl/XMzXUQK/DPnx53JvoeOtz5PKwHwBYDZ1e41S7BQKBIDOQZZAtWeAjvCMzDRHkVpDpZIfgUwKBQCCwz6NH8axfd5GwsFhKlc5Bg5cLPRfxV9Ly5+8HWTj/JDqdxPsDajh8cT5//gFDBm/i/r0YqlbPw5hxzRUVFkmYzWa+GL6VnTtC8fV14/uRjahSNY9qHRvXX2DM6D3Explo264kQz+1bzUEEBERy4cDNnDhXBgFCvoybmJLG5eltKS33UeP3qJf77WEP4yjfMVczFvYEXf3RMXKnO+PMOvbI3aP1Xlo+GFFU2o0TpwLrP/1DHM+OqzmJURJPXhoJMBE6SJhyYqq8fejORiprKCp6WdmVOWUIL7XYyTeOZD+tLsffVKL775vBKi3WyAQPBuyw3tG6jZ87zeOAE0WCHJrCeOLiMRA6s/r75pVEAoWQaaTHQY+gUAgEAgEjgm/H8tbJZYQG6XskjNiWVPqti1oVfa2ZkGqxM3W+GugkD5Ro5I3Zzh+PkYAzibEMiI0USaPu5kgQ+IZ7sVruB2vRULm53IxVAtKvI59D7R8ejL9FlUiO5BAkLXJDu8ZQsGSvREuQgKBQCAQCASCDHF2z33MjyxIaZfrZNDLGo5uvGlVfO9aFB4yifKytbwkQ2E3E9Ljk3l7GQEZd/d4DsWacdfIlPExcStOy4lIPSci9dyO11LWx4RBgu333ACwyPDreVt3K2c4evRWho4TCASCjCDLUpb5CDIHYecoEAgEAoHAae7eiWbM6N0sXXKasAexlCyVg17vVaHXe1VUg6imh9UrzzJsyBauh0YC4ONjoHffqnw7oqGifFhYDD26rWLH9muYTBa0WokaNfMxc2478uVTdhP5oN9aFs4/helximE3Ny2DPqplN3jsju3X6PbWch48iAUSA89WqJCL9VvetomPAonuQa2aL2DvnhvJvu1+fm789scrvNqhtGIdv/92gG+/3k5sTKIVhlYr0apNCeb/1VFR/uaNSF5psYDLF8OTy/Ll82HFmtcpVVo541N62/3PinMM6P4P8XEpMU2C83mz+XA3/P3d+WfaOTRIuKHFIsvIkJyEWUJi7e9n2THlIj0nVKd531L8VH8zBrQYABNmYh//NgbADS1XY7T4uBkJNshIWHB3N6LVyiRYoLCXmdMKqZdDHuko42MiwSIhy7DomoFb8c6lmU7Lu2+v5OjJfqxacZbePVYRl6rdefN6s/dQb/z93TN0boFAIBBkf4SLkCDTyQ6mewKBQCCw5cb1SJo1msf165E2+zp0LM3Mua+6HItl+pTDDP5wo+K+xk2LsGL161Zl4eFxlC/1O5GRRht5d3cth473oUABP6vyJi/P5sB+ZUuFjp1KMytNFqD1a8/TpdPfivIeHjpCbw+2icVSMO94wh/GKR7z68QW9Ohdxars80+3MPHXA4ryRYsFcPRkX6uy27ejKFN8Emaz7TROkmDPwZ6ULWudDSe97V40+ySf9FHuC41W4lzYQD6svobQMxGKMkl4ylo0SHT+qjybR55BF68qjl5nppSfiYJ57+DunqjgWHTfyF+3bBVZqXkzbzxno+FwhAEdYFIL9GIHL289Y8Y25f2+/yju12olbt3/RMRiEQieEdnhPSN1G0b4js8yLkJfRn4EPL+/a1ZBuAgJBAKBQCBwii8+26qoXAFYvuwMK5adcen8JpOFof/bbHf/v5svs3nTJauyPj1XKypXAOLizHTrusKqbNfOa3aVDADLlp7h3r0oq7Lu3VbalY+NNdG1i7XyZfCHG+wqVwA+GbzJattoNNtVrgBcuviQObOOWZW1bblQUbkCidkgXm29yKosI+0e+v4mO9JgMcu82mAhfjlTWXPIqT6pypLUHEtGnETvZa2I0iCjSXOQTiODLKPXp1iPRNoL2pKKaFnm15qP+Lv+Q8p4ZSyLkLe3gQH919vdbzbLNG04J0PnFggEgrRYZCnLfASZg1CwCAQCgUAgcMijR/GsXH5WVWbe3BMu1TF7xlESEtTfpEeP3G21vfXfK6ryhw/dwmJJOeeQwfaVBkl8NDDFauP8+QfJLjv2SHsNfy04qSpvMllYvTLlt/z2q20Or2nk9zutts+de6Aqf+d2NGZzipIhve0+ceSOXQVOEiHH79Goa1GQQSdLuKHBHS1uaNDLGiQZtEhISSoWGWq8XQAZGXdJJpfOQl6DTF6DTG69jKcmUdFSJiiKnIFRaNI5S5WBe3EaRp30ISGD9tl9+lZ12O4Tx+9m7OQCgUAgyPYIBYtAIBAIBAKH3L0bkxy3wx43bzxyqY6zZ8Mcyty5Y21lER+vbqkgyxCTSkFy9160wzquXHqY/P3A/psqkomk/V3i4tQVMmnPezpEXVkCEBFhbRHjjIN3RESKZU96271jy1WH8rIML79RGH9fN3RokhUpEhJaJAxoMKSZakY+TMBbIxOklzGk2qWXIFAnU8jbiJ9n4u8nSSl9W8bLcYMD9RZ67fZn/0M9hTIQgkWSQK+SdjsJ4VwvEAgyjUSDvWf+sbI8FLiEULAIsgT/brnMd19vt1rRy2y2br3C3NnHOe9g1S+jGI0mVq44w4L5J7h31/FENiOEh8ex6K9TLFt6mpgYZZN4V7l6NZy5s4+zcf1Fq1XfzOT4sTvMmXWMfXuvP5Hzg+hvZ1m+LITmjefSu/tKjMYnU4fob+fI6vd3rlye6PXq04Z8+X1c6u/SpXM4lAkOtk696+am/kIsSeDpmRIvI3cuL4d1FC0WkPy9Rs28DuXTBvf1cCI+R62X8iV/L1dOOSBtavzSBFaVnLDm9vNLiVmS3nbXb1LIobwkwY75V4iLVFYoSQoxUHL46/FT6TKzUYfJlHiczhBP0qy/joeOkt72FVelfEwEuicgSxL53C3csaTf3F2WIey+4/vbmd8+LSdO3KZtq4V0enUx1645ViRmBPH8dg4xnjvP0+jvBfNPMOKb/9i/78YTq0MgeJqICF2CZ8rSJSH0670GozHlwaDVSYwc1YR+/atnSh3Tpxzm8+H/Wq1gFijoy7KVXexmWUgvn3y4gRnTj1qZFVerlofV699UzC6RXoxGEx1fXcKO7VeTV840GokOr5Vm+qy2aNJrR63AjRuRtGv1F+fPpUz83Ny0DB1elyHD6rh8foCdO6/RvesK7t2LSS7z83fjzymtad22ZKbUIfrbOdavO0+X11LiRuzdc4PFi09TpIgfx0Led/n8IPrbWZ6X+9vHx432HUuzZFGIXZl9e65Tr/bM5O309ne3HpUY+r/NGI32rVI+/aKe1XaTpkVYt/aCXfnqNfJa/YZjxzeneZP5qtfx66RXkr+XKJEDT0+d1d9YWpo0LWK1/dY7FZj8x2G78jqdhtZtUn6TL799mV/H71e9prRZfkqVzsGZ0/ZfQIPzeKPVpmgy0tvuClVyo9VKqu4y5arkYsdfV1TPmbgwKicqWyS4vPA66nGQJR7FGAjwjUenA2QjpgQDGo2Wj/InMDbUzMVoaw1NCW8TQXoTZlki3CShkUBnyNgL5/hx9mPhJFGpUm6nzxcWFkWxQpMwm1J+x/KlpuDhqSP01iAMBtfHEPH8dh4xnjvH0+jvzz/dwqSJB0jSDf08ajeenjpWrH6d2nUKZEodAsGzQFiwCJ4Z27depme3VVbKFQCzSWboJ5tZMN81X36AWTOOMvjDjTYT49BrkdSrPTNTVi7e77OGqVOO2ExCDx26RfVKUzJlVaH+S7P4b1vKwxrAYpH5e8lpXnt1icvnj4kxUrPKNKuHNSSa3o/45j9G/7TL5TpOnrhDmxYLrR7WABHh8XR9fRlbt15xuQ7R385x7VqYlXIlNZcvR1Cx7B8u1yH623mep/v7+x8bUaiQn939aYPNpre/dToNP//SzO7+Fi2L0ahRYauyKTPa4Ofnpijv4aFjzoL2VmW16xSgdirrkbS8/mZZAgM9rMrmLVROkwzg4aljXpo0yj//0pzAQPupfMdPbGG1bTBo+ejjWnblS5YKpOtbFazK1m54E61WWVMhSbB63RtWZRlp9/jpLexIJ2bTWbH1DSLu2Q/ma1PHdxUxxTp2nzJbUqanBjczBvdY7pkS8NXo+TI/dC8QT8OcRhrmNNIsZzznoyR2hblzN15DgF4mLEEih/bJ2LtrtRIbt77jtHzhfL9ZKVeSiI0xERw03uXrEc9v5xHjuXM8jf7++sttTPw1RbmSREyMiRZN53P1SrjLdTwvWOSsEuj2Wf8S2QehYBE8M3p2X626/xM7aTrTwxefbbW7Lz7ezIcD7WcKcIbw8DgWzLMfzPDmzSimTzniUh0b11/kdMh9u/u3bL7MpYsP7e53hi+Hb+XRI/smrKNH7nZ54tG/7zosdkZvWYYP+yunxEwPor+do37t2ar7r1yOcNldSPS3czxv93eevD5s3dGdAYNqEBzsjcGgpULFXOQv4GP3mPT2d49elVn892sULuyX7Irh5+fG0OF1WLK8s428r687J868T7MWRZNdmLRaibr1C3D0VF/y5fO1OWbjv+/Qq08VK5cnd3ctX3xdn6kz2tnIN21elI1b3iJnTs/kMkmCKlWDuXJ9kE2KZoCL1wZSv0FBq7TVAQHuLFzSkW7vVrKR/+6HRvzyazO8vPTJZVqtRMdOpTl4tI+NfM6c3py+8AElSlqn9yxQ0JeDx95TXPFPb7s7vFmWWctfxd3D2uA5X0EfTt19H3d3HXmKp/S9JIPm8Se1P7/eoKHP1Jq89lkFPHOlKHEssozp8ceS6o1UrzUTb0z5TXU6WPUogbdD4N2zWmaHurHtnoFt9wxsuucGJMo+NGmINUNRDzOX413PiJHWJa5AAV9Cb3/odIrm3t3tZ58CMCVY+Guha4tJ4vntHGI8d56n0d8Txu2zu0+W4fXOS12uQyB4VggXIcEzI61mPC3R0QmYzWYrE+f0cPbMfSIj4lVltm91HMRPjSl/HnIY7G7WzGO8169ahuv4baJjc+Vfx+3j199aZriO1avOq+43Gs1sXH+Rlq1KZLgOR1kXrlyJwGKxZNh8VvS38zx8qP47AfTttZaZcztkuA7R387xPN7fQTk9+XFUE34c1SS5LMB7lOox6e3vlq1KpGu88fd35+8VXZyWBxj3awvG/WrfQiMttesU4OK1QU7La7Va1m7omq5r6t2nGr37OP/3FBzszaFjtsoXNdLb7qatinEh3H67m/cpwaHVN9AjoUkVc0VGJkGWaTGgFO9NqJFc/t7uxkwssApJAwZtSjwTWQajRcZNayHeaCAuXmN1/+md0JdoJIizSNwxaijp6dhSxhGlywSxa1/PDB+/bJnjuHJDBm/mjTcrOJSzh3h+O4cYz53nSff33t2hDjN1nVVxfxQIsjrCgkWQpUmdASG93L4d5VBGzc/fGcIexDqUiY5OcKmORw4mHQAPwxxfhxrOZLy4fds181xHD1NANcaBI0R/Zy7XrkW6dLzob+cQ97fgeadkzSB8vQxWyhVIDHBrQEPlJsFW5f7B3lg04Ka1DhYrSYllCRYNspw4PU39QlwvUP1+lpAp6Jk4Z4g2S/iqB3pxClfvb7PZsSVBfLxr90V2uL/FeO482aG/rzjh/mPPgiY78qyzB1llEhJkCkLBInhm2PMdT01af/D0UK16XoeR/nOnyUaRXho2cpxloXQZx1kx1KhcNdihTL36BV2qo1Bh+zEVkmiYJu5BevH1VY6RkITBoHUpwJzob+dxJgNGv/41HAupIPrbOZ7X+zs8PI6FC04yaeIBNm28hI+Pel9mpL/37b1Or3dX8fYby5g7+7hDs/fIyDi++nwrb3ReytBPNnP/vrqVJMD4sXupV2sGDerOciru14kTd2jdYgG1q0+jb+/VxMaqLwIYjWYGf7iB2tWn0bzxXPbuDnVYx+qVZ2lYbzZ1akxnxDf/YTarv1jevxdNty7LqV91Bq+3W0poaITDOiaO3UfjmrNpWmcOf8237zaRxKHdN3il4lzqFpxG9xbLiIpKibuycdI54qPtv2xNemM3x9akZCDZPuY0HiqzT70G4h5nEUpcIE+c9Zf31FIvl/14L/VzxxPsmfKGEJoJiVty5vKgeuWplCgykbatFli12xnsxQZKTYlSro0h4vntHGI8d54n3d/NWxZ3KOPhqXcoIxBkVYSCRfDMaNqsqOr+SpWdj9KvhLe3garV8qjKfDLkJZfqaNmqBP4B9gMZAnw/srFLdXz5TX0rH/60uLtr6d23ikt1fPVtA9X9xYoFULiIv0t1vNO9our+1m0zbs4Kor/Tw+tvlHUo0/l1xzJqiP52jufx/p78xyFKF5tE315rGD50C6+9uhjJwdtRevo7Ls5E7erTadZoHksWhbBq5Tk+6LeOAsHjOXrktuIxY0fvoWCeXxn/yz7WrbnAn78fpFjBCXw6ZLOi/PGjd8jhO5qvvtjG8eN3OXr4Nv16ryVP0Fhu3lC23qpXawZ1a85kx3/XCDl1n4XzT5E78BdG/rBDUX7mtCPk9P+Z6VOOEHLqPnv33KB5k/mUL/2HotIkKspIoXzjeeuN5Rw+dIuTJ+/x86jdBPmNYfPGS4p1DOrzDxXz/8m/Ky9z+VQ4uzZco3bxabz5qnL8guNH71DA+xdGfbaLc8cecObQff7XcyNFc/xqt90Nikyna8O/uXTmIfdvx7B363WqBU7hi/cTf9sja28qHpeEMd7M+LY7GBDwNyaTid1jQxy+TBsfK1hkWUaSTICMLMsMK5JAk+BYDJoURYqbRqZZnlhGVL1HQqqf1S8TnOD37bnJubMPuHM7mu1br5E353gGfbDO6eNXrHndoczW/9525RLF89tJxHjuPE+6vwMDPcgdrJ42vk/fqi7VIRA8S4SCRfDM+GtpR6uAganx8tazZXs3l+tYvvp1u1YwrdoUp0evyi7XsXL16zaB8JL48psGFC8eqLjPWQIDPRk/sYXihFSrlViw+DWX0/41a16Md3vaBl0E8PLSs+qfNxT3pYcffmpE5SrKSrPCRfyZPss2wGJ6Ef3tHFNmtMPXz/7q0/xF7V06P4j+dpbn7f5esiiEIR9vIibG2pQ+MjLerlVievu7RZN5hJy6Z1P+6JGR5o3nEhNjbZqwYtkZvv16u41JuSzD778d5I9J1nERzGYzL9ebRUKCrUVMdHQC1SpNtSlv3+YvjtuJSzDy+11sXG+dJjok5C4fDtygaHJ97WoE9WvPsimvXO5PHobZWkiYzTKvtV9MRIS1a8Gkcfv5e3aIomvOf+uv8ungTWnOY6ZV3fnICl4Qxigz9SrOtClvW3Ued24ouxssmR7CinkhJMQ557oRE57AkEJrsCQ4Y4ee2Ca93oxeDwaDicumGDwNZj4rGcfCl28yuGw4H5cLZ3Hjm4ysdR8vN0Cb0qeV/Vxz97DHrBnHWehklsOq1fJSo6Z9xUHXt8q7nKZZPL+dR4znzvE0+nvHnh7odMq/RZmyQXz3QyOX63hekGUpy3wEmYNQsAieGVqtlovXBtF/QHW8vfVotRKenjq6vl2e67c/UszKkF78/d05d/kDBgyqQZ683vj5uVG6TBAz57TjryWdMqEVUKVaHs5c+IDXOpchKKcn/v7u1Kqdj01b32bIsDqZUse7PSuzZ38vGjQsRECAO4E5PGjVpjjHT/dzaAnkLBMmvcLS5Z2pUDEXfn5u5M7tRc/3KnP+ykAKFHBskuoIjUbDf7t7MOaXZhQp6o+vnxsFC/ry5TcNOHqyj90HbXoQ/e08129/TJcuZawmgn5+bhw50Ye27Uq7fH7R387zvNzfsiwzaqT9FKBms0zjxoVd6u/z5x5w5LCylQpAXJyZ77+1thhRyz4C8NOP1tc8fOi/qjEGoqMTWLwoJHnbbDbz75YrqnUM6G+d4aTHO6tU5U+evEdYqlgM+/fd4O5d+y5Nsgzv9VhjVTZmxB4klCfEEhLzplorAb4YuhVUwibER5lYmqrdJpOJcyfD7B8AfDtwO8VqOHCrSPVTR9yMI3c1xy+xbnoTXp5xaFJZqjySJPxyPMIvMIpCfhbeKvmIriUekc87Rani/nja0Dp3AjEZTKTi5eXY9OXjdGQ53LK9OyNHNUarS+krg0HL/EXt+XNamwxdY1rE89s5xHjuHE+jv4ODvblx9yNavlIMd3ctWq2Ev7873454mX2Hert8foHgWSLJsghpI8hcrl+/ToECBQAIDQ0lf/78z/iKBAKBQOAq10MjKVvyd1WZKlWD2b7r3QzX8fWX2xg3Zq+qTMlSOTh49L3kbT/PnxwG57sf8T8MhsQX5zIlJnHj+iNV+erV8/Dvju4ArF1zjjc7L1OVlzQQEf1p8nYO39GKFjKp+eLr+gz9tC4Ab72xjNUrz6nK+/m5EXp7cPJ2XrexNtYrqZGRuRA+EA+PRAuJysX/5H6oelyacjVzsWFHosvKkhkn+aLfv6ryABv2v8Pn1f9BttNcrQz6VOt59XoX4tacy9hbQ5E0FgrnjUCSoGCh6yQt+O+NMtGsgPr1L7/syY2H3ryRP4EV17X8eS39cdzGjGvK/wYru5alJjL2U4cyAoEg88kO7xmp2/ClxwT8Na7F/8kMwi0PGBGbmDHuef1dswoiTbNAIBAIBAKHOJPVwdXMDxYnsq5kZF0odXxcZ67RnErG5EBRknhRaTaduMTUGWaca7fjc9rWker4dPafIwVREgYPLRqtZPWbpSatCkgjablrlMjlJmNIuxAuWcif61GKZV2qUxbWS8SbEzMNKRFnkqjkbaGhdwIWGfY9zJgVbIIxg6YvAoFAkAEscuLnWZMVriG7IFyEBAKBQCAQOCR/AV8KFVI3P69br4BLdXR+vZxDmfovW2fhCHaQXcTX14C7e8p6UqPGhR3W8U73CsnfX2ntOKBjjhzWlhIFCvk6PKZHr5Rgl+/1q+ZQvnJV65gIenf1KZyklawyfdRv7DiLypvdUn7/jt0dB7p289Cy/tezmFXiqphJtKZJIubiI0xouBmv4a5R4pEp8fPAKJE/OBK9PkXBIWlSFEvBblp23LJvkbLztju53RM1M9vvaznyKGOxTTZuUA4onBp3d9ddmAUCgUCQPREKFoFAIBAIBA7RaCQG/6+23f2ennr69q/uUh0VK+WmZEn7MTp0Og3ffNfQqmz4F/VUz/nBoJpW2xMmvYKkMvtxc9PSu0+KwsNg0DrMcPLTmGZW25OntFaVL1zEz0ox1LhJEYcpfafNtA4s2XtgVSvFRVpadylptf3L7y2waOzLa9wkeqbK3OHuriNvIR/Va/p4RB3O7lQO/ptE6riJngF6Lu9NiusiEWPW8CAh8SPpzRh01tdnNkNCgoTFkqhoqeWlZ9M1Ty5FpijMLkbq2BLqQd0AMMmw4qaOH88ZsDErcpKDB25SoKC6guzrNH+DAoFAIBAkIRQsAoFAIBAInKJHr8oM+6yuTSrSHEEeLPr7NYq4mB4UYPP2buTLb/tibzBo+XtVF/z9rVOtvtuzMv3sKHY6dSnL8M+tFTAGg5a/l3dBKZmHXq9h++7uNuVbtr9N/gLKL909elemS5q05rXrFGD4F3UV5QNzeHDwaB+b8gNH38PDQ9lz+89prW0sdb78/mXqtShko2SRkSlTPSeTZ1kHUDUYtMxd2QFZQcki6WHDXtt0wZtOv4O3r17xmhq2Ksy7g6qgcTLgpd5dw5ibr9pVbim5QJnNOkwmHZHhvkQ89CQ83B03ixZfrYYbETpuRerw02qwWLRYLGYSLFDVz8RPZWLpl982I5MzaDQSx071wcdX2QKmRatifDCwRobOLRAIBGmRSRz/nvnnWf8Q2QgR5FaQ6WSH4FMCgUAgsE/otQhWLDtDWFgcJUvn4NX2pfD0VH4Rzyh/Lwlh1sxjxMeZadCwIEM/rZMcqFaJq1fD+f6bHVy+HE7evN58/lV9SpUOsitvNJr5+MMNbNl8Ga1Ww2udy/DVN/XRau27f6xeeZYR3/xHRGQ8xYsH8ue01qpZO+7di+L999Zx8sRdPD0NfDykNm93q6ja7nFj9jBzxlESjBZqvZSPP6a0Sg5Uq8TJE3f4pP8mbt94RI4gT0aOb0KtOvafu0ajmaEfbmL7pitotBrady7FZ9/WU233omkn+fWbPcTGmAjO782kJa0pWirR0mjhp0dZPTrE7rFarcTr31WkzfBE96Ml/Q+w7Q8lNxyZGgUf4u1mwZigJSFBR4kS14iN9iApkst5w0MaBMcr1vPfbQNVfC1gTFTATbusZdHN9Ae5fevt8vwxNVE5NXP6Eb7/dgcxsQnky+fLgsUdKFnS/t+UQCB48mSH94zUbfjMfQL+UhYIcis/4Mc4EeQ2MxAKFkGmkx0GPoFAIBAIBI4JuxHDxyVXY4w1K+4fuLAOL71e2KrsA+kvbMPfgoRMqRyxeD7WoxUpfB3Zkqi4u2GJpUqhCLR2EieZLBByX08RQ6Kr1fLrOn6/6q4srNaeR/9DpxM5IASCrEp2eM8QCpbsjXAREggEAoFAIBBkiNvnH9lVrgBcORJutR0bk2BXVkbiwkOP5GwWZpM+sVRjIVwfb1e5AqDTwN2ERCucWDMsv5Exi6obN6IydJxAIBBkBFmWsGSBjyyrDLCCdCFU9AKBQCAQCJzm0aN4pv55mKVLQngYFkeJkoH0eq8K7dqXQpIyZ4J26MBNPhq0gZBT97BYZIKDvRk6vC49elVWlDcaTQweuIEVy88SHZ2Au7uOFq8UY+LvLfH1VbZiGDdmD6N/2k10dOILv3+AOz/93ISub1VQlD9//gFdOi7l0sWHyHJiwN3mLYowf1FHu+41fXuvZumS0yQYLUgS5Mvvy5wF7alePa+i/Pq15+n//j/cvxcDgIeHjr7vV+O7HxopysfGGunceilH9t5GNstIGihVKYjFqzsRlNNL8ZhJP+/nj5EHiI8yAeAVYODzsQ3o/LZyBqcTR+7QtfXfPHzwOKaJBBWr5mLVf2+g0+nY+Ps5xeOSWD0qhD2/n6ff33Up2ywvvzfaipL1ShImi0R4nJZADzNgQaNJbJfWiQgBWo1MgiUx0O0tU8Yy/bz+2lL2HuzN0aO3aN9mMWEPYgGQJKhcJTdbtr8jLFwEAoFAYBfhIiTIdLKD6Z5AIBAIbHnwIJbWLRYQcuqezb73+lZlzLhmLitZVq44Q7euKxSDnnZ9uzx/TrUO3hoXZ6JimT+5fdvW8sDPz41jIX0JDPS0Pk+Xv1mz+rxi/QM/rMEPPzWxKjt48CZNGsxRvKaAQHcuXRtoo2QpX/oPrl2NUKxj8dLXaJkm/fNvE/bx2bCtivK1audl09ZuVmVRUUbK5ZuEOU7honSw/1xv8uazDsz7XudVbF95GSmNgkNGptvgynwx6mWr8v82X6Fr62WK12Rw03AubADDK63nxulIRZkkvGQJDRLdZ9Zk+YeHiYm0b/ECkNszgXw+CRQqcAudPrF9RyyRtMivHH8liXWhBnbd9GLL/aSYNen/W/Ty1jPvrw50aLNYcb+bm5Zb9wcLJYtA8IzIDu8Zqdsw3G0iflnARShCfsDI+IHA8/u7ZhWEi5BAIBAIBAKn+ObLbYrKFYCpkw+zcYNS8FLnsVgs9Om5RlGRAbBg3kkO7L9hVfZBv3WKyhWAiIh4ur210qrsxIk7dpUrABN/PUBUlNGqrH3rRXav6WFYHH16r7Uq+2HEDrvKFYB33lphtW02m/n8U2XlCsC+vTdZu8baUqRjy0XKyhUAE7Rr8pdVUciJe4rKFQAJidnjjtq0u3v7FTaySRjjLbzxyt94+qcJwKtwSUk1zum1H4NXWsWEbHOQTiMDFjTalPLjD3Vcj7ZvlXItSsuhMD1hJg3Laj/is5IZc/Xx8NDRpcNSu/vj4820a70oQ+cWCASCtDzz7EGpPoLMQShYBAKBQCAQOCQmJoFFC0+pysyaftSlOv5aeIrYWJOqzLdf/2e1vWaVuovKrh3XrLYHvr/e4XUMHpQiExoaQWSkuuXEquVnrbb/nHRQVT4+3sy/Wy4nb4/+abfDye2nQ7ZYbZ86dFdV/ublR9bH99ukqFxJQoPE5wNT6rh47gEJCRbVOvbtvEHtzgVBBp0M7rKEJxo8ZAm9LIEMWpnkemULVHk9PyDjobWQz8NECR8TJX1M5Pc04am14GlIoGjuCHLmiCS1MZRR1vDpIX/C4m2nrvfjNAw/7I8ZDUfC9XwR4kmcOWOWVO/2qOSw3bt3hmbo3AKBQCDI/ggFi0AgEAgEAofcuhVFXJy68uPKlXCX6jh6+I5Dmeuh1u4ojhQyZrNsZZlx/bp9y5IkTp+6n/x9x3/XVCQTMRqtXV6ioo12JFPY9u+V5O8H9t1yKP/gcSyQZNR1AGiQCAtLOebWtUcq0omcP/Ug+fuGVRcdyssWeLlnMfx9DRjQoHmsSJGQ0CPhjoRbGqVOxL0EfPQyBTzNeOtlNFJifBMvnUwBLzMVgx/h7ZGARgOpvdiLe1m48EjPG9uDmHTam733DOy5a2DiaR+6/hfExUd6chlMSMiEROq4G5exGCy+fo4zD1kc/PYCgUAgeHERChZBluD27ShWrzxLaKjjiW9GuXXrEQf23yAmxvHEN6NcuBDGkUO3MJmezOzLYrFw/NgdTocom+hnBnFxJg7sv8HVq+FPrI7w8Dj27b3O/fsxT6yO7NDfRqORX8bs4c/fDzyR84Po7/Twot/fOXJ4oNGoWwXkzOnpUn8XKuzrUCYgwPoFWK9Xn8pIEnh6prilBAZ4OKwjT16f5O8VKuZyKK/VWl+Dm8Hxy335irmTvxcp6udQ3svLOiuOo4QPMjJ+finuO36BjhUHufN6J3+vXkc5EK8VEhxbdQNjpLKSS4NkYzXjl0tPLjcz9kL1hEd4Y35sfaLRWEhyH6rv5kZh7wQiEzTMveTNR/sDGXwgkPmXvIhM0FDUx0hErJZgdws5DWb2R2RMwSJbHNvJZyTMkBjPnUeM586RXfr7/PkHrF1zjoiIWMfC2ZBn7RYkXIQyHxGhS/BM2b/vBq+9upiIiBTza08vPbNmt7MJAJhR1q87z4D+67l7Jzq5rErVYJYu70zOXMpZFtLLuLF7GT1yV3I2Cq1WomWr4sxd0AGdznU9psVioX/fdSxeFILpsemyu7uO9wdU59sRDV0+PyQGTOzUYQl7doUmD7IBge6MHP1/9s47Poqqa8DPzJb0HkgghBZ6EQgdREQIXSkSCyIiIKCiYgPr6/vpqwKCgiAIoiAqKkQQFUWaIoL03nuvIQVCymZ35/tjSVl2d2aSTQDhPvz2x86dM3Pn7sm0c0/xXFWjqBzYf5GHE39g//6U/LaKlUL48qseNG6q42FeB7eCvi0WC5VjJpGRUVDOdOSLy4kuF8D+w894vX8Q+i4K4vx2EBrqS+eucfz6y0GPMnt2J1Ox3IT85aLqe9AT8bzx6h/YbJ6f9J57vrnTcsvWsfz15zGP8nXqlkGWC/T09v/u5oE+P6gex4cfd8z/Xr9+FGYfA5Ycz4lZmzV3Hl+3+2ow77vdHuVlWeKBB+vkL//f/9rx2bQtqsf0zHPNnJbLVw7i7BHPeUaCInycEu+Oeu9Onu71i8cwIQWF/318T/5ys1YVkGSHl4onqsSFsmbWEc8CFGRYyev14Lzj+KucNooikZHpQ0hQNrKsYLfbAANG2cCIKtl8cAhOZTobmyoE5FI1IBckmTPZBsr52ortZfLWmys1ZeLiwnTvT1zP9SOu5/q4VfQ9Y/omXhm5wunaWrasP8tX9qdS5dAS6UMguBGIKkKCEkdvdu8dO87RutlMj/v58ZcHuad9Fa+O5ddFB3jIw4N0UJCZfYeHExhodrteL2+9+ScfjVvrdl3tOpGs2zTYq/0DdOn4DatXuY/5dldVo6hYrXZqxU3m/Hn3MxQTJ3f2WB5VL8eOpdH4js9cXOnB8YCzcvUA7mgQ5WZL/dwq+g4NGO3x5SAw0MTpCy96tX+hb/2I89uZgwdTSGj3FReTXWcaJcn9DFhR9T36vb95752/3a5rFB/NytUDnNrOnLlMgzrT3IYvGY0yq9c9Tu06ZZza4+tP5+DBFBd5gLbtKvHzrw87tX09eztPDf3VrbzRKHP8zAinvzWbzUb5Mh95DF96/c07GfXanU5tTwz8ie+/dW+UKVvWn4PHnnVqO3jgInfVn4XsxpXFjkLS8kRa3VnRqb1dvZmc3u8aKqSg0PieGL5d3MepffLYdYx+c7XbY5Ik2HH2Kca1XMHZvepVhGQcBpY2w+I4POcQoaiHdYUGZxIeeoXgkEvIMlitkGGV8ZVlrlhtLMnK4VCGEQmI8LWx7IQfmYqBBypcYe5Jx4t4x8gcliT7qPZTHCQJjp0eQWiotkcQiOu5XsT1XB+3ir6nf7qJl55f6nadwSBx6PizhIe79za81aoIvWycfNNUEfrAOhz49/6uNwsiREhww3igt+cs/QAD+i1UXa+H4U/+5nHd5csWXhyxxKv9Z2ZamPjhOo/r9+xO5vvv1JNCarF2zUmPN2twVNU4c0Y7tl6Nd9/+y+PNGuDVkcs9rtPLkEG/uL1ZgyNHwuDHf/a6j1tB36+/slx15jUjI5dlS7VzI6gh9K0PcX67Uq1aOMtX9uf+xNqYr4bBlCnrT0yFII/uxUXV9yuv3clHEzsSWigUyGSSefChuvyxqr+LfLlyQWzYOtgllKdGjXD+/sfVuAKweccQ7mlf2SnUQ5Yl+var52JcAejX/w6mf94NP39nx9+YCkHsPvCUy4ufwWDg0PFnqVYt3Kndx8fAe2PauRhXAD774j6eea6pyyx6kybl2Hf4aRf5atUjWLKhH0GRZpSrYTQKCn4hRuYtcTWuAPyx83GaJsRglwqUpRig+6M1XYwrAMNHNufN0XdhMDgbcQKDzKzZO5DQUF8iKhaUwJYAA64Pl5IECS/VpN/UpvgUqjqkKJBjgxybROHIHINsw2aT8/VjNMI3yVZ6bzPw6C4zXx0OYs15P1af9+On44FkKo6/xVRrQc8nsr0rFw64hMQFBZnZvmeYbuOKuJ7rR1zP9XGr6PvVUZ6P02ZTeKD3PK/7EAhuFCJESHDDOHVS/SaTlpaNzWZzcnEuCkePpJF8QT1m9NdFnkt16mHG9C3YNeK1p07ewIMP1S12Hx+MXaMp8+EHa/ngw4Ri9/GdRmWQzMxc/vjjKO3aVS52HxvWnVZdv3dPMna73cmVvyjcKvr+dMomTZnBA37m6KkRxe5D6Fsf4vx2T9WqYcyc3QOLxUZGhoXQUF8iQz5Q3aao+h40JJ5BQ+JJTs7kyhULsbHBqttWqhTK6nUDsVisHD9+ifLlA/H3V5/t/vGXhwDYtzcZk0mmaly4qvxDfevzUN/6pKRkcexoGnXrlc03MrkjMNDM5h1DsNlsbN92nnLlg4iODvQoD/Du6Pa8O7o9J06kk5aWTZ06kar3wHr1o9hzajhZWRZ270qmWvUwQkLUc8x8veh+AA7svYjRJFNFI9xl6PNNGPp8E86dzeDgnos0bhmDr2/B42PrgVXZveQsfjgeKqWrVhGropANNLi/Ak8lFRiU+v18N9+1+pUsm0y6RcZ+1QNHRiHIbCcywAKSzKUMf8LC0/KNLAYdfzpSIYuZRmoeXTRsFMV3SX3YtzeZ5i0qOI1bD+J6rg9xPdfPraDv7VvPkWtRj+HbtEk78bdAcLMiDCyCm5r0dItHF0EtjuioZpGtUX1Ci5MntGci0tLUy3tqcVFHYrFzZz3H4euhcIUNTxw9nAbtit+HnkRymZnWYrsA3yr61vc75WrKqCH0rQ9xfqtjNhvyr8+lpe/ISH8iI/21BfOPyejiNaJFzVqRRZIPD/cr0n3JYDDQKL5ckfqIjQ0hNlY78W0efn5mGjcpWl6E6rWK5pIeFR1IlBsDUb3O0UQEm8i97Hy+GSWJQAnuHhzn1B5zRzjnsw1Y7c4vZ3Yk0i0GTCaZoKvrCntFNQ5S+EnjGP3kgln3Cr42tqtHLmmSlpZDdHSgpmHME+J6rg9xPdfPraDvnbvUS8wD2FXycN1q5OWputHcDMdwqyBChAQ3DK1qFECxjSsADRpoV34Ijyj+/gGaNtN+aK5cJdSrPvQ8/DdoGO1VH+XKBWnKtGgZ41Uf/v4m1fUGg+RVfPWtom//APXfCaB8eW19qSH0rQ9xfnsmN9fGHyuOMj9pDzu2nysVfZ86dYn//d9KXhu1nDWrtUsl2+12Zs/axsgXlzF96iZdLwnLlhzm4cQkHn14Pls2a8+YpqdnMfzJX+nTcy4TxrvP5XAtM2dsoU/PuQwd/DNndbxc7dubzIB+C3ig9zzm/+A5UW4eNpuNd9/6iwfvS+L1l5Z7dO0vzMolRxnS5yeeeuhntm86qyl/MfkKT9z7Iz2bzuG9F52TwK6bftjFuJKPAl8/8g/JRwvG/c+UvVjtnu//yVd8yMl1PJ4aDDbyHvubBhloFOb55TI+zMK+y46/wxg/G4czvQ8Rii4XSO8e33Nniy945aVlRd5eXM/1Ia7n+rkV9H333ZU0ZXx8iue9LhDcDAgDyw0gKSmJhIQEp8/YsWNLZN9Dhw4lMTGRpKQkDh8+nN+elpbG5s2bGTVqFHFxcU7rbhRaN7u4avqz9LsjPNyfWnXUb3ZDn2zsVR/3J9bWfID679ttverjP/93l2pJSKNR5pkRTb3q4+VRLVXXly8f6DaPQVHo2bum6vq7vXBnhVtH3zO/vE9TZsWqfl71IfStD3F+u+fH+XupW2MqPbp9x4BHF9K6+UynMsjuKIq+7XY7Pbp/R+1qUxg7+h8mf7yBzh3mULvaJ5w4ke52mznf7CAqfDzDn/yNT6ds5KUXllI2bByTP17vVv70qUvElP2Q3j3msuiXgyz8cT9tW39J9SqTyMpy/xL/QO95xEZPZPas7Sz5/TD/eeNPQgPGMOebHW7lly05THjQWJ575neW/H6Yb7/ZRY0qk+lw92y38jabjQb1PqVpoxnM/2Efi387xIB+PxEVPo7du93P+I7539/EBkxg6uiNrP79OF9O2kbloAm8/Kz7fBVnTl2mUeRUnui+kJU/HWX5/CP0afk9LSt95nHcvVt8S6vyn/PX78fZsy2ZLydto6b5Yz4btxGA7fM955wAyEnN5a0qi/hPnCNvw+9v7AQPlYzySMty/D1JsoJsyCXPyDKykpUm4RakQnOtEgpNwi2k5YIJh1EtzSIRZPJ+PnbN3ydYtuQI27edZ8onGwn2G82ED/UZ1kBcz/Uiruf6uRX0XT4m2CnHljsSC1VZEwj+bQgDy3UmISGB999/n2nTprF06VKWLl3KvHnz2LBhQ4kYPlJSUkhKSiIxMZG4uDgkSUKSJMLCwmjcuDFjx45lzJgxVK1atYRGVHx++vUhjw/lJpPM8pWuyQyLyg8/JrokJcyjceNyvPCS+o1KC1mW+WpOT4/eOIOeaETDRt7NVsTEBPPK664JEcGROHDSlC6Yzd5F+yU+WJdOnePcrjOZZJJ+TPRq/wAff9KZihWD3a6LiPDjq297ed3HraDvzl2rE1vJ/e8E0OrOCoSHF89dPQ+hb32I89uV3xcf4rF+P7p4YiQnZ7kkQs2jqPrudd9c/lh+1KX91KnLtGzyhYtnyso/jzJs8CJyrimjbLXaeW3UCreJKxvWm8bly64GhXNnr1CnxlSX9kGP/8Ti31yTkdrtCsMGL2LjRuecBSdOpNO7x1y3XjTr152mW6c5Lu3xDT7jyKE0l/asLCutm8108UyZO2cnH7+zzqWKkIzEnGk7GD/6H5d9JdT+ksxLuU6lmiUkUs5kcVeca1W/Rzv8wK7NF1zaAca9tobVy46Rc0lf6MbFw5m8XedXbBq5F4CCvCyygskEVqtMVqYPZqs/r5U38VuLTNb3OMGWxCNs6HOUZuUyOJxhpk64I9zmik0moJSecP/z+p8sX67vWU1cz/Ujruf6uFX0vXhZXyQP52hUVACffNrN6z7+LdiVm+cjKBmEgeU6kpiYyMaNG1m+fLmTgSM0NJR58+YRGhpKQkLxE19p0adPHw4dOkSfPq6VAm4Efn5mjp95no6dquZXTTAYJFq1rsCx0yO8Cg/KIzY2hD0HnqJHzxoEBpoxmWSiogJ44602LP/rUa/3D5DQMY5/NgykZWtHAjyz2UDVuDBmzr6Pjz7uVCJ9vPr6nSQtSKRW7UjMZgM+PgbiG0ez7M9HeeTR+iXSx7wFiYz7MIGYCkGYTDL+/iY6dY5j+55h1KvvXTk+cORG2LprGE8Nb0J4uB8mk0xIiA/9B9zBnoNPe11+EW4dfe/a+xQPPFDbqU2S4KWXm7N4qXeznXkIfetDnN8FKIrCu2//pVotqFnz8l7p+9SpS26NK3lcupTDuGsSSb74nHp1kTdeXeG0/P67q8jO9hxGczE5iyWLD+Yv22w2kr5XD9UZ2N+56t2jD/+oKr/qr+NOHiP79ia7Na4UHIPC08MWObW9PmKFk6GkMBISE9939rSY8M4/5GZ7Nm6kJ2fzx28FhgOr1cr6v06pDYMRfRdTrkGoqkzhv5dzey4TUbUgp45JthNsthFitmI2FBxbgE8uvj45yLLCpbQArLlmx4QREiCTmRHI6SMxWLLNGGV4ok46k9ucIbeQsel4VvEecY0m7dCix4tQ5VBcz/Uhruf6uRX0XadOWfbsf4r69cvkG718fAw8/Ehd9h56yuv9CwQ3EklRPD0qCUqSZcuWkZCQwMiRIxkzZoxbmTzPEzUZLRITE3nwwQcJDQ1l8+bNAMTHx9OkSRNCQ0OLe/hF4laoTy8QCAQCZ86cvkzNuE9UZZo0Lc+Kv4rvffi//1vJWDeeF4WpXSeSdZsG5y+HBozRrA6ScnlkviG/bs0pnDiunv20RcsYlqxwvNQtW3KY3j3mqsrLskTalVH5y5EhY7FoeGq8/b+7GfFiCwAG9FvA/B/2qcqHhfly7PSI/OXyPuORVUJtFBSOXB6RX+normqfc+74FdU+7mgVxbw/HwTg52/38tJj2qVxF//xMJPbrPC43qpAYR+XVk9WYsunRyjrbyPQ7PwbZeZKBARlUqnsZSQJAgMvk5PtR0FIUZ6eHcsms4UKcSeRJIchZ9KWML44GApA/ZAcdqT7aB7/tYz5oD2jXtYudXsp65Ui71sgEHjPrfCeUXgMLxgmEyIVLel4aZCuXORD23Dg3/u73iyIKkLXiWnTpgGoeqjkeZZMnz692AYWgKpVqxIfH0+HDh2KvQ+BQCAQCAqToyN5ak6Od5U+MjO1t782VEbPPJHFYsVodMy6apUHBcjKLjiOtPRsTflrj8Gu3QWXLhVULNEz7mvDjbT8LCQksrIsmM1XKz3lah9UTlbBb5uSnKUpD1CldRnuG9eQn17a6rLOdo1xBcCWKVHGjXEFwN+k4ENBcsucbF8cI1WQ5MK/sYJil8i1mEk+E0FIxCXMPrncG3cp38BiKWZxHqvdu79hgUAgKAoKEormFf36HIegZBAhQteJpKQkAM3cJ6GhoaSlpbFsWdGz1QsEAoFAUFrExgZrlqtt0rRopYKv5b4e6skVAZpcU45Yq7qIn78Rf/8Cl/amzbWP8d77auR/79a9mqZ8cLCzp0RUdIDmNv36F4QL6AkdqFnTeYZTNqs/DNtlhZCQgt/mjhba+SUSehbkdrj/8doqkg5MZsdjZNsXavLilo5gkrApDsOKRQG3No60KwS5Ma7kkZ1tJicnLxmpBJKCbFCQJJw/sqO4aW6OmfTkELIzfQj1cRhh4sNz2JdZdO8VgPVrtatJmc3i8VkgEAgE7hF3iOtAYWOJloElb31eeI9AIBAIBDcDBoPMk0838bjeaJQZ9pR3lT5atKpATIznMqSyLPG/99s5tT07ornqPh/tf4fT8rQZ3VXlDQaJka+0zl/28zNTrVq46jav/6eN0/JHEzqqypct60/VuIJ99uhVCz8/dafiGbPudVq+v596lY3W7WOdlsd9rp5jQjZKPPNqwW8ZGOhLWIR6pY/HRzTK/16+QRh9pjUhF4dhxZ0JxeRv4PQq9xWRCrBit9tx+L4oSJJ7D6XCRhaQyEgLJNsi0Twih80pJqB4EfB/rjhGhIbRbvhzzYq1b4FAIBDc+ggDy3Ugz1iiJwdKeLjjgWvDhg2leUgCgUAgEBSZZ59vxmOPN3Bp9/U1MmPmvV6XBwVY8kc/F48QcBhXpn3enahrvGief7EF9/Wo4SIP0OrOWMaOdw6XDQw0M3lqF7fykgQ//vyAS/vq9QPcHhNAx05VGfaUs+Gpc7fq9PPgleLra+CfjQNd2v/4u7/HSkxvvNXGySADMGFqZ6rdEY7ixpBQpmIA3y2836ktMNDM29Pvcbt/JJjxi2tJ4WUH+mM0uX9UrN0gkhf/19qpreWAqtTq6D7JpiTDW/s6e7R7GI1WqlU9TY2484SG5GA2OY5LrextgZEFFEUmMy2YdRd9AJk2ZTI9b6iCXVHYsXcoJg/jvqNBWf779t3F2rdAIBBci3ITVA+yK3hMYC8oOiIHy3Xg4sWLRd4mLS3Nqz4PHz7MqFGj8veVkpJChw4dePXVV71Odnvy5EnV9WfOaLvXCgQCgeDfh8EgM2lKFx4f1JAf5u0hJSWLGjUi6Nuvnovho7jExoZw9NRzjBu7hgU/7MVisdG0WXneebedxz6+/q43f/99nHffXsXpU5cpWzaAF19uQeeu1d3K9x/QgI6d4xj02E9s23oOSYY2bSoy/Yt73VbI8PMzc/Lc87z/7io+n76FzCwr0VGBfPRxAm3bVXHbx5Tp3Rg4pBHDh/3K8eOX8PEx8NDDdfnf++0wGAwu8nXqlOVcyks8PWwRSxYfxmq1U6t2BJ99ca+LcSWPPzcMYP68Pfzv9b9IT8kmMNiH50Y1Y+DQeLfyDw6oR7vOlRnRfzF7tlxAkiSati3P+Jmd3Y47MNCXXVeG88aTy/j52/1YLTaCQnx4a9LddOnjbNSa++oWFn+4z5HrRZYwyRJmqx3FAJmShNWmMLzSTwT4GagrgclUeGsrVSuddzGmqBlX8lAUmTx/GXOh/C0Z1uLlE7jzrooEBvpy8dJInn36V77/dje5uXZCQnz4aGICPe9X9xwSCAQCwe2NqCJ0HRg6dCjTp08nNDSU1NRUVdnExESSkpKIj49n06ZNRe4rMTERcBhV8ko/F163efNmli5dqhmqpIak54nnKiILtUAgEAgEtzZPl/2B1As5Lpl3ZRwzo+5yJ9bytxJ51aZTOfYcPj55CXYdYUEKEigOzxc1fH2zMBgdBpa0XDuJ64MB6FEhg4Uni270S7n8EkajmH8UCG5WbrUqQiPkTwi+CaoIXVIuMsH+NPDv/V1vFkSI0HUgJSWlyNt468GydOlSF0+VefPmARAXF+f1/gUCgUAgEAgm9Frp1rgCV/1KPMzJ7M0sMGKYzTZAwWCwYjRZMZpsmExWJNmq6rcuSXZkQ162FwWr7DDSmGSF8v45HrdTIy1Nu2qUQCAQlBTKTfQRlAzCRH8dyMurcj0YM2aMqndKnz59GDt2LKNGjcovHV1UTpw4obr+zJkzNGsmEsAJBALBrUhuro15c3eTNHcPKRezqFEznEFPxNO8RUyJ9bF793ke67uQgwdTUBQIC/flnXfb0e+ahLV52Gw2nh72Gwt+2EtOjhWTyUBCx6rM+ronZrNrOA7Azwv38eKIpZw/fwVJgtiKwcyYeR/NmrsfR3p6Fg8nzmfd2lPYbAp+fkaeGBrP2++2cysP8NG4fxj/wVoyMizIssQdDaL4Lul+j9WYijPu54b+zi9J+8nNsWEwydzduTIzvr7P47gXLzzA28/+Scq5LJAgumIQH37ZifgW7qsrXUy+Qr928zmyPxVFAYNRousDNRg3y5E0d/NPp7VrRntgV5qB8j4KYMdotLl4qxiNYLV6cIFBwcc352oYkQKSHT+jQ+7Byhlk2os3h/jA/fNZsbI/yckZdGo/h4MHHLowGiV696nNjJmuuWoEAoFAIMhDhAhdB0aNGsXYsWOLFCJUtWpVDh06VOLHsmzZMhISEgBITU31Oh+LO24F1z2BQCAQuHLlioU+Peex+m9XQ/ub/72Ll0e18rqP+T/sZkC/n9yu69GzBl9929upzWazUbnCx6SnuXos+PkZOXT8WZf8Ii+/sIRpU91X6xv9QXueGt7Uqe3Y0TQa1puGzeb6yFSlaijbdg1zaW/behZbNp91aZck+PPvx2gUX86pvTjjrh0zhcxU12LIRj+ZnSefchn3WyP+4Nsp25GuMVgowCvj72TgM865Ww7sTqZ7wzlujykkzIf154bST5qDvZgGFhMQiYHuzQ5gMHp+HLVaJQo7XcsGG2azBcNV7xVJtmE0KVzIgjknTSw4EcjQmqlM2xdW5GMKDDSxfGV/mjf+3O36sDBfjp0eUeT9CgSCkuFWeM8oPIbnbqIQoYkiRKhEuO1DhNLS0pAkqcQ+jRu7lqiMiNB/0uSF7pSG4QOcy0Rv3LixVPoQCAQCwa3JO//9y61xpWDdca/7GPTYzx7XLfxxv0sfPe+d69a4ApCVZaXD3bOd2k6cSPdoXAF45eXlWCw2p7Z2bb50a1wBOHI4jZEvLnVq+3TKRrfGFXBEvHTt6Gq0KOq4E7snuTWuAFiz7HRt+41T26njl9waV8DhHzLmpb9dxn1/y+89HlN6ag7PPPiLx/V6yDsS2aA+12c0KhiNtvyPLClIMhjNVsfH5Ni+jJ+d+Kgc/Ax21ie7r/qkhclsoG3rWR7Xp6Zm0+/h+cXat0AgEFzLja4eVPgjKBlu+xCh0NBQli5dWmI5SdyF5+QZS/T0kZevxZsktGoUDlfavHkzHTp0UJEWCAQCgcBBTo6Vr77criozY/oWWt9Zsdh9TJm8waMhI48Rw39nw9Yn8pdXrVQ36uzeley0PGSgtlFg1MvL+GiiIwTmwoUMkpOzVOW/nLWNseMT8pdHv7daVf7KlVw2bjxNkyaOsJzijHvdylOqkTkHdznnf3tx4O9ujSv5KPD2i3/yv0ntATh78jI5WTbP8sDyn47Q0q8sWdnqcp6oYrYT4e/eSKSORG6OwzvHx9dSuJmuFTMJMduZuCOgWMeU+GAdpqsY4AAW/XygWPsWCAQCwa3PbW9gAUrdyFDYWJKWlqbqnZJnhCmqgSUtLY327duTlpamu0pQaYQgCQQCgeDW5NSpy1y+bFGV2bsnWXW9FiuWHdE+jtOXnZbtOqbdUlKyCA/3A+DgAe3E8xvWnsr/vnyp9jFlZ1mdli+laydY/WnBvnwDS3HGjc1TbhIHsiI5jfvo/jTNPrauLfC6+XXefk15m01hyPfNmNj7H09pUjweohGF6KDiGWbyyM0xYTZb8nO35CoKigKto7PZet7Iocv+Rd5nxYrBmjJaxjCBQCAQ3L7c9iFC14MmTZrkf9eqKHT48GGA/Dwpelm2bBmbN2/m8OHDJCUleZQr3H9cXFyR+ihtMjIs2GzePWypYbfbyc62agt62YfFUrp9WCxWrFa7tqAXZGdbsdv/3X1cD31bLBZSUjJKuQ+hbz2I81s/xdVFSIivpkxoqK9XfZQtq+114Otb9LmhkJCCXCQB1+QlcUdYhF/+92o1tMN8ZdnZimA0aiclqRpXkB+kOOPWesVXUJzG7R9o0uwjNKJAxzXrR2rKA8wZvsWznUf1Z5CwqNvrdCBhsxVmVHMyAAD0aElEQVQk803PNjB0VRlSsmUCzMUzgph83CcHLglSUjLIyPB60KqI67n+Pm7n6/nN1IfNZiv18+Jm5kZXDhJVhEoe4cFyHQgNDSU+Pj7fAOLJu6Rw/pWietXEx8fn/9+nTx+PcnkGHCh9zx09HDuaRpeOczh54lJ+W9kof+b/+CB3NIwqkT62bDrDkMG/sG/vRQCMRpmEjlWY+VUP/P21H7T18MO83bw6cgVnzzpetv39TfQf0ICx40vuN37vnVVMmbyBS5ccN6GISD/eeLMNg4bEa2ypD6vVzpBBv/DTj/vy4/ArVwll0pTOtL27con0ceH8FR595EfWrjmJ3a4gSdAoPppZX/WkcpXQEunjeui7933fs+yaWe2ICD+OnHyuRPYPQt96Eee3PkpC3xERftzdrhJ//nHMo8zp05cJDRhTbH3/37tt+fqrHaoyjz7mXFEnOjowXzfuCAoyYzAUvDSPfLUVwwYvUu1jzLj2+d+bNCmP0SirvijVq1/Wabnt3ZX5fbFnL1FJgkcfq5+/XJxxR5TzJ/WM59Alv2CT07ifeq0prw9c7lFeQeHND9vmL7fuUMlhIFF56o6OCSDlaHaxqghZgcNZMrXM3r24KUpB5wZZYlOyLyP+iaR5mSvF2t+oFzz/RnnExAQVaZ91anzCyRPOHkgNG0Xx15rHi7QfT4jruX7E9Vwf10PfSxYfZNDjPzvl0KpVK4Klf/YjJMRPZUuB4OZGeLBcJ1599VUA5s2b51Fm7ty5AAwZMsSjjKc8LlWrViU+Pp5NmzaphgctXepIxNenT598o8yN4sSJdBrUneZkXAE4fy6TNq1msn3rOa/7WLvmJO3ump1/swbHjem3Xw/RoM60Epm9mPrJBh7v/5PTA35mZi6fTtlI107uqy8UlQGP/sjo91bn36wBLiZn8fxzS3jrzT+93r/dbqdZ/Gckzd3tlOTw6JE07uv6HYt+1nYV1yI5OZM76nzKmr9P5Lv0Kwps3nSWJg0/4+iRNK/7uB76btF0hotxBeDixSzCAsd4vX8Q+taLOL/1UZL6fvvddvj7u/eEkGVHwldv9F2mTCDt7qnkcX1AgIn/e+dup7avv+ulus8p07o6Lfd9pD5ly3oOHalTL5I6dZwNJq+83tqjvCTB90n3O7XNntMDo9HzI9bAJxo5GT+KM+6Z39+H3YP1w47CR9M6ObX16VeX0CjPXkjV6kdQs46z18rDQ+p7kHYwe9n9Xs16ZtqK8xiqAFZ8fLPw9cvCYLCSZwWy2BQMKOxK9cFY3NrROlj0+8O6ZcuGj3MxrgBs3XKOGlUneX0s4nquH3E918f10PfCBXvp0yvJJUH53r0XqVZpMllZt69Hi+DfjzCwXCf69OlDnz59mD59upMXSWHGjBlDaGgoY8a4f0lLTEwkLCyMxMREj9sPHTrU4zFs3rw5v1z0Z599VvRBlDA9u3/vMXZeUaB3D8/VC/TyeP+FHvs4d+4Kr41a4dX+rVY7r7/6h8f1f/91nCUqs5h62L3zAvOT9npcP2H8WtLSsr3qY9LE9Rw84L6EuKLAsCfUZ3v1MHTwL1y54j6ZocVi47F+P3rdR2nrOyPDwu6dnnNM2GwKgx9b6FUfQt/6Eee3PkpS3w0bRfPb0ke4s01sfpuvr5GYmCA8eZAXVd8LFz1M93urI13zflyxUggHjj7jIt+seQxJC/rg5+fslGs2y0yZ1pUevWq5bLPv8NPUqu0a+tP6zljWbhjs0j7ylda8/uadGAzOBxUc7MPf6x6nfIxz3g4/PzPbdg8lItJ5FlaWJYY+GZ+fQLcwRR13k+YxzF7YE6O/jHLVwKCgIPtIjPusI/f2rumyzZqjg6hSJ8zFKNLornL8uqmfi/x/J7XjoSH1XNqNJpk5f95PpbhQr8wYZknBVuTSFRJgwGYzYva1YDLbkGU7oGCUISrASrR/LtvTtEOiiorJJLN4eV+qxoVrCwOffLzeJT9PYc6eucKOHe6rTelFXM/1Ia7n+rke+h4yyHOy8ZwcGw8n3j6Vum505SBRRajkkRRFET/ndSItLY3ExEQOHz7slIjWU/u1SIWeujypbezYsSxdupRRo0blhwClpaUxd+5chg4dSocOHZg2bVqpVSkC/fXpg/1Ga+4rNeNlp1m+onDq1CVqV5uiKhMe4cdRL8I6Pvt0Ey8+v1RVpnmLGJb+8Wix+3j4gR80KxY893wz3nnvnmL3Ub/2VI4dTVeVWbK8Hy1audelHiJDPnApAVoYSYLUjJHIcvHsvtdD33e2/ILtW8+rysgypF15pdh9CH3rQ5zf+iktfZ89k0FKShaxFYOpUuHjEte3zWbjh6R9pKVm0eeBOvnJWtXYvvUcf/99nPj4aFq0itWUz8iwMO+7XZjMBh54qC5ms/b9ZsXyI+zdk0xCp6pUr66dn+XEiXQW/XyA2IrBdOteQ1O+uONes+oEjRpH01yHHjMyLCz8di8ms0zPh2vrGvcvc/ezZ8sFuj5QnbqNCjx8hgTPJSOj6N4FMtAiOIcAf4WqVU65GJbUcYQsGE25+Ac6wqQUBZKzZHqvDqd8QC6x/tmsu1C0UJ5rad4ihqFPNWb7tnP07lOLhg3LFWn7yNAPsOSo55YrG+XPwaPPFvsYxfVcH+J6rp/S1ve+vck0bTRDVcZkkrl4aaTbdXrfM25mCo/hKT4hWNK+l5Q2l5SLTOFp4N/7u94siBws15G8ktBJSUkMHTrUqXxzQkICI0e6v5DkMWbMGN5///38cCN3jBw5kj59+jBmzBhGjRrF4cOHCQ8PJz4+nnnz5qnmZ7kZSU+36Hq4dMf+/dqVIq54mVTrgIdZhMJcuJDpVR9nrq0c4Qatm60WemZU9uxJ9uqGrXazBsfDcWamlUAdCSjdcT30fcqNm/e1eJsHTuhbH+L81k9p6Tu6XCDR5QKB0tG3wWDggQfrFOmY7mgYVaT8XYGBZh4f3KhIfdzTvgr3tK+iWz42NoRhTzXRFrzK9Rr3I0/coS1YiO4P1KD7A64GohE/tub99iuxFaWKkAK+EgT4F2eOryAdozXXhN2WjWxwGFwyr/4Znr5i4q6yGay7UIzdF+LChUz6JNahT2LR9JFHrsZ5AfoqTqkhruf6ENdz/ZS2vjdtOqMpU9rJgW8mbpYEszfDMdwqCAPLDSAvXKiojBw5UtMIA458LNOmTSvOoV1XJMlxkVajcAWEolKntnYFhOBgn2LvH6BOXe0+8l5AikulyqFs3qTuQlyjpj53ZU9ERvi7xMFeS0Mvkw77+hrIzvZ805ZlCX//4l+Sroe+q8aFcvGi56SS4PBg8Qahb32I81s/paFvRVHYt/ciKReziKsWVir6zsiw8MnH67l0KYf+AxpQs5a2Pn5euI9Vfx0nvnE0D/VVzx8CjkTrn3+2BZPJwLCn4ylTRl2fNpuNzz/byuFDqXTpGkfbdtqGlvXrTjE/aQ/lY4IY9lQTTW+R4oz7l4X7WP2Xw4Plgb6uIT3XcuJoGt9M34HJbGDA0w2JKKNezthqtTL57fUc2Z9K5z7V6dKnwNAyu89aooDzCtgA5WpiXCPgD+QCFgWHAUYBE46PjyKTmwsmryJ5FKxWI2aDI5whuFDloCNXvH/EjSzjy9v/XcnBAyn07l2TnvcXzdDi42PUrIYTEeFdMk9xPdfZh7ie66a09d2iRYymjMkkslgI/r2Iv17BDaNu3TKq62NigoodHgQQFR1I5cohqjKPPKr9AK5G/wF3aD4sv/5mG6/6ePO/d6mul2WJES+29KqP4c82VV0fEeFHo8ZFc42+lo6d1MuCN2seU2x3U7g++v5tqXZiw0FPeJc8WuhbH+L81k9J6/vvVcdp3fwLmsXPoHPCN9SM+4SwMPWXxKLqu3OHrylf5kPefedvJk3cQNNGM6gSO9FjtaA53+wgPGgsjzy0gE+nbGLIoEWEBY5hwvi1buUzMizUrv4J9Wt/yoQP1/HBmDXEVZxMiyYzsNncv1i8/MISwoM+4KXnlzJl8kbu7fo9ZcM+YOUfrkmvAXbsOEe5MuPpcPdXTJm8kTde/YPIkA8Y0G9BiY37u292UiHwQ4Y9sIivJm/nhceXEOP/IZPGr/M47jurfk77Gl8yc9wWpr+3kZYxM+gS/5XHcT+d+DN1/acwdfRGFs8/xIi+i6nt+zG/JTmSadrScvGRDcTKBsoDUQrEALGygQjZQBQyQcgEKRAEBGLABwMgcfRSUSdRFBxmHPJDiiSpwKhiKzRrY5K8n49dv/YM48b8w4/z99G/30+EBozmxx92695+/MQETZlfFvf15hDF9Vwn4nqun9LWd9W4cAIC1C2rWscgENzMCAOL4Ibxy+99PVZZkGWpSFn6PTFnbm+PfVSuEsp/32nrdp1eZFlm4uTOHtd3u7c6be6q6FUf1aqF8/ighh7X/+f/7iq2m2Yeg4bE07CR+xkPWZaY9XUPr/YP8OmM7oSFu69g4e9v4qs5Pb3uo7T1bTabaXWnZ7dbs4+B8RM6etWH0Ld+xPmtj5LU99o1J+nZ/Xt27iiIvbDbFc6cyUCW3SfRKKq+777zS9asPunSfjE5i/q1proYApYtOcywwYtcXMptNoX/vPEns2dtc9lX7WqfcOqkqzv/7l3JNKw33aX99VeWM23qZhevy+xsG/d2/Z4DBy46taenZ9GmxSyuZLgmipz/wz4GPPqjS3tRx718yWFeGPi7w0WkEJINRr/2N1/P2u6yr7uqfM6Fk1eQCsXtSMDhnam0rzPbRf75fr+xbKGrAcluhxF9F7Nry3mnB0mzbMBfNmCWC15kJUlCBowYMOL8gmvRXUVIAXIxma0YTc5GFmcDC0T7O36QwFLw0bbboX+/n9i6VTvEAeDR/g0ICfHseRFXLZS4at55NIjruT7E9Vw/10Pf383r7XFdQKCJr771vo9/Cwpgvwk+IkSo5BAGFsENIzzcj4PHnqFO3Uin5HZV4kLZtmuo7iz9atSrH8X6LYNp2qx8fvUHf38Tjzxaj83bh3hlgc/jkUfr8+MvD1Ktelj+C0Z4uB9v/V9bvp17v8bW+pg4uTPjP0qgbFTA1QdKqFgxmNnf9OSFl7ybDcnjz78f46nhTQgKctz8ZVnijgZl+fPvx2h7d2Wv9x8YaGbXvqfodm91fHwcD9kmk0y79pXZsWcYUdHeuebC9dH34qX9eLS/60xa1aqhJKe97PX+QehbL+L81k9J6futN//0GJ9vtyvUrhPplb5Pn7rEZpX4/JwcG6+OdK4mMmTQz6r7HPnSMqfl6Z9uIl0l78Wxo+ls3HjaqW3K5I2qffR7yNkr5ZGHFnisiAIwP2mvk8GkOON+ZuBvyB5q+EhIvPmCc8WUL6du5Uq6+8ogAKePXGLrBufwhl/nqifsHHLfT+5zrxTCrijIkoK/rOAnK0iFHuODzNo5ShxIGK8aTCQJCtlvUJSCA/AxSKTmGKgdls3JrOKd/3qS7fbpmaR7fyfOPs8dDcu6tHfuEseWHcOKcmgeEddzfYjruT6uh77btqvCilX9ncKyZFmiRcsYjp0a4ZUHu0BwoxFVhAQlzq2Q3VsgEAgEzlw4f4W4SpNUZVq0rMCSFa7lfvXyxMCf+P5b9RCMiAg/jhSqJqKnIl1y+sv54QF31JnK0SPqiSbvbBPLr0seAWD138fpkjBHVd5gkEjNGJW/XCb0A3I0qseMHd8hP/ltccZd3me8RwMLOEo2H7k8In/cd9ecyZkj6kk449uW49uliQAs+/kQT9+vXfJ1QN0aZGz3/HtKkkKQqeBR067AJavEJZtCk3KOnFZ6qggZTbn5MjYrcNUbxtc/C5PZkefkXJZEn78jCDTZqBNyhfXJwe53psLY8fcw8kXtksCXsopfLU4gEBSfW+E9o/AYhvEJQTdBFaHLykU+FVWESgThwSIQCAQCgUCTyzqqeFy+7F1FlNQU7QoZOToqs1xLRqFjz8rSLilcuLLLiePaVT+u9Vax2bTnrs6cKcirUpxxazlaSEhO487RSLYKcDmtQP74wTRNeYDG/WO54mGuTkIh0Oi8TpYg1KQQXNgLRasTp3wqCpKs5H83mhzjUhRYft5IXEg2GbkG/IxFqvucj8Vy+1QvEQgENx7lJvoISgZhYBEIBAKBQKBJhQrBHuPy86h/h2soRFHofp9rGeBrqVjJ2SshL5zAE5LkCAPIQyvBOkDbdpXyv3fsXE1T3t/fOWFjuMbvBNDngdr534szbknDgGCXFKdxV6+nPUPa8p7Y/O/3PlxTU95glFjw8g4yFEi1K2QrClZFwaIoZGMn0KR49EwJNsL5NCO5VknDWKRgMNgK7UfBaHQYm8y+lvz2HDtM3R/CkUs+NCyTxems4oUY7N1zUVPGWEzjjUAgEAhufYSBRSAQCAQCgSZms4GBgxqpygwZ1tirPgYMbOgx0WUeU6d1c1ru3EW92kSjeOeKGp/O6K4qL0nw9rt35y+Hh/tRrrx6zoGnhjtX9nj7vXaq8iEhPtSvX5Cosjjjbte1sqp8vSbOxq5xn2sk4Jbglfda5y+WiQ7EP1C90kePfjXJvepYYwHSFbioQKoCPrJ6PhNZgpQcExfS1CpQKRiMNmQ5b37VjtlsI8uYzeGACyQHpnJEymTtlVwe/suhI7sisSfFhzAfbY8dd/zy034CNMb90MPapbAFAoFAcHsiDCwCgUAgEAh08crrrenc1dWgIUkw7qMEmjQt73UfST8menwxHzCwgYvB5Ovvenk0gISE+LjkhImODmTUa63dygNMm9HNJcHi32sHYDa7f2Rq0DDKpTxr30fqc0/7ym7lDQaJFav6u7QXddyzvutBRIx744RfiJFfVjiX/y0bHcjQ15uieHAEf39mgsu4f9vez+MxRccE8P50z0YbPclitUVsKIqC1QqSZMV8NSlueEAO7WIzqR+ZQ+OobLrGXeazzmdpU+4Sd0RmkWOTCSpmsRabTWHDlsEejz8mJogp07u5XykQCARF5EZXDyr8EZQMwsAiEAgEAoFAFz4+Rr6b14fvk+6nzwN1uKdDFZ58ugnrNg322nslj3vaV2Hf4eG0aBmDj48Bk0mmYqUQfvzlQT7+pIuLvMFgYN+h4bw8qhUhIT4YjTKBQWaeGNqIo6eezU/yWpjX32zDsj8fpVq1cExmGbPZQIOGUWzdOYSH+rpWCStTJpDTF16k9/018fc3YjTKRET6Me6jBFb987jbcfz4y0NM/7wbUdEBmEwyfn5GOnWO48TZ56le3TVcpzjj3nb4SZ56tSl+oSYkE/gEGek7rB57zzztdtwvvNWS7/5KJLZ6MAazjNEsU6NhBL/v6U/vvrVd5KMrBLE1/SniW5XDYJCQJPDxNfDkK01YeWQQ4PlBMlvjaV1RwNdoJSI4S0XKiN1mQrGbMBQuA251tZ7UCLPwWN10tif70STqCmcyixci1KBRFBUqhHAu5SVatozJH7evr4GXRrVkz8Gni7VfgUAgENweiCpCghLnVsjuLRAIBAKBQJupPf9i08LTLu0SCpV9wFO6kis2qFXeUdWoQoWzaPmz+PtnIl215lySs5h6OIA9KT4EmOx0qJjBwzXT8DPa6fdbBfak+tE2Jp0VJ0OLPJ7TF0YQGKidQ0cgENwYboX3jMJjeOImqiL0magiVCIYb/QBCAQCgUAgEAj+nZh8ZAzAtbWdFCTOWBTKmV2NLNm2vFLLDiTJjqJ49jgxGGz5xhVQ+O2UH4uPBeWv353iy4KDwczqeJJm0ZnsTPEn21o8J22jUTwaCwSC64eCw6PvRnMTHMItgwgREggEAoFAoBtFUVix/AhPD/uVhxN/4K03/uTQodQS7SMlJYse3b4lKmIcZUI/oHGD6axdc0J1mwnj11KlwkQiQz+gYrkJvPXmn6ryO3aco0XTGZQN+4Co8HEktJvNiROeSzLbbDaeHraImLIfUib0A2pUmcycb3ao9vHzwn3UqTGFMqEfUC5yPP37LsCiUma6OOOeNH4dtWImUzH4I2pET+KdN1aqyu/ZcYGujb+mXvBk6od8Qp+233Pq+CWP8larlRHdfqWN/wxa+XzGPaEz+Xrc1vz1m+edzDeuGHD4ociADwqxPmC1QVouZFjhshVSLWBUIMgMZ9MdxgyTOQfPj/cKZh9L/nfZYKNWiGsC2xMZZt5eV5b0HIeh5nx28UKEEnvPzR93r/u+IyJ4LKEBoykXOZ4JH64t1j4FAoFAcPsgQoQEJc6t4LonEAgEAldyc20Meuwnflywz6ndYJCYMKkzjz3ewOs+1q45QacO37id0XtqeBNGf9DBpb1erakcP+ZqHAmP8OPQseEuyVsnjF/Lf974023/X83pSY9etZza0tOzqF55MtnZrsaRZs3Ls+xP16S1DycmseiXgy7tRqPMlh1DqFQ51Km9OONuXHM6545muLQHRprZdfxJl3FPG7+B8a/+4zYYZ8J3nenS27lcdFpyNl1jvkJxk0+lfJUgftj/EEOl71y8VwCiTArBGjaODJud2uWvUKPmEWw2yMn2xWGikcgrz2z2yUWWHQdgMFox+1qZuteXLw+FutmjQsXAbI5n+NG47GU2nQ9yI6NOUJCZbbuHUK3SZOxuxl25Sgjbdz9Z5P0KBIKS4VZ4zyg8hsF8QhA3QYgQF5khQoRKBOHBIhAIBAKBQBdjR69xMa6Ao/LKs0//xtYtZ73uo3uXbz26S0+ZvJEdO845tQ3ot8CtcQUg5WIWXRLmOLVduJDh0bgC8Fi/hdhsziaDlk1nujWuAKxfd5qxo1c7tc39frdb4wqA1WrnrlazXNqLOu7B/Ra6Na4AZCRbuK/Dd05tFy9k8qEH4wrA830Xu4y7T83v3BpXAE4fucwHw//2sDd9Lu+FK/UYjRAQmI2PbxY+vpn4+Gbh62e5WqJZwtc/G7Ovw3Ml0sfTKCQifK0YUJCk4s0fygaJBnWnuzWuABw9ks7zz/1erH0LBALBtdzoykGiilDJIwwsAoFAIBAINMnNtTFj+maP6xUFpk3d5FUfc77ZgcWi/pj35OBFTss/LTygKr9u7Snn7Z/4VVXebld4+7+r8pfT07M4ecJzCA3AhA/XOS2//spyVfnU1Gx27z6fv1yccS/+8ZCq/JZ/nI1dLw9SNwoodhj/1pr85bTkbK5cylXdZuHnezFd9VIxAgFAEBAIZNnUjSx2BaJDMrg2NMhoLPg4HZ9SYFSJDXANEcoj2yZzR5ksrliKFyLUpUscly9ZVGW+/GJbsfYtEAgEtztJSUkkJCQ4fcaOHVsi+x46dCiJiYkkJSVx+PDh/Pa0tDQ2b97MqFGjiIuLc1pXGggDi0AgEAgEAk1OnrzMxWS1krqwbat3HiwLkvZqyhw5kua0bLWqGyYUxWEkyWPbtnMq0g5WLDuS//33xUdUJB1cyXB+Idf6nQC+/3Z3/vfijFvJVffQkBXJadx7tiVr9rFqyfH874u/UTdcAdisCj3G3IEfECBJGCUJWZIwSBIyMqm5kkcjS5YNwgKcvVg8oyDJBTtac97kUVKWYMsFfyoGqhtJPNGgUTlNGa2/OYFAIBC4kpCQwPvvv8+0adNYunQpS5cuZd68eWzYsKFEDB8pKSkkJSWRmJhIXFwckiQhSRJhYWE0btyYsWPHMmbMGKpWrVpCI3KPMLAIBAKBQCDQJMDf80ttHv7+Zq/6CA710ZQxmYr+6OLnV3Bcvr7aVWICAgrGWi46UFNeusZKYDBoWw2iogLyvxdn3FoBMAqK07h9dIzbP7Bg3NGVAlQkC9g29xRmD1YSqyKRYXO/rihqNBhthQwxCrXDPHnWKBxJd5RY3nxe3/G7HFcx/r4EAoGguCg30ac0SUxMZOPGjSxfvtzJwBEaGsq8efMIDQ0lISGh1Prv06cPhw4dok+fPqXWRx7iLiK4oWRkWLj7zi8JDRhDsN9oQvxH07zxDM6edR9XXhxOnEinW+c5RIZ8QIj/aCpEfchLzy/B7inAuhisXXOSFk0+JyxwDKEBY6heeRJTP9lQYvsH+OarHdSpPoXQgDGEBY4h/o5pLFms7iJeVN5+ayWVyk8gxH804cFjad92Nvv2as966iU728qgAT8RHTGeEP/RlA0bx0OJSaSlZZdYHz//tJewQMffU96nUswELJbizWa6Q+hbH9dD3+L81o+3+i4bFUDTZuVVZbKzc73S93/euktTpkdv5wS04eG+qvJ+fkbM5oJwkSeGxmv28eZ/C46jTduKyLK6waRa9TCn5cZNtL0gBg8pOI7ijDs4Qt0oY/I3OI2777A7VOUVFF58u1X+8t09tWf4Qsv4cnJDiqpMtodQIbMMx5PVdQcgyXZMPg6DiqKA3S4R7mNDxk6Hyqm0q5RO+0pptK2YBtjJtDnGfCGneMa+US8t05SJLONXpH12Tvja6Z4U7DeawY8tLNbxeUJcz/Uhruf6uB763r37PPVqTc0/J8ICx9Cz+3cuuaAE/36WLVtGUlISQ4YMITQ01K3Mq6++yuHDhxk1apRXfc2bN4+lS5cyZswYxowZw9KlS0lNTWXevHml7rmSh6giJChx9Gb3Tk/PIq7iJLdx5waDxPY9w4iNDfHqWPbtTaZ185luy2LWqBHO+i2DkWXv7Iw/zNvNwMd+cvsAeX9ibWbO7uHV/gFeeXkZUyZvdLtuzLj2PPl0U6/7SGj3lUuuAnDo4rclj9CilXfZxDMzLdSv9SkXLmS6rHNUbRhGZKS/V318Pm0Tz49Y6nF9cvoLmM3ezbALfevjeuhbnN/6KSl9r/rrGD26fe82RMJgkLDZXH+oouq7VdPP2bnzgtt1JpPM+dQXnarjLPplPw8nzve4v3EfJTBkWGOntnJlxnMlw70XRExMEHsOPu3U9uKI3/ls2haPfazdNJA6dcrmL1+4kEG1SpM9hsd0v7c6c+be79RW1HH/9vMBBvX5CdlN2loFhf+b2I7Bw5yNSQ3Cp5Cd4T5/SWSFAFYfHuTUNqr37/z183G38gCfrbqPz1v+iYb9iQizHXdOPVk2OzVjMqhe46ibUCEFg8mK0WRFkhzGlZxsI5IkM+GwwtbUAI6mOxto6pW5woUrRs5lansEecOyP/vRrLm+c6ZK7ESPIWN16kWydsNgr49HXM/1Ia7n+rge+l675gQd23/jdl1IiA9HTz3rUgUtj1utitDjN1EVoZmlVEUoLy/K0qVL6dDBtSJeHpIkERoaSmpqarH7efXVV4mP155IKU2EB4vghtG983cek/rZbAqdO7i/8BaFh/r84PZmDbB/fwrvvbPK7Tq92O12nhyyyOND9A/z9rB2zUmv+jh6JM3jzRrgtVEryMz0zjtj1hdb3d6swaGLRx72/PKilyeH/Or2Zg1w+bKFR/su8LoPNeMKQIM6073av9C3fq6HvsX5rY+S1Hebuyoxb0Ei1aqHO7VHRQe4Na5A0fW9ZsMgGsZHu7SHhPiwdddQl4fubt1r8OHEBJewHEmCUa+1djGuAOw9+BRly7q+IMRVC2PnvmEu7eMndKLfo/Vd2k1mmaQFfZyMKwBlygSy/K/++Pm5huV07hLnYlyBoo+7y73V+d/H7VCueQdRZIVnXm/uYlwB+OvI44RG+aIUcgZXUKhQPZi/DgxwkR8zvxPNOrh6LUkS/GdmW+q1iHJZ54risXKRwaCoJMKVsOWayMn0I/uKHzlZvoCRTCtsTXE1rgDsvBBAuF/pzX5LEkyb0U23cWXe97tV8/Hs3pnM8ePqHkBaiOu5PsT1XD/XQ9/395zncV16eg6DHvvJ6z7+LSjc+OpBdko3RCgpKQlA04MkNDSUtLQ0li3T9iS8mREGFsENY7tGosETx9WrNmhx4fwVDh1St4DOmrndqz6++Wqnx9Kdebzz9l9e9fF/b61UXW+zKUwYv05VRouPJ6hvf+F8ptflV39b5L5kaR7/rPbuwWb138c0ZU6d8i70TOhbP6Wtb3F+66ek9d2+QxU2bXuClasHsODnB9m590nS03JUtymqvv9aPYBDx4fz9DNN6D/gDlas6s+Js8979GocPKQxqRmjmDy1C/0erc/oD9qTcvllXn+zjVv5kBA/Dh57lrWbBvL44IYMfTKeXfufZMsOV0NGHlOmdyM142Vef/NO+j1an6/m9ORi+kg6dq7mVr5Jk/KcS3mJ+Qsf4NHH6vPSyJacS3mBufMTS2zcA4fGcyrzBUZP60Dvx2rzxri7OJ4xglf+c6fHca87MYSftz5Cnyfq8NBT9fnj4OMs3zXA47gn/taNVVmP03NILZp1KM9Lk1uxxvIEXfrVAMAUop7bxSzh1sPFpkCIycbFtKLNhM+/qHD0kufQoj0XvZtZL0zL1uUZOLgh97SvzEcTO5Ke+QoPP+JqaPPE8KfUK1YBdO7wrTeHKK7nOhHXc/2Utr6PHU3j8mV1Q9MvHsrcC/59FDaWaBlY8tZv3uy5YuG/Ae2MZwJBKaEnOC0lJYvw8KLFOuexc5d7V+vCpHsZS7pj+3lNGa3ynlocOaztJrdnt/ZY1fA0U1GYLZvP0rCR6+yqXrKzPZfVBEdp1IwMC4GBxQvh+W7OrmJtVxSEvvVT2voW57d+SkPfkiTRqJC3RWnou0yZQN4f69mV2B39BzSg/4AGuuXr1CnLxEmddcsbDAZGvebeeOGJDh2r0qGj/rjv4oy734A76DdAPcdKYWrWieTdT/T3YTQaGfWJe2PVgAUt+eyeVR7ChBQCja43e0WBLKtCkK/eUsoF+9h/6fo9up49k8nvy/T/fVxLdpb6eQGQrOP8VENcz/Uhruf6KW19r159QlMm14M3k+DfR56xxFPulcKEhzu8YzdsKNm8SNcbYWAR3NSEhBQ/X0a1amGaMv4B2lUx1KhSVTtHjLdxqtE6KljEVvQuV01IsI/mDHT1muGq67UwmWRycz0nqpMk8Pcv/iWpY+eqfOnlDJcWQt/6KW19i/NbP6Wl75SULNLSsilfPqhU9G2z2fhj+THS0rPp3KWarof5w4dSWLv2FA0bRbmE7bjDYrHx26ID+JgNJHSu6tGLozBbNp9h395k7r6nii79paRksWTxQSpXDqVFq1hN+eKM+8ihVNatPUWDRlHUrlNGU95isbH8l0OYfQzc3bmyrnFvXnGaA9su0rZXZaIrB+W3f913PRbAqICBgrLLNgWsKOTYHR4seQaYXLujRLMBCavVjtEoY7EYMJttnks2S1c/wNkr2ue1hKISmKSfyEh/Vv55lG1bz9KjVy0qVQot0vYmk+wxFDqPoCDv8sWI67k+xPVcP6Wt74aNtEMLDYbbJ8giL0TnRlP4GM6cOaMprzdHy8WLF4t8LGlpaUXepjCFk+WmpaWRkpJChw4dePXVV3UZerxFGFgEN4wqcaEcOZTmcX1EpJ+uhz5PxMaGEB0dqFqRqGevWh7X6WHQE414bdQKj7kHAF54qYVXfbzy+p38quKuKUnw0qiWXvXx2MCGvPNfz66xQUFm7ryzold93HlXRf5YftTj+nr1y3qVwO7e+7R1GRLi3YOs0Ld+Slvf4vzWT0nre9fO87zx2h8sX3oEcJQ0LhsVwKmTlz1uU1R9PzHwJ+Z+t9vJ07FatXBWrx/gVHo4j1Urj/NAn3lOiWt9fQ18OqMbve+v4yJvs9m4u81stm1xDlXtkFCV+T894PaYJn+8jrfeWOn04hEe7svSPx+lenXXBIVnz2ZwV8tZTn+jBoPEM8814+1325XIuFevPM6jvReQk2FFumpWMPrJTPy8Mz3vr+123L1afc++LYWqjUjQqmMsM3/u5faYPh21jrkf7cp3Ipk2cgMmX5lJf3WnRqNILp11vOxZr34kpbC/icxFKwTYria5VRwP8UZJxgZk2QwEGRXsNiN2uw1Zxm2y28Lf9ZhNogMtnMnwPtHthvWnubfLdwC88eqf+PgYWPpnPxo21K4SBTDqlda887Z67pB5C7wrGSqu5/oQ13P9lLa+69Qpi4+PgZwcz14qLb1M1CvwjmbNmmnK6K2TUxRjSZ7xIyWl+Lmp3n//fdLS0vJLP+eRmJhI48aNWbp0aalXE7p9zIOCm44FCx9AUvkL/D7J+zrln395n8cZsYgIP8aMK5ob9rWYzUancp7X0rRZebrdW8OrPho2iqZrd/cx/gBDn2xCeLh3sy4vvtyCipU8z6pMmtLFq/0DTJ/RHT8PMx4mk8ysr7zP3q9VfnXD1ie82r/Qt36uh77F+a2PktT3rp3n6XjP1/nGFYArV3I5dfKyx+t5UfX9QO95fP/tbpcw0oMHU6he+RMX+S2bz9Ct8xyXqkDZ2TYG9PuJxYsOuGxTt8ZUF+MKwLKlh2nbepZL++SP1/HaqD9cZnVTUrJp2nAGFy44vxhaLDbq1pji8sJosylM+HAdr450TeBX1HFv3XSWxE7zsGTYkK6aHSQkbFkKT/X9ld/dvOjdVW2ms3EFQIE1v5+gRyvXXCCfjlrH3A93uWQ/zM22M6zZT5w/meGSGNHdI7ec90+SMRb6Qyk81lyLDznZBux2R7uiKNhRUKS8fVoBGzFB6rP3APUivQu78UROjo27Wn7JyZPpuuRffrW1U6nsa4mI8CO+sXrpcy3E9Vwf4nqun+uh70+mdfO4zmSS+f4H798B/i0oN9GnNCiOscRbD5alS5e6eKrMm+dIrBwXF+f1/rUQBhbBDaNqXDjrNw0mKjrAqT083Jclyx+hWfMYr/toc1dFfl/WjypVQ/PbDAaJu++pzLbdQ/H19d6J64WXWvLJp12JLFNw0/TxMdD/8QYs/aOf1/sH+G5eH54d0RR//wIX2ZBQH/73fjvGjvfuoQNAlmU2b3+CbvdWx2gsuCxUqBDM3B/up3cf15nQohIVHcjm7UNo3KSc00NU3XplWLN+INVreF+ibvyEjjzznGsJRKNRZv3mQbrcd7UQ+tbH9dC3OL/1UZL6fuO1PzwmJ1TsULFSsFf6TknJYvFvhzyuv3Qph/ffdfYIeDjxB9V9PjHoF6flpHm7OX3a80z5ls1n2bfX2Qjx1huek1fa7QqJvZyP4bFHFqi62E+ZvBGbrWD2tjjjfizxR2TF/RupjMTwx50TrP48dy8XTl3x2Meejec5sNfZlXvuR+q5rZ67e5GLR4kMbtvcHqekYDYVNowZseT4kJPtQ062L5YsX3IyHR9ZkjAaIdzXhqTyKmCS7Sw7Gqx63Gp4DFMqRCcP5WXdkZz+stuKVTVqhXPk5HNFOTS3iOu5fsT1XB/XQ98PPFiHr+b0JDDQOfSrStVQ9h56qtj5XQQlw/r16zlx4oTqRy95eVWuB2PGjMk3pLijTx+H4S4vfKi0kBS9/j0CgU6KU5/eZrNx7Gg6FWJDVGd7vMFisZKakk2Zsv5euTaqkZFhITvb6nUcrxopKZkYjTLBwZ6rKHiD3W7nYnIWQcE+JfJA46mPC+cziYj0d3pAKElSUjLYse0CLVvHYDaXzo1a6Ft/H6Wtb3F+68MbfaekZFE5ZqKqzJ1tYvll8cPF1vfwJ39l9iz1XEplyvhz6Piz+cvBfqM195ua8XJ+yGl8/ekcPKg+o3ZP+8r8+MtDgMNDpm3rL1XlDQaJ1IyCB7ao8HFkaSQ4nTy1S35C3uKMu7zPeGSVgBkFheOZI/LH3aHuLE4cUE/i2TyhArMX9QYcOVde6rRYVR7gropluHA4ExNXjStXD8muOHxOjIC/mz8Do2ynZkwKvr4KZcsmaxo2/AOvIBsUppy0czHbxJIjoVxrypFQuKdyGsuPauf08MTHn3Ti2ad/15S7lPVKkfe9edNp/P1N1KqtnSenOIjruX5u9+t5UfoobX1nZVk4czqDSpVDdKUGKM57xs1G4TE8yicE4r3RylsyuMhXPA2U7O86atQoxo4dS2hoKKmp6omgExMTSUpKomrVqhw65HnSobgsW7aMhIQEAFJTU0stH4vIwSK4KTAYDFSNK10Lp9lsJKoEPBjUCAw0l7rV3Vv3Ui1kWaZM2QBtQS/7KG1dhIcH0rad0LcWt4q+xfmtD2/0naajikdqarZX+j57RruUepZGhQt3pKdb8ivSXb6sHWJSuLLLtd4s7rDbneeq1LxX8jh4oMDIU5xxazlaSEhO4864nKuxBaScz8r/fmCbvsSEHd+qxbzHNrtUEZIlMCmKRyOQhB1fX8fvpijqniOSbEeSHbKyLLHkSBhtY9M4dsmXU5fNSBLEhWbjb7Sy/GgYgSYrGblFf8SVJIe3UGnhbTiQFuJ6rp/b/XpelD5KWxd+fuZSfwe4mbkZk9yWJBER+o1HeaE7pWX4KJx7ZePGjXTo4L1XmTtEiJBAIBAIBAJNypcP0nwhqeGl6/idbbSTM0ZHOT/sy+7rAzuRZ2QAnEIQPNGwUAnqu++poil/7exxUJD2i1vXbgW5Goozbq0nODuK07hjq2qHzdRrXFB5qW2vypryskFi3kBX40oekiThKY1lrt1AZnaeHKhlADD7WPINMJlWx8BXngjlaLovuXYZi01mz0V/Np1zjLFzNX05Uq5FUeCMDmOXweB9hSKBQCC4HcgzlujJe5KXr6W0ktAWDlfKKx9dGggDi0AgEAgEAk18fY088mh9VZmBTzT0qo8RL7bQNJh89HGC07JWtYmaNZ2NPp9+5jm5Yh4fTuyU/z06OpDwCD8VaXjokXpOyy+OVK8U4udvdCrZXJxxN75T3RuiSq1Qp+UPPu+EopHG8O2P78n/Hl05CLOvurt+s04xeLSgXEWWHCWbXZE4eSHP6GPHfZpFBR+/bExmK6AgSTaCfTQ6BLJyi28A+fabXfhojLtDp9KtQCEQCAS3CoWNJVpGlrz1RTWwpKWl0bhxY+Li4jh8+LCubUojBCkPYWARCAQCgUCgi//83100beb+xf7lV1rR9u7KXvcxZXpXj+s6dY6jbTtnj5KFix4i0IPHiNlsYNlK5+SVVePCefQxz4ai//zfXS65wJb+0c+jASSmQhATJ3V2ant2RHPq1It0Ky9JsPDnB13aizrupEUP4BPkPgxG9pH49a++Tm2V40Lp9Xhtt0YWBYVn32nuMu6P//JsjPIPMvLewo4e1+vBZnc8hsoyyAY7DmuNFYfBxYbZ7womswXZmEtImRQiY5NpWzENP6NnI0tMUA6LD4UW+5gsOVbVhKdBQWbm/ZBY7P0LBAJBYZSb6F9p0KRJk/zvWhWF8owjeXlS9LJs2TI2b97M4cOHSUpK8ihXuP+4uLgi9VEUhIFFIBAIBAKBLoKCfPh1SV8mTOpEm7sqUrdeGXr1rsXPvz3Em295LoFaFPo+Up8Vq/pTuUoIsiwhSRAS4sPY8R2Yt8D1xdZsNnDizHPc26MGZrOMJDkqh7W7pxInzj5HSIir98knn3Zj+ufdiIjwQ5IcL/jlywfy4y8P8tLIVi7y1atHcODo08Q3LofB4DgmPz8jjw9uyJ4DT7sdx9oNg3n+pRYEBJiQJEdYSZ16kWzfPczJe8Wbce8/9zTte1VF9pGwSwqSCVq0j2HfuafdjnvMtI6MntWR4EgfRxIXGSJj/Pn81548Paq5i3yNRpF8d+QBoioV5HmQDRItulbgl5T+gHZpT0XxnC8m0CebnBwDSHaH3kx5HztGk4Ld6ktOti+BoZcx+1mRJIgOsjG44XkMkmvPASYbdSIzsXmorqSHatXCadiwHLsPPElsxYKwKoNBolPXOE6df6HY+xYIBILbjdDQUOLj4wFUvUsK518pam6UvP3Hx8fnVwpyR+H+Syv/CogqQoJS4FbI7i0QCAQCgUCb9+v9RvJuz9WJFAX83EznSSg0q3UOgMiyF1ArHhIccZ6QMllIEuxOk7gjOofvdoax4mgoOy/4Y5ShQdQVzl82Uj7YwpoTQSRnFy+B6f4jw4ku5aSeAoGg+NwK7xmFx9CXyTdNFaE5DAdK/ndNSkoiMTGRIUOGMG3aNLcy06dPZ+jQoYwcOZIxY8a4lUlLS/OYALdx48Zs2rRJ9TjyKhr16dNHtZyztwgPFoFAIBAIBAJBsaiVUJZcxWFIuRa7omB26+Oi4Ge05C9pVeL18c/NT3Ib6mdn+zk/Hq6fymf3HuGfgbtYNWAXk7sc5fvEgyTEpRfbuAIQGVk6JXUFAoHAHQoFlYRu5Kc0PS769OlDnz59mD59ukcvljFjxhAaGurRuJKYmEhYWBiJie5DNMeMGcPQoUM9HsPmzZvzy0V/9tlnRR9EERAGFoFAIBAIrhOXLuXw+WdbeP6533nrjT/ZvOmMqryiKPy18hivjVrOiyOW8O2cnWRlaZfbLW1277rA2//9i+ef+50pkzdw8WKW9kZFwGaz8fxzvxNX8WMqxUygW6c5nD7l2UsCYMnig8TXn07FchOoX3sqc7/frSqfkpJFYq95VK4wkaqxE3li4E9YLOoJVKdM3kDtap9QsfwEWjSdwcaNp1Xl9+1Npm3rWVQsP4EaVSbz/rurVOWLM+5liw/Rot4MakRPokmt6SRpjDstJYuhPX+iZbnPaBUzg5cH/K457mmvbqBb+Gw6Bc6iT+y3bFh2Mn/dyo8PYgMsgFVxJLS1KWBRwIKEXbZjlG1IKMiSgtlgw4Adm91E6iV9pZQNhoJH/8+3lqXXvFr8diCYHGtBKNAVi8yX2yJ4ZnFVZKn4BUcHPPpT/vf/vPEHMWU/JDL0A6pXmcTy5fqSJwoEAoHAmc8++4wOHTqQkJDgZGRJS0vLz7mi5oGSl1vFU46VDh06EBcXR0JCAsuWLXPa//Tp02ncuDEdOnRg06ZNpVYGOg8RIiQocW4F1z2BQCAoaf5edZxHHppPakq2U/sDD9Vl6vSumEzOMRKXL+fwaN8fWbHsiFN7hQrBzFvQh7r1ynK9sdsVRr20jGlTnR+CAgPNfPZFd7rdW8PrPg4cuEjz+M+xWl1fkt8b047hz7rmCrmnzZds3OhqrIqrFsaWHa4zWnO/383gAT+5tMuyxJIV/WjWPMap3WKxUaPqZFLcGJJ69KzBV9/2dml/+YUlTJvqWgbSP8DEvkNPueRIKc64O7X5mp3rzyEVynKioBBbPYS1Owe7yP/83T5e7v+7y0ylQZaY82cfGrYo59SenW2lZ5lvsGS7GmDqtCjD5FX38oz0PVrmjEiDgrvKxoF+FqrFplI2+kK+h4o7ysSexi/QYVjs+kNVDqUW/HaVg7PIscmcueKT31Y1NIvDaeqVnzwRHGzm4LFniS33ETluxt2seXmW/dm/WPsWCATecyu8ZxQew8NMJuAmCBG6wkW+LaUQocIkJSUxbdo0p/LNCQkJjBw5UnW7sWPH8v777/Pqq6+qyh4+fJgxY8awceNGDh8+THh4OPHx8Tz44IOq+VlKEmFgEZQ4t8KFTyAQCEqSs2cyaNxgOpcvW9yuf+GlFvz3nbud2gYN+Il5HrwRypcPYvOOIfj7m0r6UFWZPHE9r72ywu06s9nAmvUDqVHTuwfF6IhxZGZaPa7ftf9JYmND8pdfHPE7n03b4lG+c5c45s4vcCnOyrIQHfGh25AWcCTITbns/PDWLP4z9u656LGPiZM68fjgRvnLK5YfoWf37z3KR5cLZP/h4c5tRRz3yOeWMOfTnR7l23arxDfz789fzsqyEB86DbuHgZuMMjsznY/p/gpzSD2X7VYeoP+bDdn01oFSN7AERpwnvKzDuHWtgcUdlUOzOOqFgcXX18j585keZV57vTWvvNGmWPsXCATecSu8ZxQew0M3kYHlu+tgYLkdECFCAoFAIBCUMl98vsWjcQVgxvQtXLlSsP7kiUv8MG+PR/nTpy/zwzz1UJCSxmazM/njDR7XWyw2Pp2qnmBOi0W/7Fc1MgAMeszZ8+TLmdtU5Zf87hzW8eQTizwaVwCsVjsTxq/NX87KsqgaVwD++5+VTsvPPPWbqvzZMxkcO5qWv1yccX83c5eq/J+/HXVafm3Qco/GFYBcq50Z4wv0l5GRrWpcAfh27Pb8/Cky4CtBgAT+EuQF//jIdoL9rIQFWggNsOBntuGI9leICM5Q3X8ePj5XMwRICq0qpKOeLUDhzKXi52C5865YVeMKwPhxa1XXCwQCgeD2RRhYBAKBQCAoZdatPaW6/tKlHPbsTs5f3rjhNHa7uoOp1j5LmhMnLnH69GVVmfVrT6qu1+LLL9SNJeDI/1IYi0Xdf8JuV0hPLwjtWbNG+3ebP39v/vdFvxzUlE9LczZEnDmtbTiYPWt7/vfijNuWoz5uyS45jXvTavV8MQC/zTuQ//33mYc05XNz7Nw1PA4zECQ5DCwmCcwSBMoQLCvUCMsh2N+Kr9mOn4+d0MBcIoMtmI1WwkJ05hO66t4iSXBXpQwqheR4FK0ckk2OvfiPt63baM/a5uSo56wRCAQCwe2LMLAIBAKBQFDKmM0qNWjdyOiRN+mQKUnMJh3HpENGDV9f7aSnsqHojy5+fgUeDUaj9vY+5gKZ4CBtbwjpmvgWrao4AIGBBeFdxRm3Vny3guI0boNJ+6AK/00FhekLP0s+mIm/jNsQHxmJyzmuYzMZFQJ8C0YgSeqjuZJhhqsyly0Glj6ymzuiMjAU2s4s26kckkV6jpF+9c7pOnZ3BPgV3/tFIBAIisqNrh5U+CMoGYSBRXBDsdls9O+7gMjQDwjxH01E8Fh63fs9WVmeXemLyqVL2QwZ9DMVy02gbNg46lSfwieT1pfY/gEOH0qlR/fvKBc5nqjwcTRrPINfFx3Q3rAIrPrrOHe2+IKoiHFER46nU/uv2bmj+A+R7vjqy+3cUedTyoaNo0LUh/R7aD4Xzl8psf1bLBZqxU0m2G90/qdyzARSUvS5ietB6Fs/pa1vu93O22+tpFrlSZQN+4AqFSby8gtLsVjUQyGKwr9F3x07xamuj44O5OvZ22nbehbt2nzJ6tUn8PNTf+nu2LFqkY7BW32XKx9IvfplVGXMZoNX+n751VaaMvfcU8lpOUjDAGI2y04Gq4cerqvZx4gXW+R/b59QRTU/CEBMhSCn5dp11X8ngCeGNc7/Xpxx+werG0AMPs7jvrdvTe1jeqngmO55SPvvyz/YxMHF6pWwLmUZ3YZk+ZrtHD4VwqUMX/JChtwhyXZCwrLyjVgbTvlhlyR+fHA/e57cwtj2h3mv3RFWD9jOisf28Hu/Pfy0L1zz2D3x2it/aMoEBxfNCPPiiCWE+Bfc90IDRvPxR/8U9xDdIq7n+hD3b31cD31fuJBB+7ZfEh40lhD/0USFj+PFEb+X2P4FghuFSHIrKHH0Jp+yWGxUqTDRbV4CHx8DB48Nd6myUFTOnLlM4zs+IyPDtY9Wd8ayeOkjXu0fYOWfR+nZ/XtsNtdTafizTXlvTHuv+/ho/FreeuNPl3ZJgi++vI/7E+t43cejD89n4Y/7Xdp9fAz8vfZxataK9Gr/GRkWypf50OP6nfuGULFi8R+KQei7KJS2vq1WO00bfsahQ6ku66KiAti2eyj+/t7NFP+b9H3lioXWzWdy2M3vAQ7DxLWlcn39jGRnuX+YbdY8ht+XP4JBpzdHSel70c/7efiB+W7XGQyS29+pqPquW3MKJ467L00syxJnkp938syY9cVWnn16scf9vTyqFW/+9678ZZvNRlT4eI+hRaFhvhw/PcKpzdPvl8eS5Y/QolVs/vKxo2nUr/2pR/kWLWNYsuJRp7aijnv2F1t59cnlThWE8lBQePrVZrz234JErDabjYYhn3osyRwa5su6c0Oc2oa3+Znday+4lQd4d2F7FnZf6zaBbWEqhGVjNLj+baRfMRDkZ6dRw31ORhhJAkUBo48FXx8LwWVTMfk4BIYtqUBC1TQerJfisr9cG0zfFMX4teXBze9SUsz94X46d62uS7bRHdM4dMD9ed8hoQrzf3rQ6+MR13N9iPu3Pq6Hvg8cuEjThjPchsJWiA1m9/6nPG57qyW5feAmSnI7VyS5LRGEB4vghtGz+3cekz7m5NhIuPtrr/u4v8c8tzdrgDV/n2Dyx97PjDycON/tzRpg8scbvJ61OHc2g/+++afbdYoCQwb94rasZ1FY+ONejy8POTk2eveY69X+AWpVm6y6Pr7+DK/7EPrWx/XQ9wvP/e724Qzg3LkrPP7oQq/7+DfpOyDAzM+/PkTLVs4PLEFBZvz8jW5ferOzrISF+7qEj3TpVo258/voNq6UpL673VuD6V90JzzC2fgdHuHn8Xcqqr637Bjq4hECDiPUH6v6OxkZAAYMbMhzI5q53dfDj9R1Mq4AGAwG1m8ejL+/q4dQeIQfO/a4lnX+6tve3HV3RZd2SYIPJyY4GVcAKlUO5ZvvemFwY3moX7+Mi3EFij7u/gMb8sQLjbFfE15jR6FHv1pOxhVwjPuXbY+4rTwVHuHH0v2upYcnr7qXSrVDXNoBHn29AS27VtIMVQLtECBJAoOh4CPLjv8Vmwmb3YhSyMMl0JzLqysq8/G6KHae98NmB4tNYtPpAN7/O4bxa6MJMerM7VIMRr3aUrdxZeUfRzwaVwCWLT3i8RqmF3E914+4f+vjeui7Y7uvPeYZO3niEs8/d/t4sigoKNJN8NF1NRfoQXiwCEocvZbl0IAxmkkcL2W9UuzjSEvLpmK5CaoyMTFB7Dn4dLH7+HH+Xvo/8qOqTIeEqsz/6YFi9/H00EV8NXuHqsw7793Nc8+3UJVRo0WTz10SKF7Lhi2DvZoVCfYbrSkj9H3r6Ltc5HiuXPH8kuOuFG5R+Dfre/u2c+zYcZ6QYB/Ons3gheeWqMp/830vrLkK2TlWmjQtT/XqRfP0Kg19Z2db+WPFUVJSsqhRI4J7u8xRrYJTHH1v2XyG9975m8zMXB58uC79BzRQlbdYbLw6chm7dl4grloYY8YlEBioPss6/4fdzPx8G0aDzIgXmtG2XRVV+bNnM3jl5WWcO3uFlq0q8Pp/7sRgUM8789G4f1jy+2HCI/x45927qRqnrr/ijPuNl5ezZ1cyVauF8e649prj/i1pP9/P2IXBKDH4hca0vCdWVf7s0cu8//hfpJ7Pom6Lsrw4rRVGo8NA9UpAEoZsz0lffYw2yoW6vjjb7eDrn0FYUC7lyrsr02zFPyQTSbJhMFrw8bfi42/jzb8jOJPhz1/HHYYfCUffCg493F0pjT+PhaqORy+tWldAUSD5QibNmpdn0tTO+ePWQ0zZ8Vy+rG7sqV4znE1bh6jKqCGu5/oQ92/9lLa+z57NoEYV9Uk3Pz8j51JecrvuVvNgSWQSAdJN4MGiXGQezwD/3t/1ZkH/XUIgKGG0jCsAKSlZhIcXL0xoy5azmjLJyeqlGLVYs1q7Ysbhw55nr/Swe1eypsymDeox8FqcPqVeGQQcY/XW7VSLQwdTiKtWvDAhoW/9XA99qz2cgcMFOSPDovki6Il/s77vaBDFHQ2iAHjzNe18D6dPZTD0ycaacp63L3l9+/oa6dK1Wv6yVonh4ui7UXw55i1I1C1vNhsYP6GTbnmA3vfXoff9+l32o6MDmfVVzyL18fxLLXn+pZa65Ysz7rETOxbpmLr0qUGXPjV0y0dXDmLiH93crnv0hxZ81XW1hzAhhbAA938bl7MMVCjvMLwoSl6SXAWwElE+Fdmg5BtdFDtYc3zJyZBpFptF9xqnGPFbVdadCiIly+GRUz4ohxrhWVeNKwolESJ09uwVtu509WjSS0aGtifNiWPpxd4/iOu5XsT9Wz+lre8Vy49oymRnl1yuF4HgeiNChAQ3NSEhxY/xjI0N1pTx0VG5QY1y5QM1ZYqaDO9awnQYmMqU8feqj4AA7WoRsRW1f09via2o/Xt63FboWzfXQ996KrW4C9HQy79d35mZudhsdl0G5LAwX3JzbcV+4Pw36zs9PYuzZ/UnwbbZbBw7muYxz4g7LlzIICUlS1vwKllZFk6cSMdm09/HiRPpRUreXpxxHy/iuC9eyCStCOPOyMjm+L40rFbnv8MFw7eSq0DuNXMmNgWy7Ao2G075VWx2uJRpIMjPiuXqT1JgXIHICinIMuRmm8m67EfWZT9yc8wYTDaMZhshPjZ8jDD13sOs6L+dt9oe4a7YVC5myGw6E8jDdc/xbvtjuselRnCwmYyMbPbvT3YZtx70nBdayay1+Def33n826/neYj7tz5q1NT21pDl0suhdLNxoysHiSpCJY8wsAhuGFo3u+BgH03XazWqVQvXfHnRquyhxRND4zVvAkOfbOJVH8+/pO1K+sJI/bOj7rg/sZbqej8/I/e0r+xVH3rKlprNxX+4EfrWz/XQd3zjcqrrq9cIR9bzR+GBf6O+bTY7Uz/ZSMN604iOGE90xHj++Ud9VtXX18C33+ykbNg4yoaNo3XzL/h2zk6KEt37b9T3u++sIjJkLLHRE6lRZTIh/qPp1mmOR6PGgQMXqVF1MmGBH1C/9qdEhjiqXmzceNpjH488NJ/QgDHEVZxM5ZiJhAeNVa1g8fPCfcSU/ZCo8A+pW2MqYYEf0LDeNI/GmawsC62afk6w32jq1phKVPiHREWMY9YXW0ts3If3p9C88nRq+00mocZs6gVOJr78p2zZ4NkjYOQDv9Pa5zO6l/+GLlFfc6ffDMY8s8rzuGfsJcFvJveFzWFAvfl09JtNz6ivSb5qALp0+Aq+MpgkyLZDph2y7A6jip8sk5xhJtdq53KmTEaWjEGyEx6Ui9mkcCY5L7+L4+/Z5JeFYpfJvOSPJdsHm9WIzWrEku1D5iV/kBRyrAXnZKi/wuPxF5nd5xD7Rmxjx9Nbeb/jCbKsJfN4u2P7ecqXmUCTBjMIDxpHpZgJRTJ8DRjYUFNm2ozuXhzhv/P8vpZ/4/XcHeL+rY8mTcprGnHyvDwFgn8jwsAiuGF8831v1fXTPnfvjlwUPlRxm/YPMDFhUtHcqq8lMNDMsKc8u+7HVQvjkUfre9VHm7sq0rRZeY/re/epRUyMd7MV//m/ti5JKwvzf/+726ubKcCkqV1U17/0cnOv9g9C33q5Hvr+dEY3jCb3+5BliU8/u73Ob0VReHLIIka9tCy/klBOjo3Fvx7Ex8ezITk3187yZUfyEzPu2H6eoYN+4Z3//qV7HP82fT/79G+MeW+1U5UfRXGUPq1bY6qL/LGjaTRt+Blnzzi/+F68mMU9bWa7NbK0aDKDnxfudwpVtVrtfDZtC4m95rnIz/1+N488tMAlMfvhQ6lUrzLJxTvFZrNRNXYSO3c650rIyrTy7NOL+XjCOq/HffxoGp3v+Iq009n5lYQkJK4kW3ig9fdujSx9G81j1YLj2AtNVdqsCj9+upfne/zmIp80cQcfPbkGm9XZoHcpxcKDFeeSkZHt9CDpK4O/DH4y5L0/KUiYTBJhQVZCA60UTmGSa3H87UuS4xMQfIXsK34oipu/JUUmJ9OPvcm+rusKkZUrMXdHyeQzuDYhampKNjWrTiYjI1vX9uMndFSdXPD1M+pOmOuJf9v57Yl/0/XcE+L+rZ//XJN8/No+kn7s43UfAsGNQhhYBDeMJk3K8/OvD7q4O/r6Gvhi9n10664/PtwTvfvUZtZXPQgLd34gq10nkk3bniA4WP1BTQ+jP+jAK6+1dqr0IcsS93SowrpNg7zeP8DSP/rRs1dNp4oUZrOBoU82LnI+AHeYzUa27hxK4ybOsxbBwWYmfNyJYU95N6sD8Gj/BvzvvbZu1w19Kp7/vN3O6z6EvvVxPfRdrVo4f61+jEqVnSuQlCsXyC+/P0zTZjFe9/Fv0veK5Uf5bs4ut+tycmxUqRpKhQoFD97Va4QTWcbfY8WLcWP/Ye8e7Xh/+HfpOyvLwqwvtnlcf/p0BtM/3eTU1qP7904Gg2t54BqDybIlh1VzJfy++BCnTzmXSx4+bJFH+VyLncTeSU5tzzy5WDWPwbVlXIsz7v5dFyDZ3c/Iy0gM7ulc6WPNkuMc2ZnmsY+1v57k3DX5Haa+vAGpoICPE4oCz7RapMOtXMEg2a/uxHlnBmPB1lmZZuw2A4rd86OpYpc5eNGfP454fkn97UAY+1O8C8NQQ1GgXZuvdMufT30BX19XI2p4uC/nPSTxLAr/pvNbjX/T9VwNcf/Wx4gXW/D2/+528WQJC/Nl3aZBlClT/JDxfxs3OixIhAiVPKKKkKDEKU527wMHLvLP6pM0ahxN/fql4xZ4YP9Fjh1LJ75xNOHhJf/wZbfb2bLpLJcyLLRsWcGltGpJYLFYWbf2NCajTLMW5b2epXDHpUvZbNxwhuioQOrUK1Pi+wdYtvQQSd/voVPXqvTqrT/BZFEQ+tbH9dD3mTOX2bXzAtVrhFOpUmip9HGz63vw4z8z9zv3BpY8tu0aCpKEQZY4fjydrh3nqMq/8FIL/vvO3UU6jptd3yNfXMqnUzapykSXC2T/4eH5y3oqlKVmvJwfctq88Qz27FY3TnXtFsd3SY5Es7t3n6dF4y9U5a+tqhEdOZ5MjUSRs76+Lz/BbnHGXd1nIrLiOeRBQWFP1vD8cT/ccB5Hd6Wp9tGqeyzjF3Rm56pzTB7+D8d3pefvy4aCFcU5d6wEd0aEYzuf43GfgT65lA/LLkhYq4Bdkci1ypSJSMVshvDwi1itZsqUv4Ddpn5ufXRE5sc9EYzrcpS2ldMJ9nG8FiRfMbL0cAivLoslyj+Xc5nFS5A/Zlx7Rr20XFVGkiA9s2hV71JSMnj37TX4+hp46+02XoXEeuJmP7/1crNfz/Ug7t/6Wb/uFHv3JNMhoQrldXj43GpVhHrdRFWEFogqQiWCqCIkuCmoXj2C6tVL9+JSvUYE1WuUXh+yLNO4qWfX0JLAbDbS5q6KpdpHcLAv97RXL1XqLR0S4uiQ4F08tRZC3/q4HvouVy6IcuWCSrWPm13fZ89oV344fz6T5i0cM4Mb1nvOHZK/zyLkgsjjZtf3wQPaVTwyLnt+mfdEerolP8fDxYva1UhOHC/wYNm65ZymvM3mPPeXk6OdEHXr5nP5BpbijFvSmB6TkLiUbslPvJmerB3WcvZEBtv+OMObXZdhzS0Yk4SEEQkJhVzFXmBkUaD/982ZcfdKDK51ljFIdsoG5ziVYJYkkFGw5Erk2RisVjMgkZtjxKDxZHoxU6JW2Sye+TWOsv45dKmeSq5N4se9EWRajbStlMbKYpZplmSHR5kWxZmaDA8PZPwE78JctLjZz2+93OzXcz2I+7d+mjWPoVlz771i/r0oKO7cBK87N8Mx3BqIECGBQCAQCEqZylVCVddLElQsVPnhWtdsd1SqrL7PfyON4qM1ZcIjnGe03bzXu25TKIGmnhnSmrULSpy2bh2rKW8yOYeABPhrV/q4q22l/O/FGbdWFWI7ilNVkzIVAjT7qFwrhE+fX+9kXCmMAcnpwVGSYHbPNeQikasUGB4UBZDsVCqTicno+tAuSRDgZ+NyhrGQsUIh45If6g/5Co0qZPFRtwM0jbnM+UwfvtwWzZydUeTYDLStlM4/J4I09qGydztkZGgb8PT8zQkEAoHg9kQYWAQCgUAgKGUefayB6vqOneMoV75glrBxk3LUVXH5Nhpl+varV2LHd7Pw2putNV9e337XOZdT/fplVeUrXFMCduKkTprH8dHHBZ4GlSqHEhikHs7RtVs1p+WBgxupypvNMh06Vs1fLs64qzVQn+EvU9HZoDLqkzvVOwAeeaYBx1TytIDDyJJHnRZlyUpzhELZgBwgW3H8Hx5owWTwbOgwyArJKcGcv1BgTLRZfbHZPD+aygY79aKuUC3Swg+P7GZStwP0qnWBztVSqBKaycpjwYT5W3muRfHLNM+csU2zwsntPdsuEAgEAjWEgUUgEAgEglKmeYsYXvBQwjMmJohxHyU4tUmSo1JDaKiP223GjOtQavHwNxKDwcCbKtUlGjSKyg+ryWPRkocxmT1XvPhtSV+ntkbx5WjfwbNb/aAhjQgJcc7fMW++54oWwcFmZn51n1Pb2++2I7qc5ySN079wLs1bnHF/u/R+JLN7q4xigO+WOR9zncZladrRc1hEj6E1sVv0eH44+jSYJD5a0dmjr4hR9rTGio9PDn6+OURFZBAeehlJthFWJpWwMqkoCthsXFOKXEE22JBkOxZbgbdQj7opTLzvMNN7H2DFEzs5PnI9G57aSmRg8V3dM7Ny+WpOT4/rTSaZ35Y+XOz9CwQCQWFudGJbkeS25BEGFoFAIBAIrgNvvd2WOd/35u52lYiI9KNylVCef7EFK1cPcGssadAwmr/+eZzBQ+OpUCGYyDL+dOlWjUW/P8wTQ+Ov/wCuEy+NbMUXs+8jLKygaojZbOCJoY1YteZxF/mQED8OH3+GhvHRSFefaiQJatWKYPf+J92GUi34+UFeHtUKP7+ChB9BQWY+nJjARxNdPVxa31mR1esfJ7ZQGJfBING2XSWOnX4uP5FsYfYceJJ7e9Rw8oaIjg5k0eK+LsaS4o573anBVG8cgSI7YvjtkkJs7RBWHnycim7G/fGibvR/rQE+fgXH6x9s5IVJLXll8l3E1AhGltVdaRQUKtcJ5bdLj2I0GvEknm1194hpxc/XhkHOK80sYbWaOHs6itMnHGFSRqOCLENash+ZV8xYciTsih1LjpErlwI4e0k9/MquwIpDxS+FW6FCMN3urcHi5X0JDnb2XKpVO4JzKS9gNIoUhgKBQCBwj6giJChxboXs3gKBQCAQ3I6899Cf/J3kPsRGkmHqth5UrB2a3zap+e8c3ZDmImuU7dSOuuJkgPH1yUGtmEq5CucIi3AkGLbbIf2iox+DyYqPrwWAiactDG52gXpR7pMVrzwSzKPzaqGZpMYDG7cNpkaNSG1BgUBwQ7gV3jMKj6EHH+N/E1QRylQuspBngX/v73qzIDxYBAKBQCAQCAQA1Gjq2bgQEulL2UrOoU8NHqyIwU2gkNUuczLVx6nijiPPjIIs2zEarZhMVoxGK7JsBxRSkkOdZaVcQMGWa8jfj8ko88Kiymw57Zq0d9XRYJ79KY5yAUWvNJWHMK4IBILriXIT/ROUDMLAIhAIBALBdSIjw0L/vguoX3sqrZp+zs8L92luM3PGFpo1+owGdT/l2ad/w2JRLyN7+FAK3TrNoV6tqSS0m82OHeplhm02G6+/spyG9abRuMF0Phr3j+YxrfzjCG1azaR+7akk9prHhQvqJaNv53EP7LuQJrWmc3fTWfyiY9xfztjKnQ0/p2mdz3jh6cWa4z56KJVHOv5AuxqzSGw7l907LqjK22w2Ph75Dw/VnkvfunOZPXZL/jprrp0fJ+z2uG3a+WwG1f2B8ycLxr3itW1E+CiYJTsGFOSrHyN2sBhJTvchM9tArlUC7BiNNoxGO/LVMCFZBqPRjtHoCAPKQ5LAYFKuOqIoSNiRJDvlg7LZmxxEj6/r8criSny3PZJvt0YybEEcj8ytTUaukQDf4mcTePbpX/O///jDbmpX/4TYch/RpuVMTp5ML/Z+BQKBQHB7IEKEBCXOreC6JxAIBCXNhPFr+c8bf7q0R0UFsGv/U5jNznk8UlKyqFdzChkZuU7tkgQzv7rPbR6PRx6az88L97u0t2pdgcXL+rm0r/77ON07f4vN5vwo4ONjYN2mQVSNC3dqt9lsNGk4g0MHU1329fQzTXh/bAeX9tt13JPGr+P91/5GLhSqoqAQHu3HpgND3Y67aY3p5Fx2NqjYJYUp33Sl5/21Xfp48sFfWL3guEsftduU4bvliS7yW1ad4cWE3xwlfwph8JGYua0XmalWRrRY5LJdYWwo5Ep27u5Tmf98ew//8/kWk8Z0nV0BWYLqFS9gdFO2GRQkScFmk6hR96ijRYH0FH8CQy7jH2QpCC0yZ2OXFWySHYM5F6sEC/eF8e7KygD0rHOBH3dHUtwQoZBQH46ceIZqlT8h5WKWy/pe99fky697FWvfAoHAe26F94zCY7iPiTdNiNBPPAf8e3/XmwXhwSIQCAQCQSmzceNpt0YGgHPnrtCi8ecu7Y3qTXMxMoDjxXNAv59cvCfef3eVWyMDwJrVJ3l6mPOLs8Vio1snVyMDQE6OjZZNv3Bp75Iwx62RAeCTSRtZuGCvU9vtOu5NG0+7GFcAJCRSz2ZzV/xMl/20rDvDxbgCICsSTz3yK8kXrji1T3jnH9ZcY1zJ62PvqmRGDV3q1G6x2Hixg6txBcCWozCw0Y9YLfo9P/5MOsrCaXt0mTHyfmmDm7LNkmQnOPQylaufoFpt59wvoRGpBIZcNa4YrfgGZeLnayfArBBskghQTISb4InG5zny/HreuPsIP+8Jo0qI+/wserDbFJo0nOHWuAKw4Id9fD59c7H3LxAIBIW50ZWDRBWhkkcYWAQCgUAgKGWGPP6L6vqDB1OcDAerVh4nNTVbdZsnrtnnhPHrVOXnfL3TafmF537HbvfsxJqVZWX2rG35yzabjbX/nFLt48URS5yWb9dxPz3gVxfDR2GOH0h3MpisXnmcjBSLR3lZkXjycWdD0axxW5FU+vj1qwNOy+Oe+Vv1CdqaZWf3tvP4BqhXyLEXitP/dOR6CkxhCgZZwWiwY5DtSFflbAoYJAWj7L5zRZG5lBbMqWPl4Jp8LUafvG2s+PpZruZwKYyELceMLceELMPg+PPMfWgXR9Jd87PopVF8NIcPpanKvPbKimLvXyAQCAS3NsLAIhAIBAJBKXPsWJqmzIzpBbkwpn6yQVN+08YzTstZWVZVeZtNISOj4CV+2ZLDmn18MWNr/vdffzmoKX/hgrPnwO067lNHL6nKy0h8Pq1g3NM+2aRqLAHYuv6s07I9Sz3CW7biNO6Nv6sbiQAWf3WQLoOre1yvoGArZAXJybRRo0csEgpmo4LRoGCQwWgAs0nBINuxK3Z8TApuKlk7Yckxk3oxxKm3PHz83RlXCrDmmFAUR9nnAKPktG1R6Xav5/HnofU3JxAIBILbF2FgEQgEAoHgJkBWe4MsBaTr3J8nbtdxG9TqFZcGOoet4tzjFv8gAyaj4tYAYjSAWcOwUpjLlwLdtkua+5CwWx1CceHZFDf/CoAs3xx/HwKB4PZAkW6ej6BkEAYWwQ3n3XdWUbHcBCKCxxJT9kNGvrhUe6MiYLXaee+dVdSrNZUqsRO5s8UXLP71gPaGRSAtLZunhy6iZtXJxFX8mO5dvmWnRgWLonLwYAqJveZRrdLHVK8yicf7L+TcWfUKFkXlxRFLCA0YTbCf4xNX8WPOlnAf33y1g2bxM6hSYSKN6k/j0ykbS3T/Qt/6WfXXce65azZVYidSp/oUXhu1nOzskp2ZFfp2UKVqqKbMwCca5n9/+tmmmvJNm8U4Lfv5qYd2GI0ygYHm/OWOXeI0+xg8pFH+967dq2nKly3rHJpxu447Ni7Eg6QDOwoDnmiQvzzs2caaJTLjW5R3Wjb4qz/C2Y04jbt5l1hVeYAu/auzeIbn80dCwlDIeOHrb2Tvd0dUvUsMMugtp2DNLazL4j3tG4tg0HHHmPdWa8r4+5uKtM+vZm8jInhs/r01KmIcK/84UtxDdIu4nutD3L/1U9r6tlhsDHxsIdGR44kIHkvV2InMmL6pRPsQCG4EooqQoMTRm93bZrNRr+annDp12WVdSKgPh44961JloahkZFhoWG8a589dcVl3f2JtZs7u4dX+AXbuOEe7NrPJyXHNHPjemHsY/mwzr/v4bs5Ohg7+xeUh1WiUWLjoYdrcVdHrPqpUmMhFD0n9fv71Qdq2q+LV/u12O507zGHtPydd1tWsFcE/GwZhNHpn8xX61s/IF5e5fVgKDvFh09YniIp2P5OsF6FvZ7ZvPcedLV0Tm+ZRs2YEG7Y+4dRWucJEj4k2JQmOnHyO8HC//Laxo1fzv/9b5bGPAQMb8PEnXfKXbTYbkSHj3CZ7BYfh4lzKS05tXRK+YfXfJzz28e283nTrXiN/+XYed+fmX3vMw1KpVgirtw1yaqsVM5mMZPd5WOySws7TTzmNe9L765jxlvvQIgWFroNr8P6UgupGNpuNhIAv3Sa5BTD6yUxY3JWX7vrN4zihoIoQwEvTWrP72Y1onco2u8PQUqVCsqoxRpZtVK15PH8URp9sjEbwCchEVn0cUPAJykSSwW6HKh95fx1WY/LUzvQf0FCXbPcuc/jrz+Nu1z0xNJ7xEzp6fTzieq4Pcf/Wx/XQd0pKFjWqTsbiRhcN46P5a/UAj9vealWEukk3TxWhRYqoIlQSCA8WwQ2j/yML3RpXANLTcujc/muv++h931y3N2uAH+bt4Zuvdnjdx71dvnN7swZ4/ZUVHD2S5tX+L13K5skhi9zOAFqtCn16zsVu9y739zNP/erRuAJwb9fvvdo/wP+99ZfbmzXAvr0XefIJ9dKgehD61scffxz1OBN1KT2Hbp2/9Wr/IPR9LXc0jGL0B+3dritXPpC1mwa6tG/bNYTgYLNLuyzD19/2cnrZBhj5Smt631/TbR9t7qroZGQAMBgM/LakLwaD6xuvr6+B9ZsHu7T/tvQRatZ0/yA44oXmTkYGuL3H/Z9xbbFLzieygkJEjB9/bR7gsp91uwfhG+LqjaPICtO/7+4y7mdebc5diZWcks6Cwzum3t1RTsYVcIz7oxVdkNw4/Bh8JWZt743RrP+xsEPfqnQdWFOXd4reqCzFxVjk2HnOFbNqPwazFemqp4wil+684QMP1dFtXNm754JH4wrAZ9M2Y7F4Tm6sB3E914+4f+vjeui7dbMv3BpXALZuPsu773g2mt9qOCr4KDfBR1BSCAOL4Ibx6yJ1t89Nm86ortciM9PCurXubxB5jHlf2xVYjWVLD6saJhQF3njVu2oD7/x3lceZVnAk25v1+TaP6/Uwe9Z2TZkF83d71ccXM7aorv/xmjKnRUXoWz//9+afquv377uoKzmpGkLfrjw1vCnnUl7gwYfrEFctjAaNokha0Id9h4ZjcJMBNCTEj5PnXmDKtK7UqRdJtWrhDH0ynouXXubeHu4NCrO+7sWu/U9yT/vKVI0Lo/WdsWzYMphFv/d1K9+iVSzJ6S/x0siW1KgZTq3aEYz+oD3nU1+mUuVQt9ts2PoES5Y/QpMm5agaF8a9PWpw4uxzvP1uOzHuQgx7pgmHUp/h3r41qFA9mJrxEXy5sCfbDj/pcdwHzz/L2M8SiKsfRoXqwfR7qj7HM0bQ3cO4J33Tjd8O9qNBQjSR1QKofVcZ5m9/kG+W3O9WvkGrcizJeIzEV+oRXTOI8nWCGfJhE5ZefpzylYOp2iCciPJ+brfNo2yVAOaf6ctrX94NgP3qWCw2ifRsmZRMA2lZBrJyJRQFbIqC2WjHZPTgOlMIxSkJgITj1UMBjFhzDLhzupaNVoy+lvyX2pJMI9CseTkqVQohLNyXJs3Kc/jEcGbMvE/39p07fKMp0/EebRk1xPVcH+L+rZ/S1nd6epbHCdY8Jn+83qs+BIIbiXrgskBQitis6rNMiuK4CIeEqD/seWLD+tOaM2tnz6hf4LXQU41i184LXvWxccNpTZmVK48x8IlGmnKe0DMDOXniBnr1rlPsPi6l56iuz8mxkZlpwd/fdeZaD0Lf+jl8OE1T5o/lRxkwsGGx+xD6do+fn5nPvtD/ggbQr/8d9Ot/h2752NgQfvzlId3yBoOB//xfW/7zf211b9OiVSwrVj2mW/52HvfUmd11ywP07V+fvv3r65aPqRjMl4t66ZY3GAw8+U4znnzHNRzCaJLpNaIuM0a6nyEPi/JlxvZe+BTKe5PwcVMWDV1PtrVgzs6mQK7FQI7VTmRQLoarqyRJQc0EYjYX9uZQkI0AdpDAajFjzZXwCbAiyQqSZMfgk4vRZMNuc3g4SQZFd74XPVxMzmbH3ieLvX1qmnrJcYDduy4We/8grud6Efdv/ZS2vn9bpF2ZLfNKrqaMQHCzIjxYBDc1fn7Fu3iDa9JBdxi9zIYXGuarKePn750dMzBI+zcICfHxqg89lCsf5NX2eiozmM3F/62EvvXj46P9O5Qp4+9VH0LfAsG/k4P/XMSoSC6VjmUFss5ZOHfYOVnn6jG7nYwrhcm1y1zOLnweqr9Fh4QVfolWMBpBNoLZz4J/2BX8Q3MwmOzIBgVJlrDnmsnN8kGSZJAdphtJKjkLi7fnt0HPddDHu0dxcT3Xh7h/66e09R1bUT0JONw81d6uBwp5YUI39iOSspYcwsAiuGFERKp7pvj7G71Kclu7ThmCNG52d7X1LtnY4CHxmrHljz6mfwbWHcOebKwp88xz3iVm03PD/+LLos3CXkudumVU11esGOxV0jShb/107VZddb3JJNOlm3blFDWEvl2x2Wwk9ppHWOCY/GoiVSt+zIrlnquJzPlmB7HRH+XLRwSP5elhnuPfU1KyaNX0c0L8C6qBNao/jRMn0j1u8+arKygT+kG+fLnI8Uz+eJ1H+S2bz1ArbnK+fGjAGDp3+BqLxX0IyO087r69fqCC/4fE+IynvM946sR+wp/Lj3rs47tvdlK97MeU9xlPjM94YoM+5LlhnpPOpqZk0b3JN9T3+YQ7zFOo7/MJCXVnc+r4JY/bTHplLQmBM2ln+px2ps/pFPolcyY6whZSz2ax/scTGJHxQcakyJgUCbMiY8YAisRL9Rfxcq1f8iuWJB90nzcjjys5hgLvBMmGp8f4oOAMgkMdBhZFAZ/AAkOOLdd4dR8Sea8jkmzDYLZg9MtBkuzIVw0rJWlg2b8/JV/fwX6jia8/rUiVWrp2V7/WAvzvPfchZrr7ENdzXYj7t35KW9+t76zoNgdWYWrUDC/2/gWCG40wsAhuGNM+66a6fvQHHVTX6+G/b3t2/TaZZD6a1Mmr/UdG+tO7T22P68tGBTBUxw1XjW731qBa9TCP69u0rUj1Gt5lH//zb3WX95iYQMzm4nsTAUye0kV1VsRbXYDQt17eHX2PapnR519sjix7d3sQ+nalZtwn/L74kFOMfvKFTHp2/56537vmOHr/3VUMG7yI9ELu2rm5dr76cgetmn7uIp+SkkW1SpPYufOCk7v9oYOp1K/1KYcPpbhsc2/Xb5k4Yb1T4scrV3J5bdQfDH/yVxf5VSuP07b1l5w+XfDya7crrFl9ksoxE7DZXI0Nt+u4G1Sdxl+/HgObo7yxjMSl8zn07foDSW7GPeZ/f/PiwN/JSrciIyEhoVjgh5l7uLvpLBf51JQs2sbO5OT2SxgUGRkJgyJz4cAVOtf4iqOHUl22ebbTIuaP34UtR7nag0TuFRufvbSR94au5MyBy9jtVw0VV0syG5CdqiEpKJzdf5mhwUlYrVbsGvYMBQnb1eyJRiNIshVHKSMFUDAYc4mMukCZco7wDGuuROqFQEymAmOJoshYc/KuWRIgo9gN2CxmcrN8yQ87ku0uiYW94doknAcPplK+zHisVn1Glq+/7a263mCQGDCw+OEiIK7nehH3b/1cD30Pe0r9t/7me/VzRyC4mREGFsENo2PnakyZ1tXFCi7LEv/5v7u8ih/N44lhjXlvzD0uLpXR0YH8seoxypXzLuwFYObsHvTtV8/lZlSvfhk2bn3C6xsdwJr1g2jWPMapTZKga7dq/Pyr/pwDnoirFs6X37jPj1CuXAB7Dg73uo9Gjcsx/6cHCA11dtMNDDTz+ax7SegY53UfQt/6CAw0s27zICpVdnbTNZpkXny5BW+8pT8nhSeEvp1589UVnD+X6XH9k0/84rRss9kY/a7npI47d14gaZ7zS/q9nedgtbqvA2C3Ky7VJTZuPM3KP4557GP2rO2kpzsnhXygzzyP8hkZufR/ZKFT2+067v+++idpZ93n35CReH7wYqc2m83GxP+tc1tyGeDA9ovMn7fHqa1/p/nIue7lDXaZ/h0XOLXt3nCOHSvOuu1DQmLpFweRzXrc8h0ydqvC/9qs0JFUVsFxmjgMH0YjmMx2TGYrJrMVWQa71UhaciipF0K5lBoKOF4gZVlBlh3O67ZcAzmZZmxWGcV+db9GK2bfHJAUMNiQDfYSTXLrDqtVoWP7Obrl9x8ZjrvLhNkscy7lea+PR1zP9SPu3/q4Hvp+f2wHBg1p5OJV5ONj4MdfHqR69Rtftvh6odxE/wQlg6S4S8kuEHhBcerTz/9hN6tXnaBBw2j6D2hQ4sdkt9tZ9PMBTp68RMtWsTRsFF3ifWRmWljwwz6uZFjo0r0asbHaMaZF5dzZDH75aT8Go0zvPrUIDtaOKS4qn0/bxGcztlC+XBCz5/QiMNA7zxV3rFl9nC2bz1KzViQdEqqW+P6FvvWzb28yK5YfoWzZAHr0quWV268nhL4hpuyHXL6sXo41aUEfOnZ2uHa//dZKxo39R1U+tmIwu/Y9lb8c4j9aM1HkpaxX8r+3aTWTbVvOqcr3vr8ms752JFA9fCiFhvWmq8qbzTLJ6SPzl2/XcVcr8zHZl9S9HGYt7EGHzo4XlXff+oupo90nls2jbKUANu8fmr9c3+cTDIrn89WOwnZLwe80sNl8jm5JU+2jZZ9YMvfmcGy7ZzkfRcZ41YwhSVAz0EBmhicFKESFZlE2JBujwY5/QJbbMI2goDzPoIKVFWse0wjpUDD55QIKRr9sfIJyUOxgs8lUGtNKbUNVRr3eijHvrlGVkSRIz3xFVeZaVv5xhDdf/xOTSeaTT7tSq7Z6GEZxENdzfYj7t35KW982m41pUzdz5HAqnTpXo0NH7T6K855xs1F4DJ2kCfhJNz4kKktJ4XdlBPDv/V1vFkR2PsFNQe/769D7/uJXqNFClmWP5T1LCn9/M488qr/yQ3GIig5k0JD4Uu1j0NDGDBrqnZusFq1aV6RVa+/iqdUQ+tZPzVqR1KwVWap9CH1DZpZ2RYS/V53INzRs1TAAgCNEpDB6pktSUrIID3fkvzpzWrsqx4H9BeE1a9ee0pTPzXX2JLldx52dqR1CsnrVyXwDy/Yt5zXl01OcPWIkRd1XQ0YiNSWLsKvjvnjasydRHicPXOaRp+rz6TD3uWgkBWQKKgEpCjzwQyu+7PQ3ihvfkfLhV4gKdefJo2CQHdWBCkoz5+VXsRIWmeFmG+ftZXMuiqLgE3IFg9GOzQYGA0h2995MepBlCNBRGaU4U5Nt21XhrzVVinFU+hHXc32I+7d+SlvfBoOBp4Y3LbX9CwQ3AhEiJBAIBAJBKeProz2f0bhJufzvehL8BQUXvRpFSEjBy2NkpHaliYqVCmZ2GzcupyLpwGBwfqy4Xcdt9tVO0B7fuGBmvloNz3kb8ggMdn7xVzRyjdhRCC407pAy2jPoUZUCWD7zkMf1juJChQwpEvz42Aa3xhU/s9WtcUWW7ZiMNgwGBYOsYDTYrxosHOMJK5OB5PbpVCG/3obBCnYZyZyDkmsEScFw9Sd3v60+7HbQ49h9GxU4EQgEpcyNrh5U+CMoGYSBRSAQCASCUub+RM/JFcGR7LJHr1r5y2+/q11Z5OVRLZ2Wq1VTN06UKeOPwVDw4j/mg/aafXw0qXP+95q1IvHVMBy0uSvWafl2Hfd9D2jMwBvh3t4FMm+9dzd2jfj350Y1d1qOrq6ekyKgrNlp3M+Mb6EaY6+g8NiLjTiwLll1v9ZC+4ipG0zG+Ry3cmGBru2ybMdosHs0UPj4FXgnZV8xX+MpIpGX4BabCbvVgNnsMKjYsgtkvY17//STjW5zphSmdu3S9RoQCAQCwb8XYWARCAQCgaCUmTi5k2oZ0ndH3+O0bDYbGDTEc3WRCrHBDB7iHMq38NcHVSs/JP2Y6LTctl0V7rijrEf5bt2rER0d6NT26QzP1d/MZgPfJd3v1Ha7jnv85AR8g9177ygovDH6Lpd9PDK0vkcDSJmKAQwc6hxuMOvXnthk93OONsnOtIXdndqa3lOBSg3ce8ooKDS9rwJYtc0TeccoSfDfNQkeqwiZDK7HZvBwvJLk+Pj65+QbX6wWX0dCW7f7V/AJLQj1UhQJu60gL4w3XLpsYcx4z1UMJQmWreznXScCgUBwFTvKTfMRlAzCwCIQCAQCQSljMBg4cvI5GjSKcmoPCDDx6YxubmPQP5rYiTfeauNUVUOS4Z72ldm9/ykX+djYEDZvf4KYCs6eDWXK+LNy9WM0incNdfl73UB6318Tg6HgrdRkknn6mSZ8O6+Pi3zv++swN+l+QkKcw3Rq1Azn0PHh+Pk5G1Nu53HvPvU0NeMj8ssGKyiYAw2M/6ITw55p4tLHBx935IX/a4XsK+UbMeyyQsuECmw5MNRFPqZiMD/v6ktwrE/+g7EdBb+yJr5Zcz93NHZNDjprY29aJVYEQ0HlCskk0fO5Ooz9oRNRVQJdtrkWCYmgMj5MOtcL30AznmxbOVbXR0wt48e167MuB5J92QckRyUhUJBNFnxCL2M0XrOd7Wp/Xr4jlCnjz9BhTZg6rQsmk/MYIsv4cej4cAIDSz5hqUAgEAhuDUQVIUGJcytk9xYIBILSJCUli8BAM2azdq4OAIvFRlaWhZAQvyL1ERLiHCaiRkaGBYMBF2OBJ2w2G+nplvzksXqPSYxbm+KMOzUli+AijDszw4LkZtzvdF3Blt9Pe9zug/VdiGtcUEL149q/cG7/FRc5s9FGndhUJ6NJWNglcJOvxcc3G0mCoNBLGE2uXi5R1U5q5laRTbkYzDZsdqj43p3qwir8sao/jZuUz1+2Wq0kJ2e7eDUJBIIbw63wnlF4DO2lj26aKkLLFUfp+H/r73qzIDxYBAKBQCC4zoSH++l+2QZHCElRXrbz+tD7sg0QGGjWbWQAh5dGUYwMecckxq1NccYdVsRx+3sY95BPmhFRwX0i4AffusPJuAJwz+i6GN2E/lisBk6naCcULkxOlsnDGh2JZ6+GJHk7a1jYuAJgNBqFcUUgEJQainTzfAQlgzCwCAQCgUBwlTnf7KBLwjd07zKHJYsPasqfOJFO3wd+IKHdbF4duQybzaYqb7PZePedVSS0m01ir3ns26ueUBRg7ZoT9Oj2LZ3af8WnUzZqymdlWRj+5K90uHs2gx7/iZRryhq7Q4y79MY9+u2/6Xr3N/Tt9YOuca9bc5I+Xb+n+z1z+GzKJk35rCwLbw5bwSN3JfHyY0tI0zHuX2fv45l7fmFEwiLW/HbcaV1UlUA+2NCV3qPqUq5aEKFRvtS+swyVqgezfvYxJj30N1ZrQRnqnx7bgNUuYZTsGCQFCQVZUjDJds6n+5Gc5keOxYDNLoFkRc0EkmvxcZ9zRdYojSzbkA1XQ4hk70ws7769Mv/7/v3JtGvzJQ3qTuWxfgucxi0QCAQCgTtEiJCgxLkVXPcEAsHtxYEDF7mz+UyyspxfoELDfNm6c6hbj4XOHb5mzeqTTm2SBO+Pbe82t0jSvN0MHvAz9muygtauE8m6TYNd5C0WG/VqTeXsmQyndpNJ5relj9CseYzLNq+8vIwpk12NEX0eqM0XX/ZwaRfjLr1xz5+3h2f6/4pkL5gWVFCoWjeMVZsHushbLDaa1JzOxdOZSIXCaCQTLFj+IE3cjPv9F/9iwcd7MBSaL7Oj0OahSoz7qpOL/LH9aTzV+CeUrAJdKCj4hBmZte9+Qt2M++Vav3B2/2WX9m4ja/HQ6Ea8ZfoWq119vq5cSA4GGerUPIbVKoFioHCoUF6IECiYfS0EBOUZiRSQFKKqn0LCYWSRrk3UItkx+llAAklWUBSo8E4b1eNRIyzcl2OnRhBffxoHD6a6rB/xYnPe/p92tSuBQFA63ArvGYXHcI9884QIrbCLEKGSQHiwCAQCgeC2xmaz0aLx5y4v2wBpqdk0qPOpS3vfB35wedkGxwvgKy8vZ9VKZ6+Aw4dSGNj/JxcjA8Ce3cm0b/ulS3uDup+6GBkAcnPtdLzna7KyLE7tM6ZvcmtkAEiau4e33vzTqU2Mu/TGfeRQ6v+3d9+BUZN9HMC/yY1uem3Zm7L3FBEBQVpQhsw6UFBQhohbQdzjRQTFgRMcLBdQUUEQKQjIkD0VGVKQPct10HEjef84em16Se7oXQfl+/G9lyZ5Lk+e5prc88szMO4+ZXAFcA0Qe+RvK27r8rXHvto3+Rwpp7IUwRUAkO1Av67fe5T72xl78PP0/YrgCgCIELD++//w7osbPMo9ptXPiuBK7jHZLjlxf4MfPI7plQ6/qQZXAGDp1P3Y+uMxn7rk5E9jMskQRMeV1iwSINggXBkIuFyMFYCEy+muGYQAAZDzypcbhJFlGRAkCEYHRLMNkkOEcKXlitasRr6y25zo1nmOanAFAN6fthmLfzrgXyZERFeU9MxBnEUo8BhgISKi69prL/8Bu119+lgASE3Nwc8/7ncvO51OLP3lkO4+Rz20RLE8bMhPuum3bjmNjIy8CvSeXWdx8oR6xRYAJEnGqBG/KNa9/OJajdQuH03folhmudUFotwP3rMYospgrrn2bD7rUe7zxz0His0lSALGjlimWPfxxC0ewRh3egiY/97finUzXtoGwaaaHABgszqwelGye/nkQSsObLkAGyQ4rsw4VNDnwzfD6GXYF1GQEBpkR3hotnud0egKtJjMTphMgrv7jyAAYeWyEVYuCwaTE7kzB+Ur2JWWKq4F2WlAVlYQjqWbkZJpdO/DHw0bxmD7ttO6aR4etdS/TIiIqMxigIWIiK5rCxfs85rmww/yKumrko7ojwcB4PQpZQuMf3wYe+Pzz/LG23hn6kav6deuUbaayEjXqT0DsNskRSsIllubv+U+9E+KbnoRAr78bId7+f2pmzSDJbk2rD6uWHakaweJAECwQVHutd8d0U8PAQve+wuSJOPLJ7bi0Sa/wCbIsAsycgQJWZDgLBBkyUpzoEHvqtAaVyXI5EDz2ikoH3UZ5cKzC2yVUTCA4rAXiNZcCai4fwauDMYiI8suYNK6amj3WWt0+qQdmr9zE+6a1xy7T4XpltObIfc19Zom3ctnjoiIrl/Gkj4AIiKikuR0em8Wa8vX4iHjsvfKVcHhzWT9urBrvxn2vPxs3gfTlCQfdlpA/jFZWW5tfpfbh+HtLucvd44v5b665tsCBEj5yi35UG6nTULim3ux9EPPLjCyAOTIEkIgKoJBMY0jgZ88W3wIgoyG1a0IMhccCFiGaJAgihIEwRUvka90pbJlBcMcpNaSR4Y7wiIIcEjA8B8bYNOJcopU649YMHhOS6/l1GNz6A9cTEQUWOotBItfaTiGsoEtWKjE/fzjfjRv/CmqVXwXjet/jNlf7Qp4Hgvn/41uneagdfMZSBiwEPv+Oh/Q/TscEt6eshE33fAl2raciTEjf8H5c9rNvQtj794zqFnlPZQLeQvlQt5Cw9gPceaM5zgF/jh6xIr77l6E1s1noPNNs/DV5zsLVZnRs2njCfS5/Tu0bjYDPbt/jaQVhwO6f6BsnG+rNRtPPvYb2rX6HO3bfoHXXl6D7OzAzmDB8+3SqXMNr2kGJzR2/3x7r3pe01uighXLVatFeH3PAw/mVQwfGN7Ka/qmzSools1B+n01RFFAeHjetLwstzZ/y12pmv60vjJkDH2whXt56IiWXr9gN2pWXrEsBOkfk1OUEJav3M26VNJ/A4DOA2tjyXv7NbfLAuDId5zGIBHr3zkAqLS+iY7IRrBHcEWC0eSAwSC5u/K4/pUAyLDbTJCcnvsq2O1nyf4Yj+BKrmyH71NVq5n+7lavaYK8fOYK4v3bd7x/+6asnO93pm5E/dofolrFd9Gu1UyP8ayIrkWcRYgC7mpG9+5041fYs+ecx/qatSLx1/6H/T4Wh0PCTTd8iQP7L3psG/fYDXhzSne/8zh5Mg0d2n6J1NQcxXpRFPD5V32QcJf35sbePDJ6KebN3au6bfKUW/HIY+39zuO9aZvwyotrPNZXqxaBrbtGKioohTVsyI/46UfPJ6OdutTEst+G+L3/snK+f191BIP7L4TDofyyFBJqxOq196NJgQpmYfB858nKsqFyzLua3UBMJhEX08Yr1nW44Qvs+0u7+8tHn96OYQ/kBQ7Wrj6Cvr3ma6avVi0C//z7iGJdlfLTcPmyXeMdwN8HH0aNGpHu5fFPJ+EznWl9+/Stj28XDHIvs9zq6QNR7j9WH8U9t/2g2e2nfPVQ7Do8RrEuNuYD2DLUW09IkLH534cU5Z701Fos+fCAZh7t+lXFh4m93ctZWTYMKPctRFk9vWwC3l/dCxNv/k29kFcYZCAYrgDD4DeaY8vLf0EtwFKncioqRCq7BcVUuAiDwfMXL8tXBq6VRRhMTkREZlwZZ8WlcoPc7lGufO5a0BCbNQIsxeGlV7vg2QkdfUrL+7dveP/2XVk43zabE3VrTUeqNcdj222318WCRQma7y1rswh1FachuBTMIpQtp2CN9DSAa/f3WlqwBQuVmMce+VU1uAIAx/5LxYC+2l/KfXVPwg+qN2sA+Gj6VixdctDvPOK6zvO4WQOu5twjR/yCs34+pTpzJkPzyxkATJzwu1/7B4Cd20+r3qwB4OTJdPS97Tu/8/jgvU2qN2sAWP/HMTz7VJLfeZSF852d7UDCAM8vZwCQlelAz3jP2UeuFs+3UkiIGbPm3aE6OKbBIOC33+/zWL9h03CUrxCqur+BgxspKtsAcEu3Ohg7rp1q+vAIM7buGumxftO2B2Eyqd+mp06LU1S2Xevi0eEmz6l8AdfAnfmDDADLXZTl7tKtNh54tJXqrAxBEUas3+05TfOa7fdDUKkXSZDx2ntdPcr9wru3oN7N0R4tX2TIqNAoTBFcAVzlfvbbzpAEz2OSDDKmrb3dcwpkHQ07V0C/F5ppJ1AJYImielRLFGUYjUBk+RREWKyw20S4Hsa7xlsRRNk9gxAgIzklWHU/xeGmjtV9Dq7w/u073r99U1bOd8f2X6oGVwBg+a+H8dkn6jPDlUVSKXpRYDDAQiXmm6+1v3QAwOrf9Qfk88ZmcyBpRbJumldf1p99wptNG094nfHipRdW+5XHLR1neU3Tr8/3fuXx3IRVutu3bz/t9xePD97bort93pzdfu2/rJzvKW+u15/hxJqDhfP/1tzuC55vTwMHNcHJc0+hT9/6KF8hFBUrhWLo/c1xNuUZtGtX1SO9wWBA8rHH8MGHPVGzViSiY0LQsnUlbNgyHLPn9VfN462347Drr1G4sUNVRMeEoFq1CLz2xi04de4p1SeOtWpbcO7S0xg7rh0qVw5HTPkQ3Nq9Ng4fG4cxY9WDFit+H4oly+5Co0YxiI4ORmzdKHzz/QDVQAbLXbTlnvROd2zYNwItbqqE8PJmlK8eimcndcThC4+plrtmbQuOWh/H/Y+2RFSVEESUN+Om+OrYc2IMRo5tq5rH12sG473fbkPFxmEwxYiIrh+C1xNvxeK96k+YuyfUxaJLQ9CqfxUEVzQhpLIJXYbXxuL0oWjSviJqt4xCRIx+36MIixkvruuOF9fGAQCMJvWgzIW0YMgy4HCKuJQagjPn9bqLuQIvRoMMkwkIDbfBbHbAaHTCaHRCgKtLkSi6ugtJGq1wAq1pswqIjAxCULAB1apHYPmqIfhtlWcATgvv377h/dt3ZeF8Z2XZcPCA/kDgk95Y51ceRCWJg9xSibHb9GOlkgSkpmYhMjKkUPvfsuWU10EB/zuaWqh951r8s3qEP7+tW075lcfZs977Bv+58YRfeezf532mj9+WH/Z4Sns1Ll7I1N2emelAZqYNoaGFa9paVs53wRlS1Cz95ZBfTZl5vtWFh5s9Wjt4M/yh1hj+UGuf08fWjUbS6mE+pzcYDHjr7Ti89Xacz++5pVsdbNmpHlhQw3L77mrLXaduFJatudfn9AaDAZPe6Y5J7/jeHeKmW2vi5z2+N9kPDTfjzcQeqtvMwQb0frQhvn91j+r28GgzPvy3P8Ii8/5ub32lKVa86NlNKD0rCPuORSPUAI9tBeU1nBGg3vQFgOQa6FYQgOgQOy5mmXT3GQjZ2Q4cP/Nkod/P+7dveP/2XVk430t/+ddrmjSVlkZE1woGWKhUCwkpfD/S8DDv7xUN/j0FCw31/idkMvs34J4vjH6Ww6jRHD8/f/v0CoLgdWYNs7nwl6Sycr6Dgr2/PyTEv0s3zzcRabmYfBkGGXACiriIIAPOVCcyLtoUAZbj689CK4ByOdsE2SQhzOxb43O73YAgg8pgoPm6BwECIoKKZ6Yf3r9dysL1nPdv3xX1+bZEeu/idzXdFa91EmTV7qQlcRwUGOwiRCWmXDn9ZsjmIAPMftzsWrSs6PVG1rZdlULvH4BPTzL792/oVx4dOnofZOrRJ/wbJO+WrrV1txsMAvrcUd+vPOrWi9LdXrFSGIzGwl+Sysr5vm9oC69pRo1W7y7gK55vdXNn70atqu8jMvQtRIa+hfp1PsTypYc00585k4HON81CVPgUlAt5CxUsb2PsqKW6eUwcvxKVot9BuZC3YAmbghtafY5Dh9THHQCATRuPo0mDT9zHVK3iu3h/2ibN9DabE3cOXIiYclNRLuQtREdMRa8e3yAjQ3uqYZa76Mr90rO/o3bU+6gaPA3VQqbh5pZf4l+dcm/eeAKt689AtZBpqBo8DfUqTMeH0zbrlvvh/ktwY+hMtDfPQPuQGXgg7kdc1in3sq8O4L4K3+Mewze4x/gN7q++ABt/+Q8AkH4xBxu//Q8miAiCAKPseplkAWYIkB0ynqm3GO/0zBs75MjvZ3V/B1l2QXNA4Vy546tkpodophUMMgSDK12WvXgqXyePp7ln/rGEvYX+V9mdh/dv3/D+7buycL67da+lOgZWftVrlNwg1kT+YoCFSszUd/Wbfj87/ia/9i+KIh5/8kad7QLen97TrzyqVSuHW7rV0tweEWHGMxP8K8fyJP3+3oIATHyhs195TJ0WpzmoJAAMvb+FX08rAOCd99WbpOf635vd/Np/WTnf9w5tjkqVwzS3N2teAa3b+vdFk+fb0+iHlmDcw7/i0qVsyDIgy8DZM5dx5+AfMHmSZ1/wffvOoVHdj7F711k4na4aYU6OE1/P24sGdT5SzaN968/x8YfbkJXlekIvSTIOHLiIti0+V52acu7s3ejR/RucOJ7mPqb0dBtefnGNakXPZnOiVtX3sfzXw+5xABwOCevXHUetau8jJSWL5S7Gcndq9SVmTd8FR6YEURYgSAL+25+KLs1nY4NKub+evQcDus3H+WOXIUgCRFlAdpoDbz2/Hgl9FqiWu2ulr7Br6RmIdgEGWYTBIeLA2gu4tdJsWFXKPfWBtfjuoe0wXJRhlkWYJRE45cQnd2zAnNd34OQ/qXBe+R0KEGC88jJAcM9WJAH4O+ksxkS4jsmhMq1yfjIEaPf+yG2V4iIaZWRcGbtFc28GGRm24mmAnZ6eF6iSJOD3VUdRpfw0n9/P+7dveP/2XVk43waDAYMSGuum+WrOHX7lQVSSGGChEjPk3uaY8PzNqlHsB0a0xITnO/mdx/MvdcbYce0gispMwsJMSPwpAfUbxPidx8+/3KV6065SNRwbt47w+0YHACvXqH9JEwTgQPI4v/dfvnwoVq4eCotF2WxTEIC77m6K6R/f7nce3brVxqcze3u0SjIaBbzxZlfcPURnNgoflZXz/efWBxFb1/MJUpu2lfH7H/f7vX+eb6VDhy7iu2+0Bx6c/L8NyMpStgi4Pe5bzTEDzpzJwLiHlynWvffOn9ivMUMGAAweoKxAO51OPPbIcs30v686ipUFBoXse/u3mtMb220S4m6Zp1jHcqsLRLk/eGcTjv6jPmaEKAu4t98ixTqn04kJDydBVOlqI0DAxqTjWFWg3A/2/AmyxliWok3AfZ2VeRw7mIo9c0+q5mGAgN9e+weixoC1yuNxybnsxLu9VnsZXeXKezQTCe49iiJQLioD5aKy86WXIQhSwaQwqkz1XFwuX7ZjYD/fZznk/ds3vH/7pqyc76/m9EOPnrEe60VRwEef3o72N6rPDFcWyaXoRYEhyN462RFdpaudn97pdOK1l//Ant1nUb9BNF6f1NWvsVfUZGTYMOOT7Th9Oh03dayOQQlNArp/ADh+PBVffb4Tly87cMeABujUqWbA85g8aR0+n7ETogi8+HJnPDDC98EWfbVs6SGsXnUU0TEhGP1wG0RHq09NWliSJGHOrD34+69zqFsvCg+ObB2QLzX5lZXzvXP7aSyYvw9Go4BhD7QMyBfMgni+gfhuc7F5k/7ghkPvb46PP3NNe3vqZBoa1ftEN31wsAHnLj3rXq5Z9X1YL2XrvufXpCG4+crn6L13/sQrL+nPmhFbNwq7/hrtXraETfE6UGRa1nPun1lubf6Wu0GVD5GZoh70AVxTKS9clYCOV8r9wTub8PYLG3XzqFavHDb//ZB7uX3QDBgk7edkTkjYYs/7PT3VeSkubkjTzaP5iGo4+YcVZ//VnoXECFdABgAEEWgYKSLNqr3P8hFZqFY+A0FBDlSomKIxPbYDgiCgXLQVokrP4Ar1Tyje12d2M+w+ozcrUeH1H9gAPy3SnxJYFAHr5ed00xTE+7dveP/2XVk43ykpWXjxud9x6lQ6bulaC08+470V0dXWM0qj/GW4WXwHwUJ0CR8RkC2nYIP0DIBr9/daWnCQWypxBoMBr0/yr7mhN+HhZjztZ5cjb2rUiMQrr3ct0jwmvtDZ7+bE3vTqXR+9evvXf1ePKIoY/mCrIts/UHbOd+u2VfxuTuwNzzdw9Ij32Sl278wbZ2LNmv+8ps/JUQ7CmZGuPSZGrt9+PewONKz747jX9OfOKWco8RZkAFxfZqOjXTOzsdza/C13Zpp2cAVwtUpJ+vWIO8Cy8Q/vM8lcOKuc2UOQ9NuOGCDCmpIFy5VyX0z2PqPN0Z2X0O/Jxpj1yDbNNPlDOrIEDPy6I+b03QBZZerkqjHpqFVJe2rcgrTOpCxD0aqlKFuwtGlb1WuARfJtzF4F3r99w/u378rC+Y6ODsEnM3sXaR5ExY1dhIiI6LpWLlJ/wG0AqFAxr19948blvaYv2Mxdr898rgYN855wVq/h/el8aCFmo4jMN/sLy63N33Ibzd7LXb9h3hPLajXCvaYPLjALiuylQbcEGRH5yh0c6X1a48hKIdiySD/IpchVAJY/sV01uBJsdqBmRd+CK4LgaqCuFTJStnoR4PQSXPKH0Xj9zF5CRCVPEuRS86LAYICFiIiuay+87H28p/yDcrduU8Vr4KBN28qK5bgenn3N8xNF4L5heTNQvPFmV6/HNOph5WwU1arrByciLUEwGPL6X7Dc2vwt9y09a+uml0UZQ4Y1dy+/8uYtXqfIHDFW2aUksob+VKfmKIOi3Pe81lI3KCNBxp3PNsffq/RnBcrfVqdC7TBcOpqpmq5CZKbXmUIAICgkL52rNZL3L/mWEJWpnAPk04+3ez3u2rUjiyx/IiK6tjHAQkRE17WBg5roVtJvaF8F9esr+89PeutWzfSiKGDhj3cq1s2a2w9mnVYNjz6mnKo1MjIEvfvU00xvsQRj/HM3K9bNXzhYMz0AzJrTT7HMcqsLRLk/n9sXYpB6LV2GjJFPKINEkZEh6H5HHc0ASGiUCU8/p+w28f6iXnAK6n1VJMh482vlTH1dE2JhqKndiqV8h3IwG1QGQPE4/jzPb4iDU6X1CgAEmZyq6z3SBbmCJYLgGtMlL5e8nIQCT1Z7N0zxad+FkZKShSef6aCbZsXqoUWWPxERXdsYYCEiouveX/vHoF07ZX95QQB69a6LVWs9Z34YM7Ydpk6L8wgelK8Qih17RrrH+8hlNhvwz79jPSr2RqOIZyd0xBuTPSvw3y0cjPuGNvfoftKocQz+/e9Rj/QtWlXCilX3IiJCOUh4SKgR33w/QLU1CctddOXecXgUytcIVbZMMQGPTGyPVyd39chj3sKBGHR/E8hiXnoJMuo0seCvY2M90jdtVQGfrukLQznBHZiRIQOhwBuJt6JzD8/ZUr44PBBRN0bAjrzAjE2UUPuO8nhvYx9EVwvxeE9BAgBTiAGv7boNlsqhEDWaldscecEaWQZybBrBGwGA6AQguwIs+WYLUgZa8vIZ0PQ8WlZRH4jXZCjEACn5WCKD8errXfHUsx08WrIEhxixcctwVK7svUsXEZEvZMiQSsHLW7dT8h1nEaKAKwujexPR9cnpdGJV0hEEBRnQqUtNRRcLLfv2ncOhAynofEstj4q2mowMG1YlJaNOnSi0aFXJp+PatPE4LqZkIb5HXY+pM9WcOpmGTZtOoFWryoit6312Apa7aMu9esUR1Iq1+FzuzRtPIOViFrr3jPWp3GdOpmPHn6fRtHVF1Kpr8Zre6XRi64qTMAcZ0PKWyopyv9YlCQfWn9d875OLOuGG/nmzrrwfuwjn//Mc1FcUJDStfQE5OUFITQ+BJIlo3/aAR9CinCUNNpsJTqcBEVFpEFUe/VWod8JjHJa0bANeX10LP/5VATan603Nq6bh1d4HMejzdl5/B1p++CkB8T3rupe3bD6BvbvPofcdDRhYISoFykI9I38ZOhimIqgUzCKUI6dgk3M8gGv391paMMBCAVcWLnxERETXo1UzD+HLMVtVt0VXD8H0I/0gGvKiIEfWn8aXt6xVHaJWgAxLsBPGK/Gb3ACLIEgQRQmCAIRGXIbDboTDYUJouTQYVcYwtlQ7h6Aw14xUed9a7YBJQrrdiCNnwhAdnYPYShmQJaDyxPhClz//lN5EVPqUhXpG/jLcWIoCLJsZYAkIdhEiIiK6Ys+usxg7aikee+RXJB/2Ps6DzebE66+sxYPDF+P7b/f6lMfSXw7iweGL8cJzq5CR4X0a4zNnMvD0E79h9ENLsGH9MZ/ymPnZdoy4/2e8986fcDq9j4XBchdduZcvPoSx9y/FaxPW+FTuc2cyMPHxlXh0xDJsWu992moA+PbTPRg/dAW+mLrdp3If2nUR745Yhw/GbMDJw3nTVsuyjOXTtacoTjmRhS8e3KxYt3DgOs35f2QIyLDn/6opwWBwwmRywmCQIV7pDmU0OwDIyMkMhtpjv5yMUPfPrgANIAgmCI4glBMMaFklC7EVM1xH4eckQJ9+khdcys524OGRv6BXz28w/f1N/u2YiIiuC2zBQgFXFiLLRHR9SUnJQtuWM3HxQpZifa3akdi+e5RqN40Hhy/Gwu/3KdYZjSLmfN0Pffs19Ei/aeNx9O31PXJylBXg7nF18OOSuzzSO51OdLlpNvbuVXbXiIgwY+OWEahV2+Lxnk8+2ornJ/x+ZTYWF0EAnni6A157oyvLXYzl3rLxJO6+LRE5OQ4I+Wr9neNr4rtfPAfmdTqd6NnhG+zfc8G9ToaM8HJmJG0dipoq5Z774S58/MwWiPmmLZYEGXePb4Yn/9fRI31qSjaeaLwYOOd0H5MEGUF1g/Dhvn44ezAdE1os83hffgYZCBJE3PdZO3QdVQ+vBX2rGG9FTUyoA6IA3NR+H4xG5RgpweGuWYQkpwCbzYywiAyI7t3JMJodMAXnwGhyQhBlGMx2mEJsEPKNVSOa7TCG2gHIkABUnlD4FizlK4Qg+djj6NXzG6z/QxngEgTg/Q97YviDrTXeTURFrSzUM9iCpWxjCxYiIrruNWnwiUdlGwD+O5qKZo0+9Vj/+KPLPSrbAOBwSLj37h+xd69yqtszZzLQM+4bjyADAKxaeQR3Dlzosb5j+1keQQYASE+3oXXzmR4tFX7+cT+ee3aVIsgAuLpUvPfOJnzykWe3D5ZbKVDlPncmAwNvnQ9bjlMRXAGAdUnHMGzgIo99dW83TxFcAQABAi6n2dG52SyPcq9Y9C8+eUoZXAEAURYwf8pfmPvhLo88xtX6CcI5SXFMIgTYD9vwcOyPuHzJewsb+cr/fT16Gw6tPwdJYxYhxXuunBqDygC0udtEg4zwyDTIMiBJrtY0QaHZCInIgtEkARAgyzIkSYAt0wxHtgEOByCaHDCE2F0DNAq+TPKsLyvLgYRBCz2CK7nH+vi437Bxo28tqoiIvCnpwW3zvygwGGAhIqLr2vvTNiHzsucgnbnOnM7AurXKCtWcr3br7vP+IT8rlocN+VG160Ou5b8ehs2WV4FOPpyCf/Zd0EzvcEh4fNxvinWPPbJc95hee3mtYpnlVheIco+8e4luTf/3pUcV5T5y+BL+3afdRclplzF+3CrFujcfXucRvMklQMCMF7Yp1i18Zy9M6hPvAACkk3ZcvJAJ0aAfMMn/xfHjAethFPW/lAuQIQoyBI1fiCDI7iiLIAAmswSjUYLRZIc5pMB5kg2QbCbIkgGybAAcJjidEhyZZkh2ERAA0c8uQrVqRuK3ZYd109x754/+ZUJERGUWAyxERHRd++LznV7TTHrjD/fPa1cf8WgtUVBy8iXF8o4dZ7zmMfOzvArx/15f5zX9ksXKsTIuXcrWTZ+V5VBU6llubf6We8+Osxop88z6dIf756mvbfCafvlPhxTLWSnaQSIAcGZJinKv/PSQTmpXUGbxB//gxsE1tBPJgDFfUCfjgg3VO5TX3W+ISYLRANXZgQBXUEUtThQUqnVeBUh2IySHAYAAZ2YY7FlGyE5XvyJ/O74/OLKF1zQXL3q2fiIiIgIAlbHaiYiIrh85OQ6vaS7na/Fw9pz3ylXB4c0kp/da3/nzeftNT/PeVcNh9+xu4U1Wlg1ms2tqYZZbW3GU+0K+cmcUotzeGmoIEJCT5XCPJ+PI9j74bU6GAzVbRuHP+dpdYArm2/TuWvh3XYrmEZkM+r8LWXYFXwr+DkXdb6gOhN2cDHO1NECQ4bxsguOvGEA24eo/HUo2u59NYIiIroIElIruOf5eOykPW7BQidu37xzius5F43ofo3PHWdiy+WTA89i+9RTuTkhEz+5f44nHliMlJTPgedw5cCGiI6bCEvYWmjb6BCkpOm2xC0GSJEx/fzN69fwWfXt9h3lz9kCSAns5zMiwYeL4VejZ/WskDFiItWuOBnT/AHD8eCpGP/QLetz6NR4Y+hMOHbwY8DyK43z/tGg/+vX5HrfFf4PJk9bDZvNeabsaPN++8/d8t2pV2Wua+B6x7p979a7nNX14uFmxXL58qEbKPEPubeb+eVBCI6/pY+tFKZaNRv1buiAAkZEh7mWWW5u/5Y6uEKKR0kWGjIT7mrqX+93pOUhuQbXrWZQrTPqBAEmQEREZ5F6u0SZKJ7VL8/jKWP7BAe0EApD/SmcwCVj21C7ohXsu2wzuViWy7NnCxGFzvVcQAIdN9N4CJTID5e/fgaBaqRCMMgQDYCxnR9BNZ4A6KX63YPl6jn53MAAwma7u67PNZkO71jMRFT4F0RFT0OPWebDZvAfVrgav577j/ds3xXG+ly89hBvbfoHG9T9Gn9u/xamTaQHPg6i4cRYhCrirGd07YcBC/Lbcs69zu3ZV8Pu6+/0+FkmS0Of277H+D+XTOEEAJr11K8Y91t7vPPbuPYOb289W3Tb8oZb44MPb/c5jz+6z6NH9a49xA2LKh2D9puGoVq2c33l8/+1feHjUUjgLPHlt1rwi/tj4gNdKjC8mjl+Fjz/0HHDyrrub4vNZff3ef3Gcb6s1Gx3bf4UTx5VfAoKCDEj8KQG3dK3tdx48374J1PlOSclC7WofaG4XRQEX056BwZA3U0qzRp/i2H+pmu95+bUueGZ83iwui37YhwfuW6yZPjo6GEdPPqFYV97yNmwqg8Pm2rR9BJo0qeheHnH/z0hc8I9m+o43V8fylfe5l1ludYEo9+If9uPhIUs1x0iJjAnC36ceUayrU+592HO0K2Erdw5FoyYV3Mvjh67Auu//00zfsHMMZv8+0L2cmpKNR2MWwajxbM1mkPDK+ji80nGl5j6BK7MIXdlHt3H1se+TQ/DWnqZCmB0GEWjX+gBkGTAHOVxdgwCYQ7MUMwsZTDaIooywqAwIgud+yw/bAkHj8iTLQOaWCqj+pP/XFz0jx7TBtPd6+JT23Xf+xKsvrVXdtuCHQbitV32/j4fXc9/w/u27oj7fTqcTLZvOVL2uPjiqNd77oKfme8vaLEJtDVMQJHgPgBe1HPkStjsnALh2f6+lBVuwUIl5/ZW1qsEVANi27TRGjtD+Uu6r0Q8u9bhZA64vYc9P+B3r1/s/E4BWcAUAZn2xG/v/8ZwN42o4HBJ63DpPdVDGixey0K3TXL/2DwCHDl7E6Id+8bhZA8Bfe89hYL8Ffucxd/Zu1Zs1AMz//m+89eZ6v/MojvMd13Wex5czAMjJcWLAHQuQlqY/HoQ3PN++C9T5jo4OwZtTumlu/2b+AEVlGwA2bXsQIaHqfRg63lxdUdkGgIGDmqBf/waq6U0mERu3jPBYv3zlvZrjVjz+RHtFkAEAvprTD3XqWlTTl68QiqW/3aNYx3KrC0S57xjUCLcPqOea2aYAg0nAyq3DPNb/sOouzcDBqKfaKoIrADB1Xg+Ur6feQii0oglfJvVTrIuMDka/95rDqXJMdkHCI4tuhuzLjEBX/q3UIBz3ftjWa3pFPnYTHA4zMi+HIjvbBLtNhKyYBUmG026CwyG6Br8twBx7XjeWIwiAsekl7QQBUK9elM/BlYwMm2ZwBQDuHPSD38fD67nveP/2TXGc7/iuX2sGrb+cuROJCz1nbSurpFL0osBggIVKzEfTt+hu13si6QuHQ8IPifoX6InPrtLd7s309/70mqbHrV/7lccH725GZqZ289UzZzKwfJn+4IXePPv0St1m1WtXH4XV6t8Xj0lv6A9e+dEH6jdzXxXH+f5r71kcPKDdRNZhl/DKi9pfpn3B8+2bQJ/vcY/diO17RqJl60oICTEiNNSITp1r4OCRcejdxzNAEB5uxqlzT2Lk6NaIjAxCcLAB1apH4Ku5dyhaS+Q377uBWPTznahdJxLBwQZERJhxz71NcfrC06iq8lSzXbuq+O/U4+h5W12EhZkQEmJEo8YxWLvhfrwx+VbVPHb/NQZTp8WhYsVQBAcbEB0Tghde6oTkY495BA1Y7qIt9xff98PXSwagep1yMAcbEFbOhAH3NsKhlMdQpVqER/o2N1TBX2ceRrfbayMk3IigEAPqNYnG0o1D8PLkW1TzWPLPvXjkvfYIrWSCEAIElzdi2KutsOrkA6rlHvREc0w60AuR7cJgD5NhDwcqdbPg/VP9cdMdtVCzRRRCIvSH5wsKMuCu6a0x6UAfAHDPOmQUJZSPyEa16ExUsmQh2ORqhRRkcCAqMhMVyysrU06HCTZbMBx2EblhG3NwDoJCcmA2537VV16oQpucgUqjFgUx2PtYM76qWbMczGYRoghERJgxZVp37Ng72uf3d7rxK69phg/1b0YiXs99w/u374r6fNtsTmzbdlo3zfin9VvSEZVmHOSWSky2lwH3nE4ZGRk2j77tvtq25RQcDv0ecHo3W19M9+EmY7Xm+JXH8l//9Zpmwfx//GpmvGun/kwfsgwsW3oIQ+5tXug8zpzWH5MmLS0H2dkOBAcX7rJUHOd7/nd/e03zx1rtJvu+4Pn2TVGc7/r1Y7Bu43Cf0xsMBkx7vyemva/dlLmguB6x2LPvYZ/TR0aGYOGPCT6nB4AxY9thzNh2PqdnuX1TmHJ36xGLTftjvSe8IjIyBPN+Gug9YT73jWuJ+8a19Dl99QaReG+rehP/4DAj4h9pgMVvqVd2w6LMmLa/D8pVCHavu2lsLP76cj+qRmcppkguH2FDRrYBlcqnwmR0/a3KspAvQJIbVLG7l2X5yqxCkF0tVdw1SdebRJVWLQUZfEjjq6BgIy6kji/0+48etXpN86uXKaG94fXcN7x/+66oz/evS70HmS5eCPzYO0TFhS1YqFRTeQDn+3uNPswE4OdkAaLo5w4ClIfBz+Pw9kQQAAyGor9caHUL8EWxnG8ffgdqYwZcVR483z4pjvNNdD0a/FoLdLm/jsf6yErBGL+0qyK4AgDZJ1NRrUBwJVd4sBNOR8FKmIzc4IogAKIou69JgqC8Prm6TMkAJAiiA87kcl4HsZUzTPoJroK/13Mfc/Hv3bye+4T378Dy53wbfRkk+jq6f8ul6D8KDAZYqMSEavRnz2U0iggJKVzrFQBo266K15H+mzatqLvdm+df7OQ1TfkK3mfR0NN/oPfZJe67v/BPKgDgxhur6W4XRQG9+/g3EF+NGvoDu0VFBcNsLnyjuuI43/cN9f57zj/7SGHwfPumKM73hvXH0LLpZ4iOmIqYclPR4YYvcGD/Bc30NpsTQ+78AZWi30F0xFTUqvo+pr+/WTePubN3I7bmdERHTEUFy9vo1/s7pKZqTwN8/Hgqunaag/KRUxEdMRWN63+M5V6e/r008XdUq/guoiKmoEr5aRj38DI4ndotBlnuoiv3N7P3oEX1T1Ar7D3ElvsAd/ZaqFvuE8dTcfvNX6NOxPuoFfYe2tWdiRVL9Vs4THtuA7rEfIkOITPRKepLvDzmd91y7113Gg/XX4ShQd9iaNC3eLzlYvz3T964JUaTiDGzbsLknbdj4EvNED+uPqrXCYd0zoZ3Oq7EI8ELsPDpne705/84plvpy8kx5wuK5AVWct+Tu00RWCkQZMl9ITMYskM7M1kGnH9Fax/MVbJasxAVPgWRoW+hguVtPD/h6rqpNGpS3muau4Y0KezhAeD13Fe8f/uuqM/3bbfX9ZqmUsXwQu+fqKQxwEIl5rnn9YMTwx/0vcmzGlEUMewB7X0IAjDtvXi/8nhgRGuvTxPWrFfvn++r0Q+3Rbl8U20WVKt2pN8j30+ZFqf75KVXn3qF7qqV6/VJ2oNKAsD4iR11t3tTHOe7foMYtGpdSXN7UJABL73a2a88eL59E+jz/fora3F7/Lc4kmyFwyHBbpew768LuKH1F/h67h6P9GfOZKBK+Wn4ZckhZGU54HBIuHQpGy9OXI0ON3yhmkfvnt9i3MO/4sL5TDgcEnJynFj9+3+oVXW6asV+5YpkNG3wKXZsPw2bTYLDIeHkiXTcOfgHjB211CO90+lE/dof4oP3tyA93QanQ8bly3bMnb0HNat8AJvNs9LNchdduQf1nI/xo5OQcj4bTocMW44TG1cdR/PKn+Lgfs/uDqtXJKNDvS+xd9s52G0SnA4ZZ05kYPjAn/DEqOWq5Y6rMQeJ0/bBniZBcAhwZkhI+vIwulacrVru2S9uw7td1sD+rw1BNhFBNhGX92TilSbL8dvsg4q0tVpGoevwWGz66DBSkzNdIyDKgCNHwsp3D2B81Z8AAGaj/tCIsiy6B88t2ELFM63eNhmQAOfWipDsgkdaWQacf0cjkL3fz53NhNPp6rqUk+PER9O3on6dD31+/x8bPAczLsjfmQZ5PfcN79++K+rzbTAYcEu3WrppPvr0Nr/yICpJDLBQiXni6Q64596mqtvi4mOvqp+7lvem98Qd/TwHLDQaBXwyozdat63idx4Hksdpbnvp5c6oWdO/p2miKOKPDQ8gOjrEY1vNmuWwdoP/01nXqmXB9wsHwmz27JPVqUtNfP3dAL/zGDi4MV58pbPHl2tBcI2d8Mij/k/BWBzne8XvQ1WfSoaHm5G0eihCQ/37YsPz7btAne8zZzLwzlTtAasfGePZEqLLTbNht6tXLPf9dQGvvLRGsW7u7N1YpzJDBgBIkoxbu3jOLnHnoETNY/p63l5s23ZKse6ehEU4e/ayavr0dBu6d1XmwXKrC0S5v5m9B5vWnFCdplmSgL6dv/VY/8CAn1X3L0BA4px92LFVOSjkY4OW4/IZm+p7HGkShnVepFh38Uwm1k46BIPKMRkh4JsHt3mU+/VmvxYcZ9Yt9XQ2vhq2ye9G5fnHZNELvgiC4Oo24DRD2lYVzr9i4Ew3QbpsgOO/CDg3VYOcFgKpiFu5nz1zGaMeXOJTWrPZjJlf9dbcvma99wCMN7ye+473b98Ux/lesuweNGtWQXXbhOdvRo/b6vmdx7VChgypFLzYRShwBFn21puV6Opc7fz0589n4NGHf0XyYSuqVovABx/dhlq1LQE9pqNHrHjn7T9x4dxltGxdGU8+3aHQg3NpmTA+CXO+3A2HU0bz5hXw26ohMJv9u1kXtHD+3/j5xwMwGEXcN6w54nt4b2Z5NRwOCR9/uAV/bjiBSEswHn/iRjTRuAEWVlpaNqZO3oBDB1NQo2YkJky8GRUqhgU0j+I43xs3HMMXM3chK8uOHj3r4v7hLSD60ylZBc+3b/w93317fYe1q/UHNxw7rh3eejsOAJCSkoXa1T7QTR8WZsLpC0+7l2NrTseF8/qD9q3/czhatHI9YZ31xU48/uhvuumbNC2PTdseci9HhU9Rnbozv7Ss59w/s9za/C13i+qfIOW89kweMmT8uvk+d7nnfrEbzz+i3/2kftMYrN6RV0HrEDwTglM7IiEJMjbbRrmXX4z/DWdW6k9hfMOTtTH63Q4AAOuZLEyooh70ySUaBLQon4XI4BwIggyDKEEQZMiyAEkWIEkiDAYJERGuz0B4+GWPSltM5fMQRdf5MwXZ3GM7hFgyCqSVEV79IgwmByAAgkF5znMHyHU6gcrjC/+ApsNN1bDpz5O6aQwGAZcyJlzVfvv1+R4b1x+HIAjoP6ABZn51R6GPUQ2v577j/ds3xXG+9+w6iwnPrsTFi5lo3rISPvjwNq8tcK62nlEa5S9DS8NkmIWoEj4iwCZfwm7nRADX7u+1tGCAhQKuLFz4iOj6Ub/2h5otIHK1aFER6zePAAB8/+1ejHrQs6tKfoIApGbmVeqjI6bC4dDvSvHkMx3w2htdAQCD+y/Ait+SddOHR5hx6txT7uVyIW/ppgeAoycfdz9dZbm1+VvuWmHvwellVpSHn22HF/7XBQBwb78fsHa5ftAnNMKEgxcedS93MM1UbSGT369n74PlSrkfqroQOK0/e19Em1C8t91V8V8x7R/88Mxu3fQA8NCnzfDvlHUwqXQVkiTAHGSH2ezKNy/Akve7cQVYXL9Do1k/wGIul4mQ8umAKANOAbIACIJrxiFBcAVZJBmo/GzhAyz/m9wVL05c4zVd/qAdERWfslDPYIClbOM0zUREdF0LDfM+60ikJW/mlNo+tLAr2EfeYBDgcOi/p1q1CPfPMeU9m5gXFKTSRNyb/E8GWW5t/pdbhNOhH8yomq/c0THey12wS4AM/Yk2ZMgIzVduU5gBdugfU4glL33lhhE6KfP8+81h1eAK4JppxGYzwmRyekzPrDVzkDYBtrRQGINtMEVkQzDKivLntmDxd5bmkGA/pi8kIrpKkiBDCuD08oU+DnYRChiOwUJERNe1J5680Wua1yZ1df/coWMNGAz6NcKGjWMUyx1v1n8SJAjAgyNb5eX3P/1BBgHg7iHKMawqeJmxLCzMpKiks9za/C13u05V9TMQgGGjWrgXX3qzi9djGnRvY8VyeEX9ZvTGcIOi3H2e0Z+tRoaMYZPbuJdb9PH+9DKySjBsR87qJ5IFnDgdhfMXy6FgcCWXwy7CYRdht7leTofW11MBmecsyDhhgTPHANkpQJYAySH4GKTx7tOPd3hNU6lyYLtJEBFR2cEACxERXdeGP9QalnwtFgqKrRuFdu2UFeZHH9ce5E8QgPkLByvWzf22v+7MD3fe3QQGQ15luHLlcLS/UbuSHhxswP8mK4MRn8/qq5keAKZ90EOxzHKrC0S5P/+uD7SGdJAho989DRXlrlg5HK1urKyZhznYgJffUgZhXp9zq+YTRxkynpmunOmj9+hGcEZrn4ugBsFo1F45FW77e/Vn+ngiqStMRv1WMaIISJKIzKygAq1VZJiCbMjMCEN2VgjsNjNsWaHIyQxFVkYoNEfXhQBnTgjSj1XE5VPRyDwdjayzke59QvTvKezpMxm48279YNTipXf7lQcREZVdDLAQEdF170DyWNSsFemxvmWrSti++yGP9a9P6oZHHm3n8dQ8JMSIZSuGeAzUHRkZgs3bH0REhLLVgSAAd93TBJ+rDHi5cs0wdOla02N9xYqh+Pvgw4oKOgDc2r0Ovph9B0wm5a3dYBDw1tvdMeTe5h77YrmVAlnulTvvR1g5k3JmBgHoP6QRPp7lObPML38MQYduylYjMoDoSiHY8u9DHuW+Oa4mXprXFSjQkEU2yBj7bnv0H6ps8QIAn54YCGMdsyIw44SMiLZh+HCf57noPrEhKt1kgR12xXqnIOHWZ+ojrJIZTinv9y5JgM0uQsrXY0iWAcgFAzsyzME2GE0OCIIMo9EBg0G66lYoylEEr7SOubpdeAgLM+OLWXdgwKCGHtsMBgHfLRiIxk0CO5goEV2/pFL0osDgILcUcGVh8Ckiuj6dOpmGWV/thskkYvTDbRAZqT82htPpxDfz/sK/h1LQq3c9dOhYw2see3adxQ8//INq1SLw4MhWHhXngrKybJjxyQ6kpeXgvmHNEVvX+9TvK5b/i/XrjqNtuyroN6CR1/Qsd9GWe0niAVStFoFho1r4VO6vPtmFtFQb7r6/KerU9T744dpfj2LbulNo3q4iegz0Pr3p+ZMZWP75QRjNIvo+0hjhkUGK7W8P/QNrvjviCmAIAGTAbBLRvLEFyXvSFYENEcCNlaxwZoYjx2Z0v8FokFDechk5NhOckmvIv2aNj0AQANHgRFCIa+YhV4DFsxVMxTqn4S1cYgiyQTTIAGSEVUsBrgx0W/Hp27z+DrTM+KI37rkSlHM4HHhv2hYc2H8BgxMa47Ze9Qu9XyIKjLJQz8hfhqbGN0vNILd/O54HcO3+XksLBlgo4MrChY+IiOh69Nodq7B56QnV2IZRFhAmG1RnL6onAmEmz5Yq4SEOd3ep3ACLKSgbJrNr4FtRdKh2p6pQ+4yXFi0yjCE2VxpBQli1S65pmiWgUiEDLAVngyKi0qcs1DMYYCnbOIsQERHRFSkpWfj+279gNou4d2hzhIToDyQKAEt/OYiD+y+iZ6+6aNKkotf0yYdT8POPB1CtRiQGDW7otUWD0+nEvDl7kZaWgzvvborKlcO95rFl80n8sfY/3HBDFdzSrY7X9Cx30ZX7yOFL+OXHg6hWIwL9fCz3d7P/QlqaDYPvaYyKPpR796bT2Lz2JFrcUAkdbvXeqiYtJRu/zzsMk1lE9wfqITgkb2alLRrBFQBwCDIcsgyTSoIjEtDMY62AbJsBocH5WqgIMgxGSTGLkGpedhEms3ajdUHM3YcMo3v6Z/+aucsykLhwHwYn5I3BMnf2Lvy19zwG39kY7W9khYOIAkuCXCpm8CkNx1BWsAULBVxZiCwT0fXFZnOiQ9sv8e+/KYr1N3aoiqTVw1Tf88arf2Da239CkvJuo+HhJiz9bQhat6nikf6/o1Z06Tgbly5lu9cJAnD/8JaY/vHtqnkkDFiI35YfVqyrVi0Cm7aPUO3OsvSXg3jgvp+Rk5NXoTWZREx7vwceGNGK5S7Gch87asVtHb5B6qVsd4sPQQDuGtEM73zSwyM9AAztvwirfz2qWFepejh+3zFUtdyrFifjpXtXQcqW81qVmICnPrwJCQ96hjtsNieeabkEmfuzYLiS3gEZFW+OxOT1vTDzqc34afp+1WPLZZIFhMnqz+daBqlFS2REhDogCECzJodhMABBIVnuVisGg0M1yCIaHShf4zxUoz2CDGOQDYIoA5AQVt3qDrY4AVR6Uv1z5YtKlcNw6MijGDtqKb6et1exzWgU8OOSu3BL19qF3j8R+acs1DPyl6GxcVKpacHyj+MFANfu77W04CC3RER03WtY9yOPyjYAbN50Cu3bfO6xfvKkdXh7ykZFZRsAMjLs6NppDo4fTy2w3oZWzWYoggyA64n57K92Y9zDyzzy6N3zW48gAwCcPJmOhrEfw+lUjluxYf0x3JOwSBFkAAC7XcJjjyxH4sJ9HvtiuZUCWe5OTWYh7VKOojuNLAPffbkXTz+8wiOPQT3newRXAODsiQy0rf25R7m3rTuJ5wethJwNZZcdOzBtzEYsW3DQY1/jqi9Czv5sd3AFAIwQkLIhDU80/xlHdl/yeE9BV/9UTnCP2eIKqsg+7URyGGE9kzu1c95LMDpgCLIBgiu4Elo5DcKVsVcgAoKf32wzMmx47JFlHsEVAHA4ZPS9/XscPHjBv0yIiK6QS9F/FBgMsBAR0XVt7uzduHghS3P7/n8uYs+us4p1U9/aqJleloG7ByUq1g0b8hOcTu0vL/Pm7FFUoM+fz8C6P45pps/MdODVF9cq1j1w38+a6QHgsbG/KpZZbnWBKPeoIUsgaZRbgID5s/5SlPvC+cvYvOakZh7ZmQ5MenG9Yt1zQ1ZC1OjLI0DA5DHrFOtWfHkQwnntKZUz/8pEnTb5nqLKrhiGmBvbuEKEADOAUACmAvswmxwID81BSJA935tcA9m6liUIggynM183KZ1xVmxZYTj/X0UIBieMITYYQ2wwBdtgDLLDHJGN4IrpgCzAmWWCLAnuAXn9UalSGGbP2qObpu9t3/uXCRERlVkMsBAR0XXt3Xc2eU3z/MRV7p+3bD4Jp0O/Frdvn/IJ9/p1/+mml2Vgbr5K3SsvrNVJ7fLN18on7GfPXtZNn5FhV1TqWW5t/pZ709oT+hnIwDez/nIv/u+FdTqJXRbO+1uxnH4mRze9Pd2pKPeSqZ4tefITIODETisEAKIsIAgigmCAGQYEQYRJFhEqC6gnm1BNMKCSYEB1wYAqEGECECJKqFsjBTUqp6J2tUuoW+MiwkJyYDZKMIgyDKIMQXB1k5Kc+aZy9hIQkSUDHE4Dgi2ZCLZkwhyRA1OoHaJBhpxjhjPbDMluvNJdCNCJ5/nk4bFtvR7T6dMZ/mVCRERlFgMsRER0XbucYfOaxpqS18Ul+bBn15KCCnYlcXipoAPAkSNW98/nzukHDQAgO0e7NYKW1NS8srLc2vwtt9PhfajVY8l53YrOewkSAUBOtrLc+hMYuwIm6fnKbUt3eM0jM8WG8AgTzBAV3Y4ECDBAgAkiCk4UFCwIqAIR9SKVZTCbJNSonIrw0OwCA9q65n625xghOQFfRgLMTg3RT2eQgCvTNf++L8b7DnXk2K7+80VEVFjylUFuS/rFLkKBw1mEqMSlpmbhqSeScHD/RdSsFYlp7/fwabaIq7Ey6TBGDv8FlzPtqFmrHNasewDh4d5ni7gae3afxczPtiMz04HefephUL5ZCAJl+bJD+GHhfhiMAh4Y3godOgZ2ACpJkjDri11Yt+4YoqJC8PiTN6J2HUtA88jMtOGD97Zg/z8XULuOBU8+3QEWS3BA8zh9Oh3vvbMZ585loE3bKhg77gYYjYGNJ/N8++ZaON/1G0R7bQVx0815v/vu8d5npwkJUd5eIyODcPGidrcUALhjQEP3z3E9YrHit2Td9NWrRSiWDQZBtzsOAERH5w2UynJr87fcEZFBsF7M1kjt+kLda0B993K3nnWwdrl+a58q1QvcFw0AdGIBkiDDkq/cFRtF4Nxp/TFWarex4PBuq+o0zACQAyANMiwFthsEAaesEWhaWVlmQQDKhecgNT339yO71wMiHHYzgkIzIDuDoB0ykuHICUbmhXIIq5Cmut0Q6pquWZKBsV+31i2jNytXHPGaxmDwFt7yNHzoj/h1WTJEERj+YCtMeqt7YQ5PE6/nvuP92zfFcb4PHbqICU+vwvkLl9GmbRW8PS0eZrP+TGtEpR1nEaKAu5rRvZ98/Dd8OXOnx/q+/Rrgm+8HBuR4KsdMQ2am3WN9XHwdLFp8l9/7t9kciOs6D7t2KvvsWyzBWJ50L5o0q+B3HsePp+LWznM9KgV160Vh7Yb7Ua6c/ze81auP4u5BicjKUj7ljIuPReJPgyGK/n/B+Wj6Frz0/GpFZUgQgCee7oDX3ujq9/4BYOTwJZj/vbIpvdlswIwvegfkSxTPt++ulfN9/Hgqmjb4VHO7IAAp6c8qptetV2s6zp3L1HzPI4+2w+Spce7lL2Zux1OPJ2mmDws34fT5pxXrosKn6AYOVqy6Fx065k3J27/P9/h91VHN9M2aVcDGrQ+6l1ludYEo9+wZO/HCY79rBipCwk04dPFRxbqaoe9pjtsiQ8aPq+9G+47V3OtG91qCPUlnNI+pWotySNyed487dywdz9f6RTHAbX52QUaDOytjy0LtsWAAIAICqqs8n3PIMm5ufFblHcCZcxGAIKJ5s39R8NISbkkFZAMkp9o1R4ZokGEw2WAyOxEanY6QqAwYg+2uMWJMDhjDbBAMMhxOAQM/bo+N//rXgsUXAwY1xJyvB/iUdsni/bj3rp9Ut23Z8SAaNfb/nsHruW94//ZdcZzvWzvPwbZtpz3Wv/bGLXjymZs031fWZhFqaHwDplIwi5BdvoQDjpcAXLu/19KCXYSoxHz2yTbV4AoALPn5ICaOX+l3HrE1p6sGVwBgZdIRvPvOn37ncVvctx43awCwWrPRrcscZGd7b5atR5IkdLpxluoT18P/XsItN8/xa/8AcPJkGgb2ne9xswaAlUnJGHH/Yr/zWLrkIJ6f8LtHxUmWgffe2YTPP9vudx4Tx6/y+HIGuKYmHXH/YuzZrf7l/2rwfPvmWjrfNWpE4pFH22luf/vdeEVlGwBWr79f86lqvXrRiso2ADw0qi1u7FBVNb0gAr8l3eexfu43/TWPaeDgRoogAwD88HMCoqPVv7yHhhqx6o+hinUst7pAlPuB0a3RtkNV1SbXggj8sOpOj/Wffddbdf8yZPRJaKAIrgDAJ0t6IThGvSGyGCZg3nplAKBizQh0eKouJJVjckLGgI9aIv2i9+uXVucnvTYdyi5C+cmAbIAgAKJBgiDKEERc+dcVXBEE14xCkiTCkRmM9JPRsKWFwJYegrVHLVj2dwW8saQBmr10a7EEV2JiQnwOrthsNs3gCgC0b/Ol38fD67nveP/2TXGc74QBC1WDKwDwyktr8fsq7y3JyoqS7hqU/0WBwQALlZjXXtYfzHDmZzv82r/NZsOF89pPHAHg9Ve8D6ioJ/nwJWzbekpze1aWA2++4X3wQj1fztzpMcVpfof/vYSNG7Rn3fDFs08l6T4x/mnRAWRmeh+3QM/E8at0t7/5v/W6272RJAmfz9D+zMgy8MyT2k/SfcHz7btr7XxPnhqHxB8Ho1q1CBgMAgwGwf3EcdSYth7pa9SIxLHTT6DbrbVgNosQRQEREWY8O6EjduwdpZpH0upheHNKN1iigiGKAkwmER1uqoZ/j45Di1aVPNL37dcQ2/eMRJNm5WE0ijAYBFSsGIovZt+B2fP6e6Q3GAw4fOxRPDCiJUJDjRBFAcHBBgwc1BAnzz2JkBDPbpEsd9GVe/Hae/Dy1C4oFxUEUQSMJgFtb6qCncdGq5a7V78GWLv3fjRoFgODUYBoEBBdKQQfzr0dM77uq1rulSeHoefIehDDBEgGGUIIcHNCTfxxcbhquR+a1h6jlnWCWMMEm1GGzSjD3DAY47fFoe/YJhjwTGN3UEiCDAck2CHBeaWHPgAEyQJSZQkpsoQ0WYLzSkPoHMiwpgfjXEoYLlpDYHe4vmLa7QKCg22IilQbGDbfOC8CIIoyBME105B4ZVBcJRmCwen++eUfG+H+L9rhg6R6uJARpHoe/BEdE+I+BpNJxH1Dm+PIicd9fv+tt3ztNc2E8f7dl3g99w3v374r6vPtdDqx4rfDumkeGb3MrzyIShK7CFHA+dp0r1zIW173dTblKdUvib6Y9PoaTJnsfbaItKznCrV/AHjt5TWY9rZ+Hg0bxWDrzpGFzqNn3Nf4c4P+jBR3D2mKmV96fgH3VWzN6V6DUV/O7ouEu5oWOg9L2BSPgSALupD6DMzmwg0NtX3rKXTrMlc3TWioEWcuPlOo/QM831ejLJxvoutRP+NcSDLgFAr8/cpAsCwiGMrWPQKAChDhECTUMAuKN1SMSUfFmHSYTa6gSERkukfQJKxchke3IU8OlKuYhrCYdIhGVxsaWQb+SI7EfQsbw/uQv4Xj7/XcEvZW3mxJGsLCTDh94Wn9RDp4PfcN79++K+rzvXzpIdw5+AfdNKIIWC+rfz8va12E6htfLzVdhA45XgZw7f5eSwu2YKFSLd8Mk1ctLUO9a1Ag2e3eD9Dp9D6bhO77fZiFw273Lw+tfv/52Wz+5eFLLNfbF1E9OTYfmrb7VwSe76tQFs430fVIMqoEVwBAAHIEyaMZuQzgHCQUfIsgyKgQnRdc0aIMuMgFXkBIuTRUiD2L4IgsOO0GOO2uKZ4FAbilbiqe76psERATrj999dXw93ruC8nP55y8nvuG92/fFfX5zsz2/v38enr8X9LdgthFKPAYYKESExSkP0q4KAp+zfTz0su3eE3j2fz46gy+0/sTgo6davqVR1wP7zNYDE5o7FcezVtW1N0uCMDtvev6lUfFSmG628PDzQgOLvzEZu1vrO51Zod69f17QsDz7btr8XwfP56KHrfOQ9WK76J6pXcxuP8CpKbqz4DzyktrUKf6B6hSfhpaNPkUK5b/q5t+08bjaNdqJqqUn4ZaVd/Hk4//BqdOJDkry4ZhQ35EjcrvoUqFaejccRYO7L+gm8fXc/egcb2PUbn8NNSv/SE+mr5ZNz3LXXTl3rLxJLq0+Ar1o6ejSeWPMeHRJK/lHjlkMRpV/Aj1Yz5Ezw7zcHD/Rd08Fs3Zh5515qKT5UvE1ZiD2R+oj22W69yxdLzY+VeMjpyP0ZYFmNRnJTJSXUGJw7suwGnX/pItC4BNYxSWgh2AoiIzEWT29SlJXkAFAtwNUqKqn0V4+XQIwpWVsgjJboJkM7krYGNuPIWakdkINTtwz03HkDTev24e+TklGRWj3kZU+BTUrPIevvtm71W9v0aNcl7TxPeILezhAeD13Fe8f/uuqM93n74NvaaJyjcDGtG1hgEWKjGjxrTR3X5HvwZ+7d+XG8CwB1r4lUer1pVRt672Td9gEPD6/7wHevQ89UwH3XJUqBCK3n39+11NfSdON9jUsVMNREeH+pXHcxNv1t0+ZqznuAdXw2gUcUd//Zv2pCn+TYvJ8+27a+18z/piJ5o2+BSb/jyJjHQb0tJsWPFbMmpW+QArV3hOG5yVZUPViu/ivXc24eLFLFy+bMfRI6kYPCAR/ft8r5rHyBGL0aP7Nzh4IAWXL9tx6VI2vpy5E5Vj3sX5857jU+zZdRZVK7yHn348gNTUHFzOsGP3zrO4ofUXmKQxVkD7Np9j7OhlOHkyHZmX7Th79jKen7Aajep+pFqxZ7mLrtyPDF+KAd3mI/mAFVmXHUi7lINvZu5FvagPceG85yCYe3adRcOYj/HrD/8iI9WGrAw7/t55Hre2nIOpr29QzWNgy+8x9aH1SDuRA+dlCZfP2DDjmW3oWWeuarmXzziAV2otRer6NJjTAHOqjDNLL+LpqEXY/tsJzJ6402tvG4da6xYABZ9JR4T62pLEM7ACACGWNBjNzivBlQLvkERIdtd1UhCADY9swYlPl+Djh7ajRox+94mrceSwFdnZTjidMqzWHIx+aCk6tPvC5/ev3TjMa5qvv/NvxkRez33D+7fvivp8m80GtFQZhyq/N6fc6lceRCWJARYqMZPe6o7OXdSfFjRrVgFzv/VtlH49J84+ptm3u06dSHz4SS+/80haMxSVKntG+40mEQsWDfb7Rmc2G7H0t3tUb9qRliCsWuv9C5w3jZtUwAcf3QZR9LxrN2gYg59/8X866wdHtcHwB1upbrujXwO8/Jp/X2wAYNbcO3BDe88ZSwQBeOnVLujWrbbfefB8++ZaOt+pqVl4/NHfVLfJMpAwcKHH+ptumIWMdPWBBH9fddSj9cTSXw5i/nf7VNPn5DhxY9uvPNbHdZurOZjhlDc34NAhZcuGsaOWYv8/6q0dTp3KQP++CxTrWG5PgSr38sWH8NO3+1VjFfYcCbe29pxNpP8t32s2/58+aTMOH1SW8cWRq3B6X7rqVNBpJ3IwutcvinUZqTn46eGdMKqkN8siZvRZD6PZS3RFR8F3+trYXJZV3gwgPOqybkVScoh53QgkAwTBNSiu6KVLkr/2/X0BL07UHwQ0V3R0OJ559kbN7V/OvsPv4+H13He8f/umOM73mvXDULlKuOq2Ifc1w5B7m/udx7VCQmnpJkSBwkFuKeCudvCpbdtO4YlHluPMmQxEx4TgrbfjcGt3780sr8bTT6zArC93wemUEBZmwtxv+yMu3r8mlAXNm7MHX8/bA1u2E5261MDEFzshNLTwXZwKstkcmPb2JiT9lgyDQcCghMYYNaYNRO+jA/osJSUTr7/6B3btOIPwiCCMHdcOvXrXD9j+AeDff1Pw+str8d9/qahSJRzPv9QZLVrqP8m4Wuv+OIZpb/+JSylZaNykPF55/RZUqRIR0Dx4vn1zLZzvexISsfQX/a4eE1+8GRNf6AwAyMiwoWqFd3XTR0YG4fiZJ93Ljep+hFOn1GZRybN9z0jUr++aZjZx4T6MGKY/3WabtlWwZv397uWYclN1+/cLApCamTdoIMutzd9yt42dgbMnPVup5JIh44+9D6BuA1e5f1qwH48MXaoaLMnVvF1F/Lohb1rrm0I/92w2ko8kytickzfD0VsDfsfJn87rlqPpozWw+JNDumlCJBFB8OziGwSgfZQdRoMESRZgMDhQs9pFRZBEbZDb8Mh0CIrLmutraYU6Z7x24zUE2SAaXN2LwhueAWRAkgTEPFT4BzT16kfh30OXdNOYTCIupo33eZ8pKRno3HEuTh5PAwA0aVoBa9YPhdkcuHsGr+e+4/3bN8VxvhfM34c331iHjPQc1Im14JOZvd33Ay1lbZDbOsbXYBIsJXtAAOyyFUccrwC4dn+vpQUDLBRwZeHCR0TXjwZ1PsKZM/pBgJatK2HdxuEAfAsCFKzUR0dMhcOh/3zomfE3uZ8M3jlwIZb/qj+NZUSEGSfPPeVe9mVmtuNnHkdkpKtvO8utzd9y1wp7z+uAl49MaI+Jr3cCAAwbuAi/Lz2qmz6snAkHzj/qXu5gmqkbkAGAFReGISLSNX3xI9V/gHhSfzDRsHZh2L8vBbYcjWOXgUjZqJpvdaMdTSso92802lGhfKo7UJIXYMnbf7glQ7FOEFytWnwJsBiDbRBEGYCEsPrnIIgynE6g/EOF73YzacoteGHCWq/p/JmBkIgKryzUMxhgKdvYRYiIiK5rZi8DbgNAaEhek+9oHwbfKzhuhFpz7oIsUcF5+YWZvKY3Gq/+Fp5/2nuWW1txlDsyKijv+EK9l9tgUJbb29MxGTKC8pXDYPb+ezOFGODQCq5coRUuy5A8f68Ohwkplwp2A8gLpOQGU/KXJvexn+ytvbogwT11kcEBuzXYNQ6ul7d5YzZ5PxdERIEiC4BUCl5y0cx2f11igIWIiK5rvgx2PeH5Tu6fb+1ep0CXBk+16kQqllu20p/5AQBGjm7t/vmFlzt7TX9773qK5UhLkEZKl+BgA8zmvEowy63N33I3aV3Bax7Dx7R0/zz+5Y5eAwPxfZSzzQRH6Q/iLgYLinJ3ekh/thoZMup1qghJ70AEwCaoRz4yJfVfUlZWME6diboSaMkLrrh3qTFobto5vW4hMgxmp7vliynECdgN7mP0x5xZe7ymiYoO9pqGiIiuTwywEBHRdW38czcjJER/5oeC40LdM6SZ7j5nz+2nWJ737QDd7g7dbq2laGVRv34M6tWL1kxvMAqY/vHtinXT3u+pe0wTX+ikWGa51QWi3F98d4duRb9j9xqKctdtEIM69S2a6Q1GAW9/0kOx7tnpnSBrhGVkyBjxknKmvjufb4kcnTE8pUpG7N983muAwqmRp1bnI1EEcmxGZFwOdbda0ZI7UG1QaBbMQTIcObmJ8+UpSDAEOSCKkmu90eba55UmLz40HtJ19MgldL21lm6aud/09y8TIiIqsxhgISKi697ufWMQGenZEqJq1XD8dWCMx/rPPu+DPn09BxQ0GAR8MfsOtG5TRbmfauWweOldMJk8b7sdb66On5fe47F+664HUb+BZ7AhNNSITVsfVLROAIA772qCl1/rolqBHTO2LZ585iaP9Sy3UqDKXaVaBL5bNghGlW45N3SqigXLEjzWr919P+o0sCjWyZARHGpE0vZhHuXuc3cDjPhfG0gFWoBIgow7Hm2Eh8Z7TqU6+XBf2KIERWBGggy5uhHvHumHCrXUZ/XITyt+oRfXUDs3ucGW3G2ufwWERWbAHORqnWLPDIXtchAkh3Cl65ADEO0QRQcgOmAMzYE5JLdFjQBohpx8FxRsxOKl96Btuyqq2ydP7Y5butb2MxciIpeSnz0o70WBwUFuKeDKwuBTRHR9Wrf2GD6fsR1Gk4gnn+mA5s31Z0zIyLDhtZfX4MTxNNzSrTbGjG3nNY9vv9mLJT8dQEz5ULzyehdUqKBfqU0+nIIpkzcgI8OOoUOb4zYvM0U4nU68M+VP7NxxGg0alseLr3TxqJwXxHIXXbnnf/03fv3pIGIqhGHi6zejfAXPaWLzO3L4Et6d9CcyL9tx17Bm6NFbf8Y7p9OJmW/twL7t51C7URQeffVGr+Xes+YUVnx6EKJRwIAJzVCnhWvWDrvdjn7B32pHS2QgQjbCoJIgBECHCjkwiDIkGXA6BZiNEhyS4G5V0qzZYY9WLKHl0pE7uUpQaCZMZq3BV2SYQnNgCsuGMcgBY0gOBFHO25fRDnOlDNidQMUHB+mWX8//JnfFY090AABYrdl4ZMxSnDyRjq631sarr3ct9H6JKDDKQj0jfxlqml6FsRQMcuuQrThmfxXAtft7LS0YYKGAKwsXPiIiouvRXeW/Rfolu2qQxSQLCJPVu1fVD8lGbeVQNHBKrkFrc8fnzQ2w5O/yE1ouwx1gCYvMUG/tYnAivLIVxqCCHZFkiCaH6z2RGTBH2F2zCI0ofICFswMRlW5loZ7BAEvZxi5CREREVzidTmzbdgp79571+T2nTqZhw/pjyMqy+ZTeZnNiw/pj+O+o1ec8Duy/gC2bT8LpdPqUPjU1C+vWHsP58/rTEediuYu23JvWH8exqyj3wf0Xse0qyp2emoMta0/g4vlMn9JLkoTjh6w4/V+6x7YMq3pwBQDsggyHxjxCp7I9B341iIAkFdyZchYhZUBF/ZlfWMVUleAKAAiQ7EbIsgyD0XMA3cJYu+aoYjn5cAqWLjmIjIxs/3ZMRKSipLsFsYtQ4OkPQU9ERHSd6N3zW6xfd8w9TawoChg4uBG+mtNPNf3Xc/fgqcd/Q3Z2XiW4StVwrP5jGKpWK+eRPjU1C106zsGRZKt7ndks4sWXu+CJpzuo5vHsUyvwxcydcDrzvvi0bF0Ja9YNg8Hg2Q1k547T6N93Pi6l5FUGIyLMmPfdAI+BW1nuoi/3bR2+xfHkVACu0UFMZgOefbUjHnm6vWoezz+5Cl/P2AMpX7mbtq6AZRuGqJb7r+3nMK7XUmSn2CHANbaKqZwBb82Px81xNVXzmPbweqybcxRizpUVYQL6Pt0Iw19pi69f3en1K7ZNkGCUPZ/Pac3ubDLKkGW4W64UDIDkbVNnMNthCrHrHJEAQIAgug7A4RHQuToPj1qGfQfH4t23/8Trr66FlC+eFBZuwoZNwxFbV3sgZiIiur6xBQsREV33Wjb7DOv+yKtsA4AkyUhc8A9uj//GI/3sr3Zh7Ohliso2AJw+lYGmjT5FamqWYr3T6UT92h8pggwAYLNJePnFNZj0xjqPPB4Y+hNmfLpDEWQAgN07z6Je7Y880h/YfwFdO81RBBkAID3dhv595mPd2mMsdzGWu3XNme7gCgAIEOCwSXjz+XWY+voGjzxG37cEcz7ZpQiuAMDfO8+jVc0ZHukP70/Bgzf9hJwUB4QrTU4ECHCkSXjq9uXYsvaEx3vG37YcG2bmC64AwGUZS17/B++MWo+9a7235NEaIUVrvSDAHaTQGuw235LHdmOwXnDFRZYFCGbXuVm6TX1wWl9dupSFKZPX49WXlcEVALicYUer5jNx4YJvLaSIiOj6wwALERFd15b+chBHDls1t29Yf9yjW8szT67QTO90yLhzYKJi3YMPLPGonOf39lsbFcsZGTYsStyvmf7ihSy8P22TYt2g/guhN6rafUMWKZZZbnWBKPfY+5fBplFuAQI+nLxZsS4jw4alCw+5AyUFXbqQjY+nbVGse7TvMoiyenoRAsbfmaRYt2/zORxKOq9ZjvVfHUG9G/K1zJAB4corf7MWEYABgBnKL5FaXyhlGe4xVgpD1ihjfrnDujicwIhPbyh8ZgCiokLw5hvrdQ4IiO/6tV95EBHlckIuNS8KDAZYiIjouvbqi2u9pnn6ibwK9p5dZ2GzaT2vd9m65bRi+ddl/+qmlyQZ33+717380gurvR7Txx9uVSwf+y9VI6XLpZRsxZgeLLc2f8u9cukR3fSyBCR++7d7+Y2J3o/p8w92KJYvHtUfbyU7xa4o99eTdmkGcABAlAXkOJwQZECUATNEBMFw5SXCKAsIlgXUkU2oKRhQTTCgJkRUhAgDgCCtcVscgspYK/lpfal3RXbsmSbdANqVg4eUbcJnK+rA397vY8a28ZpfcoEWWURERLkYYCEiouua1ep98Mozp/O6BPz19zmv6Z1OZYXc7qWCDgD7/r7g/vm/I/pBAwC4nOm960RBqal5A7Oy3Nr8LbfD5n1w2v1/XXT/fPy/NK/pMwuU21u7DgEC0vOVO/Wc93JfPJmJclFmmCBCzJeDAAFGiAiBASH5IiWCICBMEFAVIqqHeO7f6XSNC5M/uCLLypeQr4mMzQYAEiBIgChDMMiQZRGSU6+0V5rZOEWM65WM+lWsXsupp2C3INUc+aCXiAJELgWD20qQIbMFS8AwwEIlzmazoV+f71G/9oeI7zYXNptvMzNcjYwMG557diXuvXsRZn2xM+D7B4D/jloxZuQvGDbkR6xckVwkeWzaeBwPDP0JI0csxr593r/0F8aC+ftw792L8Pijy5GSkuX9DVfJ6XTinakbMeTOH/D6K2t9niXjavB8+64snO/sbAdmfrodr7y0BiuWH77q99es5TlAaUFNm1dw/9y5i/rgofmZzcoBScPCTV7f0z2utvvnDh2reU1foUKoYtmXbhjR0SHun1lubf6WO9RLuWXIuCWulnv5hpuqes0jpkC5VcaZVZAgw5Kv3NUbReqkvpKmcQSyLjk0W7pkQUa6ypdwoyDgfGYIHE4Bsuyanjkz24CU9CBkZptV9iS4X3nBFwlBIRIgAoKY1+LFaLbDYHIit0VLnivLggw4AUmUIAjA90/96bWcev7Zp92NKldhujx9OWM7mtT/GM0bfYIli7W7wfmjLFzPef/2Hc83UekkyDLj8BRYVzM//cA75mNlkmdT6hatKmL9nyMCcjxD71mEn386qFhnMAj4fFZfDE5o4vf+nU4nOrT9CgcOXFSsDw0zYd2fD6B+/Ri/8zhzJgPtW3/h8eS1WvUI7NgzEiEhal9gr866tcfQ/47vPZ44d+pcA8tW3Ov3/gHgvXf+xKsvr/V4+vfIo+0weWpcQPLg+fZNWTnfr728Bu+/u1kxIGq5yCB8nzgInTp5rxgDwL5959Ch7Ve6ac6mPKX4vdeo/B5SU3M0099zb1PM+KKve3nKm+sxSWdch6AgA85bn3UvO51ORJd7G7LO0/QFiYNwW+/67uXut8zx6KqSX51YC3b/Pca9zHJr87fc7775J959Tbuibw4yIDntcfey0+lE7fAPNMstQ8asRf3Ro3dd97r7Ov2Aw5tTNPOIqRuKX/bn/S2fPZ6B0bV/VLRMyc9plNH5nlrYOM9zUOD8IiCguko3HLssIyZI/Stl+cgsiCLQrNm/KNj2JiLK1WpJEIBQS4ZHV6KgiEyElndNJ13wWuJOK0oQQ3MQVDEDNgdQcfhg3TL465ZuNbFk2RCf0u7dewY3t5/tsV4UgeTj4xAdHe738ZSV6znv37653s/31dQzSqv8ZahsegkGwVKyBwTAKVtxxv4GgGv391pasAULlZhnn16hGlwBgD27zmFwvwV+5zF21FKPizcAOJ0yRgxbjD27vM+Y4M2Nbb/0uFkDQOZlO25s8yVsPjQV96Zlk89Um7WfPJGO5o0/83v/p06moc/t36o251+/7jgG9J3vdx6JC/fhlZc8b9YA8PGH2zwGriwMnm/flJXzPW3qn5j29iaP2WbSUnPQ97bvcPSI1af9NGlSEf0HNNTc/sRTN3p8KV66fIjmmBIx5UPwyYxeinUTnu+EOrEWzTy++X6AYtlgMGDK29pfYjveXF0RZACAX5bfg+Bgz6l8AcBoFPHbqvsU61hudYEo91PP34QasdotRmYu6KtYNhgMeGVaV9W0MmS071RNEVwBgM+T+kIIUX0LZBMwa01/xbpKNcLR5/nGqs3AJch46OMbcPGY96fgWrEvvS+U2gPVyrrBNFeKPLljuXiM6SIDuHIdMBbxN9vgYAN+XHynz+nVgiuAqytSneqes2JdrbJyPef92zc832VPSXcNyv+iwGCAhUrMjE926G5fEYBmm99+s1d3+7D7fvJr/4cOXcTBA9pPEB0OCU+MW+5XHlPf2oCsLIfm9nNnM/H7Kv0BFb0Zdu9Pun3KV6084vcXj6ce056FAwDe/J/ndK1Xi+fbN2XlfL89xXOq21xOp4wnHvvN533N/XYA3pzSDREReRXrmJgQfDX3Drw+qZtH+hatKmHPvjFo2DAGwpU7qckkov+Ahvj36DgYDJ4V/t1/j8GwB1ogKMi1TRCA2nUisf7P4ehxWz2P9GPGtsOin+9Epcph7spkaKgRz07oiOUr7/NIHxJixn+nHkfnLjVhMLjeIIoC2rStgiMnHkXlyp5Pylnuoiv3n/88iLtGNIMp6MobBKB6nXJYtvlexN0W65H+obFtMG9Jf5SvHOpu5BEcasSjE2/Ej6vuVi33qrP3o3HXCpANV74gG2TUuSEKSaeHoULlMM883miHJxZ2QmSDEEgmGZJZRoVW4Xh1dRz6PtQIPR+q5w7AuMYFkOCEpOifb5YFZMsysmQJ2bKM3IbQNgBmkwOhwXYEmx1XxlYBBMGJ4OAchIdfVrnuCK7/FZyqKB9HVpDXMU8EUQKcgf9KGxqa11JHEIAbO1TDqfNPwmj0bSDdvr2+090uy8C77/jXpamsXM95//YNzzdR6ccuQhRwvjbdKxfyltd9nTr/FMLDC9eccu3qI+jbSz+SL4oCrJcnFGr/APDA0J90pxQFgKjoYPx38olC59Gs0adeZ8m4qWM1/LZqaKHzKB/5ttcb8v8md8NjT9xY6Dx8Od8XUp/1GMvAVzzfvisL5/uvvWfRsf0s3TRhYSacvvB0ofZPdL26wzAHAgSIEBRjsUiQESELqAYjDPmajzhkGU4AOQYHbqiU9+RekoHMLANq17yI4GDXAL3hEZ5dgCKiUiEIroFwg8IzYTDKKNhOplz1izCYtJq6yIDBCVGUYK6aBlmQEX1/YLoINWlaAZu2PVjo90eFT/FoYVdQRIQJJ88V/jpVFq7nvH/7jue77HURqmh6sdR0ETpn/x+Aa/f3Wlr4N5cdURFLSclAeHh0od579pz3ps7+xhcvZ3ifzcJh92FKAh22HO9PIjIztZ+Y+EKSvP8erJe8z0Dhr6wsG8xmjTbvXvB8+64snO9Ll7THw8hVcGYXIvLOFGKEnOV5jRAhIEelp49RECDKMowG5bVLFIDwUCckqeCbZHfrFsB1XRZFAALgsJlhMGYpugCJRodOcAVwD5RrzoacY4AU5N/1Mb+cbP/25cs9x273775UFq7nvH/7jue77HEKV2ZOK+nj0OwASleLXYSoVKtZs3DBFQDo1duz6XlBERFBhd4/ANw1pKnXNPXqF74MANCmbSWvaXr18V5WPRUqhnpNc899zfzKw+ilY7wgAJGRhbtZAzzfV6MsnO8b2leFKOpPVFujpvdZU/Kz2ZwY/dASNKz7ERrX/xgTx6/0OmtC4sJ9aNN8JurX/hA9bp2H5MPaTdAB1wCIfXt9h/q1P0TLpp/5NGvC5Enr0LThJ2hQ5yPce/ciZGToz7S2bdspdO44C/VqT0eHdl9g7Wr9Juksd9GV+9yZDNx120K0rvkZbm78JeZ9vls3PQC8+7+NuLH+52hTewZG3rnYa7n3bj2DITcuRHz1OUhoPR+bfz+hm95mc+Lj+zfgiRqL8GStRZj71DZ3uU8fToWUpf0l2wEgVeVLuCgIyLSptzZNSwvL16VBcrdWUYylcuVfCZLH+CrGYB+m5ZYFCFIQYHJ6n7/6KoSHm1Cn+geoHDMNrZp9hr/2Xt24EOXLe7/WtmtfubCHB6BsXM95//YdzzdR6ccuQiUsISEBN9xwA8aPHx/Q/SYmJmLGjBmKdfHx8QHPR42vTfdaNPkUR49oN6WMjAzC8TNP+nUsLZt+hiPJVs3t/jajBIAKlreRo/PUYuvOh9CwUflC7z81NQs1Kn+gud1gEHAh9RnVMQB8teTnA7j37h81t8eUD8GR449rbvfF6IeW4Ltv/tbc3rlLTSz9zbdZGbTwfPumrJzvO3p/jzW/H9XcPveb/ug/sJFP+1q+9BDuSvjBo2+70Shi7cb70by58ouz0+lE0waf4tSpDI99Db2/OT7+rLfH+tdfWYt3pnqOt2CxBONA8liPgVVPnUxDq2YzkJ3t+Xn76NPbMeyBlh7r+/b6DmtX/+exvkWLili/2XNmNpZbuT6Q5Z7y8np8OGWLx/pISxC2HfWcTeT0yXR0avIVclTK/c5n8bh7eHOP9aN7Lsbu388ouvLIkFG7VRS+35rgkX7bL8fwVb8NCJaUFagsk4wJ23pg7ks7sesX7RmZACAcAmqoNIB2yDKaVvX8/QBAlSoXYDDIKBeZ5tFFKDwqzT3tcWhkusd2U3gWQmPU95tLMDohGh0wRmdCDnIgZljRzSLUPb42flzsOSaOmmPHUtCs4UzdNBdSn4LZXPiZZcrK9Zz3b9/wfJe9LkIx5udLTRehi7Y3ARTt77U46qglWQ8G2IKl2FmtVuzYsQMTJkxAVFQUEhMTcfGi54jm/oiPj8fkyZMxY8YMJCUlISkpCQsXLsTWrVtRt25dJCf7P3hsIOzZ9zDMZvWPoCgCh4894ncem7aNQFi4SXXbLd1q+X2zBoBVa4ZpPkl/dkJHv27WgOspwbsfxKtuEwRg4aIEv27WANC3X0Mk3K0+JZ7ZbMCfWwvfBz3XjC/6omFD9SkQK1cJx+Jld/mdB8+3b8rK+U78cTBq17GobntwZGufgys2m1O1sg24Bj7s1mmOx/quneeqVrYBYN6cvfj+W+UAfhvWH1MNMgCA1ZqNG1p/6bH+htZfqAYZAGDcw7/izBll/i9N/F01yAAAe/acwwP3Kb+Us9ye6QNV7s3rT6gGVwAg1ZqDbi3neqzv1mqOanAFAJ4Zk4RzBcr97nN/egRXAECAgP92WTF+iHKQZ5vNqRpcAYAQu4Ap7VfAoTIzSUGFeyqn3axEa3amXM5s78EHweBqYi/bDYFswKJqVdJRTH/ft1lUataMxqDB2jNWvfRyZ7+CK0DZuZ7z/u0bnu+yxwm51LyKWnHUUUtDPZgBlmIkCALq1KmDCRMmoG7duoiN9ZxFwF8JCQnYtm0bVq1apdi/xWLBwoULYbFYEB+vfvEvCRdSx2PIvc3cT68EAbjt9rqwXn7O7y8dgGuWhdPnn8bjT7RHdHQwQkONqFU7EgsSB2HJsnv83j/gml3i9IUn0a9/A5QrZ0ZomAktWlTEpu0j8NKrXQKSx0Oj2mLvP2PQ/saqCAszITzCjO5xdXDkxOOI6xGYz9GXs+7Ar0lDUL9BNEJDjbBYgjH8oVY4m/KU6iwchbF110h89OntqFI1HKGhRlSsGIr/Te6Gg8nqs3BcLZ5v35WF8202G7Fn3xi8P70nmjargBo1y6FL11pY/ccwvDe9p8/7eXTsMt1ZGWw2CZ99si3fshO7d+p3FZg4/nfF8tjRy3TTH/svFadOprmXV65IRnq6fteQEcN+Vix/9ul23fQFp8RkudUFotxPjdSfwerEf2k4fTLdvbxmxRFkpOmXe+xQ5e/yh4//9giu5PfHImXQ6fORm1SDK7lCcgTUaRqpOo1zfqEaeWZrvM9gcEIUnShsaEZyGGC7rNNdQJQAUXbHcPwdeqlCRe9dH/73mu+zqMyaNwC/Jt2jqExGRwdj595ReHbizYU6xoLKwvWc92/f8XzTtag46qilpR7MLkIlKD4+HitXrsT48eMxZcoUv/e3cuVKd/Mnrf0lJiYiISEhYHmqKQtN94jo+tGw7kc4rdE6IVfrNpWxdsMDAICff9yPoUN+0k0vCEBq5nPu5eiIqXA49Gt+E56/GS+81BkAcPfghVi29LBu+nLlgnDibF43yqudmY3l1uZvuWuHve+13E+80AHPvNwRADB80E9I+kX/qVpEOTP+OT/OvdzBNFM3wCJDxqpLDyDsSrmfqLEI4gn98UzCbojAX3suQrCr79cAIBZGGAvkK8sy7GYbmpf3DBJZLGmIiMi+Uob8XYBcXz/Do9OR26hArYsQAECQERKTDnOYcnBrGRIMIQ7X0RjsMIbbcTzThJZP9tItp57JU27FxAm/e02XlvWc1zREFHhloZ6RvwwW88RS00XIapsMIPC/1+Koo5aWejDAFixlSm5fM73I3ODBrn7JM2fq9wkmIrpeeBssFwCMxrw0QT5MTVmwkuitGwQAmExivp99yKMQd/D8Dx5Zbm3FUW6zotzeCyX4cNwFifkO3Zffm2gQ4XBKcKgMZCtDRhAAQ4HHcpIs4zxkZDoLBl2A8PBMhIcXnNFEBgTZ9Q1UhGJGIXuOEaotXWQBWRfKIf2kBY5sIyS7CEeWEU674coguTIEA4AgB+59t4P3guowGvnckYiKj4TS0U2oKOcQKo46ammqBzPAUoYkJiYCgNeuRxaLBVarFStXriyOwyIiKtX6D9AeIyHXw+NucP8cf1us1wp0wWba9Rt6n51i9MNt3D8/9exNXtN36lRDsRwWpt6fPZfJJCoGVmW5tflb7ro+lPv+sXmD9Y57tr3X9B06K58mmsP1Az+CSVCUu/WgmrrpZciI7VoeTglwCDJy4IQdrmCLDRJyICFFcOKgYMdFWYJVlnBBlnAcEi5DxiWnAdYMMzKyTEi7bIIkOBEVlVHgd3elK0++da6G1K6ghj07BE6HCPXuRDLEYBsECJCdBtdO3FPWyoDZgS9X18Zfx/2bCWbhggNe04RrjB1BRESeiqOOWprqwQywlBH5PyTePli523fs2FGkx0REdC343+RuutNShkeYMTghb1BBg8GA7nH619lPZipnlZkzr79u+patKimmvWzdpgoqVQ7TTC8IwOez7lCs8zaGwKgxbRTLLLe6QJT70288ZxXKr1mriopyt2hbGRW9lHv67NsV60a93k5zvBQZMgY+ohwI8963WyPLpN06I6eciIPbU9zBD1kAnIIMhyBDEvLGOLFBRhpkXIKM9AJPPbNyTEjPNONythnhBbrzAHB96ywQrBIFGYIoITeokp0RjsyMYEiSqxWMLLvGVZFkIDgsr4uTIAAwOAFIgCDjr8NReHZOW83y+eqffRfQrHlF3TTTP7lddzsREbkURx21tNWDGWApI3I/JBaLxWva6GjX052tW7cW5SEREV0TDAYD1m68H2aVriDhEWbs2DPKY/2ixXeidZvKqvt7+bUuuLV7HcW6ho3K45MZvVRbQsTWjcKa9cM81u/ZNxrly3sOuGkwCFi89C73mCK5xo67AQ+M8JzCGAB696mHyVPjCuyH5S4oUOWu3ygG02b2UC13nboWLN3oOYjjhv3DEVNBvdzfLRvsUe77Hm2JXg818AiyyJBx4x018OzbygFUDQYDJmzrgawgz/TZ5QT870AfhEf5MGOP1xQukuRbSkF0BUsEUYIguAItssOE7PQwZKWHIjsjFLYsMyB7fmUVBAGiUYYgApez/R94EwCMJhEbt4xAjRrlVLePHNNGEYAjIvKHU5BLzasoFEcdtbTVg41FtmcqVoWZ6tlqtRYqrxMnTuhuP378uPvn06dPFyoPIqLiFBUF7Pr7Hsybsxs//3gABqOAYQ+0RO8+DeBwWHHihNXjPd/Mj8ORI5fwv1f/QEpKFpq3qIQXX+kCs9mgep3sems09vxzD6a+tRFbN59CeIQZ45/riGbNK2leK//4cxDWrj6CGZ/uQHaOA3E9YjH2EVf3FbU8xk9sjjGP1MMrL67F0SNWVK0agVfe6IqKFcNU07PcRVfum7tbsP7AIHwweQt2bD6NsAgTnnjuRjRuUVGz3Es39cX61f9h1ie7YMt2olvP2hgxro1muUe8UA93PloD01/YhBPJ6ShfNQyPT7oRMRVDVdMbo4EX/u2E1V8dwrZFxyGKAjo/FIv2d9RCpiMF/V+phhULd+pHUSQDMlUSCABS5bz1ySnZECJSFWkys9M93pl5uWA3IhWChCCnDempWQUKZEMQXAPrpmRmQpJTVd58dQYMisWJEyfw2+934O+/z+K5Z1chLTUHDRuXx/SPbkdwsNHr9yAiKjr5r58Oh6MEjyQwZDmtSMc/8ZUs583o50v9zddBcIujjlqc9WCfyFRi4uLiZADy+PHj/d7XqFGjZACyxWLxmnbw4MEyALlNmzaFyguudrx88cUXX3zxxRdffPHFF18l8tqyZUuh6jIl7fjx4yX+u/P35aviqKMWZz3YF+wiVEakpKRc9XuKNHJHRERERERURM6ePVvSh0BeFEcdtbTVg9lFqIzI7U9WHPJ3AVJz5MgRdOniGnRw48aN7nneia53p0+fRvv2rtlCtmzZgipVqpTwERGVPP5dEHni3wWRuuPHj6Njx44AgEaNGpXw0RRO5cqVvdanSsrp06dRoUIFGI2BCRMURx21OOvBvmCApYzwZVCfQPG1zx0A1KhR46rSE10vqlSpwr8NogL4d0HkiX8XROqCg4NL+hAKxWg0ltq/6UAfV3HUUYuzHuyL676LkNVqhSAIAXu1bev/FIGFERMT43Pa3CZRpe3DSERERERERGVDcdRRS1s9+LpvwWKxWJCUlBSwflje5t4uKrkfEl/KkdtPraSOlYiIiIiIiMq24qijlrZ68HUfYAGAuLi4kj4Ev+X/kFitVt2oXO6HjwEWIiIiIiIiKgrFUUctbfXg676LUFnRrl0798/eRlJOTk4GAMTHxxfpMREREREREdH1qTjqqKWtHswASxlhsVjQpk0bAHkfHDX5+52VhZY7REREREREVPoURx21tNWDGWC5xuj1LZs4cSIAYOHChZppFixYAAAYNWpUQI+LiIiIiIiIKL9A1VGvlXowAyylgK8D7CYkJCAqKgoJCQmq2wcPHozBgwdj5syZmtG7KVOmwGKxYMqUKYU9XCIiIiIiIiKvAlFHvZbqwYIsy3KR5kCqduzYge7du8NqtSI2NhZJSUleB9sRBMH9s9Zps1qtSEhIQHJysmKfWuuJiIiIiIiIioq/ddRrqR7MAEsxio+Px7Zt23RbrFgsFtx5552YMWOGx7apU6di8uTJmDhxIsaPH6+bV2JiImbMmKGYtio+Pt7r+4iIiIiIiIgCrbB11GupHswACxERERERERGRnzgGCxERERERERGRnxhgISIiIiIiIiLyEwMsRERERERERER+YoCFiIiIiIiIiMhPDLAQEREREREREfmJARYiIiIiIiIiIj8xwEJERERERERE5CcGWIiIiIiIiIiI/GQs6QOgsichIQE33HADxo8fH9D9JiYmYsaMGYp18fHxAc+HKJCK8nM7evRopKSk4K677kKbNm0QGxsLALBarUhOTsb8+fORmJiIpKQk9zaiolAc12feA+haxHsAkTrWF6isYoCF/Jb/Rj5z5kxYrdaA38jj4+ORkpKChQsXKr5AjBw5EnXr1uWXByqVivpzm5KSgsTERCQmJmqmyZ83UVEojusz7wF0LeI9gCgP6wt0vWAXIfKLIAioU6cOJkyYgLp16xbJRSshIQHbtm3DqlWrFPu3WCxYuHAhLBYL4uPjA54vkT9K+nM7ePBgHD58GIMHDy6yPIiK43Ne0n9LRIVR0p9b3gOoNGF9ga4nDLCQX2RZxqVLl5CUlIRRo0YhOjo6oPtfuXIlEhMTMWrUKFgsFtU0EydORHJyMiZMmBDQvIkKqzg/twsXLkRSUhKmTJmCKVOmICkpCZcuXeJTSypyxfE55z2ArkW8BxApsb5A1xMGWKhUy+1DqRdxzn06M3PmzGI5JiJvivNzGxsbi7i4OIwfPx7jx49HXFyc5pcLokAqjs857wF0LeI9gKh48V5BpQkDLFSq5fYr9vYUxmKxwGq1YuXKlcVxWES6+Lml60FxfM75t0TXIn5uiYoX/+aoNGGAhUqt/Bc/bxfM3O07duwo0mMi8oafW7oeFMfnnH9LdC3i55aoePFvjkobBlio1Mq9+PnS1DW3L+fWrVuL8pCIvOLnlq4HxfE5598SXYv4uSUqXvybo9KG0zRTqXXx4sWrfo/Vag38gRBdhZL43OYftM1qtSIlJQVxcXGYOHEi++JTkSiOzznvAXQt4j2AqHjxXkGlDQMsVGpdzcUv9wtESkpK0RwMkY+K+3M7efJkWK1W9xSEuRISEtC2bVskJSVxJgkKuOL4nPMeQNci3gOIihfvFVTasIsQlVqFufgxIk0lrSQ+t0lJSR5PKRcuXAgAqFu3Lv8uKOCK43POewBdi3gPICpevFdQacMAC5Vauf0kia4lxfm5nTJlivtLtJrcKQlzm44TBUpxfM55D6BrEe8BRMWL9woqbRhgoVKL/YbpWlScn1tvzb7j4+MBADNnzuTTGgqo4vic8x5A1yLeA4iKF+8VVNowwFIGWa1WCIIQsFfbtm1LpBwxMTE+p8394sCLLOkpjr+N0vS5zf/le9u2bUWSB12fiuNzXpr+loh8VZo+t7wH0PWgNP3NEQEc5LZMslgsSEpKCtjTipIaHC334udLOXL7X3IgN9JTHH8bpelzm7/Z7I4dOxAXF1ck+dD1pzg+56Xpb4nIV6Xpc8t7AF0PStPfHBHAAEuZVRZuovkvflarVTfanHtR5QWTvCnqv43i+NxarVZ0794dVqvV5xkiDh8+fFV5EOkpjs857wF0LeI9gKh48V5BpQ27CFGp1a5dO/fP3kYIT05OBpDX35iopBTH53blypXYsWMHkpOTkZiYqJkuf/5169a9qjyI9BTH55z3ALoW8R5AVLx4r6DShgEWKrUsFgvatGkDIO+CqCZ/f8qy0HKHrm3F8bnN3X+bNm3cs0SoyZ8//zYokIrjc857AF2LeA8gKl68V1BpwwALlTi9PpMTJ04EAN1pCBcsWAAAGDVqVECPi6iwAvW51frbiI2NRZs2bbB9+3bdZq5JSUkAXFN15n75IAqUov6cBzIPouLEewBR4PFeQdcMmSiA4uLiZADyqFGjfEo/ePBgGYA8ePBgr2kOHz6suj02Nla2WCyFOl6iouLv59bb30ZSUpLu39n27dtlALLFYpEvXbp0VcdO5Kui/pwHIg+iksB7AJE21heoLGOAhQJm+/btssVikQHIsbGxmhe4/AC4X1ouXbokx8XFeexTaz1RaeDv59aXv40pU6bIcXFxclJSkmL/M2bMkAHIcXFx/NugIlUcn3PeA+haxHsAkTrWF6isE2RZlou6lQyVXfHx8di2bZtusz2LxYI777wTM2bM8Ng2depUTJ48GRMnTsT48eN180pMTMSMGTMU07HFx8d7fR9RSSrs59bXv43k5GRMmTIF27ZtQ3JyMqKjo9GmTRvcddddun3ziQKpqD/n/uRBVJJ4DyBifYGuLwywEBERERERERH5iYPcEhERERERERH5iQEWIiIiIiIiIiI/McBCREREREREROQnBliIiIiIiIiIiPzEAAsRERERERERkZ8YYCEiIiIiIiIi8hMDLEREREREREREfmKAhYiIiIiIiIjITwywEBERERERERH5iQEWIiIiIiIiIiI/McBCREREREREROQnBliIiIiIiIiIiPzEAAsRERERERERkZ8YYCEiIiIiIiIi8hMDLEREREREREREfmKAhYiIiIiIiIjITwywEBERERERERH5iQEWIiIiKhZWqxUTJkxAfHw82rZti/j4eCQnJ5f0YREREREFBAMsREREVOQSExNRp04dxMTEICkpCdu3b3cHWqxWa0kfHhEREZHfBFmW5ZI+CCIiIiq7EhMTkZCQgClTpmD8+PGKbYIgYPDgwVi4cGEJHR0RERFRYDDAQkREREVm5cqViI+PR1xcHJKSkjy2161bF8nJyeDXESIiIrrWsYsQERERFQmr1YqEhAQAwIwZM1TTxMbGAnAFYoiIiIiuZQywEBERUZEYOXIkrFYrRo0a5Q6kaOFgt0RERHStY4CFiIiIAm7Hjh1ITEwEAEyYMEEzXUpKCgBwoFsiIiK65jHAQkRERAGXG1SJi4vTbb2S23Ll4sWLxXJcREREREWFARYiIiIKqB07drjHVNFrvWK1Wt0tV+rWrVsch0ZERERUZBhgISIiooCaPHmy++e4uDjNdNu2bXP/HB0dXaTHRERERFTUGGAhIiKigMode2Xw4MG66fJP2+xtEFwiIiKi0o4BFiIiIgqY3OAKANx11126afNPzdymTZsiOyYiIiKi4mAs6QMgIiKismP+/PnunxMSEnx6D4MrREREVBawBQsREREFzI4dOwC4uvxcunRJ87Vw4UL3e/TGacmVv2UMERERUWnEFixEREQUEFar1T3tclxcHCwWi2barVu3un/W60qUmJiICRMmICUlxeuYLkREREQliQEWIiIiCoj8swK1bdtWN23u+CuxsbEeXYSmTp2K+fPnIzo6Gm3atEFycrJusIaIiIioNGAXISIiIgoIq9Xq/rldu3a66XK7Eqm1Shk/fjy2b9+OpKQkTJw4MeDHSURERFQUGGAhIiKigMjtHgToD1y7YMEC988MoBAREVFZwQALERERBcTFixd9SjdlyhQAwKhRo9j1h4iIiMoMBliIiIgoIGJiYgC4xlXRsnLlSndLlwkTJhTLcREREREVBwZYiIiIKCByAyt6rVJyW69MmTJFNxBDREREdK1hgIWIiIgCQm/cFQDYsWMHVq5cidjYWIwfP76YjoqIiIioeDDAQkRERAERGxsLi8WimE0ov5EjRwIAkpKSivGoiIiIiIoHAyxEREQUMBMnTkRycrJHkGXChAnYsWMHkpKS2DWIiIiIyiQGWIiIiChgxo8fj9jYWEyePNm9burUqZg5cyaSkpIQFxdXgkdHREREVHSMJX0AREREVLYkJSVh9OjRaNu2LaKjo9GmTRscOXKEUzITERFRmSbIsiyX9EEQERERqbFarYiKioLFYsGlS5dK+nCIiIiINLGLEBERERERERGRnxhgISIiIiIiIiLyEwMsREREVGolJycDcHUV0pr+mYiIiKg04BgsREREVKokJia6ZyHKDbDkyp3i+fPPP0ebNm2K/diIiIiItDDAQkRERERERETkJ3YRIiIiIiIiIiLyEwMsRERERERERER+YoCFiIiIiIiIiMhPDLAQEREREREREfmJARYiIiIiIiIiIj8xwEJERERERERE5CcGWIiIiIiIiIiI/MQACxERERERERGRnxhgISIiIiIiIiLyEwMsRERERERERER+YoCFiIiIiIiIiMhPDLAQEREREREREfmJARYiIiIiIiIiIj8xwEJERERERERE5CcGWIiIiIiIiIiI/MQACxERERERERGRnxhgISIiIiIiIiLyEwMsRERERERERER+YoCFiIiIiIiIiMhPDLAQEREREREREfnp/3GCI7n4DU5OAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = g.theta_tiles[idxs, 1]\n", + "y = g.theta_tiles[idxs, 2]\n", + "z = 100 * typeI_err[idxs]\n", + "alt_hypo = (x > t0) & (y > t0)\n", + "z[alt_hypo] = np.nan\n", + "plt.title(f'Type I error \\% $\\quad(\\\\theta_0 = {t0:.2f})$')\n", + "plt.scatter(x, y, c=z, s=5, vmin=0, vmax=2.5)\n", + "plt.scatter(y, x, c=z, s=5, vmin=0, vmax=2.5)\n", + "plt.colorbar()\n", + "plt.xlabel('$\\\\theta_1$')\n", + "plt.ylabel('$\\\\theta_2$')\n", + "plt.xlim([-1, 1])\n", + "plt.ylim([-1, 1])\n", + "plt.xticks([-1, -0.5, -0, 0.5, 1])\n", + "plt.yticks([-1, -0.5, -0, 0.5, 1])\n", + "plt.savefig('lei_pts.png', dpi=300, bbox_inches='tight')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFgAAAOYCAYAAADhTEefAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAB7CAAAewgFu0HU+AADZ4klEQVR4nOzdeXxcZ332/+s+s0nyNvLuxM4yyr5n5ATClkAk9h0poexQLEFLW2gbKX4aeMrSOnIpbWkLlfxQoIRCLLHzI4AUdigllpJAQjY0TmInTuxYGtvaZjv37w95JiNLI400Mxotn3deekWes33PbJpzzb0Ya60VAAAAAAAA5swpdwEAAAAAAACLHQELAAAAAABAgQhYAAAAAAAACkTAAgAAAAAAUCACFgAAAAAAgAIRsAAAAAAAABSIgAUAAAAAAKBABCwAAAAAAAAFImABAAAAAAAoEAELAAAAAABAgQhYAAAAAAAACkTAAgAAAAAAUCACFgAAAAAAgAIRsAAAAAAAABSIgAUAAAAAAKBABCwAAAAAAAAFImABAAAAAAAoEAELAAAAAABAgQhYAAAAAAAACkTAAgAAAAAAUCACFgAAMCuRSETNzc2qqalRTU2N6uvrFYlECtpnV1eXqquri1Th0tXY2Kienp5ylwFMsnv3bu3evbvcZQBAWRGwAACAvPX09KimpkaS1N/fr/7+frW1tam+vn7OF1c9PT1qbGxUKBQqZqlLTm1trUKhkOrq6spdCjBJS0uLbr/9djU3N5e7FAAoG2OtteUuAgAALHzRaFTV1dUKh8Pq7e2dsCwSiWQCgM7OzrzDktbW1kww09/fT8iSQ319vYLBoDo7O8tdCpBT+n2gqalJbW1t5S4HAOadt9wFAEBaY2Njwd0MZnLnnXcqGAyW9BhLVfpCOJ/7LxqNcrG8BLW2tkqSdu7cOWlZKBTSzp071d7envkGu7m5WXV1dZOeM319fbr99tvV1dWVua2trY3nSw7Nzc3at2+fBgcHC9rP7t271d7ePmG/LS0thZa37HV0dKi9vV3RaDRzW0NDg5qbm0v6nI5EImpra1MkEtG+ffskjb8Ot2/frubmZoXD4Tnvu6OjQ52dndq3b5+i0ahCoZDC4bB27tw57X7TAWt9fb2uuuoqNTQ0zLkGAFiMaMECYMGorq7OfEANBoOqq6tTKBTSunXrMhdo0WhU3d3dE8YgCIVCam5unrDO0aNHFYlE1NfXNyG06e3tLehD53IWjUYViUQ0MDAw4YN9WkNDg2688cbMBQX389ISiUQyXYNyfXSIRqM6++yzNTg4qEgkoq6uLnV3d08KTsPhcOa5UltbO2WLGIzr6upSY2Ojuru759w1KBKJqLGxUZIyrYvSLQ1uuOGGCaEL8pfdtW3Pnj2Z97xoNKrW1lZ1dHSora2t6CFWev979+7Vzp07VVdXp3A4rGg0qp6eHu3YsUPRaFR1dXVqb2+fVcjT1dWlHTt2aO3atWptbdUNN9ygYDCoSCSinp4etbW15RXMpQN5gnYAy44FgAVCkpVk29rapl1vcHAws64k297ePu363d3dNhgMWkm2u7u7mCUva+3t7RMeByxt6cc7FApNu15dXZ3t7e3Na5/hcNhKsv39/cUocUkKBoO2rq5uztv39vZaSTYcDk9a1tLSYiXl/XjhWZ2dnTnv17T0/dvU1FTUY4fDYdvS0pJzeX9/f+Z9ORQK2cHBwbz229TUNGO96fPO5zVb6HMXABYjBrkFsCCkW660tLTM+M3Yqd0N1q5dO+36dXV1mXELsptwozAz3e9YWrq7uyVpxm+jQ6FQprvCdHbv3q2+vj66Bk2jubk501phLiKRiK6//noFg0Hdeeedk5bX19dLEi1YZikajWrHjh2SNOX9mpZ+bnd0dEzoDleI1tZWbd++fdrxTUKhUGZ5+jkwk8bGRnV0dKihoSHn86G5uTnTEiqf89m5c6d6enqY9QrAskLAAmBBGBgYkDT12A7FkO5uVOoxXoClKrv73nRqampmDDIjkYhaW1sVDocZAySHaDSqjo4OhcPhOXcNqq+vVzQa1Z49e6Z83NIh6d69ewspddlJd8FpaGiY8fWQDsfSgUyhdu/erY6Ojsxjm0v22Cd9fX3q6+vLuW46AJppEOV8gtNsTU1NksSsQgCWFQIWAAtCehC9Ug5AW1dXp6NHj5Zs/wBmDmAkTRgPBFPbtWuXpLmHzs3NzYpEIgqHwzkHGs0et4rwOT/RaDTTeiPdAmg6N9xww6Tt5ir7Merp6ck8R6ZyaquwXOFINBrNBCAzPdfa2toUDAYVDocz4cl0gsGgmpqaMuO3AMByQMACYEFIXwiUUm1tLV2EgDnKvhifzkyDWtI1KD8dHR0KBoNzmoWlr69PHR0dkpT3VLm8N+Ynfb9KM3eXkyYGjoV2xTr1eOvWrct721xdOrO7n80UmtTV1WlwcFC9vb15fxmSDm+YshnAckHAAmBBGBgYKPnFFl2EgLlLvz7T3flyiUQiOV/LdA3KT1dXV2YWmLlId0eZqXtRdqjCe2N+0mMRSdL27dvz2ib9eihGK47u7m41NDTMODvRVDN3nSrdDS29vBQtSNP77enpIcQDsCwQsABYEKLR6Ky+jZuLUCg048UhgKmlu0PMdCHe19eXM2Cha1B+br/9dkn5dUE5VU9PT2a8jZnGviBUmb3srjb5BhLZr4dC7/P0oO0zBZTZYU44HJ7yNZk99s5cw7x8pIMoxvoBsBwQsABYEOrq6ubUFH42smdWADA76YGio9Fozm+i0+HKVBeedA3KX/riON8WEtmyu3ykx//IJftiv5TjXy0l+Q72nC173ekGmy2m7L91uQLN7NY4V111VclqSQeF2ccDgKWKgAXAgpDrG7Ziq6urU09Pj4wxqq6unvLHGDPltrW1tVNul/5Wfvfu3WpsbFR9fb1qa2szy9P6+vrU2Ng4YVl9ff2EPv2z1dPTo8bGRtXU1KimpkbV1dWqra3V7t2757zPhWwu5zvV45LdMqCrq0u1tbWZfZ66r0K3n0q6q0z2djU1NWpubp6xG0Ep6slX+uI913N2165dU04pTNeg/PX19WUu4mc7LlX2bDF1dXUzhgB33XVX5ndCr5nNtfVJ9vgn89GKsrW1VZFIRMFgUL29vTkf2+z3muwxlpqbmye8x9bX1xc0QG+6dQwD3QJYFiwALEKSMj+dnZ2z3r63t9d2dnbacDg8YV/t7e22u7s75zZ1dXWZdUOhkG1vb7f9/f3WWmtbWlpsXV2dDQaDmXWCwaC11tq6ujpbV1c3Yd/9/f22qakps16u406lv78/U3tbW9uEZZ2dnTYYDNpgMGh7e3tne9fkrbOzc8J9V0qFnG9TU9Okx6Wurs5aa21bW5ttaGiwg4ODE84n+zlV6PZT1SPJtrS0ZJ47ae3t7TYYDNpwODxpWanqma1wOGyDwaAdHByccHv69ZRrG0k5zwnPam9vn/CYzkZLS8uE97KZZD+HTn08MVlvb++k9/Z8pF/z+T4uczE4OGh7e3ttQ0ODlZR5H5hu/ez3797eXtvb22vD4fCkv0Xp5+R070szSR+H9wAASx0BC4BFqdCAJS37Q2YoFMp7/ZkufkKh0KQgJpf0h9d8P3z39/dnLoymC4NK/YF2vgKWYp5vej/psCv7ccy+CGpqair69oODg5mgYbowbXBw0IZCobwCskLPZy7S9WVfbLW3t9tQKDTlfZ9+fp8ajGFq6ZCkoaFh1ttmByYzve77+/tn9d4Ha7u7u+d0n2W/Fov5Oki/FrPfh4PBYF5/E7Mf/3TAMl2Akj73YDA4p78pM72HA8BSQcACYFEqVsBirc1845fPRUk6YJnp297sli75fKDOrmGmD6DpD9QzXTSnP9TP5UItH/MVsBTzfNOPS11dnQ2HwxMex97eXhsKhWwoFMoZbBSyfa4WOFNJX/zMdDFT6PkUoq2tLXPclpaWKV8T6fPI1bIlGy0oxqUf05aWllltl33xnw7npvtpa2vLrF+q94h8ZLe6KeXPXIOBbMUIWGb7uM5GuuVaukXfdO812aF0+jkw09+e9Hnk83o+Vfp9vFQteABgofAKAJa5nTt3ZvqXt7W1qb29Pee6e/fuVVNT04xjG2Qvz2fMiba2tkwNzc3N6u/vn3K9dN/69DbTaWxsVEdHh7q6utTX1zfr8RwWgmKfb/px2bdv36QxKsLhcM77vdDt0wO8Svk9H0KhUGa8oObm5pyDQxZ6PoVoaWmZ8VzSs9jkGmSzr68v8xinp1FvbW1VU1NT0etdLNJjdMx2VrXs50g0GlVtbW3e2+aaraivr0+7du2asN/6+vqijqNz4403Fm1f01m3bt2CGGemlFMVB4NBNTQ0KBwOq76+Xq2trbr99tt15513TvqbdepYMH19fTPOJJR+j+3r61NHR8esXqfp45fyPQkAFoRyJzwAMBcqYgsWa+2EsVimk6sbxKmyW6TkK3ubqb7ly+7OlO83iCrht6albsFSivOdTUuhYm6f3ZUnX9ldx3Idq9DzKaWZugalWwOcujwcDi/r7kRz/aY/u9VcPu+JM3UnSj9+p7Z+mqq11HJRjBYsxeyuN52Zas1enu/fiFPHbZmN9PNzvs4fAMqFWYQAQOOtWNJyzZCSnoK2VN+CZn+LPNU3/tkzMOQ7fWu6FcdcZ78op1Kfb6GPY77bd3V1zWlWmOxzztUCZC71zIf0TCS5Zg1Kt4Soq6ubtPzOO+9Ue3v7onzOFkO6ZUH2zDP5yH69zNQSIRKJTHhOnvrc6evrU3Nzs9rb2yc9Z7u7uxWJRLRjx45Z1bfUzHU2oPmaDjs9rbr07Cxe2U59fuUzTXMwGJxQ/2xmBUrXMh+zKAFAORGwAICkhoaGzAfHXF1Rck1BWyzZFzn79u2btDy7C0BNTU1e+0x/iE53T1lMSn2+8xWwZJ/HbLp9zPZCZiEFLOmpy3MFQ+nX0VSvp2AwqLa2thm7hC11s7kQz+52EgqFZtw2e8rddDeubOnwJFcXkKamJnV1dS27aXeL8RqbbdevQjQ0NGR+371794TQ8tTnSL7nlh3MzOXvSim7SAHAQsAYLABwUlNTU+ZDaE9Pz4RvgaPRaF591AuR/QF3qg+h2R+Od+3apdtvvz2v/YbD4bxbgCwkpTzfQr9Fns32013UTCf7Qmam1hzz9a14Pjo6OtTT06O2trYpL9oikUimlViu11NDQ4N27Nihtra2BXVu82k2F6LZz498WklljzN1aogSiURmHLOpvr5eu3fvVnt7e0nfExea7NfkbB6f7FYb8xmEnhpM9/T0ZB7vYtRx9OjRWW+zXF/PAJYPAhYAOGnnzp3avXu3pPFWLNkXDh0dHVN+01subW1ty2og0OV2vovVTF2DpGdb48x0gVdXV5cZvHc5Wbt2raLR6Ky6UmSvO1NXj0gkMu3A0enWLdM9PumgYbm1YJlrODDbACyX1tZW7d69W6FQSN3d3TO+hk7tBnTqALPpgaXnw1y7vgHAYkMXIQA4KRgMZi7menp6JnxD2d7eXvIL/JlaOmTfthyaWS+V853reWRfNC+Wb31n6hokSb29vZJmPqf5vPhbSOYy28qpXYSmk+6WFQwGpwzB7rrrLknTXwina4xGo4v6tTkX2YFfvs/P7PXm2nIkEolkvgCYakyVucgOe+byWptNd6f082SxvJcBwFwRsABAluwPrenpSbu6uhQOh0v+wTC7P/tU39pnfzM9l6bZi81SOd/swYtncx7ZFzyLoYvXTF2D0tLnNdM32TU1NctyStf0fTeb4CL7vWm696lIJJJpoZI9sHe2fC6EZ9N9bSatra0yxpT8p7q6uiiBXfbrOd/9pe/TQlpjnXqsfJ4fp7aCOrXLUPYU2fmeS/Y+Z3M+6f3P5xg0AFAOdBECgCzpmRfS40S0tbWpvb19XgbczB4MNfuDb1pTU1MmAJpt0/xoNLrovjlcKud7ww03ZLqXzWZQyOx1F1L3tKlEo1G1trZO2zUobaE8LgvVXGZbyQ60pgu30q+n6R6n2c7yUuisMFO915XCunXrijLuSPb7Uj6hRPY66RZec5Fde3og6JmkW4ul3XDDDRP+nT0Ibj5hZnaLpWAwOKvuTunnSSFdpABgMSBgAYBTtLa2qrm5OXPRODAwUNCHwnwu9vv6+iaMTZH9wTctGAyqqalJHR0d6uvrUyQSyeuCoaenR62trZM+bC90S+V8s88j3fUsn5AhPahvrufDQtLY2KhoNJrXdNLp1g8zXZj39/fnNXXsUpNuZTCbFizpmYOm67LT19eXab0y3eM0311+wuHworroTncl7enpUWdn54xdR9P3efp9YK5CoVBmAO/sQYqnkx1MZ8+Uly393rR3794Z97t3797M77P90iH9vFoMrfEAoBB0EQKAU2R/CN69e3fBrQfSM6ZMJ7tr0nQXP9ndL/Ltg9/c3Lxop7wt9vkWevE41+2zzyPd9Ww6PT09mRYsC+lieCrp6Xpn6hqUVltbK2nm2vMN1Jaa7HGg5rJdruAq3Xoin8FRZ2MhPAfnWzqI6OnpmbEVS3rdmd6Dm5ubZYxRbW1tzvt0z549maB2Jtm1BYNB7dmzJ2d96XAue/ruXOtK46HYbMKi7NZ4tGADsORZAFhkBgcHraTMT3t7e9GP0dTUZCXZYDA4p+0bGhoy9YVCIdvd3Z1z3ba2tsy6062X1t/fb4PBoJVk29raZqyjpaVl1vXno729fcLjUCrFPN+6urqC6i1k+/7+fhsKhawk29nZOe166fOdbr1C6ymGwcFBGwwGbTgcntU26ZoHBwdzrjfX195SkH78e3t7896mu7vbSpry+Z9+P5rp+WStteFwOOd+0rIfw3zes5aizs5OK2na535LS4uVZBsaGqbdV/qxS/9Md9+n33eney/Mfg8JBoMzPo96e3szx861bvpcQqHQtK/bqaT/xs10PwDAUkDAAmBBGxwctL29vZmfzs7OCReV6Q+Q7e3ttru7O7Nef39/Qcft7++f8YPudLIDlsHBQRsOh21LS8uED6b9/f2Z9cLh8KxqHhwczGxbV1c36SKnvb3dhsPhooZP2Y9Fe3t7JixI/zQ0NEx4DIqpkPPt7+/P1Jxdb1NTU6be6e77QrfPdR5NTU0T7qfBwcHMhUgoFMp5HxaznkKlX4uzPV76Yi3XBX97e3vJgsHFIP0cmSlQPFVTU5MNBoOZx2NwcNDW1dXNGPJmSz+mTU1NOdfJDliK/VpfTDo7OzMB46mv5XRIP939mDabgMXa8UAkHA7bUChkW1pabHd3d+Z9ITuwn83fld7e3kwok73P7u7uzHOirq5u1uGKtc8+n0vxZQgALDQELAAWtPSH1OwwZbqf7PUKlX2hMlvZAUtaOgQIhUKZn3QoMVe9vb22qakpE3YEg0EbCoVsU1NT0S+y0xfF0z0O2Y9VKS7y53K+2evmqjkUCuU8ZqHb5zqPlpYWGwqFMvtJPx9mamVQinrmIv0N/mxDAGufbfkyVZ3plj5zuZBbKtL37Vy+8W9ra8u8v4TD4Vk/Pun3rumOnQ6gS/U6X0zSwWj2e3s4HJ71e3D6b91sQozu7m7b0NAwIexOvx/O9e9K+lyy30sK2Z+1z7bIWs6vaQDLh7HW2qk7DwHA8pUeUyJ7Zp/ZaGxszPRn520WS000GtXZZ5+tUCg058GE+/r6dP3116uuri4zzkwkElF9fb3a2toW/MC+pVZdXS1JGhwcnNfj7t69W62traqrq8v5/tfT05OZrpj3N0wnEomopqZm2ucTACwlDHILAFNoa2vLe1BVYLlJD56Zz6xBuYTDYe3fv19r165VTU2Nampq1NzcrM7OzmUfrkjjU+rmM/BosaUHy51u8Nb0IKw8TphJenBf/p4CWC5owQIAp0h/i97f3z/nfdCCBUAh0t/8h8PheZ9yvLa2Vn19fRocHJxy1pfm5mZ1dHSou7s7E8gAp4pGo6qurlYoFCro7ykALCa0YAGwLDU2Nqq6unrKb4fb29v5tg1AWYVCIbW0tKivr2/CNLfzId3qYKop5qPRqPbu3au6ujrCFUwrPSX9TFNUA8BSQgsWAMtO+pthSZO+HS5G6xVJqq+vV09PjyRasACYu+rqam3fvn3ex69Ij8VyaiuV+vp6RSIR9fb2Ttm6BUgr13MXAMqJFixl1NjYqN27dxd9v11dXaqvr5/wU4rjAItVKBTK/H7qN7CNjY1qb28v+BgDAwOZ39PjFQDAbO3Zs0c9PT2ZwHa+tLS0qLe3V+3t7WpsbFRjY2PmM0V/fz/hCqa1e/duRaPRovw9BYDFhBYs8ygajSoSiej2229XR0eHotGoWlpaitp0sr6+XgMDA+rs7MxcREajUe3YsUN9fX3q7u6ecHEJLFe7d+/W7bffrjvvvFPBYDDzOrnqqqvU0tIyp31GIhFFo1Ht27dPzc3NmdsbGhrU3NystWvXKhwOF+sUACwTzc3N2rt3r/bv30+wgQWvr69PtbW1DFgNYFkiYJknxhgFg0Ft37498w15X19fUQOWxsZG9fT05PwAVltbq2g0ykBjwEldXV3atWuXotGogsGgdu7cWdCHwZqaGkUikSlff+lWLP39/YScAGYt/QXKfA94C8xGNBpVbW2tGhoaGHsFwLJEwFIm6fEZihWw9PT0qL6+ftr9dXV1qbGxseitZgAAQOnV1tZq+/btdLvAgsVzFMByxxgsS0T6D1l9fX3OddLfzE81KwAAAFjYent7NTAwMO/jsQD52L17t2688UbCFQDLmrfcBaA40lPNztT1ID3WRE9PD9MrAgCwyHR2dpa7BGBKcx2/DACWElqwLAHZ32TNFLCkl/f19ZW0JgAAAAAAlhMCliUgHZbkM7PA2rVrJUl33XVXKUsCAAAAAGBZIWBZAo4ePTrrbdIzmgAAAAAAFqc77riDa7sFhDFYloDZvKDSrVwGBgbmfLyDBw9Ou3xsbEwPPvigNm3apA0bNsjr5WkGAAAAoDDJZFJHjhyRJF166aWqqKgoc0XlFYvF9Kd/+qe64YYbdOutt5a7HIiAZUmYS1hSSMq5bdu2OW8LAAAAAIX6zW9+o6uuuqrcZZTVZz/7We3fv1///M+79Sd/8ic644wzyl3SskcXoSUgPa4KAAAAAGDpi0aj+vjHPy5JisWsbrnlljJXBIkWLEtCPoPbFtOBAwdmXP685z1PklTp/xM5ZvV8lAUAALLEk7+QUvdqu+cj5S6lZPY++uZylwBgHh06dEhXX321JGnDhg1lrqa8/v7v/14DAwPyeKRUSrrtti/pQx/6kK688spyl7asEbAsAevWrct73XTXoEJCma1bt+a9rmNWyzFr5nwsAAAwN8ZUSHJUYZZuS9fZfCYBsLQs53EeH3vsMX3605+UJH3kY9X6etew7r07rptuuknd3d0yxpS5wuWLLkJLQDosyWdclfR4LaFQqIQVAQAAAABK4W/+5m8Ui1ltO9Or5g+s1sd2jQfpd955p37wgx+UubrljYBlCcgOS2YKWdLLCVgAAAAAYHHp6+vTl7/8ZUnjrVcqKhxd++JKvfTllZKkm266SalUqpwlLmsELEvA9u3bM7/PNKNQJBKRJNXX15e0JgAAAABA8VhrddNNN0mSrgj79aYbVmSW/e3fr5XjSPfdd5+++MUvlqvEZY+AZQkIBoMKh8OSng1QppI9/kpdXd18lAYAAAAAKII77rhDP/rRjyRJH9u1Vo7z7FgrF13s11vfuVKS9OEPf1jDw8NlqXG5I2BZRKbr/rNz505JUmdnZ8519u7dK0lqamoqal0AAAAAgNJJJpNqaWmRJL3sFZV60XWVk9b5Px+pVlWV0ZNPPql//ud/nucKIRGwlF0+A9NKUmNjo6qrq9XY2Djl8oaGBjU0NKijoyNnK5a2tjYFg0G1tbXNtVwAAAAAwDz7whe+oPvvv1+OI31019Szw205zas//eD4DK5tbR/W4cOH57NEiIClLPr6+rRv3z5JUk9Pz7TdetK6urom/H8qe/bsUV1dnerr6yfsMxqNZsZc6e3tLaR0AAAAAMA8Gh4e1kc+8hFJ0tvftUoXXOjPue6f/+Uabdjo6MQJq49+9KPzVSJOImCZJ/X19aqurpYxRrW1tZmWK5FIRDU1NTLGqLq6Ws3NzVNun0/rk2AwqO7ubrW1tam5uVmNjY2Zn/r6evX39zN7EAAAAAAsIp/61Kd06NAhrVhhtPMjwWnXXbXK0c4PV0uS2ts/o4ceemgeKkSasdbacheBpeXgwYPatm2bJGlF4GY5Zk2ZKwIAYPmJJe+Uknfp+d5PlbuUkvlR4j3lLgHAPMq+zjhw4IC2bt1a5opK7+mnn9Y552zR0JBV6y3BTHgynUTC6nnhJ/TIwwm9/vWv1ze+8Y15qBQSLVgAAAAAAFiQ/vZv/1ZDQ1YbN3n0Zx/K74trn8/ob/9uPIj55je/qV/84helLBFZCFgAAAAAAFhgHnzwQe3Z8x+SpJ0fDmrlyvwv31/5mipd84KAJOmmm24SHVfmBwELAAAAAAALzM0336xUSjr/Ap/e/u5Vs9rWGKNP3LpOkvTrX/962slSUDwELAAAAAAALCA///nP9a1vfUuS9Ld/t1Zer5n1PmqvCuiNjSskSTt37lQ8Hi9qjZiMgAUAAAAAgAXCWqu//uu/liQ9/0UVevmrKue8r498rFo+n9Tf36/PfvazxSoRORCwAAAAAACwQOzdu1e/+c1vJEkf37VWxsy+9UraWSGf3vu+1eP7+vjHFY1Gi1EiciBgAQAAAABgAYjFYtq5c6ck6U03rFB4e6Dgfd60M6jVaxwdPXpUt956a8H7Q24ELAAAAAAALACf+cxntH//fvn90oc/Vl2Ufa5d59Fft45P8fzP/7xbjz/+eFH2i8kIWAAAAAAAKLPBwUF9/OMflyTteP9qnXW2r2j7bvrT1dp6hkexmNUtt9xStP1iIgIWAAAAAADKbNeuXRocHNSaoKO/vjlY1H1XVDj68EfXSpJuu+1Luvvuu4u6f4wjYAEAAAAAoIwee+wxffrTn5Qk/fXNQVWv9RT9GI1vXqHLr/TLWqmlpUXW2qIfY7kjYAEAAAAAoIz+5m/+RrGY1RlnetX0J6tLcgzHMfrYrvFWLD09PfrBD35QkuPk0traqpqaGhljVFNTo8bGRu3evbso+25ublZjY6O6uroUiUQyt0ejUfX19WWOnb2sFAhYAAAAAAAok97eXn35y1+WND6wbSAw92mZZ3Ltiyv10pdXSpJuuukmpVKpkh0rLRKJqLa2VjU1Nert7ZW1Vp2dnZKeDV36+voKOsbAwIC6urrU2NiYCXGMMaqurlZtba12796ttrY2hUKhYpxSTgQsAAAAAACUgbVWN910kyTpirBfb7phRcmP+bd/v1aOI91333364he/WNJjRaNR1dfXq7OzU01NTQoGg5KkcDiszs5OtbS0ZAKYUrUuaWhoUH9/vxoaGkqy/2zekh8BAAAAAABMcscdd+jHP/6xJOnjt66V45Su9UraRRf79dZ3rtSXPj+kD3/4w3rzm9+sqqqqkhyrtbV12pYjbW1t6ujoUDQaVWNjo3p7e+d8rM7OTgWDwUxrmHA4rO3bt2dCnflACxYAAAAAAOZZMplUS0uLJOllr6zUC6+tnLdj/5+PVKuqyujJJ5/UP/3TP5XsOHv37p2x5cjOnTslSX19ferp6ZnzsUKhkOrq6tTS0qKWlhbV1dXNa7giEbAAAAAAADDvvvCFL+j++++X40gf/fu183rsLad59acfXCNJamv7sA4fPlz0Y/T19SkajcoYM21wEg6HM793d3cXvY75RMACAAAAAMA8Gh4e1kc+8hFJ0jvevUoXXOif9xr+/C/XaMNGRydOWH30ox8t+v6zx1Rpb2/Pud7atc+GS9FotOh1zCcCFgAAAAAA5tE//uM/6tChQ1qxwujmDwfLUsOqVY5uvqVaktTe/hk99NBDRd1/XV2dwuGwgsGgmpubc643MDCQ+b2mpqaoNcw3BrkFAAAAAGCePP3009q9+28lSR/40Bpt3lK+y/J3vGeV/uPfjuuRhxP64Ac/qD179sy4zdatW/PadzAYzGvQ2uwpmrO7C81FJBJRa2urpPHWMAMDA6qrq9POnTvnZTwWAhYAAAAAAObJxz72MQ0PW23a7NGffWhNWWvx+Yz+9u+q9dbGw/r+97+vbdu2zbiNtbaoNaS7D4XDYdXV1c15P7t27VI0Gs3MJpTW2Nio2tpadXd355zNqFgIWAAAAAAAmCf33HOPJKnptWu0+bH5H3vlVDeEVuv/bhvUHw4k5v3YPT09mbFa8mk9M5OpBsnt7OxUTU2NampqNDg4WNKWLIzBAgAAAADAPFtZtTAux40xmVo+8YlP6MCBA9P+FFN6bJa2traCuge1tbWps7Mz5/L0VNHp7kOlsjAeUQAAAAAAUFbV1dXaunXrtD/F0tzcrEgkora2NrW0tBS0r5m6/tTX10uSOjo6SjpTEQELAAAAAACYNx0dHero6ChKuJKP7ABm3759JTsOAQsAAAAAAJgXPT09am5uVnt7+7yEK5K0du3azO/ZsxYVGwELAAAAAAAoub6+PjU2Nqqzs1NNTU0F7y8ajaq2tlY1NTWZwXJn0t/fX/BxcyFgAQAAAAAAJRWJRHT99ders7MzM+hstmg0qp6enlnts6enR319fYpEIurq6sq53sDAQOb3mpqaWR1jNghYAAAAAABAyUSjUdXX1+vOO+9UXV3dlOvs27dv1t130jMPhcPhKUObtOzWLbmOXwwELAAAAAAAoCSi0Wim5cp0UzF3d3fnXJ5r5p9QKKRwOKze3t5pZxLq7u6WND5dcyHTQc/EW7I9AwAAAACAZe36669XXV2dIpFIznFSIpGIOjo61NzcPGlZY2Ojurq61NDQoM7OzknL29raMoPmTqWvr0+7d+9WMBjUnj17CjuZGRCwAAAAAACAoquvr1dfX1/eXX+maoWSHlsl1xgrdXV16uvrU319vVpbWzNdgKLRqPbu3avm5mbV1dWpvb1dwWBwbieSJ7oIAQAAAACAourq6prVoLW5uu60tbUpGAyqra0t57YtLS1qb29XZ2enamtrVV1drdraWnV3d6uzs1Pd3d3TdiEqFlqwAAAAAACAompoaJC1tuD9tLS0qKWlZcb1QqFQzm5C84UWLAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAEuSV0mNaMgeKHchAAAsCwQsAAAAS5DPs11VOk13p3brmP1DucsBAGDJ85a7AAAAABSfY1bIBt6lFbGv6J7UP2qTea6MTFGPUW0u0kZne1H3CQDAYkXAAgAAsEQZU6FU4G3aFP+hhuxjRd33mI7qhH2cgAUAgJMIWAAAAJYwY3waCryq+DtOfF1KPVP8/QIAsEgxBgsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAhGwAAAAAAAAFIiABQAAAAAAoEAELAAAAAAAAAUiYAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAK5C13AQAAAAAAYGlrbW1VV1eXIpGIQqGQwuGwrrrqKrW0tBTtGF1dXWpvb59wW319fVGPMR1asAAAAAAAgJKIRCKqra1VTU2Nent7Za1VZ2enpPHQpaamRn19fQUfp76+Xrt27VJ7e7u6u7vV3d2tzs5O3XXXXaqpqVEkEin4GDMhYAEAAAAAAEUXjUZVX1+vzs5ONTU1KRgMSpLC4bA6OzvV0tKSCWAKCUAaGxu1b98+3XnnnQqFQpnbg8GgOjs7FQwGVV9fX+jpzIiABQAAAAAAFF1ra6va2tomhB7Z2traMqFLY2PjnI7R09Ojrq6uCQHOqXbu3KlIJKLW1tY5HSNfBCwAAAAAAKDo9u7dq4aGhmnX2blzpySpr69PPT09sz5GesyV6VqopGvo6OiY9f5ng4AFAAAAAAAUVV9fn6LRqIwx0wYn4XA483t3d/esj9PV1SVJOVvJpAWDQUWj0TmFOPkiYAEAAAAAAEWVPabKqTP7ZFu7dm3m92g0OqtjZIclMwUs6eXFGFA3FwIWAAAAAABQVHV1dQqHwwoGg2pubs653sDAQOb3mpqaWR0jHZbkGnslWzrIueuuu2Z1jNnwlmzPAAAAAABgWQoGg+rt7Z1xvewWJdndhfJx9OjRWdc121Yys0HAAgAAAAAANDg4qIMHD067ztatW4t6zHT3oXA4rLq6ulltO5uwJN3KJbvFTLERsAAAAAAAAN1yyy265ZZbpl3HWlu04/X09GTGatmzZ8+st59LWEILFgAAAAAAlpDEg+s18r3ZjTlSKu7xpyXF5v246bFZ2traZt09SJo4QO5CQMACAAAAAAD0iU98Qu985zvn5VjNzc2KRCJqa2tTS0vLnPaRz+C284mABQAAAAAAqLq6uuhjrEylo6NDHR0dBYUrkrRu3bq81013DSplKEPAAgAAAAAA5kVPT4+am5vV3t6upqamgvaVDkvyGVclPV5LKBQq6JjTIWABAAAAAAAl19fXp8bGRnV2dqqhoaHg/WWHJdFodNrWKekQppQBi1OyPQMAAAAAAEiKRCK6/vrrc4Yr0WhUPT09s9rn9u3bM7/PNKNQerai+vr6WR1jNghYyqSrq0v19fUTfnbv3l2UfTc3N6uxsVFdXV2ZJ5E0/oTt6+tTa2urampqJiwDAAAAAKAUotGo6uvrdeedd6qurm7Kdfbt26e+vr5Z7TcYDGZmH5ru+jZ7/JVcxy8GugiVQX19vQYGBtTZ2ZlpnhSNRrVjxw7V1NSou7u7oGZLAwMD6urqUldXV851so8NAAAAAEApRKPRTMuV6aZi7u7uztm6ZLruPzt37sx0O8oVnuzdu1eSCh7zZSYELPOssbFR+/bt0/79+yc8QYLBoDo7O1VbW6v6+nr19/eX5PgNDQ1qa2sjXAEAAAAAlNz111+vuro6RSKRnK1MIpGIOjo61NzcPGlZundGQ0ODOjs7Jy1vaGhQQ0ODOjo61NraOuW1bltbm4LBoNra2go/oWkQsMyjnp4edXV1qaWlZcb0rbW1taAHv7OzU8FgMNPEKhwOa/v27QtunnAAAAAAwNJUX1+vvr6+vLv+TBWOpHtmTNdDY8+ePZluSNk9QqLRqBobGyVJvb29sy1/1ghY5lF7e7uk6QfVSQ/2k54TfK5CoZDC4XBJ+5cBAAAAADCVrq6uWQ1am6v7UFtbm3bt2qWdO3fm3DYYDKq7u1tdXV1qbm6eMH1zfX29WlpaZlX7XBGwzKN04jZT95xgMJgZQZmABAAAAACw2DQ0NMhaW/B+Wlpa8g5I0t2FyoVZhOZJdnI3U8CSXj7bEZQBAAAAAEB5ELDMk3RYks8YKGvXrpUk3XXXXaUsCQAAAAAAFAldhObJ0aNHZ71Neq7uuYpEImptbc3sa2BgQHV1ddq5c2dBg90ePHhw2uWHDh2a874BAAAAAFiMCFjmyWzCknT4MTAwMOfj7dq1S9FoNDObUFpjY6Nqa2snjKw8W9u2bZtzXQAAAAAALEV0EZoncwlLCm3B0t3dPamlSnre8JqamoL3DwAAAAAAxtGCZZ6kx1WZD21tbdO2TmloaNDu3bvV2tqamTp6Ng4cODDt8kOHDunqq6+e9X4BAAAAAFisaMEyTwoZ82S2Zur6U19fL0nq6OiYUyuWrVu3TvuzZcuWuZQNAAAAAMCiRcAyT9atW5f3uunQo1ShTHYAs2/fvpIcAwAAAACA5YSAZZ6kw5J8Woykx2uZ6yC0M8nurpSePhoAAAAAAMwdAcs8yQ5LZgpZ0stnG7BEo1HV1taqpqZGkUgkr236+/tndQwAAAAAADAZAcs82b59e+b3mWYUSocj6bFS8tXT06O+vj5FIhF1dXXlXC/7+DU1NbM6BgAAAAAAmIyAZZ4Eg0GFw2FJmrZ1Sfb4K3V1dbM6Rnr/4XBYDQ0NOdfLPv5sjwEAAAAAACYjYJlHO3fulCR1dnbmXGfv3r2SpKamppzr5OpiFAqFFA6H1dvbO233ou7ubknj0zWnQxkAAAAAADB3BCzzqKGhQQ0NDero6MjZiqWtrU3BYFBtbW1TLm9sbFR1dbUaGxtzbt/c3Jyzhr6+Pu3evVvBYFB79uyZ/UkAAAAAAIBJvOUuYLnZs2ePotGo6uvr1d3dnWlpEo1GM6FJb29vzu3TY6vkGmOlrq5OfX19qq+vV2tra6YLUDQa1d69e9Xc3Ky6ujq1t7eXbBpoAACwOCVT/XIS31NK8RnXdXVCRqfPQ1UAACwOBCzzLBgMqru7W11dXWpubp4wfXN9fb1aWlqm3b6trU27du3KdDeaSktLixoaGtTW1qbW1lZFIhGtXbtW4XBYnZ2d047PAgAAlqdE6veKJ76iVQppvTk3r22C5rwSVwUAwOJBwFIm6e5Cs9XS0jJjCCONj8fS3t4+l9IAAMAyk0jdo1iiU+vNlbrI2SHH+Ga1/aD7gEZ1uOh1Bc35qjKbi75fAABKgYAFAABgmTOJH2utuVQXO++TMbMfou8+9zNKakSSKWJVVhvNVbrY874i7hMAgNIhYAEAAFjmrFJaqa1zClfS2we8r5Lf+4Ki1eSLfVlWbtH2BwBAqTGLEAAAAAAAQIEIWAAAAAAAAApEwAIAAAAAAFAgAhYAAAAAAIACEbAAAAAAAAAUiIAFAAAAAACgQAQsAAAAAAAABSJgAQAAAAAAKBABCwAAAAAAQIEIWAAAAAAAAApEwAIAAAAAAFAgAhYAAAAAAIACEbAAAAAAAAAUiIAFAAAAAACgQAQsAAAAAAAABSJgAQAAAAAAKBABCwAAAAAAQIEIWAAAACBXibltZ5OyskWuBgCAxYeABQAAYJlbY87TQXunDrv7ZrVdysZ1n/vvskrJ42wrUXUAACwO3nIXAAAAli9rx2RMxTwcx5WUkDGBkh9rMRr2v1Ib4ind7/6HEnqrqs2FM25jldJDqdt0Qo+qwvcOeZwz56FSAAAWLgIWAABQFolUr2KJr+s0c52O+a+XMaVpWGvtmDyxr2hET8rnfwctLaZgjFcj/tfptHiVHnZvy3s7r6pU4X8P4QoAACJgAQAAZRBP/lKx5HcVNBfoCftjbYqPaNj/ahnjKepxXDskE/uShvWMKrVBI/HPye97u7yemqIeZykwxtFx/0tVZS+RVTyvbRyzXo5ZVeLKAABYHAhYAADAvLHWan38f/So/a7OMC9XyGnQEbtPv3f3aEM8pdHAG4t4rLhs7HNKaFRXelpVqQ36nftvOpb4gqz+SD7PRUU71lJhjJHHnF7uMgAAWJQY5BYAAMwLa12tid+pR+13FHLepBpPo4wx2uhcpbOc1+gZe09Rj+faZzSip3SR06SVZqs8JqDLnD/XOnO5YokvK5HqK+rxAADA8kYLFgBAWVmbkmufkk5O8+qYTTLGN6d9ufa4rD0uSTKqkOOsz+P4cbn28Ml/OXLM5pxjgbg2KmuH5lTbOO/J8zMF7OPUmoZkbbSAPZiT5zy3rjkz3yceOWaTJKsV8e/qCfu/Ot95h05zrp2wlldVsrJKuQdP2T6/+8zapKzG5JiVk5Z5swbRdYxPFzvv00Puf+lQolOuPSGvM95dyJhqOWbFtMcBAADIhYAFAFA244OP/reG9EjmtpXaJjfw9lmP65BMPaRY4r/lZo0d4fe+VH7PdTkvzl07KDf2RY3q6cxta82livsbZIx/wrqJVJ9iia/Jyp1VXafabJ6vIf8rijLWSDIVUTzxJaU0VtB+guYCJf1vnvUMO4nU3Yoluma8Tzaaq3TCe4Getr/WaebaSeGKJHkUkFVSI/F/n7TsNHOtjvtfmjP4snZUTuzLGtIBBXxvk9dz7rT1GOPofOed8rpVOpD8fuYZ41WV/P53yuOcMe32AAAAUyFgAQCUhWuHpNh/aViHVKFKSZKVVVxPy4ntkQLvlmOq89pXIvVbjSVuV7Wp1gqzWpIUs6M6kvyhNqWkQf/kkCXlHlYq/gW5SqraXCQjj1I2pqh9UKtitykV+CMZM15XekDWlTpTVWbjFBU48sgnR34Zmazb/PKoIhOmjNln9IT9idbHRzTmf8OcW+pIUjL1e8USX9Fq1WirUyczx16/MXtM/XavqmJfkBt4W94tOOLJXymW/I62mBdoq1OXc70he0APul9UMDmsVeYqPWl/ppXuVp3uvGTCepvN87TKc5bSLZnSjtk/6GH3y9oYH9GI/7UyZuJHF9cel2Jf0ogGtdqEdCzxRQX0Zvk8l0xbvzFG53hu0Gn2WrmKy8rVI6mv6ET8c3mFNAAAAKciYAEAzAtrXa2N/1In9Kgkadg+KasRJZXUc30vVtCs07A9oZ8kvie/hpSM7ZEv8GeZkCOXZOoBjSW+qlVmtYbtkM72nC8jaX/qEVWoUgfsD3VG3KPBwIsy27j2uBLxPXLkU0IntMKMqsJU6ph7XI6VhnRAVbEvygaalEjdpVjyu9potuiofUJrpmgMk1JKMRtTXLFMa46UdRXTqKzshMzgbOc8Pebep7Vxq1jgxjndl8nUHzSW+LKqdbHGtF/3uZNbfczGRZ4r9EgqIl/sP2UDfzJj65p48jeKJb+j03SdEnpQ96R+kxUsPSullFJK6kzzGh20P9Qqc7a2mjo97H5ZT7u/kWN8cuTVec7bVGHWaaW2TtrHSrNNfq3R/W67NsSlEf/rtDb+Sx32VMnruVxu7HNKKa6w52ZVaqMecD+nw4n/ltE7ZE6GbdOpMpsyv1/u+ZDucz+rwTxDGgAAgGwELACAkrM2qcr4N/W47VOlNkgyCshqSEm9uWKHnuN7tstIXDH9Pnm3Bu1ReewRecz03TWSbr8qtE5D9qheF3irrvW/XJJ0MPWo/nHkFlXrYg3a30vKCljcQ0poSBtMrXzmiP6y6mMyxihuY2od+mNtNs/RU/YXWqmYUu4ftEbnasgeUp3/NXp54E2zOG+ruGJKKilJ+kn8e/plvEdnOa/Ro+53NdfRPlLufvm0Uqc51+o+93d6S8X7VG3WzWlfP0/8UPtTD+t85+26z/13rdAJGQVnOP4ftFrnaKNzle5xf6IX+l6qdc7Elj1Jm9B347ef/JcrVyl5VaWo/8UKpCo17D4qKamk+1udsI+rYpr6kxqWVUpGHlXEu/S4vVdKWvlsVH4FlNCwUhqTVUpJjcrII8mfc3+5eExAlzofyIQ0sm+Uz7t91vsBAADLEwELAKCkrI3LF79dz9gHJVl5NSZjxrvUvNT3OtV4Lpiwvl9+aYrWENNx5Du57bNjiPhPjqGSXjYVI4988me6D/lNQEZGzil/Hh3jl6zk0+zGKDHGKKCKzFaVpupkTbO/+J9cuzfTLeh8zyVa7QTntJ9I6kHtTz0szyxr8hi/dPJ+e6H/pdrgbM4si9kxfW70n+STT5vMtXrMfk8bzfaTXXyM/N5rJF0j1w4rGfv9tMd53P2B+t29WqkzFbODOq6ILnX+TEM6oP2pb2iDrtOQ/Lon9UlVarNG9ZQCvjdKskq5B2Z7d8gxXl3k7JDXrdKTya/JalR+7wunXNdaVyn7uGRT49s6G2c9dtB0rE2e3L+deeVZMMYnx2yb0G3OdQdlzIpJYw/ly3WPjHfXKiY7LM8sxwUCAKCcCFgAACWVSN2tIfuAJKuV3oBOJI9nusz8IP4NPeD9iT6kfy1rjSiuuxI/V3/qAV3qfFC/df9Fm8xzNex/dc5BanNJ2bgi7tclSUN6TB5V6nLPhxQ052u9Lpcjn/rdvar0NWtN8pc6biPyeq5XPPHNCYMde1U1q+Ma4+g8521yXJ8OJr8nr+fKSbMTjbfK+oaO2GenevZqxclBcrfN6nhTmWoA6GLKHjg4kfq94omvqFKbZQPvmHVIVKwBoKeyUoXflwAAzBcCFgBAiSXkyCdXcRlJ7zvnhXp36BpZa/XZP/xc3z90v1T4hDpYQBKKK6AKrTHnyCqlY94z5JtluCKNt5J5nueTmVmSfFopb9aYPOvN5erXXslIcf9b5EndrXjy61pnLtU5zo0ab6MUkD+PsVhOZYzROnOZDtpuSYkJy6yNyRe/XUftH3Sx8z6tMmfJVVIPpr6g4fjn5Pe9XV5PzayPmebaIZnYlzSsZ3S58yFVZo0TUwyD9vd6yP2SNsZHdMyzTfHkN7XWXKIT9nF5Yv9P8r9TjrM2r32lB4DeYl6oM51XFbVOSQoov4GuAQBYCAhYACBLMvWAfIlfyWq8yf86c6me8T8305Q+kbpP/sSvM9/Urneu1BHf9pzTAOdibUKr4t0asgcljY/9EPfVy+OcdnJ5XCvjP9CwPVSsU5s1Rx7FfS+Q13P+tOslUvefvE/G77P1zhU64rsqx31i5DGOPMaRjOR3SFYwPb9ZJWnmFhUp92HFkl3aZJ6jC5x3yzGl+4jji+/VMduvyzwfUrV59vVxhecvdZ/7GQ0mvqBK8z55nNNnvW9rU7KxzyuhIV3padFKU/wWHJXmWvm0Uve5/yEl79Jm83xd4LxLYxrQPal/UCK+R/7AB2ectjuR3KdY8rvaZl6mGqdx1u+DAAAsNQQsAHBSItWnsUSnRk/Oh2IlnbD7tSl2WMOBV483g09+XTE5mTVOuPu1JfaMTgRelnf3h3TT/6f0BwVUIUkatUm58YgC/nfLYzbJxP5Lh/W4/KqQyczPMvHi5dSLmalmcZnqttzLsm8xStiYRhP/pQo1yue5Ysp9JJL7NJb8moyq5DU+udbVfvcb2hI7Oqv7BChUyj0gn1bpQuePS/68q9QGDeoBjdhDEwKW8UFy/0w/TTUr5T4xp4BFimlET+oip6kk4UraBqdWG93tOqy7NGoPK6kxxXRUCQ2pSltk8/iImLKPa6W2Ea4AAHASAQtKKpl6SMbMdZ4MLAaOqc60ujiVtaNy7TF5sga/nLh8RK4dkueU2UemknKflGsHcy43MvI4NTm/cU25T8gxGyYM4OjaqFLuEyeXH1IidWe6suxZdfW0fq0VsQOK6YmTS90Jyw/pZ9oQG9IJ30Uznodk5U38VMf0hBxJ1hnvemCslWtTGot/ThWq1qiekSPJ8SRljORMCEOMHJM+a+UIX55dPhVjxpfF476TVU3cj8ncC1ZjidtlbUx+73NOPgaOHLNG8eTPFUt+T5Lk9aYU8BilXKvhxPh9sj42rCHfhUrZp3LeG0l3+jEbkm5Erj0x7TquPTrtcklKaERK3f/sNicf95kk3QdODtxZvIFL06xcJbJqmg3XHilZr6pk6uEZ37fH75OF997uyDMvod5x/0t1etyrh90vKakRnem88tkaitRy5tSBlkuhwqyX11ZqSI/rrtRHlNCQ1phzlPDfOONU3WlGXsIVAABOImBBScWS3yh3CZgHfs/rFfA9Z8Jtro0qGdujmAYV8L5Jfm/txOXugBLxPYrrmALeG+X3Xp5z/7HEbxRPzfxcqtIWmcB7Jg1GGUv8VPHU97VSZ8oG3iFjqpRyH9dY/D/lKjZhXUdGN11Yr7NXrNNIKq6P33+HovERDZ8MV4yM/uL8F+uMqmoNJ+O69YEfaCQZ1xH1SYk+5cOcnPtlhdevt551tRxjdNfRx7Rv4DFZJTWmo/IroLjGtMZXoZdtuUgJd7z7zUPHn1Y0Maorq7fJysq1NvP/NCvJta5Sp8w84lqrHzw1/Ywtk2sdH8XCJn+spLNJsfgXZeTI73urYsk75JVPAY+Rz/HqiuA2PRMb0mB0RJJ0VHfLJnolSVVaoRHF5Xc8+vdHfqpfHOnXcDKmPwwd0fmrJo4vUWVW6riNSnIUT/4gz0pPk5XViqzHvkJVMjJa44zqqHtEStx2yrn5lNR+rTATWxlUmRWqMk9LVhpLdJ5c9xKNalgrCgyMT7jH5DcB+bVm/LE+pabZqNTZmRmSRuywVs8wtXIuMcXklU8+s0qSyft922+emwkBjrkDqswKXIbsCXlN7tmbSsGYFYopqqfcX2mz87wSH8vRMf/1Oiu+QhH3a0raYYWcBhlj9Lj7/ZPrrJxhL7n45FFAT9gfq9peLK+pKF7hp/Cb1Ura8ddrSjE5Cijme8WimrnnJb7/1I8S7yl3GQAASCJgARa9yZ088llrulunahGRbt8wsWWHJKVkFU99U1YjqvC9WNL4dJ3xeIcSGpIkxZJdsnZEAd/4VKcp9ynF4h1KafTk8q/K2rFJIY0kxRI/UTw1fpHtk5MuY9IJpKyrER1SIPYZeQNNckxQ1lpVx36uAxq/4BnSY6qMtcv6rtNY4muSUvIaR7IeyYwHGP945Zv0/A3PDk75uRXr9K7//S+dSIzJSvr4Za/Ry7c821Ll7JXr9N7ffFnxVPKUdi25OUaq8gS05+q36pxVGyRJ7zjrOfrYfd/T9w7dr1VmtZorWnS7+Qc9PjKo9YGVuvGMWnX84RfaN/i4JGlbVbV2Xf56eZ38vq13rdXH7x9vbRJQZVYnqGfZk49v+m5NKnHy3z7Js11j8c/JyJWV0Vji85nt/Y5XrzrtYv3F+S9R0nX12p99Vmt8leofekbrzWZZWT1jn9ar/DdojVOtR7y/l4akSuPRNRUX62J75YTH8kX+l+ve5G903B5Thc6ddC5GHnnklyOfjBy5Sulp+1OFvc/Tpd7tmfVWO0G93P8mfT/+NZ1j3qwKs37CfuLmJzqY2q83VLx9wu1vCrxL/zX2b6oxjdpgwkpqRA/bf9NZzrm6yjf1dL2SlLRJ9aceVNyOD8iakqu4xhSzY0qdHJ/m7uSvdZH3SlXYq7XWXCIVMOuKRxVylZQjj746tkfBUwYlXWlW62LvlTrXc9G0YcdTqYPa7JyuVeZMvdDzr5mxdGbiVdXJi3KP/n307yctv8Bz6exOqEA+z3O0NjWoB9zPKalRbXWuL+nxjDE6GrhGgaSrx5PfVcIdlk+r9Lj9ns40r9ZR58I57tcnv/8dOh7/ku5N/aMu8/yFfHMOa6a31dRps+caSdKYPar73M8oFf+85H9XXi0LFwpCFgDAQkHAgiWpwuvIGCnlWqXc3Be9VpK1p15mLi6n1j71uczlDPPbc1oi9UN5Ur0ycjSqQUnJCcvjqe/JSd0lI6NRHZVOuYiLp74pJ/XLCZ1arFzF9Yyk8evvhNyJZUxRUkyDSsT+SRVaq5QSOqBnu484MhrVESmxN3ObcawSqYRkpdYLXzohXJGkM1asVftVb1HrPd/Uu0PPnRCuSNIFqzfr32pv0If6vqYTybFp76O0Vd4KffaqP8qEK5LkdTz66KWv1oaKVfri/l/r655P6fGh8S5Rn3ywRwk3pT2RX2bW//Hhh/WZR36qPz//xXkd8z8jv9J3nvjdyftoNK9tnpVSKvVjGUmek10BUnY8TnKVkowv01rG6zh68abz9K2Dv9XLfG/UqIYlSeudzXqe7yUyxkwbUkiS3/j1nsoPqWvsCxpVdMIya61SSiquuMbss9PwXuwN648qdkzqqlDnf60eTT2iB1JfnfR88cijHZV/rfXOxBY0V/qeqz+kHtCvEp3qt+MtWFaZNXpnxZ/Jk6P7x+OpfrWP/INGToaK2bzyyXOyQ4/XeBVzr1GFkXxmdlMHT8WRV/X+1+nR1CMasxMf1wOp/fplomd8Nh8n90wsR90jOt3USR5NmKEnH15V6krPTsVsdNKyVTpzVvsqlDGOTvhfoW3xSj3i/rcOuneOdx1UhS7zfPDkYLnF5/c+X8ZU6KnE12XlKuB9pQa8z59m9KOZeZ2QjP+PNRr/ov439TfyaTxg2ea8TKc5LypO4RoPidL79pmVCpubdW/qnxSP75ET+CuZEraeKbaX+P6z3CUAmAdjdqDcJQDTImDBknPa6gr98gMv1Loq/8wrZ7HWKjuLsdYqZa1Sp3zBbGVlc2QN9zxxTK/8z18/W8sGj376nuvk93oy+5y4L2Uah5hTb8txLJtVa8odr9G14y0UXNee7B5iTx5v4vrZ7U+s1fg+rH12ubWZfWavZzV+LI9j5HOMvJ7xapMpq//7wwf1mwNRSdKYph4LI91WYkxH5ry8Zt0Ktbz4HHkdR9Y+eybpUh94+oQ+9fN+SZKruEb1tDwn3+IcGe286GXqPNCnR04czmx7zroV+sPR4cxxrqyeekDJc1dt1Ndf2DTlMkm6onqb7nzJX0zRvudZ1kpxN6mxVEJVXr8qPJNbFBhj9GfnXacVXr8+88jPMrX7HI82V6zO/DvdUubcVfl/w3zeqo0Tts1XpVbIbwIasse1zZytR+0jkqQN2qJn9JS88qlm5Xr1Djyubx28V4dGj+lrB+7W89aHVDf6WjlzHA+j2lmnHVV/NadtsznG0Xsr/0oD9plJyypNpVbkuOh+Y+DtusQbVuJkiLPNE5o2pDjkHtSIhrTd839VoXRLEme8pU0JZ7ORpLj7Kp02xdX8FsdqWE/oqL1XCTs5+Ek7zTg6zbluzsdfbc7O2RwuZWNTLygRY4wG/depwl2jpPuUrD2hpHuPYjoqfwnG0UnzeWpltEZWcfk8+YzFNDOPs1XG36REqlcJuTKp3+mYfUSnqXgBy6kCplrned6uu1O3ymePybOIAhYAABYCAhaU1O1v264zgpXyOCYTAgS8jiq9HlX6PVrh8yjgdRbEAHnGGHkmlGFm/QJ5QWidDn3kZfr8XY/rrOoqverCTQvi3Erpu+95rt74xd/ol48OTLh093uMvvHO5+iy01brVZ/7tX536Pgpyx19451X68JNK/XSjv9R/9HhKS/9jaSLNq3S9957jaorJ4YS1lqNJlwNx5N6zhnVchzpkz8dD1msrKxJyVjpYye79bx8y0W66Z5v6NdH92vnRS/T+sBK/Xb1E7p+0/m6cPXmgh4rxzw73OyUjOR1/Kryzhz8vSf0PA0n4/ri/l/L63j06dobVLv2DPkcj1ruGR8fo7nmBXrFaRfnXd+LNp6r3Ve8Qa33flMBxyOf45Vjnm0vZGTkJirTpY6fk29Uxhgl40YbnS2q8VygRxPjAcuOFX+lz4/+i17uf6PGRkb1lbEOffz+O7TC49erT7tULzj2oTmHK8XmGEfrzey6O3iMVxdOMy5QLiu1dcHMnGSM0Upt1UqztdylzCtjjHyesHye8cGxk/F75uW4Xs85Rd+n42xQwHn5+O+p3INFF9P4CFEAAGAuCFhQUpdtWa3T18yuyflit8Lv1QeeHyp3GSWRbuGSbvniWqt4yurTr79M7+28W31PHMus+6+vv0xXnr5GVT6Pbn/bdt142z799tDxzPK6czfo148P6Gf7j+qaM6sntCSZcExJlT6P3vXVPh0bS2hgJK7B0YRGE67ipzYvyvIn575Ijhydv3qjrlk//nhUev36l9pGPTV6XKdXBSVJ126cPMbHQvCBc6/VhsBKXbh6sy6vHr9Avm7Tedp95Ru0f+io3nX2c2e9z+s2naf2q/5IPz38ByXcpGJuKtOqajgV10PHn9bjI+NNb7dVVeu8VePHPZ4Y07HEqH4b/7EkaX1gpTY4m9WyYldm35d4axVQYLwLzXFNmzUBAAAASxEBC7BAuK5VLDUeGsSTEzty+DyO/Ceb18SS4+s8MxzX0ydiemY4rtFESqPJlOInlyVSVknXVdK1Gku6GhxJaGA0rgs2rNRfXnvOtN2njgzF9LunjuuJY2N66sSYDkRH9cDhIT14+ISOjSVzbneq5q/dq+av3Tvlskqfo189NqC7DgzK53FU6fPoks2rtNLv1YqAV+6x6pMtQk5KjP9s8wZ0WbBKazZUKuDxyu94FXC8E7rcJN2UVvsqdGnw9CmP7TFOJlxZyIwxevOZ2yfdft3G83RdAWNPXlG9TVfk6AolSb840q+kTem6jedNufzPe/dqKLpu0u1VTMcOAACAZY6ABZgHTx4f08e7H9LTQzH93csv1IWbVinlWv3bLyP65E//oBOxpKYZizcvlT5HAY8jr8eRzzHyeRx5PUYBj6PqSr/WVHr1hX0H9KW+g/pc4xU6q7pKP9t/VL998riOjSUUHUvoocNDeuL4swO1rq3yaeuaSl2wcaW2By7TWn/VyW4lRh4z3rXLZxyt8AZU5fXL73jkOdk9Ihof0dH4iMZSCa30BrTC69c6/wptrlyjVd7Aku86Nd+stUW5T19wyiC/0njXvv3Dz+inhx/Rg8ef0lZNDliWm+NuVHclfn5ydiCrB1O/K3dJC1oy8W25ie9Puj09bpGZc5On8e0S8duUmuIjzbMzIs1t/+m64rHPlr3rTEJDqlTpZ/YZtYdP/pbPfWaU0HEl7eisB0gGAGApImABZpByrUYSKcWSKY0lXMVSrmJJd8JAsqmTXWeeHXjVajSR0vGxpH576Lj+9ZcRVfo8Clb69MLP/EIfelGNfh45qv95fEDvueoMbRy6UD7HI69x5He88jqOnJMfbq3GW2UkT87a4nc88hmPgv5KrQ+sVLW/SgHHm9fF9cDmYf3jodv1pv+6S5LkdYwu2rRK66r8Wl3h1UvWXqaLzz5N56/apM2Vq+VzPCW4RyFJSdfVpx/+sR46/rQkyeM4OrNqrc5dtVGbK1YrbpOKp1IaiA/r8NgJHY0PK+m6cmUVSyV0IjmmY4kxnUiM6UQypoSb1NaqatWs3KBqf5WGEjENp2LyGY+qvH5VenyZAZATblLDybhGUvHx2YBOGQA5zbVWz8SG9NTYcSWtq0qPT9esD+nSE6+a53urMMfcQR1xD0263Wf8Ot05S95ZDkL7jHtYnx3ZpSF7XIGTg4CuMxt1nvO2BTP+ykLhMQFd4LxLYxrMuY4jr4Lm/Dntv1IbdK7zR0poJOc6XlVoheY2Ds1qE1KN06iU4jOvPA82mHBJ93/Y3acH3c9rnblMsVOmNZ+Kz7NdsdTvdE/qH3W554Mlm04aAIDFgoAFi8ZwPKmHjgxlWnqMt8zwaXWFV6OJlAZHEzo2ltBI3NVYMqWRREoj8fH/p8eZcIxRhXe8S0qlz6MKn0dex+iJY2N68viooqMJjSXHu+g8eWJMjxwZ1uPRkYJal/g8Rs3PPUtvCrxOfserr8W/oX/4ySPauqZS7dvfonD1GVLuyUmKam1ghT525rv0PP/vFfRV6orqrVrhDczPwZFhrdUtv/22fnz4YV3muVpGjlauO6regcf19YN3T5jFye94tDGwSusCK+V3PDLGjLcUOnGWTjdVqjIrVOldIY88Ohw/pOOJB3VwZFCrvBVa4fUr5iY1ODKi0VRCxox/I+9zPFrpDWjs2EZ55JE5+d+pvDI616zWc/wbtN7ZrBrP+fKN+KUFkLu51tVdyZ8rNs0sNSN2SA8k79HjbiTnOgFV6FzvxTrNOSMzm5WrpJI2ebJ1yrj1ziad4QnJtVZfHPu0AqpQredjqsjjInS52+JMPy13IYxxtNXUlWz/HhPQGeblJdv/fIraRzRkH8+5PGajetzeoU3mag37X5NXWOhxtingf6/G4l9QX+pWne5cp2IPwFRtLtQKc9qctj1uIzpu9xe1nrnyaaU2Oc8pdxkAgBIjYMG8sNbqyeNjihwd0RPHR/XksTEdG0tmpiEeTaY0FEvpRCyhZ4bjOjIcl5G0LVipLasq9NCRId3z5DEl55B0+D2OnJOf91LWKpGaeh9rq3yqrvSrwuvI73W0aWVAL1hzibZtqdZKb0ABZ3zMD7/HI7/jzbQwkcbH9fAYM2HckAqPTyu8Aa30Bia0BHlLZaNe9IJBrfWvyGtGmWLzGEevOu2SeT8unvX4yKB6nn5Qb67Yoef4rh2/cUSSIyVWxDVkT8gnn7zGp4AqxlsnpaSs630pV2v8xMn/J0/+ZEs/9dP7WsQt+p9wH9NXx/bIo4mvxWxe+XSe9xKt0EvGpxI+Zb2kRjRof68Re79+k/hp5nZHHnmNLxM+JWxcz9inM618TnfO1Fnmg/Kb1SU7P6DYHk59SSM6JJMzITXaaq5X1P/iWbXE8jinyfh3yMa/on63qzjFnuQqqY1muy72vG9O2z+S+oqOa7+cMn/ctXJllVK1uUB+s6astQAASouABSX1mv/8tWSMnjw2ppHEs1eHwUqfghU+Oc74N+qVPkcr/V6tDHhVnThNoRVVcmU17D+oB48M6ey1VapbdbUuXLNF/pNhRSyV1InkmE4kYqrweLXGV6mVvoAqPT4FHJ8qPF5VeHyZMUHSUtZVLJVUzE0qlkoqaVNaH1iZGSR1PmytmqcmK1iQXDs++9FGZ8ukZT7jV7VhjJOZWI3fh2HPLVppcg/aK0nTDZ0xHry8SmfO0ConZeMa0VMas8+o2lzIeBNYdKxceT3PU4Uvdxe/Y5pb+xPH2SBV/LmKPdS1L/blzGt9LqysfJ6rVOF7QxGrmr1k6iGNJr5Q0LkAABYHAhaU1MWBc7TSF9CGdSt1ZtU6bauq1qaKVaosQ8uNNI9xVOX1q0rlqwELl7VW+4ePKumOB4JnrFg7IXxLuq4G48PaULFqwjb3Rg/q4jWnTWit1D90RPcfO6QTiTENJ+OZFhB/OHFEkso+aOZCYK3Vg6nf6pHk75VuYlNpVijorNVqUy3PKd+2W7k66D6m+5N9J2+Zn8GSPcavVTpDq8wZ83I8AAAALD4ELCippnNfoE0VNKNfTo7FR/Vvj/xEbznzKp29cnx8CtdafffJ3ym0Yr0uCT7bl/7ewYP6wVO/zwwY/IotF+vy6mcHo/zVkYgeHxnQjWfUZgbx/f2xQ/rC/l/rz869TttWjLcEOjJ2Qh/+3Xf0xEhUrqSgr1K7Ln+dzlixVpI0EBvW7ge69fItF+m6TePTD6esq3956MdyrasPnn+9vI4ja63+/vff1zcOPju99Laqav379ht1WmVQo8m4brrnG7pr4DF97NJX62VbLpJrrf7hgW51HujTNevO1u4r3qBKr18/Ofyw/s+931LcTanyZHcxz8lzCPqq9Cr/DdrqnFWaB6HIrLUassflnvz2Na6Yhu2Qhu2JzDeyMRvTYfeQDrtPasxOHnDUZ/za4GzRRmeLVpwcCHPIPa6fJ7r1pPu4qs06eTUeZI1oSMN2KGc9PvlV4zlf5zhv1grNbWwGAAAAoNgIWAAUjbVWn3ywR3ccul8/evphfbr2Bm2rqtbf3Pst/c/R/Qo4Xt16+ev1wo3n6KeHH9HOe7+pdf4VWu2r1FByTN86+Ft9/LLXqG7zBfrOE7/Vx++7Q66sIkPPqPWil+qBY0/pA723azQV1z2DB/Qv4Ru0yhfQn+z7qlLW6lL3Ojly9GDqZ/qz3tvVcfVbZa3Vn+y7XU+ORvWjpx/SLZe8Qq/YcrFu+e239ZPDD0syemrsuP7ustfpi/t/rW8cvFdvCLxdZ3nOUdzG9C37Gf3x/96mXZe/Xp9++Md65MRhPXfd2brlt9/W8cSYfht9Qt8/dL+u871C/xvt0Z/23q76zRfonx/6kV688XzVD7fIb6ZoLTWLsYWTNqlfJnoUn2ZA15msMKt0je/Fs5rK2bWueuLf1l2Jn+sZ+/SM668ya7TR2aLj7uSOAmuduO5J/K8G7TMTZiy6wHOpNjo3KWjOn1BbysYV17Epm9RXaK0c45uvxisAAABAXghYABTNVx/fpzsO3a83Bt6hRyp69P67vqLTKtfoSOyE/rjyQ4qs+v/01/d8XW/ceoW+fvBuXbvxPL1i+GZ55VPSk9Sdm3dr573f1E8OX6TvH/q93rD1cvmPXKXOg5/TU2PHdW/0CdWsXK/XJv5K3/R+Uu+7679V6fWryuPXe52PqNo33mLmOe516nA/onf9+r/knByA+KaqNj1Y/WV97L7v6cuP3qXHhwf0zsAH5RhHX3rmX/TmX31OB0YG9Sr/DXqR/2WZc9rhfkK3eT6q9/7mNq3xVag5cIu2jZ2trWf8i9oe+KE8xujtFR/Qlb7n6orUc9Vx4u/02+gTev3pl+uFx/5KThGm7X3CfUzfjN2mKq2Ux8x+Cp+ETWhMI7rUW6tVsxhgccA+ozviXbrUW6tN7hvlOdmtzpFfPrNSPq2QOflnxJH32XFJcpR4mmc8OElpPCgy8shnqqYMSjzGr0ptyP8kAQAAgDIjYAEwLddOnnUpZV09ExvSU2PHFY2Pdwd5euyE/unBH+ntZ12t8NGX6urUi/TN4N/p98cOqcn/YZ3uOVMXjlyhlVs+qc4DfXrNaZfq2uN/nQkMvMar+hM3a+W2f1LXgbv1rrOfq8uO/KmM36jKrNBtR/9NF6/ZohuT/1cVTqXelvqYvl399zoydkJvs/9Xq51gpr61znq9X3+nLu8ujaYSepv9sILOWm2I/pXWnP3v6jxwt/644q91vvdSSdIO3az/Tn5Kr/A3qC7w2gnnutoJ6t32E+r2fUtX+V6kLZ7xLkzPGfigEoFurTHVusx3lSTpTE+N/qLiE9qfekRXH3vRrFqLTCfd4uNiz01aabbOsPZkz7j36nfupzNdfGZzZEnyuC/ReueCWR93Kh7jzwQ1AAAAwFJCwAIgp58dfkR/fffX5Sq/6bGv33S+rnjmA5KRAqZCjbGPKlERV8BUSJI8xqPrjt+kc6r2a+vxsye17nCMo+cN/qXOW/G0NjyzOdOy4TLfVdrp+ZRWJVfLa8bH6QiYCjWMfVRWVo4zuZXIGqda70m1TVhujNHlz3xAl1SkJrQEqfFeoFs87TkDkUqzQq+teMuE24wxeqH/pZl/P+MeVsyOSpK2OmfpSffxCev7jF8bzOaihS4AkK8xe1RxHZeTc4pmAABQDAQsAHI6NHpcxhi9OfDeCbcbGa02QVWbdVphVmdCg6rhFRMCBMc4CqhiwraOcXSGpybnMY0x2mA2T7q92pk8dbExRmaagThyLZ+qm81cg48T7jF9K/bf6k3+csZ1X+R7uV4XeEtRug0BQD6G7SHdm/pHeVUpj+c55S4HAIAljYAFWIYSbiozDfFUktbV/uGjuu/Yk/IaR8/xXTuP1c2fSPIh3Z+6e87bJ21S+xI/l2R0vvMOrTRn5lw3ah/SzxOdGrPDuqHivbMaS2WqgV7n4pgd0BpV571+0iaLclwAxWOt1QH7AyXsiZnXlfSU/YX8Wi0F3inHMKsfAAClRMCCBcO1VinrnmxvYGTMeEsJKytrJVduZjwQ11q51lXCukq6KblZ6yRcVwk3qaR1M+umpX+z1srKKnXymGOphEZTCY2lEkq4KSVsKrOdlZV7cv30rmy6BrlKua7ck+u41ippU0paV6u9FdpcuVobAqskSUmbUiyV1EgqruFkfML+7cmaZuJ1HK30BrTCG1AsldTxxJhGUvEJs7KcKuGmNBgf0UB8RIfHTujQ6DEdjQ/n9Zh4jKNr1p8tjeW1+qLzk8Qdeij5O60x+YcOp7rUt11e9w3ym1XTrrfanKWA1mhf8j81NDqkN1e8V6ucmQecjduYvhP7qipVpcAswpFsVWaTVpiV+ueRv9UFnst0kfcKGTmycnXEfVqH3Md11D0yKcgZtaOqUJWqzKY5HRdA8cUVVb/bKb+C8uQxHdlqU6OY/7UypmoeqgMAYHkjYEFJ/fH/3iaPMc8GEicDiISbyoQb6dvyG+VjfniNI09WNw7HGDnGmdDZxHPyNkdGXseRkZFjTGbb44mxnEGG3/HIm9WCwUiSma6zy7iEm1LMfbZVgc94tMLrlzNN9xaPcVTtr9Ja/wpVDddou7NB1RXr5JMv5zZGjjY4m7XZOV3esdzrLX5W53gu1CbzZ4XsIu/pgjc5z5VXK9Tv/j/dOtyqN1S8TbXe5+fsnpS0SX1h9NN6IvWYLvH8lXxm8vTH+agym1Xr/IMO29/ohP2xvhG7TTpZ9lqzQVs827RSZ8qcMj7DGsfRZvM8BQoIoAAUVzpQ9/heL6/n/BnXj4sZzQEAmC8ELCipmtTVqjCV4+GDxkMIj7zyeDxy5Mm6zSOP8WbGyzi1RYaZ8N940GHGJ4aVY9L7Gd+XV155jffkEZ2cY3SklzvGkV9+BUyFfArII09xBiINSAl/XCfssZNVe+Q1XlWoUh4z95de0iYV06h88ssnf/61xiVVzvmwKJJ1zqVaZT+uEXO7vjz2H/JW+HSFb+pxEX6R+KEeTt2nS5wPao3JPW5NPjzGry3mBZJeoHOnGAJmHWNfAgAAAAUhYEFJ1flfo+AUg5MuFz7j11qzoaj79BqvvJq+OwoWNr9ZLb92yK+7dcwO5lxvyJ5Q0KzTWueieawOAAAAwFwwlQWAZYtBXAEAAAAUCwELgGXpJ/Hv6YHUvTrLc265SwEAAACwBNBFCMC8iNuYhvKYVnQ+/DrxY3XHv6U6/2s0knqZijHkDgAAAIDljYAFwLz47MitetR9pNxlZNQ4jUq5LydcAQAAAFAUBCwA5sWIhrTB1Oo0c225S5HfrNZKs63cZQAAAABYQghYAOQtZZM6ZqMasyPa7GyVY6Yfxilu43okdb8Ou4c05B7XOnOp1joXz1O1C5+V1fdinXoy9fiUy3+T/FnRZ6ECgMUkpfictrPWyp3DtsnUI0qkeud0zNy1HC/q/gAACxcBC7AAnXCP6biNSpIqzQqtddbntU1KybymxX409QedcI9JktY4QZ3hqZl2/VE7rC+M/qseSd0vKytJ2u59gd5csUMe45lymyH3hDpGd+uAu19+BbTB2axqEa5ku8r3Qj2ZelyH3UNTLj/LOVfneS9Wwp3nwgBgAag2F6rf7dSj7nd0pnm1TJ59Oq119bB7m4b1hCqcF+V9vETqHsUSXarSZvnMqrmWPYWA/OYq+VTMfQIAFiICFpTUR4f/otwlFMwnn94QeIeu8b84c9tvE3cpYCp1vveSabe9O/FrfXVsj+KKSZK2ONu0o/KvVD1NYPJA8l59fvRflMj65u31gbfpWv/Lc27zZOpx/cdom5I2oaaqm3LOjGOtVXf8m7oj/rUJt7828Ed6sf9VU25zwj2m9tHdGnSf0bnOW1WhDYrpqPqSX9bY2KjeUfGn8hn/hG2i7lH9x2ibhu2Qwp7/o9U6W2aG1i7LUcC+RWfPcLcs5HAlZgeV0HBe6/q1Rv6iXrAAWOqe9l0pf+qY9ie/qYQZ1hbnBXlsZfWY+//psN2nCm+DfJ7L8jpWPPk/iiW/o83meTrfeaecHF8eFCplExrV0yXZNxaWgKrlMyvKXQaAeUbAgpIKmYZF/8dljRPR3tjnFDABXem9Rj3xb+t78U5JUr3/dXqFv2HKb9V+Ff+RumKf1+XeqzXqXiDJ6oi9Q58e+bjeX9Wqjc5pk7a5O/Fr3Tb2WV3kvVwB+wpJRqucPn0zdptG7bBe5n/jpGPtTz2sPSOf1FpngwJOhT47cqveXflBXeC9dMJ6rnX1rdh/62eJ7+ts5/U6zVwnSary/Fjfjn1FI3ZIr/TfkNn/sD2hSPJhfSf2FcU0pos9LVpptmb2F9BaPZD8jHYN3zSp1cxTqYOqMJW62GlVldk8y3sci0HKxvU/qZtllcxr/YCq9TzvJ0tcFYClxBijgPfFMqrQweS3dTDVnd928qrC91b5PPm1mnTtoGLJb+t08xKd6/xRSb8Q6Hf36gn7o5LtHwvHKp2l7d4Pl7sMAPOMgAUltcl5jirM2nKXURBrX6har6uvju3R7733qDf5K53tvF5GXnXHuzRkj+tib1iSlLAJDdljOuQe1K8Sd+qFvpfK4zaq2hn/sLbOXqZ++0/615FP6Grfi2Rk5FpXoxrRkD2u+5N9qvU+XyvsO5799syerZBTqR/Ev6YHk7+VkaOE4pmuOkfcp7TNc7ZO1wfGP1R62vX/Rj+pTc7pz56DXMVtXAP2iM5z3qrTnZdkliXd16rGCagnvld3J/5XXuNV0iZ11B6WJG12tuoic7MqTxkLZJ1zqS41f6Un3Z9p1LUTllWb03Sm86pF/9gjN6ukrJLye18mrxOadt1E6l4lU33zVBmApcbvvUZe5zzZPFvMGbNajgnmvX9rx1uZbnKuKXlry6RGtVLb5PpfXdLjoLziyf9RMkf3XwBLGwELMANjjFbYt+s05yn1Jn+lc523auvJgMKnKv1v4jb9T+LHmfUdebTKrNYr/Y0aSb1sQouTgKnWuWrRUfOfujfxm/H9y6jKrFCVWaGznNdppX3VpA94ZzqvVEDVesbeI4/8cuSX0fg6p5srtFUvl8cEJEkb7Ps15vxAsZNjuIzXZFQpR5c4F2q9c/mkczzDeZkqtUFR+7BkJb8cbXS2ao05TxVal7Pf+xpzjtZ4zpnDvYqlwjHr5HHOmHadlPu4FnBPJwCLgOOskzTzGGOLgUcVMjO8b2JxM+Z+SQQswHJEwALkwWN82qYPar3nsFabszK3n+Zcq43mqswsB4688mqFjDEadaWpcgmfWanN+nNtnqp79zTj9212rtFmXTNjrY7x6kwz9Xgq09nghLVB4VlvBwAAAAAgYAHy5jNV8umsSbd7TZW8qpr/ggAAAAAACwbTegAAAAAAABSIgAUAAAAAAKBABCwAAAAAAAAFImABAAAAAAAoEIPcAgAAYEFLuQdl7fCk2x3ndDlmZebf1sbl2qg8zsb5LA8AAEkELACAWbLW6oDtkSQZZtAC5o21VgfdOyVJxqwoczXzw1qrDYnfaL/7zSmX+xWU1/8ueZxNcu2wnNhtGtFjqvC+UT7v9ryOYUylJKMn3B9plXOmHOMp3glkGbZPaND+XqtNjWIlOQIAoNwIWAAAebPW1R/cvTpou+X3vlQeJ1TukoBlwVpXD7u36Un7UwW8r5LH2VrukkrOWlfB+E+033brbOf12mJeMGF5UmO6P/UfisX3yOt7k5xEt8Y0rI3mah1Ofk1Wo/J7XzjjcRyzRhW+G3Q40aWUO6aLnGZ5jK+o53LcRnRv6p8VULVG/S+njz4ALFEELACwRD2Q+pyG7IGi7jOluEZ1WAHva+X3XlPUfWdL2hH9NvVppTRWsmMsRI58utjzflWYteUuZVFI2jH9LvVpJTVS7lJKLqWYRnVEFd4G+by15S5nXqyL/1qP2R6d57xVpzsvmbQ8IOlKT4vuTf2LTiT+Sz6tVthzsyq1UQG3WgeS35NRZV4tWXyeK2RUoYHEf+t/U/9HPhW3hdCIntZKnSE38JaTLWYAAEsRAQsALFFHbJ9kNslxTivqfiudl8nrubCo+zzVmAZ0TI/I61wiY1aV9FgLhbVjSrp3a8Q+RcCSp7iiiuoheZ2LZczqcpdTcpXOq+T1nFfuMubNCe3XenP5lOFKms+s0MVOk37ttiqpYQ3bJ+Q3q3VCj8qRT8bJ/7Xk9VwgY96rROqeonfh8epcud5rZYy/yHsGACwkBCwAsIR5PZfI733BzCsuUH7vC+Vxzih3GfPCdQeVjN9d7jIWJZ/3BfI6Z5W7DJSA0czjoThm/ONspTboPvczCqhaSY0q4H+3vM7Zszqexzlj2bznAACKjy6gAAAAWLQ8qpBHlRrRU5KsYhqQ49k+63AFAIBC0YIFAAAAi5bXVOgFnn+Wq6Qkq0dT39GB1A90ulutZ/zPlTGm3CUCAJYJAhYAAAAsao7xyjn5sfYc7w3yuSsVcb+mQEolHZAbAIBsdBECAADAknKm80qt1Jly7VPlLgUAsIzQggUAlixb7gKyLKRasFRYnleLWsp9Win3sdzL7YBWmC1z3r/he0QAwDwjYAGAJcZaq0ftd5RSTD4TLHc5MiaolGJ61P2OzjSvnnE8hJRNaL/7DRl5ls0UzZJkTKU8Cugx97tabc6W11SWu6QFzbUJ7Xe/LiNHjpbP82SpSKYeVizxZbmKS8r9nrBeV8xbTUCxOGaNRnVYT7g/0enOdeUuB8A8ImABgCXEWld/cG/XQdsjv/el8joXl7skeZ2L5fe+VPuT31TCDOsc5wYZM/U3y0k7qt+5/6bjtl8VvrfJMdXzXG35GFOhgP/dGor/l+5O/YMu93xI/mUUMM1G0o7pPvffdcw+PP48cdaVuyTMQiL1O8USt6vaXKRLnPfLYwLlLgkoKp/nuVqfGtHD7peU1IjOdF5Z7pIAzBMCFgBl85T7K/3BvZ1m/kXlKqkxBbyvk9/73HIXI0kyxijgfbGMKnQw+R09lfqFcg0BZpWU5Cjgf/eynGLV45wpv/+9ise/oP9JtciRr9wlLUjjzxOjgO/d8npC5S4Hs5Byn9BY4ivaaK7Whc575Bg+imLpMcbRMf/1Oiu+QhH3a3rcvUPTtdRC/qzccpcATIu/agDKZtg+ISsrx/vCcpeypFSa0+X1nFPuMibxe6+RYzYoZZ+Ydj2vc6E8zsZ5qmrh8ThbZPzvk3F/R/g4Da9zgTzOpnKXgVly7YAkq/OdtxGuYEkzxuho4BpVpNbItUfKXc6SYe2YUqmflLsMICf+sgEoK59WyOu9ttxlYJ54PefIq4UX/iw0jlMtv/OicpcBlBDf5mN58HkuKncJS4prjylBwIIFjOHVAQAAAAAACkTAAgAAAAAASq6xsVG7d+8u2v6am5vV2Niorq4uRSKRzO3RaFR9fX1qbW1VTU3NhGWlRBchAAAAAABQdNFoVJFIRLfffrs6OjoUjUYVChVvgPqBgQF1dXWpq6sr5zqdnZ1FPeZ0aMECAAAAAACKyhijs88+O9OKZL5CjrSGhgb19/eroaFh3o5JCxYAAAAAAFBU1k6cDbGzs7Mkx+ns7FQwGFRfX58kKRwOa/v27QoGgyU53nQIWAAAAAAAwKIUCoUUDodVV1dX7lIIWAAAAPAsa5OS7IzrzU2yRPsFAKD8CFgAlIVrEzquR2V4GwKABSOevEvx5LdlSxqEGBmGAQQALEFc2QCYdykb0+/cf9Nx+wcFfG8pdzkAAEnx5M8US96hLeYFqjYXluw4fq2RxwRKtn8AAMqFgAVYIE7Yx/SU+6tylzEvjtlHNKKnFPC9S15PTbnLAYBlb338N9rv3qEzzat1tvN6GWPKXVKGtVaP2+8rbqOTlm10rtIac878FwUAS9Tg4KAOHjw47Tpbt26dp2ryF4lE1NraKml8auiBgQHV1dVp586d8zrYLQELsEAccn+uQ/bnqtSmcpdSch4FFPD/sTzOtnKXAgCQdMj9mTab5yvkeUO5S5kkqVFF3C4FtFZeVWZuH9URJdwhrfEQsABAsdxyyy265ZZbpl3n1NmBym3Xrl2KRqOZ2YTSGhsbVVtbq+7u7nmbIpqABVhAqrRFpuJPyl1GyVlJnnIXAQCYIKBguUuYlvG9XI7n0sy/V419vozVAEDhjkS26GF76cwrzoOxobskHS93GXPW3d096bbOzk7V1NSopqZGg4OD89KShRHGAAAAsOg4xqcT9nEl7NCkZSP2aY3piPguEQBm5xOf+IQOHDgw7c9C0tbWps7OzpzLGxoaJCnTfajUCFgAAACw6MR8L1ZCx3V3qk0xO5i5fcge0N2pW+XTSvm9LypjhQCw+FRXV2vr1q3T/iwkM3X9qa+vlyR1dHQoGo2WvB5ifQAAACw6Hud0yb9DyfgX1JfapaC5QJLVM/YeVWiDbOBtcszKcpcJACij7ABm3759qqurK+nxaMECAACARcnjbJQ3sEMrzFaN2Kc1Yg9rnblMCryLcAUAoLVr12Z+7+vrK/nxaMECAACARcsx1YoH3pz594ikhTPJNACgFKLRqK6//npFo9G8Zwnq7+8veV20YAEAAAAAAItGT0+P+vr6FIlE1NXVlXO9gYGBzO81NTUlr4uABQAAAAAALBrhcDjz//RMQVOJRCKZ30s9/opEFyEAAAAAALAARaNRBYPBSbeHQiGFw2H19vZOu313d7ek8ema06FMKdGCBQAAAAAAzIt8p0tubGxUdXW1Ghsbp1ze1tam5ubmnNv39fVp9+7dCgaD2rNnz1xKnTUCFgAAAAAAUDJ9fX3at2+fpPHxU7K77uSSHlsl1xgrdXV1qqmpUX19vXp6ejK3R6NRdXR0qLa2VnV1dert7Z2yFUwpELAAAAAAAICiqq+vV3V1tYwxqq2tzbRciUQiqqmpkTFG1dXVOVuhtLW1KRgMqq2tLecxWlpa1N7ers7OTtXW1qq6ulq1tbXq7u5WZ2dn3jMMFQtjsAAAAAAAgKJKj38yVy0tLWppaZlxvVAopPb29oKOVSy0YAEAAAAAACgQAQsAAAAAAECBCFgAAAAAAAAKRMACAAAAAABQIAIWAAAAAACAAjGLELAAWGsV1/FylwEAwKLjugMKJO5Qwg5LkirNeo34XyFjKstcGQBguaEFC1Bm1lr1u506Ynu12XleucsBAGDRSLlPKxHv0Ih9WivNNq00WzVgfy8b+0+59kS5ywMALDO0YEFJDbj3yWdWlruMBe0Ze4+esr9UwPtqPe29otzlAACwKKTcA4rHv6gKrdXlng/Jb9ZIkrbZet2T+pQ8sf8nBd4lx1SXuVIAwHJBwIKSesh+UbLlrmJhM/Kowtconydc7lIAAFg0ViX69LSGdY7nTzPhiiStMKcr7LlZvam/k5K/UIXvNWWsEgCwnBCwoKSq/H8ux6wudxkLnE/G+MtdBAAAi8qQ/3qtih3Sfal/1aWev1DQnJtZVmk2qELrNaZkGSsEACw3BCwoKWOqZMyKcpcBAACWGMeslA28SytjX9W9qU/pEudPtM65VJKUsnElNCRpQ3mLBAAsKwxyCwAAgEXJmAolA29VtblQv3P/VYfdu5S0I7o39SnFdUxez5XlLhEAsIzQggUAAACLljE+xfyN2hiv1P1uuyq0XkkNq8L/HnmcM8tdHgBgGaEFCwAAABY1Yzwa9r9GW831klz5/TsIVwAA844WLAAAAFj0jHF0LHC9vPYlMsaUuxwAwDJECxYAAAAsGYQrAIByIWABAAAAAAAoEF2EAAAAsOAl3Ydk7YlZbeN1zpXjMFUzAGB+ELAAAABgwfLIrwptUDz1W7n6bd7bWblKyS+f/x3yOmeVrkAAAE4iYAEAAMCC5RivrvHeOuvtknZUv0v9q47HPy/53iKv5/wSVAcAwLMYgwUAAABLjtdU6jLPB7XWXKSxxJeUSOXf+gUAgLkgYAEAAMCS5DF+Xez8iTaaqzWW+Kriyd+UuyQAwBJGFyEAAAAsWY7x6ELnPfK6VXoi+Q1Jcfm9Lyh3WQCAJYgWLAAAAFjSjHF0rvNH2myeJ5v8RbnLAQAsUQQsAAAAWPKMMao0GyXZcpcCAFiiCFgAAACwLBh5lNSYXPdIuUsBACxBBCwAAABYFjab56tC6xWP71HKfaLc5QAAlhgCFgAAACwLAbNGYU+rKrResfjnlHT3l7skAMASQsACAACAZcNnVuoKz19plTlTsfjnlUw9WO6SAABLBAELAAAAlhWvqdRlzge11lyiscRtSqTuKXdJAIAlgIAFAAAAy47H+HSx836t0lkaS+yVa4+VuyQAwCJHwAIAAIBl6Ql7p46rX6eZF8lodbnLAQAsct5yFwAAAADkYq3VY/a7itnopGWbnOcoaM6bcrvD7j4N2gdy7jehEzpie3WGeaUG/C+QMaZYJQMAlikCFgAAACxYSY1qv/tNVWi9fFqRuX1ETynljinomTpgedz9vsZ0RBVal3PfAe+rNeh9vohWAADFQMACAACAhc/3UslzaeafK8c+P/M2nosk3xtkbVzG+CctnnwLAABzxxgsAAAAWHQ8xq8T9jHF7YlJy0bsUxrTEUk+xZO/0XDso1oX+x9Za+e/UADAskHAAgAAgEVnzPcSJTWsu1O3aswOZG4/YR9TX2qX/Fotya9Y8htarRo9ar+tYPxOWeuWr2gAwJJGFyEAAAAsOh5ni4x/h1LxL6gv9fdaY86TZHXU/lYrdJrWmov1aOo7Osu8Rmc5r9OT9qd62L1Np8etjgfqy10+AGAJogULAAAAFiXHWS9PYIdWm5DiOqa4jmuj2S438A65SkqSfGa1jDHyaaWMHCU1XOaqAQBLFS1YAAAAljhrR+XaYzmXp8OIhczaqFLuU1MuG/a9IPN7XJLsoI54z9Xpybgecb+sqH1QR2yfNpqrNex/DbMGAQBKgoAFAABgCUu5jyse/6KSGpl2PY+pmKeKZseRR0YexZLfm/W2UW2Vz3OtjqR+qtPMdTrur5cxNOAGAJQGAQsAAMASlUz9QfHEbVqpM1TjaVCu3uFG0kptm9fa8uUxAT3H8wnFNTSr7ZJ2WA+6n5c39YC8/vfpuDlDxtB2BQBQOgsuYDl+/LhaW1vV09OjSCSiYDCo+vp63XrrrTrrrLMmrPsP//AP6u7uljFG4XBYNTU1eu9731uewgEAABaQpPuoxhJfVLW5UJc475fHBMpd0pxVmo2q1MbZbWSksNmpe1L/KBu/XU7gT2W0ojQFAgCgBTbI7Z133qmzzz5bHR0d6u/vl7VWg4OD2rt3r8455xx94xvfmLD+TTfdpB/+8IfasWOH2tra9L73va9MlQMAACwsKbdfHgV0qfOBRR2uFMLKlWQlGcZdAQCU3IJpwXLs2DE1NjYqGo0qHA7rxhtvVDAYVDQaVXd3t3p6etTQ0KCOjg798R//8YRt6+vHp9qz1paj9Dnp6upSe3v7hNvq6+vV0tKyqI4BAAAWLkdeOWbBfNybV0P2gO5NfUpeVcn6XyupqtwlAQCWuAXzF7e1tVWS1NfXpyuuuGLCsptuukmRSETNzc1qamqSpEkhy2JSX1+vgYEBdXZ2KhQKSZKi0ah27NihmpoadXd3Z25fyMcAAABYqB5xvyKvVipoztOT8Q5tMS/UCf/LGeQWAFAyC+YvzL59+9TV1TUpXEkLhULq7u7Wrl271NTUpB//+MfzW2CRNDY2at++fbrzzjsnBBzBYFCdnZ2ZMWcW+jEAAAAWspSNK6ZBPWl/oo3maj1lf6nK+Ddk7cKfkhoAsDgtmIAlGo3qJS95yYzrtbS06Ac/+IEaGhp07733zkNlxdPT06Ouri41NTUpGAxOuc7OnTsViUQyLXoW4jEAAAAWg5TGdL7zDl3sadbFzvv1jL1HVfFvl7ssAMAStWACltl0V6mrq1N3d7caGhr02GOPlbCq4kqPhzJd65GGhgZJUkdHx4I9BgAAwEK31blelzof0GnOtZKkDU5YZ5iXKWofKnNlAIClasEELOFwWD/60Y9mtX66Jcv+/ftLWFnxdHV1SZo5TEoP7tvT07MgjwEAALDQbXau0Xrnigm3OcZXnmIAAMvCgglYbr31VrW0tGRapNx8881at27dpKmZs4VCId1+++1673vfO19lzll2kDFT+JFe3tfXt+COAQAAAAAAJlswAYsk7d27Vzt27ND73/9+7d69W4ODg/rqV7867TahUEg9PT06++yz56nKuUkHGbnGRcm2du1aSdJdd9214I4BAAAAAAAmWzDTNEvjYckPf/hD3XnnnVqzZo2i0WheA7EGg0H19/frfe973zxUOTdHjx6d9TbRaHTBHUOSDh48OO3yQ4cOzXqfAAAA8yGhIfnHPjP+u/dS+TwvkDGmzFUBAJaCBRWwpF1//fW6/vrrZ73df/zHf5SgmuKYTZCRboEyMDCw4I4hSdu2bZv1NgAAAOW20VylhDkhK6uEhnQ4+T1tTCU16L+OkAUAULB5CVh+9KMfKRKJKBqN6ujRo6qpqdHatWsVCoV0xRVXzEcJZTeXIGO2rUvm4xgAAADzbdA+pLg9NuftPfJrnblMVWazzvW8JXP7GvccPeL+t7bER3TC/woZs6B6zwMAFpmSBSzHjx/Xjh07MrPaTCccDquurk433njjkg1c0mOeLPZjSNKBAwemXX7o0CFdffXV81ILAABY2pJ2TPek/kGSLWg/V3puVlDnTrjtNHOtntavdcj+Uiv0QhmtLugYAIDlrSQBy/79+1VbW6toNKpQKJSZsWZgYCDTkiVbb2+v+vr6tHv3boVCITU2Nurmm2/W6tVL549cPgPPLoZjSNLWrVvn5TgAAABWriSrCl+jvM7Fs97etQMaiX9a/397dx4f11Xfffx77ixavI0kJ3EcO4sUsjS77CQkLE2JpgVaoICUFMoOlvuw81CkioYCYXHkhKeUtlDLXdhKiTUBurBlFNYCIZYVCEkgi5U4duI4tqSxrW22e54/5FGkWDOa0aySPu/XS6/Ic8+95ycY6V59dRZrk9KMWUBJG9MD7hd0XPtU7XudHLN0njsBAOVRlHGQf/EXf6Guri65rqtHH31Ud955p+6880719/dreHhYIyMjCofD6ujoUHNzsyTJWitrrfbu3avu7m7V1dXpne98px5//PFilFhyDQ0NWbdNBVC5Bial6AMAAKA8fDKmKvcPVUmSJnVk+koJO65fJ/9WI/Z3qva9ST7PJeX6ogAAS0hRApahoSF96EMfSnt8zZo1uv7663XLLbeov79fktTb2zsduKTClh07dqipqUmf+cxnilFmSaWCjGzWPEmtpZIa+VNJfQAAACwmxgTUYC7TQ+6X9Yzbr5g9rnuTt2lMB1Ttf5u8nvPKXSIAYIkoSsCykLVAgsHgdOAyMjKif/qnf9I555wja606Ojp03nnnad++fUWotjRmBhnzBSCp47mGH6XoAwAAYLEZ816iteYyPeD+k/qTH1dMI/L73yGPc1a5SwMALCFFCViam5vzGnWyZs0atbe3T08veslLXqJHH31UjY2N+uEPf1jASktn8+bN05/Pt9vP4OCgpKnQqdL6AAAAWCysTagm9k1Nxr+quB3TOnOtPKqWz79FHuf0cpcHAFhiihKwdHV16VOf+lRBpva0tLQoHA6rv79fl19+uVpaWhZlyBIIBKbXm0mFG3OZuTZKS0tLxfUBAACwGFgbkz92u47YX+ks88ca1RMas0/KVL1djrO23OUBAJagouwitGbNGvX09OiGG25QOBzWjh07dNZZ+Q3BbG5u1p49e9TZ2anW1lY99thji26Xoa6uLrW1tam3tzdtsLFr1y5JUnt7e9rrRCKRtIvTFqoPAACASmBObP0Tj9+hRPw/sz7PKqEJSevNi7XPfluN5rXab+9UbfR2udVvK1K1AIDlrCgjWCSptbVVu3bt0p133qnGxsaC7QjU3d2tzs5Obdu2Lf8iS6y1tVWtra3q6elJO8Kku7tbgUBA3d3dcx5va2tTXV2d2traitYHAABApfCaGl3ovF1nOX+iM52XZv9h/ljP971IT9ofSJJcE9cG53pN6FCZvyIAwFJVtIBFmvpl/84779Tq1aundwR66UtfmvcUn46ODg0MDBSoytLauXOnWlpaFAwGZwUgkUhkej2UPXv2pD0/FArN+m8x+gAAAKgk65xrdZbz8pM+TjcvkmvjGrVP6Lh9bNaHx/mdfhbv08v9bVptAtKJkTAAABRLUaYIzdTS0qLHH39c73jHO3THHXcoHA4rHA5LmhqNccMNN8gYI2Nyu+nNt4hrpQoEAgqHwwqFQtq6deusrZWDwaA6Ojoynt/d3a1t27apq6uraH0AAAAsBs/Y3Xrc/peaPBfIr6rnHPXpddXtusr3Yv0s3leW+gAAy0vRAxZpak2W3t5eDQwMqLOzU3fddZckqbe3V729vZKm1lhpaWnRpk2btHnzZl1++eVzXuvYsWPatm3bgraCriSpqTy56ujoyDogWWgfAAAAi4OVT369u/amchcCAEBpApaU5uZmhcNh3Xvvvfr0pz+tO+64Y/rY3r1751wzpLGxcdYIjMHBQTU2Nk6PggEAAAAAACi3kgYsKVdcccX0yJU77rhDt99+uwYGBuYMWPbu3Tv9eSAQ0C233KIPfehDJasVAAAAAABgPmUJWGZ67Wtfq9e+9rWSpKNHj6q/v396pMrQ0JAaGhrU2Nio5uZmnXPOOWWuFgAAAJXEVVK/jt8jv3nuGizPOmYjqjOSlS1hZQCA5absActMa9as0fXXX1/uMgAAALAIrNAZqlKNvjj5uXnbGjna735fq8xZSpSgNgDA8lNRAQsAAACQrTrnAl1lPquojchVPG2743affuf+q1bpLMX9N7BhMwCgKAhYAAAAsGglFdVu9yNKaCJju3pziWL+VhnjL1FlAIDlhoAFAAAAi1ZSk0poQj7Pi+VxTk/TyqeYc76M4dEXAFA83GUAAACw6Hmdc+T1XFDuMgAAy5hT7gIAAAAAAAAWOwIWAAAAAACAPBGwAAAAAAAA5ImABQAAAAAAIE8ELAAAAAAAAHkiYAEAAAAAAMgT2zQDAABg0XPtMbnu4bkPGp8cEyhpPQCA5YeABQAAAIuWI58ko2jim4pmaHemebmG/S+UMaZUpQEAlhkCFgAAACxaXtWq2fkrxXQsbZvjdp/22f/R+ti4jvmDMoZZ8gCAwiNgAQAAwKJz0P2pJvUzPeM+pXGNZWxrZLTOXKun7I+1PmZ1vOqlJaoSALCcELAAAABg0YmbuzXmHtd1/pdrrXOafMaftu1/TX5NcY1po/lDHbK/UJUIWAAAhUfAAgAAgEXpTE+TglWvmrfd3c4P9bTrymtqJFuCwgAAyxITUAEAAAAAAPJEwAIAAAAAAJAnAhYAAAAAAIA8EbAAAAAAAADkiYAFAAAAAAAgTwQsAAAAWHR88mnUHit3GQAATCNgAQAAwKKTtJfqkeSDGnUJWQAAlYGABQAAAIvOqeZKSdKvE/eUuRIAAKYQsAAAAGDR8ZtVCph6RexwuUsBAEASAQsAAAAAAEDeCFgAAAAAAADyRMACAAAAAACQJ2+5CwAAAAAW6jeJPfLJr2pTk7bNk+4+eXWmonZEkildcQCAZYWABQAAAIvSaeaVcs09+nHsu4ornradT3755NNT+rHOdl6poRLWCABYPghYAAAAsCitc66VdK2qnN8oruNp20Xswzpofyq/96Ua8l5TugIBAMsKAQsAAAAWrZg9rvvcz2ZsY+RVlffV8nuvKk1RAIBliYAFAAAAi5ZVUpJU43ujPM75aVoZGcPeDgCA4iJgAQAAwBLgyBhPuYsAACxjRPkAAAAAAAB5ImABAAAAAADIEwELAAAAAABAnghYAAAAAAAA8kTAAgAAsCQ5SmpSk3ao3IUAALAsELAAAAAsQT7PFfJplQaSt2jcPl3ucgAAWPLYphkAAGAJckxAqnqHbPTLGkhu0wanRZJJ09roNHO1aszaElYIAFhu2tradOWVV6qjo6Og1w2FQtqxY8es14LBYMH7mQ8BCwAAwBLlmDWyVW/Tytg3dMD9Qdp2cR2Xa+Jq9Pxp6YoDACx5kUhEg4ODuv3229XT06NIJKLGxsaC9hEMBjU8PKze3t7pa0ciEW3ZskVNTU0Kh8MF7zMdAhYAAIAlzJgVSlS9UdUZ2ngmb5PklqokAMAyYIxRIBDQ5s2b1dbWpsbGRg0MDBS0j7a2NvX39+uxxx5TIBCYfj0QCKi3t1ebNm1SMBjU3r17C9pvOqzBAgAAAAAACspaq5GREYXDYbW3t6u+vr6g1+/r61MoFFJ7e/uscGWmrq4uDQ4OqrOzs6B9p0PAAgAAAAAAFpXUmivBYDBtm9bWVklST09PSWpiihAAAAAWvXhyj5LuY2mO+uTzXiPHrChpTQCA4gmFQpI07/oqgUBAkUhEfX19amlpKWpNjGABAADAouXTCq3WufK5h+VJPjTnRzL5v7LRf5Frj5a7XABAAfT19U1/Pl/Akjpe6PVf5sIIFgAAACxKMXtcw/Y3qjWnyVX6uf1WZ+io3SsnulPyv0WOw3bUALCYpcKSdGuvzJRa+2X37t3FLEkSAQsAAAAWoYQd1z3JDsUV0xnOWVqVYfrPM+5BrXVWK+LGpdjtUvW7SlgpACweIyMjOnDgQMY2GzZsKFE16Q0NDeV8TiQSKXwhz0HAAgAAgEUnoUnFFdNbq9+nS31XZmz73egduif+E53mvEhPuj9QVYlqBIDF5qabbtJNN92UsY21tkTVpJdLWJIa5TI8PFycYmYgYAEAAMCi5TfEJQAWp8f2rdNPD15c7jIkSWNjNeUuIScLCUsYwQIAAADMwSopSfLIM29br7xKKF7skgBg0fvkJz+pN7/5zeUuY16pdVUqDQELAAAAFp2ExiVJ1aZ23rY1plYTdlxW5R/WDgCVrK6uriLWWJlPNovblgPbNAMAAGDRSWpSklSVxRShGlOrpBKycotdFgCgBBoaGrJum5oaVIpQhoAFAAAAi05qLIrJ4nH22TaMYAGApSAVlmSzrkpqvZbGxsYiVjSFgAUAAACLTwXsYgEAKI+ZYcl8IUvqeCkCFtZgAQAAQEU77O5RTMdmvRaxD8uvKq02gXnPTy2EyxQhAFgaNm/ePP358PBwxuk/g4ODkqRgMFjssghYAAAAULlG7X7d735ejhxJZtax3/e9VFWmet5rpNpYJYpRIgCgxAKBgJqbmzUwMKDBwcG0o1Nmrr/S0tJS9LoIWAAAAFCxjtj7VK0afXLlF+QxC3t09WsqYHFPbO0MAFgcIpFI2tEpXV1damtrU29vb9rwZNeuXZKk9vb2YpU4C2uwAAAAoGJZG1e1qVlwuCJJjkmNfGHdFgAot2wWppWktrY21dXVqa2tbc7jra2tam1tVU9Pz/Q0oOfq7u5WIBBQd3f3QsvNCQELAAAAKlbixHbMAIDFa2BgQP39/ZKkvr6+tIHITKFQaNZ/57Jz5061tLQoGAzOumYkEplec2XPnj35lJ4TpggBAACgIj3l/kRP2j5d63tJuUsBAOQoGAyqv7//pBErg4ODampqkjS1NsoNN9ygHTt2nHR+d3e3tm3bpq6urrR9BAIBhcNhhUIhbd26ddb2zcFgUB0dHQX7erJBwAIAAICK84T7Pe11e/UCX4teU/WmcpcDAMhROBzO6/yOjo6sA5LUdKFyI2ABAABARYnZ49rr9mqz94V6bdWbZYxJ29a1ru5P7NGExtO2eTTxW0lTWzt7VVvwegEAkAhYAAAAUGG8qpVPPm3wnJ0xXHnGfUpfm+jRPvfRjNfzyCu/AoopIp//LQWuFgCAKQQsAAAAqCiO8eh050ztTf5Ov6+XztnmkcSD2jlxq9aYegV0nly5aa83oWdkZOT1b5HHObVYZQMAljkCFgAAAFScuD1Dh930u0w8knxAVaZGTeb9+qXtksdplNGaOdsaUy+v9zo5pq5Y5QIAQMACAACAyuNRlRLztPHJL4/xT7V3GuUxG9K2TBe+AABQKAQsAAAAqECu0q++Iq02AUXskOR8WybpVSzRl/Fqp5qrNO5/hYzh8RcAUBzcYQAAAFBxXCXklS/t8Wt91yuhhL4bDWmVWam15rS0bWOK6oC7R/WxCcX8rTInRr0AAFBIBCwAAACoOK7iqjLpAxbHOLrO/zJd7N2ku2L/rUmbfpvmp9wnVCWfIvYh1ce+qWjVjcUoGQCwzBGwAAAAoOJYuXLkzNturXOqbqx+e8Y2TyX369bxLq3TtRq296uqUEUCADDD/HctAAAAYBHzyCNJMsZT5koAAEsZI1gAAABQcTyq1jE3Mm+7pE1oIHG3JjJMERpM/k6S0bB9UH52EwIAFAkBCwAAACpOg7lEv3F/pKeTT2qd54w52zzjPqWvTHxBB9zH5MuwIK5HXnlVKyMj6/+zjLsTAQCwUAQsAAAAqDh15iJVqVq/SfTPGbA84x7UbWM3aY2pU63Wy1Us7bXiOq5q1UlVb5ZjVhezbADAMkbAAgAAgIrjMT4FnAaN2uNzHj+UfFJxxXSW2ao99mZ5nUvkmIa01zKeq2XMimKWDABY5ghYAAAAsGg5Jxaw9Xma5fVcUOZqAADLGbsIAQAAAAAA5ImABQAAAAAAIE9MEQIAAEBFStpE2h1/jJn6O2HEPiRJisW/rnh87kdbj/wyvj+Wz3NRMcoEAEASAQsAAAAq0Lg9pCP2kM7ynDvn8fM8F+sS72b9JvE1neGcpQm7Ku21Ju2wxuNflWyrfN5NxSoZALDMEbAAAACg4hyyd6tK1brI2zzncb/x663V79OvE/fo29HbFdVw2mtFNa4VZpXGEiFZxeT3XlOssgEAyxgBCwAAACpOjdmncz0Xym/8adsYY3S572pd7rs647WeSA7qb8f/Rmv0PE0kfiIRsAAAioBFbgEAAFBxrKw8pjB/CzzNWS9J8ps1ktyCXBMAgOciYAEAAMCS9mTyCUlS1A7LyFPmagAASxVThAAAALBo3RffrTuiX9KEHU/bJqG4VmiVjmlQ1d7XlrA6AMByQsACAACARel/orfrrth/63Rnozx2Q9p2UQ1pTIdU7XudfJ5LS1ghAGA5IWABAADAopOwcd0V+2+tN9fpKfdH8mlEjuZeENeRTzW+N8nrOb+0RQIAlhUCFgAAAFQM18ZlZeXOsxitlZUkrdDUArZe32vl9VxQ9PoAAEiHgAUAAAAV4bB7r+53/2H6381ZbKecCloAACg3AhYAAABUBI9zj07TGQr6XylJOifDlB6vfDIychUvVXkAAGREwAIAAICyc21Cv0vep5f4/0SbfC+Yt70xRn5VyVWsBNUBADA/p9wFAAAAAFGNKKpJnelpyvocr/ExggUAUDEIWAAAAFAxHJms25oc2gIAUGwELAAAAAAAAHkiYAEAAAAAAMgTi9wCAAAsYdZaxZM/U9I+nb6NRktYUWElNClJiiV/prh7/5xtjHzye39fjgmUsDIAwHJDwAIAALBEWetqVey7Omj/V6vVqHSDl402KmAuKG1xz+FRtSRpwo5nfc75nku0J/FD1ZtTNOEel3R8znZxHVM8+ZB8/rfKcU4pRLkAAJyEgAUAAGAJsjahmti39LS9Vxc6b9c659pyl5SRTyvlV5WG7ZGsz3l99VadGW/U/0S/rvg8uwn55Soa65Hf/xZ5nDPyLRcAgJMQsAAAACxB8eQvNWZ/pYucd+oU54pylzMvY4zqnAZF3KGsz3GMoxf7/0jX+q5XUom07QaTD+lfJ/5WjmqkWEiqfl8hSgYAYBYCFgAAgCXIalI+rVwU4UqKR165cnM+z2u88mZ4rL3Qe5nqzFrF7CpN6JA8+RQJAEAa7CIEAACAimBli3Jd17qKKyZXyaJcHwAAiREsAAAAqACj9oCedg/oRb4/zOm8mI3prpW36lh88qRjF42/Whd4LtVXJz+vo3ZEVhGtM8/XWKGKBgBgBgIWAAAAlN2YvqkGc6qu8r0op/N+k9itO5/+rV5y2vlyZKZfv3dkv6LuL/TL+I/1YOJeWVmtM9do1P/yGa0AACgcAhYAAACU1aQd1oPJX+l11e3ymNweT+9PDOjSwBnafvmrZ73+oXu/oQPjj+qR0cOSpPXmOh3zB2UMM+QBAMXBHQYAAABl5Z7YYrnerM353IQSWuOrPul1j3GUsK7MifEqI95zCVcAAEXFCBYAAIAlylVcSRuXx/jKXUpWFrrE7U8P79XN939n1ms/fuYRratZnX9RAABkiYAFAABgCfI652lSP9F97t/qEuc98pqacpeUll+rJEnH7EjO517hfb6O+x/T7qHHZ71e56/VgfGIvPLKozXyOOsLUSoAAGkRsAAAACxBHmejqvxv1Wjsy/pV8jY1Oq+dni5TKLVmnapMXd7X8Zpa1Zm1esrdr005nDfiDuknse9rnzsi7xyPtR555NMpMlVvlqnggAkAsDQQsAAAACxRXudsGf87NBn7kn7tfqbg1w+Y83WFp6Mg1zrNOV2H3adzOufb0V0ass9IskqcWMdlptVqlFv15zKmtiA1AgCQCQELAADAEuZx1sup+qD8drSg140mvqekW7hreuSVlZvTOTFN6nRngx5JPqgq72vkdZpmHXdNgIVtAQAlQ8ACAACwxBnjlzH1Bb5mtaTChjYLcdSNSJKMHDlOYb9GAAByQaQPAACARcVaq5/G7pRHXo3YI/LIq2jim0okf1fu0gAAyxgBCwAAABYNa61+Vvf/9I3ol/WofqW4YvI7RpKrifhXFE/eV+4SAQDLFAELAAAAyi6mqDxZzF5/wh3UHfvvVeeFf6g7/+A9uu3y12ilr0orvVWqVpWS8f8pQbUAAJyMgAUAAABld9A9oHXOGfO2O+oOS5Ja1l0gv+PVdaedp8vrNmqF1y+v8cmdYzchAABKgUVuAQAAUFYxe0yj9phOdzbO23b8xG5I/7z3Z9pQG5CR0YNHDyrmJuRaI8kUuVoAAOZGwAIAAICySmhCkrTCrJy37fneS/WKhkt016GHFImNS5KMjOI2KUk607xUI8UrFQCAtAhYAAAAIEmyNqmE+1tJsXnbuu6R4hc0hzWmTkcPn6Ej8d9Mv+acmPV+tnmljvifzxgWAEBZELAAAABA1sZUFbtDozb7XXhqzJWF6VtTo0+cLB5NI3ZIP41/X175lDix3oqVUZX3TzTkvYZwBQBQNgQsAAAAy5y1k/JEv6YR7dOlzvtVZy7M6jwjT0H6j9ljkqRVzup529Y7p2hL9V/qa5M7NK6krBxV+94gr+f8gtQCAMBCEbAAAAAsc/7YN3RMT+pyzwe1xpxb8v5jmgpYVpqTA5aondS/mb/WcGxMcTepSHxi+pjPeJS0VhPxL2uF+YAcZ23JagYA4LnYphkAAGCZG7dPab25rizhivTsFCGffCcduz+xRw8dP6RXnHGpLqvbIOnZfYISNinJaqXOlDGrSlQtAABzI2ABAACATIWuXjK48vu6PLBB73zei/W6szZLkq73verEUaNVOlcJX2HWggEAIB8ELAAAACircfu0qlQt5zlruiRtUvcMPa6XnDa1vspa/9Q2zj+Jf0+rzBrVaoO8qtVkvFeK/pusHSt57QAApLAGCwAAAEriqN2ro/qGEjYx6/Wn7QFt9r1Ajpn9t7+IHVLCujpnZYMkKeCvlTS1LXPUGsW0X+M6IEka135VRf9ZTtVb5Jg1JfhqAACYjYAFAAAARefapB5x/1GrzBpt9Jwz69h6z0a9xP8nJ50z5D4jSTqjJiBJWuWrkjQVsEwqIkmyspKmpjglNKyq6L9L1e8s0lcBAEB6BCwAAAAoOquEjtuj+tOqP1ez79qszokrLkmq9folSU+MDUuSYopNtwmYekXssAKmQQklNGoPq7bAtQMAkA3WYAEAAMCi8I39v5IkJU4EL7NV5iK9AIDlg4AFAAAAi8I9w/syHLUnPgAAKA8CFgAAACwK//eC6zMcJVwBAJQXAQsAAACKzip54rOFT+W5ZM16GUk1c6yyUlUdm17wFgCAciBgAQAAQNGN6SlJ0inOuqzPmblDkDS12K3f8cqZ4xF2ctJfgCoBAFg4AhYAAAAU3XG7Tx55dbqzMetzrJ0KWBzDArYAgMpHwAIAAICim7RHVG/Wymu8WZ+T2i3IZ559ZDXGaK5pRtXVsZNeAwCglAhYAAAAUBImx5Eok3ZCRlKtt2r6tSrH+5x8ZeofrrWswQIAKCsCFgAAABSdkUcTdlyudbM+Z1ITqvX4Z00RWuWtkpzo9L+TnlFJU9OJXGV/bQAACo2ABQAAAEV3irNJx+1R/Spxd9bnuDYpr+OZ9dpfXhhUzCblyMiRUdJaratezdgVAEDZZT8JFgAAAFig1eYcXei5TP8T3aW9yYdmHfPIo+v9r9Aap27W61b2pAVuX3hKk3qufL3et6dXNV6f/n7TjfriY79Q/9ATRf8aAADIhIAFAAAAJbFSr1Gd8zU9kRycfs3K1ZPuPm30NOpK54Wz2jvGUTyZPOk6lwTO0B0vapfP8WjljPVZAAAoJwIWAACAJc7auKzG0h8v0dolK80GrVTHrEVqXZvQk9o6Z/tq1WosEZVrTx7JUuevLWapAADkjIAFAABgCUu6B5WIfUkxHc3YzjH+ElWUvSpTLStpMhlXrbfy6gMAYCYCFgAAgCUq6e5TLPZlVesUXeC8TUbptkk2WmOaSlpbNqJ2UkZStceXsZ0jc2KL5ty2gQYAoJAIWAAAAJagpLtfk7F/1SqdrUs975HXLL4pNeN2VKt91SdND3ouxzhTuwhZ9hICAJQP2zQDAAAsQQn3YTny6jLPBxZluCJJflOt8URccffkhW5ncmQka0+MYgEAoDwIWAAAAJYoRz55KnBtlWxtcM5W3Ca1d/RwxnbzDHABAKAkCFgAAABQkU73bJAkPT46VOZKAACYHwELAAAAKlLCxiVJ1d7Mi9waGSYHAQDKjoAFAAAAFWncjkqSAr6ajO0cMxWwELIAAMqJgAUAAAAVaexEwLLmOQHLgfERvfEXX9R79+zS8fjkiV2GiFgAAOXFNs0AAACoSKP2mCSpzv/sLkg/fuYR3XTffynmJmSt9Ka7v6QrAhvkWisrVrsFAJQPAQsAAAAq0oTGJUmrfNWSJNda3Xz/tzWZTExvybx/fER+xys2aQYAlBtThAAAAFCRkjYhR0YeM/XI6hijbZf9qWq9PnmMI48xOmdFg64IbChzpQAAMIIFAAAAJTLs3q9x830llZx+LdO4E1fuifVVnnVVw9n6yvPfov97b0gBX63+trlV/zb4i6LVDABAtghYAAAAUFTWWu2339egG9JZzrla65w26/ipvtN1rufCk84btce1+sT0oJmOxScViU3Ida3GkzF5jCNrJRa5BQCUEwELAAAA8rLfvVNj9qm0x1c7Ee11f6Pr/a/Qy/1tckx2s9RH3MNavyIw67UfHXpYH77vP5VwXR1PTOotd39Zm+rPVFLuiUVuWegWAFAeBCwAAADIy6Pu7ZKks5ymOY9HraM3Vb9bV/ien9N1zZr9OtW7atZrf//Ij5S0rlxZyUoxN6HvHXxQPscjKyOfAgv6GgAAyBcBSxmEQiHt2LFj1mvBYFAdHR15X3vr1q0aHh7WjTfeqObmZjU2NkqSIpGIBgcHdfvttysUCikcDk8fAwAAyIcjj15T9Ua9wN9S0OtOJOM6tWp2wNJ92av1voFdOhId0wZzjl7lfb12xG9TzJ2UR7Vy/K8raA0AAGSLgKXEgsGghoeH1dvbOyv82LJli5qamvIOPoaHhxUKhRQKhdK2mdk3AABApYomE/J7Zj+unrvqFP37NW9Tx6++oQeO7tMXJ/5eMUXl1Ur5/VvkOKeUqVoAwHLHNs0l1NbWpv7+ft11112zAo5AIKDe3l4FAgEFg8Gi9d/a2qq9e/eqtbW1aH0AAAAUyinVK3Vw4uhJrwf8Nfr7TTfq6oazdVwRWblKaExJe7gMVQIAMIURLCXS19enUCikjo4OBQKBOdt0dXWpra1NnZ2d6u7uXnBfqbBmYGBAktTc3KzNmzen7RcAAKASrTh6me6235G1VuY52zVXebzafvmr9df3/ZfuOvSQrFxNxr8qqU0+zxXlKRgAsKwRsJRIas2VTCNUUiNLenp68gpYGhsb1dzcrJaWws6DBgAAKKX1zkYdnZxUJD6hOn/tSce9jkefvuxV6vjVN/WLI4NyXaNk/DsELACAsmCKUImk1kSZb+2TQCCgSCSivr6+UpQFAABQsRzjkSS51qZt4zGOLgtskDmxRbOrRImqAwBgNkawlMDMsGS+gKWxsVEDAwMaGBhgBAoAAFgUXCUVin5RA4lfzHncI49e6m9Vo/e8nK57xD0kSTLztDs4cVRWqRBmvtYAABQHAUsJpNZCyWYNlPr6eknS7t27i1kSAABAwZzjvEbj9qDG3LmPO+aAvjj5d/rL2k9ptRNIe50j7iGFo/8pV67iium+xD162ekXzTk9SJKS1tVnf/cD9e4fmH7tLPNSDefzxQAAsEAELCUwNDSU8zmRSCSvPgcHB9XZ2Tl9reHhYbW0tKirqyvvxW4PHDiQ8fjBgwfzuj4AAFhcznb+OOPxmD2q++zH9dXJz2trTac8J6b+PNeDdV/RA0//VuetOkWOpK0NL9LbGq89aYFbSYq5Cf3Vr76lnxx+dPo1v/ePNOS5ljEsAICyIGApgVzCklT4MTy88L+9bNu2TZFIZHo3oZS2tjZt2rRJ4XB43qlKmWzcuHHB5wIAgOXHb9aoybTrvuT/0xcnP6c3Vb9LPuM/qd3AyBP64/UXqePCP5z3mr8eOfCccCWoKu91hSwbAICcsMhtCSwkLMl3BEs4HD5ppEpvb68kqampKe/rAwAA5KLOuUAXOe/SQ4n71DNxmybtxEltrLWqdnxZXc/rzB4F4zHrC1InAAALRcBSAql1VUqhu7t7OkiZS2or6NT0oYXYv39/xo977rlnwdcGAABL11rnMl3s+YAOJB/Tf0z2nHQ8/V5BJ6vxZBfEAABQKgQsJZDvmie5mG/qTzAYlCT19PQseBTLhg0bMn6cfvrpC7ouAABY+gLmfK011+qwe/KabWOJqGq9J08dmovH8BgLAKgsy/7OFIlEZIwp2MemTZtO6qOhoSGneqTihTIzA5j+/v6i9AEAAJDZycvQutbV0fikAr6aMtQDAED+lv0it4FAQOFwuGBrksw1giQVlmTTR2q9lnwWoc1k5nSlgYEBtbS0FKUfAACAbCVtUj9efZvcUVfPW3VqucsBAGBBln3AIqnoIcPMsCQSiWQcnZIKYXINWCKRiK6//npFIpGsdwnau3dvTn0AAAAUWtzG9J3abfrpwb36xKWv1GV1G8pdEgAAC7LspwiVwubNm6c/n29HocHBQUnPrpWSrb6+Pg0MDGhwcFChUChtu5n9NzU15dQHAABAoX0nGtKPnnlEN1/yJ3rp6b9X7nIAAFgwApYSCAQCam5ulvRsgDKXmeuv5DqqJnX95ubm6Z2C5jKzf6YHAQCAcrvMd5WqHK/+/fF7FImNl7scAECRhEIhBYPBWR/bt28vyLW3bt2qtrY2hUKhWb/zRiIRDQwMqLOzU01NTRl/Hy8EpgiVSFdXl9ra2tTb25s22Ni1a5ckqb29Pe110k0xamxsVHNzs/bs2ZOxjnA4LGlqu+ZUKAMAAFBaz27IfLbnXL27+mP618lPa8s9/66dV71BAf9CFrrNZZNnAEApBYNBDQ8Pq7e3d3o5i0gkoi1btqipqSnrZS7SGR4eVigUyjibY2bfxcIIlhJpbW1Va2urenp60qZm3d3dCgQC6u7unvN4W1ub6urq1NbWlvb8rVu3pq1hYGBA27dvVyAQ0M6dO3P/IgAAAPIUt2Ma1b1qcE6bfm2dc4YuXL1OT4wP6+nJo1ld59SqVVrlrZIjI8nIxr8r10aKUzQAYMHa2trU39+vu+66a1bAEQgE1Nvbq0AgkPMSGblobW3V3r17M870KBQClhLauXOnWlpaFAwGTxq2lHpDZRqBkkrj0qVyLS0tampqUjAYVF9f36zr9/T0aNOmTWppadGePXuKtg00AABAOtZaHTdfVdRO6jVVb5Ikjdsx9VZ9XP3D+7T98tfogtXrsrrWGn+NvvT8N+uM2oCMpEkdViz6Bbnu4SJ+BQCAXPT19SkUCqm9vT3t76BdXV0aHBxUZ2dnXn319vYqHA6ru7tb3d3dCofDGhkZKcnIlRSmCJVQakvoUCikrVu3ztq+ORgMqqOjI+P53d3d2rZtm7q6utK26ejoUGtrq7q7u9XZ2anBwUHV19erublZvb29JUntAAAA5hKxD+nXyXv0pup3q85pkCTdWXub7nnmcX2u+QZde0puD8BnrqjXV655iz44cIcGRp5QXMfljf27nOr3F6F6AECuduzYISnzJi6p31F7enrSzubIRmrZjHKuNUrAUgap6UK56ujomDeEkabeWKk3MgAAQKWI67gk6ULvpdOvXXD8NfqptuvLj9+ty+rO0ApvVU7XXOmt0lsbr9GePU9IsooqwgMuAFSI1OyL+UaQBAIBRSIR9fX1LerNWJgiBAAAgLK5wHuJ3lVzk3577JD+z+7/UDSZyPkaSesWoTIAQD5mLlsxX8CSOj4wMFDUmoqNgAUAAABldYqzTuuqV2v/+IjGEtGczn18bEifeuB7Mif+vUpnF7w+AEDuUmFJNut/1tfXS5J2795dzJKKjhGUAAAAKJsR94i+aG/WWDyqnVf9ueqrVmR97t1HHtOHfvUNTSbjspJWq0nJqj+bDlsAALkZGRnRgQMHMrbZsGFDVtcaGhrKuf9IJJLzOTPNXCw3EoloeHhYLS0t6urqKslGLwQsAAAAKJu7av5eB46M6GvXvlXnrjo16/Mmk3F9YCCkuE1KkqrUILfqzTLGV6xSAWDJu+mmm3TTTTdlbGOtzepauYQlqfBjeHg463Oea9u2bYpEItNbP6e0tbVp06ZNCofDRd9NiIAFAAAAZXP52J9pwLNd2x68U59tbtUqX3VW51V7fHrXeb+vv3voB7KSohpSQ/SHOlbVImOYBQ+g8j0QT+h4MrdpkcVy1C38WlYLCUvyHcESDodPeq23t1dNTU1qamrSyMhIUUeycPcBAABA2ZzrvVDtVX+tx0aPaOvur+W0yO0bzr5Kn9t0g6qdqVErT+mHWhW9s1ilAsCS98lPflL79+/P+JGt1LoqpdDd3a3e3t60x1O7+KamDxULAQsAAADK6mzPuXqd7716+PgzemzsSE7nXrO2UZ++7JXT/z6kuwtdHgAsG3V1ddqwYUPGj2yVYs2TlPmm/gSDQUlST09P3qNkMiFgAQAAQNmtMKsWfG7AX1vASgAAhdDQ0JB121ToUaxQZmYA09/fX5Q+JAIWAAAAlFnCJrSv4RuSpFqPP6dzrbX6yTOPTP/bo6qC1gYAWJhUWJLNiJHUei3FWoR25nSl1PbRxUDAAgAAgLIZdY/pK96/1n8e+LU+dEFQZ67Ifs6+tVaf+V2fvvjY1LQgI4+8vlcXq1QAQA5mhiXzhSyp47kGLJFIRJs2bVJTU5MGBwezOmfv3r059ZELdhECAABAWUzYce1wP6yJ8bh2XvXnuiRwRlbnWWv1b6O79OuHjX52ZOqB2pFfVf63yOucU8ySAQBZ2rx58/Tnw8PDGaf/pMKR1Fop2err65sekRIKhdTR0TFnu5k7GjU1NeXURy4YwQIAAICysLKK26SqPV7V+Vdkfd6vIwf0+Z8/pt3DT0y/5ve9mnAFACpIIBBQc3OzJGUcXTJz/ZWWlpac+khdv7m5eXqnoLnM7D/XPnJBwAIAAICCS9qojtvHZ31M6PCsNrVmhdo9n5DHOHrHPV/Vo8cPp7nabD+I/1iS5DFGkpEkGVUXtH4AQP66urokKeMWyrt27ZIktbe3p22TbopRY2OjmpubtWfPnozTi8LhsKSp7ZpToUwxELAAAACgoCbsET3oflz9yU/M+hh075BHXnlmzFKvd9bqBv2lhqKj+odHfpTV9X/++NRQ78lkQpKdetEQsABApWltbVVra6t6enrSjmLp7u5WIBBQd3f3nMfb2tpUV1entra2tOdv3bo1bQ0DAwPavn27AoGAdu7cmfsXkQPWYAEAAEDBjNmn9JD7/+SVT++uuUnVpmbW8VqzUj7z7E5BR9xD+rq9VWurVuq95/1BVn28ef11+uTId5U8Ea5s1B9pxJxVuC8CAFAwO3fuVCQSUTAYVDgcnh5pEolEpkOTPXv2pD0/FArN+u9ztbS0aGBgQMFgUJ2dndNTgCKRiHbt2qWtW7eqpaVFO3bsKNo20CkELAAAACiISTusB9xurTYBba3p1BqnLmP7Y25EX4h/RCu9Vfrnq96gM2oD8/bxo2ce1s0PfCc1bkU+zx8p4rvuxEQhAEClCQQCCofDCoVC2rp166ztm4PBYNqFaVO6u7u1bdu26elGc+no6FBra6u6u7vV2dmpwcFB1dfXq7m5Wb29vRnXZykkAhYAAAAUxKjdrzE7qvfX3jxvuCJJHuOR3/Eq7iaVtG5WfVQ7PhkZ2RMRy7qkNOK1MoaIBQAqWWq6UK46OjrmDWGkqfVYduzYsZDSCoY1WAAAAFBQfvnnbyRphVmlds8nVOXxacs9/65Hjj8z7znPX3uOtl32Kjknxqzs1/e1Mvpd2SwDGgAAioWABQAAAGVT5zToVfbdGoqN6V8Hf57VOdevu0BXNZw9/e+n9VO59lCRKgQAIDtMEQIAAEDZPJncp68mbtPZKxr0/vNfMm/7hOvqM7/r091Dj02/5vP8oRyzrphlAgAwLwIWAAAAlEXEHdKO2M1aXxPQP2y+UXX+2nnP+eQD39G3n7p/+t9V3lfJ731+McsEACArBCwAAAAoC7+p1mpftUYTUU0m41md88jxw6rVKsUkWedswhUAQMVgDRYAAACURa1Zobc5H5OV1Rt+8UX1D+3L2H5w9Ih8jkceb1w+uZI8JakTAIBsELAAAACgbOqdU/ROzy06a0W9bvntnRnb/vVD/6H7jz6lY4lJjWtM1n1ISfdgiSoFACAzAhYAAACU1QqzSqeMNyvuJjO2e97albP+ndSEJmJfUNLNPPIFAIBSIGABAABAWVlrNeIOyWNMxnbRkYD+oGmtvvRnzdNtreKaiP2zXHeoFKUCAJAWAQsAAADKxrWu+hs+p4HEz/WajVdkbOuvG1GV19GrLz5db968UTU+Rx55ZJWQaw+XqGIAAObGLkIAAAAoC9e6Cq+6Rd/f96A6LgzqhjM3ZWw/Gk1o3apqSVKt3yMjIynzqBcAAEqFESwAAAAoixF7RN8/+KAuDWzQazZcPm/70WhSK/38fRAAUJkIWAAAAFAWDc6pemP1u/XA0af0V7/+lmJuImP7iURS1b6px1cjycqWoEoAALJDwAIAAICyucL3fL2x6j360TOP6G9/94OMbSfjSdX4PJIkY5geBACoLAQsAAAAKJsJO6b7a78ln/Ho6rVnZ2w7PB5Xfa1PUipaYQQLAKByMIkVAAAAZXHMjehL5mM6fOy4/nHzjWquPzNt28lkXMeiCZ26skqSFHcJVwAAlYURLAAAACiLfcm9Ghw9opZ1F+qKuo0Z2x6PT0qSAjU+7d4/oi/ufkITcVdJTa3bYkyg2OUCAJARI1gAAABQFpf4NulP3Bv1zQO3y2scfejCoByTeV2V8MOH9cX+JxRPpkawGFV5XyePs674BQMAkAEBCwAAAMrm+qpXSDLq3f91bayt0+vPvjJj+52/3DfjXx7V+N4sr+d5Ra0RAIBsELAAAACgbCLusB7whVWn2nkXuU3xyMirKiWdCwhXAAAVg4AFAAAAZTHiDmln8iOykv75qjforBX15S4JAIAFY5FbAAAAlMXT7gEdnDymK+vP0sbauoxt4zZZoqoAAFgYAhYAAACUxYXey9RW9Tb9z1O/0cfv/7aS1k3bdjQenf6cDZoBAJWIKUIAAAAom2v9L1G1qdHXDn5ez1t1it5w9tVzthtNPBuwuLKKK65q97CsjckYf6nKBQAgLUawAAAAoKyafddoY229Dk+Opm0znoxLki5fv0aS5CqpcT0pG/0XWTtRkjoBAMiEESwAAACLhLVxxZI/l+z4vG2T7j55SlBTIVhrlXCTcoxJ22byRMDyrbdcpZvDD+lfdz8hSRrTE6qJ7pCn6i9kTHVJ6gUAYC4ELAAAAIuAtZPyRr+uce1VlebfbccjaY25qPiF5claq3vX/oMOPB7ReatOS9suFbCs8Hv0yovWTQcskjSpI6q1YwQsAICyImABAACocK4dkxP9ikb1jC7z/KUC5nnlLqkgkjapn6z5jP7r8fv0wQuu18vWpw+EEicWwL3jvqf0zm/eN+OIV9X+t8lxGopcLQAAmRGwAAAAVLja2HcV0Yiu8HRqpdlY7nIK5u74j/RfT96nvzj3RXrdWVdmbBt3p7Zp/otvPBuuOKpStb9dHmd9UesEACAbLHILAABQ4WL2mBrMxUsqXJGkS7yb1LTyFP3Hvn799ujTGdsemjw2/bmR5FeVHOdCwhUAQMUgYAEAAEBeDrh9eij5FT1pf5DTeaudgN6qT2hjbZ3+YvfX9Ltj6UOWYyv2yTmxBq6V5MqVtYk8qgYAoLAIWAAAALBgSRvVo+7XFdWDqjWjusBzqWrNyqzPX2FW6uyJF2ssGdOhyeNp2z11bFLXNa3VqqqpGe4JxZW09ysa/2XeXwMAAIXAGiwAAABYsDE9KSurN9e8Rxs95+R0rrVWd8X+W9+O7dIbz75av39q+sV7I5NxXXHGGt36xxfp5f9ytw6NRiVJseS3ZDWuat8f5PV1AACQL0awAAAAYEFcm5Q1P5RHXp3mnJHz+YPJh/Tt2C5dd+rz9J7zrsvY9vhkQiurvHreKSsVbr921rF48k4l3YM59w8AQCERsAAAACBnSRvXsNmhXyV+qddVt8tv/Dlf4yzPuWo57QL99PCj+s5T92dsW1/r1/B4TCMTcb3p63tmHTtNz5djTsu5fwAACokpQgAAAMiJtVbP6PPam/it3lbzfl3kvWJB1/Ear1429mHVrr9NH7v/2/IYRy9bf9GcbU9fXaXBoXG95J/+V4ND49Ovn6GX6GhVi4wxC6oBAIBCIWABAABATpKK6nfJ+/SqqtcvOFxJ2e8OamD4CXmMo6ibflcgc+wU7Rl5WMeiU2088sqaRh31E64AACoDAQsAAAAWZLWpW/C5rnX1o/h39J3YLl24ep0+29yms1c2pG2ftK48zrNBiiNH1tQSrgAAKgYBCwAAAEruoeRv9N/Rr+uNZ1+tdz3vxfI6noztq+tHVJfwaWQiLkmKKya/+7hce1SOWVOKkgEAyIhFbgEAAFByE3ZMktTe9IJ5wxVJOh5N6PL1a3TzH14w/VpMEcWi/yjXPVK0OgEAyBYBCwAAABZk1B5b8Lk2x/ZHJ+MKVPv0/hc36V/aLpfnxMyguI4rGvuC3DxqAQCgEAhYAAAAkBOPqnSu50J9O7pLDycyb6+czrgdlc94VOXxZdV+Iu6q2jc10qXtsjP0oeueJ2Mkr3GU0Lhc96kF1QEAQKEQsAAAACAnxhit13vU6DlfPRO36b747pyvccR9Rutr18jJcpHapLXTo1Yk6ZSV/ulaAACoBAQsAAAAyJnHVOk0vUvney7W7ZP/kvP5R+2wTqtenXX7pGtn7SIkSUbKfa4RAABFQsACAACABXGMV6Pu6ao2NTmf68qV12T/KOq6Vp4Zo1USrpURo1cAAJWDbZoBAACwINa6qnKekF+nFL2vpLVyZoxgiSddGSNGsAAAKgYjWAAAAJAz1yY1Zr6sR5MP6vm+3y9qX9FkQk8fj+r0VdXTr1krxq8AACoKI1gAAACQE9fGNWx26oHEr/SG6v+jZt+1WZ2XtAk9mvydXCV13D2qVVn2t3f0sBKu1WXrn12zxTFGVoQsAIDKQcACAACAnBy0P9OjyXv1tpoP6CLvFVmf96vEL/XVyS9M//v3/Bdldd6jo4clSRed9mzAwuZBAIBKQ8ACAACAnPidB3SOOS+ncEWSHks+rDNr6/VPV75OklTvX5HVeYcmjunUlVWq9XtyrhUAgFJhDRYAAABkzVpXjyQe1PmeS3I+d6TmAV0aWK9Tq1fp1OpV8jrZPYo+PXlMZ6ypnr8hAABlRMACAACArLmKK6pJNTi57xx0ND6ptVUrcz5vn31cF5wy+zzHGFl2EAIAVBACFgAAAFSssURUv3n6uK4+s27W6x7HyLJHMwCgghCwAAAAIGtGHtVqhX4aC2vCjhW9v0eOP6Oka08OWBjBAgCoMAQsAAAAyJpjvLrA83494z6lfxj/lI67R4vaXyQ+IUk6dWXVc+ooarcAAOSMgAUAAAA5WWMadZGnQ6P2mL4wcUtR+4rEpgKWQI1v1uuOMUwQAgBUFAIWAAAA5Gyl2aB15hU66O4vaj+D/t/owlNXyueZ/diaGsFimScEAKgQBCwAAABYEKPiztNxrdWdDz+jl11w2knHHMMcIQBAZSFgAQAAQM6idkQR3aWAacj6nMlkXH7Hm3X7hE1qIp7UvU8e1WQ8OeuYIWABAFQYAhYAAADkZNwe0u/cbkXtpP5PbWdW50TtpIZiY9pQG8i6H7/j1W2Xtunn+4b1qbsennWMfAUAUGkIWAAAAJA11yb1kPsZeeTRe2s/olOd9Vmdd8Q9JEnaWFs3T8vZrmw4W1vOeZH+/meDenx4POd6AQAoFQIWAAAAZM1VTBE7pJdWvVZ1ztqsz4vYYUnSuurVOffZXH+mXCuNxRI5nwsAQKkQsAAAACBr9sTmyI48OZ131B2RI6P6qhU59zkSmxq5csrKqunXHKYIAQAqDAELAAAAcpAKWHJLOMbtqFb5quUxuT9+Ho9PSpIC1b7p14q9gxEAALkiYAEAAEBJLDQSibtTOwj5PM9egUVuAQCVhoAFAAAAWTMnHh+fdPeVrM+EdeXzmFlbM5OvAAAqDQELAAAAsuY1NXqJ/090Z+xbujP6TVlri95nwibl98x+bHVYhAUAUGG85S4AAAAAi4ub/FOd4/j03dgdiiqqV1T9WVH7i7uufM8JVIhXAACVhhEsAAAAyIkxRmvN5apWjR5OPFD0/mJuQn7v7F2LHBZhAQBUGEawAAAAICdH7aP6bfLv1OCcqvaavyx6f5PJuGp9swMWD1OEAAAVhoAFAAAAWUvauB5MflanezZqS80HVWNWZHWelZ21SG0uxpMx1fpnByze6YCl+GvAAACQDQIWAAAAZM1VTJOa0HW+l2UdrkjShB3XSl/VgvqMrnpKpz3n3GenCBkRsgAAKgFrsAAAAKDoxjWqgK9mQec+eXRSZ6ypnvWahxEsAIAKQ8ACAACArFklJUmOye0xMmHj8joLe/QcGo9p7Qr/rNdS+QrxCgCgUhCwAAAAIGtJRSVJfuU23afGrNDxeHRBfUYTrqqfs4uQYaNmAECFIWABAABAzvYl9+bUvsbU6nhickF9RROu/J7Zj63s0gwAqDQELAAAAMhatdbqD3x/rO/EevW96DdkbXaTdBx55GbZ9rm8jlHCnX0u+QoAoNKwixAAAACyZoyRdV+tRqda34/dIVdJvbyqrah9+j2OYkm3qH0AAJAvRrAAAAAgJ8YYneW8XKebF2tP/OdF78/jGCVdlrMFAFQ2AhYAAAAsiE8rS9IP660AABYDpggBAAAgZwk7IWMeUlWOuwktxFxLtxC6AAAqDSNYAAAAkJOYPa7H7Wd0yD2o1qq3Fr+/pCu/9zm7CLHMLQCgwjCCBQAAoECsjSma+L6sPVbQ6xodVI1OKeg1Fyppo3rUbteYHdW7a/9aZ3jOKnqf0YSrKrZpBgBUOAIWAACAArB2Qk703+XqgNaY5xX24uZsrTXNhb3mAo3qgA65T+k9NR/JMVxZ+CK1saSrKi8DrwEAlY2ABQAAIE+uPS5Fv6wJRXS550Nabc4pd0lFE7ejkqS1zmk5nWdl5ZiFhSRzTRGaa10WAADKiYAFAAAgT7FEn6SIrvB0aoVZX+5yiiqhMUlSrVmR03lWdkGrptwfeUrRhKs11Ty2AgAqG2MtAQAA8mRtVCvMhiUfrkhTQYkkmQU8RuYasByJjurDv92lq8+s02suXvr/2wIAFjcCFgAAAORswo4XvY/u/V9X0rX6yuuaT95FiEVuAQAVhoAFAAAAWQuY87TCrNTnJz6to+5I1ufFbVx+T27TfKq8jpLWyp1jvRXyFQBApSFgAQAAQNZqzCm6yOnUuB3VP4x/QkPuM1mdN6ExrfRW5dTXB9f/mao8jt789QHFk+5CygUAoGQIWAAAAJCTFWa9LnT+SnHF9b3oN7I6J2ontcLjz6mfOn+t3rzhOv3yiRHd80T2o2UAACgHAhYAAADkrMas1enOBsUUzap9Qgn5nNymCI0nYvrawR/r2rPqdc1Z9QspEwCAkiFgAQAAQM6sdTVmR7NuvyYQkdfJ7dHzG7Fv6dBoVP/4mkvlOKy6AgCobAQsAAAAyIlrE4qYf9YB93Ft8l6b1TmrfFU6GpvIqZ/+/RG9/IJ1ampYMet1a63+/qH7pmrRHCvgAgBQBgQsAAAAyFrSxnRI/6jfJPboLdXv1aW+K7M6zx06TwcmIjn1FZmMq77Wd9LrO+5+XN/536ltoolXAACVIreJsAAAAFjWnrG79ZD7G22t6dT53ouzPm+NqdeR6KistTImu+k+o9GEVled/Lj6H3v3SpKMkSwJCwCgQjCCBQAAAFmb1JBWmtU5hSuSZGXlMSbrcEWaCk/mav+Rqy+bPg4AQKUgYAEAAEDWYjai1SaQ83lJJeU1npzOSZeftDzvFP3fN07VwMMsAKBScE8CAABA1lzF5TdVCzgvKY/J7dHTtVaeNLsHvazm9yRJRuwuBACoDAQsAAAAKDorV04O04MkKeFOTSsCAGAxIGABAABA1qpUp/3Jx3R/Yk9O57nWlZPjaBPXSmkGsIjcBQBQaQhYAAAAkLWznVfoIu8V+reJv9Oe+M+zPs+VK6+T+6NnuiCFfAUAUGkIWAAAAJA1x/hUZ7coYBp0++Q/a9KOZ3WeK1dOjmuwWLYJAgAsIgQsAAAAyMkzdrdG7BFd4L1EflVndY6VzXmKUDzpyu/hcRUAsDh4y10AAAAAFo+n3J/qYfdL2uR9gf6sekvOo1JyMZFwVe3LbWtnAADKhT8JAAAAIGuuuUeSdJ73InlM9uGHVW7TfVxrFU24qvHO/bhqWOUWAFBhCFgAAACQtXV6pzZ5X6CvTe7Qf0zsUNImsjov122ao8m4JKUdwUK8AgCoNAQsAAAAyJrX1GiV3qoLnbdrT+Ln+k4slNV5uQYsEycCllqmCAEAFgnWYAEAAEDO1jnXyjX36Ih7KKv2VpLJYdzJE+MjkqSz62vnPM4MIQBApWEECwAAABakmBnHo6OH5XWMzlu7cs7jnhMJCxs5AwAqBQELAAAAis61uU0ROjhxVBvWVMufZpHbXK4FAEApMEUIAAAARZdQXD4n+/VUYsmEajKsv0K+AgCLSygU0o4dO2a9FgwG1dHRsaj6yISABQAAAEWXUFz+HAKWqJtQtZcFbgFgKQgGgxoeHlZvb68aGxslSZFIRFu2bFFTU5PC4fD065Xcx3yYIgQAAICii9qoaj3+rNvHVx9U/Yr07RnAAgCLQ1tbm/r7+3XXXXfNCjgCgYB6e3sVCAQUDAYrvo9sELAAAACg6FbUPaMV3uwDlr1D4zq7ribtcY+TilhY5hYAKlVfX59CoZDa29sVCATmbNPV1aXBwUF1dnZWbB/ZImABAABA0UXdhKo9vqzbHxmLad2q6rTHWeQWACpfaj2UTKNHWltbJUk9PT0V20e2CFgAAABQdEnXlcdk/+hZ63MUTSTTHideAYDKFwqFJGnetU8CgYAikYj6+voqso9sEbAAAACg6JI5btNc4/NoLJY+YElhghAAVKaZQcZ84Ufq+MDAQMX1kQsCFgAAABSdleTkMO6kxufReKaAhSEsAFDRUkFGunVRZqqvr5ck7d69u+L6yAXbNAMAAKDirPB7NBaffwQLAKBwRkZGdODAgYxtNmzYkNW1hoaGcu4/Eonk1L4UfeSCgAUAAAAVx+/1KJ50y10GABSNraBJjqlabrrpJt10002Z29rs6s4lyEiNQBkeHs76nFL1kQsCFgAAAFQcZgABWKpOP/10SdLj9md6xnOFTA4LgBdD0n1K43qy4NddSJCR6+iSUvSRCwIWAAAAFF2uf6l1rSVkAbAk/c3f/I3uuOMbcu1BJdx75fNsKlst1lpFE9+VZHXxxRfr29/+thynMIFPas2TYipFH7kgYAEAAEBJmBx2EZqIJ3Xayqq0x70F+gUAAErt0ksv1Vve8mZ98YtfVDQelte5VMb4ylJL0n1YSfdRSdJnP/tZnXnmmQW7djYLzy6GPnLBnQkAAABF51qb0y5CY7GkVlSl/1ugz2F8C4DF6xOf+IQkn6yOKpb8WVlqsNZVNPE9SdLLXvYyXX/99QW9fkNDQ9ZtU9N2cg1MStFHLghYAAAAUHQJm5Qnh3UGRmMJrfB50h5/fGRckipoiUgAyN6GDRv04Q9/SJIUS/xIrh0teQ2J5IBc+7Qko+3btxf8+qkgI5s1T1JrqTQ2NlZcH7kgYAEAAEDRxZJJVTnZz04fjyVV608fsLz8X+4uRFkAUDadnZ065ZRTJEUVS/ygpH1bG1M0EZYkvf3tb9PFF19c8D5mBhnzBSCp47mGH6XoIxcELAAAACi6uE3K66QPTJ5rLJbUSj/LBQJYulavXq2PfvSjkqR48pdy3SMl6zuW/JmsjqmmpkY333xzUfrYvHnz9Ofz7fYzODgoSQoGgxXXRy4IWAAAAFB0rnXlyXKR25ib0PFoQvW1/iJXBQDl1d7eruc973mSXEUT3y9Jn64dVSzxY0nSBz/4Qa1fv74o/QQCATU3N0t6NtyYy8y1UVpaWiquj1wQsAAAAKDoXGuz3kUoEpuQJK1dQcACYGnz+Xy65ZZbJEkJ934l3X1F7zOWuEtSVKeeeqo6OjqK2ldXV5ckqbe3N22bXbt2SZoKm9LJNP2nUH0UAgELAAAAii5prbxZLnLL/kAAlpNXv/rVesELXiBJmox/V9YWb/lu1z2sePIeSdLHPvYxrVq1qmh9SVJra6taW1vV09OTdoRJd3e3AoGAuru75zze1tamuro6tbW1Fa2PQiFgAQAAQNHFbVK+LNdgWeOvkSQNjceKWRIAVARjjG699VZJkmv3KeE+ULS+pqYhuTr//PP1jne8o2j9zLRz5061tLQoGAzOCkAikcj0eih79uxJe34oFJr132L0USisHAYAAICiS7hJeU12AYvf8arW59HIRLzIVQFAZbjmmmvU2tqqUCikaOJ78joXymT5MzNbCffx6fCmu7tbPp+voNdPJxAIKBwOKxQKaevWrbO2Vg4Gg/NOU+ru7ta2bdumpwIVo49CIWABAABA0bmSnCzXYJEkj2OKOkweACrNtm3bFAp9Q9YOKZ78pfzeawt2bWutovHvSJJe+MIX6pWvfGXBrp2t1FSeXHV0dGQdkCy0j0JhihAAAACKzlqb09oqhCsAlptzzz1X73nPuyRJscQPZO1kwa6dcO+Xa/dLkm677basFx1HbghYAAAAUHRJ68qT5SK3B8YjGo0ldXZd7ZzHCV8ALFV/8zd/o9WrV8tqbHor5XxZm1A08T1J0g033KCrr766INfFyQhYAAAAUHRWVibLMSx3HxmU1zF6cWPDnMePTiYKWRoAVIy1a9dOrzUSS/6vXHs072vGk7+UtcOSPPr0pz+d9/WQHgELAAAAis61VtmOSH/o+CFdcOpKra6eewFGdhcCsJS9733v08aNGyUlFE2E87qWtROKJX5w4rrvVlNTUwEqRDoELAAAACiJbEewnFq1SoeOR9MeZ4YQgKWspqZGn/zkJyVJieSAku7BBV8rlvixrMa1Zs0afeQjHylUiUiDgAUAAAAVZUNtnQ6PxXQ8OvdUIIe1GQEscW94wxt02WWXSbKKJr67oGu4NqJY8meSpA9/+MNqaJh72iUKh4AFAAAAJWGV3dCTVDtPmjlF7H4BYKlzHEe33nqrJCnpPqJE8uGcrxGN3ykpoTPPPFPvfe97C1wh5kLAAgAAgKJzjMl6as+R6JhWV3lV6/fMeZx4BcByEAwG9Ud/9EeSpGjie7LWzfrcpPuUEu6vJEmf+tSnVF1dXYwS8RwELAAAACiJbEewjMTGtHalP8N1AGB52L59uyQj1x5Uwr03q3OsTU0rsrriiiv0+te/vqg14lkELAAAACi6hOvK58w9IuW5RhNRrUmzg5AkTcaThSoLACrapZdeqre+9S2SpGg8LGvj856TdB9R0n1UknTrrbfKcfi1v1T4XxoAAABF5VpXrqy8JrtHz9FETKv83rTHxwlYACwjN998sySfrI5OL1qbjrXu9KK4L3vZy3T99deXoEKkELCUWVtb24lhX4UVCoUUDAZnfRSjHwAAgPm4mlo3wJNlwJJwk/J707cdi829uxAALEUbNmzQhz/8IUlSLPEjuXY0bdtEckCufVqS4fe/Mkj/pwEURSQS0eDgoG6//Xb19PQoEomosbGxoH0Eg0ENDw+rt7d3+tqRSERbtmxRU1OTwuFwwfsEAABIJ9eARZIybRQ0FmMEC4DlpbOzUzt37tThw4cVS/xA1b5XntTG2piiibAk6e1vf5suvvjiUpe57DGCpYSMMTrnnHPU2dmppqamooQcbW1t6u/v11133TXr+oFAQL29vQoEAgoGgwXvFwAAIB1XU4FItgGLs2ZEVZ70bUejjGABsLysXr1aH/3oRyVJ8eQv5bpHTmoTS/5MVsdUU1Ojj3/846UuESJgKSlrrUZGRhQOh9Xe3q76+vqCXr+vr0+hUEjt7e0KBAJztunq6tLg4KA6OzsL2jcAAEA6SU0FIv4sF7ndHxnXxkBN2uOswQJgOWpvb9d5550nyVU08f1Zx1w7qljix5KkD37wgzrjjDPKUCEIWJaQHTt2SFLGESqtra2SpJ6enpLUBAAAkLBTAYs3i50sXGv1xMiEzqyrTduGgAXAcuTz+XTLLbdIkhLu/Uq6+6aPxRJ3SYrq1FNPVUdHR5kqBAHLEhIKhSRp3qlHgUBAkUhEfX19pSgLAAAsc7mswXJw4qgmE67OW7sibRtrC1YaACwqf/qnf6oXvOAFkqTJ+HdkrZXrHlY8eY8k6WMf+5hWrVpVzhKXNQKWJWJmWDJfwJI6PjAwUNSaAAAAJMmeCFicLAKWvaOHJUm/d1r6XxA8ToYVcAFgCTPG6NZbb5UkufYJJdwHTkwXcnXeeefpHe94R3kLXOYIWJaIVFiSbu2VmVJrv+zevbuYJQEAAEiSrKaGnGTz4Pn05DH5PEbrV1envx5DWAAsY9dcc8300g/R+H8q4T4gSeru7pbP5ytnacse2zQvEUNDQzmfE4lEFtTXgQMHMh7fv3//9OeuPbagPgAAWEysjcm1cU3a4XKXUlJxG5fkKOJmfg455kYkSSOxcR2azPxsMBIdl9cxeurYZNo2B+c4Zu2YXHt03poBLF4zf7dIJJb3bmLbtm1TKPRNWY1Kkl74whfqVa96VZmrAgHLEpFLWJIa5TI8vLCHwI0bN2bddiL2+QX1AQDAYnNM0i+SHyp3GWXx8bH3ZdXuw/f9V9bXvPDWH+RUw2QiJC3v37eAZeXw4cM6++yzy11G2Zx77rl673vfpc997nOSpNtuu03GMH2y3JgitEQsJCxZ6AgWAAAAACinQ4cOlbuEsvvIRz6i1atX64YbbtDVV19d7nIgRrAsGal1VUph5hSguTz22GN68YtfLEn6+c9/ntOIF2ApO3jwoK666ipJ0j333KPTTz+9zBUB5cf3BXAyvi+Aue3fv1/XXnutJOmCCy4oczXlt3btWn30ox9lalAFIWBZIrJZ3LZQNmzYkHXbjRs35tQeWC5OP/10vjeA5+D7AjgZ3xfA3Kqr0y+EvZx84AMfYGpQBVn2U4QikYiMMQX72LRpU1m+joaGhqzbpqYGlTKUAQAAAAAUFuFKZVn2I1gCgYDC4XDB1iNpbGwsyHVylQpLsvk6Uuu1lKtWAAAAAACWmmUfsEhSS0tLuUvI28ywJBKJZBydkgphCFgAAAAAACiMZT9FaKnYvHnz9Ofz7Sg0ODgoSQoGg0WtCQAAAACA5YKAZYkIBAJqbm6W9GyAMpeZ668shZE7AAAAAABUAgKWRSbTGitdXV2SpN7e3rRtdu3aJUlqb28vaF0AAAAAACxnBCwVINsFdtva2lRXV6e2trY5j7e2tqq1tVU9PT1pR7F0d3crEAiou7t7oeUCAAAAAIDnMNZaW+4ilqOBgQFdf/31ikQiamxsVDgcnnfR2ZlbcKX7vy0SiaitrU2Dg4OzrpnudQAAAAAAkD8ClhIKBoPq7+/POGIlEAjohhtu0I4dO046tn37dm3btk1dXV3q6OjI2FcoFNKOHTtmbd8cDAbnPQ8AAAAAAOSOgAUAAAAAACBPrMECAAAAAACQJwIWAAAAAACAPBGwAAAAAAAA5ImABQAAAAAAIE8ELAAAAAAAAHkiYAEAAAAAAMgTAQsAAAAAAECeCFgAAAAAAADy5C13AVh62tradOWVV6qjo6Og1w2FQtqxY8es14LBYMH7AQqpmO/brVu3anh4WDfeeKOam5vV2NgoSYpEIhocHNTtt9+uUCikcDg8fQwohlL8fOYegMWIewAwN35fwFJFwIK8zbyR9/T0KBKJFPxGHgwGNTw8rN7e3lkPEFu2bFFTUxMPD6hIxX7fDg8PKxQKKRQKpW0zs2+gGErx85l7ABYj7gHAs/h9AcsFU4SQF2OMzjnnHHV2dqqpqakoP7Ta2trU39+vu+66a9b1A4GAent7FQgEFAwGC94vkI9yv29bW1u1d+9etba2Fq0PoBTv83J/LwELUe73LfcAVBJ+X8ByQsCCvFhrNTIyonA4rPb2dtXX1xf0+n19fQqFQmpvb1cgEJizTVdXlwYHB9XZ2VnQvoGFKuX7tre3V+FwWN3d3eru7lY4HNbIyAh/tUTRleJ9zj0AixH3AGA2fl/AckLAgoqWmkOZKXFO/XWmp6enJDUB8ynl+7axsVEtLS3q6OhQR0eHWlpa0j5cAIVUivc59wAsRtwDgNLiXoFKQsCCipaaVzzfX2ECgYAikYj6+vpKURaQEe9bLAeleJ/zvYTFiPctUFp8z6GSELCgYs384TffD8zU8YGBgaLWBMyH9y2Wg1K8z/lewmLE+xYoLb7nUGkIWFCxUj/8shnqmprLuXv37mKWBMyL9y2Wg1K8z/lewmLE+xYoLb7nUGnYphkVa2hoKOdzIpFI4QsBclCO9+3MRdsikYiGh4fV0tKirq4u5uKjKErxPucegMWIewBQWtwrUGkIWFCxcvnhl3qAGB4eLk4xQJZK/b7dtm2bIpHI9BaEKW1tbdq0aZPC4TA7SaDgSvE+5x6AxYh7AFBa3CtQaZgihIq1kB9+JNIot3K8b8Ph8El/pezt7ZUkNTU18X2BgivF+5x7ABYj7gFAaXGvQKUhYEHFSs2TBBaTUr5vu7u7px+i55LakjA1dBwolFK8z7kHYDHiHgCUFvcKVBoCFlQs5g1jMSrl+3a+Yd/BYFCS1NPTw19rUFCleJ9zD8BixD0AKC3uFag0BCxLUCQSkTGmYB+bNm0qy9fR0NCQddvUgwM/ZJFJKb43Kul9O/Phu7+/vyh9YHkqxfu8kr6XgGxV0vuWewCWg0r6ngMkFrldkgKBgMLhcMH+WlGuxdFSP/yy+TpS8y9ZyA2ZlOJ7o5LetzOHzQ4MDKilpaUo/WD5KcX7vJK+l4BsVdL7lnsAloNK+p4DJAKWJWsp3ERn/vCLRCIZ0+bUD1V+YGI+xf7eKMX7NhKJ6Prrr1ckEsl6h4i9e/fm1AeQSSne59wDsBhxDwBKi3sFKg1ThFCxNm/ePP35fCuEDw4OSnp2vjFQLqV43/b19WlgYECDg4MKhUJp283sv6mpKac+gExK8T7nHoDFiHsAUFrcK1BpCFhQsQKBgJqbmyU9+wNxLjPnUy6FkTtY3Erxvk1dv7m5eXqXiLnM7J/vDRRSKd7n3AOwGHEPAEqLewUqDQELyi7TnMmuri5JyrgN4a5duyRJ7e3tBa0LWKhCvW/TfW80NjaqublZe/bsyTjMNRwOS5raqjP18AEUSrHf54XsAygl7gFA4XGvwKJhgQJqaWmxkmx7e3tW7VtbW60k29raOm+bvXv3znm8sbHRBgKBBdULFEu+79v5vjfC4XDG77M9e/ZYSTYQCNiRkZGcageyVez3eSH6AMqBewCQHr8vYCkjYEHB7NmzxwYCASvJNjY2pv0BN5Ok6Y90RkZGbEtLy0nXTPc6UAnyfd9m873R3d1tW1pabDgcnnX9HTt2WEm2paWF7w0UVSne59wDsBhxDwDmxu8LWOqMtdYWe5QMlq5gMKj+/v6Mw/YCgYBuuOEG7dix46Rj27dv17Zt29TV1aWOjo6MfYVCIe3YsWPWdmzBYHDe84ByWuj7NtvvjcHBQXV3d6u/v1+Dg4Oqr69Xc3Ozbrzxxoxz84FCKvb7PJ8+gHLiHgDw+wKWFwIWAAAAAACAPLHILQAAAAAAQJ4IWAAAAAAAAPJEwAIAAAAAAJAnAhYAAAAAAIA8EbAAAAAAAADkiYAFAAAAAAAgTwQsAAAAAAAAeSJgAQAAAAAAyBMBCwAAAAAAQJ4IWAAAAAAAAPJEwAIAAAAAAJAnAhYAAAAAAIA8EbAAAAAAAADkiYAFAAAAAAAgTwQsAAAAAAAAeSJgAQAAAAAAyBMBCwAAAAAAQJ4IWAAAQElEIhF1dnYqGAxq06ZNCgaDGhwcLHdZAAAABUHAAgAAii4UCumcc85RQ0ODwuGw9uzZMx20RCKRcpcHAACQN2OtteUuAgAALF2hUEhtbW3q7u5WR0fHrGPGGLW2tqq3t7dM1QEAABQGAQsAACiavr4+BYNBtbS0KBwOn3S8qalJg4OD4nEEAAAsdkwRAgAARRGJRNTW1iZJ2rFjx5xtGhsbJU0FMQAAAIsZAQsAACiKLVu2KBKJqL29fTpISYfFbgEAwGJHwAIAAApuYGBAoVBIktTZ2Zm23fDwsCSx0C0AAFj0CFgAAEDBpUKVlpaWjKNXUiNXhoaGSlIXAABAsRCwAACAghoYGJheUyXT6JVIJDI9cqWpqakUpQEAABQNAQsAACiobdu2TX/e0tKStl1/f//05/X19UWtCQAAoNgIWAAAQEGl1l5pbW3N2G7mts3zLYILAABQ6QhYAABAwaTCFUm68cYbM7aduTVzc3Nz0WoCAAAoBW+5CwAAAEvH7bffPv15W1tbVucQrgAAgKWAESwAAKBgBgYGJE1N+RkZGUn70dvbO31OpnVaUmaOjAEAAKhEjGABAAAFEYlEprddbmlpUSAQSNt29+7d059nmkoUCoXU2dmp4eHhedd0AQAAKCcCFgAAUBAzdwXatGlTxrap9VcaGxtPmiK0fft23X777aqvr1dzc7MGBwczhjUAAACVgClCAACgICKRyPTnmzdvztguNZVorlEpHR0d2rNnj8LhsLq6ugpeJwAAQDEQsAAAgIJITQ+SMi9cu2vXrunPCVAAAMBSQcACAAAKYmhoKKt23d3dkqT29nam/gAAgCWDgAUAABREQ0ODpKl1VdLp6+ubHunS2dlZkroAAABKgYAFAAAURCpYyTQqJTV6pbu7O2MQAwAAsNgQsAAAgILItO6KJA0MDKivr0+NjY3q6OgoUVUAAAClQcACAAAKorGxUYFAYNZuQjNt2bJFkhQOh0tYFQAAQGkQsAAAgILp6urS4ODgSSFLZ2enBgYGFA6HmRoEAACWJAIWAABQMB0dHWpsbNS2bdumX9u+fbt6enoUDofV0tJSxuoAAACKx1vuAgAAwNISDoe1detWbdq0SfX19WpubtZjjz3GlswAAGBJM9ZaW+4iAAAA5hKJRFRXV6dAIKCRkZFylwMAAJAWU4QAAAAAAADyRMACAAAAAACQJwIWAABQsQYHByVNTRVKt/0zAABAJWANFgAAUFFCodD0LkSpgCUltcXzzp071dzcXPLaAAAA0iFgAQAAAAAAyBNThAAAAAAAAPJEwAIAAAAAAJAnAhYAAAAAAIA8EbAAAAAAAADkiYAFAAAAAAAgTwQsAAAAAAAAeSJgAQAAAAAAyBMBCwAAAAAAQJ4IWAAAAAAAAPJEwAIAAAAAAJAnAhYAAAAAAIA8EbAAAAAAAADkiYAFAAAAAAAgTwQsAAAAAAAAeSJgAQAAAAAAyBMBCwAAAAAAQJ4IWAAAAAAAAPJEwAIAAAAAAJAnAhYAAAAAAIA8EbAAAAAAAADk6f8DVxqyindxcG4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = TG[...,1]\n", + "y = TG[...,2]\n", + "flip = TG[..., 2] > TG[..., 1]\n", + "z = 100 * typeI_err[nearby[1][:,0]].reshape(ng, ng)\n", + "z[flip] = z.T[flip]\n", + "alt_hypo = (TG[..., 1] > t0) & (TG[..., 2] > t0)\n", + "z[alt_hypo] = np.nan\n", + "levels = np.linspace(0, 2.5, 6)\n", + "plt.title(f'Type I error \\% $\\quad(\\\\theta_0 = {t0:.2f})$')\n", + "cntf = plt.contourf(x, y, z, levels=levels, extend='both')\n", + "plt.contour(\n", + " x,\n", + " y,\n", + " z,\n", + " levels=levels,\n", + " colors=\"k\",\n", + " linestyles=\"-\",\n", + " linewidths=0.5,\n", + " extend='both'\n", + ")\n", + "cbar = plt.colorbar(cntf)#, ticks=[0, 1, 2, 3, 4])\n", + "# cbar.ax.set_yticklabels([\"1\", \"10\", \"$10^2$\", \"$10^3$\", \"$10^4$\"])\n", + "plt.xlabel('$\\\\theta_1$')\n", + "plt.ylabel('$\\\\theta_2$')\n", + "plt.xticks([-1, -0.5, -0, 0.5, 1])\n", + "plt.yticks([-1, -0.5, -0, 0.5, 1])\n", + "plt.savefig('leit1e.png', dpi=300, bbox_inches='tight')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x = TG[...,1]\n", + "y = TG[...,2]\n", + "flip = TG[..., 2] > TG[..., 1]\n", + "z = 100 * typeI_err[nearby[1][:,0]].reshape(ng, ng)\n", + "z[flip] = z.T[flip]\n", + "alt_hypo = (TG[..., 1] > t0) & (TG[..., 2] > t0)\n", + "z[alt_hypo] = np.nan" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "bound_components = np.array([\n", + " z[~alt_hypo] / 100,\n", + " z[~alt_hypo] / 100,\n", + " z[~alt_hypo] / 100,\n", + " z[~alt_hypo] / 100,\n", + " z[~alt_hypo] / 100,\n", + " z[~alt_hypo] / 100,\n", + "]).reshape((6, -1))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(6, 80784)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bound_components.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(6, 80784)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bound_components.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "np.savetxt(f'P.csv', TGF[~alt_hypo.flatten()][:,1:].T, fmt=\"%s\", delimiter=\",\")\n", + "np.savetxt(f'B.csv', bound_components.T, fmt=\"%s\", delimiter=\",\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Grid density" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.36035156, 0.35839844, -0.84082031])" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "g.theta_tiles[np.argmin(bootstrap_cvs[:,0])]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "t2 = -0.84\n", + "ng = 50\n", + "t0 = np.linspace(-1, 1, ng)\n", + "t1 = np.linspace(-1, 1, ng)\n", + "TG = np.stack((*np.meshgrid(t0, t1, indexing='ij'), np.full((ng, ng), t2)), axis=-1)\n", + "TGF = TG.reshape(-1, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = -0.01\n", + "ng = 71\n", + "t1 = np.linspace(-1, 1, ng)\n", + "t2 = np.linspace(-1, 1, ng)\n", + "TG = np.stack((np.full((ng, ng), t0), *np.meshgrid(t1, t2, indexing='ij'), ), axis=-1)\n", + "TGF = TG.reshape(-1, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "nearby = tree.query_ball_point(TGF, 0.05)\n", + "nearby_count = [len(n) for n in nearby]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_31819/3420229717.py:5: RuntimeWarning: divide by zero encountered in log10\n", + " z = np.log10(z)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGsAAAOYCAYAAABiiH6kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xb933v/9cBwC2RILW3BVrDQx6g5D1jIMNJs0zaadqmSW9MNmnTm6YNGTZ1bDdtFPC2adretiF9f23SJm0somlG4wxQ8Z4iYcdblgnZkixZi4REDQ4A5/cHBRiUODAOAI73Mw89QhPn+z0fAgcE8OZ3GKZpmoiIiIiIiIiIyLRgK3QBIiIiIiIiIiLyDoU1IiIiIiIiIiLTiMIaEREREREREZFpRGGNiIiIiIiIiMg0orBGRERERERERGQaUVgjIiIiIiIiIjKNKKwREREREREREZlGFNaIiIiIiIiIiEwjCmtERERERERERKYRhTUiIiIiIiIiItOIwhoRERERERERkWlEYY2IiIiIiIiIyDSisEZEREREREREZBpRWCMiIiIiIiIiMo0orBERERERERERmUYU1oiIiIiIiIiITCMKa0REREREREREphGFNSIiIiIiIiIi04jCGhERERERERGRaURhjYiIiIiIiIjINKKwRkREMtLQ0EBXV1ehyxARkVmira2Ntra2QpchIjItGKZpmoUuQkREZpa6ujo8Hg8+n6/QpYiIyCxSV1fH5s2baW9vL3QpIiIFpbBGRETS4vV6cTqddHZ2FroUERGZZUKhEHV1dTQ2NuoPAiIypzkKXYCIiBX8fj+BQIBQKERfXx/hcJhQKER/fz9Op7PQ5c0aTU1NdHd309/fX+hSZo22tjZ27NhBOBymr6+PUCgEoPs4j8LhMC0tLXR3dxMOhwESI8f0+yM/9DxIXSgUwuv10tfXh8/no7Gx8ZxjZvJrosvlorOzE6/Xy5YtW6ivry90SSIiBaE1a0RkVgiFQoRCIbq7uwkGg4k3+mIdv99PR0eHRtRYrLe3l3A4nLh242GB5EdHRwfV1dV0d3fT2dlJb28v9fX1dHR0cMsttxS6vDlDz4PUNTU1EQqFCIfDNDU1jXtfzfTXRI/HQ3NzMw0NDTOudhERq2galIjMOl6vN7Hw7Uz4K+JMUV1dzebNmwkEAoUuZdaqrq4mHA7jdDo1oiAPurq6EtP6ku9vwzASX+t3SP7NpedBXV0dPT09abVJfo2Dqa/RmfyaqNcdEZnLNLJGRGYdt9td6BJmnfhfb1taWgpdyqy2efPmQpcwpzQ0NADQ2to65vvNzc24XC6am5tn1Afb2WKuPA/C4TDBYDDtdu3t7bhcLoCUpurN5NfE1tZWurq6tPOgiMxJCmtEZNZZsGBBoUuYVcLhMB0dHbjdbjweT6HLmdUUDOSP3+8fsz5NMp/PR29vrxY3LZC58jzIdHqPy+Wit7cX0zRpbm6e8viZ/JoYX4+nqampwJWIiOSfwhoREZnU1q1bgXNHH4jMZMkflOOjFETyqbu7u9AlTHtOp5PGxkZCoZBG14jInKOwRkREJtXR0YHT6dSOHDJrzZWRHDK9tLe3F7qEGSE+qkYj3URkrlFYIyIiE4pPFdH0JxER64RCoYzWq5mL3G43TqeTrq4u7RImInOKwhoREZnQ/fffD4zuJiIiItbQ79T0xBed3rZtW4ErERHJH4U1IiIF1NXVRUdHx7T9C2t8jYC5sjuLiEguhcNhvF5vxosLz1XxcEtbeIvIXKKwRkSE0SHpLS0t1NXVUVtbm/jX1NSU0aKGbW1teL3eRD9er5e2trYxt9fW1hIIBAiHw9TV1eH3+638kbIWDAYTQ85T3fq1o6ODhoYGvF4vdXV1VFdXU11dPeaYtra2xP1cXV1NXV0dLS0tkw5v9/v9NDU1Jfqtra3FMIxxP/AEg0GamppoaGgYc57k+z/bmmtrayesuaurK3Hu+LENDQ0ZB3Lx/uLXUnV1NV6vl46Ojoz6m6jPurq6Ce8jGL0Pzr6fkkcH+P3+Mc+fyfrKRjbPVa/Xi2EYGIYxZhv6+Pfi/2pra7OqMVfPg4lk8nieLRwO09LSMuY5VldXR1NTU0rBQq6vj0yeB11dXRiGkbj/z/5nGMa47erq6sZtF9/qPROhUChxv5x9nZ59/RmGQV1d3bg/z3i/B3MxNSjba6qjoyNRp9frTfyLt29raxvzHJxKfCquFhkWkTnFFBGZZXw+nwmYgNnf3z/l8Y2NjSZgNjc3m729vWNua29vN51Op+l2u8+5bTyBQMB0uVym0+k0A4FA4vs9PT2J73s8HrO5uTlxW2dnpwmYjY2Nqf+QedDe3m4CpsfjSbmNz+czPR6P6XQ6E49B/KWmt7fXdLvdZnt7+5jHpbm52QRMp9Np9vT0pNXveI9JIBAwPR6P6XK5xhzr8/lyUnNyDR6Px2xsbBzzvfjjC5jt7e2T3n/19fWJfuP/XV9ff8790tnZaTqdznOus6nEf57x7o/kPsd7HBobG8+5n+LXhs/nM+vr683+/v4xP29nZ2fKtaUi2+dqb2+v2dPTY/b09CT6itcZ/35PT09Kz/XJ5Op5MN7Pk+njefaxbrf7nMerp6cn0X9jY+Okv0+tvD6sfB709PQkfr7kx6K9vX3SNh6PJ3Gsy+Uy29vbs74ukq+x5HqSvz/ZNdjZ2TnudTXV61w6r4nZXlM9PT2m0+mc8Hppb29P/G5O9zVvst/7IiKzkcIaEZl1Un1j2t/fn3hTOtkH3v7+/kTQMtmHnt7e3knfTPb09CRuP/t8Pp9v2r0BjX94rK+vz6h98oeR+H090c8YP9blck3Zb3IIM9V9lnwtTBTWZFuz2+02TXP0A+VEHz6T65is5viH1Hi/k4Ud/f39iQ9tU4VApjl6fcaPn+xDaip1xvvxeDyJcCwuOQSxKoC0+rlqmumHupnK1fPAqsfz7Mdvsrri1/pUsr0+cvE86O/vHxO+TCV+fDphdTqSw6Bs21sV1lhxTblcrilfMwKBQEa/H6aqTURktlFYIyKzTqpvTCf66+F44kHM2SMpksVDhMk+0MTfYMf/YjydxWtNHgWUjuQPZZMFGab5ziie+F+ZU+13qrAm/qEg1cc505p9Pt+kHzySg7zJ6kj+kJpKvck/31QfYFL9a3b8PpjsA1f82vB4PKbb7R7zPIuPInO5XCmPEJmK1c9V08xfWJOr54FVj2f8sTz7cUyWfP2m8vsg2+sjV8+D5H6n+t0RD2tydW1kG9bEw3Qrw5psr6n49ZtKmOJ2u9MOa+L1pRJOi4jMBlqzRkTmpLa2tsQaIs3NzVMe73K58Hg8hMNhmpqazrk9FAol1nW44447JuwnvoZDOBye9nPv+/r6AFiwYEFG7Z1OZ+LrcDhMfX39hMe6XK7E193d3Sn3O5WampqUjz2773RqbmlpwefzpXTsjh07UqollevS4/Ek1hMa77pMri9+fU5WJ5BYl8Pv90+4zk78furu7sblco2539xuN729vfT29qa81tFkrH6u5lsungdWPp7x8wSDwQl32kl+jFP5vWXl9WHl86C1tTXx9VT327Zt22hsbEzr900+Zfp7eSJWXFM9PT0AKa3PNdnr5ETij0Vvb2/abUVEZiKFNSIyJ23duhV4Z9HCVMTfoHZ1dZ3zgSX5vyd7c5/8YWy67wYSX7TSig8rU21Tm26okg/p1Ox2u1O+n6xeDDR+DYdCoXEXWw2Hw4lFPVOpM/k5Ed+6fSL5CESsfq4WkhXPA6sfz+Sd3ia7j+O/u9L5vZXPwGyq5wGM3l/xUGeqBbp9Pl9aC+DOZFZfU1u3bp0ysEnnd2Zc/PmRiwWVRUSmI4U1IjLn+P3+tHc5grEfajo7O60ua9qJj6yxIkhJDqmmMl3eiKdTcyG3Nk8OAMa7LpPDilTrjD8vUvlgns79lK7Z9ly14nlg9eMZCAQIBAL09vZOWl/8tnSfn7m8PpJN9TyISx5dM1FgEwwGcblceau90Ky6puLBXHyHw4aGBrq6usa9Zjwez5QjeM4Wfzzir00iIrOdo9AFiIjkWyAQSHydzlDy5L8Cnv3X+uQ3uJMN0U5+Y5vOSAEYfQMc3xo3lakBMPqhIz4yId5HOu3BmpE1VkyHybd0as52q+dsJIdp402dSb7eU60z3mcq0xly+YE2F8/VQrLieZCLx/Ps30WhUIhgMMiOHTsIh8P09fVlfD/mK/CY6nkQV19fj9PpJBwO4/P5aGxsPOeYrVu3zplRNWDdNeV2u8eMSPL7/fj9fmD0Obl582YaGhq4/fbbs3pdmS6BvohIrimsEZE5JzkwyXT9k7P/Qh0fXh8MBif9UBN/U+x2u1P+EBPvc+vWrYTD4ZQ/8HV0dNDU1ERPT8+YNl6vl/vvv5/t27en9PPrjfH0lnwdjfdYJV+rW7dunXJqU5zb7Z7yr+y5Xs8jF8/VmS5Xj2coFMLn87Ft2zbC4TAejwev18sdd9yBy+VKjJJIRz7Xe5nqeZCssbGRtrY2QqEQXV1dY8KqcDhMMBhMO0yfyay8ppqbm3G73TQ1NY3pN75OW1dXF01NTbS3t48blKViuq4jJCJiNYU1IiIWue+++6irqyMYDOL3+89ZSDT+wQBSm5rR0dGBz+dLfFDavHlzyh+WgsFg4g3x2eFOIBCgurqaO++8c9I6ampqEn9Vl9lhopEEMjNZ9Xi2tLQk1izx+XzjjrybTR+QW1tbx/y8ycFMPOSeq6y4pjweD729vYk/NAQCAbq7u8eEaE1NTYTD4bRGeVo5NVdEZCbQmjUiMuecvTtLqpJDi/E+uMRH17hcLu68887EehvhcJiOjg7q6upwu9309PSkNKqmsbGR3t5eAoEAjY2NaU0nuPPOOxN9TNS33++fNPzRzhszw1TXZabX+3SQq+fqTGb14+n1ehPBRU9PT1ofnqeTdB5zp9OZCGjOXlMlmxEfVurq6ppyEWSrWHVNnd3W7XbT3NxMIBCgv7+f/v7+MddXS0tLWuezctF7EZGZQGGNiMw5yQtRHj16NOV2yUO6x5tO0NHRwR133EFvby8+n4/29nbq6uq45ZZb6OnpwefznTMlKRfi601Mdp74fdDe3j7hMZkuKDqdzIVRQVOtg7Rly5bE1+lc79NBrp6rM5mVj2dLS0sisB1vFF6yiX4PTJdpZumuB5a8Jk18XS+/35/RLkW5EAqF8haUW3VNtbS0JNaoGY/T6Uy8DsZNtF38eOKPsdXblouITFcKa0Rkzrn99tsTX6eygOp4x443TD4QCCQCjsbGxsQOKz09PXn9a238zfJkI3Hiw8gnG1kzG3beSOfxnamSFwe94447zrk9+bpLd82RQgd1uXquzmRWPp7JIzcy/f3k9XoLfp3A1M+Ds3k8nsTvuPj90N7ePma3qLnCqmuqr68vpfVu4iNugDHBzVTir0UzccF6EZFMKKwRkTnH6XQm3pxOtK3oeOJvQl0u1znr0cDoX/127NhhWZ2Zitcw2bz++F+O49O0xhPfFWQ6fBBLlvxX1alqmw6PR67FP2hOdF0mX+/BYDDlkRBdXV3ccsst1hWagVw9V2cyqx7PUCiUuD9TmWI52Q5L08FUz4PxxEfXhMNhWlpa6Ovry1sQMNXond7e3rztMmfl74jJRtYki4/mqaurS7nO+PU620bLiYhMRGGNiMxJ8YV7gTFbW0+kq6sr8df6iRbldblctLW10dbWVtCAI5V5/anslpO8psN0kvxharJRP8kLOs9E8XVEJtPR0ZF4vCdbLDr5ek91S+KmpiZ8Pt+4t+Xz+s7Fc/VsM230mBWPZ/LvgKl+/qmeR2f/rrHy+rDyeXC25BElbW1teR2FlTz1aLxRY6FQKG/bnoO1vyNSeczi11yqwUvyfTQdpqmJiOSDwhoRmXWS59xP9CHE6XQmpi21tbVN+tfAUChEQ0MDMPpBYKK/vMaHz7e0tFBdXY1hGOf8q66upq6ujqamppwFCel+8JzoeJfLlXhTnMl0ouQPbFN9eEunZo/Hk6greerD2ZqamrjvvvsS/53KKJtMa05nnYdUflafz8f9998/6f0e3/ELRu+HyUYExK93p9OJ3++f8sNUQ0MD9fX1U679kY/QJhfPVcjf+j25eB5Y8XgmL7IbDocnvF/D4TBNTU1s37498b34765wODzpB+dsrw+rnwfjiQc2yaNL8qGxsTFx3509dSiV7cNTeZ1L51grf0e0tLRM+Zrh8/mor69P+fGKX3OzbaSciMikTBGRWaC3t9fs6ekxOzs7TafTaQImYNbX15uBQMDs6ekZt11/f79ZX19vAmZjY+OY4/r7+02fz2cCpsvlmrCPZPHjU/3ndrvN3t7elH7GxsZGEzCbm5snPc7lck15XH9/f6KGQCAw4XHx+8bn86VU40SPg8fjSTwO/f39iRp6enrMQCBgejyexLEul8vs7Owcc+zZenp6Ev23t7efc5vb7TYDgYDZ29t7zv3d2NhodnZ2Wlqz0+lM1Jz8eMaPjT928X8+n8/s6ek555qqr683XS5X4lxut9tsbm4ecz/09/ebzc3NaV8/8bbxxzT+8yVrb2833W73Ofdp8v3U3t4+5mdpbGxM3E/p1JIuK56rkz3W8ccvlef5VPL1PMjm8YyLtx/vudTZ2TnmGosf63K5TJ/PN+acVl4fuX4eJIv/jpjq92ouBAKBc34Px3/e5N9Rcem8zlnxmpjuNRVvF79ufD7fOdduIBAwXS6X6fF4JryuxxPve7JrWURktlFYIyKzQvIHDqfTOeZfKqFET0+P2dzcbLpcrkQ7l8tl1tfXj/umeTyNjY2m0+lMhAGBQCDxr7Oz0+zs7DR9Pp/Z2Nhout3uMfWm8qY1V2HNZD9fZ2dn4g1+KuKPw9mPQfLjED9f8oe6iY5vbGyc9HzxD4wulyvxr76+PvHBLf5BLP54ejyecx7TXNWcfB9PdKzT6Rzz87S3t5/zISr+4cjtdo/5GSe7nqfS09NjNjY2Jq6V+P3T2Ng44Yfe5GMn+nniH7BzKZvn6mS/J5If73Q+RE52nnw9DzJ5PJPFA8X4fepyuRIfts8Wf87V19ePuVatvD7y9TyIczqdOQ0aJ9Pb25sIp5xO54RBjWlOfP0mh2NTHZvOa2K611RjY2MiTIkHqGdfU5k+ZvG6s31uiojMJIZpmiYiIpKV2tpaQqFQWltzB4NBGhoaCIVC1NfXT7nWQlNTEx0dHTQ3N0+4lgiMLtgYDAYnPS4cDlNdXQ2MTh2YbLh9/Lj+/v6pfiQRkRmlq6sLn8836ZRKKaxQKERtbS0ej0ePk4jMKVqzRkQkSy0tLYRCIXw+X1rrJbjd7kRAk+oOGqmILxya6noRk+0aBaPbJ0+2poWIyEzl8/lSXlBXCiP+Rwc9TiIy1yisERHJUjYLH7rd7sQik6lulzqVeH+TLTqZfNtUO2vE3yCnshOPiMhMEQqFCIVCUy6kLYUTDofp6OjA5XLpcRKROUdhjYiIRTINW+IjYKzapjW+JexkI2uSa53qvC6Xi+bmZoLBYEa7QomIFEpDQwPV1dXjjgxsb2/XaI1pLv5Hgsmm/oqIzFYKa0REshTfNjaTN5Px7VGt3I40/tfHycKjeJCT6nl9Ph9Op1MfbERkxgiFQvj9fsLh8DkjA+O35XO7bklfR0cHHo9HW3aLyJyksKaAGhoaEh/UrOT3+/F6vWP+pXOebNuLzDWNjY00NjbS1dWF1+tNuV1bWxstLS1j1q6xgtvtxu12EwqFJhxdE1+kMR40peK+++6jq6srMe1LRGQ6Sx41ePYUmoaGBtrb2/NdkqShra2NcDisx0lE5iyFNXkUDocJBoO0tLQkhuQePXrU0nN4vV62bt1Ke3s7gUCAQCBAZ2cnO3bsSOxWk8v2InNVe3s7nZ2d9PX1YRgGTU1NBIPBc8KSUChEW1sbtbW1bN26FZ/PR09PT0rnmGwNmrPFR/l0dHScc1s4HGbbtm14PJ601gCor6+nsbGRhoaGlBcvFhEppPjC762trcDo77+GhgbuuOMOrYEyjcXfL3d2dlo2RVhEZKbR1t15YhgGTqeTzZs3J/6aM9XWuulqaGigq6uL3bt3j7tgaF1dHeFwmN7e3py0F5FRoVAo8Rw/O+B0uVy4XC4aGhrS+qAQDoe55ZZbCAaDKW9fGh+5c/bW3F6vN7HN+FSLC4/H6/XS19eXcsgkIlJIfr+frVu3Eg6HcTqdtLa2alrNNBYOh6mrq6O+vl5r1YjInKawpkC8Xi9dXV2WhTXx6ReT9ef3+2loaBj3mGzbi4j1gsEgDQ0NwPijauJbbgcCgQn/8hgMBses1RAOhxPP9WzU1dWxefNmDU8XERFL6fVFRGSUwpoCsTqsaWhowO/3n/MX9LPFR/j09/db2l5E5p6Ghgaampo0lUBERCwRXyMx2z8oiIjMBo5CFyDWiG9JOdW8XqfTSTgcpqura8wHrGzbi8jcY+WiyCIiIgppRETeoQWGZ4HknVmmClvitweDQcvai4iIiIiIiIh1FNbMAvHgJJWFQuNrXOzYscOy9iIiIiIiIiJiHYU1s0Am238nb7ubbXsRERERERGZefbs2cPjjz9e6DJkHFqzZhZIJziJj55J3lkm2/bp2rdv36S3Dw4O8uqrr7JkyRIWLVqEw6HLVEREREREshOJRDh8+DAAmzZtorS0tMAVFd5dd93FK6+8wtNPP41hGIUuR5LoU/AskElwkhzQZNs+XatWrcq4rYiIiIiISLaeeeYZtmzZUugyCuq5557j3//93zBN2LZtG3fccUehS5IkmgY1C8TXkSlUexEREREREZk5TNPki1/8IqY5+t+tra0MDQ0VtigZQyNrZoFUFgbOZft07d27d8rbr7nmGgDKij+Lzagc97iRSDfD0S6cuFlu/wiGYbe8VhGRmWzIPEQo+n9Zz/W4ua3Q5aTlILt4mG/hZBkL7b+N3ShPue3Pd/9ODisTEZGZ6sCBA1xxxRUALFq0qMDVFNYvfvGLxK7Adjvs3r2bf/qnf+KP//iPC1yZxCmsmQUWLFiQ8rHx6UvJAU227dO1cuXKlI+1GZXYjKox3zNNk/kjT3Ig1sUi2y2ssN2m+ZUiImcxzSiHov8f81nMNXwSB8WFLikt81hAJYt4gK8Ti36H5Y4/oOis14OJfND1PwSHfz/HFYqIyEw2l9fFjEajfPGLXwTA+54y1m8s4h//7jhf/epX+eQnP0l1dXWBKxTQNKhZIR6cpLKOTHx9GpfLZVn7fDLNGGUjXRyI/YRltg8qqBERmcDB2C85Qoib+UzOgprjHKKPyUdLZmMRtXyQexjiJHsif8uQeSTltu7ib+Eu/lbOahMREZmpvvOd7/Diiy9is8G9W2v40y85qXLa6O/vZ+vWrYUuT85QWDMLJAcnUwUu8duT22TbPl9MM0rx8P9wOPYgK20fY6n9fQpqRETGccrcx8HYT7mUD7KY8y3te5DjvEyALvtdfJ//jZ9mXi/5NhGGLT1PXDUr+CD3AAZvRP6G0+b+tNorsBEREXnHqVOnuOuuuwD4rd+dx4UXFVNdY+dPv+QE4O///q958803C1ihxCmsmQU2b96c+HqqnZ1CoRAAXq/Xsvb5YJoj2Ic76TOfZo39kyyy35jX84uIzBQxM8LhyL/jZDl1Fq1TE2GI13mCJ4p8fJfP8gTfpsyo4JMVv89Hy36TR4a283P7l+ljjyXnO9t8FvFB7qaMKnZH/paTsTfSaq/ARkREZNTf/u3fsn//fsrLDf7sK+9Md2r8bCWr1zgYGjL58pe/XMAKJU5hzSzgdDpxu93AO2HKeJLXm/F4PJa1zzXTHILh73HcfBmX/fepsV2Rt3OLiMw0tsiv6OctbuKz2CnKuJ8YMfbxPL8u/r98j9/nV/wDJ2MD3Fb2m3yt6u/47PwvsKX4am4pfS/NlfeACT/kyzzPA5jErPuBzijHyQe4Cycr2B39OwZir6bVXoGNiIjMdYcOHcLnGx1V8wefr2LZ8nfW7SkpMbjrL0bDm+9973v09PQUpEZ5h8KaGWSyKUqtra0AdHZ2TnjMtm3bAGhsbLS8fa6Y5iliw9/mlPkm59s/R5VtU97OLSIy05yMvcFz/Ig6PspCzsuoj3728ST/zjbjszzAVnZHXsdT+j7urmzjTyu/wk2lXubbxu7St8K+iubKu7mh5Bae4t951PE1TjL5SM1MlFDB+2llKRsIRf+RcOy5tNorsBERkbns3nvvZWDAZNFiG3/0hXMX7b/t9gouc4+ucze6rbeZ7xIliWHqESgIr9dLV1cXjY2NtLe3T3l8Q0MDfr+f+vr6CQOV+DG9vb3jrilTW1tLX18f/f39OWlvlX379rFq1SoASlhMlFPUOj5HubE6p+cVEZnJYuYIb0Z8OCjmw/wFtgw2fNxDkO18k1KjjM3FV7Gl+GpW29emtT7YKyMv8u8n7yPCCFebd+LiyrTrmEqUCA/yj+zmaVbZf4cFtqvTaq+dokRE5qbkzxl79+5Na5famW7nzp1cdNFGolH4m79fwP9qqhz3uEcfPs1vvPttAH76059y66235rNMSaKRNQUQDAbp7u4GoKura9KpR3F+v3/M/4/nvvvuw+Px4PV6x/QZDocTa8xMNpwt2/a5EGWIdY4/UVAjIjIFI7Kd4xzkJj6TUVDzJkF+yTe4sOgSvlr1N9SX/xZrHK60F3K/oOhi/qzyr1jnuIAuvsmLxf9MlEja9UzGjoN38Tk28C72RP+No7En0mqvETYiIjLXtLa2Eo3CuvVFfOL35k943PU3lvGeW8sAaG5uJhKx9jVcUqeRNXni9Xrp7u6edCqT0+nk9ttvH3ekTVtbG1u3bqW1tZXm5uZJz+X3+2lvbx+zJbfX652ynVXts5WceNfa/4hK2wV5Oa+IyEy2b+SvcbKcm/lsRu2fLvprwrE+/mT+XdgNe9b1mKbJk8OPcv+p77DecSFXRb6Ag5Ks+x1zDkweYCsmMZYU/WHK7UbMY7xmBihyXIHNGP8vi8mOn/5SNmWKiMg0MVdH1jz22GNcf/31AHyvczHv/2DFpMe/+sow17jfIhYb/YP+pz/96XyUKWdRWCPTTvIv0Q32VsptGlUjIjKVfSN/zQLWcAN3ZtT+5/ZWVtrX8FsVv2dpXa+OvET7ib9jpX0110dbKGHyN4jpeoh/5hgHWV70+ZTbnDL3sDOylfLiP8RuWzHpsQpqRERmj7kY1pimyTXXXMNTTz3F1deV8EDXspRGzf7vzxzhO/8ywLJly9i1axcVFda+fsvUNA1KRERE6I/1UW2rsbzfjUUX8UfzW3g7tp8u+18wzClL+7dTRJRhS/uMU1AjIiIznd/v56mnngLgL7++IOXpza1fcVJRYXDgwAG+8Y1v5LJEmYDCGhERkTkuyggD5vGchDUAax21/PH8P+NQ9G2e56eW9j0a1lg/n15BjYiIzHTDw8OJXX8/Ul9B3ZbUpyMvXebgD/94dMeotra7OXjwYE5qlIkprBEREZnj4ttsV9sW5Owcy+0ruaHkFl7mAQYZsKzf0bBmxLL+QEGNiIjMDt/61rfo7e2lqAju/mp12u0/98dVLFlq58QJk3vuucf6AmVSCmtERETmuBMcBcjZyJo4b+mtxDA5UPIjy/q0OqxRUCMiIrNBOBzmL/7iLwD49O9Xcp6rKO0+5s2z0XqXE4D77vsWr776qpUlyhQU1oiIiMxx+Qpr5tsquanUy8NDAU5zzJI+bTiIWRTWKKgREZHZ4utf/zpHjx6lssrGF1udGffz25+cz4aNRUSj0NLSYl2BMiWFNSIiInPcSY5SYVRQbFi7tfZ4PCXvw4adt0p+aEl/DoqIWBDWKKgREZHZYs+ePXzzm20A/GlLFTUL7Bn35XAY3PNXo3/M+fGPf8wjjzxiSY0yNYU1IiIic9wJjuLM4Xo1ySps83hX6Xt4dGh7Yq2cbNgoIpblAsMKakREZDb58z//c4aGTFauttP4B5VZ9/fe95dx7Q2lAHzxi1/ENM2s+5yJOjo6aGhoyNv5FNaIiIjMcfaiwzmfApXs5pJ34zCK2Ffy31n35TizZk2mbxwV1IiIyGzy7LPP8t3v/jsAd91bQ2lp9h/5DcPgL78++j7hmWeeYdu2bVn3OdOEQiGampoIh8N5O6fCGhERkTnuWCyM00h/l4hMldsquLnk3Tw+9FDWiwM7GJ26Fclgh6lHn/xUVucWERGZTkzTPDPyBS69vJiGj1VY1vfldSXU3zHaX2trK0NDQ5b1PRMUYr0ehTUiIiJzXNSM4jAceT1nlc1JlCgGmc+jB1jJJuwUcTT2uEWViYiIzEy/+MUv2L59OwB/sbUGm82wtP8/v7ea4mLYvXs3//zP/2xp39NZS0sLTU1NOJ3OvJ5XYY2IiIjk3YnYABXGPGxZvhUppZJ13MDx2ONpT4W6/up/pbLs61mdX0REZDqIRqN88YtfBODd7y3jxpvLLD/HeWuLuPMzo2vgfPWrX83rlKBCCQaDAHg8nryfW2GNiIiI5N0Jc4B5xnxL+lrNZZzkKCMZLliswEZERGa673znO7z44ovYbHDP13K3Dt2ffslJldNGX18fX/va13J2nok0NDTQ1taWVhu/34/X6x3zL5U+wuEwLS0t+Hy+TMvNisIaERERybsBc4B5NmvCmiWsA+CkGcq4DwU2IiIyU508eZK77roLgN/63XlceFFxzs5VXWPnT7/kBODv//6vefPNN3N2LhgNTILBIC0tLVRXV+P3+zl69GjK7b1eL1u3bqW9vZ1AIEAgEKCzs5MdO3ZQW1tLKDTxe4eWlhba29ut+DEyorBGRERE8u5E7LhlI2vKqKKSJZw0d2fVjwIbERGZib75zW+yf/9+yssN/uwrud8woPGzlaxe42BoyOTLX/5yzs5jGAZr166lpaWF2tpaXC5XWu0bGhro7u5m+/btY9o6nU46OztxOp14vd5x2/r9furq6tI+p5UU1oiIiEjenTAHGBpxWtbfYtZBbE/W/SiwERGRmeTQoUP4fKOjav7g81UsW577DQNKSgzu+ovRUOh73/teYl0Xq5mmSX9/P4FAgMbGRmpqUp/e1dXVhd/vp7GxccKFgVtbWwmFQufs9BQKhbj//vtpbGzMpvysKawRERGRvDsRG6CMSsv6W8I6jvAGMXM4674U2IiIyExx7733MjBgsmixjT/6QlXeznvb7RVc5h6dbjW6XXh6i/znWnz60kQjZwDq6+sB6OjoGPP9lpYW7rvvvtwVl6L87tMpIiIic55pmpwwByjFmmlQMBrWmEQ5Ze5hnnF+1v1Vln2d46e/ZEFlIiIiubFz507a2/8JgNa7qpk/P39jMWw2g69+vYbfePfb/OpXv+JnP/sZt956a97OPxW/3w8w5TQmp9NJOBymq6sLj8eD3+8nGAzS0NBwzrHhcJju7u5EABQIBKwvPInCGhEREcmrQQaJEKHUwpE1NazGQQknzRDzyD6sAQU2IiIyvX3pS18iGoV164v4xO9Z9weQVF1/YxnvubWMXzxwmubmZt797nfjcBQ+Yujq6kp8PVVY43K5CAaDBINBPB4P9fX1iRE3ycLhMNXV1WzevDnnIU2cpkGJiIhIXp2IHQewdBqUDTuLcFEc22dZn6ApUSIiMj09+uij/PCHPwTgnr+qxuEwClLHvV+rwWaDl156iW9/+9sFqeFs8TV0JlqrJll8HZwdO3bksqSMFD72EhERkazEzBGO8zaruDSj9lGi2PL495tSo4wiijlc/CDLhy/CwJo3mItwsZsd5H4fDBERkcIxTZMvfvGLAFx9XQm3/kZ5wWrZeEExv/PJ+XznXwb4yle+wg033EB5+dT1rFy5Mmc1pbO1d1w4HJ709vgW35Nt9W01hTUiIiIzXNh8liFOso7rMmo/zDDFRrHFVU1svq2S36r4Pb598ls4WMfFvNeaflnMSY5imjEMQ4OHRURkdvrBD37A008/DcBffn0BhlGYUTVxrV9x4r//BAcOHGDDhg0ptcnlgsRTBS/J4qNv+vr6xr29q6sLn883Jqypq6ujpqZGa9aIiIjI5EaiT7OMC6hiWWbtzWGKKLG4qsltKb6aNyMhHh76Lgs4j2VszLrPeSwkRpQRjlOMM+v+tF6NiIhMR8899xwA124p5doVFbC/sPWch4OPfXA+/99/Hi9sIWdMFLxMZqKAx+Px4PF4sqwoMwprREREZrAh8zD7eZmb+WzGfQybQ3kdWRP3kbI72Bfdw0PRb/JB82tUUJNVf/NZBMCweZRiw5lVXwpqRERkuptXMX1Gkc4rH63l1ltvTWybXSjxdWhmOoU1IiIiM9jR2BMUU85arsyovYmZ92lQcXbDwe9VfBbf8bt5wv4N3hW9GztFGfc3j4UADHMUqM24HwU1IiIimSkrK8vpejSpSGVh4Zlg+kRxIiIikhbTjDIQe4rzuQ4HmYUtUUYAKM7zNKi4SlsVd877HHujb7Kz+F+z6quYMkqYx7CZ/sKCcQpqREREZrYFCxakfGx8+tN0DHgU1oiIiMxQx82XOEWYjdyccR8RhgAKMrIm7jxHLbeX/w6PDT/IqzyYVV/zWcSwmf5cdVBQIyIiMhvEg5dUFhqOr2/jcrlyWFFmFNaIiIjMUNHoMyxkLQs5L+M+IgwDUGwUZmRN3LUlN3Ft8Y08wb9ymN6M+5nHIsrM9Bc4VFAjIiIyOyQHL1MFNvHbFdaIiIiIJUbMY+zh2axG1UDSyJoMp1FZqaH8d1hhX8VDxjc4TWY7SsxnIQMcTquNghoREZHZY/PmzYmvp9oZKr4lt9frzWlNmVBYIyIiMgMdjT2FDQe1XJNVP9NhGlRckVHEnfM+R4QITzv+jhjRtPuYzyJOcATTjKV0vIIaERGR2cXpdOJ2u4F3wpjxJK9XU6jtuSejsEZERGQGGooFOY/NlFCRVT/xsKZoGoQ1ANW2Gv5XxR/weuRVnuenabefx0KijDBCeMpjH33yUxlUKCIiItNda2srAJ2dnRMes23bNgAaGxvzUlO6FNaIiIjMQPNYyAky3/Uo7gSjw4Odtuqs+7LKuqKNXF60hbftT6XddgnrMTA4br484TFFVHH33XezbNmybMoUERGRAkhl4eD6+nrq6+vp6OiYcHSNz+fD6XTi8/ksrtAaCmtERERmIMN+CQfZmXVgM8AhKowKyoxyiyqzxkVFl7AnupvTHEurXRmVLOUCiL444TFFRhX33HOPwhoREZEZIhgM0t3dDUBXV9ek05vi7rvvPjweD16vd8zx4XA4sUZNT09Pbgq2gKPQBYiIiEj6qoxLsOFgN0+ziVsz7uc4h1hgW2xhZda4oGgTAPt4nnVcn1bbtWzhKb6L0zyFY5qFUCIiIpIar9dLd3f3OSNpQqEQtbW1wOh6M7fffjvt7e3ntHc6nQQCAfx+P01NTWO29PZ6vTQ3N+f6R8iKwhoREZEZyG6UsZJLCGUZ1sQcB1hoLLKwMmtU2qpYZV/DCfuzMJxeWHMeW3iC73DcfJEa44ocVSgiIiK5FAgELOknPiVqptE0KBERkRlqdCrUa1lNhToSO8xC+/QbWQNwYdElvDLyIiap7ewUN48FLKIWI/pSjioTERERyS2FNSIiIjNUlXEJdooI8XRG7aNECMf6WGibfiNrAC50bOKEOcBhdqfddi1XsJfniJnDOahMREREJLcU1oiIiMxQo1OhLiVE+rsmAZzgMCYmC6fhmjUAax21lFLGPn6ddtvz2EKU4Ul3hRIRERGZrhTWiIiIzGT2TRxiFyc4knbT4xwCmLZhjd1wsLHoIvrsz6bd1skyqlmFXVOhREREZAZSWCMiIjKDVRmbMp4KdZyD2LBTbavJQWXWuLBoE7ujvQxyIu22a9nCHoLEzEgOKhMRERHJHYU1IiIiM5jdKGNVhlOhBjjEAttCbMb0fTtwYdEmTEze4oW0267lCoY5xQnztRxUJiIiIpI70/fdmYiIiKQkat/AIV4nykh67RhhxBwmakZzVFn2qm0LWG5fSbgo/ZFDNaymkqXYos9ZX5iIiIhIDimsERERmeEczAdgmNNptdvIuwib/Tw78kwuyrLMluKreX4kyDCn0mpnYLCBGwnxNFEzvftGREREpJAU1oiIiMxwdkoBGEkzrFnAGjY6LqJr8GeYppmL0iyxpfhqIkTYzY60267nBmKM0B9Lv62IiIhIoSisERERmeHsxmhYk+7IEwBX5IPsjb7Ja5FXrC7LMtW2BaxzbOSA45G021ZQwyouZzCW/jQqERERkUJRWCMiIjLD2SgD0p8GBbCCTaywr6Jr8GdWl2WpK4qvYVfkFU5wNO22G7mZw4Q4Ze7NQWUiIiIi1lNYIyIiMsPFp0FlMrLGwGBd9Dd4OfI8+6P7rC7NMpcVb8GBg9d5PO22q7mccpw4It05qExERETEegprREREZrhM16yJO5+rcRrVbJ/Go2vKjDIuKXKz1/YIJumtr2PDznpuYBePEzOHc1ShiIiIiHUU1oiIiMxwBkXYsGc0DQrAhoMN5q3sGH6ScKzf4uqsc0XJtRyIvcVR3ki77QZuYpiThM3nLK9LRERExGoKa0RERGY4wzAooizjkTUAF/AuiijmocGAhZVZ6wLHxcw3KtnFY2m3rWIZy7iQkagWGhYREZHpT2GNiIjILFBMecYja+Ltry25iceGH2TQzLyfXLIbdjYXX8UbxuPEiKbdfiM3s5+XGTIP5aA6EREREesorBEREZkFiinjFOGs+lgy9H6GzCF+fvon1hSVA1cUX8OAeYz9vJR227VcQTEVHI09lYPKRERERKyjsEZERGQWWMNmdvEYRzJYzyVuHgv4QOlHCAz9lB+euh/TTG8h33xYZT+PecZ8DvF62m0dFFPNSkbMPtzF38pBdSIiIiLWUFgjIiIyC0QdN1HDSh7in4gyknE/Swdv42o+QWDoAf7z1L8SM2MWVpk9wzBYZl9BrOjNzNpjJPaSUmAjIiIi05XCGhERkVnAZjhY6Phtwuynhx9k1dcm3sdN/D5PDj/Kv5z8JyJmxKIqrbHcvpL90X0ZtTUAkrb+VmAjIiIi05HCGhERkVmi3FjJEtv7+TU/ymiaULL13IiHz/PCyLN868Q3GTKHLKoye8vsKzkUO5jhCCIbyWENKLARERGR6UdhjYiIyCyyxPZuFuLiQf6ZCMNZ9XUeW3gPLYQiu/i/A22cip20qMrsLLevIEaUYxxIu+3oNKhz1+JxF39LoY2IiIhMGwprREREZhHDsLPQ8Vuc4DA7uD/r/lZwMe/jyxyMHeCbJ7ZyLBbOvsgsLbOtAKCPvWm3NTA4e2RNMgU2IiIiMh0orBEREZllSo1lLLF9kBf4GQd4Nev+FnM+7zPv5kRsgL8d+BpHo4ctqDJz5bYKnEYNfWSybs3kYQ0osBEREZHCU1gjIiIyCy22vYulrOch/pkRBrPur4ZVvM+8FxOTvxn4Sw5E37Kgyswtt68gWvRG2u2MM0sMT0WBjYiIiBSSwhoREZFZyDBs1Dh+i9Mc42m+Z0mflSzmvbF7qLDN428H/oo3IyFL+s3EMvtK9mcQGI2uWZPaduQKbERERKRQFNaIiIjMUiXGIpbaPszLdPEyXZb0WU413ujdLLYt4+8GfOwcedmSftO13L6So7HDGYwaSm1kTZwCGxERESkEhTUiIiKz2ELbjaxhM0/wbWJELOmzhHncFP0yax21dJz4O8KxPkv6TccK+yoAjvJGWu0cFFOexjbkI+Yx7rnnHg4cSH/nKREREZFMKawRERHJgZg5zEDsVSLmiYLWEeUUYfZxHluw4bCs3yJKuTLyeYqMYvyn/sOyflO13L6SMqOc/aQ3smcZF3CQXURTDGxGOMa9996rsEZERETyyrp3bSIiIsKIeZwjsUcIxx5lkOMYGCxmPTbbRqpsmyhlOYaR3lScdJimySD7OR57kVjsFQ7yGgZ23sUfWn6uEuax2fwdHhz5R14a+TUXFV1q+TkmYjfsnO9Yz3HzRYh8NOV2K9lEjAgnzV4qjQtzWKGIiIhI5hTWiIiIWOC0+RZm5DFe53EMbGzgRtZxA33sYQ9B9sV+zoHYj6hgAWu4nEH7BuYb67EZxVmfO2aOMGDupDT6Gnt4lhMcwUEJK9jE9XyaVVxGBTUW/JTnOp9r2e94kPtP/Tt/XrmRYqMkJ+cZz3rHhfzodCfXMYyD1O7HKpZTwjxOmiEqUVgjIiIi05PCGhERkQyZpsmA+QpD0YfZx/OUU00d9VzAuyhhHgCLqWUjNxNlhAO8wpsE2cOzDES7sFPMCi7GtG2k0nYxxUZ1yuceNsMcN1/AiL7Kfl4iwhDzWcwa6ljN5SzjgpQDjGwYGFwa+TQ/oJmfD/6ED5bV5/yccesdFxBhhEPsYjkXpdTGwGAJ64jF9oI9xwWKiIiIZEhhjYiISJpi5gj95jMMRB+in30sZC038we4uAr7BC+tdopYySWs5BKu4XcJs589PMsegrwd+z5mLIYtjfQgRhQDG0tZTx23sZrLcbICI83djqzgZBmX8CG6Bn/IluKrWWZfkZfzLrevpMKYx37z5ZTDGoDFrON5/oeFZgzD0PJ9IiIiMv0orBEREUlRxDzJ4diDZ9ajGWANbq7lUyzjgrRCEgODalZQzQou5QMMcYK3eJFBBlLuo5T5rODixAieQruMD7LP9hjfP/UdPj+vNafr8sTZDBvrHBsJx16AaEPK7ZawjmFOMcjblLE8hxWKiIiIZEZhjYiISAqGzX7eivxfBjjCBm7kYt6Hk2WW9F3CPFxcZUlfheKgmM2x/8UDsa/x1PBjXF1yfV7Ou8FxIZ2nv8cIgxRRmlKbxZyPgcFJM0SZobBGREREph+N/RUREZnCoHmINyPfIMIwt/F1ruP3LAtqZpOVbGJz8dX89+nvcyKWny3L1xddQIwob7Mz5TZFlFLDasqjb+WwMhEREZHMKawpEL/fj9frHfOvra0t6367urqoq6sjGAwSDocz6qOpqYmGhgb8fj+hUCjx/XA4TDAYpKWlhdra2jG3iYjMVqfMvbwR+RscFPNB7lFIM4WNw58gRowfnb4/L+dbYltGpVHFfl5Kq91i1nGQXTmqSkRERCQ7mgZVAF6vl76+Pjo7O3G5XMBoEHLnnXdSW1tLIBBIfD9doVCIYDBIXV1dym08Hg+BQCDx3319ffj9fvx+/4RtkmsXEZmtTpv72B35JpUs4Va+RCmVhS5p2ivHSZ35MR4b/heuLbmJ8xy1OT2fYRisL7qQw9EXIZp6uyWs4xW6iJgncRgVuStQREREJAMaWZNnDQ0NdHd3s3379jFhh9PppLOzE6fTidfrzbj/np6etNv4fL6Uj62vr6e3t5f6+vxtzSoiUignIj+hDCcf4M8V1KShqGQfNuxp7W6VjcW2JYRj/Wm1mc9iACJpLOosIiIiki8aWZNHXV1d+P1+mpubcTqd4x7T2tpKQ0MDLS0taYUocd3d3TQ2NlJXV0dNTc2kx27dupU77rgDt9t9zm3x4CgYDALgdrvZvHnzhHWLiMw2J2Kvs4/n8fC/Kaa80OXMGK/zOA8O/ZKGst9mteO8vJwzk+3K87/BuYiIiEjqFNbkUXt7O8CkI2fiI1Y6OjoyCmvC4XDiPJMJBoPU1NTQ3Nw87u0ulwu3243H40m7BhGR2eBE9GfUsJq1XFHoUmaMPvbyGB1sKb6aG0v0+iEiIiKSKU2DyqP4GjBTrfXidDoJh8N0dXWl1X84HB53lMx4xzU0NNDZ2ZlW/yIic8VA7FUO8DKbacDQS2VKhjnFI7a/YaF9Mb9Z/ikMQ2NXRERERDKld6B5khy8TBXWxG+PT0FKR2tr65THNDQ04PP5NKVJRGQcpmkyEH2ARdSyhtQXa5/LTGIEi/6RAXOAOyv+iBKjpNAliYiIiMxoCmvyJB68pBKQxNea2bFjR1rncDqdU46saWtrw+VyaYFgEZEJHDdf4iC72Ex9RmuhzEXP8WOeHwnyu+VNLLYvKXQ5IiIiIjOe1qzJk6NHj6bdJhwOW1pDMBikvb2d3t7elI4PhUK0tLQkaunr68Pj8dDa2prVqJx9+/ZNevuBAwcy7ltEJBujo2p+xhI2sJJLC13OjLCP5+lmG+8r/RCbii8rdDkiIiIis4LCmjxJJ3iJByF9fX2W1nDnnXemvGjx1q1bCYfDiV2h4hoaGqirqyMQCEw5nWsiq1atyqidiEiuHTOf5zAhPsCfa1RNCo5zkIeNv+cC+yZuLf1wocsRERERmTU0DSpPMglerBxZ09HRQTgcTmv6UyAQOGcETXxR4traWstH/oiIFJJpxjgW/SnLuZDlXFTocqY1E5NX2M4PaaXMqOCTFU3YDL2lEBEREbGKRtbkSXwdmkJpaWmhsbExpWN9Pt+ko2bq6+tpa2ujpaUlpW3Cz7Z3795Jbz9w4ABXXKGtckUkv8Lms/Sxlw9yT6FLmdaOc4hnHe3sjLzMNcU38JGyj1Fuqyh0WSIiIiKzisKaPCnkzkt+v59wOMwdd9yR0vFTTW/yer20tbXR0dGR0a5SK1euTOt4EZF8GIk+zVI2spQNhS5l2trFozzBv1Aeq+AP5/0pFxRtKnRJAPTFjuIwisAsdCUiIiIi1tCY5TxZsGBBysfGpxdZFfDER79MtVNUqpLDnO7ubkv6FBEptApqiDBU6DKmpREG+XXx/+VB/olLi938eeVfTZug5q3IHp4afpR1sXfnpP8iqrj77rtZtmxZTvoXERERGY9G1uRJPHhJZZ2X+Po2mS7gmywcDtPV1WXpyJ7kKV3BYBCPx2NZ3yIihXLKtoS+2ONEiWDXy2PCEXbzmO3vCA+H+UT5nVxZcl2hS0owTZP7T/87i21LuSj23pyc44WRlpz0KyIiIjIZjazJk+TgZarAJn67FWHNtm3bUu4rHA5TV1dHbW0toVAopf5T3QZcRGS6KzNWEyNCP/sKXcq0YGLyAj/jx3yFEqOUL1X+xbQKagB6Rp6iN/IadbFP5iRgCw7/vuV9ioiIiKRCYU2ebN68OfH1VDtDxYMSr9eb9XkDgQCQ2gLHXV1dBINBQqEQfr9/wuOS66+trc26RhGR6aDMWAkYHGF3oUspuEGO82RRG0/yb1xf8i7+ZP5dLLEvLXRZYwyag/zg1Pe5rGgzK7nE8v4V1IiIiEghaZx3njidTtxudyIMmWikS/J6NVZML+rq6kr0N5X4mjZut3vSLb6TR91oCpSIzBZ2owQnyznCG4UuZUImJqfo5zgHOUWYGBGiRIgRIUY08fU734t/HcWGDRsO7DjO/H9R0n/bE19HifBrYxuRSITfr/hjNhVfVugfe1w/P/1jTpknuWDkE5b3raBGRERECk1hTR61trbS0NBAZ2fnhCFHfNrSZNtsh8PhlNegiYc/qYyscblcuN1uenp6Jj0uPlqnvr7eskWLRUSmg4WcV/CRNTFinOQoxznIcQ5yjLcxig5wOHaQI9FDDDN8ThsbNuw4cBgO7KNfYTccZ/7fjh07MWJEzNHwJmKOBjsRIkTNCBGixIgm+ltvv4DfrWjEaZv6taMQDkbf5ldDP+cyPsx8Flnat4IaERERmQ4U1uRRfX099fX1dHR00NLSMu7omvhW2D6fb9w+Ghoa8Pv91NfX09nZOen5UlnMeLzzNzU1JXaQOlswGKStrQ2n08l9992Xdv8iItPZadtSjsZ2nBmJYs+qr5P08VLRv3LKPJViC5NjsTBHY4eJEAHAwGCBbSGLzCWc79jAVcXXs8i2mEX2JVQZToqMotGRMUb2s5pj5ujYnCgRSijFMIys+8wF0zTxn/ouTls1l8Y+aFm/CmlERERkOlFYk2f33Xcf4XAYr9dLIBBIBDbhcJiGhgaASUe2xNeSmWxNmfGkOhLH4/EQDAbxer20tLQkRgCFw2G2bdtGU1MTHo+H9vZ2S3eYEhGZDsqM1UQZJsx+aliVcT8xIjxp/yZHIodY59iYcrsVRatYaFvMIvtiFtmWUGNbiMPIz0u1zRidKFVEUV7Ol6kXRp7l5cgLePkCDoot6VNBjYiIiEw3CmvyzOl0EggE8Pv9NDU1jdnS2+v10tzcPGl7n8/H1q1baW1tTelcHo+H7u5u7rjjjpRrbG5upr6+Hp/PR0tLC6FQiJqaGtxuN52dnZOuZyMiMpOVG6MBzRHeyCqsebPkP3ljKMQfz2/F5VhnVXlz3og5zH+d/g8ucFzMeZHNUzeYhJPlePg8P+j7E4uqExEREbGOwpoCiU+JSldzc/OUgU6y+Poy6XK5XBNOhRIRma3sRhmVLOUIIdZzfUZ97ON5AkMP8JGyjymosdj2wV/QF+vjXbEWDLKbplVKJQHzby2qTERERMRa2rpbREQkiZNlDHA44/YHeY0SSnlXyXssrEoAXou8zMVFl+JkRdZ9tZsfs6AiERERkdxQWCMiIpJkwHAwzOmM2y/ifIYY5Ggs88BHJnZipKTQJYiIiIjknMIaERGRJHajlJEswpolnA9AKPK6VSWJiIiIyByjsEZERCSJjbKsRtaUMI+ltuWEIrssrEpERERE5hKFNSIiIknslDLCqaz6cDnWsTuqkTUiIiIikhmFNSIiIknslGY1sgbAMbyB/dF9nDaz60dERERE5iaFNSIiIklsRilRRogSybiPpazHxOSNSK+FlYmIiIjIXKGwRkREJImdMoCsFhmuYhkVRoXWrRERERGRjCisERERSWKnFCCrqVAGNtY6zme3RtaIiIiISAYU1oiIiCSxYmQNQNnIRnZHXidmxqwoS0RERETmEIU1IiIiSWxGCZDdyBqARbgY5DSHY4esKEsAAwNQ+CUiIiKzn8IaERGRJAZ2AMwsQ4FBTgAwz5iXdU0yqtyowOEYKHQZIiIiIjnnKHQBIiIis1E/+6gynFTYFNZYpcrmZP/IvkKXISIiMi0YxxwU9VQWugwAbIeOFbqEWUdhjYiISA7EivawzFxR6DJmlUqbk2NmuNBliIiIiOScpkGJiIjkwIHoWyyzK6yxUpVRxWnzFBGGC12KiIiISE4prBEREbFYhGEOxw4qrLFYpc0JwCnCBa1DREREJNcU1oiIiFgszH5MTIU1FqtSWCMiIiJzhMIaERERi/UzugjuUtvyAlcyu1QaTgBO0V/YQkRERERyTGGNiIiIxfrZh9OoodxWUehSZpUKowIHDo2sERERkVlPYY2IiIjFokVvagpUDhiGwXxbFacV1oiIiMgsp7BGRETEYtoJKneqDKdG1oiIiMisp7BGREQkyaB5EIBS5mfcx4g5gknMqpIkSbFRzAhDhS5DREREJKcU1oiIiCQxo93UsIpqVmbcx2XFWwgOP0PMVGBjteOxY5RTVegyRERERHJKYY2IiMgZEfMEb9LNBm7CwMi4n+qhGzhmhnkt8oqF1QnAcfMY5VQXugwRERGRnFJYIyIickZf7BlM4Hyuy6qfRdSy0LaYHcNPWlOYADBiDnPKPEk5zkKXIiIiIpJTCmtERETOGIw9wxrqKKMyq34MDFbHruO54W4GYsctqk6Ox44BKKwRERGRWU9hjYiICHDK3MtR3mQjN1rS33puwDAMvnLsT/jBqf/kWCxsSb9z2TFTYY2IiIjMDY5CFyAiIjIdOCLdlONkJZda0l8lS2gwv8kL/IzHh37OI0PbuabkJrylt1Jtq7HkHHPN8TOBl8IaERERme0U1oiIyJwXM0d4ncfZyC3YsFvWbynz2cLtXML7eZGfs2P4Zzw+9CBXFV/Pu0s/wAL7QsvONRcci4WxY6cki23VRURERGYChTUiIjLnHTOfZ4iTbLBoCtTZSqigjtvYZL6Plwnw3MhPeWL4Ea4svpZ3l36AxfYlOTnvbHPcDFNpVGGYme/UJSIiIjITKKwREZE5LxrdwRLW42R5Ts9TTDmX8SEuMt/DK3Tx4sj/8NTwo2wpvpr3lP4GS+25Pf9Mdyx2jEqbE6KFrkREREQktxTWiIjInBYxT7CX57mO38vbOYso5RI+wIXmu3mF7Tw5/G88M/xETs95d2XbjB/Bczx2jEpbpcIaERERmfW0G5SIiMxpNkooopTTHMvreWPEeIMdvGHbnlRLbv632LaEKpszrz9fLhQZRYyYI5b01WR835J+RERERHJBI2tERGROsxlFrMHNbp6hjttyfr4YUV7ncV62/TeHYm9zoW0TH6/4FC7Hupyfe6arsjk5NPK2JX0NcoJrjU/h3/81li1bZkmfIiIiIlZRWCMiInNe1H4xfdHHOcYBqsjNB/coEXbxCC/bfsiR2GE22S/nkxVNrHG4cnK+2ajScHLMDFvSV4QhnuDbXLeqnN7IP1rSp4iIiIhVFNaIiMicV2lciIMSdvMMl/EhS/uOMsJOHuIl24/ojx3lMvtmPl3xOVY51lh6nrmgylbFSfMEUSLYs3wLU0E1DkoYMg/iLv4WAMHh37eiTBEREZGsKawREZE5z2YUs4rLCPG0ZWGNiclL/JKXjB9y3DxGnf1K3jPvCyy3r7Sk/7mo8sy6O6cJM4+FWfVlYKOKpQxyKPE9d/G3FNiIiIjItKAFhkVERADTfjFH2M0Ahy3pr5cneYJvs7HoIu6q/DqfmvcZBTVZqjKcAJwibE1/LKUkdnTM9+KjbEREREQKSWGNiIgIUGlcjJ0idvN01n2ZmLxq/28ucGziExWNLLEvtaBCie9odYp+a/pjGWEOnPN9BTYiIiJSaAprREREALtRykouYTfPZN3XHp5lf3Qf7yn9gAWVSVyFMQ8bdgtH1izjFP1EzcFzblNgIyIiIoWksEZERCTOvomD7OIER6c+dgImJq/Zf4DLvo7zHRssLE5sho1Ko9KysMbJcgCGJpj6psBGRERECkVhjYiIyBmVxiZs2HmDHRn3cYBX2B3t5T1lv4FhGBZWJzC6yLBVYU0lo9PThsyDEx6jwEZEREQKQWGNiIjIGQ6jnEqW0MeejPvYx/NUGPO4yHGJhZVJ3CLbYsK2VzGJZd1XCRXYcDBiHp/wmBHzGPfccw8HDpy7to2IiIhIriisEREROWPY7CPMfpZzccZ9LGANJ80TnDAHLKxM4m4qfTdvx/azO4vRT3GDDBAjQrFRPeExIxzj3nvvVVgjIiIieaWwRkRE5IxjseexYWc1l2XcxxLWAxCKvG5RVZLM5TifjY6LeMX+X1mPrjlxZq2aYqPGitJERERELKOwRkRE5Awz9hLLuYhiyjPuYx4LcBrV7I7ssrAySfa+sg/zVnQvb9KTVT8DHAGgmAVWlCUiIiJiGYU1IiIiQMQ8yX5e4Tw2Z93XWsf5hKIaWZMr5zvWs95xwZnRNWbG/ZzgMEWUYqfCwupEREREsqewRkREBDhuvoRJlDXUZd1X6chG3ozsJmJGLKhMxvO+0g+xN/omewhm3McAh5nHQu3aJSIiItOOwhoRERHAHn2ZRdRSQfbrlyxhPRFG2Bt904LKZDzriy7gfMeGrEbXDHCE+SyyuDIRERGR7CmsERGROS9mjrCXX1syBQpgAedRRJHWrcmx95V+iD3R3ezluYzan+Awp2yV1hYlIiIiYgGFNSIiMucNmDsZYdCSKVAAdhysdqzVjlA5tsFxIS77Ol7NYHSNickARyi2YCSViIiIiNUU1oiIyJxXHH2VSpZSzUrL+pwX2UgosgvTzHwBXJmcYRjcWvYh3oj28hYvpNV2iJOMcJpiQztBiYiIyPSjsEZEROa8PQRZgxsD6xaaXcI6jplh+s0+y/qUc210XMx59lp2Of47rXYnOAxo224RERGZnhTWiIjInFdCOac5Zmmf886EACdixy3tV8YyDIMLizZxKPp2Wu0iDAFgN0pzUZaIiIhIVhTWiIjInFdq28xudjDM6UKXIhmwckSUiIiIyHSgsEZEROa8GtsVRBlhN88UuhQREREREYU1IiIixUYNy7mQXTxa6FJERERERBTWiIiIADjsdeznZU5wpNCliIiIiMgcp7BGREQEcBqXY6eIXTxW6FJEREREZI5TWCMiIsLorkBr2cIuHsXELHQ5IiIiIjKHKawRERE5w7S7CbOfw4QKXYqIiIiIzGEKa0RERM6Yb2ykHCe7eKTQpYiIiIjIHKawRkRE5AzDsDHPtoVeniRKpNDliIiIiMgcpbBGREQkSbVtM4MMcIhdWfUTIwqADbsVZYmIiIjIHKKwRkREJEkJiwE4SV9W/cS3AK+21WRdk4iIiIjMLQprREREktgowU4xpzmWVT/HOUQpZZQbFRZVJiIiIiJzhcIaERGRJIZhUE4VpzmeVT8DHGKBfRGGYVhUmYiIiIjMFY5CFyAiIjLdlFKZ9cgaHAdZaCyypiARERERmVM0skZEROQsZVRlHdYcjR1mgU1hjYiIiIikTyNrCsTv99Pe3j7me16vl+bm5qz7bmpqoq+vjzvuuAO3243L5QIgHA4TCoW4//778fv9BAKBxG35rlFEZDo7aZRhMw9k3N4kRl/sKAtsCy2sSkRERETmCoU1BeD1eunr66Ozs3NMkHLnnXdSW1s7ZYgylb6+Pvx+P36/f8Jjks9diBpFRKYzhzGfE+arGbc/ST8RIiy0a2SNiIiIiKRP06DyrKGhge7ubrZv3z4m7HA6nXR2duJ0OvF6vTk7f319Pb29vdTX10/bGkVECq2ISgY5jomZUfsBDgFoGpSIiIiIZERhTR51dXXh9/tpbGzE6XSOe0xrayuhUIiWlpasztXZ2UkgEMDn8+Hz+QgEAvT39085oiafNYqITFcOYz5RRhjhdEbt3wlrNA1KRERERNKnaVB5FF//ZbJRKfERLx0dHfh8vozP5XK5cLvdeDyeaVujiMh05aASgFMco5jytNsf5zCVRhXFRonVpYmIiIjIHKCRNXkUX0NmqrVenE4n4XCYrq6ufJQ1xkyoUUQk1+xnQpYIgxm1H+Yk5UaFlSWJiIiIyByisCZPkkONqYKQ+O3BYDCnNZ1tJtQoIpIfhgU9ZN+HiIiIiMxNCmvyJB5qTLQOTLKamhoAduzYkcuSzjETahQRERERERGZ7bRmTZ4cPXo07TbhcDircyYvAhwOh+nr68Pj8dDa2jpuIJOvGvft2zfp7QcOHEi7TxEREREREZHZQmFNnqQTasSDlL6+vozPt3XrVsLhcGKr7biGhgbq6uoIBALnTHXKV42rVq1Ku42IiIiIiIjIXKFpUHmSSaiR7ciaQCBwzgiazs5OAGpra8/pvxA1ioiIiIiIiMhYGlmTJ/E1XvLB5/NNukBwfX09bW1ttLS0JLbqhvzVuHfv3klvP3DgAFdccUVeahERERERERGZbhTW5Ekqi/ZaZaqdnLxeL21tbXR0dODz+RK15avGlStX5uU8IiIiIiIiIploa2ujt7cXp9NJKBQiHA7T0tKCx+PJy/k1DSpPFixYkPKx8alFuQpPksOc7u7uxNfTqUYRERERERGRQvB6vXg8Htrb2/H5fHR2duL1ehMDH/JBYU2exEONVNZ4ia8dM9UImUwlT3eKb9cN06tGERERERERkXzr6uqiq6srsbNyXGNjI8A5388VhTV5khxqTBWGxG9PNwgJh8PU1dVRW1tLKBRKqU1vb29eaxQRmQlMM3bmKyOj9gY2YsSmPlBEREREppXNmzfjdDpxu91jvp/Nbs2Z0Jo1ebJ58+bE1319fZNOH4oHLV6vN61zdHV1JUbK+P1+mpubxz0u+SKrra3Na40iIjNBlJMAlDIvo/blVBOO9WOaJoaRWeAjIiIiIvnndDrp7+8/5/vxz9r19fV5qUMja/IkOZmbbNRL8low6S5cFO/f7XZPegElnz/5HPmoUURkJhjhOAClVGbUfj6LGGKQE+aAlWWJiIiIzGkNDQ1prxnj9/sT681ks+7M1q1bcTqd+Hy+tNtmQmFNHrW2tgLQ2dk54THbtm0D3pkPN56Jpii5XC7cbjc9PT2TTk8KBALAaCJ49tAuq2oUEZnJIuYAxZTjoDij9pUsBuBo7LCVZYmIiIjMKeFwmGAwSEtLC9XV1fj9fo4ePZpye6/Xy9atW2lvbycQCBAIBOjs7GTHjh0pLR/i9/tpa2ujtrYWl8vF7t2787YUiMKaPKqvr6e+vp6Ojo4JL4r4VtoTpXUNDQ1UV1fT0NAwYfumpqYJawgGg7S1teF0OrnvvvtyUqOIyEw3wnHKqMq4/fxEWHPEqpJERERE5hTDMFi7di0tLS2JsCQdDQ0NdHd3s3379jFtnU4nnZ2dOJ3OKZf1cDqduFwu6uvrCQaDdHR0ZPSzZEJhTZ7dd999eDwevF7vmDAkHA4nLpSenp4J2/v9/jH/fzaPx0NtbS1er5eurq4x/Xd0dFBXV4fH46Gnp2fCNWmyrVFEZKaLmANZhTUlVFBmlGtkjYiIiEiGTNOkv7+fQCBAY2PjmF2Np9LV1YXf76exsXHCz72tra2EQqFJd3fyeDzU19cntu9uaWnJ27qtWmA4z5xOJ4FAAL/fT1NT05jtsr1e74SLAsf5fD62bt2amK40nubm5sQF1dLSQigUoqamBrfbTWdn55QLImVbo4jITFdunqY4w/Vq4hbaFnEkqrBGREREJN/a29uByTfEiX8u7ujoSGnWiNvtxu12J4KgXC80rLCmQOLTjdLV3NycUljicrkSF2imMq1RRGSmO80xqliaVR8LbIs0skZERESkAOIzUaaaOuV0OgmHw3R1dSU2zwmFQgSDwXE/C2/evJlgMMj999+f88/KmgYlIiJyltMcy2oaFEBsZAlHFNaIiIiI5FXyciBThTXx2+PbcgPU1dXR0NAwpp9C0MgaERGRJKYZYzDLBYZhdJHh/thRYmYMm6G/jYiIiIjkQzx4mWitmmTxdXB27Ngx5ns1NTVs3rz5nOPjAc4dd9xhQaWTU1gjIiKSJMJJTEzKLQhrokQJm/3UGAssqk5ERERk+jp9+jT79u2b8riVK1fmrIZ0tvaOC4fDia/b29tpb2+nr69vTOAT3zG5sbExL8uFKKwRERFJctIc3QWviuVZ9RMPe07EjlNjU1gjIiIis98DDzzAqlWrpjzONM2c1ZAcvEwlHsb09fUlvufxeHC5XPh8vsT3430GAoHE2ja5prBGREQkiRkNsoDzqGZFoUsRERERmVB0oJSBF6fH+5XhI/3AoUKXAYwNXlJ1dsBjxYY92VJYIyIickbEPMkeeriSjxe6FBEREZEZ59Zbby14yBFfh2amU1gjIiJyRjjWg4lJLdcUuhQRERGRGaesrCyn69GkIpWFhWcCbU8hIiJyxnCsm5VcQjnOQpciIiIiIhlYsCD1tQLj05+mY8CjsEZERAQYNA9xkF2s54ZClyIiIiIiGYoHL6ksNBxf38blcuWwosworBEREQH6Y09TRBlrqCt0KSIiIiKSoeTgZarAJn67whoREZFpyDRjnIztoJarcFBc6HJEREREJEObN29OfD3VzlChUAgAr9eb05oyobBGRETmvJNmLwMcZh3XF7oUEREREcmC0+nE7XYD74Qx40ler8bj8eSjtLQorBERkTnPHn2W+SxiKRsKXYqIiIiIZKm1tRWAzs7OCY/Ztm0bAI2NjXmpKV0Ka0REZM7bzQ7WciWGhS+L8b5Omacs61PGN2gOZvHYmZbWIiIiIrmVysLB9fX11NfX09HRMeHoGp/Ph9PpxOfzWVyhNRTWiIjInOdkBf3stbTPalayxLaMXwz+BNNUIJArg+YgTw8/xsVFl6bVrpQqAEbM47koS0RERCwUDAbp7u4GoKura9LpTXH33XcfHo8Hr9c75vhwOJxYo6anpyc3BVvAUegCRERECq3YXse+6H9yin7KqbakTxt2Lo/9Nj+P/R9eGHmWS4rdlvQrYz069CtOm6dYPfzRtNrNYwEAw0y+8KCIiIgUhtfrpbu7+5yRNKFQiNraWmB0vZnbb7+d9vb2c9o7nU4CgQB+v5+mpqYxW3p7vV6am5tz/SNkRWGNiIjMeU7DzX46eZ0nuIT3W9bvKi5no+Mi/vv097mw6BIchl52rTRsDtE1+ABXFV/HvOGFabV1UEw5TobNozmqTkRERLIRCAQs6Sc+JWqm0TQoERGZ8xxGBatxs4tHLe3XwODiyCc4HDvEo0O/srRvgceGHuSUeYrVw7dl1H4eixTWiIiIyLSksEZERAQw7G6O8iZHedPSfmtYzTXFN/DA4A85GTthad9z2bA5TGDwAa4svpb5LMqoj/kspERr1oiIiMg0pLBGREQEqDQuopT5lo+uAVg7/DGiZpSfDf7I8r7nqseHHuKEOcCaNNeqSTafRZzgsIVViYiIiFhDYY2IiAhgGHbO51p28Tgxopb2XY6TS/gQDw9t52D0bUv7notGzGECgz9lS/E1VLIk437msZATHMU0rX28RURERLKlsEZEROSMEftlnCbMW7xoed+buJUqm5Mfnb7f8r7nmieGHuG4eYzzshhVA6Mja0xijHDMospERERErKGwRkRE5IwyYzVOVuRkKpSDYi6PfZxfjwR5beQVy/ufK0bMEX45+FM2F19NFcuy6mvembVutMiwiIiITDcKa0RERM4wDIMy2xZ2s4NhTlnefy1Xs9Zey3+d/g9OxAYs738ueGr4MY6Z/azNclQNjC4wDDCEwhoRERGZXhTWiIiIJKkw1hJlmOMcsrxvA4NLo5/kYPRtvnzsj/m3kx3sjryOaZqWn2u2em54Bxc4NuFkRdZ92SnChp2YOTjhMUVUcffdd7NsWXajeERERETS4Sh0ASIiItPJSXM3RZRSw8qc9L+Y8/lN/oGdPMzrkQBPDz/OKvsari95F5uLr6bEKMnJeWeLY7EwC2KbLOnrBEeJEaXYWDjhMUVGFffc02LJ+URERERSpbBGREQkiT0WYikbsOXwJbKUSi7lN7gk9n728jz7bL/gP099mx+c+k82F1/NtSU3stqxNmfnn8mOm2FW4bSkr2McAKDUmHhHqeDw71tyLhEREZF0KKwRERE5wzSjvM1O3GS/HkoqDGys5jJWj1zGJg7zKg/ywsiDPDb8IKvsa7im5Ea2FF9NmVGel3qmuxFzhJPmScosC2vexoadYmrOuU0hjYiIiBSSwhoREZEzTplvEmGI5VyY93PPZxFbuJ068zb28mv227roPPVdfnDq+7iLr+Dakhtx2ddhGEbea5sujsdGt9gut3BkTSVLMAz7mO8rqBEREZFCU1gjIiJyxoD5GkWUspDCTUGyYWcNbtaMuLmEvjNr2zzI08OPsdS2nGtLbuSK4muZZ5tfsBoL5bgZBqwNa6pYPuZ7CmpERERkOlBYIyIicoYtFmIpG7Fhn/rgPKigBjcf4fLYh3iLl3jb3sUPT2/jR6c72VR0OZuLr+KioksoMooLXWpeHIuFASin2pL+whygzHZp4r8V1IiIiMh0obBGREQEiJkRDvIaddxW6FLOYWBjJZtYObKJizjOLh5hb+xR7jv5D5RSyiXFbuqKr2Sj42Icxux9aT8eO4YNO6XMy7qvKCMMcBinsRhQUCMiIiLTy+x9RyciIpKG+Ho1ywqwXk06yqjkEj7AJdEPEOYtenmSNyNP8MzwE5QbFVxWVIe7+ErWOy7AbkyPEUJWOWaGqTSqMExb1n0NcAgwKWWJghoRERGZdhTWiIiIACfM1yiijIWcV+hSUuZkBXXU447dRh976DWf4rXIEzwx/AjzjPlcXryFuqIrqXWsx2ZkH3AU2vFYmCpbFUSz78vJCj7J/0f7qd/OvjMRERERiymsERERAYpi+0Z3BmLm7bZkYLCANSxgDVtit3OEEL3mU7w4/ASPDv2KBbaFtMy/lwpb9tOHCum4eYxKi8IagH81f8+ajkREREQsNvP/zCYiImIBw34JR3mTh+kgZlUaUAAGBouo5Sp+iw+bf4PTqKGIYoqNkkKXljUHRUTMiCV9tZsfs6QfERERkVzQyBoRERGgxnYlYGNX9DsMc5J38TkczNxdlkxMXizu4NTwST43/4sUGUWFLilrlbYqXo+8XegyRERERHJOI2tERETOqLFtYa29ib38mp/TxjCnC11Sxl5hOzuGn+TjFZ9iqX15ocuxRJXh5HjsWKHLEBEREck5hTUiIiJJqmybcNk/x2FC/JS/YpCBQpeUtsOEeIrvcEPJLWwpvrrQ5Vim0ubkhDlAFGumQomIiIhMVwprREREzjLPtg6X4/MMcIifcC8n6St0SSkb4gSP2P6W5fZVfLTsNwtdjqWqbFUAnEaja0RERGR2U1gjIiIyjnJjNWsdX2CYQX7MPRxj+q+VYhKjp+gfOW2e5tMVfzAr1qlJVmk4AThFf2ELEREREckxhTUiIiITKDWWcp7jC9hw8GPu4ShvFrqkSf2a/+HFkef43YpGFtgXFbocy1XZnACcIlzQOkRERERyTWGNiIjIJIqNGlY5Pk85Tn7CVznIa4UuaVz7eZkdfJ/3lP4GFxddVuhycmKeMR8bNo2sERERkVlPYY2IiMgUioxKVjj+NzWs5Kd8jX08X+iSxjhFPw8bf886x0beX/qRQpeTMzbDxnyjklNas0ZERERmOYU1IiIiKbAbZSxxfJZlXMDPaWM3zxS6JABiRHna8ffYMPhUxWewG/ZCl5RTVTanpkGJiIjIrKewRkREJEU2o5hKxx3YcNCDv9DlANDHHnZFXqWh/LepPLNb0mxWZpQzzMlClyEiIiKSUwprREREUjRs9rEv8vcUUca7+MNClwOAk+XYsXMsFi50KXlxwhyglMpClyEiIiKSUwprREREUnQq8iMiDPEh7qGG1YUuBwAHJax1nM9rkZcLXUpeHIuFKcdZ6DJEREREckphjYiISAqGzMO8wQ4u5yNUsqTQ5YxRGbmYXZGdxMxYoUvJqagZ4YQ5oLBGREREZj2FNSIiIimwRZ6gmArWc32hSznHCi7ilHmSfdE9hS4lp46bxwEU1oiIiMisp7BGRERkChHzFDt5iAvx4qCk0OWcYzHnU0QRr0VeKXQpOXX8zLo8CmtERERktlNYIyIiMoWjsceJEuEi3l3oUsZlp4hax3peG5ndYc2xRFhTXdhCRERERHJMYY2IiMgkTDPKsdjDnM+103pEx/zIxbwe2UnUjBS6lJw5Zh7DwNBuUCIiIjLrKawRERGZRNgMcpKjbOJ9hS5lUsu5iCEG2RN9o9Cl5MzxWJhKowqb3r6IiIjILKd3OyIiIhMwTZOT0YdYwcUsYE2hy5nUItZSQumsngp1LBam0lZV6DJEREREck5hjYiIyAROmiEOE2IT7y90KSkwWGxfMqsXGT5uhqmyOQtdhoiIiEjOKawRERGZwDHz15TjZBWXFLqUSR3hDX5h/zL7onvYWHRRocvJmWFzmFMj5YUuQ0RERCTnHIUuQEREZLqKxV5nORdjTNO/bUQY5q1SP4HBn7KU5Xxx/ldY43AVuiwRERERyZLCGhERkXFEzJMc4Q0u4j2FLmVcb/MaT9u+xZHBQ7yv9EO8u/QDOAy9rIuIiIjMBnpXJyIiMo4T5k7AZAUXF7qUMQYZYHfJ93ls6EHWGC6+VPkXLLevLHRZIiIiImIhhTUiIiLjGDB3UsVS5rGg0KUAECPGq2znWeN+okMxbiv7ODeWeLAZ03OKloiIiIhkTmGNiIjIOEZiu1g+TUbVvM1OnrX/K3ujb3JV0fV8qKxBW1iLiIiIzGIKa0RERM4ybPZxjANs4Y6C1nGKfnYWf5cdw0+wmrX86fy7WOs4v6A1iYiIiEjuKawRERE5y4C5EzBYzoUFOX+UCC/yM57jBxSNFPHx8k9xdfENmvIkIiIiMkcorBERETlLcTTEAtZQyvy8n3sfz9Nj+zaHYm9zQ4mHD5R+hHJbRd7rEBEREZHCUVgjIiKSxDRN9vMi53NdXs87wGFeLvo2vx4Jcr5tA/+r4rOscKzOaw0iIiIiMj0orBEREUlymrc4RTivW3a/zU4CRhslkRI+VfEZ6oquxDCMvJ1/pig1ynjbeIXDZi+LqM2qrybj+7SbH7OoMhERERFrafK7iIhIkv7Y05QynxVclJfz7eU5fsbXWGlfzZ9XfY3NxVcpqJlAfflvUWWr5ifcw6v8Kuv+mozvW1CViIiIiPUU1oiIiJxhmlEGYt3Ucg22PAw+7eVJfslfs7HoQj47708oM8pzfs6ZrMa2gC/M/zJXFV/PI9zHC8X/TIThjPo6RZif08ZGR6vFVYqIiIhkT2GNiIjIGQPmTk4TZj3X5/xcr7CdX/EPuIuv5M6Kz1FsFOf8nLNBkVHEb1Z8kt8u/zTdw08SsH+F4xxKu59S5rGflxkwd+Iu/lYOKhURERHJnMKaAvH7/Xi93jH/2traLD1HS0sLtbW1GIZBbW0tDQ0NKZ2jqamJhoYG/H4/oVAo8f1wOEwwGEz0m3ybiMhsYESDOFnBQlw5Pc9z/JhH+X/cUHILnyi/E7uhJeTSdXXJ9fzJ/Ls4ZZ7ix8afsYfn0mpvw8ES1uOIvQGgwEZERESmFYU1BeD1etm6dSvt7e0EAgECgQCdnZ3s2LHDkhAkFApRV1dHbW0tPT09mKZJZ2cn8E6AEwwGJ2zf19eH3++noaEhEfYYhkF1dTV1dXW0tbXh8/lwuXL7YUZEJJ+i5iC72cF6rscgN2vGmJjsLvkuz/CfvK/0QzSU/TY2Qy/FmVrlWMOX5t/LWvv5dPEN+nkrrfbLuIADvIppxgAFNiIiIjJ96B1injU0NNDd3c327dvHhB1Op5POzk6cTiderzfj/sPhMF6vl87OThobG3E6nQC43W46Oztpbm5OhDmZhEL19fX09vZSX1+fcY0iItNR2HyWKCM527I7RoyXizsIDP2U28o+zgfKPqqFhC1Qbqvg0/P+kAW2hTxj/0diRFNuu4wLGOE0p5NCHgU2IiIiMh0orMmjrq4u/H7/mBDlbK2trYRCIVpaWjI6R0tLy6SjXnw+X+LcDQ0NE/bT2dlJIBDA5/Ph8/kIBAL09/fT2dmpETUiMitFot0s50LmscDyvqNEeLbo73li+GF+u/zTvKv0PZafYy4rNor5nYpPsyf6Br/mJym3W4QLO0WciO0a830FNiIiIlJoCmvyqL29HWDSkTPxESsdHR0ZnWPbtm1TjnppbR3d+SIYDNLV1TXuMS6XC4/HQ3NzM83NzXg8ngkDJhGRmW7Y7GM/r+RkYeEIQzzp+D/8eqSHT1f8IVeX5H7x4rloreN8PCW3EsRPH3tSauOgmMXUUhR785zbFNiIiIhIISmsySO/3w8w5cgUp9NJOByeMEiZSDAYJBwOYxjGpG3dbnfi60AgkNY5RERmo77YMzgo5jyusLTfIU7ykP2veD2yk8/M+wKXFW+2tH8Z6/1lH2GxbSlP2/+JGJGU2izlAt7mFUzTPOc2BTYiIiJSKApr8iQ5PJkqrInfPtkiwONJXoMmPopnPDU1NYmvw+FwWucQEZmNTse6OY/NFFNmWZ8jDLLd/he8HdvPH81vYWPRRZb1LeMrMor4RMWdvBXdy3P8OKU2y9jIIAMMsn/c2xXYiIiISCEorMmTePCSylSieJiyY8eOtM7h8Xhwu904nU6ampomPK6vry/xdW1tbVrnEBGZbUwzRpi3WI61YcpbvMi+6B4+N++LrHXod22+rHas5cYSD68aPyeawuiapWygDCeDkV/koToRERGR1DgKXcBccfTo0bTbpDvqxel00tPTM+VxySN2kqdEnS15oeNwOExfXx8ej4fW1tas1q/Zt2/fpLcfOHAg475FRNJlntk9yGbxS+JBduE0qlllP8/SfmVqV5fcwINDv2Qvz3Eek089c1DCtfwuXfwdRsyN03ZZfooUERERmYTCmjxJJ3iJByHJI2CsFJ8i5Xa78Xg84x6zdetWwuFwYjvxuIaGBurq6ggEAhnvCrVq1aqM2omI5IJJDACbxYNNTzheZa1xvrbnLoAV9lWssK/msO0RzhuZep2gtVzJai7nULST+cYG7IZ10+FEREREMqFpUHmSSfCSi/Vkurq6Emvb3HfffZMeGwgEzhlB09nZCYxOn9J6NyIyO8TDGrtlPUaJsCeyG5djnWV9SnquKL6GF0aeY4iTUx5rYHAtn2KIk0QjP89DdSIiIiKTU1iTJ8mL+hZSfC0bn8834RQon8+XCGXGE98aPD5FKl179+6d9N8zzzyTUb8iIpmIT4MyLHxJPMobjDCCy3G+ZX1KerYUX02UCCGeSun4+SxiC7fzEgFOxkJTNxARERHJIYU1eZLNGi9WaWpqIhQK4fP5aG5unvC4qaY3eb1eADo6OjIaXbNy5cpJ/y1btiztPkVEMhWfBmVlWHOQ1yiiiJX2NZb1KempsjnZ6LiI/Y5HUm5zEe9lEWs5HP0+phnNYXUiIiIik1NYkycLFixI+dh4AGJlwNPR0UFHR8eUQU0qksOc7u7ubEvLqxHzGAejv+RA9CcMmocs69c0TU7G3uCt6H9xJPYoUfO0ZX2nW8ep2JujdUQfKVgdc0HMjBCOPcu+6DaOxV7ENGOFLslyEfMEh6Lb2R/9EafN2bzwt/XToAaLXmW1Yy0OQ0vDFdIVxdfQG3mNAQ6ndLwNG9fzacK8xcFYV46rExEREZmY3kXmSTx4SWUkSnx9m0wX8D1bV1cXTU1NtLe309jYmHV/yVO6gsHghIsUTxemGeWY+SLR6DPs5Tls2LFTxNuxB1jGBRTZr6DacGMzitPuO2KeoC/2DKdjT9HHXkqpZIgBDvBfuLgS076ZijwsMPpOHU/Tx55EHftj79Qxz1inhU4tMGge4GjsCY7HnmGQ45Tj5DAPUkEN82xXssB2NSXGokKXmTHTjDFgvkIsuoM3GQ1jiyjjYOznLGYdJfYrqDY2YzdKC1ypdUyLwxoTk1BkF1cUX2tJf5K5S4s3U3zqO+ziUdx8NKU2C1nLJm7lpdhPqbZdTomxOMdVioiIiJxLYU2eJAcv4XB40lEz8UDHirAmGAzS0NBAZ2dnYq2Zyc57yy23EA6HU97tqbe3N+sac2XQfJujsScYiD3DaY6xCBfX8klquQY7RbzBDl7lQfZEv8MBtnE+1xC1b6bcWDNpqDH6YfZVzOgzvEEPYLKGOq7g46zkEk4T5jUeYScPcTz6CFUspdx2FQtsV1FkVFn2871Txw7eoBszUcfHWMmlZ9XxKJUspcJ25Zk6nCmewyTCMU6Zezlt7qUkdoABDlPFcgZtSygzVlNurMJhzLPs55qOouYg/WY3Q9FnOMQuSpnPOq5nAzdRzUqOEOJVHuL12EMcjP2M5VxIkf1KnMZlGYWAhTBkHuFo7AlOxJ7mJH1Us4or+TjruI4iynmTHnbyEPui/8EB/Li46kwYWTvjQ0Cr16w5yVGOmWGtVzMNlBglXF68md2RR7k89hEMUrtW67iN3TzDsUgnixyfzXGVIiIiIudSWJMnmze/s3VoX1/fpGFNfLem+NowmQqFQtxyyy10dnaOO/olHA7T3d2duK2rq4tgMAiA3++fcLpU8s5WtbW1WdVotag5RNjsYSj6DAfZSQnzWMd1bOAmFjB27YjzuZbzuZbjHGQnD/MaD3Myup0aVlFmu4oa2xVjQogh8yh9sScYiD3NSY5SzQqu4GOs43rKqEwcV0ENl/NhLuODHOBVXuVBdsd+ytuxH7OKy7Dbr6DKuBjDyOyv+MPmUY7GnuRE7GlOcCSFOj7EAV5hJw8Riv3sTB2XY7dvocrYlKjDNE2GOXImmNlDcextjrCb0xwHoIR5LOQ8FuEizH6Oxp5lhMEz51rAQs5jyLaUcmMVZcYailMMhKYr0zQ5aYYwojsI8RQRhlnFJXj4PGuow57063MRtSyilqv5bUI8w04e5M3ov3KAitEQ0LGZcmN1AX+a8cXMEcLms4xEn2E/L1FEGedzDRu4mUW4xnywdXElLq7kBEd5jYfZycMMRB+miuVU2K6kxnalpWFkPlm9Zs3bvAbAWoU108IVxdfy9PDjHKaXxaT2mBRRynX8Hj/j69jNp4HP5LZIERERkbMorMkTp9OJ2+0mGAwSCoUmHLWSvF5NNtOLwuEwXq+X7du3T7jrU3d395hpTPHj3G73pKNw4mESMO2mQB2OfIsDvIoNO9fwu2zkXTiYfGRDJUvYwu3UUc9unuZR/h99sU76Yr9kY9HXATgSe5R90f/EQQm1XM0GbmYx50/6V1oDG8u5kOVcyBCfpJcneJkAfdFvcQnvx170gbR/voh5glcj92ISYz03pFiHkajjWj7J6zzOTh7icLSdBZzHMsdnKDIq6TOfZE/03wGw4WAll3ABHhZyHgs4j3ksHHMekxjHOcgR3jjzL8TbsQcAE4Dz7f+b+baNaf+M00Wf+RR7ov8GwGou5zr+F/OYfO0pByWs53rWcz1hDvAIHbxMACIBXPY/oMp2cT5KT1k48m+8STcGBlu4g028Dwclk7aZxwLcfJTL+TB7eJaH6eBY7L85HPs5Fzp82IyiPFVvjdPmWxiR0d2Cish+atcpwoTsD7DYXMp8W+XUDSTn1jsuwGlU01/8MIuHUg/QVnEptVzN29Gf5LA6ERERkfEprMmj1tbWxJSkiUKObdu2AUy6tkwq06jiI2omCmoAAoHAmNE7LpcLt9tNT0/PpD9HIBAARrfwnqz/fIqZwxgUMd/+IcqjNbzBDp7ku+znJTZwM6u4dML1KExM3j4zAibE08QYYTWXU2S/DoCD0V+wP/ZDLsTLlXw8ow90JVSwGjcv8ovR9WQcl1Gewc9pp4IN3MjLdFHFcpawLq32xZRzIV4uxMtBdvFLvsHeyN+y0vE5qoxLWWo7ykDsKU7SxwCHWcFFLGUDpZz7odPARhXLsFNMmP0c5yBgJkZaVBi1RM0hbBRhGNavZR41B3OyboppRjGJ4TQuY9h2lBOxp9nDs/yMrWzg5nNGMJ3tJH3s5GF28hADHKKKpVTYrmK+sd7yWrNV5ngv6yMVhHiKbrbxNjvZwE3njBxKZmJymF5e5UF6eZIRTrOCiym2X4vNKMrh4xIjxhB2oyzrvobMw/THuhmMBelnHyVUsJkGFrI2q37fZicPG9/EjJncOe+Psq5TrGEzbLiLr2TH8BOs45NprU20hA28wcxaSF9EROaOoZOlHHptZaHLAOBU/5uFLmHWMUzTNAtdxFzS0NCA3++nt7d33NE1tbW19PX10d/fP2n7+vp6Ojs7xz2mrq4Oj8fDli1bJqwjFAqxdetWenp6xtTR1dVFZ2cn7e3t47YLBoPU1dXhdDrZvXt3TrYk37dvH6tWrQJgg72Vctvk00dMM8rOyJepsXlZbL8FgIh5kv7YDk7HnuIob1KO88xIlJuoYnRr8FP0J9Z0OcbbVLLkzHSOqxNTeMKxX7M7+i3cfJQ66lNe7+Bsx3ibn/JXAKxy/CGlxpKM+hn9eU2I/JLn+CGX8WG2cHvGdR3nID/laxRTxipHC4ZhjLvA7HlsZgM3s4JN2LARZYQ36eFVHmQfL+CgmFquJmbfTIXhwjAMYuYwuyJ3U2W7gaX292X8845bd+wVdkf/ifWOL1FmrLC076GR/+JtdrLa8SUMw3bO2kDxNYo2cBMrufTM/RFhD8Ez98evsVOc1wWmsxU1T9Nv9jAUfZpDvE4plYnpgzWMPhcHOc5rPMZOHqSffVSwgPm2K6mxXUOJMTri6ETsdXqj32Sd/YuU26zdsnpk5Me8yM+oYimLWcdp2woqbGspY0VKUwpHzDD9sR6GY89ymF4clHAemzmfa1jBJROGU6kwMXmJX/AU32Wto5b/VfEHVNmcGfcn1nszspu2gXu4lT9jJZtSbvcyAR7nO8TMSA6rExGRfEn+nLF3715WrpweQUe67rrrLv7yL/+SG5at5v/dnP5o/VzYGnycf33119x22234/f5ClzMraGRNnt13332JKUrJi/iGw2EaGhoAJh3ZEr/wJ3oCeL1egsFgYu2ZqZwdGHk8HoLBIF6vl5aWlsQIoHA4zLZt22hqasLj8dDe3p6ToCYTp9nPaY7RH9vOQtuN2AwHDqOCRfabwH4TC8292CPdvMx2nuPHLGMjRZQndoZay5Ussv8m84zzzxkBcir6IEvZyGYaMq7vKG/yAFsppoKVjj+g2KiZutEkDMOAovewPGrjudgPGOYE1/KpjNbbqGQJN9LI//CXOM1XqTQuwDBsVBoXge0iKszb6I89Q3/sKX7G16lgAcu5kD08yxAnWMI6Vtt/C6dRd85oir7YU5wiTCz2EIttt1i60O5g9FfEiBCLPApFH7Os3xHzODt5mCgjOM2XzqzpY6PSuBBsF3KReRt9sWc4FnuKn9NGBTUs5yL28msGOc4iallp/80zuyVlPwIkX+xGGQuN68B2HTXmfo7GnmBX7FFe4AEWcz7l1LCH0d9L57GZGvtHmG9sPOf5MhR9kBhRItGHwfYJy+qLmCd5lV/h4mrKmM8hXudI7AnMWBQ7xSxiLTHbKiqMtZQbrkTYGjFPEDafJRJ9jgO8gg07q7mMS/gj1uCecspXKkYY5MXiDnYMP8m7St7Dh8tux67tuqed1fbzWGhbTL/jMVYOpx7WgJFY00hEREQkn/SOMs+cTieBQAC/309TU9OYLb29Xu+Ei/rG+Xw+tm7dSmtr6zm3+f1+urq6Uq5loilMzc3N1NfX4/P5aGlpIRQKUVNTg9vtTmlXqXw7GQthYHCKfsJmkBrjijG3lxuroGgVF5jvJ2w+RyS6g0EGWGG7nWrbFhzG+BOSTsZ2c5CdvJsvZFzb27zGz2mjksUsdXyGImN+xn2dbYndi8Mo55Xo9xjiFDfzGWwZPKWXcSELWMNw9GGwXTDmtiJjPovtt2Da3sUi8w1s0R7e5hWqbFdRY7uGMmPZuH2aZozjsYdYzDoO8Tp95jOjYYAFTpv7eIsXWcJ6XucxLjTfZ9nCtkdij2Bgo4bVDEYfpso29kOdw5jHYvu7MG03s8jcgy3azQFe5nyuJeKos3yUTyGUGctZaa8nZvswx83niUR3cJIjLLN9hBrblRPu/DVoHmQPQZawnhBPc6H5gayDybgjsccwiXENn6AcJwARhjnCGxxiF4fYxcHYsxxi9PdfBTXMZzEH2QXEWM7F3Egj57GFEiosqQngGAd41PYNjgwf5vcqPktd8ZWW9S3WMgyDzcVX8fBQFxcygp3U1layYQNMTNOc9iPkREREZHZRWFMg9fX1GYUezc3NEwY69fX1WDWrzeVyTTgVaropi73FAs6jlPmcjD5EtbFl3DfVNqN4NMixXTFOL+eKnNnuejV1GdW1l1/zS77BYlwscjTmZKTFAtu12Chjd/RfGOYUXj6f9mgBA4NLeD8P8k9UmPspM5afe4xhUGGsBdvalFb1OG6+xDEO8EHu5Xl+Qjj6EAuMay35sBOLPEYFC3gPf8J/8Eccjj3McvsHs+/XHCYce5QN3MhSNrKdv2e+uXc07DuLYRiUG2vAtoa13AaQ4ke/mcNmOHAabrClti6VEXmMMqp4D3/K9/lj7JEnoej9WdcRMyMciz3M+VyXCGoAHBSzlPUs5Z21gE7SxyF6OcQujnGAq/kdXFw5pp1V3qCbR/gnKqnii5VfYbl9Zg6jnkvqiq/k54M/Zi+/5jw2T92Ad3YIi8Vi2O2Z7eAnIiIikgnrV/0UybOD7GIJ67iE93OE3Zwwd2Xd57B5lN08zSbed+Yvq+np5Ul+wf9hBRez2PGZnE6Jqba5WWv/Aw7wCg/wdYY5lXYfLq6mnGqIPGZJTYPRh1jM+SxhHZt4P2HeYsB8Oet+R8xjvM5jXMx7KaWSjdxMOPYoMXM46777zGcYZICLeR9ruYJ5LBydZiVTipgn2MkjXMS7KWU+F3ALr7CdqDmYdd9hs4dT9LOJqdc9qqCGtWzhSj7Ou/kTLuY9lgc1MWK8Wfof/JK/YUPRhTRX3qOgZoZYbl/JcvtK+ooeT7lNfD2waDSaq7JERERExqWwRma0EXOA47zNEtazgk1Us5KR6CNZ92uPPEkxZaznhrTbvsJ2tvMPuLiKGsfvWbpWy0QqbRfgsv8RfezlJ3yV0xxLq70dBxfzHnbxGCPm8axqOWXuZT8vs4lbMTBYygYW4WIw+nBW/QIcjj2MnSI2cjMAF/NehjlJX+zprPo1TZOB6EOcRx1VLMWGnYt5L708wYgZzrru2e5I7FHA5AJG17i6iHcTYZijsSey6tc0TU5EH2IVlyYWOi6EGBH28QKvlvw//MYf8svB/+HDZbdzZ8XnKJtBaxMJ1BVdxfMjQUZILUiMj6xRWCMiIiL5prBGZrRT5m4AFrMOA4NN3MqbBBk0D2bcZ9Q8zSv8igu4Je1tup/jxzzK/+NCPMxzfDylXWqsUmFz4XJ8nlP082Pu5QRH0mq/kVswsHEkll3YFYs8yjwWspbR6Wbxx+UtXuC0+Vbm/SamKd2UWHekkiWcxxaOxx7CNDNfBHTAfJkwb7GJd6btbORm7BRzOJZ9yDSbxcwRwrFHWMcNiS3N57GAWq7K+nE5Ye7iKG+wiVutKjdlIwyym2d4tvgf+J7RxAN8jRdGnuPy4i18cf7deEvfrzVMZqC64isYZpg9PJvS8cnToERERETySWGNzGgnzRBlVDGfRQCcz7WUMR8jkvow97MdjT1BhGEu4j0ptzExeYb/5Bn+EzcfpdjxkXN2ysmHMmMlax1/QowIP+IewuxPuW0p81jPjWemFY1kdP5hM8zrPMHFvA8b7wRVLq6kgpqsphX1xZ5mmJNczHvHfH8T7+cY+zluvpRx34PRh1mEi6VsSHyvmPIz06weI2oOZdz3bNdv9nCa8DnTlDZxKwMc5pj5XMZ9D0cfpppVrEhjq+VsDDK6G9iTRW18l0YC/C1vRfZwU4mXlvn38tXKv6G+/LdY40hl5SaZjhbZl7DG7uJwUWpTPjWyRkRERApFYY3MaLbYXpacGVUDo4uOXsi72cnDRMyTafc3uovRw9RyNRWkvpPNE3yH5/gxK2z1mEXegv7FvcRYxGrHFyimlB9zL0fYnXLbTbyXQQboMzObVnQk9hAOitnITWO+b8PBxbyX13mcETO9KVowOh3meOwhzmMLlSwZc9sS1rGY8xmMPpRRzafNt3iLFxLTtpK9M83qqYz6ngtORh9iFZdRzdidsBbhYhkXcCrDxyW+u9Ql4zwuVnudJ3jQcS//zu/zCO2cjA3wgbKPcndlG1+u+is+UPZRVjvO00iaWWJz8ZW8PPI8Q0z9GqGwRkRERApFYY3MaEOcoJSx22E7WU6UYSIMpN2fSYST9OPk3B2RJm5jso8XKGU+lbb8jACYSrHhZKXj88xnET/hqxzglZTaVVBDEaUMm0czOu+82AAVVFPEuet4OFlOjAgjZLImToyTHB33cTEwcLKcgTSnfcUNm32J+s5WRhXFVDBMZvfHXDDA4QmfL6OPy+GM+j1p9gJQyzUZ15aK13mcX/EP2LDxsfLf5a+qvsmfVN6Fp/RWFtuXTN2BzDgbii4iQoR+9k15bDwo1DQoERERyTeFNTKjLaKWQ/SO+d5L/IKlbKTUWJp2fzajmHVcxyt0ESOSUhsDg/fzZ5Qynzcif8Mpc2/a580FhzGPZY4/ZBEuHmArewhO2eY1HiXCIAtsmX1ANuxXEGY/b/HiObe9yC9YhIsy0t85xzDsrOdGXuFXRBi789NpjtHLk8zLsOZK40IqqOFFfnHObb08wRAnWGC7NqO+54KNvIudPHzOgq1DnGAXj1GZ5X1nz+Gm6G+zk0f4FlcWX8vn5jVzXcnNVNmcOTufTA920llLTKOpREREpDAU1siMdtq+gn72MsxpAA7xOm+zkzL7jRn3aTiu4yR9hEh9KtA8FvBB7qaCBeyOfJMTsd6pG+WB3ShlkaOJVVzKL/gGrzPxWj4mMV7gZ5zHFkqMRRmdb56xngWs4QV+Oub7fezhLV6g3H5TxlNJTMe1DDJwzs/w0v/P3lkHxlHmffwzsr6bbNyTJqm31AUpLS0tFIcrRc4FO797764c537AuaJnHC6HF6hhLZQq1DWppI0nm2R9R94/NklTj2ysfT5lmGdmZ57ntzOb3X2++xOWIiGTLs/oVr+SpJAsz2IPqwjiOzIeJptYTCGTsEvCw+Jk6Op5xAixk6MTMW9nBSYG6XLXK6r1Bc1Us0L6HUPUUm52fk6EOAkEAoFAIBAIBhRCrBEMapxSCSYmta3eNZtYTBJZJEvjut2nQ8ojn3Fs4lVMzE6fZyeJK/kBaRRRpv+ZZqP7CW8TiSxZ8KqfZRgXsIK/sY2lJzzuIB/SxGFUpfuTa0mScCuzOchHNHDEw2gTi3GRSoo0qdt926VMipjM5g73RSPKNpYynFmokqvbfafJM5BRjro2h9hMIwex9kD4OxuwSqmUMJ0tvIZBPFRER2MLrzOUGVikpH628Hgi+HlTvgen5ORW19ewSL3nvSMQCAQCgUAgEHQHIdYIBjV2srDioppdtFBLOR+QJF/U40pMNmUWdZR3OtdLG1acXMZ3yWMs5fp9NBrremRHopAkBad6I2O5lJX8k428cJwQtYnFZDIUl1TSo7G80mSceNnCawAE8bGHVSTLs3pcytyqzKSRQ1SwCYA9rCRMC6bas1AbVYpXftrKkvYwq80sJo0huKVhPer7bEBRZtJMNQdYD0AZqwnSiKR2z9upNzHQeF/9A36zmS+6/w+37O5vkwQCgUAgEAgEguMQYo1gUCNJMpmUUs1utvIGFhykyuf2uF+PNIoU8tjM4i6fq2LlEr5JCeexT/8ndUb3y1UnEkmSUdWrmcJC1vIUH/B4u2BTxz4Os7VHYUptyJJKsjyL3awkRBPbWIqMQlo3w5Q64pKGkk4xm1ncHqZUxGTsUmaP+zbU84kQYDfv0sBBDvIR7gRcj7MBlzyEbEawqfW+bGYx+YzDIXU+UXdfYGKyzfoQe7Wd3Or6GplK1/NaCQQCgUAgEAgEfYEQawSDHk0uoJrdbGcFXvkCFMne4z4lScKjzGY/G/BR2eXzZVRm80XGMI+D+uNU68cnr+0PJElCt8whX76BTbzCOzyEgcFmFuMmHa80ISHjpMsXIiGzicVsZQkjmY0qOXvcryRJuJSLqGATm3gVH4ew9iBsqyM2KYMhTGUzi9nMYpyk4JUmn/R40zQJGvup1pcRMg8nxIaBhmFq+IyN1Onvopn+Ux7rUC6iih1s4lXqKMc2AMPHNvEK70Xf4ePOzzPMMrK/zREIBAKBQCAQCE6K2t8GCAQ9xSWVUMWrSChkyBclrN8UaRo1vMQWXmMGn+/y+RIy5/NZbLjZYPyPDMNAUucPCE+NDGU2iuRkl/4IIXxUsIkc+doehym1oUouhjOTj3gJkDDUxJVfTpEmU8eLfMBjpFOMSxqasL4tykx8+m/xcZgc+Vpk6fi3SM3002CsIWR8QAMHkJA5bDxHJkOxKdNJkSajSMeXLh9MhMxK6o1VtBhrCdOMhMQh42mGMAVJmYpHGnlcqGGyNA4PmXzAY6SQj0ca1U/Wn5hy1rCGJ5hvv4pzbQMvPEsgEAgEAoFAIOiIEGsEgx6XVAxIlHIuViklYf3KkgWvfCE7jaWM4mLSKOpyHxISU1iIDRfv819GagHs6sd6nFMnEaTK01Gws1//BwrWhJenNtULQFvWo+pSJ6KtelPAeB5XgsOUXFIJGZTSSMVR1aVM06DF3Impr2UfazExKWIS07iRXMZwgA/ZyZsc1B+nkmcp4VxMZQouqXRAiHOdQTfDNJrriOhrqGE3NtwM40JGMhsHyezmXXbyJo36atyk45ankyafh1VKA+JhdsnyRbQYT+NRZg+o513DXt7ib0yyTOMK+8f62xyBQCAQCAQCgeC0CLFGMOhRJAdDlM9h64VEsBnyHDRjGy/zc+aziGyGd6ufc7gcKy7e4QGKtQAe9RMn9Nroa5Ll8ZTyf+iEEu4NYpeyGKJ8HqdUnNB+AdLlWcjYSDlFmFJ3kCSJNPVmPGYjquQiajZQb7yH3/gAP3V4yWUqNzKMGTjxtp9XwnRKmI6fenbxNjt5ixb9bZLJxSVPJ1WejkVKTqiticA0TQJmGZK+ljJWoxEln3OYy9cpYjIKR6okjeMKzuFyatjDTt5kr7GcKmMxeYzFokwjWRrfmpdIJkWa1n9P6hj81LFC+g35cgGfdN2CPACEUoFAIBAIBAKB4HT0/2xRIEgAKfLUXulXlZzkql/Foj3IYn7FzfwJB92bdI9gFlacLOfPjNa8yJZrEmxt93DJQ3qt7xR5Sq/0q0g2MnopJ4pDysMh5dFgrGW//i9UrJRyHiOYTRbDkDi5x4ibNCbxMSZyLYfZxg7eZJ/xCpXGi5QoXyZJHt0rNneXZu2/lPE+HjIYz1WMYBZu0k96vIREFsPIYhjn8WnKWM0O3uKQ/g8ceBmm/qTX7kt3Wafeh8WwcJv761gla3+bIxgAtP0NG+j9bIlAIBAIBALByRFijUBwGhTJgUe5hkr9HoL4ui3WABQzlQIm0Ew1aQm0UZB4ImY1djzcxB+x0jWvIwmZPMaSx1gi+HmE24mYtb1kafdp4jBDuYDZfAmpi/nmLdgZwUWM4CJ28S5v8XcMwijYesna7tFg1DLZOp0keeB5Ngn6hzQ5Azt2qthBLqcWUNuFHcPoC9MEAoFAIBAI2hH+4AJBHzNwMnkIToeC2mWh5lhsuE/pjdPfWHF1Wag5FjvuBFnTWwzc6y/oe1RJZZTlHGqV9ac9tu1vQ9O03jZLIBAIBAKB4CiEWCMQCAQCgeCs4hzLBPbrZQRpPOVxcuvXJF0XIVMCgUAgEAj6FiHWCAQCgUAgOKsYYxmPhMQBNp7yOEmINQKBQCAQCPoJIdYIBAKBQCA4q3DLHkrUYTRa1p3yOBEGJRAIBAKBoL8QYo1AIBAIBIKzjnMsE9gR24pG9KTHyCiA8KwRCAQCgUDQ9wixRiAQnBbTNGg2ttMc+y+7Yt8nFHuWgLEP0zT72zSBQCDoFudYJhIjyiG2nPQYEQYlEAgEAoGgvxCluwUCwUmJmg3UG+8TMD6ghVq85FLEFPazjoC+nBQKcMrTSZWno0oDvSKQQCAQHCFLziFdzsSvroXopBMe0+ZZI8KgBAKBQCAQ9DVCrBEIBEdhmDGazE1o+hoq2IyKlVLOYwSzyWIYEhLn8xkOsYkdvMV+43kqjecZwhQkZRoeaSSSJJz2BALBwEaSJMZZJrI++gGjMZFOUOK9bZ/wrBEIBAKBQNDXCLFGIOgCTVTiJRcFS5fPNTEJ0kgYP1YcvWBdzwiZh1C19ezmXSL4yWIYM7mVEs49zl4ZmQImUMAEwjSzm5Xs4C0a9b/gIg2PPJ1U+TxsUno/PZueYxAb0P31FNM00Emst4BxitwfAsFA5BzLRFZE3qCOcjIoOe5xEQYlEAgEAoGgvxBijeCMoN54H7c0FJuUkdB+NdNPo7EOjzQaBQvL+BMSCqnkk8YQ0luXVIqOEjRMTFqooY591FFOfes6RDMAo5mH39hDo7m+S/ZIKMioSKhIKEhYkFGQpLZ9anwbFRMTE619Mcy2th7fbm/HkIyD1LAHO0mMYBYjuIgU8jtlk50kzuFyxnIZtexlB2+x13iTKmMxeYzFo16HQ8rt0vM8HZoZoMFYTbo8E1nqunB2KvzGXpr1F6lhN5kMTUifLtI4bDwHxnZicnbrfWq7h0fupyxZjtknwwl+7T8xZvv9NFrvsdl6z9u3214LRAgZWwnQwHAu7PHzc+JFQmaX9kuGcj5W9RoUydajPjWzBZWe9QHglNwc1it63I/gzKRUHYZHSmKf+gIZsf877nEHyVhxYRhGP1gnEAgEAoHgbEaINYJBT8g8xAH9EdIoIl/9NrKUmJe1aZo0a09SwXqKlVsZq/6WkFlB0DxIyDxIg3mAPazCQAMkkskmjUJCNFPPfqIEAXCSQjpDSJZnkC0V4JQKUM0UKvVfE6YZJymdswcTAw29VWjR0dCJtbfh1Ml+JRQUVBRUZCwd2ioeMpnHNylkEko33xYkJDIZSiZDOY9PUs4HbORFAto/KVIXIUvWbvV7IoLacxzifdKMMFiuSFi/mumnQn8IF6nM5RsUMTkh/S7kXspYw27eRTN2HXfvjNZtk8ROCGVUlFZBT2m95/F7r1DIREYw+4TeBF0lnWJu5s/s4m028iIjNQuK5bqe2W6Ukc2IE4amdIUSfT5v6fdRoR0gXy3sUV+CMw9FUrne+XH+FbifDNYyhKlHPe4ilY/zZ6ZOnXqSHgQCgUAgEAh6ByHWCAY9krYaG24aqKBQWwGWSxLSb4P5AQdYjwMvEf09ZMskXFIJrg6T2zxTI0wlIfNgXMQxqrCTTJo8F6dUiEMqwCIlHde339xNIxVczvfI55we22q2Sjk6sfbJv4TcLsYo7V4afYMFO8OZRQal/I/vYWpLwHJlQvpuNNazj/fJZxybeJVhxkjccmlC+g5o/8NAYz7f6bSI1hlUbAznwtN6sRgYGB3EG4POh15ISMjt97vV46qHQkdXcJPGJD6GFSfv8R+GGqPwyCO71ZdhalSxk8ks6LFdQ7mAzfKzvB5+iVvcX+lxf4Izj8mWc1lrWc0H2j/JMUdjw3XU41ac/WSZQCAQCASCsxmRBVQwqNHNELt5lzFcymQ+xoe8SMDY1+N+o2YjVfozDGUG5/FJDrOVsFl53HGypOKUCkiTz6dAuZFsy9fxWj5LtnIZSfKYEwo1ALr+PsnkksfYHtsKbRN1BQt27Lhx4sVBElacqFgTJtQ0cohl/JEgvk4dn0I+U1jIJhbjN/b0ePyY2Uyl/iTFTGM+d5LFUKr1R9HNSI/7bjTWU8b7XMDnOy3UNFHJUv5IkMYejw/xXEAqVqw4cZCMi9ROL05SsOPBiqNVnEuMULOH93iP/2CexnOrjTFcQi6jqdIfQzdD3RozaJajEUnI34eMwmjjGj6MraNSP9Tj/gRnHpIkcZPzM0TMMHus/+1vcwQCgUAgEAgAIdYIBjkNxgfoxBjFHCZwNWkUUaM/imF2P5mraZo0aU+iYuMCPkMx07CThKKtSYjNMbOJctYwmrl96vnQUww03uRvlPEBK/lHpyfv53AFWQzrsahimiZ+7RkkZGbwBWRkZvFFAjSga4u73S90FIGmU8p5nTrHQOdN/k45H/AOD3X6egwmfFTyNg+whdfZyZudOkdCZhZ3EMFPRHu5W+O2mDuw4SaNom6dfyzDmYVXSuH1cPfsESQGwzSo0A5gmgPvbyVFTuUa5w2sir7NYbb2tzkCgUAgEAgEQqwRDF5M08RvrGQIU3CRiozKRXyRZqrjYTfdpN5cSQWbmMlt2HCjYGEks9nJ2+hmuMd21xurUFAZzswe99WXbORF6tlPljyffaxjDys7dZ6MzEXcQYBGtB6IKo3mGvaxjgu5BQdxjyUvOUznZrayhBZjR7f6NU2TFu3pVhHo850W0DbxCrXsJUu+jANsZBdvd2v8gYqBwdvch4sUhnIB7/MoLdR26lwPGZzLJ9nJmzQZW7o8tmnsJZfRCfMIU1AZbV7D+uhqavSqhPQp6Bq7Yzv4S/QH/Lrlh7yq/hXDHHgJe2dYZ1OqDme1/CAaPffWEwgEAoFAIOgJQqwRDFr85m58HGIMR3LUpFLAVG5gE6/iN/Z2uc+IWUeV/j9GMptCJrTvH8XFaIRpNNf2yGbT1Gk2VjGUC47LizCQqaOcDTzPBK4hV7mGoVzAKv5DgIZOnZ/cKqps66aoEjUbqdSfZigzKD4mAegYLiGnB2E3DeYH7Gc9MzuIQKc9hwOs41nGcSW5ytUMZxbv8Qh+6ro8/kBlE69QzR6ylE/hVBdgxcnbPNDpJMgjmUMB46nSH0MzA50eVzfD1LAnYSGCbYzgIpKkZN4Q3jV9SpV+mEfNu/mj/9dIksRn8+byRt0GnpZ+R6wHHpAd0UyNpZb7eVD7KZrZ/XL0siTzCecX8BmNHLA9nRDbBAKBQCAQCLqLEGsEgxZdfw8vueQw+qj9R8Ju/tulsBvTNGjUHseGm3P55FGPecigkEkE9JU9cuFvMjcToIHRzOt2H32NTow3uY9U8jHUOQA41OtQsfAOD/Z6LpNjw9KORWr13IngJ9rFsJuOuYmOrQJzMuLhYPeRTDao8ftoV6/BiqNLYsZApoGDrOMZxnEFbrkURXKQrXyCw2xlK0s71YeExExuQyNGSHu+02P7zT2Y6OQmWKxRsTLKvIo10feo0zvnISToPi1GM29Y7uOXzd+nPFjF90tu4i+jvsgncy/mJ0M/wWrfDv5r3E24h96KTYaPh7Sf80rtGja37OPNyBs96i9LyeZy+zUsj7xGLWU96ksgEAgEAoGgJwixRjAoiZk+9rGW0cw7LmylY9hNV3KZ1BpvUcl2ZnH7Cat/jGYeDRwgYHb/C3xUX0UWw0hnSLf76GvW8xxNHCZD/WR7WXRVcpGtfJyDfNTruUzqzVVHhaWdiLawmx1dCLs5nQh0MjbwAg0cIFP9JLJkAWgXMw6xhW0s63RfAxEDjbe4jySykNQjXmtJ8ihGM481PEETxyfbPhEuUrmAz7CHVfiMjZ06p8XcgYvUuBiWYEYxB6fkYkn4lYT3LYgTNaO8EXqZn7V8mxX1H3JrwXz+ec7/MTttPLIU/8pxfspofj38s2zzH+Dh2C8IGP5ujbVP28vvgz+kMlLP70feyrVZ5/F65AUajc55/J2MufbLyFMKWKM8gEH3PXUEAoFAIBAIeoIQawSDkjpjJQqWk+Z9Se5iLpOwWU2V8SJjuOSk4Rf5nEMS2Zj6+92yOWxWcYgtjCYxpcX7gmp28xEvkSVfgUPKP+qxZPkcRnAR7/PfXstlEjHrqdKfOy4s7USMZA75jKNKf7xTYTdtuYlmnUIEOpZaytjI82TJ83FKRye/TZJHM4q5fMDjNFPdqf4GIu25iZRPtYtRbajq5ThI5i3ux+ikB1Hca2kKlfqTxMyW0x5vGPEQqN5Ivm3BzmjzClZH36XRqE94/2czhmnwQWQVvwp+m8WR55mfMYX/jPs2C7MvxCqrxx0/IamU3468lUORev4e/RlNhq9L470XeYc/+n9JptXL30Z/hdHuIj6dOxeHbGWp/M8ePRdFUvmE8wtU6hV8hBD2BAKBQCAQ9A9CrBEMcI6fsMXMZpqMVQxjxgk9YNpoC7up1P9LwDi5N0zYrKJG+xcuUpnGzaewRGY0cyljNS3Gri49C8OMEtJexY6HEqZ36dz+5F0exoGXTHnuCR+3qJdhoPM+j3S6z7ZcJpX6o/iN3Sc9LmLWUqv984RhaSfiSNhNhGbtSUxTP+mxQfNge26igtOIQB1ZyT+w4yZLvvSEj6tqfP8q/t3pPgcSzdSwgecZygU45eMrMSmSnVTlSqrZxS7e6lSfEhIz+AImBk3aY6es1BYyK6hnf8JDoDoymkuwSXaWhF/ttTHONnbEtvKn6Pd5JPggo1wF/GPsN/hS4ZUkq6fOyzXClc8fRt6OXwvx1/BPCXUyPHKN4788FvwHl6RP5rcjbyXdGs815Vbt3F5wOW83bmZJ+JUe5a8pVIdwsW0+G/kffoSwJxAIBAKBoO8RYo1gQKNKR3s8aGaAw9rfAJjANac8N57L5Es4SWGX/lsiseePypVimBpV+mJ2ar8kRpi5fA0L9lP2OZI5ZDGcvfofkWJLTykItBEyK9iv3ctBNnEBn0PBctpzBgqFTCCIj0PaHwiaB496rMXYwQHt95iY5HFOp/uUkJjF7SSRyW7994Riz6CZwfbHTVOnWn+DndrPCdHMXL5+SlGuI27SmM2XOMhG6rWHMczoccf4jd2UaX/AS16nRKCOFDCBMC1UaL8naO4/6rEWYxcHtN9joJHPuC71O1Cw4yabYezmXQKxJ9HMI+EppqlToy/nkP4YLlJJ7UJZbSde5vAVDrONOu3BE1ZVCxhllGt/JI0ihjA5Ic/nRFhxMNq8nPcibwvvmgTwlu1h/uK/F6uk8qeRd/CjoZ8gz57e6fOLHJn8fuRt1MdaWGd/4rTHH9DK+e/h5Xwydw7fHHLdcV47F6dNYEHWBbwcepbfhr/LttjmLj+nNi60zUEjho9D3e5DIBAIBAKBoLsc75ssEAxQdDNElfZ3gjRyFT/CQ8Zpz3GTxjX8jK28zlqexqatI1O5AQseavUn8HGY8VzJJBagYj1tf1YcXMEP+JAXWM9zZGpbSFc/jVVKO+5Y0zSpM96m0vgfyeTwMX5FCnndeu79xTRupogpvMND7NLuZhxXoKnnEtPeYA/vkMNI5rMIL7ld6tdJClfzE7axjDU8iaptIEu5Hitp1OtP0sABxnIZU1h4WgHtWIqYzHwWsYTfE9PuI1O9DUVyANBkbGa//hBZDOcSvoUVR5f6nsJCCpnEuzzELu0exnIZhjoDTVvKHt4kixFcwv+RQv7pOxuAWHFyJT9kJ2+xmseRtY1kKQuwSznUa09Qxz7GcAlTubHL166A8VzGd3mD3xLT/kaWegeqFPe8aDa2s19/gHSGcCnf6bQ4113Gchnbpdd4PfQyN7s+26tjncm8E1nOM43vclv+ZSzMvhBJ6l7oWq49jRuyZ/Jk5VuM8lxFunLi93bd1HhWe4BiZzafzJlzwmMkSeKLhVdyafpk/nrgZf7W8lvO947mUuNzpCuZXbLLIcVfh1G6XmVOIBAIBAKBoKcIsUYwKNDNMNXa/TRRzZX8oEuTYRmZc7icIUxlJf+kXL8fgAxK+Ri/Iq0LHgJt/U3iY+QylhX8hUbtV+QqHydFPuINoJl+mrQnqGADY5nPNG7ulBg0EMliGAv4FR/xChv4H7r2MlZczORWRnARUjcd9CRkxnAJQ5jCKv7FPv1hANIYwrX8ggxKum1zPuO4gu/xGvcS0/5EjvolWsydHND/QxETmcNXu30/MinlOn7BJhaznmfRtcVYcDCDzzOKi7t9PQYKEjIjmUMhk3iP/1Cm/wuAFAq4hp+SxbBu953LaK7kB7zG3cS0P5KnfpmAWc5+/Z/kMZZ5fAMVW6Keykmx4mCMeRXvR5/mEvsVpJ1EHBCcnG2xzTwTfJRrM8/jhpwT5w7rCjdkz+S12rUsV/7NjXznhMcsj7xOeaiKv47+MqqsnLK/EmcOvxtxK283buaBA4tZq93FwuwLmRK6GZvUudeYTYoLxVGCpzlSIBAIBAKBIPEIsUYw4DHMKHXaQzRwkCv4XrcrKXnIYD6LKGcNYVoYyRzkHkyssxnOAu7mXR6mTH8Yu74Xq3oNQbOcw/ojGGhcyncoYlK3xxgoyKhM5FpKmM5uVjGauTjxJqRvF6lcwrfYxzoCNDCKi5E59USsM2QxnKv5Ea/ya8q0uwniYzgXMpPbety/jMoErqaE6eziXUYxBxepPbZ5IOHEy1y+zgFm0kw1o5mLnICPjAxKuJof8yq/oky7hxBNFHMus/kSSh9+JI3hErZLr/Ja+CU+6fpCn417JnBYr+Bfob8wJXkYXyy8IiF9OhQrt+TP5+7yp5nk3sEwy8ijHq/Rq1gcfp4F2TMY7uqch6IkSVyUOo7pySN5quptnqp8hyXqeq6yfoLJlumn9QRSJAUrNuFZIxAIBAKBoF8Y3D8BC854DDNGvfYPatjLZSwik6E96k9CooTprRPPnr/8bbi4mK8xk9vYw3vs1X7GHv3PpJDHAu4+I4SajiSTwxSuT5hQ05EhTGEMlyREqGkjlUKu4SfYcTOOy5nF7QntP4kspnD9GSfUdKSQiYxlfkKEmja85HE1P8FBMqOZxxy+0qdCDcQrQ40xr+GD6Epq9MFbvauvaTaaeDj8G7KsKfyg9GYUKXF/T3PSxjPSlc8rxn8wzCPVxgzT4HnzftKtSXwm98TJzk+FQ7Hy2bx5/POcbzLSVcC/AvfxoP5Tgsbpq8Y5JAcx4VkjEAgEAoGgHxBijWBA06w/RyXbuZRvk83I05/QD0hIjGQ2H+OXeMljGjdxOXed0RP4wUQSWVzPvZzLJwd9iNKZhIcMFnA3F/C5hAin3WE0c/FISbwWfqFfxh9sRM0oj2i/IWbq/GLYZ3AqiQ1ZkyWZLxVeyZ7gYT6Irmzf/370HTa1lPPNIddhV7ofTppjS+Unwz7JPcM/z67AIZZHXjvtOXbJITxrBAKBQCAQ9Ati5iIY0BxmC/P4Jnm9WMo3UXjJ4wq+xwSuFqJAL2GgcYgt7LA9zNvqz6ln/+lPEgx6TEw+4hXeVn/OR7xCM4nxhFGxMta8jrXR96nSDyekzzMVwzR4Uf4LZaEqfjb0U2TZvL0yzmh3EbNTx7M49jRhM4TPaOTFyBPMT5/CpKSeeVa2MTl5GFdlTued2JLTetc4JKfIWSMQCAQCgaBfEDNKwYBmBp+nkIn9bYagH9GIUM5aPrT+hcelO3iVX7I59iE+o5HF0s+oYld/myjoRUwM9tj+zQc8hobGBp7mSb7BK8p3WMcz1LEPE7Pb/Y9kNl4phSXhVxJo9RFajGZ8RgNBI4Bmar0yRl+w2vEIbzVs4rvFNzDSXdCrY92SPx+/FmK940lekx7CKqncVnBZQsdYmH0hMUPn7ciyUx7nkBw4LacPlxIIBAKBQCBINCLBsGBAU8CE/jZB0A+E8XOADTRaPmBbbAsxouRoecy0Xcx4y2QKlCLChLnf/wde037JXP6PAsb3t9mCBGOgs8V6Px9EVnGj49PMtF9MxIywPbaZD2Pr2WK8zgbzf6TJ6eQa0xjCVLIY3qWwKgULw83LWBd9kmscN5AsexNm/9bYR9zv/yMGR/KvKJKMTbbgkK3YZSs22YJdtmJX4tuTtCsYZRlYnoQfRFbyWOOb3JI/nwtTe9+2LJuXG3Jm8vjhtzAw+GHpx0lSE1vOPdXi4fKMqayof43Z9kuwSycuRW+XHIRM4VkjEAgEAoGg7xFijeCMwEBHJ4aB1tqOr+OLdsxaB0xkFGRUJOT2dnx99CIhY2C0n292aB+7mOjIKChYULCiYkXB0rqOtyVOXYGkM5gY6MTQiGG0rnVi6ERb1xoScqsdaqstFmTUdpviz106pl+z/Voev0Tbr+uRPo8sbdunCgFr618jgk4UrXWJt2M0cIA69QN2azswMCg2hnKF41rGWyaTqWQf1ZcDB192f5t/BP7GkthvuJDbKOU8FCw9vr7HErc52m7zEdvjrzkFFRVbh+tga7/OibjffYlOjBghooSJESJGGBMDCw6sOFsXR0ITNZ+IKEE2Wv7O5uiHfMZ1O1Ot5wFgk2xMsE5hgnUKuqmxS9vBR7H1bIq+x2ZzMW7JwzjLRNzRqbhI7WCz86RJjEcym408yzuR5VzlWJAQ+1uMZp6L/pPxScUszLqQsBEjbEQJG1EiRoywHm3fDrduV0TqeDj8R77supMStfsl0hPJrth2Hg/9k/npU7gxu+clujvLjdkzeaNuPSOc+cxM6R2B6Mbsmbxau4Z3I28yz375CY9xSA4ajPpeGV8gEAgEAoHgVAixRjDgMTGJ4MdPHX7qW5c6LJZaGox6Go16mkxfj0Ih+hILFlTJghUrsqSA2WZ52/+PrI88o/iWZsaIEUNHT4gtKhYsUlzc0EwNjViPr6OKikWyYsGCRbJimPHpf9SMEiN6yv5lFEYwihucn2KcZdJpvRyskpXbXF/lv8GHeSt6Hyt5mCK1GI82mmxGkM1wrJz4F/kIAfzU0UJt62urDsVSQ4NRj99sJmrGiLXa3N3rLSG1XwcrViyStd3ro03EkZBo03Pi+9r2xznq1WC2tY5+ZXQcT5EU5PZ/CrLU1mrdLym0xFScaoSIGSJMmIgZJmyGCJvhTj9XK1YckhO75MAuOXBIDiKaCxtuvOSRSgGpFHSpcpiOxkE+pM7yLptjGyEGt7u/xljLhBMer0gqoyxjGWUZyw2OT7FfL+Oj6Ho+iq2nhneOO96CFWerzQ7JiUNyEtFcrQKfyW5tR6dtPRbDNDio72NbbDNlyjp2BA5iky38puhWcu2dSzYe1qN8e+dD/K7lFxTZMxnFdMZZJlOoDDltmelEYpgG27XNrJFfZp1/NxM9pXy96Jo+tcGh2Hh47Dewy9ZeGzfT5mVe2kRWNb3OxeZ8ZOl4oTlZTmFDdA2fkP7KY+ZXesUOgUAgEAgEghMhxBrBgGaJ9DOaTR9Rou37VFS8ciopZiqZShYjLKNJkVOxS3ZkVBQUVElp9f5QUCQlvkZtb4PU6kGio5t6WwujQ7ttv4nRPtlVWvuVkY/qV5baJsNK3OelVVRpm+zH2if+saMe09GPnrS3cuJ9MhbJ0i72xEWRuNjSJrp0fMzEbB9LM+PeNzEzhobWuo61r03M9j46rlVJbRUbjuyXkVv7iLYKMPHnEiV63L4Y0Vb/HitWydIq4lixtq4tkuWodrKcguMk4QgnQ5FUPuO8nTm2S9mr7WaPtpO90go+NF9AQiJXKSBZHwGAbKmhQa+nwagn3KHCi4pKipxGqplGrpKPR05qF1esrbYdsd3Saq+19bqoR12PKBFiZoyoGWkXqY60I0eFxBwt0x1pHStotYk4R/7f8bUhdRB2THSMuKeXqWO0e0oZmGZby8BjiaFiI1lOxiY5sEt27JIdG61ryY5dcrSu7UhI7WJOyAwSMkOEzRAhM9i6P0TIDIEaIGBWs1d/lxgxANySh1ylAKtW1CrgFJJKPiq2VpsNKtlBo/UdNsbWETQD5BuFXOH4GFOs55Iid07okCWZYnUoxepQrjFvoNFsIGD4W+2N23ykfWTbUJsJmyFmqLO5xH5lp8Zqw2+0sF3bQoV9NeuaduPTAjgVG5McQ/lGxnVMTx5BmjWp0/3ZFSu/H3kba5t2s6pxK6t8y3g9/DIZ1mRGS9MYb5nEUHVEQstlA5imSZ1Rw25tJ9WODXzUXEZtrIlhzlwWFS/kotRxWOS+/7rgUuy9Psa89Em8VreOfXoZJerxCYzn2C5ldXQly/kVn5AkHjO/3Os2CQQCgUAgEIAQawQDnGGWkeQqeXjlNFLlVFLkNDxSEiYmTaaPBr2OBqOOBqOBBupbBRbtGBFGa287nAE0Uz96MtzxR9vT/IBrHtU2j+zs8IAtkkueUtC+uGVPD6+C4HRIkkShWkyhWsxsLsE0TWqNavZqu9ij7aLc3IIiKaSSzlDLCFLlNFLl9Pa1R0o64a/qgu5hmAa1Rg2H9YMc1is4rFdwSN7AVuN1TEwkJNLlTLKVXA5q+/GZDaRpGcy0zWGK9TxylLwejS9JEqlSGqlyWoKe0RFq9CrWRt+nTFnPzkAFJialRg7z06cwzTuC0a5CVLn7YopVtnBBymguSBmNbupsbtnHysatrPKt4W3/UjyKg3O9IykOX8hwy+gui5sQF2dqjGp2a9uptm9kk7+culgzEhKl5HBh6lguTBnLWHdRn3rT9Adj3EWkWjxsjK45oVjjlF18zb2Iv/h/w2vyj7lJivKk+c1+sFQgEAgEAsHZhhBrBAOaEepookQ4pB9gc2wDYVsl1ZFGaqPNR3koeBQHTsUW96iRFFRJbm3LWGQVRZKxSgqSpGCXj4SidA4TjvJwOULbRKZtn26aVOllbAi9T7S18kuaxUOxIxtvZBh5Sj55SgFZSi6qdPo/P9M0j/KIaQsxUlG7PYkyTAONGBEz0u4Joplae3iNidGhbWKaHR8xkJBwSi7cshuX5MEqWbtlx7E2hds9H454bBzZDhHu8Jji9KGZOkmRYgqVIRSqxWTJOe2CiyRJZCrZZCrZnGfruzwbgjiyJJOlZJOlZDORqe37I2aEKv0Qh/QKDusHqdIPM846kanW8ylWSge0MLBP28v76nOsat6GU7Ex2TGUKzKmMTV5OOld8J7pCoqkMCGplAlJpXy58Cp2Bw/HhZvGrSwN/xkAm2whWXWRrDpJVl1I4Qw8kge35MEtH1lbsLJP30u1/UM2+ctpiLUgIzGUXGanjWe8p5ix7iG41a6LP4MZRZKZkTKG932r+Zh58wlfg5lKNv/n+T5/bfkNi6WfsECK8Jz53X6wViAQCAQCwdmEEGsEA5p/B+9HQiLV4iHL6iXL4mWUq5Asmze+bUshy+rFocRDKnTTQDd1NNNAM1u9a0zjqO2TP3bk3I5r3TRRJPnohWO2W4UhVZIpdmRjlVUOhespC1VRHqyiLFTFFvN9lgUbgfgEocCeQZoliagRI2LEiJpaa1s7at/JsEoqNtmCVVaxyhasknpUW8doTWIaO5LUtHWdSOyyBU/rRDFJdSKF0nDLHlySG5fkRkcnZAYJmkFCZgDF2UhAD+PXQvj1MH49RFCPnLR/RZJxKfb4osbXNsmOVVLZzQbeCi5ttcNKqTOHjNhwCpUhFKhDyJZzT+kxY5omITNIi9mC32ymxWjGb7YQMkMn8NI6cdvExCJZ4jZhwybFF6tkw4b9qG0rNqySNZ6QWFJRW9fxBMWnFuB0U4sLbMTDqtqEtqgZJWJGMDHIULLIknM6JQT2BzbJRpFaQpFa0t+mdArTNNmmbWKl9DybWsrJs6Xx9aJruSR9IlY58YmsT4UkSQx35THclcfn8y+hIlzLzkAFvliAJi1IkxagKRbAZz1MlRbAF/PTooeO6kNGZriUx7y0SYz3FDPGU9QnoUYDnZkp5/BSzWr22cooVktPeEyKnMo3Pd/jb/7f8Zrxc66Rwrxo/qRvDRUIBAKBQHBWMTC/0QsErfxx5O2McOWjSgoteojqSCNVkUaqoo2sadpFs3qYQ4EWDgVaCGqxAZFi2KYozMgpZIplCud5R3FR6rj2x/xamH2hKspD1ewNVtKkBUixuLDKFmySJS60yHERxtZBeLHJFlRJIWbqRDsIO1FDi4s6hnbUvqipoUoyNtmKXba0ruNtu9KhXHDrWpXbks8eyYsSb7f+kyTk1rVhGrRoIZq1IM2tk8T4Or7dbK/loLa/fVuVZNyKA5dqx604cJt2Mq3JFDuycSl23Iodt+rA3SbIHCPMWKVTixh+LcTu4GF2BQ6xO3iI3bGOAo6FUmcu6bFhyMi0mC2Y9lp8sQA+LUCTFg+L64iMhEOxYTnGS6ttUdq25XhbRiJoaDQYUUJ6hLAeI2TE1x29vzqDpXUMi6xiac1L0ia26Wbn+lIkmXxbOsXObNzBoeQq+eQo+aTLGSLUq5Popsb66Ae8Y75EeaiKEa58flT6CS5IGY0yQK5hvj2DfHvGKY/RTZ1mLUSTFiCoRyh2ZLUL24IjnOMZgld1szG65qRiDYBb9vA1z5084P8jr2m/5jIpzGvm3X1oqUAgEAgEgrMJIdYIBjTP+F6lripEhb+ZgHbEI8ShqOS7k8hTPUzLyiPP5cZlsWKRZBQ57uFikWXUDotF6rittB4rxbfbHutwjIwU97oxjPbHTEx000QzjLhXjmG2e+fohklI13i/qoIlB/dyT8UzWGSZ87LymWqbwvne0SRbXIz1DGGsZ0j/XdQzDLfqYGJSKROTjkyy/FqIPR0EnD3aR0iA1+rGq7jItaXhtbjxqi68FjfJqosUiwuv6satOhIyITdNk5ipETKi7WWaQ3qUqKkRM3RipoZm6sQMjZjZut26P9a6H+IeQzbFgkO2HiO+xYU3uxwX3ySgIlxHeai6XRBcH3uNlnDcu8ImWyiyZ5KqFZOj5ONtTebcVhXJITmwS05s2AZcOFLIDFKjVxMyg3jkJJKkZFySO+HiU9gM837kHd7RX6Um6mNa8nC+XHgV4z3FA+6adAZFUkixuEmxuPvblAFNWyjU2qbVXGfedMp77ZAcfNn9Lf4R+DtLYr9lrhRimfmnPrRWIBAIBALB2YIQawQDGs0wmJyRzTVDhpPn9pDn8pDvSiLFZiesaxwKtHDQ38yhQAvN0QiaERdX2kQWzTCIHbOtmQZRXce0BwjGdMIxnbCmt7dDmkEophPVj/dksMgSDouCTZWxq0p8sRxpOywy412l/O3Cy9BMgyUHy1hysIw/7H+eP+5/nqmZuUy1T2aGd8xpq8REDY2AHqJFC+HXQ4SNGMmqi1SLh2TV2e2JqmmaBPQItVEftbEmaqNNBPXIMaFdygnDvtq8PtItSWRYk7ErPc9XczIbY6Z+lJhxrLABkG1LIVl1HXe+W3W05/roLyRJwtrqLXUiG3sDr8V9lBBomiYNsRb2haopD1VTHqpiX2gfH4Y+IHyScDgZGZdia/eEcil27LKFcNAVLwXeWv5baSsGLikdCoPHPYOckhu35MYle3BLbtySB5fsxo7jpBPhsBmmVq+m1qimRq+m1qiixXqQQ+E6fFrgBHZKJKkuvBYXKRY3SigjLuTIybilJDySB0VS2yu5SZLcbmP8ORyx2sBgXXQ1K2NLCOgR5qSN44bsmZQ4cxJyXwQDn1mp5/BK7QccsJWfNkzPIlm51fVVHg0+zIroX5gpBXnHfKiPLBUIBAKBQHC2IMQawYDmWxPOJaLrVPib2dlYz6qmrexrDLLfF6TafyTPiUWWcNtUVFmKe9QoMhZZQpWl9rZFkePbsozNLuOwKKQ6LNgtCg6LgkNtXbcudlXBaVFQFYmYbhCKGUQ0nZCmE9GMVmEn3g7F4uumcIw/b/6AP2xazfzhWVyVNYl/z7mapmiYpRXlvHFgL38/8DJ/3f8SkzJyKJCGENDD6PZGmqIRmqOR9nVYP3m+GkWSSLM7yXQ4ybA7sUczSbN6SLXElxTVTdCIUBttal/8ajWVQT9VQf9RXkoS4FQtGKbZmqfHxDA7F1CWYrOT6/SQ43LjieaQafOSafWSaU0m0+olxeLGME2atACNmh9fzE9jzI9PC8TXMT8hax0N4RB14SD+WJSooRMzOh8+5LXZKfF4ySCPAnsGBfZ08u0Z5NpSu1VuWDd1oobeIcEy0CHtcvw/s7UImIkE2GUbdtky4LwvJEkizZpEmjWJycnD2vebpknIiLbnDgro4fbF39bWjuwLGVHszgCaaWCYBjFaPcvacz0Z7TmfooaGXwsRMqLH2aNIcntuo2TVhUd10KwFORSupz7W3H6cR3GQZ08jz5rOlKRh8bY9HY/iwKf5aYy1vn40f/vrqNFezd5YGY3RluNytXQGu2zh8oypLMiaQZYtpXsXXDBoGecZQrLqYmN0badyKimSwqect+KQXLwdeZjpUoAJXM0D5k19YK1AIBAIBIKzASHWCAY0Nyz5X3s7x2NnSIqT4lQXs0szKEpxMiTFRZHXSY7HjiwfPVE2DJOYYRDTTTQjHroUbxuENYOWSIyWiEZzRKMlEqM5rNES0agLRGiJxNtBq59Q1MBpk3FE3LisKm6bgtuqkuywkG914LapuK1q+/qvHjsvbqvkkQ37uX3HYnI9dq4tHMOC0lHcNHQMvkiYFYf28caBvWwJ7CDJaiPZtJHv8pCcko7HaiPZaovv77C2KyoNkRC1oSC14WB8HQpSGwpw0NjHhsYg9eEQWofcJhKQ4XCS7XSTbXEzI6eAbKcrvu10k+N0k+FwYjmm1LBhtoZ3GcZxYV9hXaM66Odw0E9loIXDQT+HA372RbZzuKGFoHZEZFIl+Sh72nBbrKTZHKTZHaQpDs5JyyDN7iTJasMqK1gVGYusYJFlrLKCRVawKh22FQXTNDngb6K82UdZs4/y5oOsqt6MPxYXCRRJIt+VRHGSlzQ9nvco1JpXBoePoBZrXwKxGIHWdkTXj7O3M8iShFO14LZYcKlWXBYLbosVl2qBkBenYsOp2HHINhyKFadiwyFbcSg2nK37HK37nIoNS2uS4IAeoUnzt+YAak0mG4vn22nSgsRsdTRGwoR0jXFpmYwwJzA+qeSU3jySJLXaYyPDmtyt53s6okasPZfRkbxGAZpjwXbbm7UgqRYP57iHkGdPJ9+eTp497ZS253L6ctyaodOsB9EMHQOzPZm4bhqt28Zx+0qc2Qn3gArqEQ6EatqrqMVzQckdckIdnR9KliQyrSlYuyEyCnqGIinMSBnD+ub3uca8oVPCqyzJLHR8ApfkYnH4CZJtTdwmmTxo3twHFgsEAoFAIDjTEd8IBQOa+6+bwKTcFAq9TuyWI4JCfSDCyv31PL/lENtb6iiviRCIxMWYmGYS09s8IjqPwyqR5FRIcrQuToUkVcHjUAlGDOppZl+TTktIpyVs0BLS8YeN48ZJT1K5bXIpy2+9kO01LTyyYT+Pbv6Iv29dz+ySDL4xYjYfKxnJx0pGdvl6FHpOPbE2TBNfJExtOIjbYiXzBEJMZ5AlCVlSTnpu0UnsME2T5liEwwE/lQE/lUE/NkWJizJ2B+l2J6k2B3Y1MW89Y1KPTrBqmiZ14RDlzY2Utfgob44v64NbME1wWiw4VQsu3UKS1Ua20x3fbt3vVC24VAs2RUWSaE2u3LoGkGhPtNw20TYx2wUffyxKQIsRiEXb2/5YjIBUyYFoNN5uffx03kNqa5jbycSuFJudVJuDFNNOkScZRZZZU3OYp5q3IbVem0n2ccxMPYchjqyEXO+uYJUtpFuTSe8lMehUqLJCquzps/FM06Qm2kR5qJKyYBWVyl62N9axr6Wpy305VZXzsvIZrY5jctIw8mxpA85j60xlZso5vFq7hl2W7YywjO7UOZIkcYXjOpySi2dDjzHN6uOzUhAbiQ99PMQWNisVSCi0pnyHo9byMdvxd6nOIx05V4qvj9rXYW0lFUnq/GfLhugdXbBjcDHJej8xs4kYXf97F4CFZDbH7uxvM3qN3n59vHngq+TkDJ6Q3STH3TSHvjvo+hYI+gsh1ggGNBcOySAv2UFDMMrSPTW8W17H+1VVbD4QD3MYmm1j6lAXs8a4SXIqWBQJiyKhqvEQKIvaut2639K6326VSG4VZpKdCh6HgkXt+oTIMEyCEaNdvKlr1nj6vUbufWMnL+7Zz58uncrvrxzPLy4Zw4vbKvnzqj0seOMZvjFjGJ/NmY1V6bqQcipkSSLV7iDV7uj0ORFdIxCL4bJYsMpKjyaGkiSRbLWTbLUzKiW92/30ZPwMh5MMh5NpWXl9Pn5XiOr6UZ49QS2GX4sS7ODlY5rxULO2JdXuwGu1n/J1Uxlo4f3qQ6ysPMj/Dr/LI4eXU5qUwnnuicxMGUuxI1tM/ntAzNDYG6ykLFTF3mAlh9nPzsZ6mmPxsEyPxcoIbxozcwq5Y0wGI7xpWGUFg3h4oWmaHdrxUDrDNDHMuDD3UV0171Qe4L7Dr6CZBvkuDxfkFDDCnMjEpFI8auf/tgVdY0JSMWPcRTwc/CO3Or/JcMuoTp87234JLsnNU8H/sIb3sGLDJtmxty5WyYYdByHNiQU7FuxYcWDDxVBm4ODUOcxMTNbxNNX67p4+zYTgIYNU5SpSpMlIncifNsl6/xkp2Eyy3g9AnfEuVcar/WzN4CRbvoJJ1mTx+ujuGPmbqNRf6ZW+E02S4+6j1okUVtr6FAjONCTT7Kr/gUDQu1RUVFBQUADAJycUstlXy6b9IUwTSrKszBrj4aKxHi4a4yE/rXcS3PaUTfuC3HrfftaXBfna5ZksGj8Fl1Ulqhn8fuVufvfOLopTXXyyeDJRQ497YrSF48SiaPZm/BENf1RrX0d1g9wkB0VeJxlkke9KIt/taV/blJNrrxFd46C/mX0tTexvaWJ/i4/Deg1l9QEONYfaS55bZAmPzYLHprYvSTYLlmgS7tawHo/VRp7TQ4E7iQJ3Emn2kyeN7SymaeJv9UY57rGTnKNIMhkOJ7IQHk5KVNdZVXWQ1w/sZXnFPppjEYZ4kjnPPZGRrgKyWnMMeZSe38MznfJgFa/XrWOFbz2NkTCyJDHEk8wIbxojvWmMTElnhDeNHKc7IdfSH4uytuYwKysPsrLqIOXNPmRJ4pzUTM6xjWFy0lBGuQpRu+E5Jzg5IT3CT/Y8yqaWfXzB+RXOsU7s0vk+o4FtsS2EzRARM0zEDBMmTNgMEzXj63Dr/ogZpsVsQUVlHNcylvmonPwzzcREJ9aaQasti5bRvhgd2m2Pd562PFzH9m126Cs+hk6MbSxjP+vIoIRk5Ro88vBOjXImTcjbJuKA8KzpARaSsUhxD0zx+ug6bddvoF+7k4kpiRBsOvbdmf46zjMOHjxIfn5+j23oD374wx/yi1/8gpk5hTw8+8r+NgeAX29Yxb92fMSCBQt49tln+9ucMwIh1ggGHB3fRPNSLcwdn8RFY+LiTGHGwBRnToSmm/z51Rp+9OQhsrwW/njpZC4qjYftbK9p5usvfcSaikbsqnxUzhvPMTlw2tYWReJQU5j9vgD7G4McbAqhGUf+fLPdNopSnBR5naQaWTRHIxzWq9lbH6Ci6Ygg47IoFKe6KE1zUZrqpiTNhdduaReGWtqXWGs+nyPb/qhGQzBGQ+iIqOK0KBR5nRSlOMmSsihwJ5Hvigs5eW4PUV2nNhSkJhSgJhSgNhykJhigWa2n2h+msiVMdUuEkNb1XDEOVaE0zcWwdDe5Ui4lSV6Kk7wUe1JwWSw9un9nGlFdZ3X1IV4/uJdlB8vwRY8k6HapFnJdHnJdbjyxHLJsXrKsXrKsKWTZ4omilS6EPJwp+LUQbzZsYkXLe2xuqCHFZueaISO4vKiUEd40HGrfvcYOB1pYVXWQlZUHeb+qAl80gk1RGJacSoE8hKHOHEqdOZQ4c3Aqtj6z60wkamj8uuwpVjVu41POW5hmu6DXxvIbLSwOv8i7kRV45RQmGDdTynltgZcDmkp28AGPUcMeCpmIU70Sh5R72vMG+qSyM3SciAsSi3h9dJ+Beu1O5/XSE8Hm2L6FWNO/CLEm8QixRjDg6Pgmuv+Bc7rkPWOaJoZBPJGwbh6zPrI/GDHwBXV8AQ1fQO+wxLcbLRF8zTq+ZoNo1GT8aBvnpXuZPtzFxGIndmvny2bvrYpw+/37eXNLC5+dncZPpk3F64g/J003UJXuleDWDZPDzSH2+4Lsb62Qtb8xyAFfkIO+EEl2ldI0N6WpLkpSXZS0ijPZHluPf/lviWjsbwyw3xdkX2N82d8YF5H2NQaJnKDseRteu4Vsj50st40sj51st41sj51sj51ku+WEU5QTmRvRDMoaAuyu87O73s/uOv9RFcJyPXaGprvJV7MpSfLitnT+daRKMnZVxamq2BVLfK2qOBQVh2rBoao9DhnrTwzTpD4c4nCghcPBFg4HWjgU8LeuW6gM+NvDetqwyDI2RcWuKNgVtbWtYlMVHK1tPZSEXbbiVV2t1cmSSLV4SGutUtZbpd4TiWEafNhSxrvhd1hSUUbMMJiZU8iC0pHMzh2S8NDF7qAbBtsa61hfW8kOXz3bG+vY09TQngep0J3EqJR0cozSVhEnl3RL0qB9vfYHuqnzh30v8HrdOhY6PslF9nm9Ol61XsnzoafYHNtIsVLKOP3TZNE5b5X+xMSknA9Yw5O0UMMILkJVL8EieU953kCdVHYGIdT0PuL10X0G2rXrbHhSdwSbE/UtxJr+RYg1iUeINYIBR2fEmuagzpo9AVbvDPB+jY/1m+LiSix23KGdwu2SSE5S8CbJrYtCcmtbkiQ2bgmzYXOEcMTEYoEJo22cm5fM9OEupg9zUZxpPeVEyDRN/rG8nkWPVGC3Stx7yQSuGX36XyAHI4ZhUu2PsK8xwAFfELtFIdttJ8tjI8ttx2HpvcluUzjGnlbxZk+dn111fvbU+9lTHyB6CgGpO8hS3KvIZVVJdVhJc1lJd9pwxlJJbc0vk2pztK7jyYC9Njuq3D1xriOaYRDR4yXGo7pOxIhX4MpzelAS0D/Ew3AOBeJCTn04RFjXiOgaYU0/0tY1wrreuj/eDmhRGsIhakJBosbR3lJui5UMu7M9r5A9nIVTsaFICmr7IqNKautaQZWPPGaV1fYKWg7Zil2x4pRt3SrRfizVkUbeqFvP8qY1HAq0UOzxsqB0JNcMGUGWM/HJYhNNVNfZ29zIjsY6tjfWs8NXx/bGOppaPai8VhtDPF7SySXfnkaeLZ281upbLsXe6/aZpsn+cA07AxXMSBnTJ2P2FNM0eeDgYp6tXskF3tEUR89jtGUcybK318bcFdvO/0JPcFDfz0TLVEbEPkESfZ8gvKvoaGxnGet5Do0o6fLFZMmXoEgnv88DbVLZGfp7In42IV4fPWMgXL+u5pHpimDTk7AqIdb0HkKsSTxCrBEMOI4Va3JTLOw4FGb1rkB8qWhm264opgneJJlpE+1MnWAnM02JJxZWiScSViVUpUNbBVWNJxm22yRSkmWSkxSSPTIWy+l/cY7FTDbviLBmY5gPNoZZ82GYvfvi6lBGmsK0CXbOy0zmunNTGJl34i+ohxuifOXhg7y4xse107wsmjyBTLeNJJsFq5qYSbbgeAwjnsT1WE725hfTDUIxnWDr0t6O6gRj2lH7/BGN+mCU+mCUukCEumCU+kCE+mCUmHH8CFZFRpUlFElCkVsXKZ74Wu7QVmQJ04SIbhDVdMKaQVQ3CGs6J+gWALdVYVyOl5GOfM5Jy+Sc1EwK3P3jUdFWGSweAhcvMX902fkANeEgIS2GZsTLxMfaF71L2TYssnykmldrZS+HoiJJUmvy3tZ8HGZrBg6T1n3xJL8xQ2d3UwNO1cJlhaUsKB3FpPTBn4jZNE0qg352tIo3+1rzVe1raaIxEm4/Ls3uoMiTTIaZR54tjVx7GkOdOeTZ0nt0DUzTZHfwMCsbt/B+4EPKm30A5LuSWFT4CUa7C3v6FIG4N9SK+o/YFTzElORhTPSUJkTAg/hzeLV2Da/XrWdnoAITk6HOXEqNyYyxjGOIUprwEEHDNFgTfY+XQs8QMP3Mss0jP7KgVypMJZooQT7kRTbzGhYcpMuXky7POGnlqIEwoewsA2kifrYgXh89oz+vX3cT/nZGbDlV30Ks6V+EWJN4hFgjGHB0fBOdMc3O5u1RmloMJAnGDLcyfZKdaRPtnDvJwbBiC7LcfxOqugadtR/GhZs1rQJOi99gxjQHt5+XzYJzvdgsR4swpmny3GofX334ADVNWvt+p00m2angdSl4nQrJLgV3zEOSXSXZbiHZbiHFYcXrsJDqsJLiiG+nOCw4raKw20DDNE2awhr1wQh1gSh1wbiAE9EMNMNEN0x0w0A34yFtWnvbaN02kSSwKQo2VW5dFGyKfMJt3TDZXNXEhsM+NhzycbApXjEtxWFhYq6XEfbCdgFnMHiK6IaBZh4RcDTDIKxrhDpUzwocU02rrR3QooQ0LV64uLX0uizFS67LxHfKSMjt5dklzknNYH7h0LMm11FTNNyabLzpKBFnf0vTUd4449KyKJaGM8pdwEhXAe7TVKMyTINt/gOsbNzKav9HVARa8FptXJxfzCUFJRS4k/je6jfZ3FDDp3PncVPOLJROVBM6GVtb9vNwzf/Y3FBDpsNJTSiI22LlotwiJqhTmJY8ImE5fJpiAdY172KNbxdrm3fRrAVxK3amJA+nIDyd0ZZzSJITV6o+YkZYHn6NpeFXsUhWxpsLGMVclEFQyNNPPet4hl28gxMv2QwnLOfhkobgkAqO8rgZDBPyk03ETdNEoxmQUHF3qjKWII5pmugEMYhgIXlQC3oDUahpoz+uX08rM51KcElE/hsh1vQeZ6JYc++997J27Vp8Ph9lZWVMmjSJe+65h5KSkj4ZX4g1ggFHxzfRi863M+tcF9Mn2ZkyzkaSp//zRZyKSMTgxSUBHn68iXdWh0hLkfnMjAxunZfO8NyjvW2aAjobyoM0BfX40jF/TlCnKRDf355Hp3X7RH+xdqtEqlsl1a2Q6lbxuuL5VMJRg6hmEo4ahGMGkZh51DocM4nEDGRJiotELoUUl0qyS8GjeUi2q3jt1vjaYW0VjVQcFgW7quC0KNgtCg5VwWGJL8pJxDNNN2iJaDRHNJojsXg73JbEOEZzWCOiG1hkCYsio8gSFlmOl16X494oFiW+T1Uk7KpCjsdOfrKDJPvZMcHuCnWBCBtbhZsNh31sPOSjJhCfhGe7bYzNTqZQzWFYcipDW5ezRagQnJqGcIhtjbV8WFfNh3XVbKqvbk9IXZLkZUJ6NoX6SEa5CxniyARgU8s+NhqrWVZRRk0oSLrdwbz8Ei4pLGFaZi6WDlWrYobOXzev4/6t65mWmcs3cj5NhrVrIkd1pJHHm/7Hq/v3MCYlg+9NvoApGTnsampg6cEyllaUs72xDossc352PpOtUzjPO4oUizsh10g3DXYFKljTtJM1TbvYGagAYLgzj+HGdM6zzcQrpyRkLJ/RyCuh/7E6+i5WbAxVR+DRziGPsaRSQKsEOSCpZz+7eZca9lJHORoRJCRSyCeDoQSVHJzSEDYHf4JlgL7/jLP8jij1RM06ImY9UepwGM20UEMLtejEPWxlFJyk4CINFym0yC6seLFIKVjwYpW8qCQjSwNfbOsppmmg0UzU9BHDR8z0EaWRmOnDbvoJ0oCfBnTixQokFNyk4SGDiJSMVUrHKqVjIw2rlM6m6HcGrKfjQBZq2uhLwSZRJbRPJLp0pm8h1vQvZ5pYs3DhQm688Uauv/56AHw+HwsXLmTZsmUsXbqUuXPn9roNQqwRDDg6vonueW8I+TkD8wvc6di1N8o/nmjiv8810+AzmHWeg9vPzea6aV6slm4mFdZNmoI69X6NhhadBr8WXzq061vbsgx2i4zNImG3yNitMjZVwm6VsVskbJYja8Mw8QV1Gv06vqBGoz8uFjV2Qig6Fqsq4bDKOKzxdThm0hzSCYRPnjNGkSHZqWCzyO0JoTsmhzZOk24m2alQkG6hIN1KjpxCfrKT/GRH+5LjsWPpZiLnMwXTNDnUHGbDoUY+PNzE1ppmdtS0sN8XbD+mINnBqEwPhWouQ5NTGZacSmlyCs4+rHokGHiYpsn+liY+rI+LNx/VVbPDV4dumjhbk237ohFynW4uKSjhkoJSJqZnnTZ/0gfVh/j2e8sI6xrfLFzIjJQxp7UlpEd4svJtnq15hySLjW9NOJdri0cgn2AiV+FvZllFOUsryllfW4lpmkzKyGGqfSLne8eQa0/t9jU5lsaYn3VNu1jTtJP3fTuImRozvGOYFLuKUnV4QiaalfohNkU3sFPbRpm2mxgx3JKH4eooXLFx5DEWD5kDtpKUgU4jFdSylxr2UsteGjiIiUERU9hnru1vE49jsrSADfyvfVvFRhKZeMjEQ0b7GiBAwwkXjaOTtVtxDdh7lBhMooQwOfLBLaPiIhUXKa3rI4uKDT91NLeKX20iWAR/+/kFTOCAubE/nswpmSF9nnU8k9A+VaykUkhUzsYpFeCQCrDSs5BU6BvBJlFCTRsdhZdEJioWYk3vcSaJNQ8++CAAt91221H7fT4fKSkpeL1eysvL8Xq9vWrHgBNrmpubufPOO1m2bBllZWV4vV7mzZvH3XffzZAhQ4469je/+Q1Lly5FkiQmTZpEaWkpt9xyS/8YLkgYnRVr9u6Psu6jCB9uCbNxb5hQKB42IskgyxKyHE8CK0kdtuX4ts0ukWZVSUlW8CbLpCTLeJPjCYZTkhWyMhQKchMzQQ1HDJ5/zc/Djzexam2YjDSFz85I57ZLMijJGjwldg0jLrr4AjqhqEEwYhCKmh3a8XU4ahCMxrdDURObKpHsVEhqXZJbl45th1U65RcRwzhavIlpJsGowaH6GAfroxysi3KgLsqB2iPtBv+R5LayDKlulTS3QppHJcWtkqQlkeqMh5K1hZWlOq2kOKwUep14HWeHQBGIauyq9bO9Ni7e7KhtYXtNS3sYlQTkJtnJdNvJdNnwGKmk2x2k252ti4MMh4siT/IJJ8xnIw3hEBWBZhrCYZqiYQzTbH99S9A+UWsL0WpDkiDP5WFMasZRnigDkZAWY2tDHR/VV+GPxZiTN4SxqRldnlA0RsJ8/4M3WVZRzk1DR/PJpBtPWDXMMA2W1W/k31WL8UUifGHUBG4dPbHTVd4awiFWHNrH0oNlrKqqIGbo3F5wOddnX9glezuDXwuztH49L9aspiJcR4kjm+nSfKZZz8cqJeY9P2ZGKdP2sFPbxs7YNvbrZZiYpMrpjFBH44iOI51iZDr3OpKQcZPe5yKCRoQ69iEhk8UwHjBv6tPxT8Xt0pPUUU4TVe3CjB1Pl66RiUmU4FHiTZiWXrR6YGDF0e5h5CKty9cN4vmP2sQbFTv5nAMwYF4jt0tPUsMeDrMtof1GCdHAfuooJ4gPiAt8aRShyTmtAk4hdrK6HHbXm4JNooWa7iLEmv7lTBJr5s2bx7p161i+fDmTJk066rGFCxfy7LPP8swzz7R73fQWA0qsWb58OTfccAM+n49jzZJlmWeeeYbrrrvuuPOeffZZbrjhBmRZRtO04x4XDC5OJ9ZEoyZ3/b2Gv/2pGYDCIpVzxltJ9soYBpgmmIbZ3jaM+GT/SBvCIROfT8fXaODzGTT5DPSjC9cwYZKVT12ZzA1Xu8lIS4zb8vbdEf7xRDOPPtdMOGKy9u5RjC44dQ4IQffwh3QO1h8RceqaNeo7eB41tGjUt2g0+OPbHYtFWVWJq6d6ualkBLNLM04a2nUm449o7KqLCzfljUFq/RFqAhFq/GFq/BFq/JGjSrRnumxcMjyL89yjmZ03JCFVrwYT+5p9LK0o5+26HaytaOxSguRjGZrm4ltjZjInb8iAdf1PJKZp8uSerfxqwyrGpmby04I7jhNsHml6nEd2bebywqF8e8K55LuTuj1eIBbj71vW8dD2jfxi2Gc41zuyp0/hhBimwcbmvbxQ8z6rfTsY6y7iNvXHyL2Q1yRkBtkd29Eu3lQah7rch1dKZaxlPO7oVHIZg0rnhDCBQNA7BPFRxz7q2Ucd5dSxjxZqALDhJovh+CULtIdCSq2imNT6X2sbABkbGXjlSVglb8JtjZlNxGhKeL9dxUIym2N3nvIYIdb0HmeaWLNs2bITCjK33347Dz74IIsWLeKee+7pVTsGjFjT1NREcXExPp+PSZMmceONN+L1evH5fCxdupRly5YhSRIPPvggX/jCF447NyUlBUmS0I+dcQ9Qnn32WR544IGj9s2bN49FixYNmDH6wsYTcSqxZn9FjE98q5IPN0T48S9S+cSn3aSm9fwXaNM0aWkx8TXq+HwGZXs0nn7Cz5LXglgsEs8+mMvFM5w9HqeNQNDgvKsOIEnw3FeHMSpfCDb9SZvXUINfp75FY+V2P/9aUcfWg2HyUi3cNGYIn5hQQElaYvJdnAmYpklzRKPGH6GiKcibe2t5Y1c1O+v8FHqdfG7oFBaUjMSunpn5GUzTZFtjHUsPlvFmzS6217bgUBXmDM3gipHZjMlKJt1pJdVpRZGk9spTQHtlqrZ2vL94haptNc3c/dZO3iqrY8aQNL41cg5jUjP65Tn2NRtrq/jcmy8xJSOXu3Jvba/o9HrtOn677zl+PGUmnxg+NiFjmabJzcueRzdMflv89V4XxT5s3st3dv6Dax03Mtd+Wa+OBdBsNFGlH+708REzwk5tK5tjG6kzarFiZYRlDCmxKRQyESeJyb8jEAh6RoQAdZRTyQ5q2I1GpPVzxKDtU6W1/mH7v7a2j8MY6GQzAlUej1eeiEVKTFL0Sv0VqoxXE9JXT8iWryBHufKUXkRCrOk9+kqsWbhwIVOnTu3SnLSr89qOCYWP5VRCTqIZMGLNHXfcwdNPP82KFSuYMGHCcY+XlZVx++23s2LFiuMEm8Em1sybN4+GhgaeeeaZ9kzSPp+PW2+9lQ0bNrB06dIeZ5ju6Rh9YePJOJlY8+oyP19YVI0nSeZfj2YwZdqJy2Mnkvo6nds/V8uqd8O89K88LpyeOFFlx54oN32xkgOHYvzl84V85qK0s+JX9MGCaZqs2xvkXyvqeHJlI01BnQtHublp+FCuGZ2L23ZmihA9ZXNVE39auYf/bT1EmtPKp4dO4uPDxuCxDp6Qv1NR3uzj8d1bWFG1m4NNIZLtFuYPz+LKUTnMKc3AlYDKbKZpsnR3DT9cspVddX5uHJ/Pl4rnkO0888XCVVUHue2tV5mbX8w3Mj/PrkAF/7fzAa4rHsnPp81K6HvkO4cPcMtbr3DP8C8wOXlowvo9GX8/8Aov13zAdz0/J1vJ7fXxuoNpmlQZh9kS+5DNsQ8p03ZjYlKkFJOuT6aISaQx5AzPuSIQnJlECLCfdexlNRVsBgxyGIUijydZnohF8nS774HkWdMmQJ1MsBFiTe/RW2JNm3Dy1FNP8eCDD+Lz+brk1ZLIeW3HnDWNjY3dfk6dZcCINVOmTOHee+9lzpw5pzzu3nvv5a677mLZsmXMnj0bGFxiTVsG6ZMlJJo8eTI+n4+9e/f22xh9YeOpOFasyUpX+d59tfzlD01cdqWTvz+UTkpq3+VzCIUMbry2mg3rIrz6SB7TJyZOsAkEDf7vp7X85+lmbr7Ww30LSvE4BnauirORUMTg+TU+/v1mHcs3teC2yyw8P4Ubh4xkekGqENlOQFm9nz+/t5fHPzyIXZW5qfQcPjtiPOmOxHmo9SWaYfDPHR/yl81r8DosXDUqhytH5nDBkLReS16t6QaPbDjAr97cQSCq87kRE7h19KQzvmrXkoNlfG3lG1xZNJTV1YfJc7n578XXYlUS+95omiYL3ngWp2rhV0VfTWjfJyJixLh9659xKXa+bPkZyklKFQ8k/EYLW2Ob2BzbyPbYZsKE8UqpnGOdgCcynVxGIw+CUuICgeBowvjZx1r28j6H2QpALmOQlXF4pYmokqufLUwMJxJshFjTe/SGWCNJEl6vlylTprBw4UIeeOABNmzY0GmxJtHz2rYQqL6qBjVgkgr4fL7TCjUAixYt4o033uD666/no48+6gPLEseyZct49tlnue22206aOfquu+6irKyMO+88dbxlb43RFzZ2hcPVGhd/+iD3/aWJX9yTyuPPZvapUAPgcMg88b8szhlv5arPHWbjlnDC+nY5ZR64J4t//SGLl5f6mfqjrXxYHjz9iYI+xWGT+fiFqSz50XD2/n0s37o6ize3tDD/n6uY/tAS7n5rJ3vq/Kfv6CyiJM3NH68az0dfn8tnJhfx+J5NzHn5Ee7dvZgKf3N/m9cldvrq+fjbT/D7j1Zz2/RiNn7tYn57xTguKs3o1SpjqiLz+alD2PC1i7nj3GL+sWMj8197hKf3bEM/XYm0QcwlBSX8avpsXtq3G4C/XDg/4UINxL8AfnHMZNbUHGZzS3nC+z8Wm2xhUfFCdgcOsTS8uNfHSwRu2cN02wXc4v4K93j/xlfdi5honcLW2CYW82sek25no/UvlPEBMRL32SgQCHoXO25GMpsr+B6f5D4u4HOY6FToj7NFu5Pa2H3U6CsIm1XH5REdTAyG0uqCU2OaJo2NjSxdupTbbruN1NTOV3JM9Lz22Wef5cEHH+SZZ57pE6EGBpBnzSWXXMKSJUs6ffyGDRu48cYbWbZsGV6vd1B41rRljj6dEtemIHbHtaqnY/SFjaejo+Kd7JXweGT++Wgm087t/bCnU9HcbHDd5VWU7Y2x9LF8xo5MbFjHnvIon/xqFdt3R/ntp/L54vyuV1YR9B2GYfLW1hYeeaueF9b4aAkZTCx2cN3QYj42No/8ZJGHqCO+UJQH15Rz/+pymsIxFpyTx2fyZzDMm7jyyYkmqus8sG0D929dR2mam79eM4Ep+f2Xu+OAL8jPl2/nmc2HGJ3p4UsjLmBGTsEZW1r97cP7KXAnUZLUe9fcME2uXvwUWU4XP87/Uq+N05GHDr7Oc9UrWeT+CXlqYZ+MmWhM06RCP8BHsfV8FFvPYb0CCxZGWsaSGptOEROx0/0k0AKBoH8I4qOcNexjLZXswEDDTTr5jCOilOKWRqJKg89DtqOHjfCs6T36ImdNW76YznjWJHJeu2HDBi6++GIeeuihXs9T05EB41kzadIkVqxY0aXj2zxsyst7/xexRND2oj1dTFxbYuVly5b1+Rh9YWNXmDDRxrtr8vpdqAFISpJ57uUs8gtU5n+6gp17owntf2ixlbefy+cLNyfx1X8cZMHDO2n0i+pmAxVZlphzThL//moxlQ+P5+lvl1CcZeOXb21n7B+WcuWTK3h4TTl1gUh/mzog8DqsLJo1gs3fnMsvLh3Dqn11XLH4ST7xzhP8ZfNaPqyrGlDeIlsaarjhzcf5+5Z1fH3GMN6+fWa/CjUAhV4nDy2YzPJbLiTZbuEr777OtOf+wa3vP81D2zayvbFuUP8Ceiyzcot6VagBkCWJO8ZM5t3Kg+zwH+zVsdr4TN5c8u3pPKX/Hc0cnO/xkiRRoBZxpeNjfD/pl/w46V6udHyMgNHCOzzAf7mDN9WfsoXX8VPf3+YKBIJO4sTLGC7hCr7PZ3iI+SxiCFOoZAfl+kNs0b7D4dgfqdIXEzD2YZoD53P7VAgPm7OTRM1ry8rKWLhwIcuXL+9ToQYGkFhz9913s2jRIvbv3w/Ad7/7XdLS0nj++edPek5JSQlPPfUUt9xyS1+Z2W063vzTvWDaHt+wYUOfjtEXNnaVvz7Yt/lpToc3ReGFxdlkZChc+qkK9u5LrGBjs8n8/ieZPHV/Dm+/H2LS97eyepcIrxnoOGwyC85N4Zlvl1L1j/H86ytDcNll7nx9MyN+9wY3vPAWj394gKZw7LhzNd0gENVoDEapagmzvzHI7jo/W6qa2FTZxI6aFsrq/VQ0hajxh/GFogSjGppuDMqJucuq8sVzS9j4tbk8cN1EcpPsPLL7Q25Y8j/Oe+EfLPrwBZ7Zu42qYP+87iO6xn0HlrDwjedQZIkVt83kB3NGYlMHzvvQ5PwUFn/uAtZ8eTY/nTcamyrzt61ruOa1p5n58j/54ZaXeKl8F/VhEVLZGS4rLGWIJ5nnW17rk/Gsssqi4oWUB6tZ53ysT8bsbTKVLObaL+dbST/kl8l/5CbnZ7Bg4QMe5Sm+TrntUaKE+ttMgUDQBSzYKWQi5/MZbuR33MyfuYDP4SCJOmMZu/R72K7dSVPsP1Tqr1BnrKTJ2ELIPIRmBgbcdxQh2JxdJGpe2ybULF269KjKUBs2bODee+9NkLUnZ0BlhXv66ae59dZbKS0tbS+t9eSTT3Lddded9JySkhKWLVvG5MmT2bdvXx9Z2nXabv7J4uU60haLt3bt2j4doy9s7CqyPPDCgNLSFV54LZsr5lZx6WcqWP5YAUX5iQ1DuOZSNxPG2PjM16uY9aOd/OKmPL51ddaAvB6Co0lyKnz6ojQ+fVEatU0xnl3t4+lVDXzphQ+xqh+R6laIaCaRmEk4ZtATZxJJAptFwqpKuO0Kk0qcTPXmcm5hGhNykweUwHAsVlXmxvEF3Di+AE032HDYx/I9NSzfU8tL29/CMGFUhodz00q4MKeAKRm5vV4GfENtJT/csJT9viB3zR7B1y8Y2qs5aXqCJEkMz/AwPMPDF88tIaLprD7QwIq9tSzfU8NT1fEvKeNzkpmeUsKs3CKmZOSI0MoToMgyd4yZzHdXr+DG5EpKnDm9PuZwVx6fyL2Ixw6/RaPdy2z7JdilMyN0Mln2MsM2mxm22YTMIG+Gl7Ak/CpOaRUTzY8zjAuQBs5vhQKBoJN4yGA0cxnNXAw0atjDQTZxmK20GDsI0gQcEWgUrLhIxUUKYcmDRfJixYtVysApFWKR+j5UcpL1fl4qGxghQ4LeJRHzWp/Px+23335UFak2li1bdsKy3olmQIk1JSUlLFmyhOXLl5OcnIzP5+tUsh+v18vevXu5444Tl2gbCNTXd90N2Ofz9ekYfWEjxGNFT0VlZWWX++xrsrJVXnw9m8svruTST1ew/PEC8rIT++dUlG9h6ZP5/PQP9Xz3vkO8vLOecakebBYJm0XGpkrYLBJ2ixyfsLeubaqM3Spx7jAXGclnZi6LwUJGsoUvXprBFy/NoKI+yvOrffiCGjb1yD2zt91Pi9R6T+X2+ypJENNMIppJVDOItoo80Q7b0dbtxoDGB7sD3LtyJ4Gwgc0iMW2oiylp2ZxbmMb0ghS8Dmt/X5IToioy0wpSmVaQyl2zR9IYjPJWWS3L99byxp6d/GvHR9hVmfMK05jgLmZqZh7j0jITlnQ2qMV44MBy7l9dxqQ8L2/fPpNRmYMr34ZNVZhVksGskgx+Om801S1h3iyrZcWeGv63dysPbtvIxaUZ/GDsfPJc3S/PeqZy1ZBh/GXzWl5oWcz/Ob/QJ2N+ImcOAT3CyzUvslJ7g4stV3OhbQ4WaWD+nXYHh+Tkcse1nGu7kOeDT/JW7O/sV5YwQf8sGZT2t3kCgaCbyKhkM5JsRrbvM9AI0kSAegI0HrU2zUYC5j7qaMAgHv7pxEs6xUTkbJxSIQ6pACu9X2FzfvF/e7V/AYRCodPO94BezRfU03mtz+dj8uTJNDQ0sHDhwuOOKSsr67XKyB0ZUGJNGxdffDEXX3xxl8+7//6B697WFVGjTQFsaGjo0zH6wkagPanXYCcvX+WlN7K5Ym5csFn5bAHepMR6MlgsEr9YlM6scx3c/dcGVh1oIhI1iURNoq3rtiUWO/ZcuHa+mweuH0qya+B6WJwt5KdZ+eoVmb0+jqabfLQvyKodflZu9/PEln38YeUeAMYW2rkwN5efzh2NVR24v2ynOK1cNzaP68bmYZom22taWL63hnfK6nh4xwb+sGkNdlVman4qNxdOZW5+cZfHiOo6v/toNTuCB9la3UxUN/j5JWP44rklKGeAB1uWx85N4wu4aXwBhmHy+q5qvrN4E1cufpy7p8/l0kIxUe6IRVa4bfREfrL2HW5IriXfntHrY6qywpcKr2RB1gwePbyC5+ue4m3tVW6y3c4oy9heH78vSZXT+IL7y1wYm8MzoUd5gR9yvnUWI6NfQBmYX0UTjoHOftZzmK0MrOCQxJNKAcOYgYX+zzfYn2hE2cXbNHD6SWsbKlYyKSWTYbhJ60XrEo+Mipu0U9ptYtBCLXXso4591LOPZuM9qomHodpwkcYQdLmAVHk6dim7r8wXJJDFixd3ar7Xm6FyPZ3XLly4kLKyMuDkaT9OF16VCPrkE3LFihWUlZXh8/mor6+ntLSU1NRUSkpKmDBhQl+Y0O90R9ToqtdKT8foCxvPNIqGWPjuD1P4ym111NXrCRdr2pg308W8ma5THmMYcS+LSMSk2W9w918b+McTzfz44ijJrjPDvV5welRFYnKpi8mlLr52RRamaVJeE2Xldj//XF7H/R+U8Z2Zw0lVB8ev95IkMToridFZSXz1/KFousHmqmZW7K3h5yt2MCRlK3Pphlhj6Lx+aCeVLWGuH5vH92aPoCTN3QvPoP+RZYnLR2YzY0ga1/33fZ45tF6INSfggpwCTKAiXN8nYk0bWTYv3yr+GPn2NB6qeJ2D6r4zTqxpY7hlFN9Vf8bKyJv8L/QEUWuUCdEvn9FhUWFa2MGb7JaX0GjUkylnn1HeU8dimgbbjaWsl57gfOtMMiKXkUTv/1AxkNDR2MlbbJGep8lsJEfJ6/RrPGj42WS+AoBXSqVYLcUWG0EWw0inGIXB7TEtIZNEFklkUcL09v1BGlsFnHLq2E+l8S7VxuukUYQVJzIqChaaJRMJBQkLkqQgoyK1LjJW0uTzsUjJ/fgM+55w0M6B3QPjh/CWxoHjudvTee3SpUsTaE336TWxprm5mVtvvbVTZbsmTZrE3LlzufHGG89Y8aYrNeH7a4y+sBHiZfJORWVlJdOmTesTWxLBqy8FmTjZytDi/v3yJcsSdpuE3QbJSQqmCSVFFkbmnd2/bJ3tSJJESZaNkiwbL631MX2Yi1Tn4J0oqIrMxDwvHxxsQJbgE3kXdKsft8XKUxffwJdXv8Dru6r47JSiM1asaSPJbiHHYyeqD47qHX3Nzsa4y/TQPshZcyzrm3bzr0NLmZM6nrnG5X0+fl+iSAqz7HNxyx7+Gfg7XpuX4sin+tushFPPfiqtr7E2+h4mJpPVc7nINpdCtevi8mCjXq/lncgK3ou+TYg3GGuZQGHscnIZg8Tg91w8GQY6u3mXLfJzNBj1TFanc7njWrKUrr2nNBk+yrU9lGt7Kdf3cICniBFDRaVAKcKtx8WbTIbhIvWMuKZOUigkhUImAnGvpH2s4xBb0Imio6ETw23q6EQw0NDNWOt+DQONEM34jdUUqF/BJvWd4C44nssvv7w9/2x/0Vfz2t6mV8Sa8vJyJk+ejM/no6SkpN1FqKGhod3DpiPr169vz6hcUlLCwoUL+e53v0tS0uDKGXAqOpPcqL/H6AsboXfjE/uaulqdpa8H+c0PBtaHgq6bvLw0wGdmpIuEogIAwlGDJR81860LRvS3KT0mENX43bu7uGl8QY9KO2c73Txy4Y18de3/uOXZ9bz/pdmkDGIhqzNENAMpcmaLUt1lW2MdaXYHaZa+/e6x3X+AH+95lElJpVxrfA1ZOnO9TDoy2TqdJsPHc6HHOY90zuGy/japx7SFOu1TX2O3toPkmJf59qu5wHYRHvnM+U57OtKUDK5z3sgVjmtZG32ft8JL2cwvyZZzGWrMZxgXnlEhUgYGe3mPrfKz1BjVTFCmcIf7m+Qq3fu+myx7mWCdwgTrFAB0U6NCP9gq4Oyh3FzDZmMxEM8LlSlnkalkY0TzSCYHLzkkkzOor7GKlaGcz1DO7/Q5LdSymF+xT/s9hepXcEh5vWih4FQ4HI5+n+/11by2t+kVseaOO+7grrvu4jvf+c4JH29qamLdunUsXbqUZcuWsWHDhvaYtb1793LPPfdwzz33cPvtt7No0SKGDBnSG2b2KWlpnY87bROzuvoi6+kYfWHjmcazT8XLCy+8auC4/QG8ty5Mbb3OddO9/W2KYICwYksLgbDB5SMGf/z3Q2vK8YVi3FI4q8d9uSwWfjXhCq56/QkWvbaZhxZMToCFA5eQppMiJy5cszYUpMLfzMSMwf+62tpQy5iUjD4VuPeFqvnern9T6szhZunbKNLZkb+ljTn2S2kyfCyP/BcnXko5r79N6hbHhjqVmMP4vOtLTLBMPuvuaUesko0LbBdxvnUWu7UdvBVZyirjX6yXnjwjQqRMDMpZyxb5aaqMw4xVJvB515cpUIsSOo4iqRSpxRSpxVzEPCDufbNfK6PaqKRar6LGqKJG2kqL2dx+XrLkJVPJRtHy8JJNBkPJYjjyGRp26CGDq/gxr3E35dofKFK+hEvu/ZwigoHJmTKv7ZVPkPr6+pMKNQDJyclHJRGWZZlnnnmGtWvXtos3AA888AAPPPAA9957L9/61rd6w9Q+o+3mdybHS1uMXVeTFvV0jL6w8Uzjycf8XHKZk/TUgZXA98U3/ORmKUwbeuo8N4Kzh5fW+ijNtjEiY3B7VTSFY/xx5R4+PamIfHdifqnOdrr54cRZfPv9ZVw5ModrxuQmpN+BSEQzsFkT8361r9nHZ1e8RGXQz0+mzuTmYYM7z8q2xlrmeqef/sAEYJomHzTt5A/7nifDmsxnlTuxSrY+GXugcY1jIU1mI29H/46DJHIZ0+U+TAwiBAjRTIgmwrS0rpsJ0YzN4iNGlGgsGTtJOFoXO8k48OAgvl/leM86Ha29n7Z1x7bF0sDO2DZMYIo6nVm2eRSqQ3p+Yc4gJEliuGUUwy2jqNfreDeynFWtIVJD1RFIWuYx96XjOvmE96Ut7KXtXne8J2GasVh8yEhEYilH3eOOY9jxINP190MTkwNsYIvyNIf0A4ySx/JJ1y0Uq32XCyxZ9jLOenzZ4KARiAs3ehXVresaZTdl+rtEieKWPIyzTCQpOp1cxp7w2g5mnHi5kh/yBr+hTP8zRdxOkjyqv80S9ANnyry2V8Sa7sSIzZs3jwULFgBxz5unnnqKe++9l7KyMhYtWsQDDzzA0qVLKSpKrFrdV3S8+T6f75TKXduLqqsvmJ6O0Rc2nkls3xblww1RvnvrwMrWH4kYPP+an6vmuZHPgKo2gp5jGCavrGviYyMLBn1Y3N/f30tY0/lsfs+9ajpy1ZBhvOPbyjdf2cR5Ralkugev+/ipCGs6NkfPP/p3+xr47IqXcFut3DB0ND9e+w7+WIxbR09MgJV9T00oQE0oyLDc3hfq9gQP88CBxWxs2csETwk3yF/HKZ+9wrosyXzSeQstRjNLtd+Sp3Q2UaZJmDAtRgsBswWDo3MxySh4JA9uOQmP6cEiWYgph2k0d9JiNBMmdFyPNux4ZA9OyU3YDNJithAyg8cdZ8WKR07CLXlQzSTm26/hAtussyrUqbukKelc67yRy1tDpLbGPqJFOUzlae6LW/bgklyEzTB+s4WgGTjuOEvrffFIHhQzCR2DoLKXaqOZFrMFjaPLZkpIOCUXHikJh+TsdO6XgOmn2qhkmDSSb7q/x1DLwAkvdsouhsilDDlGODJMg316GZui6/kotp4a3sGGndGWc0iJTaeQiVhx9pPVicWGi8u5i6X8kXL97xTxebzy4PxsEnSfM2Ve2ytizaRJk/jd737XbW+Y5ORkbrvtNm677TaWLVvGPffcw/LlyykpKWHZsmXMnj07wRb3PlOmTGlvNzQ0nPIF01YmbN68eX06Rl/YeCbx1GN+UlJlLps9sD7c/vbvJqpqNb4yWcTqCuKs2xuksjHGZYM8BKohGOXv75fxhalDyHImdnIrSRLfGzWfqw48xtdf3sTjN00d9MLWiQjHDGxKzzxrtjTU8Pk3XyHL4eIXQ+7Aq7pIH/s/fvPh+7TEInxz3PRBd+22NdQBMMzVe++bddEm/lmxhKX1Gymwp3OH65uMVcYPumvVG6iSyq3ur/Jq6AWCpr/T59kkOx4pKS7ItAkzkufI5PsU1zZmRvGbflqMZlrMZvxGS+u6mYAZwCE52gWZ9nXrWLaz1AsqkbSFSF1gu+io/TEzht9sab8fLUYzfrOFFqOZgOnH3vG+SEl4ZA9uKQnPae6LaZpECJ+w35OJPydDJpcbrJ9ihDp60Pz9ypJMiTqUEnUo15g3UGkcYlN0Ax/F1rORv6KgMFwdTZo2jSFMxkn388ENBFRsXMK3eJO/U64/RAGfJE3ufP4bweDnTJnX9opYc9ddd1FcHM9239Pwpblz5zJ37lw2bNjArbfeyty5cwelYOP1epk0aRIbNmygrKzspMpdx5i5uXPn9ukYfWHjmYKumzz1uJ8FC13YbAMn9re6VuPXf23gtk8kM7pAlOsWxHl5nY9Ut8K5BYM7M/6fV+3BME0+lZNYr5o2Uu0OfjJpDl9+93We+OggH59Q2Cvj9CdhTcemdP+jf31tJbe+9SolSV5+Ung7SWpcrL7OsYBYfgb3b30NfyzGDybPQB4kkxiIh0AlW21kWb0J7zukR3iq6h2eqXoXu2zlBsenuMA266zOZXIi7JKDBc6b+2w8i2QlRUolRR7c74tnGhbJ0iv3RZIk7DiwKw7SB3GenEQgSRK5Sj65jnzmO66mwahvF27e41+s4p8UKSV49TFkM4pshg9KrxsFlTl8hVW42K7/F90MkqmcnfOWs5EzZV7bK7PM5ORkHnzwQb7zne8wf/589u/f3+M+J02axPr16/n2t7/N9ddfT3Nz8+lPGmDcddddADzzzDMnPebpp58G4LbbbjvpMaeKvevpGImy8UznnTfDVB7W+fSl3v425Sh+8rt6VAV+OntIf5siGEC8vLaJyycloyoDR1jsKtUtYR74oJxPD59Aqr33hMh5BSXcND6f7762hYO+48MfBjsRrfueNe9VVfD5FS8zOiWdXxR9qV2oaeOGnJl8o+g6Htu1mbtWr0AzBk+J8K0NtYxOcHJh3TR4tXYNn970W56qfIfrMs/nh+7fMtN+sRBqBALBgCFVTuMi+zy+7vkuv07+C5903kKqnMZe6W1e5x7+wy28rnyP1TzKftYTofPeb/2NjMwMPs8EruGQ8RzE3mgvaiM48zkT5rW99s39+uuv5+mnn2bJkiWUlJTwpS99iX379vW433vuuYc777yTX//61z03so+5/vrruf7663nwwQfb3a2O5Z577sHr9XLPPfec8PGFCxeSkpLCwoULe2WMRNh4NvDEYy0MG25h6oSB4wr94dYw/366mZ8syCPNIyYCgjjl1RE2HwgxL3vgxeF2hYfWlGNRJL4wakKvj/XtYZfisal89aUPMYwz60td3LOm62LNiop93PbWq0zJzOVH+bfjVOLvfW/Urec35c8S0qMAXJk5jbtKbuTlfbv55qolRHU9ofb3Ftsa6yiUEvc3sqZpJ7dv/TN/2Pc8k5KG8kPPPVwY+TwOafD9Oi0QCM4e3LKbc20z+IL7y/w6+U/8KOkebnZ+liwlmwPS+7zBb3mE23hVuZP3+A/lrCHEwP4BXUJiGjcxnY+zkReI6W/0t0mCBNCZxMFnwry2V2d0119/PUuWLGHhwoXtlZ3mzZvHnXfe2aMwpkWLFnHppZcm0NK+46GHHsLn8zFv3jyWLl3a7pLl8/naBZj169ef9Pxnn332qHVvjNHT8890dm6P8vLzQb775dQBEascjZr897lmfv3XBkaUWrn9koz+NknQSaIxg3q/Tl2zRn2LRr2/dd0cb4ejJi67jMsWX5x2Jd7usM9tV3DZZVRFYn9tlLLqCGVVkfi6OsKeqgg2i8Sc0sHp9m2aJs9vPcy/1+/nshHZJFl7XyBNstr4xeR5fO7Nl7n44Xf52NhcrhuTR37y4A0t9Ec0HvigjJaIhtvS+WsY1XXu27qeB7ZuYE7+EL6R+Tmscvyrw85ABb8pj38WWSWVrw+5FoA5aRNwKDZ+tvdR/rplLf83/tyEP59E4o9FORRooTgzMTmdVjVu48d7/otdtvB193cZbo6iGwVnBAKBoF+RJIksJZssJZsLbBdhmib1Rh27tR3s0Xayx1zPFuN1JCRm2GYzNPIpLAzc5PzjuQobLt7hof42RdBNNmzYwLp16wBYtmzZKcOb2hjs89pe//l97ty57Nu3j1tuuYXnnnuOpUuXsnTpUiDuJXLDDTcgSVKXJ71tJbYGG16vl6VLl/Lss89y++23H1VWbN68eSxatOiU599zzz38+te/bnfr6o0xenr+mUx9nc6N11UzpFjli59O7ldbwhGDfz/VzG8faORQpcZ18938+vIiLGr/C0iC4/mwPMjvXqpm56EwdS1xUcYfPj5MRJYhxaWQ7lGxW2UCYYNAxCAQ0QmEDfTTRJZIEuSnWSjNsjEqKZ3LipxML0zFYxt83lYbDjVy1+tb+OBgI5ePyObLJXP6bOwLcgp4YNblvFS9gV8s38EPl2xjWn4K143N4+pROeT1o3Bjmiar9tez9mAjwZhOWNMJxfR4u3Udat3f1q7xRwhrBrdNL+bqomGdGmdDbSXf/+At9rc0cVPORXwqaw6KdER1yLGlYpMtRIwYJc6co84d7S7EME1yXZ6EPvfewKGoWGWFFj0xYW/jPSVcmTGN1+vW86/wn5mlXc4s+1wc0uAV+wQCgUCSJNKVDNKVDM6zXQhAo9HAhugaXg49xw55K+cZXyKb4f1s6ckZyRwMDFbyj/42RdBJ5s2bx7p1647zpCkrK6O0NF71zOv1csMNN/DAAw8cd/5gn9dKZh8G7m3YsIE777yT5cuXxwfvINCUlJQwd+5cJk+ezJQpU5gwYcIJ+2hububXv/41GzZs4I03hBvbmUhFRQUFBfHSnVv3FpCXPzAmmZGIybWXVbJ7V4yV/ytkSL6lX+wIhgwefryJPzzYSHWdzsKrPPzgogKRUHiA8mF5kJ89U8mLa3yUZFmZmZ9DqsNKqtNKqtPS3k5zWkl1WEm2W05act00TaK6QTCqE4jpBKMagahOIKah6SZ5yQ4KvQ5s6uD+Gb+yOcxPl2/jyY8qGJ3pYdHY2Zyfnd9v9vhjUZZXlLOsfgsr9tQQM0yGpbm5qCSdmSUZXDgkDa/D2ut2VDaHeeKjgzy68QBlDQGSbCoem4rDomBXFZwWJd62KMhhNw7Vgl1RsSsKSVYb1xWPIKcT4ok/FuX3H33AY7s2c05aJl/JvpkS54m9Tv6473nebtjM4+O/i0M5cg3eqFvPb8ufZdV1nyXdMfBDf65a/CTDLcPavYMSQU3Ex5NVb/Na7VrsspVZlsu4yD5PhEIJBIIzjhq9ikcCD7JPL2Oe/QoKwjeg0D/fk0+Hn3oe5ysAHDx4kPz8/vt+0RN++MMf8otf/IJpycP51fDP9bc5ANx/4FWerV7JggULThkFIug8fToLnjRpEkuXLmXjxo386le/4rnnnmt/bO/evSeMJSspKTlKAWtzd2rzzhEI+gLTNPn6l+rYsC7KG4/n9YtQ0+I3eOBRH3962EeDT+fj13n43sxChucOXJfTs5mNZUF+/mxcpCnNtvG3ayZww7h8LD1I8itJEjZVwaYqg7yo5okJxXT++t5e/rByNw6Lws+mzmJh6SgUuX8TI7stVq4pHsE1xSNoGhdmVWUFH4Z3snRPDQ+t3YcswYQcL7NK0rmoJINpBak4LIkRzGK6wZLd1fx3wwGW7q7BokhcPTqXn06cy9TM3IRXXCprbuS2t16lNhTkjoIruDbrfBTp5Nf/9oIruCnnoqOEGoD10XVMzMgeFEINQElSCrWRioT2mWnz8rWia7g55yKeqnybV2tf4q3YYmZa5jPbdglOObHl5wUCgaC/yFSy+abn+ywLL+bV8PNkKx9xrv5l0ijqb9MEgkFNv7gsTJw4sT0r83PPPcdTTz3VXlbrWPbu3dve9nq93H333XznO9/pM1sFAoDf39vEk4/6+c+fsjl3Ut96sIQjBvf9p4nf3NdAS8DgUwuSuOvCQkqyBk5yY8ERNpYF+dkzh3lpbRNDs238/doJ3HBO/qCuxNTbtOWl+dHSbVS3hLnj3BI+m3sRnj7IT9NVkq12Li8ayuUM5XsjoMLfzPvVFWwI7ObRjQf4w8o92BSZ6YWpzCpO58LidIq8TtJdNpSTeEydiD11fh7deIAnPjpItT/ChJxkfjjlQq4sGtZreXvWVB/iy+++TobDyQOjv0GuPe205zgU63FCTUiPsLLyIN8cP73btpimyRN7tlLkSeaC7IJu99NZSpJSeGbvtl7pO8OazFeKruamnIt4uuptXql5hbdirzGrVbRxye5eGVcgEAj6EkVSuNRxFaMt43gk8CAv8H0mcwPjuBK592raCARnNP0eX7JgwQIWLFgAQFNTU3tMWllZGfX19aSlpVFSUsKkSZMoLi7uZ2sFZyMvPBfg5z9q5M4feLnx6r7Lv6DrJo+/0MJPf19PZbXG525M4vsXFlGY0fvhFoKus6EsyM+ePszL65oYlmPjvmsnsvCcPCHSnIZj89J8c+bHKPL0bz6orpDvTmKhezQLGY15jsmupgbeq6pgQ8se/rByNz9fsQMARZLIdNvIctvI9tiPLG4bWR47OR47aU4r7+6r478bDvD+gQa8dgsLx+VzRdpURqek9+rzeLF8J9/74E2mZORyZ+7ncavdF6XXNu0iaujMK+jeZ7Zhmvxuz2vtXkvfmzSDT48Y1217OkNJkpeaUBC/Fsat9o63Yro1iS8VXsWN2bN4pupdXq5dzNux1/m0/UucY53QK2MKBAJBX1OgFrEo6Se8GnqeZZEnqVPWMlX/MskkJom7QHA20e9iTUeSk5O5+OKL+9sMgaCdtR+EuePztVx/o4uffL53J0ttmKbJG28F+cE9dWzZGeW6+W5+eVkRI/JEuNNA5FiR5v7rJnL9WCHSnI6mcIzvvb6Fxz48yOhMD/+ec3W/5qVJBJIkMcKbxghvGp9jPLHJOjt99VQFA9SGAtSEgtSEAjSbDWw87KOqJUxtIMKx1cFnFafz+/PnMa+gGJvSux/Tpmny1y3r+MvmtSwoGcktKZ/ApwWQdAmX0r33nI3aWkZ40yh0d1100wyDn257hac3VfCHK8exp97PL95fSbVyiG+WXIraSyFxpUnxwMKKcC0j3b3ryZNmTeKOwiu4MWcmf9j3Ag81/YlPcRtTref16rgCgUDQV1gkC9c6b2CsdQL/DTzI89zJND7JKOYi0TkvUxMTEwNZlNMTnMUMKLFGIBhIbNsaZeE11UycbOXhn2b3SZnudR+F+d7ddbyzOsQF/8/efcdXVd+PH3+dcffIzd47hL1BQFBBwIG4QWtrW20dra1tv7XV2m/nt1Pt+tlh1bZarXWAVutCQUVFRJbsnRAgITu5Se7Nneec3x83iSCEDDLh8+RxH+eOMz4Jyc097/P+vN/TrXzwy5HMLBYp8kONYRi8u9PH/S9W8caWZoozLDx89WSuFUGabllTVsdX/vMxzcEIP51+PtcVjhn0ujT9wSQrjEtIYVxC5+tEdZ2GUICagJ/aQCtFcQlkO90DMr6wpvGD9at58eBevpR5ETckzGWtdze/LH0Gs6TyuYx5XJEyq6NVd3dE9CjvHD3EzaMm9mo892x9iTf2VfO3a6dy7fhMAAoTnHz3te0canyBX0+6Aqep77ML89weAA4PQLCmXbzJxY+LPstvD77AP+sfJqC3cr5VXLASBOHMUaQWc6/75/yn9RnWhP9BvbqB3OilhGklhJ8QPoL4COHDYmrGr/tpNfz4DR+thh8FlRnm2WSEF+MhY7C/HEEYcCJYIwgnUVYa4ZrLqsjKVvnPXzKxWvr3RLKkLMyPHqjn+dd8jCk289L3CrlsatyABIiE7tN1g5c2eHngxWo+2u9nQq6NR6+ZwtVjM0SQphtCUY2fv72HP60t4dzcRH4+aRGZw6C1c39SZZkUm4MU28AWm20KB/n6eyvYXFfF9wuuZ17CRF6o/oC/HnmNOfFjcat2Hjmygv9Ur+XmzIu4MHEi8ikKDbf7uKUEXyTMwqyeTYFqjUb41sb/sO5wA0995hwuLk7teO1L0/PIi7dz07KN3Nj0LH+ZdVWftwS3qyYy7E6OBGv7dL9dUSSF7+Rfi1O18mz1E7Qafi62Xi7e+wVBOGNYJSs3OG5ignkyT/n/wW7uB0BBwS45cUgOHLITCQepStpxzzXpXtaE3mEN7zDONJHcyGIyGNvt7BxBGO5EsEYQPqW6KsrVl1Vht0u8+rdMPO7+S7+sqYvyywcb+NvTTaQmqTz61Vy+ODcRRRF/hIaScETnX+818JuXqth7NMQFY5ws+9wMFhSliJOqbtpZ3cxtL2xmX20L3500i5tHTTwjs2mGg8O+Jm5d/SqNoSD3F9/KGGc2fzr8Mi/VfMj1aeczJ3gzclRmivsob8tP8uuDz7Gs+n1uzbqEaXHFp9z3Vn092U43Iz1dFydu1xwOcce6F9hV08yyz83kvPwTp5xeWJTCG1+ew/X/Xs91q57jL3MWMyEx9SR7670Cdzx1yqE+3Wd3yJLMV7MX41btPF7xPNa4Gi4IfVm8twiCcEYZa5rIT+Lup0VvwSE7sWDp1vvcxdbL2Rhex9uhFezgF2Qq2RRpl1HEuUO2Pbgg9BURrBGGtLLSCKlpCqravx9aDcOg/IjG9q0hfvFTL6GQwdvPZJOa3Pe/IoZhUHo4wnP/9fHbhxtQZImfXZ/JnYtSsPVzBs9wF4roHK4LU1YTpropgsuqkOBUiHeqsaVD7ZPvYVQzKKsJsa8yxMelrTz8Zi0VDRGuPMfDny6dzvTsU8xrEToYhsHeWh//3X2U37y3n6JEB8svXsrofi6WK3Rua101t7/7Gm6zmT8Uf41Ek5sf7/8X65v2cYP9JuaE5tF+wTJNyeCz3MNM135WGE/yvX2PMcVdxF1515BqObF5vGbovFV+kCvyirsdaGgKB7n5/eWUNwV46QvnMjWr86b0o1PcrLplDp97ZgOff+tF/jD7YuZl5vXm23BSBW4PH1SVQ3qf7bLbJEnixoz5OBQbfz78Mr6kIJdFvyYCNoIgnFHMkoVEpWcdDU2SiVmW85hpnsPe6C7edBwY7gABAABJREFUDr7Bu/yVzdLTjDIuYSKXi7o2whlLBGuEIe2yhVWYzVBUbGLUaDMjR3+yLCg0YTb37IOsrhv4/QZHDkfZvjXMti0htm8Ns31bmMYGHYCsHIVXH8skL6vvovWHyiO8uy7Aux+28u66AOVHo8gy3HSdm19fnE+iS/wqArSGdA7VhjhUGwvIxAIzIQ7XhimrDVPZGOlyH1azRIJTJd6hkOBU8ThiwRxJigV7gmGDUFQnHDEIRnRCxyzb7zf6NSLRWNVXu0Vm6bnx3DFmAiOTz+4pO13RdYPSBj9ryup4v6ye9w/WUeMPYZIlbpuRz1dyFvR7wVyhc2sqD/O191YwOiGJ/826BRmZe/b+nYOBKr7q/DZjTONPul2BOoKvGj/lv9ZlvNn8Kh83l3BJ8rQT1jvQepS6YID5PZgCVdrkZUd1M/dcUHzKQE27FKeVP14xiVl/eYd3vNv6NFgT0jXCutZn++uNq1PPZWPTPt5t2MbF7igmcdVYEAQBiAW1R5nGMso0lirtKO8E32RteDkh036mRb6JiuiWKpx5xKdmYUh74sE06hs0dh8Is/NwiPdWB6irjQVVVBUKi0yMHG2ieKQJWZFoadZpadFjy2bjk/sdSwPjmM4refkqEyaZ+cZN8UwcY2bCGAuZaeppX82sqIp2BGbe/bCVsiNRJAkmjLawZEoCc7/g4rzRTjyOM/dX0DAMmlo1apqi1DVHqWuJLetbotR+6nFdc+y5ptZPTpQUGbKTzOQmmcmzJXDeBBs5HjvZcTZyPXZSnBb8YQ1vMEJjIExjIIK3fdn2nDcQoUVvYf/RIABWs4xZlbCYJGwhJ8kWGYtdwaLKsZsiY1Zl4m1mRiQ6KUpykuGyIsvi6nY7wzCo84c5UO/jQL2fknofB+p9lNT7KW3wE9J0ZAkmZ3i4KncMM1MzmZKcjl0VJ52DacXhEu5au5Jz07L4btqX8WtBvrfvb9RHmrnTcS+5asEpt28yGlkfXc1U9wgWJk056TpbmkuxKSoTezA9aXJyGrdMz+MPaw6waFQ6E9NP3UGqORjhpmUbyU9w8O2ii7p9nK6EtCivHyrhsqTB7ci0tbmUj5r2cr3tC5gk8TsjCIJwMmlKBjc4bmK8eTJ/8/2RoPprzo1+FzO2wR6aIPSpM/dMUTgjnDvNSlb68R9Ya+uj7DkQYc+BELv3x4I4/37ShySByyXjcsttS4nsBAtup4zLKX+ydMmkp6iMH2Umrg/q0UQiBjv3hdi4NcSmbUHe/yjAgbJYBsjYkWYWj4tn7mdcXDDGRcIZkEFjGAYNPo3KxgiVjRGONkaoaoxwtCGW+VLljXC0IUKlN0IwbJywvcehkORSSXarJLpVCu0JnJNkJslhIdlhIcdjJ8djI91l7bJor92skuzsWTqtcHKabtAUjNAUjOANtC3bHle2BNuCMrHgTHMoCsRmy2R77BQlOpgan8e1OXHkuzxMSkrFZRb/L0OBLxLm/21bzxN7t3FZ7gi+nvRFaiNN3LP374T1KN+w/4B0JfOU+9CMKP/W/oBJUrm34DqUTgoN79V2MiU5DbPSs/fVbxVczIbyZ7jpuQ2svv0C4qwnD1JousEtz2/iaHOAZxcsxWPpXWvxk3mrvIzmSIiLEk8eiBoIYT3C7w/9h7HOXOao8wZtHIIgCMPFONNEvu78Lg/5fk9I+RkXaN/HiuiiKpw5hv+Zo3DWSU5USU5UOW/GwEfPo1GDvSVhNm4LsnlbiM3bg2zbHSYUNpBlGDPCzIKRHn5+jYsLxjpJiRseV0Z1PRaAqW6KUNMUpdoboaYpQrU3SnXbsqYp0nE/HD0+CBPvVEj3mEiPN5FljmfaCCupTgtpLivJDguJdjOJdjMJdjMm0TWpXxiG0ZFp9OmgS8fjT73W8TgQoSUcPel+JSDZYaEw0UGhLZ0Foz3kueLIc3nIcbnFtKYhbFX5Qf5v43s0hULcmnUpS5LncDhYyz17/45VNvMN249IVJK73M97lsfY03SE34+6DY/p5B+Co7rGptpKbh/b82CHWVH47bTFXPPms3zjv1t4fOm0k2Y3/mjlTt46UMujcy+jMK7rKVM98Z+De5iUmEq2revvR3/519F3qAo1cpP5293qvCUIgiBAkWkk33Ldyx9997NO/T3nR78vatgIZwzxKVsY0owTEzMGTFOzxoGyCHtLwmzeHmLT9iBbd4ZoDRhIEowsNDNlvIXPTUlhaqGdSfl27EO8QLBhGByqDbPtUIBtZQG2HWpl26EAB2tCRD9VqsFmlkj1mEhxq6R4TIyJS2JuhoXktiBMmtNKqstCqtOKzST+KPa15mCEqpYg9a1hGgJhGlpjU7vqW8M0dDz3yf3GQISofvJfGKsq47GaiDvmlkACeW4L7iQLbrMFt9mM22whzmzFbWq/b8FhMiOfgUVODcOgORKiutVPdaufOIuFEXEJ2M6A6VpVrT5+tvF9VpYf5Pz0HG5L/gxplnj2+I5w777HSDbHcYv5XuJkT5f72hLeyPLGNdyRvZgxztxO19vXWoE/GmFGyqmzdDqT44rjF9Pnc+eaN3h0fRm3zTi+7s0Tmw/x5w9L+cHUOcxJz+nVMTpTE/CzpvIIX8+5sk/32xOlrVU8W/UuF1uu6DLTSRCEM0/QCPJS4Dl2R3ZwgWUBcyzzxFTIHshWc7nVcScP+u4n0/IEI0I3D/aQBKFPiGCNMKTNuOww0ydZmTzOytTxFiaP75uaMu2amjVKDkU4UBbhwMEwJYcilJRFKDkUobb+k+hFYZ6JKeMtXDMmiWlFdibn23HZhnaAwh/U2HE4yNZDrWxvD84cbqW5NVbzJ8GpMDHPzvycTIomO0hxWmI3h4VkpxWnWRGdSPqJYRg0BiIc9ra23QIcaWrliDfAYW8rR5oCNAVPLKbstqgktGcp2cwky0kUJ1qJt1iJM1uJM38SeHGZYsEWl9l81mS/aLpOuK1IbDCqURPwUx3wU9Xqo6rVFwvMBGLBmapWHwHt+GwiCchxxjHCk8BITyLFngSK4xLJdcWhDoM245qu8+/9O/nd1nXYVJUfFN7ABfHjkSSJj5tL+NH+Jyiwp3OTcg922dHl/mq0Kp4KPsL58eO4OvXcU667pbkUu6oyLrH3mSkX5xRy+4x8/veNHUzPimdypgeAD8rqueuVbdw8NZfPF5+8CPLpeLlsH4okMzdhQp/vuzs0Q+d3Zc+TaUniIuviQRmDIAiD50B0H0/6H6VZ9zLaNJ7nA//mndAbXGa9hunmWSLTrptGmEax1PY5ng08gU4+I5k72EMShNN2dnyCF4atG89NYl/Axz+ebuLXf4oFT1KTFCaPtzBlfHsAx0pGauxH2TAMfH6Deq9GfYNGQ6NGXaNGQ6PettSob9Qor4pSUnZ8QCYpQaEw18QIl51LF1gpSrdQlGZhRLqVOMfQDswYhkFZTZj3d/tYs9vHmt0t7KsMYRixQr0jM6yMz7UxP3MkY1PdjEtzk+6yimBMPwpFNQ41tnKwsZWDDX4ONvopa2jlkLeVI95W/JFPfvbsJoXsOBvZHjvjXdlcnOYi0+Ei1e4g3mLFY7YSZ7Fgkof2z2Ff80XCbK+vYXtDDdvqayj3NRPWNSLaJ0GZY+/rnaTimWSZVJuDFLuDNJuTLPJJ8sSRbI4jyeQm0ezGG/FxMFDNwUAVVdFDPHtgJ3XBAABmWaEwLp7iuFgQpzAunnS7k3SHE7fJMiR+j3Y31vGj9e+ytb6azxSN4TOuJThVG7qh80LVB/ytfAUTXQV8Vv4uFqnrekJhI8yTkd8Trzq5K//aLr/GfdoupiZnnPbP6J15F7HhyLPctGwj795+Ad5AmM8/u4GZOYl8Z8Qlff69NgyD/5TuZX5WHi51cApTvlT9IXv85Xzb9b/iSrognEUiRpiXA8/zdugN8pVC5vM94iLpFFPBPuVpnmh9hLdCr3OFbSlj1QlD4m/NUHee5ULKtUN8EP47HjJJZcRgD0kQTosI1ghD2l1XppKVmI1hGJTXR9hU2sqmEj8b65p55F9N1DV8EsCRZaj36oRPUtTWYpZISlBIjJdJTFAodNi5ZIGFwjQrI9qCMvHO4fProOsGuyuCvLcrFphZs9tHeX0sE2NcjpU5GencOd3DuFQ3o5JdWMU0pX4RimrsqfXFgjFtAZmDDbHgTEVzgPafRIsikxdvJy/BwfT4PK7KigVjMhyxZbxFBM7CmsYebx3b6mvYXh8LzpQ2N2IADtXEuIRkCtQCzLIJk6RgklVUScEkqZhlBVVSO543SQpm2USiyUWS2U2c6ujyymSaJZ5RzuxPnsimI4BTFqiitLWaspbDrCwvpTX6SUaOQzWR7nDGgjd2V0cQJ8MRu59qc2BR+i9LLRCN8KftG/nHni3kuz38YdTtjHPlAVAd8vKbg8v5uKWEa1LP5YLQl1Gl7r3PvaE+TEVzPX8cfQcO5dSFfCN6lE21lXx9/PTT/XIwKwq/mbaYq998ltv/s5lDja14bCZ+M/WKfglW7mqsY19TA19MubzP990d1aFG/lHxJlekzKQwUjwoYxAEYeAdih7kCf8j1Ok1nMMNjNcuQyb2dyqeTGZEvkMe+9kpPcVDvt9RpI7kKtt15KtFgzzyoU2SJK6zf4FK7Sjv6L/lcuOXOEgY7GEJQq8Nn7NT4awmSRLZSWayk8xcdY4HyMQwDI7URdhY4mdrWQBZgiS3SoJLJcmlktixVLBb5GF9MhyO6GwpC7Bmt4/3drXwwR4fDT4NVYGpBQ6uHpnDubmJzMxOIN5uHuzhnpE03WBfXQubK7x8fNTL5govO6qbCWuxaWVui0p+goOCBAdj7DnkuNzkOuPIccWRYnOckXVfeiusaRxoamCPt74jc2Z3Yx0RXccky4z0JDLGUsw1+dmMcmSRZU3utANRf/KYnEw2OZnsLux4Tjd0GiIt1ISbqAl7qQ03URPy0qJUsquxllXlB2kIBY7bjyxJmGUFixK7mWUFs6JgUdTjn1dUHKopNpWtrW7QCTeTuaOW0JrKI/xkw7vUBFr5QsZCrks7D5OsYhgGq+o/5o+H/4tDtnKn825GhcfG5nl1w9rQe6xo3cjd+UsosKd1uf5efzkBLcqM1IwefX87k+V086tzFnDHe6/jtqg8u2Ap8X3Y+elYL5TuIdlqZ1rcwF99NQyD/3foRZyKlfPDN3X7/0cQhOErakRZEfwvbwRfJlPJ5ip+SQLZJ103lRGkRH9MEVvYZvyb37T8jImmqVxhW0Ka0jfvt2ciVVK51Xkn9zX/hDXKb5iv/QQV8dlYGJ5EsEYYtiRJIifZTE6ymWtm9m1nkMFWXh9m3T4/H+3z89F+H5tKWwmGDWxmiVnFTm6dWsi5uYlMy4rHYT7zf4394Sj7an3sqW3puB3xtuK2mEiwm0lymEmyW0h0xOq5JNktJDli3aeS7GbsPfweGYbBocZWNrcFZTYf9bKt0osvrCEBI5KcTM7wsCh9HOMSksl3x+MxD43pMEOJYRjUBlvZ01jPHm8dexvr2eOtp7S5Ea1tylK+28P4hBTOc8xglCOLQns6ZnnoTgWRJZkkcxxJ5jjGcPJCtyE9EgvihL3Uh5sJ6REiRpSwHrt13DeiRPQo4WiUcCSKZmuhstXHXm8dzeEwzeEQ/uiJtYti45DQDYNZqVn8ouA2Mq1JADRF/Pzh0Iu837iDBYmTuDh6W7fq07RbH/qAp1sfY1HydC5Kmtqtbba0lOI0mRkT33edlBZk5XP/rPnkueL6vPNTu7Cm8fKh/SyMn44iDXz24eqGbaxv2sdtjm9ikwZnCpYgCAOnQjvCk/5HqdCOMImrmaJdhdzFqZiERA6TydImcoAP2KY9x8+bv88s8/lcZrsKjyyyRk7GLcdxu/Mb/K7lF+wwP8zE8NeRRERcGIbO/LM8YVi7/aFDXDzZzXmjXUzItaEoA/NGaxgGXr/GkbowVd4ogbBOKKoTihiEIgbhiE4oahCKtD3Xdj8cNTApEg6rjN0sY7d8cnNYFexmueM1h1XGH9Q5UBWitDrEgaogJZUh9h4NUuWNTbPISzEzY4SDxXn5TM+KZ0JaHGb1zC805w1EeO9gLatLa3m3tI6SBn/Ha9lxNkanuJgcl4s/GsGvNbKjqpm61jD1/tBxtWDa2U0KFlVGliQUSUKWQJVlFFlCkSXUtpssxR6XNwWobw13HG9KpoevjjmH8YkpjEtIxmk6u6/QGIZBRNcJaVFCmkawbRnSNZpCQbbV1/BxXRVb6qo7skwcqomRnkRGmUewKCedQnsaebY07ErX9VOGG4tsIsuaRFZbAOV0aIaGLxrEpwVoiQbwa0FatAC+aJB4k5NzPaM7goQfNO7i/x16kYge5cuOrzNFnw49eLvYGt7MP1sf4eKkqXwzt/udkfZru5mWnN7nRZivyh/Zp/v7tHXVFXhDQRYmTu7X45zMzpZD/Onwy8yJH8tEet7uXBCE4WVHZCuP+h4kSU7hSn5GMgU92l5GppjzKNRnsouVbI38hw3htXzWfjPnWGb306iHtxw1n885vszj/r/iYRZ5TBvsIQlCj4lgjTCkef1RvvevCkIRA7ddZvYoJ+ePdnHeGCdTC+yYTb07OWjyaxypD1NeH+ZIXZjy+kjsfn2Y8row5Q0R/EG90+1NqoRFlbCYJCwmue2+jFmViGgGrSGd1pCOv23ZlTi7woh0C4VpFqYnZTApPY5pWfGkufon9X8o8YejHPa2UtbYysdHvbxTUsumikZ0AwoTHMxIzOfW4hSK4uIpdCfgMJ066yIYjdIYCtAQCsaWwdgy1FaAVjcMtLZlVNdjS0PveKwZOrMTbExKSmN8YjKJVvsAfSf6V32wlW1ttWC219fgi4Rj3w9i3wvD4Jj7xz8f0XXCeltARtMIaVFOXso3xqGamJiUyqLEWRTZMyiwpZNm8YiOFr2gSApxJgdxps6zY7wRH38+/DLvNGxjlmc0lxtf6VZb7mNFjSgvR5/knLhivpPXdUHhY9UEWjk3LatHxxsK3OZY0DWsR7tYs+/ohs4zle/xeMVKRjuzWax/pUcBNUEQhp96rY5/+h9mlGks50S+fVpTchRMjGcRI4257DY/xj9bH6HVaGWudWEfjvjMESd5ADAjsheF4UkEa4Qh7e+LZ5PkMLO5wsvaQ/Wsqz/Kz5+vxP+U3jEl6LwxTmaPcmIxydS3RGnwRWloiVLv045/3KJR74s9Dh5ThFiSID3eRHaimaxEE8U5mWSOs5EVZyPTbSXVZcWmKphVGYsiY1ZkZLn7JzKGYRCIaAQiGv62ZSCi4Q9rWFSZggQH8TbTGTuFRtMNKpoDHGqMBWQONfo55G2/30qNP9SxbrzNxAX5yVyZMZHZ6dlkOlw9Pp5VVUlXXaT3YtszRWs0ws6G2rbgTDXb62so97cAEG+xMiExhWQykSUJSZKQkZCIZRYdt0TueN0imzDLJsyyGrtJKmbZhEVWMUmfPG+TzWRakwalxszZxjAM3m3czp8O/RfN0LnJ8RWmMROpB+9P7daE3qE61MjPRnyhx+9FvkgYhzp0p651ZmxCMnZVZUtL6fHFpftJY6SFX5c+x+bmEm5Iv4CZgS8MyvQrQRAGTtSI8nf/n7FJNqZGvt5ntVPM2JkQvgOHxcmywL8IGK1cYr3ijP0s2Vvvhd4iVU4nXR8z2EMRhF4RwRphyLOoCrNyE5mVmwgUE9V0tlU18cGhetY3VPDgazX89LnK47Zx22USnbEiwwkulSQpjhFpZhJsJuJtZpIdFjLjrGS6baS5rJiU/juxlCQJu1nFblZJ7Lej9C3DMAhGdZqDEZpD0bZlhOZglKZQhNawhj8cpTWi4QtHaQ1rx90/9rXqliARPRYck4AMt5XceAdZphRmFbjJdrrJcsaWSVa7KMTbQ42hIAebG9nf1NjWRama/U0NaIaBTVEZm5DMLOckRqZlMcqRTarZIz7MnQEaIz7+X9mLrPHu5Pz4cVyq34ZbjuvVvgJGgDcj/+GipKnk2VJ7vL0/EhmWUwNNssLU5HT2aruAC/r1WJuaDvDr0mcB+Lrzu4wKdr/gsyAIw9cLgacp1w5xOT/FgrNP9y0hURj6As24eSX4HH7DxzW2G0QWa5sm3cvWyGZmcqOoVyMMWyJYIww7qiIzJTOeKZnxQBH6IoP99T4AEmxmPDZTvwZfhivDMKhvDVPeFKCiORBbNgWoaA5S4wu1BWM+Cc60B1hOxqYq2M0KDrOKwxRbtj+OM+JJt5mwu1RsqolUu4MsRywYk+lwYVbEleSeiuo6Ff4WSpsb227etlsjjaEgECs4WxyXwITEVBZ5LmCUI4tcW4q4cn8G2uM7wk8O/IuoocVq09Cz2jSftir4GgEtxBczF/R4W8Mw8EXDwzJYAzAjNZO/7NhINEND7YfW4Jqh8c+Kt3i6cjVT3IUskb7R66CaIAjDy/uht3k3tIo5fIkUCrveoBckJKZwNRYcrA49TsBo5bP2L4m//cDa0LuoKIzgvMEeiiD0mgjWCEOaLxSBLuaZyrLEyOSzd8rLsRpbw+yr87Gvzsdhb2tHYKaibRmMflI/x6zIZLqtZMbZiDPiyXSYcXksOM1mXKb2mwWX2Yyz/bHZjFM1o/RxIVEhVmunwt9Cub+ZCn8LFb4WDvmaKG1u5FBLExE99n9nV1UK3PEUuD2MN48l25pCtjWZTGsiliHcRUnoG2/Wbeb3Zf+hyJ7OjepdeOTT65TUpHtZHX6da1Jnk2zueRAhqEfQDWP4BmtSMvlNdB37WisY4zx5d6/eqgl5+UXpM+z2HeEK2xIWyIvEFW9BOEvsiezkudYnucCykJGh/q8nM5aLYgGb8EMEjFZudnwVkzQ835f7gmZorAmtZpp5FpZw9zsiCsJQI4I1wpA26y+rmZThYXZeIrPbpkLFWc/uE1K9rQbMvjofe2tb2F/nY2+dj/11LdT6Yx2MJCDNZW2ru2Oj0JJJRp6TNIeTdLuTDLuLBKtNTDkaYFWtPg40NVDu+yQoU+5rocLfTF0w0LGeKsmkO5xkO92MtYzi0rhksqzJ5NiSSTK5xTSms5BmaDx85HVeqP6AS5KmcUn0K5ik038v/MD8FCZJ5TPpvZsG1KrFMru6Kvw9VI1NSMahmtjaUtqnwZq1jbt44OByrIqZb7nupVAt7rN9C4IwtFVpR/mb/0+MUscyIvTFATtuEbMxY+OtyB/4i+/33O78Blbp7CysuyOyFa/RQFr44sEeiiCcFhGsEYa0b0+ayWHtCM9vr+CPa0uQJRifFsecvERm5yZxbm4CHlvfXDkIRjRq/SHq/GFq/aGOmzcQ6WjpfGyb59h9+bjHinT8a+0totVjtpWPWUc3DIIRnUBUIxiJ1X0JRjUCEb1tGbsFoxpNwSgH6n3sr/PR2tae2qrKFCU6KU5yMtVdQIHbQ6E7njyXB6sqfr0Hm2EYHGhqZGV5KW8eKWVXYx0Qm7KUbneS6XCRJmUxMcFDmiWeNEsCqeZ4kswukcIsdGiK+vn5gafZ5jvIdbbPc350PnV6DUe1CsabJvU6W6NKO8rrjRu5LftSnGrvPtC3arEC4cM1s0aV5VjdmuguYO5p7y+sR/lb+eu8UL2W2Z4xXGl8DYfct3UqBEEYunx6Cw/5fk+c5OGc6LeQGdi/5TlM4RLuZWX0AR5suZ87nHfhPAvfg94PvU2uUkCSlj/YQxGE0yLO5oQh7Yq8YtLsUzDGGRzxNfNRTQXbAgd4aVclf/6wFAkYl+bm3NxEEu3mWPthw0A3wCB2svzJcwYGsfut4U8CMzX+EHX+EM2hE9u3eqwmPDYThgGaYaDpsfbOUT12P/Y4dtOMUzUz7j5FkrCZZGwmBauqdCxdFpViewaXjounwB1PYVw8GXanmJI0xOiGwfb6Gt4sL2XlkVLKWppwqCYuyMjl6viFjHJmkWyK65f6GMKZp6S1kh/vf5KAHuZOxz2MMI1iR2QLj/n+SpAAmUo2V9iWMlad0OOMq7flJ0kxx3FFysxej8/fkVkzPIM1EKtb86ftG4hmnn7dmr+Xr+Dlmo9YaruRC1jQq85cgiAMT1EjyqP+PxI0Aiw2fo4Z+6CMI53RLOKHvKn/ij+0/JKvu7572lNmh5MarZrd0e1cwFcGeyiCcNpEsEYYFiRJIscVR44rjqWMgXFQ7mtmfc1RtgX3s3J/Df5wFFmSkKVYwTVJim0nS7S1Im5bSmBVFVKcFtLVZMal2ki02kiw2Eiy2mP32x73pBiuYcQCNrphEDV0NF2PBXiMtqWuE21/XdfRDB1ZkrAoKlZFxaaqWBQFkziJH3YiusaGmkrePFLKqvKD1AT8xFuszM/K55a0q5jiLsQs6skIPbS6YRu/ObicLGsyd6g/IEFOZEXgZV4JPs8400SyI4vYJz3PQ77fUaSO5ErbdRSoRd3ad0l0Hx+07OLeguswy73/KBDQY1MvncN0GhTAjNQMHtgSZV9rOWOcub3eT324mZdrPmKh5XLmWvu/RoUgCEOHYRg83fo4ZdESFvED3KQM6niSyGeR8WNW8kt+1/Jz7nTeTbLS825/w9Ga0DvYJQeFxqzBHoognDYRrBGGray2ls/XMArGDPZoYoEhte3KtnmA016FgeeLhNlQc5QVh0t4u6KMpnCIDLuTOe6JzMkdx1hnLoooJir0gm7oPFaxkqcrVzMvYSJX6F9DQuLv/j/zcWQDl1qvJCt4HRIymdFxFLGF7cbT/LblZ0wwTeFa22dJUpI73b9hGLxh/IsiewbzEiae1ljba9Y41eGbWTMmPla3Zktz6WkFa56reg+TrDLPclEfjk4QhOFgVeg11oXfZx53kMbIwR4OAB4yudT4KaukX/C7ll9wq/Mb3Q7oD1cRI8y68PsUGhegMnz/LglCOxGsEYY0fyQy2EMQBCDWrWlzXRXrqsv5qLqCbfU1aIZBvtvD4sRzmRM/liJ7hij+K5yWqK7xm7LlvFW/lats17NAvxRJktgX2c3HkQ1MYynZwWs61peQyGEy2dpENvE8myMvkCyncI39hk6Psc7+BDuPHuK+4i+fdneiiBGrn6UM4+k+qiwzJTmdUmMvMK9X+4joUV6v3cj55ouwy6LziCCcbVYEXuY8y4WMCA2tNtFOkrhY/wmrlV/x25afkaPkM9tyAdPMM8+44sNhI8w//H8maAQYg8huFM4MIlgjDGlXvv4sC7IKuDK/mDnp2WKKkDBgwprG1vpqPqquYF11BR/XVRHRdeItVmamZnK+YxaTXAVkWZNEgEboEyE9ws9LnmZD0z5udnyVqeYZHa8VqSPJUwo5yodM0q48oWiln0ZKpdVkyFlcYr2i02O8F3yLZxvf5tasS5gad/pXWJNMbgCqW/3Ema2nvb/BMtKTwIrDpZDZu+13+g7RqoeYZJretwMTBGHYCIfSB3sIJ2Ujjou1n3OYj6mQ3uKZ1n/yfOvTTDPP4FzLXPKUgmHzOcYwDPyGjybDS7PupUlvoklvpMloojS6jyqtkov4LnGkDfZQBaFPiGCNMKRdm3I+m5q2cfu7r5FgsXFZbhFX5hczPiFl2PxhEfqHYRi0RqO0REI0h0M0hUO0hMM0hYO0RMI0h2PPN7fd1w0jVsMIUCQZqa2WkYzUVutIaqtpJFHl97GptpKAFsVtsjA9NYNbMxcxyV1Ini3ltLMRBOHTmiJ+fnLgX+xrreA2x7cYa5pw3OuyJHOd/fM80PJTdrGScVzS8VoIH+/Iv0JC4mvO73Sa2bE5vIHnAk9yTepsrks7v0/GnWqJFa086vdR7Ensk30OhqK4BMr9WwhoYWxKz1Pn1zftI8HkIkvpu/bfgiAMH6qkohlDNxtcRiWP6eRFpzORevbyDrsj77A2/B4ZShazzXM5x3xujzMDg0YAr95I0AgQMSJEiLQtw0SM8CePj3lOR+/2/qNEadabaNK9NBleWvQmohzfEMQhOXBLHjxyApfyJdIo7tHXIAhDmQjWCEPaFakz+ZLpIkoDVayq+5g3jmziyX3byXd7uDKvmCvyislyugd7mALHF1juKKps6LHOXG3P68S6cxkYHR26Op4zDAJalKZwCG8oGLuFY8v25xrDQZpCIbxty6hx8j/4VkXFbTbjMlmIM1twmsyYZBlN14kYBgbRtnEasbEBmqG3jRM8Fgs3pi9ksruQQnu6qD0j9KuDrVX88MATBLUwX3fcQ4E64qTr5ar5zDbPZVNkGQXGTOx4iBJmjfoAzVoT33b9b6cdP/ZFdvNE60PMTZjAV7IX9VmwO8HkQpEkKltb+mR/g6UoLvZ9OxysYaQjq8fbr2/ay/S4YiRNXEQQhLORigmdE7uKDkVOEpnKEiYb11DONirlVTwfeJoXA88yyTydOea5FKrF6Gh49UYa9QYa9Hoa9XoajQYa9fq2xw0EjNZTHktGwYwJVTJhksyYMSPT/c9UiqTgluIwa1nkMR478djxtN3isRGHaphjLWC7HwMShGFDBGuEIU+SJArt6RTmpHOLcQlbmktYG17DI7s284dt65manM6VecXkuT2okoxJllFkCVWSUWX5k6Xc9pokI0tSW2BBPybA0BZc0I8POhiASZYxyUrHsn1f5rb78gBn+RiGQUskHAtgtN284bZl2y2oRYnoOhFda1seez+2jLbdj+oGBrHARXt781gj8k9anhsG6BhwzPfq2O+d3kety9vJkoTbbCHebCXObMFjsZKop5Nns+N22XGpNlyKDadiw6nacCpWXKoNh2IVnZeEYWNt4y5+VfosGZZE7rD8gEQl6ZTrX25bwseR9RwwP8W48FfYZPp/HI6U8U3XPaQpGSfdplqr5NHA75ngyufu/CV9mhmmSDJpdidH/b4+2+dgKHQnAHAo0PNgTW24ibJANRfK1yLqWQrC2WmoZ9acjIxMDpPIiUxiPF728S6l0bfZEF6LTbITNAK0fxoEsEsO4uVEEuQEPNposkjCSSIOEjFjQ8GMiqltaUbB9MmUXaPtJghCj4hgjTCsKJLM1LgRTGUEtySEWevdyZrAh/xk43t9HizoifYgkUlWkOXY1BqlbUqNLLVNu+GTNuIdN9rXOaa1OJ963Pa6bhg0tQVkOssqsasqHrMVj8WKVVUxHxNgMoIubJKCS1JQJRVVbQs8SWrHVCCOOTa0j++T+7Q9VpCRJRlFkpBpD4DJbftpe0zb6x1fe9vX1vY1tx3tuK/ZLKm4VTsu1Y5DsYjpRsIZyzAMnq58l8cq3mR2/BiuNr6BVeq65otTdnK5bSnPtD5Os9rEnshObnd+k/xOOnyEjTBPRv5AksnNj4tuxHQabbo7k253ctQ/vDNrHCYTmQ4XhwLVPd52Q9M+ZCRGqWP7YWSCIAwHKioawytYcyw7HiZxJRP1yznKLqqMvdjx4CSp7ZaIybCCRuwmCMKAEMEaYdiyKWbmJ05mPpNpTmulJdqKZuhEDR3N0IgaWqePDYxjAguxgIPcFljoCDIcE0jQDJ2IoRE1okQNLZaNYnxyixgaUV0jYkTbpvUY6OhtWSmfTPdpf/zp141jM1iOXQ8DQ49tKwG5Vjtupx23aidOdbQtY4/dql1klAjCMBDSI/z24PO83bCVz2dcyDmtn0eWZA5HD+KQXF1m18w2X8Da0Gp2Rbdzo/3LjDNN6nTdt0yPUtFUx5/GfA27YunjryQmTkvlaGvPgxxDTVFcPDUc6vF265v2MtqZg0N29sOoBEEYDkySCW2YTIM6FQmZTMaRybjBHoogCIhgjXCGaA9WCIIgDGV14WZ+fOBJygLVfMlxB1MDMzAwWBV8jRcDzyEjM9syl4utl3daf0aWZG5xfJ1KveKUgZpN4Y94pXE9/5N3NQX2/uuMkWLxsLvpQL/t/9MMwyBq6IQ1nZAWJaxrhHWNBIsNp6n385CK4hJ4o4cdoaK6xubmA1xougxErFwQzloq6rCpWSMIwvAhgjXCkNYSDZBsjhvsYQiCcJoMw6BVD+GN+GhsuzVF/eTYUhjnzD0rprzt8R3hxwf+hYzEtxw/IEfNI2KEebr1cT4Kf8BF1svwBl1sDL/Mh6H3ON8yn4XWy3DJJxZRT1SSSVSSOz1WjVbNM4G/My9hIouS+reddKrZQ3XAT1TXUeW++X80DIP797/O6tJaQppOOKoT0nRCUY1QVD9p6YMku5nnF15PusPVq2OOiEvg7z3sCLXTd4hWLcRY+4SuVxYE4YylSqZhPQ1KEIShSQRrhCHtjp1/ZFb8GC5KmsJ0dzGqrAz2kARBOAlvxMfBQDWHAzXUR1pojPjwRn00tt1vjPgIGye/6phsimNuwgTmJU5khD2jzzoVdSakR9rG1EJDxEdz1M84Zx7Zts6DH6frrfot/Obg8xTZ0/m8+h3iZA9NupdHfQ9yRDvMhXydvOBsAMYYC9nGq6wJvcaa0GrmWS9ivuWSbrdUjRgR/h39A/EmJ/+Td3W/fz9TzB40w6A24O91oOTT3jxSyt83lnHT1FySHBYsioxFlTErMlZVxqzKWBSlbSmjyhJ3/ncL3/v4Vf5+7nW9ChoVumOZTEeCtRQ7updes75pHx7VSZaS2+PjCYJw5lBRCQ5gZk0dBznCVgqZhZvUATuuIAgDSwRrhCFtofVy9gXX88P9T+BRnXwt53LmJYormIIwVDxesZLXajfQEIkVmFUlhXiTk3jVGVtGCsiR3bitcbhkFy4pDpfsxi3FYZcclGoHKLG9xcr6zSyrfp9MSyKLU2ZwadI0nKqtV2OK6FGOBGspD9ZREaqnIljP0VA99eFmGiM+WvXQCdsokswd2Yu5MnXWaX0/Ps0wDJ44uoonj77NwsTJXKbdgUmKZW38yfcAR7VyruLnpFDYsY0ZO9NYyjgu5qjlJd4KruDd0CrudN5Nrprf5THXWB6nrKmaB0ff0W91ao6VYvEAUOH39UmwRtN17tv+HpcUp/KHyyd2e7u/XTuVxY+v5dFdm/nquGk9Pm5RXKwjVFmgutvBmk3N+5kWNwJZP/Mzw84WB6MlrAq+xjW2z5wye00YWBEjwre8t3CX64cUdFJQfTCpkorTFKK/k2vCBHidX1HNfiQkdvAG5/FlcplKe3sIoXMRgnzMS4M9DEHoNhGsEYa02Za5LJav4Yh6iLXqc/yq9Bl0NOYnTh7soQnCWa8u3MS/j77DVPMsrnZMJkPJIllORZGOyYDrIhmkSC2mKFLMAqfGvugudptX8ffyN/hnxSouTprC1annkmXt/IQprEcpC1Szz1/B/tYK9vsrOBioImLE2lU4FSuZ1iQyLAkkh0fhtrhxSXG4ZXdH4Mgq2XjL9Df+euQ1psWNINN66gK/3aUZOn85/DIv1azjCusSLtIWd2S56IZOg1ZPqpxOsn7yAIwVN2mhy0mWt+E1GrFKXQevqrVKXqhey5eyLmKE4+StvPuapa2weVjvmxYhTeEQ5U0BfnVJzwpczspN5AtTclh+YDtfGTu1xxlFDpOJXGcc+/0VXJQ0pVvbBLQQhi8NRMm0YS9ihHk18B9WhV7HwCBeTmCJ/XODPSyhTb1eC8Ca0DtDMlhjwIAES8pYTzX7yVduxyHl4Y0+zZv8lmwmMosv4GFg3veHGwODEj7kI54iQPNgD0cQuk0Ea4RhIVvNZalxF7akP3Ff6TIMAxYkiYCNIAymN+s+xiSrXG//PDbp9M5WFUlhtGk8o43xzHd7eT/0Nu82vMVLNes4J66Ya1JnM96Vz8HWKva3Hu0IzpQFqokaGjIyubYUih2ZTDTmka3mkipn4JAcsZN2g1OeUC+I3MIm0z08eOi//Lr45tOeOuTXgvyq5Fk+atrLZ+03M9sy97jXZUnmFufX+ZPvAXbzFmNYeMI+WqhllfwLwkaI/3F9n1Sl6yLBq+QnSDHHcU3quac1/p6I6LHUf1Mf1atpjcYuTTvNPZ/2euWYDB7bdIhdjXWMTeh5VsTEpBRKW0q6vX6CyUVzuKnHxxGGloPRAzzp/xv1ei3TuZ5WvKwPv8+VtqUdmXCCcCpRI0I42v8d4UpYRxoj8ciTAEhSv4LJ2Ead9gLLuJvxXMoUrsYsIsgd6jnEWh6nkj3kMQ2TcgH7td8O9rAEoVtEsEYYNmRJZnH065D0J+47uAwDg4XdvPopCELfMgyDN+s3McczFpvRtx8K42QPi23XcLGxmE3h9ayNvML39j2GhISBgYxMvi2VIkcGU4z55Kh5ZCo5mCUzaIC158c0SxauNt/EQ82/593G7cxN6P10y4pgHT/c/yT1kWa+6vwfxppOPpVntGkcc8zzWB9+iiwmHFd3oJEKVkq/QEXl264fkNSN6Rj7I3tY69vF9wuuxywPXGuiaFsWk7mPaooForHgj8Pc848os/MS8VhNrDxS2qtgzYTEVF4/XEJYj2KWuz5+vMmFT67p8XGEoSHclk3zVuh1cpQ8ruZXxJOFlwp2GCvYGtnMNPPMwR6mMAxEiSL3c0u4IC2Us51MeUnHc5Ik4ZEm4pbGUKOvZKf+BvtZwwxuYARzkDh7p2gG8bGRZexmJW7SKVTuxC2PIWw0DvbQBKHbRLBGGFbaAzZy0p+5/+ByDOh2urogCH1nl+8w5cE6rla/1G8ti02SmZmWOcwwZnNA3ku1XkmWkkOmkh272t3LwExnxpkmMcczlocOv8L0uGIcSs93vqnpAD8v+TdxJgd3OX5CqpJ+yvWvtl/P7uh2Nsl/ZW70h0jI1FLCm9KviZM9fN35XeJkT5fH1Q2d140nGenIOq1AU2+E2zNrlL4J1rRn1thNPd+fSZG5ZGQq7xzdx7eY0ePtJyamEtF1SlqPMtqZ0+X6CSYnh4M1IGrfDzul0QP8y/836vU6pvMZJmiXIbf9R3rIpFAt5oPQuyJYI3RL1Ihi6edgTRkbAB2PfOLnXlkykaYsIkGeSSD6Mqt5iN2s4lxuIpmCfh3XUKOjs4e32cCz6Giky9eQLM9FlsRprzD8iJ9aYdiRJZlF0a9B0l944OBywOCipKmDPSxhCAhoYRoizdRHWqgPt1AfaaY+0kxjpIVEk5uRjixGOrJJMcf1e4ecM92Kuk2kmD0Uq6P7/ViSJDHCNIoRjOr3Y11ifJmN2vd4vHwlX8u9vNvbGYbBizVreejwa0xxF3K99D/d6t5klWzcaL+F/+f7Ncm8SQI5rOQBMuRMvur8Ng65e2n1myMfsddfzu9G3TbgbdA/yazpm+MGtN5n1gAsHpXOM1vLOdjsJd/t6dG2o+OTMMkye/xHuhmscdEY8fVp0FDommEY/De4nHqtlny1iAK1iCwlB6UbJ2NhI8wrged5O/QGuUpBWzbNiQWls6MLWM1fqNWqSVZEtx3h1KJEsPfzaVUJH5LOGEySu9N1zFICZtMXKdJnUa8t5z/8gFHMYzrXY6Pz7c4UVezlAx6nnjKKuQCzeikmKW6whyUIvSaCNcKwFAvY3IGU/BceOPg8BnCxCNickQJamKaoH2/Ehzfqb7vvxxv10dAWkGmItFAXaaZVO77Lj1U2kWhy4zE52dp8kGer3gPAozoZ6chklCO7LYCTRZype22RBQhqYd5t2MYF5ksGPDDQ3+LlRC61XMNLNc9yUdIURnSjK1BYj/LHQy/xet1Glqaex3mhm1EkBcMwqNQrSJMzTvl9KjaN5gLLQtaG/o1BrOjybc5vYpG618kpYoR5LfIMsz1jmODqultUX4v0+TSo3mfWAFxYmIzdpLCyvJTbxvQs89KsKIyJT+awtBeY3eX68SYXTVE/mhHtVqBA6Bsfht/jzeArZCu5bA1sIkoUEyZy1HzylSLy1ULy1aITstJKovv4l//vNOj1nMMNjNcuQ+5kmkgB5/CR9Dhrw+9xpW3pAHxVwnAWNaIo/ZhZE6CJo+wkS7mhW+u75GKc0j049Pcp1V+hlHXkMwMzNkxYT7ipn3psxYWpj6PQjVRQyjpaqO3T/bYL0sxhPiaZAoqV7+KQz66MIuHMJD5ZCMOWLMlcGrkDKfkhfnPweVbVfUyWNYlsazJZttgyxexBOcNOJs8UmqFRE26iKtRIZaiBqlADteGmY4IxscBMSD+xD6ZdseBRHSSa3CSa3cSHi5hijidO8hAnt9/isWL9JIPGBE26l0PRUg5pB6k1dvNC9Qe0aAEA0izxjLRnMcqZzSRXAUX2DJF904k1jTtp1UPMNM8Z7KH0i3mWhWxhNX849CIPjv7qKd9DGiMt/OTAU+zzl/N5+63MDM8BKRZAear1MTaE15KvFLLUfiO5aucfHK+0LWV/dDfpciafd9yKSer+h/7VoVXURZq5L/tLPfo6+0rEiGXCmPt6GlQvM2vsZpX5RSmsrt3LbfR8muzExBRWHz0EKV2vm2CKZT61GM14pIQeH0vouQrtCM+1Psls8wWMDX8FjQh1lFHNfkLSHjaG17Eq9BoAiXIS+UoReWoh9Xotq0MryVMKmMt38Jwkm+ZYKhamm2exLvQ+i61Xi2CccEpRIsj9eFp1kPWAhEfqfnMNSVJIVubikaeiR1dRSwkRAkQIEiFEhAAG+sm3RSKFYnKYRA6TSSCnV92umqikhA8pZR0NHMGEjQSyoB86Z8nI5Cg3kiDNQhKf/YUzhPjLIwxrsiRzSeSr2GwjqFa3st1Xxoq6TZ+cPEgqmdYksq1JZFmTyW4P5liTcKpdt8EVTs0wDDRDR0dHO+a+buhobbf6SHNHQKYy1EhVuIHKUAM1oSb0tg8JEhJJJjfJ5jg8JidJ0SLyZBcuixun5MIlu3BKbpyyC6fkOv5EtosuP8eKkz1MME9hQtsJnOEyqNNrOKSVcih6kJrIXh6vWElIjzDCnsHilBlcmDARm9K9DIezxRt1m5jgyidJ6cbZ7DCkSCrXqLfw25af82rteq5IOXnNiv3+o/zowBNohs43nd8nv62drFdv5BHfgxzVjjCd6znKWh5o+T9mms/jCtsS3PKJKdkWycL3XT/vcYDQp7ewMvwSi5NnnLLFeX+KtLXs7utuUL3NrAG4fHQ6t72wmapWH2n2nnVomZiUyhP7ttMU8XeZcZdgcgHQrDfhkUWwpr8FjSB/9/2ZZCWVkeFYcFLBRCojSGUERBYxHfBRTw0HqNb3US/tY0tgIxISM/gs47RFnWbTfFpyaCHNvMWOyDYmmkV9PKFzscya/jutKuFDMhmHKvW845RJcoHparI+9bxhGBhE0QmhEUIniG7E7oepQ9H28TEvsoFncZBANpPIYRKZjD9l1k0z1ZSyjhLWUU8ZKhZymUqcsgi3NBa5BxcjBOFsJ4I1wrAnSzLzrBcBF4EVdItOg15PtV5JjVZFtV5JS/QQb9Ztoi7S3LGdS7GRZokn3ZJwwi3F7EHto5T+4c4b8bHTd5hdvkPs8B2itLWSiKGhGToGRrf341JspFsSSLPEk8gskuzJJMrJJMnJxMuJxwdgBmhGkiRJJCupJCupTDPPAkBza+yObudj5XX+UPYiDx9+jQVJk1mcfA4F9lMXiz0bVIca+bilhBvtt5zRf0EK1BFcmjSdv5e/wZz4sR0n5e1WN2zjgYPLybWm8AXTd4hvO1Evi5bwiO9BJCQW8xOSKWCidjl7eJuPI8/ycXgDl9mu4gLLghOu1Pcmk2ud5d8YPoPPZ1zY+y/2NPVHNyibqqDIvb/yetGIVFRZYlX5QW4sHt+jbScmxuqT7PEfYYbn1HWS4tuDNYZo393fDMPgmdZ/0qg3cBW/RKXzltpOEnGSSAEzQAONCBqRHrczTiSXXCWfteHVIlgjnFKU/psG5aeBSvaQo9zYp/uVJAkJEzImVNqCQMe+7crnEWdE8BkHaDZ2UqnvZg9vI6OSziiymUwOk4kjDT/1lLCOUtZRSwkKZnKZjFtZiFsahyx1/vsqCELnzuCP2sLZSpZkkpRkkpRkxpqO6YrijF2Vq9GqqNWrqddrqYvW0KKWs69x+3GZHjISKWZPR3AhyRxHsjmOJLObQls6ieYzt0hbTcjLxub97PQdYqfvEOXBOgCSTG7GOnMZYZmJBQuyJBP7pyAjtT1WkGOPUKTY0i3FkaQkY5OO+ZDct52e+5QiKYwzTWIck1jkrmNt+F3WNL7Df2vWMdaZy+Lkc5iXMPGsDea9WbcZq2xmsnn6YA+l382N3MRa6W7+dOhlvpi5AIdiwaZYeLbyPf5d+Q4XJkzkcv3rsZbhwPrQBzzV+hjZSg6zte9gxwOAjMIYFlJgzKTM8iwvBJ5hTWg1S+03Mto0rtfjq9Gq+K93HTdlLsRj6vnV1r4Sae8G1Ue/E63RCHbz6e3LYzNxQX4Sq+t3cyM9C9ZkO93EW6zdCtZ41FhkuVkXwZr+9mH4fTaE1zKPr+Eho0fbKph6fSKdo81njfZ3GvWGjqCsIHxa1Ij0W2bNQdYjIxMnTeyX/Z+KLJlwS6NxMxoUCBk1NOs7Qd/DBp5hHU9ix0MrXhRMZDMZhzIXtzQepZt11wRB6JwI1ghnFatkJUfNI4e841+wg2aL0qg3UKfXUqfXUKfVElYPU9JayfqmvTREfBgYSEhMchdwYcIkzosfh1M9c9qAbG4+wI/2P0lYj5BvT6PAmMhCxwgK1GLipYTYfOUz58vtUqKSxOW2a1lkXMm2yMdslldw38FlrKrfwk+KbsSmnF1Xina0lLG8eg3zEiZg1c78HwSn7ORK82d5ovFR3mvcftxrV9quY6G+qCMb5s3gK7wUWMZM8xzGhm876YmhFRejQreQzEJWGD/jYd8f+I3nr6i9rIWxSv4nCSYX16R2XQi3P3UEufuoxlOtXEm87fSvUF85JoNvvbKV3aPqGB2f1O3tJEliUmIq+6J7gIWnXFeVFRJNLqq0ytMcrXAqNVoVz7U+ybnm8xkRHthaWYWcy3r+xZrQO1xuu3ZAjy0MD5qhESaCSv8EJ8rZTjqjUaXBb4RgkVJIVlJAmUeCEcJn7MNn7CNZyiZOmoAinfmfDQRhIIlgjSC0USSVJCWlrQ7H2E9esMRumhHFqzeyN7qLncZqflf2Ag8eeomZnlFcmDCRGZ6RmOXhOw93TeNOflHyNBNdBd1uO3y2UCSVyebpTGY6c5y7eNT3e7637x/8fMQXcZ0ltY/WN+3lpweeYqQji/nRW/qjNuCQNMMyh3x1BM1GE0EjQNBoJVFO7qhPYxgGLwWeY2XoNRZZryIzeF2XRRj91rX4g35usN/U60DN7sh2PvDt4n8LPoNlkN93HErsd6A5HCLJdnppcw3BAMu3V/Dt80ac9rg+MzGbv35Uyk+2vslT538GtQc1deZl5vHTje/RnNmKWz311zTLM4aPmtZylXHdGdcdbSjQDZ0n/I8SJ3sYGb55wI9vxsa5lvN5P/QWF1sXYxbZAsKn1Ou16Gi4SeuX/etE8Q/BaUSKZCFOGk9cD7MXBUHoPvGpQhC6SZFUEpVkzrVcwK3qj/l53O9YbF1CZaiBn5Y8xdItv+S3B5+nom3a0HDyZt0m/u/AU8zyjOHz8vdEoOYURprG8HXH9zgcqOGuPY/QEGkZ7CH1u9UN2/jR/ieZ4i7iZuX72KSzI0DVLkVJpUgtZpxpItPMszoCNbqh8+/Wx1gZeo1ZfIGs4PVdBmq28jIrgv/latv1zLHM69V4qrSj/DPwZ6a4i5ibMKHrDfpZezDDGw6e9r6ePbATA4MvTcs97X2ZVZkHr5jElqNe/rl3W4+2vTArD90w+Mi7p8t1FyZOpjbcxIHo3t4OVTiFt0KvU6aVcK5+R5+3Eu6utNBiWo1W1oXWDMrxhaGtSjsKQHwXHcYEQRB6SmTWCEIveeQEFlgvZQGXUqUeZUP4QzY2vcu7Ddu5K/9aLkgYWlcaInqU+kgLteEm6sJNsWWkicpQIx96d7MoeTqXRu4QV4a7IU8t5JuOH/JQ4Nd8bdefmewq7KhrlGx2x+6b4nCr9mHT/juiR2lo+/moDTdTF4n9jNSEvHzg3cX8xIlcod0p2te2iRpRHvf/la2RTczlKxRzQZfb7GIVH/FvLrFewQLrol4d16s38nDwPhLNbn5U+Nkh8fPVHqxpDJ1esCasafy7dCs3TMwm0dE32QvTsuL5yswCHtz4EQuz8slxndiJ62RSbA4mJaWyObKRhV20/x7jzCHDksAe60qKtdF9MWyhzVGtnFcCLzDfcilpoZGDNg4XyUwxncNboRXMscwTfyeF41TpR7Fiw078YA9FEIQzjPjULQh9IE3J4HLbtSwwFvGy9Gd+VvJvtrXM4vbsRZjlgf01MwyDlfWb2esvj510twVmGqO+49azKxaSTXEkmeO42nY98yOXDokTv+EiXcnkG7Yf8Z76L8qDdXzcUkJ9uKWjfgeASVKPC94kmeOYlziBInvPimP2Jc3QWVX/Mfv8FccE7ZppbKvJ1M4qm0kxx8a82HoNF2mLxQlKm5AR4lHfH9kf3c0CvkUeXRdbPsAHfMA/mGtZyGLrNb06bsAI8I/wfRiGwa+Kb8Y5RKbgdWTWnGaw5pVD+6n2hbhjVmFfDKvDDy4cxat7qvi/HW/w6Myl3X6fW5BVwB+3b+CbKWGsp6hPJUkS8xMn83zVGi5xh8Q0mT6iGVGe8D9CspxKTuj6wR4OOZHL2cQP2BrZdFYUWBe6r0o7SpqSgaSJz1CCIPQtEawRhD5kk2wsNe4izfY2L9Q+xW7fYX5Y9FnSLQPTQUI3dP58+BVeqvmQfFtaLNMjOoJiNQGPOR6PnEC8nECcHH/8VJazs7HRaUtSkrnG+B8wA2bQ7TrNRhNevQGv3khj29IbbKDGqOLjlhKWVb3Ptamz+ULmggEvUFzSWsnvyl5gn7+CXFtKrMNZtIgiJZ54UwIeOQGPHE+8nIAV2ycntUMjJjAktOp+HvL9jnLtCBdzD5l03c2pjI2s5i/MMM/hWlvvsmGiRpSn9AeoCjfyh1G3k2zuXobIQHC3BY1OZxqUYRg8UbqBi4tTGZHUt52tHGaVPyyewDX/WsfzKXtYUti97JcFWfk8sOVDNjUfYHb8mFOvmziJJ4++xbbIx0wzz+yLYZ/1Xg/+lwqtnCv5v1O26R4oyRQyQh3FquDrTDJNExc3hA5V2lEsWs5gD0MQhDOQCNYIQh+TJInzrfPJVQt4Ivz/+OrOP3J3/lLO7eLD/umK6hoPHFzO2w1b+az9ZmZb5sZeEOVnBowsyXikeDzyyVOhNTXKW6EVvFTzH95r3M43c6/iHE//p/YHtTBPHH2L5VVryLEl823X/1KgthVwFT8f3VarVfOQ7/f4jGYW8QNSKOpymwp28DYPMtE0lc/Zv9Sr7CTd0HlJfpAdTWX8uvhL5Nv7p4hlbymSgstkxhsK9Xofa6vK2VXTwq8v7Z/poxcWpXDDxGzu27qG8zNySLF1/YOf7/ZQ6I5nq76B2Zz6/TvTmsQYRw471beZhgjWnK5D0YO8EXyZyVxNMgWDPZwOhdHLWcEDlGr7KVSLB3s4whBgGAZVWiUTxe+9IAj9QOS0C0I/yVXzucv6Cya6CvjRgSd5+MhrRHWtX44V0iP85MC/eLdxOzc7vvpJoEYYUhRJ5SLrYr7v+iWZ1iS+v/9xflHyNI39WKR4Q9M+btn5B/5TvZbLrNfwP5ZffhKoEbrtQGQvD7T8HwY6lxk/61ag5ig7WclvKFZHcZPjK72eRva+9THeadjGPQXXMdE9dE5cj+WxWE9rGtRTRz5ifJqb8/IS+3BUx/vlxWMxKxL373mz29sszM7n7YoyNKPr9+4FSZPZ2LSfZr3pdIZ51osYYZ7wP0Kmks1krhrs4Rwnm0mkyRmsCr4+2EMRhgiv0UCIIPFkDfZQBEE4A4lgjSD0I7vs4Abu5lrbDbxQ/QF37X2UmpC3T4/h14Lcu+8xPm4p4TbHt5hqntGn+xf6XrKSypfkH/BF+21sbi7h5u2/47XaDeiG3vXG3dQY8fHLkme4d99jpFsS+L7rl1xiu7zXraLPZutCa3jQdx+ZSjaX6D/HQ3qX25SxkRXcR6E6gludd/b6+/5O8E2eq3qPr2ZfNiQ6P3XGY7bS2MtpUPu9Daw6UMPXZxX269SSeLuZ+y8dz393V/LmkdJubbMgKx9vKMj2lkNdrntBwnhkSWJT+KPTHepZ7eXAC9TptczQvoY8xBLAJWSK9cVsj3xMtVY52MMRhgDRCUoQhP4kgjWC0M8kSeJC6yV8y/m/1IS8fGXXH1nf1DctXr0RH9/Z8yglrZV8zXE3Y01D92ROOJ4kSZxjmc33HfczO34svyt7gbv2PMqhQM1p7dcwDF6v3cCXtv+Ojc37+YL9Vr4s/5AUJbWPRn720A2dlwLP8WTro8wwz+G86Pex0nU9lX28xyp+z3jTJG53fqvXBWc3h9fzfODfLE07j2vSZvdqHwPldDJrnqlcS7rLytVj+/9k56qxGVw6Mo2fffwOLeGup22NS0gh1eZgTeOOLteNUx2cEzeS9cabIrumlw5E9/F2aAVTuY4Esgd7OCc1gjk4JTdvB98Y7KEIQ0CldhQVE06SB3sogiCcgUSwRhAGSIFaxHfsv2CUI4vv73ucv5e/0a3U+s7UhLz8z55HqA038w37/4r588OUU3ZyhfYNvuG8h4ZIC7fvfJBnK9/FMIyuN/6UxkgL39n7N35b9gIzPaP4X8f9zLDMEYUwe+mJ1kdYGXyNmdzI2PDtKN24yr+Ht1nNQ8w0z+FLjjswSaZeHftg9ABPtP6VeQkTuDXrkl7tYyCZQwm9CtY0BAM8t62c287Jx6z2/0cSSZK479JxVPtCvFd5uMv1ZUnikpxC1rZs7Vbm240ZF9IcDXC///sdV9yF7vHpLTzpf5R8pYjx9K61/UBQMDHKuIR14TW06M2DPZyzRnu3QoO+y0DtC1XaUVKVdOR+P6Xq+WcCQRCGPxGsEYQB5JRdfF66lyttS3m28j1u3fEgT1eupjrU2KP9lAdr+eaevxLWI3zT/kOyVNGFYLgbaRrDd22/5trU2TxavoKHjrzSo2lR1aFGvrX7YY4Ea7nTeTdX6d/CKbv6ccRnvoroEUar45nAZUh0HfBqpoYP+Sfnmi/gs70sJgyx7KhX9cfJt6Xx3fwlw6JlukO14o9GerxdTcBPSNM5N7f/atV8Wo7HjsusUt3q79b6ExNTqQm0EtS7/vqKHZk8Mu4btOohdka2ne5QzxqNegO/a/kFISPIOdrXBuDE9/SMZgEKCu+Eul//SDg9OyJbACjXug6yDiS/4cMtufv1GE6S0YyKXl3EEQRheBtak4EF4SwgSzIXWRczQh3NRtOL/Ovo2/y9/A3GOnO5MHEiF8SPx2PqfKrFfv9R7t33D9yqg9ss9xIvD0xbcKH/mSQz54e+DPY8nqt+kh0th3Cr9m5tW9JaiUUx8U3bj0hSUvp5pGeHcy0X8ELgGabgxY7nlOsaGGxX/4FTc3KtvXftudvtjG5lt/8I9xV/CZM8PP5MWyQTQS3a4+3SHbH3usqW3hcn7g1J6v51akWO/V/q3TxRSjC5cCpWQsbAfk3DVY1WxYO++wG41PgJbob+lE0rTuZY5vFucBULrYuwSd17nxZ6x6e38EbwFSxYOaqVsz+yhxGmUYM9rGP0b/ZqATPYw1sEjMPYpdx+PZYgCEPL0L50IQhnsHy1kKXGXfzS/Ue+aL8Nh2Lhz4de4botv+L7+x5jVd3HtGrH11TY3nKQu/Y+QorZw9csPxKBmjPU+Zb53OL4OvZIOtFAXLduI+XJ3Gn9sQjU9KEZ5tkoyOzj3S7XPchH7Ixu5Tr757FK1l4f0zAMVurPMt6ZxxR31x2nhgqzrBKK9jxY4zZZcJgUjjS19sOoutK94IvcdiJm9GAaglU2ExTBmi4diR7idy2/wIyZS/Wfdqt491CRHrqcKBHeC7412EM5470WfAnDMFjK78lR8nkh8HSfFuQf6jIYgxU3jcbGwR6KIAgDbHhcshOEM5hVsnGOZTbnMJtr4pr5OLyBHdq7/Prgc1gOmZjlGc2FCRMxgF+WPsMoRzafV+7GJtkGe+hCP5pknsYk87TBHsZZzS47mGKewYHoKibqlyN1cn0jTCvrpceZqE5hgnnKaR1za2QTB1qP8rtRtw2rWkMW2URQ63kNLkmSyIyzUdE00Jk1Et2dUSC3/T/oPaiVYVcshKIiWHMqB6L7+Kvv9yTLKczV7sVK/04l6Wt24plpPo+3Q28wz3pRrwuJC6dWpR3l/dBbTON67HiYpH2B//JTNoTXMsMyZ7CHNyBkFAo4h8P6Fgz5aqRhMDVWEIS+IX7bBWEIccluzrfO5w7T//F/7t9yieVqDgdq+NGBJ/nxgSeZ4i7iZuVeEagRhAEyxzKPer2OcjqvP1Jq+TchI8RS+42ndSzd0FmpP8cUdxETXPmnta+BZpZVQr2YBgWQ6bZR0Rzo4xF1rbt5Mu3Bmp7Ui7ApFkJ03W3qbLUzspU/tTxAlpLDhdoPh12gpl1W+EpaDT//DSwnbIj/7/7wn8CzxMsJjCNWaD2NUUw2Tee/geWEzqLveQGz8FGH3zg42EMRBGEAicwaQRiiEpUkLlIu4yIu46ipnEqtgklMRZHEr60gDJR8pZBMJZuj8kqyI5NOeL2GA7wfeptrbDcQL59ekdzNkY8oC1Tz7bxrTms/g8Es965mDUCilERpU2Ufj+jUJLo/remTzJqeTYNS7d5ejOzMtyn8EY/7H2asaTzTI/+Dinmwh9RrblK51HolrwdfYkP4QxZYL+U8y4VYxQWVPrEnspMdkS3M5xvH/ZyMjHyO7XyHt4Kvs8h21eANcAClMQo7HrzGJpwUDvZwBEEYICKzRhCGgQwli6nmGSJQIwgDTJIk5pjnsT2yBT8Nx72mo7FBeZQsJYcLLAtO6ziaEeXN6DJmxI1kjHP4dXezyCY0wyCi93wqVLrdOeCZNT2ZYdbeCay7BYYhNg0qoJ89V/276/3QOzzmf4ip5hnMiNw1rAM17TKD13Edv2eiaSovB57nR0138XrgJQLGYNRhOnPohs4LgacpUIooYOZxr7lJZa7lIlYGX8Wr96yb5nAlI1PATPz6xxhnUb0eQTjbiWCNIAiCIJzCdMu5qJjYwzvHPb+D1zmqHeGz9ptRJOW0jvFh+H0qQvV8Kevi09rPYDFLJgBCvahbk253Uu0LEYr2fNvekuh5zZqeFBi2yWYCmgjWHOvN4Cs80/o451sWMCn8NeQzKLnbTQpjw7dzPf+PqeaZrAi+zA+b7uKVwAv4dd9gD29YWhd+nwrtCBO0L3YETI+VFboWs2Th5cDyQRjd4ChgFq148RkHBnsogiAMEBGsGQTLly9n4cKFx93uv//+Pj3GPffcQ2FhIZIkUVhYyNKlS7t1jNtvv52lS5eyfPlySktLO573er1s3ry5Y7/HviYIgnAms0k2pplnUiK9jU4soNBCLZtZxgWWBeSop1dfJmyEeDPyPBcmTKTQPny64RzL0tZiPNiLjlDp9rb23c0DV5A31rq7u9OgYsueZNbYFDMBLdyboZ1xDMPgxdZneSmwjEXWqygO3dxpse7hzkkio0K3cD1/YJb5PFYFX+eHTXfxUuA5WvTmwR7esBE0ArwceJ7p5lmkcPKueGbsTDKW8lH4Aw5HywZ2gIMklSIcJGLWtg/2UARBGCBnzmWNYWLhwoU0NDSwbNkyCgoKgFgg5NZbb6WwsJCVK1d2PN8bpaWlLF26lNtvv51Nmzbh8XjYvHkzv/rVr7jnnnt4+OGHWbZsGVOmnLxjSUNDA8uXL2f58s6vVBw7dkEQhLPBeZZ5rA2/yxG2kMMUtpv+gT3qYLHt2tPe9+rQSrxRPzdlXtQHIx0cFjmWWdObujXpjliwprw5QF6Co0/HdSrdDb1IvcqssdAqpkGhGRrPtv6TD8LvMosvkBW8dLCHNCAcJFAUuolMrmYbr7E6+AargyuZY7mQ8yzzsEjWbu/LKblOO3PvdOiGjt/w9awbmuTA1JZt1xsrg68SMFoZEf7sKdcbxYUckFfwQuBpvun8Xq876GmGRpjwkG/eICFTyEz28T6jjKuQBvHnQhCEgSGCNQNo6dKlbNy4kYMHD+LxeDqe93g8LFu2jKlTp7Jw4UJKSkp6tX+v18vChQtPCPhMmTKFZcuWcc8993D//fczdepUSkpKehxwWbJkCffdd58I1AiCcNYwDIPD2kHWhdcgIVHGJgwMdkS2cKvjzj75cP9e5HUuTZpGhjWhD0Y8OKxyrPZIazTS423bM2tK6/3MyUvq03F1xjA4ycSKk4vqsZPU7q6/tbmUD7y7kLu9xZlBM6JUakc5rJVxRCvjSPQQ5dphNKLM5SsUc8FgD3HA2YhjBjcwkcVs53XWhlbwdmhFj/YhIREneYiXE/DICcS33TxyYsd9txSH3It2zoZh4Dd8NOoNNOr1bcsGGo3YY6/eiFdvQKNnUxRlFDKUTLKVPHKUPLLVXDKV7FO2NzcMg73RXbwfeputkU1M4kqcnPr9QEZhkv55Vuj38X/N32OCaQoTzJPJV4pO+H7ohk6T0Ui1VkWtXk2NVkVN27Jer0VDI15OjI1XySVbjY3dLcd1evz9kT0cjB4gXz159k9/yGAM23iVAJXYyRqw4wpDl89vZe+BjMEeBgANrc7BHsIZRwRrBsiqVatYvnw5d99993GBmmPde++9LF26lHvuuYf77ruvx8do366zYMp9993HI488gtfrZenSpWzatOmk6y1btqwjIwdiwZ5p06Z1Om5BEIQzTZPuZUN4LetCa6jUK/BI8UzkCkYxj5XyLxgjj2eiaWqfHCugh8m2JvfJvgZLkjl2QlPZ6qPY07OuWDbVxLTMeFYdqOELU3P7Y3jHiWo6jYEw8ZbuBdp2NdbhNJlJNnd+0tbutdoN/K7sBUY6srhWve10hzpkRYwwR7WKjqDMYa2Mo1o5USJISKTIaWSreaRqM8lgLEnkDfaQB5UVF9O5jglcRjX7oZtZKjo6AZrwGfX4tXpapToqIkdo1BuI8Mk0OxmFONnTo+BxxIjg1RuI8EmAVUHBI8fjkROQoslkMZKRJOIgAYXuZXEYgI866rQyjlDCR+EP0NGQkEiXM8lWc8lW8shW88hSstENnXXhNawJvUO1Xkm6nMm53MRoLuzW8XKYxCLupVH9gHXh91kVeg2X5GacaRIu2UWNVk2NXkWtVtPxPZORSZKTSZbTSNEnM4I0zNio1w8TkEt5K7SCQDBWIDpO8pCtxgI4OW3jtkk2Xgos473QWxSqxYyK3Njt7/vp2sM7uEjBxvCcMisIQs+IYM0Aefjhh4HYNKjOLFmyBIBHHnmkV8Ga5557ruM4nbn33nu555572Lx5M6tWrWLBghM7mBQUFDBlypSTviYIgjAcBI0gKipqDzqoRYwIOyJbWBd+n12R7cgoTDRNYZL+eTKN8cjIbOM1GvUG7nB+u9cp958mI/Vois1QlGR2Y5Jljvh6V5fjvKRiHt29kVBUw6L2b2p/rT+MASRb7d1a/+PaKiYlpnYrc+G12g3MiBvJ56V7++znYyiJGlH+6X+YLZFN6GjIyKQpGWQreWRp55NEPonkYtKtIEr2nMCCgxwm9X4HbbMMDQxC+PDTgI96/NTj0+uJ0v2pdzIqRSTgJBEHiThJxIYbSZe7G0vqmgYaERo4Qh0HqdPLqNJK2RRe3xHYU1DQMZhsmsY5+q2k6aNOWlD4VLKYQFZ4AmPRqeEAh4yNHIxuIkSIVDkNjzaKXOYRRxpxpOMiGVlXT/g6RwBEY9/fFmpjYzYOEjJKeT/0Nj6jBYgFtRRUzuUmxkYXDlgNplpKKWMjOcoXxRQoQThLiGDNAGmvAdPVFCKPx4PX6+00kNKZzZs34/V6kSSJlStXdrrtsbVqTrWeIAjCcGQYBm8EX+GV4PMYGFiwYpcdOCUndsmBQ3LikJ042u7bJSc2ycbe6G42htfiN/zkKgWcy00UMgtL5PiU3jp1PWOlCaQpfZdyLElSj4rXDkWKJJPpcPU6WHNhZh6/3/oRa8rqmV+U0sejO95HR2It2Avj4rtc1zAMttZXszjx3C7XrQ552eM/wk2OryCZz7xAjW7oPNn6N7ZFNnMON5DGSBLIRtUs9HCWjHCaJCSsuLDiIpH+z0Y7HQomkikgmbbPvxroRGmkgjrKCNNKIbOwRzynfSwZmTSKSaMY9LZ6N70IPElIuEnBTQoFzOgI4PhpoI6DNFFJPjNw07/vVZ+2kWXEkUGCdM6AHlcQhMEjgjUDYNWqVR33uwrWFBQUsHnzZjZv3tyjQMqx3ZkefvjhTrdNSPikJoLX6+32/gVBEIa6iBHmqdZ/sCH8IQssi4iGcgjiI6j7COHDamrCb/ioiVbh1334DT/htivRbimOQmMexZxPgpZ90v2HCVAaPcBS2+f6dNwSPSteO1RlO929DtYUxyWQ47Hz+t6qfg/WPL31CFMzPeS6up7WVO5voTEUZKSj69oQaxp3YJIUxpkm9cEoh54XA8+yKbyO+XyDAmYO9nCEYUxGJZHcIR9oOpaEhLMtA2kwVLOPI2whT/kSUi/qEwmCMDyJYM0AaK/90p2aL+3BlA0bNvToGAsWLGDKlCmUlpZy++23d7peQ0NDx/3CwsIeHUMQBGGoatabeMT3IOXaIS7kTgpCJ8mEOEnt2yhhwvixGm7kLmoyVLIbHY1RprF9NOoYCekMCNWAJ5rBvsCBXm0rSRJzUwpZsfcADywy+m0KUZ0/xFsHavj+lDndWn97fQ1At4I17zXuYFpc8ZDvKNMbq4Kv81ZoBedykwjUCMIg2Mgy4snGI/VNrTRBEIYHEawZAPX19T3epqdZLx6Pp9OCwcdqDxwBnbbvhlimzj333NMxloaGBhYsWMC9994rCg0LgjCkVEQP85D/D2hGlMv4EUkUUMlurLiJIxX5FH/qVMyomLt1nHK2kSgnkSyn9tXQAZAledhPgwJItyTwdmMzhtG7YMu8rDye2Led7VXNTEjvOuulN57fUQHAopzudW/Z3lBDht1JvMl1yvXqwk3s9B3iC/ZbofOGN8PS+tBa/hN4houtl5MbvHiwhyMIZ52j7KKCHeQrt4usGkE4y4hgzQDoSeClPRBybAZMX2ovQHyqAsK/+tWv8Hq9HV2h2i1dupSpU6ee0Bq8p8rLy0/5emVlZa/3LQjC2WVbeDOP+f9KqpLGefp3seBgJb/jELHgtYSChzQ8ZBFPJvFtyzjSUTD16Fh18jZGqWP7POtDOgMKDEMsWOOPRmgMBUmw9jy7ZHpyBm6Lyop9Vf0WrHlmazkXjUjt9vi219cwIbHr4Nyaxp0oksx40+TTHeKQsjuynSdb/8ZM8xxygjcM9nAE4axjYLCR50ginzhp4mAPRxCEASaCNQOgN4GX/qgns2rVqo7aNo8++ugp1125cuUJzy1btozCwkIKCwtpbGzsdYZNdvbJ60EIgiB0l2EYrAq9zkuB55homsrkyNcI4eMlfkwLteQpt6LiJGhUEqSKkF7Lbt4mgBdoLyCZRjyZeMhiBHOIJ7PT4/moo1qvZLHp2j7/WmRJwuiz9iuDJ90am8Z7xNfcq2CNWVGYX5TC63urufuCkX09PPbWtvDxUS9fmtO97BBN19nRUMPn0rquH/de4w6muIuwy47THeaQcSh6kEd8f2S0Oo5x4dt73KFnKGmhllpKyeecYf11CGefCrZTxV4KlK+dkR3mBEE4NRGsGQDHFvUdTO21bO67775Op0Ddd999p8yaWbJkCffffz/33HNPl23CBUEQ+kPEiPBM6+OsC6/hYuvl5AQ/Qw0HeJPfomKhUL0LmxQLvLgojm2kQCoQNfwEjSqCVBI0KonqdezhbbbzGrO5iZHMPenJXDnbkZAYqY7u869HgjNiGlSa+ZNgzcSk3k0Vm+0ew392rqKyOUi629qXw+PZreXEWU3My8zr1vqlzV5ao9Eu69U0RlrY3lLGZ+03nzFToGq0av7i+y0ZShbnRL91yqmEQ10DR3iVXxLAyzguZRY3DlirZUE4HQYGG3iOFEbglvq2VpogCMPD8P3rO4wMhRovt99+O6Wlpdx3333cfffdna7X1fSmhQsXcv/99/PII49w33339eprO3LkyClfr6ys5JxzRFtCQRBOFDZC/Mn3Gw5FS5nHHeQGz+MQm1nFH0imgCT1y5ikzuuLqJIDp1SIk7YC6wokGmFC0Rd5j0eoZDdz+coJJ3M+0xZy9HwcsvMkez09EhKaMfwza5yqFY/FyhFfU6/3cX5GDooksWJfFTdPy+uzsUU1nee2l3PN2AzMyqkLSbfb3lCDBIxwdJ5xBbCmcRcSEhNMndeBG058uo8/+x7AITk5X7sbE30bNBsoGhHK2Mga/o6TJOLluezQXyKMn/O5rcuC4oIw2MrYQC0lFCrfEFk1gnCWOuuDNV6vl/j4+D7b35QpU04o9JuY2P02f+3Tn/oywPPII490BFdOFajpjmODORs3buxRe/F2WVldd9UQBEE4mR2RbZRE93E5PyKdWJbLPt7FTRqp6teQpZ7VoQGQJTM203UkRiOUGus4j1tOKDp8RDvE+H5qyVxgT+OV2vUsTJpMljW5X44xUApcHvY3NfZ6e4/Fynn5iSzbXtGnwZpfr97L0eYAVyR3/0LAa4cOMDYhGYfSebBCMzSer17DOXHFOOVTFyEeLj4IvUOT3sQSfoMV92APp8caOMIe3mE/7xPCRzYT8ahfQJXsmKR49mtPEKaVC7mz28XFBWGgHeZj3ubP5DAFlzRqsIcjCMIgOeuDNR6Ph5UrV/ZZjZiTZaa0B166c4z2+janU8D3WKtWreL222/n4Ycf5rbbbjvt/R07pWvz5s29CtYIgiD0Vln0APFyIun6J9ORHCTQSHmvAjXtDMNANw6Sx7QTTuAMDLx6AwlyUq/3fyrX8k3+rP6E7+19jO/mLyHNEk+iyY0qD78r/zlyPlsbdp/WPq5Im8y3167kQJ2PoqTTz2Ratb+G37y/n7smzmRsQveCYQeaGniv8jB35y895Xor6jZRHqzjRtM3OBNm1hiGwfrwWiaapuCKDJ/AYZhWSviQPbxDLSWxTnDyTBLkc7FJ6R3rJcjnoGDjkPYoK7ifi7gLM2deq3VheDvAWt7hL+QwCY/6RZFVIwhnsbM+WAP0e8Dh2MCL1+s9ZdZMe0CnL4I1mzdvZunSpSxbtowlS5accl2v18v8+fPxer3d7vZUUlJy2mPsinEG1HEQBKHvHIyWkK8Ucmw9XifJtFDX65bRAAHjMI1UMJMbT3gtSAsRIsTL/VN/zCk7udVyLw8Gfspde2PF3yUkEkxOEk1uks1xJJnjSDbHkWx2k2Rqvx+HSR5af8aLHVm8WPMhLeEQLnPvCrgszM7HYzXxr48P85OFY05rPOVNAW57YTMXjUjh1jHd79T0xN5tJFvtzE2Y0Ok6IT3CExVvMS9hItlG7mmNc6g4opVRpR9lkv75wR5KlwwMqtjDXlZTykdohMliIvnKbbil8cjSyX834uTxFHAnZdpDvMovuJR7sHJmZEUJw98uVrKGxyhiNk71M0jS8AvaC4LQd4bWp7wz1LRp0zruNzQ0nDJY096taeHChad1zNLSUubPn8+yZctOGozyer3HTWNatWoVmzdvBmD58uWdTpc6trNVYWHhaY2xO3ZFtjFHmdfvxxEEYeiLGlGOaGWkaDOPe95FEhphovgw9fKkS9U+xoaHTMaf8JqfeoB+C9YAJMiJfN/+G+qsNXj1Rrx6A416A95oI2FTJVtbSqkLN+HTgh3buFU7n02fyxUpMzHLvc8q6kvFbfVddjXWMSP11LVeOmNRVK6fmMW/txzhfy8chUnpXcpKRNP58vKN2E0KP5uwGLmbgbzGUJAXD+7jM2lzMZ8iGPZi9Vq8UR/nRz/HmVL+ZH14LS4pjizjxN+DwaYTpZ5DVLOfKvZRzV78NOAihWT5YhLkmZil7k1rd8ojKJC+xaHon3iZ/2MR9+JgaDSDEM5O1exjG69ykPWM5WJM6hVI0hmQricIwmkRwZoB4PF4mDJlCps3b6a0tLTTrJVj69WcTraP1+tl4cKFvPXWW512fdq4ceNx05ja15syZcops3Dag0nQ/xlJAK8G/sM0y0yskkhTFoSzXYV2hAgRUik67nknselJYaP+lMWFO6MbUQ7wASOZe9Kio762YI2nH4M1AGbJTIaSRYZykrpe1tgtaARp0htp1Bsota3mkSMreKF6LV/MXMCCxMkog/zhPtuajE1R2dFQ0+tgDcBlCdN52P8cL+06ypLxvatz9n9v7WZThZen5l9NvKX7RXKfPbAT3TBYnDyj03VaogGerlzNZcnnkBLpXeeroUYzNDaG15FrzB4SxXeDtFDNfqrZRzX7qKEEjTAyKskU4JCnki6NxSmN6NVJrV3KIV/9Noejf+K//ITL+F/cDK//SwOdEH6CtBCkBY1It7eVUbDgxIoLK85h3fFruNLROMh6tvMaNRwgjnRylBsxSeeKqU+CIAAiWDNg7r333o4pSZ0FOZ577jmAU9aW6c40qvaMms4CNQArV648LnunoKDgpMWRT7YdxFp4n2r/faWVVl4LvMg19hv6/ViCIAxtZdESFBQSyTvueVd7sIYGHJ96rTuajZ2E8FHM+Sd93Uc9CgouafCLrVolK1YlnVQlnVHRsUx1V7JaeYoHDi7nucr3+FLWxZzrGT1oH/QVSWZMQjI7GmpPaz+j4pOYX5jMrc9vZu2hen5w4WgS7N0vBvvanir+uLaE700+l8nJad3eLqxp/GvfDq7ML8Zj6rxezrOV7xI1NGaGbjgjatUA7I7uoMVoppjzBuX4rXg5whaq2Es1+/ByFAAbcaQyklT5cpxSATYp+7TqUx3LKqWRp36b8uifeImfsIjvkUj3p7S14qWGA1hxkcII5D78YQjQTAXb8dNAEF9HQKb9FqKFED4M+ma6uBkH1o7gzSc3C05sxJHBmGETzNKJcpTd+Kjr9jYSMiasmLC0LW2YsKK2PVaxINE376thWtnDO+xgBT7qyGAMBcoduKWxIptGEITjiGDNAFmyZAlLlizhkUce4Z577jlpdk17K+z77rvvpPtYunQpy5cvZ8mSJSxbtuyk68yfP58FCxZQWlp6XBbMsUpLS3nkkUe4/fbbTzh+ezHik9m8eTP3338/Ho+HRx999FRfbp8ZyyW8E3qVGZY5ZCrZA3JMQRCGpoNaCVlKLqp2/Em7BRcqFsJGQydbds4wDDTtIxLJI4GTv8f4qccjJyAPwQ/RqUo61/MdZrpKWSn9ix8feJIxjhxuyb6ECa78QRlTrpzPpvqdp72fB6dfw7/jdvDH7R/xn51H+eGFo/ni1FwU+dQnTIcaW/nqix+zaGQaN4+a2KNjrjhcQk3Az8W2iztdpy7czH9q1jLPfAlxsqdH+x/K1oc+IE3OIFHPG7BjNlNDGRsoYwNV7AMgkRxUuYhc6SIcUgFmkvo1+GiWEshWv0Vl9C+8zM+4lLtJpfiE9TQi1FFGDfup5gA17D8uGGDDTS7TyWcaGYxD6cVH7BZqKWMjZaynir0YGJixH5MB4yIieTBLWdhxoEpOVGI3RXIg0/0gloFG1PCj4SOKn6jhI4qPqOFHMkI0UUU1+9sCQ37AIIEc8phOPtNJIKfXwQsfdZSznXK246eOdMaQzURSGdHrDB+dKBXsoJSPKGMjIXy92k/npGOCOXbiSCWebOLJIoEsPGR22V2shVp2sII9vEOUMEWci6yeh10Sn28FQTg5EawZQI8++mjHFKVji/h6vV6WLo11nDhVZsvy5cuPW37awoUL2bx5c0ftma58OmC0YMECNm/ezMKFC7nnnns6MoC8Xi/PPfcct99+OwsWLODhhx/u09bipzKaBVTJG3nG/0/+x/X9IXmyJAjCwCiLlpCqn1gkVkLCRRKRtulK3WUYOpHoSxzmY+bxtU7XM5lqiTeGdj2LXLWAW/gRe5w7eUN/im/veYRz4or5ctYlFNrTu95BHyq2Z/FC9VqawyHcvSwyDGCSFb44aiKX5Y7gzwff4tuvbuPxTYe4f9E4ZuYknnSbcFTn5mUbibOa+On4RT06yTcMg8f3bmV2WhZ5ts4zCP519C3MksoC66Ief01DVcAIsC2ymclc22fZAydjYNBIOQdZTxkbqOcQCiYyGU+OciNuaXyvpjKeLpPkJlP9JjXRh3mVX3IR38ZNGjXsp4YDVLOfesrQ0VAwkUQBNnkiSVI+DimPsOGlydhChb6NPbyFGTs5TCaP6WQzERMnn4ZnYOClgoNtAas6DiKjksk4spTPEidNwPSpjL4+7UnXzf9qzQjSYuxC0XaxndfYzPO4SCGf6eRxDqkUIZ0iqyhMK0fZRTnbqWA7TVQiIZFEAS6S2cM7bOElTNhiPwtMJIuJODn573nHuIhSwXZK+YhDbCSEHzdpeOTZeOQp2OjJFEoDjSA6IXRCaEYIve2x1vacboTQCKIRwNAbKGFtR8BOQsJNKvFkHRPEySaOdOo4yPa2ejRm7CTI55Mkz8UseXowPkEQzkYiWDOA2tuEL1++nNtvv/24lt4LFy7stKhvu/vuu49f/epX3HvvvSe8tnz5clatWtXtsXQ2henuu+9myZIl3Hfffdxzzz2UlpaSkJDAlClTutVVqq/JKEzXv8wr/JyPwmuYZTn5NAVBEM5sPr2FWr2a8Z+qV9POSTKS3tztQq+GoeGLPs0B1nIetzCCOZ2u22g0kCCf+qRhqBhlGstI4xd8LG1gRfAZvrLzj1yYMJEvZi4kwzowAaf2IsM7G2qZlda7ejPHSrLZ+fGYy7kypYpf7XibS/7xAddPyOKnC8eQ5jr+JPiHK3eyo7qZpxdcQ5y5+3VqADbVVrGjoZZfjrip03XKg7W8VruRK23XYZPsJ7weMSI0614SleHT9hpgS3gjUaIUneL3oLcMdGooaQvQbKSZKkzYyGESLmUhbmksitSz/6v+oEg2UtU7MEUf4zV+1fG8mzRSKMIiT8Mh5WOVMk/oNGWWEnFSiCFfQ5AKvPoWGvTtHOADFExkMYE8ppPLFCw4qaWEMjZwkA00UYkJK9lMwqnMwy2NQxlidfoUyYpHmgLyFMYYn8Fn7MWk7WY/a9jGq9jwkMdU8jmHdMYgIVFDCeVso4Lt1HAAAx0XKWQxngRlMU5pJKrkAMBt6ASMIzQbOwnoe3mfv2FgEE822Uwkm4mkMRIFExoRytlOKes4xCbCtBJHOh75PDzyVGxk9joTS8UBxMbUZSBLiQXONCNA0KgkSCUB4ygRvZa9vEMr3rbdyBjouEkjU76eBHkmitT7ILYgCGcXEawZBO1Tonrq7rvv7jSgs2TJkj5rc11QUNDpVKjBkMFYpptn8Z/As4w3TcEpd15HQBCEM1OZVgJACiNO+rqTJKrZ18V12BjdCNMYfZxytrGAb1DAzFOu36g3UKie/LhDkSRJTDGfw0TTFD5U3ufNlhd4b8fvuH/kLYx35fX78bOsSThUEzv6KFjTblJSGk9fcAPLS3bzu+1reW1PFXfPLeYrMwowKTIv7TrKwx8d5IdTz2N8YkqP9//43q0UuD1Mi+v8//qx8pUkmlxcYJl/0tefa32CteH3yFMKmWU5j6nmGScN6gw168NrGaGOwhnt+jdoD29zlF3o6BjoGGjH3I/d9LbnDXRaqKUVL1bc5DGVJOVaXNLIPqs705dkyUyC+mUkYz0qLhxSPqoU+8zRnXwfSZKwkYVNyQJlMWlGLV59K0F9O+/yMBISVpwEaMaKi1ymkqhcjUsaNSS/HycjSypuaSzIYxlpXIPfKMVrbKFc387utqwiA4MIAcw4yGQsWfJncMmjsEixIOanQ3OSJGOXcrGTC8oiUgw/LcYezNp+DrCGbbyCioVkCqmnjDCteMggQZ6LR56ClYxBrNNlwyEV4KAtW12BFCBq+AkaRwkalZikeFGPRhCEXhHBGmFYGBn+Atv5Nm+FXuNK23WDPRxBEPqYYRj4DT8Neh2Nej0NbbfY/Tpq9GpckhuXcfKMBRfJHGANuhE55UmPZgSojT5CDaVczHfJ5tQ1TXSiePVG4qXhkVlzLEVSmWOZxznmc3k08nMeOvwKfxn79X4/rizJjIxPZHdj94t7dn/fEtcVjeGi7AIePfw2P165ixd2HOWpz0znzpe2cNWYDG4sHtfj/dYHW1lVfpA7c67sdLrt0WA97zZu53P2L2GSTqxNUafVsjb8HqOZjyTV8kzrP3m+9d/MsMxhnuViUpXuFzoeSB+F1rA/upvz6by5QbtK9vAej5JMIWZsSMgdt2bJQEIlNiFEhrbnnVIemdJ4HFIhkiQztHJGTiRLKonSuX2yL4uUTKqyAJQFJBtNNOnbCFFHpjQWp1SIJA1+163TIUkyTqkIJ0UY8rUEqKBJ34KEjEsajV3K7VWAQpUcxEtTQZ5KsXE9ASpo0Xei6odJkOfFpjhJGf3wFfUdVXLglEbg7OQCgyAIQneIYI0wLNjxkK5k0qw3D/ZQBEHoA7qh80bwZUqi+zsCMmHCHa+bMBEvJ5IgJ2LVchnDVDIY22k9jTymsZ5naDA+Ikk6+VSOiNFCVfQhmqnmMr5PGiO7HGddW52KHDWvV1/nUGCWLCRFR3BEPv2iv90VimrY1f7LFPBYrHx3xCIuTqjm1vf+y4JH36c5FOXm3Dm9usLeFA6hG8Ypa9W0aAEAcpSTF26OtP38juA80qIjmUwDe3ibLeGVvB96m3GmScy3XMIIddSQaMsbNII81/oEH4U/YKZ5DkXhrqdA7WQFHjLJVO864WsYfuHMgWWS4khSBqfT1kCQJAk7WdiVvsumO2G/wzu2JQiC0GMiWCMIgiAMqIgR5nH/w2yNbGK8aTJJ+gTySMZJIk6ScJGEFTeSLoHevX16yCCPaTRqb5MonXvC1dyw0UB59M+E8XM5P+p2e95KdmPGQrbS/Xa+Q5FmqyTJGLjW4xWtLVyUc2LXw742ITGVf1xwFTetfhGLIlMUF9+r/eht04hPFUJR2n6mNLSTvm5vq78R65wDDhKYyhImGldQwlr2a6/y/3y/JlPJYb7lYqaaZ6JKg/MxrCJ6mL/7/0Kj3sBc7qA43HUQoRUvB9lIhnzNkAg2CYIgCMKZTgRrBEEQhAHTqvt5xP8gZdESFvJt8iLT+mzfk7iCF/khTcY2PNKkjueDRjWHo39EQuIKfkwc3e+O5DftosAoQhmkk+q+Uh9pJs82MNNwWrUQ3lCQLMfAdPUZm5DMvy68hrIWLya5d5fe20u+yacIQiht3W70LoM1x7cMVjEzkrkU6xdQwQ4OSa/yROujvBh4jvMt85ljmYdLHphAmmEYvB9+m+dbnyZVSecqfomH7k0n2cd7yMgkyDP6eZSCIAiCIIAI1giCIAgDxKs38hffb2nQ67mU/+3WNKSeSKGIdEbh194iTpqIJEm0Gkc4FP0TVlxcxvdx0P2OSDo6JdF9zLdc0qfjHAx14WamxRUPyLGqQ40AZAxQsAZgpCeRkZ7eT8QxaM+s6TxYo7bVF9E6SfcySSbMmE8I1rSTkMhiPFnR8YyhgkrTq7wRfJkVwf8y1TyDCywLyVVPPsWqL7Tqfp5q/QdbIhs53zKfotAXUDmx9s7JGOjs4W0KmNnRwUcQBEEQhP4lgjWCIAhCv6vWqviz7wE0Q+My4yckkN2tE+SemsjlrOAB4owDYECZ9hAeMriUu7HSs+yFRo4QMFopUvs2qDTQdEOnIeIjyTQw2RvV4ViwJnMAgzWn65NpUKfIrGmbBqUbJ8+sAbBLTkKGv8vjxZNJfPg2CriBvazmQPRNPgp/QJ5SyAWW+Uw2n4OpD7sDlUVL+If/L7QarSzkf8gPndOj7SvYSTPVpCo39tmYBEEQBEE4NRGsEQRBEPrVoWgpf/H9Dqfk4mLjXpwk4aWCN/gNAVqIIxU3qbhJa7ufhptUbMT1OJCTzWTiyaZeW0YT1aRSxEV8B3MvetBUshsVlTy1/2uv9KcWoxkdnUTzwARrqkKNmGSZFNvwycBoz5XprBMUdF2zBsAhOwhpJ8+sORkrLiZyOeP1yzjMZg5LK/hn6yO8EHiG2Za5zLHMI17ufjbYp+mGztuhN3gpsIwcJY+L9B/h4uQd1U5lD28RTyYOqbDXYxEEQRAEoWdEsEYQBEHoN7si23nU90cylSzO0+7BiosaDvA692HHQ6K8kLBRS6vRSBV78dPQsa0J63FBnCQKyGUKCp1nHEhITGQxq3mIXKYxnzu7PdXj0wKmXeQaBSdt0zycNOixFtrJ5rgBOV512EuG3XXK+i9DjdGtzJrYNKjOatZArG5Ne4HhnpCRyWMaedFpTKCCavMbrA6+yZvBV5homsoFlgUUqSN7VNjXp7fwhP9Rdka3stCyiNzQDci9+NgnCgsLgiAIwuAQwRpBEIQhwjD+P3v3HV9lff5//HWPM5KcJCeDkBBGEvZUEQe4UMFZVwu10061e9hWa9tv57ftz+7dql222qrQflsHDkABFUURUZBN2JA9T8687/vz+yMECFnnnJyTAdezDx/Uc+7xOZjAOe9cn+tSNKtGDlj7OWjvo8lpjPtcl+ZihutMJplTe60OGEivRtby9+AfmeaawbmxL2LiYT8bWcEvKKCMIvPWTv0vigFHRYlQS0Qd/Ydaok4ju1jLRh7DSzaTuISpXNZjo+CJXEgmfkYxHT3JWa8KxS5rO/M8lyR1/lBSZR9GQ2OMN/GKimS0ug5T6hs+W6DghG1QvWQRxypret0GlUXMbAEr+bX4KcUf+SjlvIedvMgu+2l+EfghpcYYyozxcVWbKRSbYxuxsbmKuxgbOTPp9UhjYSGEEGJwSFgjhBCDwFEOdU4NB+x9HLD2cdDexwF7HwHVCkCWlkWBPoLehwkf16ZaeT7yLLman3Pd8zjXcwGjjNFpfAW9ey78NP8K/ZPz3RcyI3o7OiY7WMNq7mUsZ+E3b0HvpmJF19xkUEqGVnr8QQOKgLA6gmG9xnae5y2eYBTTmcrllHEOxgl/nWnojGZWv9bfzBFaVcuw71cDcMQ+TLEnD4+euh4ovTnY1sLUvMIBuVeqdPRP0uPpWdPLPPksLYtDCYSsvXGTyXSuYJqzkENs5rD+LAfsfXGfX2FOZFrswwk11T6ZwmErK6WxsBBCCDEIJKwRQogEOMqhVbXQ5DTQ6DTQopqPbaHoi0JR41Rz0N7HIWs/YcIA+LV8xphjmaQWUkg5hZSRpQrQ7Pi3HCgUteymwb2KtdHVLI8sY4wxjnPd8zjDNYcCY2A+PCul+G/oUZZHlnGF91rGhd+PhsabPM46/sFkLiXDfBealnjFi1crAdf1TFFX0aTeIGK/zEp+hZccJjOfOSzqdYtUIqrYhoZGhTkhJdcbTK3eSsZRNGD3O9TWysLR6ZtqlA4d38LxTYPqvcFwKI4Gw4k4NkUqNjOxE3teZtwO8Tat1FBs3NL/iwkhhBAiIRLWiGHDwUZnaGzvEKcuW1kctg/R6NTTeDSQaVQNx8KZZqcR64Q9DvrR/8UrXy9kjDGOAs6mkDIKKCND5UCsf+vW0ChiAkWRCUzkwxzgDWr0Nfw3tIR/hf5JqTGWWa6zmOWazRhjXFp6T9jK5uHgX1kbXcNcPkhZ+BoUinX8gzd5nDO5Ecwr+n1vXXOTr50H+nn41SH2Wb/iTR5jPOdTSP9DAoXikLmacjUBr5Z4Y+KhRCnF7uBhFhbMHpD72cqmMRIeVs2F4fj2J4eeg1e31v6WKaIiPR6Tp+fT4NQToQ0Pw+v3oDt17MHARZY2vMI3IYQQ4lQgYY0YNiIqgkfzDPYyxCms0ann3sAvj201MDDw63n49Xzy9AKyrMlMJh8fBfgoIIsCvGQnNrHIgV52UaSEgUkZ51AWO4czCXKAN2k2XmNVZDlPhf9LnpbP1Rk3MM99ScpCm6DTxp/bfsd2awvz+RSTuAgHhxf5E9t4jlJ9EZpxeUru1cFRMaLWcsIEmM8nUxLUABzmbXZbO/hE1hdTcr3B1ODUUR9rZXr2uAG5X9RpDzI9xvB6e5Fltm/JC9o9BzGmbpBrZtHiNPd4zFnuc1gaeohKXmEqqf16HwwjmYhNjBCHyGTMYC9HCCGEOK0Mr3dT4rQWIYJH8w72MsQpare1g/sDv8alubmGr5HPGDLIQXP0tIcr6eQmk/HMhehczsTiCNuodT3PP4J/odLaxc2Zt+Du57SjGruaPwR+Totq5iq+ymhmYmPxPL9hD68y1vggBfq8FL2idraK0GD9mcNsYSFfoIxzUnJdhWKbuYSxqpwZrjNScs3BtNvaCcC0rLEDcr/jYU1yjZ0HS7a7I6wJ93pcgSub5l560uTqfqaY0znMGqZawz+sKWICBi4Czg4yDQlrhBBCiIEkYY0YNiIqLGGNSIu1kTU8HPwr5eYE5lp3kEHOYC8pLXRMSplBaXQGmZzBS9E/csjez61Zn6XASG5S0M7YNu5v+xVZmo/r1PfwM4oYYZbzcw6zhTLjNvz6mSl9HZZqo8a6jwb2czV3UcqMlF27o6rmk74vnhJjiivtnYzxjiDXNTBbcmKqPaxxD7Owxufqu7IGoMCdg6NV9XrMue4LeCB4L+dQQ84A9gpKBwMXI5mE4VRCiivjhBBCCNE7aQAiho2ICuNBtkGJ1LGVzZLggzwU/BNz3RdzifWNUzaoOdkkLuY6vktQBbmn9VtsjW1K+BprI6v5VeBHlBrjuMr5X/yMIkKAZfyQKrZTYXw65UFNTDVzyPoVTRzmWr6e0qBGodhqPMo4o4Lp5vCvqgE4rG9lum9gtkDB8N0GlWGY6JpGW19hjSuHulhLr8ec4T4bNx528WIqlzhoRjGNKrah1DAuMRRCCCGGIQlrxLBgY2FjS2WNSJk2J8DvAj9lTWQlF/JRpkVv6zT++XRQSBnXOj9gnFHBbwM/5enQYzhxfCBzlMO/gv/goeCfmee+mIutu/Hio40GHud7NHGICuPzZOtTUrreiKpnv/ULwrRyHd+kiNROajrEJirtnVybceMpUVUTUiH2hKoGNqw5Wlnj0Qe2smZLQy2vVh9K+nxN0/CZbtri2AZVH+09rPFoHs5yz2G/vubYSPDhrIRpRAkS4uBgL0UIIYQ4rZxen0zEsBU7OuJYGgyLVDhiH+IPgV8QUkGu4WuMYvpgL2nQePExz/oq47yP8nj4X+yz93BL1q1kaJndHh9SIf4S+D1brLeYx4eYGr0SDY1aKnmGn6ChUW5+kQytNGVrVEoRUDs5bP8VEzfX8+2Uby9RKLYZSyhjPNPMWSm99mDZa+3GQTHdNzD9agBizsBtg3KUYvXhffx93zpe3FtPhmnw6rs+lnRVj8/l6rtnjTuH+lgrjnLQtZ5/3nWu+wLWRV+ihl2MZGJS6xkqihiPgZtWZweZxsB9LQkhhBCnO6msEcOCdSyskcoa0T+bom/wk5bv4sbNdep/T+ugpoOOzpjwe7iSL7PT2saPWr7NYbvrT9Hr7Fp+2vI9dls7uIo7mcFVaGhUso7H+A5Z5FNu3pmyoCammqm2n2GP9T122T8nEz/X86209AFpr6rZxTWnSFUNQKW1k2wjgzHe5PoRJWMgGgyHLYuHd73N9cv/zu2rlxGK2XxnwVRCls36miNJX9fncvfds8aVg4NDQLX2etwkcyp+LY9Gz+qk1zNUGLgoZhKms2ewlyKEEEKcVqSyRgwLUlkj+kspxfLIkzwWWsos11mcFfsMbjIGe1lDyjjO5nr1fV7Qf8qPW77DB7I+ztnu8wDYZe3g/sCv8GperuN75FGKQvEG/8d6llDBXLLN96D3c7KUUjbNajO2/SoH2IiOQTnnchEfo4SpaGn4GUNHr5pyxjPNnJny6w+WKvdmpnvGDWj41LENyp2GbVD14SAP7djMw5VvUR+Mcu2UYn51/RmcNyYfgHvX7WH14f1cUJLc1CKfy03Q6SusyQag2WkiR8/t8Thd0znHPZe10dVM5MPDfotlCVN5kyfIVw5aLxVFQgghhEid4f3uQZw2joU1SGWNSFxURXio7c+sj73C1d4bGB1+d1o+9PcmQhu1VBIlSHs80N7Lov3X430tOv5d0b5FaSST8DAwk3wAcinmSvt7bHLfx5/bfsdeazclRikPBx+gwpzIXOsOvGRjEWUN97GLlzibRdjmZf0KBcKqmnpnLa3Oq4RoopBy5vEhJjAPD74UvsKuDvIWe+zdfNr35VOmqsZRDlsD+3nfqEsH9L7p2Aa1q7mBh4+s5ZE3D2LoGu8/ayyfPK+cioLOXxeXTyji5QO7gQuSuk+Wy40yex7LDVDobm9A3qwaGUPvvYDO9VzA8sgyDrCRMuYktaahYhTTWc8SQuoAmdrA9UASQgghTmcS1ohhoSOscUtljUhQq9PC7wM/47B9iAV8njHh8wfs3mFa2MGL7GQN9eyHpJqNalRwHgv4fKqX1yMXXs6KfhY3k1gVeRAHm3nui5kavRUDExuLp/ghNVRSZnwcRz+bZCKOqGqg0Xkdy9lEDTvxkMUELmAyl1JIWapfVrciBHjLeIhyJjDVTN1kqcFW5Rwm5ESZlDl6QO8bdmJAaiprluzewmOH32TdgUaKfR7umj+Zj5w9jrzM7qu3Fkwo4u9v7OdgoIXRvsSnuvlcLpoivVfW5LnaA6Jmp6nP6xXro/Br+dSbL1IWG75hTZQgdewFIKB2k9lHSCWEEEKI1JCwRgwLOu1v/E+FyRpi4DQ69fy69ccEVZDr+DaFlKf9ng4Oh3iLbaxiH+sBGMccsoxLyNLKMckGNLRj8cbxX09+LEYTh+3HOKK2pX3dJ9PQmMFVjGA8LVQzIXrBsfW9yj+pZifjjS/i08cnfG2lFHXOao44/wZgNGdwGZ+hjHMw6d82qkQEaeJ54wc0OQ181nfXKVNVA5CnF+AzvKxr3sbZuamdmtWbPaEj+D1e/J7+VUG+VnOYr69bxYIJRfz+xrN414xS3Gbv1XCXjh+B29BZeXAPH5qS+Oh1r2EScdp6PabFCgGQpfVe7WUpi7+13UezaiQ3dk7CaxlsCkUV29jG81SyDocYYzmLLH3aYC9NCCGEOG1IWCOGBdfR7U8R1fukDiE6VNtV/DrwIzQ0rlHfIpeStN6vhRp2sJrtrKaNevIYQ4l+E/n6eZh9fLDriYcRZGglRNSuFK82fiOZ2GmazV7Ws4lllOqLkwpqYqqFFusRDrKB6VzBubz32Pf3QGqllhX694k6Eb6Y/XVKjNRNrxoKMrQMLnFdzRM1j3Nz8cUUuBOvNEnGDmsbc0aUoPcj+ApZMf5nw3LOH5PPo+87D12P71o5XhfzKwp5rm4rHyLxsMZtGMTs3kfX7wtVA1BsjOrxmKiKcH/gN+ywtrCAL1DOuQmvZbAEaWQHa9jOKpqpIoeRFOlXka/Pxa35B3t5QgghxGlFwhoxLJgS1ogEHLD28dvAT8jSfFzmfA0fBWm5j8KhknVs4zkOsRkXGYxnHo4xh0xtYBu7DoRWalnFHyjjHPx64r1QWpwtHLb/hkJxFV9hLLPTsMq+NXKQZ7Xv48LNHdnfoNAYuGlJA2m+ZyGrY0/xSNUaPjX2HWm/X9Sx2FhfzR1n9G+r4X0HVnK4JcQjCQQ1Ha6bOorPPbaRulCQwozux8/3xKUbxBy712P2hqpxaQYj9JHdPh9SQX7X+jMO2vu5gjsZTWoaVttY1LOPCIGUXO9kEdrYxUudmnqPMN6DT5soDYWFEEKIQSJhjRgWXLT3qonQez8BIXZZO/h9688oMoqZb38VL+mpKHCwWMW97OJFipnCWOMW/NpsjFO0r5KNxQp+iYdMss33JBREOSqGbT3Fbp5iDGdwCZ8gE3/6FtuLGnazXPt/5Op+PuP7Crn64KxjIGTqWQNaXbOj7SAR2+acouSr2DbWVfG7lyv5zsJpTCxMvCLtmskj+bwGKw7t4T0Tpid0rkvXifYZ1tQw2jsCQ+u+J8/joX9z2D7I1Xy9U0VaosK0UM1OqtlBFTuoZTc2saSvF49CyinV302efg6mlljQJYQQQojUk7BGDAuyDUrEY3PsTf4Y+A1lZgUXWF/BTXo+cFhEWcEvOciblBkfJ08/Oy33GUrW8Q/q2csE48sJfZALqSPUWH+licPM5YPM4KoBn8TV4TBvs5yfMEofzad8d5CpD9yUrcFyqfeKo9U1q/nU2OvSeq+3WveSZbqY4i9M6vyIbfGNDc8yu9TPp+cmvsUOoCDLwwXjClldvyWpsCbm9L0NqiyjqNte4REVYV3kRaZwZUJBjcKhicPHgplqdtDMEQAy8FPMJIr168nSKnClaSuShoFL63kUuRBCCCEGnoQ1Ylg4vg1KKmtE99ZHX+GBtvuY7prFObEvpK1RbZQgz/ATathNufFJcvTEPhAOR3t5jc08Ram+mCy9LK5z2psIr+GI8y9yKOIm/peCQZwis5f1PMevmGhO5lbf5/CcohVQJ8vQMpnvuobHax7jPSXzyXdlp+1eu5ytzB5RgqknF8b95dDz7G0Msvr2izES3P50ouumlvC1ZzbTclaEHHf8/53dfWyDUkqxN1TNOGs2ZHR9/vXoK0QIM5XL4rpfgHpe4q8cYStR2tDQyGcsLn0S47SryNLG4yb/lNtOKYQQQoj4SFgjhgUdHRduqawR3Xoh8hyPBP/GOe65zIp+6tj0sFQL08JT3EMzVVQYn0uqwe5w00INq7g3oT41MdVKq/UIB3mdaSzkfN6PyeCFIztYwxru5QzX2Xwo63ZcmmvQ1jIYLvEsYEX0cZ6qXc/7RyXeaygetnJ4vfYIt09Prg/R5oYafvnSLu6+dDJTi/q3XevaKcXc+dQmnj+0lxvKJ8d9nsswiPbSYLjRCtBqhyjxdt+M+oXI80x3zSI71ncPpGaO8CQ/QKEo0C8jS6sgUyvD0Aa+2bYQQgghhiYJa8Sw4dW8Ulkjung2/AT/DS3hEs9CJkU+nLYtNgHqWcYPiBCg3PwimdrotNxnKKlmJ8v5OR6y4u5T0+Js5bD9NxwsruBLlDFnAFbas808zVoeYJ77Yt6b+RH007BZaqaexSX5s1hW+yrvLbkkLb8HlcEjtFkxzinqeUpST6K2zTc2PMP0kTl8/oL+jxkvzc1gTmkeqxvfTiiscet6r5U1e49Ogioxun7v77P2sN/ew5X2V/q8Tz37WMYP8OCj1Pw0bi0/7jUKIYQQ4vRx+r1rFcOWR/MQQSprRDulFP8JPsJ/Q0u4xnsjkyIfSVtQ08wRHuPbWEQpM790WgQ123iex/ku2RQyzryj1z41SikCzk7qYvey2/4V+YxhMT8a1KBGoTjofYS1PMDlnqt5X+ZHT8ugpsPMyDVUR5t4vSU9Y+Dfat2DxzCYmV+U8Ll/ePt1dtQF+O2NZ+IyUvPf6LqpxazcVUvQir8pb/s0qJ4ra/YdnQRVqHetnHkx8hx5egFjOLPXe1Sxncf5LlkUMNr8ggQ1QgghhOiRVNaIYcMjlTWntLAKsTO2Pe7jN8bW80r0BeZyC6PDV6dtXcd/Cp599KfgeWm711DgYLOWB9jCcqZwOR7zBvQetg0ppWhRbxGwV1LDTvIYw6V8iglcMGhNhAEcHHZ5/sqq8HKu9y7iCu87Tvu+H2XGeCoyinmy9lXOyZ2U8uvvUls4o2AkbiOxLYjbGuv4w5bXueOiicwsTl2D23dMLeFbK7bywuH9XDk2vu2Krj4qa/aFahjTzSSooNPG+ugrzOJG9F6+7g/wJs/yM4oYzwjzVgytm8Y3QgghhBBHSVgjhg0Tk5iKDvYyRBoopfhD4BfstLbFfY6OwXw+wSQuSdu6qtjG0/yYHEZSYn4KU0t8lHCybBWmxllBvfMcfpIfhZyoBvazheX4tTlkmIt6PC6kDtFs/ZsjbKGYKVzFVxjDWWgMbigSpJHXzN+wI7KVmzNv4WLP5YO6nqFC0zSmqXmsbH4i5ddWSrGhroqbx09L6LxALMqXX1vGpEIfX74otQHS+AIfs4pzWXro9bjDGq9hYitF1Inh1rsGlDXRJkZ6uoa1e+1KokQp55xer/8G/0Fh4zffI0GNEEIIIfokYY0YNqIqetpMcDndvBXbwE5rGwv4AsXE12PCxIO7u5EsKbKfjSzn54P2U/Bm6yFqeZNpLORMbhiw+xZQxjSuYKtaQYszjxx9aqfnLdWGYy1nO8vJYSRXcRdj+9j6MVAOsJEXtN+h2zqf8X2FKa5Tf1JXIqJEyTFTP86+JtpEfTjEGYUj4z7HUYqvvfk4Va1hnrv1Ytxm6iux7rxkEh945DVeLNvPhSVj+zy+KLN9lHtdtIVR3oIuz2cbmdREm+CkHKfYaO/T00INefS8RfISbuNJfsAB69eMMT+DV4v/90sIIYQQpx8Ja8SwESEiYc0pyFIW/xd6hKnmTCqs8wZ7OQDs5mWe47eM4QzyzA+ha+kZA96TZmcz+1jP5XyO8cwd0HtraMzjFlqp5oD9R8ZrX8arlaCUQ71aS639GDYxzuU9zOBqjCHw14iDxT7PP1keWcZUYyYfyrqNbL1/E4VORc1OI4Xu1G016rCt7SBAQv1q/nx4Jc/sqOaR953HhML0VKxdO6WY88fk87Mta5hX/H70PrbClWS2r6Mm2txtWJPn8rEjeKhLWJOn5ePTsqlVlYyj52lYuZRwPd9mGT9kr/UzxpqfIVMbk/gLE0IIIcRp4fTttiiGnYgK45GxpqecNZEV1Dk1TLc+ONhLAWArK1nJrxnPXPLNjw54UOOoGHX2UkYxnQrOH9B7d9AxuJzPkUUBB60/0Oxs4qD1Ew7YDzGGM7mZn3EG1w2JoKaFGlYY32Zl5BluzLiZT/nukKCmBzFvNQWu7JRfd1vbAUZl+ijMiK9q55kDu/nR6h38z+VTuWJS+qpLNE3jOwunsbm6hcf27ujz+OKjYU1dtLnb5/NcPhpjrd3eZ6xRTsTsu3mzjwKu55v4KKTS+jkBJz0Nn4UQQggx/ElYI4aNiIrgRiprTiUBJ8Cy8H+5wD2ffAb/J8wb+S8v8EemsxCf+V40LbFmqalQ4yynlTou4COD2v/FTSZX8RUswlTavwPger7DpXyKTIZGk+VKXuE/fJVW1cwd2V9nofea03riU1/qoy0UuFIfZO11djOrIL7QZUdTPV99ZQU3TCvhixf2f0x3X84bm887phTzqy1ridhWr8dmmi5y3R5qeglrAnaYmOo6YWqcWc5+ew8K1eeavORwLV+nkHIq7V9Tba/AUb2vTQghhBCnH3lXK4YFBwuLmFTWnGKeCv8HpRzKozcP6joUinX8g1d5mNm8C5d5I9ogfOiPqHpqnGeYydXkUTrg9z9ZNiO4lm9wGZ/hRv6XYlI/RSgZFlG2uO9jBb9kqmsGd+d8j3Izviayp7O6WAuF7tSGNbZyeLuhhlkFfW+BCloxPvvy44zLy+S3N5w1YBO6vrVgGkdawjy4Y1OfxxZn+qiNNnX7nN9sr7wJqJYuz401ymhVLbTRENea3GRyNXcxhfkccf7NPuuHtDhb4jpXCCGEEKcHCWvEsBCjfWS3V8KaU0a1fYQ1keeYxU1kkPo+GvFycHiBP/Imj1OqL0a5FgzamOeg9R88ZDGbd6b1PgHqsYhvslo+Y5jABb2OJE5GjDCH2UIV2whQh0PPI5NP1MABnta/zrroi7wv8yN8LOvTZGipb5p7qomoCG12OOWVNftDNQQti5lxhDWrD+9jT2OQvy6eg88zcFvoJhb6+NDZY7l363qao+Fejy3J9NHmru72uTxXe1jT4nQT1pjlANRSGfe6TNxcwEd4Jz8kg1x227+mMfYnIqo27mukgqNitDo7sFXvvzdCCCGEGFiD33BAiDjEaH8TKZU1p47/Cz1Mnp7HDOeqQVuDjcXz/IY9vMpY4xYK9IFt5nuiFudt9rKey/hsWqdc7eIlVnMvPkawgM9RwLi03auDQhGgjmp2UM0OWoztHLT3d9oyoqOTq+eRrxegWSPwUYiPAnyMOPprIZW8zMs8QCEjuDPn24wyep68IzprdpoAKEhxZc22toNowPT8EX0e+3LrFqYVZTNpROr75vTlrksm88ibB/n74dV8puzKHo8rzszizfqabp/rCGtaVddtUn49j1zNT62q7HOE98kKGMc7+B8qeYVXeJCw9T1G6AsZqV+Z1p5ZQXUA01rPLl4iQhsmHio4H2XMIUsbP2ihtRBCCCHaSVgjhgXrWFgjPWtOBdtib7MptpHL+RwmA9vAt0OMMMv5OYfZQplxG379zEFZB7T/ZLvWXsoopqVt+pNC8TpL2cC/qWAuTRziP/wPc/kgU1mQ0v44Nhb17KWaHYRd26i0dtKsmgAo0kdSbkzkIs9llJnj0dFpcOppcOppPPprg1nLfmc7TU4DDk6na1/gns+izPfhlj8LEtLsNAJQmOLKmj3620zy5+Nz9f59bDsOK3bW8MHZfY/QToeR2V4+M288v3hxF+8c0cqorO4Do5JMH08f6L46pmMbVHeVNQBjzTIiahck0X5GQ2M8cxnLWWzkv7zpPEGrs44Rxk34tdkpC04sFaTReY2ws4469pCBnylcThlzOMQmtrOaVns1uYwiSz+PfP08XNrgVT4KIYQQpzMJa8SwcKyyBqmsGe4c5fDv0MOUGxOosAdn2lGEAE/zY+rZR4XxabL1KYOyjg41zgpaqeUK7khLU2GLKKv4PZW8Qol+Azn6lWRjUWw9zov8mUO8zcXcioespO+hUBxgI7vNx9hr7SZGDBcuxqpyznVfQIU5gXJzQreTmkqM7vvzOMqhWTUeC3J8Wg5TXNOTXuPprFm1hzWprKxRSvFy1UGuHFPR57GbGmqoC0a5YmL6pj/15TPzJvDn9Xv5w97n+e7067s9pjjTR1MkTNiO4jU6B1CmbpBtZNDqdN+AeKxRzqrIsyhU0t/HLrycw81MZj4v8yB77T8yimnkmO8kQ0uuj5VSDgG1A+z17OFVHGzGchazeSdjOQud9kbqI5nIWdzIYbawnVXscZ7giPNfxjIbwziHHG36oDRdF0IIIU5XEtaIYaGjZ438NH14i6kYT4b+j0P2fm7ke4My7ShIE8v4IW00UGF8gSy9bMDXcKKoaqTGeZqZXJWWiVj17GMN99HAQcqNW/HrswHQcOFxvZNyp4xD9kP8m7u5iR/gxZfwPRwsXnH9lM2xjYxnEtdnLKLcnMgYYxymlvxfM7qmk6cVkKcXJH0N0a7JaSRDd5NppO7P0MOReo4EA8wt7ns72urD+8nLcHHO6MGbJJbtMbnrksl8ZdkmPlBazyR/16+rY+O7Y82MNrpu7cpzZdPaTYNhaO9b0xZuo5Vacui7h09vchjJlXyJA2xkLX/jiPUDzuN9RFwXJHSdkDrCIesPtFJDDsWczSImcVGPE900dEqZQSkziBBgF2vZxnPU278nEz+jjI+QrQ+NRuNCCCHEqU7CGjEstFCNhkau7h/spYgkbY5tZGnwH9Q7tVzrvYmicPrH9p6slVqe5AdYhCk3v0iGNmrA13AyzVqDiSvlTYWjBFnPEt7mWXIpZoJ5B5la1/40Pm0KWeQTI5x0E+G3eZa3Y2/ysazPcJZrjvS6GIKCWbsYrRWm9JrVR6cmjc/tO4DZFtrHeWPyMY3BnWvwobPHcc/q7fyrcht3z+4afOR52qs3W61Qt+dnGh4ise4b8Y7Q26uGAtT1O6zpMIYzWcQMXuKvrGcJU9WZmFr8FXA6Jhnk0EoNUdoI0UyYQI9hzYkiBI8dD+AhG32Qtq0KIYQQpyMJa8SwUM8+RugjpWfNMFRjV/Gv0D/YHHuTyeY05jtfJi888I1hGznIk/wAAxdl5pfwpPiDazIsFWAbzzOLa3GTmolGCsVOXmQdDxEjTIl+AyP0y9C7qXBxVIw6636CNHI930lqDUGaeIOlXOi5lNnuxBqrioGzve0gM3ypbSYdcWIAZBiuPo/dWtPKe89MfeVYolyGzg3TRvHU9u3cddY89JOCxUyz/bV0vLaTGZqO3cPkssyjU8mitKVwxWBgcg6L2cka9lo/ivv7NI/R+Mz3Uer6EvnqMPXOWnY6L7CJZRQxgcnMZzzzOjU0t4iyl9fYzioOsRkXGYxnHo4xh0xtHJqmoWJP02D4KdAHZxurEEIIcbqQsEYMCxFzL6Xa4L/RF/GLqihPhf/DyvDT+PU8FnIHZdacQdn6VMNunuL/kUUeo8xPD5mGmbXOKhSKGfQ8nSYR9ezjJf5CFdup4HwyzOtxa93/BF0phxbrQWrYzbV8gzyS64exw/13jJjBdd539WfpIo0anXr2h2p458jEttD0pSPQ8Bq99zFpiUY43BpmyiBMgerOjdNH8cfX9rK1sa7LFCuv2f62KOx0P9re1Azsk5ped+gIayIpDmsAMsjlYm6jmu1xHR8lxC5eZIKaQ7Y2mQxtFKONRTj6jbSot7Ds13iRP/Eyf6eC8481GO6YDFXMFMYat+DXZmOc8EOSsKpmK4+RYeeSp52NrvUd1AkhhBAiORLWiCFPoThkH2CB55rBXoqI067Ydh4K/okGp4EzuZEznOsHberTYd7mGX5CHmMYad6e0BaCdLJVmEZnFVO5DC/9a/pqEeVV/nl8y5Px+V6bJiuliFn/ZS+vsZA7KCa5HhRVbOPV6Frel/kRsvTEe92I9Gl0GtgYXc924yU2B/bh0V2cmT0+pfc4FtaYvb+V2NncAMDUoqER1kwvav9+OxBo6RLWdFTWhHuorDE1HVt1P+7J0EzceNIS1gBM5EImcmFcxyoUDewnaq8BffKxx3XNxK/NBn02OaqRBudljjjr2MFqMvCTq19AgT4Pr9Z9I2jNegk3GYRoolGtp0BLz/Q6IYQQQkhYI4aBAHWEVJDRplTWDHVhFeK/oSWsiaykwpjIfL6CP8mKjVTYy3pW8iuKmUKB+VEMbehME6t3XiJKmFlc26/rRAnyDD+hhl29bnk6UY3zLId5lov4OGXMSeq+DjavG39mHBXMdV+c1DVEatXbtbwRW892fS1b2vZjagZn50zgS2XvZG7eVHLN1AaVESeGoWm49N4ra3Y2NWBoGhMLh0ag589w4TV1qoOBLs95jaOVNXb3lTWGZmD1sA0KIFPLIqLSE9YkQkNjJteymj+QparwasVdjnFreRQb16D0q4hQjYeiXqc9WaqN7azmTK6jlkoC9irytfOlR5UQQgiRJhLWiCGvnn0AlBpjB3klojdbYpv4R/AvtDkB5vEhpttXoCXZsDYVdrCG1dxLGeeQY75/SJXrO8qiyXmOiVyAj+R754Ro4Sn+Hy1UU2F8Hp/ed+VEUB3giPNfzuQGpnJ50vfewnIO2wf5Sva30LXBbRp7Oquxq9kYW89W7SV2BA/h0kzOyZ3EV8vfzfn+KfjMjL4vkqSoEzsWbvRmZ3MD4wuy8JhDY+yzpmmUZHupDnUNVUxdx6XrPfasMTUDLbPnMCZTzyRixxfWWER4iyep4Ly0hNoTmMer/BOsl8DV8zZFTdPxUtLn9eqcFwDFNK6ggf08yffJV9vJ1nqu4hNCCCFE8iSsEUNePfvI0rLw99B7QwyuNifAv0L/ZF30RaaY0znLuZ1suo68HUibeZq1PMBkLiXDXIQ2xMKERvUqbTRwBtclfY0A9SzjB0QIUG5+gcw4ejop5dBoLcHPKOawKOl7B2niDW0J81yXMM4sT/o6InmbYxt51nmY3cEjeHQX5+ZOZnHxRZznn5LS8dy9CTuxPrdAAeyNHhkyW6A6lORkUB3sPlTJMFy9boPqKciB9sqaeBsMr+XvbGMlr/NvZnIVs3lnyhqNAxi4mM4VvMF/mKauxNSSr2xylEWzs5qJXEQGOYxiOgWMI2Kv7nXLpRBCCCGSJ2GNGPJs115K1TgptR6CNkbX80jwb8SIcTG3MdmaPygNhDsoFBv4F6/zL2bxDnTzmiH3daOUQ7O9kjLmkEdyU7GaOMIyfgBAmXlHj/0lTlav1lLDTq7jm+j9+ON/l/sf6DGN6zMWJ30Nkbx1kRd5MPgnzsgp55vj38c5uZPJMAa+J1TUiZERR2XNttoWPjqnLP0LSsCobC9HWhu6fc5rmj02GDY0HUd132AY2sMay2yF7tvaHFPJK2xjJaP1d2MTZovzDDt5kfN4LxO5KGVVidNYwBv8hzpnDcVG8n3fGtV6gjQxk6uB49usVvE7stQRMrS+K3OEEEIIkRgJa8SQd9DezyzXWYO9DHGCFqeZR4N/543Ya8x0ncWs2MfJIn9Q16RweJm/s5mnKdFvQNevHHJBDUCzepNmDjOfTyR1fh17eYof4sFHqfmZHqc9ncxSAWrs/zKJiylhalL3BqhmB69EX+A9mR/CJ02FB9zz4WdZGnqIqwvn8IWymzAGsWos7MTw9BHW1IeD1LZFmVbUvybaqVaS42XD4aZun8s0zV5GdxtYqreeNZlUO0d6vXcLNazhfio4nxx9Ppqmka+fR9h6glX8gS2sYB4fpoj+N4T2ksMkLmavs4YifWFS20GVUrTZqxjDmZ0C5vHM5VX+AdaL4JLgVgghhEi1obU3QIiTxAhR59RIv5ohQinFq5GX+N+Wu9lpbeMyPsv5sa8MelDjYLOKP7CZZxijv5di46ohGdQopQjYKyhhGiOZmPD5VWzjCb5HFgWMMb8Yd1ADELWeBBTn8b6E79vBwWGD8WfGGOO4wD0/6eskI6zCRFVkQO85lCilWJfxN5aGHmJx8UXcUfbOQQ1qIL6eNTubGwGYMtS2QWV7OdISRinV5Tmv0XNljdlnWJNFUAV7fN7B4jl+jYcsfOa7j/055dbyyXHdwkTjDiyi/If/YTX3EaIlwVfW1UyuIUQzjWp9UucH1Hbq2cdMOlfmGJhM50p28gIx1drvdQohhBCiM6msEUNaKzUAlBiDN1FIHLc6soIloQeZ4zqfqbGPkNHPkdOpYBFlJb9mP29QZnyEPP2cwV5Sj2I0U0slOYxkM08zkYvwEN+Env1sZDk/p4jxjDBvxdDiaxyrlMK0nmc7q7iQj5FBbtLrP+R9lAPhfXw5+3/S3lTYUQ6H7ANstTaxJbaJSmsnXi2DO7K/TrExKq33Hor22Lv42+GVfKT0Ct5XMn9IhJERJ9Zn0+A9LY0YmkZFfmonUfVXaW4GIcumMRIm39v5eynL5abNCnd7nqkZxHoJazyal7AK9fh8hCA17GK0/p5uv4d9+kSytDuJ2r9mu3oeDZ2L+Xicr6p7fkZRQBm6vQX0xEdtN6u32iv5mNHlufHM5TUeoVVtJV87t1/rFEIIIeKxePFizjnnHO688864z1m6dCn33ntvp8cWLlyY0DUGg4Q1YkhzaO8N4BpCk3xOV/usSv4d+ifzPQuZFPnoYC8HgCghnuUnVLOTcuMT5OpdP0wMJW7NzwTjC9j2Wl7mQdbxTyYwj6ksYAQVPfb72c3LPMdvGcMZ5JkfQtfi60/iqCgB62F28zJzWNyv6U+7eInnwv/leu8iys0JSV+nN61OC9ust9kSe4utsbdpVc248TDJNZXz+AB7tBX8JvATvpz9Dfz64FZzDbQq+zAaGu8uvmhIBDUAjlKYfYR29eEQBZluXMbQKuSdfnRb1tamOi4o7tycuzTLx8G2qm7P8xleAnbPYUxURfBoHuhasAOAmwwKKafFWUW+fh6G5u30fJtTSaP9LwJUMoELmEPPU5zi1cwR6tlHpnFBUufnaDOo5XmOsJVRTOv0XCXr0DHJ1ib3e51CCCFEd5qamqisrOSRRx7hvvvuo6mpiYqKirjPX7hwIQ0NDSxZsuTYeU1NTdx6662MHz+e5cuXJ3S9gSRhjRCiT0GnjT+1/ZbRxljGR24Z7OUAEKaVp7iHJg5TYXwWn574tqLBkK1PBn0y09U7qXfWcshZy3ZWUUg5U7mcCVyAi+Mf4Laykhf4ExO4AJ/5HjQtvvHHMdVMtXU/DRxgAV+ggvOSXnM1O1nDvZznvoArvO9I+jons5XFHmv3seqZA/Y+FIpSYywV6mLGcAYjmYQRaw9ry5xzeEr7Jr9t/SlfzP4amfrQqtZIp3qnjkJXDi596Py17aDQ+wiOmiJhCjIHvvlxXyrys/C5DbY0dA1rxvhyebnqULfnZZuZBKyew5qQCuHVep7oZODicj7Hv7mboPUvsl3vB9q/X6PWMnawhgLGcT3fopjUTFnaxNN4yU668iVbm0oeo3mLJzuFNQ4Wb/NM+59ZWvIVe0IIIURPNE3D7/czZ84cFi9eTEVFBRs2bIj7/MWLF7N+/Xr27NmD3+8/9rjf72fJkiWcffbZLFy4kN27d6dh9f03dN71CSGGJKUUDwb/RFAFWej8D8YQ+GOjlt2s4veEaKXC/GJcY6uHGpeWS7FxNSP1K2lRb2PZr/ACf+IVHmIiFzKVyznAm7zKP5nOFbjMG+IeQR5UBzho/QGF4nq+yYh+NCoNUMdz2k8Zq5fx3syPpKyqo9Vp4Wet36fGqSJL8zHVnEGFfRWjmUWm3X0vHh8FLFBfYxnf4g9tv+Azvq/gjrPKaLiLZe6nOBp/j6KB4Cinz+lvTdEweUMwrNF1jZnFuVRa+4HODezHZedSGw4SsiNknDQGPdvMIGCHcZTT7VbAkAqS0ccWxVyKuZCP8Ty/ZYwzDluFqXWWoWNwIR9jCpehp6ilYJgAO1hNob4g7oq8k2maRrZxKfvtv9PEEfy0T36qZB1tNKCbF6VkrUIIIcTJTu4tt2TJkrjPXbFiBUuXLuXOO+/sFNSc6O6772bx4sXcdddd3HPPPf1ZaloM/qcuIcSQtiqynDdjr3MFd5BD0aCupYEDrGcJe3kNP6WUm1/EqxUP6pr6S9N0crWZoM8kW9VT57zEXudltrAcgNm8E8dcEHdI0uRs5ID9V/yM4kq+3K/mzzYxXjR+hku5uM33uZRtR4ypGPcFfkVIBbmeb1OkJqLH4vtwmkcpC9SdLLO+z1/bfs/Hsj6DEWe10XBWFW2kxDO0tn4pFHofX5ZBs5l8c2huY51ZnMtzu2tgVufHx/rat0gdiTRQkdl5JHW20R7EhFSQLK3rNLSwCpHRS2VNh4lcyCE2scN+CA2NqSxkDovxktoJa9tYicKhUL+4X9fJ086hlv+ymWVcyMdQKN7iSUqZSYYmPeWEEEIMPR09ahYuXNjjMYsWLQLgvvvuG5JhzdDaRC6EGFL2Wrv5v9DDXOa5kjIGr3FvM1U8x29Yyl3Us5exxi2UmXcP+6DmZG6tgFHG9Uwy/5dy4zbKjI+hXAvjCmqUUlTZz7DHvpcxnMn1fKvfU7p2eh7gsH2AW7M+Q7aemmbSSin+Efwz++29XKa+RDGTE64iGMkkLufzbIpt5JHgA91O9DnVVEcaKfYMscoaVJ+NpuuDUfKHYGUNwBklueyubyMQ6zz5aVx2+5aeQ+H6Ludkm+1hTZtq6/aaIRUiGItve94FfIQzuZF38kMu5CMpD2psLDbzDBO5EJfWv+9fXXPh1y9hO2sI00oV26hjD15jfmoWK4QQQqTY0qVLAfrsR+P3+2lqamLFihUDsayESFgjhOhWmxPgT22/Y7QxjvLIBwZlDQHqWcP9PMqXOMwWRus3U2F+kwJ9bty9W4YjTTPI1c4kT58T1/GOitFm/ZMjzn+YzTtZwOcw8fR9Yi92sZY1kZUsynw/Y83yfl3rRM+Gn+DV6Fou5nZGMinp64xlNhdxGy9FV/Nk+P9Str6hKKZi1MdaGekeWmGNUn1X1jQEo+RnDM2wZlZJLgrY1tg5lMn3ZJBlujgcaehyTrbZXjUTVIFurxlSQdz0XVkD4MLLudxMAeMSW3icKnmZII1gXpiS6xXoFwGKLazgLZaRRynZ2tSUXFsIIYRIpRODl77Cmo7nE+mFM1BkG5QQogulFH8P/pGQCnKl880B71MTpImN/JetrMSFlxL9JkboFyfdc2E4infbk60i1Ft/ooptXMZnmEByE19O1MQhXuQ+5rjncqH70n5fr8Mb0dd4LLyUa7w3Mjrc/3VO5hJCNPNU+J/k6Llc7El+2tVQ1ujUo1BDrrLGkxVEqd6/ThtDQ7eyZsqIbNyGzpbGWuYUHd/upGkaY7NzORzpprLm6DaooAp2e82wCsUd1qRT+zalZYzhDDK01Iy6d2nZTORiNrGMCG2MNd4/ZCaTCSGEECfqCF566lVzovz89kr01157LZ1LSoqENUKILp6LPMOm2BtcwZfIZsSA3TdCgDd5gs08jYZOkX4VI/TLuoy3Fe0s1UaNdS8NHOBq7mIU0/t9zRhhXtB/Tj4FvDfzwyn7MLbP2sMDbfdxtus8SsPvTsk1Ac7gOrI89Twa/Ds+LYfZ7sHbrpcu9U4dwJALaxylMHr5+og5Ni0Ra8iGNS5DZ1pRNpX2Pk5uXDPWl0ND9HCXczq2QaWisiZRlayjmh1xHRslRD178RufS+kaNPMCItZKvOSQl+R0KSGEEKe2UCjEwYMH+zxu9OjRaVtDfX3XH7j0pampKfUL6ScJa4QQneyxdvGf0KNc7rmKskh823D6K0aYTTzFWzyBg80MrsI2L8LUTp/RzImKqWYOW7+ljUau5RsU9WPiUweF4m33/dRHa7kz59t4UxSSNToN3Bv4BaXGGM6IfarPCUKJ0NCYEPkQra4WHmj7Az7NxyTXqbU1o8GpQ0djhGtojUd2lMKl97ybuikSARiy26AAzijx8/qhRk6YSA3A2Oxclu3b1eV4r+7G1AzanK49a2xlESWKm96nQSUjTAvP8zu8+HDFef1yziVbS8347w5erYSZXEOTkYeeoobjQgghTi3Lli1jzJi+J7Wms+dgIsFLR/VNQ0PX7c+DTcIaMSwo5Qz2Ek4LzU4Tf2r7HeOMMsoj70/7/YI0sYPVR8vqg0xjAZiXomk58odTL2Kqlf3Wz7GJcT3fIo/U/GRiJy/wanQtH8q8jRIjNRNempxG/hD4OTo6F9pfxiT1H9w1dM6IfZqA+f+4N/BLvpLzTYqN1Gz9GApq7RoK3bmY+tDq0+Qohd5LZU1TJAxAfubQ/VA/qySHhzbuJ2JbeIzjf+qM9eVyJBgg6li49eOPa5qGz8gg2E2D4ZBqf73pqKzZynOAosK8G7ObKVQDyXRdR+GgrkAIIUSHVkvnzcah8UOR2iHUDjeZ4EUqa4RIkI9CvHhZGXmaW8zbBns5p7Q6u5ZfB36Eo2zmOl9AT9MfDw42+3mD7axiP2+gYzCBCzHNy3FpBWm556mm2dlIK7XczM9TOk49RAsaGn49NSOiN0bX84/gnzEwWajuJhN/Sq7bHQOT860vUaV9mefCz/C+rI+k7V4Dqd6uZa21kgvz+r/FLdUOtbUyt7jnoLApejSsSXNljWU7vHG4CV3TOHt0YlvFZo/Kw3IUbzfUMnvE8b41MwuKcJRiQ8tOzvd3rtQqcucSy9wHdudr2VgAGKQ+nKplNyVMHfSgRgghhOjLNddcc2xs9mDp6EMz3ElYI4Y0L9mcz0dYFf09011ncLb7vMFe0inpsH2Q37T+GJfm5hr1XXxp+LlpE0fYzip2sIYQTRRSTqn+bvL0ObLdKUEeZx+FlKc0qAHatzeYb/Dntt9zd853ydX9SV0npEIsDT7IK9EXOcN1NmfEbsNLakZ/98ZNBmXqQt6IreTd6oOY2vD+K85WFg/bvyLbyOCTY64d7OV0Uh9tYU9rE5+b1XOPoMZjlTWpDWuUUuysC7Cqso4X6/az6u1WWoIO2Rk6lV++BpcR/0/2Zhbn4HMbrK890imsmeovYLK/gDXhFzmfzmHNxKxStgT2w0m7BDtG0KuTU5wUsInRqukD2EFMCCGESE5GRkZa+9HEI57GwsPB8H4nK04LE7mIFtfr/DP4VyrMCeTpUn2RSvusSn4b+Al+PZ9L7a+ltPohRphK1rGd56liO26ymMgFWOYcMrW+97KKrpRSHGEr45mX8mvr6JxjfZbHtbv5S9vv+azvTowER6TvtnbwQNt9BJxWLuF2JsUuSWmPmr5M4EI2qsd4O/YWZ7hnD9h90+GVjAfZ1nSQX0y9DZ+Z+j4o/bEpsBeAc4p63m7WfLSyxu/tf6VJdWuY1XvqeKlxHyvfauFgfQyXqTFvUhZfvr6YkjwXt/5+H68dbGTeuPj/jjANnXNG57OpbQ9w/OtF0zTeVTGFH298mdsL2sh1HQ+UJ2aW8lTteqKeKO4TJtQZtH+vOKR+265NDH0ITJkSQgghhoOCgvjfC3RsfxqKAY+ENWLI09CYGbuVSu0uHmi7j8/57kLXhs6eyOFse2wL9wZ+Sakxmovsu/CQuhL7evbxFP+PIE2UMoNxxkfxa2eia640dC05fUSpp40GSkht49AOmfi5WH2OJ63/5Ynwv7khY3Gvx1vKotLayVZrE1tjmzlg76PCmMBCvk4OI9Oyxt7kM4ZSYwyvRdcO67BmR2wr/2xcxUdKr2Cab9xgL6eLt1r3UJadS1FGz1VxTZEIOR4TM4FKlxNtONTIkk2HeOHwYTbvbw9+zijL4N3z8rl8VjYXTfWR5W0PSGxbcdffD/L87tqEwhqAuePy+e3LlThzOvfgub5sEj/e+DIr6zfyzuLjo+YnZZXi4HDI3k+5OeHY47rWEdako7LGQkvD9iohhBDiVNQRvMTTh6ajv01FRUUaV5QcCWvEsODBx4XqUzxpfZ+VkadY6B1aWwKGozejG/hz2++YaE7hfOsOXCfX9PdDFTt4mh+RzQjKzDvwaFK8nyoBtRPQKGZy2u5RwlTmcDPPhv/JeHMiM1xnHntOKUWNU8XW2Ga2WpvYEdtGlAjZWg5TXNOZaF9HhX0+OoPXDLfUvpA37KWEVJAMbfhVIwScVh6M/I4zsyu4ueTiwV5Ot7ZFdjCnl6oaaG8w3J8tUB9/bB1tEYdrZufy1XeWcNmMbEb6uw8sDEPjspk5vFB1CBIMMs8fW8APnt/OjqZ6puQd3wKa783g0tIynmt9uVNYU5YxElMz2Gft6RTWGGneBqUP8219QgghxEA5MXhpamrqtWqmI9CRsEaIfhjFdC73XM3joX8x2ZzOWLNssJc0bK2LvMiDwT9xhutsZsc+h5HCPwoO8CbL+TkjKGeEeRuGNrS2bwx3GfZ+8hmT0iqo7pzBOwi6tvJA23183vdVapxqtsU2sdV6mwanDhOTCnMSZ/JORjOLAjUWLTo0Kt4mciHreYRXI2u5xLtgsJeTEKUU/9F+S0xZ3FXxbowhWEXYbLWxo7mBj087q9fjGqPhpJsLh2I2e2qi3PeJcXz08vh6aC2Ylc2n7t9PUyiGPyP+KpQ5pX5cusb62iOdwhqAd1VM4fbVy9jZdpiJWe3hlFs3Kc8YSUvmVrAXHju248/R9FTWxDClskYIIYSIy5w5c479/4aGhl7DmsrKSgAWLlzY4zGDRcKaQbB06dIuHbIXLlzInXfe2e9r33777TQ0NHDzzTcze/bsYwlhU1MTlZWVPPLIIyxdupTly5f3mh6mc439MS7yHkYZb/PXtj/w1Zzv4NY8g7qe4ej58LMsDT3EPPclTIvedqwpZipU8grP8RtGM4s888Pommx4SrUjbGMMs9J+Hw2d2bFPc1i/mx+2/g8AI/USRjlzOJdZlDAVl5W6aqxUyiKfWa7ZrIms5GLP5Wi9jJcealZHVvByaCv/O/EWCt3pb8qcjM2te4He+9UAhF2N5Cf5Z8Du+gBKwZTS+L/GFszKwXHgxb11vGNqSd8nHJXpNjlzlJ/Nod3AzE7PXVQylhHeTFbUbzgW1kB7k+GtgQOdmgx39GZKV1jjkrdsQgghRFz8fj+zZ89mw4YNVFZW9vi598R+NQsWDL0f8Mnf/ANs4cKFNDQ0sGTJkk5Byq233sr48eP7DFH60tDQwNKlS1m6dGmPx5x478FYY38YuDjf/iz/4W7+HXqY92R+aFDWMRwppVgW/g/Lwv9hgecayiMfSGnj1208xwv8kfHMw2e+Fy3BxrSibzHVRAtVlHDzgNzPi48Fzt1Us5NSpuNzUj8lLF1Gx65mI99jh7WVya5pg72cuBy09vOf8MPcVDSvy7jooeSt1j2MyvRRmpXd63ENoRilOckFejvrAgBMTiCsKR/pYXyxh1WVtQmFNQBzx+azZNMh1CzVKdwzdZ2FY8pZc3gTn1DXHntuUmYpT9e+3qnJsKZp6BiotDUYlsoaIYQQIl533303ixcvZsmSJT0GMY8++igAt91220AuLW5Dr776FLZ48WLWr1/PypUrO4Udfr+fJUuW4Pf701p+tWjRInbv3s2iRYuG7BrjkUcp5/IBXog8x6boxkFdy3DhKIcloYdYFv4P5/IeKiIfTGlQ8yaPs4b7mcoCfOb7JKhJk4DaBUBxmpoLd8fPKCZzSVrGuadTCVMp0UtZHVkx2EuJS71dxwPRnzPWO4Jbx1w12Mvp1fbYjj6ragAag1HyktwGtaMuwIgck4LsxH6mtGBWNqsPHkn4fnPHFXCkNczBttYuz11WWs7Bthb2hKqPPTbxhCbDJzLQ01ZZo8nP14QQQgggvsbBixYtYtGiRdx3333Htjqd7J577sHv93PPPfekeIWpIWHNAFmxYgVLly7ltttu63HP3N13301lZSV33XVXv+61ZMkSli9fzj333MM999zD8uXLaWxs7LOiZiDX2F/TWMgM1xk8GPwjLU7zoK5lqLOVxd+D97MmsoIL+RhnckPKrq1QvMrDrOMfnMVNuM2b0IZgj41TRUDtJJeSlI5XP1VpaIx3ruSt2AYanPrBXk6vquzD/Dr0XRTw7YkfwK0P3QqKgBVmS2NdXGFNQyiadIPhPVZNQlugOiyYlcPOIxH2NwUTOu/8MfkArK853PW5kaVkmS5ebtp67LHyjGJMzWC/tbfTsQZG2qZBSWWNEEKI09mGDRtYv3490P65tacA5kT3338/CxYsYOHChZ2Ob2pqOlaA8Prrr6dnwSkgn6oGSEf/l96qUjoqXu67775+3auiooIFCxZw5513cuedd7JgwYK45sYP5Br7S0PjzNgn0NB4oO1eHJX6svNTQbVdxS8D97A+uo7L+CzTSO1ezK2sZCP/pVR/F7iuGFa9QYYjy9mVtpHdp6KJXIQbD+ujLw/2Unr11+jPyDK9/GLK7ZR48gd7Ob3a2rYfR6k+wxqlFI2hGHkJNPo9UWVVhPHFifcku2xm+9astfsSC+jyMt1MLvTxZn1Nl+fchsHc4tG8Hdt8/DHdZJy3iMP2wU7Halo6K2ukYlEIIcTpZeHCheTl5aFpGmefffaxiprKykrGjx+Ppmnk5eVx++23d3u+3+8/VsRw++23s3jx4mP/LFy4kN27dw/JKVAdpKZ2gHT0kOnri8Hv99PU1MSKFSsGvMnRcFjjiTLxc7H6LMusH/BYaAk3Zg5MH4/hwFY2z0We4cnQv8nV87iWb6T8Q76Dw1s8QQVzyTWGXkOuU01IHaaJw5zH+wZ7KcOGCy/ZejYhFRrspfSqIdbK+0supWCINhQ+0e7gEbJMF2XZub0eF4hFidoOI7KSawJv6MkFv/4sE69bozkcS/hcr8tAKdXtc7qm4daNLo8NXECtIIVbV4UQQojhYPny5Sm5TseWqOFGwpoBsGLF8Z4JfQUhFRUVbNiwgQ0bNgxoEDIc1tidUmZwHu9neeRB9ti7KdALydMLyD/2TyF5ev4pPzUqpmIctg+y397LAWsvu6zt1DhVXOq5krLIezBJ/evfz+u0UE2x8eGUX1t01eS8jptMRg/AJCghelJt7Gayv6DPkKI+3B6QJRvWZHl1WkPJVah4TJ2IlXi1ZThm4zG6f1tUFw6S73RuWhxyonjoulUrlf3AhBBCCHH6krBmAGzYsAEgrq1I+fntJfCvvfZaOpfUxXBYY09mcg06BhFtGzV2NdtjW2hWTSiO/4TUp2WTrxccC3JG6CMZbY6l1BiDV8sYxNUnLqaiHLIPHA1m9nHA3sth+yA2Njo6xcYoys3xnB/9JCMjE9O2jrdYRjGTydLL0nYP0U4pRdjZSBlzMKRvhRhEO5rrmV3Y96Sl+kj/wprsDIPWcHLbWz0uLbmwxnLwGN1vNaoLBRnv83V6LGRH8BidX197ZY6ENUIIIYToPwlrBkB9feLNLePpcN2bE5sANzU10dDQwIIFC7j77ru7DWQGco0HDx7s9fkjRxKb5KGhMYOrIHZ8goqDRYAGAtQRoJ6AqiVg1xPVatkS20SdsxL7aF+BEfpIRhtjGW2MY7Q5ltHGWHI1/6D3X1FK0aQaOWIfoso+xGH7EPvtvRyxD+Fgo2NQYpQy1ihjrH0ZI6ggn7GYtps0tEzopIbdVLGNcqP7/aEitcK0b4E6nw8M9lLEaSzmWOxubuK9E2f0eWxduL3B74is5BoMe8PZVIcbkjrX49KI2MmENTbeHipr6sMh8vM6jyoP2VE85smVNUqiGiGEEEKkhIQ1AyCRUKMjSGloSO5NKsAPf/hDmpqajo3a7rB48WLOPvtsli9f3mWr00CuccyYMUmdlwgdkxyKyKGo8xNW+y82Fk0cop691Dn7COh7WBFZRujoBwyfln0swBlllJKl+/CSQYaWgVfLIEPLxKtloKdg8pFSikbVwBH7IEfsw1TZh48FNGHCALhwUWyMItseTzkLKKR8wIKZ7mziSbIpIleTLTkDodF5HQ9ZlDJzsJciTmMHwrVYymFSbkGfxzaEQxialvTobp/HpLUxucoar0snaiX+B2PYcvCaXStrQlaMNitGnnm8skYp1b4N6qQttu31nBLXCCGEEKL/JKwZAMmEGv2trOmuGdOSJUsYP34848ePp7GxsVOQMxhrHEwGJgWMo4BxTAKw2sdQB6hrD3DUPmJaJa/H1rEi0nPVkRvPSQGOFyOBb6uAaqHKPkLkaCjjxk2xUUqJMYoi+1zyGE0epfgYgW4PjeFtAeqoZB2l+iIZ0z0A2rdAvUEZ5yT0tSVEqlUGqwCY7O97YlV9OERhlhs9yUbBPrdBIJxkzxqXRjjJnjVuvev3WN3R/jt5ruNhTcSJoVB4tM6VNUoaAQshhBAiReSd/wDo6PEyEO65555eGwQvWrSIH/3oR9x1113HRnXDwK7xwIEDvT5/5MgRzj333AFazXEaGtmMIJsRlHEOHB0mYhEhSvDoP6FOv8YIEVVBoip07DGH+D8keBjLmcw9GsqMxkcBmq0PSrVMvDbzDC685OtzB3spp4UQB2mminl8eLCXIk5ze0JVlGZlk+3uuw9Ne1iTfGNzn9tMvmeNqRNNcBuUUoqI3X1lTV2oveIyz3V8G1TIibbfq5vm7RLVCCGEECIVJKwZAPE07U2VviY5LVy4kB/96Efcd9993HPPPcfWNpBrHD169IDdKxVMPJh4yCRvsJcy6KKE2MpK8vSLMLSuU1BE6jU5r+PBRynTB3spKXeErdSzL+7j8xnLKKalcUWiN4e1vUz2970FCqDN1ZB0vxo4ug0qyWlQXnfiDYY7KnE83VbWdIQ1xytrQnZ7WNO1Qb1U1gghhBAiNU77sKapqYm8vNR9CJ89ezavv/56p8cKCuJ7c9uxHkhfeHJimLN+/fpjo7eH0hrF0LWR/+JgMUKfP9hLOS2098XYSDnnoJ9if1w3cpAn+D46Ohp9b6dzsHDh5YPci073E3tEem1vquddFVPiOramLcLonOQDXZ/bJBJTxCyFy0ws/EimsiZytMeNp5vKmvpwCF3TyDEzjz0WdiLtx3fTs0ZGdwshhBAiFU6td/9J8Pv9LF++PGX9V7qrbOkINeK5R0fvmL4qZJJ14nanDRs2HAtrhtIaxdBUzQ7e4gmK9Ktwa1Jl1CGsqvBqxWm5dogDtFDNPG5Jy/UHS4Q2XuRPZDOCcvNr6Frf48jbnEp22D+mlt2MbO80dUpRR1vTDlXNsTZqQm1MiqNfDUBdW4QzS3KTvp/P3f72JBC2yfMl9lbF7dIIJ1iVE4r1XllT4MnAOKFHV0dlzck9axji/x2FEEIIMXyc9mENcCywSJcTQ42mpqZeK1I6wpJEg5CmpiYuv/xympqaup321J3du3cP6BrF8NTIQdazhD28SiHljNSvHOwlDRktzlZ2279igvF5svX4Kg4S4agYOiar+ANncgPTWIhJ8ltLBluMMJt5mrd4AosY5cYn4wpqADK1MqD96zHesEbhEHBayeiyVWVoKcsYyZKqF5idM5GJWaMGeznd2h+uAWBibt9hjVKKIy1hirP7sVXyaHFKEhO40TUN3RdK6BzLab+R2U1D5JBlkWF2frsUU+1hUPdVXumorNGQIEgIIYQ4vcgolwEwZ86cY/+/r6lLlZWVQHtvmUSsWLGCDRs2UFlZydKlS3s87sT7jx8/fkDXmIxDbEYl0LBXpE4L1TzP71jKndSxh7HGLYw2vxT3h+vTQZT2SWER6tJyfZ8+nqnmdyjjHNbxDx7mC2xhOXbHDPphwiLKJp7iYT7P6yxlAhcw1fxuggGXdtKvfWvkEGHClBnj+z54EN1i3MlITx5f2n4fWwL7B3s53ToYrkMDxmX3XS3TEAnRGrWoyM9K+n71bVF0HfJ9iW95i1gOZiixextHQxpbdQ1EfC4XbVas02NuvX1dFrEux6cjVDFw4Qyz73shhBBC9I+ENQPA7/cze/Zs4HjQ0Z0Te8EkWu3Tcf3Zs2ezaNGiHo878f4n3mMg1piM1fyBR/gSm3maKMG0309AgHrW8Ece4UscYhOl+s1UmN+kQJ+LpkmvkIHm1vLJcC1mqvktRjGNF/kLj/IldrAmocljg8HBYisreYQv8goPMpbZTDW/g9t1Ey4t0S0yiX8ArmYHGhpjzfKEzx1IPt3Hba5vUJ5RzHd3PUSz1TbYS+riYLieUVnZeIy+C3L3tTYD9CusqW2LMCLHTGr0dySq8JiJvb3pqKixna5fZ1kuN63RaKfHXEdDa0udHKCkp1+NgQvVbTAkhBBCiFOVhDUD5O677wZgyZIlPR7z6KOPAnDbbbf1eExPPWUqKiqONTfubXvS8uXLgfYR3h3hTKrXmErl+icYQTkv8yAP8RnW8gDNVA3IvU83IZpZy994hC+yh3WU6Dcw0fwOI4xL0DXZMTnYPFoR2a4PMMX8OgWMYxW/ZylfoZJXhlz1mYPDTl7gUb7MC/yRYiYzxfwmma6bcWvxNzPvrP1DdCLNW2Pu7ZQaY/AOg8llXi2D9xlfIOLE+Omef6O6qfAYTI2uA3FV1QDsPRrWlOVl9nFkz+raIozMTa6KLxTtfgR3b0y9/e2Qpbp+L2W73EQdm6hzPJjpvbIm9drDGqmsEUIIIU4nEtYMkEWLFrFo0SLuu+++HitXOkZp33PPPd0+v3jxYvLy8li8eHGP599+++09rmHDhg386Ec/wu/3c//996dljamWqY8lx3UL08z/JV+/hJ28yCPcwdP8mINsGvJNOYc6iyhNHOZVHuGffJ7trGKEfiWTze8y0liIrg3f/iinqgytlDzXR5lsfBUfhazgl/ybr7OH12imightg/Z9oXDYw6v8i7t4nt+Rx2immF8nx3ULXm1kiu4Sf1iz19o95LdAnciv5/M+722sbdrCY7WvDPZyOtnX2kRZnGHN/tZmRmV7yXQnH/I2ms2MyE3u/HDMSbiy5vg2qK5hjc/V/udg0A4fe6ynypr2zjKyDUoIIYQQ/Sc/Lh9A999/P01NTSxcuLBTE+CmpqZjAczJY79P1NGLpqeeNAsWLGDDhg0sXLiQu+6669g2paamJh599FFuv/12FixYwL333ttjA+H+rjFd3JqfUcYNFOtX06jWE7BXs4wfkEcp07mKSVyEiafvC51mLKIEqCdALa0n/NPx70GaADBwM4OrcMyLMDXf4C5axCVTH0em/kkynJ202stYzs+OPaeh48WHl2y8ZOM5+uuJ/xQxET8lKVlLiGa2s4qtPEcrNZQygxHG+8jSU7f9SCVYWRMhQJVzmCvMa1O2hoEwyz2bG7Lm8of9y5jpK6ciMz2TxhLhKId9rS28q2JqXMdXa1WU92MLFEBNc4zS/OTC4nBMkZFwZU3P26Cy3e1/twTtCH5X+5+PHZU1MaJdjk8H2QYlhBBCnH4krBlAHWPCly5dyu23395pXPbChQu58847ez3/nnvu4Yc//OGx7UrdufPOO1m0aBH33HMPd911F5WVleTn5zN79myWLFnSaz+bVKwx3XTNTYE2j3xtLvlqJ5b9Ai/yZ17lYXIoivs6GjoGLkzcGLgwcGMe/bX98eP/30MWI5lEHqMT2oLRmyhBjrCVZqqxiWITwyKKTRSLWKdfO55PpKmswiFE87Ewpv01a2RRQDYjiGkF5GiTKNQKcFNAhjYKXfNJqd0w5NMnkqV9jjyqiakWLALYKoBFAIs2wiqAqSLUs5cwrYRpJUZ7hUA+Y6jgfMo5jzxKE7qvQnGErWxlBXt4FQ2d8cylxPgQWXo6JsV1fIiO73uwhl0AlJsT0rCW9Lo0+lHe8u7h+7v/yW+nfRqvMbgVbnXRFsK2Ffc2qMqGNmaMzOnXPWuaLc4qT24bVTiaeGVNR1jT3TYon6u9iqbtxMqaoyO+Y+rkACU9U5sMTKmsEUIIIU4zEtYMgo7tRom688474wpLKioquPfee5NZ2jHJrnGgaJpGtjYJ9Elkqhuod9ZiE4j7fEc5WMQIY5GjFBFaaTshHDkelMSIEkLhkEEOJUynlOmMYjo5jIw7vLGIUMV2DvM2h3ibOipRKEw8R//pCI1cXf5/q2ai40LTzLijIg3IIZtCrRA3Bbi1Atz4pUHwKUrTNLwU49Xiq8KwVYRWtRXD3sybPMF6lpDHaMo5jwrOI58xPZ4boY2dvMAWVtDEIXIpoUS/iXz9fEytf9UU8Yj3e6CanWRpPkboqdp+NXBcmpv3uz7HjwPf4vcHnuSLZTcN6noORdqnnpVl+/s8VinF7voA10/tX9VWTXOMkf7ketaEY8n3rLGd7nrWtFfWtNmRY4+5j/bxsroJUNKxCdHA3U0wJIQQQohTmYQ1YtjzaIWMMq5P2/UdFaVNVdKqthNwdvMif0bhkEXBseBmFNPxcbxxqo1FDbs4zGYO8zbV7MTBJoNcRjEdr3E+2dpk3BSiab1//MxL2ysTpytD8+DXzgT9TKapm2lVW9DtzWxiGRv4F35KqTga3OQdDW5qqWQLy9nNyzjYlDOHQmMRPm1yn1/DqZFYZU3I3EG5Nn6A1pZ6JUYp7/J+gH/U/oWzcyZwcf7MQVvLoXAdhqYx2pfd57FN0Qgtkf6N7Y7ZDg0BmxE5yfasSXwaVMfQKauH0d3QubLG3UNlTaqqL09mYBKRyhohhBDitCJhjRB90DU32doUspkCBhSrEAG1i1a1nXpnFztYA0AuxRQzlTbqqWI7FhHcZDGKaYzSF+HTJ+OleNh+eBSnJl1zkaudAfoZTFPvplVtw7Q3s5mn2cC/yaUEEw/17MVHIUX6VRTo85IYvd0/ifSsUTjstStZ4Lk63ctKq3nuSzjoWc/P9v6byVmjGekZnOj2ULie0Vk5uPS+q1X2H50E1Z+eNfXB9j4wRUk0GFZKJTUNStM0DE2Lu8GwoRno6N1W1qRnG5T0rBFCCCFONxLWiCHNUVYiw18GhKFlkKvNJJeZYMAoFaBV7SCgtlPr7CKLAor0a8nWJ5PBaDRNOsGI4aE9uJkJ+kymqsXHgpsoIXKNa8jRpg/i13PHh+i+/0BopoqQClJmDp9JUN3RNI3rnE+y3fgav9n/ON+beMugrKNa35fA2O4moH9hTWVDG0BS26Acp/2fZJi6htXNyR7DxKXrnSproL3JcEx1bjDc/tWZ+rDGxE2min+rrxBCCCGGPwlrxJDmEBrsJfTJ1HzkabPJYzZISxhxitA1k1xtBugzSH8nmr4F1T4A8hnd57Gxo39uZJ0Ck80y9SzO1uezrm3loNy/xQrycvVBvnLm3LiO39PSREm2l2xPcm8vlFL8+LW3mDzKw5lliTcYNgyN8yZm8fShvXz0nLKEzs3LcNEUCXf7XLbL06lnDYBX9xBVnR8zNRdWGnrLlDKDl/gLeaoWN4VxnyeVnEIIIcTwJWGNEEKIIa9FvY2XbPLiCGtONfl6IfXhVqJODLeeXNPdZK1u2ISjFO8YNzGu4w86h5lUmHxI9sS2Kp7f3MrjX5uAy0wuaPj4gkJu+8M+9l7SRlle/FHjyGwvdeFgt89lu9xdKmsyDTdh1fkxj+bBOinASYVJXMxrPMoW65txn+OnlDLz7pQ2lldKUWf9gUIq0FxXpuy6QgghhOhKwhohhBBDmq0iNDsvM4lL0E7DAfMFenslRXWkiTEZIwb03mvaXubCkjEUZsRX5bKjLsBFZQV9H9iNiGXzrVVvcsWZOVx9VvKjv2++II8vPXCABzfs5xuXT437vJE+Dy16Q7fPZbu7hjUZhoew3bn6040Hi9SHNSYeruGr1LM/ruOjBHmFB2lSG8jTzknZOtpUJQd5iyq2M1VdOCAT4IQQQojTlYQ1QgghhrQG5xWiBJnBVYO9lEFRoLcHNFXRxgENaw6G63ijrpqfX7AwruMtx2F3fYCPJbj9qMPvX6lkX22U/351Qr+272R5Dd5/UQEPrtvDXfMn4zLiC/iKfF621rR0+1y2y0Mg2jmYydQ9hK2T+thoHmJ0v5Wqv0YwnhHE34fpABtps1fh1+akbDuUZa8hmxG00Ui98xIjjStScl0hhBBCdHX6/YhSCCHEsKGUQ4uzinLOI5uBrSoZKvx6Hjo61ZHGAb3vyvo38LncXF5aHtfxBwItxByV1Dao6tYwP3lxO5+8cgTTxmQkfP7Jbl1YSFWTxdM7quM+Z6TPQ3Wg+6qYbLcbx9vU6bEMw4Mrs/NjHs1LLA2VNcmYybXUUkmb2p2S60VULXt5jTO4jolcSLOzGqXslFxbCCGEEF1JWCOEEGLIalGbaKGKWVw72EsZNIZmUOTOpWoAwxpHOTzf/BpXjR2P14yvCHd3S/v6JhVmJ3y/eza+jtvU+Na7RyV8bnfOKMvkvIlZ/H379rjPGenzUhOIoFTXaU45Ljet0c6TnzIND6GTmg57NDeZrvga4wdp5Fl+ym5ePjaaPpXGMAs/pcTsNSm5nm6txU0Wk7iYmVxDGw00qtdTcm0hhBBCdCVhjRBCiCErZK9mJJMoYsJgL2VQjfTkURUduLDm7cA+Dra1clP55LjPqWxpJMdjUpztSehebx5p5i/P1fPtm0eRn5263dm3Lixk+Zst7G1si+v4kT4PUduhJda1Msbn8nR5PNPwEHQ6P+am64So7jg4PMdvOcCbrORXPMH/0hBnP5p4aejM5Gr2sp6Iqu3XtSwVZDurmMZCTDzkM4bRzKLNXtVtuCWEEEKI/pOwRgghxJAUVPs4wlZmcs1gL2XQZURKB7Sy5uXYi4zOyubsESVxn7O7uZGJhb6E+qMopfjGmteZWurl9itSu83t3fPyyM7Q+fuG+EKQIl97yFQb6joRKsftJhA7qbJG9xDsUlnjIRJHWPMmj3GYLZQbn2a88RmCNPEvvspL/IUIgbjWG4+JXIQXH5r1Ur+uU++8hI3FdI73qJnJNdSxhza1q7/LFEIIIUQ3JKwRQggxJNnWC2RTRBmpm2YzXBXohQPWsybixHhq/y6uL5uEnkDwsj9anfAWqP9uOcILWwP89MNjMI3UNMHtkOU1+MDFBTy0aQ8x2+nz+JFHw5q6cNdtTNndbIPKMLqGNW6t78qaKnawniWcxY1k65PJ0adTZt5NiX4TO1jDw3yRrazEoe8198XEzTQWsp1VWCq+CqOTKWXT7KxmAheQif/Y46OZRR6lRFO0zUoIIYQQnUlYI4QQYsiJqgZ28wozuApd/qqiQC+k0QoQtqN9H9xPLzdtpTUW5YYEtkAppdhZF2DyiPibC4diNt9a9RbXnp3LFWcmP6q7Nx9f0N5o+KntVX0eW+TzAlDXTWVNtttDyLawnOMNdbvrWePWPER7aTAcJchKfkkRE1Hm5cce1zWTkcZCJpvfZixn8QJ/5D98g3r29bnuvkxjIQ429U5y1TVNagNt1DOTqzs9rqExk2vZx+uEVU2/1ymEEEKIzuQdsBDilBdTzRyxnyCmmlN6XQ+FnX4VqRFTzRyx7sVDFpOZn/D5Fu2BhktzpXhlg2eMWYaGxi/2/V+nwCAdVgdf5MyCkZTn+OM+52BbKy0Riykj4q+suW9dJYcaovzkQ6OTWGV8zijL5PxJWfx1S9+Nhn0ekwzToCHStbIm02z/Wgo7x8Myt24SUbFOx5mYWMrq8R4KhzYaMPWZaJrR5XmXlovXvJ5RTKOOPWzjuT7X3ZdM/PgpweMcTur8oNqPBx95dP3vVMwUQBFSqe23I4QQQggJa4QQp4EYzVQ5TxIjtWFNtj6Fqea3yNanpPS6p7OIqme/9QvCtHId/4ObxMc4t9LeTDVPL0j18gbNKGM0H8n6JKsaNvGd3Q8RcWJ9n5SEgBVibdVBbqyIv6oGYH1NexBw7pj8uI5vDEb5+cs7uG3hCCaN8ia8zkR89pointvcyuaqvr//fR6DNqu339vjW7Uc5eA6KXCJqShurecGy26yKOdcap2niKr6Ts8p5VBrr2aH9R1q2cNcPshcPtjnmvtSzQ4aOIBmzE7q/Dz9XCIE2MOrXZ7bxko8ZJGjzezvMoUQQghxEglrhBCiH7xa8WAv4ZQRUkfYa/0UUFzPt7v9SX48WqkhW8vF08uH5uHobPd53Jb1BTa07OLuHX+hzQ6n/B7rW3ZiK8Wlo8YldN7b0V1MHZFNfqY7ruN/u/0NYrbiG4vib2CcrHedn8foAhd/2rG5z2Oz3CbBWNewxjk68ejEFj4xx8Y4KayJEMGt9fx7oKFxMbfiJoM6628o1V4lFXB2csD6EQedhxnH2dzMz5jJNej0fzrWWywjl2JytBlJnZ+pjWEU03mLJzuNGI8SZCvP4dcvxDjFvteEEEKIoUDCGiGEEIOuzdnLHutnePFxPd8ih6Kkr9VKLYX6qbk1bbprFp/KupPdwSN8Y8cDKR+bvMl+ncn+AkqyEmsU/PK+BuaOi6+q5mBziF8vq+FL141kpD/9W9VcpsanryriHy80UBvovflvltsk2E1lTUdIoZ1QWWMpu0tlTVRFcdN7cOHBx2V8lhp2EbMeoyX2d3baP0PH5Ea+x3w+0amRb3+0UMNeXiVbn4+mJf+Wz2tcQi27qWbHsce2swqLKIX6/BSsVAghhBAnk7BGCCHEoGp1trPH/iV+SriOb5JJXr+u55jVFOipHQM9lEwwJ/GhjE+zKbCXDS2pG5tsK4fVR/ZzaWliVTX14SA76wPMGxfftrOfbNxATobBHdePTGaZSfn4gkIMXePP6/f2epzPbXQf1hzNxE4Ma2LKxuwS1vReWdOhmEnMYTFv8yyH2cwl3M6NfJciJvT9YhKwmadxk0WBPrdf18nRppPLKN5iGQAONpt5mvHMxa35U7BSIYQQQpxMwhohhBCDpsl5kz32bxnJJK7ha3iIf5pQT+rsWgqMUzesAZhmzmRSZikPH1mdsmtubztAUyTM/AS3QK2vPQLA3LF9hzVba1r42+p6vrGohOyMrg120yU/2+SW+QX8eeNuIlbPDZr7rqw5zlI2pn5SWEPvPWtOdAbXs5AvcjM/ZzLz0VL8lixKkO08j1+/ED2OAKk3mqaTY8xnL6/RQjV7WU8rtRjmxSlarRBCCCFOJmGNEEKIQVHvvMJe+z7GMpsr+TIu+t9o1iZGs2qk8BSurAHQNI2LtJt4o3U32wIHUnLNV5q24fd4OaMgsYqX12uOMNafSWlu382gf/DqG4wrdHPbwoHfpva5a4qobrL41+ZDPR6T5Tax3K1dHj/es+aEbVCOjUvr3FMmqiIEY/F9HevolHMubjLjOj5R23gOmxgj+timZKkAjc4GYqqp1+PytfPwkMVmnmYTTzKKaWRqY1K3YCGEEEJ00v/OdUIIIUSCauznOOQsYTKXchEfR0/Rzw4C1KFQp/Q2qA5nus6m1FPAw1Wr+faED/T7ehtCm7ikZCyGnth/i40t+5g7tu9+NbvqAjy+vpkHPleG2zXwPyuaXOrl6tk53LtxO+89Y0yn4KVDltugrq1rX5uOzkCdt0FZ3WyDiuJJQejYXw42m3iaCVyAS8vt8rxSDq1qO8p+jb28hoOFhsYYzsQwziVX6zpaXNfc5OkXs8V5BgebCuNTA/VyhBBCiNOShDVCCCEGjFIKw1rJIf7FLN7Bebyv0wfg/uoY2306hDW6pnOJcT3/bPwr+0M1jM1IvilzTaSJbU313D49sfHOgViUt6qa+cicsj6PffNI++jsa87qGh4MlM9fO5KrvreTF/fWc1F51+oen9ukLdp1m1RHI+eTt0F1aTBMhCz6t+WoJ+tZyhG2xHWsRYQ26tHMizo9HlUN1DtrCTjrCFCHn1Gcw82UMYdDbGI7q6i17yWDHLL18yjQ53WaeFeoX0yN8yy5lJCjTU/p6xNCCCFEZxLWCCGEGBBKOVjW42zkac7hZs7khpQGNQAtVKOjk6fHN5louDvXfQHPxJbyaNULfLn8XUlfZ13zdgxN46KSsQmd90ZtFY4irubCW2paGJXvIj978N56LJiVzfQxXu7f8jYXlV/S5fkst0lb1OryePeVNd03GHb1MQ0qGS1Us4F/k61NxiQnjjOyKdFmkqmNxlExmtVbWParHGQTJm7GM48pzKeIicdeUy7FTGMh9exjO6vY6bxIjbOckUzGY5yLX5uNS8tltPFe3OT3a7qUEEIIIfomYY0QQoi0U8qmzXqEnbzIhXyUaSxMy31qqSRPz8fQBq557WByaS4uMq/hifqlfHT0FeS7Ehu53WGztZGzR5SQ404saFhXc4gRWW4mFGT1eeyOUA3Tx/Td1yadNE3jc9eO5BP37mP/BUHG+jv3i8lyGwS6C2uO9aw5/pjldG0wHFFRjBRX1gRp4iX+ghcfFcYnE2oWHFQH2Gv9iggBChjHxdzKeOb22h+qgHHM40Ocx/vYy3q28Cz77b9zhCWMMT5GgT4vFS9LCCGEEH2QH4sIIU55LnIp1q/FxeBtvzidOSpGo/UXdrGWy/hM2oKazTzNdlZxkeeytFx/qDrffSGWsnmjH2O868Mhxvriqdjoel5ZXla3/V9O1hCwKMlzJbO8lLrqrByUgu21XRsJu3Qdy1FdHg/ZFi5d79RbqdUOkm0cD59iKkZAtZCJPyXrtLF4iyd4hDuoYTclxvsSnupk4mMkk9DQaOIwh9lCLZXHplv1RKFoYD+H2UId+wAYQQVuLS/p1yOEEEKIxEhljRDilOfScikx3jHYyzgt2SpMnXU/1ezkSr7EWM5Ky322s4q1PMDlnqtZ4LkmLfcYqrL1HMZ6i9jUupfLC5L7/dU1DVv1/gG+O4amY3cTbnQnFFV4Xand9paMETntb31qu2kk3JNALEqWy90plKqPtVJiTYGjRUUNTntz61yKe7hK/A7yFmt5gGaOMJWFGOYVmFrf1Usnc2t5FLhuJUc1Ue+8Qo2zjl28SA4jmcx8JnExWRzfMhimlV28xDaep4H9ZJJHvn4JBfo8PNqp3wdKCCGEGEokrBFCCJEWlgpQZf2eJo5wDV+jhClpuU8l61jDfVzgns9NGTfHVeVxqhnjTOOt1viaz3ZH17Rj46kTYepat5Uo3QlHHTLcg1/Q63Hp5GTq1LdF4z4nEIviMztXtTREW5li+o/9e61TA0BOP8KaFqp5mQfZx3pKmEKx+RE82uikr9fBpfkpNq5C6VcSUDvR7PVs4P9Yz6OM4UzKmMNBNrOX11AoxjEbv/EOcrRpXaZCCSGEEGJgSFgjhBAi5aKqicPWbwjRynX8D4WUp+U+B9jI8/yas13n8Z7MD52WQQ3ABHMyLwVX0RQL4Hf5Ej4/6bBG07EcJ65jQ1EH7xAIawBG5LgSrKyJ4XMd38JlK5smq41ct//YY7V2NSYuskh8q5BFhDf4L2/xBF6yKTM+hl87O+Vfz5qmka1NAn0S09VNNDqvEXLWsYb78TOKYv168vXzcGmJb4kTQgghRGpJWCOEECKlIqqG/davUSiu59v4KUnLfY6wlRX8nGmumdySdSv6aTydZoJrMgCbA/u4MC/xkcq6puH00cekO0YPPV66E44pMtxDI0wryjGpCyZYWeM6XlnTGGtDocjR/Mceq3VqKNRHoDnxfx0qFJW8wis8RIhmRugLGKlfhaGlfqLUyQwtg0LjYjAuZqRqxcR32oadQgghxFAkYY0QQoiUCaqD7Ld+g5ssruVr+Oh7pHMyatnNcn5EuTmBj2V9GkM7vf86y9cLGOn2s6l1T1JhjdGvypp4e9Y4eF1DI1ArzDFpdJq7fa6734a2k8Kahlh7c+Jc/XjT8jq7hhFGEcRXaESQJp7j1xxmC+M4myzzhkHrC+PSkpsiJoQQQoj0Ob3f3QohhEiZgLObffbvyaGIq/kqGaRnK0UDB3hW+3+U6KXc7vs8rgQn5JyqZmaXsal1b1LnJt1gOJGeNbGh0bMGoCjXxVv7gl0e76mwJBCLkmUdD1IaYi0A5JwQ1tQ61RQ58TV4bqWWJ/kBFmHGG58hR088YBNCCCHEqW1ovGsSQggxrLU4W6i0f0UBY3gH30hbUNNCNcu1H+DX8/iU70t4NW9a7jMcFYXOYlfwMEE7/l4sHZLtWdM+DarvUhKlFOGowjMEpkFB+0So2hYr7uMDsRiZxvGvtfpYKxoa2Vp7WOMoh3qnNq5JUI0c5DG+jcKhzLxDghohhBBCdEvCGiGEEP3S6LzOHvt3lDKDq7kbN5lpuU+Aepbr/4tH8/IZ31fI1BMfZXwqG29OwkHxdmBfwufqJBvWaHGN7o5Y7YFOhmdovO0oyjWpaU4krImSZRzvI9MYayXXzMI4Oimp0anHxiaHkb1ep5bdPMZ3cJPFOPMOGYcthBBCiB4NjXdNQgghhqU650X22X+igvO5gi9ikp4tSSFaWKl/HwfFZ7Pv7LT9RLQbqZfgN7OS2goVCWYlFda0V+T0fVzYsgGGVM+aYMShLRpfYBOwop0ra6KtFLiO93npGNvdW2XNYbbwBN8nlxJGm5/HpcnXsBBCCCF6NjTeNQkhTnsx1cwR+wliqvumn2Loqbaf5YD9EFNZyKV8Cj1NbdDaaGC5/h2CKsjnfHeSr6enafFwp2ka4zNHsTdUnfC5GVld+7fEw6UbROy+t0F19LUxjaGxDWqkv30Md02g85Yxl6ETtmzUScFVzHbQOL72kBPBrR//eg+o9obDbjJ6vOd6HsUmSqH5QUxNqsKEEEII0TsJa4QQQ0KMZqqcJ4khYc1Qp5RCxZ7isPN/nMVNXMCH0dL010kzVTytf4uICvPF7K9RZPTdE+R01moF8bsSDwKaoxFy3ImPiy7wZtAcjhE5WjnTk1xvezjSGIh/61E6lRe1v9Z9jZ1DqokFPoIxm0NtrZ0eH5edS4N777F/H585ispQFbZqfz3lxngAjrC9x3teyMfwksNB63dEVH0qXoYQQgghTmES1gghhIibUg4R699s5DHO5wOcw7s7VRykUj37WKZ9GxMXX8r5BiMlqOlTTbSZIrc/4fOaomHyPIk3ay70tvcnqm2L9nqcy9DxZxnUJdDUN53GFroxdNjT2Nbp8Wkj2xtj72hq6PT4ZH8+O5qOByzTfeOIODEO2O39gQqMERTpxYTcb/R4z3zGcD3fBhR7rZ8SUkdS82KEEEIIcUqSsEYIIURcHGXRaj3INlZyMbcxi2vTdq8qdrBM+y5+3c8Xs79Gnmx96lNURWmyAhS5E++F0hQJk5tEZU1hxtGwJtD3BKrCbJO61qER1rhMjbGFbvaeVFlTmuMl1+tie1Ndp8cn+QvY1dyIrdoriCZmjsKtmVRaO48dM8U1nW3W5l7vm0MR1/MtvPjYY/2MNmdval6QEEIIIU45EtYIIYTok6OiNFh/Yg+vsYAvMIVL03avA7zJ03yfUmMMn8/+Ktl6esaAn2qanPZqkEQra5RSNEUi+JOqrGnv0VIdCPd9bI45ZCprACqKPRywO4cymqYxrSibffbBTo9P8hcQdWwOh9t/j126yeSs0dR4Nx07Zqo5gzqnlhZ67xmUSR7X8U38lLDH/iW19mqU6rvvjxBCCCFOLxLWCCGE6JWtQlRbv+MIW7mKOynn3LTdq5JXeJYfM8k1lU/7vkyGlp4x4KeixiTDmqATwVIOfnfiYU2+JwONro16u1OYM3QqawDGj/RQWdV13TNG5vB2dUunxyb78wHYE6o69th03zjeDuw71ox4omsqOgYHeavPe3vwcQ1fo4LzOeg8zAHrRwScnX2eJ4QQQojTh4Q1QgghehRTLRyyfkkjB7mWrzOamWm71zaeYyW/4iz3udyW9TncWnrGgJ+qGpz2niqFCW6DarHatwIl07PG1HUKs9xUxxHW5Fo5Q6uyZqSHyppIl8lP00bmsKu+jah9vGlygTeTAm9Gp7BmRvY4GmKt1Du1AGRoGZSb42l1bYzr/i68XMLt3Mj30DHZaf+M1tiDRFVTv19bIpSyaXP24qje+w4JIYQQYmClZ86qEEKIYS+qGjho/YYoIa7jm+QzNm33epPHWcc/uNhzOYszPoCuyc8SEtXkNJBn+jqNlI5HR1iTzDYogCKfl5o4tkEVZLpZVzWEwppiDy1Bh4ZglIKs4/16po/MwVaKXS2NTMsrPPb4pNwCqvQ9x/59mm8cALutnRQaRQDMdJ3FY6GlFPASE7ggrnUUMYEb+S47WMOr/JOYtZ4R+tUU6Zeha65UvNRuhVUV9c7LtDrrCNGMmywmMA/bnEOmlr7vdSGEEELER8IaIYQQXYRVFfutX6NjcgPfJoeRabmPQrHP+xDrwk9ylfc63uF9F5qWnulSp7oGp54RSTQX7m9YM9LniauypiDTPaS2QVUcHd+9pzHYKayZWtTeI2l7Y12nsGayP5/nD+2DkvZ/zzEzGestotLayXme9mDmMs+VHLEP8nz0t0QJMo2Fca1FQ2cy8ynnXF7nX2x2HqPNeYVC453k6qmrZrNVhCb1OhH7VarZjocsJnAhZczhEJvZwWqC1nIKGEeGfj55+jmYWuKj4IUQQgjRfxLWCCGE6CSo9rHP+i0Z+LmGr5JFflru4+Cwzf1HXgw/z00Z72GB9+q03Od0EfEepsjwJ3zesbAmiZ41ADlOPtVttX0eV5DloanNJmYpXObgB3IVI9sDmr2NbcwZnXfs8WyPyVh/JjuaO4/vnuQv4IHtbxGyo2QY7Vv0pvvGsbVty7FjDM3gA5kfJ0PLZFXkz0Ro40xuiHu8vZtM5vJBpnApa3mASvt3jLXPIsu8Ea9WlNTrVEoRVHvQ7fXs5mVihCllBpfxWcqYg0n7ayllBnNYzAHeZDvPs89ZyhHn35RxDppxDj5tEppUvAkhhBADRsIaIYQQxwTVPiqtX5JHKVdxF158abvXds+feCmyivdnfox5novTdp/TRW20mTm5ExI+r8UK4tJ1Ms3k3hIUejN4syq+bVAA9a0WxXnp294Tr9wsg4Jsgz0NwS7PTR+Zw57ooU6PTczNRwH7QtVM8Y1pP843lqfr1hN0t5Gpt1eg6JrOooz3k6X5eDL8CCVem+LwuxJaWx6juYavsZf1vMzfOGh9l4u4lRbXGQldJ6yqqLL+RCMHyaKAmVzDZOaTzYhuj9cxGMdsxjGbIE3s5AW2sYpmey3ZFFFs3IJPH5/QGoQQQgiRHPkRiRBiSHCRS7F+LS4S38YhUkMphzrrYXIo4lq+ntagBuDt2FvM9yyUoCZF6mLNFLiS2QbVRp7Hm/T2s9ZYlAyX0edxoVh7w16Pa/CrajoU5bpoDHVtrFvs89AQ7Px4wdEx5W328WAq352NQhGmc1ilaRpXe2/Ar+VR5/RdddQThY1CAVrc1TmdnXieQuGgiHdMuDp6rHPsSkIIIYQYOFJZI4QYElxaLiXGOwZ7Gae1OucF6tnLjXwPF8ltiUmURxuY+5zqoipC0I5Q4MpO+NymWBv5noyk770zeJhZJX2HRJUNbeT7DPJ8Q+eth8vQiDmq7wOByNHpUCc2cA5YIQAyuxkxX2nvpEk1kh9NPIxs4ABr+SuH2cJYZuMzb6RZ674apjdebSRjzbspVPsw7PVs5hne4D+MYhqTuZRyzj22DQrAwWI/G9nG8xxgIzoG5ZzHCOO9+LQJsg1KCCGEGEBD5x2TEEKIQRNTrdQ4jzOZSyki8a00YnC1OM1Ae6VHoqLeWgqM5MIay3HYUtPCopmlfR5b2dDGxJKhFc65TY2YHV+lSdRpD2tc2vG3Tq12CB0dTzfh5quRteTpBZQ4U+JeT4Q2Xmcpb/MsOYykwvg0ufqMuM/vjqZpZGlloJcxTV1Po9pAzF7H8/yWl/grE5h3QoPhNYRoppBySvV3H20w3DWIEkIIIUT6SVgjhBCCmLUMDTiX9wz2UkQSWtTRsCaJypqGSJjijOQm/lS2NBK2nLgqa/aHGxlf7OnzuIHkMhIIa7qtrAmTbWZ02UIWU1Fej61jsroCLY4d5w4OO1jFqzyMTYwS/QZG6Jeha6l9m6Zrbgq080E/H7+qocFZy15nHVtYfnQy1AVY5hwytTEpva8QQgghEidhjRBCnObanEp2sIoL+SgZ5Az2ckQSmp0mAPJcifcZqg8HmX7CiOpEbGmsA2Bmcd9hzc6qMJfNTDxMSidXPytrAlYIn9G1qmZz7E1CKsgkLuzzutXs5CX+Qh17mMhFeMxrcGn++F5AP3i1IkYZN6L06wipg3i1Ueia64RNUUIIIYQYTBLWCCHEaUwphwZ7KYWUM4XLB3s5IkktTjOmZpBjJL5lpSESJs+b3DaoLdFdTCjIItfb+3Sn1ohFdZPFhJIhVlljasTsrj1ruuti011lTasdItvs+nv+anQtY41y/HbP28MsorzIn9nBagopZ6Lx5UGZtKRpBpnauAG/rxBCCCF6J53ihBDiNFbnvEAde7iAD6PLXwnDVotqIs/lS3iik61smiNhCpJoMOwoxbJtVVw9ubjPY/c0tAEwoXho9azpbRvUyb+XxyprTmownG12/r0LOK28HXuT0XbvjYXX8Q928RJjjPcx2hycoEYIIYQQQ5e8MxdCiNOUpQLUOo8zmfmMZNJgL0f0Q4vTnNQkqBYriALyk6isebOumpq2CNfEEdZUdoQ1Q6yyxm1qOJmhuI7tmAZ1coNhFczvdNzr0XUoYDxze7zWXtbzNs8wSn8XhfpFMmVJCCGEEF3IuwMhhDhNxaxlKOBc3jvYSxH9ZGdUk5fk2G6AfE/iFS8rDu2hMNPNuWPy+zy2sqGNPJ9BQfbQ2n3dXlkT3+jubrdBWUEy9c7NmV+NrmWaayYZdN/HJ0A9q7mXccyhUL8kyZULIYQQ4lQ3tN41CSGEGBBtzh528DwX8BFpKnwKaIi1MilrdMLnNVntYU2BN/FeN6uqd3L15GIMve+tV5UNbUwYYpOgANymTsyy4jr2eINh49hjrXaITP347121XcVeezeX25/r9hoONs/xG0zc5Jg3J7xtTQghhDhRsxbjNbNpsJcBQJUdgfh69os4SVgjhEhITDUToznu413k4tL6nhQjBk57U+ElFDCOqSwY8PsHqOeQ5z80RRrI0JJrbCs6q4+1JjW2u8UKAuD3JBakHAi0sLM+wHcWTovv+EgDFSOHXlhj6GDZXR+3HMXJGVTIsnDpOvoJW5YCVogMz/HKmk2xDbhxM46zu73fQTZRxTbGGrdgaolP7hJCCCHE6UPCGiFEQuqcF6hynoz7+GL9WkqMd6RxRSJRHU2Fb+A7A9pUuIUaDrj/j1eiL+CNernGeyMXewY+LDrVhFWIhlgrpZ6ChM+1VEfTXKOPIzvb1dwAwBkl8QWxR5pizB6fePVOurWEbLIzu34PVLWGKfJ13hpWHw5SeEIFUsyxCDlRsk4IXdpUG9l6LqbT/QDsUUwjnzG02Cvxa7MxtKEXYAkhhBBiaJCwRgiRkEL9InL1WXEf7+qhb4MYHI6KUus8MaBNhZupYp/737wafYnMWBbXZbyLizyX4ZWqmpSosasAGO0tTPhcpdr7tRgJbsfZ09JEpsugJDu+XjfVTRbF/t7Hew+GpjabYqPrn1GHmkPM9nceZ10TaqMo43gVTcBub0ycpR1/LKoiuOk+qAEwcXM5n+f/+DpR679kuN7d35cghBBCiFOUhDVCiIS4tFwJYIaxBucVorRxFjel/V6NHGKv+1+sj75CTiyXmzLew4We+bilmiClapyOsGZEwuc6tIc1GgmGNa1NjC/IQo+jX004ZtMctCnKHXphTWPAZnJx13DlUEuIa0s7b1OqDgUpyjheWdNitYc1mfrx46Iq0ufXdx6lzONDrOE+ypwK8vQ5/XkJQgghhDhFSVgjhBCnCaUcWpxVlHEuORSl7T717KPS9S82xtaTG8tjccYHmOe5GJfWc8WBSF61XUWe6cNnJj7RSR0Na/QEK2sOxqqZWBBfz5WatggAI/1D7y1HY5uF39s5RGoJx2iJWIzK7NwDqCbUxhT3xOPHHe3349NODGuieOIIIyczn0NsYr/9D3S85Ooz+vMyhBBCCHEKGnrvnIQQQqRFi3qbZo4wn0+k5foR2tjo+j1vxl6nwC7kPZkf4jz3hbi0oVdRcSoJZe5hdDTxLVAAjkourNldH2DeuPh65NQG2sOaobgNqrHNxp/ReV2HWtorZoozO4dRNaE2Lsg6Pjmt9WhYk3nCNqgIEdxxhJIaGhfxcZbzcyrt3zLWno3PvAGPlr4QVQghhBDDi4Q1QghxmgjbqyhiYtp61Wx1/5nt0S18IPPjnOuei6HJXzED4WC4lgmZpUmd6xydsZlIVBOIRakKRJhYGF9lTfXRsGbkENsGFbMUbWGnS2XNoeYwACVZJ1TM2DaNkTAF7hPCmqM9azJP6lkTs44f0xs3mVzD19jDq7zCgxy0vscsrsUx52NoiVdJ9UdMtWCSLaPEhRBCiCFE3kkLIcRpIKgOcJgtLODzabn+XtbzanQtH8j8OHM9F6XlHqIrpRQHw3XMzz8j6fM1SOhD+p6WJoC4t0HVtkXQNCjMGVpvORrbLIBuK2s06NSfpjbcXkVTcMJ49FYrSIbuxjwhlIyqKC7i78mkoVHBeYzlTDbyOG/yGF7rBQqNG8nT5qQ1PLFUkEbnNcLOOurYQy6jyNLPI18/D5cmfcmEEEKIwTa03jkJIYRIC8d6AR+FlHFOyq8dpoWXtfuZaZ7J+e4LU3590bNm1UTIiSY1CQraGwwbWmLj2zvCmvEFWb0feFRNIEJhtolpDK2qjaa29rHluSdV1hxsDlGc7e00zrwm2AZAget41UyLFSTH7DyOPEqEjATCmg4mHuawiMlcwss8yF77z0RYS675LjK10QlfrydKOf+/vfsOj+ss0z/+PedMUdeouHfJJZUkLnF6IVIaEJpFls4CcSi7sDT7Z5a+WYIdlrK7FJtdtgKbWAsshDQ5jfTEVnrixLbci2SVUdfMnPL7YyxZstqMNBqN7ftzXbpinTnlHWWabj3v89Lh7QDnOXbzLC4Oc7mAs7mWg7zCbvduDrv/x1yWYlkrKDDOxjCSW9ZdREREUkNhjYjIKS7qhdnJk6zkA5ik/hevV/z/ims7vD/nLzWNIs16l+2eM8awxvM8kv1ftrs9zLS8IAVZiU1raujoycx+NR3xsGbQNKi2bmYVDFxWvqHnWFgT6B/WdJN/QlgT8SJJVdacKJ8pXMsXOMDLPMl/UG9/lzO5Bst3HT4jsUqmoUS9Fprdp+hwn6GdBgqZwTJWsZjLyaEIiDc9jtDBTp5kOw/T5PyMHELkmyspNi8hS/10RERE0kphjYjIKa7B3YKPAGdwVcrPvYunqI09y1/mfppCM5Ty88vI6t0jmJjMCBaP6XgXL+nmwoe9QyxMcAoUQLMVZmqGrgQFEMoe2BD4YGs3swoH9oxp6OoiYFrkW8dDnHa7i3zfwFAn5kXxjSOs6TWbc1nF93iVB9hKNab9NDOtDxAyL0jqPFGvhTb7Lg7wIhYByljJVXya6SwZcrn2IHmczbWczbU0spvtPMJO93Hq3fuZwRkU+laRbYytP5KIiIgkJ7naZxEROWl4nscR5z6Oug9yHu8gQM7oByWhjXqeNP6FZf6VLPOvTOm5JTHtbishfy5+c2xhiOu5mEm1F4bD7T3MKswefcfe/VtizMjAypqoHV8JK3DC9CzHGxxgOZ47aJuLN+hn5+INGYKMhYmPc7mRm/kBU1nIIefXuF40qXPYdHCUXXh4FDKdaSymhHkJjTHELKazmGLi07Aa2UvMC4/lroiIiMgYZN6fukREZNw8z8O17+Ewd7OMVVzAu1J6focYT1o/ItfL4/25H9P0p0ni4ibdc6Y/x3Pxmckd3xaxKQgm/vFhf1OUq87JH33HNMsNxu93V8wZsH1hSR7bDrYM2DYnr4Aex6Y51t43FSrky+VQTxP9ZxYGjAB2koHKaHIIcSkf406+QLP7DKVW4g28c4w5LPF9l1bvJRznWR7jX3mK/6KMiziDq5g2RIVNI3t4g4fZyRNE6GQ6ZzDX+gghYymWEaTJfZIApeSbE7OqnIiIiMQprBEROcV4nku3Xc0bPMwlfJRzuD7l19gR/A8ORQ7w5fxvkG2ktmJHEufgjCusiTcYTi5o64jY5CcY1tiOy6HmGLNLAqPvnGa5WcfCmujgsOaulw7g9quwmZMXD2gOR5r7wpoifx4tdseAYwMEsImkfKwFTGM+K2hxH6HEvBQjif/npuGjyFgK5lIKvGaa3ac57D7NmzxKITNZwpXMZwUHeZk3eIRGdpNNiELzUkrMS8gypvWdK+a1csD5NbM4V2GNiIjIBNM0qElQXV1NZWXlgK8NGzaM+7xbtmxh2bJl1NbWEg6Hx3SOW2+9laqqKqqrq6mrq+vbHg6Hqa2tZe3atZSXlw+4TUQyh+vFaLX/kzd5lKv49IQENXU8zZ8jD/LenA8wxzcv5eeXxLmeizWOt3LHc7GSrKzpiNrkBRILa450RHBcmFOaeWFNTmC4yppcumIO9V3Hg5jesOZQpLlvW8ifRzjWieu5fdsCRpDYBIQ1AOfyNsIcos17bcznCBjFTLdupNz3LRZan2cKC9hGNXfxRZ7kP8ilmDLrUyzx3cYs690DghqAo+6juDg0sBPP88Z7l0RERGQEqqxJs8rKSpqbm9m8eTNlZWVAPAi55ZZbKC8vp6ampm97surq6qitrWXZsmUJH1NRUUFNTU3f983NzVRXV1NdXT3sMf3HLiKZw/EiNNu/5DCvU8kXmM/ylF+jlSM8zkaW+VdyeeCtKT+/JMfFwRrH0sqOl3xlTkfEJi/BypqDrd0AzMnIypr4z+3EsGZRabx5cl17mBm58elb2T4/U7NzOBxp6tuvyJeHi0uX10meEd8vaAQnpLIGYBqLmMpCIs6jYJ4zrnMZhkm+cQaYZ3CW9246vDfJNcrwG4XDHuN6UcLuYxQzl2b2EaGeLKaPaxwiIiIyPFXWpFFVVRVbt27lwQcfHBB2hEIhNm/eTCgUorKycszn37ZtW9LHrF+/PuF9V61axa5du1i1alXS1xGRiWV7ndTbP6GeN7mBtRMS1NhEecL6IQVmIe/P1TLdmcBJRc+aJP4/xlyHiOMmXFlzsC0e1szNwMqavp41UXvA9nmhHPymwe628IDts/MKaA0c6Pu+yB8Pddq9tr5tASNAjr87oeu7uNTxDBE6E9rfwOBcbuQgr9DlHRj9gAT5jFxC5gUjBjUAze4zROnkKj4NGHR6u1M2BhERERlMlTVpsmXLFqqrq1mzZg2hUGjIfdatW0dVVRVr165NKkTptXXrVlavXs2yZcsoLh55Gdfbb7+dm2++maVLlw66rTc4qq2tBWDp0qUsX7582HGLyOTxPJd2bzstzu/ppIW38TWmUj4h19oR/A+ORA7z5fyvk20kvhqQTBw3FT1rkpgG1RmLASRVWZOfbVKYO/bqn4nS17PmhMoan2WyoDh3UFgzN6+Qve1hmBL/PtQb1rhtzLDiy1kHCNLpDexjM5wX+D+2chdZFHAhf8ESrsQY5W9oC7iQPErx7MfA//6ErpMKnufS5j7CfFZQynyKmEWnV0cJF6dtDCIiIqcbhTVpsnHjRoARK2d6K1Y2bdo0prAmHA73XWcktbW1FBcXs2bNmiFvLysrY+nSpVRUVCQ9BhFJj4jXSLP7FO3uM3TSRDFzuIlvUnRsmd1U28VTPBZ5iL/I+Zj61GQQ1xt/ZU0yDYY7YvGVjhJdDepAW3dGToGC4z1rOk9oMAzxJsOH7CMDts3JK+Dxw/v6vh+usqbFHX01qCO8wTaqOZvriNDJn9nE62zhEj7GNBYNe5yJxTlcz7P8hrO8G0ethkmVNu9VWjnEldwKwDQW0+DuGLASloiIiKSWpkGlSW8PmNF6vYRCIcLhMFu2bEnq/OFweMgqmaH2q6qqYvPmzUmdX0Qmn+vFaHafoyH2E16zv06T+zBzOI938Xe8l/UTFtSEOczjbGK5/yIuC1w1IdeQsXEZb4Ph5CpzOu1jlTWJNhj2WpidgVOgACzLIOg36IrZg25bVJrHjqaB05Pm5hXQ2NNNtxPvSZNjBvEbPtrc1r59AkaQ6Cg9a3ro4CH+makswu97B/n+D7LI+jIuLv/HN3iEn9FFeNjjz+BqLPwcdR9J/M6OU4/zKFNZ2BckTWMRzRzA8RKb8iUiIiLJU1iTBv2Dl9HCmt7be6cgJWPdunWj7lNVVcX69es1pUnkJNLl7Sca+x3b7XXsdX6JQ4wr+RQf4qdcwS1MZSEGE9M/prdPTaEZ4v25H1Ofmgwz7mlQnofPTPz/aeexyppEp0EdaIxmZL+aXrlBc9DS3RCvrNkf7qLHPh7kzM2LV7EcjrQAYBgGRf68AZU1QYJEveErazw8/swmYnRT6vsIxrHm0HlmOXN8X2GO9QH2UsudfJGXuBuHwUFSgByWcDVh93HcEa6VKl3efg7xKudyY9/rTDy08ej09kz49UVERE5XmgaVBr3BSyIBSW+vmeeeey6pa4RCoVErazZs2EBZWZkaBJ8m2t3tRGhM+XmDlJJvnpHy88pgnW4dHc49HOJVsinkDN7KEq4ixMy0XL+Nerb5fk6DfYSv5H+DLPWpyTjB3Fai9jhWg8LFTKayJpZcZc3+pig3rQiNZWhpkZtl0hkbKqzJxQP2d7SxKBR/X559bPnuI5FmynLiqyCFfLl02MfDGr8RIOoNX1kTpZM9PMcss4qAMbC3nGGYlBqXEzKW0mT/kqf5Fe0c5VL+ctB5zuQaXuFeWr1XKDJGr6odj2b3GYLksYAL+7YVMgMfQbq9/RRw5oReX0RE5HSlsCYNmpqaRt/pBOFwOKVjqK2tZePGjezatSuh/evq6li7dm3fWJqbm6moqGDdunXjrso5cGDkVSwOHz48rvML9HhH2On8eMLOf6bxTbIMLdk6kXyxR3iTOyliDhX8DfNZhpmml2wXl1e5n238D7luPp/K+wKzfHPTcm1JnOd5vNa5j6uLzxvzOVzPw0yiKqs1Gg8iQtmjV8vEHJeGVpuZxf4xj2+iFeX6aO0eXJ0yNS8IQEvk+DSfXH/8fvT060ljGSYuXt/3Lg6mYdFv0w36TzkAAF83SURBVAAGJrmUYLsv4JlX9lXW9Ip5YXrsuznEa5SygDN465DnOcJ2wCDHmJPQ/RyPXGMeR3mQFg5QQrxfVQ8d2ETwG0UTfn0REZHTlcKaNEgmeOkNQpqbm1M6hltuuSXhpsW333474XC4b1WoXlVVVSxbtoyamppRp3ONZM6cif9webrLMqaz0Pr8hFXWKKiZWD1ePW9QzbncyEo+iJnGGastHGSr9XN2Ozu5IngN78yuUkVNhmpwj9AYa+OCwrGv/uXhkczMtrZYBMswyAuMXs1zpL0HIKPDmpJ8H83dsUHbC7PiY26LHQ9mfMcqkGzP7dvm4Q2Yghj1YgQYPsgKkEMFn+MPfJsZ9hbwXwfE+1EddR+iwb0XH0GuYPWwq0N5uLzMPcxnBUFjSpL3OHkhYym5/B8vc8+xZbuhgR0A5Bpj/ywgIiIiI1NYkwZjCV5SWVmzadMmwuFwUtOfampqBm3bvHkz5eXllJeX09LSor43GS7fPIP8yR6EJM3zPNrt35JLMSu4OW1BjYvNi9zN8/wvxV4JX8j7Kgv9S9JybRmb7bFX8RkW5+YtGPM5PDzMJNKa1miEULY/od5FvWHNrOLM7VlTnGcR7mobtL0geCysiR6f0uQ7tsS50y+scb2BYU2MKH5j5HBqGotZThXPcRcL3Xm42DQ5/0sbDZzNtSxjFUFyhz1+Py8S5hBTrA8kdifHyTAsCs0r2en+HxfyF+RQRD07yCZEgOLRTyAiIiJjorAmDXr70EyWtWvXsnr16oT2Xb9+/YhVM6tWrWLDhg2sXbs2oWXCh7J///4Rbz98+DAXXnjhiPuInKpavRc5wEtcy5fwjfAX+lRqZA/PWT/ngLOPiuAN3Jj9bgJG5v6CLXEHg9s4yzeXbGvs/6+8E8KG0bRGeijKTqxS5tBJUllTVz+4x0zAZ5Ljt2jvF9aYhoFpGDje8R43J1bWxLwo/gSet+dzE4d4ld3OT3GIMZOzqOSLFDN65enL3MMUytNa1VJiXspR9x5e5QFWcDP17GAai9RwXEREZAJpNag0mMwKlOrqasLhMDfffHNC+482vamyshI4Xq0zFrNnzx7xa8aMGWM6r8jJzvWiHHX+lzmczzyWTfj1HGLsy/o1v+drODh8Jf+bvCvnZgU1JwHXc3mhvY6lBWOfAgXx1ipJLAZFWzRCKCuxx8eR9h6CfoPivLE3QJ5oJfk+mtoHNxiG+FSo/tOgACzDwO4X1rieN6BBc8yL4U/g+WNgcjWfYQ7nU8Hf8Da+llBQ08ReDvIKudZVaQ1KfEYOS7iK19hClC6OsouoqSnNIiIiE+m0D2vC4TCGYaTsa9mywb9glZSUJDUeSF3A01v9MtpKUYnqH+Zs3bo1JecUkbgj7r10EeYSPjphS3H3qmcHfzL/HzU993BD1k2szf8283xjn04j6bXP2U2n08PSgoXjOs+JlSGj6QmECSVYWXOkvYeZRYlNmZosJfk+mjoGL48N8bCmf2UNgN80B/SscfEG9JWJESMwyjSoXjkUcS1fpIyVCf8/eJl7yKOUkHFBQvunkuu7hCidPM2vsImoX42IiMgEO+2nQYVCIWpqalLWI2aoypTe4CWRa/T2txlPA99e4XCYLVu2pLSyp/+UrtraWioqKlJ2bpHTWY/XwFF3C+fxDgqZuAbOLi57g79iS+Re5hrz+X8F32GmNXvCriep53ouLwbuJscMsiR3fP/vXM/FSKK0JtwTY3peVkL7HmrryegpUADF+T46e1witkPQN7ACqDDLN6iyxmdYA3rWeAxcTSvmRemxh+83Mx5dtLCTJ5huvmvQKlJj4XkObd5ruM6z7OdFprMEv3Uhhcb5mEMETkFjCvNZwXYewsQix9AKcSIiIhPptA9rgAkPHPoHL+FweMTwpDfQSUVYc9dddyV8rnA4zDXXXEM4HE54tadElwEXkZF5nkeH/TtyCHEB75yw67jYvOD/Cdsiz/DO7CreGrweKwW/9En6OJ7DH61/YkvTC3xh/rvH/f/Pg6RquFq6Y5w5JbHW5Y1eKzOKMntKXWl+/GNQc1eMGQUnhjV+IlZ4wDafaQ7oWXNig+EoUXxMzHLWr/IAFgFKzUvHdZ6I10CT+yTt7rN00UIJ8ziPmzjIKxx0fkmQPBZyKbZvOTnGwDDQb10JzrOUMH/IQEdERERSR2FNGixfvrzv383NzSOGNXV1dcDx3jDj0buiUyINjrds2UJtbS0Q73OzZs2aIffrv7JVefn4eiWISFyr9yL7eYFr+SI+ghNyDZsIz/h+yBuxV/lk7l9xfmD56AdJRol5Ue7kBzzb/AZfLfsLri55y7jP6XlJrgbVHaMwO7EA5mBzjHPmZvay7yX58YCmuTvKjIKBFUOFWX4OH2uS3MtnDuxZM7jBcIycCWgMHqOH19jCEq7CMpL/mbpelLD3PFHnGQ7zOgFyWMglLOFqSlmAgcFyVhHmINt5hB38mW77fqZQRpa5kiJzBZaRTa5ZxhznfGxzXsrvo4iIiAyksCYNQqEQS5cupba2lrq6umGrVvr3q0lFtc+WLVv6zjea3p42S5cuHXGJ794wCSa+IknkdHC8qfB5zGNiApQoXTzmW89+ey+fyvsCZ/rPmZDryMSJeVH+3bmd1zv383cLP8KFodQsqx7vuZK4cE+UUFaCq0G1RDN+GlRJX2VNdNBthVl+th9tH7DNZ5gnLN3tDuhZY3sxfKT+Pu/gMaJ04vqSq6pxvG5s+x528iRRupjJWVzNZ1nAhUOuNhdiFhfxQS7kZvbxPNt5hP3u/3DI/V/KWInPdw2l/ltTdbdERERkBApr0mTdunVUVVWxefPmYUOO3mlLIy2zPdo0qhP3hcQqa8rKyli6dCnbtm0bcb/eap1Vq1alrGmxyOmsw9tJB41cx5cnpKlwN608bH2XZqeJz+WvYYFvfA1pZXK8Yb/GCx11bFjyiXE3Fe7P9dyEGwB32TE6og6luaNXjhztiNDW5TJvysRUiqVKbjAetHTFBq8I5XoerjdwW9R1sPqt/uR4LqbZ73ucAeFNqhzgFaZzJkEj8QULALq9Q+xgC7kU825uo5DEVls08TGfFcxnBZ00s4PHeI0txOznmW/9FTmqrBEREZlwp/1qUOmyatUqVq1axaZNmwZUp/S3fv16QqEQ69evH/L2qqoqioqKqKqqGvV6Y2mYvH79em69dfi/mNXW1rJhwwZCoRC/+MUvkj6/iAwW8Row8VGUwLK9yeqgkfvNb9HmtvI3+esU1JzEGp2j+A2L8/NTuwKP7TkEzMT63hzoaANgflHOqPvWHgoDsGLh6PtOpp5YPI3J8g3+OLT9aAdLSvP6vu+2YzT2dDM9eLwnTbcbJcjx6VN+w49DLOXjdIjSlcCS4CfKM8uZa32YLlp4js04DL3y1UhyKeZ83sl7uJ1CZlDn/IgOVz3rREREJprCmjT6xS9+QUVFBZWVlQMCm3A43NejZqTKlurq6gH/TVSilTgVFRWUl5dTWVnZN4Wqd3ybNm1i2bJlVFRUsG3btpSuMCVyOovQQAFTMVP8chzmIPcY38TB4Yv5f8ssK/VhkKRPk9vI1EAI00jt48TK7iBgJRrWxKcEzS8afbWjbQdbKC3wMW9KZjcY7o7GpzRl+wf+DDzPY3tDO3PM4w12D3bG7//04PFq1W4nQtA4Xj3kJ4DN4ClV4+UQwxhjMXSJeQnzrVvYw3M8wD9gExn9oCFkkcfb+CpFzKbF+V88zxv9IBERERkzhTVp1LtMeG8FS1VVVd9XZWUlu3btGnEVptEqb068VkVFBaFQiJtvvjnhMa5Zs4aNGzeyefNmli1bRlFREcuWLaOmpobNmzcnvFKUiCQmy22hIMVLdR+ljnuMb5NtZPPF/L9lijUtpeeX9Ivm7B8QEqTsvG7ilTX7O1rJ8plMyxt9atNLbUdYsTAn4SlWk6U7Eg9rsk5YtruxM0pzd5SFhceraPYfqyyaHohvczyHqGeTZfSvrAngTEhYY2OOoxdOyLyABdZnOMzr/InbidA5pvP4yWI5VTSymw5vx5jHIyIiIqNTz5pJ0DslKllr1qwZdpWmofT2l0lWWVkZGzduHNOxIpKcVo4wj9T1fzrM69SwgWnmTD6T9yXyzLzRD5KMVx9pYXHu7NF3TFLMdfGbif3dZn9HG/NCowcwnufx3M5O/uqGqakY4oTqnQZ1YmXN68caCy8sPB6QHehox2+alAQKAOh24tOdgv3CmoDhx/RHSPVMKIcohjG+j2wF5pmU8Tn2Oj/lbv6OG/h/5BBK+jyzOJciZhN1HgVz8bjGJCIiIsNTZY2IyCTxPId2GihMUWXNPmq5j9uZ5yvjc/lrFdScQo5EWpgWKBp9xyRFHSfhaVD1NCQ0BWpvSxdN7Q7LF46+72TrnQYVPKFnzRtH2/GbBnPzC/q2HehsY0ZOXl+D4R43Pp2o/zQoH35i3kRV1oz/72u5ZhkLfF+gi1b+yLdp52jS5zAwOJcb2UctPV79uMckIiIiQ1NYIyIySSI04eEmvELLSHbyBA/wA87yv4VP531xwNQMObl1e920O91MD4ZSfu5kpkHtbeliXjLNhcszu7kw9OtZc8I0qO0N7SwqzcPf72dzsLOd2XnHw5tuJx7KDGwwHCA6YT1rUrMkeLYxiwW+L+Li8ge+RZiDSZ9jIZeSTQGG/XhKxiQiIiKDKawREZkkEa8BgALG11NmD1t5mJ9wYeBiPpH7WfxGan6pk8zQ7MSrH/qvQpQqMdcZEEgMx/M89rR0JrQS1LaDLSyYGmBKYeY/DnvDmqwTpkFtP9rOGVPyB2w70NFGyDkerHa7x8Ka/tOg8BPzJmI1qFhKKmt6BY0pzPN9gQC5/IFvc5ShV6kcjo8AZ3Etb/BnbK8jZeMSERGR4xTWiIhMkojXgIWfPErGfI42GnjM+Bnn+i/ggzmfwDISq5KQk0eT2wgwMQ2GHZeANfpHgaM9XfTYbkLToF4KN6R1CtTOwz389N4GflGT/JSe45U1A38G24+2M9ucNWDbgY52pgcGrgQFA6dB+Y3ABE2DGvtqUMPxGyFm+z5PAdO4m9s4xGtJHX8WlYBHo/tYSsclIiIicWowLCIySXqX7TbGmJs7xHjK+hE5Xi4fzvlkypd1lszQ5DYSMHwU+VLfgyjRypoDx1ZCGq2yxnZcttV18e2bZ6ZkfENp73Z46OV27jvUSM2fu9i9L0Zvz+Mrz85n8czEpwB2Rz18Fvj6BVaNnRGauqIs6tdcuC0aoS0WYUa/6qahKmv8BIilurswvZU1qa9U8hm5TPd9Fr/9r9zL96jg88xjWULHZlPAIq5gr/tnppoVmKroExERSSl9shcRmSTZbnhcy3Y/z/9x0NnPJ3I/S46Z+c1cJXmu53Io+DzTgkUTsgx21E2swfC+Y2HNaD1rXj/aTlfEZfnC1PereWlPF1X/+galf/kC79mwiy2PdXHtFTn87y9mcGBbGdNKLX56X3LVNZGoS5Z/4EehNxvj03rKCo4HMwc746tDTesf1hzrWRMYUFkzMQ2GXeyUV9b0sowsSn2rmcMFPMAP2EHifWjO4Tq6CdPmvTohYxMRETmdqbJGRGSS2ETIJX/0HYfRaG1jqXUh83wLUjgqyRS2Z/N788c83fw6axZUpfz8rufSFo1QGAiOuu+OcDOzC7PJDYz8seHRukayAgYrylMXHr64p4vvbNnH7+/rZP4cH+u/OoXr35pD+bzAgP0uODfIXrszqXPnZJl0RV1c18M042FY733sso9XyGRZ8W1R1+7bZh0LzzzPhWM5mouLOSF/BzPwcCfgvHGm4Sfk+wgBO5uH+QlRujiba0c9roUDAASMsU/lFBERkaEprBEROQnF6OGAs49LgldN9lBkAkS9CL/xvs/zLbv4WvkHuKL4nJRfo93pxvE8SrKyR913d+wg50wrGHW/R+v3c8VZ+WQHxx9YvLa/m6/fv5ff39fJgrl+Nm6YygfeVYDfP3SFUVbApKMruUBjSoEP14WW7iglufHQqrw4HjTtaQ9zXmm8+ff0nPi2o9Fw37FBMz7tJ0qUHOK3x7xovNLGS2oYo/Lhx8MefcdxMAyLHN/NnGvn8gT/RoQOLuDdGAz98/bweIk/MZOzyTHmTOjYRERETkeaBiUichI6yi5cXMp9iyZ7KJJi3V4Xv7S/y0vte7ht0UcnJKgBCMfi031KgqNPWXrlSOuoYU13zOGx19u57rzRQ53RtHTYXPWd7bz4WpRNd0zjpS3z+GhV4bBBDUAwaNATSS4lmVIQD1wau45PXcoL+piRn8XutnDftmyfn1AgyNFo2/Hr9YY1/aY9xYhNyGpsZhrCGgDDMLB8b2eGeRNb2czT/DfeMMlTPTs4yi6yrCsnfFwiIiKnI1XWiIichI7wBtlGDtPNiWvkKunX7rbxi9h3aYiE2bDkE5yVN3fCrtUSi08ZGq2yprmnmyMdEc6ZXjjifk/tbaIn6lF5/vjDmtse30tPxGPrfbOZMTWxjypZQYNI0mFN/NyNnVGWTDm+vbwkl8McHrDvtJw8GmOtfd/3hjUxjoc1US+Kn4HTs1LBhx93AhoXD8UwDKZbN2CRzcvunUTo5ApuwWRgb6OX+ROFzKTAODst4xIRETndKKwRETkJdfneYAHlWgHqFNLsNrEx8l26nAj/cMZqynLG3nw6EWE7XllTOkpYsz3cBMDZo1TWPLirgVnFfs6anfhqTEPZdSTCT/4jzFf/uiThoAbiYU1PJPlpUACNXZEB2xeV5LH1YMuAbTNy8ugwjvR9HzTjocyAyhovit9IfViTrsqa/qZYV2EZOexw/oMo3VzDX2EdW5GqjXr28Byzzfdj6DVIRERkQugdVkTkJOPhstvZSZmmQJ0yjjiH+Meub2N7Dj8641MTHtQAtMQ68Jsmef6Rw4XtLY1k+yzKikduGvzowUNUnlcw7lWr1t69h6mlPj7/yVBSx2VnJT8NKpRrYZnx5br7Ky/JY1dTJ553/HzTc3I50tXR933QjAc9sROmQQUmYBpUvLImvWENQLF5IQusT7Gf57mPDcToAeAV7iNALsXmyrSPSURE5HShsEZE5CTTwkG6vS6FNaeIffZu/rHrNnJ9WfzojE8xM6s4LdcNxzooycoeNVzZ4+7jrGn5WObw+x1q6+aVfT1cO84pUI+91s7v7uvg775SQk52ch9RgkEz6bDGNA1KC3w0dg5cbnthSS5dMYf67uOrS03PyeNI1/Hv+yprGFhZ0xkbX2XRkOPEh+elZxrUiQrNc1lg/RUN7OJP/D1t1PMGjxAyL8ecgCoiERERiVNYIyJykqnnTUxM5vnKJnsoMk47Ytv5p87bmREs5gdnrKY0MP5+L4kK252UZo3eXPjV+rZRp0A9tOsohgEVbxn7+F3X40vVe1n+liB/8c7kl7QfS88aiE+F6t9gGGBhSR4Ae9qP96iZnpNHc6SbqBsPTbKGaDAcJYpvwnrWpL+yple+uZgy39/QRj3VrMXBZoqpxsIiIiITSWGNiMhJJhrYzixrDllG6v+CL+nzcvQFftp5B0vyZnPHkk9Q4Bs9OEmlnuBRioMj96uJuQ5vHO3gnGkjNxd+rHEvy8tzKMkfeyu8Xz/ezLaXIqz/2hTMEap4hpMVNOgeU1jjp+mEaVDzinKwDIPdbcf71kzPiQc4jcdWhAr0Nhj2jh8b82JYExDWxHvWTE5lTa8cYy4LfF8ki3yWcBV+Y+THhIiIiIyPwhqRFOvxjoy+k8g41Nk7KPMtnuxhyDhsjT7Fps4fc2HhEv5+0cfItoJpH0NzTxel2SMHRHVtYaKOyznTh6+YcVyPLS+1ce04luzuirh8dfMB3nNDHpeuGDlAGk7WGJbuBigt8BE22gds81sm84ty2N12vLJmxrGwpiEa3+Y3LEwMov1ClJgXxUfqe9ZY+Cn0xtcLKBWyjOks9H2LoO/dkz0UERGRU57CGpEUanNf53X727S72yd7KHIScPEwSO4XsB7aOerWU+Yrn6BRSTrUONUszp3F1xe+n4A5OQsztkYjFPhHDon2tIcBWFyaN+w+Lx9ppandoXIcYc1tT+7haJPD360tGfM5Zk33EY16/Obx5qSOm1Lg42jb4ClGMwuyaejXs6YwEP9ZtdtdQHyJa59hYffrJWNj962YlEoWPpxJrqzpZRiWVoASERFJA73biqRQlPgStxEaJ3kkcjJwxtDfopE9AMyx5qd+QJI2Z3Mx+3oaiLrOpI0hkaCwKxYPCAqCwwcQj+1uJDtgsHLRyKtFDefV/d38YFMLaz9bRPm8sU8hentlLu9/Vz6f+OkentzeMfoBxxTn+WjpHBzWdEZtcv3H73d7LN6bJs8Xr/xxPZeoZxPo12TXw006gE3M5FfViIiISHoprBERmSQ2UXwkN/2lib0ECDLFnDZBo5J0uDRwJd1OlEeaX5y0MZiGgcfI04a6HRvLMPBbw4cFTzUd5JIz8gj4k/9I4boen/pVHQvm+PnyrUVJH9+fYRj8/HtTWX5ekPf8cCd19ZHRDwKK8yyaOwaHZm2RGPn9ljUPR+LLVhce6y0UdeMBT8A4/hyO/zQVrIiIiMj4KawREZkkNpGkK2ucQB2zrDmYmoZwUiuxprCicDF/bHhm0sZgGuB6o4Q1dozcgDXs8t624/LY6+1cfXbyqzcB/NvDTTy5tYd/+vupBIPjf0wHgyZ3bZxJQb7J23/wBuEhKmZOVJzvoyvi0hMbGNi09djk95sm1hzpBuhrBN3jxittAgOewx4Ka0RERCQV9GlfRGSSjKWy5oC9lzm+eRM0IkmnC+zrebPrIG92HpyU6xsYCYQ1Njl+a9jbXzzcSnu3y5VjCGsaWmOs/fV+PrwqnysvSt1KWCVFFr/7l5k0NDqs2vQmMXvk+1icF+8Z1NI9sCdMWyRGfmBwZU1vWBM5toR3/2lQoKhGREREUkNhjYjIJHGIJrXMr02Eevcws625EzgqSZez/ecxxV/I3Ucnp7omoWlQtk1OYPgGyE/sbSInaLJiYfL9ar74x92YJty+bkrSx45mcXmA//n5DB57pptP/24n3gihVHFePIxq6Y72bYvaLj22S16/aVAtkR5yfL6+Jbt7joU1/kHToERERETGT2GNiMgk8Dwv6WlQTezDw2OOpcqaU4FlWFxovZWHml6kw+5J+/VNY/TKmi47RvYIlTVvRI5w3rxs/L7k6km2vNTGb37fzvf+dgqlxcOffzyuvCiHn94+jX+7s40f/KF+2P2Gqqxpi8T/PaBnTbSHUCCr7/u+yhr6NxjWNCgRERFJDYU1IiKTwMPGw0tqGlQTezAxmWHNmsCRSTpdEryCqGvzYPPzab92fBrUyPv0ODa5I4Q12w/0cMbsrGFvH0p3xOUz/7mHKy7K5kPvGVuvm0R9ZFUBaz5TxNr/PsjvnmkZcp+hKmvaeo6FNYHjz89wpIeiYHbf95FjPWuC/Spr8LwJWg1KRERETjcKa0REJoFL/JfBZCprGtnLdGsmfmPsyxtLZgmZxVwSOpO7G54dcarORDANA3eUiTtddoycwNBhjet6vH6wh7NmZw95+3Bue2ov+w/Z/NNtU4dtXJxK3/pSCe+5IY8P/9Nutu3qHHR70ZCVNfHGxPknTIMKBY8HMz1D9KzRNCgRERFJFYU1IiKTwCP+V/lkwppuq05ToE5B59k3sLv7CK937kvrdU2DUQMiN9hBjn/onjUH2rrpirhJVda8fqCbf9jYzFc+XcSS8vSEjqZp8C//MI1zzwjyzn/Ywf7G6IDbfZZBYY5FuF9lTWvPENOgIj0EoiV93/dOg/IPqI7TNCgRERFJDYU1IiKTwEkyrHFxOeQcUHPhU9AZvrOZHiziriOPpbW6xjAMnNF61sScYVeD2tHYAcCZsxILayIxl4/9chfzZ/v5yqeLkhvsOGVnmWzeNAO/3+D677/B0292DLi9OM/iQFt33/ftxypr/Obxj0nhaA/5vsHToAKGf8C5UhnVuDgc4CVa2J/Cs4qIiMjJQGGNiMgk6PL2ABBiZkL7O0SJEaPALJzAUclkMA2T630383jLq9x15LH0XRdj9Moaz8M0h44fumMOAPnZiTUIvvf5Nra+FOEn351KVjD9Hz+mTfHxh3+fRcAPl371Df78Wnvfbe9aGeLftu3hhUNhAM6fGaIg6ONHOx/s+xnNyw+xM7az75iQL95vp9lt6ttmGRYuzrjG6eHRyG6e4r/4FX/FPdyOB/itleM6r4iIiJxchl+PU0REJozlbGcKZeSQ3goDyUwrAhcTKdjOLw7cy/RgEVcWnzvh10xkNSifaeAM04U479iS3h09DqUFo3+cuHvvURaX+bniopzkB5siZywM8NQf53LxO/bx3S0HuOKsMwH4+w/M4tFXO/jkH57hoY+9ldmF2fzjTefzsc1bOT/nVd6/6BzevWAJn/7zvezqOkx5zgwW58Ybfe+1dzPdioeufgLYRIe9/kjaOcpOnmAnj9PCQbIpoJxLiFnnk23Mxbb/QJ3zp4TPV8g0Cn0fwGfkjWk8Q3G9KN32b+mx5lBiXpqy84qIiMhgCmtERNLM8xwO8CLncsNkD0UyyCXdH+VIcQvfq7uLEn8+5+TPn9DrJdJg2Gca2K475G25xxoPd/QMfXt/nudx/yOdVL19Yld/SoRlGXzx1iI+9jf1vPCOLs5fkEPQb/KbLyxg+ZrX+cpjT/Pzist419kz+cTu+Xy39nHOL53OFTPnUhzM5oHGbXx67tvJ92UzK1jCXmc3K4kHFwEjiE0k4bFE6GQ3z7CDxznM61gEWMAKiqx3UWCciWFY+Im/ZrzOQ0xnCSWMPhXSw2MHj9Nu/4iZvr8iYITG+NM6zva6OGpv4ghvkOUUUGSswFSzcxERkQmjaVAiImnW4e0iShdzWTrZQ5EMYhom73T/mjPz5vD1Hf/JgZ6jE3o9K6HKGpOYM/Q+uf0qa0bzwu5uDtU7XP/W3OQHOgFWvS2fubN8bHj8QN+2hTOy2PTpedz5RAv/sW0vAH9/3dmUFefywzcewm9a3DR/MQ+Ha7Hd+H1enDubo743+s4RMBKvrDnCG/yKz/IY/4KFn3nWxzjbt558/4coNM/BMI5PL+vmAA5RlvFeLuJDo35dzIe5iW8RpYe99j8Q8RrG9fOKeW0csv+RFg5wNZ+lh3aavWfHdU4REREZmcIaEZE0a/NeJocQpcyf7KFIhvEbfj5sfoUifx7r3vx3wrGO0Q8aIzOBBsN2d86w06COhzWjV9bcU9tKfp7JpcuTW+Z7ovh8Bn/zySKq725nT8PxSpj3XVLMrdeW8v8eeJlXjrSS5bf40hWLeKSuke0tjbynbAnNkW6ebY0HNEtyZ7Oz6xCOd6whMYGEKmvaOcoD/IBSFnC277tM8X+aYnMlljF0s+ZOdzcmFqUsSPg+hpjBO/k2FgF22z+gyzsw+kFDiHpN7Ld/SBetvINvsIjLmM8y2p1H0r7cvIiIyOlEYY2ISJpF3NeYywUYegmWIeSYuXwisJYeJ8rXdvwnPc7YeqCMJqGeNcbw06DykpgG9ac3mqm4LIdAIHOWtf7o+woIFZh8/+mBKy39w0fnsHhGFp/4w9N0RGzeedZMZhdk85tDT3FGUSlnFpXyWM/jQDysiXo2h5yDQLyyJtvXM+J1o3RzH3fgJ4spvk/gT2CKUpZ7gBLmJ7x6XK88SriJb5JLMbvtH9Hh7krq+B7vCHvsH+Di8k6+RfGxKVjn8jbCHKTdey2p84mIiEji9JuCiEga9XgNtHJIU6BkRKXWFG7J/jJ7uo/wvbq7cLzRA5FkWYY5alhjGSb2KJU17d0jT4NqbLN59oUern/r5DUWHkpujsmnPxri3+9q42hrrG97dtDkf75YxoHmGGufeBqfaXDrygVUv3yA+q5O3rNgCY8c2ktrrJOFOTMxMdjn7AbiYU1shGlQLi4P8c900Mgs36cSbv5bzw6msWhM9zObAt7O1yhhDrudf6LNTSxg6fL2stv+AQFyuYlvUsC0vtums4QplNHjPDqmMYmIiMjoFNaIiKRRm/syFn5mcc5kD0Uy3DzfAj6W/VmeDL/Gxv33pPz8PZ05Ca0GNVxYE/SZ+KzRK2vue6EVz4PrrsqMfjX9ferDIQB+et/A/kBLZmXxs9Vz+dWfm/nv5/fzkWXzyPJZ/PebL/OO+YvxPHio+UWyrQDzsqex164DIECAqDf8NKhn+Q37eZ451sfJNmYkNMaY10Y7DUxj8djuJBAghxtYx0zOZrfzU1rcbSPu3+6+SZ39YwqYxjv4BrkUD7jdwOBcbuQgL9PtHRzzuERERGR4CmtERNLJ3c5MzsLP0L0pRPo7N3ABq7I/xG/rn+C3R55I6bkT6VljGeawPWsMwyAvy6JzlAbDd+9uZNlbgkyfknkLUJYWW/zlzQX8c039oPvxwStK+Pg1Jay570UOtXXz4aVzubPuZbJ8Pq6aNY9H2p8G4lOhjvjeBOKrQUW9oStr3uARXuJuZpqrKDQTD2s7vXgQNNbKml4+AlzLFyjjIvY6/0qj+/iQ+7W6L7Pb+WemUs7b+FuyGLr6p4yV5FKMaz82rnGJiIjI0BTWiIikieN1c4jXNQVKknJlVgVV0y/nZ/v/xOMtr6bsvCbmqA1iLdMkNkzPGoC8LHPEyhrb8ah5tIvrr868qppen/tkEa3tLr98sGnQbT/++FzmTQnyrSdr+dRFZbRFYvzvru28p+wMXm05Sl3XYZbkzmZ3Vz1RL4rfCBAdYhrUYbbzGP/CGVzDFPPqpMbX6e0mhyJyKRnzfexl4uNqPsOZVLLf+RX1zgMDbm92n2W383PmcAHXs2bEUNnExzlcz06eIOa1jntsIiIiiaiqqmLDhg2TPYy0UFgjp52Y18ph5+4J+XAZpHTAf0X66/YO4OEwlfKkj+1tRuxOQO8SyXxX9Hycy4vOZkPdZrqc0VcbSoRlGNijPJ78xvBLdwNkB0y6IsOf47mdnYTbXK67MnPDmvmz/bznxjw2Pl4/6LacoMkXb5rG/S+0kRfwcf3i6TzQ8ApXzpxLnj/A0+E3KM+ZjotLvXMYP35iQ1TWPM/vsAgQ8L0dw0iuyXK220QRszBITXNmA5NL+RhLeQ+H3N/hxe7F8zyOOo+w1/k3FnE5FXwOC/+o51rAhbjYtHtvjLqviIjIWITDYWpra1m7di1FRUVUV1fT1DT4DyynIoU1ctqJ0coR90/ESH1Yk2+ewZm+b5JvnpHyc8vJL9uYg4mPenYkfayFHxOLHm/klWbk1GQaJte6H6fHjfJQ0wspOafPsEasmoF4Zc1IU6WitkfQP3yI8PjrHeTmGCw9NzjmcSaiq9ulrX3k6VgjeXtFHq/viFIfjg26beH0+Nibu6LMDeXQ1mPjNy0K/AF63Ch+Ix5qeLi4uFhYg86xnCpcbLrs/016ueses5RmDuCRumWyDQyWU8VFfJgX+AOH7B9ywL2Tc7mRK7kVc4j7MJRdPIWFn3zjzJSNTUREpJdhGCxYsIC1a9dSXl5OWVnZZA8prRTWiKRYljF9socgGcoyspjJWeylNuljDQxyjBy6vM4JGJmcDIrMElaGzuCPDc8k/Qv/UPymj6gzcsDhMwxsZ/hApyfmkuUf/qPEY4fDrLwgC58v9Ut2h9scfvP7Nqq+cJBZy+qYf9Fu/vBAx5jOdcVF2QA88mr7oNsKc+LBRVskRo7foisW/5n5THPQKl22Z2MZg4OOqSzkKj7NTh6n3r0/qbHlGmV0E6aDxqSOS8RbjoUzjdQdC28+lHAFj0OMV7ifRVyB38hP+dhEREQ8z6OlpYWamhpWr15NcXHx6AedQhTWiIikk3kGh3mNKN1JH6qwRi6wb2RX92Fe79w/7nP5DR9Rd5Swxhx+6W6AnqhH1jCVNa7r8dS2bi69MHtc4+yvodHmX3/TyttvPcCc5XX85RfqOXTQYe3XQlRcl83NnzrM93/enHSYNWOqj8Vlfh4dIaxpj9hk+U26B4Q1DvRVvBg4OFgM3Ui5nItZyns57P4fYff5hMeWYywAoJ43E79DSVjCVXyMX7KU9yQ11WoXT9FNGMN36YSMS0RE5HSXeUsziIicwgrMczjg3sVBXmYBFyZ1bLaRS7fXNUEjk5PBmb5zmB4s4o8NT3NW3txxnctvWKOGNZZhEhsprIm5ZAWG/rvP9oM9NIddLlk+vrBm74EYf3igg98+3M7TT0QwDLj0iixuW1/M227KZfac+EcZ1/X47nfCfO32Jl49FOHnfzuNYDDxv0ldeXEODz81eHpsb1jT2hMj22/RYx8LawwT2xv483MYurKm1zLeQ5iD7HP+g4BRSo4xZ9Rx+Y18CphOPTtYyMQEIz4CSe3v4fEy9zCH88lKcAlyERERSY4qa0RE0ihoTKGIWWOaCpVj5NKlsOa0ZhomK81KHml+mVZ7fFVWftNHbLRpUKaJM0xfG8/ziMQ8gsNMg3p8eweWBReen/wy9a7rsfG/wlz03r0suXwPf7u+kYJ8k3/8eSlv7pvLH++fwa2fLewLagBM0+Br3ypi079P4bd3dXL9Jw5wtMlO+JpXXJTNm3UxDrcM7FuTn907DcoeNA3K9tx+dTUGjufgG+HvYAYmV/EpipjFAfvnCTe6n8YiGsbQ62qiHOJVmthL0LpysociIiJyylJYIyKSZn7zbPbzPB7JrewUsfM0DUq4OHA5Hh41jckHfv0lUlnjG2E1qIgdf/xmBYaeOvPn+hYuODtIbk5yHzXqj9q8/daDfP4bR5k7z8e//tcUdh6cx52/n86HP5ZP6ZSRm9++7/15/PGB6ezcEeOyVft57c3EVs+6YmW8AujEqVB+n0FO0KTtWGWN7XrEXGfonjXYQzYY7s9HkGv5Eh4e9fYviHgNo46t25xFI3uxh1gWfDK8xJ8oZi55xpLJHoqIiMgpS2GNiEiaFRrn0k0bR6lL6rggmgYlkG8WcHnR2dw/3rAmkQbDI/Ss6TkW1mQPMw3qya3dXLIiuSlQDz7exYp37OPllyL89u5p/Of/TOO978ujoCC5jysXXpTFg4/PJDfP4MpV+7n/kdFDzmlTfJyxMMBD9YOXAy3MsY5V1sSrZnpsu1/PmuMcHCxj9BnmuRRzHV+mjSO8Zn+Tg7EfcNR5FNsbukFyrlmGh5P0a8ZEaOEg+3mBPOuqpJchFxGRU193dzcHDhwY9UtGp541IiJplmssIEgee6llKgsTPi5ILg2qrBGgtPstPNbzG1zPxTTG9ncXv+Ebdelun2lgD7NP5FjvlqFWgzrQFGXvATvhfjWxmMc3/+UoP7yjlavemsXPfzmFadPH9xFl7jw/9z8yk09+pIF3f+IQG75Wymc/FhoxYLjyomweeqIL3jtwe2GO1VdZA9Dt2H09a/ovqe14o1fW9JpCGR/kJ+yllh08xn73Lg66m5nDeZjWUgqNczGNeC+ZbGbiI8hW7iTE7ITOX8g0zuVGjBT+Xc7D4wX+j2xCFBnLU3ZeEREZm/7vQZMv/nnhnnvuYc6c0XuypWJly1OdwhoRkTQzDIs5nMc+alnB+xI+Loh61khciTkF23NojrVTGigc0zn8ZmLToIarrOnuC2sGhx9PbI9XiFy8bPR+NXsOxPjIVw6z7bkI37ytiM99sRDTTE3FRn6+ya+rp/Gtv23hy99p5NVDEf5xzTT8w6xgdcVF2Wz871YONUeZWXy86W5vZU2WLx589Dh2X8+aXsYoq0ENxUeQci6mnIvppo1dPMVOHqfB+Rf8ZFPGShzrfPKMRZzD9RzgJY6yK6Fzb+dBjrKbq/k0Zgo+7nl4PMOv2MFjzDE/gGn4x31OEREZmxkz4s3d2703edPcg2mEJnU8nhejMza+il8ZTGGNiMgksK0lNDlP0EETeZQkdEyAHLq9rnFVU8ipocQqBeBIpGXsYc2xyhrX8zCHqTaxRpgGdbxnzeDH4hPbO1g438+0KSN/zPjjAx18cm09BYUm9z40gwsvSr4Z8Wgsy+DvvlfM4jP8fPGvGtldF+NPm2ZjWYPv8+XH+tY88moHH7i8uG97QY5FV7CNHH98Ba4eO15Z457Qs2a01aBGkk0B53Ad53AdrRxmB4+zg8dpdx4hl2JKrXcyx1yT8Pny3Fp2O7+km1aW8h5mcGZSS3P38vBoZDcv8Ad28wyzzZsptS5P+jwiIpI6H//4x1m/fj379u0jEnuA7EDif/ybCFHnCTxaAT/PPvtEX5gk46OwRk47fgqZbr4NP2P7BUckFXKMeQC0cSThsCafKQAcdeuZZulN8HRWYsYfC4ciTZyTP39M5zCP/eI+UljTYx+vJjlRY2e82W1R7uBwYltDO8vOGz54cV2Pb/9bI+tvC/P2d+bwz5tKCYXGFnIk6sMfy2fmTIv3vqOePz3YyU3X5g3aZ2qpj+wsg8a2gStCGQb0r9b2+v47MSXchcxgOVVMpZyH+RldhJntQFcSGW2RuRSLbI46d3E3f0cB01nClSzmCnIpHvX4HjrYyeNs52Ga2UcuxcyzPk6xuWIc90xERFIhKyuL2267jY985CPY7gs47mVY5sxJGYvrdRC1HwHgq1/9CitW6H0iVRTWyGnHbxQyw3r7ZA9DTnMm8SkWyazuMoVyAPbYuxTWnOaCRpApgUL29zSO+RzOsbnl1gg9XBq6O5meP3Tosjcc7580f2pwwHbP89i+I8oNV+cOeVxbu8NHv3qE+/7Uxde+XcSX1hamrVHtNdfmcOFFQf75Ny1DhjU9EZfuHo/i/IEfj8IdNtOM0r5lu7N98aqkwAlVNBYWMS/x5cKH08oRnuK/2EctMzmbAt976DKS/xBeYJ5JvvENOrwdGM5WavkdW7mLOZzPEq5mHhcMmCLl4XKQV9jOI+zhOTw85rGMkPUOCoyzMAyTQOxxGqw8Qub5476fIiIydh/84Af54Q9/yPPPP0/EvpecwCcmZRxR+yEgwpQpU1i7du2kjOFUpbBGRGQSGGMIa4LkMt2cyW5nFyu5bKKGJieJOVlT2N9zdMzHu56HZRgjBiWtvsbhw5qWLqaHfOQEB5Z7HAnbhNtczloUGHTMm7uirPrsIY4ctvmf307juhtzxjz+sVr9mQI++ZGj7NwdZeGCgWNsaokHWMV5J4Q1XQ6hqX46o/GwJsfyY3suOYPCGh8RElsqfCgxenie3/ES95BDiAXWLRQaF4wrzDIMg3xjMZiLOdt7Ny3uc3S7z1DDD8imgEVcwXyWc5CXeYNH6aCREDOZbt5EsbkSv1HQd66o18QL/IZcp5hC41yMMU75EhGR8TNNkzvuuIOKigocdye28yY+a3Fax+C6jcScZwD45je/SUFBwShHSDIU1oiITILjlTXJ/WI331fGHjuxBqNyasuLzGOf+cqYj3c8Z9jpT72OtPcwp3DoFZ32hrtYcEJVDcCr+7sBOPOEsKb+qM1l793P9OkWDz4+k0VLBoc56XDJZfHwaeee2KCwprklHsaUnBjWdDoUZvnpPlZZk+XzEXMcfOYJYY1hYY+hssbDYxdP8jS/IkIHU83rmGZe27caVKpYRjal1hVgXUGJdwCfvY03eISXuLuv2bFrLSfXKBsyILLsp7Dw00EjYe8FioxlKR2fiIgk55prruGGG27g3nvvJWLfi2UuxEhjX8OIfT/gsnjxYlavXp22654uFNaIiEwCAwsDI6nKGgBfdAkHeZKoFyFgDP5FWU4f08wZPNXzKI7nYo3hg5nrefhGOe5Iew8rZhcNeduBSHjQFCiA1/f3EAwYzJ8zcLWgR5/upq3V5dkXZzF9xuR9/Cguid/nppbBK2E1tx4La/KPhzCe59FyLKzpjMWDmGzLh+25g8MafDjeyCtsnaiRPTzJv3OEN1jAhWT7biJoJNbHajyyjdngn80Z3o10eXvINuZgGcP3GXK8bl7nIc7hOhrYRafzMCFjadqmsImIyNA2bNjAvffeh+sdwXZq8fuWp+W6jrsX243/0eh73/sefr9WCUw1LSciIjIJDMPARzDpsGYqC3Fx2WfvmZiByUljmjWdmGdTHwmP6XgHd8TKGs/zONIeGXYa1O6GCAumDa78eO1AN4vL/Ph8A8/93As9zF/gm9SgBiAryyQ31xg6rDm2rf80qO6oR8z2CGX56Yo6ZPlMLNMk5rr4huhZ45BYZY2DzeP8G7/jq/TQQbn1OUL+v0xLUNOfafjJMxeNGNQANLlPYhPlbK7jLdzIUXbR6dWlaZQiIjKcc845h0984uMAROwaPC+5z5Zj4XkePbF7Abj00kt517veNeHXPB0prBERmSQ+AklPgypmDgEC7HE0Fep0N9WMN5k+MMa+Na7n4jOH/xjQEYvSbTtDhjUR2+FQS2zIyppXwx2cuXhwiPP0q92sWJkZ1WDFpRaNzYPDmqYWF9OEUL8VrsKd8fClMMtPV8whxx8PcmKuM6gyyWf4cEissuY57uR1HmSm+V7m+9ZRYJ451rsz4TzPodV9hHIuJpdi5nA+hcwk5vx5socmIiLAt7/9bbKzs/FoI+o8MeHXs91Xcb29ANxxxx2qspwgCmtERCaJRSDpyhoTi3m+Mnarb81pr8gsJmj6x9xk2PFGrqyp746v9jRUWLM/3I3nwYKpA0MZz/N4fUeUMxcODGUiEZcXn4+w/MIMCWuKTZrDg0OVllaHokIT0zz+c2npjO9XmOWnK2qTE4gHOfYwlTWJ9KzZzwu8xN3MMN/FVOuajG/UG/ZeoING3sKNABiYnMsN7OE5It7Ym1yLiEhqzJo1iy996UsARO1Hcb2OCbuW5zlE7PsAWLVqFRdffPGEXWs44XA47decDAprREQmiY8gTpJhDUCOvUhNhgXTMJkdLB3z8t0u7og9axq6uwCYMURYszccv+3EBsMNrTbNYXdQc+GXXo8SjcLyC0eeapMuJSUWDd2DQ5XmFoeiwoHBSfhYWBPK7q2sid8+9DSo0StrumjhYX7GHM5jqvnW8dyNtOlyHmUGZ1HKgr5ti7mcILmY9pOTODIREem1Zs0apk6dCkSI2g9O2HVizjN4XhNgcfvtt0/YdU5UW1vL1q1bAdiyZQt1daf+VFyFNSIik2Qs06AAprKIsNdCi9s8AaOSk8nsrNIxT4MarbLm6LHKmml5g6th9rZ0YZkwp3RgKPPagR5g8EpQzz7fQzBocO55k7MC1ImKS0yamtxB25vCLiVFQ4c1x6dBjVBZY1g4I1TWeLg8zE8xMCn0fSCtK3aMVadbRwM7+qpqevkIchaVbOdhbK9rkkYnIiK98vPz+da3vgVAzHkW10195aPn9RC1HwLgc5/7LAsXLkz5NfqrrKykqKgIwzBYtmxZX0VNXV0d5eXlGIZBUVERt95664SOY7Jk/qcEEZFTlG8M06AAplIOwF771P+Lgowsp7uMfWPuWeNhjRDWNPZ0kR/wkRMY3BB4X7iL2SUBfNbA47cf7MHng/J5A1eEqH2lh3PeEiAQyIw57UVFJi1D9KwJtzqECgd+NOrtWVMQ9NEVc8jurazxXCzDwvM8IL78drzB8PCVNQd4iYO8whTrJvxGQaruzoRq8bYRJI+5XDDotiVciU2ENm/sS8iLiEjqfPKTn2TJkiWAe2xZ7dSK2o/i0UlBQQFf//rXU37+E9XU1NDS0oLnecN+tbS0sHHjxgkfy2RQWCMiMkkMDDy8pI/LoYggWRx16ydgVHIymWHNojnWTqvdmfSxpmFie8M//mKuS8A39MeEhs4IM4oGL9F5pCXGtCm+QStBNXTaTJ+ROX1Z/AEDZ4gCmJ6IR073wOqfSCz+Mwr6LKK2S/DYzyTmOARMC8eLV+j4DB8uLhbD38/pnEGImXQ4j+B6sRTdm4mVZywmQgdHGRwO7+MFDEzyjIn9y6qIiCTG7/fzve99D4g3AbbdPSk7t+u1EnUeB2DdunWUlpam7NwyNIU1IiInGQODUmsqR52GyR6KTLKZ1mwAdnclH9z5DQvbHTwVqJfneZjDFMKEzTamFAyuuKlvjTG1ZHBY0drqEirKnI8cpglD3fWY7eE/oVoo5niYJlimEQ+wrGNhjRuvrIl58UoaCx+2Z2MZwy9N7ieLa/gcrRwmZt+dujs0gQqNcylgOi/xpwHbXVxe4V7KWEnAKJ6k0YmIyIne+c53ctlllwEQid3TVwE6XhG7BrCZM2cOn//851NyThlZ5nxyEhGRhE0xp9LoKqw53U01p+E3LHZ3H0n6WMuwiLnDT9lxPYbtaXO0LcaUwiHCGqObqaVDhDVhl8LCzPnIYZoGrjv4w2ssBv4TqoL6Bzgxx8XpzgXA9lz8hoXTF9ZYONj4GD6sAShhHhfxIV7jAcLuCym4NxPLMEwKzCvZzTO0c3zK3V620UY9lnXFJI5OREROZBgG3//+9wFwvf3Y7vinqjruYWynFoDbbruN7OzscZ9TRpc5n5xERCRhXmyGwhrBMnzMzZo6prBmtMoaF2+EsMZmasHgaVANjQ5ThqmsKQxlzkeO4Spr7GEqawI+4/i/TRPHdXE9D1+/yhqf4cNm5MqaXmdRyXxWcMj5b9rdN8d/hyZYsXkxAXJ4hfv6tr3Mn5jOGeSa8ydvYCIiMqSVK1fyvve9D4CIfR/eCM3vExGx7wU8zjvvPD74wQ+mYISSiMz55CQiIgkrYBrNbhP2ON985eS3IGcau7vGUFljmsTGOA2qodVm6hCVNQ1NDtNKB2/PvMqaEaZBjVBZE3Vc/P1+bn7Twu43DcrxbHwj9KzpZWBwBasJMZudzg9pjf0HUS9zV3ezjCAh8zK28zBRumhgJ0d4g2zryskemoiIDCO+rLaF5zUTc54Z83ls500cdwcAd9xxB5aVOT3oTnWZ88lJREQSVsA0PDya3cbJHopMsryuxezprsf1hg9ehuI3fNieO+xcdo94KfWJOqM2XRGX0iF61jQ02oMqayIRl+5uL/Mqa4a427HY4MqaaL8Ax3ZdfKaFfexn3X8qmc+wsHGwRpkG1SuLPG7im1zFZzjMdrbb3+aIc8+kNB52vJ5R95liXoVDlO08zMvcQwHTKDTekobRiYjIWJSVlfE3f/PXAETth/C87qTP4XkuETteVXnddddRWVmZ0jHKyDLnk5OIiCSsgGkAHNVUqNPeTGs23W6U+mg4qeN8xvFGuUNxvaGnQTV2xpebn1o4cBpUV8Slo9Mb1LOmtT1+/kyqrDFMA2+ItCYaY8RpUFHHw2+aRJ14QOM3rL7qtr7KmgSmQfWNA4PFXM7N/ICzuZZ69x7q7NsIuy+mrCHkcBwvQpP7FIdjP+Il+wvsi32Po84j2N7QK4v5jRDlXMKL3E0dz1BgXoVhZM7/UxERGexrX/sahYWFeHQRtR9N+njbfR7XOwwYbNiwIfUDlBHpXVZE5CSUSwkWFo1aEeq0N9OaA0BdklOhfEY8VLGHqchxh5kG1dgZARi0GlRDa7wi5MTKmta2Y2FNplXWJDgNKmq7AxoM+4zj06B8Rv9pUFa8Z02ClTX9BcjmIj7IKjYQYga7nZ/TaP+cHi/56W0j8TyPTnc33bHNvG6vY5/zn1j4uZS/JJ8pHHSrec1eR1vsv2h3t+Od8NgwfZfTTRg/2RSbF6V0bCIiknolJSV89atfBSDqPIHrhRM+1vNiRGI1APzlX36Mt7xF1ZTplvwnChERmXQmJiVmqZoMCyGjiDwri93dR7i06KyEj+sLa4arrMFjqJY1jV29lTUDP0LUh+MVJif2rGlp7Q1rMmeO+7BhzRDToGLOwNWg/Gb/qU/xqWSWYWIaZnw1KGPs9zPETK5nLfuo5Un+k4P2bZzL9eC7BssY+8obMa+dFvcZutxnaOEAuZRwLjewhKvIZwoAZ3MtXYTZwWNs5xFanSfJZyp55kqKzYsIGMXkGHNYxOV0mlOxjKwxj0dERNLnc5/7HD/5yU/Yt28fkdgDZAfel9BxUecJPFoBP9/5zncmdpAyJIU1ktE8JrYMXORkVmpO5ZBzAM/zhuwtIqcHwzBYkD2dnZ2HkjquN1QYdvnuYZbuPnqssqY0/4TKmrZjlTUnToNqi58/dBJU1tj28SlPvaK2R8DXO2XMw2+ZfQFXvMGw3a9KyaHHHt9ypgYG81jGLM7lZe7heX6P336cGdaHKDTPSepcMa+VTvt37GUrLi4LuJCL+BCzOBdziOLqHEKcxzt4C2+nnjfZzsPsdO/lsHs3c3gLeb53kef/AHnjuociIpJOWVlZ/P3f/z0f/vCHsd0XcNzLsMyZIx7jeh1E7UcA+OpXv8Ls2bPTMFI5UeZ8chIZwgHnroQaH4qcjHIppZ43cBnbik5F9nK226/y884f0eqGUzs4Oaksci7m8fCr/PLA/Qn3OpkWLALgxcahq7MKg0GOtPcQtQemGkEr/tGhpXNgyOM7Nmeqq3vg/tax8KO7K7kGyBOpod6loGDgR6DOLpejzc6g6V1N7TaFORae59HcFSXfHyAcjb8v5VhB2uxucq14lUmX14mf8YU1AA4x9vMiR9mNi0MPbRQ7R5M+T4zwsdcYB/A4yCu8yB94hl+xg8dp4QAu8f8vHi6tHKGOp3mO/6GW37KP54+9Pnk0sIuIp4bmInJya3aenewhTIoPfOADXHDBBYBHxL531M8KUfshIMKUKVNYu3ZtWsYog6myZpJVVVWxYsUK1qxZk9LzVldXs3HjxgHbKisrE77OeI9PlW4OstP5EeXWX+Ez9Lc8ObX4fFfRbj/OmzzGGVyd9PFncy15lPKkvZHvtn2N92T/BRcGLlWVzWnorcHr8HD59eE7ORJp4csLVhEwR36LL8+ZwbnFU/nVjpd56+z5g26/bPocvv/C0zy1r4kry6b0bb+yrBSAB15s48NXlvRtX7koF4CntvZQPi/Qt/0tZwYBePmlKIuWHN8+mZ59uocVFwUHbHtyazexGFxxdv6A7a8f6OEtRVNo6ooS7omxID/EnvZWAGYGSzjU08TMYPzn0Og2cCbLxjQmD5d63mQHj1PH00TopJQFzDDfRZG5HMcoTPqcOcY8lvhvJ+a10uXtp9vbR8CtZw/P8TL3AOAjSCHTaaOBGPGVQnIppoT5hMzLyDbmkGPMxU+RXltE5KR2xLmfw97vJ3sYk8I0Te644w4qKipw3J047pv4rCVD7uu6jX1LfX/zm9+koKAgnUOVfhTWpFk4HKauro4777yTTZs2EQ6HKSsrS+k1KisraW5uZvPmzX3nDofD3HLLLZSXl1NTUzPiNcd7fCoF/e8nGqtmh/0Dyn2fI2CE0nJdkXTINmaxgJU8z+9YzOWYY3hJnsdSpnp38Jr/l/xn1y94KvoYf5HzUaZbI5e3yqnFMAwqsm6kyCzhv1o20Rhr49sLP0y+b+QqjxsKr2DD7mr2tIWZXxAacNuZRaVMywuyZWfDgLBmal4WS8tyeOCFgWFNcb6PMxcFeGpbNx967/EPdqXFFrNmW7z8YpT3VKXm/o5HW5vLKy9FWV0VGrD90ae7mVpicdbs471Y6sMxXtzTzafOL2FnUwcACwpC3LtvF1Ozc8ixghyMNBGKzaPb10Wn19G3UluiwhxkB4+zkydo5yh5lBIyL6PIXEm2MWPc9xfAbxRSaBRSyDlgQRFge510ewfo8vYT8eopNc4nx5hLtjEbv6EP5iJy6vA8j0Pu72lwH2CK8VaOeg9N9pAmxTXXXMMNN9zAvffeS8S+F8tcNOSqfhH7fsBl0aJFrF69Ov0DlT6aBpVGhmGwYMEC1q5dS3l5+YQEHlVVVWzdupUHH3xwwPlDoRCbN28mFApRWVk5YcenmmVOJxhYjUMPO+zvE/HUTFVOLUFfJe0c5U0eG/M5silgWexvuJF1tLotfLfta/xf92aiXiSFI5WTwbLASv46by27u47w+dd/xuFI84j7X1X8FkKBIL/e8eqg2wzDoGLhVLbsGPy6e9XMWTzwYhvuCctfXza/gCe3Dp66es5bArz0QjTJe5N6juPxmU8eJRg0qLg8Z8Btf36qmysvzh5QPXLfC20YBlQsnMqOxk4MYG5eIXvaw8zLDwFwONJMqTmVxmPTlBINa1o4yO/5OnfxZV7lAWZxDousL7LQ921mWu9KWVAzHJ+RS765hGlWBXN9H2S6dT0F5lkKakTklOJ5LvudX9PgPkDQ93a6AhdO9pAmVXz5bQPXq8d2agfd7rh7sd1XAPje976H3+9P8wilP4U1aeR5Hi0tLdTU1LB69WqKi4tTev4tW7ZQXV3N6tWrCYVCQ+6zbt066urqhpx7ON7jJ4ppTiEQXI2BxZv2P9DtHUjbtUUmWry65kKe5/dj7l3TazZv4e3uBs7nXTzUcz+3tX2VV2IvpGagctIo9y3mC7nfIuY5/PVrP+ONzuFfMwOmn2uLV/Lbuu1027FBt1+YdyavH23nQGv3gO3XLJxKY5vN87u7Bmy/ZEker++I0hwe2M9maXk2L780+WHNN9Y1c88fu/ivH09n3uzjH0DbO1y2vdzD1TMHvi/fs62VFeU5TMkLsqupgzmhHLJ8Pva2t1LqzqTD7qbV7mSKNa1vZbZ8po46jv28wO/5OjG6WWDdwpm+75Htfx95w/yVU0REkud6Nnucf6XJe5Is/yoCvksne0iT7pxzzuETn/g4ABG7Bs87/t7seR49sXsBuPTSS3n3u989KWOU4/SJ4BTS22NmpMqXVatWAbBp06aUHz+RTCOEL3gLfgrZYf+ADndXWq8vMpHi1TUN46qu6eUjwDJW8V7WM9Wczs86fsimjn+kxW1KwUjHx/Ecur1uWt0wR516Djr7OewcpMlppN1tI+pFcL3km9B6nkfMi9HpdtDiNlPvHGa/vTepr5g3+UFCKk2zpvP5rG8zPVjEl7Zv4qnw68Pu+46pK2mPRbh7745Bt106fQ6WYbBlR/2A7RfOKSI/2+T+F9oGbL/szHhvsae3DQx3zjsrSEO9Q/2R8QWS47Hpp2385Mdt/MM3pvC2ioE90J54rhvHgavPOd6vJmZ71LzYxltnzwFgR1MHC0ty8TyPPe2tzMoq5dCxyqUp5jQa3aNkkUUWA3ve9Ofh8Qr3cR8bmM4S5vi+RMhcimnoL5ciIqnkeBHqnJ/R6r1Elv8D+K2x9RM7FX3nO98hOzsbjzaizhN92233VVxvLwB33HGH+pRlAPWsOYVUV1cDjDq9KhQKEQ6H2bJlCxUVFSk7fqKZRh5G8ONkR3/NLucfWcCtFJhnpe36IhMl25jdV10z1t41JypkBpfZX2UmT7PV/k++07qOt2W/m6uDlVhGal76Pc+j1QtzxDnEEecQ9e5hjjr19Hg9RIkS8yJEvAhRokS9CA7DLBF9Aj8BgkYQvxEgSJCAEcBvBLCwiHgRYl6UCBGi3rFrEMEjsRWQhhMyirgx+11cFLgcy7BGP+AkkG8WcKv/6/yv/8d8c8d/8ZOzPsui3FmD9psRLObKmfP41ZuvsKrszAEfzgoCQS6cU8QDOxr42PL5fdv9lslbzy3ggRfa+Op7j0/XWTA1wPQpFk9u6+HGa44HIuedHW/m+9ILUSqvT/9Hj3vv7uL/famJz3yugE9/NDTo9kef6mLmNItFM443HX7qzQ5auxyuWxSf1rSrqZMVRfNpjnTTEYsyK1jCwZ54CDrFnMqTzqOUWFMxnKE/3LrYPMF/8DpbOJcbsXxvUxWNiMgEsL1O6pyf0u0dJMv/MXxW+WQPKaPMnDmTL33pS9x2221E7UfxWyswyCZi3wfE/zh/8cUXT/IoBRTWnDK2bNnS9+/RwpaysjJqa2upra3tC1vGe3y6GEYWXuDD5EXvos75KfP4OEXm0rSOQWQiBH2VtNt/zw4eZwlXpeScBgblXMwc7zz2BP+H33ffyTPRx3l/zsco8y1K+Dyu59LoHqXeOcQR99CxcOYwR5xD9BxbPcbCYqo5nanWdBy7hGyC+AjgI4ifIL5+3/duswjg4WITOfYVxSZCjAi2d+yr3zYH51jdwsBz9T9nfHsWFn4MEvuLkEOMQ/77+XXXv7Gl5x7env1eLvCvwDwFfpEOGEFu9r7MzsAX+d/6J/h/Ze8bcr9rc6/mq4f+nRca67lgyvQBt11UtIhfvL6VqO0S8B3/mVw5ZS5rtr1Ea6dDYW484DIMg0uWZ/PkcwMra+bP9lFQYPDyS1Eqrx/YK2aivVAb4RMfbuDGd+Rwx+eGnqL06NPdXHFRzoCg6p5trUwL+ThvRiGO61HX3EnV3OMrQc3OKuXJ8OvkW9nkmLk0ug1MMacyVCbZQwdb+BGH2c4c64P4zMsm5L6KiJzuYl4bO+1/JEaYrMAnsMw5kz2kjLRmzRo2bdpEQ0MDUftBTGMKntcEmHz3u9+d7OHJMQprThG1tfEGUcP1mumvt1fOc889l7Lj08kw/LiBvyAU/T/2OP+CywcpMTUHVU5u2cZs5nMhtfyORVyWkuqaXgFyWBz5OMVczTZ+wT+030aekZ9wmNHtdWMT72cSJIvp1gymWzOZ6qwgxCxCzKKAqZiuBcnPYsoI06NLmMtNvGH+D7/s/ClzrHnclF3Fmb5zTvoyYNMwudi6jj82b2b1nBso9g+eprO8cBFz8wr41Y6XB4U1V86Yyw9ffGbQEt5vXTgF24GHXmnj3SuL+rZfNi3EugcPEom4BIPxcMcwDM45L5j2JsP79sa4+d31nHl2gP+8fQaWNfj/ZUurw/OvRPj0ZQPv973Pt3L9BYWYpsGe5k6ijktZQYi9vct2Z5VwKNLErKzjy3bPdFcOOn+Yw9zPBnrooNz6HPnm4gm4pyIiEvGa2GX/GJcowcAtWGZyq/OdTvLz8/nWt77FZz7zGWLOs0C8svSv//qzLFqU+B/0ZGIprDlFNDUl348iHA6n7PhkHDgwcoPg/fv39/3b9dqG3S/iv5qimMk+57+JuI2UWleMaTwimcK0VtLuPMsr3EcZqS8/zaKAS5wvMJNtdHkjrxLUn48gBUyjkOlkE4pP8ziheqCLcGoHOwmyyOc8+xZmsIs3vd/xk47vM98q57qstzPHN3+yhzcuZ/nO5R6quevwn3nv9KGrOi7PX8adex/hE2ecT1HW8SW/i4JZlOYE+P2rh1hYcnxqk980WTAtwG+fbmHFwty+7QtnBIlEPe5/tJOl5x5fBnvxjAAPP9vJwQPp6VvT3u7yoap6fD74yTem0hx2BjU+Btjy5y48D86YlcWBpniYdLApxiv7evj4uYs52NrN0/vj75G5fj8vH2hgalYObXYXe7vqKQrk0+gcpcltZAG5dHD8/fQIb/AY/0I2Bcy1VhMwSol6LWm5/yIip5Mer4G9zi8x8OHzvx/DyML1Wgft1/93C9uevD5qmeCTn/wkP/7xj3njjTeAbgoKCvjGN74x2cOS/jyZNBUVFR7grVmzZtznWr16tQd4oVBo1H1XrVrlAd7SpUtTdnwyAH3pS1/60pe+9KUvfelLX/qatK9nn312TL/LnEp+//vf9/08br/99skejpzg5J+QLwA0Nyf+V/Je/Stjxnu8iIiIiIjIyaK+vn70nU5xN910E5dffjmzZ8/m85///GQPR06gaVCniN4+MpN1fDL6T3Mayu7du7niiviUpieffJI5c9QYTATg8OHDXHjhhQA8++yzzJgxY5QjRE59el6IDE3PDZHB9u/fzyWXXALAGWecMcmjmXyGYXDHHXfwxhtvkJ2dPfoBklYKa04RiTQGnsjjkzF79uyE950zZ05S+4ucLmbMmKHnhsgJ9LwQGZqeGyKDZWVljb7TaWDlypV9wa5kltN+GlQ4HMYwjJR9LVu2bFLuR0lJScL79k5f6h/QjPd4EREREREROfmc7CtfnqpO+8qaUChETU1NyvqvlJWVpeQ8yeoNThK5H739afqPdbzHi4iIiIiIiEhqnPZhDUBFRcVkD2Hc+gcn4XB4xKqX3kCm/zHjPV5EREREREREUuO0nwZ1qli+fHnfv0db2amurg6AysrKlB0vIiIiIiIiIqmhsOYUEQqFWLp0KXA8TBlK/34z/SuKxnu8iIiIiIiIiKSGwpqTzEg9ZdatWwfA5s2bh93nrrvuAmD16tUpP15ERERERERExk9hTQZItLlxVVUVRUVFVFVVDXn7qlWrWLVqFZs2bRq2Omb9+vWEQiHWr1+f8uNFREREREREZPwMz/O8yR7E6ai2tpZrrrmGcDhMWVkZNTU1ozbs7b+k2nD/28LhMFVVVdTV1Q0453DbU328iIiIiIiIiIyPwpo0qqysZOvWrSNW0oRCId73vvexcePGQbdt2LCB22+/nXXr1rFmzZoRr1VdXc3GjRsHLMldWVk56nGpOl5ERERERERExkZhjYiIiIiIiIhIBlHPGhERERERERGRDKKwRkREREREREQkgyisERERERERERHJIAprREREREREREQyiMIaEREREREREZEMorBGRERERERERCSDKKwREREREREREckgCmtERERERERERDKIb7IHIDKUqqoqVqxYwZo1a1J63urqajZu3DhgW2VlZcqvI5IqE/mYvfXWW2lububmm29m6dKllJWVARAOh6mrq+POO++kurqampqavttEJkI6Xpv1+i8nI70HiAxNvyvI6UBhjWSE/h8MNm3aRDgcTvkHg8rKSpqbm9m8efOADyS33HIL5eXl+jAiGWeiH7PNzc1UV1dTXV097D79ry0yEdLx2qzXfzkZ6T1A5Dj9riCnI02DkklnGAYLFixg7dq1lJeXT8iLYFVVFVu3buXBBx8ccP5QKMTmzZsJhUJUVlam/LoiYzXZj9lVq1axa9cuVq1aNWHXEEnH43yyn0siYzHZj1u9B0gm0e8KcrpSWCOTzvM8WlpaqKmpYfXq1RQXF6f0/Fu2bKG6uprVq1cTCoWG3GfdunXU1dWxdu3alF5bZCzS+ZjdvHkzNTU1rF+/nvXr11NTU0NLS4v+mioTLh2Pc73+y8lI7wEiA+l3BTldKayRU17vvNOR0vDevxxt2rQpLWMSGUk6H7NlZWVUVFSwZs0a1qxZQ0VFxbAfVERSKR2Pc73+y8lI7wEi6aX3CslUCmvklNc7F3u0vxCFQiHC4TBbtmxJx7BEhqXHrJwO0vE413NJTkZ63Iqkl55zkqkU1sgprf+L6WgvwL2319bWTuiYREaix6ycDtLxONdzSU5GetyKpJeec5LJFNbIKa33xTSRkt7e+a/PPffcRA5JZER6zMrpIB2Pcz2X5GSkx61Ieuk5J5lMS3fLKa2pqSnpY8LhcOoHIpKgyXjM9m+YFw6HaW5upqKignXr1ql3gUyIdDzO9fovJyO9B4ikl94rJJMprJFTWjIvpr0fSJqbmydmMCIJSPdj9vbbbyccDvctS9mrqqqKZcuWUVNToxVBJOXS8TjX67+cjPQeIJJeeq+QTKZpUHJKG8uLqdJymUyT8ZitqakZ9NfTzZs3A1BeXq7nhKRcOh7nev2Xk5HeA0TSS+8VkskU1sgprXduqcjJIp2P2fXr1/d9IB9K7zKVveXxIqmSjse5Xv/lZKT3AJH00nuFZDKFNXJK01xrOdmk8zE7Wml7ZWUlAJs2bdJfkSSl0vE41+u/nIz0HiCSXnqvkEymsEaGFA6HMQwjZV/Lli2blPtRUlKS8L69H0T0oi3DScfzIpMes/0/yG/dunVCriGnp3Q8zjPpuSSSqEx63Oo9QE4HmfScEzmRGgzLkEKhEDU1NSn7S8pkNafrfTFN5H70zllVIz0ZTjqeF5n0mO1fGlxbW0tFRcWEXEdOP+l4nGfSc0kkUZn0uNV7gJwOMuk5J3IihTUyrFPhTbn/i2k4HB4xCe99kdYLsIxkop8X6XjMhsNhrrnmGsLhcMIrfezatSupa4iMJB2Pc73+y8lI7wEi6aX3CslkmgYlp7Tly5f3/Xu0bu91dXXA8TnaIpMhHY/ZLVu2UFtbS11dHdXV1cPu1//65eXlSV1DZCTpeJzr9V9ORnoPEEkvvVdIJlNYI6e0UCjE0qVLgeMvsEPpPwf1VKgokpNXOh6zvedfunRp32ofQ+l/fT0vJJXS8TjX67+cjPQeIJJeeq+QTKawRk4JI80zXbduHcCIy1PeddddAKxevTql4xIZi1Q9Zod7XpSVlbF06VK2bds2YilvTU0NEF++tfeDjEiqTPTjPJXXEEknvQeIpJ7eK+Sk5IlkmIqKCg/wVq9endD+q1at8gBv1apVo+6za9euIW8vKyvzQqHQmMYrMhHG+5gd7XlRU1Mz4nNs27ZtHuCFQiGvpaUlqbGLJGqiH+epuIbIZNB7gMjw9LuCnC4U1khG2bZtmxcKhTzAKysrG/YFsz+g72s4LS0tXkVFxaBzDrddZLKN9zGbyPNi/fr1XkVFhVdTUzPg/Bs3bvQAr6KiQs8LmVDpeJzr9V9ORnoPEBmafleQ04nheZ430dU7IiOprKxk69atI5YnhkIh3ve+97Fx48ZBt23YsIHbb7+ddevWsWbNmhGvVV1dzcaNGwcs01dZWTnqcSKTZayP2USfF3V1daxfv56tW7dSV1dHcXExS5cu5eabbx6xl4FIKk3043w81xCZTHoPENHvCnL6UlgjIiIiIiIiIpJB1GBYRERERERERCSDKKwREREREREREckgCmtERERERERERDKIwhoRERERERERkQyisEZEREREREREJIMorBERERERERERySAKa0REREREREREMojCGhERERERERGRDKKwRkREREREREQkgyisERERERERERHJIAprREREREREREQyiMIaEREREREREZEMorBGRERERERERCSDKKwREREREREREckgCmtERERERERERDKIwhoRERERERERkQyisEZEREREREREJIMorBEREZGTQjgcZu3atVRWVrJs2TIqKyupq6ub7GGJiIiIpJzCGhEREcl41dXVLFiwgJKSEmpqati2bVtfaBMOhyd7eCIiIiIpZXie5032IERERESGU11dTVVVFevXr2fNmjUDbjMMg1WrVrF58+ZJGp2IiIhI6imsERERkYy1ZcsWKisrqaiooKamZtDt5eXl1NXVoY8zIiIicirRNCgRERHJSOFwmKqqKgA2btw45D5lZWVAPNQREREROVUorBEREZGMdMsttxAOh1m9enVfKDMcNRoWERGRU4nCGhEREck4tbW1VFdXA7B27dph92tubgZQk2ERERE5pSisERERkYzTG9BUVFSMWFXTW1HT1NSUlnGJiIiIpIPCGhEREckotbW1fT1oRqqqCYfDfRU15eXl6RiaiIiISFoorBEREZGMcvvtt/f9u6KiYtj9tm7d2vfv4uLiCR2TiIiISDoprBEREZGM0turZtWqVSPu138p79EaEIuIiIicTBTWiIiISMboDWoAbr755hH37b9c99KlSydsTCIiIiLp5pvsAYiIiIj0uvPOO/v+XVVVldAxCmpERETkVKPKGhEREckYtbW1QHxaU0tLy7Bfmzdv7jtmpL42vfpX7IiIiIhkOlXWiIiISEYIh8N9S3FXVFQQCoWG3fe5557r+/dI06Wqq6tZu3Ytzc3No/bAEREREckUCmtEREQkI/Rf3WnZsmUj7tvbr6asrGzQNKgNGzZw5513UlxczNKlS6mrqxsx+BERERHJNJoGJSIiIhkhHA73/Xv58uUj7tc7XWqoapk1a9awbds2ampqWLduXcrHKSIiIjLRFNaIiIhIRuidAgUjNw2+6667+v6tMEZERERORQprREREJCM0NTUltN/69esBWL16taY3iYiIyClJYY2IiIhkhJKSEiDeh2Y4W7Zs6avAWbt2bVrGJSIiIpJuCmtEREQkI/SGNCNVy/RW1axfv37EUEdERETkZKawRkRERDLCSH1qAGpra9myZQtlZWWsWbMmTaMSERERST+FNSIiIpIRysrKCIVCA1aF6u+WW24BoKamJo2jEhEREUk/hTUiIiKSMdatW0ddXd2gwGbt2rXU1tZSU1Oj6U8iIiJyylNYIyIiIhljzZo1lJWVcfvtt/dt27BhA5s2baKmpoaKiopJHJ2IiIhIevgmewAiIiIi/dXU1HDrrbeybNkyiouLWbp0Kbt379Yy3SIiInLaMDzP8yZ7ECIiIiITIRwOU1RURCgUoqWlZbKHIyIiIpIQTYMSEREREREREckgCmtERERERERERDKIwhoRERE5ZdXV1QHx6VDDLQkuIiIikmnUs0ZEREROKdXV1X2rSfWGNb16l/3+xS9+wdKlS9M+NhEREZFEKKwREREREREREckgmgYlIiIiIiIiIpJBFNaIiIiIiIiIiGQQhTUiIiIiIiIiIhlEYY2IiIiIiIiISAZRWCMiIiIiIiIikkEU1oiIiIiIiIiIZBCFNSIiIiIiIiIiGURhjYiIiIiIiIhIBlFYIyIiIiIiIiKSQRTWiIiIiIiIiIhkEIU1IiIiIiIiIiIZRGGNiIiIiIiIiEgGUVgjIiIiIiIiIpJBFNaIiIiIiIiIiGQQhTUiIiIiIiIiIhlEYY2IiIiIiIiISAZRWCMiIiIiIiIikkEU1oiIiIiIiIiIZBCFNSIiIiIiIiIiGURhjYiIiIiIiIhIBvn/83WfepMx/qsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = TG[...,1]\n", + "y = TG[...,2]\n", + "z = np.array(nearby_count).reshape(ng, ng)\n", + "z[z == 0] = z.T[z == 0]\n", + "z = np.log10(z)\n", + "levels = np.linspace(0, 4, 9)\n", + "plt.title('$\\log_{10}$(number of nearby tiles)')\n", + "cntf = plt.contourf(x, y, z, levels=levels, extend=\"both\")\n", + "plt.contour(\n", + " x,\n", + " y,\n", + " z,\n", + " levels=levels,\n", + " colors=\"k\",\n", + " linestyles=\"-\",\n", + " linewidths=0.5,\n", + " extend=\"both\",\n", + ")\n", + "cbar = plt.colorbar(cntf, ticks=[0, 1, 2, 3, 4])\n", + "cbar.ax.set_yticklabels([\"1\", \"10\", \"$10^2$\", \"$10^3$\", \"$10^4$\"])\n", + "plt.xlabel('$\\\\theta_1$')\n", + "plt.ylabel('$\\\\theta_2$')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.6 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.10.6" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/research/adagrid/bayes2022_figs.md b/research/adagrid/bayes2022_figs.md new file mode 100644 index 00000000..b64234bb --- /dev/null +++ b/research/adagrid/bayes2022_figs.md @@ -0,0 +1,184 @@ +--- +jupyter: + jupytext: + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.8 + kernelspec: + display_name: Python 3.10.6 ('base') + language: python + name: python3 +--- + +## Type I Error + +```python +import scipy.spatial +tree = scipy.spatial.KDTree(g.theta_tiles) +``` + +```python +t0 = worst_tile[0] +ng = 300 +t1 = np.linspace(-1, 1, ng) +t2 = np.linspace(-1, 1, ng) +TG = np.stack((np.full((ng, ng), t0), *np.meshgrid(t1, t2, indexing='ij'), ), axis=-1) +TGF = TG.reshape(-1, 3) +nearby = tree.query(TGF, k=5) +``` + +```python +idxs = np.unique(nearby[1]) +typeI_sum = np.zeros(g.n_tiles) +typeI_sum[idxs] = batched_many_rej( + sim_sizes[idxs], + (np.full((idxs.shape[0], 1), overall_cv), + g.theta_tiles[idxs], + g.null_truth[idxs],), + (unifs,), + unifs_order +)[:,0] +typeI_err = typeI_sum / sim_sizes +``` + +```python +x = g.theta_tiles[idxs, 1] +y = g.theta_tiles[idxs, 2] +z = 100 * typeI_err[idxs] +alt_hypo = (x > t0) & (y > t0) +z[alt_hypo] = np.nan +plt.title(f'Type I error \% $\quad(\\theta_0 = {t0:.2f})$') +plt.scatter(x, y, c=z, s=5, vmin=0, vmax=2.5) +plt.scatter(y, x, c=z, s=5, vmin=0, vmax=2.5) +plt.colorbar() +plt.xlabel('$\\theta_1$') +plt.ylabel('$\\theta_2$') +plt.xlim([-1, 1]) +plt.ylim([-1, 1]) +plt.xticks([-1, -0.5, -0, 0.5, 1]) +plt.yticks([-1, -0.5, -0, 0.5, 1]) +plt.savefig('lei_pts.png', dpi=300, bbox_inches='tight') +plt.show() +``` + +```python +x = TG[...,1] +y = TG[...,2] +flip = TG[..., 2] > TG[..., 1] +z = 100 * typeI_err[nearby[1][:,0]].reshape(ng, ng) +z[flip] = z.T[flip] +alt_hypo = (TG[..., 1] > t0) & (TG[..., 2] > t0) +z[alt_hypo] = np.nan +levels = np.linspace(0, 2.5, 6) +plt.title(f'Type I error \% $\quad(\\theta_0 = {t0:.2f})$') +cntf = plt.contourf(x, y, z, levels=levels, extend='both') +plt.contour( + x, + y, + z, + levels=levels, + colors="k", + linestyles="-", + linewidths=0.5, + extend='both' +) +cbar = plt.colorbar(cntf)#, ticks=[0, 1, 2, 3, 4]) +# cbar.ax.set_yticklabels(["1", "10", "$10^2$", "$10^3$", "$10^4$"]) +plt.xlabel('$\\theta_1$') +plt.ylabel('$\\theta_2$') +plt.xticks([-1, -0.5, -0, 0.5, 1]) +plt.yticks([-1, -0.5, -0, 0.5, 1]) +plt.savefig('leit1e.png', dpi=300, bbox_inches='tight') +plt.show() +``` + +```python +x = TG[...,1] +y = TG[...,2] +flip = TG[..., 2] > TG[..., 1] +z = 100 * typeI_err[nearby[1][:,0]].reshape(ng, ng) +z[flip] = z.T[flip] +alt_hypo = (TG[..., 1] > t0) & (TG[..., 2] > t0) +z[alt_hypo] = np.nan +``` + +```python +bound_components = np.array([ + z[~alt_hypo] / 100, + z[~alt_hypo] / 100, + z[~alt_hypo] / 100, + z[~alt_hypo] / 100, + z[~alt_hypo] / 100, + z[~alt_hypo] / 100, +]).reshape((6, -1)) +``` + +```python +bound_components.shape +``` + +```python +bound_components.shape +``` + +```python +np.savetxt(f'P.csv', TGF[~alt_hypo.flatten()][:,1:].T, fmt="%s", delimiter=",") +np.savetxt(f'B.csv', bound_components.T, fmt="%s", delimiter=",") +``` + +## Grid density + +```python +g.theta_tiles[np.argmin(bootstrap_cvs[:,0])] +``` + +```python +t2 = -0.84 +ng = 50 +t0 = np.linspace(-1, 1, ng) +t1 = np.linspace(-1, 1, ng) +TG = np.stack((*np.meshgrid(t0, t1, indexing='ij'), np.full((ng, ng), t2)), axis=-1) +TGF = TG.reshape(-1, 3) +``` + +```python +t0 = -0.01 +ng = 71 +t1 = np.linspace(-1, 1, ng) +t2 = np.linspace(-1, 1, ng) +TG = np.stack((np.full((ng, ng), t0), *np.meshgrid(t1, t2, indexing='ij'), ), axis=-1) +TGF = TG.reshape(-1, 3) +``` + +```python +nearby = tree.query_ball_point(TGF, 0.05) +nearby_count = [len(n) for n in nearby] +``` + +```python +x = TG[...,1] +y = TG[...,2] +z = np.array(nearby_count).reshape(ng, ng) +z[z == 0] = z.T[z == 0] +z = np.log10(z) +levels = np.linspace(0, 4, 9) +plt.title('$\log_{10}$(number of nearby tiles)') +cntf = plt.contourf(x, y, z, levels=levels, extend="both") +plt.contour( + x, + y, + z, + levels=levels, + colors="k", + linestyles="-", + linewidths=0.5, + extend="both", +) +cbar = plt.colorbar(cntf, ticks=[0, 1, 2, 3, 4]) +cbar.ax.set_yticklabels(["1", "10", "$10^2$", "$10^3$", "$10^4$"]) +plt.xlabel('$\\theta_1$') +plt.ylabel('$\\theta_2$') +plt.show() +``` diff --git a/research/adagrid/criterion.py b/research/adagrid/criterion.py new file mode 100644 index 00000000..49dc6a39 --- /dev/null +++ b/research/adagrid/criterion.py @@ -0,0 +1,192 @@ +import numpy as np + +import confirm.mini_imprint.lewis_drivers as ld + + +class Criterion: + def __init__( + self, + lei_obj, + P, + S, + D, + ): + self.lei_obj = lei_obj + + ######################################## + # Criterion step 0: prep some useful numbers + ######################################## + eps_twb = 1e-6 + self.alpha_cost = P.alpha_target - S.alpha0 + + self.twb_worst_lam = np.min(S.twb_max_lam) + self.ties = np.where(np.abs(S.twb_max_lam - self.twb_worst_lam) < eps_twb)[0] + self.twb_worst_tile = self.ties[np.argmin(S.twb_min_lam[self.ties])] + self.overall_tile = np.argmin(S.orig_lam) + self.overall_lam = S.orig_lam[self.overall_tile] + + idxs = [self.twb_worst_tile] + self.twb_worst_tile_lams = ld.bootstrap_tune_runner( + self.lei_obj, + S.sim_sizes[idxs], + np.full(1, P.alpha_target), + S.g.theta_tiles[idxs], + S.g.null_truth[idxs], + D.unifs, + D.bootstrap_idxs, + D.unifs_order, + sim_batch_size=1024 * 16, + grid_batch_size=1, + ) + self.twb_worst_tile_lam_min = self.twb_worst_tile_lams[ + 0, 1 + P.nB_global : + ].min() + self.twb_worst_tile_lam_mean = self.twb_worst_tile_lams[ + 0, 1 + P.nB_global : + ].mean() + self.twb_worst_tile_lam_max = self.twb_worst_tile_lams[ + 0, 1 + P.nB_global : + ].max() + + ######################################## + # Criterion step 1: is tuning impossible? + ######################################## + + # TODO: the impossibility condition only needs to be checked for new + # tiles that used to be impossible (or simplifying: new tiles). once a + # tile is not impossible, it will never again be impossible. + + self.cost_to_refine = 2**lei_obj.n_arms + self.sims_to_rej_enough = (P.tuning_min_idx + 1) / S.alpha0 - 1 + self.alpha_to_rej_enough = (P.tuning_min_idx + 1) / (S.sim_sizes + 1) + self.cost_to_rej_once = self.sims_to_rej_enough / S.sim_sizes + + # if a tile always stops early, it's probably not interesting and we should + # lean towards simulating more rather than more expensive refinement + self.normally_stops_early = S.twb_mean_lam >= 1 + self.prefer_simulation = (self.cost_to_refine > self.cost_to_rej_once) & ( + self.normally_stops_early + ) + + self.impossible = S.alpha0 < self.alpha_to_rej_enough + self.impossible_refine_orig = (self.impossible & (~self.prefer_simulation)) | ( + S.alpha0 == 0 + ) + self.impossible_refine = np.zeros(S.g.n_tiles, dtype=bool) + self.impossible_refine[ + np.where(self.impossible_refine_orig)[0][: P.step_size] + ] = True + self.impossible_sim = self.impossible & self.prefer_simulation + + ######################################## + # Criterion step 2: what is the bias? + ######################################## + self.B_lamss_idx = S.B_lam.argmin(axis=0) + self.B_lamss = S.B_lam[self.B_lamss_idx, np.arange(S.B_lam.shape[1])] + self.bootstrap_min_lams = np.concatenate( + ([self.overall_lam], np.min(S.B_lam, axis=0)) + ) + self.lam_std = self.bootstrap_min_lams.std() + self.overall_stats = ld.one_stat( + lei_obj, + S.g.theta_tiles[self.overall_tile], + S.g.null_truth[self.overall_tile], + S.sim_sizes[self.overall_tile], + D.unifs, + D.unifs_order, + ) + self.overall_typeI_sum = ( + self.overall_stats[None, :] < self.bootstrap_min_lams[:, None] + ).sum(axis=1) + self.bias = ( + self.overall_typeI_sum[0] - self.overall_typeI_sum[1:].mean() + ) / S.sim_sizes[self.overall_tile] + + ######################################## + # Criterion step 3: Refine and deepen based on inflated bootstrapped + # minimum lambda + ######################################## + self.orderer = S.twb_mean_lam + (S.twb_min_lam - S.twb_mean_lam) * 4 + ignore = S.twb_mean_lam > 0.2 + self.orderer[ignore] = S.twb_min_lam[ignore] + self.sorted_ordering = np.argsort(self.orderer) + self.sorted_orderer = self.orderer[self.sorted_ordering] + + self.dangerous = self.sorted_ordering[: P.step_size] + + self.d_should_refine = self.alpha_cost[self.dangerous] > P.grid_target + self.deepen_likely_to_work = ( + S.twb_mean_lam[self.dangerous] > self.twb_worst_tile_lam_mean + ) + self.d_should_deepen = ( + self.deepen_likely_to_work & (S.sim_sizes[self.dangerous] < P.max_sim_size) + ) | (~self.d_should_refine) + + ######################################## + # Criterion step 4: Refine based on bootstrapped mean lambda + ######################################## + self.refine_orderer = S.twb_mean_lam + self.sorted_refine_ordering = np.argsort(self.refine_orderer) + self.sorted_refine_orderer = self.refine_orderer[self.sorted_refine_ordering] + self.refine_dangerous = self.sorted_refine_ordering[: P.step_size // 2] + self.d_should_refine2 = self.alpha_cost[self.refine_dangerous] > P.grid_target + + ######################################## + # Criterion step 5: Actually assign refine/deepen decisions. + ######################################## + self.which_deepen = np.zeros(S.g.n_tiles, dtype=bool) + self.which_refine = np.zeros(S.g.n_tiles, dtype=bool) + if (self.alpha_cost[self.overall_tile] > P.grid_target) or ( + self.bias > P.bias_target + ): + self.which_refine[self.refine_dangerous] = self.d_should_refine2 + self.which_refine[self.dangerous] = self.d_should_refine & ( + ~self.d_should_deepen + ) + self.which_deepen[self.dangerous] = self.d_should_deepen | ( + self.bias > P.bias_target + ) + + self.which_refine |= self.impossible_refine + self.which_deepen |= self.impossible_sim + self.which_deepen &= ~self.which_refine + self.which_deepen &= S.sim_sizes < P.max_sim_size + + ######################################## + # Criterion step 6: Reporting + ######################################## + self.report = dict( + overall_lam=f"{self.overall_lam:.5f}", + lam_std=f"{self.lam_std:.4f}", + grid_cost=f"{self.alpha_cost[self.overall_tile]:.5f}", + bias=f"{self.bias:.5f}", + total_slack=f"{self.alpha_cost[self.overall_tile] + self.bias:.5f}", + n_tiles=S.g.n_tiles, + n_refine=np.sum(self.which_refine), + n_refine_impossible=np.sum(self.impossible_refine), + n_moresims=np.sum(self.which_deepen), + n_moresims_impossible=np.sum(self.impossible_sim), + twb_worst_tile_lam_min=f"{self.twb_worst_tile_lam_min:.5f}", + twb_worst_tile_lam_mean=f"{self.twb_worst_tile_lam_mean:.5f}", + twb_worst_tile_lam_max=f"{self.twb_worst_tile_lam_max:.5f}", + ) + self.report["min(twb_min_lam)"] = f"{S.twb_min_lam.min():.5f}" + self.report["min(twb_mean_lam)"] = f"{S.twb_mean_lam.min():.5f}" + self.report["min(twb_max_lam)"] = f"{S.twb_max_lam.min():.5f}" + self.report["orderer < min(twb_mean_lam)"] = np.sum( + self.orderer < S.twb_mean_lam.min() + ) + self.report["orderer < min(twb_max_lam)"] = np.sum( + self.orderer < S.twb_max_lam.min() + ) + self.report[ + "max(twb_min_lam[dangerous])" + ] = f"{S.twb_min_lam[self.dangerous].max():.5f}" + + query = self.orderer[self.overall_tile] + self.report["overall priority"] = np.searchsorted(self.sorted_orderer, query) + self.report["min(B_lamss)"] = np.min(self.B_lamss) + query = self.orderer[self.B_lamss_idx[self.B_lamss.argmin()]] + self.report["min(B_lamss) priority"] = np.searchsorted( + self.sorted_orderer, query + ) diff --git a/research/adagrid/diagnostics.py b/research/adagrid/diagnostics.py new file mode 100644 index 00000000..4c87cf18 --- /dev/null +++ b/research/adagrid/diagnostics.py @@ -0,0 +1,93 @@ +# from pprint import pformat +import jax +import matplotlib.pyplot as plt +import numpy as np +import scipy.spatial + +import confirm.mini_imprint.lewis_drivers as ld + + +# def status_report(adap, sim_sizes, bootstrap_cvs, pointwise_target_alpha): +# overall_cv = np.min(bootstrap_cvs[:, 0]) +# sim_size_dist = {s: c for s, c in zip(*np.unique(sim_sizes, return_counts=True))} +# total_effort = sum([c * s for s, c in sim_size_dist.items()]) +# sim_size_effort = {s: c * s / total_effort * 100 for s, c in +# sim_size_dist.items()} +# out = f"overall_cv: {overall_cv:.4f}" +# out += f"\nnumber of tiles near critical: {n_critical}" +# out += f"\n and with loose bounds {n_loose}" +# out += f"\nsim size distribution: \n{pformat(sim_size_dist, indent=4)}" +# out += f"\nsim size effort %: \n{pformat(sim_size_effort, indent=4)}" +# return out + + +def lamstar_histogram(bootstrap_cvs, sim_sizes, xlim=None, weighted=False): + unique = np.unique(sim_sizes) + if weighted: + HH = [ + np.repeat(bootstrap_cvs[sim_sizes == K], K // np.min(unique)) + for K in unique + ] + else: + HH = [bootstrap_cvs[sim_sizes == K] for K in unique] + if xlim is None: + xlim = [np.min(bootstrap_cvs) - 0.02, np.min(bootstrap_cvs) + 0.1] + plt.hist( + HH, + stacked=True, + bins=np.linspace(*xlim, 100), + label=[f"K={K}" for K in np.unique(sim_sizes)], + ) + plt.legend(fontsize=8) + plt.xlabel("$\lambda^*$") + plt.ylabel("number of tiles") + + +def eval_bound(model, g, sim_sizes, D, eval_pts): + tree = scipy.spatial.KDTree(g.theta_tiles) + _, idx = tree.query(eval_pts) + unique_idx, inverse = np.unique(idx, return_inverse=True) + typeI_sum = ld.rej_runner( + model, + sim_sizes[unique_idx], + 0.05, + g.theta_tiles[unique_idx], + g.null_truth[unique_idx], + D.unifs, + D.unifs_order, + ) + typeI_sum = typeI_sum[inverse] + typeI_err = typeI_sum / sim_sizes[idx] + import confirm.mini_imprint.binomial as binomial + + delta = 0.01 + typeI_err, typeI_CI = binomial.zero_order_bound( + typeI_sum, sim_sizes[idx], delta, 1.0 + ) + typeI_bound = typeI_err + typeI_CI + + import confirm.mini_imprint.bound.binomial as tiltbound + + fwd_solver = tiltbound.ForwardQCPSolver(n=model.n_arm_samples) + theta0 = g.theta_tiles[idx] + v = eval_pts - theta0 + q_opt = jax.vmap(fwd_solver.solve, in_axes=(0, 0, 0))(theta0, v, typeI_bound) + + bound = np.array( + jax.vmap(tiltbound.q_holder_bound_fwd, in_axes=(0, None, 0, 0, 0))( + q_opt, model.n_arm_samples, theta0, v, typeI_bound + ) + ) + return bound + + +def build_2d_slice(g, pt, plot_dims, slicex=[-1, 1], slicey=[-1, 1], nx=100, ny=100): + unplot_dims = list(set(range(g.d)) - set(plot_dims)) + nx = ny = 200 + xvs = np.linspace(*slicex, nx) + yvs = np.linspace(*slicey, ny) + slc2d = np.stack(np.meshgrid(xvs, yvs, indexing="ij"), axis=-1) + slc_pts = np.empty((nx, ny, g.d)) + slc_pts[..., plot_dims] = slc2d + slc_pts[..., unplot_dims] = pt[unplot_dims] + return slc_pts diff --git a/research/adagrid/inspector.ipynb b/research/adagrid/inspector.ipynb new file mode 100644 index 00000000..0194e4af --- /dev/null +++ b/research/adagrid/inspector.ipynb @@ -0,0 +1,2252 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import confirm.outlaw.nb_util as nb_util\n", + "nb_util.setup_nb()\n", + "\n", + "import pickle\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import jax.numpy as jnp\n", + "import jax\n", + "# Run on CPU because a concurrent process is probably running on GPU.\n", + "jax.config.update('jax_platform_name', 'cpu')\n", + "\n", + "import confirm.mini_imprint.lewis_drivers as lts\n", + "from confirm.lewislib import lewis\n", + "\n", + "import adastate\n", + "from criterion import Criterion\n", + "from diagnostics import lamstar_histogram" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "name = '4d'\n", + "params = {\n", + " \"n_arms\": 4,\n", + " \"n_stage_1\": 50,\n", + " \"n_stage_2\": 100,\n", + " \"n_stage_1_interims\": 2,\n", + " \"n_stage_1_add_per_interim\": 100,\n", + " \"n_stage_2_add_per_interim\": 100,\n", + " \"stage_1_futility_threshold\": 0.15,\n", + " \"stage_1_efficacy_threshold\": 0.7,\n", + " \"stage_2_futility_threshold\": 0.2,\n", + " \"stage_2_efficacy_threshold\": 0.95,\n", + " \"inter_stage_futility_threshold\": 0.6,\n", + " \"posterior_difference_threshold\": 0,\n", + " \"rejection_threshold\": 0.05,\n", + " \"key\": jax.random.PRNGKey(0),\n", + " \"n_table_pts\": 20,\n", + " \"n_pr_sims\": 100,\n", + " \"n_sig2_sims\": 20,\n", + " \"batch_size\": int(2**12),\n", + " \"cache_tables\": f\"./{name}/lei_cache.pkl\",\n", + "}\n", + "lei_obj = lewis.Lewis45(**params)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loading checkpoint 4d/2920.pkl\n" + ] + } + ], + "source": [ + "with open(f\"./{name}/data_params.pkl\", \"rb\") as f:\n", + " P, D = pickle.load(f)\n", + "load_iter = 'latest'\n", + "S, load_iter, fn = adastate.load(name, load_iter)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "simulation runtime 6.96289587020874\n", + "tuning for 524288 simulations with 1 tiles and batch size (1, 16384)\n" + ] + } + ], + "source": [ + "cr = Criterion(lei_obj, P, S, D)\n", + "assert S.twb_max_lam[cr.twb_worst_tile] == np.min(S.twb_max_lam)\n", + "assert S.twb_min_lam[cr.twb_worst_tile] == np.min(S.twb_min_lam[cr.ties])" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2.12776494e-49, 2.12776494e-49, 1.23212177e-49, 1.23212177e-49, 3.88189071e-48,\n", + " 3.88189071e-48, 5.82128391e-48, 5.82128391e-48, 3.22394202e-48, 3.22394202e-48])" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "idxs = cr.dangerous[:10]\n", + "alpha0_new = adastate.AdaRunner(P, lei_obj).batched_invert_bound(\n", + " S.g.theta_tiles[idxs], S.g.vertices(idxs)\n", + ")\n", + "alpha0_new" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 11/1/2022" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# orderer = combined_mean_idx + inflation * (combined_min_idx - combined_mean_idx)\n", + "# orderer = S.twb_mean_lam + inflation * (S.twb_min_lam - S.twb_mean_lam)\n", + "# orderer[S.twb_mean_lam >= 0.3] = 1.0\n", + "# def explore_orderer():\n", + "# sorted_ordering = np.argsort(orderer)\n", + "# sorted_orderer = orderer[sorted_ordering]\n", + "# print(S.db.data[sorted_ordering[:10], S.db.slices['twb_min_lam']])\n", + "# print(S.db.data[sorted_ordering[:10], S.db.slices['twb_mean_lam']])\n", + "# print(S.db.data[sorted_ordering[:1000000], S.db.slices['twb_min_lam']].max())" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
order_idxtwb_min_lam_idxordererB_lams_mintwb_min_lamtwb_mean_lamtwb_max_lamorig_lamsim_sizealpha0alpha_costB_lamss
01282708171439020.0364980.0404470.0668910.0770210.1337540.07821220480.0111120.0138880.040447
25187517170934310.0316780.0477230.0660340.0774860.1441210.07272920480.0110120.0139880.047723
21187517170934310.0316780.0477230.0660340.0774860.1441210.07272920480.0110120.0139880.047723
20197001175211540.0317320.0550200.0745600.0888360.1460870.08637840960.0110220.0139780.055020
15560947157853020.0335750.0557760.0587300.0671160.0767730.06683081920.0171870.0078130.055776
33136634174321370.0412750.0559520.0724540.0828470.1063730.08186820480.0170120.0079880.055952
411282708171439020.0364980.0404470.0668910.0770210.1337540.07821220480.0111120.0138880.056609
5494023157416660.0332500.0567010.0585380.0669680.0978980.06548881920.0114920.0135080.056701
103136634174321370.0412750.0559520.0724540.0828470.1063730.08186820480.0170120.0079880.056852
865777170278600.0310000.0572840.0649510.0762680.1048090.07609740960.0206400.0043600.057284
9560947157853020.0335750.0557760.0587300.0671160.0767730.06683081920.0171870.0078130.057346
491770749170217520.0380800.0576990.0648540.0737790.1044080.07160320480.0205170.0044830.057699
18560947157853020.0335750.0557760.0587300.0671160.0767730.06683081920.0171870.0078130.057861
134665991170664890.0434390.0587810.0655670.0729430.0938400.07067640960.0238370.0011630.058781
384665991170664890.0434390.0587810.0655670.0729430.0938400.07067640960.0238370.0011630.058781
42494023157416660.0332500.0567010.0585380.0669680.0978980.06548881920.0114920.0135080.058967
3655225158786280.0309460.0579970.0591530.0685550.0861260.06687681920.0114710.0135290.060587
2412114158992750.0306950.0579160.0592480.0687660.0866020.06702081920.0116860.0133140.060677
262650344162109650.0403430.0576890.0606690.0674450.0739740.066748327680.0113550.0136450.061228
14244200161044650.0319840.0614090.0602410.0696610.0802020.069775163840.0115510.0134490.061409
28560947157853020.0335750.0557760.0587300.0671160.0767730.06683081920.0171870.0078130.061769
23187517170934310.0316780.0477230.0660340.0774860.1441210.07272920480.0110120.0139880.061822
30187517170934310.0316780.0477230.0660340.0774860.1441210.07272920480.0110120.0139880.061822
322650344162109650.0403430.0576890.0606690.0674450.0739740.066748327680.0113550.0136450.061868
22650344162109650.0403430.0576890.0606690.0674450.0739740.066748327680.0113550.0136450.061868
46494023157416660.0332500.0567010.0585380.0669680.0978980.06548881920.0114920.0135080.061959
44232792170226200.0319250.0619840.0648670.0758470.0951220.07442940960.0238520.0011480.061984
48494023157416660.0332500.0567010.0585380.0669680.0978980.06548881920.0114920.0135080.062050
171192328170567490.0361800.0601990.0654160.0751620.0926790.07277740960.0238230.0011770.062145
27769856170343150.0345130.0621450.0650590.0752420.0959680.07332340960.0238120.0011880.062145
3475334167393200.0310510.0615170.0627310.0732910.0926280.07346640960.0238180.0011820.062731
12650344162109650.0403430.0576890.0606690.0674450.0739740.066748327680.0113550.0136450.062773
16244200161044650.0319840.0614090.0602410.0696610.0802020.069775163840.0115510.0134490.062941
22494023157416660.0332500.0567010.0585380.0669680.0978980.06548881920.0114920.0135080.062960
43494023157416660.0332500.0567010.0585380.0669680.0978980.06548881920.0114920.0135080.062960
62650344162109650.0403430.0576890.0606690.0674450.0739740.066748327680.0113550.0136450.063355
332650344162109650.0403430.0576890.0606690.0674450.0739740.066748327680.0113550.0136450.063606
4511555087167357900.0503960.0634480.0627150.0668210.0700570.066323655360.0226900.0023100.063755
39244200161044650.0319840.0614090.0602410.0696610.0802020.069775163840.0115510.0134490.064266
71437666170567490.0370230.0601990.0654160.0748810.0916550.07322740960.0238130.0011870.064331
112650344162109650.0403430.0576890.0606690.0674450.0739740.066748327680.0113550.0136450.064576
4016144974169703220.0604120.0644700.0641430.0653870.0668310.0653875242880.0238280.0011720.064795
1916144974169703220.0604120.0644700.0641430.0653870.0668310.0653875242880.0238280.0011720.065016
1215961487170155590.0595500.0645720.0647650.0665030.0681870.0665801310720.0238320.0011680.065142
415668299170316820.0581500.0643080.0650110.0672990.0698960.0674562621440.0112080.0137920.065194
478538082166202920.0473410.0634260.0622580.0672300.0710620.066763655360.0238170.0011830.065287
358382328170220000.0471940.0650800.0648580.0707460.0768360.070629163840.0238210.0011790.065418
2916144974169703220.0604120.0644700.0641430.0653870.0668310.0653875242880.0238280.0011720.065528
3711555087167357900.0503960.0634480.0627150.0668210.0700570.066323655360.0226900.0023100.065652
31459159170374360.0330720.0640270.0651050.0757820.1000200.07291740960.0238080.0011920.065715
\n", + "
" + ], + "text/plain": [ + " order_idx twb_min_lam_idx orderer B_lams_min twb_min_lam \\\n", + "0 1282708 17143902 0.036498 0.040447 0.066891 \n", + "25 187517 17093431 0.031678 0.047723 0.066034 \n", + "21 187517 17093431 0.031678 0.047723 0.066034 \n", + "20 197001 17521154 0.031732 0.055020 0.074560 \n", + "15 560947 15785302 0.033575 0.055776 0.058730 \n", + "3 3136634 17432137 0.041275 0.055952 0.072454 \n", + "41 1282708 17143902 0.036498 0.040447 0.066891 \n", + "5 494023 15741666 0.033250 0.056701 0.058538 \n", + "10 3136634 17432137 0.041275 0.055952 0.072454 \n", + "8 65777 17027860 0.031000 0.057284 0.064951 \n", + "9 560947 15785302 0.033575 0.055776 0.058730 \n", + "49 1770749 17021752 0.038080 0.057699 0.064854 \n", + "18 560947 15785302 0.033575 0.055776 0.058730 \n", + "13 4665991 17066489 0.043439 0.058781 0.065567 \n", + "38 4665991 17066489 0.043439 0.058781 0.065567 \n", + "42 494023 15741666 0.033250 0.056701 0.058538 \n", + "36 55225 15878628 0.030946 0.057997 0.059153 \n", + "24 12114 15899275 0.030695 0.057916 0.059248 \n", + "26 2650344 16210965 0.040343 0.057689 0.060669 \n", + "14 244200 16104465 0.031984 0.061409 0.060241 \n", + "28 560947 15785302 0.033575 0.055776 0.058730 \n", + "23 187517 17093431 0.031678 0.047723 0.066034 \n", + "30 187517 17093431 0.031678 0.047723 0.066034 \n", + "32 2650344 16210965 0.040343 0.057689 0.060669 \n", + "2 2650344 16210965 0.040343 0.057689 0.060669 \n", + "46 494023 15741666 0.033250 0.056701 0.058538 \n", + "44 232792 17022620 0.031925 0.061984 0.064867 \n", + "48 494023 15741666 0.033250 0.056701 0.058538 \n", + "17 1192328 17056749 0.036180 0.060199 0.065416 \n", + "27 769856 17034315 0.034513 0.062145 0.065059 \n", + "34 75334 16739320 0.031051 0.061517 0.062731 \n", + "1 2650344 16210965 0.040343 0.057689 0.060669 \n", + "16 244200 16104465 0.031984 0.061409 0.060241 \n", + "22 494023 15741666 0.033250 0.056701 0.058538 \n", + "43 494023 15741666 0.033250 0.056701 0.058538 \n", + "6 2650344 16210965 0.040343 0.057689 0.060669 \n", + "33 2650344 16210965 0.040343 0.057689 0.060669 \n", + "45 11555087 16735790 0.050396 0.063448 0.062715 \n", + "39 244200 16104465 0.031984 0.061409 0.060241 \n", + "7 1437666 17056749 0.037023 0.060199 0.065416 \n", + "11 2650344 16210965 0.040343 0.057689 0.060669 \n", + "40 16144974 16970322 0.060412 0.064470 0.064143 \n", + "19 16144974 16970322 0.060412 0.064470 0.064143 \n", + "12 15961487 17015559 0.059550 0.064572 0.064765 \n", + "4 15668299 17031682 0.058150 0.064308 0.065011 \n", + "47 8538082 16620292 0.047341 0.063426 0.062258 \n", + "35 8382328 17022000 0.047194 0.065080 0.064858 \n", + "29 16144974 16970322 0.060412 0.064470 0.064143 \n", + "37 11555087 16735790 0.050396 0.063448 0.062715 \n", + "31 459159 17037436 0.033072 0.064027 0.065105 \n", + "\n", + " twb_mean_lam twb_max_lam orig_lam sim_size alpha0 alpha_cost \\\n", + "0 0.077021 0.133754 0.078212 2048 0.011112 0.013888 \n", + "25 0.077486 0.144121 0.072729 2048 0.011012 0.013988 \n", + "21 0.077486 0.144121 0.072729 2048 0.011012 0.013988 \n", + "20 0.088836 0.146087 0.086378 4096 0.011022 0.013978 \n", + "15 0.067116 0.076773 0.066830 8192 0.017187 0.007813 \n", + "3 0.082847 0.106373 0.081868 2048 0.017012 0.007988 \n", + "41 0.077021 0.133754 0.078212 2048 0.011112 0.013888 \n", + "5 0.066968 0.097898 0.065488 8192 0.011492 0.013508 \n", + "10 0.082847 0.106373 0.081868 2048 0.017012 0.007988 \n", + "8 0.076268 0.104809 0.076097 4096 0.020640 0.004360 \n", + "9 0.067116 0.076773 0.066830 8192 0.017187 0.007813 \n", + "49 0.073779 0.104408 0.071603 2048 0.020517 0.004483 \n", + "18 0.067116 0.076773 0.066830 8192 0.017187 0.007813 \n", + "13 0.072943 0.093840 0.070676 4096 0.023837 0.001163 \n", + "38 0.072943 0.093840 0.070676 4096 0.023837 0.001163 \n", + "42 0.066968 0.097898 0.065488 8192 0.011492 0.013508 \n", + "36 0.068555 0.086126 0.066876 8192 0.011471 0.013529 \n", + "24 0.068766 0.086602 0.067020 8192 0.011686 0.013314 \n", + "26 0.067445 0.073974 0.066748 32768 0.011355 0.013645 \n", + "14 0.069661 0.080202 0.069775 16384 0.011551 0.013449 \n", + "28 0.067116 0.076773 0.066830 8192 0.017187 0.007813 \n", + "23 0.077486 0.144121 0.072729 2048 0.011012 0.013988 \n", + "30 0.077486 0.144121 0.072729 2048 0.011012 0.013988 \n", + "32 0.067445 0.073974 0.066748 32768 0.011355 0.013645 \n", + "2 0.067445 0.073974 0.066748 32768 0.011355 0.013645 \n", + "46 0.066968 0.097898 0.065488 8192 0.011492 0.013508 \n", + "44 0.075847 0.095122 0.074429 4096 0.023852 0.001148 \n", + "48 0.066968 0.097898 0.065488 8192 0.011492 0.013508 \n", + "17 0.075162 0.092679 0.072777 4096 0.023823 0.001177 \n", + "27 0.075242 0.095968 0.073323 4096 0.023812 0.001188 \n", + "34 0.073291 0.092628 0.073466 4096 0.023818 0.001182 \n", + "1 0.067445 0.073974 0.066748 32768 0.011355 0.013645 \n", + "16 0.069661 0.080202 0.069775 16384 0.011551 0.013449 \n", + "22 0.066968 0.097898 0.065488 8192 0.011492 0.013508 \n", + "43 0.066968 0.097898 0.065488 8192 0.011492 0.013508 \n", + "6 0.067445 0.073974 0.066748 32768 0.011355 0.013645 \n", + "33 0.067445 0.073974 0.066748 32768 0.011355 0.013645 \n", + "45 0.066821 0.070057 0.066323 65536 0.022690 0.002310 \n", + "39 0.069661 0.080202 0.069775 16384 0.011551 0.013449 \n", + "7 0.074881 0.091655 0.073227 4096 0.023813 0.001187 \n", + "11 0.067445 0.073974 0.066748 32768 0.011355 0.013645 \n", + "40 0.065387 0.066831 0.065387 524288 0.023828 0.001172 \n", + "19 0.065387 0.066831 0.065387 524288 0.023828 0.001172 \n", + "12 0.066503 0.068187 0.066580 131072 0.023832 0.001168 \n", + "4 0.067299 0.069896 0.067456 262144 0.011208 0.013792 \n", + "47 0.067230 0.071062 0.066763 65536 0.023817 0.001183 \n", + "35 0.070746 0.076836 0.070629 16384 0.023821 0.001179 \n", + "29 0.065387 0.066831 0.065387 524288 0.023828 0.001172 \n", + "37 0.066821 0.070057 0.066323 65536 0.022690 0.002310 \n", + "31 0.075782 0.100020 0.072917 4096 0.023808 0.001192 \n", + "\n", + " B_lamss \n", + "0 0.040447 \n", + "25 0.047723 \n", + "21 0.047723 \n", + "20 0.055020 \n", + "15 0.055776 \n", + "3 0.055952 \n", + "41 0.056609 \n", + "5 0.056701 \n", + "10 0.056852 \n", + "8 0.057284 \n", + "9 0.057346 \n", + "49 0.057699 \n", + "18 0.057861 \n", + "13 0.058781 \n", + "38 0.058781 \n", + "42 0.058967 \n", + "36 0.060587 \n", + "24 0.060677 \n", + "26 0.061228 \n", + "14 0.061409 \n", + "28 0.061769 \n", + "23 0.061822 \n", + "30 0.061822 \n", + "32 0.061868 \n", + "2 0.061868 \n", + "46 0.061959 \n", + "44 0.061984 \n", + "48 0.062050 \n", + "17 0.062145 \n", + "27 0.062145 \n", + "34 0.062731 \n", + "1 0.062773 \n", + "16 0.062941 \n", + "22 0.062960 \n", + "43 0.062960 \n", + "6 0.063355 \n", + "33 0.063606 \n", + "45 0.063755 \n", + "39 0.064266 \n", + "7 0.064331 \n", + "11 0.064576 \n", + "40 0.064795 \n", + "19 0.065016 \n", + "12 0.065142 \n", + "4 0.065194 \n", + "47 0.065287 \n", + "35 0.065418 \n", + "29 0.065528 \n", + "37 0.065652 \n", + "31 0.065715 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import display\n", + "def tile_report(idxs):\n", + " return pd.DataFrame(\n", + " dict(\n", + " order_idx=np.searchsorted(cr.sorted_orderer, cr.orderer[idxs]),\n", + " twb_min_lam_idx=np.searchsorted(cr.sorted_orderer, S.twb_min_lam[idxs]),\n", + " orderer=cr.orderer[idxs],\n", + " B_lams_min=S.B_lam[idxs].min(axis=1),\n", + " twb_min_lam=S.twb_min_lam[idxs],\n", + " twb_mean_lam=S.twb_mean_lam[idxs],\n", + " twb_max_lam=S.twb_max_lam[idxs],\n", + " orig_lam=S.orig_lam[idxs],\n", + " sim_size=S.sim_sizes[idxs],\n", + " alpha0=S.alpha0[idxs],\n", + " alpha_cost=cr.alpha_cost[idxs]\n", + " )\n", + " )\n", + "rpt = tile_report(cr.B_lamss_idx)\n", + "rpt['B_lamss'] = cr.B_lamss\n", + "rpt.sort_values('B_lamss')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
order_idxtwb_min_lam_idxordererB_lams_mintwb_min_lamtwb_mean_lamtwb_max_lamorig_lamsim_sizealpha0alpha_cost
016144974169703220.0604120.064470.0641430.0653870.0668310.0653875242880.0238280.001172
\n", + "
" + ], + "text/plain": [ + " order_idx twb_min_lam_idx orderer B_lams_min twb_min_lam \\\n", + "0 16144974 16970322 0.060412 0.06447 0.064143 \n", + "\n", + " twb_mean_lam twb_max_lam orig_lam sim_size alpha0 alpha_cost \n", + "0 0.065387 0.066831 0.065387 524288 0.023828 0.001172 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(0.06743614684573143, 0.0686547712368489, 0.07010162657560469)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "display(tile_report([cr.twb_worst_tile]))\n", + "cr.twb_worst_tile_lam_min, cr.twb_worst_tile_lam_mean, cr.twb_worst_tile_lam_max" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
order_idxtwb_min_lam_idxordererB_lams_mintwb_min_lamtwb_mean_lamtwb_max_lamorig_lamsim_sizealpha0alpha_cost
00175449090.0134080.0832890.0752070.0958060.1139600.096423163840.0171250.007875
10175449090.0134080.0832890.0752070.0958060.1139600.096423163840.0171250.007875
22175449090.0134390.0832890.0752070.0957960.1139600.096271163840.0171290.007871
32175449090.0134390.0832890.0752070.0957960.1139600.096271163840.0171290.007871
44175534490.0142320.0832950.0754170.0958120.1145560.096684163840.0171130.007887
....................................
1637916336170495620.0307180.0658540.0653000.0768270.0981490.07449640960.0238380.001162
1638016336170495620.0307180.0658540.0653000.0768270.0981490.07449640960.0238380.001162
1638116336170495620.0307180.0658540.0653000.0768270.0981490.07449640960.0238410.001159
1638216336170495620.0307180.0658540.0653000.0768270.0981490.07449640960.0238410.001159
1638316336170495620.0307180.0658540.0653000.0768270.0981490.07449640960.0238380.001162
\n", + "

16384 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " order_idx twb_min_lam_idx orderer B_lams_min twb_min_lam \\\n", + "0 0 17544909 0.013408 0.083289 0.075207 \n", + "1 0 17544909 0.013408 0.083289 0.075207 \n", + "2 2 17544909 0.013439 0.083289 0.075207 \n", + "3 2 17544909 0.013439 0.083289 0.075207 \n", + "4 4 17553449 0.014232 0.083295 0.075417 \n", + "... ... ... ... ... ... \n", + "16379 16336 17049562 0.030718 0.065854 0.065300 \n", + "16380 16336 17049562 0.030718 0.065854 0.065300 \n", + "16381 16336 17049562 0.030718 0.065854 0.065300 \n", + "16382 16336 17049562 0.030718 0.065854 0.065300 \n", + "16383 16336 17049562 0.030718 0.065854 0.065300 \n", + "\n", + " twb_mean_lam twb_max_lam orig_lam sim_size alpha0 alpha_cost \n", + "0 0.095806 0.113960 0.096423 16384 0.017125 0.007875 \n", + "1 0.095806 0.113960 0.096423 16384 0.017125 0.007875 \n", + "2 0.095796 0.113960 0.096271 16384 0.017129 0.007871 \n", + "3 0.095796 0.113960 0.096271 16384 0.017129 0.007871 \n", + "4 0.095812 0.114556 0.096684 16384 0.017113 0.007887 \n", + "... ... ... ... ... ... ... \n", + "16379 0.076827 0.098149 0.074496 4096 0.023838 0.001162 \n", + "16380 0.076827 0.098149 0.074496 4096 0.023838 0.001162 \n", + "16381 0.076827 0.098149 0.074496 4096 0.023841 0.001159 \n", + "16382 0.076827 0.098149 0.074496 4096 0.023841 0.001159 \n", + "16383 0.076827 0.098149 0.074496 4096 0.023838 0.001162 \n", + "\n", + "[16384 rows x 11 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tile_report(cr.dangerous)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "262144" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tile_report(cr.refine_dangerous)['sim_size'].min()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
order_idxtwb_min_lam_idxordererB_lams_mintwb_min_lamtwb_mean_lamtwb_max_lamorig_lamsim_sizealpha0alpha_cost
016144974169703220.0604120.0644700.0641430.0653870.0668310.0653875242880.0238280.001172
116144974169703220.0604120.0644700.0641430.0653870.0668310.0653875242880.0238280.001172
216144974169703220.0604120.0644700.0641430.0653870.0668310.0653875242880.0238280.001172
316144974169703220.0604120.0644700.0641430.0653870.0668310.0653875242880.0238280.001172
416144974169703220.0604120.0644700.0641430.0653870.0668310.0653875242880.0238280.001172
....................................
99516324683170013120.0610980.0648970.0645610.0657150.0671550.0657255242880.0238270.001173
99616362929170067750.0612470.0648850.0646370.0657670.0671330.0657255242880.0238310.001169
99716362929170067750.0612470.0648850.0646370.0657670.0671330.0657255242880.0238310.001169
99816317672170054520.0610740.0649220.0646200.0658020.0673740.0657255242880.0238260.001174
99916362929170067750.0612470.0648850.0646370.0657670.0671330.0657255242880.0238310.001169
\n", + "

1000 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " order_idx twb_min_lam_idx orderer B_lams_min twb_min_lam \\\n", + "0 16144974 16970322 0.060412 0.064470 0.064143 \n", + "1 16144974 16970322 0.060412 0.064470 0.064143 \n", + "2 16144974 16970322 0.060412 0.064470 0.064143 \n", + "3 16144974 16970322 0.060412 0.064470 0.064143 \n", + "4 16144974 16970322 0.060412 0.064470 0.064143 \n", + ".. ... ... ... ... ... \n", + "995 16324683 17001312 0.061098 0.064897 0.064561 \n", + "996 16362929 17006775 0.061247 0.064885 0.064637 \n", + "997 16362929 17006775 0.061247 0.064885 0.064637 \n", + "998 16317672 17005452 0.061074 0.064922 0.064620 \n", + "999 16362929 17006775 0.061247 0.064885 0.064637 \n", + "\n", + " twb_mean_lam twb_max_lam orig_lam sim_size alpha0 alpha_cost \n", + "0 0.065387 0.066831 0.065387 524288 0.023828 0.001172 \n", + "1 0.065387 0.066831 0.065387 524288 0.023828 0.001172 \n", + "2 0.065387 0.066831 0.065387 524288 0.023828 0.001172 \n", + "3 0.065387 0.066831 0.065387 524288 0.023828 0.001172 \n", + "4 0.065387 0.066831 0.065387 524288 0.023828 0.001172 \n", + ".. ... ... ... ... ... ... \n", + "995 0.065715 0.067155 0.065725 524288 0.023827 0.001173 \n", + "996 0.065767 0.067133 0.065725 524288 0.023831 0.001169 \n", + "997 0.065767 0.067133 0.065725 524288 0.023831 0.001169 \n", + "998 0.065802 0.067374 0.065725 524288 0.023826 0.001174 \n", + "999 0.065767 0.067133 0.065725 524288 0.023831 0.001169 \n", + "\n", + "[1000 rows x 11 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "overall_rpt = tile_report(S.orig_lam.argsort()[:1000])\n", + "overall_rpt" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "overall_lam 0.065387346\n", + "n bias bad 1564758\n", + "number of tiles near critical: 6546903\n", + " and with loose bounds 753654\n", + "lambda**B [0.04044748 0.06277259 0.06186843 0.05595165 0.06519397 0.05670112 0.06335536 0.06433102 0.05728401\n", + " 0.05734636 0.05685173 0.06457628 0.06514236 0.05878148 0.06140886 0.05577625 0.06294076 0.06214517\n", + " 0.05786111 0.06501589 0.05502006 0.04772288 0.06295992 0.0618218 0.06067661 0.04772288 0.06122842\n", + " 0.06214517 0.06176917 0.06552802 0.0618218 0.0657155 0.06186843 0.06360566 0.06273074 0.06541818\n", + " 0.06058716 0.06565158 0.05878148 0.0642661 0.06479512 0.05660932 0.05896727 0.06295992 0.06198355\n", + " 0.06375528 0.0619594 0.06528723 0.06204975 0.05769911]\n", + "K=2048:\n", + " count=0.111m\n", + " lambda**B[K]=[0.04044748 0.06408175 0.06266361 0.05595165 0.0700465 0.06782495 0.06802271 0.0700465 0.07111733\n", + " 0.05844139 0.05685173 0.0700465 0.06609207 0.06578129 0.07148298 0.06477027 0.06914044 0.06485405\n", + " 0.06493639 0.06732494 0.06746178 0.04772288 0.06485405 0.0618218 0.06558593 0.04772288 0.06633597\n", + " 0.06932651 0.06810957 0.06813997 0.0618218 0.0700465 0.06813997 0.06757411 0.06855913 0.06660208\n", + " 0.07160301 0.06791438 0.06806584 0.06567489 0.06639761 0.05660932 0.06608894 0.06609207 0.06599535\n", + " 0.06740948 0.06329156 0.06609207 0.06609207 0.05769911]\n", + " min lambda*B[K]=0.0404\n", + " min lambda*b[K]=0.0648\n", + " % effort=0.0790\n", + "K=4096:\n", + " count=1.064m\n", + " lambda**B[K]=[0.06749538 0.07006327 0.06701843 0.06193077 0.07234919 0.07089446 0.0650908 0.06433102 0.05728401\n", + " 0.06281316 0.06019872 0.06657788 0.07651529 0.05878148 0.06948546 0.06943367 0.06952585 0.06214517\n", + " 0.06574266 0.06562095 0.05502006 0.06505942 0.06514062 0.06453688 0.06701843 0.06738376 0.06585365\n", + " 0.06214517 0.0648715 0.06948251 0.06507348 0.0657155 0.06390432 0.06585365 0.06273074 0.06663026\n", + " 0.06433102 0.06728576 0.05878148 0.06899464 0.0657155 0.06454983 0.06566562 0.06757023 0.06198355\n", + " 0.07324071 0.06817538 0.06646266 0.06211571 0.06558593]\n", + " min lambda*B[K]=0.0550\n", + " min lambda*b[K]=0.0603\n", + " % effort=1.5134\n", + "K=8192:\n", + " count=13.525m\n", + " lambda**B[K]=[0.06714516 0.06323536 0.07073892 0.06473067 0.06955552 0.05670112 0.07607453 0.06473067 0.06875491\n", + " 0.05734636 0.06603865 0.07544703 0.07294671 0.07158123 0.06547632 0.05577625 0.07507575 0.07242382\n", + " 0.05786111 0.06695195 0.05873032 0.06717961 0.06295992 0.06585017 0.06067661 0.06058716 0.06245739\n", + " 0.0672223 0.06176917 0.0672223 0.07119548 0.06653244 0.06653244 0.07119548 0.06288099 0.06659081\n", + " 0.06058716 0.06970876 0.06893183 0.06579529 0.0723538 0.06796681 0.05896727 0.06295992 0.06308374\n", + " 0.07587378 0.0619594 0.06579529 0.06204975 0.06175144]\n", + " min lambda*B[K]=0.0558\n", + " min lambda*b[K]=0.0585\n", + " % effort=38.4694\n", + "K=16384:\n", + " count=1.229m\n", + " lambda**B[K]=[0.07237773 0.07047482 0.06515303 0.06860229 0.06580713 0.06608457 0.0661445 0.06592947 0.06880157\n", + " 0.07138714 0.07479089 0.07085859 0.07368103 0.06430909 0.06140886 0.06866796 0.06294076 0.06972618\n", + " 0.06536786 0.06970054 0.06709331 0.066099 0.06611016 0.06890181 0.06902044 0.06430909 0.06471504\n", + " 0.06749538 0.06222212 0.066099 0.066099 0.06912925 0.07159501 0.06808518 0.06417001 0.06541818\n", + " 0.06844477 0.07033288 0.06156989 0.0642661 0.06620522 0.06830695 0.07093264 0.07098586 0.06815683\n", + " 0.06944624 0.066099 0.06975891 0.06515303 0.06367785]\n", + " min lambda*B[K]=0.0614\n", + " min lambda*b[K]=0.0602\n", + " % effort=6.9901\n", + "K=32768:\n", + " count=1.236m\n", + " lambda**B[K]=[0.06709846 0.06277259 0.06186843 0.06454664 0.06696763 0.06591223 0.06335536 0.06595691 0.06278048\n", + " 0.06297076 0.06301249 0.06457628 0.06866469 0.06976988 0.06412127 0.06631214 0.06709846 0.06883558\n", + " 0.06416535 0.06903106 0.07239137 0.06477503 0.06636285 0.065053 0.06477503 0.06365486 0.06122842\n", + " 0.06586626 0.06725169 0.0662385 0.07013563 0.06887566 0.06186843 0.06360566 0.06740931 0.06738491\n", + " 0.06360566 0.06807476 0.06598372 0.06457628 0.06994141 0.05768863 0.06311879 0.06674848 0.06425932\n", + " 0.06909315 0.06707561 0.06848832 0.06595865 0.06066918]\n", + " min lambda*B[K]=0.0577\n", + " min lambda*b[K]=0.0607\n", + " % effort=14.0612\n", + "K=65536:\n", + " count=0.170m\n", + " lambda**B[K]=[0.06855471 0.06647485 0.06648357 0.06462172 0.0663234 0.07088108 0.06782837 0.06647353 0.06794393\n", + " 0.06982899 0.06383733 0.06604201 0.06837519 0.06489015 0.06488954 0.06847919 0.06945915 0.06538476\n", + " 0.06415674 0.06634183 0.0634248 0.06547632 0.06446087 0.0652156 0.06389157 0.06746433 0.06639287\n", + " 0.06535613 0.06430924 0.06577201 0.06365303 0.06791294 0.06647353 0.06782837 0.06526007 0.06779575\n", + " 0.066819 0.06565158 0.06634362 0.06565158 0.06538476 0.06841612 0.06546196 0.06636152 0.06733984\n", + " 0.06375528 0.06453341 0.06528723 0.06584693 0.06538476]\n", + " min lambda*B[K]=0.0634\n", + " min lambda*b[K]=0.0621\n", + " % effort=3.8700\n", + "K=131072:\n", + " count=0.720m\n", + " lambda**B[K]=[0.06528124 0.06758844 0.06710258 0.06412661 0.06718583 0.06666861 0.06523237 0.06692785 0.06603938\n", + " 0.06710258 0.06662384 0.0666498 0.06514236 0.06716919 0.06742847 0.06710256 0.06701348 0.06601533\n", + " 0.06787279 0.06727222 0.06650019 0.06720894 0.06732044 0.06509598 0.06667251 0.06547068 0.06688032\n", + " 0.06641386 0.06684967 0.06684599 0.06675015 0.0674217 0.06665203 0.06484858 0.06647009 0.0666978\n", + " 0.06692785 0.06688695 0.06641386 0.06640794 0.06674244 0.06528935 0.06618954 0.06660251 0.06737676\n", + " 0.06588996 0.06684599 0.0666498 0.06645433 0.06704125]\n", + " min lambda*B[K]=0.0641\n", + " min lambda*b[K]=0.0648\n", + " % effort=32.7528\n", + "K=262144:\n", + " count=0.001m\n", + " lambda**B[K]=[0.06648261 0.06568652 0.06540878 0.06723098 0.06519397 0.06539321 0.06638434 0.06502712 0.06582289\n", + " 0.06793358 0.06510989 0.06684599 0.06649599 0.0658391 0.06524627 0.06632547 0.06604976 0.06516916\n", + " 0.06611113 0.06635813 0.065943 0.06430821 0.06782253 0.06545006 0.06682307 0.06653432 0.06544012\n", + " 0.06437337 0.06569592 0.06709085 0.06588335 0.06611113 0.06668107 0.06621586 0.06671602 0.06584998\n", + " 0.06606037 0.066359 0.06435571 0.06493078 0.0650563 0.06682313 0.06666028 0.06613785 0.06707454\n", + " 0.06638434 0.06660764 0.066359 0.06532796 0.06584998]\n", + " min lambda*B[K]=0.0643\n", + " min lambda*b[K]=0.0643\n", + " % effort=0.1322\n", + "K=524288:\n", + " count=0.012m\n", + " lambda**B[K]=[0.06561168 0.06537623 0.06532564 0.06609569 0.06551578 0.06525765 0.06571884 0.06549751 0.06590912\n", + " 0.0647899 0.06667834 0.0658628 0.06545953 0.0659352 0.0644695 0.06469306 0.06492551 0.06518482\n", + " 0.06512082 0.06501589 0.06447206 0.06494813 0.06583068 0.06492551 0.06457628 0.06509364 0.0648765\n", + " 0.06498074 0.06532564 0.06552802 0.0661281 0.06575038 0.06496038 0.06450575 0.0652043 0.06584942\n", + " 0.06558652 0.06570771 0.06612322 0.06626883 0.06479512 0.06518286 0.06610215 0.06522366 0.06545953\n", + " 0.06477032 0.06586441 0.065943 0.06454437 0.06543297]\n", + " min lambda*B[K]=0.0645\n", + " min lambda*b[K]=0.0641\n", + " % effort=2.1320\n" + ] + } + ], + "source": [ + "print('overall_lam', cr.overall_lam)\n", + "B_min = S.B_lam.min(axis=1)\n", + "bias_bad = B_min < cr.overall_lam\n", + "print('n bias bad', np.sum(bias_bad))\n", + "n_critical = np.sum((S.orig_lam < cr.overall_lam + 0.01))\n", + "n_loose = np.sum(\n", + " (S.orig_lam < cr.overall_lam + 0.01)\n", + " & (P.alpha_target - S.alpha0 > P.grid_target)\n", + ")\n", + "print(f\"number of tiles near critical: {n_critical}\")\n", + "print(f\" and with loose bounds {n_loose}\")\n", + "# for i in range(10):\n", + "# dangerous = np.sum(cr.inflated_min_lam[bias_bad] < cr.overall_lam)\n", + "# collateral = np.sum(cr.inflated_min_lam < cr.overall_lam)\n", + "# print(f'inflation factor {i}')\n", + "# print(f' dangerous tiles caught: {dangerous}')\n", + "# print(f' collateral tiles caught: {collateral}')\n", + "\n", + "print('lambda**B', cr.B_lamss)\n", + "total_effort = np.sum(S.sim_sizes)\n", + "for K in np.unique(S.sim_sizes):\n", + " sel = S.sim_sizes == K\n", + " count = np.sum(sel)\n", + " print(f\"K={K}:\")\n", + " print(f' count={count / 1e6:.3f}m')\n", + " print(f' lambda**B[K]={S.B_lam[sel].min(axis=0)}')\n", + " print(f' min lambda*B[K]={np.min(S.B_lam[sel].min(axis=1)):.4f}')\n", + " print(f' min lambda*b[K]={np.min(S.twb_min_lam[sel]):.4f}')\n", + " effort = K * count / total_effort\n", + " print(f' % effort={100 * effort:.4f}') " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABbAAAAWwCAYAAACM2Ge7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOz9T4wjaXrnef6eVKpVLUAqC49qNNAqAZV0DSbjILRARhx0KGCRQZ8FdgeYnWnS/aiLwi178rCApHYm56TLjCc5M3ur6SRdA0wfPejabQG9C0yTkSigju5O9SAPUcCI5hKQLbQABcOyqvWvSl3vHszI4B+jO+mkOY3k9wM4PPy11157oyrS4/EnHntec84JAAAAAAAAAICseW/dGwAAAAAAAAAAIAkJbAAAAAAAAABAJpHABgAAAAAAAABkEglsAAAAAAAAAEAmkcAGAAAAAAAAAGQSCWwAAAAAAAAAQCaRwAYAAAAAAAAAZBIJbAAAAAAAAABAJpHABgAAAAAAAABkEglsAAAAAAAAAEAmkcAGAAAAAAAAAGQSCWwAAAAAAAAAQCaRwAYAAAAAAAAAZBIJbABAJpiZZ2bFde8jiZnlzCy/7n0AAAAAALBrSGADANbOzDxJryQFa95KIudcIKma1QQ7AAAAss/Mjs2sZ2aNOP5d9H6PogoAu4gENgAgC15JOo0TxYkyEPC/kNTghwYAAADch3OuKaks6VhR/Luop5JqK90UAGwAEtgAgCkP2c7DzBqSOs65i9vmrTvgd86F8fNb90mgAwAAAM65rqSupLyZle6ab2Z5M8vFX/YlhSPX7rwfALYBCWwAwJg4OftWUjvtRG1czXzonKvMM3/dAX/8/I6ofAEAAMD9ncef/Tnm7km6NrMTRbFsEMe4PUlHKe0PADKFBDYAIEkoqRlXHaepJam54D3rDvhrko5HEuMAAADAIgbxb/GughHnXMc590hRLFuTVFQUBx8458ppbhIAsoIENgBgjHMudM49cs7NkyC+t7hFSU7S6YK3rjXgj/t0U4UNAACAe4mLRDrxl4dr3AoAbAQS2ACAdalIuli0yjsjAX9DUole2AAAALinVvz51qIRMyua2VtJnqL4uaMoFm3HZ8kAwNYjgQ0AWJeipPY97113wL/uBDoAAAA2WHxAuRSd7eLdMrUv6blzrq4opvWcc13n3L6k63R3CQDZQAIbAPDgRg5QvLrP/esO+OMq8EDSwX3XAAAAwM67iD8fz5oQx67d+Mtc/DG4tuhZMgCwkUhgA0CGmVnJzBpmdm1mxyPj+Xi8YWYtM2ubWX7kem7i+nXcc3rWc7yR+dezDii8734SHEhRQL7Q/yDj1h3wdxVVkQMAAAD3MTicfN7DxTuK3ioEgJ1izrl17wEbzsxO4l+Giqob62vcDrA14gTwkXOuElcstyQVFAW4b0b/WzOzlqJk6geK2loURg9hNLOapBNJ+/EhhJPPakiqOOdCM2tLysVVyqNzcpL8RfeT1OM6fsaec65wn/9t4jUGe+jOs05cqZ1bMmk+ut6JooMcHy3axxsAsDuIlQHcxswGSZnEOB0AQAU2lmRm15I6cSD+UlL1jqpLAPPzJZ1OjLUk9RJ++G0rapFxpuiH48ne0INe06WJ8cEP1o2RJOxYpfKIyj32M6tC+ami9h735pwbVGDnZ1WMT8wPV5W8joXx5zufDQDYTcTKAG4zEcPeerYLAOwyEti4tzjpFQwSQnHyq7LiBBGwy3IjSeVn8efOjNYX3uDzjMouL2Fs4GDw320cROcUtcdYxX5m8fQuAXwvGQj4Bwl4EtgAgCnEygBuE8eybb2LY6cKTQAAERLYWEZN73p2SeIQCWBV4nYXtZGhQSXzrJ53z+a8PvZaYsJzBgH06R3z5t3Pba9B3rsCOyMBfxh/3lvDswEA2UesDCBRHMteSyrH3xdCSTne0ACAZPTA3iFxv9jqXb1i44PeypJ6kh4rqpSsjPZ4jZNZb+N5e/GcfUVtCKgqAVYs7o0XTPalHrn+VlH1tc243lNUKXxrv+a71llwP3LOPUq45in6/lF3zi18CM1IwP/cOdcd7FlR3+8H+/4T/4BxragvOAkJANhwxMoAHsJILPti0BIvPo/mWPeMjwFg272/7g0gXfFfhHuKKh1n9aIdnT8VuA+SNGZWGAnMn8afDwa9dgd/EZtZ4qFtAO4n/u9Sik4dT7qeU/SD8W3Xc4oOOwxveU4xXufWZOwc+xmsc5F0PT4oUrq7zUjS2qMB/yAB8FJRwH+k5NYng3uPFSUSBt8LOxpvY5JT9L1y3te7B5XXS/XyBgCsD7EygIc0Ess2R85zkaJzZY7jDxLYADCBFiJbzjnnO+fKceAc3jY3rhRpaeIvzDiR01V0ONyk9si8QFHwX11u1wAmHMSfWzOuD37gbs+4Pkg4N+54zuC//bvm3bWf8pzrLNR6446AX4oC/pmcc03n3IGi74Vd59xB/P1x8FFQ1PLkes7XN71F9g8AyB5iZQAPZSSW7UxWWTvnBoUVXlwMAgAYQQIbow7jz1cJ18413mN20Nc2nJgXigPNgFUrSsPANskgYZxY8ax3faJfDgZGqqgHX3vxc7qjBzrOSOTetZ9jSeHo9cnnKQ7QZ9w/ZVUBf/z79DSjelzv+nzPk1wYJOBv6/MNANgexMoA7mUklg2cc+UZ0wZvQc66DgA7iwR2RsWJo7mC2xX+C21ZUdIpTLgWxM8qScMKkkDTCShPJHOAlYkTrjnd0hpDUUI5jP+7nLx/0D7kYvDfdvw9Y/L7y6B6ebRqeqoa7a79jHw/Gk2WH0+uo+j7xFwV2CsO+O+qVl8kqeDFn/meBwAPjFgZwKYYiWUl6fktUwdx+OEtcwBgJ5HAzi5Pc7zGbmYtvauuXNZTze7lGsafn42MVUafHf/FvKe72wYAmN9ov+YpI98jZlUUD+4/HxnznXP1iXmD/7ZfjozlEpLit+5H79qLjH4fOEio1r6SdGebjhQC/sH+kqrnRq+fz7g+6plmJzIAAOnyRKwMIOPi4o9rRd+znt8WN47+w1fC24sAsNNIYGdU/Ar/c0mvZgXmcUCuWyoSF+UtMifuQdsys4aZnSgK0gtJVaAA7m2QUJ1VMXxXRXEw+jmuhk5KzgZSdMBiPK+h5ANk7tpPb+J5J5JOE+a14+szEw8pBfxFRZXcU2vFFXonmu6xPUtesxP5AIAUESsD2BCDA13Lcx4SPvhHL3rlA8CI99e9AczmnOua2SAwfz76F14KAflAOGN8UG0y9sq/c66ZMBfAanVv6TctRe08XiZdcM51zKwuqWZmgaTrGcnZU0m5wfcWSae3/IA9cz/OuaaZFSSdmVlfUmtGsD64/6lmt0e5T8DfVhTwT/0eR9qfNCfG85KOFPUuLc+TvB5Zq3bHVABASoiVAWRdHDM/WnC+pbcjANhM5pxb9x5whzi58kpRBWL3vgG5mV1L8pxz+zOuO0WJqULCNU/SW0UHqB1MXgeARZlZW1ELjgc5qCausG4rSm5fjlx6rKiaujt5QOQta5UktSQ9ooUIAKwXsTIAAMB2owJ7A0xUl1wp3YSPN2N8UE0SpvRcALunoejVau+BksCDhMKLGS1E2mbWU/R691378RW1GrlrHgAgZcTKAAAA240e2BsifiXySlH/1qR+sqsQzjFn1sE1ALCQuFVHIOn4gR5Z1O2HLjYUtQW5dT/xIVxFcQgXAGQGsTIAAMD2IoG9IeJXIUNFFYQzD6tZ0pWi5E2Swfh1Cs8FsLt8PdwhNXcdujionkt8dXxERVH19Tx9uQEAD4BYGQAAYHuRwN4Ao3384kMdykonMG/dcm0QlN+W/AGAhcTf0zpmluphiCPfL9u3TDu4a068zqGiJDYAIAOIlQEAALYbCeyMSzqEJsXA/GX8zFLCtbKiQ2mCFT4PAAbf34rxIYtpGaydmFiIv5eWFH2fu5gxx1OUvHhO72sAyAZiZQAAgO1HAjvDbjtB/Z6Buad3r8hPiRMyvqSxSsh4/Vz8PABIw3NJtThJnIYjRf2vpxILceL8laSubv8+dyapQusQAMgGYmUAAIDd8P66N4Bkg0rE205Qd851zKysKKlSmLHOiaRnioLqXDzWU5SoCZxzY6/BO+eaZhbEPxBcSnqsKJgvUHEIIC3OudDMniuqlE6sgL6P+HuZp6j/9TDZMSKn6MCtF7Mqr+P7cpIacUIEALBmxMoAAAC7w5xz694DAAAAAAAAAABTaCECAAAAAAAAAMgkWohkkJndSPplSX+65q0AAABgft+R9CPn3Afr3sg2I1YGAADYSN/RPWNlEtjZ9Mv/8B/+w70nT57MPEQGAAAA2fL69Wv9zd/8zbq3sQuIlQEAADbMMrEyCexs+tMnT57sXV9fr3sfAAAAmFOhUFC32/3Tde9jBxArAwAAbJhlYmV6YAMAAAAAAAAAMokENgAAAAAAAAAgk0hgAwAAAAAAAAAyiQQ2AAAAAAAAACCTSGADAAAAAAAAADLp/XVvAAAAIGt+9rOf6S//8i/14x//WD/96U/lnFv3lrBG7733nn7hF35B/+Sf/BP9g3/wD9a9HQAAgLX7yU9+oj//8z/X3/3d3+lnP/vZureDNXqIWJkKbAAAgBF/+7d/q16vpzdv3ugnP/kJyWvoZz/7mf7mb/5Gf/Znf6af/OQn694OAADAWv3kJz/Rn/3Zn+lv/uZvSF7jQWJlKrABAABG/OVf/qX+/u//Xt/4xjf0j//xP9Yv/MIv6L333pOZrXtrWAPnnP7Tf/pP+vf//t/rr//6r/Xnf/7n+s53vrPubQEAAKzNn//5n+vv//7v9Yu/+Iv6lV/5Ff3cz/0csfKOeqhYmQpsAACAEf/xP/5HSdK3v/1t/eIv/iIB+Y4zM73//vv6lV/5FUnS3/3d3615RwAAAOs1iId+5Vd+Re+//z6x8g57qFiZBDYAAMCIQcuQn//5n1/zTpAlP/dzPydJvCYLAAB23iAeGsRHQNqxMglsAAAA4A5UFgEAAIwjPsJA2n8WSGADAAAAAAAAADKJQxwBAAAW8J1P/79rff6ffvZ/X+vzAQAAgFmIlZEGEtgAAABbLggCNRoNNZtNSdLx8bGOjo6Uz+clSWEYqlAoqN/v6/DwULVaTZ7n3ft59Xpdb968URAEkqRaraZcLjd1/fHjx+r1erc+z/d9+b4/3OtAs9lUGIbyPE+9Xm/s9wMAAADMi1g5+0hgAwAAbLlcLqdaraZut6t+v69arTZ23fM85fP5qeD5PiqViqrV6jDIrlQqKhQKurm5ked5qtfr6vV6ajQakqIfGAqFgnq93tRanU5HzWZT5XJ5bLxer6tUKo3ttVAo6Pr6eqm9I2JmJUlV51xhhWsWJZWdc/6q1gQAAFgFYuXsowc2AADADgvDUL7v6+zsbOmAXJIuLi6G1SSSVK1WFYahXr58KUk6PT2V77/LYQ6eeXFxMbVWu91OrDY5Pz/X3t7e2Fgul1O32116/7vKzBpm1jKzhqSaJG/Fj2iteD0AAIDUEStnAwlsAACAHRUEgU5PT9VoNJZ6DXJUv98fC8oH6/Z6PQVBMHyVcZTneWq322Nj9Xpd1Wo18Rm5XE6FQmEYhIdhqCAINvq1yHVzzvnOuUGFdLjKtc0sjYQ4AABAqoiVs4MWIgAAADuo2+3q+fPnurm5Wem6b9++Hft6EKA/e/Zs+OvJipC9vb2xQL7b7SqXy838QeHs7EyFQkGFQkGlUkmS9OrVq1X9FrBCceuQy3XvAwAAYBHEytlCAhsAAGDHdDqdYUXGixcv1Gold3col8sKw3CuNSerQgYqlYqKxaJKpVLiq49SVFUyGpSfn59P9R6cnF+pVNRoNHRxcSHP89TpdIYBOjLlwDlXMbN17wMAAGAuxMrZQwIbAABghwxeTTw5OVGxWFShUFCz2dTx8fHU3FnB+rwGPf4GB8bc9urloNLkttchB3zfHx5EEwSByuWyyuWy2u22isXiUnvG6sStQ07XvQ8AAIB5EStnEz2wAQAAdkgulxtWX+TzeZ2cnMj3/bGqjlXodDo6Pz8fO+18EHj3+/2xuWEYDg+Wue11SCn6oeLq6mr4Q0Qul9P19bVKpdLSP0RgdcwsL+nSORcuscZ10oekD1e2UQAAgBHEytlEBTYAAMAOq9Vq6nQ6Ojg4UK/XG7t239ciu92uWq3WWJBcr9d1cnIiz/Om1gyCQL7vq9/v6/LyUpeX71omh2GoRqOhdrutWq02DOAn+b6/0UH5FvLjAyEBAAA2FrFyNpDABgAA2HGtVkv7+/vyfV+NRmNsfFFBEKhSqahSqajT6Uh6d9CMJFWrVTUajeFzBtUsg0qXydca6/W6fN8fjufzeQVBoCAIxoLzdrst3ydfmgVmdiKpsuw6zrnCjPWvJeWXXR8AAGAexMrrRwIbAABgywVBoEajoaurK0nRYTFHR0fK56Mc4OCQmmazqX6/r2q1Ory2iDAMVSgUFIbhMCAfGLweeXJyMgzaHz9+rF6vl3iozcXFxXC8Vqup2+3q5OREUnSKeqVSked5evz4sd68eTP2+8H6xK1DwmVahwAAADwkYuXsM+fcuveACWZ2nc/n86N9cAAAwMN4/fq1JOnJkydr3gmy5q4/G4VCQd1utzurcnhTxBXOnnNu/x73NpJah5iZk9RcRVsRYmUAANaLeBlJ0oyVqcAGAAAAsDQzK0l6amaz3qc9NLM9SXLOlR9uZwAAANhkJLABAAAALM05dyHpYnLczDxJJUkvOdgRAAAAiyKBDQApePXF9FvXzz/qJcwEAGAzmVnOOResex/AKnz16Q8Sx7/92XcfeCcAAGASCWwASMF//m//t+nBjx58GwAA3Icnae+2CXGf7LyZFZxz3TvWG6yVW8HeAAAAsGNIYAMAAAA7zsxOJD1TlGTOxWM9SV1JgXOuMnFLR1GiO7xlzbykqqTBkfdFM2vH69FKBAAAAHMhgQ0AAADsOOdcfcH5FUmTSe3JOV1JHNYIAACApby37g0AAAAAAAAAAJCEBDYAAAAAAAAAIJNIYAMAAAAAAAAAMokENgAAAAAAAAAgkzjEEQAAYBG//801P//r9T4fAAAAmIVYGSkggQ0AALDlgiBQo9FQs9mUJB0fH+vo6Ej5fF6SFIahCoWC+v2+Dg8PVavV5HneSp7t+7583x8+S5Lq9brevHmjx48fq9frTT2vXq9LkjzP0/X19cz9jM4Lw1AnJycr2TMAAAB2B7Fy9pHABgAA2HK5XE61Wk3dblf9fl+1Wm3suud5yufzqtVqyuVyK3tup9NRs9lUuVwejtXrdfV6PTUaDUnRDwyFQkG9Xk9SFMRLGl7vdrt6/vy5rq+vx9YuFAo6OztTPp9XGIb64IMPVCwWx4J/AAAA4C7EytlHD2wAAIAdFoahfN/X2dnZSgNySWq321PVIKenp8PAW9LwmRcXFwrDUM1mc+x6Pp9XEATqdDrDsXq9rlwuNwzAPc9TrVbb2IAcAAAA2USsnA0ksAEAAHZUEAQ6PT1Vo9FY2WuQA/V6XdVqdep5YRhOPcvzPLXbbV1dXSWulcvl1Gq1hl9XKhUdHR2NzTk+Pl7NxgEAAAARK2cJLUQAAAB20OB1w5ubm1TWzuVyU8F3EASSpL29vbHxvb09BUGgp0+fJq4XBMGw+iQMw+F4s9lUGIbq9XpTvQMBAACA+yJWzhYS2AAAADum0+mo2+1Kkl68eDFWsTGqXC6PBcG3abfbw1+fn59P9Q6UNHMtz/MUBIE8z1OpVNL5+fkwwB68Djm4d1B50m63p3oD3tzcrLw6BgAAALuFWDl7SGADAADskMGriScnJyoWiyoUCmo2m4mvFc4K1m+T9DrkwG0B86DSpNVqqVKpqFKpaH9/X3t7e2M9/AYODg6Gv87lctrb29Pp6WniDwMAAADAPIiVs4kENgAAwA7J5XIqlUqSokNfTk5O5Pu+isXi0gfTzHodcmAQePf7/bE5YRiOPXsysH7x4oX29/eH+5emA/xBZQoAAABwX8TK2UQCGwAAYIfVajV1Oh0dHByo1+uNXVv0tch+v6/Ly0tdXl4Ox8MwVKPRULvdVq1Wk+d5U2sGQTA8Tb3T6SiXyw2D78Hrm4Oql8G1yTUmA3sAAABgWcTK2UACGwAAYMe1Wi3t7+/L9/1hr7zB+CKKxaKKxeLYWL1eH1atSFK1WlWj0RjrySdpWOlSqVTk+/4wCK9UKjo7Oxtbs1arqdFoDO8JgkD9fn8Y2AMAAACrQqy8fiSwAQAAFvH7X697BwsLgkCNRmN4qEulUtHR0dGwV96gcqPZbKrf76tarS59SvnFxcXwsJparaZut6uTkxOdnJwM+/Y9fvxYvV5v7FCbWq2mdruter2uN2/eqFKpTAX6pVJpGITv7++r1+vp+vp6o6tKAAAAtgKx8lyIlRdjzrl17wETzOw6n8/nr6+v170VAPf01ac/mBr79mffXcNOACzq9evXkqQnT56seSfImrv+bBQKBXW73a5zrvCQ+9o1xMpIQ1LsJhG/AUAS4mUkSTNWfm+5rQEAAAAAAAAAkA4S2AAAAAAAAACATCKBDQAAAAAAAADIJBLYAAAAAAAAAIBMIoENAAAAAAAAAMgkEtgAAAAAAAAAgEwigQ0AAAAAAAAAyCQS2AAAAAAAAACATCKBDQAAAAAAAADIpPfXvYFlmVlJ0oGknKQ9SVeSKs658B5rFSWVJfUkPZbk3bbWovMBAMDm+/V/9etrff6Xv/XlWp8PAAAAzEKsjDRsdALbzGqSLp1zfvy1J+mVpBszKzjnggXWKkmqOucKI2N5SdfxWuEy8wEAANYlCAI1Gg01m01J0vHxsY6OjpTP5yVJYRiqUCio3+/r8PBQtVpNnufd+3nNZlNhGMrzPPV6vbFnDfbT6XRUqVT09u3bqfvr9bokyfM8XV9fJ+6nXq/rzZs3CoIo3KvVasrlcvfeMwAAAHYTsXL2bWwCO04Wyzl3MRhzzoVm9lzSW0ltSftzruVJaimq5B5yznXNrCvpTFGl9b3mAwAArFMul1OtVlO321W/31etVhu77nme8vn8SgLber2uUqk0tk6hUND19bUkqdPpqNvtyvM8hWE4db/v+5KkRqMhSep2u3r+/PnwfkmqVCqqVqvDQL1SqahQKOjm5mapHyYAAACwe4iVs2+Te2D7ks4nB+PK546k3CDJPYfD+PNVwrVzSaUl5wMAAGRSGIbyfV9nZ2crqco4Pz/X3t7e2Fgul1O325UkFYtFnZycJD4rDEM1m81hYC5J+Xx+WIUycHFxMawmkaRqtaowDPXy5cul9w8AAAAMECtnwyYnsJ8qateRlKTujsyZR1lSOKPtRyANW4bcdz4AAEDmBEGg09NTNRqNlVVj5HI5FQqFYRAehqGCIBh7LXKWq6uk2oBozVarNfy63++PBeWDvfd6vSV2DgAAALxDrJwdG9tCRHGVtaRwBWs9ldSfcW2w/jNJg3Yli85PZGbXMy59eNt9ALLv/KY2Nfa7+u4adgIAyQavG97c3Kx03bOzMxUKBRUKBZVK0b/nv3r1aq57nz5Nrj0IgmCsCmWyF+AgQH/27Nl9tgwAAACMIVbOlo1NYDvnKpIqMy4P/tki+Z8mpnmanZAenXPf+QAAAJkx6K0nSS9evBir2BhVLpcTe+8labfbkqIKj0qlokajoYuLC3mep06nMwzQb+N5nkqlks7Pz4dVKIPXIW/bR6VSUbFYnOsZAAAAwG2IlbNnYxPYs5hZTlJR0oVzrnvX/BHhjPFBonpvYnzR+VOcc4Wk8bgye97+3QAAAHMLgkBhGOrk5ETFYlGFQkHNZlPHx8dTc2cF67fxfX94EE0QBCqXyyqXy2q32yoWi3fe32q1VKlUVKlUtL+/r729PeVyuZmvVQ56/I0eXAMAAADcB7FyNm1dAltSS1Ef6hcrXtdLeT4AAEDqcrncsPoin8/r5OREvu+rWCwufTBNEAS6uroanoqey+V0fX2tcrmsVqs1V1Auaerk9xcvXmh/f39qXqfT0fn5+cYH5AAAAMgGYuVs2qoEtpnVFCWOCzMOWLyNN2N8UEk9ud6i8wEAADKnVqup0+no4OBg6mCXRV+LDMMwMbD3fX/uCpVOp6NcLjdcZ/D65mTVS7fbVavVGlu3Xq/r5ORkrucAAAAAdyFWzoatSWCbWUlR65D7JK/nmT/a83rR+QAAAJnVarW0v78v3/eHFSGD8UXk83kFQTB1kEy73Zbv+3OtUalU5Pv+MAivVCo6OzsbmxMEwfDVyUHfv263u3RVDAAAADCJWHn9tiKBbWZFSf6sntJzuFKU/E4y+H93tN5+0fkAAGBLfPlbX657CwsLgkCNRkNXV9H51pVKRUdHR8NeeYPKjWazqX6/r2q1OrOP3l1evXqlSqUiz/P0+PFjvXnzZupZ5+fnw2f6vi/P84avQtZqNbXbbdXrdb1582Z46MxAGIYqFAoKw3AYkA9sw+uRAAAAm4xY+XbEyvdjzrl172EpZpaXVHXOlSfGPUmHzrnmHGscS2o452zWNUn7zrngPvMXZWbX+Xw+v8l/sIBd9z8f/ZdTY797/m/WsBMAi3r9+rUk6cmTJ2veCbLmrj8bhUJB3W63u0RRBeZArIw0fPXpDxLHv/3Zdx94JwCQfcTLSJJmrPzecltbLzPLKaq8LidcLio6zDHpnkkv42ulhGtlSZ2JZPSi8wEAAAAAAAAAC9rYFiJxhXVbUmBmo01nvPjzU0mFiXuuJeXNrOCc6w7GnXOhmfmSapIuRubnFbUEGVtn0fkAAAAAAAAAgMVtbAJb0itFyeKZHcgTqqA7ihLcYcLcppkNkuGXkh7HcxMPhVx0PgAAAAAAAABgMRubwL5PvxTnXEVS5ZbrHUVJ7nnXW2g+AAAAAAAAAGB+G90DGwAAAAAAAACwvUhgAwAAAAAAAAAyiQQ2AAAAAAAAACCTNrYHNgBk2Tce/c66twAAAAAAALDxqMAGAAAAAAAAAGQSFdgAAAALeP3hk7U+/8kPX6/1+QAAAMAsxMpIAwlsAACALRcEgRqNhprNpiTp+PhYR0dHyufzkqQwDFUoFNTv93V4eKharSbP85Z6XqfTUaVS0du3bxPn1Ot1SZLneQrDUCcnJ2PXBuOXl5eqVqvDvQ40m02FYSjP89Tr9cZ+P5N835fv+zOvA8AqfO/jLxLHP/n8owfeCQBgEcTK2Y+VSWADAABsuVwup1qtpm63q36/r1qtNnbd8zzl83nVajXlcrmlntXpdNTtdodBdZJCoaCzszPl83mFYagPPvhAxWJR+Xxevu/r4OBApVJJUhR8FwoFvX37dviDQr1eV6lUGttroVDQ9fV14n6azabK5fJSvy8AAABsJ2Ll7MfK9MAGAADYYWEYyvd9nZ2dLR2QS1KxWNTJycnMter1unK53LDCw/M81Wq14df9fl/tdns4f29vbzg+cH5+PhwfyOVy6na7U89rt9tLVcgAwLw++v4niR8AgM1FrJwNVGADAADsqMHrko1G48GeWalU1Gq1xsaOj4+Hv5681m63lcvlxoL8XC6nQqGgVqs1rEwJgmDqtcd6va5qtTp8HRQAFvXVpz9IHP/2Z9994J0AAB4asXJ2kMAGAADYQd1uV8+fP9fNzc2DPXP0NclBX75er5fYc6/T6QyrS3q93ti1s7MzFQoFFQqF4euTr169GpvT7XaVy+U2oqIEAAAA2UKsnC0ksAEAAHbMoPeeJL148WKqkmOgXC7P7M03afRVxlmurq6GcweVLEEQqFAo6ObmZiyAzuVyOjo6UqVSUb1eHzu4xvM8VSoVNRoNXVxcyPM8dTqdYYAuRa9OTvYvBAAAAO5CrJw9JLABAAB2SBAEw5PMi8WiCoWCms3m2KuJA7OC9WUdHBwMf53L5bS3t6fT09OxIHrwGmSj0dD+/r48zxvu0ff94UE0QRCoXC6rXC6r3W6rWCwOX4cEAAAAFkGsnE0c4ggAALBDcrncsPoin8/r5OREvu8rCIIHebakqVcVPc8b/rBQLpfH9jK4Z1C1EgSBrq6uhgF6LpfT9fW1SqWSWq3Wxr0OCWD7vf7wSeIHACB7iJWziQpsAACAHVar1dTpdHRwcDDVP2/Vr0UODpiZXDMMQ+VyOQVBoIuLC/m+P3Uy++DrwdxJvu+r1Wqp3+/r8vJSl5eXY+s3Gg212+2NelUSAAAA60WsnA0ksAEAAHZcq9XS/v6+fN8fO2U9jdcia7WaGo3GsLIlCAL1+/1hIF4qlfT06dPh/GazKc/zhq855vN5BUGgIAjGgvN2uz084KZYLI49s16vy/f9qXEAAADgLsTK60cCGwAAYMsFQaBGozE8GKZSqejo6Gh4mvngkJpms6l+v69qtTp10vm8ut2uzs/Ph2v6vi/P84bVHKVSaRiE7+/vq9fr6fr6ehhgn52d6fT0VJL0+PFjXV5e6vr6euw1x1evXqlSqcjzPD1+/Fhv3rwZ+/0MXFxcDKtdarWaut3u2AE3AAAAALFy9mNlc86tew+YYGbX+Xw+f319ve6tALin7338xdTYJ59/tIadAFjU69evJUlPntCfFOPu+rNRKBTU7Xa7zrnCQ+5r1xArIw1fffqDheZ/+7PvTo0t2tf6yQ9fLzQfALKCeBlJ0oyVOcQRAAAAAAAAAJBJJLABAAAAAAAAAJlEAhsAAAAAAAAAkEkksAEAAAAAAAAAmUQCGwAAAAAAAACQSSSwAQAAAAyZWcnMrlewRsPM2mZ2Hf/aW9EWAQAAsEPeX/cGAAAAAKyXmTUk7UnqSyouuVZN0qVzzo+/9iS9knRjZgXnXLDkdoGVO7+pJY4ffVB54J0AAIBJJLABAACAHTdINktSXH3t3WcdM8vH612MrB2a2XNJbyW1Je0vtVkAAADsFFqIAAAAAFgVX9L55KBzLpTUkZQbJLkBAACAeVCBDQAAAGBVnko6jluFdCeudRW1J3ka/xrYCYfV5B+7v3zgfQAAsKlIYAMAACzgex9/sdbnf/L5R2t9PnCHjqScpHDN+wAW8o1Hv7PuLQDAViBWRhpIYAMAAGy5IAjUaDTUbDYlScfHxzo6OlI+H3VyCMNQhUJB/X5fh4eHqtVq8jzv3s+r1+vyPE9hGOry8lLVanX4rMH1N2/eKAiis/xqtZpyuZwkyfd9eZ6nZ8+eTe2hWBw/W7Ber0vS8FknJyfDa81mU2EYyvM89Xq9sd8v0uOcq0iaderd4P+Aq3nWintxJ/lw0X0BAADMQqyc/ViZBDYAAMCWy+VyqtVq6na76vf7qtVqY9c9z1M+nx8Lju/L930dHByoVCpJioLjQqGgt2/fyvM8VSoVVavVYcBdqVRUKBR0c3Mjz/N0dXWlbne6u0Qul1Ov1xt+XSgUdHZ2pnw+rzAM9cEHH6hYLCqfz6ter6tUKo39XgqFgq6vZ+VDkTYzyylqH3KR0FoEAABgbYiVsx8rc4gjAADADgvDUL7v6+zsbOmAXJL6/b7a7fbw6729veG4JF1cXAyrSSSpWq0qDEO9fPlSkvT06VM558Y+arXa2Jr1el25XG5YJeJ5nmq12vDr8/Pz4XMHcrlcYrCPB9OSFEh6Me8NzrlC0oekH6a2SwAAgBHEytlABTYAAMCOGrwu2Wg0VrZmq9Ua+7rdbiuXyw0D/n6/ryAIxgJqScOKEd/3x+7vdDrK5/NjPzBUKpWp5xwfHw9/ncvlVCgU1Gq1hlUno8/EwzKzmiRPUsE5F653NwAAAPMhVs4OEtgAAAA7qNvt6vnz57q5uUll/U6nM6wEGX2d8e3bt2PzBhUmz549k6SxwDkMQ7Xb7bHXOMMwHP560Luv1+vJ9/3hvWdnZyoUCioUCsPXM1+9erXC3x3mZWYlRa1DSF5jI53f1BLHf1fffeCdAAAeErFytpDABgAA2DGdTmf4iuCLFy+mKjQGyuXyWBB8m9HXFqWosuPo6EiVSkX1en3s0JhRlUpFxWJxGDyPevHihc7OzsbGrq6uhs8bVMMEQTDWG3DQP7DRaOji4kKe56nT6SQ+A+kxs6IkP277AWTCV5/+YKH533j0OyntBACQVcTK2UMCGwAAYIcEQTA8hbxYLKpQKKjZbI69VjgwK1ifx+A1xkajof39fXmeN/WMQY+/pANjgiBQEAQzT3g/ODgYe9be3p5OT09Vq9Xk+/7wIJogCFQul1Uul9Vut6dOZ0c6zCyvKHl9MDHuSTp0zjXXsjEAAIBbECtnM1bmEEcAAIAdksvlhtUV+XxeJycn8n1/7LCY+wrDUOVyeWytQXA+WXXS6XR0fn4+87TzRqOReFDOYGwyWPc8bxjIX11dDX8AyOVyur6+VqlUWuqHDEwzs8STjOJx3zlXTrhcVHSYIwAAQOYQK2cTFdgAAAA7rFarqdPp6ODgYKz/nrT4a5FBEOji4kK+708F1KNfd7tdtVqtsSB58tXJTqejp0+fTj1ncMjN5L7CMByOJwXzvu9nOijPGE/S3m0TzOxaUt7MCs657si4J6ktKTCz0f/BvfjzU0m0FAEAABuBWDkbSGADAADsuFarpf39ffm+P3bK+qJBbD6fV6lUGgumm82mPM9TtVqVFL3uWKlUVKlU1Ol0JEVB+mQg3e12Z77CWKvV1Gg0htUxQRCo3+8PfxgYVJeMrtlut6dObcc7ZnYi6ZmkXPwhM+tJ6koKnHOViVs6ipLS4cT4q9E1kjjnqMAGAAAbg1h5/UhgAwAALOCTzz9a9xYWFgSBGo3G8FCXSqWio6Oj4Unkg0Nqms2m+v2+qtXq2Annizg7O9Pp6akk6fHjx7q8vNT19bU8z1MYhioUCgrDcBiQD0y+HpnP54enrU8qlUrDIHx/f1+9Xk/X19fDIPzVq1eqVCryPE+PHz/Wmzdvxn6/mOacqy84vyJpMqktDmwEAGC3ESvfjlj5fsw5t+49YIKZXefz+fysPjcAsu97H38xNbaJf5EDu+j169eSpCdPnqx5J8iau/5sFAoFdbvdLkncdBErYxlfffqDxPE/Cn+60DpJcd3rD5O/NxxWk+vGvvytLxd6JgBkBfEykqQZK1OBDQAAAADAkmYlqgEAwHLeW/cGAAAAAAAAAABIQgIbAAAAAAAAAJBJJLABAAAAAAAAAJlEAhsAAAAAAAAAkEmcMgEAD2TWqfff/uy7D7wTAAAAAACAzUAFNgAAAAAAAAAgk0hgAwAAAAAAAAAyiRYiAAAAAABkxPc+/mJq7JPPP1rDTgAAyIatSGCbWUlS1TlXuOf915JeOOe6c86vSfIktSRdOedCMytK8iW1nXPN++wDAABk3/989F+u9fm/e/5v1vp8AEC6Pvr+Jwmjrx98HwBwH8TKSMPGJrDNrCFpT1JfUnGJdfKS8pKuzey2qQfOuU78a0/ScfyhkfvqJK8BAEDWBEGgRqOhZjMKU46Pj3V0dKR8Pi9JCsNQhUJB/X5fh4eHqtVq8jxvqWfW63VJkud5CsNQJycnkqROp6NKpaKjoyN5nqder6cwDNVoNOa6Prr+YO3Ly0tVq9Xh7+euPQAAAAADxMrZj5U3NoHtnPMHv44rqL17LpWTFMQfSfYkBSPJ64FmfK8kdSU1nHOz1gAAAFibXC6nWq2mbrerfr+vWq02dt3zPOXzedVqNeVyuRmrzK9QKOjs7Ez5fF5hGOqDDz5QsVgcBs1BEKhSqSiXy6lUKk0F3Hdd931fBwcHKpVKkqRms6lCoaC3b98Of5i4aw8AAACARKy8CbHyxiawV+iZpIJzLky6aGYt51x5cnw0gQ4AALCpwjBUpVLR2dnZ0pUkUlTJkcvlhsGv53mq1WpjwfCrV69uDY7vut7v99Vut4dB+d7e3nDc87y59gAAWXVYnf4x/cs17AMAQKycFSSwpTe3JK9rkk4fdjsAAAAPY/C65GTVxjIqlYpardbY2PHx8crWlzS1frvdVi6XG1bEPMQeAOyG5H7UEj2pAWD7EStnx84nsJ1z9aTx+FDGN7cd7Ghmnt713+7MSoQDAABkTbfb1fPnz3Vzc7OyNcMwHP662WwqDEP1ej35vj9W0XF+fq5OJ+rOdnl5OfU65l3XBzqdjtrttiSp1+sttAcAAABgFmLlbNn5BHaSODHtJ7UOGZlTk/RG0oWigyRbZtaelRCfscb1jEsfLrBdAACAhXQ6HXW70b/Rv3jxYqoCY6BcLo8Fubdpt9u6uroa/npQqRIEgQqFgm5ubuR5nvb29nRwcKBisTjcy6Ann6Q7r4/K5XI6OjpSpVJRvV7XycnJXHsAAAAAZiFWzh4S2Mnuah0SSmqPHuxoZmVJN2YWOueaKe8PAADgXoIgGJ4yXiwWVSgU1Gw2E18bnBWs3+Xg4GD461wup729PZ2enib21isWiwrDcLiHu66PGlSaNBoN7e/vy/O84dhtewAAAACSECtnM1Z+b90byBozy0kq3tY6xDlXGU1ex2OhpI6i5PdcnHOFpA9JP7zn9gEAAG41OK1ckvL5vE5OTuT7voIgWMnakqYqNzzPG65fr9enKlU8zxu+1njX9TAMVS6Xx/Y7eO6gv99dewAAAACSECtnExXY0yqKEtH3cSmpZGbFyQQ3AABAFtVqNXU6HR0cHAwD34FFX4scHA4zeU8YhsPxSqWifD4/fO1xcH1/f//O61JUFXNxcSHf96d6/Q2ef9seAAAAgHkRK2cDCexph4qS2MvI7v/jAAAAE1qtlvb39+X7/tgp6/d5LbJWq6nRaAwrV4IgUL/fl+/78jxPx8fHYwH3xcWFcrnc8JXHu67n83mVSiU9ffp0OKfZbMrzPFWr1Tv3AAAAACyCWHn9SGCPMLOiJE/SzJp5M2tIOpb0KG4bAgAAdsjvnv+bdW9hYUEQqNFoDA9tqVQqOjo6GvbQGxxS02w21e/3Va1W730KealUGgbA+/v76vV6ur6+HlZ01Go1VSrvagXCMNT19btzre+6LklnZ2c6PY2OK3n8+LEuLy91fX09fBXyrj0AAAAgHcTKtyNWvh9zzq17D0szs2tJnnNuf8l1apJOJBVm9cA2s7akp5I+mExgz3P/nPu4zufz+ck/gAA2x/c+/mJq7L/yfj5x7rc/+27a2wGwgNevX0uSnjx5suadIGvu+rNRKBTU7Xa78ZkmSAmxMpbx1ac/SBz/o/CnieMfff+TxPEnP3w9Nfbr/+rXF9rLl7/1ZeJ40jqz5gLAOhAvI0masfJOHeIYH9B4m3n+qaGtKEEdJlwrSeouk7wGAAAAAAAAAES2JYHtSdq7bUJcpd0zs9tq/AcJ7HDWBOdcXVJtMhkeV1/vSSrPsV8AAAAAAAAAwB02tge2mZ1IeqYo6ZyLx3qSupIC59zkQYwdRYnu8JZlryTlnHMze2BLknOubGY1M/MUJa09RZXXjxb+jQAAAAAAAAAAEm1sAjuuhF5kfkXSZFJ7co4vaa4jNxMS5AAAAAAAAACAFdqWFiIAAAAAAAAAgC1DAhsAAAAAAAAAkEkksAEAAAAAAAAAmUQCGwAAAAAAAACQSSSwAQAAAAAAAACZ9P66NwAAALBJvvr0B2t9/rc/++5anw8AAADMQqyMNJDABgAA2HJBEKjRaKjZbEqSjo+PdXR0pHw+L0kKw1CFQkH9fl+Hh4eq1WryPG+p53U6HVUqFb19+3bqer1el+d5CsNQl5eXqlarw73Mc/9gjTdv3ujx48fq9Xpje/Z9X57n6dmzZ1O/j2KxOLVGEASSpFqtplwud+/fNwAAADYPsfI7WY2VSWADAABsuVwup1qtpm63q36/r1qtNnbd8zzl8/mVBKWdTkfdbncYdE/yfV8HBwcqlUqSpGazqUKhoLdv38rzvDvvl6JgutfrqdFoSIqC+EKhoF6vJ0m6urpSt9udui+Xyw3nVCoVVavVYdBeqVRUKBR0c3Oz1A8kAAAA2CzEypEsx8r0wAYAANhhYRjK932dnZ2tpKKiWCzq5ORk5lr9fl/tdnv49d7e3nB8nvsl6fT0VL7vD78ezL24uJAkPX36VM65sY9arTb23IuLi2E1iSRVq1WFYaiXL18u+lsGAADAliJWjqw7VqYCGwAAYEcNXpccVGc8hFarNfZ1u91WLpeb+weCIAgUhuFU5YfneWq32yqVSmMBuxRVuuTz+bFn9Pt9BUEwfB1zsN6g6gQAAAC7jVg5O7EyCWwAAIAd1O129fz5c93c3Kzl+Z1OZ1jlsUggPKgEGVSjDOzt7Q2vjfYIDMNQ7XZ76lXQyX6Bg3ufPXs2914AAACwnYiVsxUrk8AGAADYMYPeeZL04sWLqUqPgXK5PLO33qTRVw7nkcvldHR0pEqlonq9rpOTk7num7Ufz/PGXnMcePHihc7Ozu5ct1KpqFgsDvsNAgAAYDcRK09bd6xMAhsAAGCHDF4rPDk5UbFYVKFQULPZ1PHx8dTcWcH6KgxeUWw0Gtrf35fneYl7mHTboTGTlSZBECgIgjsPmhn0+Lu+vr7z+QAAANhexMrTshArc4gjAADADsnlcsPKiXw+r5OTE/m+n1iRsWphGKpcLo89axCcz1uVMnmQzejak70BG43Gnf0CO52Ozs/PSV4DAACAWHlCVmJlKrABAAB2WK1WU6fT0cHBwVR/vVW/FhkEgS4uLuT7/lSwPO/BNPl8Xp7nTe0rCILEA2mePn06c61ut6tWqzVWPbPIK5oAAADYbsTK2YiVSWADAADsuFarpf39ffm+P3bK+qpfi8zn8yqVSmOBcrPZlOd5qlarc69TrVbHToQfVKlM9uTrdrsqFouJawRBoEqlokqlok6nM5w/7w8HAAAA2A3EyuuPlUlgAwAALODbn3133VtYWBAEajQaurq6khQdwnJ0dDQ8gXxwSE2z2VS/31e1Wh07nXwR3W5X5+fnwzV935fnecOTzc/OznR6eipJevz4sS4vL3V9fT3svXfX/ZJ0cnIyDKgfP36sXq+XWNWSz+cTT0oPw1CFQkFhGA4D8oF1vx4JAACwyYiVb0esfD/mnFvLgzGbmV3n8/k8P0ABm+t7H38xNfZfeT+fOHcT/4IHttnr168lSU+ePFnzTpA1d/3ZKBQK6na7Xedc4SH3tWuIlbGMrz79QeL4H4U/TRz/6PufJI4/+eHrqbFf/1e/vtBevvytLxPHk9aZNRcA1oF4GUnSjJU5xBEAAAAAAAAAkEkksAEAAAAAAAAAmUQCGwAAAAAAAACQSSSwAQAAAAAAAACZRAIbAAAAAAAAAJBJJLABAAAAAAAAAJlEAhsAAAAAAAAAkEkksAEAAAAAAAAAmUQCGwAAAAAAAACQSSSwAQAAAAAAAACZ9P66NwAAALBJfv/3f3+nnw8AAADMsu5Ydd3PRzqowAYAANhyQRCoUqno0aNHevTokSqVirrd7vB6GIba39/Xo0eP5Pu+wjBc6nn1el2VSkXlclnlcllBECTOqdfrajabqtfrC98fBIGazaYePXp053583x/7/d53DgCs0usPnyR+AAAeFrFy9mNlKrABAAC2XC6XU61WU7fbVb/fV61WG7vueZ7y+bxqtZpyudxSz6pUKqpWq/I8b/h1oVDQzc3NcKxQKOjs7Ez5fF5hGOqDDz5QsVhUPp+f6/5Op6NutyvP8+78AaLT6ajZbKpcLi81BwAAANuJWDn7sTIV2ADwQM5vaokfALBOYRjK932dnZ0tHZBL0sXFxVgVSLVaVRiGevnypaSoYiSXyymfz0uKfiCo1WrDr++6X5KKxaJOTk7m2m+73R4G88vMAQAAwO4hVs5GrEwCGwAAYEcFQaDT01M1Go2VBaX9fn8sqB6s2+v1JEVVIkdHR2P3HB8fz33/Iur1uqrV6tJzAAAAsHuIlbMTK9NCBAAAYAd1u109f/5cNzc3K1337du3Y18PAuxnz56NvcLYbDYVhqF6vZ583x9Wldx2/yK63a5yudytP2zMMwcAAAC7h1g5W7EyCWwAAIAdM+iLJ0kvXrxQq9VKnFcul+c+pKbdbieOVyoVFYtFlUoldTqd4dxGoyEpCron+/bNun8R5+fnU/0L7zMHANJyWOXHcQDIImLl+ec8FP7GBAAA2CFBECgMQ52cnKhYLKpQKKjZbI69mjgwK1if16BH3/X19dj4wcHB8Ne5XE57e3s6PT2dCpBn3X+XTXodEgAAANlBrDz/nIdED2wAAIAdksvlhhUa+XxeJycn8n1/rJfeKnQ6HZ2fn48F1IODZCarRzzPm3p+0v3z2LTXIQEAAJAdxMrZjJWpwAYAANhhtVpNnU5HBwcHU4e/3Pe1yG63q1arNVaVUq/Xh6ehT64ZhuHYKem33X+Xfr+vy8tLXV5ejq3faDTUbrdVq9XmmgMAAAAQKyfPeWgksAEAAHZcq9XS/v6+fN8f9tsbjC8qCAJVKhVVKpVhH79BFYcU/RDQaDSGlS1BEKjf78v3/bnuv0uxWFSxWBwbq9fr8n1/OD7PHAAAAEAiVk6a89BIYAMAACzg93//99e9hYUFQaBGo6GrqytJ0WEvR0dHw9PMB4fUNJtN9ft9VavV4bVFhGGoQqGgMAyHAfXA4PXGUqk0DML39/fV6/V0fX09rDa56/7Bfs/Pz4f79n1fnucl9gUcVLvUajV1u92pypR55uwaMytJqjrnCkusUZRUltST9FiSJ6ninAtXsUcAAJBNxMqzESvfnznnHvyhuJ2ZXefz+fyifWwAZMf3Pv5iauxv3/6/Euf+7vm/SXs7ABbw+vVrSdKTJ0/WvBNkzV1/NgqFgrrdbneZxO+6mFlD0p6kvqSiJDnn9u+51lQC3MzyklqSCssmsYmVsYyvPv1B4vgfhT9NHP/o+58kjj/54eupsV//V79+/43d4cvf+jK1tQFgUcTLSJJmrEwFNgAAALDjnHP+4Ndmdq2oYnphZuYpSlQfTKzfNbOupDNFldkAAADAXN5b9wYAAAAAbI3D+PNVwrVzSaUH3AsAAAC2AAlsAAAAAKtSlhTOaBMSSMMWIwAAAMBcaCECAAAAYFWeKuqjnSSMPz+TdPEguwFSkthLm1awAACkggQ2AAAAgFXxNDuBPTrnTnEv7iQfLrAfAAAAbDhaiAAAAABYpXDG+CCxvfdA+wAAAMAWoAIbAAAAwEPy5pnknCskjceV2flVbggAAADZRQIbAAAAwCp5M8YHldfhw2wDSM8fhT9d9xYAANgZtBABAAAAsCrhHHPu6pENAAAADFGBDQAAsIBXX+yv9fnPP+qt9fnAHa4kFWdcy8WfZx3OCAAANhyxMtKwFQlsMytJqs7qkzfH/TVFrzq2JF0550IzK0ryJbWdc82Ee4qSypJ6kh7H91ecc+F99gAAAJCWIAjUaDTUbEYhzfHxsY6OjpTPR22EwzBUoVBQv9/X4eGharWaPM+717M6nY4qlYqOjo7keZ56vZ7CMFSj0RjOqdfrevPmjYIgkCTVajXlcrnE9Xzfl+/7w73Ou0az2VQYhsM9jP5+F5mDhbV0dwK780B7AQAAuBOxcvZj5Y1NYJtZQ1Efvb5mB8nz8iQdxx8ys8F4fUbyeiphbmZ5SddmViCJDQAAsiSXy6lWq6nb7arf76tWq41d9zxP+Xz+1uB4EUEQqFKpKJfLqVQqjQXklUpF1Wp1GPRXKhUVCgXd3NxM/SDQ6XTUbDZVLpfHxu9ao16vq1Qqjf1eCoWCrq/fFf7OMwe3M7Occy6YGH4pqWFmJefcxcS1sqROwj3Axvno+59MjX3+mxv74zUA7DRi5ezHyhvbA9s55zvnys45X6s5CKapqBqkI6kuad85V5mcZGaeosqSsWvOua6krqSzFewFAADgQYRhKN/3dXZ2tpKAXJJevXol55x6vd7UDwAXFxfDShBJqlarCsNQL1++nFqn3W4nVrfctcb5+bn29vbG7snlcup2u8Ov55mzwzy9O3AxkZldS+rFRRxDcSGHL6k2MT+vqAJ7/CcsAACADCNWnj3nIW1sAnvV4oT4QfxRuaUy5DD+fJVw7VxSKZ0dAgAArFYQBDo9PVWj0bj3a5CL6vf7YwH14Lm93ni/wnq9rmq1eq81crmcCoXCMMAOw1BBEIy98jjPnF1iZidm1ooT0zlJnpn14rFawi0dSYESCkniNxj9+N6T+H5fEm8qAgCAjUGsnJ1YmXecFleWFM4IvgMpajGS8MokAABAZnS7XT1//lw3NzcrX/v8/FydTtTm+PLycux1y7dv347NHQTXz549G9tbLpeb+YPCXWucnZ2pUCioUCioVIpqC169ejV2zzxzdolzrr7g/Iom3kicuD54sxEAAGDjECtnK1YmgT0ibg8y6KfdmZGkfqqo73aSwfxnku5MYMcVLkk+vOteANmW1Bfx//dP13saMwAMdDqdYTXFixcv1Gq1EueVy2WFYTjXmu12W5K0t7eng4MDFYvF4bMKhcJUID1QqVRULBaHgbEUBfWTr1PeZnINz/NUqVTUaDR0cXEhz/PU6XTGnjHPHAAAAOweYuXsxcoksGPxq41vFCWe+5JaZtZOqEbxNDuBPToHAAAgc4IgUBiGOjk5UbFYVKFQULPZ1PHx8dTcWcH6bSZfKywWiwrDMPEZg/58kwfGzHodMknSGr7vDw+ZCYJA5XJZ5XJZ7XZ7+MPCPHMAAACwW4iVsxkr0wM7EkpqO+fqzrkgrrwuS6qa2fSf0NmHRg4S27ceejPgnCskfUj64WLbBwAAmM/gtHMpCqBPTk7k+/5Yn7xl1Ov1qUoUz/Om+vZ1Oh2dn5+PBdN3vQ45KWmNIAh0dXU1/AEgl8vp+vpapVJp+EPGPHMAAACwe4iVsxkrU4GtYQ+/ybHQzDqKTlBvLrikt4p9Adgu33j0O+veAgBMqdVq6nQ6Ojg4mAqcF30tMgxDVSoV5fP5scqMMAy1v/+ujVK321Wr1RoLgOv1uvL5vC4vL3V5eTl2b6PRULvdHntVctYaxWIx8YR43/eHc8MwvHMOAAAAQKycPOehkcC+3aWkkpkV44NoBrwZ8weV12GamwIAAFilVqul/f19+b6vRqMxNr4Iz/N0fHw8FpBfXFwol8sNKziCIFClUlGlUhkeXjOoJikWi1OvJNbrdfm+PzZ+2xr5fF5BECgIgrHAu91uy/d9SZprDoDdknR+CQAAErFy0pyHRgJ7PqP/7BDOMf+uHtkAAGBDPf+od/ekjAmCQI1GQ1dXV5Kig1yOjo6GPfgGh9Q0m031+31Vq9Wp/nzzqtVqqlTevdwWhuHwtcUwDFUoFBSG4TCYHhh9tVGKgvnBYTe1Wk3dblcnJydzrfHq1StVKhV5nqfHjx/rzZs3Y7/feecAAABgMcTKtyNWvh9zzq3lwatkZteSPOfc/p2Tp+9tSDqW9CjufT167URRCxHfOdeMx9qSis45S1irKKk9Ov8+zOw6n8/nJ/9wAtgcrz98MjX2xf/le4lzP/n8o7S3A2ABr1+/liQ9eTL93zF2211/NgqFgrrdbjc+0wQpIVbGMr769AeJ4z/+10lHHy3msJpefdiXv/VlamsDwKKIl5EkzViZCuyoujqcce1x/PlqZKwladZxm4NK7c6M6wAAAACANTm/qSWO/98eeB8AAGB+7617Aw/JzKY7kEcV04XJ6utYSVLXOdcdGXsZr1VKmF+W1HHOreZoUgAAAAAAAADYYduSwPb07gDFRHGbkZ6ZjTVrcc7VJdUmk9tmVovXLE/MDyX5ilqLjM7PK6rAHpsPAAAAAAAAALifjW0hEvenfqYoaZyLx3qSupIC51xl4paOokR3OLmWc65sZjUz8xQlrT1FldePkp7tnGuaWWBmLUmXilqNeJpdyQ0AAIANtg3nxgAAAKySc05mU0fEYQelHStvbAI7rpxeZH5F0mRSe/L6Iut1RK9rAAC2jpnJOaef/exneu+9bXlZDcv62c9+Jkn8mQAAADtvNF7+uZ/7uXVvBxmQdqxMBA4AADDiF37hFyRJf/VXf7XmnSBL/u7v/k6S9P77G1v/AQAAsBI///M/L+ldfASkHSuTwAYAABjxS7/0S5Kk//Af/oN+/OMf62c/+xntI3aYc04//elP9Rd/8ReS3v35AAAA2FWDeOgv/uIv9NOf/pRYeYc9VKxMCQkAAMCIvb09/dVf/ZX++q//Wl999dW6t4MMef/99/Wtb31r3dsAAABYq29961v6+uuv9bd/+7f6kz/5k3VvBxmRZqxMBTYAAMCI9957T7/6q7+qf/SP/pG+8Y1vcDANZGb6pV/6Jf3qr/4qPbABAMDOG8TLv/RLv0SsjAeJlanABgAAmPDee+/pW9/6FtW2AAAAQIJvfOMb+va3v73ubWBHUEICAAAAAAAAAMgkEtgAAAAAAAAAgEx68AS2mf2Gmf22mf3GQz8bAAAA2CbE1gAAANh2qfTANrOXkj6Iv+w456pm9k1JHUl5SV9L6ptZzzn3f01jDwAAAMA2ILYGAADALkurAvtc0rVz7plzrhqP1SQVJP2Pzrk959yvSaqb2e+ltAcAAABgGxBbAwAAYGellcAuOuc+nhg7ltRzzn06GHDOvZL0rZT2AAAAAGwDYmsAAADsrLQS2F+PfmFmz+NfdhLmupT2AAAAAGwDYmsAAADsrLQS2H858XVeUTB9nTDXS2kPAAAAwDYgtgYAAMDOSuUQR02/ungUfx6rEokPn7GU9gAAG+GrT3+QOP7tz777wDsBAGQUsTUAAAB2VloJ7Mv4AJkLSb6iKpGWc+5PBxPM7DuSWpKeJy0AAAAAQBKxNQAAAHZYKi1EnHN/qKhSJJBUUVQd8kKSzOyfmdlVfK0g6SyNPQAAAADbgNgaAAAAuyytCmzFJ6J/ambfdM6NHjzTUfKBMwAAAAASEFsDAABgV6WWwB6YCLCnvgYAAAAwH2JrAAAA7JpUE9hm9pGi1xxzkmrOuT+Ix19Iyjnnqmk+HwCy5KPvf5J84f/RfNiNAAA2ErE1AAAAdlEqPbAlyczOFb3O+EzS15L2B9ecc2eSmvEcAAAAALcgtgYAAMCuSiWBHVeBFCQVnHN7zrmnk3OcczeK+vj9Xhp7AAAAALYBsTUAAAB2WVotRPLOuV+7a5Jz7sbMUtoCAAAAsBWIrQEAALCz0kpgL3KYzP7dUwBg93z16Q8Sx7/92XcfeCcAgDUjtgbW5LCa/CPzy9O/f+CdAACwu9Lqge0WmLuX0h4AAACAbUBsDQAAgJ2VVgL7kZn904mxqfcZ4x59NyntAQAAANgGxNYAAADYWWm1EKlLujKz/17SmXPuRxqpHDGz35BUVdTP7z9LaQ8AAADANiC2BgAAwM5KJYHtnAvM7FjSS0n1+DCZMB7z4mlfS3qexvMBAACAbUFsDQAAgF2WVgW2nHMXZvZrkhqKgulH8aVQ0kvn3MdpPRsAtlnS4Y4c7AgA243YGgAAALsqtQS2FFWLSDqQJDP7QFLfObfIKeoAAAAARGwNAACA3ZTWIY5TnHM3SQF2fNgMAAAAgDkRWwMAAGBXPFgC+xZH694AAAAAsCWIrQEAALBV7t1CxMz+5Qqen5OUX8E6AAAAwMYitgYAAACSLdMD+0jvTj1fhlvBGgAAAMAmI7YGAAAAEiyTwO5LOpXUXGKNx5Iul7gfAHbOj//18fTgZ68ffiMAgFUitgYAAAASLJPADiQ1nHM/WmKNr83sZon7AQAAgG1AbA0AAAAkWOYQx/KSAfbA8xWsAQAAAGwyYmsAAAAgwb0T2M65r1e0B4JsAAAA7DRiawAAACDZMi1EVqUq6f+97k0AwKY4rE5/6/5yDfsAAGQSsTUAAAC2ylIJbDP7SNKBpNPRVx7N7F/OucSepPwyewAAAAC2AbE1kL5vPPqdGVc+edB9AACA+S1bgX0h6ZuS3kj6n0bGjyR5c67hltwDAAAAsA2IrQEk+t7HXySOf/L5Rw+8EwAAHt6yCezPJB1L6kyM9yVVJL284/7Hki6X3AMAAACwDYitgQ2R1NItTR99f1aF+OsH3QcAAOuw1N+6zrm6pHrCpUDS+RwnqX9tZjfL7AEAAADYBsTWAAAAwLRU/tnYOfdfLDCdk9IBAACAGYitAQAAsMse9r2nBM65r9e9BwAAAGAbEFsD22lWy5IvH3gfAACsQyoJbDP7Defcv0sY/6akmt4dLtNyziWfRgEAAACA2BoAAAA77b2U1j1LGnTOfe2c+9g598+dc/9c0iMz+72U9gAAAABsA2JrAAAA7Ky0Etg2zyTn3B9K2k9pDwAAAMA2ILYGAADAzkorge3uniKZ2S9LeprSHgAAAIBtQGwNAACAnbV0D2wz+0zTQXXOzP4H3V4tkpNUlPRy2T0AAAAA24DYGgAAABi3ikMcG5I8SUeSjiV9U1Fw/ekc917E/foAAAAAEFsDAAAAY5ZOYDvnbuJf/rGkT82sLek7kg7vuO+Pl332gJmVJFWdc4Ul1zhQVL2yJ+lKUsU5FybMrSn6waIl6co5F5pZUZIvqe2ca953HwAAANhdWYitAQAAgCxZRQX2pLKkTtpBtJk1FCWa+4pel1xmrZqkS+ecH3/tSXol6cbMCs65YOIWT1FFzHE8fzBeJ3kNAACAFXqQ2BoAAADIqpUnsONq5NNVr5vwHH/wazO7VpRUXpiZ5eP1LkbWDs3suaS3ktpKPs29qahaW5K6khoJiW4AAADg3h4qtgYAAACyKo0KbDnn/jCNdVPiK+o1OCb+YaEjqWhmeedcd+K6P3kPAAAAsGobFlsDAAAAK5VKAnvDPJV0HLcK6U5c6ypqT/I0/jUAAACw1eKzXcqSepIeK3rTMfFsmAXWGtiL1+LNRQAAAMyFBLbUUdQKJFz0xrhX9qD/duc+QT0AAACQFUmHo8ct967jgo9wgbWOpanWf56kV2ZWcc51VrZxAAAAbK2dT2A75yqSKjMu5+PPV5MX4oMf30i6UHSQZMvM2s65+rzPjnt3J/lw3jUAAACAVYiTyy1JB6PjzrmumXUlnWm8mvqutcrOucm1QjMra/Y5MwAAAMCYnU9gz2JmOUXV1RcJrUVCSe3RqpE4EL8xs9A513y4nQIAAAArcRh/nirekHSuKLk9r6ezLjjngjjWBgAAAO5EAnu2lqRA0ovJC3HV9uTY4NDHmqS5Etijr2aOiiuz80nXAOyOPwp/uu4tAAB2S1lSOKNNSCBFLUaccxdzrldMmh8nr+mBDQAAgLmQwE4QtwfxJC3U50/SpaSSmRXp6QdgWR99/5PE8c9/k2/dAIBUPFXUGi9JGH9+pqiF3q2ccx0zCxS12WuO9sGW1NCcrUgAAACApbIgZvbLzrkfrWozWRAfXFPU4snrUbwSCQAAgIVkILb2NDuBPTpnXmVJryQdm9mhonNnDiT5zrk7K7A5LwYAAACS9N59bzSzfyHprZn9Lyvcz1qZWVFRQD0zeW1mDTNz8cE0AAAAwNIyFFuHM8YHie29eReKz5H5QFG7EE9R5fXoWgAAAMCd7p3AVvT64B9LmjzgUGZ2Ou8iZvadJfawMmaWV5S8PpgY98zseGQop9mB/eP4c9LBNwAAAMAsmxJbe/NOjAs+ziT5ivtrSyopOvj8zvNe4qKSqQ9JP7zPxgEAALCZlklgv3HOPXXO/UHCteIC6yxymvlSZp12Ho/7zrmkXnxFjR8y09bs9iIlSd242gQAAACYV1Zia2/G+KDyOpxnkTh5/UpSxTnXiQ9y/EDRYeeepFe80QgAAIB5LJPAfmxm//UK9uCtaI1bX2eMe+j1Jqs94sC5LSlnZq2Rj7aZtRVVjQwT2M65uqTaZDI8PvhxTxxIAwAAgMVlIbYO55gzb/uPM0nno72unXNhfJhjWdE+j2fcCwAAAAwtc4jjp5L+xMx6il51HK1SzpnZv5xjjZzueeChmZ0oetVyuMboXpxzlYlbOooC5XBi/NVd+5g8ZMY5VzazWpz83ovX7TrnHt3n9wIAAICdt9bYOnal2dXeg3VnHaw4qaTo0MYpzrkLM2sqiuUBAACAW907ge2cC8zs1xQdxpJUdezPu9Q9n19fcH5FCUF03EfvPs9PDMgBYFUOq8v8GyMAYJOsO7aOtXR3Arsz51qhbq8G72nOdiQAAADYbcu0EJFzLnDOHTjn3pP0KP7YU1Q18miOj18TgSsAAACQhdj6pSSZWSnhWllSZ/LNxHh+UtX3S0lHtzzrQNL5fTYJAACA3bKy8j7n3NeDX5vZ2Ne3+NrMbla1BwAAAGAbrCO2ds6FZuZLqkm6GHl+XlEF9tSbi/E5M3kzK4weZO6c883s2sxOJt+cNLOGpBYHnwMAAGAeab2fvshBhs9T2gMAbITzm1ryhScPuw8AQGY9WGztnGuaWWBmLUmXkh4ragVScM6FCbfMOmdGzrmCmZ3EB6OHencAZIPkNQAAAOaVSgLbOTdV+WFmvxFf+3cTc+epJgEAAAB20kPH1s65jubsdT3rnJmR63VJC51dAwAAAIxK9YQwM/tlTRwGY2ZSdHp52Tn3Z2k+HwA2wTce/c6MK//PB90HACDbiK0BAACwi1JLYJvZc0mD1wX/WO9eGdyT9FRSYGYl59z/J609AAAAANuA2BoAAAC7KpUEtpl9U1JDUSXIH864fiTpD8ys45z7cRr7AAAAADYdsTUAAAB2WVoV2J9K8p1zr5Iuxr35mmZ2pagn3j9PaR8AkHkfff+TxPHPfzPVLk8AgM1BbA0AAICd9V5K6z6aFWCPik8ft5T2AAAAAGwDYmsAAADsrLQS2OECc11KewAAAAC2QbjAXGJrAAAAbJW0EtgEzgAAAMBqEFsDAABgZ6WVwDYz+6/nmPTfSPo6pT0AAAAA24DYGgAAADsrlRPCnHOfmtmfmFlO0plz7kej183sNxSdlH4s6YM09gAAAABsA2JrAAAA7LJUEtixQ0kdSXUzCyX1Je1J8uLroaTDyQAcAAAAwBRiawAAAOyktFqIyDnXdc7tSfoDRaeh70t6pOi1xj+UlJvnNHUAAABg1xFbAwAAYFelWYEtSXLO+ZJ8M/tm/DV9+QAAAIB7ILYGAADArkk9gT1AcA0AAACsBrE1AAAAdkVqLUQAAAAAAAAAAFgGCWwAAAAAAAAAQCY9WAsRANh1h9Xkb7kvT//+gXcCAAAAAACwGajABgAAAAAAAABkEglsAAAAAAAAAEAmkcAGAAAAAAAAAGQSCWwAAAAAAAAAQCaRwAYAAAAAAAAAZFIqCWwz+2Uz+20z++U01gcAAAB2BbE1AAAAdtn7Ka37B5L+maSCpH+e0jMAALGvPv1B4vi3P/vuA+8EAJACYmsAAADsrLQS2JL0P0pqpLg+ACD24399nHzhs9cPuxEAQFqIrQEAALCT0kpg951zn84z0cwunXPPUtoHAGTeYTXNf0sEAGwBYmsAAADsrLSyJhUzO5dUcc79aUrPAADEZiXBv3zgfQAAUkFsDQAAgJ2VVgL7uaSOpJaZSdKVpFDSm4l5+5LyKe0BAAAA2AbE1gAAANhZaR7i+E1JFn9duGWuS2kPAAAAwDYgtgYAAMDOSq0HtqSXuvugmceSzlPaAwAAALANiK0BAACws9JKYIeSPpunR5+Z3aS0BwAAAGAbhCK2BgAAwI56L6V1ywscMPMipT0AAAAA24DYGgAAADsrlQS2c27uyg/n3B+nsQcAAABgGxBbAwAAYJelVYEtSTKzj8zsfzez/9PMfntk/IWZnab5bAAAAGCbEFsDAABgF6WWwDazc0kdSc8kfS1pf3DNOXcmqRnPAQAAAHALYmsAAADsqlQS2Gb2QlJBUsE5t+ecezo5J34V8lMz+7009gAAAABsA2JrAAAA7LL3U1o375z7tbsmOeduzCylLQAAAABbgdgaAAAAOyutFiJfLzB3/+4pAAAAwM4itgYAAMDOSiuB7RaYu5fSHgAAAIBtQGwNAACAnZVWAvuRmf3TibGp9xnjHn03Ke0BAAAA2AbE1gAAANhZafXArku6MrP/XtKZc+5HGqkcMbPfkFRV1M/vP0tpDwAAAMA2ILYGAADAzkolge2cC8zsWNJLSfX4MJkwHvPiaV9Lep7G8wEAAIBtQWwNAACAXZZWBbaccxdm9muSGoqC6UfxpVDSS+fcx2k9GwDW7bCa2rdXAMAOIrYGAADArko1w+KcCyQdSJKZfSCp75xb5BR1AAAAACK2BgAAwG56sBJB5xwHygAAAAArQGwNAACAXZF6AtvMfllSUdKzeOhSUic+fAYAAADAnIitAQAAsGtSTWCb2e9Jqg2+jD+7+Nqxc+5/TfP5AJC2V1/sz7jyiw+6DwDA9iO2BgAAwC5KLYFtZi8llSR1JHUl9RSdkv5YUkHSmZntO+f+uxU8qySp6pwrLLFGUVI53ufjeK8V51y4ivkAAADAfT1kbA0AAABkSSoJbDP7Z5Jykh7NOljGzHKS/q2ZnTvn/o97PKMhaU9SX9FrlMvsdyoBbmZ5SddmVphMSi86H8D2+s//7f+WfOHJf/ug+wAAbK+HiK0BAACArHovpXUPJT2/7VT0+BT1/0LSx/d5gHPOd86VnXO+pPBeu5RkZp6klqTKxPpdRdUtZ8vMBwAAAJaUemwNAAAAZFVaCeyb2wLsgTjQvnNeyg7jz1cJ184Vvaq5zHwAAABgGZsUWwMAAAArlVYC+y8XmOtS2sO8ypLCGW0/AmnYMuS+8wEAAIBlbFJsDQAAAKxUWgnsby0w1+6ekqqnivpoJwnjz8+WmA8AAAAsY5NiawAAAGCl0kpgn5rZ6V2TzOxfKGq7sU7egnMWnT+TmV0nfUj6cJ77AQAAsBM2KbYGAAAAVur9+95oZr93x5S8mf3vig42TLwuqeGc++P77mGFwhnjg0rrvSXnAwAAADNtWWwNAAAArMy9E9iS/jtJ39Tdryke3HKtaGa+c+4PltjHQ/DSmO+cKySNx1XY+QWfCQAAgM21S7E1AAAAMLdlEth9SU0t/5piuOT9q+DNGB9UUodLzgcAAABus02xNQAAALAyyySwQ0n/g3PuRyvay7qEc8wZPbRx0fkAAADAXUJtR2wNAAAArNQyCezyKgJsM/sN59y/W3adJVxJKs64los/Xy8xH8AW+6Pwp+veAgBgO2xLbA0AAACs1Hv3vdE5d7OiPZytaJ37at1ybZCQ7iwxHwAAALjVFsXWAAAAwEotU4F9JzP7ZUVJ3b0ZUzy9S/qmzsxyzrlgYvilpIaZlZxzFxPXypI6E/csOh8AAABYWtZiawAAAOAhpJLANrNvKkr0zmq1sWqeZgfykiQzu5aUN7OCc647GHfOhWbmS6pJuhiZn1f0A0BhdJ1F5wMAAADLWENsDQAAAGRGWhXYZ5KexZ97t8z7NUm/fZ8HmNlJ/Ixc/CEz60nqSgqcc5WJWzqKEt3h5FrOuaaZBWbWknQp6XE8t+CcW3o+AAAAsITUY2sAAAAgq9JKYHvOuVsrogfM7F4Vy865+oLzK5Imk9qj1ztaoHf1ovMBAACAe0o9tgYAAACy6t6HON6he/eUoUZKewAAAAC2AbE1AAAAdlZaCey5Oec4KR0AAABYAWJrAAAAbJu0EthtM/tv5ploZpcp7QEAAADYBsTWAAAA2FmpJLCdc68kmZmdmtlv3DH9URp7AAAAALYBsTUAAAB2WVqHOEpR8FyWdGJmKT4GAAAA2HoPFlubWTF+Vk/SY0mepIpzLrznejlFh6nvSerHw/deDwAAALsllQS2mf0LSTVJoaQ/vmXqI0nfSWMPAAAAwDZ4yNjazEqSqs65wshYXtK1mRUWTTrHyfCGpLJzrhuP5SSdKUqSAwAAALdKqwL7SFLBOXdbgC1JMrM/SWkPAAAAwDZ4kNjazDxJLUkHo+POua6ZdbVg0jlOVLcV7b07cqkmqXTffQIAAGC3pHWI49U8AXase/cUAAAAYGc9VGx9OHhewrVzLZ50bki6mEheS1EbEX4GAAAAwFzSqsAO553onDu8exYAAACws8J5Jy4ZW5clhTPahARS1GLEOXdx10Jx65CiJqq54z36S+wRSMVhNc3joQAAwDLSqsDumdl35ploZqcp7QEAAADYBg8VWz/Vu0MWJ4Xx52dzrjVIUl+ZmWdmJTM7jtuKAAAAAHNLJYHtnDuT9LGZfTTH9GIaewAAAAC2wQPG1t6K5kjv9pGTdKyoZchLSRUza8yzgJldJ31I+nDOPQAAAGALpPKeVFz54SQ1zGxPUR+9MGGqJymfxh4AAACAbfDAsXXSutK7yuy9Odfx4s9HzrnKyLgfJ6IbtBIBAADAPNJq9OVL+qYki7+e6n03wqW0BwAAAGAbZCm29hac304YO5dUi5PYMw9zdM4VksbjKmyKYAAAAHZEWj2w+5I+lfTojo+nWuBQGgAAAGAHPWRs7c0YH1ReL7S+c66TMDxIWtNKEAAAAHdKqwI7lNRwzv3ojnldM7tJaQ8AAADANgj1MLF1OMecWYc8TgoU9b++zbwHQgIAAGCHpVWB/XyOAHs4N6U9AAAAANvgoWLrK81OOg/Gr+dcqytJZubdMieYcy0AAADssFQS2M65r9OYCwAAAOyaB4ytW7dcGySwk1qCJBn0vk5KiHvx58s51wIAAMAOS6sCe25mRuAKAAAArMCSsfXLeI1SwrWypI5zbqpq2symktTOuaailiRJfa4PJAXOuYsl9goAAIAdsdYEtpk91+InmQMAAACYsGxs7ZwLJfmSahPr5hVVUpcTnnktqRfPmVSWVB1NcMfzDpPWAgAAAJKkcoijmb3R/MFzmMYeAAAAgG3wkLG1c65pZoGZtRS1+HgcP7sQJ7gndeLrU9ecc504qV4zs8FwX9IHM9YCAAAApqSSwJZk8Uc34ZqnxXvoAQAAALvqQWNr51xn3rWccxVJlVuud0W1NQAAAJaQVgI7kPTbzrl/N2uCmRUlFZ1zn6a0BwAAAGAbEFsDAABgZ6XVA/tKUaA9U1zZcWpmv5fSHgAAAIBtQGwNAACAnZVKBbZz7uM5531tZr+Wxh4AAACAbUBsDdzPV5/+YN1bAAAAK5BWBfYi3Lo3AAAAAGwJYmsAAABslbR6YC8id/cUAAAAAHMgtgZ2yPc+/iJx/JPPP3rgnQAAkJ5UEthm9i8l7c0xtSjpNI09AAAAANuA2BrALB99/5MZV14/6D4AAEhTWhXYR5K8OeY1nXP/U0p7AAAAALYBsTUAAAB2VloJ7L6i6o+L+NdjnHNfp/RcAAAAYNsQWwNIdFhN/pH+ywfeBwAAaUorgR1IajjnfpTS+gAAAMCuILYGAADAznovpXXLBNgAAADAShBbAwAAYGelksBe5DVGM7tMYw8AAADANiC2BgAAwC5LqwJ7Ed66NwAAAABsCW/dGwAAAABWKa0e2DKz35bkS8qJQBoAAAC4N2JrAAAA7KpUEthm9i8k1SSFig6dmeWRpO+ksQcAAABgGxBbAwAAYJelVYF9JKngnPvjuyaa2Z+ktAcAAABgGxBbAwAAYGel1QP7ap4AO9ZNaQ8AAADANiC2BgAAwM5KK4EdzjvROXeY0h4AAACAbRDOO5HYGgAAANsmrRYiPTP7jnPuT++aaGanzrlqSvsAgJ32vY+/SBz/5POPHngnAIAlEFsDAABgZ6WSwHbOnZnZZ2b2b51zydmTd4qSCLIBIAUfff+TGVdeP+g+AAD3R2wNAACAXZZKAtvMTiU5SQ0z25N0peRXHz1J+TT2AACQDqvJ3+a/fOB9AADuj9gaAAAAuyytFiK+pG9Ksvjrg1vmupT2AAAAAGwDYmsAAADsrLQOcexL+lTSozs+nmqBQ2kAAACAHURsDQAAgJ2VVgV2KKnhnPvRHfO6ZnaT0h4AAACAbRCK2BoAAAA7Kq0K7OdzBNjDuSntAQAAANgGxNYAAADYWakksJ1zX6cxFwAAANg1xNYAAADYZWlVYAMAAAAAAAAAsBQS2AAAAAAAAACATCKBDQAAAAAAAADIJBLYAAAAAAAAAIBMIoENAAAAAAAAAMik99e9gVUws6KksqSepMeSPEkV51y44DrXkl4457pzzq/Fz2pJunLOhfFefElt51xzkecDAAAAAAAAAN7Z+AS2mZUkVZ1zhZGxvKRrMyvMm8SO7xncd9vUA+dcJ/61J+k4/tDIfXWS1wAAAAAAAACwnI1OYJuZp6j6+WB03DnXNbOupDNFldnzyEkK4o8ke5KCkeT1QDO+V5K6khrOuVlrAAAAAAAAAADmtNEJbEmH8eerhGvnipLb83omaWbFtpm1nHNTyXDnnL/AMwAAAAAAAAAAc9r0QxzLksIZSedAGrYYmcebW5LXNUmn99kgAAAAAAAAAOB+Nj2B/VRSf8a1MP78bJ6FnHP1pPH4UMY3tx3saGaemZXiD2+e5wEAAAAAAAAAbrfpLUQ8zU5gj865lzgZ7Se1DhmZU5P0RtJFvJeWmbVnJcQn7r2ecenDe2wXAAAAAAAAALbKpiewpXeV1pMGie29Jda+q3VIKKk9erCjmZUl3ZhZ6JxrLvFsAAAAAAAAANhp25DAvot3n5vMLCepeNshjc65SsJYaGYdRcnvWxPYzrnCjGdfS8ovtmMAAAAAAAAA2C6b3gNbmp2gHlReh/dctyKpc+esZJeSvLh/NgAAAAAAAADgHjY9gR3OMeeuHtmzHEqa1aN6Xrkl7wcAAAAAAACAnbXpCewrzU4SD8YXTkLHldOepOCWOQ0zc/FBjwAAAAAAAACAFdv0BHbrlmuDBPZ92oAcxJ9vq97OaXYF+OP489U9ng0AAAAAAAAA0OYnsF9KkpmVEq6VJXWcc1NV1PEBjbeZp/VHW1LBORcmXCtJ6jrnunOsAwAAAAAAAABIsNEJ7Dh57EuqjY6bWV5REro8eY+ZXUvqxXNmGSSww1ueXZdUm0yGm1lN0QGSU88GAAAAAAAAAMzv/XVvYFnOuaaZBWbWknSpqH2Hp9nV0Z34etK1gStJuaTq7Ylnl82sFvfB3ovX7TrnHi32uwAAAAAAAAAATNr4BLYkOec6mrPXtXOuIqlyxxxfUWX3vOsBAAAAAAAAAFZso1uIAAAAAAAAAAC2FwlsAAAAAAAAAEAmkcAGAAAAAAAAAGQSCWwAAAAAAAAAQCaRwAYAAAAAAAAAZBIJbAAAAAAAAABAJpHABgAAAAAAAABkEglsAAAAAAAAAEAmkcAGAAAAAAAAAGQSCWwAAAAAAAAAQCaRwAYAAAAAAAAAZBIJbAAAAAAAAABAJpHABgAAAAAAAABkEglsAAAAAAAAAEAmkcAGAAAAAAAAAGQSCWwAAAAAAAAAQCaRwAYAAAAAAAAAZBIJbAAAAAAAAABAJpHABgAAAAAAAABk0vvr3gAAAACA7DCzoqSypJ6kx5I8SRXnXLiqtZ1z/rJrAQAAYDeQwAYAAAAgSTKzkqSqc64wMpaXdG1mhRUksVuSXi65BgAAAHYICWwAAAAAMjNPUYL5YHTcOdc1s66kM0WV2fddv6aomht4EOc3tamxbzz6nTXsBAAALIMe2AAAAAAk6TD+fJVw7VxS6b4Lx61DLu97PwAAAHYXCWwAAAAAUlRdHc5oExJIwxYj93HgnLu478YAAACwu0hgAwAAAJCkp5L6M66F8edniy4atw45veeeAAAAsOPogQ0AAABAivpTz0pgj86ZW3wA5OV9Dn80s+sZlz5cdC0AAABsLhLYALCDvvfxF4njn3z+0QPvBACQMeGM8UFie2/B9XznnH//7QAAAGDXkcAGgB300fc/mXHl9YPuAwCwcbx5J5rZiaTKfR/knCvMWPdaUv6+6wK74PWHTxLHn/yQWA8AsHlIYAPADjqsJn/7//KB9wEAyBxvxvig8jqcZ5G4dcisAyEBAACAuZHABgAAACDNl5y+q0f2AK1DgDWiWAEAsE1IYAMAAACQpCtJxRnXcvHnWQcrDplZSdJTM2vNmHJoZnuS5JwrL7xLAAAA7BQS2AAAAAAkqaW7E9iduxZxzl1IupgcNzNPUknSS6qzAQAAMK/31r0BAAAAAJnwUhpWUE8qS+o454LJC2aWS5gPAAAArAQJbAAAAACKD1z0JdVGx+MDGXOKktiauHYtqRfPucvgIEgS3gAAAJgbLUQAAAAASJKcc00zC+L+1ZeSHkvyJBXiBPekTnw96ZqkYQK8KmmQ5C6aWVtSQCsRAAAA3IUENgAAAIAh51xHc/S6judWJFXumNNVQvU2AAAAMA9aiAAAAAAAAAAAMokENgAAAAAAAAAgk0hgAwAAAAAAAAAyiQQ2AAAAAAAAACCTSGADAAAAAAAAADKJBDYAAAAAAAAAIJNIYAMAAAAAAAAAMokENgAAAAAAAAAgk95f9wYAAAAAAFi1bzz6namxj77/SeLcz39zN340/t7HX0yNffL5R2vYCQAA89uNv6UBAAAAANhxyQn81w++DwAAFkELEQAAAAAAAABAJlGBDQAY4rVSAACA7XVYnU4BfLmGfQAAsAgS2ACAIV4rBQAAAAAAWUICGwAwRFUOAAAAAADIkq1IYJtZUVJZUk/SY0mepIpzLlxwnVp8b0vSlXMujNf2JbWdc820ng0AAAAAAAAAGLfxCWwzK0mqOucKI2N5SddmVlgwkexJOo4/ZGaD8fqM5PUqnw0AAAAAAAAAGLHRCWwz8xRVSx+MjjvnumbWlXSmqDp6EU1JufjXXUkN51zwQM8GAAAAAAAAAMQ2OoEt6TD+fJVw7VxRgnkhzjl/Xc8GAAAAAAAAALzz3ro3sKSypHBGq45AGrb52LZnAwAAAAAAAMDW2/QE9lNJ/RnXwvjzs0UXNTPPzErxh/eQzwYAAAAAAAAARDa9hYin2Unk0TlzM7OapDeSLuK1W2bWds7VV/1sM7uecenDu3cKAAAAAAAAANtt0xPY0rtq50mD5PLegmu1nXOdwYCZlSXdmFnonGum+GwAAAAAAAAAwIhtSGDfxZt3onOukjAWmllHUk3SZAJ7qWc75wpJ43Fldn7BZwEAAAAAAADAVtmGBLY3Y3xQ/Ryu4BmXkkpmVhytzn6gZwMAAAAAkIrXHz5JHH/yw9cPvBMAAJJt+iGO4Rxz7upTvYjcGp8NAAAAAAAAADtl0yuwryQVZ1wbJJtnHZQ4xswako4lPXLOhQ/5bAAAAAAA1uGwmpwW+PKB9wEAwCybXoHduuXaIIncuWXO5PxwxrXH8eerlJ4NAAAAAAAAAJiw6Qnsl5JkZqWEa2VJHedcMHnBzHIJ89uSCjOqr0uSus657rLPBgAAAAAAAADMZ6MT2HGy2ZdUGx03s7yiKujy5D1mdi2pF88ZXasuqTaZ3DazmqJDGcsT8xd+NgAAAAAAAABgfpveA1vOuaaZBWbWknSpqN2Hp9nV1J34+tQ151zZzGpm5ilKWnuKKq8frejZAAAAAAAAAIA5bXwCW5Kccx3N2W/aOVeRVLnjeirPBgAAAAAAAADMb6NbiAAAAAAAAAAAthcJbAAAAAAAAABAJpHABgAAAAAAAABkEglsAAAAAAAAAEAmkcAGAAAAAAAAAGQSCWwAAAAAAAAAQCaRwAYAAAAAAAAAZBIJbAAAAAAAAABAJpHABgAAAAAAAABkEglsAAAAAAAAAEAmkcAGAAAAAAAAAGTS++veAABsso++/0ni+Oe/ybdXAAAAAACAZVGBDQAAAAAAAADIJBLYAAAAAAAAAIBMIoENAAAAAAAAAMgkEtgAAAAAAAAAgEwigQ0AAAAAAAAAyKT3170BAAAAAACQLa8/fJI4/uSHrx94JwCAXUcCGwAAAAAAjDmsJqcLvnzgfQAAQAsRAAAAAAAAAEAmkcAGAAAAAAAAAGQSCWwAAAAAAAAAQCaRwAYAAAAAAAAAZBIJbAAAAAAAAABAJpHABgAAAAAAAABkEglsAAAAAAAAAEAmkcAGAAAAAAAAAGQSCWwAAAAAAAAAQCaRwAYAAAAAAAAAZBIJbAAAAAAAAABAJpHABgAAAAAAAABkEglsAAAAAAAAAEAmvb/uDQAAsu31h08Sx5/88PUD7wQAAABZlRQzEi8CAFaBBDYA4FaH1eS/Kr584H0AAAAgu5JiRuJFAMAq0EIEAAAAAAAAAJBJVGADAAAAGDKzoqSypJ6kx5I8SRXnXHiPtUqSDiTlJO1JurrvWgAAANhNJLABAAAASBomnKvOucLIWF7StZkVFkk8m1lN0qVzzo+/9iS9knQTrxWsdPMAAADYSrQQAQAAADBIMLckVUbHnXNdSV1JZwuslY/vvRhZJ5T0XFFFd3vZ/QIAAGA3UIENAAAAQJIO489XCdfOFSW35+VLakwOOudCM+tIKppZPk6OA8DCXn/4JHH8yQ9fP/BOAABpI4ENAAAAQIr6Xocz2oQEUtRiZLSq+hZPJR3HrUImk9RdScV4DglsAPdyWE1OZ3z5wPsAAKSPBDYAAAAAKUoo92dcC+PPzyTNk8DuKDq4MbxjHoAN872Pv0i+8JsPu49FUbENAJuLBDYAAAAAKepNPSuBPTrnTs65iiZ6aY/Ix5+TWpUMmdn1jEsfzrMHAOn46PufJI5//pvZTi9QsQ0Amyvbf8MAAAAAeEjhjPFBYntvmcXNLKeofcgF/a+BzTQrEQwAQFr4mwcAAADAvLwl728p6qf94q6JzrlC0nhcmZ1PugYAAIDtQwIbAAAAwIA3Y3xQeR3ed2Ezq8XrF2YcFAmkjuphAAA2z3vr3gAAAACATAjnmHNXj+xEZlZS1DqE5DUAAAAWQgIbAAAAgBQdqpibcW0wPutgxZnMrCjJd86RvAYAAMDCeH8KALBSrz98kjj+5IevH3gnAIAFtRRVSScZJLA7iyxoZnlFyeuDiXFP0qFzrrnoJgEAALBbSGADAFZqVm/JLx94HwCAhb2U1DCzknPuYuJaWVLHORdM3mRmuVnjipLX5YRnFRUd5ggAAADcigQ2AOBeZlVai8ORAGAjOedCM/Ml1SQNE9hxFXVOUmHyHjO7lpQ3s4Jzrjsy7klqSwrMrDVyixd/fpq0HoDtwpt5AIBVIMsAALiXWZXWAIDN5Zxrmtkg6Xwp6bGipPOs/tWd+PrktVeKkt6zemorqWobwG743sdfJI5/8vlHD7wTAMAm2IrsQ3wwTFlST++C7Mp9DomJT0g/UBRs7yk6zCZxLTOrxc9qSbqKq1aKknxJbXr6AQAAYNM45zqas9e1c64iqZIwTnU1gJkFDy9PP5lxB5XZAIBpG5/AjhPO1dEgOX7N8Tp+lTFcYK2apEvnnB9/7SmqHrmJ15qsEvEkHccfMrPBeJ3kNQAAAAAA0zgzBQCwiI1OYMcJ5paiiukh51zXzLqSzhRVZs+zVj6+d9jvL66ofi7praIefvsJtzb17tXIrqQGr0MCAAAAAAAAwPI2OoEt6TD+fJVw7VxRcntevqTG5GCcxO5IKppZfvRwmvi6v8AzAAAAAAAAAABzem/dG1hSWVI4o01IIA1bjMzjqaK2I/mEa92ROQAAAAAAAACAB7DpCeynkvozroXx52dzrtWJ7wlvnzbNzDwzK8Uf3qL3AwAAAAAAAACmbXoLEU+zE9ijc+406wT12KAqe6pVSXzw4xtJF/FeWmbWds7V73qmmV3PuPTh3TsGAAAAAACjvvfxF8kXfvNh9wEAWJ1NT2BLsyumB4ntvWUWN7OcpKKki8n+1/Gz2865zsj8sqQbMwudc81lng0AAAAAAOb30fc/SRz//De3If0BALtpF76De0ve31LUT/vF5IW4antybHDoY03SrQls51whaTyuzE7qxQ0AAAAAAGY4rO5CmgMAdss2fGf3ZowPKq/D+y4ctwfxJBVmHBQ5y6WkkpkVR6uzAQAAAABAdiS1HPnk84/WsBMAwCybnsAO55hzV4/sRGZWUtQ6ZNHk9ajcPe/7/7P3P7GNremd5/l7rm+lMz01zhMKw4VJ55TvpdyojMIkKkFGLHLhzQ2qB5geYPoPGQJm441DzOq7MOCyxateedOtJKdmMYscX1IeoGozgIIqTBXQg0GZjIsEctELScwa3MZEYlw8yqxOuxfjYJybWXDa+e+dBc9h8M+hSEokzyHP9wMIks55+Z5XJxTkw0fP+74AAAAAAGDNPv76H0wd+1CfJjASAMAs7yQ9gHu60uwkcXR81kaJM5lZUVLFOTczeW1mDTNzZuYt2z8AAAAAAAAAYL5tT2C3bjkXJbCXWsLDzPIaJK8PJo57ZnY00X8wo5uH4eerZa4NAAAAAAAAAHhr2xPYL6Thch+TypI6zjl/8oSZxVZth8crzrlyzOmiBps5RtqavbxISVLXOde9ffgAAAAAAAAAgFm2eg1s51xgZhVJNUkX0fGwijonqTD5GDO7lpQ3s8JogjlcCqQtyTez0cpuL/z8eLQ/51zdzFpmVh1NkocbP+5JGqvgBgAAAACs3g8/+k7SQwAAAGu01QlsSXLONc0sSjpfarB8h6fZ1dGd8PzkuZcaJL1nbrw4Wc3tnCubWS1Mfu+F/Xadcw/u8KMAwE579ZVHU8cefe9VAiMBAADANvnWNz6ZPvj1zY9jlrjxffjxBwmMBAB209YnsCXJOdfRgmtdO+eqkqoxx6eqtZfoDwAwx7OT6Zcc9ncHAADAPB9//Q+SHsKtPvj2hzFHKdQAgFXZiQQ2AAAAAABp9OnNf4g9/tX3/+GGR4J1oVADANZr2zdxBAAAAAAAAADsKCqwAWABsevuSWJlOwAAAAAAgPUhgQ0A9xA3XRAAAAAAAACrQeYFALD12PkdAAAAq/LqK49ijz/6HhszAkASSGADALZe3M70H7J1DgAAAO5g1ixLoksASAYJbABA6sxac5yqagAAAAAAsoUENgAgMbOmZ348o+qFqmoAAAAkZVaRhb6+2XEAQNaQwAYAJIZNMAEAAAAAwG3IHAAAAAAAgMTNmp2nlBQ9fPDtD2OPf/z1dIwPAHYVz7IAAOiWN0wx2IEeAACsy6c3/2Hq2Fff/4cJjGTz0j47L+3jA4BdxbMvAABa7g0JK3EDAADgLpYpmpDiCydm9UGRBYBdRQIbAAAAAABghWZt+PjBhscBALuABDYAAAAAAMAKzVove9asvxenP489vmzFNgDsIhLYAICtMauSRV/fbB8AAADAbVgvGwBWh2dUAMDW+Pjrf7Bw21mJ6mX6AAAAADZh2cpsAMgSEtgAsAZZ3j0+LWZN2/z467z0AQAAYDuw0TgAkMAGAOwopm0CAAAgS2bNQPzwY7aOBLDdeHcPAAAAAACw5WbNQJRebXQcALBqJLABAFgzqmEAAAAAALgbEtgAAKwZ1TAAAGBS3J4pAABgGglsAAC2wKuvPIo9/uh7JMEBAAAAALuLBDYATPjqv/zq1LFv6P+SwEiQVssuCTJrQ0l2igcAAMCqEHMC2FUksAFgAbOWgPj46zyNZtHHX/+D2OMfrvHtAW9IAAAAcBfM5AOw7ci8AMCEuPUIX+lLCYwEAAAAmL1e9lff/4cbHgkAAJtHAhsAFjCr+hUAAAAAAADrQ0YGAAAAAABgR7EUHYBtRwIbAIAVmbW5o74efzhuPULWIgQAAAAA4C0S2ACwgFnrDgKj2OwTAIDsIl7EtqGYAsC24B01AAArsoq10mftEi/WYQcAAMCazYpFSWwDSBLvhgEASEhcwvvF6c8TGAkAAACyZpnii1nrZZPwBrAJJLABAEiRVVRxAwCQJf8m+FnSQwAAAGvEu2QAAAAAAAAsbVbxxayKbQC4CxLYAABsMTbfAQAAAADsMhLYAAAAAABsoU9v/kPs8a++/w83PBJgN1AcAqQTCWwAALZY3LRNNtkBAABx4hLeJLuxiFlxpBLYv2WdSeZlYmtsn6/+y6/GHv/09/hXTjsS2ACwIVTIIGnLrlG4ijcHBIkAAABYpVUkmWfFqADSiQQ2AAA7ZtkKmVntqUABAACANLsQAgA2gWcgAAB2zLJvMFbxhoQqFgAAAERYS3pzWCYQWUACGwAAAACAHTJr6TpgU1Yxky8t624vmyDedEJ52WUC024V9y8tvztYHf7lAADAxlGVAwAAAOmWmXwpSTYumyDetYTypq1i355lUcWeful4NgAAAJnC+toAAADZwpJzWIdVLIe4ij86kARfLxLYADJrVgC16STarCmeX33/H254JAAAAFgES3QA6bLMpuTYvFXMvkzLsiDL/q5RpLMa/E8GkFm88QB2E8uTLIYqEQCARDEFdkMSieplE6pZjlHj/n1eLHn/kvg3ji16S8s4JH36e9lJj5PABgAAC1tn5cOqEqosT7KYZatE4gLnLAXNAAAAo5ZNqK4iRv3WNz6ZPvj1JTtJiaxUx5N8Xo1s/LYAAICVWGegybS73bGKQJ1gHwCSRWU2sH7LFnB8/PU/2Pg1l8E651gXEtgAkFK8aQBuF1uBIm1tFQoAAACyZZ0FHKtYq3nm7MtZMlJVvY22vTiE3ywA2DJxiW2S2thlMys5lkhULx3ArzGQm5V4//DjD+7d96bXVqTKBgAAYPVWEWMtO3MyLo7MyjIfaUFsPRu/iQAAYOctG3zPCh5fnP586tiyCeJZUz8/jKl7WbbqZRUb5CSxw3vsNVf0b7YtVSUAVu+Db384dezjr/MWGADikKzerFUkq7MU//LbCQAAsKDYwH5FgeO6ql5WscHQui1zTSpTACBZyyxzx5J4ALB5uxgv70QC28yKksqSepIeSvIkVZ1zwbr7WuW1AWDVeNMAJGfZwDELVS+7GEzvoiRja+A2Lz/Zn3HmbG3XnBVLYRr3CgCwLlv/TsnMSpJOnHOFkWN5SddmVlgmOF62r1VeGwDugzcMAIBVSDK2BgAAAOJsdQLbzDxJLUkHo8edc10z62rwp/jyOvpa5bUBrNfMdaE2PA4AANIsydgaQLYwSxAAsIytTmBLehZ+voo5d65B0LyuvlZ5bQBrRHXyNNYuBADESDK2Bub6R3/+L2KPf08/2+xAkArEqACQHduewC5LCmZMP/SlwdRF59zFGvpa5bUBIBVI9gNApiUZWwPASmLRdSa2SZoD68f/M8TZ9gT2Y0n9GeeC8PMTSYsExsv2tcprA9gx7/3t/33q2Pc//39cuO1t7dNi2TcYy1R3L4vKcWxK3O8Vv1PYIUnG1sCYuA0b/5H+xeYHsgKzYr1lpD0u3AbrLNRIexHIOmMVYm4kbRXxOX/4Sj9zziU9hjszMyfJd85NRTdmltNgt/Omc66y6r5WcW0zu55x6p984Qtf+JVHjx7NGzaAUf/zv0t6BEP/4y/fX1vf/5t3btbWN+7n//O5z62t73/805+m4prb+jPO6jvtlv3ZV/FzLnPNVd3XuGuu6vfhHz/8x3ca0128evVKP/nJT/rOuYcbu+gKJRlbz+iDWDnDfvzj/3Hq2Od/9F5s2+AX8e9p/3//i/9p4eut4vlsnfHfLMSFwN3MiieWeS5YZ1y8rdYZc6/i3wwx/ldf29il7hMrb3sFtvS2gmNSVPGxt8a+VnntUb/4yU9+8lm32/3+HR+/qK+En7+35utgGvc+ORu697219dxdW89rlZHf+b9dW8+z/93nXvPO9z7+mqn8Ge/R91qt4Pd+uZ99NT/n4tdc3X2dvuY9fx+G9777g43+678n6UebvOAaBDOObyK2XtRorJyR15dUSuDe/3+Xa/7XizddzTPF+uK/CW+f4zZ1RUg83yRpDfc+Pp5Y7v/U+uLiFFnq3q/3OWkV/2ZbY3PPN//zdsTKu5DAnsdLsK9b2zvnCnceyQpEVS1JjyOLuPfJ4d4ng/ueHO59crj3yeHer5W3qb4W+ffj3zo53PvkcO+TwX1PDvc+Odz7ZHDfp72T9ABWwJtxPKroCNbY1yqvDQAAACTNm3F8E7E1AAAAMGXbE9jBAm1mbR5z375WeW0AAAAgacECbdYVWwMAAACxtj2BfSUpN+NcdHzW5i/37WuV1wYAAACSlmRsDQAAAMTa9gR265ZzUWDcWVNfq7w2AAAAkLQkY2sAAAAg1rYnsF9IkpmVYs6VJXWcc/7kCTOLqwZZtq87XRsAAABIqSRjawAAACCWOeeSHsO9mNmRpKpzbn/kWF6Dqo+Ccy6YaH8tKR+e696zr6XaAwAAAGmWZGwNAAAAxHk36QHcl3OuaWa+mbUkXUp6qMGO57OC4k54furcsn3d4doAAABAaiUZWwMAAABxtr4CGwAAAAAAAACwm7Z9DWwAAAAAAAAAwI4igQ0AAAAAAAAASCUS2AAAAAAAAACAVCKBDQAAAAAAAABIJRLYAAAAAAAAAIBUIoENAAAAAAAAAEild5MeAO7GzIqSypJ6kh5K8iRVnXPBuvsys5KkA0k5SXuSru567W2U5L2f9XjnXGXZa2+jpO+9meUkVTX4ve+HhzPxu5/wc07UPrIXtveXvfa2WeV9H+mzJOnEOVfY9LW3ScL3ntfZhO79rLFk5XV205J+XY97fFb+rZO+98RUxFRJIK5KBjFVcoipkpP0vd/J11nnHB9b9iGpJOl64lheg/8Y3jr7klSTVBr53pN0LemNpFzS92aX7/2MPt5IaiR9X7Jw7yUVw/P5kWM5Sa2k780u33tJR5KOJo5FzzvFpO/NFt33hqRW+Lknqbepa2/jR8L3ntfZhO79jD4y8zq75f/WxFRbdO+JqYipduDeE1dtx30npiKmyuS939XX2cQHwMeS/2CDJ10XF2SEv9QL/0Iu21f4H652Sz9LP4lt00eS935GH7Wwj51/EUj63odP9m70BWCkvUv6/uzqvQ/bt2f0ldvl55xV3veYx1/fdu/Wee1t+Ej43vM6m9C9n/GYzLzObvO/NTHVdt17Yipiqm2/9zGPJ65K530npiKmyuS93+XXWdbA3j7Pws9XMefONfhLz7r6qoTHx7jBFISOpJyZ5Ze4/rZJ8t6PCaejXC5xvW2X9L1vSLpwznUnjvclTR7bNUne+8ezOnKDqa65Ja69bVZ537fp2mmQ5M/P6+xA4r97GXyd3bSkX9eHMvhvnfS9J6YipkoCcVUyiKmSk5rfO15nx2zi3u/s6ywJ7O1TlhS4+HVrfGm4Ls46+nos6XrGE313pM2uSvLeTzpwzl0seK1dkNi9D19wixq8EIxxzlXckmt/baGkf++Lcf2Ha3rt8nqNq7zv23TtNEjy5+d1Nj2/e1l7nd20pF9bRmXt35qYKjlJ/95nNaaSiKuSQkyVnDT93vE6+9Za7/2uv86SwN4+j/V2AfZJQfj5yZr66oTHA2VTkvd+yMxqkk4XvM6uSPLeR5tMXJmZZ2YlMzsKg/0sSOzeO+c6GrzIt8xs8kW4ofFNiHbNKu/7Nl07DZL8+XmdTcHvXkZfZzeNmCo5xFTJIaZKDnFVMoipkpOK3zteZ6cE4ed13fudfp0lgb19vBW1Wbov51zVOffAxe9SHf1lM26axK7wVtTmzn2Ff0G+nPHXvF3mrajNXfoqhp9zGmx+05X0QlI15g3ALvJW1OaufZU1eKE/MrM34QtwS1IlZlrULvFW1Gbbrp0G3oraLI3X2eR/9zL8Ortp3ora3LmvDP9beytqc5e+iKlW0+aufWU1ppKIq5LirajN0oipkv+943X23m3uYqdfZ0lgb6dgxvHorzx7m+wr/GtOUfHr7OyaYMbxTd37Ssam34wKZhxf9733ws+Hzrm6c853zgXOuYqkx7vwQrCAYMbxtf/eh88p72tQNeTp7XSoWX/V3iXBjON3ue/bdO00CGYcT+Tn53VW0ubufZZfZzctmHGcmGr9ghnHianWL5hxnJhq/YIZx4mr1iuYcZyYav2CGceJqdYvmHF83ffeCz/v5OssCezd5G24r5YGgdDzFV53W3nr6svMjiVVV9j/rvHW3Fc75ti5BlUsu7wByCK8dfVlZp6kMw2mQ0WVQyVJN9z3RKt1krx2Gngbvh6vs2956+qY19nU8dbVF//Wc3lr7ouYajZvXX0RU83lZfTaSfM2fD1iqre8dXXM6+xc3pr738nXWRLY28mbcTz6K06wqb7CNY08SYWMTA3xZhxf670Pn2RmbQSQFd6M4xv5vQ/XDpwU/dW+GHNul3gzjq/7996T9FJS1TnXCf+C/76kZtjPy7DNrvJmHL/Lfd+ma6eBN+P4xn9+XmeH1nrveZ1NhDfjODHV+nkzjhNTrZ834zgx1fp5M44TV62XN+M4MdX6eTOOE1Otnzfj+EZ+73f1dZYE9vYJFmiz6DSwe/UV7pxaVHZeAIIF2qzr3lecc80F+95FwQJt1nXvF9mVfVc3XpGSvfdnks5H164bmQJV1iAwOFrw2tsmWKDNuqb8JnntNAgWaLORn5/X2VjruvdZf53dtGCBNsRU6xEs0IaYaj2CBdoQU61HsEAb4qrVCxZoQ0y1HsECbYip1iNYoM267v1Ov86+m/QAsLQrzf6LSbSz6PW6+zKzogZPTIUFr7ULErn34Yvt43CTlTjPzGxPkpxzu7qDeJK/911JOTPzbgl2Fnmh2FZJ3vuSZkw9c85dmFlTW/wCPMcq7/s2XTsNUvHz8zo7ZW33ntfZRBBTJYeYKjnEVMkhrkpGKn52YqopxFTrleTv/U6/zlKBvX1mPRFIb/8zxE0XWFlf4ZSQinPuYOK4Z2a7/Jf7RO69c+7COVdwzpVHP/R23a4XI8d2VZK/9+2Jc6O88PPlgtfeRkne+0C3rw/W0xa/AM+xyvu+TddOg8R/fl5nY63t3vM6mwhiquQQUyWHmCo5xFXJSPxnJ6aKRUy1Xkn+3u/06ywJ7O3zQhr+ZWtSWVJndGpYJNxt9959hf1UZjzhFLXbgU+i9z7jErv34fSnQPF/RT2Q5O/47spJ/t6/kHR4y9gONNiMYhet8r5v5No7JMl7z+uskrv32ChiquQQUyWHmCo5xFXJIKZKDjFVchK79zv/Ouuc42PLPjRYn6w3cSyvwV/OvZj215KcpPx9+tLgLzY9Df6q0xr5aIcfbyTlkr4/u3jvZ4wlF/bdTvq+7Pq91+AFYOz3O2z/Jq7/XftI+N5fSzqOOd6QdJT0vdmW+z7RrifpzSqvvWsfSd17XmeT/b2PeUymXme3+d/6vs9ZWfu3Tvh1nZiKmGrr7/1EO+KqFN53EVMl+jsf8xheZzf3fLOzr7Osgb2FnHNNM/PDdYUuJT3U7bvpdsLzU+eW7OulBk88M/8y5Hb3r8eSEr33Q+E0qBMNnoQkqWhmbQ3+mla50w+2BZK89865jpk9lVQzs+hwX9L7t/1b7YqE733BzI7D3/FAbze8aDjnupPtd8kq77uZHWuwtuXwOdzMehqsk+Y758bWxbzr89OuSPDe8zqb4O/9yOMy+Tq7acRUySGmSg4xVXKIq5JBTJUcYqrkJPx8s7OvsxZm4wEAAAAAAAAASBXWwAYAAAAAAAAApBIJbAAAAAAAAABAKpHABgAAAAAAAACkEglsAAAAAAAAAEAqkcAGAAAAAAAAAKQSCWwAAAAAAAAAQCqRwAYAAAAAAAAApBIJbAAAAAAAAABAKpHABgAAAAAAAACkEglsAAAAAAAAAEAqkcAGAKyMmXlm1jazazPLL/nYxrKPAQAAALYFsTIA3A0JbADAyjjnAufcgSRP0ksz85Z4+F70xZKPAwAAAFKPWBkA7oYENgBgHRoaBOZHtzUKK0naYRDuSwrMrCjphgoTAAAA7ChiZQBYgjnnkh4DAGDHhEH2G0m+c25/TtuSpEr4rR9+rjnn/BkPAQAAALYWsTIALIcKbADAyjnnAkkdSbl51SHOuQtJLUmPJeUkNQjIAQAAsKuIlQFgOSSwAQDr0go/H85qYGZFM+tpMIWyKakqqTYyVRIAAADYRcTKALAgEtgAgHV5EX6+bW0/T1LZOVcPv1a4sU1LIxvVAAAAADuGWBkAFkQCGwCwFiNTI71ZUyOdcxfOuW747V74Iedck6mRAAAA2FXEygCwOBLYAIB1aoSfK7e2GqhKulrjWAAAAIA0IVYGgAWYcy7pMQAAdpiZOUmBc+5B0mMBAAAA0oRYGQDmowIbALA2ZlYMv/RGvgYAAAAyj1gZABZDAhsAsBbhWn41SeXw0CJTIwEAAICdR6wMAItjCREAwMqFAXlLUsE5F5jZG0mec84SHhoAAACQKGJlAFgOFdgAgJUKA/KXksrh7uqS9CI8V0pqXAAAAEDSiJUBYHkksAEAKxMG5NeSnjvnuiOnWuHnw82PCgAAAEgesTIA3A1LiAAAVmKkmqTpnKvGnGdqJAAAADKJWBkA7o4KbADAvY0E5FdxAXmIqZEAAADIHGJlALgfKrABAPdiZjkNpkL2nXP7t7SLpkx2nHMHmxofAAAAkBRiZQC4PyqwAQD3VZTUl1S4rVG4zl9TUjEM5AEAAIBdR6wMAPdEBTYAAAAAAAAAIJWowAYAAAAAAAAApBIJbAAAAAAAAABAKpHABgAAAAAAAACkEglsAAAAAAAAAEAqkcAGAAAAAAAAAKQSCWwAAAAAAAAAQCqRwAYAAAAAAAAApBIJbAAAAAAAAABAKpHABgAAAAAAAACkEglsAAAAAAAAAEAqkcAGAAAAAAAAAKQSCWwAAAAAAAAAQCqRwAYAAAAAAAAApBIJbAAAAAAAAABAKpHABgAAAAAAAACkEglsAAAAAAAAAEAqkcAGAAAAAAAAAKQSCWwAAAAAAAAAQCqRwAYAAAAAAAAApBIJbABA6piZZ2bFhMeQM7N8kmMAAAAA7oqYGsCuIIENAEgVM/MkvZTkJzkO55wv6STpoB8AAABYFjE1gF1CAhsAkDYvJZ2GwW4sMzsys56ZNcLgfClhNcoilSDPJTWoGgEAAMCWIaYGsDPMOZf0GAAAKRYGs4+dc50NXKshKXDOVRdom5d0LanrnCsseZ2ipKpz7mDB67QkFZxzwTLXAQAAADaNmBrArqECGwAwU5i8fiOpfZeqjCWvlZf0bJFAW5Kcc11JXUl5Myst0r+Z5cJv+5KCkXMzHx9epyOptsi4AAAAgKQQUwPYRSSwAQDzBJKaG6iUaElqLvmY8/BzZYG2e5KuzexYg5/JDwPwnqTDOY+tSToaCdYBAACANCKmBrBzWEIEAJC4cPphW9KDZRLlIxXiWvSxZnYk6UBSTtKVpNptawOOPK6twVTM8qLjAwAAADaFmBrArqICGwCQBlVJF8tWeYfto7W5n614TJMakkrrXkoFAAAAuCNiagA7iQQ2ACANomqRu2iFn2+d8mhmRTN7I8nTILjvaBBAt8ONbubZVFAPAAAA3AUxNYCdRAIbAJCokc1eru7yeOdctMZffk4lR1/SU+dcXYOA23POdZ1z+xrsvD7vOoEkX4OpkgAAAEBqEFMD2GXvJj0AAMBiwqD0QNJjSY0oyAx3Go8qJfYUVkOEO30r3CSlOnI+F57vKEYYsEa7gz+WVI5bz+6u44lxIA13Jr+rC0klSUeS6nENJvrPhR/RuUU3uulqUNkCAACADdlUHBxz3ePwulEsvCfp+W1LdIxccy881HfOVcL1qXOTcScxNQDMRwIb9xa+qEuDHYi98C+xAFYoDGCfhMFvSVLLzK402On7tXOuMtK2Jemlmb2vwdS8wsT5mgZT/PZnbLRS0yA4DsJNVtqS9ifGk7vLeGYE+zkNgtj7ONcg2D7UjGB7Qkdv34gs41Lhmn3Lri0IAMgmYmXgfjYcB0ftihosi9Fwzh2MHM9JeimpMONxR+Hjys65i2j84dIaRxrEn82R9sTUxNQAFsASIrgXM7uW1AkD8ReSTsIAA8BqVSSdThxrSerFvBFua1ChcabBG+XJdeyidfFKE8ejN9mNkUByrKpiRPUO45lVZfFYg6mIdxa9QdBgymPceCfbB3esTgnCz3OvAQAAsTKwEhuJgyNhErqtQUHHWP9h0tu75XFjyevwMaMx52T8SUwNAAsggY07CxNdfvSCFSa8bpvSBODuciNJ5Sfh586MaXpe9HlGlZcXcyxyMDHlclYlx13GM4unt0HsnUwE2LduPHNP0ZsCgm0AwK2IlYGV2VQcHFV7N8L+L2LO5xQTt4ZL8M183MhjJjdYJKYGgAWQwMZ91DSYYjS0xJpXABY0sSa19LbqojrdWtLb4Hfe+bHpfjHXiYLW0zntFh3PbdML71wtEgbabb0d78yKmhUIws97tzUCAEDEysC9bSoOHtGa9fiwwrolqRzzuLPwcy3mnPR23MO1t4mpJRFTA1iQOeeSHgM2JFxT68Q5F7te10i7ogYvyj1JD/V2s4hgpI0n6U3YLtpQYl+DpQeoKgHWyMycBhVd+zPOv9Gg6sRmnO9pUO3wYM4GNLf2s+R45Jx7EHPO0+C5pO6cmxWs33btnAa7nT91znWjMWuw3uHKn4vCqpxrSRWSEACwW4iVgfRbZxwc/t+OKqRH47w9DRLD13Hx30h8qFuue+u4l/jZiKkBZBKbOO64cLOI6AV37i6/cYF79OJiZoWRF/nH4eeDaF2x6EXvlk0lANxT+H9UGqnemDif0yDYvO18TlJ3TvK6GPZza0C5wHiifuKmUircKFKaPyUyru8o0H4+Eli/0GCDnENNLH0SBvYthc9fccH/Aoa7yd/hsQCAlCFWBrbHBuLgaLPGi5i1s29zGD1uxnWnqq9j2hBTA8AtWEJkxznnKs65cvgCHNzWduSFaOwvtuGLWFdvp0WNao+08zV4ATq536gB3CIKrFszzkcB8uT6epEoOG7MuU70PDCv3bzxRFMs5/Wz1PTBkUC7ObHOYDSOo8nHhJvMHGgw7fJqmeuN8O74OABAChErA1tl3XGwF36+XG5YijZmnXXdgznnR9sQUwNADBLYGPUs/Bz3InSu8TWwonW3gol2gdiIAVinoiQ552ZVcETBbWx1ht6uafciOjBS8RF974XX6Y5u6BhWmC07niNJwej5yetp8LzhzXj8lJFAuzM5RTK8TiDJG6l2mRSt73cX0ZuC29YeBADsJmJlIFnrjoOD8POycV4UH85K5o5VV5tZXJxKTA0AtyCBnVJhsmih4PaWF5RllTV4UQxizvnhtUrSsILE1/QLpCdehIC1CBPLOU1M45tQ1OD/8dT/w5FpkxfR//Pw+WPyuSaqtBit8JiqTJs3npHnptE3CUeT/WjwnLFQtchIoO075+I20JHeLnsydX5kauld1/Lzws88zwFAgoiVgWzZUBzcW3As+YnCjll/sBodtz/y3HE0ow0xNQDMQAI7vTwN1siLq3gcMrOW3v4l+b4ea/YaVEH4+cnIserotcMXsT3Nn9YE4G5uXT9v5PliVuVG9PjzkWMV51x9ol30//zFyLFczJuBeev5RVMhR58TDmIqS670durlTCOBtiQ9vaVpdL1nMefmVbfM80SzkxcAgM3xRKwMZMkm4uAo9h39fzx5naIG6+CPJm6jKmQv5iHR0kKj7SfjYWJqAJiDBHZKhS+ITyW9nBWYhwG5bvmL6bK8ZdqEa2S1zKxhZscaBOmFuL94A1iJeevnzVv3zx/9HFZunM9qN1Kd0tDEep8LjieqYomudyzpNKZdOzw/M+AOK1OuNXgOenpbsDta9RYztTJar++u8rplAx4AwGYQKwOZs/Y4OIwvK5KOJmd4hMt+1CTlJ59TnHPNsN/KRPsohg5GjudjxkhMDQBzvJv0ADCbc65rZlFg/nT0r7xrCMgjwYzjUbXJ2JSk8MUawOZ051Q6dDVeOT3knOuYWV1Szcx8SdcTm7VETiXloucZSae3vNmeOR7nXNPMCpLOzKwvqTVRrRKJHv9Ys6chPg4/l2f0MamiQRB/ovF1EPOSOmHgLw2qP9qLPJeNTO+sLXB9AMCaESsDmbP2ODiMX/2wXV/j/+dPb0n4RjFvS4Png0BS1TkXhM9TZ2FCO5hcb3rez0ZMDQCSOeeSHgPmCP+C+lKDv5B27xqQm9m1JM85tz/jvNPghbMQc86T9EaDDR4OJs8DwH2YWVuDgH7ViYbRa3gaPI91FVacjBwrzAviw8qTlqQHTHcEgPQgVgaAAWJqALuKJUS2wMQUyXZ4bF0vSN6M41E1SbCm6wLItoakUhj8rks0tXQ4XTL8HEg6XODxFUlNAm0ASBdiZQAYIqYGsJNIYG+JMDC/0uDFIm69q1UIFmgza+MaALizcAqnr4ld2VfsQOM7wEc8zVnXNFwHsSg23gKAVCJWBgBiagC7iwT2lginQgYavFjM3Kzmnq40WIsqTnT8esZ5ALivigbr661LURObxYw8l857bqtqUCmyyFqBAIANI1YGgCFiagA7hwT2Fhhdxy/c2KGs9QTmrVvORUE5OwUDWIvw+a0T7vC+DjlN7+4eTXOM3fBHGgbkzzQIuAEAKUOsDABvEVMD2EUksFMubhOaNQbmL8JrlmLOlTXYlMZf4fUAYEz4XFc0s+LcxssLNJhSOepI4Q7xcQ8I1w9saWSNPwDYdWZWCjc0XGWfRTNb+ZRxYmUAmEZMDWDXkMBOsdt2UL9jYO7p7QYzU8IXkoqksb/Uhv3nwusBwLo9lVRbw+YzHUmPo2/C59iOc65+y2PONAjGmeYIYKeZWcPMWmGSuaY565jewW3Vy3dCrAwAtyKmBrAzzDmX9BgQI/xLaWXeDuphu5pzrjDj/LGkJxoE1VHw7kvqarDxwtT0nejaki4lPdQgmJ/511QAWLUw0C6GG9Gsss+aBlUjnqRr51zzlvY5SbkwCQIAmRFWX3vOuf0V9VeTdKzBuqeVFfVJrAwAcxBTA9gVJLABAAAADK0ygR0mez0NKrBXlsAGAABAdrCECAAAAIB1OVhl5R8AAACy592kB4BpZnYj6dclfT/hoQAAAGBx70n6kXPu/aQHkgbh0iGna+iXWBkAAGD7vKc7xsoksNPp17/whS/sPXr0aOYmMgAAAEiXV69e6Sc/+UnSw0iFcGPDy/usCx0uZRLnf/2FL3zhV4iVAQAAtsd9YmUS2On0/UePHu1dX8+K2QEAAJA2hUJB3W73+0mPIyUqa1zv+u8ePXr0a8TKAAAA2+M+sTIJbAAAAAArY2bHkqr37cc5V5jR/7Wk/H37BwAAwHZgE0cAAAAAKxEuHRLcZ+kQAAAAYBQJbAAAAACrUnHONZMeBAAAAHYHS4gAAAAAuDczK0l6bGatGU2emdmeJDnnypsbGQAAALYZCWwAAAAA9+acu5B0MXnczDxJJUkv1rixIwAAAHYUCWwAAIAJv/zlL/XXf/3X+vGPf6yf/exncs4lPSQk6J133tGv/uqv6ktf+pI+97nPJT2c1DCznHPOT3ocAABg837605/qr/7qr/R3f/d3+uUvf5n0cJCgTcTKrIENAAAw4m//9m/V6/X0+vVr/fSnPyV5Df3yl7/UT37yE/3gBz/QT3/606SHswmepL3bGpjZtaReuGnjPFFfuXuOCwAApMBPf/pT/eAHP9BPfvITktfYSKxMBTYAAMCIv/7rv9bPf/5zff7zn9c/+Af/QL/6q7+qd955R2aW9NCQAOecfvGLX+gv//Iv9Td/8zf6q7/6K7333ntJD2vlzOxY0hMNksy58FhPUleS75yrTjyko0GiO7ilz7ykE0lRkrtoZu2wP5YSAQBgS/3VX/2Vfv7zn+vXfu3X9Fu/9Vv6lV/5FWLljNpUrEwCGwAAYMR//I//UZL05S9/WX/v7/29hEeDpJmZ3n33Xf3Wb/2W/uIv/kJ/93d/l/SQ1sI5V1+yfVXSZFJ7sk1XEps1AgCwY6J46Ld+67f07rukFrNsU7EyS4gAAACMiJYMIXmNUb/yK78iSUyTBQAAmRfFQ1F8BKw7ViaBDQAAAMzBtFgAAIBxxEeIrPt3gQQ2AAAAAAAAACCVSGADAAAAAAAAAFKJldYBAACW8N5H/89Er//9b/5niV4fAAAAmIVYGetAAhsAAGDH+b6vRqOhZrMpSTo6OtLh4aHy+bwkKQgCFQoF9ft9PXv2TLVaTZ7n3fl69Xpdr1+/lu/7kqRaraZcLjd1/uHDh+r1erder1KpqFKpDMcaaTabCoJAnuep1+uN/TwAAADAooiV048ENgAAwI7L5XKq1Wrqdrvq9/uq1Wpj5z3PUz6fnwqe76Jarerk5GQYZFerVRUKBd3c3MjzPNXrdfV6PTUaDUmDNwyFQkG9Xm+qr06no2azqXK5PHa8Xq+rVCqNjbVQKOj6+vpeYwcAAED2ECunH2tgAwAAZFgQBKpUKjo7O7t3QC5JFxcXw2oSSTo5OVEQBHrx4oUk6fT0VJVKZXg+uubFxcVUX+12O7ba5Pz8XHt7e2PHcrmcut3uvccPAAAARIiV04EENgAAQEb5vq/T01M1Go17TYMc1e/3x4LyqN9eryff94dTGUd5nqd2uz12rF6v6+TkJPYauVxOhUJhGIQHQSDf97d6WiQAAADShVg5PVhCBAAAIIO63a6ePn2qm5ublfb75s2bse+jAP3JkyfDrycrQvb29sYC+W63q1wuN/ONwtnZmQqFggqFgkqlkiTp5cuXq/oRAAAAkHHEyulCAhsAACBjOp3OsCLj+fPnarVase3K5bKCIFioz8mqkEi1WlWxWFSpVIqd+igNqkpGg/Lz8/OptQcn21erVTUaDV1cXMjzPHU6nWGADgAAANwVsXL6kMAGAADIkGhq4vHxsYrFogqFgprNpo6OjqbazgrWFxWt8RdtGHPb1Muo0uS26ZCRSqUy3IjG932Vy2WVy2W1220Vi8V7jRkAAADZRaycTqyBDQAAkCG5XG5YfZHP53V8fKxKpTJW1bEKnU5H5+fnY7udR4F3v98faxsEwXBjmdumQ0qDNxVXV1fDNxG5XE7X19cqlUr3fhMBAACAbCNWTicqsAEAADKsVqup0+no4OBAvV5v7Nxdp0V2u121Wq2xILler+v4+Fie50316fu+KpWK+v2+Li8vdXl5OTwXBIEajYba7bZqtdowgJ9UqVS2OigHAABA+hArpwMJbAAAgIxrtVra399XpVJRo9EYO74s3/dVrVZVrVbV6XQkvd1oRpJOTk7UaDSG14mqWaJKl8lpjfV6XZVKZXg8n8/L9335vj8WnLfbbVUqlaXHCwAAANyGWDl5JLABAACW8P1v/mdJD2Fpvu+r0Wjo6upK0mCzmMPDQ+XzeUkablLTbDbV7/d1cnIyPLeMIAhUKBQUBMEwII9E0yOPj4+HQfvDhw/V6/ViN7W5uLgYHq/Vaup2uzo+PpY02EW9Wq3K8zw9fPhQr1+/Hvt5AAAAkAxi5dmIle/OnHNJjwETzOw6n8/nR9fBAQAAm/Hq1StJ0qNHjxIeCdJm3u9GoVBQt9vtOucKmxxX1hArAwCQLOJlxFlnrMwmjgAAAAAAAACAVGIJESDjXn6yP3Xs6Qe9mJYAAABAtvzwo+/EHv/yN393wyMBACC7SGADGfeP/vxfTB/8YOPDAAAAAAAAAKawhAgAAAAAAAAAIJVIYAMAAAAAAAAAUokENgAAAAAAAAAglUhgAwAAAAAAAABSiQQ2AAAAAAAAACCVSGADAAAAAAAAAFLp3aQHAAAAsFX+5IsJX/+zZK8PAAAAzEKsjDUggQ0AALDjfN9Xo9FQs9mUJB0dHenw8FD5fF6SFASBCoWC+v2+nj17plqtJs/zVnLtSqWiSqUyvJYk1et1vX79Wg8fPlSv15u6Xr1elyR5nqfr6+uZ4xltFwSBjo+PVzJmAAAAZAexcvqRwAYAANhxuVxOtVpN3W5X/X5ftVpt7Lznecrn86rVasrlciu7bqfTUbPZVLlcHh6r1+vq9XpqNBqSBm8YCoWCer2epEEQL2l4vtvt6unTp7q+vh7ru1Ao6OzsTPl8XkEQ6P3331exWBwL/gEAAIB5iJXTjzWwAQAAMiwIAlUqFZ2dna00IJekdrs9VQ1yeno6DLwlDa95cXGhIAjUbDbHzufzefm+r06nMzxWr9eVy+WGAbjnearValsbkAMAACCdiJXTgQQ2AABARvm+r9PTUzUajZVNg4zU63WdnJxMXS8IgqlreZ6ndrutq6ur2L5yuZxardbw+2q1qsPDw7E2R0dHqxk4AAAAIGLlNGEJEQAAgAyKphve3Nyspe9cLjcVfPu+L0na29sbO763tyff9/X48ePY/nzfH1afBEEwPN5sNhUEgXq93tTagQAAAMBdESunCwlsAACAjOl0Oup2u5Kk58+fj1VsjCqXy2NB8G3a7fbw6/Pz86m1AyXN7MvzPPm+L8/zVCqVdH5+Pgywo+mQ0WOjypN2uz21NuDNzc3Kq2MAAACQLcTK6UMCGwAAIEOiqYnHx8cqFosqFApqNpux0wpnBeu3iZsOGbktYI4qTVqtlqrVqqrVqvb397W3tze2hl/k4OBg+HUul9Pe3p5OT09j3wwAAAAAiyBWTicS2AAAABmSy+VUKpUkDTZ9OT4+VqVSUbFYvPfGNLOmQ0aiwLvf74+1CYJg7NqTgfXz58+1v78/HL80HeBHlSkAAADAXRErpxMJbAAAgAyr1WrqdDo6ODhQr9cbO7fstMh+v6/Ly0tdXl4OjwdBoEajoXa7rVqtJs/zpvr0fX+4m3qn01EulxsG39H0zajqJTo32cdkYA8AAADcF7FyOpDABgAAyLhWq6X9/X1VKpXhWnnR8WUUi0UVi8WxY/V6fVi1IkknJydqNBpja/JJGla6VKtVVSqVYRBerVZ1dnY21metVlOj0Rg+xvd99fv9YWAPAAAArAqxcvJIYAMAACzjTz5LegRL831fjUZjuKlLtVrV4eHhcK28qHKj2Wyq3+/r5OTk3ruUX1xcDDerqdVq6na7Oj4+1vHx8XDdvocPH6rX641talOr1dRut1Wv1/X69WtVq9WpQL9UKg2D8P39ffV6PV1fX291VQkAAMBOIFZeCLHycsw5l/QYMMHMrvP5fP76+jrpoSADfvjRd6aOffmbv5vASAAgHV69eiVJevToUcIjQdrM+90oFArqdrtd51xhk+PKGmJlbFJcrCwRLwPINuJlxFlnrPzO/YYGAAAAAAAAAMB6kMAGAAAAAAAAAKQSa2ADGXd+U5s69s/ElEgAAAAAAAAkjwpsAAAAAAAAAEAqkcAGAAAAAAAAAKQSS4gAAAAAABAjbrk9iSX3AADYJBLYAAAAAADE+PyDP4w9/sOPvjN17MvfJKkNAMA6sIQIAAAAAAAAACCVSGADAAAAAAAAAFKJJUQAAACW8NV/+dVEr//p732a6PUBAACAWYiVsQ4ksAEAAHac7/tqNBpqNpuSpKOjIx0eHiqfz0uSgiBQoVBQv9/Xs2fPVKvV5Hnena/XbDYVBIE8z1Ov1xu7VjSeTqejarWqN2/eTD2+Xq9LkjzP0/X1dex46vW6Xr9+Ld/3JUm1Wk25XO7OYwaAZfyb4GdTxz5MYBwAgPsjVk4/EtgAAAA7LpfLqVarqdvtqt/vq1arjZ33PE/5fH4lgW29XlepVBrrp1Ao6Pr6WpLU6XTU7XbleZ6CIJh6fKVSkSQ1Gg1JUrfb1dOnT4ePl6RqtaqTk5NhoF6tVlUoFHRzc3OvNxMAAADIHmLl9GMNbAAAgAwLgkCVSkVnZ2crqco4Pz/X3t7e2LFcLqdutytJKhaLOj4+jr1WEARqNpvDwFyS8vn8sAolcnFxMawmkaSTkxMFQaAXL17ce/wAAABAhFg5HUhgAwAAZJTv+zo9PVWj0VhZNUYul1OhUBgG4UEQyPf9sWmRs1xdXc3ss9VqDb/v9/tjQXk09l6vd4+RAwAAAG8RK6cHS4gAAABkUDTd8ObmZqX9np2dqVAoqFAoqFQqSZJevny50GMfP34ce9z3/bEqlMm1AKMA/cmTJ3cZMgAAADCGWDldSGADAABkTLS2niQ9f/58rGJjVLlcjl17L0673ZY0qPCoVqtqNBq6uLiQ53nqdDrDAP02nuepVCrp/Px8WIUSTYe8bRzValXFYnGhawAAAAC3IVZOHxLYAAAAGeL7voIg0PHxsYrFogqFgprNpo6OjqbazgrWb1OpVIYb0fi+r3K5rHK5rHa7rWKxOPfxrVZL1WpV1WpV+/v72tvbUy6XmzmtMlrjb3TjGgAAAOAuiJXTiQQ2AABAhuRyuWH1RT6f1/HxsSqViorF4r03pvF9X1dXV8Nd0XO5nK6vr1Uul9VqtRYKyiVN7fz+/Plz7e/vT7XrdDo6Pz/f+oAcAAAA6UCsnE4ksAEAADKsVqup0+no4OBgamOXZadFBkEQG9hXKpWFK1Q6nY5yudywn2j65mTVS7fbVavVGuu3Xq/r+Ph4oesAAAAA8xArp0PmEthmVpJ0ICknaU/SlaSqcy5Ysp+aJE9SS9KVcy4ws6KkiqS2c665ynEDAACsS6vV0v7+viqVyrAiJDq+jHw+L9/3pzaSabfbqlQqC/VRrVZVqVSGQXi1WtXZ2dlYG9/3h1Mno3X/ut3uvatiAAAAgEnEysnLVAI7TDpfOucq4feepJeSbsys4Jzzl+jOk3QUfsjMouN1ktcAAOyuT3/v06SHsDTf99VoNHR1dSVpEOgeHh4O18qLKjeazab6/b5OTk5mrqM3z8uXL1WtVuV5nh4+fKjXr19PXev8/Hx4zUqlIs/zhlMha7Wa2u226vW6Xr9+Pdx0JhIEgQqFgoIgGAbkkV2YHgkAALDNiJVvR6x8N+acS3oMG2FmeUmHzrnqxHFP0htJvnNuesGY2f1Ff3KJ/nzRldRYMgk+q+/rfD6f3+ZfLGyPb33jk6ljH378QQIjAYB0ePXqlSTp0aNHCY8EaTPvd6NQKKjb7Xadc4VNjitriJWxSXGxsiR98O0Pp449+t6rdQ8HAFKBeBlx1hkrZ6kCuyKpMXkwXPqjI6loZnnnXHfRDqNKbgAAAAAAAADA6r2T9AA26LGk67ASe1J3pA0AAAAAAAAAIAWyVIHd0WC5j2CVnYZLkESLzXSW2QzSzGbNe/zKPYcFAAAAAAAAAFsvMxXYzrmqc+7BjDWqo6rsq2X6DDeFPNKggrsjqWVmx/cbKQAAAAAAAABAylYFdiwzy2lQQX2xzPrXGlRyt51zwy09zaws6cbMAudcc14HsxYtDyuz77adKQAAAAAAAADsiMxUYN+iJcmX9HyZB4UV3Z2JY4EGldi1lY0OAAAAAAAAADIq0wnscAkQT1JhmbWr57iU5JlZcW5LAAAAAAAAAMBMmU1gm1lJg6VDVpm8HpVbQ58AAAAAAAAAkBmZTGCH1dEV59ydktdm1jAzZ2beygcHAAAAJMjMSuGeLPfto2FmbTO7Dr/2VjREAAAAZEjmNnE0s7wGyeuDieOepGeLbL6oQXV1MOPcw/Dz1V3HCAAAAGySmTUk7UnqazBL8T591SRdOucq4feepJcabHZecM759xwuAAAAMiRTCWwzy2mQvC7HnC5qsJnj1GNigux22E8Q009JUtc5173veAEAQPq8+sqjRK//6HuvEr0+dlOUbJaksPrau0s/YbGInHMXI30HZvZU0hsN4uj9ew0WAACkFrEy1iEzCeyw8qMtyTez1sgpL/z8WFJh4jHXkvJhpcgwIe2cq5tZy8yqo8ntsNpkT9JYdTcAAECSfN9Xo9FQszmYaHZ0dKTDw0Pl83lJUhAEKhQK6vf7evbsmWq1mjzPu9f1Op2OqtWq3rx5E9umXq9LkjzPUxAEOj4+HjsXHb+8vNTJyclwrJFms6kgCOR5nnq93tjPM6lSqahSqcw8j5WqSGpMHgyT2B1JRTPLU+wBAADSglg5/bFyZhLYGkxbzOmWzRVjKq07GiS4g5i2ZTOrhYnxvbBd1zn3YDXDBQAAWI1cLqdaraZut6t+v69arTZ23vM85fN51Wo15XL324e60+mo2+0Og+o4hUJBZ2dnyufzCoJA77//vorFovL5vCqVig4ODlQqlSQNgu9CoaA3b94M3yjU63WVSqWxsRYKBV1fTy/b3Ol01Gw2VS7HTcDDGjyWdDRZABLqajDr8XH4NQAAQOKIldMfK2dmE8dww0a77SPmMVXn3P6sdfrC8xXnXNk5d+Ccq67/JwEAAFidIAhUqVR0dnZ274BckorFoo6Pj2f2Va/XlcvlhhUenuepVqsNv+/3+2q328P2e3t7w+OR8/Pz4fFILpdTtzudE2232/eqkMHSOhoUfwTJDgMAAOD+iJXTIUsV2AAAABgRTZdsNKZWfFibarWqVqs1duzo6Gj49eS5drutXC43FuTncjkVCgW1Wq1hZYrv+1PTHuv1uk5OTobTQbF+YUHHrKKO6B9ooc3Ow+X84nxl2XEBm/Ctb3wSe/zDjz/Y8EgAAKtArJweJLABAAAyqNvt6unTp7q5udnYNUenSUbr8vV6vdg19zqdzrC6pNfrjZ07OztToVBQoVAYTp98+fLlWJtut6tcLrcVFSVZEG6mXpR0wfrXAAAg7YiV04UENgAAQMZEa+9J0vPnz6cqOSLlcnnm2nyTRqcyznJ1dTVsG1Wy+L6vQqGgm5ubsQA6l8vp8PBQ1WpV9Xp9bOMaz/NUrVbVaDR0cXEhz/PU6XSGAbo0mDo5uX4hEtWS5Et6vugDnHOFuOPRRusrGhewMh98+8MZZ15tdBwAgPshVk4fEtgAAAAZ4vv+cCfzYrGoQqGgZrM5NjUxMitYv6+Dg4Ph17lcTnt7ezo9PR0LoqNpkI1GQ/v7+/I8bzjGSqUy3IjG932Vy2WVy2W1220Vi8XhdEikg5nVNNjwvOCcC5IdDQAAwGzEyumUmU0cAQAAMAh2o+qLfD6v4+NjVSoV+X7sntUrv7akqamKnucN3yyUy+WxsUSPiapWfN/X1dXVMEDP5XK6vr5WqVRSq9XauumQu87MShosHULyGgAApB6xcjpRgQ0AAJBhtVpNnU5HBwcHU+vnrXpaZLTBzGSfQRAol8vJ931dXFyoUqlM7cwefR+1nVSpVNRqtdTv93V5eanLy8ux/huNhtrt9lZNldx2ZlaUVJm1FAgAAEDaESunAwlsAACAjGu1Wtrf31elUhnbZX0d0yJrtZoajcawssX3ffX7/WEgXiqV9Pjx42H7ZrMpz/OG0xzz+bx835fv+2PBebvdHm5wUywWx65Zr9dVqVSmjmN9zCyvQfL6YOK4J+mZcy79290DAACIWDkNSGADAAAs4dH3tm8zLt/31Wg0hhvDVKtVHR4eDnczjzapaTab6vf7Ojk5mdrpfFHdblfn5+fDPiuVijzPG1ZzlEqlYRC+v7+vXq+n6+vrYYB9dnam09NTSdLDhw91eXmp6+vrsWmOL1++VLValed5evjwoV6/fj3280QuLi6G1S61Wk3dbndsgxvcj5nlnHNT82nNLKdB8roc87CiBps5AgCAHUSsfDti5bsx51zSY8AEM7vO5/P56+vrpIeCDPjWNz6ZOvbhxx8kMBIASIdXrwZB96NHjxIeCdJm3u9GoVBQt9vtbvuSGWbWk7TnnHtwS5trSXkN1rbujhz3JF1rkKQORh7ihZ8fh4+5cxKbWBmbFBcrS9IH3/5w4T62MZkDALchXkacdcbKVGADAAAAGWdmx5KeSMqFH1EiuyvJd85VJx7S0SApHUwcfznaR5z7JK8BAACQPSSwAQAAgIxzztWXbF+VNJnU1rZXnwMAACB93kl6AAAAAAAAAAAAxCGBDQAAAAAAAABIJRLYAAAAAAAAAIBUIoENAAAAAAAAAEglEtgAAAAAAAAAgFR6N+kBAAAAAACwq1595VHs8Uffe7XhkQAAsJ2owAYAAAAAAAAApBIV2AAAAEv41jc+SfT6H378QaLXBwAAAGYhVsY6kMAGAADYcb7vq9FoqNlsSpKOjo50eHiofD4vSQqCQIVCQf1+X8+ePVOtVpPneXe+Xr1el+d5CoJAl5eXOjk5GV4rOv/69Wv5vi9JqtVqyuVykqRKpSLP8/TkyZOpMRSLxanrSBpe6/j4eHiu2WwqCAJ5nqderzf28wIAAAARYuX0x8oksAEAAHZcLpdTrVZTt9tVv99XrVYbO+95nvL5/FhwfFeVSkUHBwcqlUqSBsFxoVDQmzdv5HmeqtWqTk5OhgF3tVpVoVDQzc2NPM/T1dWVut1u7M/Q6/WG3xcKBZ2dnSmfzysIAr3//vsqFovK5/Oq1+sqlUpjP0uhUND19fW9fjYAAADsHmLl9MfKrIENAACQYUEQqFKp6Ozs7N4BuST1+3212+3h93t7e8PjknRxcTGsJpGkk5MTBUGgFy9eSJIeP34s59zYR61WG+uzXq8rl8sNq0Q8z1OtVht+f35+PrxuJJfLxQb7AAAAwCzEyulABTYAAEBGRdMlG43GyvpstVpj37fbbeVyuWHA3+/35fv+WEAtaVgxUqlUxh7f6XSUz+fH3jBUq9Wp6xwdHQ2/zuVyKhQKarVaw6qT0WsCAAAA8xArpwcJbAAAgAzqdrt6+vSpbm5u1tJ/p9MZVoKMTmd88+bNWLuowuTJkyeSNBY4B0Ggdrs9No0zCILh19Hafb1eT5VKZfjYs7MzFQoFFQqF4fTMly9frvCnAwAAwC4jVk4XEtgAAAAZ0+l0hlMEnz9/PlWhESmXy2NB8G1Gpy1Kg8qOw8NDVatV1ev1sU1jRlWrVRWLxWHwPOr58+c6OzsbO3Z1dTW8XlQN4/v+2NqA0fqBjUZDFxcX8jxPnU4n9hoAAADAKGLl9CGBDQAAkCG+7w93IS8WiyoUCmo2m2PTCiOzgvVFRNMYG42G9vf35Xne1DWiNf7iNozxfV++78/c4f3g4GDsWnt7ezo9PVWtVlOlUhluROP7vsrlssrlstrt9tTu7AAAAECEWDmdsTKbOAIAAGRILpcbVlfk83kdHx+rUqmMbRZzV0EQqFwuj/UVBeeTVSedTkfn5+czdztvNBqxG+VExyaDdc/zhoH81dXV8A1ALpfT9fW1SqXSvd5kANhtP/zoO7EfAIBsIVZOJyqwAQAAMqxWq6nT6ejg4GBs/T1p+WmRvu/r4uJClUplKqAe/b7b7arVao0FyZNTJzudjh4/fjx1nWiTm8lxBUEwPB4XzFcqlVQH5QDS6YNvf5j0EAAACSJWTgcS2AAAABnXarW0v7+vSqUytsv6skFsPp9XqVQaC6abzaY8z9PJyYmkwXTHarWqarWqTqcjaRCkTwbS3W535hTGWq2mRqMxrI7xfV/9fn/4ZiCqLhnts91uT+3aDgAAAMxDrJw8EtgAAABL+PDjD5IewtJ831ej0Rhu6lKtVnV4eDjciTzapKbZbKrf7+vk5GRsh/NlnJ2d6fT0VJL08OFDXV5e6vr6Wp7nKQgCFQoFBUEwDMgjk9Mj8/n8cLf1SaVSaRiE7+/vq9fr6fr6ehiEv3z5UtVqVZ7n6eHDh3r9+vXYzwsAAID1IFa+HbHy3ZhzLukxYIKZXefz+fysdW6AVfrWNz6ZOraNLzgAsCqvXr2SJD169CjhkSBt5v1uFAoFdbvdrnOusMlxZQ2xMtZh1nrXP/7X05t2rcqj771aW98AsE7Ey4izzliZCmwAAAAAANbk2Un82+5PNzwOAAC21TtJDwAAAAAAAAAAgDgksAEAAAAAAAAAqUQCGwAAAAAAAACQSiSwAQAAAAAAAACpRAIbAAAAAAAAAJBKJLABAAAAAAAAAKlEAhsAAAAAAAAAkEoksAEAAAAAAAAAqfRu0gMAAADYJv/nw/99otf/Z+f/faLXBwAAAGYhVsY6kMAGAADYcb7vq9FoqNlsSpKOjo50eHiofD4vSQqCQIVCQf1+X8+ePVOtVpPnefe6Zr1elyR5nqcgCHR8fCxJ6nQ6qlarOjw8lOd56vV6CoJAjUZjofOj/Ud9X15e6uTkZPjzzBsDAAAAECFWTn+sTAIbAABgx+VyOdVqNXW7XfX7fdVqtbHznucpn8+rVqspl8vd+3qFQkFnZ2fK5/MKgkDvv/++isXiMGj2fV/ValW5XE6lUmkq4J53vlKp6ODgQKVSSZLUbDZVKBT05s2b4ZuJeWMAAAAAJGLlbYiVSWADAABkWBAEqlarOjs7u3cliTSo5MjlcsPg1/M81Wq1sWD45cuXtwbH8873+3212+1hUL63tzc87nneQmMAgFV7dsLbawDYNcTK6cArLAAAQEZF0yUnqzbuo1qtqtVqjR07OjpaWf+Spvpvt9vK5XLDiphNjAEAAAC7jVg5PUhgAwAAZFC329XTp091c3Ozsj6DIBh+3Ww2FQSBer2eKpXKWEXH+fm5Op2OJOny8nJqOua885FOp6N2uy1J6vV6S40BAJL2rW98Env8w48/2PBIAACTiJXThQQ2AABAxnQ6HXW7XUnS8+fPpyowIuVyeSzIvU273dbV1dXw66hSxfd9FQoF3dzcyPM87e3t6eDgQMVicTiWaE0+SXPPj8rlcjo8PFS1WlW9Xtfx8fFCYwCANPjg2x/OOPNqo+MAAIwjVk4fEtgAAAAZ4vv+cJfxYrGoQqGgZrMZO21wVrA+z8HBwfDrXC6nvb09nZ6exq6tVywWFQTBcAzzzo+KKk0ajYb29/fled7w2G1jAAAAAOIQK6czVn4n6QEAAABgc6LdyiUpn8/r+PhYlUpFvu+vpG9JU5UbnucN+6/X61OVKp7nDac1zjsfBIHK5fLYeKPrRuv7zRsDAAAAEIdYOZ2owAYAAMiwWq2mTqejg4ODYeAbWXZaZLQ5zORjgiAYHq9Wq8rn88Npj9H5/f39ueelQVXMxcWFKpXK1Fp/0fVvGwMAAACwKGLldCCBDQAAkHGtVkv7+/uqVCpju6zfZVpkrVZTo9EYVq74vq9+v69KpSLP83R0dDQWcF9cXCiXyw2nPM47n8/nVSqV9Pjx42GbZrMpz/N0cnIydwwAAADAMoiVk0cCGwAAYAn/7Py/T3oIS/N9X41GY7hpS7Va1eHh4XANvWiTmmazqX6/r5OTkzvvQl4qlYYB8P7+vnq9nq6vr4cVHbVaTdVqddg+CAJdX18Pv593XpLOzs50enoqSXr48KEuLy91fX09nAo5bwwAAABYD2Ll2xEr340555IeAyaY2XU+n89P/gIC6/Ctb3wydezDjz9IYCQAkA6vXr2SJD169CjhkSBt5v1uFAoFdbvdrnOusMlxZQ2xMtbhhx99J/b4j//19KZdszw7WU192Ke/9+lK+gGAdSFeRpx1xsps4ggAAAAAAAAASCUS2AAAAAAAAACAVCKBDQAAAAAAAABIJRLYAAAAAAAAAIBUIoENAAAAAAAAAEglEtgAAAAAAAAAgFQigQ0AAAAAAAAASCUS2AAAAAAAAACAVCKBDQAAAAAAAABIpXeTHgAAAMA2+eFH30n0+l/+5u8men0AAABgFmJlrAMJbAAAgB3n+74ajYaazaYk6ejoSIeHh8rn85KkIAhUKBTU7/f17Nkz1Wo1eZ53r+t1Oh1Vq1W9efNm6ny9XpfneQqCQJeXlzo5ORmOZZHHR328fv1aDx8+VK/XGxtzpVKR53l68uTJ1M9RLBan+vB9X5JUq9WUy+Xu/HMDAABg+xArv5XWWJkENgAAwI7L5XKq1Wrqdrvq9/uq1Wpj5z3PUz6fX0lQ2ul01O12h0H3pEqlooODA5VKJUlSs9lUoVDQmzdv5Hne3MdLg2C61+up0WhIGgTxhUJBvV5PknR1daVutzv1uFwuN2xTrVZ1cnIyDNqr1aoKhYJubm7u9YYEAAAA24VYeSDNsTJrYAMAAGRYEASqVCo6OztbSUVFsVjU8fHxzL76/b7a7fbw+729veHxRR4vSaenp6pUKsPvo7YXFxeSpMePH8s5N/ZRq9XGrntxcTGsJpGkk5MTBUGgFy9eLPsjAwAAYEcRKw8kHStTgQ0AAJBR0XTJqDpjE1qt1tj37XZbuVxu4TcEvu8rCIKpyg/P89Rut1UqlcYCdmlQ6ZLP58eu0e/35fv+cDpm1F9UdQIAAIBsI1ZOT6xMAhsAACCDut2unj59qpubm0Su3+l0hlUeywTCUSVIVI0S2dvbG54bXSMwCAK12+2pqaCT6wVGj33y5MnCYwEAAMBuIlZOV6xMAhsAACBjorXzJOn58+dTlR6Rcrk8c229SaNTDheRy+V0eHioarWqer2u4+PjhR43azye541Nc4w8f/5cZ2dnc/utVqsqFovD9QYBAACQTcTK05KOlUlgAwAAZEg0rfD4+FjFYlGFQkHNZlNHR0dTbWcF66sQTVFsNBra39+X53mxY5h026Yxk5Umvu/L9/25G81Ea/xdX1/PvT4AAAB2F7HytDTEymziCAAAkCG5XG5YOZHP53V8fKxKpRJbkbFqQRCoXC6PXSsKzhetSpncyGa078m1ARuNxtz1Ajudjs7Pz0leAwAAgFh5QlpiZSqwAQAAMqxWq6nT6ejg4GBqfb1VT4v0fV8XFxeqVCpTwfKiG9Pk83l5njc1Lt/3Yzekefz48cy+ut2uWq3WWPXMMlM0AQAAsNuIldMRK5PABgAAyLhWq6X9/X1VKpWxXdZXPS0yn8+rVCqNBcrNZlOe5+nk5GThfk5OTsZ2hI+qVCbX5Ot2uyoWi7F9+L6varWqarWqTqczbL/omwMAAABkA7Fy8rEyCWwAAIAd5/u+Go2Grq6uJA02YTk8PBzuQB5tUtNsNtXv93VycjK2O/kyut2uzs/Ph31WKhV5njfc2fzs7Eynp6eSpIcPH+ry8lLX19fDtffmPV6Sjo+PhwH1w4cP1ev1Yqta8vl87E7pQRCoUCgoCIJhQB5JenokAAAANotYeVwaY2VzziVyYcxmZtf5fD7PGyhswre+8cnUsQ8//iCBkQBAOrx69UqS9OjRo4RHgrSZ97tRKBTU7Xa7zrnCJseVNcTKWIcffvSd2OM//tfzN8yKPDtZTX3Yp7/36Ur6AYB1IV5GnHXGymziCAAAAAAAAABIJRLYAAAAAAAAAIBUYg1sAAAAAACWsKrlQgAAwHxUYAMAAAAAAAAAUokENgAAAAAAAAAglUhgAwAAAAAAAABSiYW7AAAAAAyZWUnSiXOucI8+ipLKknqSHkryJFWdc8EqxggAAIDsIIENAAAAZJyZNSTtSepLKt6zr6kEuJnlJV2bWYEkNgAAAJZBAhsAAADIOOdcJfrazK41qJhempl5klqSDib675pZV9KZBpXZAAAAwEJYAxsAAADAqjwLP1/FnDuXVNrgWAAAALADqMAGAABYwp/8yZ9k+vrAHGVJwYxlQnxpsMSIc+5io6MCAAAbkXSsmvT1sR5UYAMAAOw43/dVrVb14MEDPXjwQNVqVd1ud3g+CALt7+/rwYMHqlQqCoLgXter1+uqVqsql8sql8vyfT+2Tb1eV7PZVL1eX/rxvu+r2WzqwYMHc8dTqVTGft67tsFCHmuwjnacIPz8ZJGOzOw67kPSV1YwTgAAAEnEytsQK1OBDQAAsONyuZxqtZq63a76/b5qtdrYec/zlM/nVavVlMvl7nWtarWqk5MTeZ43/L5QKOjm5mZ4rFAo6OzsTPl8XkEQ6P3331exWFQ+n1/o8Z1OR91uV57nzX0D0el01Gw2VS7PXnZ5kTZYmKfZCezRNgAAAKlArJz+WJkKbAAAgAwLgkCVSkVnZ2f3Dsgl6eLiYqwK5OTkREEQ6MWLF5IGFSO5XE75fF7S4A1BrVYbfj/v8ZJULBZ1fHy80Hjb7fYwmL9PGywlmHE8SmzvLdKJc64Q9yHpe6sYJAAAwDzEyumIlTOXwDazkpk1zKwdTkNshLul36WvYvj4YzOr3acvAACATfN9X6enp2o0GisLSvv9/lhQHfXb6/UkDapEDg8Pxx5zdHS08OOXUa/XdXJycu82WDkv6QEAAADMQ6ycnlg5U0uImFlN0qVzrhJ+70l6KenGzArOuelFY2b3VZJ0ElaBRMfykq7DvoKVDh4AAGCFut2unj59qpubm5X2++bNm7HvowD7yZMnY1MYm82mgiBQr9dTpVIZVpXc9vhldLtd5XK5W99sLNIGd+LNOB5VXgebGQYAAMDdECunK1bOTAI7TC5rdMdz51xgZk8lvZHUlrS/YF+epJakg9HjzrmumXUlnWmwAzsAAEDqROviSdLz58/VarVi25XL5YU3qWm327HHq9WqisWiSqWSOp3OsG2j0ZA0CLon1+2b9fhlnJ+fT61feJc2WFqwQJt5a2QDAAAkhlh58TabkpkEtqSKpMbkwTCJ3ZFUNLO8c26RLTWfhZ+vYs6da5DcBgAASB3f9xUEgY6Pj1UsFlUoFNRsNsemJkZmBeuLitbou76+Hjt+cPC2BiCXy2lvb0+np6dTAfKsx8+zTdMhd9CVpOKMc9FCjMv9gwIAAGwIsfLibTYpSwnsx5KOwuU9JpPUXQ0C7cfh1/OUJQUzlgnxpcESI6PV3gAAAGmQy+WGFRr5fF7Hx8eqVCoqFosr2Zgm0ul0dH5+PhZQR/1PVo94nje2lt+sxy9i26ZD7qCW5iewOxsaC7CVvvWNT6aOffjxBwmMBACyh1g5nbFylhLYHQ2C5mAFfT3W7KmPUf9PJN2awDazWb9lX7nbsAAAAJZTq9XU6XR0cHAwtfnLXadFdrtdtVqtsaqUer0+3A19ss8gCMbeENz2+Hn6/b4uLy91eXk51n+j0VC73VatVluoDeYzs1zMHjIvJDVmFHOUJXWW2XcGyKIPvv1hzNFXGx8HAIBYeVabTctMAts5V5VUnXE6H36OWxIkjqf5a/d5C/YFAACQqFarpf39fVUqleF6e9HxZfm+r2q1qmq1OlzHL6rikAZvAhqNxrCyxfd99ft9VSqVhR4/T7FYVLE4XgBcr9eHlTOLtsk4T283XIwVFmLkJ2c3hsvzVSTVNFLMEe5Hk5NUmOoMAAAgxYiVk4+VM5PAnsXMchpMc7xYcP3rSDDjeJTYvjXolyTnXGwAH70hWGIsAABgQ/7kT/4k6SEszfd9NRoNXV0N/lZfrVZ1eHg43M082qSm2Wyq3+/r5ORkeG4ZQRCoUCgoCIJhQB2JpjeWSqVhEL6/v69er6fr6+thtcm8x0fjPT8/H467UqnI87zYdQGjapdaraZutztVmbJImywws2MNZhDmwg+ZWU+D5fX8sBhkVEeDRHcw2Zdzrmlmvpm1JF1Kehi2LcxYgg8AAOwIYuXZiJXvzpxzG79omoTJYk9LBNRm5iR14xLQZuZJeqPB9MiDyfOLjimfz+eXXccGuAvW2AOAca9eDaZpP3r0KOGRIG3m/W4UCgV1u93YGBGrQ6yMdfjhR9+JPf7jfz29aZckPTtZXy3Yi9OfTx179D2WEAGQHsTLiLPOWDnTFdhmVtPdq0G8Gcejyutl+wMAAAAAZFxccvzTBMYBAEBavJP0AJJiZiUNlg65S/J6kfbz1sgGAAAAAAAAANwikxXYZlaUVLnH9M4rDZLfcaJV05nTCAAAAABb4PymFnv8f7fhcQAAgGmZS2CHO6BXJtenDteufuacay7QTUvzE9idGeeB1Ju1BuCXv/m7Gx4JAAAAAAAAsixTS4iYWU6D5HU55nRRkj/jMZNehOdKMefKGmzgONUXAAAAAAAAAGBxmanADius25J8M2uNnPLCz48lFSYecy0pb2YF51w3Ou6cC8ysIqkm6WKkfV6DCmx2ngcAAAAAAACAe8pMAlvSSw2Sy3EV1ZKkmKrpjgYJ7iCmbdPMomT4paSHYdu7bAoJAAAAAAAAAJiQmQT2XTZsdM5VJVVvOd8Ra11jy33w7Q+nD/7niywFDwAAAAAAAKxXptbABgAAAAAAAABsj8xUYAMAAKzCy0/2E73+0w96iV4fAAAAmIVYGetAAhsAAGDH+b6vRqOhZnOwRNTR0ZEODw+Vz+clSUEQqFAoqN/v69mzZ6rVavI8707X6nQ6qlarOjw8lOd56vV6CoJAjUZj2KZer+v169fy/cH2I7VaTblc/DYllUpFlUplONZF+2g2mwqCYDiG0Z93mTYAAADYbcTK6Y+VSWADAADsuFwup1qtpm63q36/r1qtNnbe8zzl8/lbg+Nl+L6varWqXC6nUqk0FpBXq1WdnJwMg/5qtapCoaCbm5upNwKdTkfNZlPlcnns+Lw+6vW6SqXS2M9SKBR0fX09/H6RNgAAANh9xMrpj5VZAxsAACDDgiBQpVLR2dnZSgJySXr58qWcc+r1elNvAC4uLoaVIJJ0cnKiIAj04sWLqX7a7XZsdcu8Ps7Pz7W3tzf2mFwup263O/x+kTYAAADINmLl2W02iQQ2AABARvm+r9PTUzUajTtPg1xWv98fC6ij6/Z64+sV1ut1nZyc3KmPXC6nQqEwDLCDIJDv+2NTHhdpAwAAgOwiVk5PrMwSIgAAABnU7Xb19OlT3dzcrLzv8/NzdTodSdLl5eXYdMs3b96MtY2C6ydPnoyNLZfLzXyjMK+Ps7MzFQoFFQoFlUolSYNKl1GLtAGQHZ9/8Iczzny40XEAANKBWDldsTIJbAAAgIzpdDrDaornz5+r1WrFtiuXywqCYKE+2+22JGlvb08HBwcqFovDaxUKhalAOlKtVlUsFoeBsTQI6ienU95msg/P81StVtVoNHRxcSHP89TpdMausUgbAAAAZA+xcvpiZRLYAAAAGeL7voIg0PHxsYrFogqFgprNpo6OjqbazgrWbzM5rbBYLCoIgthrROvzTW4YM2s6ZJy4PiqVynCTGd/3VS6XVS6X1W63h28WFmkDAACAbCFWTmeszBrYAAAAGRLtdi4NAujj42NVKpWxdfLuo16vT1WieJ43tW5fp9PR+fn5WDA9bzrkpLg+fN/X1dXV8A1ALpfT9fW1SqXS8E3GIm0AAACQPcTK6YyVqcAGAADIsFqtpk6no4ODg6nAedlpkUEQqFqtKp/Pj1VmBEGg/f394ffdbletVmssAK7X68rn87q8vNTl5eXYYxuNhtrt9thUyVl9FIvF2B3iK5XKsG0QBHPbAAAAAMTK8W02jQQ2AABAxrVaLe3v76tSqajRaIwdX4bneTo6OhoLyC8uLpTL5YYVHL7vq1qtqlqtDjeviapJisXi1JTEer2uSqUydvy2PvL5vHzfl+/7Y4F3u91WpVKRpIXaAAAAABKxclybTSOBDQAAsISnH/TmN0oZ3/fVaDR0dXUlabCRy+Hh4XANvmiTmmazqX6/r5OTk6n1+RZVq9VUrVaH3wdBMJy2GASBCoWCgiAYBtOR0amN0iCYjza7qdVq6na7Oj4+XqiPly9fqlqtyvM8PXz4UK9fvx77eRdtAwAAgOUQK9+OWPluzDmXyIUxm5ld5/P5/OQvJ7AOr77yaOrY//I/b8a2/fI3f3fdwwGAxL169UqS9OjR9PMjsm3e70ahUFC32+065wqbHFfWECtjHb71jU9ij3/w7Q9jjz872Wwt2Ke/9+lGrwcAtyFeRpx1xsps4ggAAAAAAAAASCUS2AAAAAAAAACAVCKBDQAAAAAAAABIJRLYAAAAAAAAAIBUIoENAAAAzMHG5wAAAOOIjxBZ9+8CCWwAAIARZiZJ+tnPfpbwSJAmv/jFLyRJ77xD+AwAALItioei+AhYd6xMBA4AADDi7//9vy9J+uEPf6i/+Zu/0S9+8QuqSzLMOaef//zn+su//EtJ0q/+6q8mPCIAAIBkRfHQX/7lX+rnP/85sXKGbSpWfnctvQIAAGyp3/iN39BPfvIT/e3f/q1+8IMfJD0cpMi7776rL33pS0kPAwAAIFFf+tKX9IMf/EB/8zd/o7/4i79IejhIiXXGylRgAwAAjPj85z+v/f19PXz4UJ/73OdYMgJ655139IUvfEG//du/rc997nNJDwcAACBRn/vc5/Tbv/3b+sIXvkCsjI3EylRgAwAATHjnnXf0m7/5m/rN3/zNpIcCAAAApM7nPvc5vffee0kPAxnBn0kAAAAAAAAAAKlEAhsAAAAAAAAAkEqpT2Cb2dfM7PfN7GtJjwUAAABIE2JlAAAA7LpUrIFtZi8kvR9+23HOnZjZFyV1JOUlfSapb2Y959z/NqlxAgAAAJtGrAwAAIAsS0UCW9K5pAPn3DdGjtUkFSTVnXMfSZKZPTWzP3LO/fMkBgkAAAAkgFgZWJEffvSdpIdwJ6++8ij2+KPvvdrwSAAA2Ly0LCFSnAjIJelIUi8KyCXJOfdS0m9sdGQAAABAsoiVAQAAkFlpSWB/NvqNmT0Nv+zEtHXrHw4AAACQGsTKAAAAyKy0LCHy1xPf5zUIvq9j2nprHw0AAACQHsTKQMY9O4l/6/7phscBAEAS0pLAnpzqeBh+HqsqCTersY2MCMiw85ta7PF/pt/d8EgAAICIlQEAAJBhaUlgX5rZH0m6kFTRoKqk5Zz7ftTAzN6T1JL0NK4DAKvz+Qd/mPQQAADAW8TKAAAAyKxUrIHtnPtXGlSW+JKqGlSTPJckM/uvzOwqPFeQdJbUOAEAAIBNI1YGAABAlqWlAlvhDuofmdkXnXOjG9V0FL9BDQAAAJAJxMoAAADIqtQksCMTAfnU9wAAAEBWESsDAAAga1KxhEjEzD4ws39rZn9hZr8/cvy5mZ0mOTYAAAAgScTKAAAAyKLUJLDN7FyD6Y9PJH0maT8655w7k9QM2wAAAACZQqwMAACArEpFAtvMnmuw6UzBObfnnHs82cY5d6PBun9/tPEBAgAAAAkhVgYAAECWpWUN7Lxz7nfmNXLO3ZjZJsYDAAAApAWxMgAAADIrFRXYGkyDXNT+/CYAAADAziBWBgAAQGalJYHtlmi7t7ZRAAAAAOlDrAwAAIDMSksC+4GZ/ZOJY1PzH8M1/W42MyQAAAAgFYiVAQAAkFlpWQO7LunKzP5bSWfOuR9ppNLEzL4m6USD9f/+k2SGCAAAACSCWBkAAACZlYoEtnPON7MjSS8k1cPNZ4LwmBc2+0zS02RGCAAAACSDWBkAAABZlpYlROScu5D0O5I+0WBK5IPw4zMNKk32nHPfTXCIAAAAQCKIlQEAAJBVqajAjjjnfEkHkmRm70vqO+eW2XUdAAAA2EnEygAAAMii1FRgT3LO3cQF5OHmNAAAAEBmESsDAAAgK1KbwL7FYdIDAAAAAFKKWBkAAAA7ZWNLiJjZn66gm5yk/Ar6AQAAAFKDWBkAAACIt8k1sA/1dpf0+3Ar6AMAAABIE2JlAAAAIMYmE9h9SaeSmvfo46Gky9UMBwAAAEgNYmUAAAAgxiYT2L6khnPuR/fo4zMzu1nVgAAAAICUIFYGAAAAYmxyE8fyPQPyyNMV9AEAAACkCbEyAAAAEGNjCWzn3Gcr6oqgHAAAADuFWBkAAACIt8kK7FU5SXoAAAAAQEoRKwMAAGCnbHINbJnZB5IOJJ2OTpE0sz9dsIs9Sfl1jA0AAABIErEyAAAAMG2jCWxJF5K+KOm1pH8+cvxQkrdgH27FYwIAAADSgFgZAAAAmLDpJUS+KelGUmfieF9SRdKDOR+/IynY0FgBAACATSJWBgAAACZstALbOVeXVI855Us6X2Dn9c/M7Gb1IwMAAACSRawMAAAATNv0EiKxnHP/6RLN2VkdAAAAmbHpWNnMipLKknqSHmqwfEnVORfco6/IXtiXf99xAgAAIBtSkcBehnPus6THAAAAAKTRfWNlMytJOnHOFUaO5SVdm1lhmSS2mR2FY6qMHPMkvTSzqnNucqkUAAAAYEoqEthm9jXn3L+LOf5FSTW93Yym5Zz7ZJNjAwAAAJK0qVg5TC63JB2MHnfOdc2sK+lM49XU8/oqO+cm+wrMrCypLWn/rmMFAABAdmx6E8dZzuIOOuc+c859wzn3T51z/1TSAzP7ow2PDQAAAEjSpmLlZ+Hnq5hz55JKS/T1eNaJcPmQ3BJ9AQAAIMNSUYEtyRZp5Jz7V2b2p+seDAAAAJAim4qVy5KCGcuE+NJgiRHn3MWC/RXj2ptZLuoPSLtnJ2l5ywwAQHalpQLbzW8imdmv65ZqDgAAAGAHbSpWfiypP+NcEH5+skhH4frWvqSWmTUmTje04FIkAAAAwMb/nGxm39R0EJ4zs/9Ot1eX5CQVJb1Y19gAAACAJCUcK3uancAebbOosqSXko7M7Jmkqgbra1fCZURuZWbXM059ZYkxAAAAYMslMR+qoUHgeyjpSNIXNQjGP1rgsRfh+n4AAADALko6Vg5mHI8S23uLdhRu/vi+pGsNEuwNSReanyQHAAAAhjaewHbO3YRfflfSR2bWlvSe3m4aM+tx313z0AAAAIBEbUGs7C3a0Mw8DTagrISPO9NgI8iimT11znVve7xzrjCj32tJ+UXHAQAAgO2Whh0pypI6JKgBAACAKZuOlb0Zx6PK62CRTsLk9UtJ5Wi5EDPrSKppUFn+0szen7FhJAAAADCU+CaOYdB6mvQ4AAAAgLTZcKwcLNBm0eU/ziSdj6517ZwLnHMVDZLyngaJbAAAAOBWiSewJck596+SHgMAAACQRhuMla80WKs6TnR81saKk0oarHc9xTl3Iakp6clSowMAAEAmpSKBDQAAACBxrVvORQnszoJ9Bbp9veyeJP+W8wAAAIAkEtgAAAAABl5IkpmVYs5Fa3FPJZ3NLK5q+4Wkw1uudSDp/C6DBAAAQLakYRNHAAAAAAlzzgVmVtFgo8Xh8h9mltegArsw+Rgzu5aUN7OCc6470lfFzK7N7Ng5V594TENSa7Q9gLt59ZVHsccffe/VhkcCAMD6kMAGAAAAIElyzjXNzDezlqRLSQ81WAqkEG4oOakTnp8655wrmNmxmbXD89EGkA2S1wAAAFgUCWwAAAAAQ865jhZc69o5V5VUveV8XVJ91nkAAABgHhLYAAAAAABsoWcn8W/pP93wOAAAWKeNbuJoZr++yesBAAAA24JYGQAAAJi2sQS2mf2xpDdm9n/d1DUBAACAbUCsDAAAAMTbZAX2E0nflTS1YYuZnS7aiZm9t8IxAQAAAGlArAwAAADE2GQC+7Vz7rFz7s9izhWX6Ke1qgEBAAAAKUGsDAAAAMTYZAL7oZn9Fyvox1tBHwAAAECaECsDAAAAMeK3LF6PjyT9ezPraTA10h85lzOzP12gj1z4AQAAAOwSYmUAAAAgxsYS2M4538x+R1JDUjmmSWXRrlY3KgAAACB5xMoAAABAvE1WYMs550s6kCQz+2J42CR1JD1doIuHki7XMzoAAAAgOcTKAAAAwLSNJrBHOec+i742s7Hvb/GZmd2scVgAAABA4oiVAQAAgIFNbuJ4m7hpkrMsUn0CAAAA7ApiZQAAAGRWKhLYzrmpShEz+5qZfS2m7SLVJ7cys5KZXd/j8TUza5hZ0cy88FjRzFpmdnTf8QEAAACRTcfKAAAAQJoktoRIHDP7dUktScWRY5J0LansnPvBPfpuSNqT1B/t/448SUfhRzRGSao755r37BsAAACYss5YGQAAAEir1CSwzeyppLakQNJ3NUg0S4Ok82NJvpmVnHP/j7v075wb7tweVl979xmvpKakXPh1V1Ij3HgHAAAAWKl1x8oAAABAWqUigR3ust7QoHLkX804fyjpz8ys45z78abHOGk0IQ4AAACsyzbGygAAAMCqpGINbEkfSarEBeTSYC2/cGmOA0n1jY4MAAAASBaxMgAAADIrFRXYkh44517Oa+Sc69rIgtNJCzdwjNYg7DjngiUfP2sjya/cY1gAAADYLVsZKwMAAACrkJYEdrBEW7euQSzDzGqSXku60GANwpaZtZ1zVL0AAABglYIl2qYiVgYAAABWJS0J7G0LtANJbedcJzpgZmVJN2YWhFM453LOFeKOh5XZ+VUMFJjn2cn008A3/ocEBgIAAGbZtlgZAAAAWJm0rIFtZvZfLNDov5T02QbGcyvnXHU0eR0eCyR1JNUSGRQAAAB21VbFygAAAMAqpaIC2zn3kZn9ezPLSTpzzv1o9LyZfU2DndWPJL2fwBAXdSmpZGbFyQQ3sE0++PaHM8682ug4AADATsXKAAAAwNJSkcAOPdOggrluZoEG60rvSfLC84GkZ5MBe0rlkh4AAAAAdsouxcoAAADAwlKTwHbOdSXtmVlDUlnSfngq0CBYf+6cS3xKZDi+Iw12gw8SHg6QCj/86Duxx7/8zd/d8EgAANhN2xIrAwAAAKuWmgR2xDlXkVQxsy+G36ctEM9p9k7wD8PPV5sZCgAAALJkC2JlAAAAYKXSsonjFOfcZ0kH5OE6g5Pakgozqq9LkrphhQwAAACwFmmIlQEAAIBNSG0Ce808DdYMnMnMriX1zCw/etw5V5dUm0xum1kt7LO82qECAAAAAAAAQDalbgmRdTGzY0lPNFgCJBce60nqSvKdc9WJh3Q0SHQHk30558pmVjMzT283z+k65x6safgAAAAAAAAAkDmZSWCHldPLtK9KmkxqT54HAAAAAAAAAKxJVpcQAQAAAAAAAACkHAlsAAAAAAAAAEAqkcAGAAAAAAAAAKQSCWwAAAAAAAAAQCqRwAYAAAAAAAAApFIqEthm9utm9vtm9utJjwUAAABIE2JlAAAAZFkqEtiS/kxSQ1It6YEAAAAAKUOsDAAAgMx6N+kBjPg/aRCYAwAAABhHrAwAAIBMSksFdt8595Fz7mZeQzO73MSAAAAAgJQgVgYAAEBmpSWBXTWzczN7L+mBAAAAAClDrAwAAIDMSssSIk8ldSS1zEySriQFkl5PtNuXlN/oyAAM/fCj7yQ9BAAAsohYGQAAAJmVlgT2n0n6oiQLvy/c0tatfzgAAABAahArAwAAILPSksDuS3qh+RvTPJR0vv7hAAAAAKlBrAwAAIDMSksCO5D0Tefc9+c1NLO5m9cAAAAAOyQQsTIAAAAyKi2bOJYXCchDz9c5EAAAACBliJUBAACQWalIYDvnFq4Ucc59d51jAQAAANKEWBkAAABZlooEdsTMPjCzf2tmf2Fmvz9y/LmZnSY5NgAAACBJxMoAAADIotQksM3sXFJH0hNJn0naj845584kNcM2AAAAQKYQKwMAACCrUpHANrPnkgqSCs65Pefc48k24dTJj8zsjzY+QAAAACAhxMoAAADIsneTHkAo75z7nXmNnHM3ZraJ8QAAAABpQawMrMj5TS32+Ocf/OGGRwIAABaVigpsDaZBLmp/fhMAAABgZxArAwAAILPSksB2S7TdW9soAAAAgPQhVgYAAEBmpSWB/cDM/snEsan5j+GafjebGRIAAACQCsTKAAAAyKy0rIFdl3RlZv+tpDPn3I80UmliZl+TdKLB+n//STJDBLCsH370naljX/7m7yYwEgAAthqxMgAAADIrFQls55xvZkeSXkiqh5vPBOExL2z2maSnyYwQAAAASAaxMgAAALIsLUuIyDl3Iel3JH2iwZTIB+HHZxpUmuw5576b4BABAACARBArAwAAIKtSUYEdcc75kg4kyczel9R3zi2z6zoAAACwk4iVAQAAkEWpSmCPcs6xAQ0AAAAQg1gZAAAAWZG6BLaZ/bqkoqQn4aFLSZ1wsxoAAAAgs4iVAQAAkDWpSmCb2R9JqkXfhp9deO7IOfd/S2RgAAAAQMKIlQEAAJBFqUlgm9kLSSVJHUldST0NdlV/KKkg6czM9p1z/01igwQQ698EP4s9/n/w/t6GRwIAwG4iVgYAAEBWpSKBbWb/laScpAezNqIxs5ykPzezc+fc/3ujAwRwJ3GJ7Q8TGAcAANuMWBkAAABZlooEtqRnkp7etou6c843s/9U0h9L+qcbGxmAO/vg23Hp6lcbHwcAAFuOWBkAAACZlZYE9s1tAXkkDMzntgOwWfGJagAAsCLEygAAAMisd5IeQOivl2jr1jYKAAAAIH2IlQEAAJBZaanA/o0l2tr8JgDS4NnJ9FPMpwmMAwCALUesDAAAgMxKSwX2qZmdzmtkZn8s6XwD4wEAAADSglgZAAAAmbWxCmwz+6M5TfJm9m8ldWedl9Rwzn13tSMDMCmuclqS/l/svwgAwFoQKwMAAADxNrmEyH8j6YuaP63x4JZzRTOrOOf+bHXDAnBfsxLeAABgYcTKAAAAQIxNZp36kpq6/7TG4P5DAQAAAFKFWBkAAACIsckEdiDpv3PO/WiD1wQAAAC2QSBiZQAAAGDKJhPY5VUE5Gb2Nefcv1vBeAAAAIC0SE2sbGZFSWVJPUkPJXmSqs654I795SRVJe1pUGmu+/QHAACAbNlYAts5d7Oirs4kPVlRXwAAAEDi0hIrm1lJ0olzrjByLC/p2swKyyadw2R4Q4MEfTc8lgvHWb7rOAEAAJAdqdp5zcx+XVJOg+qMOF54HgAAAMiUdcfKZuZJamlio0jnXNfMuloy6RwmqtuSClHyOlSTVLrrOAEAAJAtqUhgm9kXJb2QVEx6LAAAAECabDBWfhZ+voo5d65BcnsZDUkXE8lrabCMyOQxAAAAIFYqEth6O9XxTIO19mb5HUm/v5ERAQAAAOmwqVi5LCmYsUyILw2WGHHOXczrKFw6pKiJam5Jcs5V7jFGAAAAZExaEtiec27WVMgxZlaY3woAAADYGZuKlR/r7SaLk4Lw8xNJcxPYkqIk9VW4NElRg6VPOs45/x5jBNbig29/GHv846+n5S0zAADZlZZX42WmEDbWNgoAAAAgfTYVK3uancAebbOIaLmTXPj1Rdh3zcwWqsI2s+sZp76y4BgAAACwA95JegDLcs6dJT0GAAAAII1WECsHM45Hie2FKsH1NtF96JyrO+d851wQJq4fmxlFKQAAAFhIWhLYbTP7LxdpaGaX6x4MAAAAkCJpipW9Jdu3Y46dSzoys/xtD3TOFeI+JH1vyTEAAABgi6Uige2ceynJzOzUzL42p/mDDQwJAAAASIUNx8rejONR5XWwTGfOuU7M4WhJlGLMOQAAAGBMKhLYoQca7Hx+bWa/mPUh6f2ExwkAAABs2iZi5WCBNvPWyI4sslHjkwX7AgAAQIalYhNHM/tjSTUNgubv3tL0gaT3NjAkAAAAIBU2GCtfaXZVdC78PGtjxUldSTkz85xzwYw2iyS5AQAAkHGpSGBLOpRUcM7dFpBLkszs329gPABi/JvgZ0kPAQCALNpUrNzS/AR23JIgcdqSSuHjuhPnvPAze9sAAABgrrQsIXK1SEAemgyAAQAAgF22qVj5hSSZWSnmXFlSxzk3VTVtZrnJY865pgYV43EJ8QNJvnPu4h5jBQAAQEakJYEdLNrQOfdsjeMAAAAA0iZYtOF9YuVwqY+KBsuVDJlZXoNK6vLkY8zsWlIvbDOpLOlkNMEdtnsW1xcAAAAQJy1LiPTM7D3n3PfnNTSzU+fcyQbGBAAAAKTBxmJl51zTzHwza2mwxMdDDZb8KMxYy7oTnp8655zrmNlTSTUziw73Jb1/y7rYAAAAwJhUJLCdc2dm9k0z+3Pn3CdzmhclkcAGAABAJmw6VnbOdbTgWtfOuaqk6i3nu6LaGgAAAPeQigS2mZ1KcpIaZranwQ7oQUxTT1Lc9EQAAABgJxErAwAAIMtSkcDWYK29L0qK5hYe3NLWrX84AAAAQGoQKwNYyquvPIo9/uh7rzY8EgAA7i8tmzj2JX0k6cGcj8daYhMbAAAAYAcQKwMAACCz0lKBHUhqOOd+NKdd18xuNjAeAAAAIC0CESsDAAAgo9KSwH66QEA+bLvWkQAAAADpQqwMYCnPTuLf6n+64XEAALAKqVhCxDn32TraAgAAANuOWBkAAABZlpYK7IWZ2aVz7knS4wAAAADShlgZuN3nH/zhjDMfbnQcAABgcamowF6UmT2V5CU9DgAAACBtiJUBAACwi1JRgW1mr7V4sB2sbyQAbvPBt+MrUz7+eiqeSgAA2EnEygAAAMiytGSdLPzoxpzzJOXCrzubGhAAAACQEsTKAAAAyKy0JLB9Sb/vnPt3sxqYWVFS0Tn30cZGBQAAACSPWBkAAACZlZY1sK80CMxncs51JJ2a2R9tZkgAAABAKhArAwAAILNSUYHtnPvGgu0+M7PfWfd4AAAAgLQgVgYAAECWpaUCexku6QEAAAAAKUWsDAAAgJ2yjQns3PwmAAAAQCYRKwMAAGCnpGIJETP7U0l7CzQtSjpd83AAAACA1CBWBgAAQJalIoEt6VCSt0C7pnPun695LAAAAECaECsDAAAgs9KSwO5rUC1yEX49xjn32cZHBAAAAKQDsTIAAAAyKy0JbF9Swzn3o6QHAgAAAKQMsTIAAAAyKy2bOJYJyAEAAIBYxMoAAADIrFRUYC8z7dHMLp1zT9Y5HmAXvfxkf8aZX9voOAAAwHKIlQEAAJBlaanAXoaX9AAAAACAlPKSHgAAAACwSqmowJYkM/t9SRVJORF4Ayv3j/78X8SfePRfb3QcAABgecTKAAAAyKpUJLDN7I8l1SQFGmxSM8sDSe9tYEgAAABAKhArAwAAIMtSkcCWdCip4Jz77ryGZvbvNzAeADGenaTlKQMAgEwhVgYAAEBmpWUN7KtFAvJQd60jAQAAANKFWBkAAACZlZZyymDRhs65Z2scB7Czzm9q8ScebXYcAABgacGiDYmVAQAAsGvSUoHdM7P3FmloZqdrHgsAAACQJsTKAAAAyKxUVGA7587M7Jtm9ufOuU/mNC9KOtnEuACs3quvxJd8P/reqw2PBACA7UCsDAAAgCxLRQI7rBRxkhpmtifpSvFTJT1J+c2NDAAAAEgWsTIAAACyLBUJbEkVSV+UZOH3B7e0desfDoB1eXYS/7Tz6YbHAQDAFiFWBgAAQGalJYHdl3QqqTmn3b6k9n0vZmYlSSfOucI9+ihKKkvqSXqoQcVL1TkX3Hd8AAAAwIiNxsoAAABAmqQlgR1IajjnfjSnXdfMbu5yATNrSNrT4A1A8S59jPQ1lQA3s7ykazMrkMQGAADACgVac6wMAAAApFVaEthPFwjIh23vcgHnXCX62syuNaiYXpqZeZJampi66ZzrmllX0pkGldkAAADAKqw9VgYAAADS6p2kByBJzrnP1tF2TZ6Fn69izp1LKm1wLAAAANhxWxYrAwAAACuVigT2lilLCmYsE+JLwyVGAAAAAAAAAAD3kJYlRLbJYw3W0Y4ThJ+fSLqY11G4lEmcryw/LAAAAAAAAADYLVRgL89bURsAAAAAAAAAwC2owL6bYMbxqDJ7b5FOnHOFuONhZXZ++WEBAAAAAAAAwO6gAns9vKQHAAAAAAAAAADbjgT23XgzjkeV18FmhgEAAAAAAAAAu4sE9vKCBdrM2uQRAAAAAAAAALAgEtjLu5KUm3EuOn69obEAAAAAAAAAwM5iE8fltSQVZ5yLEtidDY0FWNjnH/zhjDN/sNFxAAAAAAAAAIuiAvsWZhZXaf0iPFeKOVeW1HHO+WsdGAAAAAAAAABkQFYT2J7ebrgYy8yuJfXMLD963DkXSKpIqk20z2tQgV1e5UABAAAAAAAAIKsys4SImR1LeqJBkjkXHutJ6krynXPViYd0NEh0B5N9OeeaZuabWUvSpaSHYdtCmOAGAAAAAAAAANxTZhLYzrn6ku2rkiaT2qPnO2KtawAAAAAAAABYm6wuIQIAAAAAAAAASDkS2AAAAAAAAACAVCKBDQAAAAAAAABIJRLYAAAAAAAAAIBUIoENAAAAAAAAAEglEtgAAAAAAAAAgFQigQ0AAAAAAAAASCUS2AAAAAAAAACAVCKBDQAAAAAAAABIJRLYAAAAAAAAAIBUIoENAAAAAAAAAEglEtgAAAAAAAAAgFQigQ0AAAAAAAAASCUS2AAAAAAAAACAVHo36QEAAAAAALBqP/zoO0kPAQAArAAV2AAAAAAAAACAVCKBDQAAAAAAAABIJRLYAAAAAAAAAIBUIoENAAAAAAAAAEglEtgAAAAAAAAAgFQigQ0AAAAAAAAASCUS2AAAAAAAAACAVHo36QEAAID/f3v30yPnkd8H/FuKYKwPAXqpS3JZrMYHi4aFBKT2oCs9fAckFwgQ5BJrCPCwgA/L8BUsuDcfBFDcS3wJIJKXnDkShPiQg0heZIe6cGQYuYZq2AFsOE4qh36GGg2fZ6Z7+s/zdD+fDzBosp7qempquuf59W/qqQIYjlLKfpKbSV4leS/JJMndWut0VW3XWg+WbQsAgHGQwAYAAJIkpZQbSe7VWq+eKLuS5Hkp5eoKktiPkzxasg0AAEbEEiIAAEBKKZPMEsx3T5bXWl8keZHkd0u2fz+z2dwAADA3CWwAACBJbjWPz1qOfZ7kxkUbbpYO+fqizwcAYLwksAEAgGS27vW0Y5mQo+TNEiMXcb3W+uSiHQMAYLwksAEAgCT5KMnrjmPT5vEXizbaLB3ymwv2CQCAkbOJIwAAkMzWp+5KYJ+sM7dmA8ivL7L5YynlecehDxZtCwCA7SWBDQAAHJt2lB8nti8t2N5BrfXg4t0BVunlB5ffKrv87cseegIA85PABgahLZhOBNQAMDCTeSuWUn6d5O5FT1RrvdrR7vMkVy7aLgAA20UCGxiEW/fafx19s+F+AMDITTrKj2deT+dppFk6pGtDSKAnbTG3eBuAobOJIwAAkMyXnD5vjexjB7XWh0v0BQAAkpiBDQAAzDxLst9xbK957NpY8Y1Syo0kH5VSHndUuVVKuZQktdabC/cSAIBRkcAGAACS5HHOT2AfntdIrfVJkieny0spkyQ3kjyysSMAAPOyhAgAAJAkj5I3M6hPu5nksNZ6dPpAKWWvpT4AAKyEBDYAAJBmw8WDJPdPljcbMu5llsTOqWPPk7xq6pzneCNICW8AAOZmCREAACBJUmt9WEo5atav/jrJe0kmSa42Ce7TDpvjbceSvEmA30tynOTeL6U8TXJkKREAAM4jgQ0AALxRaz3MHGtdN3XvJrl7Tp0XaZm9DQAA87CECAAAAAAAgySBDQAAAADAIElgAwAAAAAwSBLYAAAAAAAMkgQ2AAAAAACDJIENAAAAAMAgSWADAAAAADBIEtgAAAAAAAySBDYAAAAAAIP0bt8dADbj2ld3WssffOzXAAAAAADDZAY2AAAAAACDJIENAAAAAMAgSWADAAAAADBIEtgAAAAAAAySBDYAAAAAAIMkgQ0AAAAAwCBJYAMAAAAAMEgS2AAAAAAADJIENgAAAAAAgySBDQAAAADAIElgAwAAAAAwSO/23QEAAADo0617PhoDwFCZgQ0AAAAAwCBJYAMAAAAAMEgS2AAAAAAADJIENgAAAAAAgySBDQAAAADAIElgAwAAAAAwSBLYAAAAAAAMkgQ2AAAAAACDJIENAAAAAMAgSWADAAAAADBIEtgAAAAAAAzSu313AAAAAOjHp7e/bC2/8+DahnsCAO0ksAEAAGCkrn11p+PIy432AwC6SGADAADASN26154W+GbD/QCALtbABgAAAABgkCSwAQAAAAAYJAlsAAAAAAAGSQIbAAAAAIBBksAGAAAAAGCQJLABAAAAABgkCWwAAAAAAAZJAhsAAAAAgEF6t+8OAAAAwKp9/t39t8p+8tM/66EnAMAyJLCBQXv5weXW8svfvtxwTwAAAADYNEuIAAAAAAAwSGZgA4N26177r6lvNtwPAAAAADZPAhsAAAD4kU9vf9lafufBtQ33BICxk8AGAAAAfuTaV3c6jtiLBoDNGmUCu5Syn+RmkldJ3ksySXK31jpdsJ37zXMfJ3lWa502bR8keVprfbjCbgMAAMBGWMoPgKEYXQK7lHIjyb1a69UTZVeSPC+lXF0wiT1J8knzlVLKcflvJa8BAAAAAJYzqgR2KWWS2Wzp6yfLa60vSikvkvwus5nZi3iYZK/594skn9Vaj5bsKgAAAADA6I0qgZ3kVvP4rOXY55kltxdSaz1YqkcAAAAAALR6p+8ObNjNJNOOZUKOkjdLjAAAAAAA0LOxzcD+KMnrjmPT5vEXSZ4s0mizNMl+89/DedfRLqU87zj0wSLnBwAAAADYRWNLYE/SncA+WWdupZT7Sf5XZknv10kel1Ke1lp/e5EOAgAAAAAwM7YEdvLDTOvTjhPblxZs62mt9fC4oJRyM8l3pZRprfXhWU+utV5tK29mZl9ZoB8AAAAAADtnjAns80zmrVhrvdtSNi2lHCa5n+TMBDYAAABsk5cfXG4tv/ztyw33BICxGGMCe9JRfjzzerqCc3yd5EYpZf/k7GwAAAA24yc//bO+uwAArMDYEtjTOeqct0b2IvZW2BYAAAD06ta99jTCNxvuBwDj8U7fHdiwZ+lOKh+XP5+noVLKZ6WUWkqZrKJjAAAAAAD82NgS2I/POHacwJ53yY+9dM/ofq95fDZnWwAAAAAAnDK2BPajJCml3Gg5djPJYa316PSBUkrbrO2nSa7WWqctx24keVFrfbFEXwEAAAAARm1UCewm2XyQ5P7J8lLKlcxmVN88/ZxSyvMkr5o6J9v6bZL7p5PbpZT7mW0I+VZbAAAAAADMb2ybOKbW+rCUclRKeZzk68yW+5ikezb1YXP8rWO11pullPvNOtiXmnovaq0/XUffAQAAAADGZHQJ7CSptR5mzrWua613k9w95zgAAAAAACs2ygQ2jNGte97uAAAAAGwXGS0AAABgKZ/e/vKtsjsPrvXQEwB2jQQ2AADwRillP7MNyV/lh/1i7nbsF3NeWzeSXM9sw/RLSZ5dtC1g2K59dael9OXG+wHA7pHABgAAkrxJON+rtV49UXYlyfNSStem511t3U/yda31oPn/JMkXSb5r2jpaaeeBXrUtWfhND/0AYPe803cHAACA/jUJ5sc5tYF5rfVFkhdJfrdAW1ea5z450c40yZ9kNqP76bL9BQBgHCSwAQCAJLnVPD5rOfZ5khsLtHXQPOdHmiT2YZK94yQ3AACcRQIbAABIZuteTzuWCTlK3iwxMo+PMlt2pC1J/eJEHQAAOJMENgAAkMwSyq87jk2bx1/M2dZh85zp2dUAAOBsNnEEAACS2drUXQnsk3XOVWu9m1NraZ9wPCu7bamSN0opzzsOfTBPHwAA2A1mYAMAAMemHeXHie1LyzReStlLsp/kSbM5JAAAnMkMbAAAYF6TJZ//OLP1tP/0vIq11qtt5c3MbBtAAgCMhBnYAADAsUlH+fHM6+lFGy6l3G/av9qxUSQAALxFAhsAAEjmS06ft0Z2q1LKjcyWDpG8BgBgIZYQAQAAktmmivsdx/aax66NFTuVUvaTHHQtCQLsrk9vf9lafufBtQ33BIBtJoENAAAks/Wpz0tgHy7SYCnlSmbJ6+unyidJbtVaHy7aSWB7XPvqTseRlxvtBwDbTQIbAABIkkdJPiul3Ki1Pjl17GaSw1rr0eknlVL2usozS17fbDnXfmabOQI77Na99pTDNxvuBwDbTQIbAABIrXVaSjlIcj/JmwR2M4t6L8lbS4CUUp4nuVJKuVprfXGifJLkaZKjUsrjE0+ZNI8ftbUHAACnSWADAABJklrrw1LKcdL56yTvZZZ07tp88bA5fvrYF5klvffSoW3WNgAAnCaBDQAAvFFrPcyca13XWu8mudtSbnY1AAArIYENAAAA7LSXH1xuLb/8rQ0lAYZOAhsAAADYmE9vf9lafufBtaXb7kpU21ASYHtJYAMAAAAbc+2rOx1Hlp8N3ZWoBmB7+c0OAAAAbIzZ0AAs4p2+OwAAAAAAAG0ksAEAAAAAGCRLiAAAAACj1Lbp4+Vvl1+LG4DVkcAGAAAARqltPW5rcQMMiwQ2AAAAsFU+vf1l+4GPN9sPANZPAhsAAADYKte+utNa/uDj5dMcXcnxOw+uLd02AIuTwAYAAAB617YeddK+JnXb0h+r0pUcT6yNDdAHCWxgK3UFt21swgIAAMPXlZR+1Bb7rzGB3dUPa2MD9EMCG9gZAk0AANg965xtDcDwuQoAW0kQCwAAALD73um7AwAAAAAA0MYURgAAAIBzfHr7y9byOw+ubbgnAOMigQ0AAABwjmtf3ek4YtN4gHWSwAYAAAA4h03jAfphDWwAAAAAAAbJDGxgtF5+cLm1/PK3bgEEAAAAGAIJbGC03AIIAAAAMGyWEAEAAAAAYJDMwAZ2XtdSIemYgQ0AAKvyzXd/21r+4fs/23BPAGA7yd4AO69rqRAAAIBlfXr7y7fK7jy41kNPAHaTrA4AAADABV376k5LqY3hAVZFAhsAAADggtru+LQxPMDqSGADAADAhlkbe7e1LSuSWFoE4CIksAEAABiF9qUekgcf+2jManW91iwtArA4V2kAAACAFeraSP52x8zsRZjFDYyNBDbAhriNEAAAxq17ZvYizOIGxkUCG0aube29sa+79/KDy2+VXf52+SDxwce/ai2/Y4sXAAAYha6Z2Y9+888b7gnA9pDABjhlkV3E25LdyWoS3gAAwDhIbAN0k8AGWEJXoGlONQAAsKy2zxuPTKIBRuadvjsAAAAAAABtzMAGmMOHf/Fh310AAADoZNN4YFdJYAMAALC1/ud/+su+uwCDcO2rOx1HLC0CbDcJbAAAAIAtYcNHYGysgQ0AAAAAwCCZgQ0AAABL+ua7v+27C9Dq5QeXW8svf2tpEWA7SGADAAAAbDlLiwC7SgIbYA1aZzl0BJRd7CIOAAAAjJ0ENsAadM1+aNOVqH7w8a9ay+/kmwv1CQAAGJ+uzyY+VQDbQgIboGddiWoAADhL17rbH77/sw33hG3UNpHG3Z7AEElgA/BG29InNncBAIDdc+2rO2+Vvfygva7PBECfJLABtowkMwAAADAWEtgAW6ZtDbtHbZtGZvHEdlvb1sYDAOhX11IhsIxF9u3xmQDokwQ2wA6wMQsAwG6QrGaI2u4CTdwJCmzGO313AAAAAAAA2piBDQAAAECnrjs+b9/+srX8zoNr6+wOMDIS2AAAAAAs7NpXdzqOWFoEWB0JbAAAAAAWZi8eYBMksIGldW008+H7P9twTzitj81WbPACAADj1vaZwOcB4KIksAF22CpmRCyakDYLAwCgXyaYALBLJLABuJCuxHY6EtgAAMA4tE1qeeROTeCCZBkARkjyGQAA2CR3agIXJVMBvMUth7uvK3hcpO6j3/zzqroDAAAA0EoCG4ALWSQJDgAAAHARsg8AAAAA9KJzecMV6Fy25D9YuAS2iQQ2sDZtS5FYhgQAgL6M/Q4y8TlD1Mf7sitp3rah5CJ1gfUY99UbWEjX2thwUYJBAABg0xbZULIzwf4XH7YWd+0V5DNO/z69/WVr+Z0H11rLP2z5GXfN3vfZdr0ksAHozZB2IhdwAADzMrEDdlNbwnJRiyS8LWWyWQ8+/lX7gdt/3l7+8dtFna+RAX223UUS2ABsRGuCeEC38Q4pmQ4AAOy+Rdf/3qXJNYtOIOqq3/Y5rmsWfNfnz87E9gp0Jbzb+rhLP99VG07mAICdtsjadotc5LvaNpsBAAAYskXX/37UksTd1qRn1/fe9j2eVX/Zun1p7WPH5+BFP9susvTJthj+TxRYCbc5sgtWEYis4rZANsvyLgCwPot+TrDpI/SndbbxFsziXuRu3G1IPm/aKj7DdrWxLYltrwoAOENbsCVxulmWdwEAgHarmMW9Kl2fkySlWZZXEACcoXV5khW1LTkOAGybrhnbZmbDdlhnMrkzOS6BzZK8ggCgJ+tMjo/Zptd82/bb8QAAYBXMtGZdvLKAjbLGHpuyzrWuJSyXt+m1yMe8wzsAAMA2k8AGgBWxQeRwLTobZCh/ivDHEgAAYOwksIFBs8YeY7NoEnydicxVrNHdx0z4ddql72dIrzWAeXzx5R+0lv9h/vNmO0KrtrhdzA7AKowygV1K2U9yM8mrJO8lmSS5W2ud9tkWACyqLQl5+7//eWvdBx//qrW8KzHZOmu5I+n56Df/3N5B6+C9ZRWJajOzWSexMrBuJqkAsIjRfaospdxIcq/WevVE2ZUkz0spVxcJplfZFgCsSleiukvn+tALJJ93bcOWdSaZ18kyNixLrAysYWdzmwAAD9tJREFU0qL73wBAm936tHmOUsokyeMk10+W11pflFJeJPldZjNENtoWsBpmcsDF7Frymc2xDMluESszdH/53/59a/kfrvGcErCbtch4i/EBxmNsn1hvNY/PWo59nlmQ3UdbwBpJbAMsb9NLn1gmpRdiZQbtP/7jn7SW/9fp/9lwTxiCVf1xwWcCgOEbWwL7ZpJpx+2KR8nsVsda65MNtwUsaBUB6yKJbUlwgPVZJDkusb1WYmVYg5//439ZW9t/85N/t7a2x2IbZ9n7DAI/WOcGsjanHY5Sa+27DxtTSvk+yeta61vbV5dS9jLbXOa3tda7m2irlPK849C/+f3f//1/cflyx5qkcIZ//Ou/bi3/yaX2mSl/9f/eX/qcf/zOd0u3wWb9j9/7vbnr/tE//dNCbSxan81Zxc9mVa+HdbXR1c4q2uhDH/3etffwH733Rxs718uXL/MP//APr2ut723spCskVmZI/v7v/+qtsp/83c9b607/b/tn2n/5928nHo7+VVmoH4v8Hl5FXL0q4nPGZlvjlG21DZ8JmNO//rcbO9UysfLYEtg1ydE5gfTDWuvBJto6Iyj/4yT/O8nfnNePDfigefy2116Mk7Hvj7Hvh3Hvj7Hvj7HvzzrG/udJ/q7WOpws1gK2NFb2HuqPse+Pse+Hce+Pse+Pse/Hro77z3PBWHlsS4gkybSj/HXzeGlTbZ3ckX2ojj84bENfd42x74+x74dx74+x74+x74+x7zTtKB9krOzn2B9j3x9j3w/j3h9j3x9j3w/j/rZ3+u7AAE0G2hYAAPRtMtC2AADYUWNMYE86yo9ngEx7agsAAPo26SgXKwMA0IuxJbCnc9R5fX6VlbcFAAB9m85RR6wMAMBGjS2B/SzJXsex4/KuzWLW2RYAAPRNrAwAwOCMLYH9+Ixjx4H0YQ9tAQBA38TKAAAMTqm19t2HjSmlTJJ8n+RmrfXJqWNPk6TWer3leXu11qNVtAUAAEMkVgYAYIhGNQO71jpNcpDk/snyUsqVzGaC3Dz9nFLK8ySvmjpLtQUAAEMlVgYAYIje7bsDm1ZrfVhKOSqlPE7ydZL3Mtsh/WoTaJ922Bx/69gF2gIAgMESKwMAMDSjWkIEAAAAAIDtMaolRAAAAAAA2B4S2AAAAAAADJIENgAAAAAAgySBDQAAAADAIElgAwAAAAAwSO/23QHWp5Syn+RmkldJ3ksySXK31jrddFvHz6+1Hix67m3U99iXUvaS3E1yKcnrpvhC5982fY79ifrHLjX1jxY99zZa5difaPNGknu11qubPve26HncbyS5nmQvs9f7s2XPvU36HPuuvrjObmbsx3ydXaW+46W253sPiVXXTazaH7FqP8Sq/ek7Xmrri+usWPXCaq2+dvAryY0kz0+VXcnszTPZdFtJvk/yWd/jMoaxT7LfHL9yomwvyeO+x2aXxz7JJ0k+OVU2SfI8yX7fY7NlY/9ZksfN46skrzZ17m376nnc7ye5ceL/x6/375Ps9T02uzz2HW24zm5o7Md8nR3wz1GsukVjP+b3UJ9jH7GqWHV84y5WFauOcux39Trbewd8reGHOvvFXNsCkeaFP/eLdhVtNReOOoZfVn2PffNLqZ78RXWifu17fHZ17Jv6Tzva2rvIBX6bvlY59i3Pf37W+K3z3EP/6nncryS5f0afvObXNPYdz3Gd3dDYj/k6O9Sf4yra8h7a3NiP+T3U59hHrNpnzLS2cw/9q+dxF6uKVUc59rt8nbUG9m661Tw+azn2eWZ/DdpIW81tE18vcL5t1/fYf5bkSa31xany10lOl+2aPsf+o66G6uyWzL0Fzr2NVjn223TuvvX5vR805/iROrsl7TDJXinlyhrP37fBvO5cZ39kE2M/5uvsKvUdL73hPfQjYtX1Eqv2R6zaD7FqfwbzunOd/RGx6hIksHfTzSTT2r62zVHyZu2cTbR1vdb6ZM5z7YLexr65MOxn9gvrR2qtB3XBNaq2UN+v+/229pu1p3Z9XcFVjv02nbtvfX7vHyV53hH4vzhRZ1cN6XXnOvuDtY696+xK9X3NPsl76Adi1fXq+3UvVhWrbppYtT9Det25zv5ArLoECezd9FF+WKT9tGnz+It1t1VKuZ/kN3OeZ1f0OfbHmyE8K6VMSik3SimfNEHpGPQ29rXWw8wuRo9LKacvFp/lx5vl7KJVjv02nbtvfX7vh805pmdX21mDeN25zr5l2jyua+zHfp1dJbFqf8Sq/RGr9kes2g+xan8G8bpznX3LtHkUq16ABPZumqyozoXbav7S+XXHX5122WRFdS7S1n7zuJfZJi0vkjxKcrclUN1FkxXVuWhbNzO7IH1SSvm+uVA8TnLQcvvOrpmsqM62nbtvkxXVWVit9W6t9afNbcenHc90abttbldMVlTnwlxnl65zEWO/zq7SZEV1LtyW99DSdS7S1tjfQ5MV1bloW2LV5ets27n7NllRnYWJVft/3bnOLl3nInb6OiuBvbumHeXHfwm6tOa2DkZ2m8hJ047ydY/9pHn8Za31t7XWo1rrtNZ6kOSjXfiFNYdpR/naX/dN4P9+ZrNbJvnhtp2uv77ummlH+UXGfpvO3bdpR3kv33vz1/39tK+7tmumHeWbGnvX2bete+wnzeOYr7OrNO0oF6uu37SjXKy6ftOOcrHq+k07ysWq6zXtKBerrt+0o1ysun7TjnKx6hIksMdrsq62Sim/TnJ3he3vmsma23raUvZ5ZrMtdnmjinlM1tVWKWWS5HeZ3bZzPMPlRpLvjHuSfmeW9Hnuvk02fL7HmX0w/tMNn3eIJutq2HX2XJM1t+86uxmTdbXlPXSuyZrb8h7qNllXW2LVc01Geu6+TTZ8PrHqDybrath19lyTNbe/k9dZCezdNekoP/5Lz3QdbTVvhq4F68di0lG+1rE/1qxxd9rxX5f3W47tkklH+bpf95MkXyS5W2s9bP7S/H6Sh007XzR1dtmko/wiY79N5+7bpKN84997s8bdJMnVkVwDJh3lax1719kkPb/uR36dXaVJR7lYdf0mHeVi1fWbdJSLVddv0lEuVl2vSUe5WHX9Jh3lYtX1m3SUi1WXIIG9m6Zz1Jn3VrFF2zqotT6cs+1dNJ2jzrrGfp7dw3d1g5Ck37H/XZLPT66xduJWnZuZXcA+mfPc22g6R5113Z7a57n7Np2jzka+92Yn7f2M5wPBdI466xp719nzrWvsx36dXaXpHHXEqusxnaOOWHU9pnPUEauux3SOOmLV1ZvOUUesuh7TOeqIVddjOkcdseoFvNt3B1iLZ+n+q8rx7qPPV91Wc1H4qNkMpM2tUsqlJKm17upO172MfeNFkr1SyuSMi/I8v9C2VZ9jfyMdt0jVWp+UUh5miy8Uc1jl2G/Tufs2iO+9lLKfWaB6dd3nGpBext51Nkm/r/uxX2dXSazaH7Fqf8Sq/RGr9mMQ37tY9S1i1fUSq66JGdi7qeuXRfLDG6btloKl2qq1Pqm1Xq213jz5lR/Wl3p0omxX9TL2jaenjp00aR6/nvPc26jPsZ/m7HWsXmWLLxRzWOXYb9O5+9b7997cInhQa71+qnxSStnlmVy9jL3rbJJ+X/djv86ukli1P2LV/ohV+yNW7Ufv37tYtZVYdb3Eqmsigb2bHiVv/vp12s0khydvHzvW7Mi7krZGrLexb27Tmab9r33Xkxzt+C7Afb7uHyX55Rl9u57Zpgm7apVjv5Fz74g+x/24nYOOAHQ/u/1BuNexH7next51dqXEqv0Rq/ZHrNofsWo/xKr9Eav2R6y6LrVWXzv4ldkaZq9OlV3J7K/rk5b6z5PUJFeWbavl+XtN20/7HpddH/vMflF9n2TvVP3v29rfta+ex/55kl+3lH+W5JO+x2abxv5UvVdJvl/luXfpq69xz+wv+K8y+yv/4xNfT5uvH/0e2sWvPl/zLc9xnd3c75tRX2eH+nNc9jrgPSRWHcnYi1XFqqMZ94hVe33NtzzHdVasuvSXNbB3VK31YSnlqFl76Osk7+XsHXcPm+NvHbtAW0ne3K5zL7M3S5Lsl1KeZvZXn4MLfWNboM+xr7UellL+JMn9Uspx8esk75/1s9oVPY/91VLKr5vX+DQ/bMzwWa31xen6u2aVY19K+XVm6zDuNV8ppbzKbE2vo1rrj9ZwvOjvqF3Q47h/cbJeR992eVZLr6/5E89znd3875tRX2dXSazaH7Fqf8Sq/RGr9kOs2h+xan/EqutRmmw8AAAAAAAMijWwAQAAAAAYJAlsAAAAAAAGSQIbAAAAAIBBksAGAAAAAGCQJLABAAAAABgkCWwAAAAAAAZJAhsAAAAAgEGSwAYAAAAAYJAksAEAAAAAGCQJbAAAAAAABkkCG4CVKaVMSilPSynPSylXFnzuZ4s+BwAAtoVYGeBiJLABWJla67TWej3JJMkXpZTJAk+/dPyPBZ8HAACDJ1YGuBgJbADW4bPMAvNPzqrUzCR52gThR0mmpZT9JN+ZYQIAwI4SKwMsoNRa++4DADumCbK/T3JUa/2Dc+reSHLQ/Peoebxfaz3qeAoAAGwtsTLAYszABmDlaq3TJIdJ9s6bHVJrfZLkcZKPkuwl+UxADgDArhIrAyxGAhuAdXncPP6yq0IpZb+U8iqzWygfJrmb5P6JWyUBAGAXiZUB5iSBDcC6PGoez1rbb5LkZq31t82/02xs8zgnNqoBAIAdI1YGmJMENgBrceLWyEnXrZG11ie11hfNfy81X6m1PnRrJAAAu0qsDDA/CWwA1umz5vHgzFozd5M8W2NfAABgSMTKAHMotda++wDADiul1CTTWutP++4LAAAMiVgZ4HxmYAOwNqWU/eafkxP/BgCA0RMrA8xHAhuAtWjW8ruf5GZTNM+tkQAAsPPEygDzs4QIACvXBOSPk1yttU5LKd8nmdRaS89dAwCAXomVARZjBjYAK9UE5F8kudnsrp4kj5pjN/rqFwAA9E2sDLA4CWwAVqYJyJ8n+dNa64sThx43j7/cfK8AAKB/YmWAi7GECAArcWI2ycNa692W426NBABglMTKABdnBjYASzsRkD9rC8gbbo0EAGB0xMoAyzEDG4CllFL2MrsV8nWt9Q/OqHd8y+RhrfX6pvoHAAB9ESsDLM8MbACWtZ/kdZKrZ1Vq1vl7mGS/CeQBAGDXiZUBlmQGNgAAAAAAg2QGNgAAAAAAgySBDQAAAADAIElgAwAAAAAwSBLYAAAAAAAMkgQ2AAAAAACDJIENAAAAAMAgSWADAAAAADBIEtgAAAAAAAySBDYAAAAAAIMkgQ0AAAAAwCBJYAMAAAAAMEgS2AAAAAAADJIENgAAAAAAgySBDQAAAADAIElgAwAAAAAwSBLYAAAAAAAMkgQ2AAAAAACDJIENAAAAAMAgSWADAAAAADBI/x88S5zaDZAJMwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 728, + "width": 728 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10, 10), constrained_layout=True)\n", + "plt.subplot(2,2, 1)\n", + "plt.title('$min(\\lambda^*_B)$')\n", + "lamstar_histogram(S.B_lam.min(axis=1), S.sim_sizes)\n", + "for i, (field, title) in enumerate([(S.orig_lam, '$\\lambda^{*}$'), (S.twb_min_lam, '$min(\\lambda^*_b)$'), (S.twb_mean_lam, '$mean(\\lambda^*_b)$')]):\n", + " plt.subplot(2,2,i + 2)\n", + " plt.title(title)\n", + " lamstar_histogram(field, S.sim_sizes)\n", + "plt.show()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scratch" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Resimulation" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0\n", + "count 34476.000000\n", + "mean 1160.053370\n", + "std 564.423262\n", + "min 1000.000000\n", + "25% 1000.000000\n", + "50% 1000.000000\n", + "75% 1000.000000\n", + "max 8000.000000\n", + " 0\n", + "count 34476.000000\n", + "mean 0.006419\n", + "std 0.002901\n", + "min 0.000561\n", + "25% 0.004503\n", + "50% 0.004715\n", + "75% 0.010948\n", + "max 0.011460\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "friends = np.where(bootstrap_cvs[:,0] < 0.045)[0]\n", + "print(pd.DataFrame(sim_sizes[friends]).describe())\n", + "print(pd.DataFrame(pointwise_target_alpha[friends]).describe())" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "seed = 0\n", + "src_key = jax.random.PRNGKey(seed)\n", + "key1, key2, key3 = jax.random.split(src_key, 3)\n", + "\n", + "unifs = jax.random.uniform(key=key1, shape=(adap.max_sim_size,) + lei_obj.unifs_shape(), dtype=jnp.float32)\n", + "unifs_order = jnp.arange(0, unifs.shape[1])\n", + "nB_global = 30\n", + "nB_tile = 40\n", + "bootstrap_idxs = {\n", + " K: jnp.concatenate((\n", + " jnp.arange(K)[None, :],\n", + " jax.random.choice(key2, K, shape=(nB_global, K), replace=True),\n", + " jax.random.choice(key3, K, shape=(nB_tile, K), replace=True)\n", + " )).astype(jnp.int32)\n", + " for K in (adap.init_K * 2 ** np.arange(0, adap.n_sim_double + 1))\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hi\n" + ] + } + ], + "source": [ + "print('hi')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tuning for 1000 simulations with 3 tiles and batch size (4, 1000)\n" + ] + } + ], + "source": [ + "which = friends[:4]\n", + "lamstar = lts.bootstrap_tune_runner(\n", + " lei_obj,\n", + " sim_sizes[which],\n", + " pointwise_target_alpha[which],\n", + " g.theta_tiles[which],\n", + " g.null_truth[which],\n", + " unifs,\n", + " bootstrap_idxs,\n", + " unifs_order,\n", + " grid_batch_size=4\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "stats = np.random.rand(3, 1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3, 71)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from confirm.lewislib import batch\n", + "grid_batch_size=4\n", + "def printer(x, y, z):\n", + " print(x.shape, y.shape, z.shape)\n", + " return 0\n", + "tunev = jax.jit(jax.vmap(jax.vmap(lts.tune, in_axes=(None, 0, None)), in_axes=(0, None, 0)))\n", + "batched_tune = batch.batch(\n", + " batch.batch(tunev, 10, in_axes=(None, 0, None), out_axes=(1,)),\n", + " grid_batch_size, in_axes=(0, None, 0)\n", + ")\n", + "batched_tune(stats, bootstrap_idxs[1000], np.array([0.025, 0.025, 0.025])).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(71, 1000)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bootstrap_idxs[1000].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(71,)" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "batch.batch(lts.tunev, 10, in_axes=(None, 0, None))(stats[0], bootstrap_idxs[1000], 0.025).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3, 71)" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tunev(stats, bootstrap_idxs[1000], np.full(3, 0.025)).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(71, 1000)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bootstrap_idxs[1000].shape" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scratch" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9cb271fa", + "metadata": {}, + "outputs": [ + { + "ename": "", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31mRunning cells with 'Python 3.9.6 64-bit' requires ipykernel package.\n", + "\n", + "\u001b[1;31mRun the following command to install 'ipykernel' into the Python environment. \n", + "\n", + "\u001b[1;31mCommand: '/usr/bin/python3 -m pip install ipykernel -U --user --force-reinstall'" + ] + } + ], + "source": [ + "# typeI_sum = batched_rej(\n", + "# sim_sizes,\n", + "# (np.full(sim_sizes.shape[0], overall_cv),\n", + "# g.theta_tiles,\n", + "# g.null_truth,),\n", + "# unifs,\n", + "# unifs_order,\n", + "# )\n", + "\n", + "# savedata = [\n", + "# g,\n", + "# sim_sizes,\n", + "# bootstrap_cvs,\n", + "# typeI_sum,\n", + "# hob_upper,\n", + "# pointwise_target_alpha\n", + "# ]\n", + "# with open(f\"{name}/final.pkl\", \"wb\") as f:\n", + "# pickle.dump(savedata, f)\n", + "\n", + "# # Calculate actual type I errors?\n", + "# typeI_est, typeI_CI = binomial.zero_order_bound(\n", + "# typeI_sum, sim_sizes, delta_validate, 1.0\n", + "# )\n", + "# typeI_bound = typeI_est + typeI_CI\n", + "\n", + "# hob_upper = binomial.holder_odi_bound(\n", + "# typeI_bound, g.theta_tiles, g.vertices, n_arm_samples, holderq\n", + "# )\n", + "# sim_cost = typeI_CI\n", + "# hob_empirical_cost = hob_upper - typeI_bound\n", + "# worst_idx = np.argmax(typeI_est)\n", + "# worst_tile = g.theta_tiles[worst_idx]\n", + "# typeI_est[worst_idx], worst_tile\n", + "# worst_cv_idx = np.argmin(sim_cvs)\n", + "# typeI_est[worst_cv_idx], sim_cvs[worst_cv_idx], g.theta_tiles[worst_cv_idx], pointwise_target_alpha[worst_cv_idx]\n", + "# plt.hist(typeI_est, bins=np.linspace(0.02,0.025, 100))\n", + "# plt.show()\n", + "\n", + "# theta_0 = np.array([-1.0, -1.0, -1.0]) # sim point\n", + "# v = 0.1 * np.ones(theta_0.shape[0]) # displacement\n", + "# f0 = 0.01 # Type I Error at theta_0\n", + "# fwd_solver = ehbound.ForwardQCPSolver(n=n_arm_samples)\n", + "# q_opt = fwd_solver.solve(theta_0=theta_0, v=v, a=f0) # optimal q\n", + "# ehbound.q_holder_bound_fwd(q_opt, n_arm_samples, theta_0, v, f0)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.5 ('confirm')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.5" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "b4c6ec5b2d6c7b38df115d547b82cd53ca25eea58d87299956d35a9dc79f19f1" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/research/adagrid/inspector.md b/research/adagrid/inspector.md new file mode 100644 index 00000000..ae022bb2 --- /dev/null +++ b/research/adagrid/inspector.md @@ -0,0 +1,318 @@ +--- +jupyter: + jupytext: + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.8 + kernelspec: + display_name: Python 3.10.5 ('confirm') + language: python + name: python3 +--- + +```python +import confirm.outlaw.nb_util as nb_util +nb_util.setup_nb() + +import pickle +import matplotlib.pyplot as plt +import numpy as np +import jax.numpy as jnp +import jax +# Run on CPU because a concurrent process is probably running on GPU. +jax.config.update('jax_platform_name', 'cpu') + +import confirm.mini_imprint.lewis_drivers as lts +from confirm.lewislib import lewis + +import adastate +from criterion import Criterion +from diagnostics import lamstar_histogram +``` + +```python +name = '4d' +params = { + "n_arms": 4, + "n_stage_1": 50, + "n_stage_2": 100, + "n_stage_1_interims": 2, + "n_stage_1_add_per_interim": 100, + "n_stage_2_add_per_interim": 100, + "stage_1_futility_threshold": 0.15, + "stage_1_efficacy_threshold": 0.7, + "stage_2_futility_threshold": 0.2, + "stage_2_efficacy_threshold": 0.95, + "inter_stage_futility_threshold": 0.6, + "posterior_difference_threshold": 0, + "rejection_threshold": 0.05, + "key": jax.random.PRNGKey(0), + "n_table_pts": 20, + "n_pr_sims": 100, + "n_sig2_sims": 20, + "batch_size": int(2**12), + "cache_tables": f"./{name}/lei_cache.pkl", +} +lei_obj = lewis.Lewis45(**params) +``` + +```python +with open(f"./{name}/data_params.pkl", "rb") as f: + P, D = pickle.load(f) +load_iter = 'latest' +S, load_iter, fn = adastate.load(name, load_iter) +``` + +```python +cr = Criterion(lei_obj, P, S, D) +assert S.twb_max_lam[cr.twb_worst_tile] == np.min(S.twb_max_lam) +assert S.twb_min_lam[cr.twb_worst_tile] == np.min(S.twb_min_lam[cr.ties]) +``` + +```python +idxs = cr.dangerous[:10] +alpha0_new = adastate.AdaRunner(P, lei_obj).batched_invert_bound( + S.g.theta_tiles[idxs], S.g.vertices(idxs) +) +alpha0_new +``` + +## 11/1/2022 + +```python +import pandas as pd +``` + +```python +# orderer = combined_mean_idx + inflation * (combined_min_idx - combined_mean_idx) +# orderer = S.twb_mean_lam + inflation * (S.twb_min_lam - S.twb_mean_lam) +# orderer[S.twb_mean_lam >= 0.3] = 1.0 +# def explore_orderer(): +# sorted_ordering = np.argsort(orderer) +# sorted_orderer = orderer[sorted_ordering] +# print(S.db.data[sorted_ordering[:10], S.db.slices['twb_min_lam']]) +# print(S.db.data[sorted_ordering[:10], S.db.slices['twb_mean_lam']]) +# print(S.db.data[sorted_ordering[:1000000], S.db.slices['twb_min_lam']].max()) +``` + +```python +from IPython.display import display +def tile_report(idxs): + return pd.DataFrame( + dict( + order_idx=np.searchsorted(cr.sorted_orderer, cr.orderer[idxs]), + twb_min_lam_idx=np.searchsorted(cr.sorted_orderer, S.twb_min_lam[idxs]), + orderer=cr.orderer[idxs], + B_lams_min=S.B_lam[idxs].min(axis=1), + twb_min_lam=S.twb_min_lam[idxs], + twb_mean_lam=S.twb_mean_lam[idxs], + twb_max_lam=S.twb_max_lam[idxs], + orig_lam=S.orig_lam[idxs], + sim_size=S.sim_sizes[idxs], + alpha0=S.alpha0[idxs], + alpha_cost=cr.alpha_cost[idxs] + ) + ) +rpt = tile_report(cr.B_lamss_idx) +rpt['B_lamss'] = cr.B_lamss +rpt.sort_values('B_lamss') +``` + +```python +display(tile_report([cr.twb_worst_tile])) +cr.twb_worst_tile_lam_min, cr.twb_worst_tile_lam_mean, cr.twb_worst_tile_lam_max +``` + +```python +tile_report(cr.dangerous) +``` + +```python +tile_report(cr.refine_dangerous)['sim_size'].min() +``` + +```python +overall_rpt = tile_report(S.orig_lam.argsort()[:1000]) +overall_rpt +``` + +```python +print('overall_lam', cr.overall_lam) +B_min = S.B_lam.min(axis=1) +bias_bad = B_min < cr.overall_lam +print('n bias bad', np.sum(bias_bad)) +n_critical = np.sum((S.orig_lam < cr.overall_lam + 0.01)) +n_loose = np.sum( + (S.orig_lam < cr.overall_lam + 0.01) + & (P.alpha_target - S.alpha0 > P.grid_target) +) +print(f"number of tiles near critical: {n_critical}") +print(f" and with loose bounds {n_loose}") +# for i in range(10): +# dangerous = np.sum(cr.inflated_min_lam[bias_bad] < cr.overall_lam) +# collateral = np.sum(cr.inflated_min_lam < cr.overall_lam) +# print(f'inflation factor {i}') +# print(f' dangerous tiles caught: {dangerous}') +# print(f' collateral tiles caught: {collateral}') + +print('lambda**B', cr.B_lamss) +total_effort = np.sum(S.sim_sizes) +for K in np.unique(S.sim_sizes): + sel = S.sim_sizes == K + count = np.sum(sel) + print(f"K={K}:") + print(f' count={count / 1e6:.3f}m') + print(f' lambda**B[K]={S.B_lam[sel].min(axis=0)}') + print(f' min lambda*B[K]={np.min(S.B_lam[sel].min(axis=1)):.4f}') + print(f' min lambda*b[K]={np.min(S.twb_min_lam[sel]):.4f}') + effort = K * count / total_effort + print(f' % effort={100 * effort:.4f}') +``` + +```python +plt.figure(figsize=(10, 10), constrained_layout=True) +plt.subplot(2,2, 1) +plt.title('$min(\lambda^*_B)$') +lamstar_histogram(S.B_lam.min(axis=1), S.sim_sizes) +for i, (field, title) in enumerate([(S.orig_lam, '$\lambda^{*}$'), (S.twb_min_lam, '$min(\lambda^*_b)$'), (S.twb_mean_lam, '$mean(\lambda^*_b)$')]): + plt.subplot(2,2,i + 2) + plt.title(title) + lamstar_histogram(field, S.sim_sizes) +plt.show() +``` + +## Scratch + + +## Resimulation + +```python +import pandas as pd +friends = np.where(bootstrap_cvs[:,0] < 0.045)[0] +print(pd.DataFrame(sim_sizes[friends]).describe()) +print(pd.DataFrame(pointwise_target_alpha[friends]).describe()) +``` + +```python +seed = 0 +src_key = jax.random.PRNGKey(seed) +key1, key2, key3 = jax.random.split(src_key, 3) + +unifs = jax.random.uniform(key=key1, shape=(adap.max_sim_size,) + lei_obj.unifs_shape(), dtype=jnp.float32) +unifs_order = jnp.arange(0, unifs.shape[1]) +nB_global = 30 +nB_tile = 40 +bootstrap_idxs = { + K: jnp.concatenate(( + jnp.arange(K)[None, :], + jax.random.choice(key2, K, shape=(nB_global, K), replace=True), + jax.random.choice(key3, K, shape=(nB_tile, K), replace=True) + )).astype(jnp.int32) + for K in (adap.init_K * 2 ** np.arange(0, adap.n_sim_double + 1)) +} +``` + +```python +print('hi') +``` + +```python +which = friends[:4] +lamstar = lts.bootstrap_tune_runner( + lei_obj, + sim_sizes[which], + pointwise_target_alpha[which], + g.theta_tiles[which], + g.null_truth[which], + unifs, + bootstrap_idxs, + unifs_order, + grid_batch_size=4 +) +``` + +```python +stats = np.random.rand(3, 1000) +``` + +```python +from confirm.lewislib import batch +grid_batch_size=4 +def printer(x, y, z): + print(x.shape, y.shape, z.shape) + return 0 +tunev = jax.jit(jax.vmap(jax.vmap(lts.tune, in_axes=(None, 0, None)), in_axes=(0, None, 0))) +batched_tune = batch.batch( + batch.batch(tunev, 10, in_axes=(None, 0, None), out_axes=(1,)), + grid_batch_size, in_axes=(0, None, 0) +) +batched_tune(stats, bootstrap_idxs[1000], np.array([0.025, 0.025, 0.025])).shape +``` + +```python +bootstrap_idxs[1000].shape +``` + +```python +batch.batch(lts.tunev, 10, in_axes=(None, 0, None))(stats[0], bootstrap_idxs[1000], 0.025).shape +``` + +```python +tunev(stats, bootstrap_idxs[1000], np.full(3, 0.025)).shape +``` + +```python +bootstrap_idxs[1000].shape +``` + +## Scratch + +```python +# typeI_sum = batched_rej( +# sim_sizes, +# (np.full(sim_sizes.shape[0], overall_cv), +# g.theta_tiles, +# g.null_truth,), +# unifs, +# unifs_order, +# ) + +# savedata = [ +# g, +# sim_sizes, +# bootstrap_cvs, +# typeI_sum, +# hob_upper, +# pointwise_target_alpha +# ] +# with open(f"{name}/final.pkl", "wb") as f: +# pickle.dump(savedata, f) + +# # Calculate actual type I errors? +# typeI_est, typeI_CI = binomial.zero_order_bound( +# typeI_sum, sim_sizes, delta_validate, 1.0 +# ) +# typeI_bound = typeI_est + typeI_CI + +# hob_upper = binomial.holder_odi_bound( +# typeI_bound, g.theta_tiles, g.vertices, n_arm_samples, holderq +# ) +# sim_cost = typeI_CI +# hob_empirical_cost = hob_upper - typeI_bound +# worst_idx = np.argmax(typeI_est) +# worst_tile = g.theta_tiles[worst_idx] +# typeI_est[worst_idx], worst_tile +# worst_cv_idx = np.argmin(sim_cvs) +# typeI_est[worst_cv_idx], sim_cvs[worst_cv_idx], g.theta_tiles[worst_cv_idx], pointwise_target_alpha[worst_cv_idx] +# plt.hist(typeI_est, bins=np.linspace(0.02,0.025, 100)) +# plt.show() + +# theta_0 = np.array([-1.0, -1.0, -1.0]) # sim point +# v = 0.1 * np.ones(theta_0.shape[0]) # displacement +# f0 = 0.01 # Type I Error at theta_0 +# fwd_solver = ehbound.ForwardQCPSolver(n=n_arm_samples) +# q_opt = fwd_solver.solve(theta_0=theta_0, v=v, a=f0) # optimal q +# ehbound.q_holder_bound_fwd(q_opt, n_arm_samples, theta_0, v, f0) +``` diff --git a/research/adagrid/lewis_ada.ipynb b/research/adagrid/lewis_ada.ipynb new file mode 100644 index 00000000..e58034b6 --- /dev/null +++ b/research/adagrid/lewis_ada.ipynb @@ -0,0 +1,560 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f5a35c87", + "metadata": {}, + "source": [ + "Tuning inside Adagrid is a scary thing to do. This document is a summary of the various problems I've run into. \n", + "\n", + "First, some basics. We have three different groups of thresholds. $i$ is a tile index, $j$ is a bootstrap index.\n", + "1. The original sample, $\\lambda^*_i$ and it's grid-wise minimum $\\lambda^{**}$. \n", + "2. $N_B$ global bootstraps $\\lambda_{i, B_j}^*$ and their grid-wise minima $\\lambda_{B_j}^{**}$. In the code, info regarding these bootstraps is prefixed with `B_`.\n", + "3. $N_b$ tile-wise investigation bootstraps $\\lambda_{i, b_j}^*$ and their tile-wise minima $\\lambda_{i}^{**}$. In the code, info regarding these bootstraps is prefixed with `twb_` standing for \"tile-wise bootstrap\". \n", + "\n", + "For each of these tuning problems, we tune at TIE level $\\alpha_0 = \\alpha - C_{\\alpha}$ where $C_{\\alpha}$ is the TIE consumed by continuous simulation extension. The C stands for \"cost\" and in the code this is called `alpha_cost`. \n", + "\n", + "The different problems I've run into so far:\n", + "- impossible tuning. This occurs when $\\alpha_0 < 2 / (K+1)$ . In this situation, we can't tune because there are too few test statistics. We need to either run more simulations (increase $K$) or refine (increase $\\alpha_0$). \n", + "- it's possible to have a tile where the twb_min_lam is large... like 1 but B_lam is small like 0.015. \n", + "\t- these tiles have too much variance, but there's no way to detect them because our tilewise bootstrap didn't turn up any evidence of danger. \n", + "\t- it's not possible to completely remove this possibility because there's always some randomness.\n", + "\t- this partially suggests i'm using a baseline of too few simulations or too large tiles. this is fixable. I bumped up the baseline K to 4096.\n", + "\t- another option would be to use a new bootstrap in some way to get a new sample?\n", + "- part of the problem is tiles for which $\\alpha_0$ is super small and so the tuning result is like index 2 of the batch which will of course result in a high variance. the simple thing to do is to make $\\alpha_0$ larger. is there a smooth way to do this?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "def6611d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/conda/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import confirm.outlaw.nb_util as nb_util\n", + "\n", + "nb_util.setup_nb(pretty=True)\n", + "\n", + "import gc\n", + "import psutil\n", + "import time\n", + "import jax\n", + "import os\n", + "import re\n", + "import pickle\n", + "import numpy as np\n", + "import jax.numpy as jnp\n", + "import scipy.spatial\n", + "import matplotlib.pyplot as plt\n", + "from confirm.mini_imprint import grid\n", + "from confirm.lewislib import grid as lewgrid\n", + "from confirm.lewislib import lewis, batch\n", + "from confirm.mini_imprint import binomial, checkpoint\n", + "\n", + "import confirm.mini_imprint.lewis_drivers as lts\n", + "\n", + "from rich import print as rprint\n", + "\n", + "# Configuration used during simulation\n", + "name = \"4d_full\"\n", + "params = {\n", + " \"n_arms\": 4,\n", + " \"n_stage_1\": 50,\n", + " \"n_stage_2\": 100,\n", + " \"n_stage_1_interims\": 2,\n", + " \"n_stage_1_add_per_interim\": 100,\n", + " \"n_stage_2_add_per_interim\": 100,\n", + " \"stage_1_futility_threshold\": 0.15,\n", + " \"stage_1_efficacy_threshold\": 0.7,\n", + " \"stage_2_futility_threshold\": 0.2,\n", + " \"stage_2_efficacy_threshold\": 0.95,\n", + " \"inter_stage_futility_threshold\": 0.6,\n", + " \"posterior_difference_threshold\": 0,\n", + " \"rejection_threshold\": 0.05,\n", + " \"key\": jax.random.PRNGKey(0),\n", + " \"n_table_pts\": 20,\n", + " \"n_pr_sims\": 100,\n", + " \"n_sig2_sims\": 20,\n", + " \"batch_size\": int(2**12),\n", + " \"cache_tables\": f\"./{name}/lei_cache.pkl\",\n", + "}\n", + "\n", + "# Configuration used during simulation\n", + "# name = \"3d_smaller2\"\n", + "# params = {\n", + "# \"n_arms\": 3,\n", + "# \"n_stage_1\": 50,\n", + "# \"n_stage_2\": 100,\n", + "# \"n_stage_1_interims\": 2,\n", + "# \"n_stage_1_add_per_interim\": 100,\n", + "# \"n_stage_2_add_per_interim\": 100,\n", + "# \"stage_1_futility_threshold\": 0.15,\n", + "# \"stage_1_efficacy_threshold\": 0.7,\n", + "# \"stage_2_futility_threshold\": 0.2,\n", + "# \"stage_2_efficacy_threshold\": 0.95,\n", + "# \"inter_stage_futility_threshold\": 0.6,\n", + "# \"posterior_difference_threshold\": 0,\n", + "# \"rejection_threshold\": 0.05,\n", + "# \"key\": jax.random.PRNGKey(0),\n", + "# \"n_table_pts\": 20,\n", + "# \"n_pr_sims\": 100,\n", + "# \"n_sig2_sims\": 20,\n", + "# \"batch_size\": int(2**12),\n", + "# \"cache_tables\": f\"./{name}/lei_cache.pkl\",\n", + "# }" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e2320d2d", + "metadata": {}, + "outputs": [], + "source": [ + "n_arms = params[\"n_arms\"]\n", + "ns = np.concatenate(\n", + " [np.ones(n_arms - 1)[:, None], -np.eye(n_arms - 1)],\n", + " axis=-1,\n", + ")\n", + "null_hypos = [grid.HyperPlane(n, 0) for n in ns]\n", + "symmetry = []\n", + "for i in range(n_arms - 2):\n", + " n = np.zeros(n_arms)\n", + " n[i + 1] = 1\n", + " n[i + 2] = -1\n", + " symmetry.append(grid.HyperPlane(n, 0))\n", + "\n", + "theta_min = -1.0\n", + "theta_max = 1.0\n", + "init_grid_size = 8\n", + "theta, radii = grid.cartesian_gridpts(\n", + " np.full(n_arms, theta_min),\n", + " np.full(n_arms, theta_max),\n", + " np.full(n_arms, init_grid_size),\n", + ")\n", + "g_raw = grid.build_grid(theta, radii)\n", + "g = grid.build_grid(\n", + " theta, radii, null_hypos=null_hypos, symmetry_planes=symmetry, should_prune=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4d9f1af6", + "metadata": {}, + "outputs": [], + "source": [ + "import adastate\n", + "from criterion import Criterion\n", + "\n", + "lei_obj = lewis.Lewis45(**params)\n", + "n_arm_samples = int(lei_obj.unifs_shape()[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "565d6dfc", + "metadata": {}, + "outputs": [], + "source": [ + "# P = adastate.AdaParams(\n", + "# init_K=2**11,\n", + "# n_K_double=8,\n", + "# alpha_target=0.025,\n", + "# grid_target=0.002,\n", + "# bias_target=0.002,\n", + "# nB_global=50,\n", + "# nB_tile=50,\n", + "# step_size=2**14,\n", + "# tuning_min_idx=20\n", + "# )\n", + "# D = adastate.init_data(P, lei_obj, 0)\n", + "fp = f\"./{name}/data_params.pkl\"\n", + "# adastate.save(fp, (P, D))\n", + "with open(fp, 'rb') as f:\n", + " P, D = pickle.load(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f826d317", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loading checkpoint 4d_full/2084.pkl\n" + ] + } + ], + "source": [ + "load_iter = 'latest'\n", + "S, load_iter, fn = adastate.load(name, load_iter)\n", + "if S is None:\n", + " print('initializing')\n", + " S = adastate.init_state(P, g)\n", + "S.todo[0] = True\n", + "S.db.data = S.db.data.astype(np.float32)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "5a390112", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10.276984224, 16.054652928)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(\n", + " S.db.data.nbytes +\n", + " S.todo.nbytes + \n", + " S.sim_sizes.nbytes + \n", + " S.g.thetas.nbytes +\n", + " S.g.radii.nbytes + \n", + " S.g.null_truth.nbytes +\n", + " S.g.grid_pt_idx.nbytes +\n", + " D.unifs.nbytes + \n", + " sum([v.nbytes for v in D.bootstrap_idxs.values()]) + \n", + " sum([t.nbytes for t in lei_obj.pd_table.tables]) + \n", + " sum([t.nbytes for t in lei_obj.pr_best_pps_1_table.tables]) +\n", + " sum([t.nbytes for t in lei_obj.pps_2_table.tables])\n", + ") / 1e9, psutil.Process(os.getpid()).memory_info().rss / 1e9" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "168abda6", + "metadata": {}, + "outputs": [], + "source": [ + "with open('4d_full/storage_0.06375528470923503.pkl', 'rb') as f:\n", + " S_load = pickle.load(f) " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "39c4566e", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_8659/3676984174.py:14: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\n", + "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n", + " ), dtype=np.bool),\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "19215962\n" + ] + }, + { + "data": { + "text/plain": [ + "514" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# keep_thresh = 0.075\n", + "# keep1 = S.twb_min_lam < keep_thresh\n", + "# keep2 = S_load.twb_min_lam < keep_thresh\n", + "\n", + "# S_store = adastate.AdaState(\n", + "# grid.concat_grids(grid.index_grid(S.g, ~keep1), grid.index_grid(S_load.g, ~keep2)),\n", + "# np.concatenate((\n", + "# S.sim_sizes[~keep1],\n", + "# S_load.sim_sizes[~keep2]\n", + "# ), dtype=np.int32),\n", + "# np.concatenate((\n", + "# S.todo[~keep1],\n", + "# S_load.todo[~keep2]\n", + "# ), dtype=bool),\n", + "# adastate.TileDB(\n", + "# np.concatenate((\n", + "# S.db.data[~keep1],\n", + "# S_load.db.data[~keep2]\n", + "# ), dtype=np.float32),\n", + "# S.db.slices\n", + "# )\n", + "# )\n", + "# print(S_store.g.n_tiles)\n", + "# adastate.save(f\"./{name}/storage_{keep_thresh}.pkl\", S_store)\n", + "# del S_store\n", + "# gc.collect()\n", + "\n", + "# print('keeping', np.sum(keep1) + np.sum(keep2))\n", + "# S_keep = adastate.AdaState(\n", + "# grid.concat_grids(grid.index_grid(S.g, keep1), grid.index_grid(S_load.g, keep2)),\n", + "# np.concatenate((\n", + "# S.sim_sizes[keep1],\n", + "# S_load.sim_sizes[keep2]\n", + "# ), dtype=np.int32),\n", + "# np.concatenate((\n", + "# S.todo[keep1],\n", + "# S_load.todo[keep2]\n", + "# ), dtype=np.bool),\n", + "# adastate.TileDB(\n", + "# np.concatenate((\n", + "# S.db.data[keep1],\n", + "# S_load.db.data[keep2]\n", + "# ), dtype=np.float32),\n", + "# S.db.slices\n", + "# )\n", + "# )\n", + "# S = S_keep\n", + "# S.todo[0] = True\n", + "# gc.collect()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5f4e842a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "starting iteration 2085 with 19925 tiles to process\n", + "runtime prediction: inf\n", + "tuning for 2048 simulations with 3787 tiles and batch size (64, 1024)\n", + "tuning for 4096 simulations with 3853 tiles and batch size (64, 1024)\n", + "tuning for 8192 simulations with 5777 tiles and batch size (64, 1024)\n", + "tuning for 16384 simulations with 3208 tiles and batch size (64, 1024)\n", + "tuning for 32768 simulations with 766 tiles and batch size (64, 1024)\n", + "tuning for 65536 simulations with 1104 tiles and batch size (64, 1024)\n", + "tuning for 131072 simulations with 1414 tiles and batch size (64, 1024)\n", + "tuning for 524288 simulations with 16 tiles and batch size (64, 1024)\n", + "step took 211.85s\n", + "checkpointing took 0.00s\n", + "tuning for 524288 simulations with 1 tiles and batch size (1, 16384)\n", + "criterion took 37.89s\n" + ] + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'overall_lam': '0.06309',\n",
+       "    'lam_std': '0.0076',\n",
+       "    'grid_cost': '0.00119',\n",
+       "    'bias': '0.00612',\n",
+       "    'total_slack': '0.00731',\n",
+       "    'n_tiles': 17377245,\n",
+       "    'n_refine': 112,\n",
+       "    'n_refine_impossible': 0,\n",
+       "    'n_moresims': 16272,\n",
+       "    'n_moresims_impossible': 0,\n",
+       "    'min(twb_min_lam)': '0.04999',\n",
+       "    'min(twb_mean_lam)': '0.06531',\n",
+       "    'min(twb_max_lam)': '0.06683',\n",
+       "    'twb_min_lam < min(twb_mean_lam)': 4147856,\n",
+       "    'twb_min_lam < min(twb_max_lam)': 7654102,\n",
+       "    'max(twb_min_lam[dangerous])': '0.06363',\n",
+       "    'overall priority': 94,\n",
+       "    'min(B_lamss)': 0.032007065,\n",
+       "    'min(B_lamss) priority': 7970800,\n",
+       "    'memory usage': '25353 MB',\n",
+       "    'memory usage per tile': '1530 B'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'overall_lam'\u001b[0m: \u001b[32m'0.06309'\u001b[0m,\n", + " \u001b[32m'lam_std'\u001b[0m: \u001b[32m'0.0076'\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.00119'\u001b[0m,\n", + " \u001b[32m'bias'\u001b[0m: \u001b[32m'0.00612'\u001b[0m,\n", + " \u001b[32m'total_slack'\u001b[0m: \u001b[32m'0.00731'\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m17377245\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;36m112\u001b[0m,\n", + " \u001b[32m'n_refine_impossible'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'n_moresims'\u001b[0m: \u001b[1;36m16272\u001b[0m,\n", + " \u001b[32m'n_moresims_impossible'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'min\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtwb_min_lam\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m: \u001b[32m'0.04999'\u001b[0m,\n", + " \u001b[32m'min\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtwb_mean_lam\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m: \u001b[32m'0.06531'\u001b[0m,\n", + " \u001b[32m'min\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtwb_max_lam\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m: \u001b[32m'0.06683'\u001b[0m,\n", + " \u001b[32m'twb_min_lam < min\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtwb_mean_lam\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m: \u001b[1;36m4147856\u001b[0m,\n", + " \u001b[32m'twb_min_lam < min\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtwb_max_lam\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m: \u001b[1;36m7654102\u001b[0m,\n", + " \u001b[32m'max\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtwb_min_lam\u001b[0m\u001b[32m[\u001b[0m\u001b[32mdangerous\u001b[0m\u001b[32m]\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m: \u001b[32m'0.06363'\u001b[0m,\n", + " \u001b[32m'overall priority'\u001b[0m: \u001b[1;36m94\u001b[0m,\n", + " \u001b[32m'min\u001b[0m\u001b[32m(\u001b[0m\u001b[32mB_lamss\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m: \u001b[1;36m0.032007065\u001b[0m,\n", + " \u001b[32m'min\u001b[0m\u001b[32m(\u001b[0m\u001b[32mB_lamss\u001b[0m\u001b[32m)\u001b[0m\u001b[32m priority'\u001b[0m: \u001b[1;36m7970800\u001b[0m,\n", + " \u001b[32m'memory usage'\u001b[0m: \u001b[32m'25353 MB'\u001b[0m,\n", + " \u001b[32m'memory usage per tile'\u001b[0m: \u001b[32m'1530 B'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "refinement took 16.37s\n", + "starting iteration 2086 with 18704 tiles to process\n", + "runtime prediction: 235.94\n", + "tuning for 2048 simulations with 2432 tiles and batch size (64, 1024)\n", + "tuning for 4096 simulations with 6492 tiles and batch size (64, 1024)\n", + "tuning for 8192 simulations with 1983 tiles and batch size (64, 1024)\n", + "tuning for 16384 simulations with 1728 tiles and batch size (64, 1024)\n", + "tuning for 32768 simulations with 3248 tiles and batch size (64, 1024)\n", + "keyboard interrupt, checkpointing before exiting\n", + "exiting\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [16], line 18\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mruntime prediction: \u001b[39m\u001b[39m{\u001b[39;00mpredicted_time\u001b[39m:\u001b[39;00m\u001b[39m.2f\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 17\u001b[0m start \u001b[39m=\u001b[39m time\u001b[39m.\u001b[39mtime()\n\u001b[0;32m---> 18\u001b[0m R\u001b[39m.\u001b[39;49mstep(P, S, D)\n\u001b[1;32m 19\u001b[0m cost_per_sim \u001b[39m=\u001b[39m (time\u001b[39m.\u001b[39mtime() \u001b[39m-\u001b[39m start) \u001b[39m/\u001b[39m total_effort\n\u001b[1;32m 20\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mstep took \u001b[39m\u001b[39m{\u001b[39;00mtime\u001b[39m.\u001b[39mtime() \u001b[39m-\u001b[39m start\u001b[39m:\u001b[39;00m\u001b[39m.2f\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39ms\u001b[39m\u001b[39m\"\u001b[39m)\n", + "File \u001b[0;32m/workspaces/confirmasaurus/research/adagrid/adastate.py:256\u001b[0m, in \u001b[0;36mAdaRunner.step\u001b[0;34m(self, P, S, D)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mstep\u001b[39m(\u001b[39mself\u001b[39m, P, S, D):\n\u001b[1;32m 249\u001b[0m S\u001b[39m.\u001b[39malpha0[S\u001b[39m.\u001b[39mtodo] \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mbatched_invert_bound(\n\u001b[1;32m 250\u001b[0m P\u001b[39m.\u001b[39malpha_target,\n\u001b[1;32m 251\u001b[0m S\u001b[39m.\u001b[39mg\u001b[39m.\u001b[39mtheta_tiles[S\u001b[39m.\u001b[39mtodo],\n\u001b[1;32m 252\u001b[0m S\u001b[39m.\u001b[39mg\u001b[39m.\u001b[39mvertices(S\u001b[39m.\u001b[39mtodo),\n\u001b[1;32m 253\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_arm_samples,\n\u001b[1;32m 254\u001b[0m )\n\u001b[0;32m--> 256\u001b[0m bootstrap_cvs_todo \u001b[39m=\u001b[39m lts\u001b[39m.\u001b[39;49mbootstrap_tune_runner(\n\u001b[1;32m 257\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mlei_obj,\n\u001b[1;32m 258\u001b[0m S\u001b[39m.\u001b[39;49msim_sizes[S\u001b[39m.\u001b[39;49mtodo],\n\u001b[1;32m 259\u001b[0m S\u001b[39m.\u001b[39;49malpha0[S\u001b[39m.\u001b[39;49mtodo],\n\u001b[1;32m 260\u001b[0m S\u001b[39m.\u001b[39;49mg\u001b[39m.\u001b[39;49mtheta_tiles[S\u001b[39m.\u001b[39;49mtodo],\n\u001b[1;32m 261\u001b[0m S\u001b[39m.\u001b[39;49mg\u001b[39m.\u001b[39;49mnull_truth[S\u001b[39m.\u001b[39;49mtodo],\n\u001b[1;32m 262\u001b[0m D\u001b[39m.\u001b[39;49munifs,\n\u001b[1;32m 263\u001b[0m D\u001b[39m.\u001b[39;49mbootstrap_idxs,\n\u001b[1;32m 264\u001b[0m D\u001b[39m.\u001b[39;49munifs_order,\n\u001b[1;32m 265\u001b[0m )\n\u001b[1;32m 267\u001b[0m S\u001b[39m.\u001b[39morig_lam[S\u001b[39m.\u001b[39mtodo] \u001b[39m=\u001b[39m bootstrap_cvs_todo[:, \u001b[39m0\u001b[39m]\n\u001b[1;32m 268\u001b[0m S\u001b[39m.\u001b[39mB_lam[S\u001b[39m.\u001b[39mtodo] \u001b[39m=\u001b[39m bootstrap_cvs_todo[:, \u001b[39m1\u001b[39m : \u001b[39m1\u001b[39m \u001b[39m+\u001b[39m P\u001b[39m.\u001b[39mnB_global]\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/mini_imprint/lewis_drivers.py:171\u001b[0m, in \u001b[0;36mbootstrap_tune_runner\u001b[0;34m(lei_obj, sim_sizes, alpha, theta, null_truth, unifs, bootstrap_idxs, unifs_order, sim_batch_size, grid_batch_size)\u001b[0m\n\u001b[1;32m 169\u001b[0m \u001b[39m# TODO: avoid the unifs copy.\u001b[39;00m\n\u001b[1;32m 170\u001b[0m unifs_chunk \u001b[39m=\u001b[39m unifs[:size]\n\u001b[0;32m--> 171\u001b[0m stats \u001b[39m=\u001b[39m batched_statv(\n\u001b[1;32m 172\u001b[0m lei_obj, theta[idx], null_truth[idx], unifs_chunk, unifs_order\n\u001b[1;32m 173\u001b[0m )\n\u001b[1;32m 174\u001b[0m \u001b[39mdel\u001b[39;00m unifs_chunk\n\u001b[1;32m 175\u001b[0m gc\u001b[39m.\u001b[39mcollect()\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/lewislib/batch.py:159\u001b[0m, in \u001b[0;36mbatch..internal\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minternal\u001b[39m(\u001b[39m*\u001b[39margs):\n\u001b[0;32m--> 159\u001b[0m outs, n_pad \u001b[39m=\u001b[39m f_batch_all(\u001b[39m*\u001b[39;49margs)\n\u001b[1;32m 161\u001b[0m return_first \u001b[39m=\u001b[39m \u001b[39mFalse\u001b[39;00m\n\u001b[1;32m 162\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(outs[\u001b[39m0\u001b[39m], np\u001b[39m.\u001b[39mndarray) \u001b[39mor\u001b[39;00m \u001b[39misinstance\u001b[39m(outs[\u001b[39m0\u001b[39m], jnp\u001b[39m.\u001b[39mDeviceArray):\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/lewislib/batch.py:128\u001b[0m, in \u001b[0;36mbatch_all..internal\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minternal\u001b[39m(\u001b[39m*\u001b[39margs):\n\u001b[0;32m--> 128\u001b[0m outs \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39;49m(out \u001b[39mfor\u001b[39;49;00m out \u001b[39min\u001b[39;49;00m f_batch(\u001b[39m*\u001b[39;49margs))\n\u001b[1;32m 129\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mtuple\u001b[39m(out[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m out \u001b[39min\u001b[39;00m outs), outs[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m][\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m]\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/lewislib/batch.py:128\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minternal\u001b[39m(\u001b[39m*\u001b[39margs):\n\u001b[0;32m--> 128\u001b[0m outs \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(out \u001b[39mfor\u001b[39;00m out \u001b[39min\u001b[39;00m f_batch(\u001b[39m*\u001b[39margs))\n\u001b[1;32m 129\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mtuple\u001b[39m(out[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m out \u001b[39min\u001b[39;00m outs), outs[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m][\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m]\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/lewislib/batch.py:95\u001b[0m, in \u001b[0;36mbatch_yield..internal\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[39mfor\u001b[39;00m _ \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(n_full_batches):\n\u001b[1;32m 89\u001b[0m batched_args \u001b[39m=\u001b[39m _create_batched_args(\n\u001b[1;32m 90\u001b[0m args\u001b[39m=\u001b[39margs,\n\u001b[1;32m 91\u001b[0m in_axes\u001b[39m=\u001b[39min_axes,\n\u001b[1;32m 92\u001b[0m start\u001b[39m=\u001b[39mstart,\n\u001b[1;32m 93\u001b[0m end\u001b[39m=\u001b[39mend,\n\u001b[1;32m 94\u001b[0m )\n\u001b[0;32m---> 95\u001b[0m \u001b[39myield\u001b[39;00m (f(\u001b[39m*\u001b[39;49mbatched_args), \u001b[39m0\u001b[39m)\n\u001b[1;32m 96\u001b[0m start \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m batch_size\n\u001b[1;32m 97\u001b[0m end \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m batch_size\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/lewislib/batch.py:159\u001b[0m, in \u001b[0;36mbatch..internal\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minternal\u001b[39m(\u001b[39m*\u001b[39margs):\n\u001b[0;32m--> 159\u001b[0m outs, n_pad \u001b[39m=\u001b[39m f_batch_all(\u001b[39m*\u001b[39;49margs)\n\u001b[1;32m 161\u001b[0m return_first \u001b[39m=\u001b[39m \u001b[39mFalse\u001b[39;00m\n\u001b[1;32m 162\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(outs[\u001b[39m0\u001b[39m], np\u001b[39m.\u001b[39mndarray) \u001b[39mor\u001b[39;00m \u001b[39misinstance\u001b[39m(outs[\u001b[39m0\u001b[39m], jnp\u001b[39m.\u001b[39mDeviceArray):\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/lewislib/batch.py:128\u001b[0m, in \u001b[0;36mbatch_all..internal\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minternal\u001b[39m(\u001b[39m*\u001b[39margs):\n\u001b[0;32m--> 128\u001b[0m outs \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39;49m(out \u001b[39mfor\u001b[39;49;00m out \u001b[39min\u001b[39;49;00m f_batch(\u001b[39m*\u001b[39;49margs))\n\u001b[1;32m 129\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mtuple\u001b[39m(out[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m out \u001b[39min\u001b[39;00m outs), outs[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m][\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m]\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/lewislib/batch.py:128\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minternal\u001b[39m(\u001b[39m*\u001b[39margs):\n\u001b[0;32m--> 128\u001b[0m outs \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(out \u001b[39mfor\u001b[39;00m out \u001b[39min\u001b[39;00m f_batch(\u001b[39m*\u001b[39margs))\n\u001b[1;32m 129\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mtuple\u001b[39m(out[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m out \u001b[39min\u001b[39;00m outs), outs[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m][\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m]\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/lewislib/batch.py:95\u001b[0m, in \u001b[0;36mbatch_yield..internal\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[39mfor\u001b[39;00m _ \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(n_full_batches):\n\u001b[1;32m 89\u001b[0m batched_args \u001b[39m=\u001b[39m _create_batched_args(\n\u001b[1;32m 90\u001b[0m args\u001b[39m=\u001b[39margs,\n\u001b[1;32m 91\u001b[0m in_axes\u001b[39m=\u001b[39min_axes,\n\u001b[1;32m 92\u001b[0m start\u001b[39m=\u001b[39mstart,\n\u001b[1;32m 93\u001b[0m end\u001b[39m=\u001b[39mend,\n\u001b[1;32m 94\u001b[0m )\n\u001b[0;32m---> 95\u001b[0m \u001b[39myield\u001b[39;00m (f(\u001b[39m*\u001b[39;49mbatched_args), \u001b[39m0\u001b[39m)\n\u001b[1;32m 96\u001b[0m start \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m batch_size\n\u001b[1;32m 97\u001b[0m end \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m batch_size\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# assign the first tile todo so that we have something to do!\n", + "S.todo[0]=True\n", + "\n", + "R = adastate.AdaRunner(P, lei_obj)\n", + "iter_max = 10000\n", + "cost_per_sim = np.inf\n", + "try:\n", + " for II in range(load_iter + 1, iter_max):\n", + " if np.sum(S.todo) == 0:\n", + " break\n", + "\n", + " print(f\"starting iteration {II} with {np.sum(S.todo)} tiles to process\")\n", + " total_effort = np.sum(S.sim_sizes[S.todo])\n", + " predicted_time = total_effort * cost_per_sim\n", + " print(f\"runtime prediction: {predicted_time:.2f}\")\n", + "\n", + " start = time.time()\n", + " R.step(P, S, D)\n", + " cost_per_sim = (time.time() - start) / total_effort\n", + " print(f\"step took {time.time() - start:.2f}s\")\n", + "\n", + " start = time.time()\n", + " if II % 10 == 0:\n", + " adastate.save(f\"{name}/{II}.pkl\", S)\n", + " for old_i in checkpoint.exponential_delete(II, base=1):\n", + " fp = f\"{name}/{old_i}.pkl\"\n", + " if os.path.exists(fp):\n", + " os.remove(fp)\n", + " print(f\"checkpointing took {time.time() - start:.2f}s\")\n", + "\n", + " start = time.time()\n", + " cr = Criterion(lei_obj, P, S, D)\n", + " print(f'criterion took {time.time() - start:.2f}s')\n", + " which_refine = cr.which_refine\n", + " which_deepen = cr.which_deepen\n", + " report = cr.report\n", + " del cr\n", + " gc.collect()\n", + " memory_usage = psutil.Process(os.getpid()).memory_info().rss\n", + " report['memory usage'] = f'{int(memory_usage / 1024 ** 2)} MB'\n", + " report['memory usage per tile'] = f'{memory_usage / S.g.n_tiles:.0f} B'\n", + " rprint(report)\n", + "\n", + " start = time.time()\n", + " S.todo[:] = False\n", + " if (np.sum(which_refine) > 0 or np.sum(which_deepen) > 0) and II != iter_max - 1:\n", + " S.sim_sizes[which_deepen] = S.sim_sizes[which_deepen] * 2\n", + " S.todo[which_deepen] = True\n", + "\n", + " S = S.refine(P, which_refine, null_hypos, symmetry)\n", + " gc.collect()\n", + " print(f\"refinement took {time.time() - start:.2f}s\")\n", + "except:\n", + " # TODO: this might fail if the exception occurs during the refinement phase.\n", + " print('keyboard interrupt, checkpointing before exiting')\n", + " adastate.save(f\"{name}/{II}_exception.pkl\", S)\n", + " print('exiting')\n", + " raise" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "572096ed", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.5 ('confirm')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.5" + }, + "vscode": { + "interpreter": { + "hash": "b4c6ec5b2d6c7b38df115d547b82cd53ca25eea58d87299956d35a9dc79f19f1" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/research/adagrid/lewis_ada.md b/research/adagrid/lewis_ada.md new file mode 100644 index 00000000..6e46337a --- /dev/null +++ b/research/adagrid/lewis_ada.md @@ -0,0 +1,309 @@ +--- +jupyter: + jupytext: + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.8 + kernelspec: + display_name: Python 3.10.5 ('confirm') + language: python + name: python3 +--- + +Tuning inside Adagrid is a scary thing to do. This document is a summary of the various problems I've run into. + +First, some basics. We have three different groups of thresholds. $i$ is a tile index, $j$ is a bootstrap index. +1. The original sample, $\lambda^*_i$ and it's grid-wise minimum $\lambda^{**}$. +2. $N_B$ global bootstraps $\lambda_{i, B_j}^*$ and their grid-wise minima $\lambda_{B_j}^{**}$. In the code, info regarding these bootstraps is prefixed with `B_`. +3. $N_b$ tile-wise investigation bootstraps $\lambda_{i, b_j}^*$ and their tile-wise minima $\lambda_{i}^{**}$. In the code, info regarding these bootstraps is prefixed with `twb_` standing for "tile-wise bootstrap". + +For each of these tuning problems, we tune at TIE level $\alpha_0 = \alpha - C_{\alpha}$ where $C_{\alpha}$ is the TIE consumed by continuous simulation extension. The C stands for "cost" and in the code this is called `alpha_cost`. + +The different problems I've run into so far: +- impossible tuning. This occurs when $\alpha_0 < 2 / (K+1)$ . In this situation, we can't tune because there are too few test statistics. We need to either run more simulations (increase $K$) or refine (increase $\alpha_0$). +- it's possible to have a tile where the twb_min_lam is large... like 1 but B_lam is small like 0.015. + - these tiles have too much variance, but there's no way to detect them because our tilewise bootstrap didn't turn up any evidence of danger. + - it's not possible to completely remove this possibility because there's always some randomness. + - this partially suggests i'm using a baseline of too few simulations or too large tiles. this is fixable. I bumped up the baseline K to 4096. + - another option would be to use a new bootstrap in some way to get a new sample? +- part of the problem is tiles for which $\alpha_0$ is super small and so the tuning result is like index 2 of the batch which will of course result in a high variance. the simple thing to do is to make $\alpha_0$ larger. is there a smooth way to do this? + +```python +import confirm.outlaw.nb_util as nb_util + +nb_util.setup_nb(pretty=True) + +import gc +import psutil +import time +import jax +import os +import re +import pickle +import numpy as np +import jax.numpy as jnp +import scipy.spatial +import matplotlib.pyplot as plt +from confirm.mini_imprint import grid +from confirm.lewislib import grid as lewgrid +from confirm.lewislib import lewis, batch +from confirm.mini_imprint import binomial, checkpoint + +import confirm.mini_imprint.lewis_drivers as lts + +from rich import print as rprint + +# Configuration used during simulation +name = "4d_full" +params = { + "n_arms": 4, + "n_stage_1": 50, + "n_stage_2": 100, + "n_stage_1_interims": 2, + "n_stage_1_add_per_interim": 100, + "n_stage_2_add_per_interim": 100, + "stage_1_futility_threshold": 0.15, + "stage_1_efficacy_threshold": 0.7, + "stage_2_futility_threshold": 0.2, + "stage_2_efficacy_threshold": 0.95, + "inter_stage_futility_threshold": 0.6, + "posterior_difference_threshold": 0, + "rejection_threshold": 0.05, + "key": jax.random.PRNGKey(0), + "n_table_pts": 20, + "n_pr_sims": 100, + "n_sig2_sims": 20, + "batch_size": int(2**12), + "cache_tables": f"./{name}/lei_cache.pkl", +} + +# Configuration used during simulation +# name = "3d_smaller2" +# params = { +# "n_arms": 3, +# "n_stage_1": 50, +# "n_stage_2": 100, +# "n_stage_1_interims": 2, +# "n_stage_1_add_per_interim": 100, +# "n_stage_2_add_per_interim": 100, +# "stage_1_futility_threshold": 0.15, +# "stage_1_efficacy_threshold": 0.7, +# "stage_2_futility_threshold": 0.2, +# "stage_2_efficacy_threshold": 0.95, +# "inter_stage_futility_threshold": 0.6, +# "posterior_difference_threshold": 0, +# "rejection_threshold": 0.05, +# "key": jax.random.PRNGKey(0), +# "n_table_pts": 20, +# "n_pr_sims": 100, +# "n_sig2_sims": 20, +# "batch_size": int(2**12), +# "cache_tables": f"./{name}/lei_cache.pkl", +# } +``` + +```python +n_arms = params["n_arms"] +ns = np.concatenate( + [np.ones(n_arms - 1)[:, None], -np.eye(n_arms - 1)], + axis=-1, +) +null_hypos = [grid.HyperPlane(n, 0) for n in ns] +symmetry = [] +for i in range(n_arms - 2): + n = np.zeros(n_arms) + n[i + 1] = 1 + n[i + 2] = -1 + symmetry.append(grid.HyperPlane(n, 0)) + +theta_min = -1.0 +theta_max = 1.0 +init_grid_size = 8 +theta, radii = grid.cartesian_gridpts( + np.full(n_arms, theta_min), + np.full(n_arms, theta_max), + np.full(n_arms, init_grid_size), +) +g_raw = grid.build_grid(theta, radii) +g = grid.build_grid( + theta, radii, null_hypos=null_hypos, symmetry_planes=symmetry, should_prune=True +) +``` + +```python +import adastate +from criterion import Criterion + +lei_obj = lewis.Lewis45(**params) +n_arm_samples = int(lei_obj.unifs_shape()[0]) +``` + +```python +# P = adastate.AdaParams( +# init_K=2**11, +# n_K_double=8, +# alpha_target=0.025, +# grid_target=0.002, +# bias_target=0.002, +# nB_global=50, +# nB_tile=50, +# step_size=2**14, +# tuning_min_idx=20 +# ) +# D = adastate.init_data(P, lei_obj, 0) +fp = f"./{name}/data_params.pkl" +# adastate.save(fp, (P, D)) +with open(fp, 'rb') as f: + P, D = pickle.load(f) +``` + +```python +load_iter = 'latest' +S, load_iter, fn = adastate.load(name, load_iter) +if S is None: + print('initializing') + S = adastate.init_state(P, g) +S.todo[0] = True +S.db.data = S.db.data.astype(np.float32) +``` + +```python +( + S.db.data.nbytes + + S.todo.nbytes + + S.sim_sizes.nbytes + + S.g.thetas.nbytes + + S.g.radii.nbytes + + S.g.null_truth.nbytes + + S.g.grid_pt_idx.nbytes + + D.unifs.nbytes + + sum([v.nbytes for v in D.bootstrap_idxs.values()]) + + sum([t.nbytes for t in lei_obj.pd_table.tables]) + + sum([t.nbytes for t in lei_obj.pr_best_pps_1_table.tables]) + + sum([t.nbytes for t in lei_obj.pps_2_table.tables]) +) / 1e9, psutil.Process(os.getpid()).memory_info().rss / 1e9 +``` + +```python +with open('4d_full/storage_0.06375528470923503.pkl', 'rb') as f: + S_load = pickle.load(f) +``` + +```python +# keep_thresh = 0.075 +# keep1 = S.twb_min_lam < keep_thresh +# keep2 = S_load.twb_min_lam < keep_thresh + +# S_store = adastate.AdaState( +# grid.concat_grids(grid.index_grid(S.g, ~keep1), grid.index_grid(S_load.g, ~keep2)), +# np.concatenate(( +# S.sim_sizes[~keep1], +# S_load.sim_sizes[~keep2] +# ), dtype=np.int32), +# np.concatenate(( +# S.todo[~keep1], +# S_load.todo[~keep2] +# ), dtype=bool), +# adastate.TileDB( +# np.concatenate(( +# S.db.data[~keep1], +# S_load.db.data[~keep2] +# ), dtype=np.float32), +# S.db.slices +# ) +# ) +# print(S_store.g.n_tiles) +# adastate.save(f"./{name}/storage_{keep_thresh}.pkl", S_store) +# del S_store +# gc.collect() + +# print('keeping', np.sum(keep1) + np.sum(keep2)) +# S_keep = adastate.AdaState( +# grid.concat_grids(grid.index_grid(S.g, keep1), grid.index_grid(S_load.g, keep2)), +# np.concatenate(( +# S.sim_sizes[keep1], +# S_load.sim_sizes[keep2] +# ), dtype=np.int32), +# np.concatenate(( +# S.todo[keep1], +# S_load.todo[keep2] +# ), dtype=np.bool), +# adastate.TileDB( +# np.concatenate(( +# S.db.data[keep1], +# S_load.db.data[keep2] +# ), dtype=np.float32), +# S.db.slices +# ) +# ) +# S = S_keep +# S.todo[0] = True +# gc.collect() +``` + +```python +# assign the first tile todo so that we have something to do! +S.todo[0]=True + +R = adastate.AdaRunner(P, lei_obj) +iter_max = 10000 +cost_per_sim = np.inf +try: + for II in range(load_iter + 1, iter_max): + if np.sum(S.todo) == 0: + break + + print(f"starting iteration {II} with {np.sum(S.todo)} tiles to process") + total_effort = np.sum(S.sim_sizes[S.todo]) + predicted_time = total_effort * cost_per_sim + print(f"runtime prediction: {predicted_time:.2f}") + + start = time.time() + R.step(P, S, D) + cost_per_sim = (time.time() - start) / total_effort + print(f"step took {time.time() - start:.2f}s") + + start = time.time() + if II % 10 == 0: + adastate.save(f"{name}/{II}.pkl", S) + for old_i in checkpoint.exponential_delete(II, base=1): + fp = f"{name}/{old_i}.pkl" + if os.path.exists(fp): + os.remove(fp) + print(f"checkpointing took {time.time() - start:.2f}s") + + start = time.time() + cr = Criterion(lei_obj, P, S, D) + print(f'criterion took {time.time() - start:.2f}s') + which_refine = cr.which_refine + which_deepen = cr.which_deepen + report = cr.report + del cr + gc.collect() + memory_usage = psutil.Process(os.getpid()).memory_info().rss + report['memory usage'] = f'{int(memory_usage / 1024 ** 2)} MB' + report['memory usage per tile'] = f'{memory_usage / S.g.n_tiles:.0f} B' + rprint(report) + + start = time.time() + S.todo[:] = False + if (np.sum(which_refine) > 0 or np.sum(which_deepen) > 0) and II != iter_max - 1: + S.sim_sizes[which_deepen] = S.sim_sizes[which_deepen] * 2 + S.todo[which_deepen] = True + + S = S.refine(P, which_refine, null_hypos, symmetry) + gc.collect() + print(f"refinement took {time.time() - start:.2f}s") +except: + # TODO: this might fail if the exception occurs during the refinement phase. + print('keyboard interrupt, checkpointing before exiting') + adastate.save(f"{name}/{II}_exception.pkl", S) + print('exiting') + raise +``` + +```python + +``` diff --git a/research/adagrid/plotter.ipynb b/research/adagrid/plotter.ipynb new file mode 100644 index 00000000..e2171def --- /dev/null +++ b/research/adagrid/plotter.ipynb @@ -0,0 +1,341 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import confirm.outlaw.nb_util as nb_util\n", + "nb_util.setup_nb()\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import jax.numpy as jnp\n", + "import jax\n", + "import scipy.spatial\n", + "import pickle\n", + "jax.config.update('jax_platform_name', 'cpu')\n", + "import confirm.mini_imprint.lewis_drivers as lts\n", + "import adastate\n", + "import diagnostics" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loading checkpoint play/173.pkl\n" + ] + } + ], + "source": [ + "from confirm.lewislib import lewis, batch\n", + "name = \"play\"\n", + "params = {\n", + " \"n_arms\": 3,\n", + " \"n_stage_1\": 50,\n", + " \"n_stage_2\": 100,\n", + " \"n_stage_1_interims\": 2,\n", + " \"n_stage_1_add_per_interim\": 100,\n", + " \"n_stage_2_add_per_interim\": 100,\n", + " \"stage_1_futility_threshold\": 0.15,\n", + " \"stage_1_efficacy_threshold\": 0.7,\n", + " \"stage_2_futility_threshold\": 0.2,\n", + " \"stage_2_efficacy_threshold\": 0.95,\n", + " \"inter_stage_futility_threshold\": 0.6,\n", + " \"posterior_difference_threshold\": 0,\n", + " \"rejection_threshold\": 0.05,\n", + " \"key\": jax.random.PRNGKey(0),\n", + " \"n_table_pts\": 20,\n", + " \"n_pr_sims\": 100,\n", + " \"n_sig2_sims\": 20,\n", + " \"batch_size\": int(2**12),\n", + " \"cache_tables\": f\"./{name}/lei_cache.pkl\",\n", + "}\n", + "lei_obj = lewis.Lewis45(**params)\n", + "data, II, fp = adastate.load(name, 'latest')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "P = adastate.AdaParams(\n", + " init_K=2**11,\n", + " n_K_double=8,\n", + " alpha_target=0.025,\n", + " grid_target=0.002,\n", + " bias_target=0.002,\n", + " nB_global=50,\n", + " nB_tile=50,\n", + " step_size=2**14,\n", + " tuning_min_idx=20\n", + ")\n", + "D = adastate.init_data(P, lei_obj, 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "g, sim_sizes, bootstrap_cvs, _, _, alpha0 = data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "worst_tile_idx = np.argmin(bootstrap_cvs[:,0])\n", + "worst_tile = g.theta_tiles[worst_tile_idx]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "simulation runtime 9.40575623512268\n", + "simulation runtime 1.826462984085083\n" + ] + } + ], + "source": [ + "plot_dims = [1, 2]\n", + "slc = diagnostics.build_2d_slice(g, worst_tile, plot_dims)\n", + "slc_ravel = slc.reshape((-1, g.d))\n", + "nx, ny, _ = slc.shape\n", + "tb = diagnostics.eval_bound(lei_obj, g, sim_sizes, D, slc_ravel)\n", + "tb = tb.reshape((nx, ny))" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [], + "source": [ + "# step 1: evaluate the field of interest. if it's lambda*, we already have what\n", + "# we need. if it's TIE, we need to calculate it for the relevant tiles." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH0AAASHCAYAAAB/HwHLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABYlAAAWJQFJUiTwAAC1h0lEQVR4nOz9eXhcZb7ee99PVUnybNnyPGDZ2GDcDXTb0M3QzGY22GALet49gffu7p057XSunORNTpK9Ick5b87JydnQeXfynp3du0E2k5ktoJsZjNVg4xkPeMajPFuq4Tl/VEmWhWSXVLJ+tdbz/VxXXUKqUtW9rFoW6+dn3ct57wUAAAAAAIB4SVgHAAAAAAAAQO9j6AMAAAAAABBDDH0AAAAAAABiiKEPAAAAAABADDH0AQAAAAAAiCGGPgAAAAAAADHE0AcAAAAAACCGGPoAAAAAAADEEEMfAAAAAACAGGLoAwAAAAAAEEMMfQAAAAAAAGKIoQ8AAAAAAEAMMfQBAAAAAACIIYY+AAAAAAAAMZSyDgAAAAAAABBFzrkFkn7tvZ9VwnPMllQnaZOkGknVkhZ575tKzcfQBwAAAAAAoEjOucckDZd0UNLsEp/rS0Mj59xMSSucc7NKHfw4730p3w8AAAAAABAk59wKSdXe+wt78L3Vkg5JutV739DhvnpJ8t7XlZKPTh8AAAAAAIC+90Dh40ed3PeEpAWlvgBDHwAAAAAAgL5XJ6mpi1O4Nkttp3/1GEMfAAAAAACAvneF8r1AnWkqfLyylBegyPk8c85tkTRE0lbjKAAAAACA3lUr6Yj3frJ1kPPBOfe3kqZb5ziPatXFsXopV+Pqhmp1PfRp/5geY+hz/g3p37//8EsuuWS4dRAAAAAAQO9Zu3atTp48aR3jfJrev7+bedH0CuscvW7DurROnvQnrHPo9IqejlqHQSXNEhj6nH9bL7nkkuErVqywzgEAAAAA6EWzZs1SY2PjVusc59NF0yv0h/fHW8fodTdctVOf/LFlXR+t6ClFdSnfTKcPAAAAAACAjeouvt66wqeplCdn6AMAAAAAAND3mop4zLk6f86K07sAAAAAAEAXnJRLWoc4D5x1AEn6SNLsLu6bUvhYUlcMK30AAAAAAAD6Xv1Z7msd+jSU8gIMfQAAAAAAAM4j59yUTr78ZOG+BZ3cVyepwXu/uZTXZegDAAAAAADQM9U6x2XVnXMrJG1yzs1s/3XvfZOkhZIe6fD4mcqv9KkrNRydPgAAAAAAAEVyzv1K0pXKD2amFL62SVKjpM3e+0UdvqVB+eFQU8fn8t4/7pzb7Jyrl7RcUk3hsbMKQ6GSMPQBAAAAAACd85LLlUXpce/yJXyr94928/GLJHUcBLW/v0Eldvd0hdO7AAAAAAAAYoihDwAAAAAAQAwx9AEAAAAAAIghOn0AAAAAAEDXfAw7fQLBSh8AAAAAAIAYYugDAAAAAAAQQwx9AAAAAAAAYohOHwAAAAAA0CknyeXi1+kTvy3qHCt9AAAAAAAAYoihDwAAAAAAQAwx9AEAAAAAAIghOn0AAAAAAEDnvORy1iHOA28doG+w0gcAAAAAACCGGPoAAAAAAADEEEMfAAAAAACAGGLoAwAAAAAAEEMUOQMAAAAAgK7Fscg5EKz0AQAAAAAAiCGGPgAAAAAAADHE0AcAAAAAACCG6PQBAAAAAABdct46AXqKlT4AAAAAAAAxxNAHAAAAAAAghhj6AAAAAAAAxBCdPgAAAAAAoHNecjnrEOdBID1FrPQBAAAAAACIIYY+AAAAAAAAMcTQBwAAAAAAIIbo9AEAAAAAAF3LBVKAE0Os9AEAAAAAAIghhj4AAAAAAAAxxNAHAAAAAAAghsqu08c5t0DSr733s0p4jtmS6iRtklQjqVrSIu99U288HgAAAAAAoNyVxdDHOfeYpOGSDkqaXeJzfWlo5JybKWmFc25Wx0FOdx8PAAAAAEBIHD3OkVUWQx/v/cLW/3bOrVB+pU23OeeqJdVLurXD8zc65xol/Ub5FT09enzceO+1fdsRnTyZ1gWThqp//wrt3HFER4+2aOIFQzRwYKX27D6mpqZTGjd+sIYMqdK+vcd14MBJjR4zSMOG9dOBAye1b+9xjRw5QDUjBqip6ZT27D6m4cP7a9TogTp6tFk7dxzV0KFVGjtusE6cSGv7tsMaOLBSEyYO0alTGW37/LCq+iV1wQVDlU7n9PnWJiVTCdXWViuX89q6tUmSNHlytZxz2rq1SdlMTrWTq5VKJfT554fV0pzVpNqhqqxMasf2Izpx4vQ27dp5VEeONGvCxCEaNKhSX+w5pkOHTmnsuEEaOrSf9u87of37T7Rt08GDJ7X3i9PbdPjwKe3edUzDhvXT6DGDdOxYi3ZsP6IhQ6o0bvzpbRowoEITJg5RS0tWn289rMqqpCZNGqpMJqetW05vk/deW7acfZu2bTus5lNZXTBpqKqqktq546iOH2/RxAuGasCACu3edVSHDzdr/ITBGjy4Snu/OK6DB0+2bdOB/Se0b98JjRo9UMOH99ehQ6f0xZ5jGjFigEaMHKAjR5q1a+fRtm06frxF27cd0eDBlRo/YYhOnkxr2+eH1b9/hSZe8OVtymbz25BIOE2enN+mrVsPK5fzmjy5WomE0+efH1YmndWk2mpVVJy5Tf36pbp8r7VuU+t7bczYQaqubvdeGzVQNTX9295rNTX9NXLU6fdadXU/jRn75W3q6r2WqkiqtvbMbaqtHSrnnLZsaWrbpmTSfem9dq79p/W91rr/FPte6+n+0/G9Vsr+0/pe67j/dPe9dq79p/W91pP9p7Y2/1472/7Tr19KO7YfKWr/aXuvFbap9b3Wuk2t77XW/aer91rH/Sedzm9DReWX32ud7T/JpNPWrYeVbsmqdnJ+/2l9r02qrT7r/tPx7+ru7j89/bvauaxy2ibJKaELJLnC5zklNFFSSl475NWihCZIqpTXLnmdVEIT5Fw/5fweeR1VQuPk3EDl/D55NSmhMXJusHL+gLwOKqFRcm6ocr5JXvvkVKOEGy7vjyinL+RUrYQbKe+PK6ddchqihBst708qp51y6i+ncZJalNMOOVXKaYKkjHLaLilZyOwL26B227RdUraIbRov5/or57+Q15FOtmm0nBuinD8orwNyGqmEq5b3h5XTXjkNV8LVyPujymlPJ9s0WAk3Rt6fKmzDubYpUdiG1m3yhc8T7bZpgqQKee2UV3Ph51KlnN8lrxOdbNNYOTdIOb9fXofabdMhee2X0wgl3LB22zRMCTei3TYNVcKNkvcnCj+XQUq4sfK+WTltb7dN6cI2peQ0UVLrey1R+DmosA25wjYl5bVdXunC/RWdvNd2y+tYYZsGKOf3yutwu/da6za1vtdat6mr99ox5bS7k/faACXcuMI27ZBTlZzGt23T6fdarrANPXmvnWv/af25dLX/tL7Xutp/Wt9r52P/Of1ey2/T7nO810rdfzq+1861/7R/r7XuP+3fa4nCzyXTbv/ZJa9T7fafrt5rxe4/rT+X1v2n9b12tv3ny++1rvef9n9Xt+4/53qvddymUv+u7t7+45zr3gEPgPIY+vSiBwofP+rkvieUH/CU8vjYeO6Z9XrkL97RqpV7JUkDBlRo8OBKffHFcUlSVVVSw4b3157dxyRJFRUJ1YwY0PZ5Muk0atRAffHFceVyXs5JY8YO0r69J5TJ5CRJY8cO0oEDJ9XSkpUkjRkzUIcPN+vkyYwkadSogTp+vEXHj6clSSNHDlBzc0ZHjrRIkobX9Fcum1NTU7MkadiwfnLO6eDBk5KkIUOrVFmR1P79JyRJAwdVaOCASu3dm9+G/v1TGjK0Sl/sOb1Nw4f31+7CNqRSCY0cld8m76VEQho9epD27j2ubDY/yh47bpD27zuhdDq/TWPGDtKhgyfV3JzfptFjBurIGds0QMePp9u2acTIAWppzurIkfw2DB/eTzkvNR06JUmqrq5SMpnQgQP5bRo8pFJVVSnt31fYpoEVGlg40Jakfv2SGlrdr22bKiuTGl5z+ueUSjmNHDlQe/acY5v2n1C6pbBNYwbp0KF221QYNpw4kd+mkaMG6OSJjI4dy/9cRowYoHQ6q8OHT2+T99KhwjYNHVqlVEVCB/af3qZ+VSntK2zTgIEVGjzo9HutX7+kqoed+V4bMWJA28+pq/fa3i9Ob9OYsYN0YH+7n9OYgWpqatapU5l229SiEydOv9dOncro6NH8NtXU9Fcmm9PhLt5rQ4dWqaLde23QoEoNGFBx+r02IKUhg6vOuv98aZtGD9QXe/LbJOX3l337urH/jB6o48daOrzXOu4/Xk1Nre+1fkokpIMH858PGVKlysqE9hd+Tvn9p0J79+a3sV//lIZ22H/ab1On+8+YM38uHfefsWMH6eDBM99rR46cuf+cOJHWsWOFbRrRX+l0ru29Nmx4P6njey115v5z5nstpUGDqtr2n/79kxoy9Mz9p6am/d8JZ+4/zuX3jzP2n7GF/afde+3QoVMd9p9277VRA3TqZLv32oj+yrTfpmH9JHW9TYMGV6p/v3bb1OHv6n79kqqu7q89e7q3/7T/u3rM2EE62OG91n7/6ey91lzYfxKJnP7Zv/pMP3p4lfoPOKC8oXJy8moqfD5YThXyOlj4fKCc+strf+HzfnIaLK99hc8r5VQtr72Fz1Nyqil87iUl5DSy8Pj8NjiNltcBSZnC56MKr99S+HykvI5KOlX4fIS8Tkg6Ufh8uLxaJB0rfD5MUk5eh9ttU0Jeh7rYpgFyGtBhm4a024aO25QsZDjbNo0qPH/7bTosqbnd50clnSw854jCfx9vt01pSUcL91cXXqt1m4bIKdlumwbKqV/hz1GS+stpULufS5Wchrbbhgo5Detkm1q3wRUy7peUbfdzOigp3cU2jZTXsXbbVFO4r/XnMlxeGUlH2v1czvZeG1TYptafS8dt6uy9NryIbWr/Xuu4Ted6r9XIn7FN1fLKdWOb7PefL7/Xagr7z9HC58MK29TV/jNITlXt3mud7T/tt6mr91rHbSr1vXZKZ+4/7d9r1fry/pPq8F7ruE0Dz7L/FPte6839Z5i8sjr/77Uvutimrt5rhzps0xF1tf8k3EWqSvxClcl7BKB4zvvyWqfVutLHe39hD753maQrvPfDOrlvpqQVkuq894t78viecM6tmDlz5swVK1b09Cl63V//tz/qH/z5K9YxAACR5vWf/q8/6IHvb7AOAgAISL/kv1BV8ifWMdrMmjVLjY2NjaV00pYz59yKr11WNfPdVydZR+l119z2uT5e2Rzbn12ruF296wqpbTzdUVPh45UlPD7yDh06pV//6jXrGACAiLvqW7v1wPc3qMz+7QgAEHOnsn+pnN937gei93jlF2zF7RbI/8PEbehT3c3HdPfxkbekfk3bqRQAAPTUg99fLyl/GhwAAH0no3TuWesQQGTErdNHOr1Cp6PWFT3DS3x8pwqnpXVmejHf31d2bD9y7gcBAHAO4yccs44AAAhUzu+yjgBERtxW+hSj+jw/vqyNGDnAOgIAIAb27+9vHQEAECjnaqwjAJERx6FPdRdfb12x01Ti4zvlvZ/V2U3SumK+v6/MX3CJEgnW4gMASvPU76ZaRwAABKoyMdc6QlCcJJfz8btZ/8H2kbgNfZqKeEz74ubuPj7yKiuT9C8AAEp2qjmOZ4gDAMqfk1RpHQKIjLgNfT6SNKWL+1q/3r57p7uPj7wli9cqmw2kphwAcN7UfYdLtQMALHiKnIFuiNvQp/4s97UOcRpKeHzk7dp51DoCACAGxo47bh0BABConN9tHQGIjMgOfZxzna3QebJw34JO7quT1OC931zC4yNv1OiB1hEAADGwby9FzgAAG86NtI4QFi8pF8NbICfAlOPQp1rnuEx64fLom5xzM9t/3XvfJGmhpEc6PH6m8it36kp5fBxQ5AwA6A2L/26adQQAQJCcKhP3WocAIqMsWhidc7+SdKXyg5Ypha9tktQoabP3flGHb2lQfjjU1PG5vPePO+c2O+fqJS2XVFN47KzCkKekx0ddIuEocgYAlMx7fpkAAKyU49oFoDyVxdDHe/9oNx+/SFLHQVD7+xvUjS6e7j4+yihyBgD0hvnf3mgdAQAQpHyRc1XyT62DAJHAiDQwe3Yfs44AAIiB0WNOWEcAAAQq5/daRwAioyxW+qDvjBk7yDoCACAGvtgzwDoCACBQCTfaOkJwHCeLRBYrfQKzoG6Gkkl6GAAApan/7UXWEQAAQXKqSMy1DgFEBkOfwGSzOXmmtACAEiWTOesIAIBgZa0DAJHB0CcwSxavVS7H1AcAUJoF36HIGQBgwasl95x1CCAy6PQJzN4vjltHAADEwMhRJ60jAAAC5f0+6wjhYYFvZLHSJzDjxg+2jgAAiIFdOwdaRwAABCrhxlpHACKDoU9g5tfNUDJFkTMAoDRL/m6adQQAQJAocga6g6FPYJpPZZTL0ukDAChNv/4Z6wgAgCB5Sc3WIYDIoNMnME8tWcvVuwAAJbvvwU3WEQAAgWrJPad+yV9YxwiHl1wcO30COS5mpU9g9u87YR0BABADI0ZQ5AwAsOH9AesIQGQw9AnMhIlDrCMAAGJgx/ZB1hEAAIFKuHHWEYDIYOgTmPl1M5RK8WMHAJRm8W8vso4AAAhSQhWJedYhgMig0ycwx4+1KJuN4wmZAIC+NGQoJZoAAAs5eR2XNMI6SFgoho0slnwE5mmKnAEAvWDeAxQ5AwBspHNLrSMAkcHQJzAHDlC8CQAo3fDhp6wjAAAC5f1B6whAZDD0Ccyk2mrrCACAGNj++WDrCACAQCXcROsIQGQw9AnM/QumU+QMACjZk39LkTMAwEJCFYm51iGAyKDIOTBNTaeUyVDkDAAozYhRnN4FALCQk1eTpOHWQYLiOISMLJZ8BOaZJeutIwAAYmDugs+sIwAAApXOPW8dAYgMhj6BOXSIImcAQOmqq7lkOwDAhvdN1hGAyGDoE5jJU4ZZRwAAxMDWLUOsIwAAApVwk6wjAJHB0Ccw982frooKfuwAgNLUU+QMADCRpMi5r3lJuRjefG/+IZUvjv4Dc+DASaXTtHABAEozdvxx6wgAgCBl5bXfOgQQGQx9AvPMknXWEQAAMXDPfZutIwAAApXOUuQMFIuhT2AOH+YSuwCA0g2lyBkAYMTriHUEIDIY+gRm6rTh1hEAADGw6bOh1hEAAIFKuMnWEYLjfPxuoWDoE5h591PkDAAo3WKKnAEAJpKqpMgZKBpH/4HZvfsYRc4AgJJdMPmodQQAQJCyyvld1iGAyGDoE5ilz6y3jgAAiIE58yhyBgDYSOdeso4AREbKOgD61pEjFG8CAEo3eEiLdQQAQKC8WG3a5zhZJLJY6ROYi6bXWEcAAMTAZxuqrSMAAAKVcFOtIwCRwdAnMPPum67KyqR1DABAxNVT5AwAMJFUZeIe6xBAZDD0Ccz2bYfV0pK1jgEAiLgLLzpsHQEAEKSscn67dQggMhj6BGbpcxusIwAAYuCueylyBgDYSOdeto4ARAZFzoE5dpTiTQBA6QYNTltHAAAEyuu4dYSweMWzyNlbB+gbrPQJzPQZI6wjAABiYP3aYdYRAACBSrpp1hGAyGDoE5i58y6myBkAULL631LkDACwkFIFRc5A0Rj6BGbL5iaKnAEAJbvkqwetIwAAgpRR1m+yDgFEBp0+gXnh+Y3WEQAAMXDHnK3WEQAAgcrklimVuMw6RjCcJOeddYxeF78t6hwrfQJz4jjFmwCA0g0YwO8TAIANrxPWEYDIYOgTmBlfGWkdAQAQA2tX11hHAAAEKukuto4ARAZDn8DcO+8iVVZR5AwAKM3i302TD+RSpwCAcpJSyt1tHQKIDDp9ArNh/QG1NFPkDAAozeVf3ycXysnwAIAyklFOG5XQ16yDhCVnHQA9xUqfwLz04mfWEQAAMXDrnZ9bRwAABCqTW2YdAYgMhj6BOXkiYx0BABAD/fvz+wQAYMPrlHUEIDIY+gTm0stGWUcAAMTA6pUjrCMAAAKVdDOsIwCRwdAnMHPuvUhVFDkDAEr01JNTKXIGABhIKeXusg4RFq98p0/cboH8fwxDn8CsWb1PzRQ5AwBKNPPKvRQ5AwAMZJTTGusQQGQw9AnMyy9R5AwAKN0tt2+zjgAACFQm95p1BCAyGPoEhsu1AwB6Q1U/fp8AAGx4NVtHACKDoU9gLv/aaOsIAIAYWPUxRc4AABtJd6l1BCAyGPoE5q450yhyBgCU7Jl6ipwBABZSSrk7rEOEx8fwFgiGPoH55OMvKHIGAJTsG1fvocgZAGAgo5xWWocAIoOhT2CWvbrZOgIAIAZuunW7dQQAQKAyuTesIwCRwdAnMOkWVvkAAEpXWcXvEwCADa+0dQQgMlLWAdC3Zs4aax0BABADH68YqWuv32UdAwAQoKS7zDpCcFyOc7qjipU+gbn9zgspcgYAlOy5JRdS5AwAMJBSyt1mHQKIDIY+gWlcsYciZwBAya65bhdFzgAAAxnl1GgdAogMhj6Bea2BImcAQOlunL3DOgIAIFDp3JvWEYDIoNMnMJkMa/EBAKVLpnLWEQAAwcpYBwgPh5GRxUqfwFz5jXHWEQAAMfDH5aOsIwAAApVKzLSOAEQGQ5/A3HrbZFX1o8gZAFCapU9PocgZAGCgQkndbB0CiAyGPoH58P1daj5FkTMAoDTX37yTImcAgIG0slpuHQKIDDp9AvPGG1utIwAAYuC6G3daRwAABCqTe0cVieusY4TDS8rF8F96AlmxzEqfwGSzgbyzAQDnFUXOAAA7nLkAFIuhT2C+edV46wgAgBj46P0x1hEAAIFKJWZZRwAig6FPYG6ZXUuRMwCgZC88W0uRMwDAAEXOQHcw9AnMe+/uoMgZAFCym2/bQZEzAMBAWlm9ax0CiAyKnAPz5h+2WUcAAMTAtddT5AwAsJHJvaeKxI3WMcJClV9ksdInMLkca/EBAKVz/B8EAMAMxzRAsfhftsBcc+1E6wgAgBj48F2KnAEANlKJK60jAJHB0CcwN940Sf0ocgYAlOjlpZMocgYAGKhQUtdbhwAig6FPYN56c5tOUeQMACjRbXdto8gZAGAgrazetg4RHh/DWyAY+gTm7bcocgYAlO6b39ptHQEAEKhM7gPrCEBkMPQBAAAAAACIIYY+gfnWdRdYRwAAxMD7b4+1jgAACFQq8U3rCEBkMPQJzHXXX6B+/VLWMQAAEdfw0gUUOQMADFQoqW9ZhwiLl5Rz8bsF8v8xDH0C88brW3XqVMY6BgAg4m6f8zlFzgAAA2ll9aZ1CCAyGPoE5r13d1hHAADEwDeu2WMdAQAQqExuuXUEIDIY+gQmkeCfZQEApfM56wQAgHBxTAMUi6FPYG64cZJ1BABADLzz5njrCACAQKUS11hHCIyTfAxvgQwPGfoE5qqrx6uqX9I6BgAg4l5/dQJFzgAAAxVK6irrEEBkMPQJzGsNW9V8KmsdAwAQcXfP3UqRMwDAQFpZvW4dAogMhj6B+eD9ndYRAAAxcMVVFDkDAGxkco3WEYDIYOgTmFSKf5YFAJQum+F/IQAAVqirAIrF/7EF5qabaq0jAABi4K03KHIGANhIJa61jhAcl4vfLRQMfQJz5TfHUeQMACjZm6+Pp8gZAGAgpaSutA4BRAZDn8Ase2UzRc4AgJLdc/9mipwBAAYyyvjXrEMAkcHQJzDLl++2jgAAiIGvX7nXOgIAIFBZ/0frCEBkpKwDoG9R5AwA6A0UOQMA7HAY26e8pFwMjyMDOU2d/2MLzC2zp1hHAADEwO8bJlhHAAAEqiJxg3UEIDIY+gRm5qwxqqqiyBkAUJp33xpHkTMAwEBKCX3dOgQQGQx9AvPKS5vU3EyRMwCgNHMXbKLIGQBgIKOMf9U6BBAZDH0C07iCImcAQOkun7nPOgIAIFBZv9I6Qnh8DG+BYOgTmEpO7QIA9IKWZn6fAABsOFVYRwAig6FPYG697ULrCACAGHj91YnWEQAAgUolbrKOAEQGQ5/AXHb5KIqcAQAl+/C9MRQ5AwAMpJTQZdYhgMhIWQdA33rx+Y0UOQMASnbfA59R5AwAMJBRxr+sSs2zDhKWHL/0o4qVPoH55OMvrCMAAGLg0q/tt44AAAhU1q+yjgBEBkOfwFDkDADoDc2n+H0CALDhVGUdAYgMhj6BuePOqdYRAAAx8NorF1hHAAAEKpW4xToCEBkMfQIz4ysjKXIGAJRsxYejKHIGABhIKaFLrEMAkUGRc2Cef24DRc4AgJIt+PZGipwBAAYyyviXVKn51kHC4SX5GP7SD+Qfr1jpE5hVK/daRwAAxMCMSw9YRwAABCrr11hHACKDoU9g+g9gcRcAoHQnT/L7BABgw6m/dQQgMhj6BOauu6dZRwAAxMCrL9ZaRwAABCqVuNU6AhAZZffPdM652ZLqJG2SVCOpWtIi731TN59nhaSHvPeNRT7+kcJr1Uv6yHvfVMiyUNIy7/3j3Xn9cjV12nBVVibV0kKvDwCg5z79uEbei14fAEAfSykhrkjc53LWAdBTZTX0cc4tkPRr7/2sdl+bKWmFc25WsYOfwve0ft/ZHnqr976h8N/Vkh4u3NTu+x6Ny8BHkpY+u4GBDwCgZPO/Q5EzAMBCRhn/vCr1oHUQIBLKZujjnKtWfpXNGWv1vPeNzrlGSb9RfgVQMaZI2ly4dWa4pM3tBj6tHi98ryQ1SnrMe9/Vc0TSmtX7rCMAAGJg+oyD1hEAAIHK+g3WEYDIKJuhj6QHCh8/6uS+J5QfCBXrSkldrgxyztV77780QPLeL+zGa0TSgIEV1hEAADFw4gS/TwAANpwGWEcAIqOcipzrJDV1MajZLLWd/lWMA2cZ+Dwi6S96EjAO5txDkTMAoHQvL621jgAACFRF4nbrCOHxLn63QJTT0OcKSV2tFW8qfLyymCfy3j/a2dcLxcwHzlbu7Jyrds4tKNyqi3m9KKmdXK3KyqR1DABAxK1dPdw6AgAgSEklXK11CCAyyun0rmp1PfRp/5geKQxwFnZ2Wle7xzwi6YCkxYUs9c65ZV0NkTp874ou7preg7jnzbPPrKfIGQBQsrrv0qcAALCQVTr3vCqT37YOAkRCOQ19pNMrejpqHQaV8s+K5zqtq0n5S7O3lTs75+okbXHONcXlCl7r1uy3jgAAiIGLLzlkHQEAEKis32gdAYiMchv6nEt1T77JOTdF0uyzFTV77xd18rUm51yD8gOjsw592l9mvsNrr1D+8vFlYdDgSusIAIAYOHaUImcAgA2ngdYRwuKdfC6GHTiB9PqUU6eP1PVQp3WFT1MPn3eRpI6XZy/WcknVhT6gyLt37sXWEQAAMfDic1OsIwAAAlWRuMM6AhAZ5TT0aSriMefq/OnKA5K66twpViz+73bCxCGqqCynHzsAIIo+2zjUOgIAIEhJJdwE6xBAZJTT0f9H6nqw0vr1bg9uCit0qlW47HsXj3nMOefjeLWujp5+ap3SLTnrGACAiHuAImcAgImsWnJLrUMAkVFOQ5/6s9zXOvTpySlatxY+nm2V0BR1vdKopvDxox68dtnZuP6AdQQAQAxMvajJOgIAIFA5v8k6AhAZ5TT0eVKSnHMLOrmvTlKD9/5Lq3UKJc1nU8xpWcskzfLeN3Vy3wJJjd77xiKep+wNGVJlHQEAEANHj3BhAACADafB1hHC4138boEom6FPYeCyUPkrZbVxzs1UfnBT1/F7ClfG2lR4TFdahz5NZ3ntRyU90nGA5Jx7RPkS6S+9dlTdex9FzgCA0i19OhZVdwCACKpI3GUdAYiMsrpku/f+cefcZudcvfJXzapRvo+nq1U4DYX7O7uv1UeSpnS2SqjDa9c55x4p9PoMLzxvo/d+WPe2oryNGTNIFRUJpdP0+gAAem77tkHWEQAAQUoq4cZYhwAio6yGPpLkvW9Qkd093vtFyl+O/WyPWaj8CqJiny/Wnl6yloEPAKBkdd/daB0BABCkrFpyz6oq+UPrIEAklN3QB+fXps8OWUcAAMTAlAsPW0cAAAQq57daRwgP6wYiq2w6fdA3hg7tZx0BABADh5u4MAAAwIbTEOsIQGQw9AnMvPnT5cIpKgcAnCcUOQMArFQk51hHACKDoU9gamr6K5nixw4AKM2uHQOtIwAAgpSQU411CCAyOPoPzNNL1ilDkTMAoEQP/mCDdQQAQJBySueesw4RHu/idwsEQ5/AbNlMkTMAoHSTao9YRwAABCrnP7eOAEQGQ5/ADBvW3zoCACAGDh2iyBkAYMO5ausIQGQw9AnMfRQ5AwB6wbOLp1pHAAAEqiJBkTNQrJR1APStIUOrlEwmlMnQ6wMA6LkD+/pZRwAABCkhp6HWIcLiJeViuHLAWwfoG6z0CcxTi9cy8AEAlOyB71HkDACwkFM696x1CCAyGPoEZtvnh60jAABiYOKko9YRAACByvkd1hGAyGDoE5iaGoqcAQClO3iQ07sAADacG24dAYgMhj6BuW/+JRQ5AwBK9syTF1pHAAAEqiJxj3UEIDIocg7MwEGVSiadMplAWqsAAOfFkSNcsh0AYMHJaYB1iPB4Vg5EFSt9ArOkfg0DHwBAyeq+S5EzAMCCp8gZ6AaGPoHZsf2IdQQAQAyMn3DMOgIAIFA5v8s6AhAZDH0CM2IkSyEBAKXbv58LAwAAbDhXYx0BiAyGPoGZv+ASJRKcjwkAKM1Tv5tqHQEAEKjKxFzrCIFxUi6GN4VxXMzQJzCVlUmu3gUAKNmpZq4FAQCw4CRVWocAIoOhT2CWLF6rbJYiZwBAaeq+Q5EzAMACRc5AdzD0CcyunUetIwAAYmDsuOPWEQAAgcr53dYRgMhgbXZgRo0eaB0BABAD+/ZS5AwAsOHcSOsIYfGFW9zEcZs6wUqfwCyom0GRMwCgZIv/bpp1BABAkJwqE/dahwAig6FPYJwTRc4AgJJ5zy8TAIAVDmOBYrG3BIYiZwBAb5j/7Y3WEQAAQaLIGegOOn0Cs2f3MesIAIAYGD3mhHUEAECgcn6vdYTg+BwrfKOKlT6BGTN2kHUEAEAMfLFngHUEAECgEm60dQQgMhj6BGZB3Qwlk0xpAQClqf/tRdYRAABBcqpIzLUOAbRxzs12zj3mnPuVc+6Rwn9Xl/hcrbd659yUUvJxeldgstmcPJU+AIASJZM56wgAgGBlrQMAkiTn3AJJv/bez2r3tZmSVjjnZnnvm7rxXA9Lkvd+YbuvVUt6zTm3yHvf0JOMrPQJzJLFa5XLMfUBAJRmwXcocgYAWPBqyT1nHSI83sXvVqLCQKZe0qIz/qi8b5TUKOk33XyuOu/94x2eq0lSnaTHepqToU9g9n5x3DoCACAGRo46aR0BABAo7/dZRwAk6YHCx486ue8JSQu68VxXdHWH936zpB6f4sXQJzDjxg+2jgAAiIFdOwdaRwAABCrhxlpHAKT8CpymLk7h2iy1nf5VrNmdPb7Q6bO5RwnF0Cc48+tmKJmiyBkAUJolfzfNOgIAIEgUOaNsXCHpYBf3NRU+XlnMExX6ejZLqnfOdTyV6zHlB0w9wtAnMM2nMspl6fQBAJSmX/+MdQQAQJC8pGbrEIAkVffSY1rVKT8setg5d8g597Bzrl7SwkJPUI9w9a7APLVkLVfvAgCU7L4HN1lHAAAEqiX3nPolf2EdIxxeUi6GZ4vkj4unO+dWdHp3uytynUVTF19vXQE0vOg43jc65yZLWqF8h89jkhar69VERWGlT2D27zthHQEAEAMjRlDkDACw4f0B6whAsaqLfWDhCl6/kbRQp1f9LJC0pXAZ+B5hpU9gJkwcYh0BABADO7YPso4AAAhUwo2zjoD4WFfkip6uVHfx9dYVPk3FPElh4POa8pdtby2BbpD0iKSHJb3mnJvcRWn0WbHSJzDz62YoleLHDgAozeLfXmQdAQAQpIQqEvOsQwBScQOdYk/N+o2kJ1oHPpLkvW/y3reu+qlWfvjTbaz0CczxYy3KZnPWMQAAETdkKCWaAAALOXkdlzTCOkhYfAw7fUr3kaTZXdw3pfCx076gTiyQtKizO7z3i51zj6vIK4F1xJKPwDxNkTMAoBfMe4AiZwCAjXRuqXUEQJLqz3Jf69CnocjnatLZ+382KX9J925j6BOYAwco3gQAlG748FPWEQAAgfK+pIsZAb3lSUlyzi3o5L46SQ3tT9dq5Zyb0snjn5T04Fle61ZJT/QkJEOfwEyqrbaOAACIge2fD7aOAAAIVMJNtI4AqFCqvFD5suU2hSttTVF+8KMO962QtKnj1bgK3T2znXO/6uR7HpNU771v7ElOOn0Cc/+C6frH/+BVZTL0+gAAeu7Jv71ID3x/g3UMAEBwEqpIzLUOERgn5eLY6VP6NnnvH3fObXbO1UtaLqlG+dO0ZnVxpa2Gwv1fus97P8s59yvn3LLC/a1L2h7r6cBHYugTnKamUwx8AAAlGzGK07sAABZy8mrS6StiA7a89w0qsrvHe79IXRQ2F+5/VNKjvRRNEqd3BeeZJeutIwAAYmDugs+sIwAAApXOPW8dAYgMhj6BOXSIImcAQOmqq7lkOwDARudnzQDoDEOfwEyeMsw6AgAgBrZuGWIdAQAQqISbZB0hKF6S9zG8Wf/B9hGGPoG5b/50VVTwYwcAlKb+by+yjgAACFKSImegGzj6D8z+/SeUTlPkDAAozbjxx60jAACClJXXPusQQGQw9AnMs09R5AwAKN0992+yjgAACFQ6+4J1BCAyGPoE5vBhLrELACjdkKEt1hEAAIHyOmIdAYgMhj6BmTptuHUEAEAMbPpsqHUEAECgEm6ydYSweEnexfBm/QfbNxj6BGbe/RQ5AwBKt5giZwCAiaQqKXIGisbRf2B27z5GkTMAoGQXTD5qHQEAEKSscn6XdQggMhj6BGbpMxQ5AwBKN2feZusIAIBApXMvWUcAIiNlHQB968iRZusIAIAYGDyEImcAgA0vVpv2uZyzToAeYqVPYC6aXmMdAQAQA59tqLaOAAAIVMJNtY4ARAZDn8DMu2+6KiuT1jEAABFXT5EzAMBEUpWJe6xDAJHB0Ccw27cdVktL1joGACDipl7cZB0BABCkrHJ+u3UIIDLo9AnM0uc2WEcAAMTAnfdusY4AAAhUOveykokZ1jGC4j2dPlHFSp/AHDtK8SYAoHSDBqWtIwAAAuV13DoCEBkMfQIzfcYI6wgAgBhYv3aYdQQAQKCSbpp1BCAyGPoEZu68iylyBgCUrP63FDkDACykVEGRM1A0On0Cs2VzE0XOAICSXfLVg9YRAABByijrNynlLrMOEg4vKRfDTh9vHaBvsNInMC88v9E6AgAgBu6Ys9U6AgAgUJncMusIQGQw9AnMieMUbwIASjdgAL9PAAA2vE5YRwAig6FPYGZ8ZaR1BABADKxdXWMdAQAQqKS72DoCEBkMfQJz77yLVFlFkTMAoDSLfzdNPpBz4QEA5SSllLvbOgQQGRQ5B2bD+gNqaabIGQBQmsu/vk8uhp2OAIByl1FOG5XQ16yDBMRJPo6/9OO4TV/GSp/AvPTiZ9YRAAAxcOudn1tHAAAEiiJnoHgMfQJz8kTGOgIAIAb69+f3CQDAhtcp6whAZDD0Ccyll42yjgAAiIHVK0dYRwAABCrpZlhHACKDoU9g5tx7kaoocgYAlOipJ6dS5AwAMJBSyt1lHSI43rvY3ULB0Ccwa1bvUzNFzgCAEs28ci9FzgAAAxnltMY6BBAZDH0C8/JLFDkDAEp3y+3brCMAAAKVyb1mHQGIDIY+geFy7QCA3lDVj98nAAAbXs3WEYDIYOgTmMu/Nto6AgAgBlZ9TJEzAMBG0l1qHSE8uRjeAsHQJzB3zZlGkTMAoGTP1FPkDACwkFLK3WEdAogMhj6B+eTjLyhyBgCU7BtX76HIGQBgIKOcVlqHACKDoU9glr262ToCACAGbrp1u3UEAECgMrk3rCMAkZGyDoC+lW5hlQ8AoHSVVfw+AQDY8EpbRwiLl+RjuLw3kNPUWekTmJmzxlpHAADEwMcrRlpHAAAEKukus44ARAZDn8DcfueFFDkDAEr23JILKXIGABhIKeVusw4BRAZDn8A0rthDkTMAoGTXXLeLImcAgIGMcmq0DgFEBkOfwLzWQJEzAKB0N87eYR0BABCodO5N6whAZFDkHJhMhrX4AIDSJVM56wgAgGBlrAMEx+dY3htVrPQJzJXfGGcdAQAQA39cPso6AgAgUKnETOsIQGQw9AnMrbdNpsgZAFCy556aQpEzAMBAhZK62ToEEBkMfQLz4fu7KHIGAJTshlt2UuQMADCQVlbLrUMAkUGnT2DeeGOrdQQAQAxcd+NO6wgAgEBlcu+oInGddYyweP6lJ6pY6ROYbJa1+ACA0lHkDACww5kLQLEY+gTmm1eNt44AAIiBj94fYx0BABCoVGKWdQQgMhj6BOaW2bWq6keRMwCgNC88W0uRMwDAAEXOQHfQ6ROY997doeZTLIcEAJTm5tt2UOQMADCQVlbvKqEbrYMExMnHstMnjtv0Zaz0Ccybf9hmHQEAEAPXXk+RMwDARib3nnUEIDIY+gQml2MtPgCgdI7/gwAAmOGYBigW/8sWmGuunWgdAQAQAx++S5EzAMBGKnGldQQgMhj6BObGmyapH0XOAIASvbx0EkXOAAADFUrqeusQYfGSci5+t0D+P4ahT2DeenObTlHkDAAo0W13baPIGQBgIK2s3rYOAUQGQ5/AvP0WRc4AgNJ981u7rSMAAAKVyX1gHQGIDIY+AAAAAAAAMcTQJzDXXX+BdQQAQAy8//ZY6wgAgEClEldZRwAig6FPYL513QXq1y9lHQMAEHENL11AkTMAwECFkrrWOkR4vIvfLRAMfQLzxutbdepUxjoGACDibp/zOUXOAAADaWX1pnUIIDIY+gTmvXd3WEcAAMTAN67ZYx0BABCoTG65dQQgMhj6BCaR4J9lAQCl8znrBACAcHFMAxSLoU9gbrhxknUEAEAMvPPmeOsIAIBApRLXWEcIipfkfQxv1n+wfaTshj7OudnOucecc79yzj1S+O/qHjxP6/fObv3+wn/XO+cePp+vXc6uunq8qvolrWMAACLu9VcnUOQMADBQoaS4ehdQrLK6jJNzboGkX3vvZ7X72kxJK5xzs7z3Td14umpJDxducqfbJh/13j9+nl+7bL3WsFXNp7LWMQAAEXf33K0UOQMADKSV1etK6E7rIEAklM3Qp7Cipl7Sre2/7r1vdM41SvqNpLpuPu3jkqYU/rtR0mPe+8199Npl6YP3d1pHAADEwBVXUeQMALCRyTWqIsHQByhG2Qx9JD1Q+PhRJ/c9ofxQplu89wutXrtcpVL8sywAoHTZTNmdIQ4ACAZ1FX0ux3FkVJXT/7HVSWrq4jSqzVLbKVhxe+0+ddNNtdYRAAAx8NYbFDkDAGykEtdaRwAio5yGPldIOtjFfU2Fj1d290mdc9XOuQWFW3VfvnY5uvKb4yhyBgCU7M3Xx1PkDAAwkFIyHodmQJ8op9O7qtX14KX9Y4rmnHtE0gFJiwvPXe+cW+a9f7S3X9s5t6KLu6afO2nfWfbKZoqcAQAlu+f+zRQ5AwAMZJTxr6lSd1sHASKhnIY+0ulVNR21DmSGd/O5lnnvG1q/4Jyrk7TFOdfUyRW8evO1y9by5butIwAAYuDrV+61jgAACFTW/1Fi6NN3vOR9DP+lJ5AVy+U29DmX6mIf6L1f1MnXmpxzDZIeUf7KXr322u0v9d5eYQXQzG6+1nlDkTMAoDdQ5AwAsBO1w1jATrn9H1t1F19vXWXT1AuvsVxStXNutsFrm7tl9pRzPwgAgHP4fcME6wgAgEBVJG6wjgBERjkNfZqKeMy5ene6o/30o69f28zMWWNUVUWRMwCgNO++NY4iZwCAgZQS+rp1CCAyymno85HOHMS01/r1rsqSz+Cce8w5589yta7z9trl7pWXNqm5mSJnAEBp5i7YRJEzAMBARhn/qnUIIDLKaehTf5b7WgcvDWd5TMfHN3VxX03h40fn6bXLWuMKipwBAKW7fOY+6wgAgEBl/UrrCIFxko/hTWH861U5DX2elCTn3IJO7quT1OC939zxDudcZyt0lkma5b1v6uS+BZIavfeNpb52FFVyahcAoBe0NPP7BABgw6nCOgIQGWUz9CkMaBYqf2WtNs65mcqvtqnr+D2FK2NtKjym/XM9KumRjgMh59wjyhcz13V4fLdfO6puve1C6wgAgBh4/dWJ1hEAAIFKJW6yjgBERlld6857/7hzbrNzrl75q2zVKH9Vra5W7TQU7v/Sfd77OufcI4Ven+GFxzV674f10mtH0mWXj1JVVZJeHwBAST58b4y8F70+AIA+llJCl1mHACKjrIY+kuS9b1CR/Tne+0WSFp3j/vPy2lH14vMbGfgAAEp2/4OfMfABABjIKONfVqXmWQcJis/xSz+qyub0LvSNTz7+wjoCACAGvnr5fusIAIBAZf0q6whAZDD0CQxFzgCA3tB8it8nAAAbTlXWEYDIYOgTmDvunGodAQAQA6+9coF1BABAoFKJW6wjAJFRdp0+OL9mfGUkRc4AgJKt+HAURc4AAAMpJXSJdYjweH7hRxUrfQLz/HMbGPgAAEq24NsbGfgAAAxklPEvWYcAIoOhT2BWrdxrHQEAEAMzLj1gHQEAEKisX2MdAYgMhj6B6T+AM/oAAKU7eZLfJwAAG079rSMAkcHQJzB33T3NOgIAIAZefbHWOgIAIFCpxK3WEcLiJe9d7G7y1n+wfYOhT2CmThuuykouswsAKM2nH9fIB/I/SwCAcpJSQlyRGCgWQ5/ALH12g1paKHIGAJRm/ncocgYAWMgo45+3DgFEBkOfwKxZvc86AgAgBqbPOGgdAQAQqKzfYB0BiAyGPoEZMLDCOgIAIAZOnOD3CQDAhtMA6whAZDD0CcyceyhyBgCU7uWltdYRAACBqkjcbh0hPDkXv1sgGPoEpnZyNUXOAICSrV093DoCACBISSVcrXUIIDIY+gTm2WfWU+QMAChZ3XfpUwAAWMgqnaPIGSgWQ5/ArFuz3zoCACAGLr7kkHUEAECgsn6jdQQgMlLWAdC3Bg2utI4AAIiBY0cpcgYA2HAaaB0hON5bJ0BPsdInMPfOvdg6AgAgBl58bop1BABAoCoSd1hHACKDoU9gJkwcoopKfuwAgNJ8tnGodQQAQJCSSrgJ1iGAyODoPzBPP7VO6ZacdQwAQMQ9QJEzAMBEVi25pdYhgMig0ycwG9cfsI4AAIiBqRc1WUcAAAQq5zdZRwiKl5P3zjpGr/OK3zZ1hpU+gRkypMo6AgAgBo4e4cIAAAAbToOtIwCRwdAnMPfeR5EzAKB0S5+myBkAYKMicZd1BCAyGPoEZsyYQaqo4McOACjN9m2DrCMAAIKUVMKNsQ4BRAadPoF5eslapdMUOQMASlP33Y3WEQAAQcqqJfesqpI/tA4SDi8pF8P+G28doG+w5CMwmz47ZB0BABADUy48bB0BABConN9qHQGIDIY+gRk6tJ91BABADBxu4sIAAAAbTkOsIwCRwdAnMPPmT5eL4co8AEDfosgZAGClIjnHOgIQGQx9AlNT01/JFD92AEBpdu0YaB0BABCkhJxqrEMAkUGRc2CeXrJOGYqcAQAlevAHG6wjAACClFM695yqkn9iHSQo3nO6SFSx5CMwWzZT5AwAKN2k2iPWEQAAgcr5z60jAJHB0Ccww4b1t44AAIiBQ4cocgYA2HCu2joCEBkMfQJzH0XOAIBe8OziqdYRAACBqkhQ5AwUi06fwAwZWqVkMqFMhl4fAEDPHdjXzzoCACBICTkNtQ4RHjp9IouVPoF5avFaBj4AgJI98D2KnAEAFnJK5561DgFEBkOfwGz7/LB1BABADEycdNQ6AgAgUDm/wzoCEBkMfQJTU0ORMwCgdAcPcnoXAMCGc8OtIwCRwdAnMPcvuESJBOdjAgBK88yTF1pHAAAEqiJxj3WE4HjvYncLBUOfwAwYWKkEP3UAQImOHOGS7QAAC05OA6xDAJHB4X9gltSvUSbjrWMAACKu7rsUOQMALHiKnIFuYOgTmB3bj1hHAADEwPgJx6wjAAAClfO7rCMAkZGyDoC+NWIkSyEBAKXbv58LAwAAbDhXYx0hLN5JuRh24ATS68NKn8DMp8gZANALnvrdVOsIAIBAVSbmWkcAIoOhT2AqK5NyzHwAACU6dYrFwgAAC05SpXUIIDIY+gRmyeK1ymYpcgYAlIYiZwCADYqcge5g6BOYXTuPWkcAAMTA2HHHrSMAAAKV87utIwCRwdrswIwaPdA6AgAgBvbtpcgZAGDDuZHWEYLjOVkksljpE5gFdTMocgYAlGzx302zjgAACJJTZeJe6xBAZDD0CYxzosgZAFAyH8hlTgEA5YjDWKBY7C2BocgZANAb5n97o3UEAECQKHIGuoNOn8Ds2X3MOgIAIAZGjzlhHQEAEKic32sdITis8I0uVvoEZszYQdYRAAAxsGc3FwYAANhIuNHWEYDIYOgTmAV1M5RMMqUFAJSGImcAgA2nisRc6xBAZDD0CUw2m+NyewCAkiWTOesIAIBgZa0DAJHB0Ccwi+vXKpdj6gMAKM2C71DkDACw4NWSe846RHi8i98tEAx9ArNv73HrCACAGBg56qR1BABAoLzfZx0BiAyGPoEZN36wdQQAQAzs2kmRMwDARsKNtY4ARAZDn8DMr5uhZCqcpWwAgPNjCUXOAAATFDkD3ZGyDoC+1Xwqo1yWTh8AQGn69c9YRwAABMlLarYOERTvJZ+L38KBUC5wxEqfwDy1ZG0wb24AwPlz34ObrCMAAAJFkTNQPIY+gdm/74R1BABADIwYQZEzAMCG9wesIwCRwdAnMBMmDrGOAACIgR3bB1lHAAAEKuHGWUcAIoOhT2Dm181QKsWPHQBQmsW/vcg6AgAgSAlVJOZZhwAigyLnwBw/1qJsNmcdAwAQcUOGUqIJALCQk9dxSSOsgwTF+/gVOYeCJR+BeZoiZwBAL5j3AEXOAAAb6dxS6whAZDD0CcyBAxRvAgBKN3z4KesIAIBAeX/QOgIQGQx9AjOptto6AgAgBrZ/Ptg6AgAgUAk30ToCEBkMfQJz/4LpFDkDAEr25N9S5AwAsJBQRWKudYjAOMnH8KYweoo4+g9MU9MpZTIUOQMASjNiFKd3AQAs5OTVZB0CiAyGPoF5Zsl66wgAgBiYu+Az6wgAgEClc89bRwAig6FPYA4dosgZAFC66mou2Q4AsOF9k3UEIDJS1gHQtyZPGWYdAQAQA1u3DNHV1+22jgEACFDCTbKOEBzvw+i/iSNW+gTmvvnTVVHBjx0AUJp6ipwBACaSFDkD3cDRf2D27z+hdJoiZwBAacaNP24dAQAQpKy89lmHACKDoU9gnn2KImcAQOnuuX+TdQQAQKDS2ResIwCRQadPYA4f5hK7AIDSDRnaYh0BABAoryPWEcLiJR/Hk0W8dYC+wUqfwEydNtw6AgAgBjZ9NtQ6AgAgUAk32ToCEBkMfQIz736KnAEApVtMkTMAwERSlRQ5A0Xj6D8wu3cfo8gZAFCyCyYftY4AAAhSVjm/yzoEEBkMfQKz9BmKnAEApZszb7N1BABAoNK5l6wjAJFBkXNgjhxpto4AAIiBwUMocgYA2PBitWmf8846AXqIlT6BuWh6jXUEAEAMfLah2joCACBQCTfVOgIQGQx9AjPvvumqrExaxwAARFw9Rc4AABNJVSbusQ4BRAZDn8Bs33ZYLS1Z6xgAgIibenGTdQQAQJCyyvnt1iGAyKDTJzBLn9tgHQEAEAN33rvFOgIAIFDp3MtKJmZYxwiKp9MnsljpE5hjRyneBACUbtCgtHUEAECgvI5bRwAig6FPYKbPGGEdAQAQA+vXDrOOAAAIVNJNs44ARAZDn8DMnXcxRc4AgJLV/5YiZwCAhZQqKHIGikanT2C2bG6iyBkAULJLvnrQOgIAIEgZZf0mpdxl1kGC4RXPTh9vHaCPsNInMC88v9E6AgAgBu6Ys9U6AgAgUJncMusIQGQw9AnMieMUbwIASjdgAL9PAAA2vE5YRwAig6FPYGZ8ZaR1BABADKxdXWMdAQAQqKS72DoCEBkMfQJz77yLVFlFkTMAoDSLfzdNPpST4QEAZSSllLvbOkRYvIvvLQAMfQKzYf0BtTRT5AwAKM3lX98nF8b/KwEAykpGOdFTChSLoU9gXnrxM+sIAIAYuPXOz60jAAACRZEzUDyGPoE5eSJjHQEAEAP9+/P7BABgw+uUdQQgMhj6BObSy0ZZRwAAxMDqlSOsIwAAApV0M6wjAJHB0Ccwc+69SFUUOQMASvTUk1MpcgYAGEgp5e6yDhEcn3Oxu4WCoU9g1qzep2aKnAEAJZp55V6KnAEABjLKaY11CCAyGPoE5uWXKHIGAJTultu3WUcAAAQqk3vNOgIQGQx9AsPl2gEAvaGqH79PAAA2vJqtIwCRkbIOgL51+ddGW0cAAMTAqo9H6Nrrd1nHAAAEKOkutY4QHO85pzuqWOkTmLvmTKPIGQBQsmfqKXIGAFhIKeXusA4BRAZDn8B88vEXFDkDAEr2jav3UOQMADCQUU4rrUMAkcHQJzDLXt1sHQEAEAM33brdOgIAIFCZ3BvWEYDIoNMnMOkWVvkAAEpXWcXvEwCADa+0dYTwcEp3ZJXd0Mc5N1tSnaRNkmokVUta5L1v6sFzLZB0q6QpkoZL+qir53LOPVJ4rXpJH3nvmwpZFkpa5r1/vAebU3ZmzhprHQEAEAMfrxhJkTMAwETSXWYdAYiMsjq9qzCkecR7v9B7/6j3fpGkxyStcM5Vd/O5HpGkwnPdKukWSVdI2uKcm9LJt1RLeljSMkmHnHO+8N+b4zLwkaTb77xQVf0ocgYAlOa5JRdS5AwAMJBSyt1mHQKIjLJZ6VMY6tQrvzKnjfe+0TnXKOk3yq8AKua5Zha+d3G752lyzt0i6ZDyw5wLO/nWx5VfFSRJjZIe897HqgSnccUeNZ9iST4AoDTXXLeLImcAgIGMcmpUQtdYBwEioWyGPpIeKHz8qJP7nlB+IFSshcqvEDpDYfDTIGm2c26m976xw/0Lu/EakfRaQ6xmWAAAIzfO3mEdAQAQqHTuTaUSDH36jJe8j+G/9ASyYrmcTu+qk9TURXfPZqnt9K9iXKH8KWEzO7mvsd1jgpPJBPLOBgCcV8lUzjoCACBYGesAQGSU09DnCkkHu7ivqfDxyiKfq6HwPU1nf9iXOeeqnXMLCrfq7n5/ubvyG+OsIwAAYuCPy0dZRwAABCqV6Ozf9gF0ppyGPtW99Bh57xd574d10cfT+jfEl04jK5Q/P6z8aqAGSfXOuV8V85rOuRWd3SRNL+b7+8qtt01WVRVFzgCA0jz31BSKnAEABiqU1M3WIYDIKKdOH6nrlTmtK4CGl/Lkhat2zZa0uGOfT+G1l3nvG9o9vk75q301xeUKXh++v0vNzRQ5AwBKc8MtOylyBgAYSCur5UroOusgQCSU29DnXKpL/P565fuBHup4R+Hy8B2/1lr8/IjyV/bqkvd+VmdfL6z2KZv1h2+8sdU6AgAgBq67cad1BABAoDK5d1SRYOjTl2JZ5ByIcjq9S+p6qNO6wqepp09cOHWrWtKsLsqiu7JcUrVzbnZPX7ucZLOsxQcAlI4iZwCAHc5cAIpVTkOfpiIe01XR81kVrvo1W90f+LQ3pYffV1auunq8dQQAQAwsf2+MdQQAQKBSiU5PsgDQiXIa+nykrgcrrV9f0d0nLazQWei973Lg45x7zDnn43i1ro5uvqVWVf0ocgYAlObF52opcgYAGKDIGeiOchr61J/lvtahT8NZHvMlzrmZyg98bu3w9Wrn3MMdnr+pi6epKXz80tW+oui9d3eo+RTLIQEApbn5th0UOQMADKSV1bvWIYLi5eRzMbwpjP+RKaehz5NS26lYHdVJaujsEuyFK3J9SeHrC733dZ3cPVv5QudWy9T1qV8LJDV2crWvSHrzD9usIwAAYuDa6ylyBgDYyOTes44AREbZXL2rcKWshcpfKWtx69cLq3WmSPrSiZutV8Zyzs1qP5QpnKa1TNJm51z7FUTVhY9XtH8+7/2jzrl659yi9oOlQvnzcElnrBSKslyOtfgAgNK5cvpnIwBAYDimAYpVNkMfSfLeP+6cax3ULFf+1Kpqdb0Kp6Fwf8f7XlN+UNRl+XLHVUPe+zrn3COFgdHwwvM2eu+H9WBTytY11060jgAAiIEP3x3DZdsBACZSiSutIwBtCj3CdZI26fQMY1FPLyJVOGtpkfJzidaLWfX4+cpq6CNJ3vsGFdnd471fpPwfRsev96jOvfB8sXbjTZPUr19Sp+j1AQCU4OWlk/SPfr2CXh8AQB+rUFLXW4cIj+cXfmcK9TS/bj+DKJyttKJwRlJTN59vtqTHJNW1ns1UGAL9RvnBUrexODswb725jYEPAKBkt921jYEPAMBAWlm9bR0CaK2VqVeHhSiFYU2j8oOa7jzfFOVrauo6dAo/onzXcI8w9AnM229R5AwAKN03v7XbOgIAIFCZ3AfWEQBJeqDwsbMrfT+h7g9qHpO0uJOLSB1UfojUI2V3ehcAAAAAAF1jqSnKQp2kpi5O4dos5U//8t4v7uT+MxRO65qtTi4i5b1fWEpIVvoE5rrrL7COAACIgfffHmsdAQAQqFTim9YRwuIl713sbr1wEbgrdLpouaOmwsdiW8dbBzsfOeeqnXMLnHMPF075KglDn8B867oLVNUvaR0DABBxDS9dIM8VcwEAfa5CSV1rHQLxMd05t6KzWxHfW91Lj5Hyq3yk/BXIH1b+dK4nJS1yzj1W5HN0iqFPYN54fauaKXIGAJTo9jmfU+QMADCQVlZvWocAWjV18fXWFUDDi3ye6sLHB733j3rvN3vvmwqndl1RyuCHTp/AvPfuDusIAIAY+MY1e6wjAAAClcktV0XiS9UnQE+sa3+59fOgupuPX9bJ156Q9Ihz7rFOSp7PiZU+gUkk+GdZAEDpfM46AQAgXBzToGxUd/H11hU+Td15Mu99Qydfbh30zO7kvnNi6BOYG26cZB0BABAD77w53joCACBQqcQ11hGCY126fF6KnEvXVMRjuip67mhzEY8pthT6DAx9AnPV1eMpcgYAlOz1VydQ5AwAMFChpK6yDgFI0kfKFy93pvXrxRRCS4XVPM656rM8ppjB0Jcw9AnMaw0UOQMASnf33K0UOQMADKSV1evWIQBJqj/Lfa1Dn85O1+pMa5dPZ0Ok6sLH5UU+1xkY+gTmg/d3WkcAAMTAFVdR5AwAsJHJdbvLFjgfnpQk59yCTu6rk9Tgvf/S6hzn3JcGO977x5U/Xayz3p5bJW323i/uSUiGPoFJpfhnWQBA6bIZ/hcCAGCFuoq+5n38bqX/mfgmSQslPdL+6865mcqv2Knr+D3OuRWSNhUe01GdpF+3HwoVHvdAZ89VLC7ZHpibbqrVX/67d6xjAAAi7q03xuuGW3ZYxwAABCiVuNY6AiApv0LHObfZOVev/OlXNcqfjjWrMBTqqKFw/5fu8943OOduUf7y7K1fPihpchfPVRSGPoG58pvjVFWVVHMzvT4AgJ578/Xx8l70+gAA+lhKyZ5dxAg4LwqXWS+qu8d7v0jSorPc36gSVvV0hrXZgVn2ymYGPgCAkt1z/2YGPgAAAxll/GvWIYDIYKVPYJYv320dAQAQA1+/cq91BABAoLL+j5Luto4RFO/5l56oYqVPYChyBgD0BoqcAQB2WLsAFIv/YwvMLbO/dHU4AAC67fcNE6wjAAACVZG4wToCEBkMfQIzc9YYVVVxiUMAQGnefWtcr1zuFACA7kkpoa9bhwAig3VxgXnlpU0UOQMASjZ3wSaKnAEABjLK+FdVqXutg4TDOykXw1/6gfQUsdInMI0rKHIGAJTu8pn7rCMAAAKV9SutIwCRwdAnMJWc2gUA6AUtzfw+AQDYcKqwjgBEBkOfwNx624XWEQAAMfD6qxOtIwAAApVK3GQdAYgMhj6BuezyURQ5AwBK9uF7YyhyBgAYSCmhy6xDAJFBkXNgXnx+I0XOAICS3f/gZxQ5AwAMZJTxL6tS86yDBMNL8jEsPQ7l365Y6ROYTz7+wjoCACAGvnr5fusIAIBAZf0q6whAZDD0CQxFzgCA3tB8it8nAAAbTlXWEYDIYOgTmDvunGodAQAQA6+9coF1BABAoFKJW6wjAJFBp09gZnxlpKqqkvT6AABK0rh8lLwXvT4AgD6WUkKXWIcIThw7fULBSp/APP/cBgY+AICSzX9wIwMfAICBjDL+JesQQGQw9AnMqpV7rSMAAGJgxqUHrCMAAAKV9WusIwCRwdAnMP0HcEYfAKB0J0/y+wQAYMOpv3UEIDIY+gTmrrunWUcAAMTAqy/WWkcAAAQqlbjVOkJwvHexu4WCoU9gpk4brspKLrMLACjNpx/XyHvrFACA8KSUEFckBorF0CcwS5/doJYWipwBAKWZ/x2KnAEAFjLK+OetQwCRwdAnMGtW77OOAACIgekzDlpHAAAEKus3WEcAIoMWxsAMGFhhHQEAEAMnTvD7BABgw2mAdYTghNSBEzes9AnMnHsocgYAlO7lpbXWEQAAgapI3G4dAYgMhj6BqZ1cTZEzAKBka1cPt44AAAhSUglXax0CiAyGPoF59pn1FDkDAEpW9136FAAAFrJK5yhyBorF0Ccw69bst44AAIiBiy85ZB0BABCorN9oHQGIDIqcAzNocKV1BABADBw7SpEzAMCG00DrCGHxLn+LmzhuUydY6ROYe+debB0BABADLz43xToCACBQFYk7rCMAkcHQJzATJg5RRSU/dgBAaT7bONQ6AgAgSEkl3ATrEEBkcPQfmKefWqd0S846BgAg4h6gyBkAYCKrltxS6xBAZNDpE5iN6w9YRwAAxMDUi5qsIwAAApXzm6wjBMezbiCyWOkTmCFDqqwjAABi4OgRLgwAALDhNNg6AhAZDH0Cc+99FDkDAEq39GmKnAEANioSd1lHACKDoU9gxowZpIoKfuwAgNJs3zbIOgIAIEhJJdwY6xBAZNDpE5inl6xVOs0JmQCA0tR9d6N1BABAkLJqyT2rquQPrYMEw0vy3lnH6HXeOkAfYclHYDZ9dsg6AgAgBqZceNg6AgAgUDm/1ToCEBkMfQIzdGg/6wgAgBg43MSFAQAANpyGWEcAIoOhT2DmzZ8uF7+VeQCAPkaRMwDASkVyjnUEIDLo9AlMTU1/JVMJZej1AQCUYNeOgdYRAABBSsipxjpEcOLY6RMKVvoE5ukl6xj4AABK9uAPNlhHAAAEKad07jnrEEBkMPQJzJbNFDkDAEo3qfaIdQQAQKBy/nPrCEBkMPQJzLBh/a0jAABi4NAhipwBADacq7aOAEQGQ5/A3EeRMwCgFzy7eKp1BABAoCoSFDkDxaLIOTBDhlYpmUwok6HXBwDQcwf29bOOAAAIUkJOQ61DhMXHtMjZWwfoG6z0CcxTi9cy8AEAlOyB71HkDACwkFM696x1CCAyGPoEZtvnh60jAABiYOKko9YRAACByvkd1hGAyGDoE5iaGoqcAQClO3iQ07sAADacG24dAYgMhj6BuX/BJUokYng+JgCgTz3z5IXWEQAAgapI3GMdITjeu9jdQsHQJzADBlYqwU8dAFCiI0e4ZDsAwIKT0wDrEEBkcPgfmCX1a5TJBFJTDgA4b+q+S5EzAMCCp8gZ6AaGPoHZsf2IdQQAQAyMn3DMOgIAIFA5v8s6AhAZKesA6FsjRrIUEgBQuv37uTAAAMCGczXWEQLjpFh24MRxm76MlT6BmU+RMwCgFzz1u6nWEQAAgapMzLWOAEQGQ5/AVFYm5Zj5AABKdOoUi4UBABacpErrEEBkMPQJzJLFa5XNUuQMACgNRc4AABsUOQPdwT/TBWbXzqPWEQAAMTB23HHrCACAQOX8busIwfGx7PQJAyt9AjNq9EDrCACAGNi3lyJnAIAN50ZaRwAig6FPYBbUzaDIGQBQssV/N806AgAgSE6ViXutQwCRwdAnMM6JImcAQMlY5g0AsMNhLFAs9pbAUOQMAOgN87+90ToCACBIFDkD3UGRc2D27D5mHQEAEAOjx5ywjgAACFTO77WOEBSveK7wDWUpBCt9AjNm7CDrCACAGNizmwsDAABsJNxo6whAZDD0CcyCuhlKJuM3pQUA9C2KnAEANpwqEnOtQwCRwdAnMNlsTj6UdWwAgPMmmcxZRwAABCtrHQCIDDp9ArO4fq1yOaY+AIDSLPgORc4AAAteLbln1S/5c+sg4fCSj+O/9QRyWMxKn8Ds23vcOgIAIAZGjjppHQEAECjv91tHACKDoU9gxo0fbB0BABADu3ZS5AwAsJFwY60jAJHB0Ccw8+tmKJmiyBkAUJolFDkDAExQ5Ax0B50+gWk+lVEuG8jJiwCA86Zf/4x1BABAkLykZusQwfGehQNRxUqfwDy1ZC1X7wIAlOy+BzdZRwAABKol95x1BCAyGPoEZv++E9YRAAAxMGIERc4AABveH7COAEQGQ5/ATJg4xDoCACAGdmwfZB0BABCohBtnHQGIDIY+gZlfN0OpFD92AEBpFv/2IusIAIAgJVSRmGcdIjjeu9jdQsHRf2COH2tRNpuzjgEAiLghQynRBABYyMnruHUIIDIY+gTmaYqcAQC9YN4DFDkDAGykc0utIwCRwdAnMAcOULwJACjd8OGnrCMAAALl/UHrCEBkMPQJzKTaausIAIAY2P75YOsIAIBAJdxE6whAZDD0Ccz9C6ZT5AwAKNmTf0uRMwDAQkIVibnWIQJjX7p8foqcwyhz5ug/ME1Np5TJUOQMACjNiFGc3gUAsJCTV5N1CCAyGPoE5pkl660jAABiYO6Cz6wjAAAClc49bx0BiAyGPoE5dIgiZwBA6aqruWQ7AMCG903WEYDISFkHQN+aPGWYdQQAQAxs3TJEV1+32zoGACBACTfJOkJQvFehAydevLdO0DdY6ROY++ZPV0UFP3YAQGnqKXIGAJhIUuQMdANH/4HZv/+E0mmKnAEApRk3/rh1BABAkLLy2mcdAogMhj6BefYpipwBAKW75/5N1hEAAIFKZ1+wjgBEBp0+gTl8mEvsAgBKN2Roi3UEAECgvI5YRwhOHDt9QsFKn8BMnTbcOgIAIAY2fTbUOgIAIFAJN9k6AhAZDH0CM+9+ipwBAKVbTJEzAMBEUpUUOQNF4+g/MLt3H6PIGQBQsgsmH7WOAAAIUlY5v8s6BBAZdPoEZukzFDkDAEo3Z95m6wgAgEClcy8pmZhuHSModPpEFyt9AnPkSLN1BABADAweQpEzAMCGF6tNgWKV3Uof59xsSXWSNkmqkVQtaZH3vul8P1dvvna5umh6jXUEAEAMfLahWldft9s6BgAgQAk31ToCEBllNfRxzi2Q9Gvv/ax2X5spaYVzblZ3hi/dfa7efO1yNu++6fp7P39ZLS1Z6ygAgAh78m8v0g9+utY6BgAgOElVJu6xDgFERtmc3uWcq5ZUL2lR+6977xslNUr6zfl6rt587XK3fdthBj4AgJJNu7jJOgIAIEhZ5fx26xDhybn43QJRNkMfSQ8UPn7UyX1PSFpwHp+rN1+7rC19boN1BABADNx57xbrCACAQKVzL1tHACKjnIY+dZKaujiNarPUdgrW+Xiu3nztsnbsKMWbAIDSDRqUto4AAAiU13HrCEBklNPQ5wpJB7u4r6nw8crz9Fy9+dplbfqMEdYRAAAxsH7tMOsIAIBAJd006whAZJTT0Ke6lx7Tk+cq+bWdcys6u0maXsRz95m58y5WZWXSOgYAIOLqf3uRdQQAQJBSqqDIGShaWV29S6dX1XTUugpn+Hl8rt587bK1ZXMTRc4AgJJd8tWuFsgCAHA+ZZT1m5Ryl1kHCYd38j6Gxcdx3KZOlNvQ51yqDZ/rrI9vf6n39gqrfWZ287XOmxee32gdAQAQA3fM2WodAQAQqExumVIJhj5AMcrp9C6p68FK6yqbpvP4XL352mXrxHGKNwEApRswgN8nAAAbXiesIwCRUU5Dn6YiHlPsWvLuPldvvnZZm/GVkdYRAAAxsHZ1zXl5Xu/P/O/2n0dVHLapY+a4bVNn2xDHbYqiOGzTud5bUd8mi59L0l3cty8IRFg5DX0+kjSli/tav77iPD1Xb752Wbt33kWqrKLIGQBQmr/975colzv9eTotpVtO/2+F99KJ42eeRd50qPKMz7/Y0/+Mz3dsGyTX7vT6z7cMPuPzLZuGnPH4z7cMbnstSdq+bdAZn+/ZNeCMzw/srzrj8yOHK874/NSphLLtau+yWam5+cxtOna04owMBw9UnfF562u22v55x20a0q1t2rFt4Bmft/6ZtX7e+vqtnx87mjrj8+Zmp2z29AvmctKpU2f+f8DRI2du04F9/c74fNfOgWdk3rb1zJ/L1s1DOnw++Izv37b1zJ/Lrh1nbtPeL/qd8Xnr+6T189b3UevnLS1O6fTpF/ReOnnizG063HTme23fF2e+13ZuP/s2bdnUcRvP3Kbtn3fYpp1nvtf27ztzmzq+106eSJ6x/2QyX95/jh87c/85dPDM91rH/Wd7N/efrR3fa9vP/Lns2X3mNh3ssP8cPXLmz6WY/edoh/3nwP4z32u7O+w/286x/2zddPb32s7tHd9rZ+4/hw6e+V5r/TNvv/9kMmfff1p/tq327z1zm3buGHjWn8vWTefYfzq+13ac+XPZt7fD/tPUYf/p8F5Lp/Wl/efEibP/Xb2349/V2zv8XDruP5vP/l7r+Hf17o5/V+87873W0bGj/ZVyd3d+J84bX+j1idMtFOU09Kk/y32tg5eG8/RcvfnaZW3D+gNqaabIGQBQmo3rh+lf//rqts+XvThZ/+SX17cNGN5/Z6x+8ZNb1FI46Fu3Zph+9t3bdbxwAL9750D9+IE72g5kjxyu0I8evF1fFA40W1oSevj7t2pr4eAhl5N+8ZObtXrl6RVG//TPr9OH745pO9j417++Wg0vX9D2+X/891doye+mtn3+V//5cv23//rVts//9r/P0H/8t1e0ff5M/TT9y19d2/b8r70ySf/4z25sO+hrXD5Kf/ajW9R8Kr9NmzYO1U++fXvbgezeL/rrxw/e3jaIOX4spR8/eHvbkCOddnr4B7O1aeNQSfkDmr//0E1a+fGIttf89T/8lt59c2xbpn/7L67SK89Pavv8f/+LWXriby5q+/y//ddL9Vf/x2Vtn//ub6br3/+rb7R9/sIzF+rX//BbbQd9f3h9gv7+wze1HfR9vGKkHv7BrTp1Mn8gu3XzYP3owdvbBkEHD1TpRw/c3nZgefJEUj/59m3aUThoy2ad/uxHt2jDuuq2bfqHC2/UHz86vbL4X/zja/XmG+PbMv37f/UNPf/M5LbP/8//+HX9z/8+ve3z//7YV/Vf/tPX2j5/8rcX6d/886vaPn956WQt+nvXt23TO38Ypz//2S1tQ5M1q4broe/f1nYgu3P7QP3owdvbBkFNhyr1owfvaDuQPXUqqZ999zZ9vjV/YJrLSX/2o9la++npa3j841/coI8+GN32+b9cdI3eWDaxLdN/+F+v1DP1F7Z9/n/975frfzw+o+3z/+e/fUX/21/MbPv86Sen6V8tuqbt+Za9VKt/9PMb2vafD98bo5//eHbb/rNhXbV+9t3bdKwwlNize4B+VHd6/zl6pEI/fvD2tqFj6/7TOujxXvrzn92sT9vtP//s71+nD945vf/8m39+tZa9eHr/+d/+/SzV/3Za2+eP/Z+X6Tf/5dLT+8//mKFH/9fT+89zS6bqX/yTb7U9/xvLLtA//NOb2vafP340Sn/2J7Pb3mtbNg05Y//Zv6+ffvzA7W2DoBPHU/rJg7e3DW4ymfz+89mG0/vP33v4Zq38Y/v95zq98+a4tkz/7n/5pl5aWnt6//nLmfrd31zcbv+5TP/3fz69/zzxPy/Wv/uXp/efF5+bon/2D65re6+99cZ4/fnPbm7bf1b+cYQe/sFtOlnYpm1bB+tHD96hI4fz77VDB1v3n/x77eTJpH76ndvahobZrNOf/mi21q8d1rZN/+hPb1Tj8lFt2/S//JNr9Obrp/efv/zX39DSp6a0ff5f/tPX9Df/v0vaPv8fj39F//nRr7d9vvi3F+nf/PPTf1e/8vxk/erPT7/X3ntrrH75k5vb9p+1nw7XQ987vf/s3jlQP37w9rZB0OGmSv34wdva/q5ubk7ooe/e1jawzuWkX/z4Zq1ZdXr/+ae/vF4fvje6LdP/Z9HVeu2VdvvPv71CTz95+u/q//r/vVx//VdfOWOQ1OrUyaT+9E9u1IqPDn/5TgCdKqci5yclPeacW+C9X9zhvjpJDd77zR2/yTk3pZOvd/e5evTaUfTSi59ZRwAAxMRf/9WlWrdmuH7281V64dnJem7JVG3ZNFQP//lKvffWWDW8PEn33DJPD/1ilbZsGqIP3h2ru66/Xw//+UodP1qhVZ+M1F033K+f/XyVBg1u0fo1Nbrrhvv105+vUu3kw1q7eoTuuXmefvKnn2rWN/do1cejNP/Oe/Sjh1fr1ru26r23Jui780br+z9Zpwe+u14NL03Say9P0oM/WKfv/XitXnm+Vk/+z4v11hsT9IOfrtErL9Rqy6ahWv7+GP3oodV6+flaNS4frU/+OEI/+/mneum5Wr3+6iRtWDtMD/1ilV58rlbPLpmqz7cM0cN/vlIrPhyt3zdcoDk33a+Hf7lSO3YM1IoPx+S36ZcrlU4n9OnKkbrz+vl66OcrNWx4s9avrdHdN96nn/78U027+KDWfjpCc2fP048Xfqqrv7VLf1wxWgsK23TX3M16642J+uCdsfrej9fpwe+v06sv1url5yer7nsb9IOfrNGrL9Xqt///S/T2H8brhz/Lb9OGtcO04oPR+tHC1Xp56WR98O5YrV45Qj/9s1V68bnJeuX5ydq0oVoP/WKVGl6+QC8+O0VzPx+shX++Uqs+GaG3fz9Bd994nx765Srt+6K/Pl4xOr8Nv1gpOa+1n47QXTfcr4d+vkqjxpw4vU1/9qlmXLpfq1eO1Lxb5+knCz/VdTfv0EcfjtUDc+boT362Rvcu+ExvNEzS238Yr+/+aJ2+88N1evWFWi196kL9ftkGff8na/XqC5P1Px7/qt5/a5x++LM1evn5Wq1ZNUKNy0fpx3+a36Z3/jBea1cP10//7FO9+NxkvfDMhdr82VA99MtVevv34/XKC7W655Z5eviXK7Vx3TC999Y43X1DfpsON1Vq5R9H6c7r79dDv1ilyqqM1q3Ov9d+9otVmjDxqNatqdGcwjZ9bdZerV45Uvffca9+vPBT3XTrdn347jh959679IOfrtV9D27Uay9P0u+XTdR3/mS9vvujtXrlhVot+d1FevP1Cfr+T9Zq2Qu1+nxr/j3/J4Vt+qRxlD5pHKWf/tkqvbS0Vr9vuEDr1w7XQz9fqRefnaxn6qe1vdc+eGesXn/1As25+T499IuV+nzLEH343ljdfcP9euiXK3XyRKrwXstvU8f9Z/KU/P5z7y3599qVV+/RJ42jNP+Oe/Wjh1frjjlb9M4fJuij90frez9epwe+t07LXqzVqy/U6sEfrM/vPy/U6nd/M11v//70e23Txmot/2B02/6z4oMxWvXHkfrpz1fppecmq+HlSfpsfbV+9vNVevn5/M9529bBeviXK/XxilH6w2sTNeem+/TwL1dq966Balw+um3/yWSdVq8qbNPPV2n4iJOF91r+74iLLjm9//zkTz/VNdfv1B8/Gq0Fd92jP3lote6eu1lvvj5R7789tu299sqLtXrxuSmn958Xa/U//3qG3vn9eP3wodV69YVJWrdmuFZ8MEY/WvipXlo6We+/PU5rVuX3n5eenayXlk7R5o3VeuiXK/XGqxP18tLJmjs7/15bvapG7/xhvO6+If/32oF9/fRJY+t7baWSSa91q0foruvz77UxY45r/doazbkp/177ymX7tHrlCN1321z9+OFPdcPs7Vr+wVg9eM/d+uFP12pe3Ua9sWyS3npjgr77J+v1nT9Zp1demKxnF0/V7xsmFv5em6y//qtBev+d/Hvtledr9eknI/XxilH68Z9+qpeXTtZbv5+gdWuG5/9OeHaylj49VZs/y/9d/fYfxmnZS7Wac3N+mzZtrNb774zTXdfn32vHjlZo5cej2v5O6D8gnd+mG+7Xz36xUhdMKuw/hW36+pVfaNXHowr7z2rNvuNzvf/2eH1v3ih9/ydrteA7G9Tw8iS9/uoF+vYP8/vPqy9M1uLfXqw3X5/Qtk2t7/kfPbRal35tn5qbk2p4aZIe/y+Xaf3a4Xpx5kZd+Y1x1r8GgUhwvoxOInXOPSxpkff+wnZfm6n8SpxZ3vumDo9vvTLWLO99Y4nP1a3Hd2ObVsycOXPmihXlcXbYv/6Xf9B/+g/vWccAAAAAgB75+S+v0F/+h9nWMSRJs2bNUmNjY2NXV3OOOufciumDx8z8f676iXWUXvfD9/9a647uie3PrlU5rfSR9/5x59xm51y9pOWSapS/qlZXQ5eGwv1fuq+7z9WD146kSy8bde4HAQAAAECZuvTy0ed+EHqNVzQLx88lhpvUqbIa+kiS975BRfbneO8XSVrUG8/Vk8dH0Zx7L1JVVVLN9PoAAAAAiJhURUL33c/Vu4BilVORM/rAmtX7GPgAAAAAiKRMOqdVn+y1jgFEBkOfwLz8EkXOAAAAAKKLi9MAxSu707twfnG5dgAAAABRdupUxjpCcLx31hHQQ6z0CczlX6P0DAAAAEB0fW3mGOsIQGQw9AnMXXOmqaoqaR0DAAAAALqtoiKhufMocgaKxdAnMJ98/AVFzgAAAAAiKZ3OqXHFbusYQGQw9AnMslc3W0cAAAAAgB579WWOaYBiUeQcmHQLq3wAAAAARFcLxzR9jiLn6GKlT2BmzhprHQEAAAAAemzWFRzTAMVi6BOY2++8UFX9KHIGAAAAED0VFQnNuXeadQwgMhj6BKZxxR41n2I5JAAAAIDoSadz+uD9ndYxgMhg6BOY1xooPQMAAAAQXa8t22IdISw+3+kTt5u89R9s32DoE5hMJpB3NgAAAIBYSqdz1hGAyGDoE5grvzHOOgIAAAAA9Ng3vjneOgIQGQx9AnPrbZNVVUWRMwAAAIDoqahI6M67p1rHACKDoU9gPnx/l5qbKXIGAAAAED3pdE7vvL3dOkZg7Pt3zkunj5z1H2yfYOgTmDfe2GodAQAAAAB67Pevb7WOAEQGQ5/AZLMUOQMAAACIrmyWImegWAx9AnPV1ZSeAQAAAIiuq66eYB0BiIyUdQD0rZtvqVVVVZJeHwAAAACRU1GR0B13UeTcl7wkn4tf/00o58Cw0icw7727g4EPAAAAgEhKp3P6PT2lQNEY+gTmzT9ss44AAAAAAD325u8/t44ARAZDn8DkcqEsYgMAAAAQR55DGqBoDH0Cc821E60jAAAAAECPXXMtRc5AsShyDsyNN01Sv35JnTpFrw8AAACAaKmoSGj2bVOsYwTH+/gVOYeClT6BeevNbQx8AAAAAERSOp3T669ttY4BRAZDn8C8/RZFzgAAAACi6+03OaYBisXQBwAAAAAQGY4zjYCiMfQJzHXXX2AdAQAAAAB67Fsc0/Qtn+/0idtNgVwFjqFPYL513QWq6pe0jgEAAAAA3VZRkdBNN9daxwAig6FPYN54fauaKXIGAAAAEEHpdE4Nr262jgFEBkOfwLz37g7rCAAAAADQY+++wzENUKyUdQD0rUSC1jMAAAAA0UWRc9/znj/0qGKlT2BuuHGSdQQAAAAA6LEbbqq1jgBEBkOfwFx19XiKnAEAAABEUkVFQtffwNW7gGIx9AnMaw0UOQMAAACIpnQ6p5df/Mw6BhAZDH0C88H7O60jAAAAAECPcUzT15y8j99NCqOniKFPYFKpMN7YAAAAAOIpleIwFigWe0tgbqL0DAAAAECE3XhzrXUEIDIY+gTmym+OU1UVRc4AAAAAoqeiIqFrrp1oHQOIDIY+gVn2ymY1N1PkDAAAACB60umcXnx+o3UMIDIY+gRm+fLd1hEAAAAAoMeWf7jLOkJQvGReunxebtZ/sH2EoU9gKHIGAAAAEGUVFRzGAsVibwnMLbOnWEcAAAAAgB6bfRvHNECxGPoEZuasMRQ5AwAAAIikioqEvvHNcdYxgMhg6BOYV17aRJEzAAAAgEhKp3Na+ixFzn3NvH/nPNxCwdAnMI0rKHIGAAAAEF0c0wDFY+gTmEpO7QIAAAAQYZWVHNMAxWLoE5hbb7vQOgIAAAAA9Njtd3BMAxQrZR0Afeuyy0epqipJrw8AAACAyElVJPT1WWOsY4TFK54dON46QN9gpU9gXnx+IwMfAAAAAJGUSef07DPrrWMAkcHQJzCffPyFdQQAAAAA6LGPG/dYRwAig6FPYChyBgAAABBl/frRUgIUi6FPYO64c6p1BAAAAADosTvv4pimr/mci90tFAx9AjPjKyNVxWofAAAAABGUSiX01ctGWccAIoOhT2Cef24DRc4AAAAAIimTyemZpylyBorF0Ccwq1butY4AAAAAAD226hMuTgMUi6FPYPoPoPQMAAAAQHQNGFBhHQGIDIY+gbnr7mnWEQAAAACgx+6awzFN33LyPn43KYwyZ4Y+gZk6bTiXbQcAAAAQSalUQtMvqbGOAUQGQ5/ALH12g1oocgYAAAAQQZlMTk8tXmcdA4gMhj6BWbN6n3UEAAAAAOgxjmmA4tHqG5gBAyk9AwAAABBdAwZWWkcIipfkvXWK3hfDTeoUK30CM+ceSs8AAAAARNe9cy+yjgBEBkOfwNROrlZlJUXOAAAAAKInlXK6cOow6xhAZDD0Ccyzz6xXSwtFzgAAAACiJ5PxWlK/1joGEBl0+gRm3Zr91hEAAAAAoMfWreWYpk95KeeddYreF0ipDyt9AjNoMKVnAAAAAKJr4CCOaYBiMfQJzL1zL7aOAAAAAAA9NncexzRAsRj6BGbCxCGqqOTHDgAAACB6kkmnSbVDrWMAkcHRf2Cefmqd0i056xgAAAAA0G3ZrNfiJyly7mveu9jdQsHQJzAb1x+wjgAAAAAAPbaBYxqgaAx9AjNkSJV1BAAAAADosSFDOaYBisXQJzD33kfpGQAAAIDouu/+6dYRgMhg6BOYMWMGqaKCHzsAAACA6EkmncaOG2wdA4gMjv4D8/SStUqnKXIGAAAAED3ZrFf9E6utYwTHunSZIueeY+gTmE2fHbKOAAAAAAA9xjENUDyGPoEZOrSfdQQAAAAA6LGh1RQ5A8Vi6BOYefOny4Wzkg0AAABAzMxfcIl1BCAyUtYB0LdqavormUooQ68PAAAAgIhJJp1GjBxoHSMoXoplB463DtBHWOkTmKeXrGPgAwAAACCSKHIGuoehT2C2bKb0DAAAAEB0bdncZB0BiAyGPoEZNqy/dQQAAAAA6LFhw7k4DVAshj6BuY8iZwAAAAARNr9uhnWEwDh5H7+bFMaBMUOfwAwZWqVkkh87AAAAgOhJJJyGVbPSBygWR/+BeWrxWmUyFDkDAAAAiJ5czuuJ31HkDBSLoU9gtn1+2DoCAAAAAPQYxzRA8VLWAdC3amoocgYAAAAQXTUjOKbpU17yuRj233jrAH2DlT6BuX/BJUokYrjDAgAAAAjCggcocgaKxdAnMAMGVirBTx0AAABABCUS0qCBldYxgMjg8D8wS+rXKJMJZB0bAAAAgFjJ5aQnKXIGikanT2B2bD9iHQEAAAAAemw7xzQoI8652ZLqJG2SVCOpWtIi731Tbz23935hT5+DoU9gRowcYB0BAAAAAHps5CiOafqa9/TCdsY5t0DSr733s9p9baakFc65Wb0w+KmX9GQpT8DpXYGZT5EzAAAAgAire5AiZ9hzzlUrP5RZ1P7r3vtGSY2SflPi8z+i/KqhkjD0CUxlZVKOmQ8AAACACHJOqqrkhBWUhQcKHz/q5L4nJC3o6RMXTuta3tPvb4+hT2CWLF6rbJYiZwAAAADR4z1FzigbdZKaujiFa7PUdvpXT9zqvV/c02DtMSINzK6dR60jAAAAAECP7eSYps/R6dOpKyQd7OK+psLHKyV1a3hTOK3rL3oe60wMfQIzavRA6wgAAAAA0GOjOaZB75nunFvR2R3ty5m7UK2uhz7tH1O0Qgn08t648lcrTu8KzIK6GRQ5AwAAAIgk5yhyRllp6uLrrcOg4d18voW9dVpXK1b6BMY5UeQMAAAAILL4R2z0onVFrOgpRXWxD3TO/UodrgTWG1jpE5jF9RQ5AwAAAIimfJHzGusYQfHKd/rE7tY7fzzVXXy9dYVPUzFPUjitq6tS6JIw9AnMF3uOWUcAAAAAgB7bwzENykNTEY85V+dPq4Xe+8dLyNIlTu8KzJixg6wjAAAAAECPjeWYBuXhI0mzu7hvSuFjpyXR7RUu636Fc66+i4c84JwbLkne+7ruhmToE5gFdTP061+9xileAAAAACLHOemBb3/FOgYgSfU699Cn4VxPUihu/lJ5s3OuWtICSU967xf2MCOnd4Umm83JM+8BAAAAEFHZbM46Qli8lPMudrdeKPV5UmpbqdNRnaQG7/3mjnc456Z08vjzhqFPYBbXr1Uux9QHAAAAQPR4Lz35BEXOsFcoXV4o6ZH2Xy+UMk9RfvCjDvetkLSp8JhzaS2DLmlIVFandznnZiv/B7NJUo3yTdiLetJgXZi23ar8H9Bw5c+3+9JzOeceKbxOvaSPvPdNhRwLJS07X2VKVvbtPW4dAQAAAAB6bO8XHNOgPHjvH3fObS708SzX6TnGrC7mGA2F+zu7T1Lb0OjXkloHQ7Odc8skbe7JaV5lM/QpDGl+7b2f1e5rMyWtcM519QfW1XM9Iml56x9I4Vy41yRtKTxX+yVW1ZIeLtzknGv9+qNxG/hI0rjxg60jAAAAAECPjeeYBmXEe9+gIrp7Co9dJGnROR7TqE5WCfVUWZzeVRjK1KvDxhc2tlHSb7rxXDML39tWhFQYGN2i/IBnWSff9rjyP6QGSY9KurDww4id+XUzlEy5cz8QAAAAAMpMIkGRM9Ad5bLS54HCx486ue8J5QdCxVoo6bGOXyycttWg/NKomYWBUut9PW7CjprmUxnluHIXAAAAgAjK5aRTzRnrGIFx8j6OCwfiuE1fVhYrfZRfutTUxSlcm6UuG7E7c4Xyp4R1VozU2O4xQXpqyVqu3gUAAAAgsuopcgaKVi5DnyskHezivqbCxyuLfK6Gwvc0nf1hZ3LOVTvnFhRu1d353ijZv++EdQQAAAAA6DGOaYDilcvpXdXqeujT/jHndI5ipNbVP2ecRlYofj4gaXEhR71zbpn3/tFiXrPwHCu6uGt6sc/RFyZeMNQ6AgAAAAD02MSJQ6wjAJFRLkMfqeuVOa3DoOFd3F8U59wUSbMlLW7f51N43WWFxu3Wx9Ypf6Wvprhdwev+BZfon/6jZcpkctZRAAAAAKBbEgmnB79DkXNfi2enTxjKaehzLtUlfn+98v1AD7X/YmdX6WpX+vyI8lf2Oqf2l5pvr7ACqLN+IRPHj7Uom2XgAwAAACB6cjmvo8daNHLUQOsoQCSUS6eP1PVQp3WFT1NPn7hw+la1pFldlEV3Zrmkaufc7J6+bjl6miJnAAAAABG2+EmKnIFilTT0cc6tcM75Htw6XomrqYiXO1fnT1cZFyh/Wld3Bj7tTenJ65arAwdOWkcAAAAAgB47sJ9jGqBYJZ3e1dUpTT3wkfKDmc60Dl26KkruUmGVzsKznHr1mKSHJQ3r4UAocibVVltHAAAAAIAem1TLxWn6kpfkY9gQEsoJMOVyelf9We5rHfo0nOUxX+Kcm6n8wOfWDl+vds493O65m7p4iprCx4+6uD+S7l8wXalUufzYAQAAAKB4iYTTg9+myBkoVrkc/T8ptZ2K1VGdpAbv/eaOdxSuyPUlha8v9N7XdXL3bOULnSVpmbo+7WuBpMYOV/qKvKamU1y5CwAAAEAk5XJeBw9yehdQrLIY+hSGLguVv1pWm8JqnSnKD37U4b4VkjYVHtP+69XKD3OmOOfq292WOeeWSfqNCkMf7/2jkh7pODwqFD8P7+x1o+6ZJeutIwAAAABAjy1ZvNY6AhAZZXPJdu/94865zc65euWvnFWjs19xq6Fwf8f7XlN+UNRlAXP7VUPe+zrn3COFYdHwwnM2eu+H9XBTytqhQ0zFAQAAAETXoYOnrCOExUveO+sUvS+QUp+yGfpIkve+QUV293jvF0la1MnXu10uXXiuIEy5MJazLAAAAACBmDyl2joCEBllcXoX+s5986erooIfOwAAAIDoSSadHqDIGSgaR/+B2bfvhNJpipwBAAAARE8267X3i+PWMYDIYOgTmGefosgZAAAAQHQ9tYQiZ6BYZdXpg/Pv8GFKzwAAAABE1+GmZusIwcnFscg5EKz0CczUacOtIwAAAABAj3FMAxSPoU9g5t1PkTMAAACAaEomneoenGEdA4gMjv4Ds3v3MYqcAQAAAERSNuu1c8cR6xhAZNDpE5ilz1DkDAAAACC6nn5qnb7y1VHWMYLi6fSJLFb6BObIEUrPAAAAAETX0SMt1hGAyGDoE5iLptdYRwAAAACAHruYYxqgaAx9AjPvvumqrExaxwAAAACAbkulElrwAEXOQLHo9AnM9m2H1dKStY4BAAAAAN2WyeS0dUuTLrt8tHWUYHi5WHb6eMVvmzrDSp/ALH1ug3UEAAAAAOixZ7k4DVA0hj6BOXaU0jMAAAAA0XX8GMc0QLEY+gRm+owR1hEAAAAAoMcumTHSOgIQGQx9AjN33sUUOQMAAACIpFQqofl1l1jHCI73Lna3UDD0CcyWzU0UOQMAAACIpEwmpw3rD1jHACKDoU9gXnh+o3UEAAAAAOix55dyTAMUi6FPYE4cT1tHAAAAAIAeO3GcImegWAx9AjPjK5SeAQAAAIiur3yVYxqgWCnrAOhb9867SJVVSbU00+sDAAAAIFpSqYTumz/dOkZYvJSLY/Gxtw7QN1jpE5gN6w8w8AEAAAAQSZlMTmvXUOQMFIuhT2BeevEz6wgAAAAA0GMvcnEaoGgMfQJz8kTGOgIAAAAA9NjJk1ycBigWnT6BufSyUdYRAAAAAKDHLr18tHWE4PhA+m/iiJU+gZlz70WqqkpaxwAAAACAbkulErrv/outYwCRwdAnMGtW71MzRc4AAAAAIiiTyWnVJ3utYwCRwdAnMC+/RJEzAAAAgOji4jRA8ej0CQyXawcAAAAQZadOcXGavuQl+ZyzjtHrQqkpYqVPYC7/GqVnAAAAAKLrazPHWEcAIoOhT2DumjONImcAAAAAkVRRkdDceRQ5A8Vi6BOYTz7+giJnAAAAAJGUTufUuGK3dQwgMuj0CcyyVzdbRwAAAACAHnv15c269lsXWMcIivfx6/QJBSt9ApNuYZUPAAAAgOhq4ZgGKBpDn8DMnDXWOgIAAAAA9NisKzimAYrF0Ccwt995IUXOAAAAACKpoiKhOfdOs44BRAZDn8A0rthDkTMAAACASEqnc/rg/Z3WMYDIoMg5MK81UOQMAAAAILpeW7ZFN9xYax0jHN4pF8ci5zhuUydY6ROYTMZbRwAAAACAHkunc9YRgMhg6BOYK78xzjoCAAAAAPTYN7453joCEBkMfQJz622TKXIGAAAAEEkVFQndefdU6xhAZDD0CcyH7++iyBkAAABAJKXTOb3z9nbrGMHxPn63UDD0Ccwbb2y1jgAAAAAAPfb717daRwAig6FPYLLZgEaaAAAAAGInm6XIGSgWQ5/AXHU1pWcAAAAAouuqqydYRwAiI2UdAH3r5ltqVVWVpNcHAAAAQORUVCR0x10UOfclL8l7Zx2j14VyDgwrfQLz3rs7GPgAAAAAiKR0Oqff01MKFI2hT2De/MM26wgAAAAA0GNv/v5z6whAZDD0CUwuF8oiNgAAAABxFNLltoFS0ekTmGuunWgdAQAAAAB67JprKXLua7kYdvqEgpU+gbnxpknq1y9pHQMAAAAAuq2iIqHZt02xjgFEBkOfwLz15jadOkWRMwAAAIDoSadzev21rdYxgMhg6BOYt9+iyBkAAABAdL39Jsc0QLEY+gAAAAAAIsNRLwMUjaFPYK67/gLrCAAAAADQY9/imKbPeR+/WygY+gTmW9ddoCqKnAEAAABEUEVFQjfdXGsdA4gMhj6BeeP1rWqmyBkAAABABKXTOTW8utk6BhAZDH0C8967O6wjAAAAAECPvfsOxzRAsVLWAdC3EglazwAAAABEF0XOfcxL3sfwDz2QXh9W+gTmhhsnWUcAAAAAgB674aZa6whAZDD0CcxVV4+nyBkAAABAJFVUJHT9DVy9CygWQ5/AvNZAkTMAAACAaEqnc3r5xc+sYwCRQadPYD54f6d1BAAAAADosQ/e36m59023jhEMLykXw06fQCp9WOkTmlQqfjsrAAAAgHCkUhzGAsVibwnMTZSeAQAAAIiwG2+utY4ARAZDn8Bc+c1xqqqiyBkAAABA9FRUJHTNtROtYwCRwdAnMMte2azmZoqcAQAAAERPOp3Ti89vtI4RHJ+L3y0UDH0Cs3z5busIAAAAANBjyz/cZR0BiAyGPoGhyBkAAABAlFVUcBgLFIu9JTC3zJ5iHQEAAAAAemz2bRzTAMVi6BOYmbPGUOQMAAAAIJIqKhL6xjfHWccAIoOhT2BeeWkTRc4AAAAAIimdzmnpsxQ59y0n7+N3k8KoPmHoE5jGFRQ5AwAAAIgujmmA4jH0CUwlp3YBAAAAiLDKSo5pgGIx9AnMrbddaB0BAAAAAHrs9js4pgGKlbIOgL512eWjVFWVpNcHAAAAQOSkKhL6+qwx1jGC4r2U8/Hrv/HeOkHfYKVPYF58fiMDHwAAAACRlEnn9Owz661jAJHB0Ccwn3z8hXUEAAAAAOixjxv3WEcAIoOhT2Cq+nFGHwAAAIDo6scxDVA0hj6BofQMAAAAQJTdefc06wjB8T5+t1Aw9AnMjK+MVBWXbQcAAAAQQalUQl+9dKR1DCAyGPoE5vnnNlDkDAAAACCSMpmcnnmaImegWAx9ArNq5V7rCAAAAADQY6s+4eI0QLFowApM/wH8yAEAAABE14ABFdYRgpPzzjoCeoiVPoG5i9IzAAAAABF21xyOaYBiMfQJzNRpw1VJkTMAAACACEqlEpp+SY11DCAyGPoEZumzG9RCkTMAAACACMpkcnpq8TrrGEBkMPQJzJrV+6wjAAAAAECPcUwDFI9W38AMGEjpGQAAAIDoGjCw0jpCcLy3ToCeYqVPYObcQ+kZAAAAgOi6d+5F1hGAyGDoE5jaydWqrKTIGQAAAED0pFJOF04dZh0DiAyGPoF59pn1ammhyBkAAABA9GQyXkvq11rHACKDTp/ArFuz3zoCAAAAAPTYurUc0/Q17511BPQQK30CM2gwpWcAAAAAomvgII5pgGIx9AnMvXMvto4AAAAAAD02dx7HNECxGPoEZsLEIaqo5McOAAAAIHqSSadJtUOtYwCRwdF/YJ5+ap3SLTnrGAAAAADQbdms1+InKXLuS95LuRjevLf+k+0bDH0Cs3H9AesIAAAAANBjGzimAYrG0CcwQ4ZUWUcAAAAAgB4bMpRjGqBYDH0Cc+99lJ4BAAAAiK777p9uHQGIjJR1APStMWMGqaIioXSaXh8AAAAA0ZJMOo0dN9g6RnBC6b+JI1b6BObpJWsZ+AAAAACIpGzWq/6J1dYxgMhg6BOYTZ8dso4AAAAAAD3GMQ1QPIY+gRk6tJ91BAAAAADosaHVFDkDxWLoE5h586fLOesUAAAAANAz8xdcYh0BiAyKnANTU9NfyVRCGXp9AAAAAERMMuk0YuRA6xjByXlWDkQVK30C8/SSdQx8AAAAAEQSRc5A95TVSh/n3GxJdZI2SaqRVC1pkfe+qZvP80jhe+slfeS9byo890JJy7z3j5+P142CLZspPQMAAAAQXVs2N1lHACKjbIY+zrkFkn7tvZ/V7mszJa1wzs3q5gCmWtLDhZvc6RKbRzsZ+PTm65a9YcP6W0cAAAAAgB4bNpyL0wDFKovTu5xz1cqvylnU/uve+0ZJjZJ+04OnfVxSQ+H2qKQLvfdnPP95et2ydh9FzgAAAAAibH7dDOsIQfGSvI/hzfoPto+Uy0qfBwofP+rkvieUH8x0i/d+ocXrlrshQ6uUTCaUydDrAwAAACBaEgmnYdWs9AGKVRYrfZTv02nq4lSqzVLbaVhxeV0zTy1ey8AHAAAAQCTlcl5P/I4iZ6BY5TL0uULSwS7uayp8vLK7T+qcq3bOLSjcqvvqdcvZts8PW0cAAAAAgB7jmAYoXrmc3lWtrocv7R9TtMIVvA5IWlx47nrn3DLv/aPn43Wdcyu6uGt6Md/fV2pqKHIGAAAAEF01Izim6Ws+lAKcGCqXlT7S6ZU1HbUOZYZ387mWee8f9d5vLpy+VSfp1865h8/j65a9+xdcokSCJmcAAAAA0bTgAYqcgWKVy0qfYlQX+8COV+kqfK3JOdcg6RHlr+zVq6/b/pLv7RVWAM3sxuudVwMGViqRkHLU+gAAAACImP+3vTt7kqM6F0X/ZatbYqYkIRCDkBCTmGyQwMwgsYXP9rBtMBLeJ+7DeTixzV9wN7Efb8SNOIHv433C+/FG3DhGAtvbPt6+RiAxGowkGw+IUSCEmIRQM0vq7lr3oapFq+kSVaXqzs5avx+RUSJzVeZXmbWqKr9e+eXAQMRJJ84tOwyojNk00qfWYv74SJvhHmzjuYioFUWxdoa3O2s8uOGFGB01Ng8AAKieej3iAYWcoW3HNNLnGEaxrE8pbZzw/8NtPOfrau90YnlJ2y3dW7s/LjsEAACAru12TjOzUhH11IclQvrxNU3hmEb6pJRWpZSKLqaNk1a1Nb5MxEw2Pr9VoeQjFEVxf1EUqcXduibr2Xar4rRFJ5QdAgAAQNcWne6cBto1Wy7v2nCUZePJl01trmt5tB7Bs7D5uHUatlsJdynkDAAAVNj6HyvkDO2aLUmfByIiiqJYN8Wy9RGxKaW0c/KCoiimGqXzcESsat6xa7J1EbE9pbT9WLZbZXPnzolCzgcAAKigooiYN7dK9yOCcs2KpE8zQXNPNO6sdVhRFCujMeJm/eTnNOsJvdZsM3FdP42I+yYnhIqiuC8axZnXT2jb8Xar7sGNO2JsTCFnAACgelJSyBk6MWtSpCmlnxVFsbMoig3RuMvWwmjcWavVqJ1NzeVfWZZSWl8UxX3Nuj4Lmu22p5Tm92C7lfb2nk/KDgEAAKBre5zTzDjDBqpr1iR9IiJSSpuizRo6KaV7I+Ler1ne8+1W3elnnFh2CAAAAF07wzkNtG1WXN7FzFm3/lKFnAEAgEoqCoWcoROSPpkpilDIGQAAqCx/xIb2SfpkZuMGhZwBAIBqahRyfqHsMLKSIqKe+m/K5axY0icz7737adkhAAAAdO1d5zTQNkmfzCw+86SyQwAAAOjamc5poG2SPplZt/7SmDPHNbAAAED1FEXE3f98WdlhQGXMqlu2M/3GxuqRcrl4EQAA6DtjY/WyQ8hOCgMHqspIn8xs3LAj6nVZHwAAoHpSinjg5wo5Q7skfTKz9/3Pyg4BAACga++/55wG2iXpk5mzzj657BAAAAC6drZzGmibpE9m7lp/acwZdD0mAABQPQMDCjmXoZ76b8qFpE9mDh4YjfpYRu9wAACgb9TrEQcOjpYdBlSGpE9mHnpwh7t3AQAAlbVBIWdom6RPZj7Y+3nZIQAAAHTNOQ20T9InM0vOPbXsEAAAALq2ZMkpZYcAlSHpk5kfrbskBgcddgAAoHoGBor48X9VyHkmpT6ecuDsPzOffXooxsbqZYcBAADQsXo9xSefHio7DKgMSZ/M/EIhZwAAoMI2PqCQM7RL0icz+/Z9UXYIAAAAXdv3gXMaaNdg2QEws5Yuq5UdAgAAQNeWLnNzmplWd7VIZRnpk5kfrVuhkDMAAFBJAwNF/PifFXKGdjn7z8zw8IEYHVXIGQAAqJ56PcWHH7q8C9ol6ZOZXz74UtkhAAAAdO3BjTvKDgEqQ02fzOzfLysOAABU1/4PD5QdQnaU9KkuI30ys/z8+WWHAAAA0LXzltfKDgEqQ9InM3fetSKGhhx2AACgeubMKeJuhZyhbc7+M7N37+cxMqKQMwAAUD1jYynef++zssOAypD0ycyvHlLIGQAAqK6HHlTIeSaliKin/ptyqVMk6ZOZjz5S9AwAAKiuj4YPlh0CVIakT2YuuHBB2SEAAAB0zTkNtE/SJzN3/EghZwAAoJrmzCli/Y8vLTsMqAxn/5l5551PFXIGAAAqaWwsxZ63Pi47DKgMSZ/M/PqXCjkDAADV9YuHXiw7hOykPpxyIemTmY8/VvQMAACork8+PlR2CFAZkj6ZuWjFwrJDAAAA6NrFzmmgbZI+mbnjzhUxd+6cssMAAADo2ODgQKy7WyFnaJekT2Z2v/lRHDo0VnYYAAAAHRsdrccbrw+XHUZ26n045ULSJzO//o+Xyw4BAACga79ycxpom6RPZj79RNEzAACguj771DkNtEvSJzMrLj2t7BAAAAC6dsmli8oOASpD0iczP7zjYoWcAQCAShocHIi71l9SdhjZSX045ULSJzOv7xxWyBkAAKik0dF6vPzSvrLDgMqQ9MnM//rNK2WHAAAA0LXf/No5DbRL0iczn382UnYIAAAAXfv8M4WcoV2DZQfAzLr0MkXPAACA6rrscuc0MylFRL3sIKZBLnV9jPTJzA/uuCjmzlPIGQAAqJ7BwYG4864VZYcBlSHpk5mXX9oXhw4q5AwAAFTP6Gg9drygkDO0S9InM//521fLDgEAAKBrv3VzGmibpE9mvvh8tOwQAAAAuvbFF25OA+1SyDkzV3zj9LJDAAAA6NoV3zyj7BCyk3KpetyHjPTJzPd/cFHMU8gZAACooMHBgbjzRxeXHQZUhqRPZl74+944qJAzAABQQaOj9fjr8++XHQZUhqRPZn73nwo5AwAA1eXmNNA+NX0y43btAABAlR044OY0M61edgB0zUifzHzzSkXPAACA6rpy5eKyQ4DKkPTJzHe/f6FCzgAAQCUNDQ3ED+9QyBnaJemTmef//J5CzgAAQCWNjNRj+7Z3yg4DKkPSJzMP/35n2SEAAAB07fe/c04zk1IfTzmQ9MnMyCGjfAAAgOo65JwG2ibpk5mVq84sOwQAAICurbraOQ20S9InM//lO+cr5AwAAFTS0NBAfP8HF5YdBlSGpE9mtm97VyFnAACgkkZG6vHsM3vKDiM79T6ccjFYdgDMrEc2KXoGAABU1yMPvx63rl5WdhgQERFFUayNiPUR8VpELIyIWkTcm1Ia7mJd6yLi9ohYHhELImJrt+saJ+mTmdHRXGqUAwAA/WhkJKdxGsxmzSTNv6WUVk2YtzIithVFsaqTZE1RFPdFxHMppXua/1+LiEci4vXmuroaweHyrsxc862zyg4BAACga9+69uyyQ4DxpMyGiLh34vyU0vaI2B4R/97BulY2n7txwnqGI+IfojFy6OFu45T0yczt3z5PIWcAAKCShoYG4jvfu6DsMCAi4u7m49Yplv08ItZ1sK57ms85QjPxsykilo8nhjol6ZOZPz7ztkLOAABAJY2M1OOpJ3eXHUZ2yi66PEsLOa+PiOEWl3DtjDh8+Vc7ro7GJWFTJXa2T2jTMUmfzGze/EbZIQAAAHRty6NvlB0CRDSSMB+2WDbcfLymzXVtaj5n+OjNOqeQc2bGxhRyBgAAqmtsTCFnemZFURTbplowsThzC7VonfSZ2OZrpZTujUm1gSYYH/0z1WVkX8tIn8xcd72iZwAAQHVdd/05ZYcA44ZbzB9PBi04lpUXRbE8ItZGxMZmgeiOGemTmX9Y2yjkrK4PAABQNUNDA/GP31XIeSal5tRvmq/pxTZG9ByL2jE+f0M06gP9S7crMNInM08/tVvCBwAAqKSRkXpsUaeU2aPWYv74CJ/hbldcFMV9zfWvalEsui2SPpl5/LE3yw4BAACga49v2VV2CBDRXkLn62r+TKl516+1cYwJnwhJn+zU6/04MA8AAMhFckrD7LA1Ipa3WDY+f8oi0UdTFMXaiLgnpXTMCZ8ISZ/s3HDjkrJDAAAA6NoNNyrkPNPqfTj1wIajLBtP+mzqZIVFUayMRsLn9knza0VR/KTD+CJC0ic7q9csjeOOm1N2GAAAAB0bGhqItd9uNbgCZtQDEYcvxZpsfURsSintnLygeUeur2jOvyeltH6KxWujUdC5Y+7elZknHn8zDhxQyBkAAKiekZF6PPrIG/Edd/CiZCml4aIo7omI+yJi4/j85mid5RHxlbuCFUWxLSJWFkWxauIt2IuiqEXEwxGxsyiKiSOIas3Hq6daXzskfTLz5BMKOQMAANX15ONvSvowK6SUflYUxXii5rmIWBhHv+PWpubyycseiUaiqOUwtqlGDbVD0gcAAIDKKIqyI8hPCtWzW0kpbYo2a/eklO6NiHunmN/VKJ52qOmTmZtvObfsEAAAALp2k3MaaJukT2ZuuvncmKeQMwAAUEFDQwOx5rZlZYcBlSHpk5nNj74RBxVyBgAAKmhkpB6bft9VaRPIkqRPZv7w9FtlhwAAANC1p59yTjOTUkTU+3DKpUqRpE9mBgZUPQMAAKpLIWdon6RPZm5dvbTsEAAAALp265plZYcAlSHpk5nrrj9bIWcAAKCShoYG4pZb3b0L2iXpk5lHNinkDAAAVNPISD1+99tXyw4DKkPSJzPPPrOn7BAAAAC65pxm5qU+nHIh6ZOZwUFVzwAAgOoaHHQaC+3SWzKzRtEzAACgwlbftqzsEKAyJH0yc821Z8W8eQo5AwAA1TM0NBA33Lik7DCgMiR9MvPw/7czDh5UyBkAAKiekZF6/PY3r5QdRnbqfTjlQtInM889907ZIQAAAHTtuT++XXYIUBmSPpkZGnLIAQCA6po7V7kKaJcMQGb+Ye15ZYcAAADQtX+43TkNtGuw7ACYWVetXBzz5s1R1wcAAKicoaGB+Na1Z5UdRmZSpCKVHUTvpT58TVMw0iczv/vtqxI+AABAJY2M1OPXv1LIGdol6ZOZP21/t+wQAAAAurZ9m5vTQLskfTIzd56iZwAAQHUp5Aztk/TJzO3fPr/sEAAAALr2X/7ROc1MShFR78Mpj4o+kj7Z+cY3T495RvsAAAAVNDg0EFetWlx2GFAZkj6Z+e1vXlHIGQAAqKTRkXr86pcvlR0GVIakT2ae//N7ZYcAAADQtT+7OQ20TdInM/OOGyw7BAAAgK4d55wG2ibpkxlFzwAAgCr7zvcuLDuE7JRddHk6plxI+mTmkktPU8gZAACopMHBgbj8ikVlhwGVMauSPkVRrC2K4v6iKP61KIr7mv+udbGebUVRrGyz7fh21o5vq/nvDUVR/KTTbc92v/kPhZwBAIBqGh2txy8ferHsMKAyZs3FkEVRrIuIf0sprZowb2VEbCuKYlVKabjN9ayMiPHnHa3p7SmlTRFRi4ifNKeY8JyfppR+1uHLmPX+9tf3yw4BAACga3/9i3MaaNesSPo0R9hsiIjbJ85PKW0vimJ7RPx7RKxvc3XLI2Jnc5rKgojY2Uz4jPtZ83kREdsj4v6UUqvnV9rxJ8yKQw4AANCVE04YKjuE7KRIZYdAl2ZLBuDu5uPWKZb9PBoJoXZdExEtRwYVRbEhpXREAimldE8H66+0737vwvg//48nyg4DAACgK9/9vkLO0K7ZUtNnfUQMt0jU7Iw4fPlXO/YdJeFzX0T8j24C7BcXXLgg5irkDAAAVNDg4ECsuGRh2WFAZcyWpM/VEfFhi2XDzcdr2llRSumnU80vimJtNBJC21ssrxVFsa451drZVhX9+lcvxyGFnAEAgAoaHa3HQxsVcoZ2zZbLu2rROukzsU1XmkmceyZf1jVh+X0RsS8iNjbj2FAUxcOtEkgt1rGtxaIVHYY7rV74+96yQwAAAOiac5qZlSKiXnYQ0yCXKkWzJekT8eWInsnGk0ELjmHdR7usazgiHp5Y2LkoivUR8XpRFMP9dgevE05U9AwAAKiuE06cW3YIUBmz5fKudtS6eVJRFMsjYm2ry7pSSvdOupNXNGsCbYpGsqgtKaVVU00RMavGHn7/nxQ9AwAAqusHP7yo7BCgMmZT0qfWYv74CJ/hLtd7bzQSOJ16LiJqzVpAfWPZebWYO1chZwAAoHoGB4s4/4L5ZYcBlXFMSZ+iKLYVRZG6mCbfiWu4jc19Xc2fVu6OiFb1dtqx/BieO+v86pcvxaFDCjkDAADVMzqa4sENO8oOIzupD//LxTElfZqXMBVdTBsnrWprtE6ujM/vOHHTHKVTi+Zt36dYfn8zCVXrdN1V9eILH5QdAgAAQNde3OGcBto1Wy7v2nCUZeNJn24u0bq9+dhqlNDyaD3KaGHzcWsX2521TjpZ0TMAAKC6TjzJOQ20a7YkfR6IiJjisq+IiPURsSml9JXROs0izUfzdcsfjohVzcLNk62LiO2tCkBX1Q9+eHHZIQAAAHTth3c4p4F2zYqkTzPpck9MultWURQro5G4WT/5OUVRbIuI15ptWhlP+gy32O5PI+K+ycmjoijui0YB6a9st+rOWXJKDM2dFYcdAACgI3PmFLF02allhwGVMVh2AONSSj8rimJnURQbonHnrIXRqMfTaiTOpubyqZaN2xoRy6caJTRhu+uLorivWddnQXOd21NKfVkS/hcPvRgjh+plhwEAANCxsbEUGx/YEf/9X64qO5SsOIOsrlmT9ImISCltijZr96SU7o3G7diP1uaeaIwgamddWXjlpX1lhwAAANC1l53TQNtc55OZU06ZV3YIAAAAXTvlVOc00C5Jn8z84E5FzwAAgOq680cryg4BKmNWXd7F9Fu8+KQYGhqIkRFXZQIAANUyZ04RZ551ctlhZCVFRCrKjqL3Uio7gplhpE9mfvHgDgkfAACgksbGUmz4+d/LDgMqQ9InM6+9ur/sEAAAALrmnAbaJ+mTmVNPPa7sEAAAALp2ak0hZ2iXpE9m7rhrRRR9eD0mAACQh7vWXVJ2CNmpR+q7KReSPplZuPD4mDPosAMAANUzZ04Rpy06sewwoDKc/WfmFw++GKMKOQMAABWkkDN0RtInM6/vVPQMAACortd3DpcdAlTGYNkBMLPmzz++7BAAAAC6Nn+Bm9PMNNeKVJeRPpm5UyFnAACgwu5af2nZIUBlSPpk5pRT58WcOQ47AABQPQMDRcyvGekD7XL2n5mHNu6I0VGD8wAAgOqp11P8/H8q5AztkvTJzJu7Pio7BAAAgK45p4H2KeScmYULFXIGAACqa+FpzmlmUoqIFKnsMHqu/17R1Iz0ycyP1l0SAwMqOQMAANW07m6FnKFdkj6ZOeHEuTHgqAMAABU0MBBx0olzyw4DKsPpf2Ye3PBCjI7mMpANAADoJ/V6xAMKOUPb1PTJzFu7Py47BAAAgK7tdk4z49z/ubqM9MnMaYtOKDsEAACAri063TkNtEvSJzN3KeQMAABU2PofK+QM7ZL0yczcuXOikPMBAAAqqCgi5s1VpQTaJemTmQc37oixMYWcAQCA6klJIeeZl6Leh1NEHufFkj6ZeXvPJ2WHAAAA0LU9zmmgbZI+mTn9jBPLDgEAAKBrZzingbZJ+mRm3fpLFXIGAAAqqSgi7v7ny8oOAypDBazMFEUo5AwAAFSW85mZlSIi9eE+z6Oij5E+2dm4QSFnAACgmhqFnF8oOwyoDEmfzLz37qdlhwAAANC1d53TQNskfTKz+MyTyg4BAACga2c6p4G2SfpkZt36S2POnD68IBMAAOh7CjlDZxRyzszYWD2Skj4AAEBFjY3Vyw4hO/Vsyh73HyN9MrNxw46o13VYAACgelKKeODnCjlDuyR9MrP3/c/KDgEAAKBr77/nnAbaJemTmbPOPrnsEAAAALp2tnMaaJukT2buWn9pzBlUyBkAAKiegYGIH/9XhZxnWurD/3Ih6ZOZgwdGoz6WzxscAADoH/V6xBcHRssOAypD0iczD23c4e5dAABAZW1QyBnaJumTmQ8++LzsEAAAALr2wV7nNNCuwbIDYGYtOffUskMAAADo2pIlp5QdQlZSRNTLDmIa5HIBjJE+mfnRukticNBhBwAAqmdgoFDIGTrg7D8zn316KMbG+jFPCwAA9Lt6PcUnnx4qOwyoDEmfzPziQYWcAQCA6tr4gELO0C41fTKzb98XZYcAAADQtX0fOKeZafVsKuD0HyN9MrN0Wa3sEAAAALq2dJmb00C7JH0y86N1KxRyBgAAKmlgoIgf/7NCztAuZ/+ZGR4+EKOjCjkDAADVU6+n+PBDl3dBuyR9MvPLB18qOwQAAICuPbhxR9khQGUo5JyZ/ftlxQEAgOra/+GBskPIjjLO1WWkT2aWnz+/7BAAAAC6dt7yWtkhQGVI+mTmzrtWxNCQww4AAFTPnDlF3K2QM7TN2X9m9u79PEZGFHIGAACqZ2wsxfvvfVZ2GFAZkj6Z+dVDCjkDAADV9dCDCjnPpBQR9SL13ZRLnSJJn8x89JGiZwAAQHV9NHyw7BCgMiR9MnPBhQvKDgEAAKBrzmmgfZI+mbnjRwo5AwAA1TRnThHrf3xp2WFAZQyWHQAz6513PlXIGQAAqKSxsRR73vo4arXjyg4lIynqfVkBpx9f01cZ8pGZX/9SIWcAAKC6fvHQi2WHAJUh6ZOZjz9W9AwAAKiuTz4+VHYIUBmSPpm5aMXCskMAAADo2sXOaaBtkj6ZuePOFTF37pyywwAAAOjY4OBArLtbIeeZlvpwyoWkT2Z2v/lRHDo0VnYYAAAAHRsdrcfrO/eXHQZUhqRPZn79Hy+XHQIAAEDX/uNXzmmgXZI+mfn0E0XPAACA6vrsU+c00C5Jn8ysuPS0skMAAADo2iWXLio7BKgMSZ/M/PCOixVyBgAAKmlwcCDuWn9J2WFkJUVEPVLfTbkUc5b0yczrO4cVcgYAACppdLQeL7+0r+wwoDIkfTLzv37zStkhAAAAdO03v3ZOA+2S9MnM55+NlB0CAABA1z7/TCFnaNdg2QEwsy69TNEzAACgui673DnNTKtnUwGn/xjpk5kf3HFRzJ2nkDMAAFA9g4MDceddK8oOAypD0iczL7+0Lw4dVMgZAAContHReux4QSFnaJekT2b+87evlh0CAABA137r5jTQNjV9MvPF56NlhwAAANC1L75wc5qZVi87ALpmpE9mvvHNM8oOAQAAoGtXOKeBtkn6ZOZ7/3RhzFPIGQAAqKDBwYG480cXlx0GVIakT2Ze+PveOKiQMwAAUEGjo/X46/Pvlx0GVIakT2Z+958KOQMAANXl5jQzK0VE6sv/8iDpkxm3awcAAKrswAE3p4F2Sfpk5ptXKnoGAABU15UrF5cdAlSGpE9mvvt9hZwBAIBqGhoaiB/eoZAztEvSJzPP//k9hZwBAIBKGhmpx/Zt75QdBlTGYNkBMLMe/v3OskMAAADo2u9/tzNuvOncssPISj2bssf9x0ifzIwcMsoHAACorkPOaaBtkj6ZWXX1mWWHAAAA0DXnNNA+SZ/MfPsfz1fIGQAAqKShoYH4/g8uLDsMqAw1fTKzfdu7CjkDAACVNDJSj2ef2RO3rl5WdigZSVEv+rGmTz++pq8y0iczj2xSyBkAAKiuRx5+vewQoDIkfTIzOppHNhMAAOhPIyP1skOAypD0ycw13zqr7BAAAAC69q1rzy47BKgMNX0yc/u3z4t58+ao6wMAAFTO0NBAfOd7F5QdRlZSRPTj2KpcroEx0iczf3zmbQkfAACgkkZG6vHUk7vLDgMqQ9InM5s3v1F2CAAAAF3b8ugbZYcAlSHpk5mxsVwGsQEAAP1obKwfLzaC6aGmT2auu17RMwAAoLquu/6cskPITj2bCjj9x0ifzPzD2kYhZwAAgKoZGhqIf/yuQs7QLkmfzDz91G6FnAEAgEoaGanHFnVKoW2SPpl5/LE3yw4BAACga49v2VV2CFAZkj6ZqdddiwkAAFRXckoDbVPIOTM33Lik7BAAAAC6duNNzmlmWlLIubKM9MnM6jVL47jjFHIGAACqZ2hoINZ++7yyw4DKkPTJzBOPvxkHDijkDAAAVM/ISD0e2fRG2WFAZUj6ZObJJxRyBgAAquvJx53TQLvU9AEAAKAyiqLsCPKSIqLehzV9+u8VTc1In8zcfMu5ZYcAAADQtZuc00DbJH0yc9PN58Y8hZwBAIAKGhoaiDW3LSs7DKiMWXl5V1EU6yLi31JKq45hHWsjYn1EvBYRCyOiFhH3ppSGj6Vt1W1+9I04qJAzAABQQSMj9dj0+53xvX+6qOxQoBJmTdKnKIr7I2JBRHwYEWuPcV1fSRoVRbEyIrYVRbFqYjKnk7b94A9Pv1V2CAAAAF17+qm3JH1mWD/W9MnFrEn6pJTuGf93URTbojHapmNFUdQiYkNE3D5p/duLotgeEf8ejVE9HbXtFwMDqp4BAADV5ZwG2tePNX3ubj5unWLZzyNiXZdt+8Ktq5eWHQIAAEDXbnFOA23rx6TP+ogYbnFZ1s6Iw5d0ddq2L1x3/dkKOQMAAJU0NDQQt9zq7l3Qrn5M+lwdjbpAUxluPl7TRdu+8MgmhZwBAIBqGhmpx+9++2rZYWQlRYp6H04pkzpFs6amTw/VonUiZ2KbTtseVbMO0VRWtPP8mfLsM3vKDgEAAKBrzz6zJ35456w6zYJZqx9H+kR8OUpnsvEEz4Iu21be4KCiZwAAQHUNDvbraSz0Xq69pdbrtimlVVNNEfFiNwFOlzVrlpUdAgAAQNdW37as7BCgMvo16VNrMX981M5wl20r77obzonrrj+n7DAAAAA6duVVZ8Rqf8iGth1T0qcoim1FUaQupum8I9ZwG23GL93qpG1fKIoi/p//94648qozyg4FAACgbZddvij+54Z1MTCgZMVMK7vo8nRMuTimQs7Ny5dmm60RsbbFsuXNx21dtO0bZyw+KTY/8d/i9797LX7z61fi889H4oorTo/zltdi86NvxCefHIqLVyyMSy9dFJs3vxHD+w/E8vPnx1UrF8fjW3bF++9/Hueee0pcd/058eQTb8bbb38aZ555Utx485LY+se34403PorTTjs+Vq9ZFs//+d145ZX9MX/+cbF6zdJ4+eUP44W/742TTpobq29bFm/t/jie//N7cdxxc2L1mmWxb98XsfW5t2NoaCBuuvncOHhwLJ75w1sREXH9DWfHnDlz4umndsfoaD2+de1Zccqp8+LxLW/GwYNjcdXKxXHmmSfFls1vxGefjcTlly+K8y9YEFs2vxEffXQwLrxoQVx++enx2JZdsW/fF7F8eS1WXn1mPPHYm/Hee5/FOeecHNffuCT+8NTueOutT2Lx4hPjplvOje1b34mdO4dj4cLjY/Vty+Jvf3kvXn75wzj11Hmxes3SePXV/fH3v+2NE08citVrlsXbb38Sf/7TezFv3py49dZzY/ijg/HcH9+OwcGBuOGmJTE2Wo8/PN14Tdddf3bMnTsnnnpyd4yM1OPqa86M+QuOj8e37IoDB8bim988Pc5Zcmps2fxGfPrpobj0stPi4osXxuZHd8Xw8IE4/4L58c1vnhGPbdkVH3zwRSxbdmpc/a2z4snH34x33/0szj775LjhpiXxzNNvxe7dH8fpp58Qt9y6NLZvfzde37k/5i84PlavXhov/H1vvPTSvjjllHmx+rZl8fpr++Ovf30/TjxxKG5dsyzef/fT2Lbt3Zg3b07cfMu58emnh+KPz74dAwMRN9y0JCJFPP3U7qjXI6697uw4/oTBePLxN2NkpB4rVy2ORYtOjMe27IovvhiNK644PZYua7ymTz45FCsuWRiXXNJ4r+3/8ECcf0Etrlq5OB7b/Gbs3ft5LF16alx73Vnx5BO74+23P42zzjopbrz53PjjM3ti166PYtGiE+LW1Uvjz396N159dX/MX3BcrFmzNF7csS927PggTj55bty6Zmns3vVx/OUv78fxxw/GravPjQ8++CK2bX3n8Hvtiy9G49ln9jRe043nRFEU8dSTjdf0rWvPipNOnhtPPNZ4r61ctTgWL574Xjs9zr+gFpsf3RUff3wwLrp4QVx22emxZcuu+HDfF4f7zxOPNfrPkiWnxHU3nB1PP/lW7Nnz5XttYv+5dfXS+Mvz78Wrr+6PWm2K/rNmabz11ieH+8+tq5fG/v0H4rk/NvrPjTctiUOH6kf0n8HBxnttdLQe13zrrDi1dlw8vmVXHDw4FldedUacffbJsfnRxmu67PJFccGk/nPFFafHls1H9p/x99o555wc199wTvzh6bfirbc+iTPOODFuvuXc2L5tQv9ZszT+9tf3D/efW9csi52v7Y+/Nd9rq9csi3fe+ST+tL3Zf1afGx99dDCe++M7MWdOETfcuCTq9Xo8/VTjNV173dlx3HGD8eQTjffaqqvPjAULj+w/S5acEps37zrcfy66aGFs2bwr9u8/EBdcOD+uvHJxbNn8xhH956kndsc77zTfazctiWef2RNvvvll//nTn96Nna/tj9r842LNmmWx44W98eKL++Lkkxufa7te/yj+8pf34oQThmL1mqXx/nufxbZt78bcuQNxy61Lv7b/nHDCUDzx+K4YGanHVSsXx+lnnBiPbW70n8svX3TEZ/WKSxbGihWLYsuW8f4zv9l/dsXevY3P6muvOzueenL34c/qm25ZEs8923ivLVrUeE3P/7nZf+YfF6tvWxovvbgvdrzwweHXtHvXR/H88+8f/qz+4IPPj+g/Bw6MHr5RwA03nhNz5gzEU0/ujrGxFN+69qw4+ZS5LT+rr7ji9Fh+/vzY/Ogbh/vP5ZefHps3H6X/XH/24ffa4sUnxo03Nz6rX399/L22LP76l/filVca77U1ty2LV175MP7+ty/7z549jc/q446bE7fcujSGhw8c/qy+8aYlMTLyZf9pfFY33mujo1/9rL7yyjPirLNPPvyaLrt8UVx44YLY/Gij/1xw4fz4xjfOONx/zjuvFld/66x44rFdX/afG8+JZ57e85XP6p2v7Y8FC4+PNWuWxt//Numzeuf++Otfmp/Vq5fFe+99Gtubn9W33HpufPzxhP5z05KojzW+f+r1xmua2H9Wrlocpy06IR7b3HhN3/jG6XHu0i8/qy+5tPH9M95/zr+gFldetTge39L4rF627NS45tqz48nH3zzcf264aUn8sdl/xj+r//Snd+O1w5/Vy+LFHR8c/qxefduyePONjw5/Vq9eszT2vv95bNvWeK/dfMvS+PzzkcOf1dffuCQGijjys/qkufH4Y7vi0KHGazrjjMZ77Vh+6zz15O7Ys+eTafmtc+NNS+LgobF49g97Wv7WOfXU4+Kx5md1O791pvqsbvVb54wzToybb530W2fSZ/VXfuvcdl688/bHX35Wz5LfOs/+4a0jPqv7+rfO/ONizW3V/K2z7bnGZ3U3v3W+890L4jvfu1A9H+hQkdLsy3A174RVSymd38VzfxIR96eUvpL+HV8WEeenlHZ20rbjF/HleratXLly5bZtfZc7AgAAyNqqVati+/bt22fpgIhjVhTFtnlxzsqlQ/972aH03K6R/ysOxlt9e+zGVTpNWhTF8ilmP9BcNtUlZOsjYtOEJE4nbQEAAAAqY7YmfWrxNbdKb44Geq0oipUT56eUhiPinoi4b1L7ldG4ZGt9N20BAAAgO0VEvQ+nyKQ01DHV9Omloij+NSKuiUayZXlz3msRsT0idqaU7p30lE3RSA4NT15XSulnRVHsLIpiQ0Q8FxELm21XNRM9XbUFAAAAqIpZk/RJKf20w/b3RsTkRNDE5ZuikRhqZ11ttwUAAACogtl6eRcAAAAAx2DWjPQBAAAAZpcUEfWYfXf9Plb994qmZqQPAAAAQB+S9AEAAADoQ5I+AAAAAH1ITR8AAACgpX6s6ZMLI30AAAAA+pCkDwAAAEAfkvQBAAAA6EOSPgAAAAB9SCFnAAAAYEopIsb6sJBz/72iqRnpAwAAANCHJH0AAAAA+pCkDwAAAEAfUtMHAAAAaKmeTQWc/mOkDwAAAEAfkvQBAAAA6EOSPgAAAAB9SE0fAAAAYEopUl/W9El9+JqmYqQPAAAAQB+S9AEAAADoQ5I+AAAAAH1ITR8AAACgpbGiXnYIdMlIHwAAAIA+JOkDAAAA0IckfQAAAAD6kKQPAAAAQB9SyBkAAACYUoqIsUhlh9Fz/feKpmakDwAAAEAfkvQBAAAA6EOSPgAAAAB9SE0fAAAAoKV+rOmTC0kfAAAAgC4URbE2ItZHxGsRsTAiahFxb0ppuMx1jZP0AQAAAOhQURTrIuLfUkqrJsxbGRHbiqJY1UmyppfrmkhNHwAAAIAOFEVRi4gNEXHvxPkppe0RsT0i/r2MdU1mpA8AAAAwpRQpxor+q+mTjr1O0d3Nx61TLPt5NJI4ZazrCEb6AAAAAHRmfUQMt7jsamfE4Uu2ZnpdR5D0AQAAAOjM1RHxYYtlw83Ha0pY1xFc3jX9lu3YsSNWrVr19S0BAACojB07dkRELCs5jGlVT3vjs4P/d9lh9Fw97Y2IWFEUxbaplk8sqNxCLVonaia2aUcv13UESZ/p9/EXX3wR27dvf6PsQFpY0Xx8sdQomMxxmX0ck9nJcZl9HJPZxzGZnRyX2ccxmZ1m+3FZFhEflx3ENHoxYiTq6e2y45guy47x+cMt5o8ncBaUtK7DJH2mWUrpvLJjOJrxrGYbWUxmkOMy+zgms5PjMvs4JrOPYzI7OS6zj2MyOzku5Uop/W9lx1BxtbLXpaYPAAAAQOdqLeaPj8oZLmldh0n6AAAAAHRmuI02X1enZzrWdQRJHwAAAIDObI2I5S2Wjc+fskj0NK/rCJI+AAAAAJ3ZcJRl44maTSWs6wiSPgAAAACdeSAioiiKdVMsWx8Rm1JKOycvKIpiqhE9Xa2rHUVKqZvnAQAAAGSrKIqfRMS9KaXzJ8xbGY2RO6tSSsOT2m+LiJXNZduPZV3tcst2AAAAgA6llH5WFMXOoig2RMRzEbEwGnfhapWk2dRc/pVlXayrLUb6AAAAAPQhNX0AAAAA+pCkDwAAAEAfkvQBAAAA6EOSPgAAAAB9SNIHAAAAoA9J+gAAAAD0ocGyA2BmFEWxLiL+LaW06hjWsTYi1kfEaxGxMCJqEXFvSmn4WNrmqFf7pyiKbRHxLyml7W20va+5nQ0RsTWlNNyM456IeDil9LNOtt1venhMOtrP+kprvdw3zc/A2yNieUQsiIitU60r937S433e0br0hdbK6AvNtln3h6Mp6zujl9vuR2X8vmq211damOlzkG7aQ99LKZn6dIqI+6Px5XN/ND70XjuGda2LiG2T5q1srrfWbdscp17tn+ZzUhvT2gnvh6mW31f2Pil76uV7tpP9rK/M2DG5LyLWTfj/WkRsi4j9EbG82+PXb1OP93lH69IXZuy4tN0Xmsuz7Q8zeEw62sf6yvQfl+jw91U3x7HfpyjpHKSX7wOTqZ+mIqUU9L/mXyxqKaXzu3huLRo/CG9PKW2atGxDRERKaX2nbXPUy/3T/MvJfRGxs0WTBRGxc8Kxub85f3nzcXtE3J9SavX8LPT6PdvuftZXWutxP1kZET9OKd3bYhs7J34u5tpPerzPO1qXvtBamX2huSzL/nA0ZX1nTMe2+0mZv6+az9FXWpipc5Bu2kMuXN5FO+5uPm6dYtnPo5HJ76Ztjnq5f66JiFWp9dDWDZO/2FJK93Sw/lz0/D3b5n7WV1rr5b65Jxp/aTxCagy93xQRa4uiWJkmDOHPtJ/0cp93ui59obVS+0JzeY794WjK+s6Ylm33kVJ/X0XoK9PE9wn0gELOtGN9RAy3+PLbGXH4ryKdts1RL/fPvqP8ILkvIv5HNwFmqKz3rL7SWi/3zdURsa05ymGy7RPa5K6X+7zTdekLrekLs0+Z71d9pTW/r/qT7xPoAUkf2nF1RHzYYtlw8/GaLtrmqGf7J6X006nmN4vX7Zv819oJy2tFUaxrTrV2ttXnpuU928Z+1lda6+W+2dR8zvDRmx0pw37Sy33e6br0hdZK7wsRWfaHoynrO2Patt0nSv991Wyjr/SW7xPoAUkf2lHroE0nbXNU61GbKTV/YNxzlB8s90XET6LxV91NEbGhKIp/7XZ7faLWozaHtbmfe77dPlLrUZtIKd2bUprfoq7C+IiHI4aBZ9pPaj1q0826erntflPrUZuu+kJEtv3haGo9anNYB/u459vuI7UetZnS1/2+arbRV3qv1mGbTttDFtT0oV3DLeaPZ9MXdNk2R8Mt5vdi/xxt2PFwNG4beriwXVEU6yPi9aIohlPGtxON3h6T4Wh/P/dyu/1muMX8nuyboiiWR8TaiNg46a+2w5FvPxluMb/bftDJunq57X4z3GL+dPeF8W3n2h+OZrjF/On+zuj1tvvNcIv50/37anzb+sr0GG4x3/cJtMlIH3qlNk1tc1Tr5knjP9xbDTtu/pV306R5w9H4a9R93WwzI7V2G/Z4P7e93QzVjvH5G6Jxff+/TJypnxxVrcR19XLb/aZ2jM+fsi9E6A/HoNZuw2nYx21vO0O1bp70db+vIvSVktWmuT1UnqQP7aq1mD+eLR/usm2Oai3mH+v+uTcaPy469VxE1JrXqueq1mJ+L9+zU+3nmdhuVdVazD/mfdMcgl+Lo9ydZQo59JNai/nd7PNO19XLbfebWov5ZfWFiDz6w9HUWsyf7u+Mmdp2VdVazC/r91WEvtILtRbzfZ9AmyR9ZpmiKLYVRZG6mKazEv1wG23Gh0x20rYyenhchtvYXLf75+6I2NblcyMilh/Dc2dcRY7JVMb380xvd9pV4Zg0t7U2Oj/JHVepftKB4TbatLvPO11XL7fdb4bbaFNWX4jo3/5wNMNttJmO74wytl0lw220Kev3VUSefaUXhtto4/sEvoakzyyTUlqVUiq6mDZOY1hbo/WX1fj8bV20rYweHpdp2T/NvyDVonk7yimW3988ua51uu7ZajYekw73c9/1ldl4TCZq9pN7mnEOT7G87/pJB3q5zztdV9/1hR4qpS802+TcH46mrO+Mnm67D5Xy+6rZRl+ZPr5PoAckfWjHhqMsG/8AHR/22knbHE3X/rm9+djqrxfLo/VfPxY2H79y15ZM9PKYdLKf9ZXWer5viqJYGY2T3Nsnza8VRfGTCesebrGKfu8nvdznna5LX2itrL4wvv7hFqvp9/5wNGV9Z/R62/2mrN9X4+sfbrEs577SC75PoAckfThCs1jdZA80l011Cdn6iNg04RawnbTNUVf7p8Vxmejrlj8crYfwr4uI7UcrUNjnenlMOtnP+kprPe0nzfn3pJTWT7F4bXz5F9yc+0kv93mn69IXWiurL0Tk3R+OpqzvjK63nYmyfl9F6Cs94fsEplFKyZTBFBGvRcT+r2mzLSJSRKycYtlPIuK1SfNWNtdb67ZtjlOn++dox2WKNsuP0mbD5OXRuKPE/qM9L4epl8ekk/2sr0z/MYnGsPzXovGjfMOE6eHmdMRxybmf9LgfdLoufWGaj0unfaH5nGz7w0wck272sb4yM8dlijZHfb/rK0fdNzN2DtJNe5Mph2kw6FtFUfxrRFwTjb9SLG/Oey0itkfEzpTSvZOesikaPwqHJ68rpfSzoih2FkWxIRp3IlgYLe740UnbHHWxf1oelwm2RuNHRcu/XqSU1hdFcV/zmvMFzXVuTynN7/xV9JdeHpNO9rO+0loPj8kjMeEzsMW2dk74d7b9pMf9oKN16QutldUXmv+fbX84mrK+M7rcdjbK+n3V3La+MkFZ5yDdtIccFCmlsmMAAAAAoMfU9AEAAADoQ5I+AAAAAH1I0gcAAACgD0n6AAAAAPQhSR8AAACAPiTpAwAAANCHJH0AAAAA+pCkDwAAAEAfkvQBAAAA6EOSPgAAAAB9SNIHAAAAoA9J+gAAAAD0IUkfAAAAgD4k6QMAAADQhyR9AAAAAPqQpA8AAABAH5L0AQAAAOhD/z+tnIrDbeADYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 579, + "width": 574 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "alt = np.logical_and(*[slc.dot(H.n) - H.c < 0 for H in g.null_hypos])\n", + "plt.figure(figsize=(10,10))\n", + "plt.scatter(slc_ravel[:, plot_dims[0]], slc_ravel[:, plot_dims[1]], c=alt, s=14)\n", + "plt.colorbar()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [], + "source": [ + "alt_space = (slc[...,1] > slc[...,0]) & (slc[...,2] > slc[...,0])\n", + "sym = slc[..., 2] > slc[..., 1]\n", + "def alt_and_sym(f):\n", + " f[alt_space] = np.nan\n", + " f2d = f.reshape((nx, ny))\n", + " f2d[sym] = f2d.T[sym]" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "lamstar = bootstrap_cvs[idx,0]\n", + "alt_and_sym(lamstar)\n", + "alt_and_sym(tb)" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAR/CAYAAACi69c6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOz9a7MtS3Ydho2ZVeuxH+fc973dDXQD3SBhgBRkqhtwwKBlmAQIWralsCWAYsgQGYxwEBH+6gjB+mSHwuEI8R+I+uSHQgJB0zIpSzbZNEWTQVkguklQhEFDQr8A9PM+zmPvvR5VldMfZmbWzFm11tr7PnDv3XuOjhPnzl1rVeWoMbNOz7kzRxEzw+FwOBwOh8PhcDgcDofD4bgLwoc9AIfD4XA4HA6Hw+FwOBwOx8cP3lRyOBwOh8PhcDgcDofD4XDcGd5UcjgcDofD4XA4HA6Hw+Fw3BneVHI4HA6Hw+FwOBwOh8PhcNwZ3lRyOBwOh8PhcDgcDofD4XDcGd5UcjgcDofD4XA4HA6Hw+Fw3BneVHI4HA6Hw+FwOBwOh8PhcNwZ3lRyOBwOh8PhcDgcDofD4XDcGd5UcjgcDofD4XA4HA6Hw+Fw3BneVHI4HA6Hw+FwOBwOh8PhcNwZ3lRyOBwOh8PhcDgcDofD4XDcGd5UcjgcDofD4XA4HA6Hw+Fw3Bnthz2A+w4i+iqAxwC+9iEPxeFwOBwOh8PhcDgc7y9+EMAzZv7shz2QDwJE9B8A+JEPexwfIP4ZM//PP+xBfJzhTaUPHo/Pzs5e/tEf/dGXP+yBOBwOh8PhcDgcDofj/cNv/dZvYbPZfNjD+CDxI2dn9Pkf/pHFhz2O9x2//c86bDb8YQ/jYw9vKn3w+NqP/uiPvvylL33pwx6Hw+FwOBwOh8PhcDjeR3zhC1/Al7/85a992OP4IPHDP7LA3/3/fN+HPYz3HT/9k7+P3/hH+w97GB97uKeSw+FwOBwOh8PhcDgcDofjzvCmksPhcDgcDofD4XA4HA6H487w7W8Oh8PhcDgcDofD4XA4DoCA2HzYg/gAQB/2AO4FfKWSw+FwOBwOh8PhcDgcDofjzvCmksPhcDgcDofD4XA4HA6H487wppLD4XA4HA6Hw+FwOBwOh+PO8KaSw+FwOBwOh8PhcDgcDofjznCjbofD4XA4HA6Hw+FwOBzzYIDiPTS15g97APcDvlLJ4XA4HA6Hw+FwOBwOh8NxZ3hTyeFwOBwOh8PhcDgcDofDcWd4U8nhcDgcDofD4XA4HA6Hw3FnuKeSw+FwOBwOh8PhcDgcjsPge+ip5Hhf4CuVHA6Hw+FwOBwOh8PhcDgcd4Y3lRwOh8PhcDgcDofD4XA4HHeGN5UcDofD4XA4HA6Hw+FwOBx3hnsqORwOh8PhcDgcDofD4ZgFAaB4/zyV7h+jDwe+UsnhcDgcDofD4XA4HA6Hw3FneFPJ4XA4HA6Hw+FwOBwOh8NxZ3hTyeFwOBwOh8PhcDgcDofDcWe4p5LD4XA4HA6Hw+FwOByOeTBA8cMexAcA/rAHcD/gK5UcDofD4XA4HA6Hw+FwOBx3hjeVHA6Hw+FwOBwOh8PhcDgcd4Y3lRwOh8PhcDgcDofD4XA4HHeGN5UcDofD4XA4HA6Hw+FwOBx3hht1OxwOh8PhcDgcDofD4TiM+2jU7Xhf4CuVHA6Hw+FwOBwOh8PhcDgcd4Y3lRwOh8PhcDgcDofD4XA4HHeGN5UcDofD4XA4HA6Hw+FwOBx3hnsqORwOh8PhcDgcDofD4TgI4g97BI6PKnylksPhcDgcDofD4XA4HA6H487wppLD4XA4HA6Hw+FwOBwOh+PO8KaSw+FwOBwOh8PhcDgcDofjznBPJYfD4XA4HA6Hw+FwOBzzYIDihz2IDwDuE/W+wFcqORwOh8PhcDgcDofD4XA47gxvKjkcDofD4XA4HA6Hw+FwOO4Mbyo5HA6Hw+FwOBwOh8PhcDjuDPdUcjgcDofD4XA4HA6Hw3EY0Q2IHPPwlUoOh8PhcDgcDofD4XA4HI47w5tKDofD4XA4HA6Hw+FwOByOO8ObSg6Hw+FwOBwOh8PhcDgcjjvjI+epREQ/D+DfZuYvvIdz/CyAXwDwOwBeAfAigF9m5ifvx+cdDofD4XA4HA6Hw+FwOB46PhJNJSL69wC8DOBtAD/7Hs81aUoR0ecBfImIvmAbRXf9vMPhcDgcDofD4XA4HA8J5D7djgP4SDSVmPmX8n8T0ZcgK4XuDCJ6EcCvAvhT5vxfJqIvA/j3ISuS3tXn7xuYGU++cYPuZsBLP3iOxVmLd37vBptnHV75gQusLlo8+dYG1+/s8fL3n+Ps8QJPv7vF8zd3ePGTZ7h8aYnnb+3w7DtbPH59hUevrnHzZI8n39zg8pUVHr+xxu55hye/e4OzF5d4/Kkz7G96vP31G6wuW7z06XN02wFvfu0ai3XAKz9wgaGL+O5Xr9G0hNc+ewmOjO999QoA8PrnLgEivPnVK8Se8ernLtG0hHe+do1+F/HyZy/QLAOe/O4N9tfCaXnW4p3fv8HN0w6vfOYc68sFnnx7g6u393j5+85w/sISz763xbPvjZyu3t7h6be3ePz6Go9eXWHzdI+nv7/B+ctLPP7EGXZXHZ584wbrFxZ44fvOsbvp8fbXr7G8aPHyp8/R7yO+99UrtKsGr/3gBYae8d2vXBVOYMZ3v3KdOF0ARHjrq9eIfcSrn7tEaAlPvn6DfjvgxR+8QLsKeOf3Nthd9XjlB86xPG/xzjdvcPOkw8ufPsfZowWefmeD52+NnJ6/ucOz727xwifWuHx5hZt39nj6rQ0uX1vh0WtrbJ91ePZ7Nzh7eYlHnzjD7lo4rB8v8NL3n2O/6fHm166xPG/xymeE03e/eoVF4hQH4USBRBdmvPnVa3AUXSgQnnztGkMX8dJnL9AsAt5OnF7+wQss1g3eTrn2asq1d1KuvZI5pVx76VNnuHhxiauca2+scfnKCpsnezz75gYXr65w+foa2+cdnv7uDc5eWuLxJ4XTW4nTy99/jv12wJtfu8Ji3eBVnWuLgNc/K5y+lzi99tmky1euwBF45XMXCI3k2rBLnJYBb3/jBvubAa+kXHtbzZ/1RTvm2vef4/zxAs++t8XzlGsXLy1x/fYOz769xaPX17h8dYXt0z2e//4GZ6+scPmGcHonzZ8XP3WG3Y1wWl22eOXTF9hvB3zva1dYZk69cAhq/rz1Vcm1V1OuPUm59lLKtbfT/Hklc/rdG+yue3kGnLd4O82fV9P8efqdDa7e2uOllGtXKtcuXl5h884ez761wcVrK1y+tsbm6R7Pfn+DszR/tlcd3v7GDc5eWOCl75Nc+97XrrG6aPHKp6e5NvSMNxOnV9P8eSvNn5c/ewEKhHcSp5cTp7e+fo1+G/FKyrW3fvca26teci3Nn+sn3ZhrmdOnznD+onC6+u4Wj95Y4+IV4fT8Wxucp1zbPOvw5PducP7SEi988gzblGtnOdcSp+V5i1c/cy659pVrtMuA11KuvfmVa1AAXk3z50maPy997hLUyDNh2Ee88jmZP2994wb7mx6vffaymj8l18yz+vl3t7h6c4cXEqebt3a4+s4Wl2+scZ7mz9M0fx69vsbmeYe3f/cG5y8u8VLKtTe/fo21yjU7f9786nXRJQT6cP4hczgcDofD4XB8qPhINJXeR/yZ9Pevzxz7FUgD6b18/t7gN//a7+Hv/O9+E9/+jSfyg/MGw+UC73x7CwAIK8LilSXe/tZG4gXh8rUV3vlmihvgxTfO8PTbG3AEAgGvf/Ic19/ZIfYMAvDJ7zvD/s09hn0EM7D+1BrP3+nQbQYwGOtPrHB11WN33YPBuHh9je12wOZZBwB49MoSPDBunnQAA49fXmJBAddv7QEAL7ywwOWqwc33dgCAxWWLxXmD59+RGGcB9OIC73xr5LR+dYm3E4emJTx+fY0n39qAGQiB8OonzvD82zvwwAgA3vjUGbbf22HopDX/8qfW2L69R7+LYGa0n1zj2dMO+xvhdP7GCjc3PbZXPRjAo9dW6PcRN0+F0wuvrIAI3LyzBxh48aUl1k3AzZvC6dELLS7WIydctBguWjzJupwFtC+1hVOzDLh4dVl0aVrCi6+v8fRbWzADTSC8/okzXGdOBHzq+87QvbXDsI+IDLSfWOPp23v02wgGY/XJNZ492xdOl6+vsd302D7vAQCPX1shdrHo8uIrKyyYcPO2cHjxxQUuFgGbxKl91ALrBs+/K5zCRQM8Gjk164Dlywu8k3KtXRAevbYunNqG8OobZ3j+rS04Ag0Bn/jUGbbf2SEOosvjT53h5s3MibH41Bmevr1Ht026fGKN66s9dtcDGMDj11fYbQbhxMBLr66AHtg8EZ1eenmJNRE2KdcuX1xgtQqjLpct+rMWT7+TdDkPaF9oy/xpVgEXLy8rTi++tsbTb6bjDeGNN85wrTh98vvPsP/eFrFnRAboE2u88709+r3osv7UGs+f7LFP8+fRG2tsriXXAOCF19YYdlHmDwMvv7pCOwCbd4TTyy8vcN4Qtkmn8GiBYRHwPHEKlw3iZVM4tWcByxfGZ8JiFfDo5RWeJE6LNuCV19d4/s0twEAbCJ/45Bqb70iuMYDLT53h+fe2iB0jMmP5qTO889ZO5g8Y559c43nKNQB44Y01dpkTAy+/tgbtGZs0f155ZYkVCJvE4fzFBdqGcJN0osctulXAs5RrzUVAeNTiSeK0OGtw9uICT9L8WSwDXnp1VXRZNITX3zjDVeIUgjwDNt/dggfGwEDzyTXe/l56riVdnr6zQ5fmz+NPSINmdy2cXnp9jV7l2suvrdB0OdcYr766xDkBu3cyhwV2IeDqzaxTCz4LeJo4LS4aLB+P82exbnD50gJPM6dFwKuvJl0AtA3wyU+eYfsdeVYzActPnOHpd3KuJV3e3JVcu/zUGs/ekfkDAC9+Yo3dc3lWg4GXX1+DtxHbZ5J7r//hR/iX/tc/ij/+Fz4LIm8uORwOh8PhcDwkEPNHax1bXqnEzD/0Lr77twD8ODO/NHPs8wC+BOAXmPmvvpvPvxsQ0Zc+//nPf/5LX/rSuz3F+45f+/f+G/z1/+U4nh0Dz1UaDGBswUCqDRiMaM5BKIdBDKxBCCAwxP39EYAmFRfMwBYo52AwNmBEdf5eHbfnB4CWCa36yQrAuSpeIgM6k/dg3Kh4AKNTnCyIgSUIlD5AAC6AwokALADkSzIzngMYFKd9xakeD9J9aTQHJqxUvASwVtb5Owau1El6MHYndAnAyIGBc6PLi0EaGAzR5XmsdbkBY1DnHwwPq8uSCQv1kzVqXXoGOvX5DoyNim+jy1rpknMr0KgL1N931oWBBajSZQ25ZkYLYKF02TJwfQddCECDUZegdMmcXmhqXd4Zag52vlhdtO5gYAXCUnE4J+Bc51aU/MrYg7FRa5qHNCc1tPZhRpfHGHWRc4yISRedazvFaYI0H/WcPwOwVrkVUL9pYsv1nJ/qMs3lBWpdLs0z4DJIw7zoMjNf4gHdAdE9GF30fHkUuNJlE4GNuil7MLbqfDFpr+eL1eVMcWgAvGA4bNSzck6XPRh84PxZFz1fNP7l/80fxb/yv/2x2WMOh8PhcNxXfOELX8CXv/zlL78XT+CPMojoS3/sn199/h/8zR/4sIfyvuOnfu7r+Mf/ZHdvtfuDwn17+9uPQ3yZ5vAk/f0T7+HzH3ts3tnjP/1f/eMSs2lcsCnEABxtKAFSZARViK0xNpQAaSroc/SAFGI8nn/uGnlYxEALAqefEKTA1Bx0scimcSFNq8ONC0DOT+oDK6Di1GBsKAHADnXRPBhOFnKOkUNIBabmtFLnZ9O4yMXebRtKwqHW5ZykcZHjHdf3fQ+UhhIw3xjTFENqyBROEF1yo5pNQ2lOl2MNJaBu9CGdP9DISf8NSPPyLrrkRp/msDa6tCRcAGleWl3u0ugDal0AafZoXa5jzaHLHMo153QZx9xA7puOz0PNYWc4bNQZc5O3Pv90zmtO56h1sfdghwPPgAMIqOd8A2ko6V+CBNTNEd1QmuoyvWctYHKr5rQmacZkTteT+cITXTQIuSk9ctDzpQVXugwsTaV8pmgaSrmZeKihlJtWmsNFqDnszbNSN/sByTs2ulRzHvV8sfhP/p3fxHd/5/nsMYfD4XA4HB9jMMai7T79+Witr/nY4r41lV6842fu+vmPPf7Jf/QN9JuxZN2jnksRdVExVzxUNTpLsaQ/tzSftwVqlz9L4zXt+fXf+bfiuVhaAtUWCzvC3vyMMS2UKnAuUMdvLcxH7ETZmXgwnOZWKclhSucnE9dNK6vLXLFnoRsLYCmaNae1+f7ODLIzoz6lS2s4rCC6ZG2G+uuTPIj6ZDMgnhawCwDHVlfuJ9c8rstcbuk4NxOzNvb8tsifg24s0IwuK9W0YpaVUBqndDmVW7lZmTl0k/PXHOz5zeGJLnnFT2kmwsw/5sl86SdK1JjLLeEwrozS47qrLrnhU2LTuAaAhdFlOl9qnJrzltNZyJwSB84jkx/Y+VIOGx76erZBujQc9DnndBkMi1Nz3oIZ+C/+D1+bPeZwOBwOh8PhuJ+4b55KwLjCyCKvSHr5PX5+Fmnb3hx+5Dbf/4PC09+9qWJb+M8VlHPQxYYtMILx1LDF1qn40LXK+U983nK4zfk1hzlO1ibkrtewsBzs+a0utz2/3o404WRWQtlzvpv7pmE5vV/nrziZG6Uj5ukqoffKYaK7OeGpXLYcbG4Fc425FTXvdb40Jrb3KN4xe2+ji8UHPefv+hw7dP6a03h80igD36LJO3+NQ/Fgbsr7MV+AkcdtNLirLnN46+vXt/iUw+FwOBwOh+O+4L6tVLoNXvyAP/+RxsXrqyqeFNG3PE/+bTin/9a/4bcrSew5b3uN8VrHY4t3e/7jnOrvvNeJMykYT5z/3ehiY3uNkw2Vk9eqcddC/rbnrzlwlV96DETT9RN35XCySXRkpchcfOh8VpdMaW6873W+HFrZNJ7/blewHIofj00wFb/XZ8Cp3HqvuTunC3BYFwKdfK3uqVw6rcvx+NT1Rl3s99nEt8dt2o+P31i/izM7HA6Hw+FwOD6uuI9NpRcP/DyvOHryHj8/C2b+wtwfAP/sNt//g8KP/ZnPgJSPh2z3GUuFBph0H+wWuAgeC1GSVQK6MLVbURrzfbs8ziZhLIWd/D2YOJ8/F7FkxrgwnMIpTiTX0Bw6w8mu5rDb4+xqEJzg0E3iurnwXnVhki1GmoPevkMELE7oYotOq0t/UJfxfLo5d1dd2OjCSLrorY/87nTJ6FPpPeGQdVNbh4C8DWvk1Mycc04Xzak3nPY8NquIgJXpVlgOp+ZLZzjtDIdFWbmidJl4FR3RBTO6MBddKJ8vx0Qn57y9np0fds7bhsmyfFp+YLcYznHQusQZXTqjyxLHdTk0X0ZOtS7baDiEepyLwmj+OWc5RdTb1+IMhwAuI303uhzbtpg/+5O/+IMHP+NwOBwOh+PjCQJAke/fnw/7xt4T3Lem0pNbfEYbc9/18x97hGXAFnrFBWNjfmd+Q/VmkhsMVXGxUTGn7+t4CzHOBZB8O7hqquzAVUOiQ6yK+x6MPWIp8AYwdiqOkDc95SKWKb2tTuG9ctqpYi4bTNecYsVpTzWnPvHKPkc9UHOiKacd3j9d5jhteNy+xQx5+1bF2XCa0aXmJObho07SwMgcIkku6EL9GCe5zzWHG8Nhi7GxwDyXa7HmRHXuTXMNhROAWU5bxUnGUDcfbszmq2vUnKxON2a+bOLYWLiNLjvDoQOjV7p0E07ytreii+EAABuqddnOcCggVHNeONUc5uaL5rSn47nWpT/V/FFzfuA615gw0aXONcmtmlPNYaPmPCBNn8rrapJbdbzFYDjxJNd6y+mILpmDjm1uXemYGNeG03Wc6sKVLsOEk821ev7wpJmcQSDsENGc3bf/W+FwOBwOh8PhOIb79v/+fh3A5w4cyz/X3kd3/fzHHl/6lW/gpgduYnqTFRhbYlyn4mIHxi4wrqhPrxVnbEPEc/ToU7G7C4znGEpx0RPwHLEUTBHAc4yrF66J8RyxrD64pojnGLBLBdeGIp5Tj10qkPYUcUUDtqkY74lxTbEqZDcANsyIzNhD3mJ0k4q+mzTma+oRU3G3CxFX1GGANBn2IeIKfWLN6KjmFAFcqQKqM5yuKOI5DdgnDjc0JA4Sb2nAleLUI+IKIydpRowNOYa86jvrcpUKzJs0wi0idoFxbXVJcQRjH6TIzFcQXQZVyALP47h64bnShSCcnqEvnCyHfeK8TccjiZZbpctN4hFTAbtNxXtMf4suQ9IlJl36ossu6ZY5dKHmMCQd+lQY74wuz9MYc1PlhgY8o5HTjmLFaSDGFQ3YqcbPdbr3DPFo2rC8lSvrskGsdNkoDl3iMOoC7KnWZZiZL88GoGcAYDxFrcs1DXiudNkkTplDR4znNM4nJsYVRl0IwA2PTZJrSANlk3S5RsQG+hkQq/kz5DlvdLlSDQfRhQuHLYCrpAsIeEYRz4wuz6krnPZJl73SReea6CLNZGZpyORc46wLMW5So2dDEVsacy3rcj3RJRble5Lz5HgAcBVHXZ6lZ0SlC/WF04YinipOHbh6zjEB14glbkC4iaMuz9Pz+CbN5yvI+K+SDluKuAkDnqXnWJeeAc+KLsLpWcotee4ATxMHBuOG1fwhpPmiOfS4oq7Ee+Jq/gwm1zLyLxduKOI//z9+BQ6Hw+FwOByOh4P7ZtT9qwB+9sCx3CT64nv4/MceT35PXuq+g/ymfwcAJMXIngfEtGKhI0an3hXUBcZT7srbsvrAeMY9WgBrtKVQDhF4AU1qygCBx9dgXyEisBRbucC64bQthKQxs2HZTCdxxIYjFggIqWjbMHDJAUvIiqstkLbaZE5ctpnsibFHX5oFwqkrndTMoQFhgSAFU+J0iRYRUuQFljdFaU6dOC7jmiJIc6IBN6mA05zkvhFuIJzOEdBSwBaMLTPO0hiyLtt0z3Zg7HjAQDWnogsxnqBDKy4voy4MnKFJugxoGHgpcbqKAKXmhtalTxyuMFTxVJcBGwbWaNCAsCHGhjnpQkWXfqILJw4Re9WI6iiiQyy6ZJ1aEBZo0AfgGQ9YMPAIbWks5XU2WRfiOHKiiMBx5EQDiNOWJMVpiZCaHKLLBRq0IGm6sGx3C5kTSzNG69LT2KySlWeoOLYgBBA6YjzlHgsQzrMuHLHAOF+ep0UncaJLjmtdhNMgb+QiKrqccUBDhA0itgw8gsyXDUsTZpc4CCdZnaI5MWLFIb8lrSPGUwiHVdElTnTJOg5FF0ZMP3yudJH504M4bSBM84d4wBINQtEFeMRZFxm3bKkdc63SBWmFEAG71MTJY8qcGhAahKTLgCWAc7ToCXjGjAUYFwilscSQplCeH8Rp/kB0CJxWKRHwnHoElqYRgXANeSZcoEFDhC0YO2a8gIAGhG2U5usm6Z5zL+uyQd1Q31LEFvvyJrace0sWXTpiPOEBK4guPYAncZwvWScwg4NwGznk+SMcOM35PH/W1XwZ356Y9QSAN83LIBwOh8PhcDgc9xsf25VKRDS3wuivpGM/P3PsFwB8kZm/8h4+/7HH40/UJqrVBgaCKoslZu3vQvKbavmeFBE9at+PSFOfD71XNVId2zcosbkmk/EmIaA3njPV78zJnJNSkT4TZw6V39EcJ0w56YnDM5z0GIRDHVcbpmxsQam4qzjM35PCiWoOg+HAqI2GrS6io+V0XJfpG+tsLtWcDukyns/oYjgxzBhBEw7VeFLRfogDU+1JM6+L4WQOWV3s+XrLCVNOp3SxnOJJTsc5TDhRHR/ipHUpMebfxHaM05wufEQXxoxxN1sOqOLBcJg8U8q553UpFy6Xm84fzWFu/hzNNTMf53OrjvsDz4Acd5oTDrxNznJAHU/nfM2pJ1lJqrm/9MkzOBwOh8PhuGfI/wfsvv2py0rHu8RHsan0IkaT7FkQ0ZcA/A4RfV7/nJmfAPglAP+u+fznISuPfuG9fP4+4PP/+qdBzVgBrFBXEmIIffwcU6PuOt6bE1hD29ZcM6+E0D4z+u+pUTdXBR9h9AkBgIWpyMIMJ55wiFXcmeO2IFuwvW+mIlPXAYCYt8AUDnXcGU7LE7rMXc0adVcG6jO6WFNrq4u9htVlYghNddymMef4trqU/za5xVYX83lg7r4d12VqNl5zsLln50s7qf5t827OqDtWnPYYdSJQMp0211CwjKZG3XW8NZwWJZrXRebTYU4Rc7rEikM9XpJrKAQTWx2tLjsTR/O9ZeIw5t7ddJkYdafGUq3LzJysONUYzAD2E13mc2vkFKo4oH7OWU5ZF81JzxcyyszrUmOqS5z9uf7ZT//iZyfHHA6Hw+FwOBz3Fx+J7W9E9G8B+AlII+dz6We/A+DLAL7CzL9svvJFSPPpiT0XM/9lIvoKEf0qgH8I4JX02S+kJtJ7+vzHHRQIHbgIz5BCeqnKiR31WKbNGwCww7hNSMxaI1bpeDZzzVs95DhhAUbIMUm5kWMx6ZWCnyH+QAMi2jSGIcWLFEdidKxiSLE0Fl2yNUcXfTsasFJl345qDlsMWCsOezDWisMesgVGm+qS4tCR+J4EdU8GMBqEwgngwilCCrISEypOTOI/o3WY02WlpuwWA1aJU9ZpPdElqJixVJz2xGnV1TynPjUe2sRpgDTH2koHxSHpkgtV0aU+bnXZUo914pTHvFJj3htOndFFYpVbqX2ndYkq17q0Fk/nWj/hNHKISRfNaaqLyTUM4/wg2eq0rnSo58sejCVwUJc9xWr+5A2dmZM0eICmcJIGSW5GWU7CweQayZYzrcuZ0SXrAAJ2PODMzJ9W5xYiFhVHq4vMD80pVJyk0dsc1EkMyStOFKtnwoQThpETMfYcJ/OnqTjJP5CkdLC5xaAqBqjSJSRdMieti41l/tTzZY+aw45Eh1EXLjFIcnPNobrvLWxc62KfzaHiJLqOz2qU2IJAck8+ir+qcjgcDofD4XB8YPhINJWY+S/d8fO/DMA2mvTxL+IOXkh3/fzHGb/2K9/AfpDiqIX4FHWBwRyxYCkKOmJElsI4gtFRRGROPieytWqbfE8aEJhQ/GlaDiASX6BlKqq2qXBZIqCBGEB3YKyTT8o2GfiuwVggoE8FJKc4F/IMKSJbUFrZE7EEyVvJCMIBhG3iwGlMfW6Y8Fh0Zo5rxWmTODepcL7hiDWC4izFfwMxS+7BWGVflMwp3dd9MpfOnAaSAi2ycGhAacWVjDmA0AElvjG67AsnafhFMHqK4KQLQbb4CIeAhgOi4tCwXGMDYJWKws2MLj0YKxZOO8ocZMwDYtpGJxyJCDsedWkQyiqyReLXK05Wlw5RGijcl6ZMT8J5mXy0os61tM9wk5oBAbKaZEhNGcnnAbFwosJpnbyS9qn5lznFcj6JAwXsmRMngItOPOpCSTcm7CimMQsn0UXiVdIlBsY2xjImEI25xtLS2ICTf5N4jUHpsklm06s0X3Yk/j2rxEkaLgNWkAYgEWHLMjcWEK+uPZA4iEePnj8bDEWXRdIl59o6uRf1JbdkfkQ9XzhzGnXJbwnL8YYGlWvCIabGVpuaERHAKsVMSBxE15YIO2bElEt5Vc6oy1B8usSbrOY0pGcAp1zL82Wncs3qwgd0yWPMnPI9yW+4K7qQGO2v0pyX56I0oloQ2uShFpMuVxSrZ8KGEgcMWLDo0lNMzyHRZSBO80PNF0QsOZQ5uk0cCdJM7JQu+e2LwimkFwmgzJce4kGVY5T5GEpzCim3upRXf/v/9Dv4C//7L7zrf6McDofD4XA4HB8vfCSaSo4/OLzzzZviGdIzl60xPXFp5gBSrNzwaHItDYseAUBASMWLGAefoS3FTOCIFZZgEoNmMUdGMc0lHk1dt8n8NZvqbhGx5WQMnD6/S4VqQ6nYZeACAS01Ml7m4p/Sk3DaaU48lK1nuekCxemaezQAVonDJnF6Acs0JgYxSvNsl+LMYcIJwmkosXBaICAQiSk1A+fcSAxGl1ayLImO6DIoTvO6NAiIJK9Ob3jAORbS8ENMOkkhugUAxOKhkjnkMe9InIkHxWnHspqBSBozexbT3oZCiS8BtNTIK+2ZxVw8bcMbZnQZqrhP7T4qOmldtslsfJ102YGTAVFaAQVpEGSjYctpqsuALUtDIBClXAMegdAUXSBNRKLCaZtytU9Nk069rWzDQ6XLTcqtFo00lnhAw4RLtGCSJlvDwBkWRRfGmM8TDlRz2CVdSoMvzZdzNEkXxp6lgdhCPHY6ALvkgZPnz5YO63JldLnhHi2ozPlNMgpfISROjGycL5wiwHw411LusNJtx9LUCCrXHiWT6zxfmsQ567JLusjxoWzNzJzKdseUa9kEPusmca3LI7RFl6h0sZxybkWlyz49M4ikgbZj4BG3iZPoIqusaNQlfT9z3GFQuTY3X6RRnDksQFirZ/GCCWdJlx1Yts4pXZhrTsSxPKs3iVNemZY5nhldpFXF5XsA8Na33Kjb4XA4HA6H4yHBm0oPDC996nwMyPif2B0NM3E2qWaMr0PPBRul35RHZhSfJEoeLekUTFKIFK+amWvkc5drsvIvSU2KckKaGtpOOakRzHx+SD84xIlRj0k4KF+XGY5znFBx4uq4jec5HOYsW7wUBxr9V3Q8nleMgfNYLQerPRM0g3ld9KBIVvno+16d8khu6fPjCKfpOWiiwylddK4KBx69ptLxRh0P5vu30aVwIJLGAx/hBBzVZU6nO+kCgJhQXKFv8QyY6sIVpyE3LBKHOfP9U5wm1zS6xElu1ZxPcZjO+anOhdOMLgTUF6Xp/LGc53SxY9CwuXWaU/1MGcwzZDC5Nvt8V6eY16V+7k10gUkuAK/qf2McDofD4XDcG9D0n32HA8BH06jb8QHiv/NnP4NgjbrVA6KZVGBTnDbqrm2trf+GNbm2Rt3WeNiaw+ZtLqqvdNSouxSEh0BzRt11bL++MMYh1kw5o6xcMZz2xtR61qj7iC5zV5sadde67Iwu1qS3NZzuqssubaXJsZiLj4NeIlQcwsyNZfWDd2fU/d502RlO+a15oy41B2sIba/GmOoyNequzZStGbjNNXuNqVF3zWFrci3PDxtnnNIlmvkinGoO9XinhtD2mcCGwyldLOdV0iXHt9VFc7K6WE6zJu0K9h9TO8Y96vkxGnULVlwbcy/m5ovhUOkyw8kaqOsxivn4/Jwfr1EngjVQn/vsz/ybPzQ55nA4HA6Hw+G4v/Cm0gNDHLj6jTYDZVtFxpCaNnJ89DfKcfYyORRHG5P9fKyLn/QdXYwebVzBrAJI36840PvNCTjGcTBjyJ8ZPUdwnCOmHI/pMsdpct9NrIvQeY7T8x3jcIoTY/oq+P6ILnFWh1Mcj3M6rcupWIr1mlPNoZ+J78bheO4NZL9vmgeT+27n05TTJNfoMKfJmPgWc/4WuhzLtVO5B8zlWqzi7oguuZF8fH6cnvPHONsxT3XKuYUSD5hyOqwLipl+vuY098a+VD7/XefXsVzTIMiqtcEujXM4HA6Hw+Fw3Gt4U+mB4b/8lW9giCjFxhax/JZeihJOKxFycUGlGIkq7nPRl4yGu9wo4mzqPBbz2bA5xzvi9IY3LsWZjvP1cixb0sYCSMy78zY14aI57Ayn4QQngnif9IkDsRhpF05A2XaX4y3FilNnOEQTk+HUcoA2G5a3K1GJrS5disfzj68QzxxEl5EDUR0vqN7at6Nal33yb8pxP6NLr+K8jTHrsmQxVc+Fac4lrQsfybW89eaQLoHF70iPseifOWFelzwmm2shbUnLx7Opc+YU1H0WXYaK0z7p0qU4l+g6d6HmQ2BCSObxWZdWcWIwNhQrjntEo0uc6JKNsRmMxnBaodYlz4/BxFoXrRNQNyTkXWK1Lm26b/nzYh6urklTDjoekN+gGIsumuOCCANsU2Q8/8boIvOFyxy2usictrqM84+YEAjVGLdUN47mdNFx5jVyCBWHFTIn4ZIN2fM92BlO2UnN6pKvmXXJnJqkS68+3QPV/NgaXTrDQc/H/JyyOgC6gQv8rf/z78DhcDgcDofD8XDgnkoPDE++vQEwFuO9KU7GrTOYLS4ATq/IzttDGMuURvnV5nq1Qf5ubsqAx59H1L8Jz3E+R44DGEgNkZjezJV3tzDX16k4kJheD4aTLZQjpJlQikyW9zNlTkDaIkTJI4dHr5wh/T3lhCpepLuS42U1hnEi5u92hlN/QpcITq9bV4UxmtH3JPspJQ7apDfrkrnarUejDmo1ApBsvwl2NQNjLPhnOSRdLCcgv9pcv9lr1AWMikO6fLlvzHxQl0GNRXNqAHWPCoXCidKYsi49HZ4veQujPh7ACPlNXeoC2bsLqHWJDKULm1yb52B1Wc5xUvNloKxryjW6vS49WL3gnmY5sQhVdOA7cOrLM4bSnOfRi0jdoxaj/w9j5GR10c21Whc5R9limftMiUNQugxInksm1ypOikOOW9TPMcshn7DkFqBiLqv6Dj0DCIygnsUZOdfyWiJKjSBtpm05jf5LNQfCmFtAyi01ZoJuLQne/rYbdTscDofDcS8RT3/E8TDhK5UeGF7+/tpE1Xpo2E0N000OAl2ksSnaoikzyASnrjm9Vv3hqF3iCCCy3iZ09Pjc+RlcfJnEZJfNZ+pr2okztx3k4PcxfSbbe3b389fXsbpEw4mS0bC6wESXU7DF5HBMd8wYER+4nOYAoOiSt1GOK03q7xHRzH07Dqur1cFyDAf8wA6fv77O2GgbGzuaExFmdKlxilOVW2R0mdG54nREl/H806ZjpYscrM9p4xPXsHPecpjqYuK7zkc6rUs1BDt/TnGAyS0aG2HjmGvYXLOMDp3/UK5R/lKePobTXbQ/NAYAeO37L46fxOFwOBwOh8Nxr+BNpQeGn/yzP4DQjpVDNrjNaHCbYuluRt3WmNua9s4Z0Gr0HKsDu7SO5UBvYd6oGzqeVk6RVfOJxpVC+rjGKUNoewXbcNnTUMV6BRUwr8sxTkCty22MuieG0Cd0sQWl9azZ0lBxsGM+ZTw84QBZTZF1EaPuWOtndFlMdDluct1nf7H0l81du83nlFH3lM9xo26ZL9YQuh6z5WTz1+pidd6inj/WBH7WQH3CQ62EoSmnznDQZ5gzhLZG3faKnZnze8PBzqc1mnelS4Y16rbPtdvocmq+7AyHrdFpzc27mi/j9YyHE02NuvPKvByf0mXyLL7Fryh/7s/9oZOfcTgcDofD4XDcH3hT6YGh2w7VO8YZp5ouNF3ZYGJbiEyLHz5a4FmQGRPlRhfpmKoPTVbFsCoq+fRqj6oBMvP5kH6ej8+t6Dr2S35baIfJXa7v25wu4Y66hBMNFb1q4RAne/5jHMLMmGZ1Udc/zaEeYzBjtn/fba1V2jqmc4tO3ffjK7DoFrrYppDNVWK+ky7NKV2o5gjUK1JO55qJD80PG1eccKf5U95AR+q4iTV4Zgz6uWTn3xynU7rYh9jd50vNIczkml0pdKohfurZ2wDmuIlP6HLXFZMEYHczHP2Mw+FwOBwOh+N+wZtKDwy/9le+URUPHSKC2jYUgRTXBZmOG1DycZEiqVUxGFindgaVc9JYULGsANDHc4Mkx/m/c5z9iPL386u3dVNEf78HjxxYVlLY12kHhMJJOIRqjEvNmKU4K8chKzM0B1b3Rd+zfLw1nFYs18ufX6TxjLrwnXQhAI2678RyTs1hjVBumBj/1pz6CaepLvr4AjWHNTcVxzzmiS6pWI805RD0PWThlPOKkHVhpftxDtHEVpdFukIe08pwyPcwx/s0X3I8GJ3mdRmPB65XuBDLirHMUcy/a04DbOOo5tCAyhwEZJUbqTbKWeaUcltyV+syfQYc00WuN+Za4Lxyb8wt5M8nTmW+8HgNrUsAVfcp51Ye8xo1h3w/rC75+1kX3XTRc95eLyROWpcyfwqHuulyWpd6Tq+MDmdscotiNZ96k2tcdMgcprpoTk3SRfyh8nY+QpPmUn4G6NWp8cScX5pnu0bm8v/6D9yo2+FwOByOewcGKN6/P3dZ+OA4DDfqfmB49t0tgLrwl5gQMBpA5+JlQMSQjjepFMnHBazK1zHO1+BSYtLBeCgxpbKnPq5LZIa81UgXWpx++x9Q28aW4ogZA2UO47aUzIkKp1DOqjnxhBMmHPT5QuKUf8blfPOcCKP58chhPKec77a6hErfMa45RYzNtkO6APO6NFkH9XkCF2PiUddxzHO6cDIKzhzq+1g3HABpXtS66GZR9vY5zkmz4tJwGhsUzUQnc0/I6qQ55beDTXMrc9JNjDldBoz3xHLI96i8Gc/kVpvimsOUkx6z5jQ+A3Ss7/E8BxtH8/k4wwkM8SXC/Pyx9z1wzUE3YwCAacw1UvMv55rVRTd/G4wresZ5Xj/nrC4RcZK7U13q45Pc4jHvGONzJs8nm2usxmgbcsFwaDD+4z7xmEvHgZn5V3Sp52N936e5pO/dk+9t4XA4HA6Hw+F4OPCVSg8Mr3xmNFEl1F5AUqzUv4Mu5S6PP9F+RjnWJY/2EtEF89w15o7DHGdzXBt12+JybLLo8x/wpOH815QDGw51PN3yZMcw5WQ4mNhytBxObaHKd6GYjQMVJ8ZME4T1t2+jy3EONj622u12uZbDeU72DuhVG4eueTK3JrrXxxs+xcki6zJSu7sudXxKFzvmwcTBcjjBaXqnM5fb6UIznKbz5W661OfHSV3smOwvpbj8XT8Dcmx1CQgnOcHElkMdz3Bgy+FwPMchmrhsSSyr/E7rcmq+6P9lvP6ZSzgcDofD4XA4Hg68qfTAYI26l5Ni6UBcLwvQyxcqc1jQjFG3KX4WevsalM9OLrzH6giAModN8a6sSSmXrKrEdsIBpnhCzYnGVQw51q/ozsc1yha8cs2aExkOw8QQejAcWRGfmidbA/XCQYGVqfW8LvUXJkbdxlC9uaMuxaibxzHrS1oDdZtr5Vz5snTcEFpfO2NpdCm5d0CXYshedJkxhFaF+G2MujUnhtw3OsAJVJvCEyhtU1TXMJzsfLG51VldUHvcnDbqnuaWPh5ndOlRm1rrt7ERpibX1kAdRpfe6GJNrqP5njW2t7rYZ4ToMv4gEjAoU2trdE+gmTlfzxerSzxkAl90scb54WiuVT5V+T+1Lri7UfcpY3s7521u1R+Wv37uz7tRt8PhcDgcDsdDgjeVHhh2Vz0WvfoBpwZJKbqpLtAYMzFV8ZJDVawvzW/xW1NktkgrPmiMWxU3QBW3IGl4lON1gUegusDjuiCb41S9LSpx0PHCxC3TUU6N4dQYTi2CNAfycaqPB0zfKFdxZDrJaWnjaI9TpVOLunmwQKhWR7TALTjVx5cqlqK11mVlOKwnuaV0iXVuzulkOUzjxOlArp3KxYDUmBp7QHVzgVFxmM81w9Hm2kxzT3NYntBlgXB8PhFV+5wJqbGksDS5Zsd8ZnSxOkx0Mrm24Hq+LECGExlONYeFmS8NAwvVgJxwAE1yrdIlisfR0Vwz98g+AxaT51wyvlbzw+rS6OMzuhzLNeFAZr6YXDsxXya6wObaAZ0oH685VSB5bt482c8cdDgcDofD8bEH8/3743hf4E2lB4Yv/5VvoGXCKhV5AwEtBTHXTgVPg4A1muL50SLgDA0aptT8aHCWigtKjYBVLjYYOOeAVS6geFx90Za3KRHWaErjJp9/lZpTSzRYoSnNqhU3WCKU4+fcYIGAVbq+FP6hfJ5Jzqk5tWgqDgsEXKBFm+7DCg3WitMamQOVho3mGBOHzCkkjosUt+nzhYOJz7gtzbJ8vQWocIoAFhSwZs0h64IZXSjpkmKWxtmaqXASXaQgFw8YwhqENukEEM6ULiHdw8zJclhzwFLFF9xgAcKSx8ZOO6PLSumyQIPzNOYmrZw4QysxEVYq10JqbhRdMJ6v1mXMNTKclumejbkVxgYGi6m11mXFAcvULCMWc+Z5XSQORhfh1IycmFKuJcNkBs5AoguyLsC54XCuODRGl5ybi6JLgyUTlpGKLi2AhQxXckvNnxLHUHJL69ImXUpcdEkcGThDwDrlFiDzYZXuazaIPlPzxeqySLmd4zU3Va6dc1PpsEgNy6WZL/kZAeRzjroski6BpaGzQMCaa05Zl6A5JV0YwDpOcyvHWXc7X3KcOeTcuuCAhdJlAKf5pDk1WHNT6ZI5tWW+CIcFheoZ0Kbm4BIojaIASs8EILt1aQ4BhAu0ar40lU5Zl6rpDsnjZZpLf+8//Np7+SfK4XA4HA6Hw/Exgxt1PzBcvSm/RW6RTHSZ0aXCuEXAngfsSUxlz9BgEEvaEudKokHAGQCk7RYNRvPXvN1iCSkob9K2rBUISzCuksX0CtIsyltdcgxIwbaENI/kLUxSRLYYVym1CGjAGFLDQgx4A3YcMRCnMQZ0Jo6FA+EcLVhx0hxkDADPcNphSKshGizB2PIA0BjnDUdLNW7NacnCSXTgsiUw67JhRq902fGArujSTnTR3i/rZLtbODEAHjmtACwQsUu8ZIyMqxRnHfJ2ncypKRwoFfW1LsuKA2OfmpZWl8ypM7HW5QwtiOtc04bqc7pERGxL7ginDceUe3VurVMjtK04cIkzh7wCTo7LNYeSe4Q9R+wpFg5pA6CaL6g4jW/qklzTRt1LAC0YN5THKLl2lbYw5TGf1CWZWkuzjKVJkcafMyWq+bPhAfucaxzQIyKq3Mu5lWPSDQo0CGb+RDAG9UxYAHhKQ+HASRfQdM7nOOswcqp1yibxC8g/YhHyJjOtS69yS+tyjrZwkBWGTWmGaV3KcUjD54ZSs4wJC0Rck54vbJ5joxm/zHkuz4A85kUVy/gl1wJaMDaI2KecbEDoIWbgmROg50tTGkc5ztmXOQ2I8mZBktwa0vk1h13S5Sw1r6wujdEl/4KPMG4ffva9HRwOh8PhcDgcDwe+UumB4dXPaqNus20MUoBoFMNbHr81Z9Q94jZG3Th6XP/EmtESCJHq2J6vmXCqY8uJcFej7jlD6OOcLAc+Eb8bDjqeMx/XuoS8Wuh95FAbqJ/WxRp1z+WahDzLyY5JXhl/itOJ3DI62+PHDKFlDDDfSbilgTqh3o70bnS5q4G69dE5bQqfKN1SlzlOp+a8vSdTXerPW11srs0zkNEDU1Nry+k2Rt2Ws41P6WLN+U/l2kFdDuRaAFWri25j1H1Kl/w2Sv25Nz7nRt0Oh8PhcDgcDwneVHpg+MK//mk0i7EAmBp1Y9psSNt8ys9mjLrVF2qTa0wNbU8Zddu/rWnvvrwgvFyyKpasUTcZTsIBFYfMNceD4WSxNBwaE5826o656gOQzZrHa1pdrFH3hEM+t9FFc7K6WPPkhdHhrkbdO8OhBY7qMmcIrTnJjhye6HKomAamRt3tidyKs7mlOdYkrMm15VQ46Msop+68A/SQLrIqxM4X02A8YQg9Neq2xvkVpYmBOmGqiz5udRFT65ETYfp2xIlR97ua8yPqyPi8YWoSbzmNbZeRg50vNSdZ3aOxMLk2nS+WQx1vJkbddFQXO19YnQsQY25t1i+G6jWHce3cfK41JtesLoPhMPfZP/HnPzdz0OFwOBwOh8NxX+FNpQeG7TsdVn1dEZwbo+4LY2B7yeN2EYmbqmlyEevf2p+hXl2hvVYAKZ608Xb2StHxSplaL0E4U3ELwpkqhsQHBDUHHOd0YTkYs/ELrlfynJmCrHgRqTFqTqsJB/HhKXHagpLjhoBzU+CdMxkOilMkPDrB6VzHAM4BowtVuhQvosIhHNUl+/KM8VSXc3U9YsL5RJdgOLR1HA0n01KynLL/UkbxtDmgk9VlBcKZ0rUlVJwISRfFSecWRcKl0eWca1P4c234zMAF2flS597KcFobTlanFdW6LAlYq5smuhgOaE7oYjjFYHSp+5tnMLnG4USu1bpkX6iRk2zbzGghz5XCASTPMcXp/JguPM21y4kuNaeV0UXmj9KFj+uyBlW6rIkmulTzJ+uQOc3klo0r3Rg4J6tL3QS1ubae5Jp5rnHNKV9HBgicxYDr7/r2N4fD4XA47iMo3r8/jvcH7qn0wPBP/+rvYkVS8G0Y6JBXxQRsk0/PAg1eYMINBkSIeewL3OIGAwaIZ0jDhA0iOo44Q4slR2zB2INxSdIM2QLYQVYNPAJhw3K8IWmIbBCxRcSCs8lvxI4ilsnQtmXChgacc4MzljdgbWnAJQLWRAjM2EKMdNcICGBsmDGQNAvkmhEMxrLiNL7F6AYDIrOYbiNiy4yOGeeQLTdbFg5nBJwxsEmcgJHDDuJzsuCALUfsaMAyGT43acxnnA2ngQ1F4YSAkO7bBRFWJCsRtpAVMvIWPS66tGjwKN13JmDJDV5UnLLR8Q0GDBxxjgarzCnpEpmxBWEPKcQfocGGY9HlsdJlyWJ0vOFYOOT7tlW6NMzYUsQlqNIFyG+UY2zAiJQKc4hnVNblseK04oAm5RqrXNsiYgDjggKGdP49xIdogTHXCIQXuMENInYQr6NHHLDBgC0iVhzQgrDliC1FnCeODcvKkUtupCnKwBaMs1T4B6XLCgEhMjYk65xaiKn9DQaAxFi+xIlDm8bAzGJ8jIgdy4qci7RKZgvClkddtiy5FdR82af5soLovEXEWTJIz/NnzC3GDhGPKOAszfltagCsE8cNZL6Musi/rkuEkmuUci0wYZs4Sa6J7w/P6LJI8zLHBMIlt9gqXR6nXN0himF2mq+Sa9mAXThdQHy18jnXAM6IJPeULhSBrdFliwFkdCGSBqlcM3MKyYdLfLPOA2EVRZcdH54vN0mX3KAcdWmxUJwuyzNA5vSjQDgjabhvonBYq2dCJLnPIRI2FBOHAGLCBgMCEVbJaPymcAxoky4AcE6EZZrzHaTx+wjAlrn4Kz1OnHbg5F+Vn2sRK27F4y1xOudslM/YkXhvIXFYJ81+7T/8Bj77E6+8q3+fHA6Hw+FwOBwfP3hT6YHh5m0x6l6Q/LmO0ijJxUSH0bj7MYfUVhpjbdr7iEPZE9Ug4IKB81QEg2T1whkzbgAgrY44A+OaWY6nIqtL5zxDI6tGQGm7SVN+M563n6x4XOGzJMKCuWwiWUIMZKWxk98Q1aDHaK78mGtD6Ecs9suZk7iBjObjF0ic0jUvAJwz40nmxA3OIE0T0MghL3Y5hzResvFw5rRKqwFWCFiCsU5fWJI0Sm5SEyPrskdER9KkWXAo21CsLpmTNrm+yJyI0CQOZxF4irzKq8H5EV0yh+ydkjlms/EVZKXZmdGlg2wh0rrsMwfINq2syyOlS+aUc6tFwCUHULrHDVHRgYjSfQbWzHiedLngBucIRZdzbnEGLroUDolVNiZeF50ghuZKlwUDN5Dm1ZwuLyhdcqx1ueQWQXFqAZDRZR2BtzmvJpLcujK65GtccFtyU+uy0vMlcQGAVcqtLeempZhEb5iVLsmoG2Ou6Tl/yUHllqycCUaXM2YMJCv7cpxzLXPYpe9kDkizPufaws4XUDJcB5bMZdVgzrXrpEt+G+EOEb2aL9HoMs55wqNkR144YXQMawIVXd7icb6cIeKm6CC5lp9DmVM2UM+cloXTqAtR0oWA5xHYs3BYgKUZTCOnrEuO2cwXq0uT7nEbCJcAhigNPnmuEdaIeGaeAbs855NOlHVJ8yebi59B3iIX5RLlcwBw9ZavVHI4HA6Hw+F4SPDtbw8ML3/uoorbesfVJCGyOey4w+G0qXXxeAFS0U/V8dNG3XUM8329ec+eH5gzta6Rj1oOR4261UWJpt4kdzVTtpzihANMPM/JmiMfMhoGpAAs3w9T35u7c6jjyniYpsbCtzUfP6QLg0afmnSN6vt0dwN1PhFXOtG0C3/aqPu4LmxyK5idRXMc7PlPcYqGQ0P1cet5dsgQWusy4cRctLG61Hfx0Jyv54O9vs0tEFWx1eWUUfdtdcnaWF3eH6Nuk1tGl1PG9lNvsZpTNLqEybP+tFG3vZ7NLXmzY/3N1/+QG3U7HA6Hw+FwPCR4U+mB4cf+zGcQKqNuQLuuBgC6ys2FhC4vGKrgIKQNMSP2Jm5KoZZ/s44qtg0S+3eXttiMMermAnTBOzWItseloKsNnysDaJJraFiOlkNjYph4SCXlyIGrz/aobvusLppzPpfmcMxoGMjb9jSH+nyWg22+5dUemoOOd2aMDaa61DpM75floI2GgWlumVsyacbZ3IKJrS57w2lOF30uy3HuWpoTk5yz0qVqWALL91mXbWqOZB5Wh0X6dBnDrTioGGmLW2r0EFA/Q4jSNRRPw8H+3U90SZ9P5x34venCs5xqXToee1dEwGKii23q1NeJM3Nex5vsp55Ou6KpLreZL+W6VD/HGPIcK7oQqraQNBRr3FWXCQj4qT//2fljDofD4XA4Pr6Q//N0//4c+L80jrvBm0oPDFdv7nCz51LIDBDvGF08bGioCqMNhvo4YlXM7MBVvIcUffq4LnZ24Koo7cDoEEvcg7FXMZMU+zmO4KpBIn40dZEtfjd6zJbTKQ5sjltOseK0Nxw6w2FI39GcOnV+y8nqEsHJK6bWQXPals2K8xw6ntelxHRclwE4qcveNOp2SpfBjPkQB815Z3TqgGrF1W4Sx+ptanuK6NWYrU6WU0z35VCu9TO6HOck/jlccTC5xpaD1WUu17ROqDhFqjkBdYOkZ5tr9Rgtp7lnwM5wmuqAasVi9sQqnG+hS2d02as3m+VGVkaf7tvtc63mwMnvTXOa0yUaDhWnlHvjc6zmMJj5wgD2cdSlS2MYOfHRXMvPsVqX+lluOWxQN6J2ZHIN9TNgD650spzydTK2HPHWNzdwOBwOh8PhcDwcuKfSA8M//tXfRc9S0IjBsRj1bpmxgBQyAwEbHrBMTiNDAK45YsWyFScScMNRzLQhW1E2LEa1LWRbxRbiQbMAsCUp2paQhNtSVJ4uVJoZAyKWTOm/5c8ybfrYEyOqa/YQL5glpNCRJoysJtinMWZOQ+J0kzgRgBiEw4plC4fmJK9wJ9yAsYKseogg3ABYFk6MgcVjpAUlTuOYu1SsxcQppnsboTgQwBzRVpxk1cWGxAcqc+gA9GWM0gseEoel0iXrNqcLgXDDjBUILRg3ShfJhVg8kLIug9FFmvqxeKvkBskC4hOTV/YskJqLSZdlas4MicMKQe5X4SC6DARc8yAmzSAwSaGa7zMln6QlyxbEAVIoL1lya0OMyFw4jJxY/IJI4kHpsku65Gt0kEJ5ke6Z1uWGuMq9veEUK13E/JoJSYe0pYnEX2qJgAaybe8mMpaB0DLjmuQmLpQu2UunBWFPMekguTog+1fJNQIoNRRj8hVLukTZYrVN+SQm/PoZIGPqFYdV8geLav60SRf9DCAEXIOxYsmtLl1jyYwWjA1Js2PJKbcKJ658nPL8YcrNtVi+s4c0qmQFj2iXc+0mPUMknwP2YAzEk+eY1iUqXWQLICV/OU7/MIouKyKENF+QdG9KIw7lHnfE6Z6OuvRlfkg+50Zv9hnbMxCj+NvdQDyU8nNuC0ZPnHJtqguqZ7HMccm18VlLoBSLgX6H7KeVdEkNofz5XTI5z/e8Tw3MrBOn56rONYJw3UN8rP7Bf/Q1/PBPvjr774/D4XA4HA6H4/7Bm0oPDJsnsrFrgKxa2QCyzSgVcV1aXRApFbMpZpJGChil2N+BsWfGORqApGDas5hPAyiFJbNcIx8foOP0m3LKK2O4/A68B6PnIRV9AX0qHM+YsEIoDYXsVTIgrzwZOezA6A2nvIAicyJmrFQhu2fGC2lq5NUQeaLsoVZi5TFbDpx+9684takA69N4zkBYImBIW1aYpZmTOW251mWf3so1clCciEGMUuzvENExcI626NIx0uvKpZDdJf7HdIlGl2yhnjmvEdAQpfvOaNIYsg55C2GENDK2SpcNYq0LRaTLiS6ICCxvv8orovqkE1KDQWOP1Byqco0Np6kuuTDOnC7ELQc9pPheJO2yLrt0/oHkzWmd0mWj5kvmRIxSjO/AaJixUPMlZF1IdMlvzRtzKeV3Wn20r2JZ2WJ1OUNAS2OuSdMjlDmf713JNarnh9Zlo3TJxxsWo/PMSeuyg+JQdEm5BmkO77O5vtKl5ixNxZA5gHHJtS4NxAg759oumZkPSYc8X3Kc53zWJTCq5pXcJ2k+7dM1LtOgduqe5zEzc+GU77vVJTd1MqcLNGgocUjNsRaEnoGex+2pObfyfMkcBqMLsTTwtS7nSpeBgbPEoeQN5BcKRaesS3oG5PmRdcrP4qzTOumSORPG72RcP7Gz0+FwOBwOh8Nxn+Hb3x4YXvvh2kR1YgZrTXZTqL1yakPb4z4fgEkymsYwMR+LMfU3spiYJ5ctM1xdM3PKHAonOu2T8145RfMRe88m3kBGl1McIqY66WsQ5JXy741DPWariz3FxATefiDhEIeIqQ719ejOukQTWw72ahMj7gPzxX7/ICeTa2SvMcOBTHxUlxlOExN4Ps5h5DJyOMbJYi7XqmukZk3FgSwHOx8NhxPPMav9RBc6nmsE1KbWVJtc30aXwejSmzFNjewNhQMcMqwuA2pOc7LelYOdL2y1A/CpH348cyWHw+FwOBwfdxDfvz+O9wfeVHpg+Bd+4dOVUbc16ZWXbdfNB1ZeJrlo1WbKvSmWdqbcsWbJuXjK8W2NujOsyTWZMTfArJF3HjNBttFoTtaoe2842KK2NRwsJxgOc4bQesy94bAATTgBtS6WQ2VqTbWZsuhSw5qNW05kjltD6L3htDOcrFnyAjTVhevcmZqNH9fFNrYsh+kb5WoOU0Noawpfc1rN6DJpqhpOA6ZeWgeNunH4TWaHGp3T+VLHG8PBGkC3Rhf7DABqXSZG3VR7BU3fSga05h9tq4vNLavLzhwf3oUuVWPc5JblBNRm/YSp2fg0tzAZo447w2mb3sxWjLonOtm3UB5v4M/p0gGVLsE8Q04Z29u/b2PU/d93o26Hw+FwOByOBwVvKj0wvPPNDa67WBU+N5XZK3BtTHmvqauKvg36qpixJrwdjhtA72iozF73iNhjKHFPjJ2KI4nXR0Yka2BbG9YOYFwrs3EAuBHHlZED9RUn8a1RY7bGwobThmLFYWfiPWLFYSAYTlw135hqk90eU2PhG6PLjeFwY3TZw5pc1xyyD1Qe0/Zd6LKlMWbDyRoND6gN1MVQ3ZrAH9fFcrI6bY0B9Hyu1abWuyrmyqibUTdJO8yZWptcI5NrxkDdGj534LK1CZjOp90MJ62LmMIPBzkxamPuDowd6VyLuKnM+WtOTKKLfkZMdak5bQyHDQ2lsSr3oNalM7rINlY7X6aG6iOniC2ZXKvmS81xMl94ymmHummzpcHk2nA018SPyBp117rsQWUFkmxLNZyMcf210iHS3EsUhoqTzTX7goKbxKFwnhioxwknawKvc3+LAd/+6hUcDofD4XA4HA8H7qn0wPClv/Z7YjQMMWu9ARejYTGDHTAExhX3WLH8vn8g4Io7rNGIj0mQeMWN+JAE4DqKD8oChJaoMovdpDJGmydrU+t9am6IoW2DHhFDNr1lsYIVE9wBS5Zr9GSMumk0S96SfP+Ke6zQICIms/EeS26U2XiPJZpicJuNiBdMIArFMLqFFLEbjKa+UiTLPVxxSAVm4sQBnTLuzgbOfTGRDmiTmXdU5sdi3C1eKxvESpeOIobAMmZuwBAj4mvusEq6xICkWxAzb6LCccHiHbRB1kW0Z4ym1hsMxR9piYCd5qR0GRJnAomBetJlVXSJxVhZGw1vki75Pg+JQx4jwEWnFTeygiYkXZLuVpfB6CKNg2QAzaG8OS3r0pOYDGfzZEY2VOeiQ0cMVqbumtMGMXEaSu5qXWLidKV1ocQJDRYggKhwWLCsH7kBY8WiyzUxYHTRptZ7KE5oMFAsxtsLbpQhtNyXNUJtzE1iAM3pHuU4jynrrHWJE12omMRnXUbDaEZP4huUc22TDaAThy0JJz1fdAxweQveMt23PY0m1pzmfDbavkkcNun726KL5A6DERWn/AyodQmjWT/EgPoa2axf5gswFIP1Tcq1VbrmrugUki7i1TRgNOou5uOgpKW8nS2bwOtnwmjULXGH8bm2TuvXosq97HV3lbyPlsjG9uIN1kCMwLtiTi5zB5kDQmpi1cb2ndIle7bFlDtNuk89WOYCMf7eX/0a/uh/7433+V8uh8PhcDgcDsdHFd5UemDYPB2NujeozZO3iGXrjJjBDpVR9wYDwKNR95YG7HjABRZAkGJjH4EVFmWrUmX+CmvMHdFxNEbdPcDiH9KD0ZMUhS2CvM2JBiAGrNAUQ1ttjrxBxA7aPHnAoE2uaSi7yDitHhJz8aYUTHsGXkAAKfPxBeXf3M8YQGOoOSFO4lyAidn4gDNGMereQN5Cp42785aorMseNYea85CMutPbmShiHyMeYQExhI7JqFs28HQQM+JinjzhJEbHmUOOA8RLpkNERxFrbkYDdRrQRGk4ZA7WLHmrOSCir8zHa122NCQT61Z0oYguyj3TukBx2HGsc21Gl3w8x0vWhtADzrnBMjXHekQsUtMkc7Lmyd0JXQIDi5RbWwzomPAoGahnY/xVeofWHnPmyVNTa6tLC0q6MDrqcRYbtBSKyXXLVJuNp2fBQMBAshpGYlkNpw2hsy6kdGmYlC6MPjJWynx8l1ddEUo85pqMuTIfzytllC757X/Cocclt2LUnZ4LbXoO5WfATutCURnbM7Y01Ebdab4sEIpOHRMeK+PujhmXaABQWrGkdYmVUfcuPXNqQ/WIhTa1TrnVKvPxBY9vfeyBmoOaLwPJCqRecbpBX+Z8zr0mUjG2FyP8FKf5XtYjJV22ydy8cKjmz3gPSemyRjMa26tnqVq4hJtneuOgw+FwOByOewNrCutwJPj2tweGT/5obaI6MbjN/5HrQsrhWChqzxlGvf2BaWoUPDUepiquR4DJD9gcHuwXTGyNumkkUX3echi3+0w5sImbCQcTTzjULKwXkH1GNyc5GQ5GF2sAbTnNmSdPOdXHjZ/zhENv3O6sWfJtzZTH7T7HOVndiYxHzEzu2e9MdahjNpwsh0O5qznUMU841brgpIH6e9bFTKgJpwPz6xgHHc/pctIUnurYzpeJUbe5xns16h7IcEI9BkJt5jjHyZqP2+eWneO9+YQ1TJ/qcpxTNjcv2xoNJ5KD6nzGoHImt6wuNrfm5tSnf+QFOBwOh8PhcDgeDryp9MDw4z//aTTLUfaFqX5CjlOhIM2S2sCWy8+RDKFVuUQoK4UyrNHwKUPoOXNYXeBZ425CXQC2Jzjlc2sO1iC6MxwG9T0AWHDN4ZSZsjXt3U84TU16NYnGcCJQzQFTXbr6C+OKkHyNExzIxNZM2eqw5Tq2ZslWF0JtnpzPfRejbnu/25O61BxO6WIN1Femgm5AYMvpSG5NDKGNTgSa6HLKfNyawE8NoWtOS9TG3Avzz8ApXeZMrrX5+LxRdzjKYTrn63hXrLkz5xldWOfetKtjG5KndNFNHzHqrnnZXLPXiUYHa2y/Nbm2MmO21wuAeQvn1KjbmsJbA3WttJjCzzdJb6uLBRHwJ//NH5o95nA4HA6Hw+G4n/Cm0gPDm1+/xm6vzV+BrjKwBTpj/qoLbQZPGiD2t/oRdbEjfiljcdMlnxtt/qrNYQfUBrf5ZxlkrsnpHDrek+VwmBMgRXE8wiHHmkMVo+Y0oDa8jVRzItiitS6UB9RNGwYmHLqJLjWn4QSnLvlWHdJFfHtqc2T7hix9vkB1EyZ/XsdaF2BsFsxy4OlbviyH/hQnw8HmWqQ6zo2sw7rY+550YZ1LR5qgXN8TpPNXptehzq198rEaOcQZXepmgo4DUWmKlntAXMY8x2mqCxsONafpM6DmuDfzpZ/MF5NrxtyfiFC93RB1rvVgdBQLp4hxm1oepOaUv3Mq12oO9XyynObmy1DlVq1joHr10gCc1KVTnCbPMTb3fUaXznDIz7ESm9yynBg1B31uBqPjiN/77WdwOBwOh8PhcDwceFPpgeFL/9ffS7/RlgJkS0MpQgfI275iWtUypMJPCueo3yuEPaToY+bksZE+y4wWY/GeC1Id5zep9ZCCJvt17NMVcuGSY4IUlF36fPZ0yhwGcFlpMChOuUDqENNv7WMxaUbilMdEJM2BPhVtDSlOpXAdC9Ed4izHPMZseJ1jAmGgkVNInPLbzMSaeOS0w1QXzSm/t2qqixwDM0LyU8o6NcnfRUzRY3n726iL8M9j7tJ3cwzDqUkcso4tZ52Ewz7d92zCbnXJx3fpurk8zpzyCrny1jrFITfM+IQuewzJ0ybrUuda1qVLcQsx1h51q3XZGE67NF/yW7OmunBZJZY5BVCZP2BGW3GK2E3my1DOHdPPT+qiOC0Kp6yDrKHpUpNjzDUeGxmzuuS3B8p9K7mWrqk5xDQ/CyeKKfcyp1jlWjTzJ4AqTovkdzSuV+Iq1zbJ+Ds3Rst8ofFZk5tlpSFG4xsRCVz8jzLHJvkf5bzZYeQQU/526hky0YVQxU3yhcuxGIiPzd9sZj5QfgbUudYVTuOcF06jDkRUzkdAegZkbSN6knuWnwE7wyG/hS/PD7nuVJecF3nFZNYvAvh//7Wvvdd/phwOh8PhcDgcHyO4UfcDw+a5mKjmpkzZzpAKtl6tuMjFjI6RiiMgF0PAGkiNH4n1b+rL79FJx1zFUf1mfsAAKucbX8EdQMgrkpZ5QPkcbDgoTj24GHWPHEbkAmyFZizI0vlyPGDcihLVn5ojV3EscX6rXZBGUmowjFtnpLAdt2llXWB0ieX4nC4ERqt04axL4ZR0obyCAmWvyzhmlG1BEaxWfXApKLMu0oDJW9zGa46c1JZB1bDQseaUt2zlbVG5QF0onfL5Ka+84ZqD/kyVe8i5xUW3nGv6DW0RMb15bBxj4LTFLfEZyHLQq0imugTIGw1zg0HvKpvjpA2h7fwpHDgfZ+RG2Dj/OOUqlaYkV5z0Vs68wqeeP0PFKUpzIuWWNO+o0iUj5waPPwAbTrnRxIZDxphrDRr9zMiLb9JzK3DeapibJJpTVNu0xlzSnAZQMhdPW/mynxHV48srpKLKtfzc5BKzyT0152nURXKLSu7o+cLQ20sP5VqtG4EREEruMYBV4hBT7o6cUPImx12lC1e87bM4H2/Sm+/GFYP18xQY/41xOBwOh8Nxj1D+T909w/T/yjjeBXyl0gPD9//RF6q4NSnQGFPr2nEjH6q3mll/DWuqa5PMmk5PTHUN4onzWwPbkwa3BpbDxKgbU45Tg3NzTXONCQc6zumU8bA9f+YwNrf4KKeJUffMNadm4zVOcbJjvK0uloNu2FU6mK8T6KQuFqdya2Kgbs2UT+gyNRufcqp1mRppHzJpz7C6WA7WqNveo4aNp9KB8x/Wpc41OyjJNZvPOAp7vt4oYTlbXewzZzpfuPr7pFE31brMzZ+5Oalhc22ii82tE/dsTpdjnIhgdDFG3Zhqb2E5zOEH/siLJz/jcDgcDofD4bg/8KbSA8NP/GufRmuMunVhEZAKjfKL+/kq45ChLWhqcp1X5eSPWXNYW+TassUadddeKdNirp1wOlEp2WvOcIhlqYT8tbTNuDs2L/bGPNn6VC3zMg91fjJF7RyO6WKNuvOqnPwxa9hs75st9K0v1W5i1F1zmBqoTyHrYEYO0cRWF1VZJw4nGozmerZZsa/WnEz9j1YIE11sA2XKSZme55UxFae62bc088XqYjnZ3OrMT7Zcc1qoc0tsdZnjUJta6xWJPMPBwnI6NV/yKrb8eWtqzfoggPUJXaZ8pkbdVhdr1L00Y7YNectoMLlVXmCQTrsxuTY16g530iUaDtZ8XJquerw0PgMSbvMsPgYi4Of+3B86+hmHw+FwOBwOx/2CN5UeGL77O1cY9mNhULarHCjApGipcSpuTFpFsNmqZFcBHT9f3nY1nj/FPD9oNv8xWUUxA1uwWQ72DXK2YGQT28I6mJ+0RNU1G4xvdAPUChk7dMVpqgNVn5usSJk0I+KddAmotWmMLiMnVfKr1RHlUocXG0042PvY8Eyz4AgHG0/OZ37SUK1UQK3LgHrFh+U0p0s4pYvhZOeLzS2bz3O5q3+yoFD9JIIqDmV72lFdqgHUHBhVs2IO5RlTdDqOJjdUKHOoc42Qtcy68FFdJhxg/vHjcYtfjm2u2DGfeq5YnUtTNf24NZzKltSiC99Zl6lOdsw1ol2qNDn/8WeIBTPw1f/qnaOfcTgcDofD4XDcL3hT6YHhy/+3308FmaBDlG1IpVkiZq+6dCBTWuiym1h+Y8+qmrOrRcqbp1j+TLcYcTUmMldcmCJ5yTmWIo1NAdhnDqqAtcWRLVAtp8WkwKw5WG+mCFQcYM7ZGFYLrlsyedVDeeMXYnVCy2m8T/McQnVO4bRKduBSpzKK84nSRXPI9W+tyxjbFTSrpIv21Mo+TsCYa6MuPMkt29DRygfOnLiMuSDF3YwuFppDa1qWkluqUVYybdSFMG4Tys2MQ7pkDmNMVdOnyjUGmKe69GbMee2JPqfVRXMYdRH0hkOOcUAXm1sNyMT1HM2eabrR1uXcSpxiLdME5Rrp83ZFTW5wFl1IvNdur8u0Ua0bJgTRXm+T60nGn+fPgFqXPJrxvtT3fZGfW4nTOtac9rnBU+ZLHZ/SpYVtVFPKbxQOmOOgnm/2OWZbSHaVqQUB+Pv/8dePfsbhcDgcDsfHD/L/4+j+/fmwb+w9gRt1PzDsrsXS1jZAyJQRuXjJVsrT4n/acJieq/788ZgmP582gub/Pvz5zIEPHq/PR7fmpBYczI5vKP89bZrMNWpsd/dQzX1Il+n55Ceq/VbFIf1Qj40xf09yrPnZ/KnHmI/Z+25zizCfW9NcsPdgDsU75gCn/Jl5Toe1ry8+XqPmiKJLvubc+RvU9yCo44rgyflxO53sZ+z8msb2mnO6B3M8mGszaiP4kdP8mIFaF/uZ2+Xa8TFbXYI6Dkx1sHGej9kHbJw/I6fB5Jb+vh2T5Z/vQRWbVURlDCd0gfq5Pp4brLnRRjMc7Jin46yjuefg9rqHw+FwOBwOh+PhwFcqPTB8/4+9UMX2N8/l99r1L8krcF4pgvxL97r4uatR96ke8Xs1hLacyn8f4MD2mjTlePC+HRjTqW0ngzn+bs7PPOoyMerG9E1djRnU9L6d4HBCl+m2rAO6z21nw4zJ9cw17flObfmzsCuZLAd7tYmZ8h11GYwuc5xOGXWfemifNIQ+cY+mXlr1f7w7o+768LQBUl9zoouJrS4t33K+cPXXRJeDRt2YM+q+45y3upj4pFH3CV3K2xXV2zQro24zKMtpjoPFdDvpFJ/7sZdOnMXhcDgcDofDcZ/gTaUHhh//Vz+NxeqwUXeTC8Dy22yaFoBM+tfYkwZMMXPl8RpVbI27TawbPkAqvlS84+rF5ZNiqTFFbDCcyndUXNkzkWrA2CI0wZpct4YjaS5IRt/qJHuORzkeNFAvQ5y24gi1LsNEl5rMCjUHq0tjOLLh1KHmsDWcGvVZYM5AHVNddExmpZHlhGlROzUfn8kt9XdvxjzVpeawRJjMl9O64Ha6pO+vzFYva3IdzIy0JvL7E7rMGXXXHOpcK+fOw1DPhhxbDkF/DzO5ZmL792CeITsM1Zij4XDK2B6oc4tnOFlTeN3IItAkt5awupjGmDEb7wynDYaKxCmj7jldaI4D1bqMK4+oalbPcVqY2D7H7LPdggLws7/4Q/MHHQ6Hw+FwOBz3Et5UemD49j97BmzHIpORCokSM5ZopoV0DlgKRF3crDhUTZwSpy81IPmte4oDSBpJ6viCQ4kXoOrtaguE6g1VS6LKz4dAk4JsyU1VqFbNAMuB5e1Rs5wo34O6uRaAo5wWCFKwqVh7TS2p5tSCqsKYASwqHQiru+jCyR+ouiehKkKFg41HDi2C0aWOlwjVmC2nU7oQG04zHFZsOFkTauCoLo3RZWk4rNBUubSimtNtdFmjnehScIoTpJlQcaBTnOqVbJbTGk2VaysK5s17aX4pTnrOExPWM7rgiC6W0wIwzWlMngltlWt2/jRVvDLzp0X91joGTd7MdxtOB+cLAyu2TVCuOATzXLO+TMsJh0Yatyk+o5oTTK4B9Vvt7HwhFq2r5xjbeOTAmDZ2pQF/TAeacNBxBQYWQ8BXvvzOzEGHw+FwOBwfe8R7+MfxvsA9lR4Y/snf+GYyjWYMDOzBCEGKzIEZPRiBpADrOSKCEShgDUqvKmc0kLhnxsARSzSIiBgY6Jlxloy7B6a0goGwJMhxMIbUFArMySRYCsKG5RotAlpIU6cDY8khmd4yeo5Yc1Pe2pVXSDQgrCHX3wEIYeQwgBHKmIVTg4AzEDqOiABaNGjAhdMaIXESDrn4GyBjitD3LCKC5C1b+R4ilIKtQ0xNpZHzKoaRAzNWLAXpKsUdgIakiOw5zurSVLqg0iUyY1l0kNUsmRMzlTEvadQdRFhi1ClAGhajLlTpsuImGQGLLmeGU0wc1gA6ZuwBNEqXPulwXnSodWGWxlbWhZmxShwiCAM4GTozBohOPKPLigIaZnSIaJIumdOy6CKc1rGRwjtxWN5Cl4YI52jRccSAiIYSh/QvlejC6NJqtYXShYsucr9KbnHAQDzOH6ULQAgkvPsD80XnmtZF7kvmENAn7Ruq54vWhY0uZHTJzb7MaUjPjAXL/e/SGqAq11KcdclG3xIzVpYDN6Uh0oPRJl2yTnvi9AwI6GY45fmROUE9xzInq8uyegZExEBYsDwDZMWO5hSlyUSSlz2iNGT0nFecOkSccUi5JprswMlsW80X0s8pNhww0aWBvOmv54hgOPUAiGQlXJ/GyCbOzetRl0bpErFiacI2HFOujs/fNs2tX/vrv4vP/+lPva//bjkcDofD4XA4PrrwptIDw/5GTFRDLl5A2IFTLI2TfSqQpFnExYB2qV5QTaBqRVFIm3IWyFuAKMWE5xiQt160APr0PqvcpMhNkVwcZ0g8bmHKY2qrmFKra4wZEZvEaYkGA6QACjMclmptwWFO46amFvLb/E1qhmUOm4rTuNggc8pXldUMTeGZx2w59WbMhHhUF8tBGw23GLcqBcXthmpd9hWn8e1TmWNGk/jkMWdOC8OpQ8SQ4lXSZVCcAlKzLBWyVhfNQXPKuuTmT861FsCmcJYx36Av35cCu9Yl85rnRCb3CD0N6FQual1WaBARDuqyVHMs66IN1QNkFdIVaQ7prXkq3qVmVebYlDGf1iWk3Bp1oJJL43wZ4zldtNn4AlQ+kTk1kAZGoJA4BWyo5rCpngl6zudz1BzqeLzmmGtc5ssq5YWeL6w+v5roUnOqdRk5PIe8vbBNcUc1h87oks8hseUwribLfPb5vuX5QoM0yNOYrS6ZQ45rXZryj/vIibGFNJYWadxbqufHNm36y7F8f4xtrs1hd+NG3Q6Hw+FwOBwPCb797YHh03/spSq2XcVSqpQtTOm/1ZYJawD93o26j2Nq2luf337/VobQipPlwJga0k6NumtYThZsYmvUbTkePL/WRcWFA4/ne69G3XfW5aRRN+aPH9DFcpgztdYRqWbDoTFYnDIbt8en5sk1Tuty2qjb6nLKqHuSWyaeGnXDxLfU3XJIsTgD8exn5XzTXLur2bid85bz1Kj7ALj6a0YXTnHNqWzfK/HUfNzet6ku9U9s62Vizn9bI/Bb6kLVl/I16vj0nLespvjcv/Dyyc84HA6Hw+FwOO4PvKn0wPDH/qffNzHq1gVfyHHxQkk+IeOv9utih0xxQ8rMNcEa2lrj4cbEtok1qEIJkG0itrapfUIwMepujA9IfiX4+P2aU2HA839b42FrNj416q45dcY8uTOkF7Bm45jqwjO6qHhqPn5Kl5pTYziQ5YCagzVQt+bi7YTT1EC90oVUQzDFpahNf4UTuljz8dMG6mxyr8YS1meHJs0GrdOcLhVo2uxb8yld6uP2nswaqJvcOqaLbaAgx/mymY7iFA2H0hQ9NF9sk9ToYo3yrfm4bZwdfOHAAQ7lmooTZzKFk/osCGtr1H1CFz6lC2pdrJ/SnIH6pAlkdTGx5bDIAUu84rs9x6yBukUIhJ/+N35w/qDD4XA4HI6PLxgfvv/RB/Hn9O/LHLeAN5UeGL79T59iuatLjQtj7mrjR9xWBZONL2Nt3nqRtq1lLEDSSErH21zMpHiJgDNuKlPec2XovEbAJXRMuFAFWMOEcyhD2zlOaKoGxCXaOuZQrUK54Lo5cAZCq+IlCCtjYLuuDKBrTmvLiQIu1JiXBOGkdLlUHIinnC7ZcOKmagQ94lA1DC91sZ84aOPghdFljtM5j+tczripOJ0RVRwC5nRpaw6YxqHiMOWkdVgDVbwwnJYIFac1mokuZ+pta2cQj5paFw3RAUqX88l8WRhd5nJtPOO8LqhybWl00Lqcc4OzOMZn3AindI1zowvN6HKpOAWmShdKc15zuDC5d2G2Q1ldVgiVLqsZXSpOaHCu4lO60IwulyrXgsk1SrmlOTw2ulygXtW1gjWtrp9rltMZtxNOZ0qHcyKc0XFdLowuF4bDRfWMmOEEmujSHNFljfoFA2uuOZ0j5dbckiYGzgfCV3/tnZmDDofD4XA4HI77CvdUemD4rf/kW2iJcJmMYHeQJs8L3GCbfHxaBLzAhG3yXpF4gS0PYpKLgMdM2HIUA1o0WHBEx4wdMc6JwCzbO/YAGIQzSJG5hxgRr1OBtqNYfGFaJmwxYMmhGETvIMbcSwQ8BmHLAy5Y3pr0CMAuLcdpQXiEgF0y+m0pjRFintwi4DEW2KUxtwh4AQtsOWJgTm+b4nJ8DTEf79OYlxCz5C7FAwjnFLBgxhZian3OLVqO2NGAZfbsSZxWHJIBrozpPAqnAMKOI85BWBDhUTIa3ydOj5Mu/YwuDQIes3AaIGbHWZcB8ha/BbPcE4o4p4DIXHy0GITzxCnHZ2jQcsCOBrQIqZCO2CVdFghoImFLA844JIN18fm5QMCSCA2Ld0uErBi5RMC+6EJ4zG2dW5Dcijm3kk4DJ05InJKB+hIRe6akS0CLiD7FMenSMWOHZC7ODRYcsKWhmCePujTCIUounufcg9y3NVDpkufLI26ww2g2/ijlKicOL/ISGwyInOeL5FqEGNsv0vl7RJwFQoyMjijlM+GC5Z7t0tKTc5Y3h+X5smAUnbIBdBsJW4pKFxnTJQKWJI2VHYAOSPOnni85t6LRhbnOtZhyrYWMNyJiRYRleqZI7gacI6JjybUIwiU1winrQvLmyS0GLJG8xlKurbMuaUwXLLnYpDm/AlW5tgNK/osucRxzWvekOYHH59gumZELp6wLJ05Iz0nR4bLoEkvTZ5FieeMjSq4VXdIzYdRF7sEFyQsMAoA9A9vE4TI9E/qki86tRaWLcMrHszG3cGIwRXlTpnqmNAi40LoQ4SI22BOn3JIG5yKdc5Wa8ZnTWXoWtwxskU3XJZ/WKSd+42/8Pv7b/yM36nY4HA6Hw+F4KPCm0gPDsJMNPQ1Jo4eYcYO0qoQbdIjYE5eYAUTKq07a6rfoZ2hAaeVKQMAKwIoBIgIRsIT8uUqFcm7MXKXNMrKqJKQ3j6G8IS0jv8I+G9q2kBUU6xQ3IJyDkneIjPEMhAa50SMcBgT0idMZGuT1B4UDRk5rwylzyJ+RmPAUUlRmTpvEaZl+089ywvGtb+n7LQIuOZStZ9nEd5WOy5vERJdt4ngxo0sEYyAUTnnMoy6aE5XVBYHkTWZLBp6k45nD87S1Ja+MybosEYp5udYl/0yaNKI/SDhcQArlPnE4g7ytbFfpwkWXc/UoypyC0SnH8iY/lDzIOi0APAErTiFtMRo5WV3yVXPzKXPKuZW3C2VdwIxNPm50OUvzBUkXvSqrcFA6rUElM0JIugB4K29NAmHFSReSV9QvuZGtYDRyyhymumROMqaWkpk55waDcNwhYgcuuTao3DqlyxpULNVJ5daA8ZmwBPCUeOSEgI3WReVWzrU857NO9XwZV9/kXIOaL+fcYA9Cl94Id85tpcu5ci/KnBozX4pJPAErAAsG3saoy5IJ10kH0SnIFtZKF8VBxXnOL3PuJW2GKM0x0UWayXtw4RTB9bNYc1Ar+vJzsE1zntIbGJcsRvaVLuCkm3DYFU5NMWknHOCEeXQ7u2nU4XA4HA6Hw3Gf4dvfHhi+7/MvVfEp014AQHqdewmh/3tq0jtwHU+NumvM7aTQOGXaa79fzp/GQSWsOeRxWw48c806mjOdvhum5uM1ThmBl4hrDsc4aV2IpqbWNr6rLtZ42N6TQ+c/pMttjLrr880ZdR+HPZvNLavTbY3A+YAus5zMIO6qyykOVpdTHOZ0kevUHHI8zHy2Pt+Mv9HBT6NcQ8POD3u12xrnn9KlitVFyIw5v3EQqD9zjMPEQN2QaM0JZp/FM7itLnNnu7tR92n8wOfdqNvhcDgcDofjIcGbSg8Mf+Rf+T40yqhbirGxspgrMBnShCg/MB/IWyByMdOlQ7meyUVsvkpbYtP0UefRhbd9i9HexHmMGU2+OOWVLAQwjxwyJ4ycYvk5G06CqL43xyGYGKgbcbaZsDcce9RFrNVl9o12iiNoysnqsj/IIV/Dcqhjq0tv4j3qIna2qVQdJ7DRpXBLHIb6wJhbB/4+lVsw92SaWzO5p27HsrrafIO04nRElww9X/Ir6/VVbG5ZTrbhYnXZotalTS2VMa7CWQ4RPHKA5LOORw4MLeeh3LKc7N+Ww87EtumzqK4234g7pgsnXTSn3IzLz7+FioUDVWO2ukTDqTuhy5JrXRrwrC76B6zGnI25S4xRF0AeFeN9r5uwx57F+m/7TLGgAPzkv/GZ2WMOh8PhcDg+5uB7+MfxvsCbSg8Mv/+P3sF+N673iFQX1hFctpMh/VwXeAw+uIIkFzMEWX2R67ceudjR8fj5AYwhbScDpDjSYyLUTZkGwABSY6zN+yNSUcrjmDvDYdAFHo+v4x6LSkqFV32NHO/TuPPnexNHANG8yp0NB80poC6Uh9RA0bpMOdQ62JjNfQ5AxakznDrTPIgzuugxk9Gp6DLe1iqXIuT19lmXmHOLD3BKuui3m1kdsu4jJza5Veticy03JEcOhKhyq+Re+kFvOHM6p9ZFcxrHWHOoinJG1R/cndTFNHmoXp0UqL5GCyDSyGlAzWEA0BFXq3iO6oJ6vhVqPDafB8vB6NKnOXgo1/I1MmS+kL5rVcOvp9SYLfMFk/lS6cL152d1QZ1bexP3xJP5MqdLPf9GDm3mdCC3IgiD1YVqXeyzuHquYZwvSPcqz8fD88XoYjjkz1RvZSzXYnSR8f/7+29OjjkcDofD4XA47i+8qfTA8Fv/2bcAjG9R3AFlpU4u8sc4FSSUi8BU3qvPMxiBCH36rpj8khRYqViW4m0saLpU9uQCaEjFUZ9MgiOQVg7k4hlqzFx+uz7oMar/zt4mQyr6MqeRgxRdOiaMDQcxJqYyLt280hxy8ypfI9IYR8Mpl36ZQ1Dnk3gshiMDO873XcbVJa+THmPhZ3XQx7MuEbnhICbZA3O6Bqem1cipT2Me0vjndMlNyKyL1qkp5wEGHldJZF32iWPWZcicSOUWxkZQbvLpuElxj3GFjn4j6MiJSyOh1gVHdWnMOYOOlS7581mXHMesA6lco5ETIP5LOm5JtiZGhhh2J259GWutS87gzJENxwAqDcAIxqLKtXHFWj6+TzOopzq3Kl1UbqHSRRoU0oyTexRV8y/nyshJzRdwnVtKF4LmLrprDjC5tmUuuTg3X+Z0IYzHaUaXoJ6DA3PRY9SeK055HlVNRppyyOfIK5+q3JrRJVJuuqXnFuWmeJ2LBFmJlTmF9AzIOunnZXneEyOy3JM5XThdP//c6pL/N4DLc/43/tNvwuFwOBwOh8PxcOBG3Q8Mw378/T9DrTag+rfak7j8txRH+Xg+AaWVEEOOUwFV/96/Pp+Nc0GWv5+Lcf2ab3tO3VTKx+sxq5UuB67P4GJAy+k7lkMz+Y4es4rJxBh/s69XPU3HcIADjcW5ju3nyxjT8fIBGscIjDod1IXG81kOcpgKx5b1igxU25HmdKl142rbVs4tqnSYGZ85n97OY/2WKp2o3iaWOelthfae2DGPLShU90nHdswlt/Rx1mNOX5/RRes2p0u+RrkHVgc7RhzOHX38oC42tzDlPMchN6bBh+cHTKzno93el1dA1c3mkfOp+ZJ1ydvXLOc5Tgc50uExBvUZvdotn0PjNvfRzh9C2oKXdVa6z+l4ioNd4TQ35xesj8+j29vZ6nA4HA6Hw+G4z/Cm0gPDp3+iNlE9ZAqcV4mQiaf/XceA/Ba7VXHe2qWvoc2D8xakQ5Bmgd5+UcN+vzHjPMRBvksTDrlBof2l6hHIxNEcwsy4NCy/AajennQ7o267Re+wLuOKKF2cj00USq9jH6pr1OO4qy69ie35rC+U9tW5jS6WU+aVo+wRU1/zuC5V8Z84LMxxjdbcFatLPppjXaxTWs1jOQ3MaOi4LnocVhebm7opkzlZXTQac8a5+aJjveUqr1iyumgQCA3Lls5DnCzs+USXww1Aq0sDkhWLBnfRJbKs9JHP1GPORt3HOJzWBeWtj4A8D3YqPqSLPr/mNKeL9pGaUyewrETS1zg+508vb/6hn3jlxCccDofD4XB8HEFx/v/rORy+/e2B4Uf/x5+cGHXr31AHEGp/JJp4neTfYOetPV1ZzyDxTh/H1PzVxnP/rWNrcJt9QDR03AAVB8sJ5jjIGNASytYTvVVOx6fMk+1v/vuymUQwZ9StOSzM95tZXaZeJwWEUlTn82yzFwvPc8hvgpr6ykgcYXWoOe0MBzI6Neb4nC4Vp1ldak6ndJlyqGF1sbnWGw6tOR6AW80XzclyyI2ErEtj54/RRTcT8vmP5daOgdqou74/p54Bco040aXmNI6JMOp8bM5bDjqe5lbNyXJeHNAlYzJfqNaFZ3QpnFJjJlhOE11sbtbZtqea0wa1LktzfxqTe/q+jveh9jzTujDq3JLe0jhG/Qa7Y3Nex1aXCQLwk3/2M4ePOxwOh8PhcDjuHbyp9MDw9V9/B0+3AyLnIgF4rhxtBjCeoStFXgTjCn0pkBiMawzoUzHDYGwhHia5mOkgBVqON4jYqeM3FLGhocRbGnBDxSUEe8QqjgRc64KMgI0qIoc0Js3hSsWZgy5crxKHHN8gFk6AFLFdxYGxU/EN1Zy2FLHFoL5fc+qJqxgk55gUmaV4m+PUV5yeoxNfIqOLxEi6cKVLp1Yu3CBiX+kyVBw2NOCGevV9xha1LhtVZJLh0AMVhx6Ma5py0rpco684bRCrQtnqsgVXuXZtdNnQgI3isEucMqwubDix4bQ3nOZ1sZyGquG3I6447QF0PJpcXxtdro0uW8OpQ8RWj9nMDwJwg7GBsSfJ9yrXqFecYsqtkcON4pB1KZxYdMmc5Hit0w0NFaeN4bQ3z4SBZE4dmvMxc8LYmLtWudmDcTM7XzSHWpct2OQa0Ctdntv5EgbszHzZaE6IuFHrGaOZ8zJfRqPuzUQXGF0Yz6kzz7Vb6JLmvORirHS5mtFFc9pRrHKtJ8b2wPosBuMqDvgnf+fbs8cdDofD4XA4HPcTvv3tgeE3/5/fQgRwDXmF9Q0GxAA85wFLiOE2E/CMO6zSBhQ53mOJgAWLv8YVD1giYoEAEGHDUqwsQWgp4IYjOhCWIOxIyqQeA5YcsKUBQ/qt+ooDdhSL+eyKAzpiDMR4nuJsPPwcA1YcsETAQMAVM5ZI5r5lTIQ9MVhxigxwAK4Sh8AAAnDNAxaIWHBIccQCjCUTFtTghgcsQFhAtpbkQnkFwiZds2OJdxBOAzOWCNhTxKA4MaSofI4eKw5YIGAgwhWiXA8EgHAFYAkpLiPlMY66ZB0A4fiMe6wQxN+IRk5LBISkwwKEJROWCLgBY8GysmNDuQAfsOCALck1e2asELCHcOjRYcWhmF4P3GOJBg0IPTGuecASASsEDEDhsKt0CdjRIDFElyFxyLpQ0mnMNdGl6MABKwrYsOiwgDQfblS8ISm5OzBWTNima2YOe0RExQlAyq0+5VaDnnIuUNmyN6fLEvl845i56NJVumSOizw/UOuygTSWFmBsAgNRTJQXiYNwilihwQ7CqUOHddKFidGzHG9A6EouEs60LiwNH5k/EUsQNukeXaOXvASnOd9hiYAmzfnrxKEFgYhKbgqvgBvI+Jt0fq3TlhhITZsFE3YUZWUNpzmPmHx7GEsOIBAiMYb0zFghJF04reiRxlLRhepc26d7dM3CaU4XDuNxmfPjfJE/wqllWaG2S7p0JHMoN1d6cMkFDhAdKl3SNSHPtvwcO0dIjVdgycC10eUmPSdzbvaJ4zOkZ3PS5Xl6BixmdFlmXViMu0UXeTa3QMVpmXQpnJQueb5Qer4OKRfy/OjTfGcCvvw3v4mf+ld/4H3+l8vhcDgcDofD8VGFN5UeGIZ+XIGxg9riQXkVSPotNEGaAmqlwB4RewAtQtnG0/GAc7RlS0zPjDVCeQtRn3/vTuJts6FYfs89pFUi+TfrOZb2ihSVG5KiskWQlTEUgQis0ZQxR8NhpzjswRgoVhyQ9+KQNB96DFihUTHjBW4qDk1agdGnBk/FwcR6BUTm1LIUYIUDS8ONSVauIAIr0Kwue6PL3uiyM7p0YAw84ELFPRjnqSjskd7Mlu5DD6An9fY1Ss1Gw6FhSroA21QYZ122iGiY0CoOneKwQxy3RVJe2XJYl31aObZOuSVv2pJrSq4pTysaV8flXOuR3mxlcs1yWhpdQgzSiExjlAac0oVqTmWb5Mx8ybosU27tEdEz8EjrBMZZam4VXQAgjBwqTmpT1UCy8qtVumww4IwbeQMjyeqbBfMRXXjc9qXuu+ZEAJoy5yN6Jpyp+RIxYJ04dCp3s075bYxgWelSOCkdoOINDVhxU3TZUkQTqeiyBaNh2aY3/xyLE05Wlw5Qcz4ipqblOH9YGuZJl8IpyPE9jefr0zMkcxKOoy55Pl0wqufYMlJ6UyawndOFRg5bqnXZGl12SZdzpQsjltzqUJuZ96lBbnOt4mR0uaEB6yi6DCQr+uYwdG7U7XA4HA7HvcSRHfCOhw3f/vbA8LmfrE1Ux7csyVOiMTFJUHl/1P5HxueDRp+bjHljYP0VwjFMfETo+BPNciLQLIdD/kcTTqhNfPU1MqxJsWVkfUiGCad5Dvb8h3SxHLKpteakr5nNkzVO6WLvur1HPdXFpL0nU6PuxOmALtp4eI6TBYEm981e0+IUB3u8vPHOnH/iHWR0Ocbp7rpYDjVsbnVmvkzN+Y/rMuXAVZyNuitUjwRCk1Zs2Wscwqk5b7NgqksNq0vW4ZAvlc01Qv0WSvEjOjXna5zSZWHOYDnN6QJMPc/0FkDLwQ4qmPi4KsfnX8aP/ORrJz/jcDgcDofD4bg/8KbSA8M/9z/8BNq1NuqWJQTa1Fo3ULJHSvYVkRVHuajh1ESqTa2tybU1g7VNn4C6sWANoXsT77mOYY43hkOwHDCaK2cOlpPlYA1rbTNhrnWvOU04KO8UQLYB1YbQdJSTvO2p1iXiiC40NVDPRfKxhqLmMJgxW1PrndGFJrrUDZUAQuRaF4ZqZqkGZebQndAl8IEmj7qu/u+JyTVHc7z+/NTUum44kuVEU6Nua2xvDaJbw2GaazWPONHFmFzzcR1srgVQ9dawnFtzJtdzHMZ34B3ONavLpLk34WB1qTlZY/tgON1OFzt/ak6N0eWUybWdL3bObwynqVE3DAdMdLFG3cc4zb0J03I6pEuOTxl1UwB+6ud/4OBxh8PhcDgcDsf9gzeVHhj+m//iLVxva0NbvW0nmphn4g6xKmYGsHkTWf2mJdluUpta18beMW2JGVc+2AJMFzOB6oYGg6o3XvWIE04bjObkmZMeY6858LiCZORYxzsazcoBMRreqRfB9xCfksKBDAfDkQynDlwdHyBG4JqTjkUXrop/qwsbDnlLjeZ0VJe0zaYe8xg3VL95THSsV07McuD5XAOLlloXBo5ynOhicq9HrBp8eXvUmFtUN8sMp87oNoDF40hx2iMqTmbFCE9zbaJLMObkhlNvOA3EM7mkdSF0gOFQ59rOcqJY6bKFMoBG3jKm58vIiVPuH801DNgrQ+geEXs1f/K4NIepbmO8N/Olz3P+gC75/FqX4cT82Yaheu7tDKfO6BKpbibL1tMxXhhddrDzpc61CMbe6FJt7VO6jJzqBuCO4oRTrYudL/VLGEDTBnkGg7GNA778xW9OjjkcDofD4XA47i/cU+mB4Z9+8Tvi2cHyyuptMszdcxTjZYi3TY6BvBJBYgLUcfEaaqhBxxEDgCZ51IhfjPy2fV+KogENqJjoRh7KZ2P604DS1hQpcFqQ+JCoOPsp7TmZAoMTJ4n3VHMYEodtun7AWNg2kC1TDYXEQcyZAxE6lnPnlSKDGmM2pR14QAsqhs2Re7QIGCDeUfv0+QBCJCpjWipODQgrhIrDloYUx3SP5HrbdD1OOmwVB6TzhxRT4QTxdCJK9wwI4LJyaUjnyJxiukafOFS6ELDhQcyNkz9M5rTIPlfMaAF0Kbcsp8xB69JiXEeR70nWXpqYEodUmBM4rRIadQnpu5lT1oVVnNupmVOTdNmx5NYCbeIk96kFwESFk9Vlj8xxSKvJUM2XBmKenO+RzKFQjmdOXeIRwOKxxeMY9ybX+sJBX5PTfQ1Yoal0yfGOk+G00WVXdImjLpBGqZ7zWbcFAhoKJdcWZr4EIM2F3KQZV/7JmJMBNICIPF846STG2QuE1AjiNF+aSpc8plGXWOmyw1BytWyJNLqEpHuTOFCaHwHiQRUoVCsI90mXAUPSTJ4z+Tk2KF3kmuKnFJnL/IiQZlaT5iRD/JoasJjMV5zqXMstMqtLzr0FAijpUnKLCB3nxhIXXbJOXcm1UReZP7HooueTvCRh5JSfpRHi2wYCvvy3v4mf/oXP3urfI4fD4XA4HB8TMOT/4N03HF6A7bgDvKn0wBCHcQXGAOV/lLZO2Fj/FjwXGA1oPM5cjIilARHL5JRVGurayFvb0nHzW++8qkMuL8VylwrtXLxUqz4o/yYeJziNrjN59YGOIxhnyfC2bL1jjJyYk1mz/LA3HDoVx7LyRd8DKVIbxblle5xTY2iOU62L9UrJHEYdOL3BbdSlS7oQSXNIrwmZ+C8ZThNdcnHOVN7M16dc0GO0uuhYjo+6yPnrVSIMFvNxqKJVjUlz0GPMcTcTW06kdOnAWKaCPnMiJhlBHjMdyK0D80XrUrZscVNx1DpUutB0vsxxCEqXDvI2w+agLrVhs8yXWhc7X5DOn48z57c+Zl1QzZcyv0h5SKX+tHAa75I0XsfrMerGz7jSS4+ZETh5DB3QRY/BrqzJ913rAgBnikPPNYdoOOncnegE0alVush9q3XTXliVL9XBXKs5EMZ7MIBBLG99LLHRRd/DOZ2i5qR00c/iFqieY3P/Tyy/DMLhcDgcDofD8TDg298eGP7wT71axbloz7VBMe0d6w1UP4D1p5kz6lbbJTA1Ar6rUbc1uLVG4PbbltMpU2ApjWzDouZUecpgaqp7yhDabhexxsOW00HD6Yku8xzmjLr1NW5jan1nXQwne9/bCYfp+Vk1AN4Po+7T2h/nMDXqrh+ZU071ebMuxzhZo+7WmFpbTnPaawxVu2LOqPuALglz90xzsM0w20yzg5oz6j41X6ZzvuZkOVtdDp3f6nCI022Muk8ZqNsx2jneGVP4hc0tE1uz/rGJVXPQWwCPGXVrTyV7jUO4jVH3P/fHXz/5GYfD4XA4HA7H/YE3lR4Yfuzn3sBCGXUvEEDpt9lAKipUrH2SZosZGovY0aOljpvyecG0AJxCF3inTK5t+daAppxOwBp1W062gJt9C9ikrp6ujsjojEmv5dia81lOcw2ZXKKOHGpOVpfRMD1dY8aI2DZdKg5GB2umTOAJB9xCF20Abc3HLQe9OgQAFgfeznYIUxP4AbVuNedWXwzple5GF0bdgGTD6ZQuhYNt9CJfo4ZtKJ7SpZlwqONjuuQBTM36x1gbQufztiXMz4RTuhw3ubacFxNO9fw5psttOVldZt/IqOKJCTzq3NrOGHUf02V8EmsOyjNNNb8PcQjjFwGo51jhdBynjLpDIPzx/9kPnDiLw+FwOBwOh+M+wZtKDwy//fffRLfV247ExyPXCdnbiJUZbN4Spg2fS0HGqbDGWOy0poAb6l4Chslr26fQhZP22wFklVDdVKkL1OyxlDkdK4L0GcqYeSx6x7d61UWoXdGS/YEycjmpi+iKA9FRjuV8ShfGKU58mAOPq6uKsTDFSpeepkbFtnivxxyqeEl1zKhXp1hOh3TRHILh0CDUzQBgwkHj1MoKq4vl0Jhr9ZDtTvmsc5zsPWOji+XUmvlTVrCQukbFqX5DIuFuugzq3Pl8NtfmwCPJyXxpFaeqlZKuk03rdW4dQ0Ohuo8Lw8ly7k9wmtOFUHOa6mLnC1ec8tvdijE36hWNYTLnZaNiHsHK6NIZDlYnxvTNmJnbbTjIs1yRxzTX5p7FGja3LGJk/MP/x++fOIvD4XA4HA6H4z7Bm0oPDP/fv/PdKi6+M7qApfG33uNKEVTNJYkFwVQ+LUIppBmjgWtuRtltILcp/DUWJm3tt7XPTeF0BLlAzRwBLo2y8hkiMPFBDvYarP6We2Y4HdpGlWB1yfcwx5aR5SBG1nURnnVBGlMuxEdO2UyZkZuJmoOFHbNdJWR17Q2nY7rne6YL2AB5C9g4JlT3I4IrHyXgtPaTLXoHthxl5CI857/NNa17zqVal/qcAfV9ZDB61QwBDs+XQ7nVmtxdGl3sPbG5NqcLqQZJ8XBKnw2YWd1kGqw9uDxTGHw7XWjkaLebWs52K9kpXXJuZU7adDpz1HEEYzBNqtEwvZ4v43OyRpv8jvI4libX9nZL7KT5Xj+Lc25pDnbbseag50vmEE2u3fVZPId//He+dfIzDofD4XA4PoaI9/CP432BG3U/MHC0RcPxIuLUp0+vAVI4XY98JHCU04Gmzrs+3weEQ9ecXWUw86M5nT8y8tmBfIgDO6XtB619bq59mNrcimNuXtDdnxl864v8AeDAjb7Tc/F9EuvULfmwcmL6b4zD4XA4HA6H4z7DVyo9MPy3/sXXqris+kl1QPEiqRcvVMhb4/LXpkbdbH5jXsP+tvuU59F0ZUXdVj64UoNvd37GlJM1O7Z+LKeMuu0V7QoAuwXwoFG31kXF9vyWwwdh1G1LxYku74NRt4bd6mNNre2g3h+j7vnVIRnWTLkxuXZKF2tq/W6Mui2nqS4fjFG3HrP1Cztl1G05nVrxYs9nOVjOU12Oz5cBaYsvqxiH5w/h3Rh1H1ipl7CfGHXfbdVcyS3OY04ceLzeaaPueuB3fRbP4cf+xTdOfsbhcDgcDofDcX/gTaUHhj/yM29gqYy6WwQEVViEXCylmPQWCtukKSsPuDpuCw9rBrvI5sYw5zuAyVuTVOEEAMTyJ6MBzXNSYzi42CV9bzCc7N92C5411rYNk4HrMXdcc+oNpwaoOAin47rQMV1INRvSj5dzuihMCn/LAbGK9xzNPeCTutgHEB0MJI5Gl0o3QF6prjDVpYbVxXIY1LnlfHO5dkAXjD8rY5zhZJtAq0O62AZjAp/QZWc4zRl1BzMfrS4VJ71lama+zBlCl61eKbaNLIvIlsNQxWw4WF0C6vlDs7lG8yuoUhwNp5XhcEqXaHTpUXPYGt3njLrpNrrkdFFc5p4BVSMsczihy1wz7lhfKQTCf/df/szhDzgcDofD4XA47h28qfTA8Nv/+XeBTSzFygAe3wAHKUKWudGUsMyFcipWVgjjK8IZWHGoXhm+RqhWJ4VDqy9Uk0o3NFpQ1RxYIVTxGkFWCqlmygJUOETDSTgEOUMaw8IUvkvDac11s22BMPmtvn4DXABhQWPcmjEv0VTNtDU1WFXHqeLE6Z5YXWiiC8YxI4wNDgZW3FTxGR/goJo8Cw5VkWw5rDQHNHI8xWcIWM7oovtAlsPCtGBWWaf0haWJV0aXBphywmFdmpw76no1h6Z6k9gCVOVqvKUu+Qo0pwtCVdyvjINXBFecCLVOc7osjS76vp8jVA0LNrrAcBLetS6WU3lGqNyqG4Z1UwdA9YwQHeo5r3Wx8+UcbTVmeUZMdak4Uc1ppdo+xMAqPzPKfKGK01JxyuuYGqPDgkefpNZwWhod1txOdNH7zwegylX7DMjntDoU//CUW6HiVHM4pUtAvdpvYebLmsPklwJqwGgHwq//392o2+FwOByOewm+h38c7wvcU+mB4bf/7vcQQFiCMbCs+iGSInVgLvEKDQYWQ91AhBW4bBFpEBDAGJgRmdGikZ8zoWfGKhlCN5CmVQcpAgOrmNQ5wGhI1hIMYDTpN+prBPSpQRRAWKXjKw6JAzBwNgse473iFDkbhSdO4PT5gAW4bOXJnBomMHMpDiMzBkgByUDhEDOHdI8GYln1le4TAQhp3D2iNKVACOk+Zw6Z45JDasIAkWW1ye10ofKWtoCAFUQT5tGYOyZOuRHRpHsSaarLgmScPUdEcNJJOLSgdJ/k+JKVLszSiANhlXToyxgl3iVO+fNZlyUCYsWBysqXrEu2x14kTpzG3KQ4sJgzC6dRh4hRlz7lpLRI5XibdFkjSO6W3JL50TKlpqfosqOYjs/rEhPnteKQdRlYVm5lXSSnxIQ6F/zy5kJ5fX2TxrgzucYHdFmBMHDEkptqPqyKLlx0IRo59YhJp1O6jDoUXRgVp8jZ7F8anjGNOYbcmE3zBTzmGmIxmc666PlS6yKcGkaVa/ukS+awz7lHoeQBgbBOzwCq5gtAXHNi5vIWS8ktgIM0vmT+yDqmBUkzOhuDa05ZF0raLwsnoFfzJT+HtoSRI5IuKteGpFvmMOYWYWAZZ3muMRAUh8j5zYVUVqYNiECoc22c8+kZk2ZLnj9ZF0pj0ubzWcP/6u9+G3/iFz/3/vyD5XA4HA6Hw+H4yMObSg8U4j8jCbArsTROBsQSj02S+jfYOSYVE2RFQ0YuSLayiajEu1SQ5XifSqQc63MuMG7ZGMek4/pV3i2AASTFfvkuS5OmcJRCWY6P25NsPI4ZJibAcOoMp1iKPsIylZaHOFiODVDGnT+f3zSmdYnquL5nzSSeclrMcNK6LNFUumgOOZ7qEipdGFT8tVoAvdJFcikanWDOV3PQ94xmYmkExopTX3GqdRm1HHWwudWYMVhdGMBe6RKP6DLHSeceod5udCzX5nJLjjfVNVrA6ITU9GBoTv0tdbE6NOb8cnx8o5x9AX3mMChOSzQTXfR9OaVL5qRzKzeu5ub8nA6Nyt25XNP/UOaVlTujw3Fd6mtaTvm+aU79jC7DkdyyOrSGE2H0u5Ncm86XzsT5Gnn+5J/oueNwOBwOh8PheNjw7W8PDD/80+/CqNssDdQGtIz336jbrkS0Hk29Me21pY01hA75v/XXuP5Py8lek7nmdMrk2mJq2lv7qQyGk+UwNblGxWmOwx+8UXfNyeo6a6BudKmNh2tOH4RRtzWEtrllr2fNlGe9uo7oMmegPjXqRpXUp3xuTuliDaFP6W69uoDjuuQGzqFBFaPu6hrHMTXqtgbqNSYm1zMcdFw4pHjOQP29GnXbMU684eh4bh3MZZtbioPWZc6omywHk2t3nS9z+LGf/sTJzzgcDofD4XA47g+8qfTA8MP/g9exWo9tnjYXfMpTYwEqnhzFFwcSg4zxNqmapBQ7XMVL8xajJdeeHA1TXYSaRkNEbfjccR2Da6PhxnAqzQbFqTWcguEEw8EaD6/M1FkYTmGGg457w2lgu0ql9gqyvlSW05wuQXOgaWNrbQyhrS6t0QWGgzXt7ZgnHLQuc7lWcUBqPClOVhcyupRMzrqYwtzq0pzQpTMG0RG1LsXDqXCkypNmTpfGcsjft7mW/raG0DbXprpgkls63hlT+BbT+dKo+zbvgWZ0MfNHX3DyzJjhZN/WZjmd0sX0Qiac5nTRcdGl4lSfnAynM8NhaZqkloNtyNv5sudYfWCBuunTZI+nA5zKnD8yX27KhkVpiufmnH0W5HhiAm8+u6dh8t0KDfAT/5PvO3zc4XA4HA7HxxMMINL9+3P692WOW8CbSg8M//UXv4PFdijCMxjnCFWhfI6mKrjOuamKl3M08lt1dXypip1LDliqqm8Jwlkci/sWhHNuquLsgltVRDe4VPEZN7jgphRc5xRwjtGYuwHhAk1VgJ1zM3LiHFMp6i+5HU12GbjQHBi4NJzOEaQJQyOHtWpYLBAqTmuecrjUHLjBOY8mu2siXKLeAnNmOWHkRGnMreJ0gbbS5YJrnS6RDJuROQSs42g0vADhTHFYGV3W3OAC4/FzNDjHyOmCAs5H2REO6BIUh0tuK10sp0sOhlPAQuXWGYCViheZ0wFdVtxUnM65xYU6fgnhWHSB6DLW8VNOOs4c6lyr58+F4fQIlHShosuq0iUYXZqK0xmHSpdLNLhU8SMKuJhwGM34CYQLthza0mg6xMnmlt5SuQKq+bMwubZEg7N4WJeLNOc1p3OQugeocg2gKhcDCI+4LfMl6FwrsZk/HKpm2oWaLwx5zqzU8VXWJWFtdDnnBhcYOV1ygwv1zBBdqOJwoZ4JoktbdBk5jPFFfiZQjkczfgbjigZsMEDcqhhv0x7X1JerXlOPXTqeEVRzjFCvWByIcU39bGMpgvEsdvh7f/3rk2MOh8PhcDgcjvsL91R6YPjq338TgQgXLMbMW0gBdokGXTIeBhEegVIcERBwmUy4xVRXmjoDM3qO6Q1BwIIZHcdi1L1gMc2OkAKsZcIeET2k0dSkmJBXRyyw44glAloEPOYF9hyx5oAWhEcsYzxjMYu9BNCxFE+aww4MJinAOmZ0ZDnwhFMLMdxdpniZ1sAs0j2Qt4AxFkzYQcyTVyTj2nNEBLCkBi0H7DAUA+gXEqcVC6dHTIVTA8IlB+EE2U7zCIw9gA3GpkyfjIdBwCWE02B0yabVF0gxC6cWKJxX6c1SC5bxD0hv0ouEHUUMkDdiZZ0C8uqiBXYYRl0S51XS5RIN9pUuklsDpCAddYmSW0mXnsSLKMdD0uUicYqJ0zlziatcAxeOS2ZsEbEHsCZp2uwhujRo0HDAHkMxfW+VLgsEPC66NJJridMa0kx4bHR5VM0X4BFqDo9Y5k+c4SS5JrkUibEkaSotGdil66wQ0EZZWdJD3ha4QMCOh+SnE9AqTrUuwuFx4nCOgIYIlyzn3idOjxCwT7nFRpegdIlmvmRj+/OUa2Jsn+YHgA7iUXSWdNkhYkfSlFzEgB3JnF+hqTiILjJ/VtxUupzlZwCAPQPLxCHnWtYl55qYkaM8Q7LpdOYEo0vmdAbGwOKNtUhm5nm+9KnpumDGjmQjmNalAUk+Jg5ZlxYL7HgQ/oUT45wILQGPWDS5ybpw0oW4zI89M2LRZYGOs1dYwGXSASyc8rN5h4iBGE8xYIOIloE+MJ6iww33OONGtuClZ55shR69lCKrzlJCBBCJ8QydPA/S6q2OIvaIAAG/8fe+jX/pz/3we/p3yuFwOBwOh8Px8YE3lR4YKKTVB6mQFQNoKV7kFfXSlMlxNr3NW1qyB1Pe5qNfoS1vbWuq+AyEa7W14owbXGEA0xh3iGCSovBMfV/ejtaUrWrydqdxaw0hc6C02yO9ZhwRW8WhYUJHmgPK9xegsj2vcFJbc1oQWmUL3AA4x2gu3qQxb5Qh9Bm35Tf5mZPmUF75rsbcqjGtki436r4DUd5qlz7PoLQ1K3GwnFBzyNdjyJv2zlKhnHU5n9ElF4mZUz7jqEtQYx63FGZddGNpmTTaJlNrq4s2eC9GxlzHemtQq66XdThHkDGrXNuk3GoO6JK3+9hcGznVugxgbBQnMrrkt6WV44aD5iRbttTqN5KtdddKl4YbXNEw6oS2mClnTlNdNCelS3oTH6fmUuYIxGrOByb0d9BlapotbxorY0TAjiWXcq5tMcZnPP4zJMfbiS5NlWu1UbfkGqM3uuTn2ioZgWtdJhysLop3S4TAonvOvYYDrmnUwepiOZzBchq9s4hk5VXH43xZgcAcS2NJ3vBGGIou40a1eR1kjdEOPUDS3N+qCdQRY09d/gIi5O2M+S2U2TPqkIcSE1Kz0DpHjf/GOBwOh8PhcDgeBnz72wPDH/6Tr1dxKefKthFkIw0A1S+pC1h5tDDeu1H3qRJkYtRtYvt9a548a9StIIdqTvaa1lvHdmMtR4uJIbQ5Ppi4bCVSW/xOcjiiC6PWhYhmONR30j4c7KUnRt0mtt+/jYG65mANoed0UTvfSkPg2BgsprpMdddYmHs0a9RtxnfMqDtCVpJlzOtSY+4aGhNDaBMfnI9aF3Pi40bdMwbq1XjfjS413m9d5jhMdFK6BKLqvslasRpz16g4GGPu/YRDjUMG7XmcObdybDk0gDHmtvH0yTttEdW4zf9h+MKf/NQtPuVwOBwOh+PjBZLfKt23PycrUcdt4E2lB4Yf/OOvYLFWq4s4Gdym+VRefU2A7OyhSZFJumAjdSD9NRaYeYVSjWmBSXVlbBoNtuHS64vNoEFaIULjeElxqlD8R9QDhXThP38dW8SGwx+dPYstki2nUhAqXTQHmikJS1w41Rcv10zF8qnmxSldrJny3nCw4wuGU6ULxp/Nciifq3Wx15g2F3BUl/nmRd1sqM9XG6yHQ7lWjbmOp825DDmyNMetkf3kTYNGF2vUbXWZ6szTXNPdOiRd8vzR82iik8yk6Zw/octkzs81xuoGY31+nm+gvAdd8grL3OiMqE2ubUNy+va1WMU7xOo7WzAG1bhqUfMO4OotkQSgSyv9MnLM8lAoczwbczPVcVTH5fvDbHyIk23GTdAAP/FzbtTtcDgcDofD8ZDgTaUHhv/6b34HvB0LlbICp/SFeFKQ2YZG1fBgoOVQNabW5bf6lM5Z/1afgclv/RsaCyXZRjeOSW8PG2NS368bJAPET0VzmjZpUHFqoepMRtoKOHJoUU+WCFs412MWDuMYW9QrHZYmXqBuFgyoC+94jEP6XNUMYHkzlP78uuhI6ZzT1RZ30WWRdUnxGeGoLhGy4kP3IBtS29pmcqvRJTTr+0ZlvFaXmtNxXRbJ+ypDb+OT4/U9ieZ8lS4Jc7pAxa1pcKwofz7rMn0w66alfZ291WVl4uwLNeFQhkSgeohHdaHMQeXWsox5ZGLn/HFd6ny382M94WznfH0+2++GuQd0QhcG4wqMK0QQSdPmrdDjuTK5fho6PKeuNFmuqceVMrHe0oBnKu6I8U7oS2OnB/AmcWkkPaOIt6krjaENMZ6GrjSWOjCeUVe22Q1gPKM++dJR+UxekRjBuMJ4XIy7e2yVMfcNetygK/GeIm4Upw31uMbIYYMeVxiPawxgPBl2+OJ//JXJMYfD4XA4HA7H/YV7Kj0wfP0fvFWKfQaKt0oDBrMUOkTircScmk6pSSRrBbisZoppS0zxCmEx5V6kIiyA0paM3JhixJl4wNi4yk2ucrw0fMQIOCK9eltxiCbO3iohVcXZp6RRnEIaI8p4Qvpv+d/oSzM2kFjF45hnOHFaKUEjpwZUfX4BGseUOZGsHGM15naig44DMot8vxlcVn1kXZjlMy3lJh8w5PugxmRjq0swHBumUZfU8CEC2jSEzujSZR0oc+QqzhwocUS6Xml0AhNdRj8hOd94r2+rS84NJB2ojLkcP6LLcEIXaF3SOIsu6WdFFwYG5tJQzBwrXdI4Ah3WpWWVW0qXzDF7ceXcy7oEmPlyQBdiquIAlOYj8bj6K3MYwIgk+RLI5pbSRefWzHzJzTqtS8617QFdQpoPnOKcizSji457AEzAMzA2GLAEsCfGngZsOeKMKRnPA3uIwfs++Xd12GPNjbRiiPE29lijASX/rO+FDmccin/Rt8E4B+MZIgYC3kSHMwRsaUAk4J3QYcVBVg0R8DSZZOdG/jN06c2NLdbUFMP4AQwOwA4DOo4IzBiIMWDAniOWoCpepTbenhg99lgqv7uO91ihwR4DBmI84Z0Yraes6RCxxwAQ8I/+wbfwr/2FPwKHw+FwOBwOx8OAN5UeGEI7riTQqwny9pDcWhm3i3ApQvVqCsD8ph9jcV5iQrWSZXI8xdpEd+74eGVKhWrNIV9ijhOQi/ORE80c19fUvAhjMZ7vSwO9EyjHNQdW58ufPxRXY0qrVrSRsHDiyefndJmqlDml+8RcmoT6+Bwnq4vlEECT71sOAw7nGqPWRXM4pVNQMStdppxO6WKvOY5Er4I6pEsDLk2YOhft+Y7rkq+hV9vkMVhOvcqF+dw6dB/ndSB1Pph4Thf7fT3GQNJYyts5iy55lVOKO8PBcjw8X+6ui8YhXeaeGVmIDvJWvvyjgRjPlUH1QIxrGje0RgJuKL+lj8AEbDBghYAGAUzADUVQHA3sr4FinA8CNojY52sQ0tsZx8TYI4IozUGS+0mQN8yBxhcwoIyJK0+nSIyN2loncS/NLxAiyUqrsliNgC2GMoYcTzeIAk1Lk585HA6Hw+Fw3GcQ0c8C+AUAvwPgFQAvAvhlZn7yQZ+LiH4ewJ8C8DkALwP49UOfJ6J/N53vVwH8OjM/Sdf7JQB/i5n/8l3HC3hT6cHhD//sG/jb/85vlngJeZV1LszzNhsmVeyrbS5Qn82I6bf+GR3L67gzpMDTMVUFT24wHMIArrYk9eD01qr6+3lcOalzTCaWgAG1ckcf43QNfU02HFtIsTlymppva9gtTQNqY94e8gaojAXkNeljw4QA5qKL5WD55YZNULHWRVZ5MPo76GLSAAO42lLUQbZajeerS84FZEXJoVyb46DjOHNNfTyvVNE6BMyVvSNs7vbg6o1nA+qHpM2tJt0lnWvMsqKEUsPActDXFKNuefMbAFlNwzWHFnVu3UaX9oguLWqT6BaEneIQICvZrC5ybSq+OvnYAFlhpbdK6lEd0uWYKfRwQhc7n5aQ3BrPX+sCiC44oMuAWpfs/8U0nq9hYMg6pfukOVhd7BZZyd0RHcXy5klAdNC6NBzQ0Zi9+XrFLwm1Ll1qA2dOeYsilzFL8y0qDhbRzC/LKeDwG+EyfupnPnP0uMPhcDgcjo8nZl766kBp6vzbzPwF9bPPA/gSEX3hLo2lu54rNYn+ITP/UopfBPC3AXw1fd76ErwI4C+mP6Dx/7//pXfbUALcU+nB4dM/+TJIGXUHGt8KlhsnPY0eHARCR8qgluT11DreGQPbDSxqs1c2cZyJdeHSY/Qdkbg2tGWMPiKANEcGGA5VLFs8ak41x53miOmbmvQx+W+c5KDjDtFwqk17G0LhAGBGF5SVDLflkIvu0Xi4Lg7ndOAjHHpjPLwHKg5IumSE9B2bWzkGjStYxvtec9qY47aRN6eDjgdjntwZTntzXwarC8Zte4AU3b3JrY74MKe5+ZIXwZTrHNdlaghdx3vDaYdal2Dm05TTvC46PpZbRKMu+fipXLOm1p05vjPniAd0GTmOugin07ro55qsMKo5jupkTnWunTLq7ky851qnvDowg8AYTOtN55rEIyfZejfmFpU2Z9IFNOEwd/67PKsnaICf/JnvP3zc4XA4HA6H4x4hNXF+FcAv658z85cBfBnAv/9BnSs1m8DMf1V99gmAn4E0j/7WgUv9ZQBfTH/+EoAfYuZfPvDZW8GbSg8Mv/mffRtPNhF9qgt2YFzRUIrGDhHPlflrBOM5euySuSuDcY2hmL0yGDswtqqA6wHcMJci+YoiNqpYuQoDrmgYi2oa8Byjge2OBjynMR4APFdbL0DyZqYc9wCuEEsDY4eI5xhKI6lHxHPUnK4Npw1ixWlvtofswLhRHJ7TUMU3NOBacdrSgCvFqSeuODEBN5oTZAtMLpS3YFzRyKlDTDoJhwGMKwyVCe8NhorTHoyd0mVAbmBQ0eUa45ivQs3hJnEoDR6SMRRdCFVMhsOerC5ccegRcYW+xNlYuNal5rCHNJZGzlNdrlV8TYMxT45VrvXEFQcQcIWx2I9Wl/T5zGkPxnOji861rIuOrS4dgE0cf1PwjGLF6SoMuDHzRevSGV2YgGsaG34BwA0IMVHcEONaNTW3qDl1ab5oXSyHLeJEl23aWslgbEg+k3FFETcq164n8yVWOuX81rpcK116o8tN0iVz2iPimoZicp1zbV9xipXJ9U7pIs+5WMckuZmxSabXecw7DNhoXRArk+s854suaQtZjjcUcaOeEXtE3KAvjZ8ejBv0pbEUIX5PWae8u21Qx/OWtazLDfXYV8/yHjd6jKiblB0G7BXHDQZcpfaYxYCIp8MOf+P/8tuTYw6Hw+FwOBz3FH8m/f3rM8d+BcDPf4Dn+qX08wqpsfRFAJ/LjSdz/JeY+U+lP788s5rpzvDtbw8MX/0v3wYDuIKY3G7B4ABcQTxAImIq4HrscqFCkEYSR3llewBuELHjiBUHUAjYIor5KwecI2AHKZaXzLLKhxg9D1hCDG4jAU/QY4WAPcSg9imLAW1fjnfiQ8IEEOFp+v4ZAhoiXDEX824m4DlHLJBWtxBwzQPaXJwH4Ip7eQtbMsy9wYAdRywQAMLIAQErBGyJsWfGAuIxsmNpIqwgBSgT8MxweoYey8QpEvCEhQPSGJ+gxxKEFQcEIlzxgAUove2Kki7STNG6DEUX4YSkS+bUFl2E05ID2hCwBWPPA5ZMWKDBHlKQt8zYkejS8YBV4iCrHUZdMoclRqPgrFubdHmGpAsHRBCeA1gwF+PirMuOJL5KHPJ2pKJL4nDNA7aQ3AIRNjnXEHBGmRNjCdnKs0Pa2gfGFmkVSuK0N7nUpTjnGkFy4WnSRTxpCM/S+Ra5AZc4XVccqBgZP0+c6IQuKyYsaJwvKwQxZQawj8CCxvnSMRddkFahZF1Y5VbMuZhyb8kBRITnkPl6waR0SdsqCbjiiBbS0NGcIsv1nhtdbnjADhFLJoQQxPcnPQMKhzwnCdiR6NJCmrRgaVJoDplTvo9Zp5BzS835SITnSZfs/JRz7YZGHRZJd51rdr4sEBInaRytOGBJ43wJKbf2kOdWAyRPIkbHMWkvudZzj0XiINfosECQ9hMBz1KuLRBABFynz5+hEf8llvu+xSANQfRpS2KK05hjut4N9+NbDAnYsDT8LrIfEsQJr0t5kVd6RjAiyd89R1nRmYy6Ox6wRIPz9MTcg9OKT2knbdGjRUCXjLqf8R5LNGiTDh1i4f+lX/smfvF/8c9/EP98ORwOh8PhcHzU8AsAnhzY4vYVQLa06dVE7+O5fhzAX0zb3L5sPv9lAD+bPmOPve/wlUoPDEGZqPZQvkAkRVPeFpbjXagNabeVQa38dj1DzF3H7RcRtc8JE7CjcfMEp89njw85HotvCVLcqzHticu2FRmjbGvJcZf+3IWTXn0QzfakWMYsBZ2MWW0PmeG0U5xQONUceugx19vEeqhtXQc47DOHzImsToaT2soTkUyBWetQc8qNhprTOIY5XTSHznDoSG0hPMWBhMPGcoDNNYycZjncJtdqDgNMLllOyqCmJ65yr8qtg7oYDpoTgO24P+lWumwnHOpYcmtEB+UxlebPJNeC4WR02ZlnQMUJynCaVe6lpk7hcJLTOKY5XQaji36OddqU+mCuDYoTKk6Rxu2xOc7zJ+uyV58vMdVx2T6Xc63iEMetZ2lM0YzZctC5NhCXbck5rsaE6fZcvbqI0xg0R/3MAIChOkO9NU44DbimHjfUy7kS/0XbwOFwOBwOxz0DQ/4Pw337M118fVf8OIC3Dxx7kv7+iQ/oXF9MP3+CO4KIXiSin09/Xrzr9y28qfTA8Ef/9CeqeFnecyQzSgyhtQHsFMeKFdDov5JhS4yFOevcNTQGM9s7E+u3gAHptfOKQzGErsZ9pOBC7TGTf6bRmlE3JzjZ7SL6TUxA/aYmYLxHt9XlVkUkat+chTnHKQ72Hlhd9mR1qTlYTvb49L+tP9L0mnyCk31DoYXVRRfawNTk23JoTZyvprcTWQ4212pzdELLqG6+zTX70La62FyyutjzWQ7NCV2sl9CcLlActHl+hs01C+v1Y+e85bzk+fl4SJepH5L1MwL0bROjbqo4WR3uOl86qwvXZyy6sHqOYZpb4/a72uOsBZW34lUcynhpMj/25r7b4+0t/i/Dn/jTP3jyMw6Hw+FwOBwfIfwIEX1p7s8tvvvi+/SZO58rbV176cD2tbztbbKVLpl7/0XICqYvAvhVIvq3bjnGWXhT6YHhMz/+EoI26sb4WvdcoA9Ux71auQOMxdFocFsft4WJLazBtdnrtPCuj+etGxkdeFKgDRUHeUV2xUGb9GIsvDOHiiNNOdhCHbAcjnOacDAmvQPqojOb9moD9cEYqFtdpsbDx3Uh3E2XOYPoY5woHdevabe5Zo2HbW51E13UcUybPhNOZsynDKKtebJtAjUp97QBtDWFnzNT/v+z92/dtmzZWSD29RExb2utvc/JlABJSAkkRtyKKlkCQ9nNrZrdhG1aGYoCpcCm8JvRi59L9pvf3MQ/EH4EGpaSm4ui3GypfgAgJTdJIKWUEimhTCmVefbZe601LxExuh967+PSI+aca59M0Mm9xpdt59p9RcyI8cU3Ruwz+uzjG2c5LHCapVv48vjwRt2DSy54TgHLBtG1Dpc5XNLFvKXmNM6PF9+35kbdXpdrJtdvr8vgOFhWKekyp+R08bHrW7O+VscdgMg1h6g+VeVzOqcTE/CGhopDSiCyJSxDigHIMsACXjef/LOE/Tl0gfCn/pfNqLuhoaGhoaHhWeHVmd9b1dEn/2Nei4g+DVn69ncXlsW9AvATzPzXmfkLutTuMwD+b0T0196inRVaUumZ4V/+4y/h4VCYYkMMdW2yMiJij6kygz0UZrAM8cqxGJAEzmDTe9blH8UEak8xbVkOAPsgPiZlsqM0vJ00Lk16j6XBLeodrkblYRwGiOGuxdMCh2PBgSFL6k4Vp5qD3KPmVB4/0FRx8JwiuOZA9USZSHfpOqPLADE7N12WOJ1QGw9P4DT5h1aOlG1+oIhTocsh1JyOqDlZ3yh1ORVxT7UuA8Sza3LPxCbCIyIOBaeonMu+NSoH0slsVJ5CKetmbXykyelS97XB6cKozZI7fUZ138sJiwOy+bFcz/raZV1KDpO222K7juHBtXkfpkonr8sErnQhoqpqxetyRN33jkmXcrzUuhwLTtbekhMXnITzZV32JNrXuhRJFqp1EY+hwkDdcTpQPb5O7j02qU5lYmkoYrD1tczBnoH1tYMaf2cdRgzVmK85Rr2HxZ2OY4tXRFXy7IiIgcrxI8v0kjG+6jA5DuUukR/SgHsakm6iqTxPuQ9X1Uo9QqpWBYCN+jIZJDFV/mcCYU3Ly9sIQB8D/ofPfn7xeENDQ0NDQ0PDxxT/lpm/b+nPN+j673+DrvPUa30W4sH0f/YHtLrpJ93vXkEqln7kozaqGXU/M/zyP/uqTJSZEXSiJHFM23CDgANHBEtIaFJn4AmdmloPiBg5oldT65EYkx7fosdIsjNTpxM1EDCq6bWZJe/VoNaMuc2w1r51P/CEDmKqG4hSvEOnyQC5/qjXN05mGHtSTpMdR8TAUZZ0FHGPgC5Q4rTigJXjIBNT2XmsV05MwD6Z9goHM+EdIT4xximAQAWnLTrlKNff6HM9slSS7NWjxHQZnqjLSTmtEbClHgM4PfeAHhNJ9UPQCSwA7Jkr02mvixgFB1hFx6MaB2/QgYlwVE69cjIdTlTrcqw4cdLFOHldVghYUci6WN9STTvY8jGJAyRJBseh5GRm46ZLDwKKvnWbOETlRNr3pErpQKbDhKDXz5x0+p90kb5BRJUuK6eLJNik6oqQvaqkb2RDaNNpVA7W16wvGKet6nJQDiuEShczTD+kd4BxEE5TwWmodJG+Jrp0FSeiXgyhmREANYjOugzqqzQVBucgMWVfKSeLexDWasy9TzrJKLQxn9pkHFBzOGFKOnWlLsqpV7P/ksO60IUSB+FEQPKqEk650mlSE+vJ9T1ZOsY4QdrUoQdDxmgAYY1eEvBpvMi4HqCxJuqP+nkz6j6W4wXQ3dzElH1FHT6gE+55xFYN22WciLcWkyS3AuR9zASs0KHTd9ZKzesZuVIxaB+yJJW9v8rqy87ecSD8y5/6Mv7KDzWj7oaGhoaGhncOF6qVnzneP/N7qyp69R/rWrq07X0A33fG8Psc/hmAHyCi7/dJp6egVSo9M/Qb/ZaZ1J/MDmhcGuRGqr1/ItWeMzLpyt/kMwEj+bi4OYmPCBfxSJxMei0uTa6n4pt7i8slGuKFcpnD5Dhc4zR4DqiXtZTGx4lDxTEucKo51Jxq8+QlXaLj5DmMngM8p7yUJ+nC+ZqVx9OiLtl4OHHCeU7CwcclB8ZUGA0v6uI4jM6IeCz+zgAmFJ3tSZzmfW26wGla5FBzrPsaL/QtXoytXmUqCPETOAzOQF10qTnN+tLFeM5prkvNwfe98vykk1bK+Wdg7wR4XRzncplj5X+kbeSqzTWHaZHThTYvxOnzbG2o/6tqLPrqbHxgvmSxWr5nHIrrRaC8YkrolOeXbWA4o3yKuKf8piJQXsrGVoGUY0lyddX5pZ+SfD4UMpFWOXVYa1LKKpzW62bU3dDQ0NDQ0PBs8OoJ55wz3/6GXouIfgCy7O1tE0olPv1RPtSSSs8M/+mf+fYqXiPoJDZ/4wzO5rDkLwDvjeJMrTUZUC6hmBsD193umvHw3ODWm8nq5zgvlQHndhqnSxy8qfVYcph//Con/9yuGUJXk1IUhtBP1MWqCvL93KTT6SKm1vVVvH+KN+n1z8C3+eQ4dY6DPaOKE7wWNQfvb+TvqbmKhGucPK6ZJ/vjydiei+sv6FIurzubTIAlXbzZOFWkrpnCs2ujf0ZHWu5bPs6G0Nd08X5I9XMid/2n9DWPmVG341BHwIrrvtU7nTILTp/3nk6XjLoJc6PutzW297oMszEfFuOZUTfXfatcbnfpvUbAjAO5AeT7u+d0zfgeAP5Xf+b3XT2noaGhoaGhoeEdwU/hfCLGfv8Uw++v61pE9P0AfkiX7b06c86PEhF/I3Z782hJpWeGT33PJ9BvbMe3ogNQNoSWMBvc2vSonLykmJa+ta8nNwH1BIt4PhF+GxPf0RlKAzLRym2WyoXSpNffx/+MLvacouMQmKo2kDvuOfhJrOcwueOWrKCvS5fLO2h1IKfLEqd6klpXbNUcBseJJNtScEDFqdRnsT8UfSvHl9Gx4wTf1+YVIzWHiEu6ZV1yQovBFzmd0+WcTl6XMBsvl/tW6dsjnPx45JSYkJjm48dxsLPP6VKZXi8gOI0DfN9yY/yKLr4vdsjvALv+XCc4XWpOpU4+MWYcLnHy/OfG9k4XF3dAlQWjglPSoYxpiVOhV52bTNVFJeYJd65i/xxW9iXEGfSB8L3/+befP6GhoaGhoaGh4d3CZy8cs0TQU5eTfaRrEdH3QhJKf9r9/n1nvv1pnK+G+hb9Odst7iloSaVnhn/+3/17nI4xTbTEG4jTRGqCLKdhzpNKm7QmE2sU34DL3CZPoHi+7fpIxUQHumSnOG5VAucmylKpkSfaawpVbBMoa+MITtc0w1p2nOxb/HIXr5JT8nbS3wUq7gWpyinbOOrfysl3ySk4TisK1cS4A1XHT5AlO2+jCxyHzrgnXUKVHMvL/KA6zXXxk3cunnsHqpJhGwrV8QipkCp1iRUnTpU7dQLjgi5U+r1kTTIn19eK52TPp9bFrifxmkJ1vtftpD5TNn4msC6LK/raGV3MELpKRiRO+X8np4stGc261EkVcrH535zTZYAtt2KNY4qNg31+cbxw1sVi67/Q8/2YPlF0HJaTUGnMU63LhjqUY1445/ioOpTjsdTJxmM55rmIietEl+fAYAxqml0+t7KNpfbWxjKxtEI95jdWiZT6FqfxYhy40qUeT3LP+j0G1Y+0A4m3U/lsZRmbwXzD7EGuuavi4M4niJeak02OMdBPAf+fH2tG3Q0NDQ0NDe8kzJPjXfrz9ePHgbT0zOMzAH6Smb/gD+gObV/3tfQ6P8TMn1n4zPdDDLsNP4HzS+N+AMDnFnaLexKaUfczw698TpZh2kS88q1B9uWwyUueZNlkBgjZKhohTTzNaJirZSEyOUOa+cp5NgmT89OOTmmaSDpplSuUy0IY+u16cb16OREn8+QIRuTau6TmxGq6S2nqZUeC40BqhG33HB2HPEm2NqHiFPT6xmmTcwpgcErE2XHTJcfXdSk5UDV5lv/vijiCs9/VFV3sHqH4PCNXbpjugevjZVVR0qW4XlmxY0soqTg/wKqaAGap5AiF9gDK9WbCqeoLKPqWpTtqXXr1kUkcudYhOF3KhI/vBzH9tnxmWZeoGth4gT23qj9z9gRzutg1vS59pQun0WLt6TgUx+s2l33L4nxcPmG6WFv6Qinj5PuG5SWk8CYmTyI2jpVO88SSjTc7v9Nr2jMpHhEYOZlofTFXThVtQr53p2N+iVPiXiSSI7L/FjMQEWc65HsUbdbkqYzHzh2v3zHl8rh6fCzrTpDxEQHEwvTdtJSEkmgfIEbdIFka2IHS/XoQOrBuSiDXWAGI+uyJ7FnlZ7dDh6l4t5ZG3T/3ua+goaGhoaGhoeE5gJlfEdEPQXZO+7v2e60e+jSA2Q5yRPTTAL6XiL6vTOK87bV0GdtPAPgCEZVVTu/rzz9efoaZ/zoRfZaIfrhMTqm59ycBVJVOb4OWVHpmSEbdCXQhmn8hfS7OVQ15kjhbQkL5B7vPl9ezxNLVNlD5l3xWdVeaf97DT2rL35dVDWST/ysc5td5+nN8Kp5yz+XfF1UN9pgXkvRPaQ+7v78th4tt89ezCo5ioludSAv97UJ7c+z72hUWhSfN0+9xPa44+YSZQ93bPYOvv295zKuunvzBPP4u9LWLKBI5ZexJef4fVYcrzZg/7Cdi6fr+d2972aopJEmgEqVOlFJa8kEiWQpniaXKuLs4fyxiqZaa9L408/oybLbNqLuhoaGhoaHh+YCZ/wYRWWLnn0GWkr2P81VBP6nHZ8fe8lr/IyTZdNZc21c2MfNniOhHNCH1Sb3255j5E1doXkRLKj0z/E//99+Bv/9//9cpXiPgoZiwpaUPRfLEo062IH17bR8YmJOhMSCdrNwxrUfAqZjyBP02P1+/vq9tdW0YELErdiqyJUr2QfH9mFJ7rq3xZMg3/UEn9UzAyLHyH2EWfxbDCiTb1ydOVHkWeZ+giLoyYaCIDWcOUpWQ77dGwCOmxKnyPlnIa+TqhVKXmJauyNblMeli5snDBQ5zXerkwgTGqmjDiSJ2BSephuBKl32hy5JZs+dQ6mJG3ZUvjOssnlNqwxlI380YKFeR2fHyJbkGYV/ct0cAOO9iN+eDyuun3JYdEF0Gzv076VK4RHtOS7qUN/fjxeuyQsCx6FsrEA4Fpw6EYcajXHIlFSq5Uo0rXWQ5Gadd6pb6Wuc4eEjfzW0+ufHiP7nmgEeaCl0Ip4KTT8RFcKXL5DgRZDlXyaFjShVXZtRdG5RfTvYNru+eEGUpmUJ0iS7OnAKAySXXbDksKC+1O6cTQfy5YsHJt9mqts5xWvI/8/gv/svfe/F4Q0NDQ0NDQ8O7Bmb+STzRO4mZfxjAD3+912LmWRXUW9z/G4rmqfTM8J3/yXtYqVE3WDpAANLswe9qtLTLUWVYu5jgqCcdPdflQr0ze722i5LfOW2yRIVyIC52MWL5US6RewonX+WyWEXgORTwJr6zZ8JcfX5irs6Z3GcCZAK4yEnb6wev18WTYNRtWDldVs4r5doOXbMd7biuYbGJubUloF6+tqTDvK+lxudqJXePmkP9VK7tNBhdWcvEsYojal060IIueJouKcswE6Zu81uOF9/bJnfNwXEK4GrXr+A4VW1euict9DUH38YVX+NQg50uoxs/fnx2KMYLcgLlki6+Ys8nT3wljuew2LeqhnldLu/42AHVjnMB9e5siUOhU/meAxWf1/iki1BLv6wSp+QEldtUxuVSWyAnqs4hBsYf/RO/8+zxhoaGhoaGhoaGdw8tqfTM8Ll/+O/Bh5gmK7aducURjI4oecsAReJJ0aOYFDKwQZcnYAzs0Dm/kNoMFtBKJo2lkqE0jw1YFdPWDQJ6oIo7vZf9sq842OSf0mSx9H2x82sOQbbb1snslrscQ6o5ersn5Dn5b/TLbdM7x2mNDmuENOnbUaceKMZJfEwsTr4vxYTX69Inx5TMqUzCrNHJ+cppx11+bsi+KxaLt9N5XXoE12blpPENdZVOvKBLXyQwGJIEMh0scWZ3JJZn2hUT5R13Eusf6YvndQEw47ApeufG+prpAtVF47XTZTynS6VDqDgkzhpv0FWJpi1C4mTeOSUnRp1Y8rqslINhy12l4w1Ul/SMCCuis31NOOTxQnoPr0sZb1xfDKBq/CRdLvatHG+0r6HQpXwmvf7JugA95b7IELPvS7qsnC7rom9b9Vf2iuL0XjmXWAruPbdCwLqoRNqir/rmDn31ThohfanUpeQE1ElN4RBSHFxfA8uYKxNLjxhwTHvrMR4x4iFtM6AVjUVi6YQJp2TZDzxixD2GxSqzERGv4wn/4O/829mxhoaGhoaGhm9yMOQ/FN65P7/dD/bdQFv+9szwq//iA/0WXpYWHSFLQDrItuJR4xVRWqoDnUDahDfo5KyDjEOZ9oiVq0wezRw275wVkM1fjwACETYIiCxGwYEIa4ScENJJpyQixAK206nNinNsEydAlthElqU4RHUcNS45rGE7NnGqTOggy2Is7RC0zTa1W4ERWZaQJE6QCWEA6TVzZUDJySbSkTOHFSy5YseF44C8bMie0VwXqS6yCaLpYrUFoeAARpG8EVPeGFDpElWXteoyVrpwoYucuyo4MWQJUqkTwyo+pPIk69JVuqzRFUt1Mgdpu/U1BpgKTqxVRKQG3srJ6TIkXUJaCmQ7WFlfDQu6WJt7p8tJdTVdTmVfQ95NbKXXp4KDVYrlNhcVaIkDki6kfS0nri7rYn1tBetbAcxOF5YlfmXfG11fG62vIVe2SF/u9BnWnKjqa5x2p7ME4cQMDjmOLAmTkkNI9wgpAZXGE0tVXcnBdEx9LXEKqtOUOZ3Rxca8GbSXnMTUmlObR8h/d0hvYUwcNbb3VF6EaOPJdLG+Zrr0yInCsoLK3hn2Xh1dmyft8b3qRCh04TkHGx8TrEpKliSOiBgRZcc+kmfzik9YI+AGPSIBB56q5X0HjLosUnahfM0nrBD0+dk1GSDgZ//lb6KhoaGhoaGhoeH5oCWVnhnWN1ly2S66rLaxSTun40DefWppGdl8QpQ9Nypz2CK2O9j5Y2H+asf9+RaTi+VnXqCRt8CeqjgWhrQlh5Cu6p+Bn+TZLlhLHObxVFyvq9o6j2khLp9beIIuZT2DX+pTMiw52Sz4nC5TpUu+RtbVc/A6cRV3joNsQ59jz6Gs0Dg3+dZfqPEwpSd/jlN5va64y9N1qTkE19cI2SA54DyHq7oAmuytz1/SpT6+dP2ag/WlmlNuc3C6lFjSyXPqLCnDBQfX1zyneXxZF8/Rc1oaL+U7wrfZc5r3rTruoL5tlNs8Vu+YyxyX32OeQ923GDnJ4/vWki7eLjsttlMtRhTLIkkqlG6K2FcjVTGJR5T33gKA3W618NuGhoaGhoaGhoZ3FW352zPD9/y5313FaRmazhf88g4C4OYW4g9kfyf5FjxNcQhSVVNMcPxyJO9F4v1VfBWin9zYtu5p8u0+mJbNaDz3OqljRu0PZN/mlxzYfX7l2vy2vlDDzF+lWOsEZKPztNyn5uR1YThdUD83W9ZSTmA9h2s+UXNdag4nqs8olxem61e6LJScXtDFjLqr6bSVhyjWV3TxmOlCNafpLXVZ4sCOg+9r5XiRyhOqOPnxM9fFTf7J61LHPde6rBynboFT2be8r05E3dcINPMCmvc1p4vrB37Me118t1lzTgTL9WtOabxwbnP53CYwvOm292Tqi53/pOKoHi+u+8918e8xN37mfmC1TsHpwkD1YrKqy3NtSEsSCw7Jo+lMm/zoObfjW4n/7Z/7/VfPaWhoaGhoaGhoeHfwsUsqEdH3E9GPEtF/q9vd/ahuefe21/lpIvretzjf7vX9dj/9+2eJ6K+97f0/rvi2736B7br0AdEEiX6xnya1KGKuJ2gpVqRJanHNcm6zdsmD0k/JPl8Z1HLhC6KXqnxCmMWDxtrMVMeQZTRlvHITtFXZZnIx5sk1H2+cae+KQ8Whc5zSJFURwRUnBioOwdrodSljp8uq1IXmE0BfubDhy7qsFnShc7pAljmVnILTJZgOhW5zXQpONOc0N5DGRV3WLg48n/yXcSw5QObspYl1B+TkAueldefGDwjoHafO3T+4RMCMw8J4wSVdHMeJuXrRd7jS11j9jnKxD9a285pxioUONO9bpR+SfH7etyoOuKzLyLWB9AROiVlbXmvJbVuSV5n3s1ayGSfKyT0W4XBI9YXz6qXEqcCWa2P7ldOpc++ECK51QaySQtUzYPWW43CeAwMbq6FSTtc2DPBJVp8Y80nWt00qdYHwR/+zZtTd0NDQ0NDwTiK+g38aviH4WCWViOgHAPwIM/8QM/913e7uRwH89NskljSZ9L36Ob7w5/uLj70P4K8B+AkAHxAR69+/wMx/4xtE8bcd/+of/BpWp5iWczCAHUKeVEImS/bNP7EYCW90YkwM3KLHNuaqk1uu4zvusC0mlT0It8gTrA6EW3QpXiHgjvs0md9ywC2vkin1jjvccJ++Zb9FhxuENDHulENZSbAtOBGreXHBaYOAtbY5ceKSU81hi4BtMWkMINxy5tAj4Jb7FG+4wx2vEqcdd7hDnxIKt+iwKzjsQLgBodf4vC5Zhx18HLApOXFXcXqBgF3RFzoQbpwuN5UuHW4LXTbcVbrccIcb7tLxO3S4QU4kUdIFicMOXdYFtS6BxVS67Gs33CVO1rdSMkx19LrcFJP5XvtWqctNEd+oLplDn/sWRJfbghMDuCn6Guk11jr5DwzsuE+6BNWlHE8v0GFbcHhJAVvVxBIku4KT12WNruK05VqnW/S4RdblBQXcICd+SJ9Rd0GXmhNVfU10ClhHSn3tjkPFaQPCrhg/HQJ2RRKmR8BNMX6WdLkpOFmFWDaQjnhFQ6q+e6QJR8SUWEo+ZinZAmzRuQR4XubHAI6IeCxMrMud/8wxqUws7dDjfd4Ufa3DDpnDHa/wPm+K91iPNWrOKJ5R8sMqxs8LrFJiiaBm3xqvEPAer+W5QnTaoqsSP5TYCYcRXHHyFVebWdqpXmbH1kbMQQC6SPiHf7sZdTc0NDQ0NDQ0PCd8bDyVNGn0WQB/uvw9M3+OiD4H4P8J4DNPvNynAXxB/yzhk5Bk0U+63/8N/SwAfA7AjzLzuWt8U+JL//pDmVRCvu1/BDDqpHVixhFiQLvjHhutBggI2HHABpyWH+3QY8OMkaNWaxBWTBg57751C2BkWd7TE+EFAgY1B+8p4AXk/EknNy94lT7fgfCCe4zM2KhB8w1LG7csbji32mb7/A6UOIxEuEGPiYUDI3MaldMWUkFhJr4byK5ZE4uJbQdCD8ZQGHffImBkxqNx4g4DM0ZiACFxIEiCw+I1xOL3DsJpyyElDyJL1RBpYmli0WUiLOjSYYOAQXW44R7bJU7MWRe9punSg3EC45FsVzvRZa+63KkuMukMM13uki4hJdcmBramE4CJkfxWdsrhgIip0MWW2pguSUeLudCFA1g5BdVlhMWiy8ARewArkqSP6RIQ8JJXGNhMpjOHldPFON0gYGJgDWhfk2f4ADGxvnW63HKPLefxYbpMYNUlYA0xgRdOYv5tRtsdAStmnAAcNWHQg4rxQjNdjJPtoGec1qYLbLwYJzHRPkB2gLvV8bRHBAdU48U4bDibXJsuooP1NU66rCEm1aXJfA/GiaP2tVqXHoQ7fWeYqXXJoQPhlqVN9W6SjJHkub/CgB4k448kMUT6TpKECaVnbu+tqG2yfA4zQKrrARFHjrKrIZm7kWZ9SJJhnfZNM+H+HbzDgSddoke4xSr1rR4Bn+QNThyT+fhGjbVt7zcWUpK2omy8zdqml1hj5IijLqDboU/G3ATCS97gFjGZxq/R6fiIVsAEhlYhEWac5Nln0/fqOOrzGaU5eU7ymccTgfDzP/tbb/mvUkNDQ0NDQ0NDwzczPjZJJQA/qD9/auHYj0ESTk/FnwDwfcz8aukgEX2WmWcJKmb+obe4xzcl1rdZckuaHIt4jYCjTvZtaY8tCpE4L3QpY/vW23ZYA2xiKUkli9cg3aIaxfmxim36aHHe2pxSYqPkQMjVi52eYx5Fcm5ICYwlDnOj4prTGpT+ntuY27wGpd2g7HisnkHNwccdMOMkiZ9SF8KxmMDZpO4ap1KXmhPwyHmSuQbh4HSx5UVP0wWzOO2ipRxWyEbDXbpH5lTWPyzpYi3wnOyea3TY6x2XdFk/SZd8vR71si7rW4PjcCpicrosmWCf1YlEF7jxcizMx70ua9fmOYe5Tr5vLY2XMr7GwRtErwBVIe+A+FiYWq9BGIvY62i7CpYcfGVMSnSQ+JGNyPXLTEhJVTu3/LyNn+RrRpZYyp8/ImKLLvW1fHEkU/jynbBDj5FP1TugHC+boicRvPH9HGLMnVM7PQIYXL2by4qkDgFbUDpfjoeirxRL45SD/F37Gs3NxNPJVVxyWG797W0z6m5oaGhoaGhoeE74OC1/+wyAV2cSQV8A0vK4p+CrFxJKPwLg//FRGvgu4I/9eW/UnZesAHOPGizEpWkvCKmSwWKrVDAs+q0UuGYI7X0+spmsTXhqePPkJxl1O06jm0z6j1/zK/Jt8hy8MfeQjsvPuS5UNYIWGrVk1J0SMQScUBtC+6nfTBe+rMs406Xm4J+J18VzWuJQ+ujwgi4ecwP1Gt63Z24Ize542ZrCCNxzyIUfs75Vm1w7A3UsGHW7Ns51qY/75eDndbHrnbm+Hy/lxxyHuYF6WdliF6gTdiW8LtdMrX3fsyWTZaVMGVvf8bFh6Z3g2xCdLqVx90LXnfkTeTN+D8+xcxx8uzp3/bHgl85lr0PGklE3uRN93/HXuGZ8DwD/mz//P7l6TkNDQ0NDQ8M3IZjevT8N3xB8nJJKfxzA184ce6U//8RTLsTMf33p9+qh9FVm/ty5zxLR+0T0A/rn/afc75sJ3/rpW2w2pVG3M0/G3Kj72i5h3ji4m01i6+M+7rme7AeujbntdxbHdI884StL7mzZ1zlOqQ2eQ8Wxhp+Ie/PxFWjGoTLqdpzYOGkbmWpOS7qsruhS7R5FwMrNeoN7b3oOG68LvC40S8p4XYLjUD5HqzpJnPiKLrSkC7u4xrW+1jlOcDox1y9FRq1LB5oZdfcXdALcjnQLnPxLeOva7HXqPaeZLrVh+oTaDDwAs/EyN+rOMeB2iKO50b3X5RUNVcLjnoYqEfVIYxXvMVbVRnrZhHJ3NjPitmV62WdpSjGTVPWkGLnKxyqMDjRWNyuNugHggLGKTzRVnI6a1jH4RPMRU8VxVM+nktNYtInBGAoOdg2LCa5vEqc2G6cj1WbjHhuXzvPm4iQXS5gbe8/fASg+0xPhu//IJxdOaGhoaGhoaGhoeFfxcUoqvf8NOmcRmiD6oXMJJz3nRyBm3Z8D8JMAPktE/+0Tr//TS38A/KGP2ub/EPjZv/dr6J1R99YmlYoNamPhFOsEfFvEYDHtLU15XxBhhzwp7CB+RzYZMc+a0qi7NBZeI2CHkJIuW4TKmPuW5Hp9uj6wQ5342TBVxtxbx2kLSobPZnJtxsNg4BZUmVpvAdw4TrXJdcBNwWHl4q3jdINQGUDvAOyILuriOWwQ0i5ayai7iG9QmCcDeEnAtso7EbZOl9JQvUfAruCwcTrdcG2YfkeE24IDqS5lAmPDlJIq5DgF17eMQ+IEuce2uN5W72FPKYCwrXSpdVo7DjsWv7Bsci1m5l15faIUR0jyrTSF36hX0EwXZKPuUpc7EDbazwDgLgAby0OxPBk/XnZOl9K4e+P62g132CFX1rwgYBcyB9K+Xeqy5WwKH1Cbi1e6JE5aUVXqknJpjC+HI34tHFLly290R3wp7FMS5WvhiC+Fx1TN8zoM+FJ4xEmTJFsEbIq0yEAR9zQmz6p7GvGAMSWW9pjwBkNKwoxgPNCYki4RwB5TigdEPGDEIyT5FcHY04SHwqj7iIgHPc5gvMGIN8jJsT1FvKahSHbVid2RGB/SKXHe04QPaUicJ5I2Gqc9TXhNQ0qOHTHhvuAUYcsNM/Y0pSWfk+NkZuMRuVLLL8VbIWCLbKBuZuJI4ydU5t0BAbvC2D6BJLm5iR3++7/1C2hoaGhoaGhoaHg++Dh5KgG5IsnDKpi+nq9Ary17ewXgJ0rzbiL6DIBfJqJX78oOcL/5c69BBGwJiAw8sk0yCRswjsyIJDslrcFpuZGYWGcz5bXG5l2SzJNZTIWlIkO8VY6wyb0YOB/A6EgSGBPnZSZ3aixMMMNnMbFeqwF0Mh4GQJqImbRCxibKGzAOEPPxHQunk858d+jUqLswGlYOVs204sI8GVDDW6BTD5I75fQI+db+DiGZkaMwcIa2yYy2zRDaOJkxtxlAb0g5kXDaMzA9QReLS7PxdaGLmSdPLNt9dwD6AAxRlin2ytN0MUP1kfPyOeNg/jzCEernkzntlMONcjhpgsRM4fcAGIQti7fR6HSZEgcxsS5NrRMnIqy1CmuAVF8FSF8bwHhInIKahTM6Qupryajb6bJj7WsozMbBWDtOD5yTcVFNtE2XWHAwXTjFNDPqFk7StzodL0MEjmwG6mJ0v1ddblUXu+ZtoUtXxCWHyDLWAwE3neocxajb67LjDhtmWY5X6YKKExwHZiCE3NcewJgIeE0j3tA9XnCHI4kx9i/TA+64F/8uAn413OMGPQ4YEQn4tfCAHTr8gelFGqOSEGIwAfeY0CFiT5PGIzomDCQeTfcY8MijpEEIeKARe5adDAFNLPEEy4ZZvILsqHakCSeekrH+CREnPqEHIZKMsw/4KL5pJO+uD3DEGiF9Zg3x1RoQMRHjFU6yAQAiIgEfQq63QYegCbKOCXsawQS8pgEdj6mNxmmDgA5BjbVZjPBJkmEHnoRhwWmNLi2ZSzlMMrPx7KPV63vIDNNN68i6Ax5JhVPUJBUgZuETc0qwWbsA4Jd+7lzBcUNDQ0NDQ0NDw7uIj1tS6Rre/ygfIqJPA/j+S0bczPzDC797RUQ/CUlIXUwqMfP3nbn3TwP43rdr8X84rF9kyQNJBzgVFREroDKE7pF9ZZZMeZcMoVnyKyCSSeaR8/k9AFvcYbFOn5CWR1XXrz2XZEKV0ZFUf9gX53lnsJpTaQhdLkcqOeUttj0nzDjZPUtj4pKDVS94o+Gncvp6dfEceiDZ4hABq4BkxrOkywp5IpoNn+vzvdl4uVDGOIxFxdDK6SLaZ07eAJrOceLS1LqMCY/s+1Yd++uVnESXgsMTdOmRPYtsB6zSqJuw3NfK5ygcCl2mfHwFSfaVugzV5+u+1Rf3PKsLZQ5mCu91mSpdMpbfAcZBdNjacZZlnR/SmJbNgYB7Kpx7CHhEvQxtjwlHimmXRzOyHzTJUi9Ck4qf0p8okiTzgrY8EjBwTFVETM7XisSnrSuOHzliZ0bdpObo9hGqNx+Afn7FQSnac9cRRc5fiaRf9oWZ+ERcnoGJar+kSLYLZf3cU5UUlb5syokn7LBQjMxQs/E8/vxyWnu3W6vKeOldXeLmxXrx9w0NDQ0NDQ3fxGACx+V/+7+p0XyVviH4OC1/A84njaxC6dVHvO4PQ5azfRT8MwDvqx/TNz3+6H/9nQDy/Mh2m8pmsMVBYHHawO6E0hAaqCc3wHUfnGtDufRSketrO1JFUN2uPkU2MQZcE9y0tDblZdTmyUvnew7XjbprDI6TJV8s8bNyHJZ1qdvkTa3nukjiAvpz7T7vOfiXg1/xMjOEdhxSskHP85xo4aIVB9SG0Axg0MRF+p2LvffVnMNc94qDO39ynFIiy+lSt7tuc5UcwIJRN9e6rN5yvJw1gVccHYc+5XyWdbk2XhaNugsdehDe45AaWiafDXNz/vqGH9CxijdcK5kSREmHOrbnbnEs/p7uf+md4MaPVU9eell5T6hzSZdr558z6p4Si/M61Z+rdSLjXOjiW+jNw/3xS4ysXX/6L3z6wlkNDQ0NDQ0NDQ3vGj5OSaVXTzjno9bV/yCAn/6InzW8E/+l/N6nbjCtZEon22jLEp7SHPbgzF69Ye3eGdrudbKTY1S7EA1uQjeAURvY1ia8I2JlYDuCU5LHtqk/6SSWmQGqORBQmfR6ToAz5SXg4CZ4e9fmwwInb8J7idOgPM5xmiBJGSKoWfSSLs5oeNbmeVzpElFu4oUTXdMlVpPMoYiXOdUcgI+iS13RMedU63CE16XmPFLNaQA7Tpd1WtLlVHAg5VCbK9dtfnScHj0np8twRZfB9bVrHAbkxJXpYjsBZl2W3wEpdhwOLvnwuJDcqHRwukxufI2O42/SIXkFSdVRTpBImxnTJaNufY+Uxt3lO8WbWtvnS8z7Uh0PrmbqNOPo3wnZqNveAWVs55w3H5+bkw+zd3X9XhtmnLzZ+HSR05JOPslvfycQRor4rj/wHhoaGhoaGhoaGp4PPk5JpZ/C+cSN/f6tE0NaYfQ+gC9cOOdHiYjfxd3ePD732V/F62NM1QuPYNwjpsn7CYwHinjU6cQIxkOIycBWDG0j7tM0kXEixj3FFE8A3gCIOlN+IMabIiHxQBFvMKWJrxnU2oTqQBGvKZvwjsR4Q1OazAPAA3Ji6QjgHpwmugdIeyz5NYDxQBMelcMExmPBicE4ksTGYQDwRvkyGEflZH5JbyjiNU2ZU8gcSk7GYUDEhxgTh0jAG8Q0uY8A7jlXldyrLjaZPyqHzCnioTAWzrpMlS4PxcR2BHAfxWenvIdxuKcJH2JMujyoEbFxOmk8JA6iy1Do8kY5EEkCqNTlEYxHioVZsukyZV2cWfKBuOCkHLRvMbPeI/e1NxTxptDlnka8pszpSLVO0rfGisM9csJvKnQhkmMPiClxdFAdTJfR9bVSF066APelLgw8qC7MjA/BeF3o8oYmvEHmtHccTsTKMetyj6wLqe6WHHvQvm2JpEdE3FM2sT4tcHosOMl4YTwWSZQTgDdRPKIiGF+mE/bF7md7GrFH3vHtgBGPRTwgYo8xcRyJ8TP9h3hNA8SYe8JRn4m0WdqbTK4hxt3HZMzNOGGqkioDYooHRDxqG5IuiDgU8aQ7yFn8iKHicNI2p8QRSbLa4kca8YAhJY5OmPCA/J4jTWan9x7EdLt8ZxwwVcmuAZyW0o2Q3d+OafxE7ClzAqAcivGESfyrNN5jxH1hPh4dh5O2KXHCiNc4pTYbCGIs/ppP+Ozf+jk0NDQ0NDQ0NDQ8H3ycPJU+C+DcEjNLKn2UJWx/Wn9eqnL6NM5XSn2L/vypj3Dvjx1+49++ASCVBQfIH6ue2DPAxFIhQhEHjinreAgRR45pq/EjSWwGtQMYrzBhxWpeDXmgKzZDWeA1y65zA8Tc+DVP6CFmuGJgO4ohLlgNa8XAdqXuNG8oouOIGw5YIeABwN7MYkkMgvesy0oIeKSIPeveRwUnW2aSOakpLzFOPGINMaodAHzArMuDCCOAD40TSRtfYcIKhJNyMg6DcnqtsS33eY0JHU/YoUNHhDeI6Fh2u+pAeGBJxpguD6rLpLoYp6DHD5Q5lLpsWAyDhdOEDQgvlNOrKEsSB8q6rCAJRSbgFY9YFRyMEyDL6oyTGRN7Xe5Z+tfodBlUF9OBlUM2GqaKk1w/4EiMI0/YsJhRD9a3YEsVJe45Zk6YVAfh9CGG5HXFBSfhJUmLjqPsZgfCPRhBTa/JdGGpYCvHy0TW1ybseUq6GEdbpmWcNhCDZuHEqkvAwMCHk3gejXqNV6qLeQl9mHSpOZivz4eY0EO0D0S4h+hyp8/xPsq3CAftS/dgPDInE+0H7VtsHJWT6WKcNgjoky6MLYuZ+wmSuGJmjJ0mJnkU7x+yeMgm0WTH1YOMkEy2OxAiRfyr7hXuuMdLXoNI3hXEkuAESaXNiSepOiJJehwYeUxrYqlHQEdBEksc0zvCPr9CSN5J5r+0RoeJGI88gYBkzH2vHGyJqXG6xQqRoP3Axk8+395rDxjQMeEGK/REOCLixDFxOGBMyWVLVB15whY91tThhIiBpRIKJImfgXPi6Uh2fieG2sTY8ygjmGRcjhjQFZw+ZDET36FTDoUuAPYYK04fqnl5r/37pL8HgF/6+WbU3dDQ0NDQ0NDwnPBxqlT6cQAgoh9YOPYZAD/JzLNqIzXhvoSnLFv7CQDfx8yvFo79AIDPMfPnnnCdjz1272XXGdtu2sA2oS3iwfYt1/hUxDKhKZZv0NLSHVTnj+Tj4myNSw84b8I7uTaKR00Ru3vwQuw5DY6DGS8nTsBFTsMlDhrPOZyPlzh5Y+G5LvXyJNPJOBxTrYJVhqA2Hna6LHPiKvacqjZDdq+rODgdJsdh9JxwgROyDnnpUFE74a6X+tpMl4yJuNZhoa/FghM7zkscSoNmXuhbVQz11nK6lJyepkvJaYFD8Vikb9U6eQ5vq0u6P+c2lZwsQXopLnW6DyP2xTIvptpKSGKvW9FmOK8gQuXJKOPJG2nX74RoHLhoY1GhNDldout7FSfM32tLnKLXwfWl6DhM7p5ep6pN0GdUcBooVhwqXeC8u1TXA0040FRd+8XLDRoaGhoaGhreQTC9e38aviH42CSVNKHzQ5Cd1hKI6HshiaHP+M/ozmq/pOecgyWVXl24918H8CM+QUVEPwIxCZ/d+5sV3/MXzahbJgFryGzG4o9i1F0thaAlo+4ac1PrywPae3hYAsViMazNk7we9QztmvEwozbqXuLkjbZXrs3eiNgz8mbK3qjbx3Nd6K10mRl1U20+bjuJXeLk7+EeYeXbA8x18UbdveP0VF1KTksG6mV8TRd2N/TGxF4H3/ds58BzuixxqBIeqHWxRFOpi987yxs++5f2zKjbJQ984mrlOPi+ds3EembUrUkc49Aj4GXsK0PouVH3+esDSEvGDHuqfd027i1iFWF2Ge8F5I26exDKx8RA5c0l4ydWuvSgi07V3r9odeWf17c93/tSXXsnRHD1HL0xt5iP1x8c3HP317xmPg4Af/YHvvvqOQ0NDQ0NDQ0NDe8OPk7L38DMf4OIvkBEn4XsuvYtED+kc1VEP6nHl44ZfgrAp5eqnNy9P0NEP6K+Sp/U636OmT/xdiw+3nj57VvwmkAnm5CLAW1fTGgGmrDSSZt4e4wpBuQb8HXaQN2246YiZqyKSWa5rTsg1RMRsp22+c5MYN2yOm+tbfEEmeB1CBoTRkibU1KGGCuNCfKtezlJO9GEdcHhiIitxSRbiG8LTkfHaYSYBScOOkktY8+JgRRbtUTJqeQQidKyG9Z7mS45aZM5EAgnjBWnEyZsiiF9RMSu4uR1qZMyVn1hcVQtQtFm294965I5jSzLmnpkI+GSY6nLEifrS5tClxMXOunxvuAk9wPqvrasix3vCk6jtj9xcJyYCCNnTgSZeF/qawNi5qQcNq6vzXXJHCLV42WgOaeyb00QA/HEiZ0u6TllDl6XeV+TMQ7tIwPYcZiwc32tKzgRL7W57lslR6+L9LXMaeI66ZQSkmSxJInKL5zmyWqqjgXQLKl4CXK98+f75J5PpHks7rRWcCoNufOheeI3F4G5FhLgHtuMsxign4dnfI1TIMJ3furlxXMaGhoaGhoaGhreLXyskkoAwMw/iSd6JzHzDwP44Svn/BCkAuqp13un8U9//IvYn8QHqIfsrnUkRlS/pAFiThsBrBEQIZ4rEwMbnWSaBfFGJ5GRkLxWAsu3+QdmbCCTmD3J9cw3aE8jBjB23KMD4aBmzzt06BEwqIn3Vr1b8vWlCqKDLeeKyTdHqjEkPiKqwa5UZYihrbRhgwCGTJqZOSUsxpIDxC/FfH1k0s2IzOn4nqyNMpUuOXQIOKmJ8EY5TWpQvWHhRAQcWdrc6WRQtrOXJMkjiS6sHlCngtMaARMYB4qIhS6DphA26EBMmJwuYgYMbHSy/kAyvdw5Thvu0IFwJPGe2SqnERNOyrlXD6c9T0mnLnGS5NMJXOl0QEw6rFU3r8tADPCkCQ0xnT7wJH2NCUxc6XLSxJDp8kBiMixtFl3GIhbzY059TfxmModAlPquJGGsr8nL8oEmHCiCWfrWEVF3/ZJ4AqfYkjJjYCBOKREblYNxApB0IYiJN+szCTpeIhhbHS9HNSI3XSZMeFSdsi5ROUnC7Kh9q7MxX+iyL/pWj2wQzWB9ByBxSu8AAg6c+xprX9uqjl8NsvjK/NDEQJux0vFyVDPojaYIB0w4grFDj87eO5Bn1iHgVmtkLMFxQpTd7DQeNYaeY2PKjud0l8D8iFIiiiXBItVKueLKrieJLp5dE0W80ZSLxYM73+5v8dadP4IrTvYZi1d6R4stiZVW5pGM65Sw48wByoGLa1qaLyAn8tfuHj61FTU5We8Rl9saGPh7f+vf4P/yf/2foaGhoaGhoaGh4XngY5dUavgPi9/4/Ju0FGpg3aaeZDI/MMsUn5AMa20iNFLEaCbXJJOKRzXa3hSGth0Ia/Rq9srowMl4+JEjOiAZDT+q+euIqPGEwJOcTLIzEmkCoaOQDG1v0QEk5tgDq6eMLiM6MSdD6BOiGAeDizibjwtnMTteocNIjJEl4XaLHpNOzq2CImockM2TzZx5MA48IUC2DmcSk93AkyaSJFFz4ogbFg5HMIglgRYSJ93CnaBG21yY8srnDSe9Xg9CR5JAG5XTTjk8qkH6Dh0ixAg8ICaPowflOKouBwgn02WPCcHumWIxDu6Ikk536JN/E7H61KguA0uy0jgMrJPigpNVQYguosOq6FsrEDaFLrZ0J8JiTgbQ1heNk+k0pb4nHNboQCSJlcARt8rpqH1ppc/V6yI6ZlP4QTmR3t/GjyR1AsagfYsJN4UuKwBbrDABeIR83nTZF7pAx4uZJ2dOUdIAhS67Shfgpb7mj/K4cCzGy8Dii1OOF3sHHCHm4mbUbZzWIKzRpfGzRsBGTaofmTFhSv4+J5jJNWsbplwto4mpMn7UeKPJJ9ktMaLDBrkSR6rP6hhVHM7EKM4HpLLG0iNlpQ8V56fFeVRXK5XHgXniyrexvgenxFeZ5CmP8+L5/noZlg+z6q6Qzq6XF1bpNrKqrZLDPK1ksbXJqt5ielb5efzy5z9AQ0NDQ0NDwzuIS+XNDc8aHxtPpYb/OLh5v3BsIeh36TkuzV9Bc/NX82uxRE3lq0NLBrbFxGchjs7ANpJ8425gmpuJe4Pb6v1G9RIYu8dFjo7DoFO6xAmoOMUZh+ucvOnuJQ7etHepzUtGwEtx0omQOUHNlLk8f+F+FQeudLFdoy5xKjl4LzxvRLzY13C579kzsQl/JHJ9ba77TBdc5uR1KR+KN0teeo5P0SXF0Ps5XTyn0sT6rXXBXJcKT3kHzHSpTa1TuY2eFsHVTb3hsyWFK06uzeU9benapdhvd48r59dxUVXEnI8rJ7t+nSiiUjZ3x+U2+Yqk+fm4cL6/3vn75WRVHjAp5vp8Xvh8Gft7dPpsyiPvvd+MuhsaGhoaGhoanhNaUumZ4U985lMo5hLYlAGebgidJhFUG9qCsjGwwZfD9Vx3u+Du4pdVPM2oOxvtrhyHa8bDTEtG3XXs23TNENojOg4DuRg1pw1Cxcmbj/u7MebJBG827g2hN+4qc0Poy7r4Ns+NunVS63TJul3RZYHTUHJCrioxrN9SF+9rc3ScfN/7KLqUnJaMuktOBJpx8AbO14y6q53MIFVVJYcVhzo2TqVuF3RZMuouOXQIeMEr5K5Hs751zdh+dF+FvaGTNQQAsmeVxmmZl8aLRt2FwVAHmht1u743cQRR1sWWFlYnFfAm1zPjbXd+2p2N3fl+oGm8aNRdgNxnzai77FvEVOnix7h/7s7zHd2l/2TQc//sD/7B8+c0NDQ0NDQ0NDS8c2hJpWeGF9+6AfV5Wk6YT0rLmEDqepMxugmbj/2ErpywcfG/S3GZhInIy11sycVUxNZmmwACQHQT60scpc31hG0+KXVzPa45wXHwP20injjwZU6mS8nJ74jldfEJEr/jVXQcZxNpvqaT51RzmBwnAhBZOKSY6t3aLnKguS5eh1nlzVtyMCPvc5wYc114psu8L70Np/l4cTHXHCKW+1aK3flndcF5XUoO5XjMHC73tYC6b8HF5fnndPEcyDKILNfvLEHCkmBZcchryeCSOlzHBMK2THcTqs0IAE1UFRS26Kp45Y5XiSoWj6VgpWDa5jKGxYlDQF/ExDUnBuR4waE0uZdEccGBNIFftHHt2rxxnKpEL8szKDmtQDMO6e8kz+Tbvv0ODQ0NDQ0NDQ0NzwctqfTM8E9+/IsYBk6T8wMiJuI00Z3AVSzfdudvyW0SnxJJLHOeqYhXoGriO1CeCBMIJ4oYi8n7CK5im8hbHNTDySa2vV7fJrYRudqIIZ5KtmPcEiebiFff/JeTfc73KI+XCY0DiVeUtfHkOEwupoKTcAhVMqBznLIuxkm8drwOPlE0FhzIc6JQcTqqgbrFT9MlczZ/H+OwpqBtYm0LJ10AqcywpE3WBZUu7HRhqjl1REmH/AyyLqeCE0HMwEsOETXHsm8RCCs1QU8myMBMl1j1Nelb1saYzi84eF1A1XjpKfc1hhiwl0mVo+pinCbHwcZj0sWNl43T5Yioz72IkfvaCEZ0ya+SEymHsYil/9rYYnxIA7jgNOjdy3fCUOlSvyMCyfXt+CexxVoN5609a3SSWFLs0GPNklRZI2CNLiWSegSsESRJo51ljQ477kEsBtM79Mlsm1g8yDZFUkUMw1epDRv0uEGf4hvusbWYpPfcYpWSXxv0uMVKEj0E3HIvZusFhy36VEm2Qqg4bdFhgw6rYm2p+FnZjpDy+S13yomwQyfm2zpY7JrGaeU43fAKWztO8txKTh065ZArngwrDthxj3/0N38eDQ0NDQ0NDe8gzM/iXfrT8A1BM+p+ZviNX3oDIHvFDMWkMYLT8geL64kxg8AItlMXGAGMNfp0XLY274t7qCkuAZEltsmsTWSjiwl54j1BdqAyc3AwsLbrQa4ZizZaO/JxTlUXftlO2eaVmkxPLDE5Ditd+hL145mDLTO5zMl2brLz1sVzB/JAtKRE1oU1ns7qwk4X2Z6dQegqTmboHFlUMe8c06Vsc1zgYN4p1gZb0mScbKJqOkw4p4vo6Pua6V5zEF1Glp3LqOAA7QfGQRJV+Tl6TpP1xSLe2DOCVMPY7mbW9pXeJOmSlpIZR9+36vEkz71LnHrjAOk7nSZNjFPUhA4gnKnoWzb+PAfTZdT7r5WTPWfNb8hRzh5JFSc9P17QJetuIKitfuIkO8VNyS8rJZaK4pZU+USZI2sbxVNK+5YmtiaWhIUtDYxgjLo0bYMeEWLsHiknhqDP1RJL1sY1CCsQThwxEqfjVjFnsSW3bPe8kSNOxOgRcIeVjim56g0IkeVYgBrkM2OPEYEId1jLUjrIcrNbrDBx1ASWVExFyC6HTJIYWiMnEY1Tpzs4ShsZA0ty0NpsvlMb9FijS35QK+Vhx3ttw8iiSw9KnMwMfIteK95EX+Nkhuq3ymlK1wxpKd0Xf+lDNDQ0NDQ0NDQ0PB+0SqVnhrtP1iaqtfXqHHwmLisYfOyXvVD5F7p+z4ttoHl88XLXjhfXZ9akB+UKi3wOV9cL7vPXGM2XAl0+7q/3tjpVunhOpkOZmHGFB/56T7vn5U+RDxylsxySLpao4PnnCSB6257lnjvNOfg20ZKz9YXzzz0jP16ME1HxIf0C5W118cb1PvaoOD1JF16MjVPyZCpPcxcp3wm8oKUf42OxnDWg9gKSOFRx6f0zN+Km7MGkceeWkdn1cnIpJE7Ln6//KbXkTI5D1YbO7RW3xKmbcao5+LifHfccFs7nMp5zKmXpQC6WarC1O/P9b9mioaGhoaGhoaHh+aAllZ4Z/uQPfgqFHUwyHjZ8FKPuuSF07Snjy+G8yfV1o+7a0NYMocs8TwnvG+Kv78GQap7kk0POqBtS4VFz8JPIOvZ39BPxk/N8GtzxdTGJBeaG0Ms8iiQYLRmoXzaE7h2HuS51A0YXHx0n35eWPGguckD2ZDJO3qjbP5O14+A5+TtOJqzvW3b8nC6J02VdrDLHEJ0uwumygfrcqPuyLoMbL0eaqtg/o5Xra9d0eYpR98srRt0+9s/QP/ev0aFqx7pImJRt9hV855LdZu5fYu4bVY8Xq/TLTT7z3M9wPHe+/X7lONnfLfbedUtG96g+W5vC+5Sr381N7uGMut3xS29Sa9uf+ct/4MJZDQ0NDQ0NDQ0N7xpaUumZ4ea9Fbqu/MZ6Pom89I24Pw7MJ7l+qtKV+8vz0udrzIolGJVJr/m4lJNWP9np+PIk1t/zWjKNtB2Zg//8NdRtZJ+lcvcka2PxS6+Lf+6z5BnTfNJZJtvKapIn6TJ/zmXsE2cLBSjZ5PdMmxfj6rI81+mCbtd1cX2LL0+kA870nXTuE3RZun/BoXfjZX493z7Xt+z/lFPkOg52z/T5eV+7yIGWxnyNa33JvxP8+ELZRpYldaVhung/xSIGDhhzsg5cJVGZeJbsPtJYxQd1lTKcCk8pO98fL6u0BhePiCkhbh5i40KcNxxgDJhSHME4amwP2SeuTmnBp/SDQxGDFjig5nCg8SKHJU6jS4bZ38Uvb8LLb6mrYRsaGhoaGhreATDkm8R37c9TlgE0XEVLKj0z/JMf+yJ45DTlG8CgYpLIAALViSS/9KID5ck6S9VAOs5iKFueHyHVSjZ5nyCeKeVUvIw7vZ/Fa72eTTK3LItVyqRImcCYjFMxce0QqsRSVyyYIZakU6pe8Bz0eGfHE4d8T+FYcyjjleO01QU3mWMQThoPYASiSpeO4Djk4wTzNcmc1hYbJ+6qCo3pI+jSV7qEitNO67XKZ0KU4xGMUOjCT+CwKjgQAxsOIPuwJkiSLoB6DGVc1yVUfWtnfS0dpzO65OsHwsL4eIIu2u6tam8J0wFFZRpl/yq7AzkOvYtlfGRON6YLZx06ypzEV4wqXSR5VnMwTqHUpeCUdWe8oSHF5nVVpplYn631vQ5UxWsOsqhK2/wJbNWAXxIajzTigDElVfYY8IgRe02aTGCcMKUkCkMSMkdNHI2IONCER7UQj2AMFPFY2MRHUmN2vcIDBrzBKSVVBkzYY8wVTSSJLYsfacQDhpQoOmHCA4bUZiLgiCklih4x4oApHbfr74tE0KC8LOFzpAkHbfOosXECZMnoseBw0DaY6fojxsSJQIjE2Otxa/MjhnR8T3L+qUx2KQ4Ycc8DPvs3fw4NDQ0NDQ0NDQ3PB82o+5nht37lHgSolW3+htkmzrYMyxw/zCi6dACx6qWg51qlhB236aUlnhg2EZYKHfGJkYmwVBRwFZP+z+Lg4l4Na6XNjIkBqJ+OTSBLTiMDINZEUv5+3WJynGx3K+Nk15PPyKw7UsEJjBNqTnaPcxzMc6XTz/dVm/P1jIM9I4utpkLanJE5lf9jhKLiJYBFh/B2uhiHleNgx81M2XSYUjtyVUPV17Qs6BKHMg6FLvZ8S12YOelizzX3vWVdPIf+gk4BjBPlne8Cih3XlJMlJGy8zDgkTQAq+p5xiAynC2a62NJMP168Lp0bL8vjg9PyuzxeGJHqZBoKTnl8zzlZwsZ0MKXYx9qGFcTkmoqYuRwvHRiMte6YNkDKyU6IWokz4cQTDjQBBOwx4sBjShaeEHFClJgCBkQxuLbEEEUMfNJkLWEkxhse0IOww0qSLDwJM028vuGTPGOilJgJTLhDDyapFiKWZBET9LguFk1tBO6wQk8BJ0wYWJcpaqLpxFMyMz8opxv02FCPAWJMnjggVhVMxmmNgB1WmBIHpOTxPQ8IqssExmvldIseIBKTcaZkzC2xPH8m4B4DAo/aB3V3Q/0H4Fd/5UM0NDQ0NDQ0NDQ8H7RKpWeGF9+alyZIcqmsS5kb2tKZ2HYWIuTlKGVcnl9+n/1RYlyJ/fmew5yT/7xVA1kio+YUFjiF2TXers0+Zhd3s/hpOmVdUHGyPbZKneolUF8/J8/B953ruizrVOqSY0v4cXG9MGvz18sBvs380Tj4+/nxUvY1a4TF3+i+5a/n+9a5MX/u816nHl2qJEuf5/p65TXCwj08B282Ti4uYYmSElVMqHeQJWB0JvB550LO5xfLCCeq/Y0icdVGb7Ae3T19G73/+2yXW3IeZv445p5Q1TI1kiWA5fGJuMzOKqeyzVyRkF0Ja84nihgoVm35lm+9QUNDQ0NDQ0NDw/NBSyo9M/wJM+rWucG6mPABZ7yF3FpTdqbWVq1h8dyou579rNiZXLvZUbIbSkuavPFwHZdLvIC5efKSKW8Z8wKH0cX+4948eWYI7T6QJnz6YyAXu+PeEPptdXmKUbc3TPcc5rrUbRxdm70ufhcwbzbuOZWftb+WuiwZdfvnfNWo253vOZxcX5vO6XKGk9eFgco/y5IJNafaTHnrx4vj4H2pvD+XN+o+OPPxNP7SeFkw6r6gy5JRd2nW34Hw3hWj7rn/Vx36pNBrOulp8vuNK7L1JvATXNLHxeXywNyEWpdxNl5ClWTxj2go/Yww74sepzPn50Tp/PqeQwnf97wp/HJi19/jslH3zGB9Af/VX/6DV89paGhoaGhoaGh4d9CSSs8Mu7sV1iEUEz5gU1ZfMGHD9fbaWzdh21glgmLNxXF2E22WCV9purtBED+k4vw0UWb1pLGv+rXaoS+++icAvVYMWBtXQDEDItnVruDgY8+p4gBgVUyywcDKGQuvuea0BlWcEgeNAztOjCucgPVMl1DHbviu+YIuwGy3t2uceoSZLqHgEACnU80hWOKq0Gk906GoyWI3ESd9BqUuuNzXtld0We5rqDh0Toeakz7HglPVt56ki+cEd37NacNdxWk162u1TsGPH67XOQeo9mVfu8DJxmwmCaydseGcU22RPtet1qkyD099LccT52ouq1QrcT3VMceFvJnGdSJq/vl8fOnMa22aX5lSpeG5870Zvr+GT57NOZznY+d/vXjxshl1NzQ0NDQ0vJOwUup36U/DNwQtqfTM8NP/ry+iHzlNAiNkkropJolrBGyjTGTFhLfDVieBxJJU2mpiiBjYcYcd50TRHXfY2aSQZJK7Q5cmugTCLfcpqdKjwy36VEGxcfGO5X6WBLnlDpsi7iCT3nJiu0Ynps5sk+YOW52cB5ZKhx26xGFbcAKLYfO2mNiuQRUngHCDPnEKCLjFSjjp/UoOW+6w407aDDFPLjnsELABpWRW1HvWunTYmC76nHYFpy26lFQh5bArON0h4Aao0jrpuOpyw5lTj4Bb9InTBh1u0KXYdDdOdyzPzDhIG8npEiQ5tsQBJH1LOQQGduirvnfLYabL1ulye04XyrpUHApO0rdIEkkMbEFzXZiqpMpKOZEmRzZFX+uYKl2STiUnBGxUF0ud3BS6BBDueFXpclNw2HLALWcON6q76fICAVvUyatSF1Zd1oUuW/SZAwhb9Emnjkl0KTjdIGAH+XsE45EmbLSWxvy4bLwZpw36lKRcocPWdIMk0rb2zgDwEiswctLj6Kp8BvVYMpivlMEvsZvAmIirJEy5zNWSc3bcjLE9rE0+YQrMKzY91i7xdsKkGzYup7NWysLaNIG1ytLaIf9tFFnbpAlHLv5XLdFz8VKbfBsmXMff+1vNqLuhoaGhoaGh4TmhGXU/M3zwxUedAMkk80GXTK1BWLGYMw/EWCGg52zUukaHFUL6pnyFDj1C+ma91+oI5ry0ZQcx4d1DdszaoUNkxiMmBJLEUmQxCgYBN+gRkU16LV5pvEWHDVh3AJPJ/hpm1I0UH1gMla3NA4tx8AqyA5xxsOPGwThBjYIBYAuZpHlOb0jOuYFwOCCCCLjFKk36Sg5mAL3lHmuI8TBpEmUNxoap4vTIjKnQ5QjGSIy1JgtMF+NkK6BW6NBzgHhgqy6gNEkGgFvI0p5TkfCLzHhARCBJLEXmdA/jZLrslJNx2HLNQRIxjJMaPhunPTOGoi+ZLuf6Vpm0sYqkzEkmxOIJJLpMHHFPklC4Q4+JZecr4zCxTL0JlDjZRH2HTjih7lsrp8uD6iJJGcaRGUPIHKbUt4KaTte6YEEXicWoewJwUA636DAx41F1uWPhMCmn3LekzTfsdLG+BYuBDRh7AGPV1yKGNH4Ig5q2S980O/7MsdKFKRnbmy4H/XzQRGkE44BR+5r0raOOl63GBKuQcuMl6SLJDmvL6NIhvoLHf+/kYzvfkjHmPJWXiuW/pwohd5HyeLl0Lt/jMvw3OmWbytjfz85JSwQJYC4SPppoIvc5fz0790I4w+I1HH7ti6+vntPQ0NDQ0NDQ0PDuoFUqPTPc/c7SqLv2Olky7Z3H5sdixsL5m3Dz7Ci/Y/dGwwG1j8fS8XlctwEu9gbTc5PrcDG2zdGzeXLNqftInM5XSYQFDiWWnvs1nbJXClfHlwzUAbf86AynazFm8bk25cRJzeGaLjUH61vsOBo616rOtXmpemXOoW6j73tzHTynp+l0kVOhyzKH821eiss0wNfXt5Y5kIvX1rd4/nlr06Ux7vuSf6cs8fRjyKc+fDzzdLLzuE7sVP5G7iK+TT6+lqC51ib/+YvXJ4DcB8qleWfbM+N0GeeW5pX41t/ZjLobGhoaGhoaGp4TWlLpmeH7/tKnQIXqc6NuVMkGLMRSBqOTi/SteI4HNzXx5XD9Wxt1cxWfaMFMtrjlklH3nEN9AW/UPeGyUbf3J/IcyHGYGXU7M+XBNWpJF9+IGSekNWAzQ2gQcHIX2DgOqxmHy7rYjlkWH2cG7biqy6XZP9PcqLvitICZ+fg5XRReF79kaXQNTLror71R94yD+8USpxFlhQzNdfFJGa/LrG95XWrhvIfTW+uCujJHONRG3e/PjLrdmPcauvv5Mb/HWMUbS+dp7A3Ua0tr9RoqDM0rzybj5DYg8CbX3jDdt9n3Hb+UzMmQjbpLDv66BadBayBLDuW5hLp/P8Wo2+vgl/j5vnbRqFvv/Rf+j3/4/DkNDQ0NDQ0N36Qg+Y+Ld+3PE74wa7iOllR6ZujXAbtC9QDCbVkhwoTb0qibZZlaOXm5KY2HGbgBVUmUHerhuUFturuFmiNrvAblyT/LxKU0Eu5BYiZO1magtIKVZTUZ0mZycT3Bu3Um1rel8TCLx1HJYedSGVu+zGmFwlxcOa0LDh2ATc4BIZAstSs53Thd7i7pQsBtrA2hb53h847yMh+AhdMFDhuny6rUhSVhU3IKBGyKh0RP0KXkBAbuZroEp0v94vd9bcuXOfm+tnJ9rYMsDTUEkiVjKYZ4a6WECZO0+RwnADdOlxuvS+BKFz+e5n0tVCbwa12GZrqsAKxd31pT/kUAYVsmkZiwY/8OqI26q5iAG6fTjfv3eMO1bmuXvvBm/SvUxvbv8wov4ypxIhTm48qh51DFG3RFIsuZvnOd5LFlnCUHvwGB57BB70zgawN1bz6+djotbUBQc1JfK4tZfZoKTvNNFOp3gufkN1HYuETXznHwmyr07t3tOVUgad/N1qctGxoaGhoaGhoa3mW0pNIzw8/8+BexiZZgEOwQcKdG2wEy0XgRxVS3gxj/vlQD58DALTq8xx06lmvccYeXCGmXrJdEeI9yRcQKhJdQs2PIROU97tPuZmsEvMd92t3shgPeYzE3Bkt8p6bQYDEevkVOKKwA3BDhFnlx3A06vIghcdihw8vYS8ziR/OSO8dJOBCAFyC8h7xk65aA95E5CYcucVgh4H3u0056O+7wHouZsXDq8LLkwB1egLBjqS64A3AbCDeVLjK5p0VdCDeQe3Qsk1PP6Q5BOLAUlr0XgJcd0GtFUwDhfQTRhYRDqctWr78pOIgucvwOnZhAa5LkJQXcUe5bvepyo7oE1eXO6WKceojJ9vvco1OdbhMn+fxLIryHXP22A6q4A+GlGaJT1iVx4jmnl0Vfe4kgupjuAO6cLjcIlS433FccbtCnviacOrzkkDi9QJA2qy4vA/CyY/Sa+OkWdCk5bNDhE7zKHGLN6YWOR9PlPSLcBWCra9ICgNtCFzJOMehOccLBOK20r700jiycXkA5AXhBhJfE6GBG3dEZ2RNusEqppR4dXmBdmPP3uMMqxb97usUfmd7D74xbEICXvM7JM5Z7bNDJ+Wwceuy4T5sJ2B/S8blBV+2kZ/cMLDsC7tDjBh2CJia3ycxfOIjPVTZM36LHHdYpoXfDfWU2Dj3fOIlJ/EoSPQBuucem8NpiyDU3mrTvESrD9C36igPBG91bm/q02+QOK2wLg/ROk2mWMl+hw0usU4LuhlfYFRxX6LArNiDoEfAC68QhgWVs3aDHP/qbP4+GhoaGhoaGhobng2bU/czw+tf2IJ34bxl4ZOCo1Q8bEI4Qw9ctZPe0UWdsFpdGxJ9gQmRbGiIT4YkZXZAJyHsETAzsGYAmliYwDtqWl9zLLkyQ2fVLNRqWiS7hBXe4NTNgSLXRDrKTFRHhBsCOxdzYqmK2AA6Q5WRbBGyYcALUeDhgzavEYYMOaw5qFGym2FIzEkh8kt4HYYQad5MkMCZm3CMnMCaIwTkoc0Li0OMWjE453HGHG+MAwh0It2CsIAmGGwJ2DDwwcGKpitle0KXkUHLK/jZSeROZEUgmnu/1wBgZr6MkMN5TQ+i96vJeoQsVugTHyYy579DhBowbBihIAu5G+5XsZCbJHzGIliTmttDFOMWki+hknMycHKr7ShN8I3Ohk8RvVJcXLJzsOb3ndDFOq5kuBNIE5Q6MFdW63EdgwFyXnSam/HhZ0iVxAouxPcmf9wMwRMaH09N0eU/7cq8JQuO0gXB6oX3rRvvWbSe6PEZGLHR5SLoIh8FzqHTJ5uMbBKwhCRgKhDUBKwYeIUbdnSanRo440gTSxFK0MQ/gTmMb8xbfoEOHgD8wvcTvxR2+FgYwmVk46wYDkhhag3HiCZFst8AOSP2/UzN2gZm+DxwxFGb+lzYg6BEwcsSeJnQIuMMaE8d01VusEVkM0wNkp7wIxiOPAGXO1vd2WGED1uotM+sP2POEiXLyyJZJCscuLRs2E/iBI6aCQ34391gVVVc9AjqQmLwTZ066cLkD4aVyMt+xHWT8mTY75TDKDgC4w1rjCNJ7WC3nl3/tHg0NDQ0NDQ0NDc8HrVLpmeHu2/IiK6I6q7hkpuxNfM0bxZtY22S5Q550AkBXVHjY8eBib9IbXHzJ9JqIEMi38Ronz6GOAwjM2YOlR2123FHdxqcYQl8y8p55nXwEXTyHcitxuScqXfqAitUSh7fRYa6LaH+ZQx2fM+6udck8eudM3FPdho9i1E0u9rqsrnJa1uU8Jygn7WskR5/KYcm428cliOweuU3lYqWncaCKQ/JW0kTPligZdVsbywG0/NxrXUovqxVCqvizNszNw5fN98+df12XMHuvlRxsfJVtLt8RS+8xH5fw/kZLbaYr518zhU8cSl0KlM/E2nitb0lCq+6Fv+PbbtHQ0NDQ0NDwjoHf4T8NXzdaUumZ4Y/9pU+BQp4ArGeT2DoGUBncAkum1qgmFSd3z85dz9nXpk5ok7S8tfZyPGibrF3k2tg7DmI87DjNONQG0AOQTXsBRPfC6a9wgmvztMChihlVwuStdSFnAI3aABognByHVT2nnJUtusMLOsQqPrK1K1+PkXVaOQ7BcyjuYQ2YHCfRJZ/CnpN7Rp6D18Vzsr5r7RodpyVdZruAXeAkunCly6EwiCYC+lB/PlzhNOdQx8fkCa86kOqCrEvJgVybgcI4G6ZDrHQpOXQgfKLyN5obQnsO/hl+NRyr31tSyeIN6liS2ZkTu2tGFy+Zkfv3WhkvcfD/DTLOjOr9+bUuo4t7x8n+Xp7vE1m+EdVn3fhJialCFw/PwZ/h39VL9/4v/8p3z441NDQ0NDQ0NDS8u2hJpWcGJuBQzAcYjL2bIDy6vZMeKFYTokf4eKomtnvOSRhm2X2qTKocEasJ1YliNUkd9RyLJ3IxGEfkpA8XS4SM46Pj9EBT1eYHTDMOZXwA0tIlZoszp8OME1dJlkHjzEl2h6o55AlfhOhiCZMlXR5st6gFTgCwn3GKlS6P8RqHWMeqi8Wj4zQBThdgHzOHCFZOlHR5cJPWB8qclnTxnPbICR5mWVJX97V4ua85DoPTZQRwLBIkEwMHx6nsWwwZL+d0YVoaL1zFv8BHnIq+9ivhEQe9JoPxa+ERj7r7GYPxZXrEm7RfIOMrdMQrOiUOrzDiK3RM8RtE/Cry8QNF/AodMmdi/HLIS5YigC+EN5UuvxTe5L5GwOe7+6pv/Tz2bkzXup3cO+LkdBoQMRV97auOkyyZi9V4GTAViS1OS+zKeyQO+g4pcaCxGj9H19eOTrcTeQ5zTvECpwlc7ZLnY7tmmawrY9B8h8WD7YqX4vlzrzn599w4a/OcQx2XbS5BIBwxtf+qaGhoaGhoaGh4Zmj/+ffM8M9/7IvYjznB8ADGgRgPOnk4gnEMjAeadNLDOIaI1zTBpmAnYrzGlCaRIwFvMKXJOgN4w1J9AwAPBLzRCT0A3JNczyZIe41tQnRExBtM2OukbYRMzPfFhGcP4JEZkSXBdATwoPFeOdxTTH5HR2Lca5snAMeQOTCAUwA+xKTbsRMmAG8ADCzxSWOr9nlDER8ic3igCa8x4aDxwXEaSNqz14mqJCM4cYoQ76mHBV0ihNMhMN7QWOjCeEPGiXEKjDeYUrXBCOA1IgZI8iqC8HoCBk2SvMF1Xd5Q5nQC4w0iDsph0vaVujwyUt/as/hbmU4PyuFe+9YxcRiTV9CRal0G7Vtj4mC6iA7HIiYC3pA8A0soPFLEhxgXdBEOIzEeKHMCgEcAe23z5Djdqxb3Ol72iJUug9MlAqpLTm5NOh7s+JdowD/hR3yVR4CAL9ARP91/iN8iqZv61W6Pf7l6ha+QuJH9erfHv+4/wG+QpB1/szvgX/cf4NeDpEZ/qzvgZ7o3+GJ4xIiIr4QBP4MjPo8jTmB8EUf8YtjjF8Ijjoj4dTrgi/0eP9+9xgETvkpH/Hq3x7/pXmGPEa9pwJe7A362+xAPGPGIEV8OB/yL7hVeY8AIxpfCCf8U9/hAe99vYsAeY0qq7DHiEUPqm0dMeMSAQZNnAyIeMOKk8USMf9O9wpeU00OQsTmqTo80YkBMSZMDRhwxYa9nRD33mD4h1zzoO2VAxEAxtdHOz20mScBjSkmVx4IDgTAiKgfhRCQ8jeOe5FmdEkdpn7WZSJ6DxY8kHKzNg/bjMvEjCXbhcEochjR+xoITgRALDlZhtuesyxETHnDKiVYCjgWHQe9v8YEmPGCoklOAJpAx4oARf/9v/xwaGhoaGhoaGhqeD5pR9zPDh78uE9MTy58jAJAkik7MabIxEGPACFtfMRLjQ4y6DIswEfAaEzqWpSgyUY4IHPE+ekQA9yzLJya9xwMYxJLsYJIkBjGSyfUDRTxy/ib+ARKvEdAR4YCIAwM3kK22LZlkU5uT/hnUTFY4MGLJicf0HfsYGB+ycFohYArKKQIvjANkxhaBfwABAABJREFU+VHQhMaDUJFlUQTcQzgMYOGECQ+sbSo49br4ZE8RewZuId5OB8jSoS1kucyRZRmZ18UmdSdinDDCHFyGQpcAwqSJpY7FaHmCJJY6Bj6BDhGENxGgGBGp1mVSXaTNutyGJGH2yNkH5hHCYQPxs9prfIeghsOSUDIlTaeT6nIsJsYlJ8twD8R4xSN6iDHzpImlnkWXSXUxHU0n0iQQtCKKCg6mS0y6CKe10+WOQ9YFwBqMDoQDSyXZXj9/BONYjBfjgIKD6dIhYAyM1zzJToWJkxgds/ajf4o9Nqz9lBj/sn+NDQfsEQECfm71GmsOkmQg4Of71/gCvwEDiAR8vn+DL/A9ttyBCfjF7hG/HPa44R4A4RdxwhdwklQWAf+ODvgiHWDboX2pO+DL4ZB2+vpKOOIrdMRWlflaOOFr9DXs9C3wKgz4KfpATbU7vKYJ/wT32LIkZABJaIA5xXvI+Is65veYQDyl8XLAhCNPMl6I8IXuHv8uPOBbeYeexAh9ZEm4gGS51sgRJxJOJ0w48YQVxCdpBGPEiA6i60Qshtiq20RiqG2+ZxMYj6rbFuuUlGHtu2wcigq8g8YvsAJIq3W070ETR0fWarYivkWPnoIkuFgSZMIh4sSaCiOk4xt02KLHSIyRJ0yarBKOtqA2c+oRsEO/yEEq4ViX+QGPGHQXSuFwwgTirJNxmrTvHDDiwNmXadLzAOA3vvSAhoaGhoaGhncPHOeVyg0NQKtUenZ47zu25w8SasMaQpoMWmwLfexb6gm174f3LtHcS45pHsPF7OK5z477zCKRkkMd2/vQJlkzTnSdUzlwljjNOdTNm2bxnEVF5wwHf71zukzwHELaWv0cB7h47tdygRMc5wVOvm+de0bnOPknVrtiLXPw8UVdFjiQCzwHprqv2uctQTCWMWSXQXAmcwBXxI4Uq3ueKFbaDyQVY4aJGAPFKj4WcUTtecaUPZgsPoaCNUl1Vxnvi6V5Fpe67ClWHGZ9CzVYk5tlXJ4jHAplyPkB+f++8bqi7rtw90PxjjnX10CYcfLjwb+nfF/x95ze8nx/fXZG9Z5jufQuXbM6f4lTHfs2+HfrZP2v+PW3fccdGhoaGhoaGhoang9aUumZ4Xv/8qdAxbZca9QziaUOcckQ2iZHte9HPW30JtbewNabv/qf3tD2lKZ7bLesJlS9NPoqp2TEvcBhQJ2i8JPUlePgTXwBP0mtJ3jeTHlEPYkVXTKHuRH4U3TBRV1WqOE5XDNQHx2no4u9ifVqoa95U+t54qow6l7QhWec3k4Xz+HkYp9cmOvisg2OE8MZqDsOAYQbrk2te8x34SoxZ3R5vHiO3tS6d7r48QQf05yTN4Su21vvtiacLnPw4+Wx8JACgE2yrpd4hQBw+Xmu2hxdHEBVUhWaJCrb7jn595bHyb0lVs542//MfmV2fs3J/30olmgCS30blY6siaWZUXeiTDMdBsfB38HeQ75/lL/7C3/lD8/b1dDQ0NDQ0NDQ8M6iJZWeGaZJlu0YGMCe6vqMPcZqArR3prv++AFcJRxOPqbaEFpMevPkxbxSSgPb0kw5kjOw1eqKyqQXb8MpzjjNDWyj4xQvchrIc6rNxyfAcapNrj2nCK34KHBAbSy8J6cTPCdnNAzMOFwy5T2hNuX1Rt1xgZPn4HU5OF1Ks+RIccGYe5xxilXs+1q8qMucU81hotq4W7xtUPS1unKHkSt3lnSJFGfmyQeny+D64uiM8QdMCzrlNoxu/EQf09wQuo6RfH8MxyKW51xw0jZUbZ71tWl2fG7UXRrbR3gjbr8jo0/6lDGjTqDY8RJV5RHq3dQYrBWJdm59PoOrRJX9bZ4wyp+P+kzKNlaJX/1d3WKfzL6Q3EvtzH+fnA6eg29znB0/f761x3MwEEh8neLFGsWGhoaGhoaGhoZ3DC2p9MzwT3/sizhGMRuOEKPlE8muW2KeHHEKjEc1U44ABhITXbOLHQPjvjBvld3WshGxGNZyivcQM2f7FnxPEx4Kg1oxfx1TYmcgSfpYHME4UMRBd18iyBIeS/ycICbVe4rpXOE0pgTVUHBixwmQZMIjxOSadL2OxKwTSlQcHmnCnqaK0yNlTieKeCw4TSRJn9JL6IBs1A3ITmTG6VF1eVRdDsphXxioD8qx1OUBZtQtJr2mC7FMA/fIlSwPiHh0nMQsuTTlrXUxM2EGi5GxLq+KEO+hE3Li5+h02VPEoM9BDNSN45ieyqg6mS4xIHE04+EHFCbx+gwTJxqTiXPqaySGx8ah5BT1GVvih6B+SSklgIrTA6bEIWrfPYWIBxoqXYwTQBj1HiWHe21zBJI5uiUtxKw5J8fMgDr5amFKBtCWsDkUMTQxZokfAmmSU/smJowU0+5lR0yYKO9mlk2sJZ0VIYbmh2QAbUnQmBIMpD48yVAajKN6F0kibdKd+NQgmoRDadRdcoqOww59SnDY9SxJY5wiISW35B82SsdlJVeZVBPtpyJJQmTnS6InFJ+X526a1YlSO96jQ5nksR3uYmo1p6QMg9EjKAdL7MWKk71/jZNUsFF13Jas2T2jVo1FMAJLhViZKDJ+Fg/2LBKHUB0vE0uS/JP7+kowaY/0h7/3t/8NGhoaGhoaGt5BML17fxq+IWhG3c8MH35ZjLpH/WPb1o/EuOcJk1ZhjCSJI5s4TJrACCyTsxhyfIMVmCTpEqIsTZGdk1jNXqHmrgwwJwNbMd7WiSaJeeyBJ1nuQ+Inc+SIDYImLCJOiLjhDhvqMEBMuaOuYzFjbqu6EE5SI1FywAKnrRra7iFm4y8LTsRAT2KNfYQZZ3P2m+FsVGttnhJH4bRCQCDCEXJ8hw4rCpIQY8YOhDUF0YU57VYm5uKSBLA2P57RpUPApImlLk64wargBGyxAkMMqKETd8B0KnWZcCg4GYdOdTmQxDt06KAcwLhjQkeUdLE2L+kyFmbJppMlAiaSxJKYwHeIQRJ8XZzwEuuUxBSzZK0eQgQKo+49TWo+zkWbs/GwcVo7XV6gRyBKuqxB6AtOB+KKw1D2tcIs2Th1kGTDpImljiNuta89QEymQUVSoTC1HiB9Kxue685o1tcghs8BBKJsUr1Djy4ZQAM7AIE6NbnOidAJUh10Kq4r9s9Zl1F1IdVlzyM6EDboU2KpY8IaHUCSvCoNoS2ZlzmxjNlCByyYWG9VBzPmtnoeS2OUlVpsz0T/PmoSqTzuYe8E+2wEY40OpOMcXFenWXvT80deamnXt3umBE/6WbfAx56Dxew49e54Op8A5tKDrL5WWcE2u77j5DnMf+bklO6RN2Pzm19uRt0NDQ0NDQ0NDc8JrVLpmeET33lTxXQ2wNwsFoXJdZpc1MtEIrnJC83v4U12/fG52bGL3XHfZnKm1ufMxy9xYMfBx9XAWeBQ/cJ9fomTN72ecXDHfWLd6zIzG/dtAM2Muj2n+T2vcfC6XNbBP6OlvlXFjpM3FgbVHjGzLx+eoIvn4PvafLz4vuWfkefEVeyNuqUMqL6H82Ne6GtXxsvsfH+9C9/SFLr469fVL0XlysLlvH/RtfHiOYw1i7P+Xwaf6PCx96lKSRPOiZySEy1cZL4UrY79PTx8cml+fh3Pz69PTf2E6/MrDh6O07WFa76vLCXsvuM7X1y5SkNDQ0NDQ0NDw7uEllR6ZviTf/lTCH2eGGzU4NYQrMTgArwh9Ohib1jrDW7zN/yc74nzE29vPHwsprF6y8ocecl4uI7l+/WyzZ7T4B6Cn2ytuR46neOQ53ea5HEcskmvxfVyEm+g3i1xcnhbA/W1u8o5g+hzugwuPlKtSwegNLWeG3XP+1qpy7JR92XfnJXjcM5c+Zwu3mzcG3Vvlq5/IdlgVS4lh9LPKICwmxl11232Jtd0VRfft+rY6+w5nNMl/Z2k0udtjLqvcWLHwRt1v7EqMG2GGXVbvEZXtbl2H9PElzNYDy7r6M37o+O09m12z8ibXKfzz5T9JB8rz0HjUH4GuerL4M3GU37RkrM0N+ouE1cEmhnbD3V6e5boWnlOJfR3P/Df/JGFgw0NDQ0NDQ0NDe8qWlLpmeF0mDBGN+mtjIc5ea+ci73BrTeH9Ya2I9U+JGbaWxpAV8kDzE13vWmvLL0o45rTktlxnoTHmbGwjz0HSy5kTtFxqg1s4xVOvMBpxJxDiUu6xCdw8Ka8XsfSTNmeec3JJXlU+3O6GMeS03Chr0VkD51zulgFyTldvNeL98DxRsMRPumzpFvNqayaYWDW5iqmJ+hC1/pefCsOWIirZN2CLrO+VrQp6rLT1CZe6lvRxZ6Dfyd4Tk4HF/cgdEXZI4Gw4pDiAMKu2CORUCSe9IJl4omYcIO+SvRsXbzmUMU79DmJw5I0CkW8KmNI3Bdt7lybe3ecoIko48RzTmUym5iE4wVOa+7q2O0juUWfk2t6fpmo6l0iao1QcahAwI47DI/TwsGGhoaGhoaGhoZ3Fc1T6Znhn/z4FzGx+GF0EE+gSABzRACpga1MlEsjWYsJNpFm9MjLWk6Y0KNDYJmIDGB0kKylGdBafNQdujoQOhBGmEmxxNlMNkpFAUKqWwiQiZFNjIP+lKVRMXkvTSSVCZ1+tuQEUMVJPJwIJ84cAgEnjlgVU6oBQKf3FCNlVBwnsEx+7TkWnIgII3Nq4wpBnwojJN75uR0gugwc0zN6mi7KiQmBCAPrcRZfqIFZB70Ympe62M5pNpE0XUwnSahw+kyHoLFy4q7SaXC6HDEhqkeUfdbrYkmZWpeoE3bhNDIXW5vPdYkaE7KZtHGa0nHh1BFhYkl4BBBW6FICpEufkURID9npLRIwcu5rUav1OuRCk5IDq449AjrOz9ZMlB8xAdrnjD9UE9KxxdrmANKETNbNdLE4ICQOAZQqk8rKJSZgYtMpSvIr6SLH83Mm2YHROEhNTOIgnEKKgZzIszufHKcRNQcb8yUHuwYBeB9rrLQyZ4QY36+0XxufG6zQccAjRkl+yMjTd5NoGyBjIurnX2CFPUs6d63HTyxp8i16TIjiDwZ5P77EGo8sRvAbHUlHFhP2HffoIf1V/MkIN1jhwGLgv0GnY1PiHfeamBLNI0kbiK3NARuND5iwRSdt5JjON45Hll5qHIzTJnEQzgGELXoMELP8FYJyGsSvTt8mJxYz/I4CeuRdEzsEvEDAI6vZfUqASdJtgw7/+O/8Av7gf/ataGhoaGhoaHiHIJUIv92t+MZjqfq64a3RkkrPDK9/U22aCRi5WBqjk8y81EyORRcD0MmwJA3k23WrOIo63ZRuJca/OlZ1iczE2fRW4jwBtV2F5BqU4q3+RqoZgLVejwFMPDfptXZGAiKXW5f7qhJbTiUTIhDp7m/KQZMFYGCly2KmdE9UHI2DbO8+52RG3cbZlgNZhUZXxcXSMp3cD46D14WQd24adAK8VePhCaycKPk3MSNNCE0XM4AWznMOAVToAgT9nR23pWHGwetifct0GR0nQCpOMgegU10GMLqCQ7QPJg7ynKzeJpsWZ10k2VHqxtigQ6fXi8ypr1q8gu0CJjsODlRyKPoacgVRySlAJv62dC+y6AJ9bmZSD2RvojK2a9XjBdV4Skbaqou91K1NG9TIVVTSl61KiTVZVu7qOBZrvGxHtp4lQWMc7AxCvVvaJU6eA1zcq7gpOcXS91Yg9GBMHEEk7egRMLAkkjfoqmVqlgSz1HCHgA4BA08YSJJkL7BObe4RZBwpbzkfiCA8QkzR77BC1L4PQHemY03vkLaB8cAjQIQdetVcntFWky8bHVHCiXDgCaMmllY6lgEkTr1WKRmnkaUK1Nps7znjZBcwzpFl90VJqIb0FukAvMA6cRIOPdba30C5DTaGb7HCDXo5DiTuAPC139yjoaGhoaGhoaHh+aAtf3tm+JZP3eaAnOEtSbVEiaV8dOkxwwuxN5QlFwR3T29E7HFx9yRCbWqNpetfvkHiwHmyze4ePvYD56LZMeaf9x5N1014r3Mo78PF/wCoD06+BxHNzJP9c/OUfCLfc5gu6Y4LxsIzLkUyBUi6RKo5+RuQM+qWU95WF6+748D1MwqOhL+b18VzWPIvIh+7wMcejAvjZeF6F8fLQj8w8/JzfW0JntPMFJ7q2F/pVCzPI1D13lryCvKxxzWfKvNdK+OyUQH1vmekydBLbSAXXz8fF2Pvd+Q90OzojAPna/jP+zbBxb4NltAqj3z7p5pRd0NDQ0NDQ0PDc0JLKj0z/Od/+fdURt1r1EbdHbz56/Kk/JIhtDfqXjlDXG+mfG4nJoM3wD0iVqa7voWrGYczbS8QGZVJrzfq9qa83rTXGxH7O/iESzLpVYxuUr6kCy5wApxvzhN02cDrciE5h3mywu/IdaCpOse3eeU4Le2O5b1/YmGevGTU7TvL2+oyznSpOXmPJq/LklF3zeeyLgGELZe+OXm5mmE+XoqLY57cWxovJfoZB68L5pyKODoOS0bd8+RD/eR7Z3RfZN8WOXwNRz0sJ5g3kMWdS/IwcDGmBY6XjO59ImsJc0P0Osnjf/rzV1ohVbc7/92/I0Qn956a6RLnuiSKcz6Te+7zxNS8Xb6t/9X/6Q/OjjU0NDQ0NDQ0NLy7aEmlZ4bD/QCe6smWR23wO5/8+3i+vfdCvQa7+AJ84cL8/tcrUKjcb37hdv7TVQKElyqR6utcvvv8nNlEe6HCJbjnPk+G1dE1XeaVCA5F1cIS5pVGNNPFx56Dv93SNc/G7Cp5+IyuXH7kct/ymD1j8rotPdcaoTo212Wp4uPSBZ/EoXiYS9VZnoMH1Y95hiqxxK7/x49SqbfwmwsdZPaMXZJnQqwSjBFcJQQZtUF6JK7NxsE4FklQMYkfq+PeXPzkzMUH3aLAYIbq1qYBsUrq2HJHb/peHaf6eJlcY3Im8GD12yo4udgf96bxR8fBG9t7s/7RcShBEN+0Vx8eZ8caGhoaGhoa3gEwvXt/Gr4haEmlZ4Z/+uNfVH8dwQmxSnBEyJKerpg2+ImyeJRo8odth6A88dwi5BjAZMc1iWEG2/mKlLw8gJyssOO+ymHNXZ7kss1F8zkjGIEoJSRkgyWfvAiJk3AIqY3EUpGS2sDZQNg4DI5DdDEV/zMOJacNhypeaXssHhCVgz1DqdjxiarEAeadQkmXqsKFoZ5HeUI5OE5eF0662DOT9thVV/rMLN46ThF18mx0HGynuJKD3SNzoqSB6VImJOz+pS4llnQpOa1Qt3nLXRX3TpfTgi7BLbsrOQXk8QKIoXGpSwRLJZE2Wyb+lznAjSd7ZnZ87Tj5Hb8sKUBFXHasrAuK55zjjkjtoLU1jpNVy1ARzznBcahjX631ktcpocFg7EnMsU+aFDlAPJIOGFMaxXZElKSIJZam5Kc1kSRVLPETARwx5modgp4fUwLmgCm1YQLjiDHdsQNhQN5Z8ggx5LYdDkfE9DvzL5qQE0VyrYiTXmFExEg58ZNM35WTGZZbGyOAkRh7vY5wIH0mMbXhxJnTgIg9xpysIuBYcBw1eWfxSZ+BT0aJBnKd/+7v/Fs0NDQ0NDQ0NDQ8HzSj7meGN78l3yLnCR80tm/HY4plei27nOVYPhGKK9SVEeWSkVx1YefYd/9lPFWxVSrl4+WkXiqnUFwfsgJEE0flAhGrnBl4Ssfh2tQhu5uEdOX5pLjmhBmHJY5AyYkw55TvkJIOmHu1dMjG0/apWDzHUpfMKV9Pfl9zMqPkS7rk+5E+g3ycwGrVXMb5GWW1Sl3q5zS5Nte65OsEd92ykiP/rnwm+e6eU9mCnPwo+7Lve04Xym3IVso56TKh1oUcp/J6gC438n3TfWlyebwstdn3tWXk3rlcGWVt9roEzsdpgVPZN02Xa5yAOacSHWQbezHKV4N0MmNvSSgBklQZeUQPWUYo5ukTyGJNFI2czfwtqderWidMIMhucmLez4icOZz0fOM9aOJlLVsIpKRVNu+Pabc7aFJIdnXs0aHTKqts+i6fz2m4iYTjBmoiXlzDnvepSPJEAg6YEJhwiwCQ7FLIBYdUsSR5dxwx4cjALXoQkV4/94yUiNPP2P2rf0c0+NpXD/PO1NDQ0NDQ0NDQ8M6iVSo9M/yO33eX/k6YVwEF1yVS8ijNO3Vy7ePiqpUhdDFlt/iaIS3c8frq2SjY4mvLjzwncpzYJT08J5rFqGo/yLFY4uDvH13MLr62pDBFXP8mmY0DFSd2ugRQSg7YPa/rcpmD18U/kycv13M5jsyh5kTu1LLKyY77vjHvW7XOV3Xha5w8TJdMreTQIcw8zC4ZdT9NF993/fU8Bz8+zp9vHIBLuszbdJ3T+TEPyFKz8sN+g4HqjjT3mfKdKlXQPbWv+c5G81TcRbN9D5r7rC15jF08/9zpRdVb9V5bOv8Sp3q46K/q554qx4tff+r3vTzHoqGhoaGhoaGh4R1ESyo9M/zJv/QpdJVRdz3hS0tQFGlCWM4luJjF+ckOzU12vQH0ykx6bWkN1xM8zrNWAIUhtMZiPFwnMMom9Aucgp8BujIXq5yweHSc/MfXjkNa/mPzN8dhKrMK0EkylzGjNN29ZqCe7lE8Wi5MrWViXRsP+6Vha6fL2unQfZ269KhCWWp2oa+la9ltFziMZeyuD8gSvBL9W+pycpzGKoG6bNS9qEtxG2YkDyPPKYCwc0bd3pjbLwXz4yU6ToPjkBIynNvsdXHdfd7hS04kHkSpuoquG3Wf5eTannRxDXiFkx6W36/RQaThRQ6xShLnJJEhLe0r3gFVX8Ock0/Ae+8rM9+33/fOTNwaaLEZqFecHMoNCeZG3QtJ2gvjZynZ5/8DwJvve67efHzpnL/4V//I4jUaGhoaGhoavplBUg79rv259KVew5PRkkrPDPsPBvRj8QsWf5886SZsdMKWjpcTNnYTa/18OZH2yYMedVVMbxUflOPexSsOLq6Pr4vkATFJguRMG5c47TxHrjmtHKeeaZnTGQ6dfiYfDxWnjoIk2zQOcDuXLeiyLdosnMJFnTax5rCecYCLgyQsKB/vKk5epzDTZbWkS8Wpc5zqNpccEee6zPua51D3tc71tdUChyqmuq91qJNvZLqUnGZ97QKnhb4WXGLKJxCTLgVHP34uxR1CFds5JYf1lb7lOfhE1/W4TmmITnXf6pwuZTVST3m5ojYBkZxxN9Wm1t6Uuq7cY5wKY27zKCqP+8SU+TMZyiVu8hlypta1cTfDJXlc0ieCq2RaRKyS2+bjdM54W8zGC2Nu5iqZZt5WNSfPoU4YRdRG3eavVKpZVqgNmPCVrzyioaGhoaGhoaHh+aAllZ4ZPvfZX0XPhA3L5HsioKeAHbo0qesgCYyOZerQIx+35MdOJ+PEwBY9tjY5j8ANB2xA6GSGAoIkD1Zp5y65viVu7PqWMFghYI2Q4i13KQ4M7LjDqogDyWc2kJhJrrlFlyauKwTcokfPsmSpipmwRpc4CKeAtU10o3De2OScgZg4UEoMeA4bBKw13jhOu8RJ7reDJJlMl0jAioKYnmvyqkfATaFDqUsHwgpd1omBDTpsWJIoFIEbBGwA9CwTTuFA6FUnKIeVJj0C5P4lh5LTVnWw+IY7rAsO9txNJ9Z4x7lvrdDhtuAgnPoUb9ClvhY0GbixxJD2Ha/LzumyLTitXF/bsLR/HTOHFSgl4DZc6zKZLlzrsjujS6997cY4aYJzq33LkhlrFg6WCFgXnEifQ68cOgRsivGzQod1EW+4S0nOHOe+zchJTirGy0bHi1TldGn8WN+6KXRZoUvm8oElFg8pTZgob/OiYuXQFcdrXbqK0wYBK4iHEAF4weuUlDFTaxTxSZMftiMbgcDmh4Taw8ySKxMhGXVrozAUiZ2AkD4fEXFUHyEzuWaSpIwlenoKiGWbaKrMxS1BY59fQc63zx9pSlVfcr4kzoyTVHtRuscIRiQUbZT3huw6J75UHfLSXgbr9czzKSY/KGuT+UrZ+ZMmkey4GI/Hauc7W3J5Uieof/hjzai7oaGhoaGhoeE5oRl1PzM8fE2WkYiRLYF5wqCJpB06nHjCicR0uUOXdhWy41auIDuNIcVBExbr4lvttU5oHnVZ1hqEFRj3ajW8gSRW7Nt4iwGblOpkWKeEK22zVYr0kF2opjQxlsnwkScclcMOHUaWXZQ6EG7Qp2/WLV7iZD4vawC8wOmo5r9rdFiBceAJoMzJHGDWRbtLTuvEIaDTpILXZdTJfo9Q6BJwg3BWF0uiUMmJAXDNqUfEUXllXTglMNYIaSmYcejS5yVeJU5UVY+JLsDJkpaqy0E5SIIjpN2tOgTcIlS67NL0NuviY9/XIiIOQMGBsWcxdPZ9y+JV2bdYKq0yJ05LN42TGWWbLkeecKKYdLA6EYutniMoJ8viG4cgWaN0zw5mFJ3bcOSo40cSOTZeLLaEiR8v0mZOVUkdgtyPIyYdD0H7ViRrU9m3JHlcjo8bhIpTvTuguDOVyQbb/W6gMY0XSU7EioOdb3Hnxny9u1y9PI6Le0rCJeqOlF1K/DDXPmh2PkN3wNS2wJI6VrWVkjhIVVSjpl06EU7NwmEfkHM5fyYCYvTt2q95XIk5c2KS2HOy3sSon0FKbhV+arKMLSfw7PfWRuHIM043RRvLn3PzccaohuaZmeDVB82ou6GhoaGhoaHhOaFVKj0z/I7ff1vF3hC6c13ibY26l4yCyzt4H4+l4960F+54pDr2nfisIXQxUVzkBHZxPt/Hl8zBn2KmzC72TibXjLqXdCnjJfPx2qg7LBh11/Fbc6Dzz+gpnM7pUpqNex3q64UFXTynWqe5DuevT6iNupc5nQHnHyWnHpeNupfHRx37Nl7qW0t99ayRffEbz+ESJ//psMRxxsnrUuvgvX7Ovqfqpp2NuwVOXCST4gIn751V+QqRM+om1ybC7MFcOz/5oym8z9RMews5nz/Tpe4cM3iz8bmWl58zAPyeT7+38NuGhoaGhoaGb2bod9Tv3p/f7gf7jqAllZ4ZvvcHP4VulScGS0bds2QDo5pdeKNuP7ka3fBcuQncNaNu/zOZJWt8ekujbjJOFQdUHKq/0Nx83GPjOHhT6ycZQhe3GEuCmOuyZNTtOcFxkjBz8rps3PBfzYy6a47XDKGPXHPwRt1LulwyH+fU9DO6YC5N5XcE9bUq2+F+pkm0cZgZddckKu8uXDBQL29TVISw0yWAcMO5YNSWjZXwCZAnG9srqp3T7HpOF9/dLxmoyz256mveENp/foXahNqPF/+T3Xh5UCUs9obpPp7snaHw/kg95j5T4CIxs8BpZqTtOJpRd9XGCxyPs/O7mQ5lPCBWxt0dav+wtKNj0de82XiZBCVQHh/FPco2+SSS35DAgwj4zH/zR5cPNjQ0NDQ0NDQ0vJNoSaVnhsevHLEdyxkB4dYZQt9ybZb8gvsqSVLFAO5iXfVyC6qmX1uIj4/NT7YQzxqLxYcnm1hvELAr4jUCbop4BcJtMdkJINxp24zDneN05zjdzTh0FYc7rjndOE7J14dyvK5i8d05HxNuCg49gFuqJ3xel5IDRap1iMAddxWnW8fhluB0Ud+rFNfG29uZLks6FTpSzUl0Ide3LuviOb2INacXqKuPbuA5hWqiLJ5QXqfMYct1X9uAsK2MvZ+iSz/T5WxfY+BuwfS9MlRXLyPDCrWBujcbX6M2tl/psr7y86UJvC3/S/GCCbw3sr9x8Q59lVjYub63dtVJa9Rm42uX1Fk7Tr+Tt/i2aVv0rfp84jr5FliXshZJ3dqsvzaJZ+bqfLB4w1Um8M4UfuM4bNQ3K3EqfLYApGWelS4u7itOtVl/cDqY91up09ZxuEE9ftZcJ9s2qHXazTh0Mw5lIso80mbJbLte7PFbv96MuhsaGhoaGhoanhOap9Izw8/+vV/FWucxBwYGyETmJRP2avC6Qof3mLDHhAkyyX2fCY+YMDKnydQeEwaO2KHHmiP2YBzBeEEEZmAP4AiZNL8EYc+MAxgdEV5yhz1H7ClizR06SPXCgSYxT4YsNdpTxA2L8XGIhD1NuEPAlgiBGXtIZnSjfjF7ZoxA4vCoOzBlTsJxjYD3eIVHTJiYk+n2HhEnZtyAsAXjwMJhR8COgUflRCC85CCcKCbD6gNH5WBmyRF7mrBjMQI3jrcQA2rhEHFLhC0Jlz1LhcwaAS+0TSWHR63XKXWZwMnMeY8JI0fcoMMGEXsWI+MXQZZ3HUA4sHKA6HBUXV6oLgfVRRKCk3Lo0+R/TxNuucOOAzpm7CniDlTpQoD6LgF7FiPhlSZMjNO66GusOnami+cExg0FbPT6RwAbSOLnUOjyHnd4RMQBWZdHp8tBdSh12VPEHXfYabLtAMbNgi5mCL8HJ12C6gBt8yeY8KALkDaaPHjEhMgykV8jYs+Q/hiAG+5xQhQ/JZIEyZHFFDmQ+Z2JabIYcwMnjjhiwhp92vHthAkb9MkrasCELXpJVIFw0tos2aFRzo/E6fiRpXpGDNTr+A6EI+e+2KmnFDNjgx69GlkPEL+hLQIGFkNp43TiCSfEwpNKOKf2KaffFW/wSV7jFj1+Pexxx6tUFTaBMVFMSwcHRDBJwiSAcOBRjMg1HjiiI0KnGwiI2bZ4e73ECnueUl80n6yonCIiRhazbSJJIB4gHCwxZzrt0KMD6flSySW6yXMWzlkn23CAOKrpNqeE4gkRQce4cJqwIRkLBMKoOojPlTxX0+WFnh9Rc5jA6Chgx30y6O4QcIcgfmfaVwIgPnR6foegu75Nyf+s4wkH7TsgqQjcoscGHf6/n/08vudPfdt/oH/BGhoaGhoaGhoaPm5oSaVnhv2rAQCwIvnzGCX500MSCgMiTiTfUL/gANuwukfAS85mynbc1t50CLhj4FYnkETALYAbZsj31lLFsoMYdzNJ9cOOA07ath06bFkWXBAoxbYsa6Pfku/kcliTmE6PumOWmUcfwZrMkjaLIXRuc2kILVUlJQcxJralIrcAbmwJScHpw5ITEw7FJHLLQe+QOZhRt1T/aDUMtPoHHTb6iTXJn4coiZIVCCvucELEQJmT1wUFJ6mMKTgBwokInXLYReADTSzdoMMOjAdd0mS66IIj3KDHjsXFRjjI7mkbneBaBZPX5cSsSUkx9z6AcUKu2DinSw/Cy4qDctJn3JFUpt2qAXwH5cSM1/rcb7nDDULS5RYdbhZ0WWvyxeKtlmBYm1dndQlYMZIuKwS853R5z+nygnsEp8sKjN+C+OdsIDvP3WPU59xjAzOBz2bjVhhisRl1Z/Px2kDdKnqS6bsmi7MJ/IjRDNQR0r5eFmcOYtRtMPNxK1oxo++1Gn1Lm4AVIvaIGvdYg9MSvS26tAyz5GB969vjDb4t7vA1GjAkc3HGiSOgJu8dxGx8ItYqrXVqox23ir2g9xgg2llSxfqecUKKgxrbEx4xgkiOb4tlZaZTqJ4745EjSvN+42hm5LYkUJ4zcGCudIjI79o7q3rSvtShw6CJVjNUj/oJS/yYLsYhImIEUqJojbxL3A16SdzDlmB26KEG5JQN1U03eQZdWnpZLpN7/cERDQ0NDQ0NDQ0Nzwdt+dszw7f+gbsq7mvLDHgPDYuy2evcAHpm1F34fhDNTXjLOzzFTNk753hTa9/m7txxzhxKTngCp4JSSmRc4gDHgd1xzyE6bxOvizeE9rp4DotG3UUjQsCszdeNus9zAr4OXap74CwHBlWeMt7IONCSgfrTOSxxYm/M/cTx4n9zjtMKc8P0a6bWeMvYc5qbvj/NqJvdlTInVJyWDNTf1qj7SLGKy6Vu3htoidM1JKNvW0r2hHcAHIfrZv7+vef7Xv08r/Wl+fnLul3Uhefn1226fHz+7qZZu3/vd7+PhoaGhoaGhncMDDUHfdf+/HY/2HcDLan0zPCffOa7EAqj7hWAcjSFOkyTn3I6wSgmHIRU0WI4ubhLkxz75h1VHFwc3fkTuJpQnYA6uVA3WZMX9XExS84cShNeUG1oC8iywBKTi69xgOPgOQ3VuRoXJNaOQ0B9wlN1KY8f3UtzRXWbLOnjd/E6z6GOj4AzEq516R0ncufbPUoOVvFi8H3LffytdbHKC4tPsIk49HjeRh2Q5XZl3AGYZsbYdXzElCf8hFS1I+0j8QuDUZ4nTPJW8stJnaXxUnOaqs92LqHhjbtp4V6VLj6muSG0h+c0T7bVP78SDlW84/r8tfuny3Mqz5X21roF40zl+Zhxyq2d6+LbPLi+5HVbOr/eCZBm46Hk4N+Dy+/qOYdzuizp5MeDfwfME/I1iIA/91f/0OKxhoaGhoaGhoaGdxMtqfTM8PrXDzic8tbZE8QHqUraUKwmQCfM43KCNqCesI1AVRUzoJ7cnKA+KxqPUM8SjSMkYZFi4mrnMmlDnoBFWJIGKT4WbQaAo+M0wMc851A8t8lxOoIrToPysHhynNgdl3uWYAyckySj0yWCZxyOC7rUiSrHiWsOJ66TAwPVnLwuE+a6nKpkA2MoJqoTal0mXNel5MyQvjLra65vVZy8LsSXdSGZ3JccxiJ6g4ifp0O6/gON+Hx3n9p4QsTnw+vUxgjg893rlGhiMD4fXlcJh1/o7nEo0pTleAOAkXxfjJVOIyIm17fm8TwJZJh0/JV9a8CUxhO74368QO+XYkZ1vt2DFziUx0tO0bX5nkb8Bu2L8cXuGeQldNaewXEq28gk51fjhaYqnhzH6OJrHBhuPDmdfN+DO1+8org6Nl7gIG2qOQwugTjXYcJS38r3hNMlztroOVT/dnDEr/7KazQ0NDQ0NDQ0NDwfNE+lZ4Z/9fd/DRFSkdGz+MNEku3gV9DJIQEDs1aasB6P6CHLiVjjlX57TyQm3OI9IlUAR71+D61gAdBDrikJGZm89BBTWonlHjJZy8c7ECYCWNuwAmmCgrBiTfgYJ71+2eboYkqcY7o+HKeAgCMYK+Os1++MEzEiGyfCiWLFaUwcYnKdsaqXHqQ8pa09kDixXt/rMjgOKHQodTk4XQ4cZactSOXEITJWgdAxJ126QpeIzGlQbxzjEAtd5LkQRpJqox6yW9wEqYjqYcnGrMup4GD+LOx0EQ7COQAAEY56felbAXsw1ixLEMu+3AE4EOszFA5H15e8LmR9HnXfYr3fB2HAl2jAARG/hzf4Gg34WjjhZ/Ea3xF3OGDE6zDg5+gVviPeIILxJgz4GXqF3z3dYM0B92HEz9AH+I54gxe8wpsw4V/gNT7FO3wyrvAQIsBQPxtJDgLCJ8AqWmRcdTo+WDl0qgsAMGI6x2pgzEMoFscHRERiDCz+PQMmMEmCoUOQ65N4lQW9MpMkDHrVnUAYi/uZCXiPANJ+HpE55aSanDslTly0V943nV7/V8MjHnnC74pbHEjOnyBtOtKESBATbhAGEqPrk3Ky6sUJEcEWihElThMionKy9ssYjWlJF1HAwJNaZWslEounl12/fAbp2elzN88jM9SO6blIG9cIlS6WrB/UEJuLe3QQXzaQmGh3xfgZUz9AxcneAfYuhyatJp7QkTyTUe9i78GQnhEXfY2TbkNKteXnRqrfqM/0f/i7n8cf/198BxoaGhoaGhoaGp4HWlLpmeHwodTHMKBmtQImrSCyagXSJEgRD2CZVOnkZtDzt+hk8gJgYGCXJmjyx77HtjhWsUw+oUs1Jr0HkUzuJzDWLEtDorYxWAxJWNn1jJNVAFmbpwUOZSw72oWK00anS7a0b6U/JxRVS7rEbOTMwWJ2nHqWCZgkQWRi26VYJt4pZtWFsi6D48BXdJlYdoISXRgjA3dEAAgji07sOWGZ01Q8w1KXDRN6ABPJ5y2JaJySDgu6nBCrvmYcCJQ4E4uRedYR2ELOsetZqeUIey5vp8uaZSJtcceh0uWoT+kDmvABPWLQCqM3YcTPhzeYWHrfI434xe510uVAE36pfwNSXY4U8cvdfdoGfgiMX8IjvhCAl1jrUj/VlUwX4Zwr8DjXqRS6dDCfLqucCbocrK5UsTgtj9MqraQD6soVtiVgbrwEll3KrE0GKpIQBktuGSfPIQLZg62Ie4hH1lfpiK+GIz4ZN9joP1flUjZ7T42Ok7wjQkoscZF4ndx4GsEg5uTbZG1eIYBIn6vTBcgeSMZpk56J/a7QsahMi2DdDY7SElGrelrUQWNCkPcQCSfre/CfT+9uXUarnLl4zhNi2qEO0GfILEbshQ7zvsezd7Vd03D/xi9SbWhoaGhoaHgnEOn6OQ3PEm352zPD7/rDL6rYZxWDviuSh4aLQeY5kyc8S/4rJfzrx3e62evJ/YLdYW8I7TG7/gKHMjYOlzj5NlSm0+SaTHhrDj6emVo7U2rPwesSUXNgcgkAZ2o9uydVFlSLnLzO01vqHvwJV3TxnOyc/HHHiTCL5xxqeO+sLdetnvnQPIFDFRPjYl8jVKbWMx38LWnet3zsdZkZQvsbeDhOpkO51KyM5x+vzceXOMD1NX+lwf2mc7p4TvNn4p5BfimkH5d0IT/GF67px8M18/CrurjzZ9en5fPLZYyVLkvNcX2tusPCeFl8V7tf/v4/9ImFGzU0NDQ0NDQ0NLyraEmlZ4b/9Ae+C2GdZfdG3QSZlJTmrtdMeku/IxBkG3fkSZc3S75mPOx/ej+Xk5vAkruWbD6f44C5qfW0wKGMT65to2tT7zjMDaHruPTYWeLgjbvXLg4uXtalNun1E3Fv1O1NrTtnhkzu+DVdjq6NHS7r4nUDam8gaAXUJV38RPuaUbdP8syNumtO73NfzbS9IXTAgkE0133J6+T73qlIbZWG0JnD5fHijbo9J6+TN4T2nJZ0mRuo+/GTdVsygH5bDn687JNjksQbBJQu7Z6TTwr5OJmTW1Npbgrvjbrniav5eChjq3w6P35q/yM/PspzrT1epxKkz8CShFaVVepC7nwPz8G/A87pmK5JwH/9V5pRd0NDQ0NDQ0PDc0JLKj0zfPXfPeD+mE15JwAPldkr8IbGapL3kFxdJH7EVE24DohVfEKdpNljqsyQ9zThVMRHijgUO2SdELGnbJccCdgXW4yDgH0xwYpgPBYT5+g4RTDe4DKn/RVOB9SGz49UczrQVO3ydcBUcRqIsad6F7AD1ZPeR5SJAVScGMC9M+W9n+lScpQ2lxyOyMvYoM/I61JxQqw4nVDrxCTG2yUOKBMDtS5Lfe3e6fLo4r0zFj46TnvUJu6PFBf6Wm7z0ekyEs84HQpOB4qVofMEOb/ksHfJgT2NlU4Hx2FYiCudaKqSayfEKmlzoglD1bdixdGWV5WcysTVCMZAU2F0703fgUdN4mQONae5WX8dnxxH8Rwrx/xYc0Ct00hc9b2OQpXIGsEYiROHEYxjwckSxXVSxpvC15x88s1XxnnOI2pTeHuWZV8rdRv1HinJQ1SNHjlevtfmxvY+sXR074Rqpz+uq6/kOfNMp3L3QkZtPi7L3GKhU6x0qxN3jAOP+MVf+AANDQ0NDQ0NDQ3PB81T6Znhc//g1zACeACwYZn0TwF44AlrNX+diPGGB2x1QdQYgNc8YMudGEwTcM8jNghYIYBJPi8xoSPCIzPWYKxB2OuSnw0Yaw7YU0y7N224w5Em8cwBY8MBI7HugDVgw9oGAiImbJjE5Jmg95AqiZEY99qGEwmne56w4SD+I0E5cSdGvQWnFQgxAPdROK0REIjwhkds0WEFSYjcGwcQHtWYe61tPign4zAkjowty4TYdlfbqm/PkDgFNWQm3APYQhN3xOm5npIuo3q3MKaAxKmDeE6VuoAoPZM1i/n4PRgbBlZgPM50mRKnNQKONCUOSRdNtkmbCSdiRJ6wBmGNkMy5N2AcVBfjsKcJYxAOW+7E12VBlzeFLmx9k61vBdxzxBYBPRhjocsGhAc1dDZOB5L2GoeTxsYhgnEIkmzbcECPkDhtQPgqnTARg3lCj4AjRkzE2Ot4GVSnRx6xRieTcmI88oC1WjyL+fiElZotEwhHjOgh9yMK2Ov5HSjtDLcC6z0l5TRBfH4sgWNxVH6T6kYImnCZ0j3GQqej7RlGU7r+RJzaaO+Ah8TBkmcjVgjyG8+JAg48YoUOHZAMoc0A+qiceuV00lTGiIg1uoKTxMYvKqc1VlJ5w2JqfdDE3USMYLqAcaBJ20iVMbeZf0vCRBN7JEmZHtKXQbV5f4AYu5vJtSXmzBjfDN+jnU8BURM5YiYe1TOu3jAgqi4bdMpJ2iTm46zG2lkHe84bdc+aIAbnA2IyULdqs0iS0DZdQsHZ+mZk6JXkGgMDKxJdxKjePKiyoXo2E8/m4732BVatTMN//A9+Af/z/+K7vtH/dDU0NDQ0NDT8NoP58tL+hueLllR6Zji+EevpCGAPqfQAoJORiEHNXyMBj5gqo+49TQCrAa6ef+SIG/QyIUPEkYFPanyCLfOCHmetwuC0lOlEYzKMPSHiRBHEasZMjIFGrDlPjEdi7CKwRYdJK5as+iYSsEdM1TNW4TSWnJRDyenAcj0OyilGvIcViEg4QTgDssTLdq/LHEpOwsGMfQdEDBSx0iTMSIx7mrDjDmtN0D1SxDqSxJCE3171Mk6ngsO+0MU4kdPlxBG3WAEkO6CdmLFV8/GT8rB/F7IuyBysUsvrQpQ47WKXdQGD2HYnk6orM+aeSKquDqh1WNLFkjB7mnBkYIteKqIoYojAe2qefITsXpf6NYT3+b5W62LxOiX4pHrnJkKSq8qpbPMJMS0PilrhVHI4uPFyhOnSFebkwE5fu5Kgi1hhnZ7rSdsLWFVILMzHOW8Jr0vORkQEll2+7PiWITuRkRhEEwMBnbY5m1RbRZOZj0cdwxOXHEf9vJhenxARoKbU2r8nJvRqCj8iputbmwfE2hDaamMocwTX8Yo72YlMz39ZjNnKbBxqWo3M6ahJlbUlbcD63tJruM9L9RDEfJzyBgVr2DLTbGJvHIC8jNfas1MO0iat4inby3lMnxCx0TaxfsbqhSJJsmoq+tYREYGDGG9j2ay8rEIcUiopc04VSjSveLLnvtE7VIbqRWzXMF3mLmTAw/0w+11DQ0NDQ0NDQ8O7i7b87ZnhO/7oe1XcFxMPoDR/lclD8rOt/EryhISx5ItTxzODZnfPa+bH3jfHbzzgjYbPmlzbZegyB29qDcw5dl8vhyuc/PVnprxOF+NQLp25xIlACHUTZs9t9l2E+4XXeXJuzP7z5ziVS5ZQtHtmCE3nvVzk4zTX/oouS95BJTa4bAg9M9F2HM7pcmn8zEytL1OYPZFIlzl5g/RrnDj9zImbmlOdoJg/8rlR99vqcnLJC//e8n3r2vjtc2dLP7hM/LjPEOa6XHvv+TbNx0+9dHT2TnFCjO784DgkXTm3p9SJimNnmjTj4I9fMx8HgO/+w99y9ZyGhoaGhoaGhoZ3By2p9MzwvX/xO9FVRt1UTTTMWtamE978FXTdqNuWidhkxhsP+zjPhfIktYxnPiIcZxO+Mu5mnKg25U0MM4fJcRjcBM63aZUmo8uc8n2WOXhDaO//4nWxJTi5iUu6wOlS+1AdXdtWzpjbm/B63xT/DGZG3U4XbwDdO04yyeVq8uz71iVT66U29TNOqGK42Buwew+bl7yq2twjlP7QM6NugjOFXxgv3oen1IlAqSru6bosG3Of00nanDE36q6Pzzhg2ai7/LzH3HwcVex/eqPuNxiq575BV+myRqiSPtV299AkUWVOHqSvFE2lMl5Iwq4tZZmybHVSxyq+LN7Mzq9/HjBVbVwhLIyPHEvVWq1jKNpMLl4y6i6TcQTCynbR08v6xJXX0szH3XDKbSLCD/7VP7J8sKGhoaGhoaGh4Z1ESyo9M/zGL91jfypNrMXLo6ycKI2HGbKcJFaxN6ytY1kUkSczg/rYZKPh2nh4RG2uPMEZDaNOugSqYwbmBrc051DGPqnjDWwnwHF0Jrw0N7C9xMmWqJQo20yO4wSe6XJwHA5OF2+OPF7hdCS+qMvgOESgin1CkajmNF3VpU7i+L4GnhtAew7mu1Oavld9D1xxmlzMVHOSJVwZR0wYCwPoCbXJNWNuluw5+aSOTzCWS5nsuceKQ21yPTidouNg9yiTCb5aaizaFF0blzhVBtBwiSqeVyv5d4LndCKGN7EeHYfy/B26KiHCAFaU//kikCzD1VsGpirxRKiTNgzGFn1ORDFkeWgRr7hOVK1BskMinYm5q5I6HQhrDsX5QTziitgneco2B645dRDfsvI1UiXXGLhBV3FYOw4rhKpCcYuuSq5t1AfM0IGqCqqV41CBgW3s8Is/87WFgw0NDQ0NDQ3f1GDoGv137M+ZL8oa3g7NU+mZ4XP/738vnh4sprl7miqz1xExGQv3atFbmr8GyER8X5j0dhRw1PM79dU5IRveHnW6GcF6bIKZ3PZ6riUHejUeluOTmDMjVMd7BJlIs5jojojKidFDExcFJzEllgRGX0xbj0UbiSib9DIhFLFNsgYAHTgZ1hqHruIgnxm1fsTaHCDeQswTOgT1T5KJuBnkMiEZCx8cBzPltefMiZM+d9XFTH2FU9alZ0JPhKM+owDGQXfUM12OyskMoG23K+MwJR2nbOqrhtAdxBy81GFwuuxJzZH1uZouJ32GhJw8y0bDIfWlnsUE/pR0yQkZ0+WoqQwzT/Z9bUzHhQNBTeDZOGUOHYBXYQADmCiqIbTUtA10RZey7xTHTRfruwFQQ+j8DKxahJXToPcUniHt+VcaQDOJD5BxkL6YOXG6nm5lX/S1EyYwMQbVcUyc8njxfct06UCJ54iorl3ZgyeoTlZhFgpdSg65b9mYDClRRSC84LWMI+ZkzN/r3SyBZcboh8KgPIAw8KR+X+IMNbL4ZXVEuMMKR560j3foEHDiqJ5KHSIiIqsmRNhxp95XMVUuDSxJvq3ePzISny116Njeh6JFxzLWdtzLJ5iTL9SK5F1x4pgSYXfocWTz/5I6s6ngcIMeA0visUNInJgZKzWPn1gSyIECNpyTeAGEW/Q4sXjRbTXNZcnXTt8tIZ2vCT7lYEnlFYIkqBDwE//wC/hT/+tm1N3Q0NDQ0NDQ8FzQkkrPDMcHqcOQCg2p5LB4BItRcDo+rzYAkHZ/GiDGwys1TzZD2jvdsc0qlhjQZT91HPV+sagCmTCBYAa5jCNkVy9bsjMgytKwos1T1WaecSqXdPhqobRjW2HSO4Fxw1BOOclSckqmuqgNbO0Z2HHjtNbJuJnwdiy7ZEWY+bEkUWzJilXLGAd79l4XeyYj1EycsnnyRs2TLSGHgtOoGizrJG1mp4tM4Sm1udOdvozTmqloI+elZWfjmDjMq7giJhBu9Llb1dUNSl0yhFPurcs65Foa47DWxJKZJ691OZA893J5nCzJiq7N4zldlCOx9h3S5CdTMoSeIDtxyWOX58rgwlvqjC5VzAisnyepKOq4Hi/roiC1rJnKptc5NvPvmgNScsz61i6NB02eVNfn6n5TwakygC44gOt4x/IWsGSYJYID5PnZbnJSSdNh0ARHj4A7TSbZ+Zu0oFCXfGni66h9elf8M2jVQvl+ISX+BkQQyf3XKQWIKiZNmnWw5XD5/LR0VpNL9k6RxFun/UverztNqkHjm9n5cvdBE0MbdIj6GeNkz8CWvXX6bgwkht+20x+BsEXAFkjv3h6yDNP6v8W2xK/k5JfI7R+aUXdDQ0NDQ0NDw3NCW/72zPBdf+y9Ku5cF0jTqWLZiEe5lMYmfSXe1qjbm1B7eNPduZls/fmZIfQiiwzPwapC6nPq+No9/B2jj+kyp5mB+pXrG4dySZPnVN6DQOhcuedTDZsTB6/L2xp1X9Flbgg9v2d9P/pI9ygxOg7JF+fM9c7qkleGXdXFt+GaqfWS9iWujZfrHOo4r6bi9PMSJ48lU/hrRt1+vOzJGXVz/VaZt9mP3/r33uTajp17rxGuG3XPDNGf+Fzz+Z5TjbPXd+9qrwvXJC/CH/Zt8ByW/LO++481o+6GhoaGhoaGhueEllR6Zvjjf+G70G9qo+5ystRZrHOFpUlD9XuaG3V7k2szT7bTru3c5Cc2pf8LMDdTXkpelJzCWRZn7klzw1qrprITV27oeE4ek2vz4EytBzf5mxt115yWGDG8LrVRt9fFm/R6Tn5S7CfR3pdqyai7/MiiUfcl0GVD6LLtmUN91eu6sONQewe9cEbd3kw5zDhRqrqxNntdvCm8T/b1V/qWf2n78eL9j44u7tyH5sb27qJk1UK5Em1uCl9z8PBj3L8T/E/fV1/hUHHw3kKyULdO1i3F1ra3Ne+XhGVtoO4TVeWyRQAzw3X/c3C6+PFRngtk/7DMueZQemgZh3L8kFOmjLMPWq7EQ/F4cjJu3q4SFIA/91f+0OKxhoaGhoaGhoaGdxMtqfTM8Ov/9jXGY56wyZIbpFnE/Bt+nk0Rfew7ka9+sqVX9kFfOXHt2/HgpkO9xucmNow5pytf0C9UbywkWCoO9aTXx34C5zl0RNU9O6DiFKH3qnNZFael54TiPM/JJycmxIrTpSoguX6tTed1cZx4gQNVZK6AXYKCIcbI/vMXOHhdPGZ9i+oU5AlRKrbYro8qXtJlzqGOr1VTxVnf8hUxnkN9D/MaOhczaM6hiMu2Vj+L33tOb1sRxuAqeQ2gijtXJrdFX11hBFfeiozlpXcppjpm8CxZXZ2/oKedXz/LMlFVx+b1VG44UBqu+139IqSC8VxyjOCrqWoOS5zKzzN4ltz2Rve25NCi0tdq+fwMBmOMET/7z39zdqyhoaGhoaHhmx0k3yy+a3+u/Ddsw9PQkkrPDP/8H/37Kj4hmpEGAN01is5/ow3kyh+CTAQ7hGoy5qtF0sIVzfbMJ8lcTXsJPolUd1OrqCkna+X5o816U6LhfMUV9DTPqaraKSfRysF7ANWLc0oeAp9IWHGdzugdJzM2nulSTsKrZ+Y4oE7uEWt1hyajZAJac5r0WJ5QVo8x3c9iX9m04VAdTzuQ6S/Mk4aSLvPsUqmTedmUsZnHW5sTNB5mfesyfDJk7ZZVPdAgvPU086ChQpeKNOq/04wTpf21rK+V/Vsm/jW3a0lY89ixq/ikrtdpchzGhb7mOXkOXpeyfy8lpv34SH1LdbPEWNA4VTIpXvBaPydJjpMuh7NuYObluZqH0/kWE2WPplHfe3Z+rtTJiZcASp+PiJLw4XpZWZnMKiuZGJw8tiZkw3tLLJk5fvmMzK/I2lj6pll7CJnD4DiUvm7GOSjn1GaSqsuY/sepjXYPRv6ygYv2WVKq5GT/M+8sBvA//qMvoKGhoaGhoaGh4fmgGXU/M5we/fRuecJqCQRbDDFfOuF/UnFsnsB5Sg54aXnG0md9XLZ5CfmbfqripfuX17/E6anFNjkRQ+739fFrS5r89bwuvs3+enY8lMepfpZlci5f08f57+c09cfr1FfJgRaZntPdH/coKzqeimt9K6bfz5/z0jO41i/8M1nqa29FoLo2pR3llu65dP4lHZ/enCc0eOEUP94NVrVXouR0Jp+YELUnl0u1Ul0fWVWTPz9X8nHxO2tHOp/yPWdVeWdQVgstxec/U8eXjpdJJYtRcK6uQcttupa8nN9/+YzD47j4+4aGhoaGhoaGhncTrVLpmeH3fM8nqthXNZwzfy1hu4LZaX5ycc2o21ftXHM8um7Uffn6S6a85axsaYJV3ZPmHK8ZaXtcM7X2qb6z1z+jC0N1Ybtf3eaI60bd13TxU8hrJtf+mTxFlyUO1fKgC1NdSap8fbrMjbq9kf1l36kU+b6lsfdwmvU1AIEvc7iWyJpxmo3Ha9c/o3vShZ0ulxeYEpaMui/Dczg4o+7uyjNaqpYqf1o/YXdO6ZdUXiNVVV24h2+z74se1wzU5wnO5fPZnf9UXZZwbQnstXc1APzh7/kdb3XPhoaGhoaGhoaGb260pNIzw/f9+d+NlTPqLid8ncXpS25aqHyoqyrSREQ/l0x2Od+jip1Jb+di/zX8UEzKATHqdjmfKu4cp7DAiYBq1sblXIqKCV/9I2E9M7leSFwVmLjmcOKaw+g4egP1ACxzqJpdlB7RPDHmdUkJk3O6+In6TJeaw9Fx8obQ/YxTrYv9ruTAKPobzRMk/hl4XXqnS7q/JUicLkeeqtgbdXsz5SUD9coriK7rUo4fAs3avHI6+fHifYBGp8vJpSy9EXePMOtrVQKFMOPkdfEJy7mf15nknNMjJ9+8UfexSpCsEarkdofaY80n6yz2fkZlK+em8DkRVS7JLZM2ZZyXr7Fyrs8vk1bA3FC9x9wnbsn/qORcciDQzO/onIH6kjeUnF+bjfvjV6s9A/Bn/w/fvXisoaGhoaGh4ZsbzPTO/Wn4xqAllZ4Zfv1nPkQ4xGJCCqy4q+I1umpSuS6niCzJiHJyvuFQJQe2Lu5AMhHWOIDEM0XjHiTJgBSHanen9WKcJ/fEVMUAsC44gZVDEe9KjgxsEapElOewcsm1ADgOQZIy6fxQedn4Nq8pVDu8rVBzMB0yJ3Kx6mDBgi6Jg53PXZUcCIDTpebUlQmOBU4bx2njOAFzXTaoddk4HZb6ltepfP2vgJkunedQ6dJVfW2NrqpG2qKr2nxCREel5xGwonrnsS36itOWHScXr7hO4qQ45zNq02o3fnqQ7NxX9L3ecSp1WCNUCcKUuCr6Wl/oQkzY8mWd/Dth5XTpXWKJUFfizDmFmU5lm7fUV1VeAyJGyqbTIxj7IknDMJ+l/KBLE+sIxl5/I+czBsyXkJVJmj2NyVMrtaGIAco+YgAOFHHClOIRnL3SAAQix4mrnS0nx0kSXTWHY8W55iTXiBXHE2rz8AMm8TrT2PySSrPxkuMRI/Y0Yp7Sluu/4QGf+6kvz441NDQ0NDQ0NDS8u2ieSs8M/+q//3V0IGzBGBk4gBECYYsOI0eMEHPXLToMLBOQQAFbkOy4hIgOGjMjcsQaHSIiJpaKnI0ad0cmrWAgrAmYWCZWE5FMdJnTN+lrBAQmDIjoIduqBxAGjlizTIo3CBiZsU0xpA2QCesacv8TUHGawAgI2IEwqEltQMCNXj+C0aNDB8bIjIkjNghiZMvCu0+TLt15CoQVAoJyiGBsqEPHEQPE8FZ2eJPzVwi6C5fcYxOD7p4mbV4zVZxGyKRz43TZndWFnS6MFTr0iRNjq5yYSXemqnUBkSRp9DgArKlDB+GUdNHja+4qTlvHaVAOlS50TpeYOJhOzIweIenCzFibLjqBl34i8Qipv1gjYGLbCYuwJulrA8QcuSv62hoBK3Qp3nHQhAgwMOMxTGqQHLRSJEpfI4lH1XqHHmPB4YYJJ0Qwl7rExEnGB8AsfcN0mTQF0IOK5X6ENXWJkyRkJHk2UETPIVUbTWCsNQ763NZqDU4wI2pp80p1sb61RofJ+pZyGAoOppOZUge9FiBJKTNsts/3SZcJAKFHuQxTxo+9AzoQAgKC9nUbL0GTHLfcg0naGyDL4SLE3LpDwBEjJmI88Ii1fhZEOLK8TyRBJZp00P5PwJ4nrLRPgKSCsNPziWQsBeV4oqgJtJj0OSGmfrgmwsQ2FgkHjBiJEXlCX9wz8qgJ2l52sFNORxoRiXHgCSsEDIgVpw16gGRsdJDKKCYkjhGyI56dv1LVB+UMyO5yJ7bnDQwUMbAkjyT52KVd6zqE1B8TJ5owUsSEiA13qeJsQMSRJkRi/P/+8S/i+/93n/6G/rvV0NDQ0NDQ0NDw8UVLKj0zjEdJFlgSZgThqN9cr9ABiLKNOkiTRZy+fV9pvQGAFFv9TkBAgFSO2FIR2a1LJpVWHdEDGDECRWw7N/U2GVTI5K5LCR1ps7UjxzLZz7tSMWKaOK/RYdKkCOn5JYd1UQ9hnNaOU4+89KXTdu31GRmHvabHhENeDtQhoENeCmMT1j7dQ9rsOUpSJ3OgK7p4DsHFa41Dwe2Ral1OiZMkCU6qi3HIu4vVuhinlePEiJIc0zg6XaQKQuKNLJYrdJlzsLjUpYw7AI9AwSng/8/evzXZtlznYeA3cs65LlW1LwBIgqQoUAYtWpYlSwZJBW2LalmC1L5JIasJSt2O0ENHWPwHZuipn6l/IOmlW+qOkAh2uMPR3bZE2LIctGyZBNRuU60rwCsEgATOZe9dVesyZ45+GDkyR44511q1D84BD3blh9jYNda85Zcj59onvxr55Z0bawoda5oH4RiqvKzNNXrPKeXFLlM7qtCUhBVO56/Zj62u4mQNqW1e7qkc72bvT8iCXw9Cz6X+R/PUoR5L2k69hx07fXp/StwZYUg41HmpOdmKJPW0UhGm5IVwSLvodYnXPnHSWFHGWuEgUkfaWY2KMAZIRZKOIz2+R0REqvRLy9iYyxLVCVyWgpJUCI2Y8vkTRMBcp+OVl1c6X0VWyv03YcM9iLRNpUZqotJeAIipjSuWf4ALJ2QOIlbFilNIAj5cHyjHyXA6ICIySxUd3NK5dP3orh8xSYUntEqrtLrsgpcqw4gx0rIh9363tBdmQ0NDQ0NDQ0PDm4q2/O2R4ROf+kgVe0PoPGUs842Zx9Elo+FLRt2XDGk9vHvHJV+dual1HeefzfIfbz7uOXkPkQ41Lpvsuti5/vrjXu09adRtOYCLVxDmeXp9o+4aPg8+z5eNurF8/ERelszG53mx7aWLefG4ZKC+4fqOwY3mk8bFfmydyctlo+4al94XP6W/ZAh9Mu8+4Sc5PcSo+3Xf+fp+3hfKezT57zHfp3MT7bD8HXAiT4R5Xjy8D5Rvo8c4O9/3UR378/37E0AVJ28KT+bc6jODS5sg+DYu4d/81McvntPQ0NDQ0NDwbYj4Bv5peF/QRKVHhj/wp38HVhtr1I1KXAiovU5yRUYpT6h3XiLUJruEVCdQ4E2sV69p1O1NrA8uJtTGwh1qU2vPST5DFVfCEznzcb2fiS+ZXAfHIXoOztT66CZzSwbqneFEnhOlSa+JL+XFc5iZXPu8uJ+nJU7mgw4+L3MDdctJPkPFwZvCe1Nqn5fNhbz4v71R98HFT7mvOMzNxlFxyjudVZzqvFSZtpyg1UDe1NqPrROcEry4MXoDda4b4c3GgdrTaTGecSp5EbNy987Dj63zRt3k2niLYxWvVRRK8HnxY9PrQdkv7AynyXHy7wu7Ns+N8Ls5N9OmHcYqHhwn4vr90aWIhUOYmfd3hgPTgpBsxhIheXMtcbB9YqCVTKc0xC4Q/uyf+9eXDzY0NDQ0NDQ0NLyRaKLSI8O//IdvY72LZqpAuHFGwjfcVZP1J9xXws9T7ivB4Ya7ymT3BgGDeeYKJEISaRywMcbCa3S44i7HGwRcG6PgLQJuYGPCjZmdd0y4QTE/JhCuHacnjtMNak43HCqR5poDejNhuwJhZeIVCOuKU4dttBw6XHOpN9pyhxvD6YoCbswkck3AkypT87x4Tk9dXp5wVwTCxKnOC53NywDC2uRlgw5XlhOnPGkeuKvzRCkvCQFUcSQQbqxIw8A1+oWxZjl2jmOdlw1QxT4va3TVWNuiw5brPFlOVwi4Nm0+gGcChjUbJxaPqNpMvI63qMfeNnkcaby2MebLQAeEyph7heDMxoPkLbevl2VSpr1VmyFttvE1Sl4C08zI3sdX6Ctxa6Pvl2lTqMaW51Cb82/QyVK7FH9vvMIPxPJGXKEXQUTFQAC9MVAnEK6MYXrHjiMbcRsigq1dXtYq0qR45QzUZblh/T1mvzPWrg8CUHEcEKo8bNDPDNPtWBOvrnJ+p4JjPp/rTRXyWLNjyxvbU5WXlcvLOrmkKZbG4jb2y6VmDGzHHv/wf/jKwsGGhoaGhoaGhoY3Fc1T6ZHhn/5XX0FPhKfM2AHYQSYrz7jDLnmT9Ah4xgN2LEaxXYr3PCUvkYBnTNhxxBERa3QYWAxf9xRxRQExmU3voRM+wsCMffp1/RU6DEzYUcyTpY4peY2IyWzPhB0iNtxhhYBnIOx4wjXLLmNPAexZaiR6EJ4iYJcMmYkCnqb7jRwNh4iRhMNTiJHvqKbWzDgko+0NxHx8ZBUWxET7wMAejAmEKwqZk3j8dOijmNmq0XAfCfc0YcMyoewSp23sMKQ27DjiCpTzsk/91pu82H7fu7zseMpmwU/T8TFNOAcWY96jycsRhD0gHFA4RMikdOCAPYkB8gqEIQbc04T1LC8hiwd7TLhGwGA4TGlsPUXAPueF8JR7yYu2GZKXyG7sYZ4n2XGOcx7ElDliZMLB5WUHMTS+5h4Dx5QXyjuN7ROHNQI6Ft+aaxbOXRpLbwfpBzWpPoLRkcRiNj43fe8QcA3CwZhaL5rCJ9caNbqPIByT19CGO4xEuXJknQSNQ/Jv6tP7Isb2IccHxLT7mwhVY3o/rfG9tnlrYwq4wYBDGku2zXCcANScnCm8mImLNBFZDKUBwoY69BxwwJS9lDQWQ3ZKeZnwHXGN51jjmnt8JdxjYGk/IZmLkz5DfK50LD2BfE8pXzWFF28mGTvWYP0KfZW3AMqm8NZQfUIEKOUF4smkHmJqdi5G1/KOqYeRmPfXGxB0kKq+DXcpl0jvpYwtNXXXftZ+X7HwLQbr1vhePJU6BNyk83WsqYG6+GYFrMHZ9D0gJGFWxs461TLp+SG9CzqWGIwtevQxYJ92wwPET22TjLv/+//6V/HH/lQz6m5oaGhoaGhoeCxootIjw3RIRt1EuAJAzLiF/Fb8Kk2YDqQTrg6RZUch3eFqa6obtlrlAfGaWQO50kV3/VoBuM1LYOSz27QoQ6sXjmAwzbes7xFwkwQkQASKa/RYm/gKhAlSuRBSfIAICgGELXeYEPIEaYtOlq1QqdgoK14oVbYgc1IOes4aMsF/G2qaLZzu04I55cRywxzri6ac1hWnTkyBAXQmL/cmL0fEnBfloHmxFRqZk4nXoFytIzvKASsG3gEqDi9zXmRZjOwIZ6pMHAdd0iQVHH02NlYOBwZGk6c9VIDTvDBGw0mhY8vmZZOtmpUTch9qngYAL8AVp7skymh1T5UXlLElQpMfa7UpvC5nUmFHzMYpiTRyvDLqdhzmpvBdZaCupta3acv2IYlD9xhLP8MadeuOgmnsIGCLYAzU1Xxc31Fp0wHI78MaHY5JMBARpseEWB23eRFOdIYTJTGm5nRPI4gJA4kAoR5JA2j2ztvqmKe8wtNphbfpgD0Vc3xhzVAjbwCZw9b0Slhoo/bPlAS8lePoje/FUD2IuThR1WZrdE/mmQGEA5AEb78BgeapNrbXXde0zboEV8Ux/0ygbEAgO9iJCbvmaclAfUQxaO9AyWRev+d0j7xioK5t0LF0SI528p2wwhIO+2bU3dDQ0NDQ8MaBMfcTeBNwYkl/w+uhLX97ZPi+H/loFc8NoROyKIGZF4h99+RQ/TZOXMdzo+4al76eLhmB++vzFDGLQwswnDwHXnjmZSPt8/DfV/5+fhp2yag7//zAvDDqvBAtGWfXeN28+L2g/P388/L9HQeufi4Hl4y66/vNjbp97DHPQ31/FU3L/epeuWQErhyUx6Wxlj2ZqmfU+GbfF9/m+f2Xn1A48FlOHuKxVDf8Eodbt7OYFTUB48l0os2+PXlMmaVlHj4v3uTa+055zAzXL3wreI+zy2b/J/LIp89nvtDoC8/wOGlMb/D7f6QZdTc0NDQ0NDQ0PCY0UemR4V/7j74H/cZWBtSTkeAmgFR+qP8GctXHZCabAHB0z/QTe7+DUMg3c/dOmNwnB8wnfIv38xz8+YaTTu84VeeUibj8fUlUWhQvDInJtfloJuWACDJ2/je/PzlOcw4VqAhVp/LinzHffeo8RsdhD1ST2EVRyXAMjtOMW3W65GXMkRy5y6ND4oliHaOOj06+O6Y9shQ71Nu/Pzd+S5mTiefdvtxr9nOduJexVrdxLvp4AaWGF0CmtExJcXTx4m6MPi+zZ3DFoYqpfj+WemC+w9z50fUW7as2e1+rYdZm394FYYkZlP2O5i0obzwnTrXY53dz8/LLpd3cPI5OwukdJw+/m5t/f5b61G44IMbc5OLaqNsb3/tNFHoOZ9vYBcJ/+BO/+/QJDQ0NDQ0NDQ0NbxyaqPTI8OVffBvjrkx+6v26UKYtXOIKfkLNZRKqkxovsMy3OK8R883cvRM61BOmHvMJ1KIQcYLDbE7E5UWgNFGzC2aA+Yviq3IWd6Q0jQrwHKiKOyBPeIGlPjJlVSc4kIsrTpjnxXPw9/Qxweel5jAAIDqdl5xnnxc3kbWwVsySF43kzr8Sdvg6HXL8a3SH36Rdjr8a7vHVcJfjr4cdfoNu813fDgf8arjNbXkZRnwx3OX+fkVxUUg9lYdzFTuFiXlfuIhG+vm8Sq4eXct5KY0MTjLxY20xz0t5eQAHvUF35v7AvFrqEp5Wi9DSrmTV+8HV+3KqT/yudJbj0jWA/Q6o3/qTlUIJ/vxLnHt3h4j6O6DOWlkmp/Dvz9J3dadiXMrvU15VZvw3GLAxBunP4grXxoj7hnvcmHiLHk8wLCaZGHg6rfC//HdfPcu7oaGhoaGhoaHhzULzVHpk+Gd/u/4P/gOq+aSIGUuTaIN5ZVD9yUCUqgJ0klzDT7YuTTc7M7li1Ls46Wf2k9E1cvH+VP9op28EmYirP4m/v3A4H3tcWgrmX0RfVTTNVKN5o+wkmlDnhVDnhXmJgxiOs/njH2fz4KtPvMPK5M7PIlb68JKYqBzYxPaZExgvw4SXccJbNOI7ucc3whGMI97lI76T13ibDjgS45ZGfCyu8S4dsacJd3zEd/AGL+iIHU3YkZhD7xFxFyb8Er3Cx+MK91SP3lFbkws4zo/epbHl81ILMuJhZgedf38e8r5Y+Aqbk8vjaPk4FjjUIpbmSSuwfHvnvXRpmdXTWI+mvcvDkWI1tvz9KuEORZBhMMDIfmFL18jPNacI8X3TKk7/ncBQkahc8zBRqT6f0rdxGfMl7rNYKEc9B/80z1l2wOvwnAN2POGeRqzQoQdhzeLddY0BxMBm6nAbRtlcAIR1DLhNGxB0yd/pjkdjJN+lHfoCfuHv/Ab+yH/yu85yb2hoaGhoaGhoeHPQRKVHhjguT3TI/f1QnDrfV6y8HyDz51xb/PHXq5EoKBVYRXizE9kPI8i0efH4mbxY8eZc9i7l4Zs9315n/15a4qQH3saIt3DMIuhLGvESo36CWxpx241ZfLinCb9Ot3mXsB1N+I3uDmuWndL2FPFr3Q6y+9XlPnvf8f6/PhnffJuXG1cEHJ6LrP4Fek9PWD7vdbrKi00PPT9X/VH9ftn3zX/2um2yMaEIZRrPn/keOUDMzDfc4UC6A1zAJi3YU2P8TexkSR+JifeKO+wwpU0VOjw74Vg2HhfrNhsaGhoaGhq+zcHxA/wP1IZva7Tlb48Mn/jRj1WxqorFz6WOSYKq1uCSqfWHxaj7FCcJHm6erJ/Z57yuUfclY+5LRt0qbJzi4I8tcbpk1H3JuPtStcklo27PqQh0NYdSHVIf80bdHSC72uX71cuD7DNOYWYyP8t7HZ8y6p4vsazH1jdn1P16nN4vo+5TefFG3T5PHsKJZtWB5/C6Rt0+L6fzweX8C99r/h6XjLp9P58TIx9y/rw6coGDif37FE2OJF6o6HKcLn23XjKmB4B/40e/6+I5DQ0NDQ0NDQ0Nbw6aqPTI8IP//scRnFG3LvMCZNIwmZhAmNJW3umDvARIDW11CYROYHbp3sW0uZ4MnRITFH4ydARXk6ED6skRozZXtkvXMocqBkbSpW3Koea0c20+unhRqDJgx8Gb7B7T9uEVR7Ycao7zvBQO+oHPy8G12eeFXN5s2+VvXOTgjbotB3J5s1uUF0712LIcAcfBcSIQbpK4cIrDUlwbpMezsR+LwV2vFSWnxhow5zTafl94f+aiTp3H8inn+9ccavPxJaNub/js8xJdm32snEpeCgdKmT/X5iUOFl8L91Wb1ghVmwfQzBS+/k5wMaEaawEEpjnH3Caq82RrhXyby3dEbRrfuTbPv9fqPHUg8BkOEVyNJV3adnLs0XysHUwbyeS9cDifN3IcZgjAH/nf/a7TxxsaGhoaGhoaGt44NFHpkeFL/+M38Pb9lCf/RwJe0pQnSBMYL3HMO1JFMF5grCYnrzDhmCZoDMY9Ig5mwnYEsDeeSreIuDfHbynijqYc39OEWzPBOlDEKxpzHAG8shNjAl6hCBZTOh7NxOgFjRWnd3GsOMjSqMLhznHagytOOzB2ZsL2kmpOdzRV1RU7x+lIjFdUYibZucxO0F6hiDIHAl7RlDmNiHiBwikmDuc47cA4mjbvAey5LOF5BcbOcHhFE+5orPJi27iniJeGw5TaaDncoohWR/J5Ybx0ebGceIHTLWLmpBwsp7dJ8przRCMOmMz5EfsqnrA3nCIgS3rM2LIxu+MjGPcYzdhj3Jk4puOW0z2maoe3A2JpM0tuLYd7jDiaNu9Smy2HnYlHxFmb9xhPchrBFzjFilPhUOJ94lTe+cJBjsezedlhwg5lrB0w4d7Uut3RiH/Rvcht3KXvqDwWEXEwY+8Ixq1r8x5TFR/MWIxgvHJ52iNWosyIWsS5pWPF4YBYxSrilO+EEXvzvXV0eSKiSvA7IOLeHJ8cJ72/HXv3juMdxjzW9JzoONk23tJYja2Y2pnzSvV3+y1NuLVjyyCC8W7c4+9/7tdnxxoaGhoaGhoaGt5cNE+lR4Z//LmvIQJ4AWDNIgjFALzAhHX6TTcH4AWPWCGAWAQQjQcQOAAvecIKEQMHcABuecIBESsWf457MEYW8+Y9GEyMkSPWCDJBTNVBGw4yASXGxIw1Ag6ImEiEoA2LTTcT8C5PWCNgBQIT4QUz1hD/lkjAC45YgXCgKG3GKBUOLJzeZYk7lvu9TJxWidMrnjAgYs0BPRFumXHAhAGECcB9EmnWIOk3Ao7KKbV5xBEbVg7InCLEgPldjNhwQI+Q2jBhhZB26Jrn5SUmrEA4ouZAzDkvawSpcjB5W3NACIQ7juiBnJdbMA5MWIFxD6lFUk47moRT4rCH5GlMHI4pfgcRG+5StUfq53T/CZQ57FMfvOCY7i999hLSxsgx5fWIddoDzXJYpV2qXnLEKrVxoIA7ZvRgdJDd2lSY6UBSMZPaPCDgkDxgRmasEGRSTsDEI4a0Jx8IuEtxD3nmPY/FSJmAe57QI2RPmft0/hHC4TbfT/Ki9wtAuv+EHjF9RthjwoiIHgErdDJeEqcjRYCBiRh9eh84jSX7zClzqp+pFTL3OGJIpsrRcNpjQiTOsfaRXj85TgSY45T6iLBLnHoEDNRhzxFj4hCJceAp50UrYCb4vByxMpzGNBYAwtfDHrf0Fr47bnMeRhYz+R2NWRCUvIyIxHiV7le3kdAhgAjY84QOlE2ulVOX8q7HexA66nHkmAznCUeKOLKILkN6pw/pe6tHQI8eEzFiusceY/peixjQYQQjEud+3mIAE3Bg6aM9TdXxI2LFaY2+Ol/9jpQju7G2QsCKOhw5IiROgQgHrsfakUUcW6PDlnppp+knJiCmZ+wx4pi+yzfosgn8ARF7jIgE/E//7W/g3//M7/7g/zFraGhoaGho+NaC6fI5DY8STVR6ZIiTrcAoS6JAIv5olQjSkpZIXMUHJC+PtBTpiAlbdHkJ2RFT9rkZ0x/9nfaYf9MumIhxa6ukSCqG0uMQSSqAVkmEiQTcIwIcsE6TzB3MspXEYW9+sy/CRqxiLSxQTkfI7kXKYcSEZ9ynWD4bUgXGmCZayqFwKhxuqSzmUU49xO9HOEVsI7BKwtIeEcwkscuLcjqg5sBUc0SVF6kSeYIhVTdI9cmGRSQZYXaXI61eYJMnqapSnyefl4mkYmFj80IRXaS0hEfar8+QPHFZUngqL+n+lsMGfR5rIzOep8n/CFR5lqVBpUIjEqeKpBLvzBkxPVNFHk7PJKYcHxGTUXfIsX0/lmJbHSQVH8iChU7Wt+lrV6pIJqySm9WU8qCYwKY+SPIwLXAiiOihnNYsO4UxpAJIdmfrZhxKXLd5cpyA5KWT3o8JMb8vwklEE5DjYPNCyEKZ53SP4igWU7wWGQj3NOGXu1f4jriRfkv3tB5lo+GgYytCzKW1jcySa22jLlWz7/zKcIjMspshqRdR6ZMxnS9CMGVOG+6zAGffJ8mL5ShtXDHLSCDNdeFwMHlQTsSxauPo2mR38VPOW5OHIzM25nmjO3/EiC33uY3RcTiYfp9IqqiWoP/GNDQ0NDQ0NDQ0PA605W+PDD/w73xHFQ9JYSleQXWs+sspTxrv+6ETFOtVMjeErlXuS5r33BC6jv313sB2yUzZc/Cx93jxnjKDe+olA9uZebJzyPXP6939Fo26Z+22/itzjxn7DAJ903nxbT66bd99n/SzsbWcF7s07RyngMtG3ZcN1Od5tvDT487d8XWNuj0n//4smVp/2Iy65wbQPHumv98lTh6+zXuqrewH12r/viy9v/X5QZMDpL+sR9M8L0DnfjvnGWeRxz7jDC6d73d3G1WYSu3MYzE1JOjPKZ5cXk6ONYOja5PP0iVOAPBv/TvfffGchoaGhoaGhoaGNwdNVHpk+L1/8uPoKqPu2uzVm/SKmWvxSgGcQS05g2iU38qfEqb87lb2mP5cGw97g9vzkyXPibBsPGyfe8l83JvyLu2Sd46DN1M+sD/uOdT36xY4VSbXvo2eA9VmynrPigNfEt/mebDxntlNWudG3efGGlDEu8WxRXND6KtUWaGCwCUDdX/MG3N7U2vPOZhnLXE4Z9R9itPcqBsurseeZ+ZFnvn7ct6omzA3UH+IUbfl4E2t/fu1JE7b2HOYXJvveayIr1UUSuhB1U5mEVwd99XauhzMqiaZH0uD8/NZjq1VhtX7ur+zSMTaxq5OlhF8APG9svEgDy3tYVScpPqIASrvjxXrRCimXBUGmgv+0XACpFrSxl5U8uKf73ePLhD++J/55OkTGhoaGhoaGhoa3jg0UemR4Z/9/NdxtzOm2IjYoTZ/vXOmvHfGlJchS26s2as3f2VQZaa8c2avEtdtsObJR4iBtF1KZI8H1IIGQ5ZCWVPrnTGwFfPkmtMuLS9RTtZoGKxL96zBLRynqTbtTRwLh9qUNwKVaS9R8poyHA8mPqI24R0Rq7hwqg2gp1N54VKtZI24KxNsmqo8HVCbWo+oOYJqTh1RxWGa5YWrvEyY5+Ue0YgwZRncqby8oINwJm1zbRCtxtyKA03YW8P0xNPmpeKIWniawDhSrPpkd8Go+4Da1Fore8r7UudlT47DbKxN2FnD9DR+MyfHoUtCl83LCJ+n2qj7nmoOOzPWgLJMTvMSz71PKQ92rB0wVWbkI2LNATWHK3V3SmmZAAxka+0IW/RZhOnSctI8VFlEGyturRCKwJ2OhyTGgIGBQ4khouiQfL4AEWQ6I+qsuatiPUfbMIAqUWaDXoQto/NYISqAsEGXOfWoOTFkWS4ZDivHYWVlIYZ4rZk2indZl+MtuqpisQOhZzJtCrhCvygsEQPbqcf//F9/eX6woaGhoaGh4dscBOY378/lNQAND0HzVHpk+Md/9zfFo4OBDoxdMrXecUSPYv56n4xZ06/pUxzzb8J3PKGD+JT0FHDg5DPChC0l42GWaoBDuoeavR6SIfSUzI+PEJPrKRsFi6n1HU/JPJkAItyneJP8YvZgdBCjbuEgBs77zEnMZmN6vhraEpDiiA68YGBLWFGfOHGeZImfjJy/g5olj8l4WPyndomTGkLfZbNjMv0YxLybgPvUZvVXUg73pIbQU5UX5XQqL3vDacgcpN86Csl4mBBS/yHngXK/TSzm5EfUptYRnPu1R8gG0Dp2huTbU/LAVbxLnDQPk8sLUl6Us5glh2wAPYAQ0Iu/EhgE8dwCA5HEW0grLSKmbBAtRsOxysuEEQOLwflEwC6ZVq8Sh33iJDbx0v9qsK2ChxiDF+PuPtUAIWhMWWTYm/eFqMfIDEpjKxBhYhWagFGNupNvj5qPx2QInTkhGeWnfjvwhA7F52qfDJ079GCIkBRUgCLgyBIrB+2DMR2/h3BQEWKXx1rIBuJBhQ302VtMRicn7zFOIrDmRa4fzfvTm7EV09iS91bEqA4hG8MTpB9Gknys0KVlXiM6EK4h5tpd8spaI2BilqoeBAypTYck4m3Qpb5HuoYRWarRxJeKEThVIRGJiX8aVzo2uvQ9sUqCDLEKhxEDCRdtUwdZojlyMbsfIKbrIxgdEbboMKZKxoASr5In2gAgcvLsIhGadPwEBGwg4wmJk60BG9CBwYis7x/hKglw++RlRdrP6ao+9Ys+Y0XCc8/F92lI704A4fN/91/i03/+B97vf7oaGhoaGhoaGho+pGii0iMDx1JlIhULyPEI2QnMxtHFWWQhNbSd8o5ZEVJto5eouatC4/yLdZKJkTXa1uVNutuTmCcHYxQcMbBMrADhUBvUGs8lqg1wlUOGcgBjY016lUPiFLkYdUcVyQwHW1FRONXHdaLMhoNtc8elX8fE61RepoW8iNhVjIjZmPJKXiLAHYgoCww+LzWnOk8iIJS8HBHRVabWnCeyhYPPS83JGw3DHY/M2FpOYFzr2LL3x3wJ5DJHlxeS3QptXnoOsshJ28TFr2e+RMuPrbiYl6HKS8Q6HWeg6rMZh9SvhUMSgAynPUX0Jg9jygtyLP2Y7wGzrEvHt+Mwz4sdm5wFOu2TIyBjbaGPovZR0kFjEsP8dwBcHDhLp1W/6hIvSkcpiY8RAbpMV8UNPV9N8u31Q7qvHleo15hdzkgQ0WSPCUSUBM9S5CviVqmCCul5WrUl4lbnzi8VQdqGEaVKT3acjOlrSOIh3UPbGBEwpWov6YNSAec5E0pZsl6vFZ/AMqcAyqNNY61n6xBwdaLQOf8b09DQ0NDQ0NDQ8CjQlr89Mvzgj31nFWfDaV02orPbMs+cofacWTLqrr1+vAG0j1/XtNcbQvure8dpaZB7Dj6eHCfvKeONgS+ZKXsvmfGhRt02LybW+9vlQvVk/rzI4ifT1TPMOTWHGvO81LG/3zwvhUV5RhElloy67TM7EDZm6U72lDG4lJe5CXx0x2t4o+7FvJj3Z56Xy+bJfgnVnFONS3nxnHyfnDIft7ep8zIXjj5oo+47qncaG9i3uY5PeTfNx97yNbPvNSx7wdVt9sbb5zn6DQcuvX/Wtyqff+a7OoIr/y///ujSRXuh5+zv6du4hD/wY82ou6GhoaGhoaHhMaGJSo8Mv/ePfxyDMeoe1KMjzRVCmaGnv8okwhsFq0mvN+X1xsNdPl/QcYCZ68AbB8PFM+NhZ3ItF1ixoea0xMHH54yHZ5wB8RkxCKCKk3/W3Kjb+/bU53f6UJuXBU7WQN3npeJA87yU3djSM2eczotv3gB67zgR2OWFlsfawmS6jK0znABsWUZXMeqm6nhn+qciknDJ1NoLKJ27/uRYM9R8XiaXF8/JizqLu/KZNvix5c3HvUfU3Gy8vp8fa5bb4jvvOBG8HDIX3+bCmBeq6ja/rGrn5qbWl4Q2Vs5m7Pl+rlpNC2KfPuWEuORNrvMOcydwcNJZ5zjNRCLi3L/KgcyJS/1eGXOnKjELnxdv5L2YxzOcQiD84T/1idMnNDQ0NDQ0NHx7gpFKzt+wPxd+adjwMDRR6ZHhn/x3v4n9rkyXxF+l/EZbqw40Zo1RGwvLHEVeRLvMApjvvja6OepEsZpsq+XwKcFHxA/KRweqY0CWzRSBSPyNLCc2HIoIY3ftMjEv7LZGhjOkKsc+fwLD+NnmKbIVN+yUb0jL0KzwVu+ulRuV7285LeeFKw7BcmD1V4HJC1d5GSlWIspSXtjmoUxrAQArCtXxCHJ54ZN50fZXeeF6yc4Sh1sSy3Y16p6gvj51nqpsmZly7/PiOCWXJMOhTO71eTZPviIGbLUZSrHPSz3WcsVLutBX7bDjQKirunqfFxdH1O9LdPdTDzLLQbktvvNcqp2Um//32S6xA2Ts2bHGqPs5uDY/xaoS10awboKWr7fHyYpGAIiNWJa5mA4E0vLOckO7HKy8W+UkXdKqGGCNw6VfA9mxVLdp5eTCCDG7txwG0wZdbmrbZDnpMyyHSvTk+TMJqMzIB+6qqrIAmvXrSbGMgW4i/IP/dzPqbmhoaGhoaGh4TGii0iPDP/l7vwkgic0oHkZIk0w1hBYj4LKsRc63wkypIqmWkqTJGJv/qaeKThztsg+GrRKaVyzkiZM5X72DLA97fq7IcRz0ONz5qDhJrBOpSozKAoXdFn6Jg62wcRPYhC4t39Fn+moU6wsFe/8H5UWkneA49SZv4oWznBdtc3SxzQFjvoRIfaL0GbXn0TwvdrnQUl5EOqwFHp10a3t3FMGsfRIzB+2TCWpqrZ/V8Bx695VohVTps6mKrf+Qfp4ajvLjXFiwebHVVRFiJG4b6kUlvySPzOfRvS9LnOxYrTjk+9RjT/uhrpA5LZZ4MBjTwnJPnxcb+3+YrnlIQpE0a6SYu9kKwmqErSJucH8TRGCKXJ8fIEJWqGKyqQSIstm2fq6m5SGJLbUwHE1bkoBjYi9gRsdBx86QnjmYnic9nwgd1f5JyqG6DwOBKQth1s+pg+xiR4xsTt9z2kUuiXF96hMV71bmGuKy214A4X/5e185ORYaGhoaGhoaGhrePDSj7oaz8JPwS/FZnJ53Vvd7wGkPvp/e83Vw9vwHcvhmnv8QXLrna+VtgdPS+XTm+LcUJ3JwieNva5tP4P1u04eR41n4vGh8gkgRVVQUgftbTanJxeW4/9veaX5/FdLqNlgRuBhzz59hxS5//VJbVODW6jN7vvpGnTofKMKU7wNg3ieEYgTvhUF9pgqQGo/pE8Lck62hoaGhoaGhoeFxolUqPTL8nj/6XVWcl1ekSdyDjLqNH0upuEC+YG7UXeOScbefT3oDXO9d4tvYO06XBjljzmlWHcLnjboXfW/s9e5+kzMb96a93tTax/7+nsOyUXd55tKk8P026p5XzHgO5yelc0PouVH39oJR9yVj4ctG3T4v3qi7HmukP3P52Hs0+bx482Rvav36Rt1+bJ3w0Tl5/zpPUA5cOJzj5EGgmV/Xpbz4sXVLxyqeG3X7scrV39F9rt9zviqy/LxgWn1BsfNtvszxvIH6/DtkwXvLcFj6zvF5mtx3gL/Gc/DHLxmsA8Af/KPfc/GchoaGhoaGhoaGNwdNVHpk+D3/m+/CalNknh6h8tTIHhppCU7lTWKFJ41pbu7ql+cM7MWF2pPD7z51aaJzNBNcAHkJRrkfoTOcvL/K0jNyfIJTdRziU1Nzqksu/HRt4rrNR+fqPTpOHTDPixEblvJCLi+Vvw+ZflQOXF+/muVlSboyHBCrjw4cXR/wLC+ek/8CopPBAicA19xXsRfKenb+L0bwAVKfmHh0nLyOEFCPteBEIF2ipe8PCCB2eeE6L35RnhffBiwIKGfKsrzoepiJF3B5WuKEqgwoc7Sfmxt4U+v5DnOO08W81G1+1xl196BKRCV3jQooVBKDCdZDjTBR7bFWln9yOr82H9enlfPjLK5zWZvEe5HHm8IHzIVg+90XU5ts5dFEMXMg0Myc33Pa5+WbyxyOqAeWb7NfnuzBHfCH/sPvO3m8oaGhoaGh4dsYTG/en4b3BU1UemT4x5/7GnA/5UnkBBavjjzPldhOKlduorxOfhoar7g+f4NQVScRxKPDCjR296YAqkSaHgFrc4c1uur4GgGDNDbffwXKHKLjhPQ8O9irmJE9QpTThkMlTA32eHq0FTAIlAzELYfyxJVySG3aUueOU9UnDFrMyyInk5dwKi8MrF2egLSLnY1NGzqXlwHB5aGrzt8iYAWq8jKYvDCSaXTFoZYflvJixTPPYUeTHDeiTr00qR5rg3JK8Zq7sgMiJE92h7cO5AybCQOVNjN4gVPirHnweUGdlyEvbCrwnKw41rmxMnCoOG3QV0LUBp3r5fp6gIqhM7QfCidaaHMPI5vyPI/qSXSa0zwvdVy3+YaGSoTZYcKephwfEPEKx8ovai+OWikW7yiNJzBe4Ygjiiizx5RjQASZ0Ry/pSN2mPLxPSJ2GG23VrsJ7mjEDraNE27TGYCYeFtOe0TcpU+0jbeGEyCiTzkecY8pC00RjFuMFYcJsRKiRjAOhsNLOuIOY44jST/kNlGsONzSiBdUC3yKCYy34w5/97/85dmxhoaGhoaGhoaGNxfNU+mR4V/8/G+lyT4jskxSiGSiHZlxyHGHyGKyHYiwTpMWMdENWKfrJ4550h1ZdvZaQYy6O8hE4whko9eJJe5I7Ionlnv2JOLBBM5msVt0GFXkAmGNgAmMNVPFIUKFJSAysEMEkZwfWX4bH0lEmmIEHOR6ILU1IIDRsVRA6KS8S32gO3QFTv1AqcoLcjyCq5ggxr9b0JwDswg+IGwSpxWHxAkpL3ExL2uTFzlOeVoaELACpzygyktMedF4yhykKmUCYw+kPEhe2ORlRMwmxRsEjGCs0m5U2uY1K0dgYpnABpK8TCyTZs3LxCxVFMpxIS8Acl5iUjMspwMiDiSfaWWKiH16DWMy8cQM9Y7ZIGBkzZmIYRMzhpSHDtKH6n2jz1CRYcixVIis0eWxLO+LjE1mFE6pWq1L70dgGXvKiVCMugMTiIqJtZpBT5w4EmVOXRKFNiCMXMbaKo0tNXhWo+WYOUjeppSXHgFsxpa+P8phBRIO0N3ZpG2EwglQXx8RyjQvnhNO5EVj5Zs0LGy5B5NUw3Ug7Eiklh0miTEhEvCCD1ghyPtLhHses8l1IMKRIwJS9RYBdzyiV+GQgD1PGCHfaSuS75+JJxBkx7oRE44cMaT37kCMkSMGdNiiRyTGIeXkgAkTMe54xICAY+qHl3zECgFbDBWnPQmHV3zEkHLHJt6gQ5fO13cSBNzzhE7fGMNpjQ499RiZMWESIZA67BFxZEafOY3YY8KGO2zQYSRg4gkDglRfEXCbOOwwYiTGW9iJeMmyG+OBJhGjCPj8z/9L/Om/8Hu+mX+mGhoaGhoaGhoavo3QRKVHBgryG2mZOBe/I63w6FE8kbr0O3q7K1F9PtCbiiKpLKAqDmnCZ+N9mlZqfEi/i18yvB1Q71TUpwm0bUOZ3GqbSMSy3N6AQ+aE6n4dauNbG9s2+5hcm0fHSSfOysGa5PYLsW9Tl6bT5/IymeO2z2ysbba72YWF40ucdBmVCBQdfF4shw5wnKT1KrpI+0tepMorVnnyfXDq/tom6wcWSGSTvWmzcKg5KQqHEvu80KwNlOSv0u9WpOmhAl/h5PNin0eYj7UkvVbXoOLU5R3oihBT2nhprJVnljYGE1N63lS9PzUHy0n6qMRIsdaxZE48yVJAqOFznSfbB55T9a1Caec4UykzpXdBjx/S27dCV5Z9cpTqR3J+Y6m6aMJUnR85xZDKaLt0VKp5ZIc6AiESkiiTahdzG5GvP2RHJIn3iFglYSc/07TpaKqqNA5MGDIH44+0cP0IBvOEDfq0xBIYreda4pD7kBi3NGITC+dDueMsjgTcYZwvhQQQwsKHDQ0NDQ0NDQ0Nbyw+dMvfiOjTRPRXiOg/J6KfTj8/fw/30Ws/rdennz9LRH/xg3z2hxm/5499vIofZNTtVjqcNbRNEyA7Wb5k1D032a1xyRDaLsMBThh1G07+IXKo5uSfya9p1O3hl4t482S/5br31TmZlzLXPZsXBrLAI9fPjbp9fNEQms7nxefVj7XgOPmHvB9G3ZeMhWcG6i72x73/19zXCmfzsmSgPlXeQLV31hIH79d16X3xJvC+j04aqFfvSN3mc6bw/tr3Iy/3NFWx95nycRZcuNyv9mQKjh/ObkDgPc3svRX+nfZt8oxVHHzo+eX+8uC8ZJGXz6+EJsw5EWi2HPbBmyCcwR/695qnUkNDQ0NDw5sG+W+lN/DPb3fHviH4UFUqEdGPA/hLzPxD5rNPAfg8Ef0QM7/zGrd7DuAvpj+g4nfzl5n5r37Az/7Q4l/9dz+G9SZgv5PJQwfx1RmTIBBStcOR5C2TZTHGSJqAPhImXZdCkCVjKHE1oybx9rk3u52tOGDElGcsHacaGRUH9O1OcYQYPquX2sh1DE4mt3o/UOGUOFhOIJlIW04hktwvxcTpB+WI2oB8w0EmhemZw4xTqjfJ83PHwcWTcsAChxN5GYCak8tL0H7UvHBOEABgbe6veTm6vESTl+Dz4vJwYF2kls5P1yzmZYHTcl5wNi9P4oD7bsqxLBsqk/UBHSYeq7HFLi8w3bK861/hKJwI0XDomLLAptU9k+HURalmKXnxIlHNKXPQPuGAg8lLDxKj9yymoeIQOQLoDKdYHbfLyk5y0Ni843b8B7h3Pqa/09gM2pf6HYCAe5OXHgEHnh6clzs+ArzJcfaQymOrHmvRjVW2SUSpdLMiSiVOk4pM5ZrMQceik1xGRKyMyNkjYH+G4x4TbswjetDse802Wyu0rFF3QBqLqd87UNXvurRQCbJ7f1YI2JnxMSLmCi3pV1lSafvdcvLoAuHf/ZO/c/lgQ0NDQ0NDQ0PDG4kPTaVSqgj6LICfsp8z8xcAfAHAX3sPt/2rAD6X/vxlAD/AzD/lT/qAnv2hxD/7O1/DaherxF8hmVIn3KDPBs7EwDV3soNbmjReoZOdw1J8zR3WHPJE4wl3WLOdjBG2sVQG9CBccZfjFQJuuM/xhjvccJ/FpS13uOEux1cIuEHIIkcPwjW6InpAdgXrKg41pxvusdI2M3DDXRVfK4dEY4uAjTEb7xHOclgnDjAcrg2Ha+5wzcUMeUuEa+BsXq7P5IUYeIIlTiVPTylgbe4/IFR5WSHg2nBao5Pd1Uxenpi8XKPHE5T4hgKuUOabYSEvV9zl7eUlD8MsL0MV1xyecMA6z4sZRxIfJDuRX3Oo8rSFyQv6OuYeGxTOG3TYmJqtFcTLJptWg8T42gh2WxMTgC3qsbdFV5vAo6+q6bbJm6YIJEFiKIfaXFz9e+xY21YcelnqZeLtjEPh6DkRgCsMFYe1Mc5WTr3htEUvZuIp7pOAeCovQ+rnU3nZOk5PdAFmio8Qv68CwpoKpx61SXzgukJLfNSoCHxc/MUKh9qQnVAb2w8I1QYEa+5KVWS6xhrZ96gN1be6eDjFMd0ztxnia0X5+rq6MEJ867IpPIp3nXKoDNQZWHFXVVz5sbZxtXi5ysy8w/Z9sSAG1lOHv/df/Mr8YENDQ0NDQ0NDwxuLD1Ol0k+kv39x4djfgog+rwVm/snfrmd/WPErf/8bCES4SYbZO8jk5QYdxmQIDSI8QZ/iiICAa5bfWI8QU+srBKw4ZrPjHlLpcuCINcS0dwDhwGKWvE4TsAMiRojQ1DNJdUv6rf8zHnDgKJM1BDxN8YbFIPopdzgwY5sMoW8QcGQ1qS4c9hAT6ifc48iMkYTDEx4Sh8JpzeJN0iHgirWKqvy2fkh9MIDQG057AGsKGFg9oqRfnvOAfTLe7QynFSsnqjg9YeGwSec/QckLEqcjs2z1nfJyNBxuUl4miMn1NQhrDtlAXfLCiZNMJlep/fuFvKzRYeCAHaZcCdEnTquUl2cmLz0Iz9FjzxFXidNN4jBB8qoc9ogAEW64S3mRqosnPOCY8iCcJE8x5WXLjBVLxc0A2flvxYw7MA4kudJqngmMgTp0CDiy+NKUeMoG0BoPkDZfpbEju78RtugxIuZdyLb5/ZgQKB3n4mtzhR6T5oECrjCIcTcLpy0om5+L4XlAn3xz1JdMOYzEWHGHngJGjpm3VI3I2CIKFacOhOt0fJVibbMaqGs8pjwIR8Yx5foqcYoQo+4rDBhTHwaIEbguIxOzfsLAYkgunISDjE0RNzqW+0dC5nTkVCVJXa5YmudFjt1AzLWvuIdWgTFLJZgaqDN0/Asn+RnI3l6s1VnF06oywjecCJzFNetDNkF0FNkFks0zitm4GqQTOBugByqG6JS+pzYoZv3WFD6m81fpOBKHbO6fHK06qePKXnfKUaoKk6F6arlKRFkUS3HgYqAu73UZO9JPuokBsheYbHogZv7XKS+6KUGX7kEg/K9//2v4U//HZtTd0NDQ0NDQ0PBY8GESlT4D4J0Ty8y+BABE9OPM/LNv2LO/pQh9qjZIu3JFFK+dIU2I9ibW5RQaD+ZeKloodCJbx4RX6dfa6oHzKu0SFFKFxJFjFSt0Vy397bzEaevxFOsEilM8yJQOu9TmFWQpz5Esh2L0PYCkuidzIgyczGpTNcMWHXSK1wHYgrJpbUicdobTFl1eRqWcag51vDL9KrHk5d5wIKQd4FLcu7yszPUSO04wnIiwTcLSqbxccS+bmxtOesfCqfTjBp3LCyphaQVZLrVLfluSF8ZI5ThcXgKXWMSxemxdmWqfkHbGu0tbvIfUz9Ykfm1Gq8bWZNqbwg8uTzK2OJu+y/tSDNT7ND50LPYoMkaJCzr3/mibrdn4Ch3uXRyr80vtih4/Z9wtOeLqnWdw9kHTXc0iSh8oTpnCew66M55t05iWICrHg+G0WcyLHUtdlRdCWXqm5uJl10U1J0d1vr2fPEcWm3q/p5kxeOZZc1wyF/fnU+rbJcPzU6bwloM1+/dm/p6TPj2a5wfzHWAFNW0zIS3ZTe/Papbr4sdVOJXxvapYFXT9h6YAuqGhoaGhoeH9RKTL5zQ8SnyY/uvvhwG8deLYO+nvH3ndmxLRcyL68fTn+bfy2R9G/O5Pe6PuhLzkIv1slsL4pQ7W0BZYMuquTa391MMbQl/6erpkPOyv98bD79Wo23IwK0zSM2rMzZRreOPh0R33cb5/rprA2bww6rxoJYONbV7UK8vCmyl7Dn7Fy8xA3cWn8q59LXlh1/flZ28AvWTUfX3BqPuygbrnVBsVz426/dhauL/J09LY8nmynB5i1H0Jl8zH/f0W8770vpzhNDPqru5Hs2de+ofH32/vjLqtEAzMOfjWRLD0u61C8t9rnpMzUL+UBz92Lplae2NvbwLvn+bNxxe/cwwnEQf9+2M9pOZG3Ze+Wy+9TwDwI5/+HRfPaWhoaGhoaGhoeHPwYRKVnr9P52QQ0U9DjLq/APFV+iwR/effimd/WPH9P/pRrDYl7YFJfHvSr6CD/lY9xdVv2f1kJl0X3HG/09mAGotihtWl3IQ2oo5HADSbKNufa07kOFXnp/OIa07lgVyfn7BybeovcFgSZKiKa06dm/C9l7xUnKofuHAw8HmaTbwdp2wInDDPC1fmzAHAPcaqguOWSgwAt0leYyGJF1THb9kYwHWspSs/Mb/EwWNy20BEd5xQe9jMq1pSXEo6KnGyNKIcZxsDueJL4cWJJaHXIrLPy8KOXua4Lg0rx6nmgDT+T3FyN1wSYOY7C57Pywohe28BEHNog8G/b0Ax+C/NrECg6v2pxGc6I96xcqh3L/R59eLdgHA2T3NRqeYAxyFqH1Xf1fMKKcsJ7MdaDT+2skF6QnB58bvmeXSB8CN/vIlKDQ0NDQ0NDQ2PCR8mUQkoVUEeWkX00de8188x819m5i+lpW2fAfCXiOgvvt/PJqLPL/0B8KEyl/jn/9VXEXYxT0UYSEuNkCcdNgbPDWx1SZnGayYMZhZ3RfUyOVlGU8crMxnqID4jZfImy9w0XqdYJ1wbSnG6PgBYowxmBmPlRBnPaQVUwpPntM1tlhus4EUXqoQlWeZTG0TbeAXCxnDegLAuzcMawJrqZSyZAx6al5rTBkDv85LVAvn7XF48p8Fx2iBUedqS5Ebv8A6N+FJ3l4WllzTi17o73CVhaYcJXw63eIUjCIQREV+hO7zEAQRZ/vMVusdbdMjC01doh6/SPsd3IZ6tvNHlWLZCxZsn2yVea3TV+d4cmUHoqJYTetcC3cXL5onKDcR7x+aNgxhGm4orawCdORh+loPE5fjKcbDLLfUJVhyQsXWaA7mxRpzGouEkPk719bXgEao2ZkHkRF6+J27xg9OTLCxdU1+J0SO4EpYojVUy9xtMCwIb4+4k5A0qXOU8hUqY7VHyIp5Lqd/yd0rNaW2W6eV+NWbi8p1QekkM2+uxNZBpM0jtyfP1vXJMbepsm4EZp5UbaxvXxmzUre80925shWosqXn4krBEDAxTwH//s78yP9jQ0NDQ0NDQ0PDG4sPkqfQQPH/oiUu7vDHzO0T0OQA/DdkZ7gN59ocZv/4/vwUiYM3q26MTMvlN+BEMphJLRY3sGhaNIfQqxTEZdQNAn44P4ryNwFKBM0EnmYyxiqW6RatWrhAwpi2wxcsImBgYmNJkRuI1gEDAJt1fdzNfp5/3idMaai4rnDRW42G5nyyLUaPhmJZj6WRP29gRkuGvPPNgObH4B3Uk4tiYtqEnFFNeNfHdpuvXoOQnk4zMKXFKx+/5YXlZQUyBeSEvxTxZlsEMoXA6pl3ExduFXZ6Ec0zlDcpBzcczJ1YOkpdN4qAc70hMp/9Zd4un3Gdj4F/t7nCddspiAr4cbrFFhzV3QAC+yvd4GwdccQcOwFexw9t8wNPYIwbgqzjgbR7xPHbYU8xGwlP2uRLDZV3+I8elzZoXNU/uUh7Eq4izsLBCyH2onk6M4p/U5dgaRs/Nk5HaE1CWdOXYjD1A3xfxsRLzbS7m+CTtstvKKwf19FEvI8+hdxyibTOLQTSR7Mhml0wpBx1bA/gkp8whXV98gNQYHOg4IBBhghg8WwNoNdZWTk/jgCcY8Aen5/g6HbInWi+1NMZPTN9xY7zNpfpKOXnj7hFcnR+TSbxyUsFG8pIM2an07ZTGgfb9ZPqd0veQFX3USFw9paYkai2NLW0z8ndzGZsy9kLiIHkrYy+m7wBOVU1cjTXiUpmkeVFBUU3gh9RvHTgZy+v4kvdHx+IWlE3d5X7qt0X4x//gt/Af/Wf/GhoaGhoaGhreIDDApor8jcGZCuyGh+PDJio9P/G5Vgm98z484xcA/DgRfZqZP/d+PZuZf2jp81St9KnXbOMHhmLULeJCD+DAZemEnbCpMasuPFkyqPVVIXqcmRFIJo17U00wADikiaHGI2DiejlHj9qQVmJkDj2QRBVpq3IaUS8HORpO9W/qCXActK5EqxNWkIlo0spkgspwHLjiMJlJoa1UeSinHsDR5EX9hHxerCnwubzknaxYhJ9VAG6jzds8LweTF29+7I2GFzkU0nhBY1nuQ8AtTYgmvseEe5JdyEDAHhP2NOUqoj1FfD0ccJW+svYU8bVO97jSflHJT/uFEE3szY9tv+n54UxMabxoHjQeTUymz+qRpWPLx/V475KsAQaIZCxpvykHG+tYsG328ZIhdDRttrFcHyuOcNdf5lSWDap4deBJqpxA6NFhSsscqyVbC3GHgI/zBm/jiD1F0+b6/FhxwEIey/k+j/KdUJ56KS/yvVabWvez8+ux4I/3sL27nAeuxqq2oT5/qsZecM/33811ngaEyjDdG3X3aWzbeErfbP672qIf3sD/4GxoaGhoaGhoaDiJD9Pyt3cecM4pM+33gk/+Nj77tw2/+09+N4AiyuryJ53AqCF0mdDMsWRqbXFkqQJQdO64N3C+NAW5ZHKt12u7eherUfcpQ2gf2wqUU+d7Dpc4eW8eb4g7OZX8dfPCCxxmRt1JGANU+DnPyX85eCHf5/3gTvgY9xWHLDiaiaqN/c/zY/OxwCZPXpCwzzgF/zzPaZ73IpoucfLXPSQv3qg7XDDqvvS+eA7eQPrUcsGH5uUSJw9ygsZSGzzeDccqXjtj7sHd0d8v5v7nFMvP1Vh0TT7HiUCVl9YSfL97f6/5+d5Tafnm2i49v3wn0ML3GqqfvfG99XGihbfDc/DHH2Ia/8P/2++7eE5DQ0NDQ0NDQ8Obgw+TqPSLqIUeC/388w+5ERH9FSLiM7u9fWDP/rDje3/4I8C6TA0COC+70An6ker44CYzexsTsHcTuJ17pi7ZUUT4yU69S9Hk4hFcTXaOAEa7Ax1xrkSSNiNvkZ45GE5LHHaO470XTBwndpzmHC9xqOMRIvoodHmKtjk4Dg/Jy4yTU7aYznPw8eg4eQ6Sl3L/JwhO9MFsrNlY7lG3+Tgba1N13JsdL42tc/GI6DjVcXQcCcDEsRJNZ+8PptOcCDhaDj7GXKC5xGGepzgbe7VAwm4XMOTlXLZfXycvdixqXmsO5/Mypk8UX6P7/AxARFbLwVadKQf7THbvD6hU+tnvOctpcpxG+ON1Xnybjy4G5nk6n5e50KQcAFkq6sfaNPtO8GPLfyecf38OjsPS2DsnIMaO8fv/yMdPHm9oaGhoaGhoaHjz8GESlT575pgKO587c44//50Txz6W/v7FD+jZH2r80v/rK3j7PubJ/w7Au4g4pMnKEREvaMI+xRMYLzFiZybKt5hwb+IdRdxRmawcAdwmvxgAeEWMV2Zy8pImvMgOOLIU6l0ac7yjCS9ozJO4kYAXNOWYAbxAEZYOAF6iCEt7MF7QlDmNiHhJI/apzRGMl47DHSLuTHwAcGsmWDsArwynFxTxisrxWxrxgo6Zwz1NeGk4HRHxAoVTJOAFYq5YigBecBGW7sB4gZjFsT0i3qVxlpd9lZdY5wWMezNpPEKWvKke9y4Yty4vL5NEAYgn0gvDYU+xiieSa+xk+yUXYelrOOIeY54oHxFxjzFPjEdE3GLMHCNkt7iD4bB38UhcCUt7ROxMm+9prGOMuMuLE0WUuoXhAMa9iUGo4gjGzuTtgIh7Kpw8hymNo0OVhzo+IOa8yfgunITDETvT5nsacW847TBVnI4p77nN5Dgl3tFw2Jm8HBBxV+WFXysv2g+ec52XYxX748oh54ki/lH3bharXqX3Ob9f6fl5bCLiFY5ZJIkp91aEOSJm8WxM5+8rTjELgjo2rOD3io5Vvx/c2FNxrbw/MvbKd8BUxZTOtxz8+2I56WeWww5T5jiB8QoydmoO0Yw1yb1yekkjXtExtzmStKPkQZal2u+5d+mwKCyNiHg77vG3P/svZscaGhoaGhoaGhreXHyYPJV+BsBfIaIfZ+afdcc+A+BzzPwlfxERfXLh858D8JNpxzePHwfwBWb+wjf77G9H/OovvCWiDMvOYHuS32C/5IgeYqQMkkncPUeE5E59iwk7jhiYgADcYcKOJ6y5Q0eEHRgHTFgxYYuAPUTsWTNjDwDEeJsZ6ySQRALe5hFrBOwRMRHwDRzF6DodfwfHsrU4Ed7BhBUIaxZj2XcBDMkslgl4wYwexRj4JSb0OkEynLrE4RUkXnMAAnCPiH2K1xSwA3BgFuNbEA4QYWbNjD3JM9/GhDUIO0qccMicJD7m3ZI4cxaD4ECEdzmmneXEyeVdBgYGdoTEKQonEk4vMJaduAyHkpfCoSNKnIA1Aq4RsGdZpraikpdDzotwesvkxXKYoJwl7plARHg35WXDAb3h8I1ulOoinhDShB0E3POY/I4kL3cp7kDZX2nPUZY4peqkA4u/0oCAA0UcOaIHgVM1xpjiY8r9LUf0aSxJP8pYOqb4JR+zebqcf8w79gUi3PFYfG9Mm/dJBrzDmH15LAcCModDapNWiBwSp46kouSYOK3R4UjCoQNhJAbAyTg5ZE6vTGw5cXqmtrlDABFnTht0YMhue116/9hw0vs/NC+rtAhqjwlHSJtW1OGA03kZiQEW4bPmNGIwY0vjAMKrMOIX6Rv4Tt5gxR2YgH3qox1NKRYfLo1f8hE9xOzachpSXg8s7ks5bxix5ymPtcJBOI1gTCxC00SMKY3FFQIiRMDTsbZFj0jALrXxgIiJGK/SWNOxqPEWfcVpnzhoHsfUJ8ppix4DdThwRDAc9jyVKikCbjFixxM26LChHiMiptTGAT32FNNYVE6MAw7YoMOWO4wEjDwlP6+UF0he9sl8/xvYY4NOdikEcCD5xQQI+KVf+E38xE9+y/5Ja2hoaGhoaPiWIE1O3ji8iZy+9fjQVColAegnITuzZRDRpyDVQp/x1yQT7C+mc+y9/jKAnyaiT7rzfxpivP0Zd/5rP/vbFcO6uM5US65IKoK0MgAAJmLsA1fxLpTjkaSqCJDfekvMOWbUS+E4HecqjuWJKZ6oxAeKaZKtsVQkKY7pT8WBbMw4UM1hH2qO91SqRGJqQ8UJtUfOgziZNuxJJpcl5uKplNo741TlxXBOsedQx8A9uTyhcGIAO0Y2YGGTN8shf5I4xIrDPC+j4zDqPzwkk2/bBxMloczEh6rNjIPJi4gULrZjzcTleCz/9qWxZOOj4zRSLFVXqZ99m/PYhFSBWPPxiTgvqQJOcPIcTCWMthkpN5zabM/3HA4zDmZ5kucEt1Quc3rNvBgOEXNOS20GI/+3yCEJpDYPp/ISCfha2OGWxqpNdmxGqjmNxDjq2NG8mDwxAZPL096NtWopnT0/5WVPEazjTzmYNk1mLJ7iOLk8eA6TycNIXL6bSfrF5i3avCVOOyxz0rG2d5zs9yDS+8RVXHPc0YRXYcSrMFY5Xa29s1lDQ0NDQ0NDQ8ObjA9TpRKY+a8S0ZeI6LOQXdo+BtmV7YdOVB19Lh2fHWPmzxDRTydfpY+m877AzB95n579bYnf+x98N/6f/6df0jme7ODD4q+juwyBOcdL2q31yWHIRDWbzJIYddudgXQ3thJTJaIQ5gaz9rkzo27des1dr+3qHSc16q7JlA84PSObLpMsresNJ+b6cs9BdwE7xcneHxARaWU5uXgA4d5w6hwnD8tfY5sXdnmR3ZuMIPcADr4LZVv0giMxNuaCj/CAL+MenIzb+7TblMYhPaFud83Bx74f7XHlYEUU3VHrFPz9plRJY+9vWfegtCuejq36ffHtusSB0zPtzl4dqBIl5pxq43ffxmjfR0jFkN3ZS6qTMIsfmpeI85zIjRztp3iGg4fPy44mbLn8c7VCqJYMDggioqSuyGMzxcUbSFrXp+pBfQQb/qc49UxFSAXyjpCK0fWzVGAZocbhiKk6X98Phe/Ho+sx/U5IJ89MtCdw/R2A+VgLjCKAQ36psK52wqvz1LuxuIQf+w++/+zxhoaGhoaGhoaGNwsfKlEJAJj5c3igfxEz/xSAn7pw/AN59rcrvu8PfgS0DsBeplkB8lv4zpgqjyRLJbKhLWR5SIll8sSQSdiBJ2zNUNpDrj8lDvgJa0Q9gdPJp8YjZFlbjrmeLAFFQJH7zjkdKVYcDogYDIcjy2TKHu/N5EpFoMxpJiR4TjKF1TZPYATLwU34ImoRKDhOATTn5PKiE8KcFzC2pkx1nzhbeOHgnHigk0nlIOMglNjl5Yq7PFHPeeGIjkqbdZKbx57Ny8JYG3nCyow1L6DMOczFEZg8johp2VrJix+LNlZxJJwba5iq92d0Y23kmtORy0Rf2vh6eRnT2LJ56qvj0QkkXjABJmZ0VBt1Ww5yTzIcRKC0nNfocxwREZw4d56Dz0MdH7gWZ7KgklIfABCXqmw2Ygv0cyMMZ/EOCwKJVlWxFxQDRi8SmVMmRIC7HPfpLT6FEbG63nMi1MKuH8sqmEflRo4TAZFrwZ8d3R4BBy5VRl6AJb0oHR8QsDfne3SB8Af+7WbU3dDQ0NDQ0NDwmPChWf7W8K3BP/wvv4xXezEeVlPrOyqG0GqYW4yHl0x6Y2WWPKalFgzOk6IDynKOe4qV+et9iGl5lcR7mnBnTHePiJWhLUg8aazB7Q5l+cgIzrGIK2K8rRzGxEmNu2PiUBlAwy3rIa7aPBGL51CK78KEe8uJnNGw4zAR445qk9496iUwO5SdxnYQ8/PR5GWHWJnyWk6MYgCtGIllmU7KC6d8axtvKc45GVPencuL9GOdlztjYh1IdgLU+Ot0wJ7keuVwoNNGw2KKXY81NRpOgw0RnJ7IKW/i1VT6farMkncYcb9grly2nK9NrAlSQXJqRzgZ+2WsjRDTapsX9RqyBtHeANovr1JPHIYsxTqavOxI+sRytAbR08L7Yg2gxcOpxAfEKpa8TDkvk+OkS9zsTmQjagNoRr28aikvxzN5OWKqxpbPy1VV+5h2dzQfRAADlVod8YISoQkEBC5CopwvgmBe3ctyDZm4N7U/2s7e3KOHqYIEsOauikfUgmdIQpZio7J1Ol8E2RJLNWFpw2AEXMtBOXJ6XhYLGVXVHRhYi+NW5mQrOwE9XlCq8fItpJJpQYsjBoYp4Of+5hthP9jQ0NDQ0NDgwJHeuD8N7w8+dJVKDR8sfvULb4mAwVLdsKMpexkduJi/7pIhLYAUx8p4WA1th2RurEbDEvfJ7FUqJo7pnnfp+gPEX+QOUzZXjqQmvTKJVdPeHmpqHXDPYjS8QQCIsOOIAFkSJpwkVsNYbXN0nLoFDh0FHMHZoHZAL74mZhncRIy7FB9yG+V85XDLUzLZLZx6FLPj22S0veUOnDh0kOU8HZHJSzJPhjPlTW3mnBfh1Duj4RUCVuiyB9UqPXOELEXsELMHkXJSA2g15R1dXvSZt1Veiqn1VTIe3jGjA+NdkkVWIhKV5TsihJW87JNptZpiazygy2bbE2QS36NPy3qmPPlV0SMAefmemlJ7c+QJxaRa7hcAEPbpfKn0Qrof5WoZEVDkcxCSWTKy4fQBE0aW+huNjykvRMW0Wkyte4zgvMRyQCfeRqyVg0mISVUmajwvbS4ctN9LXsSYe40um1IHQKoIbZvT2DrY9yX9HZB2JDR5UDPzYi4e0BsTaxkLXV5uFVCqrTQvymlK/VyMutXEmisOK5eXAVq1pPfhKlbhUir3UuUSSKIkKNnKrwjOlT0htdaKLYAVoZLQRUCHgADJFUHvy+AkQgUTRxLRrUMpQLJxzyHF6fzcJokZUn2knNTMP7cHXO7HjCmfT0VwMpyCEZy0hkqErMJpyD0lvTAB5ampTYEIG3SYuPh3qZhFIPzTL3wdDQ0NDQ0NDQ0NjwetUumRoVcTVUpmr+ZYZf6a4tHF1vRaKyyAtLyFkpGwVlmQGGdnuPtpXBvYcmVyPRKXNqb2Vcs7LAeNbQXDAqeZofOsaqRM2jRm80zPwRvajkscnJlybdK7wMHFPg9zTs4c2XHSvJXlTaj8WOacvLEwzwyhZ6bWjpPdIIJRL62RCesFTmZ0SiVMzSHmY3WsqJY2LXCqTK3T+TaOLmagynMklD6BMyOH8B9dXkbXpsly0j7QB7k+Qbqf58BVXkoFUm6ja/NZDqjz5Mee58Dk+hknYj5xnIrItcgBxRtIDpf/nYqteKLHbIWPPb9cE1x84vwkUKkYeer8gHmb5nF9fpjF5znNOZRYBNGak6KIUUucTveBb3OfhOsVulT/JEdXm2bU3dDQ0NDQ0NDwmNBEpUeGP/gff28Vr5C2u+fyG2c355uB3US7VA3IBUcbY14O17u7di72KytGJxdUAohpo3LI5uPpTsFxWuIQ4SfOseLk2zRc4OBfLO9VYkUgoF46BKS8YJ4XjX1eGMt5sZwOhpNUddR38XnxHHwfePHg4Dg9j6uKk5oja9y5PNlzgbnAMRtrqH15ljj4vHh4Dn6s+bxpn5W81O+Ph8/LTKgi5GVngFayUJXgS2Pr0vuyaPBsOKiY8PC88CxPth/JtbcSME5w8vB5ybu/JaxcL+S8c2mTRQQLXzbPN49Yen8i15wCm7wsNN/383Dhn1f/HWA93CqkZoy6fNByMCBzLrAsio5urAWuuRxdvwc3uLoH/CfDH/6PP3HxnIaGhoaGhoaGhjcHTVR6ZPi+3/cM/VonkWUAFDPlYta7FANuwpYmxRZ58lNOqWM3YSU3SWUX+wqSkdm0KV3jDKHVRNuLDoWDqxCZiQt1HFFP3oPjYO+t7fITbz7BQY/rEh5ZqrLACXwyT8uc5mKcfWZwbQpMr8VpdHkauc77VZITSx7meZF5uuVinkuXOfk2zsYayHGYj61zseccQAt5Of3+AJc5zM2Rz3PwnOd5iY7TwvvoOETfdqrjqirsgXk5x8mPPZ8Xz2HHI6yW3IOqOIDQqejD5TPbSVmsY+nTvPNaElaC++fQ/+OoArxiLow5AZLr81OiCkcnRHaQd1BBGqc2s4tFrKuri7KQpZyyc7nETo+fcfLC1BahumbLYSY0WWyow+/7ke86fUJDQ0NDQ0PDty+Y3rw/De8Lmqj0yPD5/8eXcdhHnWPgAFmyo5PKCVFi1l2cePE33nnynSY3Nu6zS4lccySuRJVDWipVlmLxYvVDrpwgqoSlgQgiRZU5pCzrKebJer5ysJwYPKuuAHGZfKcJaNUmqoWlveN0TL5HVkiw1+vW3LlqhwImyxH19vOH5Gek8eQ4LOWl4sT6zMJpMM9Y4nCgWMUT5nmxbZbtxUu8olBd/w3a59xqXuwOVpPhoHlhGJFF9ApEFSxcXvT8aqzlz3Ts1Zx4YWxZjj3JPmrKmGb3l+VnFQeqx5oVCMszbV7MM1lzX/6ndtXl/VjKSy3KVGMLYSGu3zfL4YiYd4hb4sDgvASNUCp8LCefFz/+PSf/nRAdh0BUCUsfxVo8hbiMwzU6lJV/4vOjwlKPIHHKQZdEpCw8QQSVgeWfQGKJeyPKrNFh4FK11aXlXkp7hQ5rU4e5QT+rTtqYNq4QsEWf4yv0WLlFZhsq9uCd4zQgYI1QcRgQKnHLc1ojoDfC0jUPWMWQBa41Aq4MpyvusTZC09PY47vjKgtJN9zje+Om3NNgzQEfH9f4+/+3X5kda2hoaGhoaGhoeHPRjLofGX71//M2gPJL8+KJpLtSpUke1ZNC/YnAydZVTVx14ikxgY1AIvEEiCjDEusEc0zTdxVCdNqpbiHaMq0wUGPYdTIeTnPyPLnV89UEOEJEGK2iKP4vVvgBOjAomUxPySg7oK84qBF2TELHaJ6pHCyn6DhpFYS2cW0mx3J/chxqTrqk6VxedAv4KXPq8kReOEllkBRIxOzXo3mZHCfLgXJeaNZmjbUqQtv8io65z6Jy0CoX5mw+zpB+RxonDGljh7KUStnWcYGMg+LFo7zVDFw5shmLUA6kS51YRIPURwyzVCzdryxTROrr+v1hx0mcd1RkPc9J8xmLBgAVdOq8oOJE6Z7akpUbS+t0bx2LxcfJcKC0NCrlaikvE2ozZ72HPt/ec5aXJU6Ggz5DY83LyGKQLjuriTl85GT+TmKsHlnfeRFhVHgVoalPYlipTtLzI4kQtEp9ENJbKiJczD5GHRgjRxyIxaQchJFjrhLqMGBEzEbdqyTiHSHLxbagNBbkflv0mJiToFSMuPeYcput+LpBj4ljNvZegQwHwiqdrxw2CFil777CidM7JUsRexaRlwhYQZbCHjjm3HYgjMxZtPqdcYM7kvYFED4Rt7jFhF367Io7bBIf/TemoaGhoaGhoaHhcaCJSo8Mq6vat8P7n3gsTd6X4rL0p0wqNTYPy5NQdtfP77rQrnR9NBPd8sPyneSc+rg/0y/nS3rDjBOlie4lDkstOXcO+zacJnL2GRb+flWeiDLHNNt+UJ7JxZ6DvybXYBhBIYNq8WGWbj2+QDTnYnbJmbHsOWqb2MdubM2ev9DQc8901/OJzFWcXJvq89z9MV/SdHk8nh49TPP3AS6Os1tcGo2YDaD8/izkRUVFG8dkYC6CB9KueMVwWkTLEtt6Id3BTxFAeQdHjYPxMxIT6i41m6Gm1AdM0gaSHfv0mAhD9fXyzCnRpsrrS2PrbUQoFWx6va0R7FxFku5MGA0HFS/t8bpNmgrlVERDFejs+YN73g332KVKPQLhBj1ueP6fEKtt+8+KhoaGhoaGhobHhLb87ZHhU3/6d1Rx9tRIs5HXNuqm92LU7b1LzgsmJw2hWa+vMThOlwZ5JVQBeUe4qoLENeqSybXvt4cadSuyEbHPi9fTDAdfIXLJqHs143ApLzUHn5c9TVX8kWTUraf1F8aaPRd4mFG3x7fKqPtUXuwx/dEvUztnCr9k1P36BuqXjLrrsdW7OJSGLz5kvkve+2DU7Uj4vLxDhyr2y8yUk11OZ+N6weTDzfvPmVpf+p7y75OHH2s+z75dk+Ow9P4scVBE971mv7NLm9z3lIsvvU8A8MN/5vsuntPQ0NDQ0NDwbQYGmOmN+/OQ3402XEYTlR4ZvucHn2JYlUlkgCzJ0dIBPwFcmhB6sWEucLjJlXths7iQsLiLkUFkLtUYnH67bsqF6joE+dib8npOnsMiJy+ueQ4Gflek2dTL7DwFmGVFytFdE4AyiWXHCQ/Iy0Lxlq/88XnRXfMKp/MTSJl0F3jj4S36GQcyeVGeqXHzeLEo6Pw3v29zf8Esmd0tI+L8uEFAMog28/EAVHnxHLxZ8mUOfmezhffljPDrxQ0fE7hw4FSpw1S9L5mTFc8qDtUNZ5z8+zQT+5b+ET8Tv8KhEkgCyCw9lM+PafmYCi9VTJzFu+xblkTQ7CkGI4omEdbCm4cf86JXjevjdjkmIGJfteEA+KSouciJkKuxijdV4UAg7GE4kVxv4YXfPdUcDo7Tjnyb46zNtr1jYHzfH3w+O97Q0NDQ0NDQ0PDmoolKjwyf/y9+A7yPeVI5Inl9pJjB6CjtpJQQUA+UAWUpBVgMbe2W3hv01aRSHIvKJJLBpZoIutSiXNEjVAa2awTx+khtFANeVJP7zghLMcU6UWYULxGFLqHRNq/U0DaJDhvuqsl7XlLD+gyeTZRt9USHUHEa0AmndP2GurQERjkSBtPPEzhxQOFAtRhml/kQZOLeVXnoyuSdgS1LvxUOqPISgcW8KHrNQ25zV3G8og59SQnepr0ISYmD5oWM0XDmmNplY2JU95c8dQt9UOIIuLHHFcfOjcUVh0q0WXNf9ZH2qd5xSu8H5ftrXgo8hzknwyHFxZNI/ldzqIUlchw61EuVNvZ9hOTJ3y+gzsuAUIQly4G0zYSu4lCLZz4v4UJetG9tP9d56aRfUvwMa+wxZUHjDiN2mDAloWiHEa8witcSZFnYDpMRZUT0UZFlRMQrHHGPMff7ARH7vKehGOPvTX3QLY24T8cBEZ3ukpQESNXZLtn9A8AdjbhN0pOcP+EWhyyGEaHidI8Jdzhm8UvuP2YO+kytNhoTRxXDpnS+5TQRV0LRRIx7Khxf0YgXVDiMBNwZDhMBL6m08SVNeJuOsyorEbQivsEHfO7/+kU0NDQ0NDQ0NDQ8HjTzg0eGL/+v70D9NJgZe4jHTg/ZKv2oMSWD2lSaoFuA65IQmWxzmqBSOkcmKipsaKGDTpIHiBEvQ3Z3UtPdERGBRMDQyac1sO2zoa0U/KxYzWSFwwQUDijeKkPmJIa22uZJhTQgcyheLAxwmdSH1OaQOYnhbSQUTgCOqd2rxAG5DaGIKcqJZbvxzAEqnuj9xORX+5mZcUh5GQxHANnbRfo4nOXUGQ6RGTHgTF7kGTlGEXCG3OY6T6vMSZ6vJr4lT/VYGxFBhJy3aDmDgZxnrS4pVWk6tmysdSIhfaZFSbnNXKqlNNa89CkvGnfgXMVj23B0bTyY90E5AKg4aF6s15i2GShji9NYYjrFISTjeU7vi3Ao70sRUPM7bt4fFYHGPDbqvKiJ9ZhMrDVP2uYVumSyDqjxvBr1n8tDBJ/hVMzvbV76PNY6MDO2LEb6e54QQFJxQ8COJwRE7FJ8ixE7nrIYqaJLj4BAQXa64yjvDwH3GLHjMRu0HxBx5JiE7Q4jMUae5HsgmeQf+YAehJgEuZd8wADZ2S0S4Z4ndNAdHBmv+IAeQaQaAl7xET0IWwwgosQhVQ0RcIsjOk7jh0RACzxhgw4DdbmNarC+x4QDpwokw2mDDhv0GEk4DwhYYcCRGEeM6BOnAxjfwB5rdNhyh5GAlzxigPgsjUR4BxNWIOwpYiTG13EUsZ8pL609pvb+8i+9jYaGhoaGhoaGhseDVqn0yLC6LjripWVhy0vhwuJxXX4RsrTEJ+9HrxGHxdi3GVX80Daf7oPiz2IFhVNtWuZAJ+MlThYBphLsgW1+SF7quFSFLHMIuJQXlUWW8hxA1bbjp845x8nn1VbzLF8f3PWnx86p9tjj9Uh7b22ex8t9cCov7zfHS3nwFUa+F8TkOrjjD+B4ltOlvBQDapAIIfO4LMmaiCsfqYjaK4jTNTY+mGVh6nMFlGVkulMitMLTPpPEI822aTL3l/NFUCqxWfpGIlKbKzARV/eIxFV1EKdrbDw5TntbTbTA6ZjMz5WTLIUr5x9dPx9cvKeIV2HCLU1yr9Se7U37XVVDQ0NDQ0NDw2NCE5UeGT7lTFQfZNTN1SVlhyykyYw1taYlo+5aNHldo25vHuuNuvPVZimN5WSXrS09RCpEak7WPHmpUd+0UbfGvBy/bl4YLi+oTa2XjLo9B29+HPhSXuolMAeqOXyE11XsTa2XzJIv5WXyeXGYG3W7rzj3PJ+Xk0bdeWx5U+ua0xKHmXnymffHC1VLnC6/L+dN4E+aZp/IE4DKqF63u7fPt+bgS0LTpe8AT8L79tzSsYq9kf3gYt9GH/egate85ffH5cUsD1yC9y/y79ODz/cJzefXnk2XvLUiuMrLkil8QM3Jm7o/1Ezc4g//me+/eE5DQ0NDQ0PDtyEivXl/Gt4XNFHpkeE7P3mNzaqkPQCyCxgB8gtssyuYxlwPEx97M+Q+XZvPd5Mf6y0EAAPXE7zAtc+OfFbiyCz+LtpmJvQm1mVoFScuE7YZJ5I2WPgJW+85OM4D15w6x4kcB0bNgYEqDkjC1Zm8rF0eBs9pJh7U2PA8LxUnnMlL/qxw8nnZqqdTaoZu5W45+Yn0CjWHzuUluK8sz2nOoY6zl5CBjb1hOrg2TA9A4cSmcucUJ1oydXecZobpnkPN0huqB/YCSW1sz5YjL1cn9byQlxTnNhlOleBIQMeeoxubF/LSubEGywHAgReEMc0LjLhn9LG5+Ejmp3mF4IlT62eegd+gYCZoOkxOuSOg4uDbv6Q1kTnoK+OWNFsvovrvOX98fv55EAG/6994fuGshoaGhoaGhoaGNwlNVHpk+P/+338DwyFmMy0GsEHAykwSN9zlmJI4sI4hCTiyq9cmlkqaa+6w5RLfcIetmST2IFwbIakD4Vp3BoNMum94yBPVDUusk/ctd7jiPsfX6HCFkIWkDsCWxd9DZ1nCKWQOa8NROW0Mp2v02HDNaWOqhTYIuPIcuDMcA264cFpx5zh1uMJpDlcgXKGIYwxgmzxL6rwUTht0IiwlDlcuT1fcVZyeImBrxkJweZG4cBrQVZzW3OHacLriDlfcZSHpBl3F4R06YqCumoxnQ3Q5Rcy+E6fAYvK+5s6MtU76IOehqypA1ABdQSBsDKceATcYSl7QYYs6Lxt0+fgWPdbGaF7u31Wm7yuESixboxNhNY+1mtPatFnzNudEWWwMIKyN6BJA2Jhe7CFjSTmu0ePKcNpyL+bcKQ8bdCmWNotAWRtr57zQUl5oIU9dNrYvnEqbexV2zViznHoEXGMwHDpcOw42L0+LpApAKmrIfCD+X0Vkscs19fk2niA7wlmxTSoaOefFbjfASN5TZ+45ONlpQnTLI2utau1aKd5WqGDDHqHKWRaxuI71DGInaHIt2mrtlq0YXDsOa3SVkDTi/H80EAOf+xtfOnNGQ0NDQ0NDQ0PDm4ZmfvDI8JV/9AIEwhVkEnMHYASJcATGnsWkVyamnHca2qLHmsu23Gv0WDFj4ph9WHomjFx2ResBjCxLu3oiPEHAyMAOMcU9RjUKBuEJ9/n6AMIN95iYsWKZTF2neJsMoa/QYTLXb5mwZsYOEWNQTiFvRr7hHqu0JETEB+Gg5uPrJFBMydS6g0zKRhST65vE4Q6TcOAOI4uBM4jwhAeMLJPPYDit0oRQ27xRTileJ1PqKxAmlrxMJEJRrPIinHJeUp60D1RoUnPxFWSZW81JDNlvSSb/TzKniI4CbiB5FJ+fkDnppFbzsmYRJq64Q2SYvMjzvpaMulfok/m4LMYRkYUxJufsDSQvMXPosUr9ogLIAM4m7uI5RZlzB8IGhBERBzA6BGxTG2LKyw1WGNNYlTYKB+W0gXBQw/Q1esQkCujYiMzYYQRRiY/JfHmTOFZjy3BaJWFJvZMGdOjBYGbDiTFyxJ5qDoeUl23irKbs1xgyBxFqJVbBaJ04rbirOBwwAaQcGYdk3S3CEWcTa89hjR4DGHB50SoZ3SlvSnn1edF2al4CEZ6kvHQ6tiBjbajywklUK6VTmnv5pLRR4wAsxvDnkxVjyhPInK9nMKFqgz0OzIUsfUaXz0B1vu7+qHf0HLTaSuMetHC8XM8MEFnOZSHivA8KsoE6F5P3mlMx3y/eX1zdx/bXr/7/3kZDQ0NDQ0NDQ8PjQROVHhk2T0rKZStyxj7FusOUGrzqMrLJHF+Z31vLRFLiMlmm/LPExS9I4z3K8hQ5P1YxVfevl6n4LeR1IqeLY3SJlfowKaeD4RQMBxUoAIC57E52iVOZfMrx0XGIFefSZuVEjkPn4h6MQ5UXwt5xspy9uXGpRKt3J7N50O3QTnFSf5XTeSlxh7qqokOqTHH9HA2HHqjy5JdkeRPszMnlCWkyPaDLedY2HioOXZUXO7aWOARXGSJtCpjSG6FttBzKdHs5L6dMsEueAvYcc148hz6NtVN5sGNrmdO8zR1CvqeaxE9n8mLHro2KsX26PuWlN+/fqbzY+w0zDvXz7N++Db5fy7mX8mCvL2frWLO+bER1zuqrTaVQeqP0DDv2zO1mz7TXchWf4zi/ft4HqNo9v99cUGN33HKyXC22T4aFTxsaGhoaGhq+3WE9NhsaLNryt0eGf/PPeqNuyss9gOSZ4b8wZrH5gGpDaBBwdKd7Hw7v9XPJENqbJR+ynFIv91C8J6PuNHnUG45u4uUvv+RX5Nt00qh7Fsvf87xQ1QhaaNTcQH2eFzsp91M/H/svB98HMwP1XL0gf38sDtWF3mNmiYPPy8wQmmPJk35owt6NJc/B+yn5vFhj4+p4+st7QC2ZWp/Ni38mvb5R94wDew51nM2WfR5O5OUh78uSUbflQCYvBFrwxjp9f2Celx3GKl47Dj4vWtGlcQRXefAeTpfGmgp+VSpcm73JtffS8t8J/vyTRt1czrecLn0nSOVc/Z0wN+qu4Y25Z21kz2Lezh/7s7/r9DkNDQ0NDQ0NDQ1vHJqo9Mjw0U9cYbuuK0g2oFymQkzij5RAIGzddGjjTHnX3vDZzXo37vq1MxZeoTZ8Dkzi05NiAiojbibIshszOVqZ+1/iBGAWr91kaQ1ciGtj7pXj1HPNqVMz8RQDdZmg5ySVPjWH3I+seak5zPOCKi9DqD94Scdq8n5PUzUJ3WGqJpl7THmSyWDsEbFLVTsMxgGMV5AlbwwuPjvKAcbEGpq3BUPnckL2KlL08Kbw9dgb0LnYGag7McFXrcDlDVgw5l7iZPLkd/2ac3KCpDN9Xy1wOMcpWE7pfclCbeaAisPcbLyuavECR38uLwt58m32nHweO9Ri2TX32HCX2zCh9j/qQNkjSuJQjTUAGLgrMaOubIMsrbMcfN58G9cX8kJuLPoNCcTovrSBwfV3BJxhOlPFiYHZ8bWr8vKc/Fg7uB3kImoxbZ/kuNwH7nttjTB7P/LPBKwp4Hf+4FM0NDQ0NDQ0NDQ8HjRR6ZHhH/3sr2M9RqzMXOMaJDuBQeYrVwjYJqEosJhYXxlD6Bt0uIlpwsTAEwTcmAnUcyI8DWVwDSA8Nb8V70F4qgbPkMnXM/R5wnTFAU+5xNfc4amaGxPwBIQnVISkAcATAJsUE4BrThwg7bhGh6tkYh0YuEGP68RBOV1FypyeEuEJSnXBDQFPCRWHJ8ZIeIUOT7nPnDboZpyeseUQ8NSIYTcE3HRU5eXG50WNtyEcrhByXkLiYDlJXsqk8FkAbjqA0mzwa+GIL4f7LBR9IxzwNRO/CEf8ZrgXDx4Ar2jE18I9dkk4ug8TvhrucYdRYprw5bDHixS/S2My2g6ZQ2VaneJV5kBVrKbwatwNBq4gBs4aryBG29ZA3ZpY9+iwNabwK2cIvUnHtTpoi74yVNf758k8jCm15aR5SRN7y2mLYcYp7x7oOUG9iCynUHEaECpjbmljn0WWDffYGA7KyRpxbw0ngvgnaV4qDhAOc059xekKfTaN1zb6vGwrDrXZ+Ap9ZaD+vfEKv3d8hpvYAwQ85VUy7qZU3ZVMpA2Ha+1nyHeKzVMP9YwqL9gaSbhKHDbos0iTNygwwlHv8rBBh2sTX6d+r43v6zxdo2xAcM1DlSdKY1fz0iNgiz5zWKNLpvCWQ1eM7QFsMWROIXFYGVN4EX9jquMST7BRq7ogO+veYcpi8xPu8ITt91zAR3lVvQ/6Iqw54NnU43/4v/wKGhoaGhoaGhoaHg+ap9Ijw9f/6UsQAdcdsGHgLgIjE25AuAJjB3HcuOYeW4ihM0gMozcIyYRaTLA3HHCE7lYlE44jA32Q2cZHAnAAcEzVEM8gS7AOEHHmWTK5jhCfkmeQWH2TnmWTa71ejm8JIAKeEDCxTDAJhBsAW2bcA4iQ3dm2qYIGkB3ntslcGUiTeWM+LibXYlTcEaEjYMXibdSReMV8JLX/LlU+PEOHI3OSXUqbA8SIWNu8SpyeJ87bdPwpxN9mBeF00wknm5dtlZcOW0i/E1HOy2TysuaAqcqLGKb3BKnIIGDPEXuSfvjlcIdrdLjHBCbgy+EOG3TYYUIkxlfDPdYQw/JIwNfCfd4BjQn4arfDigNWqTLky90Bv8VHqHfLVTKE3rPcTw2gS7/PDaFXYFmSiGJyrcdlN0HpN2vcPXLEETJ+1LQ6ggESEWbiYlZ8nYy61RD6CgMmRKySS5caeXe5qqXPRt2RSpuPXIy6Zybw4Dw5P8nJGHVfJw57ipWp9TGNR+WE1A/KQU2u1dRaOW0xYOKINdecDinP28RJ44fmhXk5FvPx9B1ByMbdmpd+IS8aqyG0tvEm7WD3+6bneBVH3NIEosJxREyG6X02TAcB11hhg2iqkaSN2mdqLn5Q43sMWKPHhAmnxppyOBAbjjEvG3yC2sh+m8fKhI4IN4kTUp7VNF7Hmo6tfRpbto8ojc0IRpfM/LPRvW5AkIztx+TFtYWIVRNHkxfOy1UnMO4xIUAqJAHgyAyCjJ2JGK94RA9KvUP5u3qUrzl8jAcczXfpGiFXs33ln754X/6tamhoaGhoaPjwgEHgc8vgv01R7+3b8F7RKpUeGTbPinNOR6gqY3S3sPPx8vIlzpM2ypZLRMDa3F+Pk4l1ArwUA2VieiruqFZGO5q3eXCxXTJizceLMXfilHyW1jTnZDmsUDYXf6+cesdpMP3WPSAvdumOzVPhBNktnQuH3AsE3NKUrwcBOxIBSOM9RUwmPlDESGVp3IEiDuYeB2LszLoZv8RK4nAypoW4m3HysTeRFwnJxnQiln72MSGcaaM3E38dTsXUuo7tkqulPljmUPeR/adxHr9em5c4dBfy4peZLffB+bxEc/4THrDl8pZfMnXvjMBRjp8eW/L+9NXxk3lhfae7vPpraVmnCn32efV3wNwE3o617gFjrZtxqNswfx/q/2hSM3Vdulb9dyIBIxUhqnyPlfutEHCNHtfoq7Zunzaj7oaGhoaGhoaGx4QmKj0y/Ov/iRh1q0gi4kVZ/qDyioU1uAWWzI1rU+tDfRi9O9+Xx13Sh1Wq0DYeuW4XKYMU945DcLG9lyI6Dkdr3L1w/uBib9TtEV2sZuZ63zFzkr9XLi+ek5x7Oi8MnxfCMQlKgFSGfdxlYmZqfZ5S9l/KHFys9ytjK+QlOKfu782Sl4y0awP1Om/e5PrSF9wpo252XEoeQhV7s2TP4RQna6DuzZM9h0tjyz/PG3UfL3AIicN7zYuYwtccVKg4xcnnxXN4OxyqeO39wowQnDnA5kvfnjqunn8ub1S/P9nUmk6cj7nJtefs+/XoxlrvOPjnjJlR/X7VJ5/OE83aU8agwo+dd6k2SD/3Pmm7/tBPfOLMWQ0NDQ0NDQ0NDW8amqj0yHD9PRscegJRqloB495NzO/M5IhAuHNVLHfOzPXOmb/ecTW3wQH15OYIrgSJEVwJEiO4mnCNEB8QNYAewdgn0YfTcqAdI8dEjHs3wbsjH0917DjcohZt7rmOD2DHKVacjg/gtE/LhhiMiYFdRM4LTF60XfezvBhOVOdtidNdhNu4j6vjk+M0mljaHCvRZURZKsWQpV9HEzOAgzHuJgAHmipOB9R52KMea3u365c3Gj66eFyI44lYOdScYsUpUs1Rnuk4uLF0cHk4OE4H9/7MONGco+Vg88TpXTqXpwlLHOKD8yKm7K6SzeVt5zk5Dp6z5+Tz8nXa4S7lXtrITsScc7JjjYnr2Lx/QoGwIz+25nmsOZ3P29LYs22eFvIyIc7aWDjJkrgck3x32u9q+34IJz/W/G5uPk+jy0t9/BWNC99rtRimPxMIe5rwke/foqGhoaGhoaGh4fGgiUqPDF/4mV/HOzvGXZpr3AJ4CcZtmhDtwXhFEa9IzFqPiHgVIl6kKVME45YiXiQzV73mRZpAMYARwLtRvIGQ7v8uisjykiLepSlPkG7DhHdpzMLRjmIVH4nxgiL2ecIFvGRgxyq2AC8B3KX4DoyXFHGbWnQA4xVNeElj3mb7NkS8oDFz2FHES8PpAOBdABNLBdQ9gHcYyRslccCUOb2iCe/QMU8K7x2HPUW8Q1PmMAF4QeKVBEg11qsowhIAvGLGS3AWinYpL7dpYit5maq83FHJk+QFeGkm6yMTXkwlL79Ge9yhTBrvacQ9xjzx3WPCLY558n5ErOJIEqvIAgLuMebJ+QET7jFlQWKXYhUkRojvzC7VYExg7GnCPY55kn2giLssHck5uypPMccyFkbHSTgop4PjMCLiFmPOWyRUsT7vmPMwYofJcIzYJ46Zg+EUEweNGYyR5Bxtc6Sa013ikDnRWHHYY8JdijUvd1VeGHcuL3cVhylxKLHN0zH1qXKKidO94XCkqc4LMe6rsTdVhs/3qDnsHKcDJtziUMYaRfxS/w7eoQMIhFdB2qPHbzFihxHHPLbkfiqyaN40Zoggo+LWERH3NOIujbWYxlLhKHnZp/eHwXiFI14l2aW02YguafxrfEcjXhlO+j7p2CIqOywSCPeYcGfen32Kd0Y4OiJmMUvzpGNrTJxuXV5U8OPUJzZPd5A2ah5sHgExI39BI8b0Xf0ijPg6HfL3mMUdJryFI/7OX/8iGhoaGhoaGt4wyH8cvXl/+CLzhgegGXU/MvzWP38FQASMO4j3DQi4BeOO03QqVb3cI2bV8T5E3HPMXj47ithxxBritXEE422eMIBwgw5HAG9F2ZntmOYe74DRJ5EnEvAOJvRAjt+lCT3L9IYhSy86TluoE+EFRQSOuOaAHoRXLBz0d/GvICLZxAwE4JYi7jiKDEXAfWqz7p60C4UDgXAgxls8YpV2uzoA+AaEAyBi2VsMDMm8mwl4h2sO70AMbkdicOLU8ZSX52i8QYcOhBcQ8+gtZLmM5mVHAAh4BcbthbzsOGY/lR0xdjxik/JyAPAWR6wBPEGHIxPeHhkdMW57Mfa95aOYEeszeBSTaIgJ9R1GBNYKEOAWRwQWryoiSscTJwoymU+m3FrVsmeZPEv10YQDp4qKVE1x4Jj76EARBz5I3iGVO8cUb6jHBMYdj3k5ko2nzOFYcXiVY+1H4RSy6DLm3edC5lTGnrQ5VSUZDnq/Q4rJcdKlZsJB8jQgiF9NMkPeoMdEhYN6Wb1yeSmx5k3yxOmZ94mD5uUeI/Y8YYMePQXcYwKxtKVwAI6Jk+ZJ87JPcZf6SDkOEBPxKi/oMRKnNuqSODF87oDsx3WKk/ajjsUOhIkY/6h/B1fc4zmvQUQ4QPrR5+GQON1hxD2P8j4YTkMam0cwjjwVgY70uIy1ERGvEDGAsMIgIkvKK5Mcf8F7yWvmeEzm8D1AhB2PCEnsiwS8xBEdkwg5BNyl9+c65cVzuMeEHU/5nb/HiB2PuMKAFXU4IuLIQDTv017HHmSMHnjCOu0KKGOrjM0JjFs+ImROjBd8QI+ANYLsAJfzsMZkvtd2idM36ICBi4/THsVz7cv//N3Ff3saGhoaGhoaGhreTLRKpUeG7fNiohpRqlaANMGgOj4as2WZWJolKATsXaw1JoqjHMyoFpyk51mBeKTaf2iiMiEFRFA+misiiueSPso+Qzi4OJzndCD9vb4uFarbeDQ/zziQGNza8yeql/9NVHuXRNfm5bxwFR9dXC1zWcjLHtZjhjAyyVbm6fyJzN4HKbbGvXEhtpwiccWJXR45/TLAxpMbW9HFR8dJjcGVk96viqmc7+8/JZGr4kCnOUSXJ6Z6HPBCm308uiWK1dIhcj5U2kYu55/lkPNUc7D97vMkHM5zWnzmAoeTnJQDo8Rn7rfEybb5jkbcm6VqfuORJU62jcKpbvPMlNotE/N5iTNOZqlbbnO5XzUOsPw+zceWe3/895br9+g4+H49wr8vC/1uxpofq5Nto88j5Dvojibc0VQ9++YjazQ0NDQ0NDQ0NDweNFHpkeFTn/mdMqlKk4UB9ayyA6qYXCyhNxqu46O7wJfD+V2I3BxxBm8IrYKKxgG1Ka/ndMmUl2nJPLn2LvGGzn5/I2/K6x8Y86cqVEUX15zWiYPG3hB6KS9ePPB5OaCY8xII38mr6vpLRt3sHjjLi+OUjbqzgXriVBmsn3+GNx+3ptZ6vo392LpkCD3nVHPwHHUXsFN5ufQMxmWjbs9hPrbOP29yAokuEStt9mbjYSEvlznkmBaMuvVGKX5do25vGH3vvLXsDo7A3Hw8ov5OmMzPwplgNRJe4Og5aXWSPcfi6Pp9uPDPq/c78uf7rHu/o0UjcNMoWepbc6h1KJq10HN4WUvo1U6ap/BHf+JfuXhOQ0NDQ0NDQ0PDm4MmKj0yXH/HGrGXCYVMyNNyGIO9MXudGdqSLHWwk5t57KuVaiNhH0+oTXgnxKr6wRsNT0Bl3I10z8rA1pkn+3huNOxNeb3RcM1pJGeO7GPUBtBT+sxysKa8keQZtQF0vMDJ5+WC0bDjQFzHlwyg4ywuAoke9+bJI09ioK4xYrWr3twcuTYa9kbcl425CyfNw/mxtnT8vFH36PJyfG2j7gucyOfFm4vHxTZrrHk5xQkARq6Nuo+YqrwcTZsZPKuEm3OMszb7seXzdplTHVssiqpcvz9yXi1ALn2uN/Q7NHqh65LI6oXn1915UHfhOwXG2cMnONX9viSe+djCC5SXJSXgY9/bjLobGhoaGhoaGh4Tmqj0yPAPfubXcHeMecnXPSJ2iNmU94CIHU24p2L+uqeYjYMZYjx8b6aNkcSvKE8KScyyi2GtmPbqFt1iJjvmyfqOagPbI0Xc0VTMk8G4N0bDBFnOpRwOYByI88R2lzipQe0IFk7GEPrgOB0pVsbCkcQ3So+PqDnd0oQ7GvNkfUcTbqlwOlBtAC0GuIUDSMy3bWXADpyXrd1BjMlVsNu7vEwQc3E11Y1gHEKsDJ4nkvxGcJ4t3qNMZr/a7XEwk3k1/VVOaghtTa3tcRUXdOJJSQRSQfCAiCNFjJiqWEWUEREHWKPumE2ttd+jE2F0jJa8cLIZLhzuzVjbJTNmbbOYhxtTa4iptB4niAhkl0NZTnuIwbVyKEbdZmyhNuoewfm4jC2u+l2XL2bTeIyVkfc9jVW/H07kJVc85bykirHkRVTyMuFIU87LDuLnoybWYx571my8cGLUBtDCoeRB71HsojkbtOc8JUP2c2bj1sT6ytU77hErheOImCsOAfmHzYosIWU3tz+db1UUIqqksA6hGnd+iVxALbGs3D+nXnjzWC+df6YSylZjFUFUq7LKMje9kBjJc6v8T/lpPKZ7KE9fLfUUdTWjr0Jdws81o+6GhoaGhoY3Esz0xv1peH/QjLofGX7ziy+zj9CBy0RG4km8R9KkVKqBBGo03IMAomTKO2JAMhoGcIuIjoGnGJLZK6ODVOWAgFue0CH5LpHsFhSSgXMxhE4nk+zcteMJawQEEHbJaPgKHTrqsE8c1BD6QIwDJ6EmVVTtuUwTxQC6mFxbTn0yT36ZON1gwEQi7nRAEiAKp2OawN1iQtAJNImAFpKBs+XUJ8PnHSKIgS069ETYgUHM2CCgJ8qcdjB5YJzMi3Lq06T5GJIhNBOuEodbjugBbDAIBwCEiPtUoXZguZ+KELvESSfeagBNKTV7TCCesDLmx8QsS5KSsJSNhJFiI2qMiBiRBIB8/jwvAwgDehH4WPJwhSELQdoHEalNKvoRsOMpG3dbs3F9ZjG1DkmoiSBErJOB+hETRkjehKNwUoNojaeUJ+WgfaRxD0JAwAjGmMyO18k8eUom2FfpfdknU3n1yrEcQMB9MoCeHAd95g4jiIEN+txmiUNu08ilCknzcnCxihPFQN3nJWBAlw2gh4pDMYTmJLABxc/n3nG6S5wW80KEfWrDR1D79PjKpVLlJH8uLeW0XkH1iQRO2kxd5TT3cvKVQV5kOi8pLZ1fc/KVUHq+fqp9CADM5nlUzj+1hLcSoXJbedYdXmTybVzCv/zii4vnNDQ0NDQ0NDQ0vDlolUqPDDcfNZMzAtgseYFffUELJr3Wz4icFxBJdQybCdtEZt7mY8x3coyEynhYd5GqY1Sxb/PcPNkfr2Nvyls2tE+ccJ6TN+UVDnU896A5H3sj4WqCeiYvPlYOI9UeMxGojLpZtMLSZj9pd4bQi6bVqNswM1SGj8/naWaW7K6b349cXurjKj7a2E+05xPvuk2zeDa2ak5e/Jgcp7LZO5c2s73fwlhzHHxe/FibGXV75cDB53GeF2/U7fLk3gcGzzjV97+QF/MMxVw0qknNx4Y//wxMnnWskd7E3MiLPq/1jAecP+fE7ngdkLuBrbKqzq9e3PNtmi87vMQKePrRzcVzGhoaGhoaGhoa3hw0UemR4Q/9xCdARviZG3XX8dIU4pzRsFQ41BMRbyg7N1NenhBqG71Z8sHuAqZtZM5Gw6tkPFzuj4XJk5s4zzjVsZ9s+aUul8yUo+MwutgbdSsHjfsH5KXyRjmRF2va+x2xrv6YG//WsReaql2/FuJSWbHMYclDxvu72LzMOLnz8zMqTnWe/Pl+bJW86PGa0/AAo+76eXNOk8vLhDov/WxsnTdwft28eKNubz7+0LzkmOZm43V7aWbw7MfaqbwoXtKhPBzAWotsU5wrarhczyaOKN8P+nzyHLnm5E2uB2/U7a73Jtf+O8L3afbaYnd+ir2Q5f3DFseeiWVnzHpsBS4q5ZKB+syom5xR9zlFMj373/vff/L0OQ0NDQ0NDQ0NDW8cmqj0yLB9NoA7MhMNt9026gkjgWZmrUumuzaOJrZ+HhrHhXjJELoYQJfJkfVEsZPXCaiMhuOMk98y/Lyx8JxT/Zt/5vMceMZpbmodK05+AijVSPXyFZ+H18uLPx4ekJc6jzibJysClYqomoMfa7PYzoppyfDZ54VPxu+Ng5yjBUNyvh9rjtPC2LIcvBePz0N0nODa7OPX5aTnn8qLfgecypO8b3Ve7Dvt+30pLlzK/WpOgOdYcWKWpbEpMQGp0i7FHQhr7irRZ81GBOJa5CEQtm719xpdJcr0XIvTW/RVvLLCFDuhioEVOhFx4NqcYgI5DgGDtpkBYsIKhRMDWHHNYTPjZHbFoyQCmTavMedk29zb4wz0jLQkWeItAnrDISPlZouAj35Hq1RqaGhoaGh4I6El72/Sn4b3BU1UemT4n/7Wr+I4xjyp2yNiQhEgRogJr8YxTfhGM01kmF220sTiiGII3YHy/cW0mrOHDoGwp5iNidVo+IhiLBzBKS4G0KOZ2PYgTCiT8wmyS5cKDofEaTIcJsJJTkCptuAFDtKIsgxODKBrTupHUzhxxQmEipPeX493KJUFDDEb113vGOLhNBmRhdP5FQdzPRjZOFvjnqhayvebYV/lyXOYqOzUJ4IEqt3U1N9HY6160PurCbC2WO+tHKalvLg8qKipcTCxFeP0mdrnmRPFioPuwqcxke6ulvJCIY/xlLaKwwFTGmuFU80BNQc/ttI9PSfL6Jh6tOSliC7KwXKKLi8dQpWXHqESacbEVp+5d2NNxmX9zltOlPKSxar0vlgOEaWP9J20nEbyHOq45EXa/BFsMCBkkSZCvKOGJLIEiA/alkX42aDDBr0ITSyVTCt0Isqk5K7R44pFVAksAssWnfBj8T1bI2TRpUPAE6yyMLTBgGv0WRi64h4b9KYaiHCNQcQpkuddY8htvuIea3RFpIE8U4WjAQFX6LFJHKQ9hQMlDhvuEgfCBoPhJMJZ5sDAgA5X2kaIkPYM68zhmgdcYcgcvovXeMqpjSTXf4xXtWCXcMUdnscBP/9//mU0NDQ0NDQ0NDQ8HjSj7keG3/qVWwA6UU5L1SjFXHY4qoQjExMYATLxPoIRwFihT7GY+ob02/IpTSMjkEWZiYuZshoJq7Ciz9ZlU2O6fo0AkAg1MjHS+zEmLlUaOlFWo27lNDlOMOcfUps36KWqhIUTJU7KuU9LXyaWO2mbVdzSWHZ7K21STgMCQubAebmOClwqyGhe1AhcOai5shUDLKcATrtVSdyBQWqcncyWCb0IHCx32qdqFM2T5mVMeYk5ljbrjlq6RExrIpT7kGIVZKLhAE73ocTZ5CWScFRoXGouREgJygmuogkqLJVarjL2ag7pdjlea15zXrqy3JHTyQv5tMLkUl6UQ0hjJxInTlRx0LEGc70tBFGBRp9h36dTedE8aB+t8lhRES7WeaFY5cXmbSkv+o+GCo2MsuRN21zn5QSnxIGYc1fP8xLlnWexnV5Bqq1GjiAS0/MVGEeOYAKuMaSKIk6VPCLcqJi1QocBAUcWMVCu7/JY1OOcru8hS8QmZuwpok/C0pRyCRBuEDCxHAsQIScyizk8ibA0MaezKZvNr9NoWKPHAMaeJ0RCEoIkz1J9NGSxSs7vsMocOMeaf+WkHAZ0shFBHh8STyzKcw/Cc6wx5vGZTP45YsNiXP+MO4zM6R0mfIxXGDmmJbVSBabfYb/1K6/Q0NDQ0NDQ0NDweNAqlR4ZnnxH7aNDPnC/fa6n7nZlRJno2qUwdhnLqWdUnjiLz6yv9ybVPvbXzznVJ5zklLZ9EvPwWrixFUug87tL+fsDjhNd3ulp1mcXOHgT6yr2nFK1Z+9KPisOvhp0oTrU727l2zTn4A46k3i442r4bPNgY496r6vFE2bPYPi4ztPSM+Y3Pf08f3+7pAuYvz/p4NknzMa3gx9bZ3chc++jjo3q/rO81Ldgx2kRZzjNvgMW+m00y/EIVPmw+TiAKh8qekDcJ6FPxadgfKey9xDb80PVRu975Xde6xbaiFmbT8fe/2gp7k9wVA790vWGk9/pTSveFL3j1CPgCh22acdExZO2/K2hoaGhoaGh4VGhiUqPDD/6574fZLLuTa0fYtStkxQ9YXLx3k1jfTmcN+09ZdStyJ416cCeaoNb38bBcbo0yBlSgZGFG62gsOKXa5Q34fXmyr5NfqJ/cF5CR3f8m83LslF3bTzsjbovcfB58V5BBxfnNrO5v8/LKYUPZTnfOaNuD2/U3bPLvnve6MaWVoRp7PPmx5Y3H1/iYMUWbwDt3x8/+ZdnvF5evNmyj/39Mqd0o0t5sUvplNMlo+45p/Pqta9Ee4t26TStvqrNxjuQ8zlz/e7iU+b9dV5qTvPvqfoG/n3wHL34dslAXX+2y0lrDvOxNx9rfDYvHr7f36axijuchj773/4/fP+ZsxoaGhoaGhq+XcFMb9yfhvcHTVR6ZNhc9+iC/Y31fCcm/xtwP5ny5/vj/vUMbCY/PD9/qeqnOoOTAa4tqDDxUoVKx6fbJJz8MxfEAX99xaHG0ot0bgqXiqLOtHGpnzyL85PEqt/zg8vf8zwutMecfxnzkyj/33Ib6zy7NtDZOqBF+Pt3tlkLf+e8k8Ssx6k+1bb3XJXaLCu+EgiXRdSHvB81h/P95F6d+nqYsUbuHHODSkx4QFJm3wEu7tx3gv+bgMpAWr2yrNm4FbIiRGwuAiSX3dUggocXPXduZ7Nd2TMOAJIPVIn3NFbC0D45Y2mcfeVSPKJ4qKlXlbZ5KVbPrrKUsI5Bc4FwDyv6MHYYz3I4wHGg41kOOyq+cNqHRyeGKcRrbsLqWVtV39DQ0NDQ0NDwmNBEpUeG//Fv/iriyHnSN4JBZLd/BwKVpRUyIa2FpT67JskJKxdv3GKQCaYygKTSoa+m2lTFHSh5ewjUryOkagrx+UCO5Q5lIjuBEYiyqMLQ5SgFXV7gIpPXXoWmdM+1Oa6TasthgnjL6D0jcJbDkDhovEn313id+lCfeQQjmLxESF78Ehq7g1fvOA0am36zHL4RDlWfiMePhemT9Dzb5sHJHysnU3Hio3kSUQAgn5d0XDl0GrOrqmHMluh4QUWfYdsw6DMotcdw6jmUNkB218qiSxLe7P1GHVs5L/L+2HMqTu4eysmOLctJxAh+rbz0CGX8Iu06Bju2Olixa0pttvfvQJXQ4/PSIeTjgd1SqwUO9nkioOC18jJwhw5BxgqA51jjiJire+5oxAETjkkI2mHEffqjgs0BMYssDGCkIgSNyVPsLtmi62f3xlI9kghN6nV1jxGvcMxC0BERtyYGATuMOb4naY+KMMd0f62GIwL2iQOA1P4Jap8v7Z8qoeiYxCwVgA5U2jyBcaCIO2OxHklM/60p+x3GLHbdY8IrHIq4RYx9Oi5+Th1eJrN7AuFVmPAOHbEzgp3m+A4jXmDE5/76F9HQ0NDQ0NDQ0PB40H6l+MjwjV+7zRM+nWypdXBAWYalIozuBKXVPUU0Ubturc6Q37fbCptu4RnMYtqrS2Jk8sRVrHfTWMUT8SVh9EymzWLWDSqckNsobR5ZdhkLIHdcOJDnoBUs6f7KMXNimXBKG/U3+DUnfUrhUB/vUDhIjIrTAXVe7I5rmhcVZWwlSkifBMOIINux27xElgnpqbFQhIASKwfKMZ2NYcQFAmNkgHKekgm0yYsfWyoo6HH/fJsXAnKNxRKnAbI8KuZneE6al+J2o6LYEqeSl/nz2LXZcujy08r7YitTlMzr5EXv4ceWXt9VT7TvbFleZd+vkSMi8UJeKImEPi8+70WMVpWIT3C6lBfltGIxUB/BGDlVIaXKnSNHHGjKos6ORxFxifJxEcIDRmKMPGVR5UgRRz5k4W8C4xZHdJCd1CIB95z2TCRp2y2OeXc0BnCLEYGBGwwAEfaYcOBJpKDUJtIquCRUEU+4Qo+eAg6IOHCUZb3p+C49E0l42vOELXqsqEt9UDiMRmwDxH/qJR8wIGCDHpE4c0AS9e94lFwkgfwlDuiYcIU+cyCe0GEDJuAVRYRUMcYEvCDhrOKifg4Av/lrzai7oaGhoaGh4XGBiD4N4DMAvgjgYwCeA/gpZn7ng74XEf04gD8B4JMAPgrgFy+c/761VdFEpUeGp99VTFR9BdJyXHw2bM0GGw8iP8G33iRlIonXim0bcCG2UhG5OxROcw4zTqbd5zkVQeEUBytePYQDu/jcEkTNS7yQF9tudhwCAnqWrd1PcfD9eomDj+0dldPRHL+UF1vpYjksna+cyLjCLHHChbzUecPsuOfk84ILfabHzo01GJXw/ciLH4vLHPjk8VP3rzyIZvHrcfJ58e9D5fVDrl3zROWd9nIMs5sgobo/SHaltKK2XfJFlNpjOESqBUHZGa8sE0yaU+kb10amemc9uPOX2jhyxEqf4I/DLUdL58842D4CV5wm4mpZrgpO+h8JYtBechVp7qMGAB/5ru3ss4aGhoaGhoZvczDNd2t5E/A++ColUecvMfMPmc8+BeDzRPRDryPWvO69iOinAfwCM/9kip8D+G8A/HI6/0sfVFst2vK3R4Yf/XOfEKNuXe7jZicdqHiZQKYQ5GYv7EyttVpD44Ob7nhj7sGZJ3v/ozzXSn/Pjbrr2JvuDo5TcJzgztcJluUwuthf7pdhzcyUPQcllf46kDeITvUbJ/LiDaEv5WXJENpPAL8z1rs0Dc6GN7i8RMfJm1z7+3tvIM9hyWjYxryQlypegDdH9rty+T4bXQN8nMUM1vvXptbefHzGAZIXy8nnxXLS6pyak9tZbJaXuo1z8/E6zvfzcYI3hV/iZNu8ZNTtheFL5vzzvNRj6SUO6dly4trs1gYUs3GNJ32fEqKL/fecUK7Hljfq9v3kcXRLwjxn62UElPeF8/nnjbqPzh/Je6JVN8N8rC3lxTPynk0v6FDFM4P1BX5/7D/95MlzGhoaGhoaGhreJCQR57MAfsp+zsxfAPAFAH/tg7pXEoPAzD9rzn0HwB+HVB/93AfVVo8mKj0yDKsOa/dr8bWZpBKTLDUx8cZNnFfoSszAypnuVoIIG++UHAfx2UlxDyrCEqfttM2v+gMIvYkJQO8qH1ZuurS2ni8gbJxgMuPkOXCoObDjwKGKV6Ay2WcUjxpaiE9wGly8cnlZX8jLmjvHKczzYjCwz1PNqb/AKQAVJwJmlTudy8vK5WVt88JzkcbnxYtEfpLrOVTiwQlOdZsdB55z7EDV2LMciOecqvcFQOfy4uOqD9L15zmEvBwrc3KlMmH2/tTH/Xb09v2RNpiY0vW8fP1SPM/b5bFmr1BR6Fyl1LRw3MLHc+Gp1tKsEMXmfyWuhSJ7Pec/9fkqxtmlknb0MdccKsF+kVONyQlPD2uzjevzJ+bZcWvkbaEVXsP23B5xDQ0NDQ0NDQ1vFH4i/f2LC8f+FoAf/wDv9ZPp8wpJWPocgE+q8PQBtLVCE5UeGT7/t34N/SRCkvp8rBCwjmXyvULAJnbJW0iqAq6SEBRYjLi36BDS8S132HIRiq5Zzu/SjCmASgyZfGy5l4kpZMJ5hU5EDohp9RadVDSxGExvELLAcMUdVghZFOkggsmaLYcOGy4cVuhwxX3msEaPK3QITIZTyJyuEao2S5sKJ4L4j6gYFhBwjT5XYa0cpw132HLhdMUd1obDFgErUI6jcjJ5WZu8hJSX65SHzIFLnraGEwDcIOAKZYnOO+EopupJYCAQthgypx6d+L4kTmt02BqOG+6xTsvokJ7fOyFJTKTL18xAkjtCyYvmKYCwQifG0iZPa5OXDfpkCF7auBaJIo+tDbosBAUQNiZPwwInabfGfTZV13E0IMj56X3pVRA0Y23tOGy4zybdwkE5Sfus0LqB9ElggNOHGp/Ky9ZwWCFgrZwh4qLNy5Z7DKiNuAeEPBaROGmljOSlz3lRDsopJOFMOVASnWqj+pDzouLPOjtWST+tz+ZF8qx5eIJVFkQYnHZqK/EeEyJxFlWUSRGjylJA8aViTMSVsERElSQTzPWAVgrVYpaNB4QsFAHAPu1YZ0UYK8rY8xnAAVP2bbLnKqc+OU1pmyZwquYr94iELARREhytsKT8LKcxPafmIPENVphQltruk2l3tRwxnT+mP3/7b/wLNDQ0NDQ0NDQ8EnwGwDsnlo19CchLzj6Ie/0wZNnapxbO/4I554Noa4XmqfTI8PZv3EMqe4ABwD0z9oQk0ohp9pE4TaSTtwiVybVOLvo08RYPDkoT7YDInCeOW3SIzLhDRCDCFTpEMG5Z4i33edclELBFjzWKUfcGMjleJSvgNTqswFhzgFYnDWBZlkXI8Y4ZB+UAwpEjIiHFg5nUiZig1QFZEGGtsgGu0GFa4PSSYhLLhMOOI4iQ45gmssppSBw2acK/4prTKpmP27xMlDgyYw/GSJzFNM2LctQVUAO6LIDkvCSOyuEKydw3mTFvEqcdJslL6iOdOG4TJzV83jhOykFj6UedsCP36yFNsrXfR0REkwfNS4eADcgIHiryELT6qUvn65KeNXpMabcvy2mfxtY6cdC7KKeaQ8ixtImTLCLLt3oQdjwiUuEoJvCc348JRTDoMeT3Tjkqp2x0n8eacJo4Ykxja5U4HNL7cykva/RZfKB0/WA4CgfGIb8PwmPPImZonjRv+f3IHBKnKi/lfVWj7yTRVHm5ozEJSfIdcETMx5fy0oMyBwbnSiltiy6JLbGKJsj3U/hqHn/9CEYAyyij8i5Z4Sim901jEa7mwpJ9XsxtqltQvNDq9hUfJ3+97phpK5DM0kwCmJEX38lyxOKFlH2f3PVsOE1pXJE73udr9Tzk5cFyuWlzuvi3fv0WDQ0NDQ0NDQ2PBD8M4K0Tx95Jf/8IgJ89cc43c6/PQcy531k4//24/4PRKpUeGZ5+d23U7Q2hL8fqxyKTKK1E0Kmk32Et5ClNiYOL/fF6wVS9vIlQL9tZ8gnpZnFYjll9RYqXiU6QLadugZPncInTjIPr1zmH+niP83kpz1jOCzkOvVZJnWnza+fFxXSxzSfy4jiVvKQqDi5jzaJznyxzqDlf4uDjeRv9cZ/X5TydGmveZ8q3cSl+3bycW6K4dPxUzKjHroqz+RM2bXacLuelfqYXZub9UMMLST721+txTk7VtgoK2hp3k0vL6y7943qJE1zszycXkLvcL1Pzd08Hz4WziqSKE4mAxXW68NHvaUbdDQ0NDQ0NbyKY37w/7wOev0/nvPa9mPmnmPkj3ow7QauX7FK317r/66CJSo8MP/znPwHqygxgbtSNmWnu3OSaywyG5kbdRzcRmfneOKNh66Wy9Lc3Sz6mKV9uH6qw9nBC2hZ+aZapzaC60gA0N+r28By82Tg5TnHGwZsp1yS82fjFvOROSBP+hbx4A/XviqsqvmwIjarNPi/eIDobqLNy8OICMJvFmnhm1A0xpba72/nrF02nl+6veXEm194U3k/kvefTJbNxADOj7nPm47oE6RwHnxdvbD9eGGs5D7zMaUlAqfKC+vVhABPHnBdCGpuZ4pyT5+CfF7lu8x3GKs6+VSnOvlWmD+wtoxEjAeM7ZTnNNiA4nxffZm9y7Y3v/djba20R6/m1gbp/Pw4LRt3nNlWINDfq9gKh/24+OLPxl86oe8V1G5f4/Yn/9F9dONjQ0NDQ0NDQ8KHF7yGizy/9eeD175z4XKuCPvoabfmm70VEnwTwaQA/m0y439f7L6GJSo8MgYArV+lzbasvmHBtDJ+JCTfcVxOi61gbdV/ZyQ0DW9Q6zBUoexOBgQ1IjLZTnL2F0kUDxB9J487FAcDWVTZcmecJB6riG67bfO3MkRc5mXtuUVelbBY5FSFpDXKckidUinsQNmbiHUj6rea0kJeKU19N7q6jy5MzF99SWa4CyDK02kCdKgP17MOT4myonvOSvIaUA5P49Oi8nJMxtxEXVo7TFrWp9RXqPKzdxHyNOm8rN/ZWToJZI1QchgUOtYF6qDm4ibcu4cocUJvAU/JMmnGwbXRjce3G4hq943TeFN7nJXs+ZU71WAxIu7EZjt5s3Oel4kDiEXaWIzyneqyJT9ZCXlL8UV7hWRyqNs+N7kMVb9AZTlgwG6/zVo01LOWp5rBxefGcvPn4yo29zuXFm/d3CDI2zPtUjS0YUQf6PtV5uzLLE8HAsJQng63jNLDLE4f6e47r77EKBFzFDqvQ/rOioaGhoaGhocHg+bf4Xp+FeCT9Zx/Q/Wdo//X3yPBLP/Nr2ETGNaUKHohJ9I0aPEN8g55yj46lQmaLDs95QM8irFyjx/PYoWcRXm64w1MjDD0lwnNCdpQZQHiOgLX5jfxz7rExxtzPeMDGmFg/4x5XaYe1a+5wk8zAiYEnCLgGcJ3aPwC4ooCbJPxQavOTKJw6iBmycJLlPlfo8ZS7zOkGHZ6zGGsTgKcIeIrC4YqAZybuQXjGXd6hbUDAM+7yTnoblj7bZk4BTy0HlvZeJeHnBsB1oCovV0t5iZKXHjLxf8Zi4NyxTJKfVZwCniUBjwh4FoBnHTCkMpJ3aKoMoAMCthiMAXSHJxjyRHadzJR1si0G6l2Or9CLD1Zl8Fwbpq+NAbSaaF9zj5DyskaPm9QmPb5NC9soTey3xpR6ldqkk3MRC4YsBPXocFNx6AsnVoP2PptWbx2nNbrst6QQTn3msEaPbTKBV85XsHGfDdGVk8YyVsU03pqLX2OV8yBG9kMWLYVTMUxfo8e15cQ9NobTFYtRuB6n1G+rNBYJqV+NuXjJi4w1NWkPaaxt0Od+D6nPrXH9gDDjdGM4DGlsZdP3lHfN0/fGK/ze6Rm+Z9ogMPAUg3hAJbPxCeovVoSfK/S4ShzEj036mVJ7BnRYGdFkZccapzyavIiJezFMl7wMWRiSsVrydMX12EQ6f6jenyGLilc8VGb9SN9T+v70CDI2EqdtMi/XvOn43+gGBOkZTxInzeMaxYy/g/hWqfQ6IOAZVllIlXe45PE74xpP3ffcR+MKV7EW5IiBJ7HHM+7x83/9l9HQ0NDQ0NDQ8G2Ef8LMP7T054HXPz/xuVb9vPMabfmm7kVEP53u8UMnDLm/qfufQjPqfmR4+S93IJKqlQ0DdwwcGNggYA3CHmLGKmbSgzHqDvgID3m50AodPhq7vI33AMIzyHKiLsgE5BkBEwN7BgDCM8j5d6ktT7nHDWTHIBDhKQ+4QTHtfcI9rsFJvKK8q9wGAJFUJ22ZdWEMNiCsAewgy8k2CFgz4QBZdrRO1UK6pEkn2pw5iYF2hCyDUU4TkilvEpYmZrxKbXzKYjy8T/30NJmPc+Yw4BqMLnG44Q7XCFhDq8TEOHsFEX6uCNgycHshL2N6nsY2L6vUJs3LR1JeUlrwtAOOXIy61QB6z5OMjWSWjHSPawzYpj4jFKNuNYSWnbpS5ROK6bUuw1IT6z1HTFSMuqM7bnfF6jHkpT49OvTJsFkrh/R6deO5Qo+JI3aYQAum1spBx5bGSa7KnHRnOY3V70fbeMCU8iAc1QT+lFG3zru9UbdyUm8y5TRxxC1NWaip8zJUJvBqCq8cthiwgTGFz5xqM/I9T1WbDyc4LOelCCCZE5ST7PSn14t4K5x2NOV+t3m5SbHPy5ZF+PiB+ATfH6/xFh2NuTjn5XaFg3DaJiFJoW0k08YOhJEZI8WFDQgkLzHlRUQY5RDRIeAaq2pDAuVUjOxlrN7yCFDJo3LUNmpe1FBd3g9kIUjHt8ZWsJMNCDi9T/MNCJ4i5GWRHQLUBD4Sl7GWjPI7EJ5ihYlrM/6Yxk4A4Yn7nnvOA55yj2PiNeQ3EXj7K/doaGhoaGhoePPA3r6gAXiYCHPKHPt9vVfaue3TOC0ofVP3P4dWqfTI8OR7jVG3qSYC1DekjvU32pwnWcXUGigm1pVRt/kNdudWSsgOUQVLJr3Bxd7suIqJ0FF93Cqly5xqY+7gOAmH4sEiHC2neRsvc6rbcJ7TPC+e09y4+1JeUOVlSDvL1W2+xMG32XOq43P+LcuG0d4Eu+a0aGptsGTUDRfPDaHrNvt4zsmbi3sOyxytMbflhCVOJk/vxUDdx57T3Lj+PIdLBupzs/4aDzEf93kZqfgT9QjVUralsePzMh+rD+TIpQ2X8uLN+y18G5a+x+bnn77+IRxOGbDPOBiOFv57LoCKPxeWv+fs7pyKj3xvM+puaGhoaGhoeDT4RcgObEvQzx/qzfSe70VEnwbwk6nC6p33+/6X0ESlR4bf/+dqo+6BAFQThzoGzhvYAlJBY+O9e2Zw9/PlcToIdfLjdy3y8QGoHPsptbG+f4mFouOE2ix5cpyOQGUIHevLq+29LQf7BNvmycVHx/nINSefl85xEkp2/UmdFwYwwuaFUsVYwcddJua7T9Vt9H+rMXfhVMfB/CwcyFOoji/F3tTa58mfPzO1vsilbrPnFNPPpWpqQUyYja35M2sOsYqtKbwX3/IzDHyW/Psxwo+1mpOKBzZeej9Oxd5snFHnZUkwmXOq4fPyDdpX8cYZRHuj7lxBxeZjQ8HHBFw077dG9yLSzE+38Ebdfe6f5ffn6OIetYjqf57MOASWje59nrxRt3LT2I8lv9vb23SsYu0DPz7sZz/2F/6V2bGGhoaGhoaGhjcUnz1zTIWaz32Q9yKiT0EEpT/hPn9ORH/xm73/Q9BEpUeGaWIcYj1puXcThHuzyxCDcU9THaOOd+BqYnvgIsIwIy3dMsfB1W/AD2AczeRnAuNgY6rjCLmnaj7MXAlZTJhzosIpIs44eM57lJ3B9P6W0wF8ltNxxglVLBzqifmBDafUr6fyAgB3VLd55zjtzSSUwdjHmsMRU5U3WQ5T4iNiNSmd0jm1cFXHx4U45wXAIS9WFOxNmyNitcOV9GvN6TiL6/NHNxZHkydABJfR5cFyiuQ5cSX6CIdaPNhTvWPWYcbpfJv98ZGi4+DjmtPk8hQ9R5rnxedtxsnsAsbpfbQi76U8LB2vx5bPU83hbTriHTrkuAeJ31J6PzqQmIWnODDhivsimDBwzbVoem2M7cXovja1vnYbEow+T+Q5+PfnPKc4e394dvyA6eT7AzI7LCYczD53i2Nplhf/PTedHWvyHWC+q6n+XrMgEHaIOE5zwamhoaGhoaGh4Q3FzwB56ZnHZwB8jpm/5A+kHdq+6Xul+/wkM39m4ZpPQwy7v6m2PgRNVHpk+Id/89ewH4FdEhjuABwJuEuThwMYx8C4o5gmSYQDAa8w5enLMUisE54I4C5NFBV3LNU3gDzjFcqW9ncUcUsR+zTB2VHELSJ2KT6AcZdi8ZABduAcAyIq3Sfx6gD5c8+MyCLGHIlxhwlTapfEMU25CCMBd4kTAIwEvERMHiFSyXEH4MicJuHALQqn23Q/nYzviHGLwukArjhNxLgnxt5xsILcgeu8HExe9ikv9ykvY+J0i5jzMgbg1nCKAG5RRBEC4S4WDl/GEXtMeaK6x4Q9xhyPSXzTiaq0I+aJKSex4ph7VZbLHHIfRBypTFwPmJJAOGbhYyQRw/QOUzq/CHbIMbHkZYcRU2rjBD1fOYwVpwNijnXSvDOctF2FQ80pAhWnHSaMFLFPdzxkDiPUK2iq8kyFe5qMMyG3mUAAAfeJkz7jYDgdXF6OiZPmYUrXZCEn5yVWnJTzPo2RQ2qj5CXO8iJtkj6ynAgiVOW8SN1PziNSnylHfabNyxGT9GWORaxWDkyMfx5e4it0n4QOwhV32GRzccK1MbEeEHCNHk/igJB2r7tKccdqNF7M+gPEFPtZ2oBAzfuf8ZA3HGBC7iMA2GHCzr0fOxwxJgEupH4uY1HyOCZOY8qBctTlZWPO+4hjyrXm4WjGmva7CnRHxPQ+aS/DvE86tigf1zbv2Y6tiHvDCYmzHr9Gj1sUsffefXcrIuSXDzuK+G//xhfR0NDQ0NDQ8AaC6c378812iSw1+0kAP20/T9VDn4SINXDHPg/gi+mc93wvInoO4OcAfJKIPmv+/BwR/RyAvwYjKr2Xtj4Uzaj7keHl16SmZ2T5swPkN+AEjMxlsk6MW/Nb7ykJSyFN6KYA3CIisOxKFiHVQcTAR5Ios5P5bf7d+p08SmpVSISYHatRN7BDxI6T0mniFQgdBRzAODDjCrI1vYpJOrU56h9mw6lMCidi3PKUf8c+JWFJJ6WRCqenmZO0uUvP0XhibaPnIHF0nAYQAhH2xNgzY8uUjJ+FwwaMFQjHJMbdu7zkiSxxnqRqrHnpQIhBOHUMXCUOd2AEZnyUAhiEXQQYEYeeU79FHLksozpiwhGpuixNMg8coWblev4KAYHSxJgnrAGEZMY+wbWZpzz5luNjlZd7HpM0QVmwkJ3HZPHkARNkBzxxm7KVNVppoyJQ5gTkPBwQAa7jA8dsMDwiYkTEGh16CpmTeICFzOmYOAinsXpf7rlUjURi7NJY64ywFBCxRp8Fi8AR1xgAAvaIAHP+961qs8mLctA8yPtCmdMaHTpKnFjEE5unI8W8lHBizuLw5bwIpwAx8RYOEzoWM2uAUl6KIKh5UU4lL1jMyx4Re455bP16d4cv8x0+OT3FddqhboMkGJOYlW/RJQEtGXVzWagmu6kVg/QVOgwcRJihYmyvedT4wBNehmPu55i+U1Tk1F3zNAYmPMVKxgYYQKkmU4FPoWPtKlnbz96XdFy/13SsrRHQoUckEc/1fDHQdmMPEzqWZ4BoxiFXnqV4lzjpWDyCAS4bFPjvuXuKuOeyHG5K+QSAt7/WjLobGhoaGhoaHg+Y+a8S0ZeI6LMAfgHAx3B+B7bPpeOzY695r/8GIgad8kmCrzx6D219EJqo9Mjw/PtqE1WaBTpVqg9qJUokFVhSnH6W00VMiig7I3F9x1mc5ixVrOdoHM3kBZQEHYP5YotlDvb+lhM7DtEc0/v7OKCIZac4LD3TcrKoF7Vczovn7PMyeU5UcyDITngHKvesOGCJU+0NZHfAAsHb8iwQOvPbALJjo4wt4PRYm9+CLnLwz6zGlrn/KU7Vc8+8L/76woFd7N4fvR2Ve3hOs2fYRxOS11adp7rN9fVLfXn+/nNO/jtghuom82fMnmluEgnY0ZiXs6kJ9WSeGVxM1e3mcY9QCZPevN/u1AeCLEs1HDRP9r66A9wpWh7R9dSlPEQ3sE+ezQzQfKzR0gWOE3Od6yO4/EeCfyYlMcnhO7/v+jSPhoaGhoaGhoY3EMz8OTzQj4iZfwrAT32z92LmH3pwA9/D/V8HbfnbI8O/9ec/gdCXqcEKqGZwp8xf7YTHmyePLj64Z3rlUrfG1onoJaNub558SJPYMpGtxYAlo252pDwHa8qrk6n6fM+pnqF5DuTimak11RyPro1roMpL5+KHcKryAsyMur+LV47D8tfBQ/OSly6luANVZuJ+dykCquNLHKZz8UIfeKPuUxPvXIHnOMyNuuux1rs+CgsczuYFl42652bj9TP92PJ58cbcnlP/HvOS+bk8+HjJqPuSgXq+94k2vxUOVTzw8m6H5T6uzSi5Vo5e1LHfcwHJXDynaW427vPsfakGZ7zt/9aqN41X2Y7ftNvkwfohaRtnSIISoHmpjbq9uObzcHQy0Quqv839d3f16PTZH/sLPzBvV0NDQ0NDQ0NDwxuLJio9Mhx2E+6nerJ1Z7bvZjDuqDZ/vTPLrSSuj9+jNnvdoTax3qM2e93TVBkFH9LyEI3Vj8UaDe9MLJ40deWQNeZm4GybI+Ls+M5x8ubjO8OBwdhTrM3GKVacjo7T5DhNJPe0htE7k6fo8gIAt3SJk89Lbbp7D3bm42N1fHR50mU4JS/iNVQbQNd5WTLutnk5oDaA3lPNYYdjxWHvOF00gKaSN6TnWXNjz2nJQL3m5I292XGozcYlL4VDpCWj7gsx1e/TwXgVWU52bPk2VpxcXiLEDLzm4AzUz+QlIs44e8NobwDtTa73VHx9lvNSc7jDiG/QznxnTHiBYuR9RMQ3aFfd79fpZY4jMX45vKja+BW6rdrEqIUfu9uavB91bKvMyj1KrH5U9n3wYpw9Ht35QG3Irve0z/Nt9HmJszaf52T7QD4rFU8AcHTfcxYE8W+6vzvOjjU0NDQ0/P/Z+/dvW5bsLAz8ZmTmWmvvs8+9t0pSlQpJCJVeGFAbJDAyDaiBwshtG2MsYeMeeHSP0Y3+A2v0nwD/AfSv7e42Bc2jPaCNyga7eQwsJGAggQSoJFWp9Cipqu45Zz/WWpkZs3+YMSNmzMy11j63rtC9Z8cHV+fMna/4Ykbmqfj2jC8aGj7cYAY40pv33/L3ZA3vAW352xPDj/6lz+PAjBlSDXOPiCMxIs/YQbxkbMwAxhBxy4wdd+hAmALjVZxwhQ4dZNJ6yxN26DBAlvDcMuMKwAARRyJkW/ABhHuaMYJxhQ5bBOxJjGB33GGDgJFiFgu2LB49IhbIPTpQqlaK2IJwSG1mjtiB5H4hcUjXSzxhx1IzMYaIV8y44g49kkdUnMRTJ3OIuEJAB05G3XL/AYRbmnN7NiA8JE47Fk4HE29Sv6q4tksVCfs00d5xAIFkhzkwdulZwknyoKbXdymOAMbAuOUJV9yJ6a/JQw9KeZlxhYA+VRi8BOOagR6ML4QDRjA26fx9EgI2COhBOJKIGRt0GBCy6BTBGNClSazkZYDkRb1tZHmRGkAzenQihiROQ/IpknjKVRoTMe55xBa9LGki4J41LwFMwD6dT1AfoDk/f5+kvk2KD4nDDj0GBIyoOUUSzyvhFBBAyZxZOOkkmzGjRxCzacNBzZIPmDGgS4IN445H7DIH8SKSNsk99xAO2bPGcNon0WqDLnGSvGzT+1U4ddgkDyt9X4bURweec9whpN3WouQV6tkjedljwmjyoEbdGrPLS5c4PaTjPQJAhId0nIC889kmLSx7SKKVvl8qOmlejnnsaV6kz3JeiPAL4R4Hjvi6uMOLMOIFiVz3nAe8oCPeDUfMkfER3uIVjfhSd8AUX+A3xWc40IwvdwdM9C6+Md4ADLwMI0Z+ha+LV+IlBF26mwRRYoCBQDIKdEe8HpTzNjMgTmVAT10Vq/DcQX57o3IPQ5bJ9cnzjNMzD+mbovEEMUhnRHQQHzlAlvnJ/ZIwlZ7JKAbqAwJ6DmlZYEzjrohUWkOloq9yUv8vghRp3aDPS2lD+maNiNikvNRiq4yrH/l//Ay+7d/9mvfyz1NDQ0NDQ0NDQ8OHEE1UemJ49UX5bf6U/tMKn4kYt2ZXIDWA1uUXMzHuaAKxLLuIgXGHCSGKOW6kYnr9EQxgEoNo4mLKu08T+Gz2ihkPnHaRI2BPczY3BiWTa8RkUCvCyhERzzhgS53s6salMmUkia2Z8m3aOyrHNOWVcXOKA8tkNwZpU4jAW8mw9gFROJMsEXoA4yGJcqBiWJuNuhOH2cU6aVMj4mt0GNR8HHMSp0I2G3+oOJVqm7W8KIcOATPJDnBi1N1X5uMfTRPne5hJM6Tq48jexNoadc84cqrOSZPWA8/JEDokw+iIK3QYKIkSXHaQUgPobAhNjNmMtTntNGbzco8RgYEhcXjAjI5n3GCT2whGXp40IuKYduqzx3MeMGGvv4kwnHoEkDG5vkoiiVbO9AjoKBl184wjzRWHyXGMhtMdRnRMIjal8dxxxC59dmX7eGAwnNgYdR8wAyYv0u+Wk4wtndxrddwmtVnzco0egZKB+oox9xG1+Xi8kBfZTa3PFYRdNhsXsYidqbXltHecTuVlSObiVV4o4Fdpj1+lvSwtI+AWI24x4pDy8iqMeMVjHlsvwhEv6JiXrr0MR/yL8OW0fE7E4M91t7iJPb6Jn0M9oexuaBHlGwYUI25tQwTKalsTK0fp9/p4ZJYlrqmfZpNXjfW7phVMuoRQKp60HbrMDZi1ChFl17or9FDfK1txlCuWHKfrdFyrlroknkmbl0b3KsDpewcA736xGXU3NDQ0NDQ0NDwltOVvTwwf/c3XVVz5cuivpy3KSgz5g+plHtHFjKX/SnVLWnmmO17t7qiTNBPP7jh87O7P3qGWlJJO2tY5WQ6Vhwi5F2eFo28Tu+Ozu1+k6oyLefE7YFpTawC5usBysnkhEDZsWBBqI99HcIqew7nzfeifZ06weTnHaXF/osUzzvbjSl7XfHaqNrv7Lc2P6x94vyM/1vxyIxBQDYVH5MVX7fqx5vPk+23ZR+cSt8aJz+ZllZO//+vkhUTgOtW+tW/I5N4v7zt1oDoO2rGWkuto38blN+L82PPfgEt58GPT/+NNej7X52u7FkPVnFueUcMuHV1rY9S+Nj/++DffrD2poaGhoaGhoaHhDUUTlZ4Y/r3/8pudUXc9Kw0uJo3NpIH153LCilF3PTXxJr1aNVAmcKhi/6c37T2gNqwl1BO6fsEJqxPC1zHq9hP3wak6wXEqWpwKIt7U2se1H4vPS7fIC1AtAqbLJtc+L18Xt6scyi1rTpfyot5B1cTcYMlhqYgs8+JNrWs/F3Y36OCNtM9zuGRyXRhJPNhdwVY4evHB++b4GKgn7muG0Jc4+bHl46OLvdm4fx4Bi/XlXmS1BtDvxajbn3M5L+eP+7z4seY5aJw9mShijynHAWm5WR56hK3rN99H2Wsr/Xyj5+t57s/l+V0lZPnv1tF99wIIXlsLRsX3Xlq6S145fznWvFH3KxqrNm6j42SRfvb9//W3rxxsaGhoaGhoaGh4U9FEpSeG/e2I41wmseIB40x3TRwRFya8dhci9ek4FQNSJWB/yz6npRnWlNdOUiOWhs9+1y879dHjltPRc0LNyXPwsTew1SoZhTeEnhLvU+bJaybWfne2mgOcmfKS0wE+T/OjOXjONi+2PZZTXM3D6Z0B1/IyXhxrJg98fmytjjXHQX2g6rFWt9ELV170qc2Uvfn40hx5JD+2LuXl9Th5A2j//jAuceBKyGLAxcu8VG3mpeGz53DuOLD2TfB5WZpWn+PEqQ/sscmMpcXYIk4uToXThrtK+Ok5VPEOPYIRUzYIIuIkDAhyPP2oVy+zFHcgWXZn4s4cJyRhKcWBCVfJawyQaq/BtJGYsEUdP0NftXnjOGycvLdDV3PgrhKqrjigM5y2CNgaDhUIuIk9Du9OKwcbGhoaGhoaPuxgpjfuv4b3B01UemL4R3/pc5Adr2SStifOv9GOacI7k+44Je4qM4k3ik7CIlB2dGNZpXE0cQ/CaCaSB4hZs05MD8RZhBHBJ6Yd4OY8mZxQRA8xmy2TRDHyFVEmpvvITmQxCUqM2bRphvzWPrcRhAgbi+izx1xx0h3ftHhgRKlc2WOuDI8Lh5iEg5g8bsp02nLqEidtcwCqPOxpRiQRJGQ3L5sXyUE0eSFQ2hWveBWpV1DOC4nBubboi2GfBYrCYc6cRqo5aV/r8QBKP1PTZzGh1ngG5yoW7RPhFPO9bJ4YlDgVIYhARVRhJCNtOxblfhofMdex4zAnnllQoyLKSF5CFs+kRbVAccS0yEskzhwiVEAsIggTcps1L3bXuoASax5sXsaUE23jlAygcxUVoXp/KI2tkhdKfZXyiliNtSPmtMvdXL1P9n3R8VuEHCoxi0AyGQ75PpnDktPBvD+Tywu5sdW5GCkvGh8MJ72f/Ubo2FJOmhcVUq/Q4xo9BhACpyV9BGy5Q8eUx/tz3mShZqvXpPiKezG551IldYUeGw6gJOjs0GGbhJsrlucNLBVHDPF223GHwCJK7dDjGffomHBFYmq+gdwPJFVsKgwFyDPexgYDSzu26CvxK4Cw5T5Xv/UIeI4hc5LNE4QzGPho3OKGO2xTG3sQPhIH3MRaYOuY8HbsccMd/t5/+7Pv479YDQ0NDQ0NDQ0NH3Q0o+4nhle/dgCQPHbYLI1JE7Ijx3z8iFi2oEc5V3ewOiJWv12fwYhclraooMNAXiY38dLAVifXE2RiK1NWnRgzdmnZhhjmMgadVCYOVhiajBFxnkRyzBz8Fvdj4rBFByQRhlgmg6C07IaBgZSTmujCtJkdh7LLknLSHazULFnrBZRTjklMfEfLCRFjMsqOSaDweSEg7452RETQKgaSyT9pXih5E3HxmbGGwEjPm7Rfc9447T1V8hAgqrTPi1YozWZszWyNhZNQ4saaTsQth+tkQh2TwAMzNiyK2FXyotUtlgOqscjYprxEMCIX82VOeZbxXiqMtKJHOMe8XCgmwS/nJT2DuOzINiZOm7W8oAhZSjSa/izviwhX9v0JEKFKOM24cu+LLnJklAqgaqyRyRPiIi9qzq/CUgCS5bu2uSyvshVKymGNk3JQs32flyvIkjkdSwqNZeyV42XJH6o8WTHMclJzfuWsa9k6BHRQ2XlGIKp2RwxEeIYB10lkAqSCaZveYYLsDtmDcc8RIMrHtY+2kB0hN+mKHoQOjAPLToKD7nSYOOuOeH3yQOt0Rz+WnQg7BFwhZI49At7CJveZcpKKM6AjSuKpCmyoOBEo7fpXdni74g67JN4xAc9ZBCTNjXIHgFdfOqChoaGhoaGhoeHpoFUqPTF83bcYE1Va+h0FVwW4NCJGmiaWCa+dRKpnTHUPFyzNjs+XHvr7edPe6npa8bm5cH/lUJbGOP+VlXjpEXMe/npviOs5de54IM9pycE+J2ZGhXpB8bIAAQAASURBVJN9BpEz6sbShNfnrc7C0qNmmXeXlwUHP9hqMkw6xuqx5p9rn+fz4NtQneDH6krsn3XKd6pwqp/v88I+L1g+w3lKXzaFd7HPgxfg/PWX3pdTeT/FaQ2XOC3zUsNz8vAcVr2uDHxedPc4jbMnU9a76hdAdonjKrZtXvMvIhf765fn1/fzOMWx+h6bvKxxqK+nqpd1R8FzbeoRZAdFc+Rj39KMuhsaGhoaGhoanhKaqPTE8L3/xW9GVxl1Lw1u6czEY/FzKhUoGntD6N6tVx3cPb1A46ePo7vfAVG2LS+PXNz/3OZQa2DUnPwzo2uU57BmdmzhJ/bW/whYM+q+bDy85MCLvJw36t6d5eA/Dv7xk7vf0ki4vqhfmFyv3FQSIX+l2hAatPRw8liYUOvYKypC9WfOS/pjkXfUk/THGEK7mXmVF29q7d8fnaif4+Tz4gUYz2HxPjoOj8mLF44vGXUvxQf3vqigeSIvfmwt88JfVV4YtSfTkSJuMeY4aJtzmmgh4ngRzRvX63dtTYRbO78HVd81/wzvS7W2qYL/BsQLefGYXT+/S8eznNba+n3/x08ujjU0NDQ0NDR82EHpN+9v2H+Pmik2XEITlZ4Y7r5yRJzq5STnUBa3FPjYDyI/+QLYTeiWTyX3dxuvVSFUE6IVEmR8TS6SxPpv7RftO3OfS48I7o6BfGVC/Uxe/GW1KMXFy346F/sJpIfn9JjnLXOPxTk2L5WAwa6f42UOl1uNSqjycd5Bq8zDK5B7pr+V3ON8cy7lZfm2nK8A8wyDu0fnx9pKs2wx0tpYWxX8zHnnhL31S1YUnjN5Wfbx8nmXqsTyPaGiEE6/T4wkyRThZ6JaJFUfLYV6RNlHWRFHfbC8QfqpDQgiGLMx518YqlNtPi5LMv0GBLUpvDdQn5zwOzkOM7DgZNs4gtOSYftOlEqoAyK+8sU9GhoaGhoaGhoang6aqPTE8KOf/nwl2hwRq+UuMxhEy99oL0WeNJHgVCWgExE2W2nneyIfAy+rdrRKyFYJ2Db6KocNhyI+sIjMtoUTGIEoV13548qp/N1VS2VOJQ7m7+DiLaNXqeePxuQ4dC7ecFf16+Bkp5wXKpzO5UXFjxyvcNiavDEYXwrH6n7RcbokKg1pJGROTu6L7iKtnFJhSfNiJ/vBxAHIhsLKyVfteAFydnHmxOWeNu45tTmJkINbeKhZ0ntOKS9V3omWy7nMXzuU48FzcLF6N1msvS8W/n3xefGcVNiwnOwFEcu82JGnfkaZY+JgxQt7f+FUIwLn8+Ly7Dl5kWm8wEk52LFlOe3QYUt9FopmiNeUmI9H6I6RRy5G9mLUXuKAsoudGK7PlVm/+n6pOKXm48UEfk7m/XJc23FMcQClar1idG/Nxjn1qzWFV584bVMkxsSF04RYbThAVHayZDBuMFQG6geKOCAZoxsxaQZjj4iRGP/L/+tn0dDQ0NDQ0NDQ8HTQjLqfGG6/LCaqOt/SCar97bnGhDKh1Vgnjjqp85M8Rj1Z09+TW6HCx/X9S9WOPs+KJYwi8Oj5nC5a49CBEHl2xwsn24pgYs/BVxEVIczeD9U5VN3PcyptxCJe5gUmXssLXOzzQm6iL7v6cdWmNU7nUMst9TKb0ku2T0obfV66xfF1Djbm6plSqWH74BQnG9d5OV0J5Xul5KHEHU77F53itDbWfBNWanxW21e/L8uxduqaUyVJPi9LVuU8+6e/fzzB6VJelvc6JXcuvyOnUPJQ3yOLWJQqhDjmWDYgKBymZHitOZwRMaOI6SIIlWWJIjRlaT3Hfe7fIuSU60tVlO7QNyT/Im+ozijCksYjYlrC14HSBgFsDNG9KbwapF8j5ONqAg8qx9W8Xw3Wq4yk4NWXj2cy0NDQ0NDQ0NDQ8KahiUpPDB/71udVvPTRWca6nbsKAAyWyg5S6cBP7tkIAVIdoBMsSvcsosi6uAUTcxXLTlso86NUIXCOQzrDiU9F3UqmuYxUtUWOk4/hONFFTjWHpamvX4i2MFC/kBc4TpqX8nyq8iJbiwccqAgx+Z6ohRaFFQMBZ/yNpfGwv8PJvJhr/IM8B58Xfz+7L9waJ4v1vJyuClIxzN9jGZer2PxZpDbbniUnra4rvMj19SkZaMnBc1xrY6hG80L/WeTFVyQtzKAdAsKC0+u888ByrC2f4eNz0pK2oHA6mGVjBBJT+dLAkxsW2LbYXRy1DecMxs8a22OZ54Whuze+d+1a5GWtS+xLTSLQ59NIKiat4FbdgtbH4SfcvzENDQ0NDQ0NbwaYL/3vq4anirb87Ynh9/6p34xuKB+ETZrEKjoQgol1kmtnEyoopRPq6gxamupm4Sqd5k16gzNTzl616c8JsSp8OST7ZPPIanbTO04Bsuyo5lDHzGaSRs4oeGXytHEc8sRLxS7HYVZS6Y+jilxQjmyIp6VkLi9+By3PwU8QvSH06Fh8bdxW8aU85avTX9YMoe0TvFnyUijDglMlKJGr+PJjbQWD+6T5vPg/va9UrlDJx+vnrRlCe1N4G+tOgnaiHl1e5krQoRUOdV78+3LSbNyPtTxW67x4Tv59yvcyebEc1oy6PfyS2Mt5qRvgzcYtnzUO3ny8eob+1XAaKeIeU257AIkZf07TUlD0Io/2ezHeDlXs/zy68wezhHDtGZMRiaSNNbz4zVgadfvzfaY8hxc0Ok5UxQsQ8If/62bU3dDQ0NDQ0NDwlNBEpSeG2189oBtRTeK2XCZgxIQduur4Mq4Fjy27GKESpgYVqtIMpgehM8JUj7RLlzk+cDBxkEmpxkzVJJVA2NiJMksbznHauknnggN3VbzhWmzrQTK5P8GpA2Ew8YBQcRoQpM0JHaOKfV4ew8nnZRc9p1oAiWAnXIUFp75qc52Xzk20fUw6MTdtXObN56WOfSWdF1y8KbX1L1IOPi91HKo29wjVWMy7gFVtoCoPlgMx4YoNhwhsuK/7gOuxN7ix5oWq3uVlAFVtHBDc++Tft8SxlLLUnBgLDtX7sZKX7YrnkYUXYHyeLr0/wyIvtQn8M/T4RLyqOPS2ughrbe7cWKzzJD8uN/A7Mh7NEjNgaXLtRRz1W9JYPZWyyOPEOVlWV+4nnk210bY33rYVVhERe7erpN8lb3Qc1MepcOBa9ARVguGBxINpsWQzYY8ZX/zCHRoaGhoaGhoaGp4O2vK3J4Yf/8ufR8eEDYCJGUcCegq4AuHIYujaIeAahCPLhKNHwDMQDiw+Hxt06NL5EzN26MXIlpMvR6pwGZkxQiqArhBwZM6G0zt0GDkm74+ALYDAsrOQeIfIpHPEjB2HXLkzIuIKnVQjoVTf9AgIYGkTiViwA2FMnDyHPnOMiJw4sUzqZmbsUtXAyNJPKoYIJwYTYYcgnBEBx2lIi7ECyyRsiw6bJA6MmHGFTsyHE+dd4kypz0aXl4mkzRpzxUGmhQM6dAjCkRlbdIgcMUIqpa4Sp4ml375CI3oQZhYPGCLCFh0mFuPegIArBo5MONKMDfdVXrZpHBBkwrxFjw4BBM5TVzHaZswcMae8bEDJAFk4EAhj4tCnfrOc1LyambFJY00NlbuUdzUuRhKqdIJOEE5j4qR5mVKeNkm8UA6b5FtDaSzI8cQBZSwRkuFx4rQFMKYqpx4dnjHhkJb2qUAy8gxmzVPEzCh5SvGECCYR34qHTc2hR4eBgSPHlBfJg+ZNY2IRFbbcJU7CIRJyPNk4cdA8UHp/4PKiHEMSSZixyIv6oEUguQOlsWXysnOcAlDlRd/pKb0/Xb4n4524wdfxDps54Ithj1uaZOzlHdJqTqg4zSDDaWTxK9qixwzk8TSlZbYhuYdrZdGAsqRXloeJmNpRQGQRWQJEgBnTu9AncUa8liTeoEMkgFnOP1LETAzmGT0CZiDFXIR1UG6jfIdkHPQI4sVEwAPPqf90WW5MSxwZM8n3rU8cjqlFpb8p5yuA8Ax94iDX7GnGMcUbDlD/rhkRB5Lv1N/59M/id/z7H/9q/6lqaGhoaGhoaGj4kKCJSk8M9+/KcgatKok8YySJr9DhCJk0SNwnA1ip2LhCD/3VfoeAK5Rd31QY2pjfam9AGMC4Y06CBWEDxp1IGNgkYUUna5tU2aITlSFViWgVxIBQVfgoB/3dvHI48IwDcTpeJrIdCNfo82/qQ5rYWk4dA2A1sKaTnF5ghlZIDSA88AxQ4aS/u9e495yS8NZDzHSHdL60WSaak80LyyRVYzUD1jzBcLpCD7J5cZw2gMgYyahbzmYcUp4GiAihVRNbdNUEUjnpjnXaZq0skR3curTdOXIejjxjcnmZoXGfKx4kL4WT9pvWRoQ8RS6cZPewiCnlZUh33Oc8dXkcleMhiWCUKpwYutucVDAVTtpmFa80HpPg16V7RTOWRFwtnLamPkg52PdHdruT6pEyVhj3PINWxpbPi3LSsdZBd9CrORx5xmzycOApi2MdQn7nNfZ5KRykTZ6TCoolL8BIdV7KO38+LyrY9C5Pes3bvMHb8wY/H27xq90ht0mqhHjBQceaz4utvIpAqRgiIJtu61I5iNjUkVYYcRLXkZfKzlwMyuckVOv9NN6k58nywbLkL1KqiuI6DumXAdrGbMxNIrbrM5hkifDMhB3KsrhoOKlIq5yOEPF7k56gu8+pUfcMEabnFOv5pD1pytBefeWAhoaGhoaGhjcMDHC8fNqHDnz5lIbLaMvfnhg+/h03VbxcplIPibzkJL9wxdS6inO0NAq2d3xMDBf7d91/z/w1J02uy5zqtTn52G7SXkypH8eBQGI2buA5di72xsOXOKiptd2vzOalQ8COS897f5W1+BwneWb9kzVz8fOczo81ds/wbQrujmtj63Kezv/LcslAvY7MTxwHm5eFwTmjjl0bfZuXHOrYG0KvG6Y/4hmua3Q3Mc9pNS8XOPm8XPqmHKn+Cly534+cHFvmJ5bTlBkUsQlcn011x9ZjhZzxNrk2EOBIL/y8/NjyofeZWnA0yxv1/DovgBscC/ixUnlZkfsfDCQClr/PN33n28sbNzQ0NDQ0NDQ0vLFootITw3f/4DehN0bd2e8oIZtaJxBoYXJtvVDWJleTm5h4o+HBGQ133hBaLzcTPntLbzjtJ0tLs/HaqHvBSemY2JuPe3ijbs/JG3Vr1YHGI3tONYnBiQtrBupL83GfFzOZXsnLx+KualPn8nTJQH3BCdFNxGmRl3Om1tDY9rfL02I3LRdmb58TY8v/eZKDTsxdnvqF6HqCg2/jmbzYsSbVOif8ik6MrdX3xeBY7Y24NFD3xt2X8sIQQcka23tD6HAqL9oGN7b8n97YPhvnp/hdHKvvzkfjxpnzL9uQx/MKp5lKVZtev+r/ZeE45H5O8U7PP8Hx4AzULxmmj4hZyFvjmGNtFi0N1K2XFqFUTNpnWNzSsWrzlh0nByLg+//Mt68fbGhoaGhoaGhoeCPRRKUnhttf3GM31ZPYZ86o+4ZrQ9u3eKgmss+4qyYzNzEtG9MYdSXPDrWx8BYBmyomqZohPT8tHUrxhkP2aQJEcHlmJkeBgZvUNuXwjDvHqa84PHecnse+5sQ1p2tQVQuxRW3EvQWJsbbhuHPxVQzV+deGwwDghuoJ3zIvteHz8wWn2vD5hmvD9BtaVkBZc+QNgjOAro25NwgipuXjARvuSsyhWkYUOC1jMxysWTKxLOWznK5Qc9rZGKdM4W0/htfiNHhO3Il4kOIeqc0obd6ZkUCoORDLEstznK645rRz79MGXcXJc9gguLxQxWGDrhJEfKw+U6fycCov5zk5Y3vUnAaXpyWnOi9bdFX8nDf4SNxW4twrmvL9ZjCe81DExBjwMb4uAmkEviE+q9r8Ud5Wseg7pdGdM7b3Y23rxtqg71uKu4tjrTZQD2q+jxLbsRR0g4KqTeffn8GbwruqsSt0ReBDypv5Ll1z777dyYjeC78JN3OPL/1sM+puaGhoaGhoaHhKaJ5KTww/+Vd/Adu0jOGBpUJmQMBbTHhIHjcDOrzNAQ+YMbP4l3yEN7jHhDEZCw8ccI8ZE0dcoceGI/ZgHMAijjDwAGAPmVw9B2HPjAMiOhLhas8Re4oYuMMOQM8RDzRjm8SJjgkPFHGNIJOfKPEzBGwhS5seIL4fW4ip7wMzpsTpbSbhAE7xkDltHKcdOgypDw4sz5gRsWfgAOCKgCvDiUB4zgF7ZuGAgA1LxdIDzdhxl7yTIu5pxhV3mcOeIp6hwxUCOmY8IOIZEXZEiYPkZbOSl3eYcI85m4t/hAPuMCVOJW+Slw4bROyZcQTjJsiyoj0ID8x4QROu0OPIESNmdBSSoXrEETMGdOK/xIQjZmzQ5V26DojYoMM2CSBHzNihz4KILpsRc/Eex2SQPqRJq41vELKBuphaD9gbU/geQXyAOGJrTeHT+T04GaiLYXrFCTIxV05qMt8nDtvk6aOcdugMhzl7/qhJ/EyczL77tPOWcLwBYc82HnBgWYCknNRAXdswcsTEsTK6P0L8k65Tn42ICCk+mLyEKi99lZet5gUzjkjvp/Z7qvVSP6yR5zy2CLVB+g0Ih2QKP1Sciin8MZvC9+gThxExmT6jMrK/NnkR7ycZa4fUzyFxsP3epbH0Nm/wEd5iMwe8G47oQXgIETOPeBY7eefQIzDhHlMy5h/wDfwM70K8lp5hwG+Jb+HX6AEjZCx9HQe8woiJI3oS432RdcQEe8PiLTYhgkiE3UPqVxUbdWzt0KMDJe8hBqiINpK3UOXpCr0zUOc89g6YEVLV2jP0OLCO3WISPwPoaLmpwk16fziNNTHnTx5JFLBjqfYUM37CTRpbB8zJj02q3WZEfJS32EI2WRgRQRTwnEUQvCfx5gLJd+8Z99iiwz/49OfwW3//x/4t/GvW0NDQ0NDQ0NDwQUATlZ4Y9i9kodVA8t99FKGkB+E5dxgRZUc4EJ6zmFozkjDEA6zniFTOSNwh4BkD10jLYgi4BnDFjFsAAOEKhB0I9ywTtit02HGA1htcoZOKB5TdoXbcoU+/CddKGTXEHSBmxrp8SOMDGAcUDhNiNr2+4WIIrZwshxsOuIHhhMQJNacXlhMT9mYSuWM1Uy4ctP5gi4Aty8ROOFESZ+QHGyJsCLiPXOXliCg7wiHgLQ5VXt7iATCcpCqr5vAs5YUShx2LAbBWrWzSBB+EHGu/5p3rUIy6VRiRflcDdTUfD8nouxg+XyFU5slXUEPoYqBux9a1M1PeVXFtCq+G6mKYXnPQJUkaS1YKB2tyPaSfWQ6aN40PPGEk3SExGLPxgGewRt1LDjph17zornKW0wDCLabEqccGjD3PAMlyqi2cUfdKXvqcly79V+dFtpG38YQpCRJ9ygunNl6jNrm+dkbduwUnGdPRcXpIIqO2eXKx5kVjNeZWDrrs6gYDbuKAOxoxEuNIEcdOxDl5nzpsuLgT7dDj601l2BYdvoFvMCFiJBG/PsJblDItqXrSZZFiXC+Vlw9J8Nuhx9YsK9M2dykPYi7OmJLBuop8aiyvedK8FMN02Z1N86BjSWPtaW9GrnmIZlMFmyc1fY+ImAAEKnnR5XFXCNilN9puKKCcZJMFwiF9u6/R45p7ROZ8jeLh5YiGhoaGhoaGNxDOSqChQdGWvz0xfOy3Pq/i3n0biqm1yiIpzDIJuWUiK6a6xveDiGCXU6ybJ3v4n9TxZaPuU5zq8z2Hc5wMJRAtjbqXZuN1m7wFiecQ3Ue6I8/J+cHk+65zYHjTaUI0YSCqlhS+rlG3PON8vDRs9hzW49fKi4nXjLqX8fl/DC8ZdV82tfb3qTnpu/PrZdS9hvfLqPsUBx+/H0bdfjR5Y+6OXZtf83/jaB8Uj6J6rPn7eX+wx5iJXxrvfqRdMn335/tNFdbuv8gLnz5/zeTd9vva2xNWfvoN/85baGhoaGhoaGhoeDpootITw2//gW9Ct7H+RICdaQQN06xKJ0924lDFBBRnE8Exnyfo8uRTKx5QxX4iHt35E7iawB2ByrDWT0F1+UrhRLVZ8gqHiHqS5X/XrlMrfayW+JXqmjqG4xDd8bE6V2Jr2LxBvTtUgDErTm0djbEwgLTFd+F076SrV24f0I/l7JdqGhtfykt0eRlz/VRp82oeMocllmMNFSe/A9Zyol1z8Jz8n8uxVnOYUefJm1qvfUA9B2tiLWPNvz91Xvvcc6VCyMb2OWsc5hwLfF4698Z442468azz34DaENpjyeF8XvL7nf54hbESSAZ4QbGOGbWY5uMAqs3GsTQb98KXF3Z9m/V91djn0f85pv3ZbB/Z75o9V+5fv29k+kfbWIEuc/KZKhwEX0lf89PfOQcCvu/PfMv6sYaGhoaGhoaGhjcSTVR6YvjKz99jf4hZHIkQDyI7SbATawbn6ZzGfqIdUU/uGSrS6P3qyY2P40psJ6kq+igCgGgmYAyd/JfnW04MxkTnOXjhynOKACKXCoYJfIETVzsvsYsJwGymdPeY8dO0z214oBk/HW7zRHgC49+El3nSF8H4mfAq79bEYHw2vJIdpTTu7nFvdv76LB3w0sQPNFfiwOw4+bywi/VnCkItNDHqibDE9Q5Wfqz5iTMWcV1NEbE+8T7FacmhPn9dUKnFwZm4GntLIcqPpfOxvT8AjBQXHGwcL3Kq37+w6DNeyVOdlzpvvGhjxYF99ZVyKphek8NHeYuvNcbcgYCDEU2PiHgwosyEiFdmR7gIxm36cgEAE+POxmC8InWYSjGOlWjp87TM61K0sRyntLzzFGdfmRQBRDO21tpwLmaX15IHe/75sarvl7ZsBMuyv/STe5pxn5Zn6jPLsxgvMOLn/tULNDQ0NDQ0NDQ0PB00T6Unhp/4q78AFV06Bg5pTjADCBDzY6SKEHF8kVgNbK1QFMAILMtbRog3ToBUCqnIE6ACj9wrQCYqOiHroJOtchwQvx99ZgdCJKleCNAqBRFlApdnTenZRwBMwMRSJaWmuTOjONKYmCDLwY5cDIY7x4mUEwunI8nftc2z46SilRyXpTCWY584TKmP3g0Tfo0m/FPc45t4g5c04WWY8BPhJX7TvMOEiNsw4V/QC3wiXiGAcBcm/BS9i6+PV9hxh7sw4V/Su/hEvMZbPOAuTPhJvMJv4i2+Jm7wMsz4Z/yAb8KAj6PHr2DMeRF+0eSJFjFQJrHCKeSfEWQcsImtACbjYDbVE0gOMGWsqQyhMQEgmGoPRupHroSSGTIVttVc6svlOVgRQfNi+0A5zIjuuIwVlR1mknh2HHiVA9UxBcxc4kCEiWP2WJrSPZTTbNqswp3l4POiDl4qLHWZU+mj+n2c8/bzYTUvMNnhnJeSd8nLhMKB3TXzSl4sB8/pI7zFDfe44g6/Fg7oOWCkmIzOA+5owjHFW3S4h8Qv+IAriMfYRBEv+SgG3gDmwHjFI7bciZhOjJd8wC4ZZkcCXvIBV+gxlC8F9E2eEAEGiGqhyI4lGPYqKp3KU18swQHNA0RYKgJtyYOaq2tPiQF66ePShyVPgXTprjw3EgDmJI6Xa2jxPsjY2VDAC0w4IuKaO9zTjAMiRkRcs/YT44iIO5oxUsT//P/+Ofyu7/sEGhoaGhoaGt4scPNUajiBJio9MRxeyWI1FTTs0rWIenlRNJMOFZrAZSmLreahJJpEIC8pie4cmSAtK4piur8e1xOY5DglIUcmvqj8jfQZilnvkdss4pHG0dxfY2IRo4gomfQuOQ3uecx1m+1qHRXR9P4RjJ5LxYjvgxnIQsIrivgXtMeBhcU9zfg3/R3mtHTtQDN+rrvN1QxHivhcd5cFl4kYn+/uQAzsMGAOjM9jj18Ie9xgQCTg5zHi53CUCaZph+VgF+ZorAJJiUtNg611UMHCLjdS4bCcszxuoYKFBeU/yZ2t/b6s0PAc4GK7BMjfU8UwrIx3jWd3vq8iEVGHqlhvGcHZa4iIyvVk21g/1PfzWl66E3nRNscqPp8nPRZO3M8yVl+htdxYTr6SZjUvLPd7hzd4Z97gy3TAkcTI+iHtvgYAEzEmTPl9mUgqjgLLMsI5VSgFlp3UIjEeaMrG3pGAe0wAy3I1TrG8P31uk36jLAfbJ5qHBe8zHJc9Vd9/mRc/vv01dWwrPe37LfGyomltaSmBAAIeEPFAUfqdgD0i9nSsvqWKh1fNqLuhoaGhoaGh4SmhLX97Yvj4b69NVE+ZWuuEwy4Sgvm7XTrjJ0fR+YL4QebjhebtfuDv7yc//vrF/fNksAhk5zjIJHI5wbLw/bY09q2xNrm32Drj4eBuSCcecJITnefkDaHlmec5eKyJMPX19R2WeV8uobFxEYZOjzV/v+VYOM9iMXYXx8/f79QH9BKHc5x8Xi6NrVPPVlw26n7cb51OcfBLED3WxtqlJz7QXMW96+nec3CdxO6BPtbzH/tNICzzcum7dKlfL53vrz6Vx1Pf6pgZFY6X4J8xuTdizbfJ/+i3/PZ3Lj+ooaGhoaGhoaHhjUETlZ4Y/jf/+TciGKNu2fS8TCR08Yr1CfHGwrOLRzcROaQ/tZrGm7t6o2642P+5atTtJnw27hacKG19XWY/lTE3uQkeAcfF5Kpuk+fgObKLZ1fDcXTx2zxUCoYsjzvNcZEXzwluQkjI/kuK5aT0vMizNISujYZ9nnybvZmyHj9pao3lWPOTXF2qVfJwfqLt//TmytOCU52nZV7WdwF7HU42L9YQ2tYA1XHNyedlzHUwGi8N1Ov35fxYW7TZc6K6Smztep+XSxx+JdxX8RVLqxUbhMp7qE/LsMp9z4uq2p5znGbUefXvx7LfX8+o++jGmh9b9lyg+IOVNl34VqPO29pub/45k+OwNx5twGWjbgrA9/+Zb1s91tDQ0NDQ0NDQ8GaiiUpPDF/8mVu8OMx5QjYT8NJMbhjAy+y6IpOHV9ntQ+K7NPVW3GOuJvt7iB+SVtfcI+JoJjfiy1HMXx+c+esRsYpnAu7sBIyAezNpnsG4NRPnCOBVdtORyd8rGitOL40pr3Caq4nxA3gRj4bDHcXKOPgBM/aG04HmyuB2Iq6qL2SZTWnzA83Y01xx2ru83CfZRtt87/K0d/ERM+wOciNiFe8xYTIcDpgxojZDPhoOIyL2Ni/pmgwSM2U76T4YDhFcmSsrp3iG04Mba2PyqVEcEyfb7zWneJbTlPotCwYkk30Ly8nnJULGP7s21xzmKj6YuOSlxHtMFac9porDAbHa6W9K97QG6zZWToUDqrzMJ/JSj7X6/dk7Dp6TcsjHL+RldHl5RRM+F25L3ogX42CikpcJccHBC7feFP7OcTq4seVFnL3jMIKrPDFqEefg8jaldzKLPGm5bWkfV23274uKqpbj3o09y0k5+7FW56nmFB0nvUf5zk14MO+LBYPxKh7x0z/xpcWxhoaGhoaGhg83GAAzvXn//UZ37BuC5qn0xPBP/voXMAF4BWDLjD0i5gC84Bk7DphT/JIn7NKSLIlH7LhDD6riAQQOwKs4Y0eMDYt98ysAOwa2AO7TzmsjCFsmPFDElESbLQccaMaY4ivucETESIyZR+zQgcGYCYg8Y4eAAYSRCLfM2EImdxMBLzliB8KRYjLlnRInuf4Fj7hKdSBzAN7lI664w4CAOSCfv0EAEeEVz9giYAOZiN+CsQVjC8JdqpGZwNgi4D5xGsHYccCBovi9cMSOO+lXAmZIvwWQTJQTp6/QETMx9jxjQJBJOzEeeMIAuT4ScMeTtA9JmEpxgJiZ3/OEAQFD0ov3kLhHh54IDzxhgw4dKFch6PmHJANMiNhA8iCTTDFHniCeNjOP2CbnnpkYkcd8z5mQOYyIiZNwOCZO96kNyun+BKcOBCbgLj1vQEAgwgOPGNLzVLjqwegTBwbQgw0nTpxCmmTL5H+AjA0da8phIkZM/UggcJWXqcrLlDjdJU4AV5xC4qCxVq88aF5YfqZ56kBZqOsRMKDLnDaQsTmmPM2WE8my0yHZf0eKOS89CFN6f6RPJjfWJPZ5sWMtEnCb8tCvcOoo4CHdr0vj4oF17AUz1iRP2fAcMfVjycsGARHA57o73NKE3xSvxaSbAGYxUN+T5HXEjG6FQwcCkvl+B63+IhwR0YNEXHFjDWbsdiB0FDCm6wkijIGFw5DHHuextyHCzPKt0zZO6f0ZqjzNGEAY0KcNCeQZexIOB57Rp/Mtpy06gChvYDBBDNb36XxOY0/ztEnW2yMKB3l/ywYEIyJGKCfhrUJUh4CeAiZmxNRvexLheUJMBue14DwR4zN/7bP43j/8Te/vP1wNDQ0NDQ0NDQ0fWDRR6YnheCfW3DOAewAP6eeRgHuKeQmHxvk3+ZR8Thh5sv9AM/YMPEMPhGTeioiPsNhaH9J/DOQlZbnigFLVSBJjbKwmvSMxRkwYkunuRIxbzLjmgB06zKliSX/bH1N8tDGV6hypDjK/2SepmiKeRSQh4IEi9hxlORoRDmAcIDvOFU7JzJiQjs8LTtpvIzFGEg5qpH1LE3ZRJn1ShSUmuNpmrUTRNh5NJRi7aiCNAWQB44iIkSOu0+utk8AbbEBEqSqkrl4Y06QeaSnThEm8sXI859VHao684YAumSE/YEoiY5c5zLCc5rI8KMWz46TQmAARavR6njOHCbEymZ8QSz1dquiYENc5mLhjWdaknHZJZIyUxKrE8XF5mRd5IaTd11I8csTVWl5ASZSMec2ecijvjzw/Og76vgiHeZGXK+6wQZc5lXdc4qPJk61AWsvLHjMCKAkc0qaJGc8Q8lK+PLaoVCApJx1ranQ/Qt5xn5eBRZD7cjjgy+GAj8UrXKHPu9SVKkPtJ644DAjYpHd6AoO5vMO5n0+MtRERMwMDumSgbpbOkRViQr7fhBlb7kFUzPk1b9Le8v7M6Rs4cFp+nNqo9XGRSgWe5URMGFIbZ5RKSqa6ClHzNHHE22mhblV15a63ednwRp4JRsQMYMim8ke9R+6DY86bxcPdhIaGhoaGhoaGhqeDtvztieEbvuudKvaq4qonDRd/JD1ml2Cs+a/U91x/hmK5kKKGL0ucXeyvX96/5qQ3VU6eA2PNqLuOTxmcn4I3gI7O9XfD9R27Exw86nafzovnRKBFm08ZnJuLHIc6fm0D9bW8mFg52KVmp7xc9H6LsXbB5drvjLrYhc4bPD9y7D6Ww9r7szBQ9ze/kJdLnC4ZdV/i5A2g/a53y+auGHVf5FBf4JckeqNu/76s7SaYSKTzQxVLSTfn2OeJAATHYfndq99y3yYfXjrfv/PeTyznjd35Kl65PJE5dqJJi3fYP/MSJwD4ju/6muUPGxoaGhoaGhoa3lg0UemJ4bv/5Dei21qjbgKMYKSmvdbclVH8kfS31ieNutNv2QFj7ponbpyfYWOdl5yapHoDaFupo9fbuEMtgoUVTtFx8kbd3nTX+i+tcbhkROyNukeu4xvuqglfB6pib668ZsprOWrVh4U34b2UB8/B/7ngtMhLbTz8Xoy6l2PNG3XXbfJ58MbCS7Px8xz8WOydQfSS0wWj7gtjjUALg+fXNbn25uLeW8iPpTWD6DVR5rxRd2027tv4mJ3KbOzftzuMVb9vUb8vgxOuZnB1nPX/pAd3IPRMpwU6lycCYasSvH7P9HD6M4/NFO9Uenbn6Z97U70kHEIVexFIKrzsdy7ItzW1OYDQGU5a1WW/e1YUIhB6rsU1LyJlMS8d933gEQLhP/k/fOf6wYaGhoaGhoYPL5je3P8avmo0UemJ4Rd/6iXuDpOZvKEyiI7wBtG1Ke+aoa03GlZvFGuya81ej+RNermKZ+IsTAHIwlWeoJIspbPVH7XB7ZKTN4D2xsITalPeGfXEeVpwio5TbXI9oTYejqviW+FwQMSRioF6BFcxozZbZiwNoY8rebFxTBytOXI8y6nmMEM8bKwxsRX8AmqRJrrj3ribsTTqPp7LCxcOJU+OAxwHF/u8MOqKEaJS4VHaUBt1jxSrPO2dqfUyL7NrM7u81GNtpOjiuTJPPmKux9aJvCgCqOLk86J5tXnxnPxOZdXY4jUhuOYwpW/EY426GbVB9A59qS5KxzdUYgLJssLUhMBUCU8E8aQqTWZs0RUhikUEsvGWQyVUbZxos0Wo4g13CCYOIGw45HhAwNbE6k9V2kgiRBkOzwynDrTgsLHiGkM84ywn7ioOA6iquNoiVOLaFn0lPO24q44PCLjibr2cjYHruce/+SfNqLuhoaGhoaGh4SmheSo9Mfz4/+cL4tHBjAFJfCFU5rDe/FU9OgaICTfycamq6Clkg9ueSUQfFmPXDpQEH9n+vQclP50SqyglhrYyAbaGtmoArUbEvXrcMKMHsgHuIT3zSDWHOXF6qMyXC6cOhGBNfVlivZ9WWYxJDFCTaxXPxCC65qDGwxFz8nJRA2hp0waUTHkZPQgvg0hMI4nxsJozH0naoHk52LyExImL0fCR52RMLHk5mDx0Kb9q2qvCXYAYC1vz5D4Z/Mbs/xKygXNMue8QkqCRTH0RshjQmTarsfABYmq95ynlpeagnlDKsUt9r0bDJZY+0k3mJ8RkSVw4xJQXNbVW4+EpGT7PLJwIyCbwHQh98oTi1GaCiDD6TM3LSDGN7RnRjC0GFnmRsVhMqymZH4c0lgJRZQi9zEtMeUmcqMQblhwwAZw5yM+Oqc3arhmczZmZkNqQxEoCRp7zGIkhmb6zeV9MXnR8yN+TX1jKA6GIf8FxivpNIGPUzSHt5IY81jpQ+kbIM69ZxA5KAtZEks9teu4I+TbcoK/G/A4dJo4ILON1B+nrEYxAhGv0GLkYU+9AYkzNLP5gEA+rCREgwjPus7fVJlUiTSyi+A5iwB+5CIdbEqFpTN+6HgGBJac77tIVjJnl+9FTwBUIIxez9hsMOPCMbfLKkvM5c1COyuEGA448I7L4QvVgTJx2daOADYtorvm6QoeRRZTeJUkpQH4RcJXMuAOrwAtc04CexXxdhMEkNqFHj4C//zd+Hv/ef/CN79u/WQ0NDQ0NDQ0NDR9sNFHpieFwLyaqnCpl1FRXzV6tga2vdNFjKmBMkN3LZKJMeUe3Z9yn5SNa9SFQ0UUNoUtsK1l0eQwlI2HZIU53nDoiomfCkNtoTHtTfHQcrJlyVQEFPQ6pciBTRcK65XcSIKDVOljhkCpRDCflrJxEkKNswhu4wwZqymvygGLQrLDGwtLvtYG6mpsPySx5RhGvSp4Y19qvSMuKSNu4bixccaIZgUtejmBsk/m4tln7SHPtjYHrPLm8UATYji2ZzOtyG1tpo0vMbCZ1K/R6rM0reUrHSThtsvAjY1cEDWTz5I4p7emm1Ta6VA15vNuxdS4vI8Q4XA2hI5ArntQQ+lxeVCiyeXqgWYTclJcITgJKyQvn5XR1Xham11SPPcshVHkpS/R0rO9MHlaXD1KJLacJjImKX5KOtavYZQ52yaOKhyEtywogMeSGipkB1+lds8c1phQTCHtMyKbjQD4+oCzgC0m8VHGTSM7fZgkQaSe3kAQ0FXBLZaHdjREQoag3PxM+Xc6NXN/nPHUQ8as+v1StKUcr5O3kq1xx6pNAGUg4qaAvS/uQOKVlcSqAJU4SI1Wxiqn5Bt5ZTrC/9653DQ0NDQ0NDQ0NbzLa8rcnht/yOz9Sxd54dWn+uoSdNLKLgctG3Y81oVZ4f5elIXR9/UlOJ+A5aKWLecCCozcKvmzUXV/vDaC3rpcenZeyAgnWlPcSJwLJUp2zz6zBLn79vNR39JzgOMSV2D/TP+9S7n2WLo1df/zRJtcn8uKX1i3GGrDIy2UONfz9vLfWZQ51XFZTFfG3zgsv+snfz5tcv+77sqdaqOgu9NElX7Duwtjz7w9haaB++bv3ehwv5fnk+Se+1at5OZ2m1WecNAc/g2//nR+9eE5DQ0NDQ0NDQ8ObgyYqPTH87j/xjRgWRt3luC4x0bnDJcFHqw1s7KuBvADTLyaES9T+LfXkaM2o22Jpcn2RxUJE8pMpv3vb4Dh4jh5eTPBG3dfcL/LgOcDnxcQlzCfUk1ySJVwWXoDxos+aeHHKawhYN4R+HU6LMUfnDaHX8LpinzeBt95CwHIXsLX3pe7my3mpOJDzdEpVIec51bhs1D2fzUuP4PJSH1dR9XxeasFy9Z208QVTRG/I/i4OFQdvau1rZtZEVcshqNBF9TWn3h8RLOue9/rM5N6v4cI/rz4vfmx5+G/IxW/1CgeqDi93gPQ70vlv+XptkrlnAD71X33rhbMaGhoaGhoaPozgSG/cfw3vD5qo9MTw+Z94gfFQJgr5b7myov7dNoPPVyLwcuLuJ5D+N/iz+5X/2p3t9Kdz06F+ddq6cr8TnE5dU0+8z1cNTI7DuQoavV/Fiep4RJSHsN4PVcxIk8ps3L2sQCAXLytS6tc9LoSzOvaMdGlM5nAhL7zCoY7tgZUHspso88qW5g5+rHlOHou8OAnSc17Li/3LY/JysmIrc4gu9pyWsCKP59C7mCGVcrbSyHKqTsT6z4PLy7JSaNm+Kqbzeemo7qPrNLoUs+vYU9+QcxVLa+Pb3tBz8mNpKZzVbfZ58/B5yWPrBPSQr7qyY+8chzXOy+qnmkO/+GacB0fgp3701y6c1dDQ0NDQ0NDQ8CahiUpPDP/kv/9CFU8qZqS5x6nJGqMsp/CT7s5O3lg8Ruz0xTts+OU4lwQZLyT4CgA/0ZmUg+V0BgTdGj61hTmbYQNYCgMrHHzs4SeoeSvvhHuaSmNghAUbk3gw5R3QzC29+KGcMhjJsLlMSH1elku/alyaRC8noFxdOC041XnCBQ6UnnlOIvR5OKWTFA6+Kui84OM5+PfHHtO/Wk7WDweQJVXdWl5MQx+Tlyw6ghdt9u9L9oFKzxtfMy9eiAuo+3FNyPFj7ZI44asZn/Omikc6L7xZPyHbZruTIRFVNM+NPYZsHnDuNffvw+WqOi9CXT5/lYPLk3LyYy2dcFoAxfJ98MtyL31LAeAf/Pefu3hOQ0NDQ0NDQ0PDm4Nm1P3EYKuUgMuT7stTCEE9IXt/Swn93ZZ3X69GeK/Qq89xet0nXOoRP508lwf+Kp5f8XCNeq+5P3G7BV43L6fyfmp8rd3//eZwCe915J3Ly+tgTZY4d7vHtPdycx7R4Atj7at9wlfb74++/yMqid4rvppvL6Es1bRC2okLXgPnq0LXcNw3o+6GhoaGhoaGhqeEVqn0xPAt3/2RKr5kCL1m1qxLsDS+ZNj8fht1+2qUk0bdmUMde1zkREvB4t+2UfeasbCNtepkEZvTPixG3Rp7P6NfD6PuSxzeL6Puwun1jbqX70sN3yOew+sadfu85Ksdh6/GqPvSMkbfJw8XjLr9/S4ZdaufV52L1zPq9nhdo25//qU8nzLq1nbq+WfzcoHD+2HU/R3f/bUXz2loaGhoaGj48IGZ3rj/Gt4fNFHpieG7//jSqNtOljoVG9I7tjZR91UVlbcHmYlI+vHgrs8m11yeWcGV4oxmUg4k89ha86niDrUJbwDJJPQxxSAnOPi52EaXr3mOJyZtMzsOXHO45n6RhzoOi7xYk15QyouJKzGAlhPEvCyK1+Pg8sSOn7+fN/VdM+q2nBZmyQQQn+CQ4ktLJf1Sr97lJT/fCCT1WJur2Ff+rBl1W8HkMXnxgmU0HVwZdbM+s87LSYExwRtGHxcG7TibFwIWeYGLGeY7QEtD6MVyT5eXwb0//s/HGHVbITjgvIjKqY22ioepXsp7yhReq3/0mN3Jz8ZqhO93mKt9nEqbvCl8tYx4hcMMruKQzi/VVnTW2L721eJFLG2KVfyAqYqDO9+DAvBH/vQnV481NDQ0NDQ0NDS8mWii0hPD5/7JVxD2ZSLNADboXByqSebW2rdyis0kcMuhmoT6ODhhKoDEMyX9qANVYsCAgI3Z3Wnj4i0CNmZyT0xS6WPavOGumqiucbJVJVt0jkMdD6DqZSHAcQgyUc7nh4rTxrV5S6Fq8wRGT2VvJQbQUzB5YWzRVRw2VgxgmahTlZdatNms2Cn7PPWOwyaucMoiVFdVbG0QqmqkLJCYsdWjzsuWu7rNqDlsXJ4Gx6GrJU4QapGyQ6jyNKBznLpq97ONcjICjs0jAxioHmtb1Dv3+bx4jj5POS5aQJUXAipRtHPvz4BQRE7LwcSd66WNe19sXojpq85LKM0vnKq8UPW+bLgeaxuqOVxTX+1+dkTEkcoudyMYd2kvP2kS42BEG/GOmrMoE8G4TbJOOT9W4tgEroSoOxoxIuZ4RKxiuabEe5pxwFydb9tERNVOfUdE7M3xCMa94QSSe/jjdve/u8RSYYUoBmNPM2bTxntMOJo2RnDFASTtyufThDuM7q1Dvv+LeMSP//1fWhxraGhoaGhoaGh4c9E8lZ4YfuJv/RI6EHYAJmYcAAQi7NBh4ogRbGLGjIhAAVcgjIiIYKmaAWFiBnPEBh0iIiLLPXcpZqZk+ksYIBPJCRETkgDBnKdEA6V7IsqkOT8jYsMBHUQ4mpixy7E8jyET1l06fgQjBMIVOowsE8WAgGtQioXTDoQpTbp6yD0nZkSO2CJkDhM4T3Aj1BBZxIaOGWOafG4ooGOZ4HYgBKLMaYOQODFGZuxiSHmQNr8MMwIIG3SYoW0mbChgBmNK8RX6isMWnPKAnJeZZZe4Hh06MGaW9g0pLwDl6bVW2shkmjBQQMeSaxEDA7pIOFJEz2RyH7OIRCj3FyvhkM3EAyT3MycOlDhyTMcDrlnyovFWx1Yea7oDoYhAuiOhjkVKXKJyQECX+ixquzhi0rwkTiNF9Bxyq2eOGFj49QBiMmwPSRA8l5frE3lByssu9RkbE/jIADNjMGPN5oUMp54CQsojwPK+pPdnSBxCypuISCUvm5QzvV/mgIA5jd9zeWGXF5i8qAjTm7zI2xFy6+c05noAMfUjQPJec8pDamNIedlwzeGaezDJ+94B2JN8OQ6Y0SNgjwkzMV7xiG3iDwL2POd3GwQceEav7z0Btzymd7M+3iGgo5DGpfTdkSKOHJO4Kt+2GbPkAAG9Cl88IyBgjxkTRcwpxyMYkRgzz9ggYIcekYCR5Zt3oBkzMe55woCACbHitEUHJuDAEX36HjMhn89A4jRhAxGte5JxmfNPjAMzuvQujBQxsghomyQaj2mcSz/0GCmmd4HwgBkjRUwcsUOfKtDE7P0BMyIx/n//35/HH/pPvuXX85+xhoaGhoaGhoaGDxCaqPTEMB3lt9gyqSREiJBEIAzoAMT8m+kBUmGkv63foFTS6HGt35GpdxlQWtvUgfJvwjsAHbr023Y51qHD0cX6O3CNVdDRNvtYfhtf2qQTWW3zbDhu0IHTBKxwOM1J21G2a5f4Pt2/S7zuk3NNh5B6kSsOwbR5myatloOyluqeDjOAOfWb8h0Np4iQOXoO/Uo8uLwIxzkzE/FL8yTt06UzHQKuTCWMil/aZt1lynLokoShy3F6UBY0lKMKQ6fHFqr7+bjL7dG+lGoTe1yX72heFB0CuiROFg5dlRfPSfJiOazlpbwvgxk3+n5pL+r7UJZjlTH3QOW4vD81J11m5cdWl0S+S3lRDnr8dfNid1brXaxLuFSY0nYcaQIxoSP5BhzM2LY7IfYISejzHII2Ir/vgBRXjYhlRzsC9pgxgOVdT9U9kVPFGYmAkpcEpkqcEaliMx2PPOe4WnZGWqGUlg6jiEtblhEhOzSWiqKZ5LgiEksbuUOf2qxVUcrhiJgrjpQTcfpGp/PtToQqBFlOkRkb9HmJpeUwr1w/IuKdtMtehIjzWrclHMo9JpJKrzUcD82ou6GhoaGh4Y3E+ur3hgaEy6f82wURfYqI/gIR/TdE9OfS3995j/f6gXT9jxDRj527l3nWp/Sc9PdPE9Gffc+EPmD4lt/z0Sq+ZAhN+nfzEblkNPz6Rt3n4b9fS6PuE/fPHOo4/53tX89z+mqNuj2H2bn+7rir4ksG6j4vaxwuGnUvnlHjUl4W5uOLvJzvI7t8yjW8/PWCKbx/3iUTag9/t0ucvNm4H1s+zj46rPd7RF749fKybHONSwbSJ99H3zmZg1TCVfGlvJjlfMBj3vn6fkdn1H3SOyvBc/Z9lJc8nhhr3hReliTWz1i8067nvY+Uh/ck8xz8++N9pvKiZNYYFafJ5YXMudXPDJYm76/HCQC+6/d8/OI5DQ0NDQ0NDQ0Nbw4+UKISEf0AgD/HzD/EzH+emX8YwF8A8GOvKywR0Z8DgHSvPwrgjwD43QB+lojWnETfAfBnAfwIgK8QEae/f5aZ/+J75fRBw3f9R5/AZmcrA4DOzCO831GuOillImXnJZ0o6vUpjm4isnGGz96kt2c6OYEFkohk4qOLCXAG0IkTFU7dBU7BcarMx+39058bJx544+7ghLiFIbQz6n5mPWxw2dR6lYObtS8EE645bRYT8/NG3V5cnNhxgjNQZ6yYwNsmLsWGADjxwefFtAXLvCzMx9c4GPAFDtEdD1iOtUVeeGVsmbiCHWtwHHycTuvcWGM3tmY3tryxfefet6VRtzMbdxz1HMvJ5qUSxnJeuiruLxh1k2vjHY9VvPSEqjn4981v7hFSldSqurXyDSBQ2aHxRJuz6JPiLWqh2L8/B0xVPDhO/v2ZECvh6+SmCiYv3kDdmsATaPEt9iKSVsVVnE7rh+gC4fv/1LedPqGhoaGhoaGhoeGNwwdGVEqi0acB/LD9OTP/OIAfB/B/e417fXe69i+b+7wLEZbegYhFa/iLAD6T/vvzAL41CVtvDH7hH38F23008w7CjTPlfaZG2ym+4a4Skm64L8ITA8+5k8l7OuUGARvzzA0IW3N8g4Bd7HK8RYdn3FcTl2dm8nKFgJsqJtyYmWzHhOcoRsIEwrXjdIOu4vRcOeS4qzjdcMBgJtLXIGxMvAFh5zhdG047dLgxnHZcc7xGhxsziRzBiwnbzhpAs9zTcrrmvpq8X3FXxTv0VRXKDl0lePSozcSz4TOVeGviLQKuTBt36Ko2btFhZzjJUr9ynEC4xlBx8JyuXJ6u0Zc2s/SjnUiLr5XlRM4wvcOWuypPW7Pcaouu4qTeNVak2pmYPCcWn6tlXk5z2pkla2AkD6CSpx6hqgjxedmiq96fHfeV6fsOfdXmK8eJQAtOlgOlNtv4Gm6swY01NrsTKieXl1VzcTO27Fj7hniNb5ufm/dlkD5KcUQyTM+gKo8d12bkxPUulAyuzfvZmPknDt5A3XPYoDaB9+b+BFQG6gPqNoknUeHEqEUb9VDLnNz1DJYllhUHqsaaNVAXj7JayB08B//NsN96yNi8dsb0plNxPff4Z3/3l1cONjQ0NDQ0NDQ0vKn4IHkq/an05z9eOfbfQQSnx+KHIBVOFZj5XSL6DIBPEdF3J8HKHv+h13jGhxL/6n/4ZfREeCuZdB8gk5W3ucOBGSNFdAh4mwkHjhhJTHnfSrEYuAY8Z8KRYzYGHlgMqI8UcU0BkRlDuj9AuGKpGjmQ1DFdocMQCXuK2Rh3YDGC3XJIZsvyzB132CDgbRD2HPGM5TfubwE4JKPuDoS3EIQDGCBp85EjpsThbQw4JMPmHgFvs8QjIgZ0eIsDjiyeUmo2PjHhgIgNCBsAA0ul1AzCNXUYOGIPhvhJdegTJzXm7hOnHYdkTj7ggBlXieNbiePLIGa9VxDD9CPEPLkygEbAM1A2H+8Q8JwHHNPxDmpGXgyqe4j30sQRW/RQQ/UxOTJtSc5RjxkVA0ZIe0ISbY6IWezQvGzRpTwNOPKcDNSTqTsXn6wr9JhSG0GEG9RtVk4RsqTn2sT6vJHV8LhDD07G3xE9OgTEZJA+A6BkmK5m4yLi9IZDl6qJjojJnFhEnWMaa2oaPSZTZp+XjmpOAYRn6HFMptaSlw0OPKc+8JzEQF2MxGPy+RLPmjH10YY7dBQwpbwIB8mT7EjXo48BB5pFGEh+SsfkBaSm6eMKJx1LV6Bkzh/RmbGmBujPUp8gcbhJsXKU6zm965KXKRmydwjYAogMHNN+Ylvq0DPnvNixpu3TvHw0bvEONng29fil7gEDq526VI9NJBzUQD26sSRjV6qLZlb/qIBN7mdOYppsSFA2IOBkdI/KUF3H7o47TClPKsh2ibMa18d0vxkxGaqX90k9r0aOIkKhGNmPaWzppglI78+zlJcNSw8MqV9HRBAVw3XdkGCHYqiuHBgwXl/SRjXn36LkRaur1IR9l74hgYvx/Y7EoHvPEyYwCEmAhjh8/a9/+xfwB/+z3/Lr8c9XQ0NDQ0NDw28UGGBf+v0m4EwFdsPj8UESlX4QwLuposjjs4Asj7PVR2fwuwH8WSL6Hi8cQaqePpXO8cfeeMRJ3pxAhCsAxIwH6G/FCQMDB+JczbBhxkzr1Q1bdNkLSEx9KVcfyG5SwAbALcvkZQAwcIdbyK5FPQJuOMjythQ/96a9CLnCQCZYHbYp1jaL/0mJO3ASeqTNMzMmw0mh8ZXhYDmFVHG1Sb+758RnA8KLtExEdoICHpIDy4CAgcUI3HJSVh0I19zn5XMdCNeJ0y2KCTajbOUtZuOUt/pWEYJNm4E6D7YSrU8ig3IK6bn3NCGbJSNkU2vt98qo21Q8iEhSqmmkn/sq3qJLk/3CaUwccl5w2gRe+/xUrG32nB5Qc1KxTDkVA3XhpB5JGg+OQ20KX/Ki8ZREDc2DzcvOuOSscbCm8NrmDoQRE4gKh0PKy5AEAc2LmlqXvIjYpU9V4+4+517aeATMDnByTHf726I26t66vGxXOAQX95B3peRlwB2NICb0tJ4XheZBOdxgwLfPA75CI45UDMtDeiOtgXo0HM6ZifcQM399n2wF05rRfZe4HDCDiHIeynFvuk5JAKNcHdSZfvRjS585QXfeU9N3rs6vnwmIWX8xPA8mb95QnQAQQmX6HsA578Fx0pFpOW1AOCQpqkfATVWPWjCN3tWroaGhoaGhoaHhTcYHZvkbROT58olj76Y/f88j7/WZdM27509bgojeSQbfP/BeDcI/yPjN3/s1VexVxUuG0BKy+fuKUTfX8dKou8Ylzdvf3xt1e+T752UkWHCwsfz1PCezYgTAWr+dh2+x3x/p6oJRtzftXX9GzeGcyfW6IbR/5uOfB7y+UfdjTLTPmY97rBl1f7Uc/PT4pIH6yfu/l7zU9/D9+Lrvy3s26jY4lwdvPu6RxxrZn53HLU1VPLixaneMA5YG6r493iPNc/bXrI01Ok0RwJqp+3mW/jt2KQ95dzh/Pq+fnw3VXwPLb603B7/8Hfrt3/ux13pmQ0NDQ0NDQ0PDhxsfJFHpnffpHDDzDzPzR5j5syuHvzv9uVhml8y9/yykgukzAD5NRP/NY56Zdpdb/Afgtz7m+n9b+M7v/ziGna0MqCcjAbVJb94Uvfzqvp5WkJ18yZ/1dHApwKwKMicEHyAJMCYeUf/AT3O6SxzshV4tSvHsOPmpWY/q8EIo8xf560dH8vkjjLptMwlLmcn/pJpI01Jc8OLbJcFkKYy9ntjn87zGwaO6I53f/Q24zOHURF3hOfjnLTnUWGO0zIv5i+WU/rBmyvLM18vLlGQexXLXMLiYFnm5xMEdrJ5AWH8nF888g6/QoRJ1rFcXkIzyq/ejhu8T1v9D5flnRR9ain3eyN7DCzDeeNtjdNJy5zh56C572uqT32p3jba5El19nDBzbTb+kMQ9+40/JyAiAN/3n/+W08cbGhoaGhoaGhreOHyQRCXgdGWRVjB99Ku5edr17VMA/vLKsrh3AfxI2nXus2kZ3g8C+L8S0Z/9ap77QcLn/+GXgX2Z/ERQNQgYvJhkdkBlBtvZyQvDLBeR/7vB2sS1QJdv2NhO1sWfqMSDnp/iDdXbbxNqoUr8Ucr5wqnEYCMOJGGpY6pNeh2nznHglQmdPR5QCxBlgVri4Ca1DxRBZn7HAALBcTgvkFR9zlK94Y2G7TXR9kG+R70UyMbBxZ1rUe84+euFE53ltCp4eE7u/FoT5EW/eNG05kCOQ1gc93nvTF70nPMcqhvUoidL1Y3NE4Pd7mvLCrBlG0vcOwlyQHBtWualM3lZ4+Th8+LHlofXbi+NrXd4U8UjuHo/JveO+zaTayNx/T7q2LNt6rAcazWHNLaMMGWvH9zYjEjj/USbNu4JOQ/5/Pp9EiEsmPPFB8r3Qf1tLmOrEoOo/LHgYJI1EuOWxnzXO5pwi3FVWIpgvBsP+Aef+fziWENDQ0NDQ0NDw5uLD5Kn0mPwzld5/ach/kz/F39gbZc3Y+z95yA7w50EM3/P2s9TtdJ3rx37jcDP/I+/gkDAhqUCaIROXmSaMAIgEhGHgeTxEUAQw9oyGeNca6MeJXI+sCFCZDGdFflKfFbEqwXJrFg8PWYUPyR9RkjxAMbMQM/18Q0IgcQ0W+8HID1DKqWkskBNdpWTGPDa5yU/W3SJke4gPzhO2h9dimeka7hw6qhwImjlgLRBJ/6U+mBAEUQigDua00S7NtXtSGLltJYXraXyseeknkIh3T/PHbkUhwVKZsjpeDZHhpodl7iD1kZwvn/xexGeKrYxdFIuubNxZ47XHGBGmoqHiZO2F5R8ZLTNlO9g/Y3slNpzsseVU4Ad6yUv6lnz+LygigkiVmhewMZMmSGuOkQIXDhqXvgEBxVo6rwgjQIVSJccQm5z8tkh1ByrvNg8iOk1r3HK1xdElDzYTNQcyvEIxltJVNJ7qp+SXj3lNsr7FcHVd6vkrby3OQ+sIhXld2I59jhzAopRd2CAqR4ben1v7sDpmnN5GlK0eOdRKoxsHvp8Psr5joOOfu3Trhpbcr7KUuoFZt9PfYZ+1xjAA80YEXHFPfaYMBFj4ogdegwQ/7gRM/aYEAn4h//T5/H9P/jtaGhoaGhoaHiz8EYadTe8L/igiUrvnPi5Vii9+15vnJa2vQPge06YgZ/CjwL4ASL6FDN/5r0+/4OCOKfJCkny9bf9OqHrUCZs+ltsFQfUChpAdVx/Kr+JX8aH9LMANX8tgkWA7KbG5hnlniJGWcNZWzFEVNofgdz+DlYsS7wNJ2ssXHM4zYlSVQlRXfFQ2lw4qLhVH6/jwqmugjrVRtktrG6jnagv81LHCn1uZ+5frrZtpLycR2Nyx/0zbNylqW1cHOfqytnFp/ICF69x8hx0+r52zWM4qAhwqk2SJxUR1/Nyemyt54mS5Ofba8+pBYdlXmx/nH6mfR98Hur3xebF/3nqfZqNsBTSLSj5KhEIc1r6pW32eVnes26zf5+s6btyqttYxzK+15/v8wJo1ZIYdfvRFqoWrY+FNY7L3NfHbZ61zZ5TEaLkCxRN7DlLJiIsJzUr95y0X3U56ESMVzTm5aIzMe7SQmQP/TemoaGhoaGhoaHhaeCDtPzt3Uecc8rI+yyI6Acgy95eV1Cy+OR7vO4DhW/+fV9bxaoqluqBOsZKfMnUemL5jbjidY26/ZRkaR57/nq9f8WJz3PwsffaiUlQUnz1Rt31T64fadT9Onk5Z0JtBROF5+D71cPff75g6ts5DmucSn3Rel7OeSqtc7rEosbSqLuOT3kDncqLcngsJ8LS1Pqr5XDJEPrUssrTeal9deLKM+v7JfNxsj87j4tG3W60Ln2m1vNoq6Re55sA4D0YdZ//Kvj3xZ/v+2he47DSTo2jyxPJQRMvs7A024eLL4/F3/X7PnHxnIaGhoaGhoaGhjcHHyRR6R/jtHCjP/+x170pEX0KwA8x80lBiYj+AhHxm7jbm8e3/tGPIRij7oFKVQKgv/0uv80mEMYU6wRltJMbAg5usrNP9y47D8Xq+HJu5iepdTyl38ArjvA7zHEl0nQrHGbiakI0OQ5Hx8FzypxZBZH6+NrfbTy7+Og4PedQHQ+QJYQ29pwmE+szLKfR9fvRxV484JX4HIc5L2wS+DzBxVplU+UFvOBgx9olTpOLgTova2LeOQ5jXhhYzrccArCSF89pmZfMyXNY4bQUdWpOa7u71XnwnKLLw3peSrzkYPOmzzjFgUyVzbmxZWPP4YvhoWrTDvX7MYCqODgOjFq0YULFKYAw0+PfH3veqbHn89i5Nvrv2ujyZJe9KYforvcc/Puk34TTHNbH0ikOXrA69TMFBeCP/Ik34vcvDQ0NDQ0NDQ0Nj8QHSVT69Jlj+r9SX2v5GRF9N0RQ+qPu5+848+1P4nSl1NekPxe7xX0Y8TN/70v48n2ErlA4gPGS5jyhmsB4gSlPmCIY72LE0UxWbjFV8QMiDmaycwDwYKqVXhHjLi3pAYBbmvGKyuT9jma8oinHB0S8NLEsvZirCdYrlMn9RMBLFGHpCMYLmrNwNIPxAmM1CXyJqRLL7jA7TsDeTNgeFpxi9kFSDneG0wPNFYcjuOLMBLwyk/0XNOMhyQGATO7uacwcZ0TcYcoT5QjGnckTp9hyOmDGaPp9QqziPSYcbUzii1KOz3gwIsuIiHsUThGMvYlBqM6fwXhIU2cdW/cmFk5j5sSGk+VgxbMjYuaoY8VyeKAJB8fxwdS2HR2nGYy9FZIIeDCcON3Diov3ZDkph9InNk8Mxv0KJ8thdJzuaVzkxXI6YK7aOCJWnDidYyf/+yqPkjebl7tFXuqxdo+54rQ/kxfhWHPaUz3WHlJeyvV1Xu5oxk93L3Ob7pOvTxGu54rTERGvDIeY+tmKJkfzvs1gvHTfBM9pQqziOze2johVHAn5G2LHom2jfX+ICEfD6ZCO2zbavKhIZPN0b96fCMYrjFW/T4hZiGIwHqjmeIepeudn4ipPR8w4mDY/YKo4WEQwXsQj/qf/4WcXxxoaGhoaGho+3GAQOL6B/5lfHDa8d3yQPJX+EoC/QEQ/wMx/2R37QQCfYebP+ouI6JOnfg4RlH5w5Vmfghh2K34knfvuyrk/AODHV3aL+1DiX/2dLyICeMli1v1AjEjAC8zYpgoFDsALnrBF2gkoAC94xBYBAxM4AK94wgDCljtwAG454gDGlgkDAu7AODKwg4gzTMDIE3YIeKCIOU2Qrjhgjyjmrxix44AjMWZifBkjrlgW60QC3sWEHQdsEMAgvAtgyywVMgS8YMY2TR6ZgBeYsAWJUXXitEFAlzi95AkbEDYcEqcZAyK2HBCIcMeMIxgbEGYA9wCOzNih9NuY2rSniJmkLbvESTgcccUdIhUOWw4YQAAR3uWIHQhfoRGRgHueMCCkiRxwRyMGBJmaEnCbjhMAEHCX4g6yZOqeJ/QgbNCBCNizTMYHdBgQ0sRZzJyPiABJ1VePgCNmMAETj9ggyHSVZJvxDTpMiIgEvOIRW7OI6gEjenSyJMm0aUz3u+cxxZKXuxRHxyk4Tnq/A8tEuEdATyFz6kGIxDikMdAbThNHbBKnaDgpB+UEILWx9CPlNneLft5rXiAcpsxB7q/3u13NS5DcEbDnCRMIPToMFDLHDoQjRYBFEBgQqjzZfpyYU54kVk6amQfIMzepr+9TfMCMSJzzckh5uk0xL/KiHGb0KQ8g4CGNtQHdal6OOS+o8lJzkO9K4cDp/Qa+FA74cfoyvj5eif00AUeWPtqTcpA2PtCESIyXfMTGjMWH1O89CIEIB57RQaovkcbyAH0f5X3pUr8P1GHkiBlibj9SxMhI75NUqM00Z0479JiJsecZPUgEUWLM5n2w788VekQC9ix9ppz0/ZjTd+1VGls7dOD0PqjnGZuxhTRWNY87BGyox5EjQuIg70sZaxNFTInTBp2MJ4r5m6AS1wxOY3FORt2Stz7lakoCGxPw9//u5/Gf/Rf/zq/XP2ENDQ0NDQ0NDQ0fMHxgRKW009oPQXZay6JSqjb6JIDF7mq6sxoRfY8VfdIyth8B8FkishVQ76Q/f7e9HzP/eSL6NBH9sBWokrn3RwFUlU4fZnC01QzAgZHdfA/gvMxL4ohIdXwg2YFLfmvOmDDhGn2ORzA+wjLBmQDcoix1mQi4RYQuSpkJuKVYm7/SnJpDiCQVCxuWHY6YgAeKQIRMsCBL7WblRhIflWziNBsOOrktMWPEjC06w2nG88wJGJnzcpsJhFug4nBHpnogcciVK4lDnwSGmDhwDNikifIDGEeqqxFyHiCxVlTocVtZI+cjT/4nyERW8zKDEXnCgA10yVm+H2SieTQLCCNJ1UbMsVSGaF44xRsOaYkPUgUUENLE94iS19LGmsPs4gwqnHcVhzmLBTO4uv8ap5qDxOW4cFDRRNu8YREgJBZxoEvPrPKwkpfjSl4mILd5QsTMEVeJk+ZpwGaVw0yMuWozp8qXmpN9X/aYseUy2R+TeKA7fK2NJR/7vMGPLcwiyKXY58XeTyqGOLtWKyfL4cFxtHnZ04yf627xtXGX+61akpg5lApArVAqbYxgpvyO+zZqnjbmeOQZQ4ojuPhSmbEXUJbWzpix5V5opu+IZlLHlo33mDFwJ7Jm7ld259ffLWIRIdc4TO78ERGRGZvUZ2sc6uvlW77hTc6D/SZIpVep/Cp5K7nLOYynl8c1NDQ0NDQ0NDS8efjAiEoAwMx/kYhUCPpRyNKzd3DaYPsz6bg/9j9ChKiT5g6+uomZf5CI/lwSpD6a7vvjzPyR90DlA4tv/QNfV8VDUljUc6MDiYEt1btBWViPEfX9yEa5qYKiN1fK7kwwMVXmwepLU+5fG8TWdrayHM6uvvBt7BynbNRNtt01Bx/PqZpHHxDZcIQIa+c4pDm04VSzmh2HK+7wlbMcCOrU5P1dTnGyefGc9J52SWF3gYNHtH2ENZPf+g65Laxbmy85FV8hWs1LNdbc8cdwWuMQznCIqI3lu+TeU3M6nZc1Duc4EQgdUxFCAffEx+XFQqpMLIe6T5bG3fK8x+YlJpHnlKG4mo/HM5zWONj7HWjGFZd/rqQyZzYx5V0mlXNqeBZVLHqE0omU8mKWty7zggUHjwml+k2fcTRt9HnLYvYjz7dL9eRbHQCe88m+92eXFwJALKKVxLTIwwTO/yastaFDMPLYOr7393/j2eMNDQ0NDQ0NDQ1vFj5QohIAMPNn8EjvJGb+YQA/vPLzRVXTa9zvjcZ3/pGPodsFzHuZGPSgaoIYIBMnO8mdMaNLy2IoiSlauUNEGDliiy4fPyKiN7EiCyTMlcBjj+nfGcixLqnRNo28nMTaWLfjrjhQrDjM4MI9cdhom1PcGQ5zul/hgMUs7px4oMtNyHDYmjZecwcwQ7eYC+76sMJpcnnxnCbHaeIZHfp8Pi3avZwwe/FAqzOEE6N3HDdVztlxSOIcFQ5reTw31ipOJh+nOS05aGXPWl7kefX5nsNj86JY5uX8++M58Eps2yBioX1fag4jIrYmJnc9YSlsRcQqL8Lh3FibsTFja07XW2E3ogg3fqT5vMwuLw884h3e5ndui4Bb8w72oEowyWbqKWZKr1d6XgCJMKziLpVna2yFZAJhA1k+ms/XXfpS7EWlDQKOPOeHZh05xUdzLyAJ/Pa7ogVeKZ6Jpf/M2NPvtbYxC4YnOGRBPx3v0VXtmNPSP4UXywcEjGyqPR26QPhj//G3rh9saGhoaGho+HCDT/wPgIYnjw+SUXfDvwX81N/9Il7tixmsmMeWBSlirmyWb0FMemuj4drAdgJX5rAzZFlZMaytjbwfkvGwNajdm6VDE5bmyTYmAvZmuUdEHatxseV05ziscbIcZLmIMVMmrk14g3BQPNDszJBrTtLGmsPBHL+lCUcq8Zz6xZryWnPlmPrImvAeTay854oTKk4Hqg2jDzSnJS86Nuo8Zd8Ukxe75Csg+bwYzvb4DMaB5sp8/MGZWu8dB2s0DAaijbE0U/bm5AfMVRtGzwHLZWtVjHq54ZTGijXqPpUX5eTzMjkOfqztKbq4NlM+os7TjFjFRHWbA9GCw3HByRpEa14KpwdnNj4u8sLVWJwc5z3SWKOSF5uH0XHyY+daXMKy7jmB0ZP954uwo1If2YGKSAMRdGxFFkNEsiwOM7ABVfFgZDURxxidCkkQEag38YbT/dIzcyVfitXfSuOdLGYz56M6HpKQpcVRPVNVAcoQcdIWT2XxPXHozT/xwgGVIC6eWKFwQF+JiSEJUaWXCVuytXs1htjh7/6tnzt5vKGhoaGhoaGh4c3DB65SqeHXFz/9P39RfHxYqkzuaU6x+MfMkN9C75MZrP66/CEZ2Kqf0p4jOki1wkABR5aJcM/JHBYRc5oEHdM9ZjWwJTVLLga2M4kRsBjU1ga0PQhEhDueMYCyYe1DMrhVE2uNj4aDHgcVo2FvPDwgAMGYWnMy6QVj5jlVXIiwlDlAjYWnbKYciTElM/ARMRlvz5WxtnLaIiAS4T61WXa/k4l0AGXT20MyJp4yp6lalqfGwmoIfeAZIXHqqMPInCrNCBvqsl9MgEzMQUA05sVq+KwmvZGK2bEaOO9zXoSDGg3rUp4pcVAjYeWgS3sONKeKilhxoDy2dKyFtCRIjIZ7iKeMijKalxkxV9aoB9CcTKnVfHxOZso6tpRTl2SPPeY8wWai3OYuTdKPqY+/mrwop8HlZaAOU46BKRl16/Fi1K3m4PXYiy4vG4gxvLZxqz5XKR6pzotyUg4xjQuNNS9qzN0nM3Cblw36lBfO/k02TyNpXsrYqvPCmVP2H4OITx0Cdiwt6SAVR1OqdOwTf33OVWqHtnsAEFnEEa2Y0rYRiaG9LN8DAgIGMCKLANMlgUyWwkliNyDEZECe78nih7RBl34m95jB6EieOXMSdEDYIYjJOofEiWUzAUgV3xYBMxehVuMB5vz0/moFVUxtAAVsUDyntOoP0Gow6cOQ2gcibLhDR5QqrULqJ4ZW6XUICOC8nK5HyO+3Co99ygWB8I/+l1/Af/pf/db37d+shoaGhoaGhoaGDzaaqPRUQWKkPVXx0sw1ulh3AcrHucRaXfBMf/NOUrGk0Dgv56Glga1UA5VlHyMiKJkng9LSHk4eMVQb3BYO3oC2juHOnzFjZ016MctytNTmyGWCGYlWOehPmLTCqD7eJ4FCOfVMqya9QPGo8f1uY145rgJGBOPIxUxZlx3BtMn6QWlsOY2Ow4iYl76VvFDOy5Tyco6D9bWZV8YaPMckbun9RnAWrhio+kyFAhtb82/Ng411bKkYJLvipfLN1Abi4gW19j7YsbV2PLr3hTkaA2iTF9I2n86TN+pWTj4vPZcd2/QdvdRGG/ux5t+XyLOYZkOrrArY5vVMXjyHZV7ExFqv1yt0QVxZuleWfGll1GAWH2YRxZxPKN5Yen3vzid3PhmOIYlLNrbVPeUeuqqsrjCSNpYKIP8MPd9yVtHGnq9L05QDpb7X2HKWdooPlX2ejrcOoVqyWfo1Vm3Q+k/pg9MVSw0NDQ0NDQ0NDU8HbfnbE8Nv/d99rIrz5MgsuQCXyS5hCXaTxsoEl+olVsDSCHjNGLi+fw1vtKxVD+aR7v6haqdysrfxHHw8O07eH6q/wMmDHYfJGf7uuJ6gdWt5gVRpnLrvubxoRY9CJ43nOFzKizc/nlzsjZvDibzYq9gIZtH8fY2TvdcpTqfMo09x8GNt1eDZII+1ortU7fJjqxLbsOREoGqJlTyj5uAZLd+X6OLzeekcJ438mLUcznHyyJzOtGHtGRZ3NFXxwL7N9f1OjlX3nbM/Xow19v12Hr7f/TfCY3LnX8rzvMbBn2+a/Ji8ENcP8mPFt+FS3gDg935fM+puaGhoaGh448AAM71x/535n0oNr4EmKj0xfOf3fQz9rqS9V8+ONFfQ3azETHdppg2UCRqDTfVPOW53KZJ71uiYKnGE4Cd09aR1dvHIdSwXlViX7VlDW0oP8tdZvx/LaXQcoju/5+XEvJ6Deg5wHGrfnit01UdNd6yr8sJQH29Yc2orYFgO1tcH5DiiVDCogGiXyqTuWky0bWz9k4Dax0eu56pCSiUlm5f0/xfi0GqbaTm2StuMUGUQTP/oeTUHH9ccdBe0ikOVp8t5qcYOIdeAreYJS0HRiw1rAsi5PPg4AMu8VO/j8t0vz1IOdV4sh7Vvhud0+Z2v2/wKx6qRGxWFDAer067+7wN9n7gYdWucPxAnrpNKnc5xqM/3gkzv3mmPcU1UcufbJ0Tw4puwrJAy/azcKg6h4uDz4t8rz3GtjdXxQPhD/+G3nD6hoaGhoaGhoaHhjUMTlZ4YfvIzv4Ljvvz+Wrx/yuRflrNw3mWIUbw1rOGz+nOkOWWJUcSJbBjtCoUmYti5yWyeobCTeZn4lB2jBqpjQJbNWFHLigX6G/tznHSSq5x0V698nMpSFgA4UqzarB4xVtixx8lxGqjs4gUA95glD0aIsPEMzrs/lfvXk3hGzYEsBy4VKcXIWzioebIuSyrPXIoqPi/2/N7F7PIi3je8Gpe8eA7LvJzkjLJUKueFeNGmigNRdX5fJEgAutub65MqL/EReWH4vJzjZJefVXGCPv10XkI91hynuMgLKvUiGg4ets02tmNr7f1acFrJi4071+Z31Kgb2ie1qTVBvKNUWNLlWXoFMYqpdeI+ICCYHdx6UHkmIxl5k6lURF5iCiB5P5V/Qnfo3TI3YGNMrXuEame1bfKmUjDEX0sRIEv59IyOkyiUBSAdrwUDvNl4vVNlFqJIzw+V2fiWO4mN6GQ5SZtKGyow0M2Ev/M3fnblYENDQ0NDQ0NDw5uKJio9Mfyrv/erAMrkOvuZpImTGg/PJB4ls5n02Ymi7CS2jCOXrcb1/6lRtt7He+HYXaaKk08Rr0I18UpLkMz97O/7Kw4QDhorx1rUiEbU0AoMzoKJCl7iWaMT4eJBpG0s1Vp1m5QT5Thx4iKKRDAe0vIejUulVGknIB5P2feG5H7WF0djy0ljv/uV7XfOfVHaGM0zrPDi86Jt7Fzsx47mQfukxMoBVSxhnZdg4ujuH914zZwqDqg4UY7lev9BJMdpTGbjFaeUF99nNg+XOGlOYhKp7KR9uSQPjtN6XjT2lU6reanuvz62FGpQbeO1ZVFVXlY4+bzY2OfhGQ+pugjJGShmE+ueKXtf7dBhwyELaQO6LOZkb6J0PqXrt8mzLSAkc3bxpFKfoY4DiCnfb5PEIGlPwJDiIZ2/SfdhiDgmYlO55za1SY29dcc2TrnbpOPajo05X6uNOi4CpXIMicMWHbYcsOHUfsd5QJd8p5STGKH3LH/XXeq6dI3lBCCZv0u/BxbT757lZwGEH/t7v7gYCw0NDQ0NDQ0NDW8umlH3EwMFP/k7seQDMBPf+mcW8UL8yEe5+/tKlPd4P7pwfX7meY5VvPLMs+dj2YbHtOnSM3x7ll5L6/HpZU3LOP9Mq7T4xPELz1zEOS919QrM8Xy+e+Y5XMrbWpz7jZbPe11UAudr5uU94URe/P3f8zNOcFji/Am5X9fe1xN5OXXL2nhbd4ATQWYyMVXnUxapilF3bXLdueNeNCPIjo5gIBAhoK4osnFpw5xoi5BTqhaLkOQ5RdMmf76tBpNzojPm5up62wdJU8/G3MpJzyegMt5WoVAFR21DNJxOeUaFxb8xDQ0NDQ0NDQ0NbzJapdITw2/7wx+v4qGawRvPjBPzfTmVzd+XRt0jvFF3jUsG0X4+6Q1wvRdJvjpd6H1DLg1yRm3KyyvPjPx6Rt2+37xw5Y26ry4Ydfu85GOVoHA6L4zaQH3dqHvdsNnew8JX0Fw2hK45rRmo278/xqjb4jHm4x5Ls/GVqh2DU0bd1ftiOFXiGdaNum2/EagsycrPrDlcyovncMkQ+pQp/KmxtbZU9f3Oix9LtzRW8bJP1r8htorLVinmsVddc3qsrZlaX2qzf588vLH95T7xXnXCYW2Zopy3cqz6VC+f5/Poz3iUUfcfakbdDQ0NDQ0NbyJ+o021f12MuhveFzRR6YnhO/63X4PNrggYHZaeG9k3hFfMX+EmFvZdTMf95GpwL6z1BZE21MPQv96L3d9kJlXOZ1QTvg6ETmPPAWni7p5RCVNkKk5OzJU37g69m6T6CVvkus0T1xP9nfGDUQ4nvVC4VB9oDEJeUqcx1w1aEUh8XsjlZTnxtrgs9nHFKbiJuR9r8jNUHLxg6SfJfqwMnhM7/xcnYs1uLE2pGsWebuENoYMTgdbyQi4vufRnLU8wecmCYs1hTRBZcDDwefEcCFjkxfrySIpOvPMp9gLMSUExYbiYl7rNL3Cs+kmqZuwz62t0GSyVxOTKJK3W010krW9ZjmlpCu/N+n0bj2WBpTmzFqps7E3hA86LnEzyTCsMzxRrTnl55pKDLMNMcRqDfkMCP1bWRNFTIhYAoAN+33/wTaePNzQ0NDQ0NDQ0vHFootITw0/+7V8BHuY8qYxIprh5nusMbIG0VAM53jihacOh2gb9yhnQEqgyfwVqwUJ8Q+od6Wy8QagEkB0ChvTsfH8VLCATH+GAJQdzT8thC8OBgR2HIkxBxIrOVaD0juOGznOwxsI76ioBZI+IzlzPAHoqU3MGY+M4dTBiACP7oGhcGQEznNWxPMPvHmVNePMSlyxu1EtexOulxN542OeFUY817deTxsKsJtOlwepDo+hsHtNTvVnyYDgMOtZSvOGuEm3ELweOs80LYTiVl9ymkhdKebGG0NXY1NgwyHkhe8/6fbF5GbgeWz4PW9dneezmNtNCuLJjjVjWSesdJKYqL1We0rnnx9r5vAyuzTc04GBEmAfM2CdZBgAOiHiJY/G4ArDHVFX3jIhZlJnT+UfMWZQ5YK6qLGcjTDEYt3TEA6Z8/ICIfXZXA5i4auM9Tbg3x4+Yq5gI1fkHRNxnu3wReG4xVuLVMXGQ9kXcY8ptjGC8xIhD4gRINZTlsMcknJM5/x1G3KFUgc0k/WDbbOMHzLjFuCoszWC8mI/4m3/tXy+ONTQ0NDQ0NDQ0vLlonkpPDD/zD34tiQeMyMARsvtXjwDmtHSNZFIZWcyWiQgbUFrmEhEQsEFZyqOT7o4ZM4ugo6azOh1RUWdmxhGMjiSOLJORjgJ2IEzpOjXhnVUgAmGATBY3HCoO6vrRQ4pADoipzQExcQKJYKLLYIRD2eWqS64okcVsfLCcoMbdnDiIMbOY6YqXixoi7xCSzwlAKJzUSHeLgJkZG1YT3mSYTjPUhNf6w2ibZWIooofmBZSmiknsCggYwOi4cAKQvVY0VkPoCPVWKWbJag48sbinBEr9zsjmxJoH3S2rd3GHsqwrH+dUZUEiYLCJNU/R5oUll8G0GShVbTr2Qu5pzhKDcOBkaG7yxGVs7RAwMWdOlMb7kMZWl/q1yxw1L/G18kImL5KnkofIUvXRmzypsXhgApHPi7xfcZGXkMYeYWI2JsySlyEzLLoRoVyveegv5EVdfghYxHZsWa8iPsEJKS/KSftZ86LvixZLXXMPJmDPER0IB5rBBDzwhB6EB5oQCXjBxyRCBzAB9+l4j4BAhCNHBCTDdQJe8YgeswhaBBx5xoSIHrIT24iIicUUfCLGhBlHjuV7SIyJIwZ02KHDTIwHntGDcMCMmRiv+IgNOpGH0jM3EAPvNU53PKJHyP32kkcMCLhCh566zGGGGN0/8JRERKlOuuURe0zYocOW+ooDEzCicJQNGYTTDh02CJgoYuaIHiG/Uw+Y0CPgmDi9SJxUwB0RZdMHAv7xP/xF/On/03c95p+jhoaGhoaGhoaGNwBNVHpiCH1ZOtGhDABrYGvNX6maJELrOOReqJeV+V2gtFLlkJZk6PGHFOs9Y56cUlW9c9rQFlWMJA5ZDqNpMxBwTGJAl66013tT3rKLWREhGCxzNqJctWHbrJMvje1OX4PjsMapM7GKGpM5zqhNfMkIHLYq5BQnu8OYCAyyh1a5RiUIbbPaANt7rj/DGg0XDkBEWZajHHVs6ZmzO46V59l7rnEqeQk4GA49ZDnQqbHl89JVLZO/1ZxEvEKqBFnLCxAzp+X1y7zYWO6xlpcS9yAc3ftj8yKcTueptKH0uzW9vpSXNU62ykqvmc37IlVQMS+jk3EQl3k8kRebd5DZKTDFE8pOgyCp5pFqxS4fZ47Ypji686dU/bNDn4+PSZwDkISY9EQWIWkPziIqk1T0bDlJO4SqlocJ+Rto2zgwyxMyp2WbNB4REZjQn+CgO13aPnngGdv0hWdyS+nAZefPxOkeEza8qThnDtCY8/EDZhywRNe1AuiGhoaGhoY3EZc3b2l4qmj/6++J4bd96uurWCtydPbgzZPJHFOw+aIwXt+o23v5EM5j4ankTK7tMhy5/4pRt+Fkj+lf18yTq+lsmiCf4nDJqPuSIfQ11/ruJVNrnxc55PLCdV68H8sl8+RT5seP5bT01fGm1nQxL56THwu5VAbrnC4ZCy8M1B2Hkz5UNi/+eYbTJbNxBjAbfy0CVUtJgcfkpW6j76NLefGcTublBKdVo+6vMi/RtfmBpioe3D9dPs594NqsrfS+blJEdjpPYSUv/n9Y+X72bfLw/kXeBN7JaeZ8zm2yefF9WglV+Z71/e1y2rU2+Sz5Nq7hD37qmy+e09DQ0NDQ0NDQ8OagiUpPDJ/83o9iWxl1JyPtVHoTUqWAxgRZ+gagiDZsxAFa7hZFbiKzcaa8W+6qeHB+S9l4OyGiNnyemCsPG2JU/kcBycPJcBjS8pYiPJk2E+R8E5OblPpJ8dZx8sbD1n/JtjNzcJx2qH15/CR2zUC9EgQJcr5psxfb4Dj5Sa83tfYTb3J5mhFdzAsDaPuEznLiUnlzLi+dy4vn4D9gg2vzBt1ibC3UMcfBIvIKJzfW1nykMidaGqh7scDnyZvA+7HlDdU9B/am8IhLw3RzaYfaEy2LQCYv3QVO17HLMYFwjRIDwA0PVXOf86Zq445ro/revQ/37EWlug+yj1XuA5gxI5U1KGH6ztX9zHZs0VKs8wK8/7t/H/xY9BgxOw7uO2jaC1gxjzIH0hPt+2RusNhZcCEonhDjElYN189w6gLh9//hZtTd0NDQ0NDQ0PCU0ESlJ4af+lu/jM1+zolnAFeoTamv0WVRhhi45g4bIwZcoxOhKMU33InIkq5/iztcGQFiAOHaTIwHEG64N5PoDs+5z5PCHXd4zkOOr7nDDfd5knmNgGdm0tmD8Ew5JDzjLk+UhUPI4hmxHLecnlkODNxwj63Zte4KATvDqXecegQ8M5y2XHO6QocblPgZd7jhLnPYI4qRdiU0ddXk/QqGUzpu83SFrhII7XEwcMV9Ec8gYsLGCHwdxPPJik7XGAondLjGYDj1uDKcduixNbF4SNXTVs/hCkOVpx16EbcqTiUvO+WQ4gFdJYZl0/fMKeAK9Vjboc7Tten3zAmlD2xeCCTG11YkLTVYIADXGKq87LBmoF4Eiq1yyEJVqITYHgE7I44N6HBtOOy4w5U5vnN5uUZf7S4oQnFda2fHGqV7hGps9YuxZuNviNf4aNxkjh/hHd6Jm3z/j/IWH4tXuY0fj1f4lvhWbtPXx2f41vh2bsNH4w7fEG9y/Jw2VXtHMEzhoHhHGQP1DiKOZ85ci3nqgWZFyx6hMr7vjaRSPL2K+JbN/81YsrH4zVE1Nq0AuZPFbPm4eLeVWIVjvaJHvWGBeF2h2rlP/MNqTopsEG5iX0XmzfzXhKiB1v9nAwHoIuFv/ZV/s3q8oaGhoaGhoaHhzUTzVHpi+Nw/+jICEW5YPHvuIZOdG3SYkok2CHiGDjMzRohJ7w0HTBwxQoyGrzlgyzEZvgb0kIqkkWOutOgBHFn8TzYI6JlwZMZIjA0I7/CAA4sxeADhbR5w5IgBYrT7Dm9w4Cg7sYHwnHuMzLhOJtc3CJhYJmM2PiAiEuGGhdNIcvwZE2bmZAYe8CxxmBOnKxYOamIr/4m/Sg/xihkgHA5gbKhwmknu8Vbi0KfJmnLcokOPgLchx6+4S5w6jMx4FTgLFpFlp6pIMnmXNsuyFI3FRFtEn5kZkcVAfYeAIZuLi/l4z4yZY47FtFruP6RJqBhzxzwpHVnMxjsiPMcGI8/p3IAbbCTPicM1ekzMaVJN2KFPhtJi+LxDjxmc9rGiigMRZQ5zMoG/AjlOUq0zszOFR8yePMJBXGV6kvGhptYDiYgz8gw1In+GAWMaax0CniXOulPaFXpMKCbx29Rm3Tlrm/Mi78sOffa5kUodnxcxqa9M4SEW6klaQMeECTMmEuGoQ8h5GXJehDNRwPPEqeSF8vu3lper9I6PiAgkgl9MeQmQ6iIda0TSB9pmyYtwYuY81mZm9CweXB+LV3g7bvAiHNNY3+KaB9zyiE0SB294wAs64BkGBCY8nwf8Gu3xFg8Y0OG75q/Bl2iPZzxgiw6fjG/hJR2xTY5Xqrion5jG6mulBurWRJ5Zq34oCysxjb0hfbtiGktAWQZnvdVmSLWTmr7PzPmeaspezMU5G55bQ3UAyWNKWu1N4bVNGnM6XzltYM43nAPk5Nmc36d2Wy81oFShqaE6LCcUnyjtV0apiGITbxDMnnDy2yn1CPun/+sv40//n5tRd0NDQ0NDw5sGZrp8UsOTRBOVnhiyUXea7GyAbGo9gECIOEB37ZIJjLpsqHik6BDKUjik5U1qbpsqAa5AuEtTDxEcZPLPSUi6QoeRY453xoGJUqy/ndeleDYegDRBLzGDsDecQhKWlJPl0CNgcEtQeq456CRMp1s7iFmyTrB2IDw4DnYSt0PZ4l2FI89Jl9bopE93N7NLWnQi3aeJpHKW43UebEWDCC+Fky79GXnOyxc36PBgTK43oGTTXSqO9I6Uzu9MmwdQxbEHYQYqDmoOfIpDb+7Xp+nyYzhpPKDDiMkcp2xGrByiycsGZdt65Ww5rBmsR3Dehl7aEytj+4BiOr/GYWnUveRwwCRLUanOi4pbPi/WmNtz8hyGxMG2WeJo2lyMum2fl+MFHeplZFt0+Nq4w12QpV0DBbyDjdnNkPC1fJXvMaDDJ/hZvr5HwMf52uzkR/gIb7MAYj3Bln9683EVfc5fJ29P/d3x1Tr5KCOZwtPZ862IpdfHxfE6Di62518yTAdQvU/2uD0HsOKSCOinOMnZ5XzP0fvKKfq+FUA3NDQ0NDQ0NDwltP/198TwnX+sNurOC1TMEqj8K2l3LIcXjbprk+v33ajbxf763nF4jFH3miG05eC6YMHJxx4LQ2jX6Buu7+BNrVeNwH1eHIdLRt2rfin+GdX9a1wy6s79Z5airXJ4jbwsDKHd85aG0Ofh7zc7Dj5vqwbqrt2W0yoHXo61isMFo+7Xz0sdL03m615ae1/8O285HRHzjnTaPus75QWJtTZ6+Cv89d4PyfeRvz+DK6+pNW+gc3la5GXlo+XH/9J4u8ZIjzyf3f392LPnG06rBurV+VQtnQNWjPAdfD+v4Q/+sW++eE5DQ0NDQ0NDQ8ObgyYqPTF80+/+CLa7kvbAJJU6aX2DVhPYOFf2pPnG4Ex6O3d8YdTt2uBNdr3xsDfqZqDysJkhv5XP59tKAiSjbsfBcsptsBwcp+A4vJKNyXN8pLmKx7SNeT6etpa3sZ10HhGrbcavufaEkol5zcFXHnhT67AQB7zgUU8IvZFwDy9sYZGXetLKi7iuZqj9XtZMrb0hdGaQOZk7kmdw2ajbiwfBi1gOszPmZtRjscqLcnJ58qbWXrTpXN68eOBFHy82LI266/O9Ubc3kA6ghSm8H1s+L9WOigS8FYcqvk27s2lljt9F7Gi2o1+LRxdrpV7mhFrksX5JgPRpMCXZTivJPOtvgjO6P/XPYXqON1D3oo4XcPz5XvSZuO6jDiRm+PYZhki0xFi/c+UZlaiq74/5ri2+GStttMfy86tvxHnz8T4E/N4/8I2nT2hoaGhoaGhoaHjj0ESlJ4Z//Td/CcMxVvLBNQi9maxcc8ixGg1bA+hrBDGxTvENJxPrhOeBsDNzox6EK/M88XsJ1cTmBsVIeAsx4i7mybUx9zURrlEWFnUArgHHyXBI8VAZDVNl1F3FAG5IfHAUX+yO+MVwyBPHX6Ejfinsc/ylcMSvhIcsJL2kI3453Gch6ZYm/GJ4yJPte5rw+e4hC0v3JEbddrK/QagEDLu0SY9b02r10gEkzgbQ0Lx21U5ieQcsU72xNYsDB3SVQfQmxSVPnXjdmHhjWqjLtezkfwu7PEs5Iudlg9rUeoNQTYSv0FdVKht0VdwhYGvaLHGoOFhT6y3EuFvbvENfGXNvEJKJNVKbqTZQV06VMXdtEq9+WiUv9ft0xb3kJfdbcHkKGMzoXhp3i5l46ZO+6oOd5sVw8GbjG5eXNQ4a90z45vgMX2OMuSOAh7QskMF4SSNuMWah6JZG3FIRZo+IuDVC7QEzXiVpCQDuaMILOuZ4xIwHmnIcgcoUniAeUJqXXjkmToENZyr9Zt+fLUKVpzwWIWKZN1CX8V76/Rq9E2nET8z28bVp8xX1ruKKsKOywLBL1ysnyXOohNrqnUf9/pByMt+QXjnmPuiq3Th33Fc7JvZp7Nj3yRrfWwQmbOcOf/vTzai7oaGhoaHhjQMTEN/A/5pP1PuC5qn0xPCFf/xlBAKug1T8PESAmPAMwMzAIf2K+4bF5HciNU8GNsnwOUBNrcWLRXyHkj8TA5sgk5iBgSMDEyN57jBGAEfIpE+MhpPhLRHeQodjNsUux7dsY+AKQCDgGQMTUiUTEZ6xGOruAUSo8bBUQRARnkGMitUQ+hrAlsW0Ws2TN8l8uSdCT8DAjD0YR2IcacItzXiHe5kgE/DZcIu3eMAdTZiJ8blwi+c84J4mTMT4fLjDDfc4EmMixs+nmABMxPhsd4/n3OdqkR3UEFqMtDcIiKlNTDIx1SoOa5asnDYIeevxbNSN4Iy6xZj7SJyNuadkat0TocOQPHZksv4snS95FiPtiRk91ybWG2gsxsJzqlyy5uMg4Wh9feS4miUHbCFVKcoxQMzF1Q8qG3N7o+7kb1Q4peoxKm3W858ph3TuKWNu5VjyMiMqh2RkD0KO1UNKTK4jIpA4BQypms0aqMfcr5TbPLm8TIjoKVScNS8jx2wQvYN4IQ2o27xJRt0ylmQZVaByfEzG9nZsqXgWufj0qAH7Loox+DfGZ/jauMNXwhGBCA8048Azeg6YiTFjxpFnbBAwEWPiGQeaxXOMgZkY7/IRG3QiJxHwLh+xRcARMyZifAmHdL7IT/eYkgSo70ufzcWZRNixJtr6PlD6f5v07DHlcYsePTPYjD0xxo65ckmN7WfiykA9pPehR8CIiAFdlYcZYgx/nd4naxI/ccwG6trGYxrfV8nYnk0eZuZs7D0ggFMekUzj9X3Sb0I0huoBxdgepN/i4pu1SaKnGtdrxdPEMff0DsX4PlDATTK6V5GvS+IvgfATP/pF/Kkf+nX8R6yhoaGhoaGhoeEDhSYqPTH0W/nNOpEkfyARguwyt4OeC0LggDkJuNaIW2NdMqUT/m06xizCz46A27TKS49r/YI3hBaBoajFa+bJG5RBSwTZWQlptQdR2oVOhCXlRAj5Gb1p8xqnYNrAzAiUqqxSdcBEjF+j4uoUCXiXxlyhxAS8pFKhwQS8oikLASCpWhqYcsXAK5rQc8gTumIIbbf8jtmrSg2hz3HwhtBrRt3HZNStywO1akriLvsLaWzzsmZibWN9WsyxLIock6+TmFaX3dJE7Ko5BMfBc9o4Tht0mJJRt7a55lSPrTUT63OcSl4KB14x6i55sfbPIi75ZZrdSl72aVmUmOlTrnZTTtY8eePyUnbvOp2XiNqIW7x36rzY7eZtmztQtaX8Dh2+Lm7xpTACkPdhT+mFZ4kfMOf3hyHxNmWUCdUyUJDs3piXjhKwx1zxmJJYqWNCTeAnw4ny7ZRT6QOCCK1q4i7vlx97vl9F6AIXA3V7fD0Pc/7OLd+fzuVFjettXri6nzfqFpGx5IlQNlVYe1/kOxgzBwJyz6uQ6ttovwE9KNeSec4Wm+0lh7mGhoaGhoaGhoY3CW352xPDtyWjbp36DiSRTlR1OlAmrlgsdbhkaj2yCD6Kzt3AK5mXig69V8l44no1E+5zKyXOxsMnOPiYAUws23vL/QlvuwnU6xpC++d5Q9wI768SqutCmpH7dp7j4A3UvVG3n/p5DpfysjAfd7E+q+IAN7YW7T6fF99vKn6c4uB9by5x8GPNx4/NyylOPi/+/an8jB7JweOSgbq/X/+aeXnAXN1T/Izq+9tlm2tG3a9rCL1mvF1zqvPC7jw2/0/beOmbYJ9JyvFMKpaG6Oe/Cr4PThmya7tmwwVYjj3ftMU3QH9o8nKpTf6Mx4zEP/AffvMjzmpoaGhoaGhoaHhT0ESlJ4av/50fQdzItJJZDKm1IkYn6AfjjUIgHFLlAUOW+uzTrkU6mXlwE5H7KPdWzFRP2HRph42ji+3kZgRXE7YJjNE+gBnHJAIxM4hWOLk2H2BiKhwKpxo9n+cQH8FpyTFWsZ2oByBv864cJqrjESYvKOKBcrI7clnOpc24yOH1OdmxwI5DqVRSDkcz1hYc0vmW08Fx8obQnoOPJ9SG6pPj4I9Hl6dlXoCJ5kVeLKcqT4RcIXOK02M41HnxnJYc6x3mak7kOGmb67i0md03wIoTev5SCF4a25/j5I26/VjjBYcy1vR4xcmIqjlPVL8/Pi9+bHlxbsmpjnnB4fzYI9S7DzLqvDAtvwkj+fepGKaD6veJQI/g4MfWciye21EuBsZ3/fsfO3m8oaGhoaGhoaHhzUMTlZ4Y/vnf+AK+ch9xFDsOPAB4FxGHNFk5IuJdmrPp7gzGS5Q4gvEKM+7MhOweEa/M9OMA4BUXYeklGC/NZOQVzXhJc47vaMZXaMoT3weKeGHikRjv0pSFJQbwEsjC0gHAKyALS3sw3qUZ+8RpRMS7NFWcXmDGnZk43yEaTnLP2+RLAgBfDEfszQTsASPujdHwA024M0bDB8y4NfGIiDtxcgEARGLcY8oxE/CAKU/6DphxhzGLMGOKj5lDxB2mSgDcY84CBYNxpBn71EYGYyauOdCIg4nvacK9MVd+cObJx9QGjWdi3KMs/QOAPUzeIBwnM7buMRlONYcIxgPmSmg6VJxk+eE+jzXGAREPJg/3mKq87KmOfV6m1AaNmZDywqt52qc+mByH8URelNMBU+Z0vMDp3uVlT1POo7bhtspLxL2JIzEeTIw0tubcBzHnReMHk6cJjFtMZqwxHkzcsfyneYxg3NGURUwG447Gqs23zrh7pjpvI2Y8mDzc0YgXOOR+n6nmOIPTWCt5eYVjFoJiarMVYXQHRhVXXkHaaN+fveEwkeSq5KV+P/zY06V+NediNi5j77hY2qfH7djSsXlvxpo+03K4d3m6xVRxmhArUXOPqfom3GPCneEwU6zydkh50fiOJrxE2bDAYkLEu3GPv/7f/fTiWENDQ0NDQ8OHGwyAmd68/36jO/YNQfNUemL4/I9/RUSZCPQR2JP8RvsFIvpkLAwCXtKMe46yzX0AbjHjgWfZlSoAdyneJfPYBzAOPGMH8ebYM3Bg8VQ6pHt+mRlbMA5gRAK+jAlbSBXRTMCvYcQu+R/p8U2axLKJdyymxS8gRtrqqfQSYn48goFQOACcOd1xlJ23DKctd0AA7tPEcsfiF7KHtH3DEXepMmPiSfyIIKa3L/mITTLqZQJe8RFDiiMxXqSYIILFLY/oEWRLdCLc8ZR8ngKICPc8oUsVPCDgnkd0aeKu4sCBZ5liJgFkz7P4BaXqpJHnbNZ8JI1lp7aRYjbdnogBiAnxkPxWuOI0gwl4keIIrjjqMq17HtFD+qxDwAOmbCotx9djraa4T5z0fnuIwbMuHzpixgjhNKDHkWIyqJZxMYIxpX4cT+ZlzHmxnCg9U48PLg/aprsUH2hOcZ2Xe0zozuRFOEk/dyTVgMeUp43jNLu8KKfb1MbJcfB5kbEkbcx5oVDGFkleNdb7P7B4f2le7hIH7QMde+9gAyLCDCByzO2ZwJhZBIxIIiLbsTYlzrpLIFecOPdrj4ADZszE+AofsEnnW07qx/SQOOwTp1d8zO8XIG1Wryoiyu/HbPK2T2biSFVjai7eo8OYDMYDkMzHGVN6RgQjEmNMedihx0zALU/Zo2wmxgs+iFk5xHz/JR8wQHZR6yjgIfXxIXFQjppXHWs7dOipw4EjRsTM4QEzDsmHy3LaocOWxARdTLf1fZGc6VibU59oXub0zAFBJC+Tp2Pi9GXeV7sayjsq4+if/5Mv/rr9+9XQ0NDQ0NDQ0PDBQ6tUemLojYnqBPE/yjEBR7P/+0SMfTBLtAhVHEmqioC01INEmCn/D3iQ+bGcQ8DeWpkQcKBiLou0rGYu+4TnXdNsXGyyxV/JeixNkN3lLIeD4TSvcHqgsvxIOGlFlHDYo+ZwpFjMRVJsOY0kgpKNLaeJaiNimXCXeCauzp9JduErbVzGRxPrxNHGtoqEU5tyozU2HI4Uyw6bKV5wQpnITlQvsaqWwmUOdWyfOTsO0XPAcgnWaPOk8YW8XObk8nAh9hzGM3mJqfIlc6Ilp6PmhbGal8dwiC4v0bXZx3as+bG1zAvn5bDKwe7EyumeidRirMk3YF7kxeZtcnk7kvFw0rFGnlOsrj+asRPBi/chX3+C09GdP61w4uq75Mea+bDmPNWc/ViK7pvgOY6GY1zh4L8JBzfWZqrfp8yRS15sm/1YGx3HA824oxF3NFY53Daj7oaGhoaGhoaGJ4UmKj0x/I7/+BMAip6wAVVmr509qGAfcnWoMuom3Z2pzDT9FGNpcl3H/vHePLaasGFpaDs4TpeMuhnOPNlxIBDe4rqo75JRN7nYLxc5ZdSt7dIKgMKh5uTBFzhJXrxR9/k8eE7LvNQ4ZQitSwg75cBcH6/aXXNYjrVYjS3v6fO6efF58Bx83rypdfdV5oVpzUCdqoaeMnC296w5nOeUTa1tXvD4vOgSRtu+zihLQeP8SViONd8mj8Flzp/v+zubYqcfrxmu22t6UNVxjMJfY2/UbTmtwXsweQ7L8+s3qF98KZf3txx07BktqoL3ofLnrJmPew7+nv25Dkj41H/0yYvnNDQ0NDQ0NDQ0vDlootITwyd+x9ugbVqOBc7LOrwhNFAm7EdnaFtNPLS6wuDgJj9+Qscu9uavaya9dvI/cans4TSrqg2gsTC1tpwsh2LKW0/wPKeeCX4ie47jYzjVx72RcBHrrN/JOaPuJael0fClNp+Ll8bccSVPtQF05CgG6pmTjQkTThtCWw56fE30qdv8enlZ43AubwGyLKkyF3/NvHgOlzg9xhT+XJ6WhtCMqMb2mheTJ2nzeaPuXwr3OV4TjS7Fl3Z/8+LFcte/Glk4pvXjHgRaPCP3YbqPf98v7cJ3agfHU5jywl09vworsdQdysdJ/pJW+FLdRloKY/6entM5EQq4LCp1gfC7fs8nzp7T0NDQ0NDQ8OHEb7j/0a/Dfw3vD5qo9MTw43/tC3h1mHIlzh6Me4qVefIDzc6ktzaAPiBmI2E1tJUlLUnoIeBgJroPFLE3gsZdEKPvbFBLU2WWfISaWkusBrgaEwH75CkibWY8GA5HRDwkjw81tLUG0GqebE15j87EeibGnkqbvxKOlSizR0wWvMphxn3FoTYejpClT3aJy9EKGimeDYfRcJwhy1m02kiMiudqWdvRxbMxGta8jCYve5odh6UhtOUk/VjMkpnkHJuXI8qynhERRyqcRkTsqXBYy8vBcRjhloyB845VDDEirvMyVaLmnuo8HFbysjex5G6q8jKaPB1T3svYE7Nma9S9R202bvOiY8tWnegyOOV0KS8Hlxd5Zt3mgxlrgagaa5KXuRprPi/75GPl86Kcfpke8AW6y304J3Eqjz0TK6ywtHEyE6EWMCZwJWD484OTR2YAwVV3+aoc+xP1wgqadtZqwCIs9UZyYXASE0+3wbdxBlc/CU582yZ3KMuZXKfZsE8+aRWH1FYVwQLKP+rEpoILRSSznFyh0oKDl7ZmnBaWCABF4K//P39q9XhDQ0NDQ0NDQ8ObiWbU/cTwuX/6lWQczAgsYgxIDLuPLBNNEHCgiCPH/JvwPWYckrGwCiBiLBzEEDkZ8fZMeI5efIJYJobFhHfOZsqRgFcQQ9ujxsmglgFjak3GPFkMba8QACI8cESA+IeARLwSE1s25shJ4iCpoDpylIkZoTJL7hGyifWAgGfKAYwOxW/kiBkBxXR6r0bEiMZkt5jyqulun6agh3T9JnE4Jg49gkz+OYKSoKSCxsTIeVGj4cKpcLDHxay4S3mYUz924rXCpUINQDYKXuNgY855HPP9iCibOe/QSRuSsbFWk6kxsFa7qEChE3vl0K/kJVBIRtxy/BpDFuh0uqwx6TMJuE/nn+dU8qLm4lt0YBAOyeBZ8zKmd+GYjLo1LyNmM9aK582pvAzokqEzY07vh+bluJIX5YAzeQn6jibT6gEdQspLAOEKfcqLjDXNg+blaPIyophY6/vj35cNAjrq8IXuHr/Ke3wNb7HJAgnn97fEUt0U8k+QzbZt/Y2NtQKqP3E+ufO1eiyokAaYKzjHem89vyPSkW2W/dn76xU1J7jjwFLIikmk69w9Ne4X5zPqPqg5dKAqVpGLULQwIhGuQrqX5bzWz0h5UYGpw+vlhU1fKL+f/GfNqLuhoaGhoaGh4SmhVSo9MWyui29HdMsjxPy1nFsZ1KbYG0Lr0h2dOI6k9RacDWczVuKRuDKDnYgr4+HKAJqWZsmRam+fpYHtksPkOHgT38VyJeJq7UlVseCeh3T/6DnZfkZtTl7lgaQN0bU5urz44+OJvOQ2mElhbjOX42scQHXMr5mXqo1wXkKolzRZ4+0cw3MyHIB8NFf8wGB17MXlWDNXnV36lvJin+HzEolrM+RH5GU+lRd+LIfaqNsbPsdFjNpY2/SfcK7zsvb+WKP8I0X8Ku1NE01FEJuYy3ERMerzraeUyhP2fH9/fz6dOL5o04m4foap5mGujxtOtaCydn3NgXCKU/3MJQOsxqGKa5zqN89Bx9rZ81fapOd3COhSBZUevboa0NDQ0NDQ0NDQ8HTQRKUnht/1x7+hijcIABeT2mz+muAnK0A9CWVaGnWPNsbSqNsvn3ivRt3aDh3EykFNeKvj/qbued48WZfOCSXCc9QTpUueMb7fPAfrPWSPa5uzUfcJk2t/fy8OeE6gpVG3z4P3gFl7xjkOJ426LSeTFz/W7LlrHBiXjbqHC2PrUl5OGXUXDokTO068PsCWok3tO7Vm1K0VW4rl+1JjaQJfc/DeWqt5wTIvdS5OiG0Qsc8+I4DQXzDq9m304+Cyp1IdZ1NsLm30MXMRUh819pLPVObgjbrd9Uuj7rWvZ4E3VD9p7M3l/gzLISy/1U78XngqMaq8BKDitDDqdhwv+UQBwB/949968ZyGhoaGhoaGDx9+o/2PmqfSBxdNVHpi+Ph3vIVuo5NIGQAMrsyTS+WHxH5ifVkgqQ2h7bWATFTq47XRMLvYVpAwZFmdN0v2xsPszMeXnNYrRuwzbRu8UTdhObH1k9Jz5smek55f2lxzAlKF1Ik86T1rTpfy8tVx8obRk4kzB8fJ5gUoVTOeg1buLIUx3z43thynNbHtHIc1U2zLIYCWYw04m5fq/Tkx1iw8B58ne2+5/yVOEZfyoku1Sl6cSbzjULVn5d/jDbpK4NguBJBa1PHC7wZhIWhUMdd+SB0Ceg46iMFAEYEk6SKepZggSx31ehAwcC1/ewFlh75q4+A4eFFng65qM3HNIYKruNpFjwFiI86tcCJOy2j1fNQxCNWufNLmmuPW5Sk4Tr3L26DClEf62UABv/3f/bqVExoaGhoaGhoaGt5UNFHpieHH/urncTiKpEIQQ21dBkQQ/5Yp+b0AxYS3TCplEpvNkdNkwsY9QjXRHYkxm/hAsZq8T2AnSNQCRaAiwhAIAxFmlIlxhIgTGo/pfhrPiaNyYkh7qsk2cYlZXgzbxhd0rCbratacY/IcuOoDSpVCKjB0SaxTISKgCB7CIealTBUHI1REuOWLLg9kniGc1DtF+z3mZwJqSF0LPEvBwla0hOr6wcTaZm2jji0r0ujfrehSLb8S/SJdZfNSTK31esuh4kTxbF4CUXV9T+JGo4xVgNE2H11eJnBeYlY4LSusbOUM2bGXOEXDyXOYHpEXa8Ae3Psn72MZa5PLyxHSR1oxFd3xtbzAtDkw8JwHDFwq0ToE8dhSsQE9nmHIgsQ1D7hCn+MN+iruEPAcG4Qkilxxj2sMOd6gwxV6iZPOcoPUBhJR6gp9Fpp6BFyhE5EmYYsOG5Z/AomBK3TYcpdFqGv0JYbeowhLO/S4Nm1+xgOujJAUQHiGPotfW3R4Zjhcc4+dcoC8r9fos3DUI+AaQ+awRYedcqDShkE5pNhyeqZx4rRBwM5w2qS8IOeld3kLFcceXZWXDAJ6DriOA/7mf/uv0dDQ0NDQ0NDQ8HTQjLqfGD7/z18AQJo0Ipv0qnCky39kolxXW0QgGcCGPOnswNighwpBAYyQhpUIVyLggICJJdZ9rKY0fdfJqsa6FEjjTaowmFOF0iYZQs+Qn1kxKnNIQpRcU3NC5lQ4EHrxAeISF3ErZi+p2bW5xOJ1MzKX+g4CIsvzdEnTlAyfu9RHc5rtaYWBigmTub9wmk2czlRLlNSvIQlswkkrXrQijbOXDSeZQ7149GdFsMIqBzU71j7Uj4deH1yshs8R0q9jbrPkRc3HlQPS8yRv8nHSsaAtVU6VH1OOy85z2oYIflReImseZGzpSildtqXC0ljloeRF21AqeeQe+r5oHmxe5vS+6Fjj9H8v5SWeyMuYxqIuZ9M8bVM/qVSl/a55se9L5GLUzUAWYm1eBpcX9dQRY3Mxm59ITMl7BIwcASJs0GFAwDGZ4YuIMmBKZvcal7FBeAsbTByxSc+4Ro+Zi2n1Fbo8tpiAm3Q+JVH1Kp1PKHEE48AzIgFXGLAFY+aIgIAdAjboUm4IG5BsJsAzjsSZw8gx+QkBPQaMiZO0kTCz7M7YUcANBkypzQGEG/SYmLFFhwAxuI8sO+wFonS+ZItAeIYBM0d0LJy36DBwWXKo5vUjzyCizClyLOcj5PNtXkKVlznn5RkIk+m3Z4mDVku+hQ1GjqkaUjZT0Jz8m5/4EhoaGhoaGhoaGp4Omqj0xLB9Vqe8tn9dgl0cUXskWbPkXDWUrtLJs3lYmiiV+/r7W/FA43xOuj7ai5bWKDVI7mbPWuNkz4/pJDbtyA3HOocc+/aQOaniULfCt2mZlfoni351N7DVP0UIKjE7TvqE1bx4DidwloMndKqfTBzBq8+s8nL6iY96nhWzJOYqXj7f5+HCM931y2Vs5een8rJ2/qk2irRWv6OX3o/q/o/Ki38mm8OyBGuPWXRPoiTCcKooMsvO0vmDi3to9Vg5ruKeHidzvlT9xSzE9s5JS8UcRUgiyCG9FSKIddVxfZ7mZYMOR0yZ0wZdTpMe9xxCllyo8lfSOBhOHQgdiqjfGyFSOITKZ0p3JpwMhwFdfs+FQ81pg5B/iUCpD2Yd7kTYmv85oG1UQVNjraIrnL1jHnB104y6GxoaGhoa3kQ0D6KGU2jL354YvudPfGMVq1G3zl7eD6Puo5v0e+Wyd8PuklG399HJO9C5+b9icJwuDXIv8rwfRt0e3kzZG0L72HNYMxb2sfcOqkytVzj5Nr9+Xh5nCK0X9q/JabGMjJZG3R5L83GvmtThY426Fd4QOnOwpzmRxy8f9JwuGahfMup+3bx0jkNvvYVg/I1OcPL+YEdE7DHl2Jta00rGLhlv+7z5PFgxzp5vqxbtUk/vM/UYo25voO6Nun2bfb9fMrX25/eOg3/OnBlJ7O9OQKViisBYC35UnU/mQuRnnIP/Jqy18w//iU+evUdDQ0NDQ0NDQ8ObhSYqPTF87JPPMGzKpDIg/a7ZlKnUW1XTYiJxbmIht3UTRFf+4M1f13ZOsz9hNoa2nAysTXnQcrKEsqsRLzmscbqku28WJr5u4s9hOQl34gIshxOT5FUOCcu81BdUnB7xi4RVYcw05PKuefVBz4kAl6fUxrWxtiYArnI4T2zBaVF6g9N5QTI314n5SqFUANwOWnWeqryk8yr/mUfkxY9NL05cEn59XpZG4PX7E4DsTVTeF5zOEwG+Afu0DFAxUm0Kf0ySSD7uYus3JnG9S56NdVmjinHFT2vOMRNnEdV6Ven1BMKRTJsJODgORyf6HMlziGfjecEpVrmovep0SbDlxDhWnHRJcOF8zMsv5eeHi5xqDoe8GFnj+bU4KLJfF0V8y297Z3G8oaGhoaGhoaHhzUUTlZ4Yfuyv/AL4EPOkUnyQKJvJMsS8OJh5Q0A90e3dxHmb/DQ0vnILUBhJuMrP4FKJg7IUQ6/oEap4i1B2HSKIWa2JASQ/D8G84MSJQ0EPqto8IMj56b+dWXLDYNzTVHGKqAWMiOTPYypY7E5JAydOqc3bdH+9Q/EkMRyoxAygo1pI6pRj+m+Zl67iuEkeLjYvPu5dXiynXjml8zeaBxNXYiBqESam51mRpTN5AtecKOWFzA3VW6e6/kxetN2n8rLhIKM1xVtOWUht1nFi89I9Ni+Je48gnE9wGswT1EPJMpgRF4LiKqd0fOvysl3Nu81L8vsxlTiewzIuLSIWg/ODqaW5wxH32QoeuKURL3HM8UQR93kxlQgy9xizcHRPI17gmKt5Zoq4w5hFlwkR95hy/IAJtxizCDOD8YDJiC7AATHHI+R+D9ninHGgGQ/Z1l18zWx8ixF3ps1HzLgzHJmAh2TBLhwmvDKcDphxaziJGDfliqh9up+KYcfURuUkz4xZHJsQ8YAJh1QlNqc+sZwmEm8njR8wVZzuaKryMhNXeZM2jVlIuqMRL3BYVFlJe2e84AP+yv/9X6KhoaGhoaGhoeHpoHkqPTF84SdfpEmpVAAdIMarffrt9zFtly4TZf1NOqGDTEQlKudrbKuLiv9JKdgJ+vt1LsLVBgGRZXIUkvdKObfEffrJBrKd+4YD1OMjcjEu1jZNKMu7AlgMwgk5joZDl1pozycuYgtBDMFHiqkVhROlfrEcByAZZ+szJFYT2x4hxSE/k1GMhzvHQTmNqY0a65TO50FjzYrNi3KS3cak8sFzUr8ZrvKCZDpNhZPJS5fj8kyu+lXG2pzGWslLBJm8Rc+B6z4h1GPNjz3rw/O6eemqvKT7G87ahtG1UZd6nsqLcih5QXU/mxdG2l2PdGkS558T1O67iHOPz0s91sr7IXmZ7DcgG3cv33GNies8q0H1TIwHln0eI8nucK/4iD4dm8H4Mu+xQcAGAUzALR+LNxABdzyiA+GAGZEY7/IBg4rM5rhWvN1jQuBUoUMQoYinbMD+gAl7FVRJfJSOHLMZ+R4zDsmgGpBqJDWs3lCPCYxbnuSdSbv8veCDiK+pYusVj+ghJuKRgHue0EFEoUiMl+n4nN45e35H4j8VOGYOyilqnyROV+ixoU6EJUY2XFcOlD5YGm/QYYceI8VkLI68tHdMeVFOkpcOOwTMBNymNmpeNE9j4qR50SWzR8yYkzL7r/5lM+puaGhoaGhoaHhKaKLSE8PueW3Gaqs61peJleUza54cpWLDmmtzlhdOnV+eL6LNmjjlY6CIIDaGmcw/hoNdyGZbWdpdc+og1Rg62T8latjYc9afrnHyPbUWLznVnB+bF9snqcGP5uTzsva8JQf7zGV8Pi/nOS3HkkqAj8/LeQ5LTj4PHSgvMHqdvJzi5PPin69ne46P5yQc4mvkxd/T94GCkzgVyw+AJGLo30FSbTNwugs5byFyy/XS9SFVfOlxW2WnwogiEmPisgue+lZtTOx9rXT3Nn2mnF84zeCy4i8dV0FSYs6i5RqHaSWWHeFKm9lxsLVAkRgjx2wILhwK2D1TOe3OtCHnJcVHzNhWefFtNsv7VJxyFUsAcHOzWfysoaGhoaGh4UMOJvnvTcObyOk3AG352xPD9/zJb6rirS53Mkuc3FyiigGUHbLSCd6oe3QXeKPhwcWPNupOf5w06ma9/4pRt78p13+NVnyhFaNuro26l4bQ51+lpVF3zSlPrE9weJRRtzMb90bdNk9eUFzjcCkvs5tQek5e0vCm1uECJ83LSU4ruJgX9zyfF+8XM7u8ZDNznxd7mePgDaC9Kbw3hF4addccaJH3Oj5pAp/bXN/PG6hfyos3vZ7A1RKtABKPsTz0lmPNt9HD94E36/e+UVlA4lLNZU2tZ9dm/z6t5WmZlwDbLN9FXmAZLnwTTp7vv2v5/LnitOZF5/Nk39F1gbB+0HJZW41LGxIAwP/+T377xXMaGhoaGhoaGhreHDRR6Ynha37zNXabknYCsEm/bQfLRGPH9ni9BTggvjMWgzNDtv5JgNlhTs83HjYSU2XEHbj22QGATisdWCZ/NiYmDDbWZ5rjW66H+sYOfRJvnXOcfB8MjtPGcQqMihPgXjZm4UjmuOPQu7zYSWcV2zYZdM48PDhOnoO/vrd5SddbTgy4uOYUXFVLUMHEcNqc40BA7357sGpabXBprGUvIYMFJ3uQ4Tih7ALGTmzQseg5XGjzMi+dG1t1vMgLfF54PU8n8kI2L1iONWlDzelj8aqKvRh3yQjfi0Ie/vw1Y3t7j4Bk4E9U/byupCrPXlRxucqftTYud92rj/s21l+MJbzQlUWhE7oN5/Ns7mD+7i6kNfP883nx53tc+h8MRMC3fPs7F85qaGhoaGhoaGh4k9BEpSeGf/rpz6M/RmjdDQPYIWBjJu87dCLCJGHkGj123OX4Ch2uYperG55xh2tOk3cGnnOHazPR7UC4RpfjAPETUeGoR8ANhjxZ33LANfc5vuYe19yLwEDANXe4AqFPE7AOwI6DCEGZQ8hCESmnGAyHXsSzzLHLsXK6SpwY/P9n78+DbUuu8z7wt/Zwhju/serVPAEoFGaAGEmQIgGSICFKNGfJIm21bMmD7FArwk1ZDkd0qxVWmLZlW227LckOuyV6oEhZlCgABEBwEEEQJAEQBIgZVah5evO7w5n2ztV/5LAz85x776tCgSjU2x+icN+6e8ovV+a+J7+T+SVTaa1w5O4vCKOIU0nBOnUwoR5QsuZjsaLUKDIwH1FZI213fEDJwMcuLzVFIqoMKKk9J7X3HEQchlRJPKbsRBbHORZdCicYxnkZRXNEypiDe/444jTSkhFlF1NZ7xoXi7smFlEGESd/POWQxiNK2zYdh5Hn5FA7fx6P5byINY4P4kiVcOo44DiUDKM8JXlxxRhQhDyBLbPPi69Tz6FQW6depPGc6lWcvCCEnUEYc1in7kzf4zysyMtYqywvpTXrjoy4l/IiZRC/JOfkOAzdO2CoJXeZDe5o14PQOKIMAon1nkp3HctFp1xoy5HPTMoFTyEVSBaYZFlbflzwmpq68tjzk8dI58sFqYAZ7x7nkQtneRnnxwg0w2wxb+PV5PDMFHV2frrXnOMWcfIG6ybMLUuXCVpT+OVnHIXmyKN21twv/fznjzmrR48ePXr06NGjx0sJvafSDYZnvrjrBt4wQDkAGoQxJUOUmRqME3JGfiAlToShtObK0cC5VRNmPlQqtKpBltgAGoUZSiXCBiWtKhOUUmCdijYycPaxv9+62njgjIHXXDxy8Rhr1N1iB5BjFYYoEzUsChynIizHG1MxDEbEToRBaWNOFLRqjbNLoNKCuSpNqZQUwY9mSusEC8vJmoULG9S02plKr1FhnL+LOIGjRcMAcUhpj6s3Iy8xKDNtMSJuhzXrp6KuzDUaluYEDm72xcAdN9oZSJeunrwF9QihVcNcLM+RK8MMQym2jMYNQD2H1nEoHAejGnYt89fXmnLyg+SBu5/fB2tISY31lOEITp5D7epA6ZZSjZDAuYsNMzTJS4PdrW3N5cX74HhOdcTJx74MBnW7qrm8qNp9r8RxXJEXsyIv4ARBisAhcAp5sUJoq0ojhpLC5anjsMGAVjXMtLnevAzcjnY+Lwt827Ic526j+qEro8/DyOfBPc+LhmvG3u9mXeNMO+KSzDGRGOLNxj0UXVqungsyOfJZQ/nZ+YwbX89Op1uSRvLnBZEr+rX3R4oN3TsOLHHIy3DoMw7Bcecvz5RKz181e8sVLJyfi1BLOCYv+RXHzWQCePBLl489p0ePHj169OjxrQc92r2gxw2MfqbSDYbRducNZJcjkcTxN9V57AfDcVx541i8iFGEwZA9P19mU4Q7drGsjGF5y/g8Lkj9WorsmWHJVXI85VCv4BDHA7pZV1bESGcsVStjyc5POUhWpuM45RyqLC+HxZ3ZeBFmK/iYIziVGYecYxnlseOQxjmH4zgtt62Uk79eNc0TmrbFw8qc56W6jrws5yntH8scj85L4IA35s7zJEleVuX1uLzEssAqY/vltpZzSuMqiwuJ66zgpDpj5lynSafRJDhOmjhacjr+/Pz+eXzk/bsURO8yOsUqO3a9ZcpxXJly0Wr5/KOfkJfv0LxoGh6F68nL5lZv1N2jR48ePXr06HEjoReVbjC87kdvS+KBH0GFpTYkIwvJYhumJxxv1E0WZ9/wH+O6nxtA5/fPr87Nxq/HqFszDk1m0rudGXWXmQfTkofMUXVGNCtBfbzCEDrKy3HmyUucJDUfz/MUCxyB0zF5yR+Xc8jzFGooWiIYc1rVtlblJY5bNUgkaripPwHVMXnJn7ds1J3mIeeYew09ZwN1VuVlhSF0hCVD5qX7p3E+4+VQo+7nmZcDWubRwqmSIixNBScQZkbdy8bb2Vdd2fPyOsiXw5lj8hL8irQ7P85DiayoxyhPK/JSkxl1Z9fny+Nyv7AcC1aY80dxLgJ5o+7D2l6eN0PavsVzjvKSG3XnHPI6OnLZojv3T//Yyw8/p0ePHj169OjRo8dLDr2odINh59yItaEfRahbNtMNCEWFtcyoO44RWDOpcfA4N7XOxvHj7Dv1UWbEPUSs8baL7bIzCXEBiRG3CsTfhQswjGLr2RTNkFrixBKnUWZqHd8PYGyq5HhuzJ2YJ6ubURVzUOl8ePygMDJ8xnMWzzkaxLqZOINsJs4w675Lxt0ZpzzODaBzU+uckzVQ7zgIssQhN7Gu41glNVDPOIUydSSpc1N4iqUy53k5Kk82LxGnLE+iy3kp87xoziFqW7psPp7kSY7Py/AYjkmeVrQ1gSRexeHItpZz0GWj7hyDjMMoa1sj0v5TrshLzGlA2l/Ec/BxlqcS56EW5W2gZRcrS7MuR5ncnW9AkBvd5xzqJVFHsrZXpm1N07xYY/uYQ5oXUUk4KSTinWi6iYJf8hj9YsnoPs/LOONUHdPWBhRLbSv8W+zxO+7YokePHj169OjRo8eNg15UusHw+V96jLXWMCq6EcEGwpoThgpgnYJ1U4SB0IZWbBg7uCgUNijYdCbWorBFyTZFGECdKISdsmtcQ4QdJAx3agp2tApG2yMtOGnqIECsa8kJraxBs8CGlmxTMnTxFsKWwMjdbwBsAn4/KsFes+4GhSWwQZlw2NKKTVNGcclWZDa+LQXbWA6KMi0Ma1RhgFWRGnPXlKwzSIy312PzcUrW6MzGxyG2tTSi7AycHUZUdmBMN2D0ZsnWPLkOcWc+Xoa8rDkfLM9pnSoxTK9YNkxfp0o4bUScRlQJp7Fa02u/ffyYijWqYPDsTbJTw/QqDN6LFZw8B9/21qgYR5zWqRn7PGhXr3FeNqK8VC4PPh5meRqp5dTlpWI9ytOIkjFlMjgfRRy9uXng4OJRwqlOjO7zvKxRMY7yUlIknGoKNqK85G0rz8uaVklbs3HHoYAkT4IzdY/yFnPK46EWbGlt+6/62WQShCVFKShYi8zFB5RsMwgc1rVODNOHVKz742Lzts0wCHhr7nzf1oZZ/ykQNhnYenZ5Hkf9p6ZIDNR9HsdZW1szcf8pE8P0rm3Z2LcVH69rlZjCF8hS/9mM2tq61ozoTOC9T5bPS+3q0PcXb7ge70w5jPqPzWPNWKvAyfrIdTPR6qy/jKiSvGxonXAaxP1H7PXbDEIeYgy1ZFMH/Mo//jI9evTo0aNHj5cWFFCVl95/3+yKfYmgN+q+wXDpK7uIwGYJawXst0qjYoUllCl2Idg6dvczv4PRmlaM1Rp3W8Npu1vaws12GmK9hxZqTbkBTpUwV1i4wfZJYAHMABBOaEWjdkhaIJwyNQs64+8TWtOoMnDHtylpVBkLiAibAmuRUfcGNp4ALcKGlqxRMMMuN1qn4wDdrnULvBGx3fXOGyOXAidVmQKtaBhUtqrMMZR0xtyd2Xhq1G3NlU3wgvLHB87Ues2ZJZcqYfbEAGuY3ooGc+SFmjAwHVKG5UM+9kvbhu58b3LtDaJjA/QNhIUaGrGm6r5M1pTdHm+1M8beYECjJvhdeU7eENqaYBuGzhB6TMUQtabu0sVztzDLc2rUPi/ntMyhonbG2N6nq6KmIeZU06hhgSZ5sWbhXdyd7zkULi82HjhOvk5KNxvJm5dPtcWIHbwP0SQvA8rMbLwMS9G8CXyeFxOVqXJ5mYpJ2lobOKR58WVclZeCzpx8EPLkjLldmX0808ZxcnlLjLq7evd5GhorelQUlChz24Fd7NtWa3cvZODqSCgoOUHBwtV7Us9IiGOT922GNEme6rA5QM5JBTYYMEbB1fPYlRnSep+7DQlG1AypIrN+K0T5PHqj+8YZ29eUbFHQqAnLCDeyPIywhulTWkoRtlz/8XnedHkaUoZ6jU3gPafOKL9mRBXaouVg+6tG74D8HZEa3RdhCWGIXf+so7xUUR5at75PVrzndlxe7N8DK4D5+nj0K1df2D9aPXr06NGjR48ePV7U6Gcq3WAY7XQLx0qBYdQCCicMpXG6ZMQvT+pMrHNT6yJ4jYi7vyTXd0bB3qck9r2p3cDUww/q4jgx7pbM8FmWjbpzTvmSkZxD7Tio2gHUSLolU4cZQOdm46kB9NHm48/V1PooY24flxknb6Aec+QYTjGHKimx55THOYejDZ/zMh9v1L2cpzQ+3qg7zcNx8fVwyPP03A3Ulzjp0dcfZtR9GIfjDNSPyssqTrFRd+KXpKQc8pjVyzhXG9t3OC5vOadyBYfjDNSXTd5XmPcnnMrwzdZhbTUu4yoOknFYNoE/mkMe58v78ra28h3yHPKSc6go3K6gVVKWzRP54uEePXr06NGjR48eL2X0otINhlf+6O0gBOGnFojNMfxQykOyGDKjYTKjbuzspBhldn2VxdkqiiV4S2Bv2rxwlwfxyh3zRrt1VuYii+N7eeScGveNvL2/sJP7rWSlPo5DZ0uijpPJYk1ibzbu41VG3TmH4wzUjzPqXjIbX+KwXGfx75uMU5FdF+98Fu5/BCdltZF2nKfEYJ3lvOQvuMM4dPdPOeUcv968eE5xXnJT+CUj+4zDcXnJTbCbjEOeB2/Urdrl5SgOUwyzxKhbUq8fzyGKcw65mXgeBv8khzxPeX/KOan7dx57FCueedQ7IfQXSS5IkNd77meUn5+/A6qMQ16uJuITOOQ4whReyPv38lsrN0TPcdR7zpft+3/iviPv0aNHjx49evTo0eOlhV5UusEwPj1kXhRIGPDZ5WIxDqLBkWB3e4oxsXspJecnsQETjU1mpIPzOZoM3hdoMvBdYMISNXXH5m7grdjlblO7IsiNodTFnpQyyQZ4B9cRp5y6QbZ9Qnq8wSSc8rhFk0FjS7esaFVspFtaaIUSmEubinWS5mHO0fHM7xYVHY/jRcapXeKQc0w5NcdwUvdMH9syNQmn2VGcBKZuKN1xMkdyaKLYl3E5L2lba5I8mSPzArA4Ni9p25plnJbzknGQnKMe2dYOy0vMuck55G2NNtlVbxGVWdElDk8W6VtjLTO1zg2gvS+Wx9D7l9kHUJMaqA8oMrP+VJgyKzj5tqUoKt07w3OIdzYThJk0CacpUUy0g1zgmJuPp5zytjf0fkmOQ0W6AYF/RxyWF1y9h1iWd76cRWUWhKmkecrbVv4OmEnavxZL/efo95qHF3cX0nLq3JgePXr06NGjx0sP33T/o2/Afz1eGPSi0g2GP/wnj3J1ajhorSCzp7CHsu8GEzOUfVH2pMVgBZ/9wnDNDZkMykQMu7Rh0DUHdjFhuNIC11po3JhjF+WqG+wKwq4YrkoTBlAH0nJVmjAInIrhqrTMXNygXMMwdYMZgy33xN1/CuwDB2pnK01Q9lH2sRzmjsOu49SiHGScpqIRB2UBXAPnYaM8IwsmjjPAhIYJizAonErLHvMw0F3QMqEJcYNhQhMGtkZgQhuJZ1Yw8YLE1G3b7geBCzc7ZOZEFoMyFxNEFx9PwtBWaaI4fqaPD6RhnyYMEic0HEScZrQcsIg4GfZZsHADXSOGAxcDbmDecZpjHCd7fEbLlDaUuXHHfNxiAifPYSGGgyg2WK8aH88xCSfLoYnyknKa0zKJOLURB0EwpHkxLi+LKC+zKC/zLC8tmnAyLndpXjoOPi9TN3hXlAOalFOUJ88hzotvW0FkEXuPIKJkeZm6PPi8TGmYSRvErsblLW5rM7H15st4pZjzcLEXflNRsKFlZPBcsOUNntX6N53QQRBZ1rVmWyODdK3Y1kGIh5Sc0EHY/WyANdr2M5JaTMLJ590LQz4PnpNiBZm4P03F1qN/B8xdW4hnRYWr1ZqZpxwqdnQY4sL1kc77q2BHO7PxsdZsR5zE9REvAB44Dj4vc2xfiIWjhXtHBA7uPRPyFnFSlFaUWdS2Zu58H09o2GUe3gFG7O/8rEbf1nzbm4g93/eXGDMa9nTBP/35L9CjR48ePXr06NHjxkFv1H2D4cKD+4Cwb+DAKHMBxM7MmagdQiIwQZnQBtVxVhhmaqxfkcBclLk21FhPogVwRQ01dqe1BrjS2gbWuLHHFZTKCVVG4Kq0lNouxQZQgWvSUmgbfJj2MBwojCmoKNhXW26PA2ACNKqBw1Rb/PSCqVhhqgqcrEnxAEFEHKeWgQpjx+kyUKoyl060KJzQhcCB+tgaBe+zoFCxA1Nx52u3tGxKg+C2G5eCKS2izktKCuYYFupmioidWTBXJ9e5mQdzNSEvCzEsnBE42FkujYtrChpR9nSB3emtxoi6MtsBJMC+NtaM2ItNjmOLooFDx+mAhkJbaldvExpErUFwJYUVXdSam9uZObbMjeM0o2WmrS2x2IHyYgUn75/ViGFX59QUjKisKEgTzjcuFtyyqigvnsNBxsFzKiDi1DCkSvJSUVCIOA5uVlKUF5PlJefklzQ1TjyoEGoqGlEabaiwZtKtKAfaurwAaMIBgb04TxEH3DN9W/Nl9nkZZ3lZiEnysggiRic0rWprczHMXR5KhMvFnCsy56QZcquuMaCgVmGuhnlh2/gJisR8/5QOWKjatoOw7cz4vc/YjlpTa8UuPz3hYr8cdeiMwxsMiAZOU5eXCQ1TbaxXm0jIk42tKf9C2yCi2LY2D3ny8QC78yFYkbzAe8Z5DiZ4Fp1Ua1q9S4OKn21kZzKVCCfcccFtOOA47bGgdec3rn5xwq99bxEEwZm21jhdSte23PK5qC1KxiH0F1EmUX9rUfZ1QeHesy3KNVcHYyqMCJOs7fn+s3DvuT0WFNq4OtDwe4BHHrxCjx49evTo0aNHjxsH/UylGwxrJzujbkUw0bQ/FWiiJTAINPH6DoGFdEshiJZjdHG6LKKBbIlIilYgnnmYx0Y6TyUfx/fwM6PiOF58ZDlFv1gRzzNOc1H8/1ZxsDMRuutNfBAXZxzi2Q/e6yQuYx5rVkaTxW2Wl6U4y0tDxMmfr+n1cerTRTOrOOnxHKLr9To45MebJQ7pspt0kVlmWXNdeUk5mKxMx3FCQJc4pHHuUfNc82IkbWvtCg5xGYxky5KuIy/5zN/Ev2hlXrqaV4FrxTxwCsb3dvVWmLHTXb5s/p+b9a8yhD7KyH7Jukgyz6YVbS3vX012vhfa4rbm8+RNrf0xb9wdl1lJ87CKU2zunbYS31/SvCWeTSvfEenxpL+saJt5W2skKrGs7i9xSY0oc2mZi0nKcuLkiB49evTo0aNHjx43DnpR6QbDG37CGXW7wUENiblrCWTjqyUcZTRsvzlPh0hldn1uRLzqGbYY9j65efIiExeE1JTXmyl7XI8pb25q3dAZ2foZFSmntNS5yXV+f81+n3PK42Ce7OLr4ZDEsopTatq7bAh9dF5W1Vn8+zwvtsxxXtLXjZD6Vq16RtzWNG9rK85/rnk5zmx82ag7z4sk/WfVM1LvmcxsPMvTqrzknHI817ysNOqO4uPykouiC1H2I6+sYMwdKC6Xf9l4O5dVUhRZmeNdKKFrW3F/it8JJvq35SxkmmPK0QlLcZ4WaNb2UgwynokP1QoMsjfjQFMOebmaTOpd2S40/Wfc1iTLxCoD9UUm1eZPOKot+rL9mZ+6/9BzevTo0aNHjx49erz00ItKNxhG2zVNFQsmdllYjNjsVbDLaGJMMrPXaTbYmUUDOOv9kRoNe98RHzeYzGg4NUtuSc2SjZCY8IIVso4ygJ5KymGaG9Yew6mNYlvG3AD6aE7XZ9TdJnlZiMk4pRzyQWtuyrvIOOVxI3okp1UcVsUxh9w8OReBlszEjzHqPs5oeNlY+LnlxdCJOuquPYxTeGZm1J1zWGXMnXI8mtNyXlIOCzpvL895OS+atLU4BlhoymFB3tZSo+48L7lB+jPlJImvyiwRji4ySwS7Z2QS6kVRLjIN7xlF2Zcmib1s3JmLK6pxDEaXRZ+jBMh8NpMhm8VFKkQV2TSvPZc5f27+Xot9rVaJZpL9TpCEk7+uMxs/fBc8f71vB55TzsHXpIeJYt/+41iz43kc15X1JFNOnOpnKvXo0aNHjx4vOSjfdFPtb4hR99Hfa/a4TvSi0g2G3/uFRzlYmCD8HGB9hrxQNMcwLVoOpAneJbPCsB+ZWs/FsOfMXBWlEdiTaKArsB8NZPfFsI8JM2UOpGWPzqh7KoY96QZgcxf7gawR5UA6E2uAKRp2AptjDca9EDTBMBHDJDIbnxYmcGpRZkVqAL1AOfCDdbVLfg7ojLsvFjOmkYHtRKypbkNn1B0bQM/pTK0BZ5qdG3O3yS5bdtc7+8SZOzc3hPZmyS2amPKGXNGZWBshmPQC4LyBfOwNmz2nKSmnmbSJMXdsCO3zPKMzGha8P0xn1L2QnFNnluyNhTtO9vzYqDs2GvZtITHyxiQcJk6MiI26D8uLNeq2ptkxh3kUq4s9B2ucHOeldQbknVF3npeFMz/2MoxxdZEadXd5m9CE2OaldW2vM1DfZx76z4I2MUxXJ2R5DtZbqMvLlIa5tEle5hEnbwrvy2w5LOdlHuVlIi2PFPvO8lm5JDOeloNwzwvFhIeLPevzhPBsecDnqktckzmC8Ew54XPVJa7IDEG4JDMeKfa4hl1a553RvJAxw7ilfOraWhuW+ima+G150anbldAJbaLBv8l2Dwk58n5aQZRR65FU0e1atycNzzpxTBD2ZJGY9TeiXJCp81GT4CvlZa58RufMcehEm46zolRIEG48B43EMOP6fPCkUjvDS6P/eX5xPXhhyS9F1CiOhSRv1u+F23wGmhcv/8k//hw9evTo0aNHjx49bhz0Rt03GC48vOdmTygztYMznDgwUxN8N+ZOxPHDhkURGUI7/41ruqBGGFLRAru0lAo71BiBfVUK1A51BfYxFGqXkVjzZGvE7U1e98UaDas7/0BaRNuw69NEDFO1W3vXIo6DG3q5ZXdzVRbSdpyiGRWeUzCELpSFM7GuKGhQ9px58gYVrcC+GsQJAwBTZ3LdmSVbDq3jMHXmyLFBtB+gikgwgB5SBmPuuRq7hboUweB54fLSoDTqBALxBtDzMKCLjYYLClonSpRY3xcj1qy8BGqGVnBQO4z0uZ65MuWcvPm4N+YWlxfP0ZpaW8ECtYbQZSgjYdaEn3m2CBysWbKJ86LzlWbjFWUwGi4R1qjsLnbahPIYlKlmRt2BgyZlTo27G2pKxIltEoQDK9Qs6EyvfV46o26bt2WzZLK8FM5svDPmHoo1G5844+0111+smbIGf5qpM+72Yu2UFvHCp8CBM4X39RAbpvu2ZY26xeVFWahGu/O1TjDL85JyyvNSUTBweWm1DSbwB0XLV2WPEYUTNFueYJ+BM4xvaHmo2GVEaWcKCnyuusRYKyuyifKF6jIjLanU3uOxcp9aC27SsfMxIrQp6L5c6mYM2f/ib0tWfQEVZna5Plag1rlJxK1mzBeLaViCJxQYVdrCPu1ZmVCrrW/7nrN5KbFG9hdlRqlzzujItje6WXExfH/0vzWkcbwYTSPOuBWYXp72nCrSmVq5r5u6dmSP2d9Kdlyz2N+jm/22XMePPXyNHj169OjRo0ePHjcO+plKNxg2Tw+7QEAzY+7cpPcwQ2g/IFlE34Lb49GyCLGzMOKh2aqYLI5NX1cZDS8tW0mNQqKhzurjxxpCS8rJCGGr9MM4xcjNj1dxyE1z83pH8jjnkC5zOdKjSfxMj46TCqn/ipAadS/lRRND6JzTag7pPZIhtLBkcr1k3J1xyOPcqFiPaWt5XpYM1HMORG3ZP2OJQxovmSGT5UnyvCy3NfK2Frclco5H58XPZInLkOeF7HjOadkE/oi2J3bWUnx8Jm3CaZotF5xIk9TbVFq7Q53DQszSEsJl/680zoWkPD7sfFVN8pjOGtJwbUnRvRPodtTzsHnp4lY0MQP3M5fSMuVlzDno4cezdgLLfmAr065HhktYVW/5NadOj4+5S48ePXr06NGjR4+XEnpR6QbDW37yTqToBhqDbKRcZvGqgUjs8+EHlUcZdefT4XLD5rwR5p4duXnyXI426q4zDseaXMsq8/HUPHkzM+p+ribXy4bQR4hAdIbQHnlecigZB5YNoWPfHGsIndZ8bsKbDyCPM7VeNuqWJF7OyzKnOC85p+sx6n6uecnrPc9LzrnOjLqvJy85p6/XqPuwvHgs5yXdyazKTK49hyRv15GXEGd5yct3PZzyPDapFMaeLLqHY2f6xbHPi4/b7I4GTczHKyQRhRQrKIl0bW2R5WmaCVvr2TthuW2lHPYTjyg7Ky7GUFNOXcHsP3Mfq1Xv6mSXSlk26o77gxXH0lLnRt1FtrVe/s5I4J79w71Rd48ePXr06PGSxDfb/+gb4qnU4wVBLyrdYBisV5iCaKABbWbUHQ/ovJdOPJjx26DH58dCUB77WTJdnBratqSD91hMsEsuMnGBTMjCzsZIBJUjOOVlhuUBW84h/xmLWJ03yTKHwzj5pSQpp1QwycucD1LzLcZzDi2axSbjkMa5Sa/30zmMg4k4dJxSDnmelvISxYqmg1rBtZTDOawq81F5yTnlHOLYnsPxnI7JS97W8ryYYzi1HM0xb2urOZmsv6QcmswUvl3KS6petEfkpSvX0f0l5ZRyyPOGOoHDzeQqECotgpJTIlZoij4bDOI/b+qEp0BBGGdy95AyEWnqTHDZlflSPeccjuo/U6xPnM+L91jyKBHqiJOoWA5RMWpNOcTClKjjFHGoNBWn8x3nRpSdEOXqKI4rJImHFJT+A1gupoqtw52t3qi7R48ePXr06NHjRkIvKt1g+N3/8xHmjQZhaIqhpRv4NlgDWy9QeO+MzqLXDp7Cjm5uYOENekXtrITYzHUuJpxvDaCtt5GfJbJwZsd+MO53e/OD9cLdzw9EKyQMpFeVcYahyTlEsXE8Y6NhPzPBcyqk4wBwVebh+dbwuRv4eo6ziJP1EdLE96TJOPlBpx1gdjNA1JWtlY7TAkMbCRSKnYmQ5CUzT/bl8IPy0gmEocyYhJM1Cu+O+yU7sbdLzKlAQt2DncVgIg4Ld39fBl82L0C0aMbBLp8MJtZqK66NOBRxTCcwxhwOy4u48sacxAkkxuWlkpQDkMRz5/3jy5DnxWR58W0rjgWO5OQ5HJYX27Y7DibLS+m8tfzxysVdmdslTtbzyhuo61JbS4y5XV6aQzjEfdJzWmprEQdvPh3npRDcLnc2LycYMqSgcoKGQRlSWpFFbZ2uUTHS0okfZfgPrFgyoGKgnYgypGJdawonWI2pWKOkUJwXVcXAyT6K9VW7UEyDMLQr8zQvpO85de9Fz6EU4SrzsKtdi1pOkYA5dmXECTwjKjuDSa0ANKBgEHEeUjJ2nATrp7VORaHiONWWg+NcIYwpg5g1oGSTgRWKBNa0Zkwd4pqStSguKdhmaMsYQ2GsFRta8yv/+Ev06NGjR48ePXr0uHHQG3XfYLj46D5gPXZarGG3nRFit+T2wo7B7qoWD6y9cXfhdghaYA1ua9eMFlgTbHGGunYJmR1o45aUoRqMhheYYJ7sr1/QLVmyS5GUEQJBwIDa3c8A+OsjDt6PxYg17m4zTgROduerEjvAVIGFWg5rlFYMUFsHjRuVte56E90jzEgQgjmyG3fbMqvtaIU4Dqph2Ym/Tx7HApsVQtqQh0TwEL+VuhOqRJkFU+s61GOBIi5PrRO8/IQDz8nXY4M13jYh9sIBQZhpIcx5MC7HdVQn4WecF0xYamjivDgOHkasmXiF9a7xuRcUcU9NfLXwwpKXho7Pi+c0RDpfIFU7myVqWzHHOC8+D3mc56VA7S5irm1Zm+aOg0R5CZJMlpcuD9eXF/9S93U0yNpqE/JgOTZOkbBtM92VLs6LNeZWaoSaEpzYW9LNElyeHXccJ1vvZHkpECTiXKndN21ASY2yp4qI7bcDlLm2GIE1asZUePHKnt99d1JZO24atcLz0Ak1nnPtdniz1kri2qCt2wO3Q+X5ckqpEt4JiWl4xMnXi599V7t2sMuCfV0wcOKO53SANXofUzGiDELoiMoa+6s1D69duRo1GCFw9Pm2dVKGaq0ordCoBpUoRsHda5thMMe3s7hqjHqBzNar/ftg87bFwL6X1P5N8Ib0AE8+ukuPHj169OjRo0ePGwe9qHSDYetsujQhmaq2YlmpHhL7QVu85COO4+VDEt9HwC//AFi1lDW+HlaZJ+dljp4gywa2WQmWOHkhwnuqGPdvIHisFJqaV6d3PIaTdOPmlfEKjsvVcsSa3+h+iuOg2sUr8iJIl5xVnFZwyCvO0IkuLB9euv7IvKx4XusEBl9uJW1ry4+QFXmJ2uxzzcsKzqv8gg7FivvleVnJ6Zi8LOUpK6Nmv0gX55HWkmQcZFX/SuPWlbFrWymnlXiObS2vt0Vk9u29gJqo3gqKICmu8g6S5Hb2fL9fWuwt5Dn496KPy4xDK7qq6g8haGGcAAedSXy3o1wnXnVxd4tVnHLOZWDEIRwKGnXnS3o+rPK6k6QtFclbzgrhZbacDuDU2bXDaqVHjx49evTo8S0LWT1w+5bHS5HTnzz65W83GN7+k3cgUdaDwa3DC2HUPcuGsblymXuV5GbK+UCtyX4TdoJSf31+/5TTcY1cgVZNEJCQZVPrTR0k1+TGw1X+ktX0Zy4a5Ya4+QyP6zLqXiEmHGpqLd2MisM41FlN5bnPxYn8fvMszsucc1ploB7HuqJt5X5GOZYMoTXLfva8wMH9fpG1rXxG1HH9ZYkDqchjOeV5OdqoOx/s5+zzx+dtK49zc+aV/eUITnYJ4+FtbZWIk/f5nGP+vFDv7sdFmbrQz74qkrhEUI09jrJ6z+JVHM0xnJ5rXvL+Ms/aWm6oXmec/L99nHvZrczTUlvLhOSooKv6Uf6uzc846l3qy/beP//yI87q0aNHjx49evTo8VJDLyrdYKgGJUW097Sw3AiKbEiYiz7HxUsDEY0G3nr8+askg6Xfua2/j3zmIdfH3+KH8+OBtS4PuI7bwryAxNA2/BR/v+MR31NWPnMFh24qw1KZVs3lOer4yjipk+Nw5Fwld88jyqDZM1eU6fj7p0jqaMXPVTO24vi5ts1cUPG/O/4ucZmX29bS1TmX51RGlup4eYe5CJrOSLNt7blhqQayd0L+U3D9yfWf2CfLnxqLPordFbKLNRE9VZYFk7mke8R51zSP2Pg+CLbJe+wYjtlvgh+S42RIRR9FWWibcMp3oFsWcpsknkVlBmgiTt4DLI7nzhkrrrM01qW4zcSwmO+clnrcf6zo0aNHjx49evS4kdB/+rvB8PFfeARtNQx3FtjlUj42WO+f5aUWXVzGoozamUdxPHJOOB4t6eDeYM224ycUUVy4+/nYm+X6eOiPanfP+HiDWg5u4KrRPTsORYhF3RbjURmH0XFF2ZNFMkS0g8EOSrpNeUEqNJWHcPKoMo4tSiGdwGAcp0OFJcX5oXSc6vgZuvzMFpY45XMvjuJQZ/cbZNKEAUQyTkgQFHxeJMpjEXGyeTl8By9I834kp0PyUmmRlGGgRSe6qF/y091zgUk4rcpL4duBdoJNnpfDOPmB+9eTl0FwouriWOxq0ZV5KSOhJ64Ty8GZZKsVbOO85Jy8ACNR3JDmxRyTl1qt7484cfiEjhKz/onzN/IiycztrDaL7MWtGX8nqpjIrL/Beq95U3hvLj6NTOKVyDSeqM87savNcpvLSHZ5WPe7bR2wowPGzuRasO3Jl3hCw1zaUObG8Zu5WLDL5joOhoXYXeWCX1bEyT5EwiYKYEWpWeSbNcMwYdEJdNKZi3vz8VlkNj6TlgOabkZflOMZdsOF/+vnv0CPHj169OjRo0ePGwe9p9INhkuPH4QBX7y0wvtnmCgW/FKXTsCIhR9xAx1/P794w0sNZXhG5/kRx5V7pv+23jt2xPdUN/hMYo0HrG7SknTHScpoT2jFc+iOW2Epfp7jFM1Usr4j6jxU4npjZew5+fkEHQfJOOVxPCRN66ygW0rj8+R1GM9JsuPx/f09u2Uwdht7ZDUHnyefd398OS9Hc4qfGU+NsWV0/kKy7N3iOfnZZh2ndCaQruB0WF48JzisbflndOKewqF5Wc1pOS9Fdtz3DR9Lcj/3hBc4L2WIJamD7onec8eW2RpAa1JGX+YalvJSZs/zNeN/Z66D02F58f1p4JYxejNyb/reYGjUzlJC7BKzuRpqJJhRt1jj+ooymPcHI3xRJtoEMdNgxZ0KoWaIFZZMyHXgpF3/Kenenavy4o97s/EtHbCBcpU5jdthsUHDMsUFrduJj4ijsWbdqzi4Mnt4ThUFYyoQYaEmtC0vlnnF0AATGkRhndoJUQZRkxjdo3bpJgJTWkTb0J69yT/AU4/v0aNHjx49evR46UFfkp5KPV4I9DOVbjDs3DwO//YDnjjOv3df/h7exn53JMJgWsNZuUCQz645LiZ7pmbH4/dZPlPFDuavk5NmnIJIkXKyM0/yexzHISvzc4xXmfIe/bycE0fmJVnu9zw5HcfxuLZ0XJ48fF40y0tehiK542GcjmlbSdtNcX1tKz0/b8s5p7ytCfJ15yXvf8v98eg85PFxHDSLV7aVYzkdnZdG4t9kSwSXE7XkZ6TZcZH8/G6JF0S71kUiWfr85f6TPmI5jn3VCuRYT6ZlTskDly7Q7HiyTG3l+SQcNE2Tfc9m9RT/QsXtCCianHf25t6ou0ePHj169OjR40ZCLyrdYHjbT91BUXYjgEE2OCoRJB+7ZCMqOzOoO8EQDaJk2bB5yaQ3M08uvWCj3f3jOHihuB/BF8Sv8IiOhedFcZFxCvdKOKSG0Ll58pbWGaeMQz5AzDgYTTnkBtHLRt0phzyOr13FSQ/hFOM44+Hcl8os5eUQk2uHYGKtq59XHMNpFYfnatSd54mMQ27EvcjiF8SoO9rKbJVRd26mnOfhuLzk/WWR5SU3iA6G6XEc3/86OB1nap2LRstG3ddpoO5wjbk7zZ44dEvIfOzzkotCHiaLlzhKOvNtJaesjDmH3JcqN+fflUVCdaipMfeAlBOkbSf2Q1r1PHdB98+sra3KS/4BIDd1z5/gvbV0qYF0v/vhf/2Vy+Xq0aNHjx49evTo8ZJFLyrdYBAR6mxQOtR0FswwGjiLpjHKUjzITHfreACmMMjims57yMelShjBlLjd1FxcZLEg9plRnA9aRxzOCXXHj+Kg6fFcNMo5lkSzmeI4cCoSjpJxsufkA+909sYosksWlSVBcECZljnjkHNKhCp1HknPgVMBGaflWS4VKcd6KS+RBbRi46xtpHVy9EC+Ip2tVFEscUjbWlpm6+0Tc0hfknIMh6W86HJeBnkejslLleUl9u5axSl4Oh2aJ1dvUUVVx+QlEdME+w7Jyhgj7y/58Zoi4VCtamtRAb1nkGS/62blLe92mAuCyzswpsbcdkGYuvup+/8u3tA6e68VK95rHYek7dHpeBLiZfPxlKMeyyGP55kRt8k45HGbxbp0Pkvn53nwEMSKWIdrvj169OjRo0ePHj1eguhFpRsMn/yFRylbZaBWFDHYwdHIdAOkmtKabasdAA0oWYviISVjyuBtNKZiTBlmHK1ryQih9MIUwhoFVRj/CCMtraiCHXxtUIbBtr+/j0daMaAIA9l1LRhSMHQcSvzOShJxKBhpgUQcxo5DEeIixJZDQenOX6Ng5AbnKsqBNM4AuZveFHMu3EC8jDiNKINgMKRgRBWEnZFW1BQhHlBSUQSRRN09qmjwXlMy0ipwqikZUiJqZ6/keRlSJOLXyJ3fCUNWbCvivFAFDmXgIOH5w5iTltRIKOOIkop0SaXnGIyxKYLBt8/LSCuXB3F5qShUXFx1Ru1RPflBbUkRjKg9h2GUpwJhjSrMjvP3j+t9ENX7CJsXH9cr8lIj1tBbYw4uD0iaFxd7AcK2kyrUu7i8DJwAoa6iBlFeJMtL4dqSz8uQKuE00tJy8HnRiirKk21bkrWtVXkpXf9KOZUqrt7EcbJ9Njbft7y985quzMuYOslLnKehy7uv9y0GQVhSrFG3FT06o+5WNJhegzW19rEvl7flbjA0osyj3c6sEGXFk0KtJ5MXWURtfz+pw7CDW56X0rWtwEnLrv8obFKHNqTAVEzCaSZt2BHOCzhtZC5uvZkkHG9QjHTnG+xyNM/J96E2qpM2EobAeVBhgnhVIonwZNwxf743R4/viauzBkOD8kv/2+fp0aNHjx49evToceOgN+q+wXDlySl2Zo9N/sSZWNdOwFiosijUxmEAY8WAdTqvk4qCigJVDTNSfOwHjiM3QJmo3SFrTIlB2dMWRBhqycB/Gy+wRhlmGPmZOUEYcYJDjboduoQBQo3SuK//bZmVmRrm0nFo1A7OfOwXeHjBwJPKOZUIY3DGxX5GVIlid1zyZTTumYgdDMczEIZOMPBCiB0sqxNK7AwrK8QUoR5LuoGhFTQ041AneYlFnIrSGhJHHEoInLwo2KqhcVuwDxynibaISODgl8v5MnvvG5uHjpPloCH2HHwZPceZe6Yvc3fccvID15xTSREG+AmnaMbEgBKDoaEN9a6uHsGKhobOPHlExRAN9e7roONUUtGZUHd5sQuKPKeFKkY0tKWj8hLvZhY4ZXlqVWjEBIHtevLiy+g55Xmps7zMtEUl4qSGVnRFXiwnLx6UTmhNOXTwsb/e1isYhIm0QXj1efGCdJyXseNYRW1NHQfEzczRbnmcn0/kRREvmtjdHEuM2KWnFd3SLUNnim2wu5YVrj69sGRfSfGUm+49d0KHNNpysZhTuHo3qDOel8DJ58XnyXPwBfdeRAknp/O12s20MihzuveqYsvo24GKPz/lVLv69H5O8aymIBy58vj6XIuO+2fFcbeLnLo6ITkP4Jmn9unRo0ePHj16vLSg8JI06tbjT+lxHehnKt1g2LllFP4dlidFcW7cHWLNljdFsyhyo+HcuyR+/YQt46NnLB+X7Hgap0bdy/c7lMMhnLrlJymHbjAtne/ToWXOOaXnkx2Hw++3ahnZcXHg4DxVwo5qWZ48ynjpziFlOC5e5pSff3Qecg7xkqnk+pyDdnmKcZxRd7GiTPn5ual1zmm5zEcfjzkkzzuk/+ReP88nD8dxWuZwXFs7xCS+m+CT5CX/oyLHcFqVl7x/5CbVaaaXn5l8QJBl4+78en++7z9Glo26U8+zMprh5+8nWRwXQdIy5BxWxPk6snypm2SBZOe3oey6fL5H9kkqr6cceXvzs65i3HzLxjF36dGjR48ePXr06PFSQi8q3WD4tsyoe9nUmiVDWnEzgQLiWJbNlOfZMCOfDldnRt1+5kM3skt/5obQ82iw58scP7JCjjUbl4yDcrghtCCcNIOMQ5nEubdPbtTdXodRdzxCyznkHFdxUtVuYCkk/kc+TzEGpBwONYT2Rc85kXIKRt26usyr8rI0Ij0mTzaOBu/Z+YPDOOT3dz+XDdTT2Ph/R7PZ0v6SCyaHcPJVKeC2TkwuiNva8Ji8SMYp55Dn5Tij7txs/Li8qKR50cCx41BlIuzwOeclLfMBTRKHOnJx8K3K+5NDbtRdkQrFiq1H339yo24EppkRfZ6nvC3mVTh1HHw5RppzKJI47z+xXxIcv6mCkWWz8ZWeZxFys/1cHKuzMiZwv/uxf/2BFQd79OjRo0ePHj16vFTRi0o3GLRVCk1HBKNsoLERGQeLETa1SgZ9G85rxcexHxO6aiAiyfFxNugc4MzDxZ/vzMNdXCEMM6Ph5cFRB1FhLTYfV2E95mCs71PMaS3jEPvNoHCrGXWG5gq3mjFr0aBw4D1sAuciMeK2/kgdp3WtONeOQjzUgltNF1dacJdZTziO6MpsPV7SvIyy+K52PdlZ79Z22Jm0K9zWjhhFnLyvj4+DX1LIi1hB0MWbWnFTVOY1Lbm5HYZ4oAW3m3HgUKpwX7uZ5GVMmXFI43ubjcTQ+fZ2nHC6rR1lnNYZH5GXICa4X53SAWdMV+YNrTgbxSMtuCXiWB+Wl4jT2lJeUk53tmsJp9vaUdcfFG5rx9a355C8DJc4pSbw21pzOuKwTskZM0g43RZxssvM0v4yJjXqTtqagXvbzRV5iTmNE063t2vHtrU8LyeiMq8yI4/7k/VoKjtOrp5i1Jr2nzxPuaF6vnPggTTJ7J9cSB7FedHlWZoLDHO3PNOWOd+QIO1fhWZti1SQDwJkxGmdOuWQmcDnQrL1L4vPT9/tVSZE5e+EBOJ25WtXKU49evTo0aNHjx49XqroRaUbDJ/8Px9FTLw1tB3gjbUzrR5Rsq0llUIpNt7Rmkrtcp91Sna0og5G3QVrKtaIW61IVRJPxhDGdMbdFQUntGIcGXNvaR2MgcdasaUVay5e05I1LRg74WfoFuQU4f7eEFqCefKIkg1TUqodkI7cM0oVSrE+KFtqzY4LYI2KTS2DQDHE+k75AdeYglc3W5xyM5bOmCGva05w1lhJrqJkkzqYiw8o2aC2gyzHcURnPn7OjLjLrHFnu0atwlkz5FYz4q52jYEW7GjNrWaNlzebtl7oTKa9Ae/QPaOM4jWsWXhNwS065rXNNjvGDo9v0TH3txvsGCvBndIhr252OGUGCHZJ3Dp1GLh2HIogWq1TBU63mXVe3m5yZ7tOpcLNZsztZswd7ZhahRNmwK1mzD3NGkMtOKEDbjNrPNBss6Zl8A1ac5xKx2HdmR+PKblV13hds8O2qakQbtExr2o22TZ2X7ibdMyrmi1OGGuCfNYMef3iBGfboctLwXpkYu3v7/Nwq1njVc02d7ZrVCqcMyPubte43YkiZ82Q28yIOwOnmtvMGi9rNhlpETiMndl4meXFxhXrLh5ScE7XeKDZYstUlAi36JBXtmtsGytynNYhr2m2w+y4PC911tZGrg59fItZ4+XtJrc7TjebEbebEbc68WpHa243a9zdrjt/MusnFBtzDyhZU5uXyvUfz2mDinM65tXtDlumZuDa2v3NJlvGzqs6q0Ne1WzavCjcZEa8fnGCM6vy4tpanJdzZo1Xtlvc6kTETerEFL5FnTl/JwaPqVh3ebBeZh0nb0QedmwT+8wtavcOsHnzRvbefLymW9pqBK7KnJmbzTPHJObkAyq2tA7is/XJ6q4vRNinYerswy2HMrRN4545dGWuKBhTuTx4E/kyMb6vk3eCe5cycO9q+54Lpu9C8IDqjOgLthgGEXPNmb4vmfUHIaxI3mse9r1tNwr4Fz//JXr06NGjR48eLzEoqHnp/bdy9nWP54zeqPsGw+4zM8AtcwMarOmrNfUt7JfMQthtzS+GGFBwUgfhm3obF7SxUbemS+G8mXKLn9Fh/V3swhZhSys2UBYoiLChFetuuGNnTNnY7pJlhamReqca77zSvQkqJ2b598MQuyPcAtDAqTOEHlAy0DIsH/I7lfmlb2XEwc4KEF7RboTlRIJwf7vFvWzw2eoqjSjr1KzRGXXbQZq3g+5Me9fUDkdvNWPOmVF4xk1myFkzYOqecVZHnGmGPF5MeKqcrjAbL6gZYNxvvFH30JmZr1Pz6naHOW0Y5L7MrDML9sjwinaLBYbPVFcxAmvUePNjwcZjOqNuz8lzuNOsc7tZA3fOzWbEWTMMZsiew8zFN7njjxcTniwnS5zsboAFa8ZKn1s64PXNgJmb5bFGxSvbTWYYx6nkFe1mMH8WhFe229zXGv6oukIrypozgPZ5G1MxQhk7cevedpO72o2Qhy4vBE43mWHIy0064mwz5NHigGfK2ZLZuI814TRgZOzgfYOaB9ptFo7TmJJXmDVmGFrH6f52i7nLi7q8mNC2CG3N58UbdXtOd5p1bjNrFD4vOuRsO2Dh4nNmxM1myNeKA86X82DMnXLoepjntKH2z8a2DnhdOwgiyzoV97u8FK6OfV4K7GzCB9pt5q3hj6rLrq0tG3XHebnbbHCHWeeSzN2GAtZ8vFWDiIQyz9VgRF0ddLNx/HEvwpTOeatRpRFDTck2ZTC59mb9uHeON1A3GBZYYWlXGiteS7eETFH3ThU21OZlSguCE5b8dCKY0DLRNhh5e+P7A23ce8rGvr16s//SCT/BUN2Z9/s4zts2w+AP5U3hWzW04sWuInAugU23u15s+q6oXbYrnSm8f/f5d0AbntH5Yl185oAePXr06NGjR48eNw76mUo3GHZu65Yj2WVkRPHhptexaXUe50bDx5kdx2snrseY+zhz5eOOV1nsDaHzMqec0mtiTn7nNo+aovNHOaRMZPEiMj+xA+50Wcsgize1SuK84xYZpzYw6gS0mMPS0iCK5HfXYxC9kM7WN+fgt5RPOaV1lHPK21YjmsR+57AuTjmsyssypywPUZ2UWZkLlo3sl/NSJ/FhhuohLxmnOuM0yPrLwM2uict0bF4yTst5Scu4sdS2VnPwcc4hz0vua1Wv5NS1hVVG3XH/KFfU+/Hm4ke/Q/Kla/k7Qdy/YyEyRrw61h+P4+PeawhLGw7knI57rx3e1royxJyC/5emx+My55zI4uV3a7cLpMdNt/VG3T169OjRo0ePHjcSelHpBsObfuoOiioWdbpBB7jBVOa5lJhYs2zMbUgHIKnV67L9hh+6dIMdkthkx/NYSQd88bHAIYs5itMKDkp6fr4rUs7plFt+lV8XypyZKZ8vZis5eeR5sUv30meuepbn0IhyTRZH5iXv/CcyM3J/5WF5uCCz7Hg+ED86L9tuOeJhHOZi2Ms4HJenHKcyTppxOL/E4ei2ludlR+tlw/SlttNxWojamS5ZXnxsxYUUfmmfx7F5ydrWql3A4jKe1MEKk+nV7RhgKoYDmkPzspz3vLewZHyf5yVvW96PKRZJ49jPFurux5Gx+F9mZfBlVSHM6PIcchZ5HS2yt0SZnZf/9LMLE056+HvNC8VHc4jah0CbGXUL3Qmr8tJmHPIzcqEqfbb93Z/96fuXjvXo0aNHjx49evR46aIXlW4wzKctU9MNHBSYZYOYeHc1xSS7DinKLDlul0SYJNYknqHdjlTYwVq8u1qD0kSxId21yIgdsHXHNRnwGfeMGEtllI6DWcnJZJz0SE4LTMpJTCIeeM8UH69rybapo1GaMI8HsY7T4XmxdaBZGWJOzQoOR3FaZHFDm+wQ12YcLCcTlXlVXkiOpzsBahIblLm0R3PQlMPiWE4m4dBk8TKnnANLbSvNE0scjs9Lmx7POE1JhaFlTst5MVmZklhTTrrEKeVQAGfbETFyDglHXd228nfEYXlZ1dZMxgllqe3l/St5R7hneKg7HiD2PZPm6ei2N3NX+PiAeRBdbNwkIszc3cNjSpsYc88xzCIxbuk9h9JIKuDnHNqM4yJvW1mZ24xzu/SOyPOirGprcRznJYYgNBgOJoulYz169OjRo0ePb32oykvuvx4vDHpR6QbD7/+TR5mrMnWDiQVKKzB1IkmL0ApBCDIITXQcrMgzcQMQdddPMGE4Y7DHvUgyRzmIBp4L7PP9QHUmVtTxQk/rBqV+wOMH9rMQw0IIceMGYxNa2sBJnT+N9XRqxQ7qLAfBuOvDLI6Eg71mGjha76mDjNMk4vCszJjThoFp4wa5Pj6hQ86ZEWfaIaUK26ZmRpcHAzQRp3nG6bLMaUSDSKKOg68jv/zGH6/Umvzu067Mix/4x3k6X8xZ0IaBZ87BZPG2DpjleYniBRraThdbrxnLacFCYsEh5TDUkqGUTBwHsLN64rbXRHnCPT/Oy/liRoMJnNqMww51wqHN2loLLOg4zFEW0uXtosxpxAQOSieCxnmxwpBhoAVDKTmI+osCB67sVmTShNOFpbyYIGBoqIeO43bGyedlHnGYu/bu+88JBtzajhk6T7GYA4i7zj5hREktRWibq94JTZaHuL9YTmleTMZhB+v95O93IMb2YxdPpA3t04sjjSizSDaxba4Tr9QJS75OWuk4dQJ3lzcRYZ9FqOcJLdeYMaNxba3lGvMgPhlR9mmYuVIeSMM15hy4Us5o2GXBvot9f/LC0NSJVD5u3PupK6Pn0Ia2bKL+4/v43LUVQUAkOm6vabSLGwwz994CQEjaVuNy5uNFFnt07wbln//vvVF3jx49evTo0aPHjYTeqPsGw7Vnp4AVMBrtZhC1Am00g8KQzvYxThzwu0OpE55E3ZIgdxyFgVhb2hnKTN0KDVmO59iZKC0KbrnJQp1pbxSX2J2TGpRGNfiVeA4acZioSeJWu2/ivQjjx0IaxXXgZONSJHBAQVw8dbFJONmZUGAHpQ3dcV9mwX6Tf1qHnGoH4fgCWKhSYevV56HJOO2LHcjGokvMIeTFHQ9eQCIhb8MoL6oaPF1sHrrlO36AaVxeUg4dxyJwUMdBXJ5sXkzCQZfy4jmZiINEHNX73Igw8xwjDk7vSDllbcsbC/sZFv54aEtue3TPocDm2nPIYz9TpBF7feDgBv9+mG1W5GWB6fyFREL/GeLblkPEiZV5STmUrm15jgUppxq746Hn4NuW7z++Q2xpzWZb8ZQzUF+Vlzlt2N1Mo7ZVU4R3gjpz5zgvJG1tOS8egYPGsxgJZTZ0M3zszB1rJu39vVpRWm2dyX7hxJvWeUmVQVhq1M84spyA4D1l5T+oqFz/aRNO+yw40AUitoz7NBxowzo14s6famvzJnDgjvvcTmiYuPMrCsexDXnu2pIm8cD5F6lAo92sqHw2m29rLcqYAty7M85DkN7E14F9761RJW3LZ8bnZdU7wT/TB5fO90bdPXr06NGjR48eNxL6mUo3GE7dsd4FXiU4LI7gPYGsQW28pCLzK5HMb+O4Z0j2yBXHNTuu8tzuv8QprLDp7hNzWsXhOE65OXH+PD+ItmFmFCwkpr1ugkES19n9c0oafvoZOybNU8ZBJLvDcc9Y0S5mEadVHJbyeEyd5Rzm0aA55hDnKSmiyHPPixzNYZlTmre8znKs4rTcfzQ9P27w18FBs1/Nv468CMKapt81LN1f2oTTcXlZFQ+WnKNWP8Njlal0fL+8reZlzuO8+XfnpXk5jFPen1S6JYz+/CRrK+q9zUq1aklZjMTtKH9HRLfP29yheYlPdsfzd+1SH8sC9e0nOnDLHVuHMOjRo0ePHj169OjxUkQvKt1geOtP3XmkUTdZLAiqmogQiVmyG1zlpr0x8kaWD3qOM+rOjYbzgXhe5mUOy8cT/xZZZQB9NHKOO854WCN2cXy+mC5xiOM2K2NBOkjd1HrZTFnTQWzMqRXliswTTrlRd85yJzNP7s5anZcLxSTjoMQD8bzeZQWn3Hw85rAQw9WMg52cFMfLeU05DbPznltecnEhz8u2DpaNuo/Iy5KBuqRtyS6XS2+4/RwN1C9mnPL+4y2uY8Sctla1tej4TAy7LA7Ny6pdw3IBZSczH88FkAuSchg65cvHfrdFH1cUSb0b0jInAhHLIpW95vANCVbtGJe/IxaZCOpnPuXcOoExFedqiqV3W/zvfMnZKg42D92/c6PuGHbHuBRN9mbL29r1GHX/yE+/culYjx49evTo0eNbH99s/6PeU+nFi15UusEw3Vswb1Oz19y0ei8yezXYZUrx8QM3vOmuT015812KTBbPnC+HH+TMJDW0bbC+O/FOTLPofH/PGJr8WznIOO3nnDJD20myfESTwZ06fjGHp2SfPekMaafSJqa7jfNG8fFuseDJ4uDQQSukos8C5ZFiLzqmS3mYyCLhNM04PV4cJAPd3Kj4Sdln4vxhLIfUeHhBm3DwfkQ+PpCWp4tJxiHlFOdlgeGrxbVQBssp4iDGLjWKOD1S7CXLfEzGIc/LE3LAPnFemiQviywvV2XBMzI5NC++Pcdmy2leDJMkL2ZFXlIz5ceK/WzpUpaXYp9pkpc2M4RuM05pXvZoOC/TiAOJEb6uyMuDxW7C6SDLyyRbjvVIuZeYVudtK8/T47LHQcTpoGgSAWPmln/5Ml6RBRciDibLi12OZZI4nqGlsmxS3TkP2XiWccoN12Oh1+cpfu/kJvD+nRG3tTYrc5y3XHDMzcfV5ba7/zKneda2cnPxPA85xxnLhulxf8pN4e3S1/Rd7CEIc1quXJ0uHevRo0ePHj169Ojx0kUvKt1g+Pg/eZRWCQOkhs7/xZtcLwq77bkdFMG8MFyTRTCMXYhyjUUQo6zpdefVAt0Ob/EQxUczMexKG4SciRj2pOFArFg1F8OBtBxIE7w85qJMJd6pqPMF0RCrGzhBUyj7YpyZL8wL5ZrjZICFi715cVvAfuRrAt2AKr6/f+Kz5ZTPl1d5qrAS2/liyoQ2DNLm0jKhYeoEuBblwWKXB4tdJzLYe8aDuJYuLxeLGRfLOV8pr7EvDZdlzlysGOYNfBvRYCQM1o/pwB1XYFYYvlBe5ZLbnh06A3ZFebaY8aXyKufFSgbnixkHtGGgOnMcZu6OjRN9YjPkR4t9Hi72mDlJzPvd2AFtmpeLMud8OePz5VV2ZcFlmdlcBzNkO8PKcxCEg6Llj8srCYfOrFxX5GXC56urPF3Y1uXz4jnNM05GDF8tdxMOcV4043ShmHG+nPHl8hr7NFySOYtgqN7l5SDJi6Z5kZYvlle47DlJZxpv8zJ1eZliUM4X0yQvc2k5YJHk5SBqayrwSLnPY8V+4BS3rXjmkudk2/MV9mTBpWJ+SF68mAUHRcvnq6sdBzrT+LjeurzM+Hx1hWcK29aeLabsySIIoQsx7LvY5kX5arnLo8U+c1qm0rqy2ztO3bvC52VG69pnE0QQI50xt51hI6E83tx/GnFSic387awcf71/xgyTtO/Y1LqUgjbiPBNrqO6FnPB+dXFFgYn6x1RaZx7eGai3kfm4nfkk+FlYDZq8u635OAmnAonek34ThM4QfY5hQhPKVLi23hnbmySeuf4fi1ngd+C09/ln/8cXlv7u9OjRo0ePHj169HjpojfqvsGwe8EOAr3hrf8m3A9OFtoZEe9KE5aUtKLsSeOMhwuM2BkRhcKYyg3IFBTWktkEy/BmrxMxTNQEQ9spLVNnqmtjwxTDkIKSwg3IlJFKWCqSL6sx0e9aUfalpdXOxHdXmjBNw3Mq1Hq8mAIOMIiBLSr8zl1LZcftjOUG74/6wburw7m6ganYWSVzbakoEBGeLA94sjjg/nabUzrCi0viBr4+L1Mnbl0tFlwtrmKiPOzT5cU4AaNQKCndLlwtojCiYl4YHir2GJqC17YnbW7dM1u3buvRcp/HteMwwzCLOMxomanNi4gEjgMKSil4tpzybDHlvnaTkzoMYkKeF++Tc6WYc6WYQ8TpgIUzfS8Ch0KhpmRatHy5uMa6qXhNe8IKBkv394KiLfPD5R6PFntMj+FUU1KI8ER5wBPFAQ+025zQYchLXH6DFSECB5mHgbUXXTTjlOeldHmZieGhcpexKXnAnMDu0qXWWN7NYHm03ONx3bMzcK4jL/74iJJSCp4ppzxTTHlZu8lOyMuqZVuW0+VizuUj86KOgzCgZCItX6l22TQVr2x3ECfCxPDikm9rXyv3eCTKy1SsqTWQxCPbY0J/uVnXGFLadhuZjQeBiM74e0JDTcEgMuZWJbg4meh8vwukuHeAiu3b9p2Aa2udObqtL7eBgHQzKxtVRu4c44j7PPnjnqOPBy62nLr3lhFrZh5vMDBTK7IO8EJttKzRlbnV6HwMrQqjwKEz2fYcUgP1ljkwsKUK5/tsJkbd+Bl/Jloe1+HSxQk9evTo0aNHjx49bhz0M5VuMJy5eyOJlwxwD3F/DUbdpP4kuXcJK+IcuUl18kRhyYg7N6htj1n+mjfqVabUcTk9B40GacdxGEZGw7lR7dLKEFk28T2QhqPgd9jyMLlxT8gLgQOwzMEdn4tJllAJQh09w6zIw1Je8jjjfBwn74NzGKd4RpsvUxxPJJ6btgxBGJJyOi4vupSXVTJoh2HMQQ7PSygDKYfcO8vPwPEoRKiiir2evOTPNxnnyTGc8ry0h+SlK1Mn6IC9vx6ZF45ta3me8v7i/Yd8nPsb5X3+qOWxEF3vDvgqD2It6TtB8pusaDt5mfP3XM6xzc7PzcePPJ8VHkmZwrPK4yznkCOvtxz5M3PxFeCOu7ePvEePHj169OjRo0ePlxZ6UekGw9t/8g6KuhsYFJCMCvJ4yahb/MyaLm6ywdEiG2bkA5U6M93NzV9z4+HYf8bGywPYOK4yBWRpMEXqfeIHhHE8T6WsJQ4nMwPonEM3vvOcUg7PyjQVsjIOOzqkjMSFfBANVlAKA0mxz4gHfaLd6F0FLss8uf6U45A/o+OQxrqUhzS+UMyOzMtJHSJZ28oHucs+U5HnzArz8cPy4nFcXtqMwzOSmo8vcxhk/WVVXpbFhrhtJZ5TAleivAjCSV2dl/icuFx522rczDxfzvOZ6XX+71NZXgoEzfpL7h0U+xktmY9n5wvCycxsvDzGxDpvW3veJ8vddkiRKBoDyiQvLZrEuRhZIrZ/RVWbv+fitmcFy2zHuqyO/Iyvroxlel72M/hmxecf8d6K/ZA8hzxvhZL0+ZxD3JYEocrE60X23svbd9jtcJX25H73kz/96hUHe/To0aNHjx7f2vjmm2p/Y4y6j5mt0OO60ItKNxh2L8/Zb7oZJd7/Jx7UzSQ1tU4NbdPYLj9JBzvTyJfEx7Ep70JSA1u/fCU25Y1NexXS42J9mDxajF16FIlSS5w4nJP3FonjqSxziGPvcxIb2KbGwWmZ7TKcLi5EmElqNBxzAuW0GSUD0dyUN+a4ymj4jEmFqXnGYZMBg2hQuZCUQ0NqUr3EKYsLhGnEocEaPIf7Y1a0tbxtpUbDbcZpRmqObL2MlvMSlyHnlHNos7zEJvGtawsxhwUmmtGiy21JDGle0uOnzajLi7qllFGZt3WQzOxpxGScjs7LJrXdMc7rIyJMpONkIGlrq/KStC0xSxyaLC+xWf/KvGQzsla9A+LY597HtRSJCCQUVuBwcaHCWrSa2y5nK5L+M9AyideokjgRdRTbNyLxZECR7Io3pKSI+letRSLqVLhZZ1Fca1fmmiI5LqQzIAsVRkmcchAVRhmHhJPJOKh9ZixEjTMOA03jCkmEpTrj4O/rCYy15PL5fvlbjx49evTo0aPHjYReVLrB8NFfepiFKAfSugG2Lhl1t2IH59542Ehn/goEfxgfixuIWwNlgwrsizW1VawJ755YvyTjBukLOoNb6+dhghF46wbuPhbsoDM2Ap6L3ZXO7rJmzcX33Q5sc0k5NaQGtor3LepizTiqwJ40TqQwLETZizhdKKYJB1vebvDdiAmmvH747XeEMyjbOnCG5I0ro+W0F3HapOYWs8ZIS+bBxLd1JYq8U/zgXgjHKxW2GXKbWWPT1BQGxlKxK4vAqUW5RdfZ1gGFEkyFA6fMaNiILuWljThuas3cta3AqdDA6UIxDfcwmND2OpNqaAuYSLczmNJxKlUYS8U1WThxyeelCcLO+Swvc1IOjWiSF6TLi7q8TKO8LMS2p33H6WIxsxykM1M2zyEvAy3YYsA5XWNDayscSMVeMI235vi36DpbOkCUYIx8XF5829rRIWd0xBkzotaCTa2Zuf7SOsEo7j/nk7wsvxNAHKd4FzpxRv62rQ2kZDfisBC7i6Rva+dltrLPxybWcez9mfz5mzqgdCKNqBUCB5QMtQxCzpCSda0ondhSUzJyoslACiqKTggSqCjYpKbWghLrE7VGRaV2xs+Qyvq5qZ2tWSCsax2EmgEl61QhHlMx8EKRE1rWqBhqGTybxpSMXLymlROaLCdFGVIydsKOL++a5yQVlfOKijmsYY8XWA+yLcepQhi6MnkRs6RgqGUoY4mwSW2X2zpRakRphSO1fmC2Lq20VFKwTsXYcXBNgVKFda0YUfH+X/jyC/xXq0ePHj169OjRo8eLGb1R9w2G3Ut2qU0jSiOdsbA3e51ramBrIi8lvySspEClM7jddCbUDXbJSSnW4HoqhqlfhSI+7oyGvWGtH3zbQWSLnYgoIR5RUmHNZufYHYpKhIVot+TEcdqTNhjWek5+OVDMIY79DAG/+5M1ubaxNRPvfJk8J79MJDGwDZzaJY4VQiFiz9c2fNHfiNLQhAUqnoNff7RGxZqpKAV2y0UY7Md582WuXV4WbqAPdpB5k44xjOysD8fpwJn0FgindMRJhlxiFkSWRsk42XqXiMMwyks6CyWdneM57TnPJXXCTsiL4+BvYcR6DRXGzz6xbaEIUzTszJuJExMUz6kNSzGX87Ka05CCQlzb0tav7WSOMs/zQsu+dDvEeSHHl3ke95dD8uJnhg0oOatjwmw31z+8eXKJcFpHnGLIRabXlRff9gq1/WdHh2zrIGTG5qWbCbYQZbGUlzbkxUQcCiRwKlQYu2w0aPdHRIRJxEEFJhj2VYMPU5cXEg5k8Ri7VMufL9ot3ypQ+54SuyNaiTBTK7oOKBlEi7xKCsbRDKMCu4xtodZnrKJggyLUSYGb/RPiggF2xs4BDYUIYypG+B3lrPH60MWCUCNUKHvaImJnG3mvL7+MbkDBwF1RIZQoM7WiZ01J1bV2ajcryy9VKxFKShba0ohSUrBG4WVSSscproMSOxNwjt2lrqSgxs8WgzVqxhGHASU1Ba3rDwMqaicGdpxLotSFWWVXL3U7Avbo0aNHjx49evR46aOfqXSD4dy9m+kvsmWkRRbnHtdgv1E/zAvIDvLTOHmGZI8Ulo20MxxpHpvfn+X4uPt7Ds+F0yDzV0kMbFdw1CyekhoPa1bEPF7L9V9/XJMfoZxz6WZ1gRMFolLkdbLkGXMdHHL/pMSHakVelursEAP1wElSo+GGdBnYqjwPsldaEq1oJ0uG0HJEXoSl+x9qlpxSCRxmmal1npclTteRl5zTNOIgpMuXnk9ecg6aNbpFaGmRwhChkNQUHlbkJavn1NnH1lvMKfcGWvYcO7rPe0+nrsiScsji3P9LsrytivMyShbHHPM8pWf7oqb9rTimLfprjuKQX68cfTwvY+H+i8+9/Z7tpXL06NGjR48ePb61oco33f/oG/PfN7tmXxroRaUbDO/88Tsp63zQ2PWm3Px11UAl+b1kRt2s9nCNn5MPAPM4vz43qD1ux7lV5uNHDzHtPWNO+U5LOYKZsjutPPxUd//0fhdkciSHPN7SQbIrWHi2/5WkhtCtKNcyU+scOcNlk+ujzw+mvu7AZY426vbL7JL75zeNOGnGyQjsesPmFfcHlkyuc6PhvDbyPF84xtR6W4cJh3JJbcs4OfEtNrXeJTW1zsWIHCeOyUsuwDwjB8l9NfrfqmeeWDLqZolTzEEFe74raivKXsQpFyfAtt8YwSC6U6ySn03G6jKzpNy5uFfF/kkRZ4/8nVH499wKEc/940iT67gsHr4/+N9Xx5iR+1luyfkr6t2jzTit2lQhuTbrP7lQtUq4yjl0Om8ngq7iHt2UP/vTr1h9rEePHj169OjRo8dLEr2odIPhyvkp00VuuqtLAx4PO5hMseob9HzwkxsLx4Ob5QFJGuf3z78J92X28P488UwjiW+rhwtd8TNiNIdw8NjRIWtahcLmA/v8eflkjFqKRNCwXlLpoD/m1B49Xwt0RV40reucQ56nVlIWqzjE2NIBp8woHPDLlWJOMYfGeQ7FN04Gxprlza+RSsqkR3I6qSPGWiXnH80pvX8lRWYan+ZFUG7W9WUx5DCsaOrK0XlZio/JSy6a1pSZ6XW2i17Wfxae4fV+U6Nwi1lPTOCXOZmsra3oIbmoE8V5W6ulIBa22iwvLUrrl965snRuZnbWW2z6biJ/J39+zmHVe+1ocVuSMvo6iPOQizyJEIxJ+qC6dhCX0WRlPorT6jIfHfv7xu9qzcqY79CYPE8Nzzy5T48ePXr06NGjR48bB72odIPhX/3Th4O5svc2MYI16EZpsctfjvpG2wowbiChdimJFyg6U2oNAxpvAO4Fhnx4aWcJxZNusoF+1kw1lNm4Z0rg4AeyocyazUJa8QxhebYUYpdzNYdwAuEOs8kZM6ZSOU7ysTPAIo7bOqSNOCjdrncmy4tBuSoLkMOXc0nGqdaCNamDYXTOwRt1x3m5IvNEoDhOVDqhI07riHNmjaGWbDFIOHR58hzmSaIVv4Sme1jhYtHlvFij7piTcc+LxSvhTrMZdljL29qqvMTY1sGReVGELR1wu9lgTSsaX9BDKirPy4CCkVRLefGm16vyclnmye2XRaW0bZ3UoTNK921JD2lbZmVevB9YSqn7xRoVmwy402yyZQbUpmBEFYy987wYjH1GBAMhz6j9dxznfd57Q8VG/SqdaBIM+CUWQSScXyDg/MC8UOivj/uuF5a8MXcb6swKNq127zlfV/4ZJba9+djXbxt+o0lcOt8kf9S7XXXnd0KUQV2ddJx8nrLFhxEnpRCJ2oHBiGICB5N4j6k7v43K1LWfzlA95uDbRidwwft/8Sv06NGjR48ePXr0uHHQG3XfYNi7Ygd3dvATf5PvZkhoKsq0pHG+DMJj1ZIXL1K5E5zBczpBQaPr498cPqupg3EDKn+KOgHDDlIl4mBW3jN/Zry0w5sn+zL7YzGnAuGMjjmtIz5bXuyWg62AROVRrHF3zMEbEXvhJ87LArttvb9PyfHL83x5YwP1mINGwoHn2DjecZ6PQunO3tYh2zoMA23PwSxxWD3jxnOK85LP7DqMU85B3HlndY0zOuYz5YWl5ZlHctKj8+KxTs26qXlK9nmy7GZmHPck7+WTGNvjZ7aszks+y2fVM9K2ZZ/hBY74ujgvnuNMjpbe8jz4OhpQcouuJ0Luqra1UF32DGP5nRLHS7nPZkXFO+u10Jnzu2NWpOpmZoGrZ8e5jRbQ++O+T8bvJy+YmIiTPz+/f/w28f/l5U1jTc6P+08sdnmhK85lbo6/KibqLwYNs7iQVcsDo1YlbpKgphzia3IOMa5dni79rkePHj169OjxrQ/NP9D16OHQz1S6wXDby7ePPiF7V6wWj9IByfUIEMn9l2ZypPdfft6RRTzWMCkY2oYx1fLUkpjTYYa3h0EQRpobdx9+vSCpqTWrhmYphocZg2v3Q6NRYDezZnWectNeJH3GaqPgFInZOMf7Fy1zIIuP5nScUXceC34nr8OR5zUXWI7LS26gfnid2X/Ng+xyRP85Ii9HP8NynmV5yXF8XtIzNPvHTFIvoDzveaEKkc5DaUUZVplY5/U+z/JSZh9qiiVzcT0yzs/358SiSdpfWGoM+T3z2Yor6+WI85fffc/v/G45nCacjntPxteG84+YsXYY7n75ieMf1KNHjx49evTo0eMlg15UusHwXT92F1WdLSfTbPAU4TBx4Sij7sOWgh020FveuSlF7hOSl/moe0O0rOaIx8SeM0v3k2VO3SwC+/O0jv2F9pL4K36iOnI/VplaV4Mmiccb3dbc69Sc3u6WEC0ZDQuUWnSzKUTZY57k6TCBxJdjJzMfr3Mz5e4CwJqNx9fnYgmkedqkTsQAYVkcqFQyTl2sAgeZUfeJrYMk3trwsyRcXswoKXOR5aXN8nK1mJDPMymLVNAYlJ1os6WDpZ3NYtNrBE6NF3gSrSgHNEletkaL6HRha5hyPLnEIRXf6lA++4sr5SQliS7JNGVUyE0dJHkI/SVCnJe5mJRDhlW/38mNujOhN/+Zz87KjbqHFMTbdVQUmVDHUhz34VWCT/5eS720lo2683eAF4p9XB9j1D3PFq5VZDsBZhzypXqrjLq7pX/dNUcZdefIjbrzclyPUfcP//T9q4/16NGjR48ePXr0eEmiF5VuMJx/cp/9xSIZ4MwxyeA/N+4+ZkII82wGifdW6e6Xmrt6H4/OOPjo+9vlU91ZBmUh3XKOFhMGaABGTJgREu5xaI0sc4Zupk8Xp8bAC+ex4jlsaM2WGYTCn9BhYmK9qQMrDrh44PxUPO54zdP81b//K4gTCE7feo2//j/9ShCaNjan/Pf/9a+xNl4EQiMtk8H4bWYj2SEuH0gvMrvvPC+bWifm4yd0yI4ZhnhHh3aHOBfXFCxoozzqUp6azDz5JrMWBItChdvMRiL03Gm2OoFD4XazmcxyqTTdIevf/rHf52V3XgjxT//oH/D6B57AF/KkjhIOFZIIJCd1xFkzDvHb7rnIv/Guz4fr7zmzy898+1eCKHN284C//F1fohC/pBLuNluBk6gwjPJSivJ3vuMpTo6awKnOOPy5b3uYc1uTEP9rr36Cu050S+pO6YhNU0f1nnJ4z7k57711Gsr8bTcd8K57LoT4Zaf2+aH7nwn3O7e24IfuvoIvROHaDodwEOCedjvJS32MEJzP7DmjY9u2HCokEQzzuKZMRBxrbN/1twWGRTR7qcEwjfq8b4vxeyw35j4gfQ/Osv6Rm1xPpM3ea+l7zPc3H09pWERlblyZOuEqvd6/x+Lnx5xUdElgn0qTcWqW+nh8fv6untEmAp73T0rMw6N4Rsss6vP+uR4HLHjk4av06NGjR48ePXr0uHHQeyrdYPitX34YI8pcWyoKO4gQmGGoo2/7WwiyhzVTtkeSb/NdjMBEW2oKKrxo5GMJIlLpvu1vw72sGW4u+MTDVT8ZpxVl5srs76eijoMVpjoO1i/Gn7900xUQd32FNYpW7MC1dHErSqutHdC7Mnh/Gl+Pt+o6a6bikkzZdrvDjbTkYjFlWwfs6JDaFFyRGVvYmRvGiXbf/sNf5J0/+cecOLfLP/sv38Et917hze95kP/sA/87v/RfvY31as53vONJfuUX/gV/7398Pe//1buRtmZNhTkttZZsMuAes815mbDP3Jkn2zoosjrxvkxxXgxwzqxzRWZclTmbOuC0lqxpFThsaM3IcdxiQCOKcbm3O3D5PEnIy0JMMCVeo+ZWs8HlYgZqZ2Dd7cpsUDaoeZnZ4Vk5YErDFgPGpuJZOWCXOevUwUerqlr+1Ju/xtte9yi/+MHX8qsffTnf87YH+YF3fpl/+quv5X2//krOX9rkXrPFMzrhfGGFG1EoVVlIyykz4oQOGWnF+WLCe+6/yA+/9lnOndjnlz9+H687d4XvfPkznFqf8f7P3M5dp/Z4010X+Rs/+Bne95nb+cxjJ9nSAa9sT/BUccBVmVNRhLy8+vSEb7t5wj/6gUf4nz97io88eIJxWwUOa4OG1992lZed2eODXzjH733tFG+64wqvv+0qH/7yWX7n4dPsTmruMds8qxMuFhMUKBUKtcLKn7ppzmu3W16+2fDLj41459k57zy7x00bM3774ZO89uZd3nb7FU6tLfjNr53irvUFrzs9YWvQ8tEnN/jaVeuJdW9bcL6YsCtzSgrGKixoWTc1W3QcZzSMqILk4vto3I8LJHBU7GzEu80W52XCJZnSumV9C7XibOXcpho1LDAMKFy7tULKhtYYAVVDgTCV1glHLSUFU1oaUSbaMqCwzxeYqwntP+7TCwytwL42DCmtp1fUPyoEkSJcL3S+ZoPkvWbbekXBQIRGlcL1qZmYIE7X0XvLvzNqKmuYriac34oyde+ZBk04DSjAPaPEicSCO9++oY3AgTYMKKndm3vu3muE95iG99wcwxwYuDL6uimxRuLBAN3FU2mCqfxQS0rnXtdgmEpDI8o//6df4q3fftvRL9wePXr06NGjx7ccek+lHodB8mVE32yIyLuBHwceBE4BO8DPquqVb/S9XshnR/f85Bvf+MY3fvKTn3y+t3hB8f/9T36fn/+5PwqxKksmujni6Wz58op4oVD4RaYKCRBbmBy3I5eseEZ8S5P/4rgyP0eOOVZyJCpDxnGVN1NebwWdaTPAX/q5D/Fn/v0/CHE7K6mK7rjuwmjaleJX3ncP/+Ff/94Qj7Tkdt0Msd+B60hSR9RJzuF6OK3K/XHPkOyCOvb3UWUY6d75EsT1tSm/+N/+b91xo5SjtsuDwk/+1Z/h2u44PO+rxdXEn+fudosN6hD/9R/9Pd72yqdCvHd5DTMdhrhthTJqLB/4zK384ifuCfFlmfJk0S3Je9stu/w3734sxF99doO/877Xh/jk+pS//UOf7e5vgLarA1X467/8ehrTLaX6cnHF7jrn4r/3lsvcs9ktyTOqSRnzeH9vRLvolqP9xmOb/M6TWyG+IBOeKbqZU5um5o6obakTGML9s7wsN4P0fEX5YnEZc0h/UZSBkys8TpsR46gtXGMevJ0ADmiSuNaCgXT1WKqE5Whgva32pVtuKkpyfqGwTldHRpVLRWRArXb2VBxvM+zKrLYttPE6wqxiNnWQ+Fnts2AecWjVhDoCGGvFetRWF9oyLeLz7czAmPNWzAFN2r6qchDVAQo7DJI+2WRvkWsyx+ScSHn95F94FX/vf/pBevTo0aNHjxsFb3rTm/jUpz71KVV90ze7LN8IiMgn79+66Y0//+3/5je7KC84/sLv/K988dozL9nc/UnhRTVTSUR+DPiP46SKyBuBT4rIm56LuPNc7/VCPvvFjLvu30l/ccigf1k88juDycrjh97veQnackRkxZvnJIVGg9fDRBE/RL8eI9rjOK66x3H3feJLp5K4rA203aC1GCpEY9pXvPyy+5cdqcZLfeJ95q6bwzHlvS5OzzH3qwzTIc6L94jpzo4ZHUyGXLoy5uSOFUCKQpKBuwjcectlPvulcbjDkDJZYjSTlg3tBupPXtwEOlGprltmUb2XRaoM3Hoi9XQaafpKfeSaFaRUbXlu3p5SFobWWH7XJgMm85LxwIoDheQ7d8FNm1OeuLqWcGhoQvz4QZWISkVWrXlcVy1tZNt0di318so5zMW4GUfdOyBta2lelrOaev14DpNoR8NV58d3ysWN3N9oye8oM4XKha9wvnuMihO3FLdbWvp+ELHCUxCnJXufiBWeiij2szIPqxi77CwSvvJ6kLRm8zrIzcZD6DjFRv3hzR1Xq2QzzByHuBx5bu2MxsM5Abzs/lPLv+zRo0ePHj169OjxksWLxlNJRHaAXwR+Nv69qn4K+BTwD79R93ohn/1ix3f/6D1UgzTtq0yoU7NXc2gssDQnxnt0dP4maZz/zA1v83ilAfSKMh8W+zIexWnV8fz6ozhdD4f4Z+7X8q9+8VU0k2iWjig6jWZ31HDp8jjEL3/ZZe68bRc/qmtFmUTmyZIP/lg2Pz4uT8dxyPPy9ebJlykeqJ9Y77yCBOF8FoRMAAEAAElEQVTkWmderiq8/7dfnlx/8cqaO2bjb3/Lg0k5bhYvINl4NzO1/sin77CzhRzq8ZxFm46cJ4suL6++9TLDulNoRpScKrvzn9ob8KVn18OAf2PYcNeZa4FTYwp+52vdIFwErsyqhMNrbrmScNgxqaH6bzw5Ss5f9TOekFoPFt3FwCtOTFivO2FpnYpB5GM1k5b5ko8OSVvLcVjeDzOFzw3UTSi8/bEX+R+Bref4EQNSn6rWCURxeeO4pEg8nPxJIl3bS98hsrRLnmZlnvtd91wczs/O8z+ntEmZ6oyDxNdgl+7FM4sLpKu3EHecVJaNulPBaHlXvnxXyjy3A804ZRCBn/jXX7X6YI8ePXr06NGjR4+XJF40ohLwE+7nJ1Yc+wXgx76B93ohn/2ixhOPXOPyfJoIA3vMk3iXWTIIvOZsr7vj80Sg2GORfIt+wCIxcJ6QDkqnNMwiAWRGwzSJW/ZZhHiBYT/a9atxcSfQGPYjDmYlp3nCad/N7bl+Tk3GqTmS05SGg4hDzsmgYaYGwE3jGdUHbkXdI/XqAPN/3Y4u7PnXroz4G//+n2Z/z4ois1lJeWUrGYxPaJby1GScFhmnmMMBTWLCO6VJhKoZbRLPMezTiRENJhn8Nxh2ozy0rkxxnq5mbW0/MhoWlL/yrs9zerNbivUz7/gqt+50Jtb/6wcf4DMPng7x//hPX8/HPnNrEHEevjhmGnF61y0H/OAtnVD11pv3+Z7I1PqxK2P+u1/rdq/6/FPb/H8+eg/GVdvj10b8F791XxCark4rzpvOTHlQKP/enQ1rpY1LlGuP38xi3glFj09Tge8XP3eWhy+PQvyPP3MzX7iwFjg8OZUkTwMpGCeG6gP298bh/OlkyN5ud/1iPmD/2nq4vxTKeN3vcgd1afiJ1zwV7XIn3BIZqIv6GStdnmJj/NhbycNE58OyOf+W1naGmCvjjg7ZjozuN5x/l48Hki6HU9zys+iha1SRSCWJ0CSkwpOijKmSXRqHlMmud7UWSTz0QpTDIBOmBlomok6BWFN2F9eIFeskuj4TeYaRWFaopJyQJfFsGB1HYS3moDDUjBNyJKdhtuzQ+615VDgT93hWFN2/19qKR758hR49evTo0aPHSxBGXnr/9XhB8GJa/vbjwJVDlpk9BHaJmqr+0jfgXi/ks1/U+LV//iALMVzTOWMqWgyNGK7pjJFrDq1oiAuEVpSrOmVMTYXQiHJFZ4ypGFCG6328wLBwRtFDShZOVBpiGFEyp3VG14YhVdhJrcEwomJBy0IMrRrGVHbHIWlp3TPmtMylxagychwWGYdGlKuOI2jCqURoxARO5QpOCzFcjeK54+A5zd0uSENKV2bDDGve7ZdYWU4albnjZFwZjS4YUvL2+5+CL+4g/7iGt51HLw3Rhzdp/3/3ULzjAh//zDn+6BO38W/+6J/n3/jLf8D29pTp7hqnMezpwooOIiEPJZJwGGachhRhJ6cxlcuL3UFr4TjNojxZDpZT6/I0D3kxgePM5WXs6mQenlljXJ58Pfu2dkVnrFFZ82NRrqltO/ednHD/LVf5T3/kE7z/D+/kM4+e5NW3XeHuM5/lQ5+7lX/15bM8PCv5q//1u/nz3/sF/ux3fJVf/+RdfODj9/Lj7/4iP/rdX+TXP3knu2LFtLGWvOamPX5ga8bLtxb8y8fHvOPsnDef3uPmzRm/88gJPnO14v/6xJ08fmmNn3rbw/zeV8/wWw+d5vz+gB95zVM8fGnMJx/f4W+8/5X8yGue4uq0YqbQyJw1rbhvc8F968r/896W950vOD8X1syAh75wF6dvvsheNeXx3RHizh9QsNsU/K1fv5f33n+e77rrEr//xDafeHKLH7jvIt9z12U+8dQWu9IwQhlpwQJlhwEDLdhnwRu2lL1r6zSLirX1CfPZkPlsQLMoXVwzm4xo24Lx+pTBcM5guKAoDLPpEBHlFVtz/r23PMpvfe0kn31mgzUq7jbbXJAJLYZCCoz6BYlWZZqpN7ZPxR5/3J8P6kzb7XzAEuuadk7XuKJzrsqMLecvNDYVl2XGBjUjLRlowZ4sWNMKv9BOsSJVRYGI3VWtwRpNr1NFZtvWsHuhhkKFkoIhQqO2X5YibFAz0zbcr3TnG4UBJQZDq27pmQjrWjHDuPeZnbWzcObiIyfIGCVsJOBFG2+YX1FQqDDHMNbKclB1+84ptdjaXKhBIOHUGWMrjTqTfbHC09xxKCkCJ6PWm0rRwLmQgqF2O9cVCGuUzFWZu3eBuPptsAb7JVDQ7Xa5phWVWtPuVuyMsJqCkZbUlHzonz3IW76rN+ru0aNHjx49evS4UfCiMeoWkcvAJVW9d8Wxe7Dm2T+nqj+7dPHXea8X8tkrrn9RGXX/3f/kY/zD/6Iri6qmJtZ2Xcvzj1dA4mUluKUtL+QzV8Sx38jXzXEVsnOeK8daS6rI6PevvvsL/PhbHu2ub0FNt9zmX3z6Vv6bD7+yex6p+XHrBKz4+bFp7/Ph9PVyfK5xoZKYJb/y7C5/94c/1z2vJTGY3p2V/MwvvCGhUGQ3tTO1uvhvveUpblnvZlepGCI/dP67PzrNH57vZvXYQ4cXOl/w98adOX/ujs6EyRgw2nF6bCL8Dw+tJber4rbKqpVF6TNtHrqj/+49B5wbRUu1xCTHRUziq7Sxtct4vVtG2LZCPGn1o4/s8CtfuqnjQJpnVU2/2HGiQhem/U2dqBSjyNqSnQ3VxQtM2vYgEa8OWASzcrCzHeP2XwAVqfF2bAK/cCJvXMa4P6GaGnWj7EtkRJWVB2Bd64TDLrOleoiPj7VKyjTNOOVLQ2stgmjuOaTnpwuRRe1ui/HxRXS+osnMRbCzvVKj7rQM8+w3qwz8f/in7+fv/M/fS48ePXr06HGj4IYx6n77X/xmF+UFx1/43f+lN+p+AfBiWv628wKd83zu9UI++0WN+x44mf4iFxpcHIbK1xkfiUOe8Scdx2VO/H+Ou34Vvs4yaWYk/PCFjfT07Py7T++l17sbeg75ADe//sWcp7CMKl63Azx5bURjJHjXWA2uq7f1QcvJ8Ty5peb1kMVP7NfZ8RS3baTCwfIOekdX5NNTKxKEMostlY9PD5RKIulIlv2HliFHhs/OjnmNZ1sfNk06QbUo0uef25wlsb/60HcAKzhE4XUZ+j+3w6kABBRZnNdoHofrAyVnDh5OlISTALJEMf3Fshl4Wqa8HvLzcw55HRx6/4hDHIdZY/HxY5pa3t6Xu+xy/8p/d98DvVF3jx49evTo0aPHjYQXk6gEcOWQ319yP08ecvyFuNfX9WwR+eSq/4D7j7ruTxrf9yP3UQ/yAdjy4Cg1sT4+zq+P75vH+XOv5+fXYwjtTasPMxo+isP1croejqnHTEsZjVI/8vlzLJooLwImMoh+9a1X2Ryng/2Y0/Xs1vZcOR1nqL7q38fl5ai2psDOoMEPZa9Oa7741GYQyETAxDviCbz+1ivHljGOP/6UnYUUfKDdlBsfv+PmPfg6OD05Lbk0LZMyt20R4nEJt4xbOKTtCc/dBP7Tl+uEg3FCXIijfwNMD4aYbA15G7W1e05MOD3uxDVBaDVta7mheptwWDaJzzm1x3DKhSyT5aHKBJIqa+9K3jZhGJ1TIKzF3kCQxis45buzLQtXmhwYZqbWmWbKIjfq1mLpprGQ1aJJLJB4OgmSmo8LSHY8nlEmOM+nqEyaGaTnb5FcvM4hYmcq9ejRo0ePHj169Lhx8GITlY7DzjfxXi/ks79peOShK+zOOzNlxe5CFAsIq2JzSAwE7x2PufPd6Yy2Nfhx+OOL7Pg8ihs0MSZuSY2BDTh7527AOc2Mg2fHcJo9D05NUuY0btCEU4NJOHkOHq8/M+Hfft3TiHvGLRtzDs5vh8F/u6i4/OSpMPi/Oqm4OCfj1CQcVnGKOSwwz4nTIuPUHpIXD4Mu5WW+lKfD81KL8u8+cJmdgd9qXikPxjSLbonQlfPbLGbdTJsnJkVW5jaJZ7SJwfqWDhIT68lkxO7Vbne2h/cruytXwqlJxJBJFCvW4DwYdQtMd9dpI7Hq4qVNGicYqsL5Js2LbWsmidP+0i61rThebwdc2x11nKZDrkUc5/Oaq9fWu7bVVpx/5lSIF/Oap544G9qaqvCn77zKsOyEoF1Jje6vutbm4wMWCYd9aZKlVXssEhN470vUmcK3iaH6hGbJrP8gyotCongszyjz5/m8CO8oxmExWKHwhnaTYSSqvMlsshbFx80syuWVc2bICRObj9ecMsMQn9ABZ9tRiE/qgNtMZ9BeUbCtgyDoVFqwzbCLEU7qIAhLosJOFKOwzcCahbv4hA4SI+4trTshCdikTszDt7ROjLjzes2FtByq8OU/vnjMWT169OjRo0ePbzmooC/B//IZ/T2eH15MRt1wuHDjZwld+Qbe6+t69mHrMN1spTcede2fJD70Kw/a7ee1ZUCBwfqjTLQN32JrFEsWF1lcYo3zp9pSu2/z/U5PFdY818feDNdLIcbFrZvHYML5hlbAuHs2WKNt457ZunjqYstBEw4pJ13iZJ4np9aV0ZsDt4FDF9cULDB2UwH151tOqi0VwlvO7fPO2/c4u7bgfQ+e5P6bdpkfjLjy+GnGO3ssZgMWkxEXHz3L+oldfuexDWZGmLNgQOnMju0ObXGe5s48GawJdhtxMNHxApY4tRknn6f4uEnyYpzZuI3zvKirR2/ovNzW0ry8cnvBXZsNf/MNF/jw4+s8flByeqhceeYE480D6uGC2WTMfDpgfeuAYjzlk09uoiyosSbBlk8b5cFKHQ3KgIJXbhiuXd1gPq9Z3zhgNh0ynw9YLCrWNw74vfMjFmIwuuiMmp2AZ+9vaEU50CbqP8q+O//eQUmhFRcvbbG+NqUQpWlqLlzcZmN9wtVixrMLAZfHKuSxpUataTxK4/JaB+N7Q0sR+keDnf1TUXBXXXNtd535omJzfcpsWjObW6Pu9Y0p81nNdDqkaUo21ieIwGI64snHb2J7Z5fpdMDkYMxjD5/jxKmrDOoF59Za/uL9l/i9Z9b41KWaFuWqM7oXrMn8JZ2yRm3roYBdXTDSkoqChRgWas2rB0gQjcZUjKmcMNblZSGGmRM1R1oykYa5u8eaN/MXpVUTzPlj5HFBuizrnFScLCreJRt82czYVdim5tvbHb5WTNhlwUlqvtPs8KBMeExmro/ZGVrq2i7KoWvzTpshQwo2teR8MWdda3Z0wJpWXCymbJmBNSBvSy7KjDNmyBkdMGoLnpU5MzHUlJQq7NNQYneDO8mIA1e3QyrOaBF2cqwpOa0j9mlC7M/3dTXQkn0WTJy5+EkVDrTlQBoGlJygsDELNnRAoXAgDQfifKoS8e4w+a7Dh3/5Qd7+Pbcfe16PHj169OjRo0ePlwZeTKLSles459Lxpzyve72Qz35R42DfLmtRSWf7qJDMOsljhNTU1cWLJFYW0XfZdnDcBoNnH6sbmPnYD9S8IOBv0YoVOHxsXJmX4hVlLpAQH8bx6+FExsFz9BxMwmGZU+lmgbzi1JRXnHqSsrZPbeY1u8+eoHUzW9p5zbVnTvLsk5tR3uzzvHATc/RlMlHsORRIOK7XwSnPizdT9hyMm+piRJmtyJPgvGpcGY5ra1ramSjbA8OP3bNLUdhYTcHB1Y1oJk3J3tVN9i9uoY7TAitAlO6ZfjdBE+rExpXYX0wnI6aTEUXZIoLbMW3Itf1OkJvQUKhtS37Gki+1kWzWlcuLKQAqjCnZ3VsPZTam4NruOk83I2AfxM5Amqvb6h7LYR4N4r2Y5PPg41I9R5snP+9kOh0ynQ4pCmvMPZsPmF0aUDgz8sWi5vKVmuFwzmDQMp8NOf/MMMyims8HPPPUGUajGZsbE04MW95zxy43b1b8o0fWMGJnZZmI8z4LDnCG0AJTsdKkb3tTWiZRW5vQMKFhpBUidhe0ecRxjnFikr1mLnbXxUoLSgoaUfZYhLyENsTR8ELruhS8oRwzA3YNjCh5pdnANQsrPOo6d+iIjxd7QZgK948ElnwmU+mErFM64FQ74DINRmBbB2y3g9BWtnTAlg7YcDOGNrViUyuekRnXipYBJQMtba8W28+3sYKV5VKwo8Owu2JJwZYOME7ULRE2GYT6KRA2dcAGysKdv0nBhlbMxYpmG27XuMLxWteada15oti/DhkpxSd/50k+/huPUVYFv/uRxzBGeeM7zrFxcsCvf+hrzGYtb/i2m7nrzh1+430PMz1YcP9rz/DyV53kN9/3MLtX59z7ypO86s1n+ND7HuLypQl33bPD2995G7/1gUe48OwBt9y+ybe/6w4+9uFHeebxfU7fvMZ3vOd2fudfPc6jX7vKyVNj3v2Dd/Pp33+Gh750ia2dId/zg/fw4Gcv8ZXPXmS8XvPOH7yThx6+zGc++QyDYcl3f/9dXD4/5ZMff5KqKviOd91BOzF86refAuCN33mOYlTw2x95hLZR3vS2c5w6M+Y3Pvgw81nLa954E/fcvcNH3/8ok/2G+159kntfe4KPvP9rXLsy495XnOD1bz3Hr73vIS5dnHDH3dt8+3fezsc++BgXnjrgptvWeeu7b+N3fv1Rnnxsl9Nn1/hTP3A3v/vbj/HIQ1c5cXLE9773Xj73+8/y0Bcvs7k94Dvfexdf/vxFvviZ84zWar7nB+/ikUeu8ulPPG05fe/d7F+e86mPPUVRCG9/120UjfCHv/kUqsprv+Mm6o2Kj334UdpGee1bb+Lmcxv83gceZz5tedkbTnHby7b43fc9xmRvwV0PnODeN9g8Xbs8466Xb/PGt5/j4+9/nCvnp9x85wbf9j238Ee/+hSXn5xw8tY1Xvf9N/P7H3mSZx7dY+fMiLf/4O188aPnefKr19g4MeQtP3Qbj3ziEo9/7irjrZo3/NCtPPTFy3zl0xcZrVW89T23cfmJCV/+/YuUtfCm77uF2dWGL3/0PFIID3zPWeai/OFvPIUxyqvfcZbNnSGf+uATNHPDK956hptvXecz73+K2UHDna8/wU2v2uRjv/IYB9cW3PmqHV72xlP83vseZ/fSjFvu2+L177yZz/zLJ7n27JRTd6xz/7vP8okPPcmFJ/Y5eW6NN7/nVj79m0/x1Nccp/fezoMfu8BTX9plbafmDX/mVj7/6Qs8+LlLrG3UvOMHb+eRr17lC394nuGo4p3vuYNrT8/4/MefpawK3vjuc0wmCz790WdsW/uum5Fa+L1ff4K2Mbz+Hec4fWrMH/zqEyxmhle8+TRn71zndz/wmG1rrz3JXa/e4Tf/pe0/99x/gte95SY+/r7HuHpxxq33bPKa77yJ3/zVR7jw9D43377J2999G7/5kYd54vFdzt60zvd+/z38wb96ksceusrOqRHf/d67+czvP8PXXFv7rvfexec+d54vfPYCa+s17/6Be3ji4Wv88SefZTAs+c7vu5OrF6d8+mNPU1bC2951G/uzho//9uMAvPU7bmV9POCjH3mEplHe+NabOXvTOh/91UeZT1seeOMZzt27yUc+8DX29+bc/+rTvOq1Z/nI+x7i2pUZ97z8BG966zl++/2PcuXClFvv3uSN33ULv/HBr/Hs0/ucu3WT7/reO/ntjzzKE49d48zZdb77PXfxR7/zNI999RpbJ4d853vv5NOffJqvfuESG1sD3vXee/jyFy7yuT96lvFazbt+4G7OP7rPH/+B5fT277udK1emfOJjT1IUwju++3aa1vCxf/UYauDN77iFE1sjPvbhx2gWhte85SZO37LGb37wYWaThgdef5a7Xr7Dr73/IXavzbj/Vad57etv4rdc/7nzZTu86e3n+PgHHufK+Qk337nJt333LXzqg09y6ckDTt6yxhu//xb+8Dee4pmH99g+M+Jt772NP/6dZ3niK9fYODHg7X/6Dh761CUe+dxlxps1b3nvbTz75T0e/sNLDEYlr/vBW7j65ISHfu8iZV3wqu+7md3dOZ//6LNIIbzmT92ElvCHH3kKNcqr3nGWjZNDPvFB29buf8tpbrpjg99/3+PMDhruef1J7nrlDp/6lSeYXFtw6wPbvOzNp/ijX3mS/Utzzt63wX3vPMMnP/AEV56ZcvqONV777nN84kNPcOHx5f6zfXrI2//07Xzhd8/z+JeusrEz4K0/dDuPfvoKj/7xFUYbFW/6wVu5+OA+j3zyEvWo5LV/+hbufONzcUPp0aPHnwReTLu/fRh4t+ryHDQReTfwYeCvqOo/eKHv9UI+e8X1L6rd3/75L3yR/+BnPhDiZceY7sjRdrnHHe/gxQWPfBnJNwLpgDNerPSNmeL4XDn++L3X+LdeeTXERdlQD7tdyUwrNIvOVPqLl4b8Rx+9tbtBECMsJ0W7xUHSLS37esqY4/lcvzoPOSyHs8OW/+HN11DtDK5Ha3YnNRG7tGZ6MMLnUBX+7584ycVZtzzOCy4eC0wyq/Wnb4I3bkacCpMYVX/ggvCBC5HvjJJ46Sgs7egVc7qpEv7dU2NUFRHrbbQIy/eEqSp/78ouTXTDOppVE/J4RDPNBZXvXxvxwKBrK0W2o52IUkYc67phNOo8k9pWEvPuumrY2emM4Z+eFvzcFzeI29rCCZm+3PGuYUlbdMh3DbOz7Q5ffT238nOISwqqxA8ozcvCLaeLj8c7q52i5PvLrZCXVuHyvEg4+BoUJ6T+tlzDW00pyj6LJPd5f3hNs8WORrsT0jLP3b0jjLVgLeJ0RRacL7q8eFHJo1JhQ7s8t6gT8brZVI1ox0lhQytX1i5vRJxiERNgZMqkXs8XU6bS1esiWyZ8PTAoe7LodqNUWNOKQbw7HxLatKJMaJlFz60pkvNLFaqoF8ywM6+6++GOSzh/FF2xwLDLHBPlp4r6YaHCOnVocwblGvN0R80YapcSDt33dHZJaMPccVAn9Jvo/DFV0m/mGed8R89aC9YiDn55sa+EFr9Ul8Bhgyr0s0KFLQYJpz3mYQdBUdigTuo5pajs03RldBxGTk5FYY2SDe04HdCwV3RlqlQYaxnlBUZRnuYYLhfzsLtkoSR5KxTWtWujLcqlYt7taujep/58UdjSiqHjpChXZMHkqDxqxQZdGfdp2C3SJdFxDxhqwbZ2ZTyg5ZliGjjYPLWhL5cqbGnatmbRcb9M3ER52dJByIti7QRM1I8nNN1ulmrfxz4vPm/x7pVTGg6Krr/UWrAW5U1IZ3suMMn7r8DOoozr2c767vKyy5w26l9+hrUv44gy1IFivyyId+Qsozz68wcRpyktk6jP5xhowTp1xMGe70tk0PRvjAqb1KG/GFevGtXzInr7icI6dTfD3/VHz9mfH54R9Zc89mUcasEo6h9+NvhhKFy9x/1pLcoL2JkDsWXBHm34u+bbZteWllHledCi8+ZT61UYZsujTMQwjcrsv/zwyPuP/1vuS1yoJO+EUmFDU04Ar/6Bc/zb/8fbWdse8GLBDbH72+bNb/zHL8Hd3376d/8Xvrj79Es2d39SeDF5Kv3iEcfucT9/7Rt0rxfy2S9qvOeH72MwTD80nhynO17dtD7nqFHtbVvT5PgtG+kOXDev+1ij/++Q33mt8h/YXjix6eSo+7AhCGfHnQH0KtyyntbBzWN/vS3TmVEa5ziOY44PPbbOLDJHbpuSg0U0aC40cel9xYkZW4NoqC5wZq3LU2ya7OP8j/DZUVrPx5VxvfQfBOz5gyBM2J81uLlShyOXkbaqND5Zd0Lfs7OSJ6cS7VwnkcBkf5ZVJBwIvGZ7HhdpqTTxh1iAP9xLOahJr3rLVnqHlezyX0bxM41yzRjEFVrE765m45EIt5RR/xOyD1jSvZR19c/88V+ap/3NzpLrzrJfHHTxfF5iojFVUShtFC+akiYyRL95ZNipO3Nx/6E+3Xq+u4G4j5e2FOk7oPOmMtnx9GcRfVC353ezwmDZuLskbWtKKnpepOVAu7yUTnhNOXRtrUTYjgbX8S5nh5mLX5B5EtfZ+fnPWfbxekPLJBZSTskMRFfGmIMgmMhQHbHXHG3mn5apyfIyMmke8jo4DoqyJ06McZd4QanLtX1X+XjqxRV3fuUEpXC+doMYsIPFWFASUkGpcIO3bsBruMbsUEEJJ67EA95rzBIOOTacoOTLOPGCkjvfkPpTjSiXBryxoGTQRFAqVVg/QlCyQkR0hRO54h0CY0FJsYP+RjSU0QtKh+X2wAtK2nEYR5Pdx5RsasdpSstuJCiVmaBUZIJSg+FSJChJJijhBpdl1AYvHiIodbMCraDk46vSWEHpkDyuU7IZcZrQJoJS/iVCrcJOJCjNMDydCUqxYCRqZy7GeYiPB6/EiJMXlLo+Gi3FhU5QUp+HKsnLxAtK7viMNhGUKrUzE+P3QywotRj2IkFJsLmP8zKIBCXbX1JBaRiW7GsiKHlOQVDS7vlxHoeUQbD1HI4SlKpMUGoxzvuwq+dkIwbXP8ooL0cJSv4dUUccZl5QciflHpZjSkZRHvP+M9CCcSTsteiRgpIX8sL7XW37PUxQsn2+Tb4omV2noBTy4ASl4FWIRF9uwgy1glJUB7GglPcfKyh1n0UleyeIrhaUAP74A0/x93/iY7xYJkbcSPhm+x99QzyVerwgeDGJSv8EQER+bMWxHwd+TVUfyg+IyD0rzn+u93pez/5WxINfukwz6z4k3by+4L/6vofYHNg/0JuDhr/7fQ9yKhOaPATl77z7a9x3chJ+9zff/gSvPnMQ4r/25qd42y27+D8VBflwJsWfuWuPv/DyqxCdlZ//XOJTo4a//fYn2awtz7XK8Lfe8iynRod9CFH+5pue5d7tbne1/+BVl3nViVm48196xTXefDoV02LkHGUF5zjenZf8t58+HQbzX7oy4m9/7JYgNIkog8Ec/9f56rxgb9798R6Whv/02x8Pu3T5b8LTgWv6x/bfefkur945WjCM8d5zC37oXHf+u26a8+fvPAjxW081/KW7Zkg2EE45dx9IzgyUv3bPgrETp9ZL5a/d1QShaVAoZzcniHRi1mA0j2KoBwuk6OKL09Jqb9E3qGke7ODF//KO9Zaq6gTGqm6p664/PD51O2iFD7fprCA7YO2Oi4r9WOgHWgLbddP9AmVQN4j/9lKVgzbdxSv/wCSQcMrjMuN4bijUVSf61JVSV10dVaU6jr4Mwu7eOBh1zxclz15aT4Smg4NhiKctXGxNIqLss0g+MC8wieAxd+bj3bf9iyWT99To3iSG6hMaDqQz6lbSpapKuuyzQRPDdPutcSdEDVRYNEVYlmpUuRDNBFGFPYUmjOWUa5LOyrEeQ+mGA3Fca5GIOPvSMMnMyQ+k6T4wS7os9EBMsqSyxc4w0KxeY1FrPzPrvybz5JvxhjRvE0lN4vfk6LxYzmleJjQc/Ubv0PiBkWu/hUoYIMezIuLZVmGGpXuEXx7qZ8PkO/1NsnlxZfYWGGQ9ZhoN4oGw5C8+P55FN49nC6yg7WdBeQ5eSPCc/bs5QKGzjO9mOKT1lsajjEOLJmXJzx9mg8thNCsE3IA34lSuyEsMP3vGc8IJPvZym5d17QbIirKfDfqHmuYlnqEJsC9pXqpIqAA7gI3jqaSzOITuXSoIlUoQlPxy4YOYQw5dntm3l3HI5zdtaJqXK5LOZmwi4Q9sHsssj/H53rfQw8/Qi9uWifpTEBddLGrFi5jDvl/QL/4dkHIaaeqCkfvRTWkTDlXWv8rs/Fk0y8rfL85LgQRBSbA7iQZBKfwdj0R/Jcw085wmHC4oga2Dozjksy0T8ZLlGc757JrKcfBlWpWXXLSKOazqPyPtvsTws9GOQpXV+zDLS/5em2VtK297OXx/8nkQJ9rGeRlEefWzlPzFYWZshJxRXsY64zDSYunzUYzPf+hpvvb7Lwlnkh49XhJ40XgqqeoVEfkrwH8O/JL/vYi8ETtbaGlKmjfBFpE3qeqnnu+9ns+zv1Xxkfc95P6w2z+S77jjGq86O+Ef/Wtf5n//7BnmjfCyUzP+0Q9/if/jj8/yL798gmuzQRj63HNiyivPTviffvhL/MJnz/LRR7Z4w80T/tt3PcIvf+UEH3hom++4fY+337rHr3z1BP/8yyd4+PJaNMTOvyGHt9004YGTc16xM+OfPbTJZy6OMeqHGm5QzeExWfyWmw54+Yk5/+O7HuOXvrLD/rzknu0F//13PsU/e2iLDz66wbV5FTjdtrHg/pNz/pt3PsUvP7TFbz+5xhtOz3lg5wIfeHydDz2+xtvOzHj7mRkffnLMBx5b52u7dcKpCOXo/nAeVeYC4aNPrfP0QcUP33OVL18Z8slnNvgPPnwXP/aKS3zn7VdZGxgGozltU/Kpx7adS5HFa85MuGtnzt9998P8i6+c4MMPb3N+VqLhCb6m3bdipeGNpxa8eucKH35qzIeeGPPoQfwhJv2crcCbdhruWDO8fKPlV5+pefPJOa/eablrveX9T41484mGt5xsuGVseP/TAz59paLN8tbVA7xuy3DfuvL/vn/Orz5b0Ri4Ywz/r5c1fPB8wV6xYHOgaD2jWVR2AFkZytLWQbMoESkYjqY0Tc1kWvLFq+57MrX13n2LbT/YCWK/CVMbv3azpa6VojA0TUlVtVSVQcTGn9utw8fRVjV8IBa6D6IFQu2O21wW1CitKveOhGEpaNHQtAWtEYoCRsMFi6bkmRlccwNjo/aDXUXh3J8klLlAAyfftrq460EG5eWjkrq2y/gWTUFZtlSVIqI0rYtL40zDCxZNRWtKLl9dY200Z39SM5tXPHl+g+2NOZvrM+tbtb/GcLDgixPDTAXojPFbgT1dMKRwJukFM9rwzab34SqxHj8zaZnRMsQwdLMN7FIq6/Hj5Rtv3j8V+811izJ05t8thpk77vuufWbBlMb6LWnDEOu/pGLN9isKbtERogX7C2VQKjPszKSLGNYRBggG4ZrCSMGIYc/NyvDtYSYtM7UiRx1xrDDUFOxQs3ACQomwJ3b5W6PWfHzuBsEN1nR7ncKZ9ysVcFUWNMEEvgzm5Lu6YOi/5RaYOU5ztwRm35nGqxs0XNM5I0qG2P4yV9O16bChgTXvn2EN0odYU/VaChaqWBN44cDt4mc5FcykYSEmcMoHmDkWkgpEftlELCjF18fL83xfi4/HwgGuvbTRYA6WvynLl1nOMxEqL399zPk5BvFgcQWH/Hv0ytV9fDwehOff5qPLZWqzu+YD0Pz8QRbng72cQ46cUy745JwMJGIiSiIksEIcjGdq+WcknLIRcL68Ox98DrK2NsuEhRwDioRD495zHkszuNy7IBbiDpZEqPSaoaazxJtj8jjQlEPslQir85L3p1hICOKHg+R5YbmK8raS56XMrsjPz49X4Tn2ZxBUpfshSdtKOR0nhtj+0glxqwSaXNzI+0fev/Lz46XVEOVN/Pnp9TmHvP8kS/08Df9H/hCu+fl1Fi/nMS1TzjFH/vktF7HiWVBg/56m1gB5vPw8/2kxfkaMnNMqfPqfP849bz117Hk9evT4xuNFIyoBqOo/EJGHROQXgT8ATmF3ZXuTql5ZccmvueNLx57rvZ7Hs78lMT2wH3r8n4exm9Fw69ac/+jbnwifgM+sN/yHb32Sb7tlj7/+wXu782t7wsbA8Jfe9DT/tzc8w3wyZFQrP/XAJX7qgYt2yU8JP/KKy/zIKy7z7p9/FQvT/Qlssw8wo9Le8603TXnrTVP+xu+e5dMXxtmfsOXZP4fF/n43rTX8+6+7gDGCMSUnR4a/9MAV3nBmyt/83Zuj8+3140r5cy+/yk+97CqL2YBhBT981z5/9s591H24e89tE95z24Sf+MjNTFv/ga97PtjpvP4P9mFl9L/96tUh/+Ufng3HH7k25L/6g3M8tV/xF197nqJQikGDKdMP0H67951Ry8+85gKvv3mf/8dvdTsupWIbjAr7c1DCe2+b8J5bJ/zYb56Nyp5CgEFhZ1O8+WTDm082FK4MrzvR8LoTe7RNgWrB/ZuG+zen/IOHRvzWhfz75w4D97nt7BB+5vYGNaBacKKGn7rFMHCeUiJQD5owI0nEzigqSsN8OkREqOvGLR/y9RkLexIGn37WRYn94DZ0J5WloSwNhavHslTKssEU9pUYi0n+nvGHY0Hczm1eQLPxOFr2VlfWVNuYEhEY1C2lmuh+3Qfugq4t+f4Rc/LHCroP3Z5jLZ6TUpYthRs05HFRKINB68SukrYt2d0fM3GeVE1bcvHqmMYIN52ybX46G3LtwImU4qf0dx+gZxgaVWqsr4GdV9N9BA++MK6MM7fM54QZuuPOyN7Bezz4/rMQw0IM66aipgzHu+UR3sDczd4R68dTo/YbfvEDKzvAVYRZKxyolbAMsItSoKxhRdkJMOk6kJ09EA3mrLl4N3APZv2IO99fg+OgLKLBZiN2BsTQ1NRYY/s5zt/IxVPaMFAxgpvxZAeZnpMfjPlNF9oontCycALeKg4L0uVTM6zod1pH4Xz/X5ynPC+bpl4aYMXIhxFHrOZYieOHFMsn5m+f/B5LZXq+zzwUxw3WssHjMeevuub485/bM4+7+3HnL9dxKn7kfyNXP+Poey5xkPx4Fi9rQEfiuHay6vy8TLn4cByn4/D15j1//mGcUuE2byvPDV/v+ce3xaOxsq0dc9Pjc/9c+8vR97/u6w878Toq+dA+eZ04vu0d/U65nqcd94zraf2LydGif48ef5JwPsw/DjxIpyP87PPREZ7vvdyqq//4KH8oEfnP3f1+EfiEm1zzbuCvAB9+Ph7S8CITlQBU9de4Tv8iVf1Z4GdfiHs9n/O/FfHK151J4q9cWFt5nveyue/khELULRsRHrkyYtoII++NI92smPxaj/tOTvnCIc8BePDagHu2u+V2927N+fSF8XNkFt3v6jCJu6VHtlx3bS4STk/u1UwaYZz4/XScrEl0yvGezQWfv5I+J3kmR/9R1azOcnz18iiJ7zsxTcr1kHu253Tn1oxK1C3fWb7vtYVwYVpweuREFIE71xse2T/8FfDIQcG5cbTkSCXU5SqSd661EC3ryPHoZMUoQDsOTVOFJVkioEaSWLK2tl4Zzowbzk8O55Dn4fFJwblR5JGRtdXbxi2fvhIv43huA4GnFmlbE3cXW3dwqhIq6ZZZuaPPafCQl+nZhXJTffjxvB2WpYFodWts4g0wm6ciwS2ZD2aBxKqlW5B1OAdBKFSSb8gb9MhvIe3MpNi0WJOWlfef/Nvw/Jviy9ItExWku5e7jQnHbImHFJQqYYmQwBKHnPOeLDih3TuhRpZmIsRYoMRvuREFV6NYstab3yt8q+s4yDF5kejc8AwlW66T5mVAkcwIKZGkbvO85ChVkufFniO+OMn5GSeDBs8MESsi5pxyDgZdms0Ut48KCQJe9KhDOeVtK0c+CyL2MSKm7+LGL6ZRyyn0p8MeI9CqSWZc5e81Pzsw5hC/FRtMYsDtZ7odxiFHlXHyz/LG9/GOol6Aj/NiJdwoL2K938rsGfNEkE7zaDl1ca0F08wAOJlplLW1Q983jpPffMBzqI7Ji2L7S1ymIUWyI63fOTSUKctLQSpEFVlmcx+v/J2Qt80my0tFkbwTyozTUl5Yfq9V2XtsVf/KZ93E5gm52LA8i+cQESu8A0zCKXCAlbnJOa36+5P3nwZN2mL+nsvrvXXzoj3yvOWzJUN/oVvyF7e12LogfCl3zDtBdfm9le+IGh8vszzm74wceX/K82YyTp0tgP3wUxzHgeW2ltaqzcvgqBsAt7/+xJHHe7ywUOClaGP1QlBaJea4FU+fdCuqrnyj7iUifx84id2p/t3X8Ygd4C+7/4LfKPBzz1dQgheXp1KPPwF835+5l1Mb3Uv6U09tcGU/GjUKLOZVGGifXV/w9nP7+L8M+/OSzzy+050u1mQa/ItGWMyrKIYfuueKO9v+4kQQb+zPX39sIzn/B+7Yo0j++ClV8rWjMsoGwpuRIPTHF0dciYQGW8YicDo5annHTZPAadoWfP7iODk/PMnd1rhZST7+/lu8p5T9xUaZclrL3JYrlNTUWqkzTuOI0yee3mB30g1tXnFyyt0bi1Dmp/YHPHxxLZR1e2h465nOA0oQboo+vSrCp86PEw7fd/MsHAXYziYc/O6FQXJ+2xbJHxMRk8TffmrBMPv7P47iz+8W7C+6X4jYncc8B9OWHByMEqPu6aSLRWCx6NqWCLzzTOeDBbCZvdHGGg2GgN+/WCecmibl9LaTzdJLMZes8g854RnA+QVcmEla5qjtDQvh/jq941YyWBS2spkfa9nzhln82f1OyAJbpzEnYyR4CQHW4ylqi3VlKCKfqumsSvyVzgyEk1GRw6wtCb9I/SNYnsofln240/IlEjkGmmYhX4KUfwCo3SDWoyUdUF6mYRZ5A9UiDOMPvFGbA/uBe8t7jajlNCRtS5p2eS7ILInXMs5OEQnYp0niLa2SuICEU+whBXaQUEYciiwvKqkQFT74R5yC0KD+GWk9r2V+K3keZ8cuDSsSTsflvXRiXjzoVaIPPJLm3nJI8xIS4/u4f6aLhxlnk50f/JCIzk9f1UucYrPYEkl83CSL1fWXYOZP588S4liNYXnpSpVxrrP3XJ6XacZpkHEKvjwxorjK8mLEznzzHAKn6O9PvMtV8o7w9Z7FY5NyaLO85WUca9q2sj0X7EzWKC8DzyFC7FVnMg5F3OeJ8hhxWmRlXM/6RyL8AjPvBRSOF0v1HMdTzZf4pe8E+w6IBuWi1qzfb0iANbWP22LMKX93R0ULyPtXqynn/Pq8vzSavotzcbymIP4453WJOC8xpyLjBGmd2Ly00c2i5aAuLrP+lb/3Yt/EcH7eXyKU2flF/vfI9xdXaCMksZ99Gvefrj7sjfLNLfJNFbxQHnvyxfGAzt/SljkX/NKFt5od9zNwPVb1F4HwAXp5xmj3/MPKuDiGU46iFt7047etPNajx58kRGQHO+snmejirHk+BfzDb+S9VPWvqOqPq+pfYcXqrUPwD7ATaX4N+DngXjdZ53mjF5VuMCweeZq/9rJLjN2yn9NDw/7Tp2gb2xTapuDZx87SuG3Q1Qh/8c4Jt7jd0AqU6vI2s0knODzzxFkm+93g/+LTp9i/1gkeb9lSN/i3v3jvzQt+4KZOILmjLtm7th7OPzc2/DuvvBoGvm/YVv7y7U0QZe7fMPyH984YuL/at40Nf/2+KWMn7JwcKM21TYwzRDBGuHppK3BUhX/rvj1uW/NLAZUTpYTzAWbTQSJEHeyPmc/qEL9hreSdJ0zg8P1nWn7gTGcA/Z0nDT9+U2ee/NYd5S/cooHTazaVv3h74xbcwD1ryl++YxE4nanh4uM3R3kp+embNZhaD0XZf/Is81knkvzgVs25SB/86bMFd0eTqUaTdaaTQeDwto2CN291n97ecwLeudXVwbmySs6fHIy4dnUzHJ8cjLlyZTOM4ap2wJ870X0fflst/JunBwzc9SfKgtnuBsZ0eblyZYPW50nhsUfOMYs4Pf7wOSYH3aysRx85x/7eOJTpVaxzT92JMN+1UfKqUfdae4A1XqHj8AF0eLDBY0/vdG318gaPPHEynN/sr/E23QwfCM9R852yGTidoOS7o/2B1rXku9hi6D6kDhD2Lm/QNB2npy6uMV90be9Vi01ORoP17yjXuVm6+I2scztdIl/HOvfSzVx7bTHiVUWX2PXFkIvXujztTwZcuNIZcU9mNecvrSezvjbWp/hPwUWhnNqehlloddWysX6AuA94UwOzJvqQrG73nygeZN+ZJ9sQ43yItBsI5EbCZeZnUlEwMl1eh1IlPjHlioH4KBrMWEPoboA2FmGrJPQ/VdjIBjObRP5VOMPqaHBT+QGcdJzieNvUSyLPMOI8oGAUlXlMmQxeFihD6Y4XiDXdjQaog2ggrdglfvHgZS3PixbhuKJhBkmXh4IqKuMoy4uRfJaPy4u/XlID6GJFXta1TgbR8YwZIfVoUdSaUkcchhRJXJNKlnWWhzwvtZaJqFP6eozOT9tmsTRIHEZtqcDOKovzUmdiQCLauP4iR+SljgWLFRyGmQdLQToLrKJIOA0zs/ERpZ2pEzgIG3R5GVAkYoBoylmxu11JfFzTvIwyTiMtrDjmyjTWIukftRZLHPxyTbACZm3SOkhnG4kVboNwkPaXGrECfMRhrGXCYZ00Hq/gUGR5jMscjkfFijnXFMk7YESVHC9I31MlwhqduDyUMnnvBSFYu3idKuEwIuUQL+O2nKpEiBqw7O8T13KJJP1jkNVBnV0vkLyLrdl4yjGfYTU6ou15g+j4vZd8ieDOj/vP0Oc59Pm8vyxzSpeaSzKDqsz+vtQU2cxByfqP2J3dEg7RE/IYgoeg5+g3Vei8p/LNLTQRogz2b4iPW6z45eMZJhH152iyA2mLJhtFKG5nwujFthynG0EcSLpxxESaThymW9YdlymO840irNi2eha0okwWLY98+srSsR49vgn4CffzEyuO/QKwaiOwP4l7HQonRH2v++9nX4gNyV50y996fGNx9fe+yP3bC37u2y7z/sfHDATa+YCnv3aOzZO71rB4PuCpr93C5olr1IMFO7Xwd95wlQ8+OeIr1ypODeCZr93MxsldRusTZvtjnj4Ysrmzx8b2LtP9MdP9ERvb+2ye2GW2P+Yv3zPhddsNH3l2wBtPNJweKPdvtvzasxVv2mk42FtjMa9YW58gheH7b5tw50bDv3h0ndeMKr5tW/lPhw0fOl/w8s2WV28Z/tYDUz74TMXpoeG+DcPffmDCh56pqcsWbSsunz/BeN3OKGqbmssXTjBem/D/Z+/Pnm1JsvQ+7LfcI2LvfYZ7b2bW2AMANgA2AQIE1U1QAAcZSIAUSVGUzAi80Uwmkxn5wAeaXgjxTwBe9EyZyWTSk0zgkySTUUJzECGRosBuQiKMQKO6a+rKqhzvPfcMe+8Y3JcefAh33/vck1VdPajzeFlW5jrhEeHL13Lf7l8s/1a/mXjZw1/75Tf8hx/u+HtvO76584zHDbZzGONwS49bLLbz2G5hnob4z8RmOzKOG/6Nb3r+5KXyn74R/vEXnm9s4I9dKP/J54Y/c+35hQv4QzvHf/S58N+5Vv70NfzMoPxHr4V/7Nrzj79Q/uofm/mPP7P8oZ3nF6+Uf++PzfzHn1teWBgPW777rT/Ee1+5AZSvb+B/8Qsz//fXlpvJYH3Pd7/187z3wQ3DdmLje/7tn1H+i1v41l75+a3h3/6m8F/cKf/1veeP7gyfffqKy6sjFxcH5mngf/ozyp+6Uv7WG+Efu7T80y/gF3fCf3br+TNXcDxuWZaOzWZiHDfMc888d1xe7dnvtxwOW5bFcnl5YBwH/uTO8u98bcPful/4Ri/8wsbwP//6wN+6c1yYcMTt9esX7HbhOJ/zHa/fvOBiNyLGM88Dv/GtP8wHH9xwcblnmjZ85zf+MO9/8IaLqz37h0u+8+0t771/y6tXtzzcXfOvXXr+28nx34wTf3xr+ZM7+IWN8F/vPT87DewwfE17vsWBn2PgR59c8rAf+PpX7ri5veB+v+VwGPj6V2/57M0Ff5gt11h+XQ98U3p+Vgb+FV7y9/TINZavSs//QF/x9zliEN6j51/iPf6BHvDiwVt++Nk1Ly7HSAje8eGnV7y8HBkGh/Edf5FX/IYe+CEj37A9/4JYfkNnvuVGfoaBb9DzPabY5g3/EFu+Sc+3OPKHzMA1hq9Lx9/3Iz+rA2/vO8bJ8vJyZn/sOE4d02x4eTVxmDoOx54PPzW8vBq53I30nefl1YHj1OO80HfK197fc7/vudiNWKtcXByZ545ff9vh1DIQyMjTQveCjkl9XOQHYtTA3eMxGDo8npXX6kI7ZvWM4jKolLLkBI6k8JeUTn1LR+dNqK+WlNVrwUcQKsguLpY7DJdIJqZOkQaLKj/DQC+CtcrsYdSwUXgfwyHq1IlwrTACd3hG0YJQ3YOElOhzXMynTYHTsBD+qm4zaJPSQadN6ISnj4CL1UCQfRkJyyU+42AcFsMWiZuFsNG+QhjVs9Wgs0FZVJlRjISN9KxhQ2LFcEXPpB6vmtM/J1J4kQCoJL4kEcOFwoxhwrGLWylP2LRMaCSVTbYNdrHRLlvtKjuEaKlVDsfpDNfaM+ICwBM3xik7oI2Wd5Eby0TfmqNvJZ0DMf5K1B50CM9IfTAXvmhV4rGvsOU1unJLbWS1S4cJOmo8blHYxWvgnuok+p6uOu4Q5khYXpL3t3ZJOiTfRFdy5NIuGyxL9KXgB+GY7IzP0VWe9HU/ZJ00mo7SRCAp6rSly2TADl/YKfiORxnE8gLhqI5d1HmLZYmRKGn8BP8OvvWSDUcNEXalXWzcJHeEI9hL1OlaO0b1sU0Wj8cpzKoZYE12UQkgUa/CUVxOX269Mkvw/y6Or0CiHUBVE8fToGF8XSDM6riImaPCvBU2p9YIV4Q2JbtcpTkj2sVGHWYUYv0p6hD6NETfTKrssh3DUaJJNAKCwQ86oBNLpyGRQSa3V41pCqh8S4FBQrvHwi6Cyb5rCjuFecvyEsNRF4xKNUeMeDBCj828aIJwpT2TOiY8mzhT++grCSxREg/behx4juPJYjBRh3Uu1vgcjUATTBrqJ1+co1wmv5ib8SFQja9SJx/tInl8rW3YIiyqOA1HPT0ejeMDhEFMnqvDmCfrlEBYYc2i20Ud0+9X+FASdEq/X8kuCbBPdkl2uoy+Y/PvW3h+R6FT7AcR4YjLHy9SUoUuvttJGGtd7F8kgEYOpVdDJxKTLMTfrThfpKQLB3Esonhd6Ajzd5BDAo6FkBEyJYowUCW76BEQw1F9blOQw3HhhUAKnxJBQJkYIvRH0MHRxbGhwBGfdbIiTNGmHSGBxlL0mYn3pN8nFfiv/08f8g//UzWtx3N5Lr8H5a8AN48ccfs2gIj8ZVX9D85c/5181u9qkTI8+Ln89IuI/Oov/dIv/dKv/uqv/l43BYAf/G/+b3z0v/9PsxxIrIsvxQrVZzc0cLA8ct17YTxuq/rSfFSwdqn+tiy2ekb7zMvre7oizfvdzRXTuEZmGOMwtvTb+p0ivmpzIupe2+PYXRyr+01X6zgdN5V8PNQcT+PYVW024qs2OC/v1FGa+m1RJZODn9PRe8EtXVXfFTqeeWLDnaNVHwPx2GKhk3HVO6e5q9oUjlk9rmPb5vZ6q2OIki/f79luVnYG74XjOFT1j2PNtLMZal/7/seXuMK/DVTXranbODti5sF4XRRbfmBspkunp/WH4iim97A046sMnBeUy41W1w/zuwNIN13tO4e5tkOroxHFFI/84OUDr67XY4PzYljc6ku73ZGX1/ss/52bjv/d99cx7qmz6QSAqU6RXvIvpC+eZdnGXDKPlWNkaUnl3Jfh8uv4yFK1qY2Y+aNs+O/K5Vrfw+1Sc9T0RXMecPyX9q7S+UFKppBwT6nDn5s/qL4+v5G5yh7Vlmtvq6MoH5mRW7MSep9mjjLVcbQZf8IpU6XyVqnSvHs0pO6ORVHmhs34Smu7fCgP1TPH5vDK0ETEtCWQrq/vTABOKsJKUg+wRMLw8npJBC5QRTp5TtOLt9mptk3a93umioOpteNOu+oZe2ZmKUdtXTZqc3rwpHOZyazN5ma1Hi8ePanfHim6pKfkH2nHU3t8Z0tX2eWF79djf0TC/cKuvZoqA1Z73GTBM1W+VduhV+EDXedmh/JQZnOLETStXPb7W1kqu3Ra2+Uigkqp3MXsirlN1Bmxtl7YFe884Nmbx+3Yq/CyGC8Lyq1p7VIUhQ+a46HfMYfqJ3Chzs524bsqSmfCVdnZ0sY8lY3WkX0JiCrrL0UfWK2Pt404Xpspyx5dj+DFUvounB5bOlDPe23a9wQKp3JkrvzXRgCllMvxNcWkAmWpIqdUqjYueA5Nlr2q/QpXRaRviqApSzu37mJ+tlTGhmWsrd9TR2i6ImInyW0fDIUOvRqu38FGF+z07qPC7fh54esYznb83MbsoqkccNUc0I75rrFTr4Ztkb2w0xgZGMuE5674/XJoZac6hUd8ZjNXt78/L5vxcq78S//OL/Jv/C9/fyTo/uVf/mV+7dd+7dfeRZD8/89FRH71F6+/8Uv/23/yf/Z73ZSfevmf/L//1/z63Uc/se1E5A3wWlX/6Jlrv0Ag2/7rX+R42W/3WSLyq8Crc/cXdf59Vf234lG7xMH0K7/dxGTPx9++ZOXyj/1MJUuzqVhLvdGtYvuL/17Jk2nqP14ef2coiaMpla6vFwTlBvpcWa9r9b7Mj+RNBDTe1eZSxwACleUpHd7dwqd1ePy+9v21Xd7V9/U1Oanb6tS2sb3+VB980VK3Qws71W0852t1G+SkzUNf261t8WkfNNff1XBO7bxyFyXfS/99fvxodU965rvf2tY3T7S5lae53kSYxo5LwVsF8LO7NgV7+/yTJOhN/VP4qF2kt+UkvfJJjfov7cKzbc/ruJFKf+8auyi1L2wxK68NEXh4whnupQU33j3Gl+aB24ZHqr27BRpSH60Er4Cusm/sklUuSyO3dmlTbbd2+XHt2NZv7zbN+4KFVj2CnWqdzvlj/c66PLVJafv5J67/SNf4rFFtt6feUWfoqstT/dzy2Pyk43H1rdouJVF3qM+7fUtOVT4dw3U56Wd9on4zvh4bj+Xxn1Ine+6hT7Rpw483hs/xzvw49U3ja/noUZQzR1NaN5zR4TRr1/l5Zr3+7vufrl+Xtn5byuNUUPAXPWIbpfa1igvriXeU99TyU/Vp5PPjseRHUrSay07m6ifKU+Ojvd76/1Pz2mPE3K2cf1Mbu5ybA9rS+k6rw7uIxFP5I7/8/pN1nstz+YLlHxGRXz33zxe499VPqc5P+1mPlpgB7t8k8DT9CvA3ROTf/e088xlU+pKVl3/+TyBDDdr44tPYuglOf5P4n7JeL7NoCPRD+pIV7kup59MvinMlkTcn11fAJsjjOFQbvGE7Uv46hURsDVhwAg6sfEche9sKGKhKRUYOUhAVh8iV9Lj83AaY6rpGR18TeYvxtL+oLYjVgilt/dIuIBWptUiIJCp1dM5QR4RJ8d5aR+CEUD1v3NICtdHJNMTcrU7ndPTNjq4E51q7nOogzLOt6pfPFoGhL30PFlfqDNe7qbregnEBoFkbbRvgyuu7QR4BrCmjP+TE96QZP+22o2yTSJmN7ZF/5+bExVyzYtbGl1pQ+H7fZx4rCJxKrsCN5sUyFuPjqxutuLkE4T3qOeRlgWydIxsvSa8B2ryJLfn4tiHhVfUnoE6VrUcNQxk1B2wL+Q2OIytXg5V09rsJWcnPFn42RV5o1En7SoeWWPi11KTxmWy8NF+hw1HrOeJKbbXIbjdHC3WEWMpQVJK7Oll1RGpCWWHNgJSiXnJmpTT3NvJVo3PX6OT1DMFzUdoFRk01nhRd/1J/e19LTVy7/kc6Plc97sw7y9JGMrX15ybqp+VLasvSaJVJerMZmk22cGK33CI9jcKD2M9FY9sNYdtnS2OXoyy0oI9WvuXfuaFLB1NL31qoiYbviwiY5Iuk9wg5i2B676GRkx+sJL21Lx6bfh6obZuO0qYyUxPDd5xmuZsK8n4vIUKxtEv9C9wQDQs5UjD9/eIEGK5Bn6XxrRa4agHGpQEeTsELKl9TIWZJS89Px5TW9jyVKbN9x2n9ug99Q8TdjscTMOKk/rvBjXPjpUoU0RYpSN4fadPZ8QKPjq+2OPWni5/m+eUTwtTfEHUrZcal5v51TmjJrUsgtyxzM57q1V4k8y9u6eBEh3J8+UZOxy/z9cYubaKIal6jncNTG1udWqLuJJ8vthf+7L/+849cfS7P5Xe93Dzy99fx3z8OAvrTfNZjz/+bqvrXVfXbMULprwD/noj8mz/pQ59BpS9ZOfzmh4hbQRrvDQ/3uwLA0Ag+rDuhAAKVsqdkSdxd7un6lXj74nJPP0xZnqaOqdikbncj292afW27G9ld7rOs3nDcbyti4curfW5DPyxcvXgodBCmaU1Hb4zn4sU+Axiq4bhaAjhU4eF+x7KsP9u7qwPWrkTbD/c75nlt83jsWWab5WGYGAod57ljnPri+sJ2u4adq5fwT2zjPPfc319k2VrPxeWhtsvDNrfZe+H+/qKy0zbyECWd7u63WSdVeNhvmGdT9XvXrTre3W/Z71eC5/1hw+G46jBOHYdjQdR9HNgfVsDPOcOy2CqyaJ5tBUodjpvaLhcrIbQqTNOafS3oMGTAQxXuHzaVTrf3Q6XT1cWRTWGH1I50ve+Uy+2q8+V24Xq3+urQpeNqoRGb3vPqcq7kl1cTjy1rrFVeXc452seI8vJqygCeZlBqHS+91SI6SLm+GOm7AiAkgV9psZaiiaIOFzMXm1UHI9AXwJbJQFZ4x3ZwvLwsdRA+u7nMvjXNls9udrjkayp88tmL3O/OCX9OrngRSaQN8Bd4wftFOP9f3A18ozgn+Mtc8M0ivP8f9Vf8vN9mM/1pdvzxAlr6E2z4UwUZ+R/RHX/Gr6Twf4Qtf5bLPO38LD3/lFzkH7D36Plz7lWOLnqhln+Gl5lAfYfEjIyr7xnqhX/XyH+cbSBUj3/8Y+6Kr/ghy3/UX/HNQqcXvoYrlJoc1lBvIrdSb/DuZOGOOS+oHcpdzPkGgTT7jaxHSxyeG8YqK9AtU7Uwv5O5yqhzy1RtpO9lZmTJ8oGFQyHv6LjWPutwqT2v/GbVWQfe1yHrJJyCpjXBdLOp1RipkOYA9ARQMU39Mi16AlClqV/KLfFwsQfP9ct3tETgHjDF5k+oN53niIdLnYJcN6Dc5FYw24rZNL5pavCgud4CUYn7Jz3aC9zJ6lsjnlumdXMnyltZfc3Ryp6bcFgrt/lt42sfmn0+iqgoP5Q9+8KXPjJHbmXO8ifmyGuZsvyZPfJajll+a2Y+Mat8ZxY+NMfc5jcy87HZZ3nPwg/NQ27zKI7v2kPefI94fss85DYveH4gD3nj6lG+Zw4V2HUnS6Xj4YRoWCsy5AVf2dpQZ/7rz8AbZaRpBkw02bGWwzPrUl3XWj53FLktpy1693ixzQhLXDcnbcrtrZ9nGp2UUxDndLycAhJt/Xq8tFQA9RzRjq+Qga4Equrx1I6vxNm3znun9evj2pzMe62dEvCU5BTR2IIx+cPImTmnvJ4+jqZaiYMo9Z4jgpCVf6xyWo3UcgkCly0P/+Wofa3eOTytU6uDRU78r2zrPCvf/tuvz1x9Ls/lJyp/X1V/+dw/P6Xnv/opPee3/axIzP0rzd9uCBFLf+0nfe4zUfeXrNz+6q8jBow41Bvmw4D3lvu7C4bNzGYzYa3GdPFhgjcGVHwERsAYEHGoF7wP5LeX1/fM08B07Bk2C12/sMwT43HD4TDgnGVZLMOwcNktDJuZrl8Yjxu6YabrPF23cDxsWeaOeQr3DJsJaxz9sHD98p7xODBsJvp+4cV7t4yHDfuHLaqGcezpOsfF5ZGu81y9emA69uwfdoBhmnqs9THixnJ7c81mO3Fxtcd2nt31gXnqGfcDyzywzB39sDD0M/MUohaWxdL3C5utx3YjXb8wjQPH44BzBu9MuL4LbTDWMU0947JB1aBOEaPMs2Wee96+vWK7nXjx4j60+XrPNPbc3V0Gu9xfMMRIMO8tt7eXbDYzu90x9PtlaPPDPtjx9m7HZjPTdy7c/7ANANdmou8d1jqWpWMae6Y5/DOOAxcXxxghJiyLZbOZmReLqonyxHHqmeeexRm2mznzcc2zYK3DOYNqkj3zYnDecL/fMPSOi4u1zVMErBTDOAUf8g68Gt7ebdhuFvouUDi/TTrFtt8tlmFwbIaFvve8vN4zTjOHY/AZ70E1RAw5Z7jeLQydZz9adoOj75Q+ykagswHEWZzQd56h93xgJ/ZHy3ZwDL3n/Rcjh7HjOBp88TW67zx9p3zwYmQ/BurJzsKrq4njZDkcLV7sGhmgYTwNojgfOHC2g2foRqbZchg7ZrGkmBWvZD4kEcX7ABL1NuhwmDrGydDZqG8E1ExcPKoq28GxGTzv25H9sWNeDOPU86PPXnB9OTJNhnmxfPz5BVcXM5s++M6HH33Ai6uwabug418brvh1N/G5c7yk41/WV3yLA5+aia/Yjn/lwvIPZse3J8dXfM+fx/IDZr6tI1/Tga/pwDd1w3fkwM/Jlo0IX6fnNzjyM/Rci+UravkNJr7ue17S82rp+E1z4A/Jhp9hwzWW39AjPyM935Sef5ErvqUTG2/5gIF/3n3At82eCxFe0fGXeI/f1APWBJJeI+FL+biAiKFXcuyANYErxsd+70T4J7jkhzrxoU68oOcfdS/4xE/8SA58VTd8zW34ih/40Bz4ILLWCCuRaEncHQAXAQLh7EZN3gw54I1MzOK50SkQvka+lLc6ZuJlL/A5Ixfa4cXjDbm+aAAP3kZ5wKACNwS5V8NslLc6syEQH0/imdQzEoiUnSh3OjNG0u4BwyvdsFXLncxsIpfI4A13MnOlPRf09Gq4k4VRAg9bIKRdQaLQJ7E/kDwe0mZMqEmrQ7rrUAKd7bp1sUmO9ZGwcU8RDWljkojgE9SX2uDjM9IGx+Q2hOspm1V6ZyIgT9cl/s8W9YMeof7S6BDalJ6YNpirTj7qkDMTQtFHwV+TDiHII9aQVSdYwTctdEj9qsAonoWJnVoOsjCL542OmZzdifKakQu1IepHlDeMbLULnDGi3BS+qIXvdSo4A9+RB97TgZ23HIzjB/rAC+0DUbvxfOgP3MnMS+3Zi+NBDtzpzPs6cCMTcyT2fekHHmIbj+J4L8pTlD/wA6/NyL0sfN/c80o3HHHsxfFdc897Gj5+HMTzLfvAB35gjPd/19zzSsPBztko39O77OOLUX5DHnhfB658GA8P6hhQLBTkyYGofxDDPeH6RoVRNI/p9GnOEoi5g68U/l6ND831s6+p0mnhW9GOIquv+egrXfqtUFZf0xDdhTn1rdI3w1gITwrtIdddx2D6NBJ8Ocm+kIOOoY6VlZTaZJhKSQBSHj+xX9J4SeOrHC8piUM5Xs6Nr3w9jpekk49PNVmn1Aur3GUd1uOpRtYxDyvY5sv6cXz5bJcVZgnk/aZIRLHGutlSw2jXhDHVhzBPQbQkt0Be4ifSor0I+aNdzadXR+2V4GP6/xUkC7buMCGyKra3y70Y7p+p+cM8ZI60UoOkYwKtfPxvYT2itx6pM9kPW2ApPfPv/F9+yJ/4732N5/Jcfh+UV4/8PUUV3fwePevHKX8b+Msi8pda0OmLlGdQ6UtWdAlbKBEQ64tIF8N43KBeuLo+xGM7miOSQn3NZ06SbCIhtjGw2YbMaEkeNjPDZubu9hIQnOs4HDpevLoFlH5Y6IclH8/qesdV/8D97SXL3OOd5bjfsdmMdL2L0TxHTBe+hlrrubg64LxhuesBYVm6fNzOGGV7MeHVcNjvYhssDhO/DkrQWYVXX30bjlNt5uKYmAlA2TiQftKcszhnubjcIwb63tH3B/b7Hc4Fsmw3Wi6uDoCPYNmImzvmOSw3Q8RSWAB4b9nvd2y2I9vdFNq8mxjHgf1+F8GyTRHNYzhGEvHtds5tdn5dAIzjwDimEHhhmnqWxfCVr9wGuwwLfb/Ap+8BcBwHjuOASLhnXjrmpcPasEFcnGXZ7yLBeuiDh72lsw5rNAJRXdHGAEytEUeGcQpgG0nH7YzX0NZgF8lH10A4jj3j1LHduKzTIa+BQmTaMhu+8l7wtd12ZruZ+fzNdehjBS1IJTe9Z9P7HCE09AE8Oo4WrwZrwrEzGwnge6u8vFwwcSHWWeX6YkboeDiWXyBDfWvgerfkKCxj4GIb+ufm3uYNYFoZSQSzjFnrbzeOYXAcX1/mY3N1+DgYu/4t6DDx2m1YnGQdQsSR5GekIIvOKi9idrhxCuPk5vaCOCXgveH2fsNmcFztFrw33NxeZbtsxPCPdVucgWmGXoQ/yQVGdsCCFeFPDB2/2HW8uQ8L5z/Mhj/Ehoe4hP9Z3fKzumVjw0Lym/R8kz7349el5+v03IvgFN5n4H0/sDEKAq/o+Ce4wsb6L8Tyy7Lj4IVRQ4rwP+2vA2eSgR2GP8UlXdzuiMSjbxZw0Q6rWcJ1Qh0IG4OfIwBarwkbtm/olm/oNi+Ev6obvuqKRALUX87ThmLdDEiuk+zasdrJi7JnTc3sJURh9GpCpiYJ/E05gkLCUSLNecXDUaNJfUhrHeVMViuBwPdYyBOOCceFdoiEDGITEx/oFksg891qF1NKw4aOjXaZc2nA8oFa3jByFJc3jQmwSxEYiTNJ8v/K6yGeYMnXqa4L6yZmvdcAHokbQNM82Rb1SznZgZM2yMk70vazPTq06lTXN8X1pINW1091KFODl9veUqfkKyDMRbRZOAbp3qFT4gsKoMi9LPmojBflgTlmdzL4eD0VL7A/8bUlbpht9j3iXKUCr2XCm9UXb2XmljkQrhu4ZeFWl5AWHokRekvItkZ4394uWe+DOA72wBCzuR3E8wN75BijoibxfCKHrPksnk/kSK+GHsssykd2zGTmTpTPi6OqXsLRVavCjh4v8JlMvJaQ+S2Mj+LoncSjqOpCZkGRkBFSWrutR5RWUGG1fRofNdCjhSyV/5YgSCm77Juc1C99bfWf0+um8lqqumX98+Ol9rWFFdQ1zfW2TRZZM1GeGV9yRiflcR3P6SQYiMeCSyBj1bG1i+TZN8klsNSO+WQ3n58kVUROx+kc0c5Lhvq4aQ0j/TaLnP/zu95RxyY99jypHvJUm9vrK7T3+P1lCx57/jK5R648l9+p8pNywv4BLzdfoM4XDav7aT7rJy2/8JPc9Hz87UtWLv74z1VyN9Tksgk4yEetlSdJrZ+Sh6HOHjJNj2e9ALBd/SNRZu8CUF9PaI89P7VjGGrenfVakOepwxccM7Zz8ZhYKOVRolSWpcZj+75uQ+Irekwn22ShmYqsZhCAovMltnnuKrsMw3yGaHv97xBRVPMThWNjj5f2h8O03D1P/LC0BNAtQXSfCdi1qL9+H239rrWDV4lA3Xq9a/r5KeLtE50a39JmYdV1td0WV/NOtf8O9cvvjq1dpAAEiZFT7876Mrt6PLT1W6ssS12/9b2W6LvlpUp2XGWAlevD+5o8PERKaS033xrdEytQ27Sprd/ebhtfa8nMU4a+fNw06VB8nX3XPFaCBV+0PMXL0XJiXPs2C1NdniLqTqXkqyivnZnGTsopwfPjWZnO1W+z+ZyS9rZtrf/e6lR+uS/lVAROuLbad7Rt/KLEwF+0/qld6oiBtl0/NlG3nHtHW+Xddmk1+EkJ1x/Tobx27n3t9WY/erZN7fWn7PJU/cfG42M6tePnXHnaLu9uU2u3p+uff37Z5lLOfGB6/v6y7irX5YuO4bV++/y6/Hbt0h4tPdemU6LuH2/M/7h2afuora+NXVyhVVHp0fvPt7kuv12i7qd0zM/X8+/7nSDqbn8jz5U/+k9+8GSd5/JcfhfKf8XjQEz6+xdNA//TfNZJEZF/X0Q0Zn77qZZnUOlLVl782X8EtSuA0fdLEZkTImemhsR6WWy1OXcV8CQNECW4ZqO92R3jneEPh/22uk4DHgSuovUPS8HTA+CdqUish81UEUDPU81/1PWu4hIKURzrJlfV8HB7mdskArvLQ9VmkzfuQT4eh0qH7Xasru8Pm6rNm01NNh7as8oPD9uKPHm7HU9IrdO3HQjRQuO48h9Zq7Hf8h0NKbVwd7+r2ry7qO2ylrgA8rVsGvLxEBGjzX01mFDK09RVAEffeaxduYSMSSDPaqe1D8+RWAt3D40vFTxa8QmV3BKHG1OTjy9OGtCnvmfoakLbxQnjIvV4KQjVrQnRAOX32rng9gLhOJ4nss/8W1V92B/r+n3vatC37A/gUPBWQej3FgRaCjlwZa06GBNAnZJQfYaCZFSYpnXMi1BxfQEVQTTAlNanaYHayEZqUt6l4UV1jdxJzefgqYEor8LiqezipN48zLkNmp9R6dSQ8qbIinWj0G7oThf5pU7HZlPxVR2oswGdEhGXcjreVX5ld7Rkymub66/Ciah7lYNOtY4lR85as7ALtZ22aisdzBM6pL+tX+xrnaDJfCZ1P0se4fWGrZQXaru0oI9rdJobnUIcXWmXWoeWwPYsgXqjQ8nLc84upzo0pNaNzjQ6tjoAtITPWungz9ollSftApUvSdFnj9mlHS+tTi0hdOtr9oxdap3Oj5eylDqonPra1IyfSgc5JRPPz2p0e8wuLWF6a5el0UFoAROqMa+Nb4VoJ1hVWvtg9a1ah5a8v/WtUzueEtU/ZZe2/qld/KN2Kcd8KpVOckpaXbblpD6n896pDu14aQHHUwCyjTw6tdO7yfrbLJInQNWaYQUoAJj0m9t8JRkSwBhLBoEeKS2hukfLJegJH5PhlBS+L3QIOj7ylS+tAxodMtH+I+3seuGf+B//3PmLz+W5/O6Wv/GOawkI+qLHyX6az3rsGTePXEso7X/1kzz4GVT6kpXb//Zj3n6yEnN7b7B2BQtU4f7uoiZHvrlimW0lp+xpqnDcb6tsasf9lqkAPLyzEZCICx2jLAUJ9rJ0LHNXbPxNBBviQk0CULQSRHfc315l0MMtttJBRDnsNzn6KBA3K+UvmO1cBbrc314yRlJq1QDa1Fm8tJK9M5WOztsKIBFgPJak1jYCU6mfTYwY0dwnd2+vs12WpYtHsYo2m5r28O62tpN6Q7nFstZX4NnxELifcr/PXTzeFe1ifW0nq9V1QwJ1wjs6qxEEWu3Uyl2hsxHleNwUvlfb5Ryp9dpHAewRo5VOh7GvyMU/udlys+8Ku5gqa55zlqmIbno7dnx2WEHLxRnu9l0hW94+DBmE2S+GT2eTAQunwke3A3M6QqZ1djXn4dPRMBXA0JtJGN0Kuo2zrcjHPz9a9ssKgNwtcF/IqobjuIKmb8eO22UFwx688HkhC8L9fh0/+9nwZjRZp9HDJ4tUIMz9oc/E3c7Dzd6wZCJv+GgSxkKn/WiYIxClCjezYSxAnM/Vc1csqkcVDsX1gxceCjvdKHxebFYWhPsCSHIID4WOe+BTVsDPK9y6Gqy6n8yqk8In6pkK37vVACyJhOfufZLDPa/xHAodHvDsC3lGmYqNwp14HoqjRCOeB3FZJyM1sPSZTOyLLF0e5aE4Bhc2sS7LDmUft6mp/j1zFV00xz5Jm/xjPMqU2rgn8Ccl2aHV0SoVqusPsnBfED6rBK6eJO8jr1IGD/HcF+TjinJkKe4PcqnTbUMIPeIqOejks073Mlfk4yO+0sHHe5J8kJqMfMZzZG1zAguSfMSxL9oc+n15tP6C56GxywNzlZFqLkAcRfMRs9W3lkonh9YE0eKq64fYxtJuU6HTgmcsfKu1S+i3tb6ntYuPdlnbPLJUdplwla/dMVd2mPCVDksjn7fLOn5UalDmiOPhCbsslV30xC6ljqlNpV2OBTG3xvFY28VXvvUgC8fi+l7CsdPsixL8M7VpxIejq1l23BbjC6nt4mKbSrklUD9GOyQd99Hb0vVgl1WnqSEfnxtf27NwLOyyxHtKnZ6ySzu+Sp1mPHeNXfaNXcp5L4z5miR+z1LZoR0vB1maOcJVdlKpdZpwVRunRqd2zHuo5rV1HlvbPJXArZ4CuQOmIXWPIEyWTRVd1GOqRBAbTEhUUdTviggtJRxZT0UQNrKuhSwSWQFXuQSiLMK2kEVD1tb0REWxKjlyVNETAvSe+ojj0OqgtpK3jU5VUTAT/OZ//vmZi8/lufyul/8DgIj85TPX/grwK6r67faCiJyLSPqJnvVjlL8J/HIk5m7LXwZ+TVV/7Sd58DOn0pesfP7/+g5u6bj5/BXb3REij07fO7wPUUfeW97evGCzHbHWod5y8/pFzh7mveXtm+vMoaTecnjYMU8L/TDhlp7DYpmnnmEzMc9DBCwU54R+mHFLF8GjBRcJob0zgeB76TBWEQm8LqoBaJrGAds5ltnilo63Ny/ZbEe8E4xZdbDWgRoeIsl1AC8kX1eVimxcNWzwbj55xfbyyLAdWaaBrnOoaozaEIz1qCrqBWOUaRxwi6UfZuapyyBOAsXmucc5wzAszHOHMYqIw3uDn20lJwLtm9cv2e6OzEsXj3P52OaVIN2rxGNahjfRLiHiJgCEqoLPhOqrbC3c3Fyy3Q5styPjOIQ2qMOrie0ht8kYH56hHq8SuYc06ijRpmQCaSCSwCsp464RobeBQLqzLma129H3cyTTlqzjsgR+isDTpCChzapBdiqIGKwNsvdgjXBze8FxnNltJm4ethHksLzcLZlVYVkC4OW9oIRIt67z3I2W/WKYHoQXg8eq4r3l5l7YDqHdi7O8ud2w2zhuJmFW4aMZrqzSKcxq+K2bLS+2CxddsMPtw8BmcEyqLGr4dFYuDGyM4jG8npSdVS6ssumFh2NPv3i6znE/dYDn6IULq4xeOPoA/lxYZdMp49yxOMPQO+6OloMzzD48b++Eow9tvLbKdRfAsdt7YTM47o+W2QufHQ0XnXLwMKvwwxmuTbjHINw9DAyDw3nwGN4chF2nePE4hI8W5dLAlYFBDHd7Yeg9nfWMzjCijB42otwD4DmgXBG+YB68MKuylQDeeBVmha1R7ryyJyzmX2DiV1XhrVO2kXHVI9zNMFjl1sMEfITnCmFA8Ag3DrYCg4Ai3E6GjVVGFIfwKcoFyibWf+NjfcJGYe+hl3C87iAh+9MRz04jjwoBSNoRuIAQxanSITyIYxJlYc6k2IsojoWNWq4wOIG9Kj0hG5YT5V5nhkjU7Qt5QyDeHtXRIWEbJvCgcz525gXudGbABHJusUzqMleQE8Vp2ER2BP6ZWcPGeIOhE8OkAYjqMGywTOJxGjYIRxyzBDBgpx19bNMBR6+GPSE73YEl13eimTw8EU4fmOni9kIFDhrqT1GnWw2k4D0GBI7q6Aj9akSY1GderaTDhGfARLDAMeMZsFgJHCk+2uXIEvsh9NMS3+lUGVh5q0YNfXQQx1LYweEzofmAZRu5hY6x/ohDhVg/gv4C97owYMJGSjrGaJdgN406BlLwQBC9MOHZYBnEMGe7rLZPdpliPy8a62NYBLwudFjmCDQcIrfRkYVFlFudcj8LITItk4JHubbLlJ8PYSPdFZvdiVWn4MsLfbQD0XeD7wUQvdTpiMMXOjgULexkMThRvDo6TCYbD74SDti6arwEuwRfCXb3hV2S7+2j72V+JA02sASQ+yFe7xCcKeyilk4so7qswxhhgoXgSyMugy5bLe3i6DGM0bceom8cJIyvN5FQfYMFkUgObgK0IrBXRx/f543yJhKob9QiZtVpUReBLIeNbVvnFMMQrTWysCCZQH5GK7totFVKReCLOUEIUZ/JLseoQxrDoIGbK/ejwYhEfzfRLqsvSh4vczFebB4vPj6vtItv7LiRjinaxRL0hwAa9tg8fsrx4kQ5avDnZBevCz2WCV/pNMR5KbTJMEvo50O8f4pzd0iyYBkCXTsjYe4esJWvBd4lywbBaQDEEMMm2mEhkYMHX17iXAVgNETQbTSMQ6NrkogyUYQTja1Yn2kxbJEM0AXgyOYxahA2GBbVmFhC2EU5kcIPhCxvE4FAfcBEHYK8jfUXPFYCpbpDWVTpsXg8ViWPGWl06gqdEgRnCJFWgvB3/68/4k/881//ifZDz+UnKMofTE4lfbrKO29XvRGRf4uQOe0/SH8XkV8iRAadZJATkV8FfklEfrkEcX6SZzXlFSuh97m2/nUR+Rsi8ldLcEpE/lq871944vmPlmdQ6UtWNH6qV284PFwg4iOAQ4yM8cyzQVU4HraA5iNJQU4lkFxPY89uF1K6L3PPMie+JMMymyBrOj6iGbhIbVj8Gs2jGoixfTw+Jybwv3gfNpSqwjJ36/E6bzjud2tERtTBpqNqKhH4MdX1FKifycfzbCIcH3Yc4jExkRBJ0/fKPHeZyJqCh8c5iztYfOR9MkYxxmWuHu8tx6Nt2pgiiFZ5rW/YP1xkHVObNTZT4gZXc7ROsEvi5Sn7+bwcSK/D8T1hJYRev6KHY2i+Ou5kJSzkEgBnrGbenNTGEPkiuV99PEoWIpZWEmxVYZqGHLG06qgwk9tU9pEIYcPuV7nSaQpk4+lI2WHqOEwdX78eCZnuJQJKoXg1TPN6jHL2wudHy7X1bEy0w9Hkd3k1PBwNhzluAhFundADGwmAyM2h52g9rzbBNuPUsc8f2oW9h70P94BwcMLkhettOJo5L5Yx816FSJ+xaHOSrzcOQ4jCOowmc44tKtwuko+WLSq8WQKo16OBsH40jEkHFe7nQHCddHrrAzDxFRsOfIxTl4/fgXBYhCnxExGih0YP3+zD9Wm2HCab609KeL4E/w3AjPINQka8RYX74sd8UeHeSQ57nwkRS68wGfjZe+gJvEge4ejC5oq4uH2LsgUuCX130HC8bxf9YHTCPg4oBR6AQwSGAI4KIwFYggB4HZXMvj0SQKmU/WYqgKUA3KSjN1EnUe5l5fpyEiIYNj5kbQpRJcqc5sW4Ccxf5qMsGlNlSyQKTm+QNSIpyVMEUV7G+qE9a3135v4Zzysd8nWH40L72OYgp3csotzJzAvtM2HzJL44arZGpiQdDjgG1bDZhxjFElOa5za43KYxAkOJbHzB45QsJ4LfVofw/OALBxauog5egp1yNEEECU20o5cARnVqMFGnuXiHlxCFkUqyi9FAWn3OLi3Bc7LLUOmw1g8bp8Yu6vmALUiI4piKzZUXrXzFRZJ3q33ebE+F3YJdXG6jj3ZRpbBLfezsnF0W9VzE5WOIOCKDUa1OyS6X9KvO6thEEGfVafWtJYJZprDLTmPWPKkjvXy2Y9hEr+MlbIBbXwnXfdi8IrmNqnHMx37WCJqk69MZX9tpAAfS87Ww4xrHleaAhZd+tcuIz94UfGsdP140RDn64O9J59rfdT22JcHXFzxXsZ9nPGNxhL61yxR96yr+IqUx30VgyUPla8kuuwAJZt9LBOptG4NdFroEVsV3omSQcSl01ji+JPlSHi8hAUOy43ziW1RyAIq67FshQ2TUgaBD0imNl0777DtrXBcZkEv9lnQS7TJo2eow49fjqnF8OdXg/6Rjb55t4WuLwoYwDyVi7wmf5bRRC5n21o1bIgq3RfyPIXxUMYUc/gljJsmpb0wEudJ4SnJJJt4jRRZNiRFHaxtC3lvhyEpOHo6LuuL+9RjwYzpJo9NKuh50OldcOrf+XJ7L73FR1f+ViHxbRP4GIYvaBwSA57GooF+J10+u/bjPEpF/F/izBNDpF+LffhP4NeDbqvpXm+f/FRH5a5FX6f347F9T1fd+TLWr8gwqfcnKyz/1M5UcEGc95Q2JcvpvqOX1v9eomMeKiFbItnMGYx7P2NDWD0Ha0lx//H0J4Fn5XeIGUuUL6RT/QlqJJIDjXei8Ec1kwOF5JafRabHWsxQc6e2zH7u3bueq00pyLY/UreVk65SF7uy7qqed9kHynXy9kk7rlzxYpY6pXYmzKemk2rT5TKtanTadZ1zWEO7JGXYFZ1jbxo1VjoUrLipsihptHw5GAyoQS7HFBITZx/EUF08bm66d18Bp4AvqohmMhHdM/nFfG53QF8DmYD2TL0jYm/pHB9fFTN83Jre1uB5rizokUuv09PZHYyZETFhJC8BAzO2LRWmnsBQNm1C2jywSAQYkcxaFdyib4rpv2r1BuCvqtwSfrZ2GWoyQVMGvQm0nA7UO0T9LDdo29cg7iUZnUXbF5Re+50fmkOXWV1t+pADLudzQihg1AxQlbwcng/r0HbryYMR32kKrDlk31wS7lGkXQhTM2tstGexTZLI2bYWyXcLmXuLmP0GBKwdTwPjL4ZI2TuU7S5LaFElQtqFs5dLo1MWIk8dKS2be6lApKisfS8kjddKIskiIqOhYB27LQ2MbX0uRBusjao4Yi8kb31R/czITtDq52i5RWFWsdRIFfcwuZ8ZPh6kALW06JUWdlPWnd9av7dI1dtH1xmiXCAAq4Qhso1NZN+nQ2iVlM0slcIqtJUSc8Oj19v5FfDVIWhepeHfO6JCJuuPNra8pp+Ol1blrfKut38qhPsX1el48S/BclEftQgIczoyXRieHz+NQEKyG6L/HytL4VpnxLT2jNEQ7XsyJ3WudSrBdqI9lJp6rp+bqqpwZP+7Eju34qu3Ytrn9LXiUI6r4zSzlbJf4MFNcO9soYZ3bi3eU/hCilx5fJwD80T//TNT9XH7/FFX9Fb4g31EEev7qO67/OM/661+ogafv/6mWZ06lL1n54M//Qyyyqf62P6ycNMbA4VgTdZecNQAPh5KkWri9uyhkuH+oSawPx66SHx5qwui5IeJ2XioAIgBX9S9Tm9GqzGymaioSa2OUsSEfP8brmSz5uMltElmfl7l1Cu4iWDOZPUYAvSy1Tqo1AbTtloos2blaRxGtsoKJUBFAixCPi61yqp90WpZanhqd0vtXHaWSnasJnmnAPNeQWmvTD8qaSSz1wVzYTYTMwwOJEFoqOyX+o2SXxImTdKrJyOFqW2eUm/LqNi7gZOV4Arjqa3n0WskrvBDKVsjHboC8zU8rJaeCLxZKVtYImVRqz5XMt5Tec9lkmGsn6X1GNqLOXa1DC/o8LFTXN0YpqU5t845Ja1JeIylbWpKFegYpAaMQzbcpZCBEDBTNmJoFa1sutCYVPTZ2aLf4W60CCEn00qm0dupE2DQL3Ho5XhdB2GmtQ14Mp/HSEKfuGh0aFTioq+Sv6qbOZNbUb0Eig1R8FXnDVehUbxpkXbBrkNtsbS1AMqXtYXxMS/Y6sVTyDlvJHVLp1G4o22LjBvBkH5F2PFJvwoXwVb1sI40dWnBhaMGTpp9bnVqd2/ohyqUcfzU3iiSLpa6X0+xUrV0yF0r6jTwBSOrrXWPHtn7bnS1J71NZllq76Jl9fbk5PGeXlli4JWcemjmiJQpufbO1iz5pF6nskt9V2kXDkZ2oxIlOLXlySyTcboBto9N4DoBsxkspj3rGjlX9mpMmftPIOpg0xtPfkbqf5dQOrSe048U1bTprx+JPrR1PQSVTzd1l2yD5Wj3v9bRzcX1fS/jc1q/yffDI+CrXa1rL08n4qnUM0UBr8aLxN3XVqSK+FyiXMoLQ67vbTKNjqzNNvw/N71HX6IRSzdUeTuZuaexSyjmaqJj3hmK8nJvX2t/QVrV2zLel74U/8z/8mXfWeS7P5bn87pVnUOlLVn74X37Ob/zGq7y53x97/u63vsFxDFvRabZ867tfyUCQc8K3v/8VHvYBKPIK/+B7X+HmbptBmX/wna/x6edXGQz49ve/ykefvMjydz58n+//6FWWP/r4Pb73/a8V8vt857vfyHuBTz55xbd+85sZoLi/v+Cjjz7IoMvDfseHP/ogkyEfx4EPf/hBBn7mxfKjH32FKR7DWRbLhx9+hTHq6L3wwx++z+GwEnN//PF7PDysOv3o4/e4u9vlNt68veQ+Xge4u7/g9u5ivX53yeuby9zP+/2WNzdXK5C23/L69fUKtB023N3vMrDjvA1y1HlZLHf367E25yTImXwc7vbbnNLeK7y92zBHoEkV7h4GxmkldD4c+wpcu98PFYB4OPY8FADjOHXsDwXB87HnriB8nhfL3cOa5W6eLfcFqfU4Wz6+2WYgaF4Mn7y+yODVsggfv94xLatObx865iKl/f2hq3S63XeM8wo8Df1CVxCk9wYu+lW+2i0M/Zr5r+uUoVsJz1WFF926G7noYTusII01sCmAJw9cimRQxhK4krIsyrZ3WQ7HSuovtRcGumIVfDG4iiBdvDAUe5OtKUEauNq4SmfvDdsC9e0FLsv6g9IXwJMCF0UElRF4Uezje1F2va902BrFlGCclOCVctn5fExWNZK6B22AsNnaFpufKxH6oo2DUOksCFfF5uRShE2j41D8einCNSYvgnshHkeLOqJshEqnHYItFs0XTZt76h9IC/QVqWgtD+l5eZ1cE512aZEd5R029GGUb2WuIgsSn0WSbQk+EDZafQnaaGhDufkowQZFM+dGekyHqZ65KY4cAGy1qzathsDVlNq0pas2YDOeTspeEzZSRzqVQJZw2sYNttHJrJsXraOfgk5UbWwJbHvauIFot9wmE6KztOwDio2OVnY0UNmlS3YpwJK+8MVkF/midtFIaFv5Vh3zJY3OFrOCBbF+eUcArurIpW1hl8R1Uz6/b9o4FHaRZJeiTbaAYJJOJcjZ2iVxtqRi0ka60Lns11Yn5dQO9Xgz1f0a21DrIJXclYCIJrLktZyQI6utNtZCHXnTIWEzH/+0SzoVOpdtFqQCZjdSj890lKj0zR1d1sGU4yVeT+0igjOZAyv7Wm0Hi5zIpS/0RDLlrOOpXQYp65uTebCNqNmc+NYZu+T6Ycy346Wc1wa1JwBi63slAXQ77yW9H5uLN/FwVioZGC7suCksF47IFvUbnVC40m5tk8IFpvp9uVRb+dKlt2wL+QobPmREeYsJR7qL349LtZUdrrWrgLdr7dff0HhdivpXaipfu6b+mHOJaX5TbaNTd6LDptTBd5VO12LYcb4IsJ2V7/xnnz1S47n8zhSJH8n/YP1z+unlufwk5fn425esfO8/+YjjOPD3f/MbfPDqgXkRxqnn1/7bn+PrH9zRdY7Zdfz9b3+N91/t2W1mFtfxG9/7Gq9e7NltR6a55+9/52t88HLPey/2HMeBv/cb3+STzx/42gdvubu/4O5+y+dvrvj6V295/faKz94Y3tzu+OZX7ri733Hz9orbuwu+/rU3vLm55nDYcP+w4+tfe8Pnb15wd3fB//fv/kN8/Ws3uLnjcNjyW7/1dV68eODhMDCOA9/9/td5+eIhZvTqs9x1gfT6t37rG7x48YCiLK7j+z/4Gi+u9wz9hPMdv/XhV7i+PnCxO+Jcx0cffcDl5YGLiyPjuOGjTwbu7ndcX+85HjccjwPHw8DF5ZFx7MPfxoHLiwP7/YbFdYxTz/XlgePY45xlnjsuL48cDgPTNPDxJx2XlwcOhyFkFru9YLOZw+ECb3l7e8lmM7M4g/eG27sdm2FBVfFqubm7YDPMGKOoGm7vtwz9gki4/vbesOkdfefwarl7MIyTYzMseLU8HELE0tAvjFPPCEyLZTsszItlWoR5Nmw3S+TWMizOshlmjmPHvFiWO8Nus+B8aOPN3Tbeb6JOW7abJRBCO8uHn19yvZsxoizO8sPPrrm6CGwNzls++vySy+2MtR6vhrd7YdN5hs4DhtuHPhBAGx8Ip/eGoVN2w8LLK8V7h7U+RrxZrreeTafsZ8PlxgU+JzMzLyYSi4MxC4szHKeOjYH3+nAM7qLzdBYuNp7ZCUYUa2A3BHlyhk7gJcJIPH4jASiaNQBWxsDQO5wXjnPg3Lg2MGng9ukMWI3k1ALbPhGPK4sTnPZsRekkRDF1BLCs0/CMq8HHzHsLzhlmbxniMycNC1YrAQQZFa47jzWK6R2LM0zOYAWubGjz4kP00SsCl9CuU4wEMM15YXaBUH1nA7nm7AUvwkuUkQC0DRbUeJyH2RnwiWQ0kG8LwiWGQZUjyoVIbuOsMVpKQn8uGo7UbeOm8KieCxG6eH3WAEBZCYDbEvXuEF5hOKoyxOftNBzFsBIi4TYaIoqOGjYKLwj3OsLxvZ2GKKd8jwb9AmlwuN4TiKLDplroNBDbps2SaOAjWUTzhm2JZMFhwxb6cRe5SHoUp/BW5rx5WTSBYSvRaXqfjVvFlJI6EaOG4w+ReFVDnUS8G2BTJUUneY1fgUUY1GIlcAENJErv8GV9EzeMogEs8cAg4W+TBvLhBCZ4VRbxOZIgpXS3cXMTSHLN2obYngR4eFZy1x1djJ4J9xsUH/u11YnYZ4kcNpG/Gg3ExumdiSfGx6NhRhNZbSS0JZCsD2rzHb7wjfQOaeyyUbvaRck6JLv4aJdNfH6KeEk6BDh5tYvDEwhwQ4KEJYJUkPZmyba1XXoJPbXg4ibZZDuWtk/8P6VdEpFwsgtlm6JdTLZLaHH9fLKs8fkikgm3F/WRt2W1Sxd7OT3DR/AukPb6zMVjSOT3Jt5Brp/+lsZXSyxc2mXGxyhLk6MKM9GwKkYLu2gE7pLvFX1miGTKhU6i8T6RCEQlDqc1A9aCZ4uhJEtOz9xEHTxKJ4ZLAonzVrtoF6LvBn/vIY7hYJcreib1mTy5j+PliEfMOr5au4TxEWaUcBzK5/Fl4z2eFdCb8TmDV/K9rvEFX+jkoh1LuyS7G4j+H+aMHTbOe1rbJc2rj8x7nnKOCJFUgbDf536HEJ0aCKAVE21r4xwwRKDNQDFvRTmO+aTlEp+ftCi5iZJdXDNeQvvWPkp9ksZyAEANlxqSV0wS7rmK8oiLYJ5n0HAcd4tFVOhVGCXwe3WEaKARz8DKXTSqMhHAPquJUD60+aX2mRuuw/BSB444eg33v9SOUX3ORnethkkjmI/hBcqkIZrYi/ACy6SBd9CIcB1/K6Y45i9VGNQzxiOEfdTpKI5tHCtZJwy9hN/YkTVCuSd8rDMi/INf+Zhf/Be/8eNsg57Lc3kuv0PlGVT6khWNObads3zy+YucCt05ww8/eQmEzZhXw2dvrhCUzoaIjjdvL/k8R+MIn7+95PO3FzHqQvj8zRWfv7nEGlA13NxecnN7mSOMbu933N7veLmbsSYcg/v2d1ai7cNhw3e/940qAul7v/U1rnYTmyEARa9fv8yRLM5ZXr95URxBM7y5uaazjmFwqBrevr0ujq4Jb28vgRRhJNzdXXB/v2MTo1seHi64v7/IOj7stzzsN3Q2cP2M08A4DZm0e5p6pikASADz3PH65preLhgDy9Lx9u0aseSc5fb2KkcgeTUcjhs66+I7DMfjpjjKFo7qrVH8oQ1rEaZ5TWEPwjh3jLPNOk5zxzRbtpsA0syLycf3IBBEz4vNOi3Ocr+3dJGs2znD/rDJ5OHOG+4PA531WJNIrUvCdYlRUSmKSni7H7Ci9LEf7x42OSpLVbg/DLWOi2V2hm2vUQfLUQsC6EVYXM9X3zsGYnEUaxb2x8CGMsSIpEQmHgjcXYzQC9n/BuMxYyD/7gSuOs3RL8aEY2K5RRKeOTlldBGwYI1kEQlAx8ascmeVXh3EaLGNkI+Npfot2bkUBOs90BeniTohAyupjSWhuhXYSeBo0ihfCDkiSAT6zjM5YYk6bAogJ+m0K9rURSL70QcdegnRPseYUXFLOhqX6oc2PcRMfh0rcJTC4QNF/NrmdH8pjy4sIDuEK2zmuEltLt/ZCzELX9jsXyC5furHrmxj/NvBpS/Kaxh+7vfiflu0N/CUhK/1qaRIlfxVOm5Gso4INkNB6zGBkgi1i+9Kcs/K6XGOKDUBGyXxadr8pvqmeH7aFKU02+HIowmExZI2H+uX83UjJ5WcKJ8DILFm/WrrpzalTWYif+2K62Vkywq0wFKQu5rmekkOm95MrF+Sv0psT8kHJcX9pR1qu9X9Vtq+vFbapT+xy3q9Y904Jrm0e/lttLRLAggNicC2fm86BJjalI7jhD7qGh0kHwFc2+Qrkt5ShzbCKdnFRd/pixiNc/WTt8FS2MXE9prYzpqPJmTGotChJuk9tYtgolZJh9KXAvDxbrvQyK1dWh3b++vxmHQu7bAmHHhMJ210SATkAYSxmd+s9N00xkNeNckgSwKAyzZ3xRyS4OKlGi9tH62jMo2hxCdmIyDW6iC0YzpAn+H6KeFzaxdprj9tl3qOKetbYjIDVl/rCSBMul7yJa1zQP3MOYIu5Ty21rdVvyUg0hV2AbLcn5n3Wp3KeW0ggCqzaJZzpjcMA/EoWyw9hl5N9s9g13WMWsJvoicQ6luECw0Z7UJGOOFCu3zQzEQ5RRwlwC9FdwZfq+faDWG83GdfDL53LHxzwOCyjpZBbb6/J0QpJmuGSLKokwRA8LHNako+9Fyey3P5vS/Px9++ZOVn/txXK9nk32Rtamr+/7DZL8Kom7o1afaa8Wv9S12Wd5AQAyck1bOr3dS8+/aGW6gkgF6fW/MdtTqEjXMlNTqdtLkhBShJu8/Wb/rwMRLr06LNf8fFjlHebZea7yiQe7+ziSf3G2mf/+4HdLbtk/q5ctb3Vj18Y5ewAF3/4BXGuQgpF+gaPqKUGe0xHfqmjU+tT9r6ScpHACMPVZL7RBJftLvUyatUvFNGoLfrUbhzZWr4xIZG59ZPp2b89Lau3/rBXBDdA5GEfx0/NXF3IBv3jZ3Kfk7ATFkW3l26pk2u8cXWN0/qN89z2fe0qL/aRYtr+R2FjuXCP//hidI/UWlufPGl7yu5vbvlzGiPa7T1fTPntUUQ2mmm5UdpuUbad7bDpdzsnK9/fvxUOhVTWSJQr+7R2i6t3i3RcPtO+8Syp+Vgeqr+KVG3pIY88nw90eGp0rap7de2hS1vjXwBXzlbWl/7cezyhG+1b2xJ3dvrT9mxrf+oHR9RNUV0Jb3O6VjdLCtwkMpTY7Llrvrx7ViXdP/a5lqHiqg73f+kXWqdWru0Y/5puzw+r557flvyPKZfrH4CQFNJ4Ni7yqmv/Hjj5dHxpen5eiInQnUIfnEyBh+fukFO7dD+5p2Or7q0vnaqY/v8Zq1EsqWuzy/m7vII8dlGybm5un3n0+WP/NNffbrSc3kuz+V3pTyDSl+y8of/4tfptqvZrQFr6k1sLQs2b3I1RmykqT9+f23Iko3xlTzYWi430Wv9ehNaytNkGnDhNPtbDRIZnJeKADo8d9VpjaoJcglESbEizhFGDVC1RtmkZ+sJWPAukCdEBdUAiUi5EAJbZMgLUSArjw7UdhKBYUj1g136rpZP7NLXpNatTu2qoGsIoRfXbu5rnXrjYxvXt5TgnAh0jQ5dJqUJ/y6Juc/53sOhJkxP70vyODVLqcZOoQ8e10m1Bpp6Uy/+FGEpdPIaoqgq34tfHNOmK2XATb739lgTqKuNNNPxD5NqJb891t/sum5pANNw9CGV/WhYCh06o/l4VegSZS7kxQv7UgcJx+LS+BFZibbDe4W7uR4/KnWbV/Am/Pvg6+ujNhttqYG4I7oSYRNTQxdyj1abe09I0Z37BOHBryS8VmCSEHmR3vOQMl9G+TalhY4L36mQQ/2lko/NddFah7yRiGWPqxbq7+twshEvi0+bkGQXTiNn2s1Tfp8219sNWgYL6s1PCypVGX6IgEoht0Td7cbiLGbb6NSSjbfbnXLDFiIJngALtNbpKbCvBYn6Rue2tJstizkhUD8FvmodSjucs2OrQ7vpNU0bXWOX9v2tHV2xwc33tL5WyMFErV1qHR7NtpZUb3RqycZPsk9prVObNawtjxJCP3LbSj6+VkgRYGEOKLN4xXlL6jHPyXxXlzHOAtV7y7VPI88xoqys3WYZSxFkSYcUuZSulyTVVXTPY32h9b9bUvhWJ3/OLu8Y8y1xtznxpLpZ2vzxRAcaX5RT0KdNSHAC3rU6PJFkYVFfzdVGY9KEoqktsf0pybXkpU5F3n9mToACpD0ZSFGH87NrLkNzbzsHtDpq+U5Shk2tr2dtgx27JEYd+qJyFSn62Fzd6PDkx6dB+BP/6jefqPVcfppFAfXyB++f3+uO/QNSnkGlL1n54X/xGTqtRMUiysvLBRsjbYwo17slb84F5cXFTFcAS9e7JZIdB9kajZEJ4cflcruwGVZy5N3GcVHImz6BDRqvL1xdTkWbiO0JsrWaI0AgRPUsi6mAoXkpgSfFLSaDJN4HUuiyfsi2toIBi1uBqPS8Ephyrs6+5r2pZOcM3q/v6DsfwbjwB69SXd8MCy+v9xmE2QwLL673GVjqOserF/sMBBnjeflij7Uu2+3q8phlUF5cjvT9apfry6mwg3K1G9kMc7bDdjuz205ZVhWcW/vkYjtxebHaZTssvLwaWVcEwryUOjleXI1ZJ2Pg5cWyHvGKti2BuBcXc+NrS+VryV4JaLzcunxUMdmhIiMfuyqjnPeG47gCS97XkUSLszFSJ/paWn/H6+Mi3By67EtHL9x5WQnWFe5cGQkTQJ98RFPhZom8QhL66sHD5Ne++GTfcXNcdfjRLNyozwDIa/W89qt8Nxt+eLceifxkNnxcgDJ3KJ/i80Z0RPj+fZ/BsbdO+NCRQZmjwEf4DCw5hR8cLMfoWrOHH8xw9Om68pEqB9Wok/LxJNwtq06fe9jrCuLc4TkUm58DcFuAPJ/i+AEu6/CZLPzITHmDdY/jezLnDdUdynfUZR3eiucHZsqbvhHP92TO4NeM8h3vOGRgT/meTOzjsQiP8gNm7qKsKL8uBz6VObf52+aBT2XM8ofmyA/NIcufmZmPzFjIE5/KMetwKzMfm2PePBzE8X1zyDrdykIn9bGgMvOSjZwX5eaua+CH8hgeWhATF+CAFKBN4uBI8kZtJWei1QLMKEl381GQKM9oFR0hTf2W9Fc0kC2XxMJD2vxHHVqdEp9L2BPpCRCViYhj6bEVyAP1UT9LTVJ9jhB6aOyyKQ5jdNQk2UrgxSk3ZBVZuEa7FTpk4KmwS61DDYiYeBTppA1pLtbuhPS9JkgPR1JK4KCym9ZRLkpNPh6uS6MTlU4d0pAj12DZqU61XfrimFGSbdWmWqeg4+mx1FQ8Si/2Ubu0OinKAcfMCj7vWZjiHAFwwHGIx/wA7s3CvpDHeD3NAYt47pmzfMBxL+v1Ec++qO8FbpnynOFQ7mXKc8YS6ydZUR6YMzCaopaSbz1GCl/apSXzt/F4VZJbUvd8vKsY8y2BeuurbQRVXx1frOe1TApf+GI+hle0qQRhek7jC22lYzvmuwpk6TFc0a/jiY5rhizv6LgsCNIthmtWkmurhhc6ZKDJqnBFl+c1UbhQm8eHKFyqqRI9dLQJCKQhiRe6ov5WChCHACKVRAkgFbAkBF64dW6mkrsorzql5BehGIhHx5PvnWZYDG2m8rXy9yXwPq1lg6nkC6mTlNTaQD8r3/2PPjlf4bk8l+fyu16eOZW+ZOUH/9nHEbQJXwqtCbw4713NHKdAFGotvLxcGOcAzBgD1xcz02KYF8FGsGBaPIcpkP6qKkYDUeLQK33nGDrPOFs6o/SbIB9ny6Z3WANiFO9DRE3XKb09chi7mKEsREB5D531qArTYrBGY8azACwZo3GDL5GIWXO0y7LYcN0LYHBOiyioIAf9PNZKJMdWEMX7wFjgvWTALNQXrIlBv94we8VYxTmTQRljQr8GUmgfQDBnUULkjRGl6zx973n/1QOHY8/Qz3Sd59XLe8ZxQAlg2vuv7jkee7xKlB84jj3zYrAGXlwemebAiWQMvLo+Mk6WaTZ03QosjZNlGDydnyJJdxc4fy5mNr3jMHbsjx2qgl8COfXQO/rO03WOceyx1mOt0nUHDseOfWzXOIcIo4utp+887704cBw7piWQVL9/PXGMbYIVtOqsx9rge+McQDpr4FX0vXEOW+D0ZdOa4JvXO8e2D77XdxFIcobeOo5TYEFxPvhBb5V56XDeRPJyAQIQIpAzyxnSeFhXuqoE/iEvfLbv2PWeByd44K0G0udANiq8dSG72CBhw/f6oWfbe1QCA8a9j9w/0fvuPfRKJGAVPrzruTlaXm4ct84AngdVXohwAPYoe+94ISFTxZtjx342vL9beD0Z9hqifV4K3KtyBD7Ecx2/oDpn+I3bgfc2jlsHE/A9By9FmVCWov6gwoLwnYeOl71ijMch/JaDq6iHIwBRFwoXaoIOR8OVhavOM/rAkXJQZSfKMY67SR1bBI9wrzA65ULgTjwT8IDyFTXc4NiL8l0z8lItI4H48x8w8T6WMfbJr+vC+2q4F8ckynfNkZcaftZmgd9g4hUh088i8A+84z2JRLoC3zcTL9SyVcEZ+L7OXOPYqTAa5e/rgY9l5iu+48447vyeNzLxgQ7cycKdWXgrM1/1Gx5kwQs8iON933NjZkbxjLrnhfY8yMwknh+YB17ogEdZRPmWPPC+7zNR94DNJL+JW8XFTXqKAPG6ku4GYuqVLHZASOTJicBWdSWQTlwsK/+SYpWKSNvE52/URjJkzaS4nayEtX0mG49E2ZGoO5HoJiLhRI6cyJQDv4ZmkKskG/eJSFg18s2slLbrhrLWKbcRpSMRD1MTQutKKp10CMTEiYI38I70WQpAxAyVHYRE1B1IeDeRSSaQA4fxJAi92IJTymS7QEE2ruBw0S4hv2IgLg46p35PdvGayJBrHdJGPNuFxI6TSKkL8nBWnqtEjtxpYZcIvGadNBDRl+TjQkEIHe2S7RTtgqz3L9EuPpIW++gLpU7uCbusRN3J/z02+SLB78rxk/qsI5HtB3BoEJtBmKBDGgulryUd4EGXzAXkRdlrAJYGLIjwIAtjJK0fcagQSLaxTFF2uhLtj+KZdWKH5SiOWTxvmdioZRSHE+Ve58wTpQJvdGQb9UpA0waLV0UFHnSOYI+gAnc6r2TSecyXPD9hrRf61WboKRGiKxqTFAS79JHgea7sUBNx97ASZ0tKGJBIqqPdWEmq2zlinfdqu5joB4l8PI35RCK/EnUHUvZEzu+jD4UInsQzpJEIX0gRgal+JtLW8M4OExJyqAvAGpZXbDnqwjYCnteRID3NSy/ZMKrL8nu64agOwwo8JUJ1iwmJJDTMVQEMD0kbgu+ZODdLJvsWPFZNtFPQYSUbl5xcYiGCUhKTgpD+lhJFxAgyEXYEAnUh8S8ZZlU6TXxKiWA9yWG9YABjJCS/ICYJIQBXrpgDNoWc5m5bJCAIfUXWQaIdF2ArVAk6UhxT4kUUgW//Jx/zx//l52il5/Jcfj+UZ1DpS1Y0RhuIELNgkeXdpjh+JSG1evoKIRIijIYu8NQkubeefUxLHzbn66a875S+W2IKeaG3Ggis05dJAWM1gwzWKlcXM96bSBwdyYuLL8zOS8FXVEf/JNmLkj6PeC8ViXU6clTK3pt8xM+roJ7qutMQOZU4hBYnGBPapYTnt21IYtZhIb/b61rfGOXyYspH3YyB3W6KepmQWWw3h+gaQgTObjuz8eBdJIAeAvgzu2CH7cax3bj8/s3g2Qzr843xdHZiXgIA0/eevp84jF1xHHD1mc4q3cUUosMQOqtcX4YMdeMUaGQXt0bvGAMXuwUzwjh3QYeNwxo9PY5W+Fqp43bw9FZ5OHbZXun5IgG4HPqko+CcZVmKiKR4DK2zYcMVIpoMXecygXkZhZ/89zHeLFVhP1mORb+k7G+JbnKMi56L+PzjbJl1bdMcF3emkWMLeJgt97MB8aDCUeBYHPGagM9UeUXYJIzO8KP7gREPEp71ma6HJxxwg7IjfBFcVPj02OX6HnijK2+BArcoPeGLpCLczIIjfEpV4E5r/qQ94ZjZJQHovXdw51adJ0IGOuKXykUCmecuLkBnAkDnQhcwonyIY4xazKJ8Jkve9M7Ax7gMTizAJ3gmjToJvJElL+K9wGs8FuICFl5rPCoXpiVuxXELOdrlDs9NDsmANyy8ttFSBu5ZuI+B+YLwYBwPZs9lzNQ0iudHdsxHx2bxfC4ja7SC8lpGthGwWUT5xE6ZEDcd78jH6Dgl1Q3bTZ+PuqSscr6Q11ku/HdPiCRKcgJN0rGEc+TJ5TGa0P8BFkmb95Y0Vxo5Z5zilHS3jEAqj7T4uPlvSXiFczqZAMpQE3mvbT7VKcW7nb9eExWHfvWkDG2n6d1PSXvDBslR2qV+3vr8GMeQ6we7nD6vtUM6lpXa7Aq5tEuq70h5w4IOSyGnbF6tHco2KOSInS63sPTFU7tMeFq7JDrhMjKm9K1zdkhy2W+WlNVrJUMu21BGxyT/dkiuf07HU/Jkw4yLc6sypcM4ko7fLlzQBwBKNEYcheJEeSgYlLwoRxybmFnQx+sposhLiFxMx39UQpRTik5UCVFNeXaP110xT814XIzSQYjxTavvpd70rGT9acyn6+fs4uK8lIBVqa7X46VD8jHfNtJynZdMVV+Leespu6T/ns+M+VWuSeEFk48upzaXSRPOjfnUCovhApPBDINwQZ+P0AZwOYy/RLi+o8vAr0S5HC8toXogqS77MKwRJlbfTXZaie5rO1UJByREKJlC3hBAn5UUPhxh98X9SUchJZJY5ZCQoJQLcnFZP5aNWuswZrsSAb71+mrrlUC91mldqbcJPaqij/z9uTyX5/K7Xp6Pv33Jys/+U1+r5ATQtDwyJd2Bnkza6x/CRrysEECWiqi7+TFon9eSKXeZC6hu4/q8d/+KuBOiYeXkwHjTnrZNPy5Rd0sAXQIcQMUtBERAZy2P6di2az06BqCFfKrfY/em+1t9EkiTSgsAtf1+Un9udG4IoTtT65SyydXt1DN2W9vv60ee6FRGGsHKhZVKS4jeNfVbO/TN9ZYQemV4ioCB1v4U2ZLqNr9DDl8egXf4Wkv2+tSXgZbs8ikS0vIoBay8OOsGpS6ec0S/tU7S6NS2qeW5OeGUaZ7fyqdcQunfmttYyomDpiJQL/47UmFV5Ylp5yy3zo9X/x1GZ+XMeJcO5XXl9Fopypn3PUXUfWr7Zk74CYm6v6hdzunU2uUp8te2TW358Ym9z9vxMbukyJ5U4lT+eJGnCZufsktr69Px8shvY2kX6vGkjR7v8rWT63Kq8mNjOJWnxnxbHrNj2+Ykt5xnZ4mGyyIrKPuTtum0/hezS9VG3m2Xptvf3SY5HT+t9z8+06f6P1kfPDVe2jniXN1z71hhrC/eprac+82rrz/ym6pN/SxHfaI8o02beXL8PEVq3V5v1wk/PlF33Q5PiO7OCTyoG31+Xjud/8v3tu+c320WAP7wP/tM1P1cnsvvl/IMKn3Jys//ha9jC6JuVeG41CBQLa/ZqRKwclhqOXGxpI30carBgpbkelqkAgNaIu6hq8mTvX83sNXKqjUIVOpyfpUoFUm1CEU2t1q39O8W3JAGAJnnZmjFo3ypHI4981JsfLzk42HpPQ+jrXS4O3SVPM02c9iIhPplG+8rWWJUUWGnubaL2HpZcr8fqn5vs3z1/VJl5dofuoqE3RrPUjzSGA0h0rGKV2GapdYpHkdLOk1Ff4Cc+Nbsah1cA8aNc+1bi6t9T6yrdHKu1nGwNel1CMtuN97rIlwh8idFneUUpEnRSetmppYzSXyuX4MJh2bT0JX3xjaUC9SpWbCmY0JlqUiupSZ7FYQlkY3Hv1dtkoK4mxBG3+q8NCTYLVjRqVBvDGod2w2fP9Gp3niHCJmWwHaVDcLSEHUvlQ7rNiHJLTDVgjznAJh3ASIpbXWpQ7u5KclXVah0EgQnjZ0odJJTnXIkhCadz+uQ5GPB9xL6tdZhaXTYFFEA53RKkUtlJ7kn7OIaX3ONTie+1uhwjsC29aXaLqfgQk3Or5SEsg6t3pFSlr/bLiUB9Krr2fF1Rqf2V+zULjUhtLJu/tJfSp1cI4e/NXYp5HRPqdOpXc7b4TG5BUNc41utrxnkjF0e16m1S6kDcH68SC2fjpeGqLvxxXbeanVo57mndFCofo+ktYvUdqnsoOd1eGy8lOBBWZ6yi3BuvNR2bQEUd+Jb58nHz9nlRAc5ncfKtoT67W94O17q0vrm0ujQjieg4g6CU+LuzAmloRMOzZzgTn4za52nRsdjM8YXrWXb9Mc5O7W/oW3yi5O1DmRexHatk9YNq3xKdN/qMLY66bm1f1F64Y/997/+jgrP5XeihD3WH6x/nstPpzyDSl+y8oO/9QmuOMMzOfjBbc8YAY7ZwW/ddRwKwGF/tJn82Ct8dNdzP62b/49Hy10BRE1LIEdO8n607Av55tjx6UM6agWzsxWAMS3rkScgchO1mqx/kPxbrVHWihB6/VHS6r61aHUMMETEpHqS/17+2zQjR71Uzx6Gein29tDz8V2/Ej5Plu/96GUGYfbHgR989B5zTBd/e+z5O99/LwNF+8nyd3/wivuY+cs54bOby0xS7Tz85ic73kbgSRW+/fmWzx76LL+933C/H7IOH97s+OjtJsufHnpeTyvoMi+W17e7LH9+t+G3Pt9lHT4/DHw8mZWkGuHTN7t83HA/dnx232dg6eCEj0ZhKgC8u0OXwTXv4c19xzgXvjYKD261y/1oOUTfA3g4GPbjKn86WV4XQNVxMdyNdvWt2XJ/WH3vzdjxSeQSA5i84eZgs3zvhDtdj/YdRHktS14cLShv8cViCQ4aIpYgcEx8Ko6x2FS+xXEs5AMrDwvADUsmkAbYSyBzLTcOx2KReys12esex1uZ1wWjBP6hJB9R7mQld51RbmSuFpAH1qxDDuUWlxeUHuW1TBxZSa2PaD7uoih7fNYZ4K2ZuStIrydR9rIu5O/NwrGUZeGtrETdrqnvCKS5q06etwWBrQceGgLbY6PTG6amzUtFynsQV4EB9zJzLEh4JzxjIXvRKrvTXuaKpHeiJu0NoOm6IRvxHAqdFgKpb7nQn4rNjMOzZ86bQI/ylqkiEl7weYOmhPbNkcMH4IG5Ihp2otX9SMhwldr4IHNll3Rsp7x+LPpgxHPH6osKjIWOnnAsqNT5lqmyw0hthxlfyXcyNXZxjIUOSadU9rJUZMgznmMhc2IXV/naQji6VI6vsbDLcsYud8xZp/TO0i5HWSqdWrt40XzkB2CUpWrznqUigPZSZxqb8RwaQuiSAFoFjoVOLvqia+xSbt5H3Ilv1XZpx4urdFganR5kiUfG1neWvqSNXQ5R59Iuh8Yu5XiZcTw0dilJrVe7rADGPVNuo0a7V74V/THJh2iXLFPr1OqQxny5yb57h108yl5KnU/tcqD2pWOyi0S7MGcdkt3KMT+Lr+QHmXkofGtu7NLOeweWasyfs0s5ByyxTaVdgu8V69TCLh7ltpjnks71vFfb5aHxxSML+0KnYJdVh/K4cVlWoK2eAzzh/iR3anhPhwAkEQClV9oHoInAe/SySYqwb9YJt8z5NxbC71lJAn8U5UEKuwH3RdbUEbhj/YBwJ563svreXhw3hS9NeG6LZBiLKDfFWif0e7nWUe50/ajsUG7EV7+pbwodwtpn5lDp5Ku1zlGUh8qOcP8IsOQU3hyVv/c3n4m6n8tz+f1SnjmVvmTlw//Hx5V8dIJT4Xtve643HiuKV8P3bnuuB8+LIZCG7o+BS0fF49Tw0b1w0Su7zjF7w+deuXfCtVUurLAfA7H2pndMS+BbmZ2w6TzHxeBUOM6GF1vHrlO877i5NWw2C1NzjKo9WnYOVZb0xQdds4nFar4BfM7d+y7QClaQ6rEjcO2xqc66Cth6GC3HxfKDG8P11qE+EIt/6/vv8er6CGqY5o7v/NYHvLg+8nYyjIvlb3/nA77+4khnPIsz/J3vvsdXXoy8t51RNXx2c8l2E7aOi1p+89MdL7YL19uF2Vm++/mWz+97PricUWe5vbccjh0X25n7Y8f9Ubg9dnxwOXF77IJdvHLdKVedcjj2fDRbrnYTt4eew9TxrY8t711OvD50jF74wdGE+kZRtfzws0uudjP72bB4w8e3AxeD56CKQ/jhBJcWrk0gBX370DP0npBG3vDmoWfTezCKU8Mns7JzcBXr3x2E46RsesfiLctRGWfDpvc8zIELaO/hhQ0ExIfZMi2G3eDwLnBV3SyG7eC4mwyHQger4NXw2YOw6z33kZj7VmFQuJNA8PwZC1tCJhMvIUPbFmFH4IVIxNyzKCrwGscGz6CBSPVWPUeUDUE+RjJcCxyNgoYF5lZNiAISZWJmp4YrLLMQCXxhL55JlBvmTPY6i/I5gQz2QgNh+oMqPcpePE7gLQsbDJP6yD00s8WwU0svhgf19MRIEIE7dfGYmqIGbnRmg2PnQ/29hs17BzgTgKlJPb0KR/HhH3VcaEenwiQhomKjhoN4lsgzMqjhKI5JPJ8xsovcQ0jgM0qZg1TgXhcGDHtZcKK8YWSDpY/9fB8JbPt4/14dHYFXBwNvdWLAhGNbAntdMmeMF10JsQnRVgswqc+Ex06UJb5jg2URxamjx4RNtiiLBlLdGY8vSHg3WLzAUQPZ7SgucK3E5y0Eu9zGNm7p6CQRx0rmhQptDoSnwU4zPY4tlkFsIIaNOvgIsATiV4ntCxuyDZYewyw+kz0P9MyiLIVdFlE+Y+RCQ30R4SHaZc+SyYx7DEcJ8tvYBynb1oFl5WASOMR+n/BxfES7xI3dyMJCINsN0bEJIAxk5wsLowbyZBWYNOiYCKudwDH2U+KiWXQOBOJoQXZ8apdjYxeP4kW5i23c0GFEOETfSuTMyS7p5+Q++4lhkC7bBQL58qgh01hob8w0psEuwbfAxWfOsZ+cenoCIbQX5UanYHcMLvdr4AZyEUTpMRxjH9xoGC9DtGOq72Of7HWu3vc26xy4gY44LD5HXYyx3yHyCunCiA/ZwCD7XiYVF806jVGHRHKtAKJxHgoZxoJdHB3BF51o9JWwZijttMGiIowa+jSRaD9E30x2SfWHarzEyMJsR8c5ou6tdKFvNeg0xTHp4jOTLySdttG3EvnzHHVIbRhZwmb+Ebsk2CLZ8ZxdyvGUxlcC/FIf3WsAlhJH0pjtEn7vvPisU0k+vmnsksjEKXztKAuLeG4iuXh459rPPQYjksfjgSWO+UAubuNvYho/PYZODMc47/moc/KtPtY/FHYZxDLhI1G4ZLvMsc1LfMYc54ANtpojUjY4w0psv64GI1m+rIToGsdLmpuvYz67r+jAQQObVyDuHhgjsbfBcI0wa/jggcBd/ODUa0gcca9L5OIyOKPs1THhg0z4yDXFdULw8UCAvSWATAq8AbaqPIgyi/KakCzjQPjNTeuEJf6e3UQSeBScwOfM7IrfyBv1bAg8S0rgRBxU0bjWucUzEBP3GHirjkNc+zgDd41ODxqScGw1zIYHUSZd2BLI3kcN2XN3EugHlMAPNWr472/9p5/wp//Vnzm/MH8uz+W5/K6WZ1DpuQAhyuR2tMVPp3A3hc3417aBcnBxwpz5j4T9LDxMqzz6kCr9IpLCOC/sx/Vrj/OGfREVMnvD53vD1y9nBhs284djnQT1xyk5mugnfsJPv7RtchpS1A+idCb0yedvL+itp499cHN7wW2MFPMq/OjtDmHNNPbp7Zb7/cBXd8Eux7FnXFYaxdtjz9vjKt+NHQ+j5eevwtf6eem4uVuH/nG2fHizyxFHiwpvZmFnXQhpdoa399scRbU4w6e3W/axvkd4uwi281zZAPrd7QfGdDQN4WGyHIqIpnsXIpM+6EIbp9kWx86EcbbFeXrh4GHywtdi/dmFfyQ+b3EBpEu3zCp8vggfmEDw6FS4Hzs2xmMk9Ot+XI/rOYSbRbiUkMFNEfazZUxRVYQvf/k4noRjaBbNgEUIP4cX6cuhhvDtQNBDzmDWx4X+RIhQ2sb7HXVYfiB/XSMsXJQvvI2gR3hm+p6bokbyl0WBBxydGnakr7GBLDvpcMTno2lEGcgppGeK435ZXuuPeBajvO+HeHxkDdMPbV6PvkEA2d7KzPt+iCAHHGSNJlCBsZC9KA+ycBFTpKcv/ZnwOMo5zF4IG2YiSayEL+teNW+4ltjvSYcpRr6U18uv6tVROw12OODypi19qR90zdYUIiSo2kQhj9EuNr6jfWeKZCnbKHEzHXylOKoga0RSeb9XzX3QHhdMxwNLX1tYeKVDbuNEyO5X2iU9wUdi4mvt86ZuKr5irzqU0QkOTXYgHWkJGYFSHyyNzosqu1g/bO4WNnRndUo67OhQCeNiJICYSYcifg8f7Zh8KUUrBFL4U19IOuYSZVPYZWnGS3VMJr1fleGcDvKIXXTJfXaqQx2R5CMYZbXPmcBKOygp6mMlhD7iUCUAANIcZ4pyOuaVdPaqXEbq3uSLaTye881FPZd0cUNOBjGlaGOrQwKukl2MRoLjpl/TeArZvyT3s1HJvuVO5rHajsEuFOOFyhdD5MspUfeW2rdSWaN3VnnPQq9rhralmSOm0k5pzlCKeak+cjXj13cWdtlF31oiYJlKdUwztndRz1VjxwRQe5EiZooMdJZ2CfOeyfLc6JTmyWSHGY8U/dzOWyHKhWI8Be6Dct6bW99iTbLgUI66FCBjffw1EKbXBOoHHL2uYFaYO8NxMWElH2+PjK++F9ossU0OZYnZXgThoqKkDsTeRld5iH77wEoKP0rte4u4WsaxIaRScAIP4rlSG4+BhyyqXXy+JyTUWLLOIXJ5Lnxt3/w+HeN4SmM6RS7vot1GlEXj2oWwrpg1dkJc25Qk8lOj04wyi4u/6SHTW1jbFDrhGTRQlHvgoXbntciZvz2X5/Jcfk/K8/G3L1n5uX+2Pn+8tWmWPjdbB5Co5JjpBKSpW87pSgCXKqLu5pkt2fG4vNsNf1yi7pZ8PBE+t2Tk5X//ThN1X25qvqKWVLEllN60nE5N/TFyA6XQ5t6e2qUsnnDUMRURGBoS6tYKR1e3qSWtbvO4HRsdbNMnPXUZY7/n40AAxUK4PgQZQRdt7FLUEYFNY6OW6NE38qbRqa3f+urQ+GJLwLnysYQ/DMhZIuG6TSWUGzPBvMPXqo1tfEdZWtLQSer6XaNDS6y6gkIar1OaJSzgCxXOLrgLUZCTd7b8Q33jfe3Rg6Wpf5a/oihte9r6Kdop/bnlpBGo7CbUnBhwOibbNrY6taWt3xJCt3Zc6ye7SKVDa8f2C3vrUoKEzU1xoeUaadvYnfhK64vvtmNrl7YPuxO7tJwzp3Yyre31lDfnXW06teO767cl90EmrJXqwW2/L41Ora+d3COnbWpJ3U/HsH/n9fb+c7xTZWntkriCylaV0gnRvTT8RTwyJotyyvH07vrtvHrquyZVLG8qdKq5geyZubsqUvO0pXvK8pRdnqrf6tD6UutrLYdTW0yjk3JuTNZ2asd8a5eTufikfl0eHY9a/euMr6V1gZwM2pI7KOi0vlWQk35uy9w88Knx087NJ+uzhg8pzVvr8blabknh5cxDtanwVL+21/snfvfbcjqetPp7q0PXtPlJontOie7bdXFrl3PlH/4LX3uyznP5KRbl95z/6HeEU+lpV3suX6A8g0pfsvIz/8zXYFjhgMFCV6RmEmqnUKT4cQrHwErAI6UTLcvcrApMs3Efml+bQPy9yr4BspyTE2LsMuW9KhUhtKpkDigIYMMSM9KltUeqnwigE7F2Ao8yT1ACC5aGIHppFk5aA1PjZCv5epeCkWP7te6DACysci/EQPP1PeUbvUrYPMVzf0Zgkw0Xjro0udsyz096TwsotnYM1Ftrmza2bmOZ8hXg4OvrIUCnXKTXbXIImomGgy+lJMDZ13JtjffUsmnkbQsqUbfJF3UBLprVW1u/a35oeqB0Z02uG9/r82+TxPbJmtks1nt0QRr/Y6P1Irvd2Iz46gdwo6ZezNUqcFRX69Q8M39ljcVlXoZVB5Mq6vr1ttTJnyziW51sJS9o1ca+0WGgludG5/b3v2s2S+2COqwZSt+UHDHWDLOsgyl0FGTdxOa5od4FuaaNfaND41qB56eQ283ST2IXe2IXLZ53urlqN6XtJrbt91anudEhHZtYn1/72rmv/WUpo01io0/uKOXwpb/dlPpKbje9Q/NQ1doXl0anp+zo0PCM+INjMRVYJxTZpx6xS+tr7Ub7FICUpp/fDV6028d2w9eCVu0c1dolrcHlkXvOjpeTTW9rlzYjqm/aeAbArOzIqV2qec+cZKGU9H8adPLFmG7tcGLHM21qAZXWLlOzbbbFs+B0Qd7apS2GGhjW1tBNObGLnNqlfeMJ2NeMl7Ngn37x+gZOwG0anZTVv875Vva9M+Or0kHXd5ZlaezSzs0hSrwcs+ePxOX7xVd8SEDFE4ecko9rQwq/8tCltU8tt2N8bEDR1v9/EqLuKrq1AVFVwnqs0oFah1anlgT+hPi++QB2bHRqiwzCL/6lZ6Lu5/Jcfr+UZ1DpS1a+8ysf8/btCsrMLiyy08EhIYAFyTGMKNvOx+igEB0TwspT7VC/jEK56HyM3AnXOwOdCd81IBxH2har2ovep58pIEQu3R/X41CLN9wfVpLraTHcH7usw+KEu2PHEmXv4eHQ56NNixPeHmqy8fvRMi0r0LQfDeO8ko/fHS2HeSWAPs6WQ0E2Pk6Wh+MKHO2ncMQsZ4dTU5GPH8eeXbGC3Fhl262r4N5CX4A2TkOa9bQkMQTAJMk22SWuoryGzVtrlxUoUi56H/mmYm+riZE40U4ViANXvacrEArvhcEUGweBHWubrjroC52QACBKXmiE+sm3OlE2VrMOoHSi0ReDr/VZh3B9Z7TyLWs0RkTFjbbWOlyYFG209rMtfM+pcFEs/HYSAL2scwOahmNVK4BhFTalTALb4v0oRouFv9bjCy2+iBfr4pLAs8MEOb5jl7YqeWOjFSBh0kY7yhdiq82NR6r6aWOeanRaAGGEBV9XtFHRcFwgtVFZuTVIz6w3CgbJnAwAWzXVxtah1UZZqTeNW2x13SKVXTz1ZsYi1QZPlKYPFNvYpSvGW4o2S8MjfZEtN9ZdAg9iGeLxg9QG39jFNv0edKrrl3LaPJV26Rq7ZD+If+4x+chC0Mk0OtV7N4OpdBrikaRUtmrXiCjO2aWr7DLjsVK2ETpZlxnhKEwJPtRfzH3s4wxENXZJ/VjqJFDp0DegTuiTtYQ2rU9MHFpJh01jF9fYUQhzc5J7THXdl3Zp2yzBF0/totUckH3lEbtknQtfKSOq0hGltX4LKAp9YZfEPVWWUlaUXlZ/Fz0FUMza/Oxrj/lieP7p8rMEMDrqOaJvWuhim8r2lnYLdpWivsfI2mdoAXpGu+Q5RFa7mMYu7Xipi4R5sRjzfWWX+tONwtkxn8rQ2KW1o6J0YvJ4aec5OLVLBRCesUviu6L62yrnNhX+X49hGt+q5732+YoEHZKO2vRJ42tpzJeAegfVXN6faFBHmto0ZmPZNL2w1fo3dsRV5OQzNfl4SDiwVCDMp+aYQURHOPZdklhPaAaWAvG3q4CnvdTk40fqBASL6Bki+xVICtcLYntxlTwSSLJ9oVNJPq5C4JMrdDpSA08jiXMwHBF8OEk40CS/aHQIyS4anYrEDyLCWOhUFo9yPzn+m//wRyfXnstzeS6/N+WZU+lLVr73//wMr8Lt0cZ06QEc2CI4AuBiBDYavkIMVrEmgEuqyrgIIsKGyDuQ74dewwZ3a0E1gAMpi1pnQ8SS8wHQGozQCUw+gVbEH3BldsLiDW/3wiYCTqrC7cPA0DsmZ4IOh46hC2S6XoW3+yD3Nizr7/Y9fecjsGO4PQq91QiUGB5GYZxDfTAcjsI0Gzrjcd5ymGBahMEqzgvOG6ZINr54AW9YFsNmCGTkXoXlEK5ves+yWN7ebdkMC4ejpRO4siFbxmBDxrldryxe6U2IzOljCvvDYjACW12jc1I/O2DT+ZgVL+h3XAKh51DYxZgAsHQa/raJYTfGOBYnLN7GiKg1W1kvASiZgV1sYy/RbmoyILho+KcTuNJwpv7ShoipoVO8VyZncgSVU2VUMCJcajjfP0SdOxt8y8dFX6/hC9nkg6/tYh94oI+7DK+K0wQQgVFlcQH02UjQeSYch7MSU85rAKBSNkGvilsk65DqGwnAj0OZfNqwhfcn7pAtAfgzmkCZMHZ6go6iwZ2PEO0SuMQ8gaCzj8ukDKYQxoxHcSZkjzEkrhIIlKGKU2WTOCwIRzqdaOSFCW1KXwU3mFw/bEJDm1LIeR/b7NC1jWjmauhiG5eoQ598q6yvoQ1dag/r10sb7eIIxN6BHyEQUA9xY2EIc5AXjW8NdvEoVgJR56IBxFqvl3wXIS4l6ZTalPiOuqizIUUaBEevdNa02Uq9uuqYvu66OAC7+Aynmp8pUYe0uUqyRzGx38KRrBQhFX1FbeynaMf8TiV93A/9HuwyxKfbso3F/b70tainxeRNmM/1JeoUyGE7NRgJduqzBhFIwFR2UajsMjR2mcVn2ythTCWQ0xfPT9cl2yWUlKUq6JxAJ1NtK0yhUyCRD/xZHo3EvOG6jX2SfEGir4QxV44vyVqrhv6o+3W1Y/rQUY6fvqmfdKjtGMa8j76YbFCOF0Oo7LLdLTbqlMCLZBeNz0jzmgesrMTCqZ9NM+ZTvye9hxPfWt9RysnXBrH5WeV4IY6fVSeNOoQNc+LqgTWqw2SrrGMyAQ6Olcw7jScb61PUTzoEm1LZoQUW0ubXZnyjGPMaQIfSD8o5wGQ/CEBXmgMyQX7Rb6VdlACqJp3W8bWCEfUcEH4/hsaO7dzd2qUXk32rtEua107tYiJXjT9rl6SHjz4bWZQiUJ7mbuI8KJWvndrFVPNe19T3EXRI81waX6lPSj8o5+YuzubpN9XkOar2tXQM2BI+IqTEC8GWq2+ubVr7nTgmZ/GZpL3DnCRVSPZPCQgsBiOGH5kjF2rZaEggcEMgVE/JMEYNnFCKxoQdnpnw2+IlROrM8fcs8Kf5SDYe2hcSdgRuoi0mEt9rJlxHyAk3jlmHkHAj6ZCSXSxoTAyxrMChrLxYvQaC9X1MYNAjdCIcNXBLLlGHgwbyfiECU0UCglUHXbn41FdJFWYJkWODBvL8kKAgJCVZfycCDxMCv/63PuWX/kc/x3N5Ls/l9748g0pfsiI50kSY3JoqPR1jU9IiOMiZ7lnIAECSLWGST8fdrNTHm4yAsRojiqSQJV/f2vSlWqvjaoS/cJwtvfFYE+Rx7oqjb8K0SHHMLMjeC0MXtizzYnMEEySC5/BuEBYfCMVTfeeEpeB4ct5w8BqyTmh49mEKm7AATAiHsSsilITDbOmtYqyiGoi0nTNZt0FWrp4AJIWIm9yv8Z/SLtlqUS7vFyECZYVditW0Ld6nETTs89G3CKIIzH6VN+07bYgQ8hqiu3oB79JGNtS3RX1rwari47HDTsKC2UW+rZ4A3JQ6oAGETDr0ohyRrHP5XdvIquOqExmBS75Y6SBUPmbze1edSx261I+aIgPWNiTAopQt64Qqst5TXk8AUtoetdEElY7UX9rXzS/VM9Ln2dSmdNgtyOszpPinbBMUGy7kpI22uh5aklKJ26LNqb6kBV/5Dg2dGJ5vz7ZhlSUuiRP4VeogJ3awFHPIozqscvtv28gCayanto0RGD2NAml1qOXuTP2231rZV/UlR3a0vrP6gUYgJtml1jVsu1zxTJOPH7S+JvmpZT8FuyTfOm+XU/8ufau9XvrB2kbPY310vr7LOpSRI4/ZJQ7pbJd2PL1LPve8x8Z0CYHoO+qXz4Nw7NlB9rUhwohS/I/CNwORsGt0qt/hizZ8Ebvomfq8oz4nssltLH1Li2e0eqf3hvqnc0RreynadN6OZctO7dq2+V1zRnreCmyeGy+1LTskH187p9PaKs33pziS07l7vcMX9Q1SAU2nvnVqlzlGhoT67Xhp5ymhHF+tzud8TZrrT80R9Vx82qet3c7NMamY4g7VFRRs2+wbuX5HPe+V/0bOk+8bXduRONOGeH0vjll9JlBP5OcvY+RulaBDGjJywkej8uibF+EYswkKZKAmfTwKZOOaP3ilCKZiGcxMnSCgTCyR5AAcmahziCiPy+R8fD1FU57TwTVyeVQ0ENkHMDskVRBGPBe6JiQYxXPpV3kq+qQs7+I6fS6/M+VcBu7n8lzg+fjbl678wj9Xk9qtU0M5YWuWS+AJwlG2U0LoUhYm9+6J3jbXlpYQ2jakvCdE3Y89OX7BbNiTw/tWnYATYsffLlF3e21udLK2foFvSK1bHYdM5lN/BU3y7Exsc5C7fIysLKW+wZYlqDI0bWrVm1w9PXRN/daOU6tzw6W1kl5HHbxUOkhxLT2/1Mmzcl2VepU69c2MtjT1W26ulny8JYrsGx1bUuyVOjnqRPCtTKDOaTnlsFhlQfLC7bHSLq76pnJ7a8u90B5bSVJqc84KkzdEhA+2WsuppEihx4ogJz80SyO3vB2nRMLN+Gnub3Vq+ScS4XOSW04apbUDDe9UQ2p9xj6PEgM/Up6q374iL9rjv07JY2nsok/apeWYafv5KcLalvNlUFvJrR19o0O+W4v6xVTdEqiHufpxO4Xb303Ufe7Y1bt0+nHtmJ9//if1hOuk3DhX9QtfO+WhkXfKbX05qV+XR7muSl+r7HJ6JOUpu7SkvO0bWx3a660vt77V1m/JxyseuDP3tATqJo2Px14iZHD9MR1auz5lx9ZOp3as22EanbJvtb5X3N/q1ParNkT3j47h/Ph3j5f2+qPE3o/YxaMV71k7d7f1AZz6yDd5CladKyfzXsPtM2itUzt+Tn215Q6qf3+qDIucksKfs1M1r8lpP7bzVtumNpnFaWKIVod2bVTr1BKot3YxZ3RoyylRd31Dm5TkXPmTf/GZU+m5PJffL+UZVPqSlZ//pz9g2K1mF1H6gmcnbMzTijb+jMm6dRaBi6GWNw3hs0otD11NFNz3tbwUwAKEo10VmKBaZXwTEq9OKhoBjARLCCbrtB4rW7+FlpE64e+hfqFTV2dasg3QFd5f6FRwRgExOmqVh8xLlZ6qmGLholrLvUnH8qT6W9LBqyCFjqa1CyVgorHXarvshnprP9hah7kh3t40duykBrICmFgsykUjh1MoVrTQIcQjWFvbaYlgWwvihQ2L5Ix0mcuqTrx0shB6cDVgODYgqTH1xnv2NRCVwrpLuVr4CJkngdg7e8IX0sRf0S4wEyik6PrVr7je5Wdp1qlcgJYpxCFkdXkXUDVS62jTIr2snUnfEyFnQyJa6FRtDGMEUglESTHOMjDVLC7nZlFttN3Q1TrM1Om005GaVSdOrrekoiW3g6EmEYXaDuELdg0O5CiYvKGry6MZ5h4p5zJBnWQBK2SPVmBD5kZJdUs5TxWa5XM6tQS2ZzcSxZ9anZbm+ra53urkk07F2JZGp5Q+POnQbrTLjbUgJ3Zp67dE3C3Bc1ta0t6WBL5qA+dAK6n4W4SaWwgp5qSoQ2mHEztyujFvN4Tths43djFNdpsWMHFovalVCfdUdql1EK3bWLa51elcafu0xzZ1GzCjIe5+0i5a62QauyANYNLsqoMOq29Jo2P4l1ZyC6i0RNwt4HOW/6ixS9UnespVV3LbIax2a+epc3aRU2CqHT8nhOg0pV4mnBJ1N9X9GbuYd9hFU5vkcR0eBY3yPNeC3bxzvIza/MZiT0DTkw+T1HIJmGgBqqajbu3vzRqhf+Y3tmhuCeqUZW7WBW2bLFK12Z7oUP8Gtx+LvJzTieo3NflaC0yucv2b2378aTMwTie/SHWxveEf+eeeQaXn8lx+v5RnUOlLVr73Kx/RuzmDMtYor3YuEmkHIODVzmegyRrP9cVEZwPzA8Cu92y7FQy47j0X/QqAvLxY2BaAxeVu4fpiIv2gXG4cr64Kebuw3SxZFoGrrSMBFrvBc7VdMmDRW+Vqu2QdOqtcbVyOjOms52q3FKTUysXgo47hJ/By4wrQRrnYOPrOZXnTe7b9qvPFxkUQJrxju3XsNivIsulDG5J8tVu42K4Z3/rO8/71mHW42DheXk0ZSNr0nquLqQC34NXG52NtXbRTsktnPS8uV7uowkXvIhgW7bLx7Ar5xeXMZliyToOFq2Ft865XXmxWYOnV5cxlkbXOGni5W7Jdhk55b+tIPDXXO8fVRelbcL1dMrBkBN7b+JhtMESkvbyc6aIdvAYQaI5H5LzCqCE6KQEes4cxRsKpwusFXs8rAPVa4W2xMNkDnxXA0p0XPh5NBpbeePicFXQZgU/dCizdifK5uLwAPKDcypLlJcoJIPAor/EcNAAYC8oNSyajVJQ7HIdCngmgTFqEjaJnAZSkUyCvXHU8io9H3jTWryM8OqQClmYCIebKBSJVdjTR0J50PMYTSEVTqvbAUxFAHonEtwHE0UKn9X6AWTTeseqwFG28F8c+fs8NfeDjgjK2UWBfkIgu1KSiE8pUkI4qgd/CFXYpiVAdyh5XkYqODVGqsJK7Bo4RE7LURV8b6KrjVlvsyTG3jawnzHss2+LE+ZauidAStrLGnVmELV3egHVEQvVild0SMg+cEqiXG7ZzBNBldNFOuyoT3xVdBRR1CJfF5v9CO7aFPKNVBjhBuKDPbe4xbLBZNiqVnPox6SAKG0y18Q1E3KVdpLLLFrtmhIt91BLTl20cfiK7rHKPqYjuFWUjXWhjbsPa5qxTS8ZP6Vu1r220eycBdI8Jx2t0rT8UOiZfSrLBVHYZCPwl2S6xH01ll+7ULgngiHYpQZu+1EHT+ChJqG3la7axyyb6ytqHXQVwBDuW48NUdhkaXwvPsNkuokGnfJxKObFja5e+sctWuyoCxGIqAKPD1jpprUOwi63u3xU6beL9q12CzqVddnTZl4xKtJt8YbtstJ3XDF1lF1ON8U0zvpL/12O+q3xrV8yMebw0Yz7pFHRY7RLmiNXXEudR18xzJWC+pQs65HnPVHN139hl29hF4u9N/o1lKbJvxt/X4jcTofoNFmqQJui6HlUUDXVKoCl9OCnlxIGVnlRF9kgNwti4Elt/Y0Ol1M2BF2q9PqOVDPUHLKGOqkw8kbWsuU1pneB1bXM6ZpdkV9RPpYwolEaHIcunRYF59vx//s8/PHP1uTyX5/J7UZ45lb5k5Yf/5WchqqUPZNNGPEbg/Z1jdB7nA/fRezvP5BQxDmvgYjvj/MJxsjjXcb11bJ1nnAN/zrUNQNM4C9s+kEf3vWeaDJ319B0M3ZHD1NF1nkFgeHVkP3Zse0dnlcvdzLwYxrmjt8rLi4VpMWx6j7XKi4uZaQk//NbAi93C5ARVwRi43jpmF6KORAKYtThhXgLB4NXWs/jA8WRMALec98wu6LCznqHzTIvBGuFiCPI4rwTffecZI2dS4BpamGaDNeF41yuzMC6G3RB0urqYmJdAy2oMfPXVkcNo2USd338xcpws1gTi7euLiXkxgacJG+0iMZIJXu0ck/NY64IOFzOLcxxHi/M9LzaOpfccl9BHVxvPpvOBYLwPP95dF+zipp5d1PEwm5Us3DgOi+FicPSd8uJyZJot82IxFt67nBnnsICzBj64cBwX4WoIwN715cS0GNxiEIl2WgyLE4wIH2w9owMbCdqvL2ZmF4jXoWfvFOsDwKkE8MFp+LJmJUQrTT5kiptVuHHw4JUrA/u4+hhRLggAyqxwXODKwNGHCKnvHwzXnXLnlQn4COUiQgkO+JGDS4F7ASfwCY4dEqKEBG5ZAqeMSiTgXBji5lYFPsWzJURyqYF7DZlXepUg4zmqslXBiGFGWTSQzS5x9RbW0HF5JbBEcmiD4AQOkTBzFB++fGogkPWEFavXcL+JC8sjgVBzjIu4xJOQFmxpMddH0GGKZPv5/aToIM2L+0TKKhKIPhOBdUg3HBeYBA4FFFSCLATSzklD5NRRHIsodzozYBgJJKJHdZmXQwXuC2LUlVR07YNRHWWmrQdd4v1hg3Ef5aTDGIlRbaw/RlLRkHkxcoJoANGcaNi8qMnEo4EpxbDg6CPAk8hfl7gptfTMkaMibeYDWXmon8iSp9iXu3idaOsdXSBf1dCmHhMJ1gP6usVGDguPwbBBIoF6AMIskZQ+1jdEAugIoG2w9BimSPgqsb+derZqow7CnAnUhRcIk3o28doFlkWVgyyYuFF2GoFGgUv6QKIdSa032Ji+XSp5jm1MOicS3gHNQGlJyrsQ7F7bJRDwJs6olYRXc5sSeXIg9g78Ul/ULql/dvQV+XIiFw/AJGyli5uoYJdttAtaEkRLsLVIBL9Cm4POgTR8Vp993kYdtNDBxXiBAPj1mcjXFnZIkQQXdCwaYidFJNslEeFvYn2iZbbRDktjF9VkF4mk9KHNPRqTJHhUhC2GXn22S+L9cZrGz+prp3YxJH60mZXId0tIQDBFX9xFnUxhl2RHKXSa8DHZxdonWUfS3LomUZhj/Q0dHYFMOOlQ2iUBm61vhfG46rho0mElug8RyyEDaYLIDWa1Y8y+uGnsWNpFJNjVxYi80tdcYRdbzRnBLot6ugi2nI4fi9PwwaKXkGRhjnNEaIMUc9yq04LHyqpDn+3SscTfl6BTsOMM0S7dO+0yRJ2SXcKY10wGHjK6+UzyDuGjQPq0kHRYcCd2WceLyXZxxe/RUdYsbkLJcZQii8J4cvE3N0FoPtYoybwdKzF+kl2cxzT+ZsIKWiXy9PJ+ISbHEPJvriUlWAhtKDP8BX9eATFh5ThKcpnJTmKfluuEDTavK4h2LHUIc/ca4ZQisX3xTFjXDSu/lUa/TxHKqw5d0W8Jv05yKt/6zz/lz/7rP89z+d0q8geUU+kPok6/++UZVPqSFYnENulIWCI7FoFtFxaL4chbyBZWEnN3VtkNjvtDcJsAtJCJt3sD/aY47mSU3XY9SmCtchWBoxAFBde7pSKpHnrP7BTnAri1jYBSur7pPS4CSamNZZuHTqvn9V04VjYvNuvcNzqVXEHWwtaE+qB0Rug2Pke6WBOijFIxBrYbz7KErbIxIbIqResYgU3vQpsJOl1uXY5QEqGKeEp94LznMNpsl/L6plOGfr2/j0f1xqnPOnaR2DzYKRy/gxCxY62y3TqOU591utp4lpDiKsiDz74RdHR4bzLouBs8cwL0BC56zRxNyU4zsDiTZWuExSWdgm2yzl3wrTeHHgiLs7ngnQoLl7V4FcYirn5W4XUiXIpfDe/QSDgegKK3fiU99whvFwln9iU8/wHo4mJMgXuFQ3weEqKUpvRCSdFFccEnIVrGETbaEECczLcSQZlF1gXiIsoDynXka0gEmxTvqL7QSXEEqqiv1XUqWaE6/pey6JX9esqRUT+vDLPX5v7wt+K61NwOWrZZTusnW5X1R2oi1CVuVFM/p2iist/Lfk6L7rSoXlBEfY44WKKdyj71rKSjHmVUzVESCZKYcGHTFgGAVAIAsf6UpsVyCt2vjmhFOWT2kiwH8uP1K26PzX2QntdV9cN/peiwBLyVRN3lEinpUIJVPSb3fdqolvVN8ZSwCYygaq5f69BTE6R3caviCp1qgvW1jeWRr3SctCXQTTqXbQw6rETCp3ap+720S7peviMBg++yS/08e2IXj1SbprSdWp+33h82hyZHOobrtV021ETdHcJckSfbihB6E2GBUufk70mHQDa8yqUObbRdssNc6NTaxWbrhGs9K9F92vBDAgUlQjOrjkGHpbJb2U9DY5dEgl36VmvHrukDT72ZbXVsCaC7CEAkHRI4X/ZzrYPk+kknX9il1aGP9ZW1zekAU9K5tYsW1xNJtqvmgNIuktuc7GQw+TfmnF2Sr5U61ONr7bmkg1Dr5Ivx0trx3Bzhiwidc3Zp50mgIBuvibjP6dRjq/Ey0J3YpdUhx8BKIrEuqApofsPKcuY391xp7z/7O1+UMitfAnJO6hd/bK+fvv9U1hN5/dGu1gmy1nn0nZw59njyzhImesc65Im/me75wM1zeS6/X8rzaPySlT/8z32jktMxoPJHMBANh/9eMiF0KMbU/EbxjuK/hXmRmg+nqd3e3/4Adw1/kTa/Rqfvr5/jC16e1GbQRsfz99atXpdP4b1nX3v2mmtIrk90PvdLX5RwFK+1yyrPi62udda/0y6qIWKrJLVu+/mEbHypdTjPK7WWpdHZPFK/9a0kb/uaS2tdzqza+ELpc5ldTglo69IubE5JSOtySm6ZWpW+ulHJT5FXlnXT/a7SWbCl650pc/PAx4i3U1kaO7U6J+kxHUxzXVLDCx2eJIRu/tbyQWwqSz5NDtt26mMkv6udWp3ebZf2nUJD1H2mnOPWeVd5qv5jfdbqUNmlKGc3PxWed9q+tk1jM4Lafm7tsmmIup+2Sy23Op3ToZXPEQ+Xuj015tvyk9qxHfOPtbslH2/H00k5s8lsbde20Ddat/WfsmPb5h/XLsITdpHT+58i3v7tEnWXYEPZ5tUuWl17kmg4A9gl0Pnu8hSB+qkdn7JLLSffehT0CJVP3nHajhq8fcftPzU7PmaXltj+ybm7scu5dUFbnrJLy2H2VJ+0z2uJuVtS+LNE3c0ztbGTb17acvS1895pMowvSNSd1mvpiVFu7dI3dvndIur+R//SM6fSc3kuv1/KM6j0JSvf/Cc/oNuuZlcVDhEESuTIR7fKIBzGLtZN16nkw1KDOMex3lgcpxoAmZYaqFqcVLIVX1/3wtygAxXYQsjqtRIdCg+TqXRKkU1JpxpMEx5GU+mkzXva7GzjLI8CPud09CqRvDsU5+usd6q1bI1m7qBQpLKLqnBs7DJGpbJd5touh2NXyUuDpI2NHQ5jV4Nt4quFjFcqnabZVDoIdRa85DulDuO82ska8DZFVIVjM0dqkutj7q96I5dKu3ibmoXP3Mhl2He4vyaANo0saI6UAVBZ5RTunb7op0Xg0ugwlbLAJKdZVd6pk9Qy2nIwcaKTb3RoN1zpy2/Q6bwOpVy1WchH6tL1udF5abLpTI1OtiEbbzOXOU55pmqd6ixcSk3UXW40sk5Nv8+NXVq7teBBSzbe2iltjVYd/BN2qTfC2sqxTa0OlV0iCLT6Ym2XnMEnjp+WlLrVYS81+Wvb7y2B+oCc+FqVSjr6Xva1wk7Zd2TlG0ttKnVaGp1aO7Wbq1MC29ou7QavlU/t0qbHrrOAmTN2SePrUbvIj6dTC4C0cuub2thNmznANfKTdjkzPlq7nMwBjQ6tr7Wb1HaubusLvFOnNsrSUI+f1E/t3F3qsMi7dTq3kW/HfK3DqS+WH0raMV+lZo/Xy3ntnG+dzBGtXeTxOeKcTqc6PD3vneMEfEwu7VI+84uOl7LNj8ktNHFKCF3bpd0YlZxscAYI1lquf8HD3N3KWlQWJHBAlTKrHN7ZAllavagldW8TFLSgT0tWnvXK91MlUfCpvoR/B0qrcr0nVSbaMrIs6fRUdsQ24mqO0cGPla43/OI/+9XHKzyX5/JcflfLM6j0JSvf+5s/Qqf1uNWs8OnBclzCZn9y8MnBsl/Wzf/+2HGcwrEl7+HTh467ArT5bDTcTGt00jhb7vcrIHH3MPD6bpPl1w89H70dMkDhnOVYABiHqeM4rWTK+8ny8e2QAYoA0KwAiGoAL1K6+MnBR7cD+9hG72FxK/CkGkAdF2Wv8NlDx9uDzden2TAv5U+e4It3vj12fP6wtnmcDcdpBZJEQj/k+oeOj2628YhZAGw+fbvNIMw0d9zeb7J8P1k+3tsM4M0OPj9YjkUU2MOhZ4x2WTx89NBzN63A0+ej4XZc609zx8N+TXL/2X7g9WFt481k+LQgsfbecPuwyfLNfuCzhw4X+/l2NvzoaDOw5FW4uR+yDofJ8vlDn+22d8KPjoaDW/v99qHPwNLk4NNFOEaiR4/yKY67YtG8B/YFEeStePYFyPLWLLyVlWBzEs99cX1CuS02wm9l4bVMeZE7i/JWliwfJRBCZxnPjYx50epQ7mWuNiej+Lwodig3MnEsdLhn4cCSF2QzgVMoybcyc18cbDvgeChIQ1XgUOh0L467uI0M9RfelnlTJIADPuvkuZM5bzYmPDcyVQvxA67QwXPPko8leZS3TFkHJfCVlGTke1k4yErWfysLt7LqNIuvAItbCc9L8l4WbgsdnCiHgpjboRwKnUc8d0wFT4RWRN2hjS5v/h2eW6aqzQdcJc9RryQ/yMyBVacRV7XZR3AtyQ+yVHYccdw3djniCh0cD8y5zQu+kpOeCRwL15eKfPyeudJhwVebzkMijY/j54GFh6KNi/g6u6AEPVZfW7iRubLLg6x2uZW5sssBx21pF2ntEkhwk68teO6YmYo2H3GVDnOj073M7Jnz+JmesMteloqEd479/phdDgQ7pjbPeO4jLXwqx2iX8nnJLh5lz1IBtzM1GP1ATeZ/T9ApFS9abXxHFo6FnNq4zhFa9cGMr8bPEcfbQgeVmtjeRV9Jdplj/XfZZTqxSztHOI5Fm1yj076Z95Zm3vPRLrk+C3esc/fJeJEwptL1KV4v57WHwtdSPy2F3R6a8XRg5ljM3U60Gi9HecoudfbOCc+hGD8jYS4v7TJW855nTzl3h/F1apdVh0Phe4py287d4hiLeW1u7HR/YhffjK/a1/Y47op5boltdkUfHIvf1DHWX39TfRwvZRIFX+lU2i2sC07tkgD25Fv7QodjM0do41sdhl0RPeuBTtbtUgZQ4pRhCKBNisxJCRHSCtKqRO61WF9hUMmgTQDLKBIQnCZVSJxiqbQJCAL/3Srn45BpnY3SFeHoitAXOiUy81SjTQzRRZ1Tm41GnXMfhd+lRISvJK4nsg6JUy2V8hg4hEjXMrp7lxi/zgFLCkyev/N/fCbqfi7P5fdLeeZU+pKVj/72Z4iEqBBFmZfA+fDxoWNrNZMjf3KwbCy86D07K9zvNxxHhxqPV8ObI9xPhq31ODXcTHA/h0xwlxaOU8e0GLaDY1oM02I5TpbL7cJ+7HAqfPczy4vtwmUfyCYfDn0kwjZ4FQ6jobPKcRFmb/jwZuBy8FwMgQBz8fFrpQKEaCbj4bgIXoUP3w7ses/1EMgqndcAPIkCBufBe8UpKIbXe8PdaLkeHKKB18f7wEHU2QCaCOHr+7QENp3jbELWNxeuPBwNfafsNuDVcJiEznj2k2Vyht96veNq68CH418/er3jImau82q4udsy9I7bSfAIH+0tO6t0EhYBnx4sGxv6edcHwO5wDCSnqobXo+F+VrY22OlmgvtFue4d1wMcxp5xtmz6hcMUFk3HRbjsPYfoCz9wwnWnvOiVebG8ud2xGRYexqDDR3c9F4PnfhFmL/zW3nLZKdc2EKe+vt2w6R3HJdjx0/s+kLgT+EZ+eDTsLLywSg+8ve/pO+UogeXjlggc4VEDb3Dcq+dSQyaePTCq0qPMcdU0o/QaI5viwv0Ci1GDE+UNLhIYhwXkjQZ5L55ZlE8Zc9YpFXjNEjlkfCSIDsTcD7KgAm8Yc5YcFbhjpkPYqKUTwwGPxYdoMIF7Zo66hBB0CQvvUT1bDFvpIi/QgtU1CmhSx5YuE2DOOrHBBlJWgQcC+XMiub7RiU3k/nGivNYx1rdYMTwQSK8PuEByzRw5aXyl0047OjE8qIusIAoG9rowEhFLA/csHNWxVUsvliOeKZKH+xhlNhFIgCfxoDCKC89HmMVzSyBJPUjIrpOIuEcWFlHe6DETGIvAg845L5AK7KN8iHa51SlkN4oL1T1LXJybkDVPHSZuHInPO7KEzD9xYzEl4lYJXDeJBNiJ4nCZrNajeFEWnRgI2YScwF4dPYF/yInyVkcGbIjqKeQtHVaEQyQjP4qryMg9muWOkMmqE8MxkpEnHfa6rAvzQqctlkFspYNK2IjOODpMoZOPhN0hOsNFDqqePgCtrIS1iyifxfEyaLDLbby+Z8EXdjrKghflRsc1w1jR5sSLdYxy0inovOQjG0dc8KVox6STFHZJdgs6+khYHTYpKuR+nqId7nSKPDbB/+90ihnDOmjs4kW5jdd99L3ka1ssndhslwkX7TKTyKhXO7mQcU8sU9Zh3dSu40ezvMGyxWa7WFYOpofYJ1Mc0zfRtzbNeJkJOiR5jDq9iXPEQEhmsc9E9sGXDtEuaQ5KOg9YjMBRg13S5jfpBAEEOrAwqss8cwm0SfxaLtu+1iFw+xDfGXwrjeF9tMso5fiKxMfF+NnEeS/Z5ciSx0dX2OVBZ0aWkF1ObAAwNFIsRwBkiu/8/7H3b027LVl6GPSMnHO+h+/71mHvquqj1C0LWcKSMKhaoTDcERABgSNsAmMLG/4AFwZu4RfAFRC+4BcYS4JAXAAXRPgKg6yQu2VLllpyt1pd59Pee52+w3uYMwcXI0fmGGPO933XqqretV3rzYpda+Wa+c6Zz3wyR44cM/NJDQqpSPcGPUZiTDw1bSwCHsr1Y2lbiknFjp94bLyUIInYvanYCG2LHRJR5WEqNkF5VKF65UUwE3Y8tjCraVva1h7KeLQu/eNAgrlHkqPjufF0gNglHY80DHFf6mzf44CEfbHl2hb14AblpQeBDKZduf+7gkG18LT/rIzdk1BVrkHQveGltTWxrUdijIX7YxlT1VarndH8CknG1DJG36JHh4TbYpNEPJ+qXW5aXuJ/ikoooUdZdV3alyhzoh4WoPkVRDtNxPrLyuBUNKnqwRCqvaeC62IvVay/Cd1LXgXUW51IewWYpT/W60C9px5IAKiAumh7aR9ZQT40DuWQhYqRDWbI4ShETVdLReR7WF06UXvTfFc86q68075iEgzrcoAAgcV3K21P3rc8/4/+48/x1/6t3/qQadA1/QyJgV9Koe6luOU1fXi6rlT6yBIVUTsiEZFO1TYQdlPC/bGr+f1EeHtoTWScOuz2baXLMRPeHtrXnJEJrw5tG1nOCY+7Vj7nhHePbYVSZsLrpwHHqsVDOI5d1UQCCOOU6tYzBuH+0OHp0Moz7EkEEkzKJv907PBm158oL/e0W9uOU8Krp7ZNjEF1e149opXbO8lMeLuTIFnDkFwdxtzVZzII73Y9duY9P+5lJZjmD8ceh2Or89OUcD82zPsp4f7Y8uPUYX9o7/mQCW8sL5nwumxJbLysoGZ0YuFRdZ4yE94cE8a6Eoyw2w/IWTUpCA8lSFZ5GROepoZ5f+xxMBh3Y4cnk3+aCG9H/850Ox8AjACeYHghxltqXx4nFBFtqYAEMcw5y5lkBU9WHSeSVUezvPlS+URTdT5BwJ4YR/1MR1KHKkJNsgpKT4UBiXbRwfx+IuCY2mqGkRhPFgPJsfa2zgctXzA90li/8kmd29dULnVS1HI9Nw0lkiDO0dR5JDnVpmHKrs4R0xTewUTc6lgwPZLHsCePYZemumw+E/CQxrodgEv5ylypkz5BMTvBc8oOw0hGSFUxmVUk9WQaaB24bp9QTDuHgZ2WEJPZvleCkgfKYNOW9jQFDOx+vzdtUd7z5FZUjKYtKgbbFkfKDsMUeBSeAqZTGFA+8up1LqsNzMoyLnWwbWtPedZfRvL9IfIyhf5Sn1nqOIY6j+TbquUhw68+iLzkwiODRRewvHePyfNymPGSF3iBu27r7NraSV485kPo87ZOmdjVOa4CqZi1/wBmTUhraxNC/5jxYu3c5DCMgYfI05GyBGhKPlu7VzCNAdMT2pYrbXu2zmNoa7sFXnKwYzm0rWOo47n+Mob+Mmtrob8s8bK3mMozNTUbETAFXuzczG0lVUwzDMEmnOHF2QTMedLVnxGDbjnT/mEx2VVVS3U+UsQwzdqOHUMjpiPl9p5jfyltLfaXQ8C4W8Ckj6w2gXx+jkGzS4cqpLrmSLd42Xx6jzyFvNU3SjBb36CBoOI71UCOXzXV1ye0Otl8Cvku1EFPWrT3ixjtdVtnzVttxyVMdiucxcjMWMJkVzBpXg+ssO+wG0wnuqZruqZfaLoGlT6y9Nv/nV93+U1fXTkAQDTPh+wFAXuSrww2Uch5LaD5PbvwD7vR/4M9jQ0AhqD2t5/CE2tWyq2KMLfmD5MGiMyEwtyyIy86zZDtZFbPKIoirnv/D1ZbCEDYOgds+rn2gk1TjuU9L6x1Lv+8n3ydVolnvNjEgRciYB3eczQGu/CeV6F8XOa4Cxi65DEMofw+Ky+StiRhv/p7wAk9ZviTxQhe1Dru6Ucor/ewaWCPOuoZRQ2AKnapgdFQXvUluGJOM7FKr6nhtUZEW4HmncakKF4ZBTij9oKdxAJwzhtgMJZqqQaN1tMuoa/lHS88e28IvETx1qivEoW6Yx3j/RmxLZ4v71kp5U0R6V+elyjU3V3gJWKKdYopapfE8vFR8f6VB14uH3WoYhkCOc0MeYYvf7zQdmKdVhd4jPeX6ts+7zFFjZpYnoAZL/IBoP1DbAtR2D6miCn2r9Pludw/OQwxRV4ICCK9oQfT/L1FuxTzEUO0CVGkN5aPKWKK+kfAnJdkL9Nc1Dq2zfie4/XIYywf6xN5ibY7pqgNlLR/nEo01wKKdi7yEvv8nMd5nfwjI4+0yEt8F/b+FhNjzktMEdOSbbUp9vm5ntEJHrn9Yesf21oUtY6JAy8UAh5LKfavOGbGtnZSqDv6BZWX0ra4Pc9jwgzTDKO11TR/r/EAj/jzU4eOnEoR00mh7pLvAy+LQt1hvMlFykDTTyPU/Zf/+79+scw1XdM1fTnpGlT6yNKvfvNTJ9TdgkRlACbfKBiyDazmCBhMsCCWB0SnyaZUgzztmTYdJnLXu4XyNtggot3Gga3X5T6JNHBFFUM7ZULKtSCSYFiZPBxm88/mmctBIuMIjT6/HrK/Hu6X2WMeAi8VTZ3/26BS5EXfiU8x8LVKHmTkcR/e8xB46WL57K/LEuWGIYVnZOgR6KU8+cBTDbBoNWjuwAYIM+cvClJHWqN45fwUGHbXq/N3wh9TAU7/FTCGXX2mPpPD5OdEGpFdnSKGWLU4kYkaBXVSW7qHtlSLIQYj7FfHyIsuX7cpCp1GUdGIOZaPk6vIYwx8nZpzxK+1/p5mIrDQ1i454R8ajJCAzUJA5USKYsz163PhbfbeF3hZnJSaFPvLPFDm63gMbXEVgnWxrUVJX62XxZQUU/lzboo9pjhhjE+IJ6HFgEq8/xHeVkfMMbVJr9o5wwvmgQC5XewvPrA7D8JGWx159CmWjwAiL7OgcEjvw4tNS5jOBaGAhWBEEBpeDNqe6fOLvJyx3ct2rGGY956F8Si8mDkvMaiEed5hjuNRDAzD8bI0/ly23e8RUDQpYp7z6N9BDqeYRBuwxAv5jCvveGlFXDp18t/7lo9jrNUWAmS8TDZIo3l9tYx2WigLL/V6yZP5LYGwDkLdK/bBtmjnOu9ulRu3XHDXsNL3XFLPPg/2/hTDB+xZn2kwdAYTgbAO/SViGuzNFjCRuQbMeYlpNRD+3H/za2fLXNM1XdOXl65BpY8sfev//T3gMEKDNMdsnOCSOrQBryM2wQQq26d08kKljHWeGDciSVGTbrXT0UICIO367TqjMyNkzoTOeFcTgIFaHbcDow8jZqrlJdgygOrKnY4Yq45hA082EMUsW766iomx6bkEnuQe/ZBdcGycksOw7uDqvF5l9/v9sXMiiasE9KZ8n/SdSf6QdV8+aq06E3uLvOTKi52k2g7O2A4MMnUac3JObyK/+uh2YFenYyZ0YQnaCq2t3PaeZwbQGd4yJGikdRqIyzuQNLJse6P6e/nTOmdr404yytYU0xQmsMO0Cu5nFybeI7ELcg5lz78mhm/LE8RBVWfMLeuGOI42n0sd/Rc809+4rJZiQN/kCHZ1jsG4emx7uecR7Fb/Rad7E6aoE+B5hJkMkTh6HVpj020EcXJoA1GDa2l2WtOSDZqsuHMTKBHEbimDXR1XAUO0WRPsVt75dQo1yuUd21iyfQdg1cFomKYZL/4Z61DHEezbRmgrG9fDC++BR3s/XfZvMWjdUQIVsW31M17gMMU5dnzP6+D2M/ykcRN4FBHwVl4Ebts/VPHYitE/P8vsY86LSSlgYvgydSVDnbjE9p/fg0fPi22LhCg2m9zzp6LXYidHri2yn+SKHWPXv2IfXi2syom82BLR7sW2FHkZZm95zkuiNgmlBV7sExQT6Y1CfwLmE/2msSKpCh2rzVjoXxZD5HHOS8Hg6mDGWMbM7tltUYrR2e6AqfJSufd9Pq7ksx9V5Gfk7FjkUXGaKjheEs8Dkja51afVdp+3rQwEXuY8+v7lealbrdjmfXnrJ0SbENta7C+z3zBU3tk941x/GEL5NfeORwbhBoMRrU64xVADSwMSbjBIkKXkt+hr0KVnwpa7GpTpmHDHCX213cL1ilPlZYMOm9zG+i332Oau1umGe9xwy99xh60JtK6RcGN8FQLhljsnJn7HQw0krZBKnmr+Bl3FtALhFqli6Bm4BRkMjDUnrEygaY0kgSVqGCqmgsFiuuMeN2j55+hwg+WUAKyOjH/wt793osQ1/UklZvql+++afj7pKtT9kaUf/97nRahb3PHx2BUnuc3NiVDF/laJS8AGYOayLayJ9Y3Q4IE4NIwWMKp+PUvQh7jcg0nKJ1mxs+6z1KkTLYzMXRMTZwYztTpBtm0RAX3BMGUCETXx8UnKy/HWwFDK6/2Z4TAdpoKJ5EsMQwNEWufc8sTlPfQOQ1/ek5xqxuh7XcVV3vPU15U4GRIUEgxS5y7ZCSXjmAVDb3wnQts6uO48L4dR3CQVTdRJdio8MXleMjPGLA4ssQo3ltVC7N+z/mrKScrrM1jKr0r5TcGvSktj4U3b1silbRVM6xpIk7TPzdljlABTEXoU3rg6lxpQyqY+zKKZVIUdMXdgZfUUFV7a0v++5K34Ze0P5vdavkNSveqSl6S/J5hABFGpkdzRYtDf1P7CjJykjF2XYutUharLjybSOsn1XMuX/linCXK3XDHAvYOutBUR5NQWJ+1CJ4ftnchkiZmd01/rTDBvob3bBNSgb8XEomMR62hr3TQgWmBkCVMNJIfrqsHAtry2rfK/ioF1BYAyL22Jyd8T4RmxreWyBUPfs9bZi7fa8uzux7P7L/FYq1hsd8PU3lFra7HOILi2Ft9zv/BMKwar15XHkXihjs0uxftReJ62RaJ5cIXNbzTPhRfbttxb5Tmmtt1nuS1FXlz/MO+w8TifJBOoRsaUR+0NXcCkgYVmxyRjMfW198Pds73nJRsxvx7blvIygBavz2xGsQES6Pa8zDCRtQC+P+k7jH1Sa50xD76nUEftX4oh8jjvj9qe9JbKKy3wAmO7jV2bPaPdrT3D/VMNZGXDi95N64CQVzsWeWy2t4zjgRcVOrZ1tnnlpatthRd5iZgsL7E/zXnxbct+pLT90dnihf5l37FtW+MCLxpoVltug2AM8QvO21ZfJ9cfuPRbItxhwMi5tk/Nq526wYCJufoFG3TIzOiKyPWauzL+SZ1vAExcTrdLhC3k8AM96W6DTg66wFR0jUo+51rHnqkdLgHRJjoy149DdyW/KxiecYcjq24a4RkPOBoMz7jHWDAkEG7RYWTGwPK8WyTx/Vgw3oAwlftnItxwhzVz0Uok3HDCmkUbKxVMK07lUIKEHuJzKAZpO4JpAxF2fwbGEaibEvvyH4Hw7b/3BX7n3/5tXNM1XdMvPl2DSh9Z6tZlPU6ZjOs2MOfUlrJeyLsEDJLP94xy8HEb6AFUYWtCGwiIyn9ZJ0B+K1y9XiqylO/Q6qT3Z2I5mU0xpXa9w/IzbL4LmKqbaOrAoT7233pzTyKvGaV1ctdDPl7Xd++u6/2Um/aIOS/wy+6XMKkLBlCtk2750zxMXv5kwL5nLgEH8o6jw2LaQYr5UN6vtgkY4b/c28lBu6e/7t4BfFKXkd47LymF6zYv12MdfR4h39x3o2tR37ufFNnytk6xznEygfr/9k+u13PI+19FHjCr05wn1C/JVi9Br8cgS3zv7Ul88vr8z0vXl/9s783m5xhrWzqByeft3zjc/f14lEf5SV68nhZ+bydl87a3hKHxFOtYr4eWZCe25/pP+/McjxHTcv+4mC8YpG3FyfG8Tq6/Lb0j+Pd67vmn+ovv3fY3J+wYmt3TnccWU6yfxxSZitf9+sE5b+/fn6SOJ9rWIqYTdu7M733bin9+aNs693tbR99zI4bKY7ABy5gQ8vP+on/63zdM8fftasOcEN9B5CV+mPD3tLYm/v0UL7FOS3Vs95+//3l537ZO3a9huGQj5ph0wDllW+MzOeQtT3pipAbP7ConApVgTsurwHTLe32jDoQ12omOEvBLOJiA11anaixByg211TwaqLHvfWW41vxRA3Ilz5wxkV73GIbw+wFt65pg9D6mnNKXqgZSB8KGE57I5NFVu5ZI8lzGH81rWsa0nPrVdcPNNV3TVyVde+NHln7rv/sbANqgue1VCtV8BS2rQgDgGASho6g16t2a+b8k1J3CPxxG3wyjUHcfWuk+lNf76bZ93RpnMXCo8nmhbsLoMBBy1CMKmkpRaHucfB03gxd+zGG5ZcyriLZiYHhe9mMQ6u54zgt7TPuRzgp1W90qYC7UPURh78BjFFBXoW6tc1/9O8kfVKi7XN8kX4co9MiYC3X3tulhvkd/LvDsUxTqvqSjU7cTsZYv9S/5KsCpbRE0F+oOgtCLoqL2seH3UTw5Yoj9bS4I7UvEFQfHqt6jX6J9HeL9ZZWb58WahDiZAea8zIW6L/EYbMSMF57lLU9L+kVxJUhmj2km1B1+P9dUmgcBfPkTGOoz/XOiUGqH5L4CUKhTOXzb3zPyEvpPxHBJWDhiqFszoXU8waP54xwvxZL7vOPFa5m0pteeO/F5QfRoEz5cqNtjWhTqNn9/H6HuMKTODxDg5T58CkOcPJ/kcWlox5KAuvcZgBO8mH9oK/HKPcKg/KG8XC7/nryUfBSEXhTqDrzMhLov2OJFsX2TLmkwRZsQxfqXBNSj7XaYaEGoO/w82uJoUy4JdcdXOB9j07ygsQnvI9Rt255guiDUPbPd/h/sqXnAfKK0FOC1980hH0Wtj8EGRF8HC3nX9uwzTmCIP59pMl0YnyKGKC4uioCt8fWIduwyhkuHKhzO1lDSX/xXf+M9Sl3TNV3Tl5GuQaWPLH39v/YpuC/KASyrdI4oX2JYlm4fIIaeWb7NvD2UdS0swQg9ZYJZtkcdwkDw5pBc0GZkH9SZwC7/sOt90IYYk8kTsXNADxMVcW+Yf0NdPZRIVt0IBgmoPB0bBqCdOKeYssEEAI8hcPV06FydKWWX34Ugz+6QHIa+yw7DlL1wds7AbjTlk7xn5QEA9gi87AMvZHgBsINPb/Ye05iyc8ZkK2PLvzskh2lKGUeLAey432XGozsmj/HAudY5gfGACfrVj0H4IjeMiVCPkdavgpPJg1CPptYU3aIuTLam4GJHB3VJQNpNLJiceGUPwmA0A8DFidY8zcUrN0EDabACnDR37rbcuzrFOlrnFChbHOPE2+QPMEeIl/I5TAB1wsdgOYa5OOWVB6gUfStX60Jwx2vre4zJ18kzszHaEMD81DxGcFDZ57sQ9GF4YVQtY3lZwfPQB2HUODguBr5CHW1+BY+JQp0nsBdOBc3EX21byvD6YvIFOc3zBpM9gJFA+BVeOwzfyBtXxxd5cHUagpjrDXeuPyQU8daKOS3zYt5ROtN/Eqi959qfPC+9IZls+foek3/v5rdACXxZDAHje/NSUgY7XtJPwYvDjLmGEkKfjxiHkJ9pziz0lzTD4HmxbS9pf4l2ztTZBgeWeFk8sc5hCLzE/hWEuwekZbHkkqbASxd4AdAC+JWXE20r8lhSPMghCtXHQxQiL7HtpcBLbIvENONlmPHieegDL6vQ1uL4EwO7MzsWrlv9MmD5Q4pra8zOhnQwJ55WXk63taX+cul0tohhLr7veRk5z9piFOp239hCf2GGw8S0kDc/JxC2AeOGIwafjxiiL5TCv82FuuF4wAImV2eEDyUkB8roUwiEDSKGtJy3mBwvCJhC4wpptSL81l/95OT1a/oTSIxfuP7Rn4im0ulmdk0fkK5BpY8s/cH/43t49xYYi+7Q/UR4xcC+HO05MuMdgB1zDcq8PhDeHqT8xMDnE3CvK2iYcQ/gXr9dMvCYCZ8dWpDlcSQ8jC2wtMuEx4x6fWLC5/erGoS533d4Z4Iyu4nwxPZENsLrp74GlvYj4e2uw6FgOmSpw7EEvZiB+0PC01Gu5wy83SU8FEyZgfuRsM9yb2ZgNya827fg2OOhw5vHvubfHjo8lZU2gIhYvzVBmOOU8MX9umJ4s+/wmBuGkQnvjlQDS0+Z8ONdh12JmdxPwFsGDoWHIzPeBF4+33V4u08gkgDV5xPwYHh5B+FJdaQexoTPnhqmL44Jbxg1sPQAxlu0L2hHJvzwqasYvj8y/ggjDqX8FzTh23TAvgQcHgD8F3vgobyEL5jxRzzivgSW3oHxPRpxXwJLBzC+NTE+nwTTnhlfIGNXAhoZjCfkuqSawdgT44HawckHYvfVPNNctNe6JUT2C5towCTy5WGuJxBuuHdO8R2G6mwNINxxX/M9iximdca26CRoQuKM3qBzp6I8416cLeMg35rA0pZ73Jn8Mx5waybvjzRib4I0E3JdbaSYHzDWwNAeGXuaKs8TZFm8XUmwK/fQgNKectWOyGAcwe4L9xEZOxNYOmBygaNDKW952pk6ToAs8TcT1DusKsYt904odUCHLfrqFIu+xapuKxDh1CaU2rEsp7eBp3XRp2i89O7EnS16I6Jenml42KDH1kxWbniQyY6p0y36Wuc1Ope/QY+NyVMp3zkMQ63zCsljsHUs/7QJmLboJAgKyf/Z6Q5/drqtE8F/Id/hL0zPax3+K/kW/9J0VycXv5Y3+M28qe/5BQ/4rXxT6/j1vMJv5k1978JjE3tNhUctv0bnecGcF4epYrD53q2IWiM5Xm55wA2GlsfgeOpBeM62bXW449a2bniZl7TUtgqmjcEkGJoNoMBTYn8dLJNej6nHxmCStuVthO0vAzo8M/3llgdsDYYBnes/HRKeGV42tT9ZXjymGwwGg2zJ6Y0I7wqpBWbLe6m8sLxXG9DboHOYepDjbcM9bk2dt6W/eV68sLDtP5vCSzrBS2LCDfr6kSAVG9Gb8iskZ6s36FsAnIWXVeDlxvHiMdzwINt6KuaEbbBrd1hVTNtiI1p/IicATZD2rbx0lZfWttZI9Xp9L9y2U0Ve1uidHRvQ4dbwsuXetb11aTvt8AovYr0uv7f5LfyYemPG1K7wciqv97AHVlSb4NqabVvJ2YA1etfWbnhwbesW0t/mwtytXdwZYW7JtzqK6HVrWwMT7mDzwEsQbIh/EwJLN+hwm9vqujvucGdErZ9xwjPT9l4Q4TlaIOmWgOftlaED4QXaR4EBCS+5r7Z+A8JL9WUArEF4zl2t8xqEF2jb0AYALxJhbSJVGxDWbnwibE3/uUWH29x4esYdnhmennHCcxP8et4Bz8IKdk09GDdTxu//3747u3ZN13RNv5h01VT6yNKP/v4XAAiP+4QuAW9LAOANgL6I8wHAPYAnZmwgg9EX+w5vD4xVJ1PPBwaeAKzBZYIoE8c1GB0S7seEx5Fx1+uqI8Lrg4gzH8tHoPssXzpWkCDMj96ssV1lPB0IExNe7xNWCdizlH9i+ZIyFKf31WOPVcfIDDAIb3YJfWqrjnaZcEApT4R3+x6PR8aQRGbxfp/wdGD0BdOBgWO5PwF4GhP2E2HdiWbT7thh/zZhO0zYjzLMvcv6tUZOX/til0REGwSA8OM3G2yGCQ/HhAzgIbdOxyC8OYqA9phlC9wPHztsOlkBxADeBl7eQAJH28LLT556vN4zul6m+PcQXlaQd/YI4WYDxgqEd4cOD8eE2z5jV7bs/YSBDTOOJVj/qvA4gJAnwnceOtz2jNecsQPjn+CIF5zwiIwjAX+EI+6Q0DFhBPCP98DzJIGKCcAf8ojb4mgwAd/DiA0mbFjkSP94YvwoM9byyvBAGU+cxWErK7ZGIzz5hIw9sgixqw/GgB6OrNutGHZrl/zXSVOUlWxoGgOxvPxGeEyQQNHEEsRiAp5jwFi+nBPkFJWRc/k6KGKVEzP2NGEqgacti+ZAQsKWE9ZgjJxlNQdEs+DAGXviGvA48FTEVxNeFjHLDVKZFEqw8bMkddqxiHmOkPyh1GeFBCbCPY/oQXVL074IZ+qJWyPLCYny9Z7whAl7bivDDtQCTSAJRqko6UAdDsg4chahaJLl8iMmdGgr0HJZsdYjYSLGQ8E3FbtxW4VQGSDCC6xx5Iw1UgnSyHtXUd0tekwsQS4QcIeVBL8KL1v0dVUWlQDGxIwRWURFkTBxLjgStii8IJfVGbJ14sgZIzFW6IoQ6gQVRR3QREb1hLexCJP2lPAMIoTaQYRUNb/mzmE4YEIiCWCM3MSNb4v4a8+iF7KGBK91a4yIw2apM6WKKRdMK4gDnlhWNfypfINv5DV+Qnts0OHXeYuvjWv8KD3hBYus+8txwI/TAc+4R4+EPzvd4B2NGAqGP5dv8Y5GPOceayT8mbzBPSZ8L+2QqGGSk9AIzwovXcGg15UXyWccS9u9w6rwIv1lg4QVMzL0PUq73vOETCzir0g45KmJv0L6jwrVVx5Lv/6E19jzhAGdTLh4hQNnrLHMy13hhdAChsJLEeGFiPIekJEJhbdcbYzyxCwT7zWAgbn2xw16rNDhwPK8NToMSDhmwcBg3KArbUP60B2ayC6V/nLgCauC6abUGaYtjcxVqF55UQyNFy79RfrPWHjU/sWmvyjPra0lKUMN056nypteV3Fk7S8jGAMRnmNV7Ij2F8mvKi/FFiMXXtT2UuVlZMaqYNos8KI2xvKCykvCUHifKobyPBDW6DGgw5GnugqoLxgyGAM6PC82IRVeGgbBpBi0DsoLQz5y6DsYQtti11+EFwq8CGbBpLxo/zliApHaOWlrc15a/lje04o615+sSLXaBG1rY7Hder1nX74vv78xPDKhilyzeSdTsOVTwTCRBOXX6HC0AtClzo0XsdXedre29xyrarslcCQ8rkud16V9E8i0tSZw/iz0L7URKmJ9y30ZWwganJ6YMRSenwHYMmMHYELCLYuvti/31w9Qe+TSbiRos+Mm1D1APsitIafzfsqMffEBOwI+haxy37NY20/Q4cBcDuAgfMI9DtyEuV8WIW/tT89ZbE5PKO9M9JlSOWzmWUfYMvA0AUcQ7kDYsmAAqGASDBFTX+zyigm7gkEwSX03kBOCX5J8YB01qEdNy/QHv/cF/uX/6Z/BNV3TNf3i0zWo9JElFeoGCFMGJrONbAxlJ0hA4lavMzk9owwJWgAAWFYfPAG4LUGdDMLbkXADFC0fWQ1kvzkcWQaHIh+Op0NntoURDrkJfWudOrTyB6f5JCt/RvMFLENOHVMR6CkTJnOk6cSE47HlGcCBgTXJCp4MwtNIEmgiWfb5eOjnGNAWAe8nwirpMwm7Y4/JgBhL2VTKHzPqYAkQdhOVAbmVt2mEvOc7fX6W92bf0ZMprzxJoEkCZG+PjUcu5Vl8ADCEd33PDML9SJhIPrszgNfITROAZKXaitv2gLe51Lu894cSgEAJHO0gk6l1Kf/EbZUVIG1pNLoGTMCxBBPkNBfCrjyfywTJrp8X1+RMIt8Otfyp3+ikNHPGkVSw0z+jR3LLxzsQVtzhiaaSF2dek93qo07qukyUARWv7F15EbPUliZBjw4kYvkUtvuRcJ+5BdMk0GfeM/yx2Qy4LY+ZvAYGQ0N35j2a8kyoK8s0jeC6jUHrVG9Jc52sAV1Z5aQYu7qCLL535YXRJu/2iGydtFqeutL7mqhogt2ok+CFS3Xrz4hJJp4kE0tbZ7vVR+uoa8MIcyHUiEkDa6rRMqCtsNPrUewVoPru9GQ4ffNdCaxYDPp7hgQtf5O3OJYus6KEP51v63vqkfAbeVMOYZDfv+ChTgA1vzJ1eoYeG3R4Qq51Bppmy4B2VpZe97xIaNfz4vtLF3jZoMMjxsrLBn2dlMp1z9MKHaby1mjh+nqRF9u2yJUXXlLNS6BRtncqBg1Y27zFYAVu1SZYQdu1wQTI6kgNRCkmbQeCoZ1fp3WezHVpm15oOGK2GPWaPmN+pPyclyFgUqFhtXNLwsBT6PNeaLhzmPrS9qcTfX5Y5KVt1466P/aEscZLh6cy+iovOuJocInDe9VtwNqWLC/LGHLFrDydsns69tnfk+G2D23rFCaVL7D9w/JihbpX6AKm1jrae/dtLRu7F/v8UltjyJgR255isNvz1HZPtX8RujBGxjF1hQ4jjwC162onlafYX2ihjh6j5w3herRzUZjb/qYnCcrcm+tboNpeCdh5TJpXzNtaY4CIsIE/CGUD+ZA2VsxUVg+3vMWwsvcr9R10DIfYILsFuCdg0wHHqdV5gybBoIFUXXOumGx/ugltddseJxqgBPjN2+XZm6hEdk3XdE2/qHTd/vaRpT/3P/BC3bdFhddrsrS/T/CTyrhPu96sjUB1oNIUBQTjUtbRZ2cC0LGRxvJaXLdxteGXKwYn5BjytFCnzBqoKPlQhz6WD9dzqGMfMIXLFaPWuQ95/XvdthWuuWN7F34LFI0m5yydTzGYteXz5mIi/7woAJ2AogelvLDDFOtP8mOXotgrh3ysYRQFje896knMeAy/iNvjGJ4Xu7VOys8f6jgtQRXLiwaAlsoD8/50lz2T8T3ORH4Dhtp/3pMXBEwSaPKBIV+feYBvSXNpqY6aLvEYMXEtt8xTWrhJfM8RUxS1jjeYQuvpLgyvUYT3lHDqKV4WeTzDywjGU9l6qpgoYLpkqyMvkccX7NtiLP+z8rLU1paEus/V8ZJA7bz8Mo92u6nNqybNqTE1Y96ebSIF4cbUyEv8jU8zgfZw/VT/in3AtTWe87ZU1vyDq8BMqHvWtk7/fKl8DEDMeY+8pAu8eD+IgLnQsCWG5iLXc0HnWKfIS7SVPl3mBQ5TXiy7AME8MPIS0yVe4vNi/zrFo+svmPMS7V6rz7yTuzrQXKh73ufPj6kjRU/Ap1PvK/LQ/DVvuw/wuobiV58fE6OvE2t4xHneow96afIXbfUIuMNixK8294fHsGyj/IATMUWf83jmleilP/+v/uY5GNf0J5A40y/df9f080nXoNJHlr7+l14gD+UgWpbgyIGaKC/QxJA171aEgKp2CiCDq67E0GS1UuR+ftA/wJ98cWAfhJHl9O0foiD0xFx1fbgs1VdNKGYGiPEIDphgygM7bnki4DF4j4/waZf9ALoPjs4+YNpnGA0owW8dF9WlsSWOps4Jsj1J8wzGHp6nnbk3gWZiyU/B7diFOh8CTwe7+qiUt/k+5AVTe8YY8gQv+AzAtzVqXyiXMBAIOxobJoJrewCcdpBgmD4IYwa7YMAUMOSQT+UZlRdih0ExWQwH8rwcAoZ94Gmk8zztQ16+nFpMXph7RA6TmbYiRu9zDJjGwMsx8LIPvMQT6SLGY+Al5seAaYK3AWPgiUNe+o/HcAz9J2JyvFDjob2T+Ulo53iJ1+Ppa1Noe0ungJ3H1AKQlheP6QwvBLwl77bvyPMQbcQY6hjbkmpradoyzXiybScv8BJF4WPbOsD3nzgx34YT51ZGo0PrbDGtuXPBgsQ+eDAGnuSZEVMOvFgMcnqUy9u2RT4vPPq2Nu8/8/4R+4+t8zHkeQHDkp3zvDSeAGBPY7BznpcRy3avYcqzOp/DFDHMMc1tgsU0LfLiMUVeou22p4AR2oEEpzHNeTmHiUP/ysCMlwmnbTWwxIvHMJ6w3Q2DxzTObPV5OxdtROTl1Jjq+8dpm3COlzamxv5znpc5puA38Hk/IfoFc5uw7Bc0jLJ6G2g+6D5gjL7O3K/2+R18oOrA/oAbBL+aMW9rh4DJ+pwZsk2PyPjV1Y9GweDnCtG32S3kPSbP01PG7ANtfR6AsSP8yn/9xbzANV3TNf1C0jWo9JGl//z//j28emQcRCIBb8D4gkY8FWfriIw3acQDmqPyBDH2gDgIr9OEd9S+vbyhEa/p2BwCkgFTB4dHMD43jscbMH5SF7vLMt/XJgjzAMYXaEGYd8j4McY6QI2lvIpY7wC84SY2/gTGZzThASo0zHjHwGO5PjHjLZrY+FTKvzIC0I8A3pqvMo8A3pgB7hVl/MRMsJ5KnR2mqWF6jYyfYKqBpB2AL9CCZTsC3pU8gfCAjFfpiF1xtkYw3qaprjRgMHblP3knwuM92oTsXRrx1vA0Fi6Ul9dpwus0Vl7u04TXdKz5XOqk+c/TiLd0rM7VI414jUN1zDMBDzRVR2VHGfc0Vmdrj4w3OGBX2lYG4xFTDZ5NyHjAWLccTGC8xgHvysGyDMaOMh4MpidkPBqH8B2NeFNcSkCCWO8MpiMy7mEwFwxa52Ops+YnYjwZTI+Y8AYHU2fGQxHKrv2Fcs2PyHiDo2zRKRgeaMJjwQBIEOnJrEN5Q0e8o1bHJ5rw1mBgAh7QhLY/S3s8GEw7TLhH4wkEPAWh7kccq2N/QMY9jjVYpmWUtxEZjxgd5nc44rEs0Jc+n7E332N3GPEoCjnlPR/xzvAyktSh8oTJ5R/piLfY1zpPlPFgMGmdalvDhLc4VAwTGI8YzWRljukBR+wKLyIK39oeF/uzN7w80NFhOpQ6sOFlZ9riA424N5j2mPAu8LIrUzjF8GAwKS9Hw8sBufJ2LM8/hP6zMxiOBgMYYCK8I9vWJrw2be1AjLdm4vtIGW+NqPsbGvEZHaptHonx1tjyH6U9Hg1G5UUx5MCLTFSmmj+Wd/RkbMQOU8WEgmzSyQiLRs7zvNLlM3jGA54b4e0MH4hdo8NLrKpg7RY9nhsRXobwUvsfRrwr/UU5eMCx6YsVbs/zcnQYRrQJXNa2Ze0aHfFg2tpE7NrWE0Y8uP4ylv6itptdf9qX8srLEya8wb4G/LS8YphKf2i8ZLwrGCwve9PW9iH/DgfcF3VABuNA0r9aEIpDfzni3tiIY+nzdTwqbafxMuGdtd3BJmgZxbTHhHvDy1j6S7Pdwq0GjnKxc1pnLu9EeWHwjJdHGnFv+tOORmf3mNi1LenzB9NfhMca7CKuttu2LeXlsMDL3mBsPDVM9zg6DHuaZnZtZ3h6oCPeOl4mx8sEj+mJ/PgzUsY9tf6TAy86Xtk6P2EyH2+kThr8mgoGa6sfMVZbzBC7ZHm5pyMeDCZ9pvV1Hs2Y2hG5D1D7gkkx7JHxttgAbXv3xiaIXzA5v+CRcg3SgOVD56PxQV8j494EAN+myflv9zQ5W7yjjNcmf4RocGogaQ/xi1W77i1lvIZu/hUf4lXxz/R+r9JY7dIRjLc01TpnAO9IfE6CyE7cZwn8EIk8wWtkPBi79pYm3Jvx5l3AFMeXAxhvzHsfQc6P1kQkH26/2DP+/v/1KtR9Tdf0VUkUtwVd0883EdHvfvOb3/zm7/7u7/6iqwIA+H/9b/4B/sP/7e8DAHpivKIR3y0DWc+EjoFdKpoW5SQr1T8Qpzvj826q+RUT3qWW33LX9nuzHBmqei8EYAvIoEFy/QZyOoQ65yvIREb3k68hej07kgnEppTX5fuD3Ab7Ur6HOKNvypesgYEbTlVtoCu/0VU+Ik7I+InBcMsiUViqjTVEH0rzGwK+jxFMKCf7EBht+eSmvEtd5rsi4BWmGpjbgIrjgYqZUfbQs2B4oglv0lh56TnhWGY9XcG0MbxkZPyoG2t+zQlPhUfl5U6VWBgYwPheKU8MbDhJsKbwskGSU8+KA7QC8J3uCU8kolgDEnYYMRZe6slUZYtBV5z2fco1P3HGU3nPckpNV7eWJBYubJ0JhDfpUPLlZB7lhVG0QVDzPQif017aGqNpJRBqHVU3CuX3b+goXz3L9Q7tNKMeJEKpJd+B8IgR94aXAamKhXdMWHNCRw3TBMarikHe21hmu/Leu6o3Qizt84fdvubXSPJ1r9RhDTkZTnkZQPjD/q2sFix1PiLLVkQWnY3IywEjDmR4AeNg+vw6vGcJ5rX+ARAekrY14WUw5TtQLa+8vE7Hml+V8rpda0ASx7a+94R3dHBtqzflVUuEDS9PNOGJxsab1eIpPOl2Viq83Jc6yXWCystpHe3R2wnA52ln2l7jXTFsVV+k1OEL2lceBiRMxu5pecvLA43YFx67MrnSL/J6qtNg+vCELJgLBgJq/0os+ly2/Jo7/AbfGIyEV6nZgC3kpCvFsAbhgXJ9z2sQvqBj5WWLhA03zAMIf9zdS3s37WBX22bCymy86lh0j1SaI5VVTm8NL2vDI7GIJt9iMNwCL4rSRgbjiUfclesywZaArD60A+Elr6s+zR4iuJ5K/gAJKueCsQPhHR0rL6qvMpnrW3T1PScuQafUbDEB2JPaNSqnnrU+D3DFTOU9Ka/aFu0R6j0I9zgaO5ZwT8fatlbosEFybdHbBOFlb2y5iswrJihGw4vavY6D5lHoDxrMe13sntriOkKWPi22udXxFe1rW1vZ753lnfTah2t/OVQMah+sTVi78UXsnrVbHYCjwbgxPDYMzRb3SNIODC9Vk6u8g9dl/FEMT2hj6lBsMZn3vMPobPWOpjoeDUhN44tl21cG161Zwgvj0fDiNMFYtvxpeSpt8Y1pa2v0VZ1HMbKxaz0SPqedGX/MZtBSx87w2IFwb8bUyIuMqZ2cuFow7TE6DB1SPdgh1fGi8cLg6hdonY8GY+SlB1XbrbzsMDmeNqrwVso/46Ha5gRZ0Wn7zwjRVmzjkayM03cwmPe45BfccIe7ssJSt759bnzQHoS3qbW1DZP4wJU3OeSk+TrUbDfEZ5Wt+JJWAF7TJJ/niu1/pAmHOsZK0OiYdLwSzSTt0z2LQLielNtB6qTP6wAwZXyG5r91AN4Yf24A4TE1ntbsx9w1iiZlaRsbqLaTvNgNyRY+hpzwXFox/tv/qz+P//H//q/gq5B+53d+B7/3e7/3e8z8O7/ouvxJJCL63X/x5je++X/6S//uL7oqP/f0P/9H/x7+4PH7v7TcfVnpulLpI0vDTdsqMDJhNHtJR+IaUALaKg1NmYCj1RmiFgTQvD3uHYRyWpYMbQxZ8VN/QbLtzH6DPsB/ldjD7LMmYEd6qoSkY/lNxQDZTlevk9/apuLjtc5oASnF8M4sreZSvq5GQFvyC4iz9Eh++fcOXlz8wB7TDn473wFNlBEEjOT3+I/E2Kd2x4mAvcEkvHgMkZdHs9WHCdgXB0gxPKXcnEmSr1YVEwEHag4KSAJ32ZSXk8Fa+Ym4Bk9qPhkeiN3S6Fzais/b6+y+TIogNLf/UZsgKKYdTdU51Tra/NFuMyvXq5YCyXu3+YnY6UaNxHWyqJh8ndHeQcnb8lpHi0kdVbBez02CoPze1tli1jpbjCOZ7UoFg+UtYpqonUaldZxmbc3zYldgcLjOyqNpa3u75UrLmzqNlF1bO5DZzlcwTqFt5XD9AF/HWKfsMPGMF7e1x74DbpgiBlvnMfAS+8txgRcO+Uu8RAyRl30ob7eM1LZl2tpjwLAnPpt/Cn3+GK5PxA7jSNltx5ts/yp1HiMvprzlpf5b/VPEXm8x1H9TgWhjGuu6M6mSCBVbkV4JqOpMZ87LUtuz25jzjBffR5cwmbMyStvy1+tKM1MHhLbk+8sU3nu0CZ6XYznV0WKaQp3H0BYPkRc6YTPUjoX+dCA/3sT+cgjjzxhst/R5uOuRlzHYAPuepb+c5yUeFHGKF8Vk+98SxsU+H+xeDryMhpdseYTyEsafCxjsexZe/Jh6DHZtpFybGortjnWM40n8/RTanh1TI6aJGMfoc+I8hmjb96GtaYBLn3kI4828rfn+4eRWFmzAuODrHCIvwS9wecx90Doelf7zVGyrtd3Vrybxi+3Gsj285pJoOFnM3FpKyR/J8urrPBI7/0z8aJ/f2wNyaO6j7gKmnWkrDVOrk8dE2DHhPhMeMuEIgpK4urkKdV/TNX1V0jWo9JGlv/SveVG7O3R1YrGUjvABkwRdrSDJiuyVf6hbuE6l2Ojs4AXMhR6jIKeWb5MDnwaQw6QLvc/Vx2ICefFkYP56hvDUKVyPwo+rUD5qdsRUv9Q237w5sJjrUvUgjyEkPZVLMVH5CnQuRZ2Cm5kIr09RV6fyyFrePy/qTZApq/e3cw2GF+Bsf7T7xrYS9VdiO4inAMXymtffRV6yCWwJJt/WetBM7NVet3osimUAzRu1SVGn4C4PLh/7XtRriTzYL8+CITtMi+UNpgz/3uLzCYTo9kWR6ph+ah4NL7ZcDrzo1393T7NqN7Y1QjnBxwYAQp3jex4uW9YR/QABAABJREFUDK+xfw0BQ2wCRzuJxVxAOvafmaZTmThbTCk8KIq9xjpEXo7Bdj9j3xZr+dq2PC/RrvWBlwzPtWhthWDZzCZ4DOvQ+qIuTmyv63AgwSUenS4PSls04098h0taWpfG1DienOzDoU6n7hnH2DFgiKn2F24YYtloy52wPc1FreMYGG3xXNfqfPnWppottvkh8BJT5CUF273MS3b/Ht9r5D7avchj/H1sW/F+kZc4/sRE8GPqEi/x15dscTyg4BQv8fetv7RVePqHtQmxrXULY6pLC2NqrFNMM00zOs9TbAtc//TjzSm/IPpvHTDDRKH/4EL/iTbiks966WCIiCmKjcdDSfqAIbY1XQlmMcU6zgTTz7RlvfIv/+tXoe4vNxGYf/n+O+t0X9N7p2tQ6SNL3/jzz9CtG+094CYWS46Td4Dn4aLYiKKTEdPM0QpbMAkcggs+P7EMZqcCVxT/QvOTMnx5mjkNccCOv+/CWDd3gH3qAYdBHadTKcUB2NS1/GXGS8QQ0+xUozMONjB3gAeOjtX8/otBIlouHx+/FIxwmGj+nmP1P/TUsBjs4IBBJ7VtmfdlXiKmUw6optnpbPxhPK54jsKXXwjexWQwcc02p9ymGaIFXmKK97hUfm5TPC+x/0Re9Lp/Lpm/nQt7YxHTnMdoI85P/GNa5GWhbbX7e17mVT5vu4F5n17qw+euz4KD7HnZcjcLDF/mxbe12LY45GMdrR4MANyHfA7v+d7oWLVaWYz+oUsBSJt0AtkwtLpabBbDh9ruedvyaR4kihVe+L35p2jnYloaU+dBJVt+julD+0tEkLHw8WlhTFUMl3iZpYDpp+HlglW52L+i7zMFDAtV9n8531RRA8kmzcfI87zMfaOF8pYX1v8DwHNeoo2wdVVMcx/0Q/vLZVts05GjxxdFrtkFYjWv+kmSN4fF0FwUfmc+jqrGl8VoV2wBlw/scKuYMRdQx0J+CZPWOZMXH8/kD5MBtV0CFUPAFINzUbzfrcJcxLgcJJX7AzwQfu0vPp9dv6ZruqZfTLoGlT6y9A//9ncx7Zuhf0B2y3tnDgWj6k8AegoGzFcl+Qu1G8y+DMcUh+s14moROAdjAsHsusOKzjsVYxnwTmGIiSHLbC2G+HUuIjqEz0qxfPwqtI91wnkH9IB82smCBIR6pIppKk7MSY+Sg04FzKqEE7+JPD4EhyDyuFK9iHrdY46OntUykWqU8qZtMcrXrvKf++LIc6c8TqYiL9G5jCszOiSHQfV7Wvns2qJ832j/INpQ5HjJgRdXA/YrIRg8W/0RU+TlXTq4fKRzzotPHCqlvLTy80kH2weF/rLUz+Jk6tLqjzmPnpf43kcw0pn+5X9dJmumrdW2xLzY1uwkwt7zHKb49TumyEu0W/Et9kgXebH9hwIGYmBr9IjU7tkUbXGsQ+wv6/BmX9PBYYiYutCfIo8T8iIvdZxZ6C97ErFinay+Snv8KD3VNveuiF43kfgJP6Enw2ew1eRt73HBFts0hHcwzXgMgYQwHnGxEWrnlvpPbFuxP2V4Z+4Sj3GMjXYuprzQtpIZf/R2FpPrwzwPfMWVdpf6V1xtEnmJbSnajNgWY0q1jg1DHX+wwAujav1oioGvmCKP8z5Mzo6tAoZ5oG3u69jxJyYG+w9eC77OfEXx3BbbtMjjki0ugaPY1mJ5wPMo/aW1tboC84yvE+t4aWXsKvC4Cfk95XKogtxHDmlowvYjVNhegzAoBxC0FVMj2kmYxCLVoKehTRAhbntgxyMmIz4uuobugI9SponAyxbmbK4/oQWSHsohJ/VwmXI/K3T/YDCoYLrFsEM2p9iJX7s3z7tHrpjkAILRHUDwGITu96VOzTaXOYnae4LDoEnf+cNxwt/9m98+y+01XdM1fXmpv1zkmn6Z0g//4RuX3+PUyCwpTrKjE6PJfCg7uaxW03yydOkLpX7Vkis9XyrvUxWuPFGvLBfrMwiXlzvHlUjxznHKPIb8z/pFM2KKE5mYEjwvDNGYqG9VHxcmGjbFYEd0XCPvkYeYTwFDvRv58paXUysctD6XvlDGVzRbJRSuL5WnWiNe2IZymRcf7Fj4Eny+acze855ia/TpQ1dvXV5hgDBpOD8hZTDi4qvLX45jeZ+WVj4RZJvdEi+27bh2Qu2PhNYOY1tjYIYh1iE+M7atmCKPl7b4zfvXCR6p1cdi7kD1HnXyHzBp0CdugThVx1in3YXA83uvpqwYloKD83vsaMKeJ6wgQvgjRnw7vcMtD1WU9x0fMJTAXKaMH+ARW3R4YYS7gfkk+mfnMZaPgQK2kOerNrhN3E/xIj8hFPneD15hc2nMtvor9v4+QGj9BJy1ewuXL67Gmo/B84mm/33sL+cDC8kEbRnN17G+xyVbuRiwNym+5zmP7Hicl1+wxQv1ueTraLo0pgKXfZFLds/1WH6f8j5FX+eUD2p/b5+hq2zOpUsBzLEEu594QoJowzEBD3xsH2FINKoOTBI4IxEE3/Mkh2VQhyMYI08S9KVOtIx0tSdJsOrIGXqAwbHkh5pnvMFRhO6ZMBLjHY8YQLhFj4nkYBtZGS91emBGVwI4TMADRnSgqvn1iAmdBnIIeMSIrmAAEZ4KhjUSepKDQw6c5QANStiDRTcUGUiygurAAFlMyGJjS/5QbDECphUnTAS846lg6kQTtGBQOz2h+Unf/c/fnOX2mq7pmr68dA0qfWRpdXteFyem2VfWU6M5o67gaE7yctnmotWfnk1U/7ww2/45pOjs20lZ/MJ+qd7+vh9aj/MpPvtk+TJBaR/+DY5y7dRvLz/Dv4V5W3nPOp5I5P7e3j4z15O8bFtbah8L87Nw33n5963V+7TH9+VxiZfTv/EFLk0gP7ROH/77E2/NVjNgugDxZ6rjpc0Rl7ZPkHm+trWlCf+5bSnAz96HbXBnufz5J9jyZFDN2pp5+DygtmT/T9fpcls838M+BNPsGhVBaLV5JEeJm5vjiFxWiEn+CRNuOZczs6hg+LD03ra4lj/xCzOG1huHtnZpTP1px8j3HYM/uHzAINfer44/u414T99loXwMtrj+8DNiep90mufTq5De5/6nePwyfJ0P/fdYx4vl38PXed900u+loFVHbTWyBn4zyeEzuiaUSbYJr01+0nak161NJbOyqtRbV4gyZDw6ILdVouV65rKinuQjZqf4yZ8E1+oc860O9qQ7wSQYdPaQCTiaPJP/ELSUdyt3S76uWivBpoFTtc1HcN01qRiWAvzr2+s09stMDOCX8dD4X0JIv5B03f72kaW//D98D6Fu8/e4L3tRqNsO2GUwOOdkfahQd8zHrWfxST8Poe5L4pVR5PrnJtTNWt7zwoCz5FFAfVGo2zq/NBfqXoc6xfcYBaHnQt3+F0frCNnrNu94OS/UTcBcqJtzDSg1P6/VY7ZNJIx+sR1c2lYyOQKWBdTrlim8p1C3FYQmLzRMoNk2xdhUosDzhwp1zwXU/XOqgHrkrd7f8yJC3V4PwoqMygoiX6fZdoSAMa6Sm4uQel7mQt3KjeQnsHvvkReGbxuxrREIPScfGAt1/lCh7pPl23zF5VWoW/NRUyb2n/cR6u6KQ68ptq2IIG7rjbb7eRDqHkJbGwNv4qCy4ZECBs9Lht+GuLTK4pJYcrS9T+TXkUaNsll/1HSCl0WhbvPIZaFucv0livTO+nAQE3+f1SI2zQXUve2ufz/Jy3xMtf0rQY4ktxhyqEcOHejS1rCoe3Oy/AlMkRd7Tcp/uK8Thbqj3Yq2/9IWv5Nbz07YhMqLtXPRmAYbMfd1PIZo1y6PkR/GyxR4GRZ8HduWIqYooF5/dIIXAs1t8QXbHe3aOtiEtqKN3e3sFj029Y6HkkT/LYqPz2wA5sG+2D8ihnh9FWzGKTtpMdj8XKj7vK8T/YRTH/1siuN8HI+WfvtX/0d/6mSZa7qma/py0zWo9JGlr/3ZW2w3bfjoGbjRyRIDxIQtm8kNAaswMNyGAfaGkxsdoij1Ngwn2xAAIbBriAO8hlEPU4fiu9upCwH1KxAgA/6tTpYKhk0Yz7bu94RnYcBd++Kz/C0nN2AO8J1JtjW1AhsQevbX3fSLgUGdCAY65UExsDmVqJSzwtkEwl3gZTtzIuB4uQmiupuAicAuv+XO8daz2YrI4oTUiQTLRGkI+Q069+lzMJgI5E5eIsiR4DatQlurAUStI7rQFr2j08FjXCFJnfWZ5d1rnRhwmDqQ1MHwMlhMBAzZY4rBuE3gaYYh8BKvR2dty73HyNTEvgsvlbfSx3uDiUDCAzXMvbUJoKY5UfIbywvNJ7n1pCWtY+ClC9ejU63L+22ymLSPWF5snQG4tic8hbZmrQzNgwlxIrJFf5EXm1+jc5gS+wld1dFBw2AxEc95iddXFzB14R1G23x7wXav2POy4eQPKWDftsRGNJ7ShbZVeTFtrfb5auc8piUhex8QZMQAoc3HCd6OvXD3ytoIlmBEF9qe7T85YEoovJzoP5EXd72k9ay/+La2wtwOLp4eVVJizHixGGLbUtwWwyZgGEJ/iVuGtgHTwPM+f66/RFtN7DFFXqrtNry48SjwAg4fCRZ4ifp1F3kJtnsVMCiOiiHY6oQ4/nALOFbb7XlZx/GHDU/wdmxpTI28xADiGv0FXmjGi8VEmLetD+WlD37BJvoFoe11PG9b5/qP4Gh/3/M0CzBqEFSCO23LtVobm2/l2nV36h1hHhwPZi0GbpdOwjxn12J5rXNL7DBFDGwCji2PhpE8Jvl38z5DfhnTeQynTjNUDqgn/Oq/+Gx2/Zqu6Zp+MekaVPrI0j/929/BzThhXT6DjACecY9tmQj3ILzgAbdZHJOBCc+RsC2DPViCSM9yqsKid+jxQie2DDznDnfG8XgGwtfQTh25RcI30NUgy0tKeJFaIGkNwqegGnTZgPB1dFgXR+Q5EV6mFuhZAXhBwKbkOwCfcoe74oisAbwA4aZcTwCeEXBn3sszED7JVDG8JMILtHH+eQJeptZhNiB8A12dYL0odVYMLxLwSQf0ZUDsQfgGdVjVdyDlFcO61GFVnCgC8IIHbJUHEJ4bnlZMeAbC2vCy5Q53uasO9jPu8SI3Xl5yh1sz+RhAeMl9nRTeoMMnPFRML7nHM7QA4AjGM15Vp3eFHi+wrpPGOx5wy12drHQg3HFfgzAdCM8w1KDKCgl36GsgiRi4QY9Nbl8ub9HjjvuGCfKM1hZ73JrJyAodXmJV63zLA57xUPNb7vAMQ3V6eyS8xKoGx264xzPuK4Ytd7gxmAhSh3XBtELCHTcMA4sOwNo41Vt0uDG83GHAbe4rhjvusTVO7oCE5yZQdMs9XhgMzwtmze9pwq3BtEKHZ1hVx/0WPW7Q13wHwg2GOjnpQLjFUHlaIWGDrgb8iEW4VL90EoSnG8PLLQb5mlswbcozUXnp8Rwrg2nADQbH243jpcMLtLZ2yz1uMVQMa3QOE4Fwh6G2xRUSbjRf3qnFBEgdN9x42aKvGDS/MZPEHgm3ps4b9LhF7zBtTVtMpb0rpg163DlMA7bo66SRILoY2tb0eYppgw4bdE5TboPe8WLrnEr/WZdJIzHwjbzCM262+wYdPjU24AX3eI5U8xt0eGGur5HwdW795QV6PFdbTiLmf2N46pDwDKvatjaFN8XUI2Gr+ZJu0EtgFRII2aJzvNyil4BhmXTLCpMWTDpQdpORCeyOvyb4yUuihHc41EneCMYm8HKHofIidqvxsl3kpfWXxIQbbVuQCe+t8mYm0Vtu/UXa1nCybcW2OKDHM6xqW7sp/UXzAzrXfwZ0eG5s9xa9swmRF4L08W0JkHcWE6uN6F3Qf40edzyYtjbgxvSXDXpsDKYOCXcGwzZg2BabovkEwh1Wtc5rdK7/bNFhi2a7tW0pL2IHm+3umBpmY5c2xq5tCy91fAq8DEgNM8Tu3TletM83zJEXi2mDHtuZ7W79J5W2qWNqz8LbytjutbZF897v2GDAqtlqFt42hqcBCc/P8LJB5zCl0uebrda21Wz3nJehBvX7EvhSDH2xAdrnpW117eML+/FI/YYNvO2+M/1lHfrLXeAlEeEBx7qq6pFGjEUEm0DV5jS9T7EbXnOxBXFSyev9EqPcR+xQBuOAXE8E5ZK3q4NyuX8NspAPLHWlXlYvz66IeqLs8kdkHA2mDDntza7SF0wSWGoYuLYtGEwT5JCRiT2mkRumKWDQ+zVb7DH0ZY6ytB0xg3EYM/7O3/gWrumarumrka6bUT+y9Nk/fgMi4FnPuGHGZ6N8aXrBA+64HSn6nAfccg8u+RsQNmDsIV8rbrnHlhk7ElFBcfwTDpzrl7EXSDgyYwBARPg1ADtI0IdA+DV02DHjhgg9AZ8k4AggszhLn0LyE2TA/BV0ODBjRTL4vOxkn/fEcv8XBNwyY18G7E+5w3Mk0UVJhGcE3DDjWOpzSxAM0IlDhxswdiiitgSsy/WeCD2ArydgD2BkqdOvFwxryLaLb0CubwjoCfi0k73nTwygBKIO5R2kElg6QvbgEyRQNJZnZgAvecAdd/V42mfc44YZVPLKyw5yvOsd97jhDnsUXrjwUvavA7JC6sBSzzUIX+cB+7I/nojwdV5hzxkbJAkyFrxPxal9zgNGbk7AS6xEM4BFsPKOe0zalqjljyX/HCvcItcvrTfosUE7vvamTIwPpfwNBmzQ48gTEqg6yYeCMYHwHIRDEbxcUYevYYN9EZNMILzgVRG8TIIBPUaWI3JBwCdY1+upYszoWFzEm4JBxS6fYYUbzuCC4ZYHbMAgFl623GMN2W40UpuQKUYNYIw8QQWUBxAOnLEjxgodPi39ScWTP+EVDpyxLgowd+gwMuOzxCXfl+1+VAIaK0zM2HBX36vyAkidJi5OJBFuscKGc3V41+gwIFWbsMWANRhH9ryMLNcHdOhNeZm4JjmemWQ1xqfYVBtBZVI4coae1CR1EkcWRHhZeFnL9/F6XQWbFcOh8HiHFSa2bWsoTrTwskGHFRIOPGEiFEy9bHWDfAFfo8MErm2rB+HIGXsSPZ6hYNKVGc8g/UHbzg0IEzN2mNBRwvNyPRWetfy6MLstz99jAqhh0u1CiknbovDC0DNzIi+KKRdMWmc9dawDYc2EPRiJ5J38KifsOGNd3utLpCK2itL2ehy5nFJGhF8tNuKGu9KfOowMvCIuPEmdx8Ljc6wxmrZ1U3hUXraQ/nJg6V+3WGELlt8gYYOEFTqx5bWtCeZdkvcwMQBwFXA9MqOeGUVyncDoIV/QpS9KQCcT8JaP6EHoCo8bdMgsfTiR9KexHDWugaaJM3pOte1kMPa1bQkmtd3aXxTDWtsiZGJn2xZR4+2Y25h6W8aHXNpnqxNV2zq6/iJ9ngHXf7TPvyi8VDtXMHHlRdtWa5sb07Y26LFCV/v8Cj2GwguXoMgaHfbVzomNsP2nK/3lCEZvMPTFVt+VOg8F0w06TCwTVrXF0k40MCsYBm79S3nMxRZvzGT5puTVlut7P/CEkbjydEQO1xuGyIuONxR40fFoW3jRCb3ykkufVEzatraVF99/RkwyxmKFLdp4tMGAlcG4Ro9V4QXUeNMxNamtRkZXeWltJVGHTwpmxXAX7J5i0jFVx5+u+AVqE3Q80/IHx0tn2p70H1RMgkFsN8/aXuWJBUMHVNt9JOlDL7Aq16UOz0t+VdqajpF6OugDi6j1vggcjMVm6AEcGbKCiYrvNIFLW22HRjDaVjMNRLUDE1rgxt6P6/0ZB7SDJ7Q8gbFCqnpNstq/K3VU/1DqpNeP5VTLY8nrVjO1g3ar3oSy4qwEeSae6oq4XHx0/UCqgSHdqpbJrECihlnXLVkMcoLxHJPW8bZiQsWk71HT9/7xG1zTl5gYyAurhf9Ln/hykWu6nK4rlT6ytHrWNl11BGxMC+jgl3vHvEzo4fJ2q5w64u2LsG7PoJrfQr/jaL6duEIErKitWJLfk9PxiPmeCAP5/NrmQe545Y4IG3NdJlWa5+K0ppITx3tLVHUGiCRgpL+YYYDcT59IBKxSi96K8+MxDBET2iotySd3xG0Hr7sjy8fh8rr1gAsm5UUdNlte6txOJNLJt8WoTlLLp1pC83b7Qwea5QeXTzMMwwyTz6/LW1QMa4ORKs+nMazQDj/WOqdw3Wpi9EuYzGDaIQVMcwzDrP/EvMdkl+UrRsuL/X177+26PXY+5rWOHTyGPvDShzr2F3hZBR7cMfb6TgImf91jtEeBN9789TmG05gEg8d0jieLQTFVDGbiyaZ83GISeVjqLxFDN+PhdF4CVOd5iZi6gGkNcpi2obwGmDS/QrRzXcA07+O2jov96aINOM2ba2tlpRTrEgEpIAGmZgQQdsUo/Hp9JBaRWvPOzmNYamvnMUVeIqa4TXMVxtR5ed9/lvpTdyJ/GtNpG9At8LI6hckEBPz44zH1xkopBmubo01YwhD7j73+PhiW3utyvo0/53hZvQcvc7vm29rcRnhbbnlaGlMXbbFAODH+zHmxv1/P/II5L5G383Yu8jJve5fG1Dj+KIaZ7cYyL/L7OP5UEJiIF2yG+Re1OzYPn+JKm5OamuX3IP9PUaOJQ/kluxavUyxPvrwN1NhVVgCauLi5RzxRL4YZIsKlkxHjNuVY53md5vdZ313XRlzTNX1V0jWo9JGlv/Cv/2kAqEGS2wTADFaa0zTBDy5xvCMdQY3j7mVP5+J7caf1MShDpjA6aSOt2xlKcRVzpHC9fSGSvH79sSnuNfcg5kLd8yOYzzsJUxhRh4CJ659lxU/IDwFDrPMYnqluVayTxXAEnDPl1SLm6Rjudxt0c6ITMZI6PMu8pIDJbknR8jNeLG+0JKDu89GgRVHRyFMUVo0OSxSr7Gtrac7dOUxRxyrWgQl1JYNAnPMSHdIoyHmXvVMVeZkChigySpC+ZLcLzftHrNTptkbhFzT7l6Vj12P/orPXY//pLvAStRui+PjSM6yArfBC7mXE8lGE99Ix7bF8bFvxOVNF5G2GL+yd9CjU/RiEukn+YurkU7TVl/rXS26TVCnvMSniUzwl/UcLyfxDFIV32kDQSeEJY7ucvShwG9tWrNdopnzAXJNmjmEu1H15TD3Pw6X+Fa/PefE2Qv/ueDS3nE2sQ55AM7FxhrcN8T1HTPH6KV5snWw9tH85G8FzjPb+M1788ANHTJxoL2CY83JeqDuOmUu82Lz0F+/rnLKV7h8ML9FPiGnOS7zdh/ESMV3iZS7UPQfl/IDgJ1TbvVgrSZdsd9QLi4eQxNvO9Y58Pgp1J0SdUVq075aneAhJtGNRcP19hbo1xf4WD/CI29J+PkLdQTB91trm6a/9G791scw1XdM1fTnpGlT6yNLdb93goU8gkkGng2zpIaigIOMpnHzxFJzFp3DW2SNNbnDZ6eBT0uuyT1vTPSbnJD+iBZaYGU+Y8FCewZBltW8w1joewPiCRxCpgCDjJzjW6yDGj+ngMP0gnPDzAzN9IgJ+QAd3/YflzDhNPwpirp/T0WH4ApMbAN9wxq5slWBm7GjC/RlMTIz7MuHT576l0WF4U47H1uvfpb3j5QfpyWH4fnp0GL5He+co/JieHKbPaOcck8/p6E6AG2mqy8AVw2N5jwzZvvZgeGAAb3FwmF6bPBPji4Dhdcjb6wDwBe0cpjeyCaLl6eAwWa0UAHjA5DDuMWFnMERMIxj3AdObgOE19gFTa0sEwhdpN8Pg83uH6S0dHaa38Jje0tFhSvCO+oRcJy+Sb1oP+pxjaGtHawOI/RHGIBxMnycQ9mRsAMn9bDrA24SYH0M+nohVtwSg8WDz8m/ZYTgYTILB2zXbPwmEQ8Cwn2EIJ/YEOxdPL4z5XLY1NUzNDjZeLCa4OgMcMLUAZMNs7BgIe2u7FzB5qzaf7MQJ4ufYu/f2mo7YGRvwDiMeTH9ZMXlx1xkGdm1P7YbFtLe2muDanuTjSWg+4BFF4CU4jZMpwQioM0r/sRNf39ZinYWX0BapvSPCHMM+9KdZf6ExtK15f/H9ad7WrE3Ioa2JfkrjIS/wEjGd5QXzSe2eLtkAnmHKDnM4vTBg0jp6TKd5IQgvp2xCtGMzG7GA4ZINmPPC8LZ6iZfseDln5/Q9x/7lMMxshPeF5pjmGE+1rSVM9oRGxWgxRIzneGFw6S9nbDfkuq1zzM9PX/MYYl4OuygZXgpkcQuaiolwecbSx5VTmRL4CluK5kGfhbypU7Td0e45UfmCKYZ5bJ6X8lZwPfwiBvSXAvyngqinUsQUU9cRfuVfuL1wl2u6pmv6stI1qPSRpb/3f/k2vvuU8bqM0a/AeEMTHkn3jDPuSYI6dYAn4LEMylMp/8Z8n72nCW+o5UcC7s0g/YYyvo1RdE8AfE4TvkV77Iqj8ADGdzljx7Ld7Ac04vfTrgZdfkAH/H56wBdlcv8aI/6ADvisXP8cE/4ZHfAjSNDlC4z4Z2mH79EeDOAJGd+iA75dpol7ZHybjvjnxZ06gvHPaYf/gh6rc/G9dMA/Tbs6sfw+jfh97Ktz82064B+lhxpg+3E64h+npxoM+4wm/CMc8K7oY3yXjvj99IjXpc4/oSP+aXqqmN5gwg/SEW8LD69oxPfTrgYonjDhR2mPzyumCX/UPeGP0iMmiH7LH3b3+IP0FiNEy+Sfd/f4/e5NdXS/2+3wn3f3FcM/7x/xD/vXdZL43e4J/6B/XYMqP057/Gf9W7wr+e+mJ3wnvcNjwfBF2uHb6V0NujzQiO91j3hHBRMd8IP0WANFb+mI76cHfF6CKntk/Jh2+Ix2hZcJP6YdfkxP1fH8QXrE9+ihTig+pz2+lx5r6/ssSV4nND9OT/hWelcnPK/TAd9O93US9zYd8J30UDH/JO3wrfSuBsPepgO+mx4qpvt0xPe7J7wtmF7THj9ID3hVMD1ixI/SUw0UHZHxk7THTwqmHSb8sHvCD+mxTux+nHYVE4PxKh3wvfRUMf2we8J300PF9EW3x3e6+4rpPo34dvdYMX2W9rjHsTruB0x4MHkQsMNU8zuMeMRY73dAxhNGN9E9IlfHfoTo/ezLNHAqgbfHEqJgcDmuvsmK7jFBEQFybPs9WrBsInbXj5jwZIRRn2isAUECIZPUUfNjebeaf8KIBxwrBm1PipELzn2xa8eC+anUOYOxp8lh0mdo/gFHPJo67zHhweSZ4DA90uTEXg/IF3iZ8IixTriUFzt5PyDXdjEi46kERZWXHTVMYou55kUIv0NGW2lyAGOPNimME5nvdTv8w/51DRx9t3vEf9q/qn38J90e/7B/g9cl/6O0dzztSlvUibD2iYPh6YBc88fStp4KDxkivK0YAdl2Ydua6F+hrnZgsFstJFsFUfOim9RwPuOVExaWOo41OPZUeLa8PAZe9sh1Mn+ovDQdlp3hCZBVndq2MrhgbmOotoXWX8Tma177cM2b/iJtUXifQltSXvaYcG940T6rGKbQfxovrb8c0HjRAM/eXH/AEQ919BFNF9s/tH+1/jK6/jLShAdR3CltRfqLBsifSn/VYNhoeNEJ+N58RBCb1D6M6LipPCgvaiMmyMq+R4PxKfCSST6iVTsHxaC8eBvA5DEcip2svBTMjRcJ+uh1tVuKQduifhjRf7M82P6jbe2hejaeF7WNO2fHRtwbHkbKzlZP8G3tqZSvvJDYPc0rj8rLrryDJV602x6N7Z6Q8VDesx9vdEQVG2H7ywONzlbvMeflEe3DYY/kDhzIYHTUwjq6kkgDSQloeYgdbRsDF/Ks24lR2rbcqMt21Za3U9Fu1S3U5Zlrt7FQtxa2Oo3FLmqduZTRO6rmn+b7kB/K/ZrIvOqjGgzUTjPk0sZtsCzNMPntkSuzpRoQEfhTk1QCwBPj7/wH3zpR4pr+pBIz/dL9d00/n0Qc10he0881EdHvfvOb3/zm7/7u7/6iqwIA+Fv/6/8U/8//3e8DEJ2fMU34HO1Eio4JxzJqEMtJb+4oYWR8kaaaX4HwlHLNr8vJNpofAHxBU/26cQuSAFTJ3yCVU3GkU28A/DDt8Vi+uN9yEkeu5LecsOEOY7EBql/0rlxfMSGB8UX5Gjcw4Rl32JWRqWfgDh3eFswdAzcg/CAd6jt4yT0ezTt4iYR78w4/QYfvYFf1O16il4lZyT9HQmaqgrF3ILzCiIdSxxuW7zX7MtpHTAOLs/k6jaXOhBUTdknrLFs+XnfHev2GCd/rdvX689zj865h+jSvcSzvgBj4lHv8cfdYefqUVxKwUkw8gEEV0wvu8Zr22BUMG+6wowmHkl+znJKjtnnFSRzYyoNI5t4bTLc8VP2SjglrTvV6YrnHFwWDnGY31C12xCIW/2ja4i06/Ih2ta2JkGiu+Rv0UAFOsJwO9Jr2dXXHhjt0TLVOKxbNpMZLwhET3qX23tfc1VU7nWIq7zkxoWfgJ4WXxHIqk9ZZMVHR+JL+1uH73VPFdMc97mls/Yd72KO+b7jD52kvPHARvUWubU9Oz+rr8n1iWd2ivCWWiZF9ryIEbfs8t5VJZbjYmfe+RqraHChfQPX+UifgXeFVbIJof+iXVqkzV0wJhAc6Cg/cNMTUvU1F+FV9T2L5Wr8rdUysWh/tuoiOtneQkWtbA4dtkFpH8phepb3BRE2Tovz+Rlz2ev0NHRyGrG0PetJUV11mYuCJpvqeU/naPRletugrL8SycuOp9C/i8gXf2OJV4OWGO/zF6bmBybg3K5v01Ez7Rfw/6j/DoWB4wYNra895AKH1Fz1QYFfbFmFHtq0FXSYuq4oMjyMyHlLDZLV1BFOHO1WcK7xo/9VJ886sEmL4VXwMVJ0yzf9avqn6OPLR5FAxJZYJqe0vAEz/komP5eUYMBBa/0LpXxvDC4FxX1ahalvaGR71JDbNdyA84lj7SwfCI43VrvUQDSPdspZKwCVXTBK8OBpe1mYyp20pm7Y3gvFkMLnJX6kjTH8AGG9Tw+Q0xEodO2o2RvpLG39cK6w2oEcitQHAPR0dBgJq/xJe+qrHI3Yv49FgSKbtKibr63DA0IOcXdMT+Gwd32JfeelB9WAHve55QREPb7wcaKptJS3YiAmMsdSBSh21rajttjpjqQR1WltDbZvKi9VZinZN7VjDlBo3bIIl1Nrag+GlYx9EENvcVR61v9i21aH5TsrLyvGSQ9siTKbOctKn7S/yccnxiOz6j+WlA+EZD/U9Tsh4TYf6HjWAyvWRXIJMLZjSI2Fl9KoGTnLCXsmvOOETXtf8ERkPxm5N4NrW1E5ZnT8u/ou1Yy9YRj0NkPZlnNTr72is70mCwlN9z2I7/fZLqxmpGG7N9mYdwzR/QMZD8ivUrG22q62tLbb5Z2VM0fzLLEpkiknvQGgrt/57/4s/j//Z/+F38FVIv/M7v4Pf+73f+z1m/mpU6OeciOh3/9z2N7/57/1X/5e/6Kr83NO/+0/+j/jDp+/90nL3ZaXrSqWPLN28aBLNI4BdbgN+JtSAEiAOmgY+AMhedSNyDWoOPVjzXAcAEHBscz+AgAdiZJN/LMecatJTzzQ9UHZ1eKI2+Ep5xr35xYH8ROlIjNeplR8JeG2+ME8kK6kUQybgi9S2czABr+r3L0mvzO9BwGsa26SBgLeUcTR1vgfXVVqAYLZbDCOmI7HDPBLjMbXyE3ELppTrr9LormswBhBMn6U99KseE/BZOroR+ot0aM4kAa9TcwxBwJs0yuSypB1N9as44Cf1gAQV9g5TdtdHMhOpUucHgyETHEYmWekENF7uU/uCLG3L83JPxyYmSfLFdTL5J5qco7Mzk3rFsHNtKbvtRSO1oFnD0DDlwFMudbYY3i1gsrzcp7F1IJIJgcXwmAwGkjqYLo1MwZmjNvHSOi1pPNn3OAUbkEM+blWI5ccSlND8kcwTtbzBGO8/BQyZ2JXhgEG3jNjrUyg/mXeABcx2AlHryKh2bgp2brRirgvvYCJ27z1ikh1cFgNmGI8Bk+VZMPmtPE6fguAmKe2HqNxM7a811QkqAW+S2XZJwNt0dP3lnibXX3IQuF3m5TymY7C146m2xrp6gNBoaRM9m+czeRGt9mOiTTnUMYe2wwu8xbZwDLzEtngsQTtta27rzkJ/Wepv2ZTPxGCybYtDW5vzMutfZ9qi7S/tmVq4Yba2egz9Z7G/zOya7x82RZuQyesXid07zQsv9Je8xIvFfIGXJZvgeYFxjk71l2i7z2OYt62Yb/3FtkXbnyIm67+NNMds/YaIYcl2z/t84OGDedGAA59sa3b8GRf6z6ytmTrHgyCo/M/mbSJ4Yt/nencqb+yaBJNKAIt8+WjHYv30JFNNaaGMf60fnl+ytRbDKUynMMT7WRz26dsX9tiZa7qma/pFpmtQ6SNLf/Xf+NMuv4I44ewEXk1AA1FQEDNBQXVQyj+4AArQTnOz97ApajFs2P8iiopGAU6STMUQt3BEkd6IkQAvKoogCN3mKTXNBZ59iSjgOQTUXP9cxqSngHEQ3tUU9/gn0HlRRGr6Enp9Jmgb0ly8clms8hSGeL0LbS3qgsRUeTH/EIW6FYumS7zEfBTgjCKiOWCqX+5UAwy+LUVMXeBF76V15vfgJb6j2F+G2fvwSSfmjQf9+mjKG16i/sSiDoKNS9Bc1NqXnwulxrYVMcbypwTXT/ESRa2jDXD6Egt1YMwx9aD5yzUp8nKpf7UJHTyGE7YqCkIvCoGbn2b4ifVIjPuydVUxdfKXmnbh2d/I3mG/xGOscx8wRV5i/4ki1/G66rVYDNZ2L7W1+JbioQ1POLr8Oow/l3g5Bl7saVNLKQpCL03wXMXjxBrzPhnzsS3GPtkFTNF2698bjxTa1vkxVYSHyWHIoR6XbbFPUeQ68hLH1GPA1C+Oqd52X/R1bIpBnAUMse29L4+nMCyWN3V87zHVBlVMf1pK72uLNUVfJwd+pp+Zl/NjavQTfhpfx2nTwdgEbnVYTNwwMrdg1lyoO88wzYS6g08KRl3VLM847xfEVhCFuus7YX1mxMAuP9dAm9tujwEOQ7TVAGZi4j+VUPe/+acvlrmma7qmLyddg0ofWXr56xt0gzouYt8ZXAcrDgO4DtAtSyXI4h39ed7dYjZha44gu8GKIctqbR6lTrosVldXaF6fqcLdwAXHJ8wnCTRbKRBds4ip1W3+DhjsnDtxeLyYJaM5QvLOfd7yEp1mrTNCfql+53iKGGL5iMGWZlO+YfD5hj3kyfNmMZzLS3nPRJx0zjGffif2PWs+8hB5IsiktGJYCDhGDDHFOntZ1FbL9ynPwOz9xv4VedEvggTr6J9uazG/hGlpMnPZRiyXX/oz9i/9s/FCnpcT78ZicM+n5ZP/zveX8zzGthXbnrZk5YGA+iV6CSMbTEtJ+ov/qh/rfwjiydHuRQyrsm21YTjPS7QJtb8sYDjV1gKome2OtviGe3eTFTqXj5Pcm7LNVR9ug6i2f9i6eQx+PPKYEH65YMciptkvPqy/tNzp8Se2PYBnvHhMXOu+ZKuXMMwxnccwx7Rk99rfY1u71F+yw/R+vs6S7fZ1eh9eIqLLdqz9yQ7T0pga0zke4u/0XZzDEK/Hd3CqzzsM7roda2HyxkbgzPgTbFRcJbOMYal/ncYU+8vE3iYMSC1IyvKHC7Yx2imUBaTbEgqgt0EdgugnGUzr8Pl1vWTHTL4P+Y5NsI1D8I3h9JD0emfqnJhmGAaTZxSMJtk8gVzgikD146immW1m70D1IW91qkLHkvt1hK/95g2u6Zqu6auRrkGljyz93b/1bRyPbTg9QLQW7LdW/cLNYNFZQqpudwbXE4T0F3q6FJeRZ0CqzgMAVx5AKd8cixWSm8w/0OTyulpKHcS+OEZVLBNwW2DGUCdCm3BV5NQcERUdtcGt9sUQdQCuechWkimUt85SAmFCc2p3JCdyaV7vpb8f4B1Yy4tNKrKb1bNh/Xf5gq/OkJ3sKC995YULL3nGi30H9kswgeqEUx30XOujvKTZ/WLebrdKaBMu65haXkYwRnXw2L9nTTZ/CBjiF0oKPB3KNFzz3QKPnpdptqQf9TdtmbZimJBlOb059tnV2fEi/7aHb1sZfpJo+xdBTylbCkBIfkB3gncYXhom1czw7YgdLw4TG80gUyY+02KIbSVONo6lP2p/ibxE3o/IzgYo62zydsI8ImMkP3loNgGlfbZnMnjWX2Idot2zPGqb0K/unhepn2JYeifyzlpb5HovbxMmQsWkujFq94hFZyybexzQbDEAY4sl/Sjtz/JieWx9y/avyW0nif2pvUczloS2RQFDh9RaEgO36PGSV3XClEDYoKuTkQEdblQzBcAnvMFv5FusWSZ9N0UXR+u8o8nxcii6N3bFhV1t1BdLpohGiJ1j8z+g2bXIi+K2786NqTi14svmvS0eLvBy1Pe80LaW2vZYyk+Gh9mYCjhMR7QgPVjsvb1nh/mYZ213kempPHQB08H0lyWbEHk5qi02z2DAYUrB1xnBkAUn1haeHlNHU0Z5UkzKi21rlkfNZ1rmUduQTdpftK20MdWPqtZ2H5Exmf51aUx1PBbebJ3jmHoMY6rw2HhY4n0+pvr+YjEpL2ojIkblxaZou+P4FHlZUxsz1Qfdoq9BGNU50+eojtNQgiqiZ5dq0ER1BAeWIMvAhFt0WBlh7h6iramvYYDoMFFpUGt0oqNUrm+52LWSv+MON9zV1UFrJmyRap5RNLoKhg4Jt+hrIKkvz1MMG3TYclcDRWuIvqpiEu22hBU3DAMS1rkFkvryHhoGj2mDHltumG64ww0njwkLq7YADAysRuDv/Z+/hWv6ctMvWlT7KtT91U39L7oC1/Tlph/+wTsAzemxR4dbZ0i/8rWvMeIUHMF1dYY6W5ofwUhgF4BhtBUAOkhrXjfl6BN0UbRqF2heAyi5OBI9OlcH6+yrk4iywmpioG3gaM6PCv0ylyW35X5HFgz2q5GMZ+TyKiw8sdyxr4KD6iCQe4+tThkTqxMzX12kyW5H4FIyVcdH3x3qQDsZDNE507djHe9cHHJbZzspIjDIvYPGQ3zvWtMV2v2ApWXvnif7XW7JqbWYtG1ReM8pYLKBRQJjfWI7gv5+Chg613bb/TW18tKOOwCJCo88W63uNGiW6hx5YaDyMoFdC9Gpbuxf/r22t9ic4pav99EPgtz6Z8MUnXujgWGfV+6hExn7TFvetrXYtk5NZvQZOrmO/SsGeVt/aXWy12OqJ0oVu5LAIrZcbAICpgye9ZcUMEceLQZbEw1IbBymps1zqv8gYK7i5pA6q01QTD283RpQtoYRkIvtrryw2Bjtk8r4YxWPNTYAjZeVsUmXeARa2/IlbUCm8EhqI/SK19tov2xf+b/OG+x5wpt0RIeELahudUuUcFMm7Spm/Bv5Vk6ccgsO2PFgeTm1ImQImCKP8b20ZD6OGB5ZLtVnE3s7ZANVkRftBbb9L5W3J3cBzRGM/aW1tTYma9uyGHRSrL+xbbOND76tUMCkdVEbMZSVHjrenLLd1s6Raycewyketb5G2r/xHvq8/c2SDahjJKvdaM9eGlPnPMZ35jGcaoNquylgmI+p7NrWpTF1qW0N4XosH8dU3Tas402MDrS2JRgS2G3RbqWVl+x4ifjSQtuKttv+ZqktJlNn5hZE32JA5ubPbdHX90MQwe8VWnBvhQ4DuAjJUzlBjSQwA5RAE2PPGVOSNt+DcGQ5bEPKD4Ur+ch1C8KUuXz8kQMiJi6rqUC45Q4Tl5VJINygw8RySrPNqy9/iwGTwXhTMCUWDFvusEaSlVDF1q7Qgn0rEAYwdiwfalYlmHbgjDGhvINU+gA1TGwwMWHicjodCDecip9Mpc4yZukYp9gA4MdlTnNN13RNv/h0Xan0kaXbl14j4+Te8JJigMKK7xUvruXRvpbaFJ8Q89GRPdsoKZS3dVh6As23tcSidZ86t/LW4QPOYKKFOmFpMuvrFO83L32el/k7PVGe2x8R07kq8OJljwHknxnLfyjv87R8/8iLajHEZfHLGC7V6RIvsby/OH8Hy7zEUzdP8bJUm0v9a14+1ilkwg1+2nc2e3fR4zd//fBnXCp/vi1e4mVmU+q/c/unUPGI91L7jynapVinS20z8hi6ownmy+8my5PybmbgvNB+l1b6+TqdTxHDJYWMeP/59lX9k2f5uoWE2706tFMD7coqzW909cGZOl8aIz+U95Pv7MSYGifC75M+9D1/6Hj03ryH/nJ+TLUT+/exrefTh/fHE/3rjDE5+d4Kj7ZP2iDT+6bLNuJDeTSVwQf6Ov6nZ55x5k0vXPpw230incF0ufucGY+tjwjUQMj5vN8GFoW4KeSHUN6eyLd0vaeQD3atD8/oQh0kj5PX04X8EqZLGKyGU1uF13y3JQzxeavyn33f25dXoe5ruqavSroGlT6y9Nf+zd9yo3Lc8wzA5ZeEuus+bJQB0n5Oorm4XpyYRCc+lt8GoVR7agRgBAnr5AHOC42iolFgUH7b8h3IYQJdFupewdcxiohGB7XuNWctzy4fMa2VF1vM+zku36EIozqMcJiiwG3UGkkB5CUe0wVe4mSsiiOX68u82Pv7OkVBaC1vHb6IKYpXRpHeWD4GUaeAadBJa3Vg2QWI3keo29Z5Sah7Fc3yjJfJ5YfQFqPTXU/Qqv3Dt8XIiwoPa1oS6qYzvESbEB1EfcY5jJGXMfCQXceAc2CBOQ+Rpz7wwvCBviVMUSMj1vkYeIk24iSPJzDE30UB9Sg2Hm2CrpBUDCLUfQw2wPOyC7x8I69d/iKPoc4RU8Vwwq4t8mJ5JC/UzSTv0WKKqxNjsic26m9s2gRR3tq/TvBy0E1MFvOZMdVunQPmotaEsN1jYUyN4skxf1Kou9bxvO2ufz8xpi5qqLHHFMfUKNQ9BVsc7V601VHEN/JSS1dMkZfuLC9LgtCRl6Ux1aa47SqOydFGnOTx5+rrmPpgLqA+O/wi/Dximm1TOzWmnvB1oi1fXfB1YlurGCLGD/B15rY7CkSf4Kny4PPxvhmMtuxwSaj7sij8klC3TdHHPIb8zGcN7yz6bzHgOOnfT2CIQt3dDMNcqDvyFFNsW+8j1P07f/23Lpa5pmu6pi8nXYNKH1l6/vU1brpGuy6H1UQM3AZBwSEMdnfsnbPbkF8FR2fLyYntrZGcYKAbjBgYODkh1Y7JCQYCXkCQuEzEdfBiwk0ITK2zz6/C9dso9sp+YhAFBe0+cLCIMHpM5DHpfvpS54Qgiggv9Ki6IHXgZWATvgStzKgsS7P9btYYMBwCpiiauEYXhB4RhB6NM8dAx77ODDjhxzoRN3V0mOB5iAGViukMhjiB2+h+fa0j0tn8AN/W4hc4bX+KqdNJK9l7hNOiOGI+z0sUp9wgCg+nwAu5/ArJ8ZKYHCbAOHfl97H/rA0vDC8qGifqS22tv9C2tpYXLPEyx+QxeFFRWuBlZfpXrQPaPWNbnPcXz2PEtEG0c1E4lYKd63x/ARZ4aRh6JHmm4cXaDOHF9/k5LwYDAd2MF5+eWdsMYCDXPXET7NwaXegvcBjn/SXNeBm4C/3nTH+heYAxOi0PpEo2kuIplbH/POIIewKVbuXTfD3FqPJCgRc4XgSTGX/gRXdr/zKYouDtesGO2XwMIK5CqDfaAAq2OgVexAYstC3FpLwYTDeRl3CaVLTFM9sdZpFRaDiOP3EMTSHfL9iEPvDSG17qmIp2j80ZXmpbPGPXumC73TtgND0ZaJ1ojtG8lw6BB3DASDNeoh2L408M1t188JgaefFtL4W21gffhviyr2PHH7X/5zBtgq2OotaRl/UHjqmA932ir5M4+KCAt3PFVtoXtcner97AZkn8blPH6Fdvg61ec/Rl2L21AV5iYKW8lPJ9wNAxYR0wreEHhK21WwTcuCzhNtjym+wx3ASMM0wz/+z8JHXbAy9+ZX2mxDX9vBMDv3D9oz+R/37RL/aXJF2DSh9Z+vt/69tYHxmbMvABMnjdFuM/gHCHHs9yV5xnwjN02HIbZNdIeMFFIJBFKPUTHupA/px7PDOBowEJL7kJAm7R4VNe1QHtGfd4hq5enyBBnrbvvMMLXomwarl2w31d/dOj7PsuA1YCcIced1kmsiuIIOG2YEosddjkJiC4CZjueMCtyW/R4xZdxdSD8JJXtc433ONO3wFJ0MmKIHZIDsOWe9xhqBhuuHeiiIC81y0rLyJwaCd5gxFN1Pd0y4MXQTSiiLcYnNBjB8IdhuoQrtDhOVYVwy0PTpwyCjuu0OEZVrXOt+ixQV8DEurE66QwFQdYxShFzLKT43pL+1qjr3lAMEgd5foNBodpjd6JVQ5IeIG1wdDjRjGSPHODvuYTEp5hVSdYG3ROgHONHit0Lshyg8Fh2KCT4BjLRGmlE2nDy5alzrTAyxY9NsaZ6kqdlJcNejwLvGzQBDnFmRscL5JvbWuj/Ut+gi18/7kxvIhmQlcnGwRghb4GMKjU6cZg2qJvjnpprzaQJG1rXQMSt9xj63jpcIPBtbUXWFdepHxrW+vQ1gjSvvXo5zW6gkMxJocJAUNieQcaLKZiI9aBl1vTX9a1bSqmobRFqrw8w6pObNcYcGfa2i0L73blphVK1XeogddNwWQxrNFV3qTOg8NkeekY+DWs8AIkb4WBLQjf4A59ud+nlPAitcnIqzS6/tMh4bnjRTDbtmd5SuUdbCqGvvSXZPpL6z8obVMxdCw6JusS6qUSCGgaQIyRGG/oWAWXD8hu2juUtlV5IcIXdKgrnHY04R4jjmV1wwjRu+pqfyFnq7V/aVvbBkyRl1SCE5vStjrlhcnY8tRsc+mD1gbc8OAC5h2SYCo4h1K+D/1F+9MQeOmR8ByriuGm9KfBXF8bTGozlJdeeTFtb1X6m8WkthulbW7NWrc1Oocpgdz4I2Nuswkb7hovxu4NhpcbY9e2xWbZoL3w0NeAjggF92WS3XiBweCFhYV7zd9gcEGXrtjSZN77czQ/4bbwaPvTDfr6VvowpgqGNv50JQCjvKTyPD0BcYU040XHVDJt85n2h7NjqtYpBV6KrQbV+21MW0tIzc5By3sB6GrHSrLjj4peb8yYukVf/Ttt79sw/tzC+qRzXqKvY9vWTegvbYyVfI+Eu2Cbb9nbhBv1XQrGG7ZjasINOmyLz7lmwnNKuAVMf0h4ph8nGdgWv7n6pOjwknt0BdMz7vAJ92K7CXhBCS/Q9NFuADwHyjEE8g5eciftu/hCL7iTQBKaX7+tPmrCHXeSZ+AGhDsQbordWgN4lgh3Ju60LRjIYHieu4rhBl3ws3t8YjA954RP0DVMKeFlWhb/3RJwm4F/8B98a+HqNV3TNf0i0lWo+yNLn/2zB/mCAMIGjEdmjEQ1gKFiei2gIdZ+jYQVGAdmHEmCMGsecEDTsvg6Jxw5VwfpORJGVkHIhJdMGFm+KRMRvsZrHDljg1QmHyIg+DnJpOCWh7IkPYOI8JxXItrLopMhk2Wuy7e33GMNrkKOikFXZ28ggScV7FTn7AgRRdwUp+DI8nxZTdREEoEikshygkpPElgajUjiMx4wcW6iiRARRT2p5gWv65YUdYq3YAws+Q2LY77njDFxud4boUiZwDzxhCPlKgR55IwjsRFFlGdofmIv9DhyxoG4OlsTN6HTF1hj5Cxfv8szJ7bv1Qs73kF4GQovm1LfiXMJ1Ih4peIWR7yvX9StkCNghB1ZBDY3xbEeWX7fl/c2GV5uMGDkjAkQXrDGyCIem7Q8Z3QGUy68gIBnWJXrVN9zLve3dTzwhEyoGLJp/zqh0m1FPYpYpeFlCrxkbhi2IEycsSeujrzypgEKK8ipvOwxIRHhtmBgtAlXhoiVax21reikbW36j2JqGETQeCzlV+gxoAkZKy8Tsyuv91OelMcByksu0+EiCmow3hSeVETUtsUlXpSDA09gQu0vqLxI29N3onU8spw4VDGUlSu2vyiGLvCi/UVXxGi+tTXh5QkjElFtW1T6313Jr0tr26BDBmPPEzLJO9AtUopZVwjpCsUBIubKhNr2Ii+5YujQIWHNgqUD8CmAAwCAsAbh15iwZ8YqAUTAywSMQA3QaP8Rod9mIxSDCtgCbfVELm2NCbjDCjdo4q6RF33vc168TdD7ywoPEfY9Qg53+AIH9CBwCTjolDXV/iBtbQ85WfMVHdAzQU8PfcCExJNpW56XW6ywhRW0HUoghpwN2PGEkVpAWtuW5nVAkrYop1tmWha0fYEVxpyhQe5NwZDBILXFyHVr2XOsSn/xvORid5QX6dPSNm/A6LitzBFefP85FB41AKFcN7vmbcDIGZPD1MbU29B/FNMBGZ1pW2rn7tDG1MoLM3aYANNfWtsbsAajd7wUMWRqQUCts7Y19ROUFx1TKyZj19QWa2Bliw6ZUTHcgFx/eB7smGJugs8D9HRIO6b2oW3lwMux8GjHVDeGnhhTtS2OHHhxYyqVcZ/REdXxSO3cTWl7mte2doDY4mdYYUIbU1UAuguY9qXPz8dUqSMFTHvOxvexY2qPAR0mbkHlbcnvSdpb9HXUFscxVfuPtjWuvPRlZaM8Uz68NTt2U9qWilzrB50qeo0OG0514rUlwoYZu2KPN8VOH8AgEtv89eJnp2L7v8YDjrmJWn/CPUZmrEBIRHgJFJ9UDhF5UfKPZVR8WcrrGPuc+3oKIYHwnHvcgqt/dssdtkjoqh0FtmiBpJsEbBl4YmBfAkkbEPZgTOUdrnOqmFYgfMoDjqX/dIqJRQSeQPgEHUYG1gR0BHzSyWESR/3IRUAqFXj1R/e4pmu6pq9Guq5U+sjSzadtA0SC19SQQSuF6345q9Vi8EuruU4OrPjeUIbvlm/CqQBm+SVBwXTm+iVBwYiRFjGlgKmDCj3q9SgoSOH37Qnz5eFzDGlWx0TnMcStO3GbWLy+lLeY7NaDhqk9U49j9hjOYbosXmm3pQgmz8vJvAlySJYdJi1vt6G9Dy9phimdxSAT1YghhesRQ+TBY+gCL90ZXuL9pM4U+s8cA+HD+kusczfDsIyxYVjg0WCKPFkx5Yahpdg2lzGlk/mlOs0xdSEfMaW6rWGp7X0oLxHz+/ByGcN5XnK5rvm4fXYDOTcJkMDSQGX7w4k6L/Fy2QZEDOfzp/qXYnA9mkQ3yvJCs/t7GzASI5v9F5ng8ksY+tDWoijvpf4z582PP5HHIYypcXvfMi8tXeKle4/+8z7ji0DgRUyKgTXQSWmGydY5Yvhp+ku0xZfa1qn+c4qXaAOW+ud8TG3JXz3FSxx/TtuAn3ZMjX7BKbsWfR+p43kb8D5j6qXxJ/avmWj1zC/wmM6NqVrH6OtEDadzPupyWzzPi+OVyG1Ldra5BuGD/0fzd8Lmnj2R05rsyT9TPpa01IU6xvyin8AWgwR6FjHYvBlDV6GtSd5ianMHwQBsE7BJLaAEANtPrtvfrumavirpGlT6yNJf+bf+NMS269dSuD3Okm3/MMELAiZQEOHVG7R/iIKBQa521ujGUP4miFpXJ4S1TufFK5MOXiUtnUhns4S5MKp+tVkqL5jI5aNoYhQhjUKP9Wr5SzuGWv7sQWA+fSrLkkgvBUwuEeqXVr0eMcQURUjjPTXXTpfKLp9ARauSa3kvnjznZZEnw0s2GPSyTbGtReHHeH87SbX303wOvOh7P8VLxKTbjGIdKgbyQqlLvMQ6z8VhfYq8jAu82Lzy0nj07a72r1ArWyBi8PWZtcZZnz/Fi6bIQ/yzW+DRYmJc5iUHTBkLvJw2CTOx1yhqHTFOMwxpVs5iiEKpSxhsnuExjMR4jbFhorktPob7/RqH00LZY4q22NZbMHle4slMc17o5L0ALIvC43yKbe1S/4o2oF/gxeZVfNza7nMYMnxbozbgtLxNNLdjEfO8fy3b7lM2IPav+PfY1iJvWt7yEoWGmeEmuvH3szE1vMP4DnrM+7zNqx37aXmZ+zqXeYnjT0zz03R922qf6NiVP2UThJfzY6qvsm9rYuc8tktjavR18gkRedvnfX7u6+DsmDoXtY6HX3zomBpT7C9zofv6oFIH78/Vv5d8HEPHgOkA7yP6sNYCT5jzGttS9Ltj/xnCe488xefEMTRimMIzZCVT6D8REzBrezaNIX843ZRrs//LV6HuLzl9BfSP/gT+m4+i1/TTpGtQ6SNLmxcDxh5mwAV21E66YDCerKknYB8GnVd0cIPLa9nc1fI0zpwh++ct+YnwmoDBqPNtkOq+b7BogWycyDWw0etQPZTUnD8uYuIm3QWh7rsgGPgseyHHKJp4E0QRb7jpK6HUrzP5FVLVKQEDK4bDlNhgYBRdkIMbhl+bPIPxBXYOw0iNJwLhQBO84+Lzx5AfTZ4h29uyy7PL62lSNq/b7BjsTjKzgSaLyZ6qwsTOeSPQLB8xRQzHgOEww+DzNkgq+baUXfMekz9tCgCONDlextBfrHNHIBzJnyQz58Wf6hV5OQYM9uQYiyHypBgympOt9z1y5MXk6byTTSDsz7SlJUxHOo9p+kBM+t4tJnsKmLbfmg9tDQAOM14iD6cxCMZLmOYYo0C0Bn3kPoyRJ4dpPMOLft21eSeGTKiaHpo8Aj3BB6VO8wnln8JKbG8p8AkP7RAEBp6jwwsV3mbMbUJ5T5YHxwvmvOzD6Wzx+lNA8QQv1L0vzOn9D0VtyT7P8jAiu8Cr3Xoo+Vz1lrTtOUzA3EaE06McBjrf5/X3p9qi9unY1iZ8WP9RDAxZrXUM/WfOy2nbDcyDQqrzY/N2DN3EAzzCmDrAHzhggwuL4w8Yo8HE4UMKABxM29J3UBPN21rk4Zzt1vfu85fsXJ6NP7atxdMO9Zk2H3mxY6yMqQFDELa/1NaWxptLmOa8WEwL/YVi2zvNi46pvs9/2Jh6ydeJ+XgwBLEXiQeX4JjpAlYfE0DV09T0ZOpHRLPxZz/D6Hk5hDoe0E7iY2aMAKbyc2ax9dofWluzdo6dHyBtydpqYG/qzwB2pn8TATvb4THnZQmTxbCPmNhjsIkIIsXxyYBruqZr+mqka1DpI0t/929+G4/HjH0Z7B/B2IGroz6CsaOMB+OYTwQ8FeN/RMYXacQPaV8nUa/SET9MT3VQfKSMH6YD9mWAss4ugfCMCL9OVE+/+LQDfrVnbIuHSZA91ioYeMM9Ps2DnCQBEfd7wV09SWINwnPucFeEuFeQfeEvilD3GgnP0eNFEQzsGHiGHi+LE0sM3KLDp9mLjX9NxcUZeIau5AGQCHF/I69qoOgZ9/g6D/X0jGec8DXumwgiy/235QSQO+7wae5xW/JPGPHjtMcXJK7DKzrgs7TDZ7TDBNFn+YL2+DE9FqdNdEQOlbeMHU3Yme/mR2TszIQKJIO85neY8ISxOrVSvuWJZNDXgMQBE3aY6gTsgIwnjM4BPJoJ2hGifaAO3hEZB2TszSRwKk6wOqNHyhXDBMaepI6KKRNq4Ki2V0y1jjua8FROdyIQMrHDlJGxx1Tze5rwaDDodXVi2WDSCeoB7b3rxMY65oIpV14OBpP+m5v4EurElwvXO8fLVE+sarw0DDsI7/a9W56ovDPN7zHhQFOts+KxvIywvDBG09Ym8AzTnJfsMO0g77lOoAIv2vbGGS9SZ+Gx8TKV+ilvO4zYY6pOrNbhiDbNmwKmIzUetP3Z/sFlMmMx2P40lfavGBKEx9oWMWGHY8V0RHZtLRWudPK/w4Q9NUzaX7TOBPmyqzUmiM6ICthWseQipCrB9q4eMJAYeIm+vg9m+WJ+hK5WkC1vNnWc8M18h0+4Bwj4Bq/xL43P8EkeAAJ+izf4b/AtfpWH0m58/9ljxA5TxaABGLUJikevHxf6i+WNIcLcD3WayHikEW/pUH+xx4QHHOp7n8B4NDw80BFvjVD3HhPeYV8n41qPykuxq3pd62t5GcGmP0n/0v6UQ1tTW9zegeg87bj1l0Ow3Wxst9pi29b2ELtXJ+ulfLPVk+s/e5oqL2rnbFvT4IbnpY0v0XYTVIuoBYE26PDcHOBxix4veGXEkQe84HbAwBodXnITsr/hAc9Nnst4NBpebFtrba+NR7atiX2QtlV5CeNRJq42ZNLf8OkxVeuUDQ97YxMOYUyFsd1LtlrL28DQ0WBQPI4XgwmQD1S27Y3UPrZoW7Nj6lRsq+1vtq3taHT9J5frzZZ7TDvyfoHaVe8nsOMljqnneBmRsadmq/U9PMGPqT+Lr9MV7tR3FfHwVLd8dRD9Iz1MZoAc0KEHp6yRsAZV0fc1SLSGim0mBiYQHjgjF92qJ+LqZ2cwnsB4KHXQgMu96fNiBycTKALuIfpJRIQRwCOKDhEBD8S4L+1FeGI8mvwBkt+VtzpBPijbYNYBEjjS/JGBxywrlg7MeCLgoWCYwHikOYbHgoHBOBDjgRqGCcA92GF6yA2DJmZgn4HHEfhP/v1v4Zqu6Zq+Gukq1P2Rpc/++L6uPtozqlCx5Kf6oWVPjD2P2CLhFh0mAh65fEEi4IkyvsM7rIpTsUPGd9Mj1pCTOw5gfD8dsIIIA9avHSwCg10JLB1YgkkdAb8yMI4M/OQIHCFifpMZYD7hAc9Z1X5KIAkJU8k/Q4dbTvXryx3LaWnqWNxATrLQlSQqmqhfY/REuCOaKOLXmXCECgoCX+ceI+vKj4Rv5DWOyCKSWIJhVTQRhE+5LxMOiUYJBgaVZ77kHs+Y8a00Agn4vDvgFYt7BQJe0R6veV9XJLzBAW9xkJNKkDARY+KpOj8jMUY+SmmSr7tPPEIFuZmAPcv6BNUO2WFEKs4iSBww4gk3GGpAgrhtI9lD2smxtB0tv0GPnkT4/MhtWbysBEDFdEDGoYiWrtBVDJomkjrb/AMf0UP0rjKZtlow7ngsk255xiNGJJaVG0RU65hKXjCVCYrBoJoRErCQrS/JYDrSVCeExyrsrRhFtHSomNpqAcWkUXwJFB4hpwUNyIUXAkP8UDa8wGG6RT/HAJnAa+BBJy962lxP0o6P3FYYHIpDmQMva3RYkQjZTmyCZeDqDtq21qMIz1ZeuC5tj5geWTCtIYrQ+t7Z1PnAk2lbo5xCiYREMpk+MiqPysOh8HIovx8guhYjZPVCB0KiVDH5/jJWHjWAqydDMcmqLjYYLI8wPN2VDQaH0j90irPHKF+RC0bFfFtUv6RfWV7aZN+2tQ06dJUXLmLwyQkJA01oWEWxVdA2sd9WyObPozxq9pWJIZOnv5Lv8IAJexaNk78wPcNumvAJEXoi/GW+wZ9Dxt+jt3hVApAHBo6UK697nrBGQkci3DxqfcrKBRHaL5NtyvXQBxV/nzBVvZKRGO/4CALqipQ3Rahb2+o9H6CnZWWi2n/0YIZ3dETisb6JexzqKYBdfZ9c26K2TX2DxzJR3qBDh762NRt8kok4XFtbIaEvbevArf/l0vasXXsq/WVbymuf1jFN29pU2udT6S9b9LW/yAQ21/5xZMwwrQov2ta0DprX/qK8DCBj56Yy6VYNnfZxqB2G0Q6K+IRXGDPXbYVy2IV8KEE9/KIJQD9nEVN+Q0dMJGOpFRpWTPqetf9s0CFRV9vaAd52a1tXnvTUsUxcA3ygZquXeLmtY2pu40/lpd3DjpGp2m4Y2602gx0va3ToTX/R+ymGmB+QRJC7tDXFqLZZ7ewEGVM7iB5PpoYpkUzmdYzVcfvJjqkoGCCHX5DDNJ0YU2W8WaErNkB4VB/0FC9ySmzjRduijqkUMPWOl5/O11HdJrXJTWC9qwETAFUEnmFtbRO+X4OwAtdglB54M1aMhHcQvxgEjATcc65j6AjGO56Qip2bALzjCR1kZRQRlQMGgNviGT8ASMzQYw2eICuKDtU3YhA3u/YExk6lFoovv+d2f5kbcMGScIAEl1bgcmCEBH0mtRkEHFlsp2DiWmcUDA81r4Ekya+RkEG4ByMx4xnEU37MMjZ1JAElu5b1iz9+wDVd0zV9NdI1qPSRpWdfN6J2FLY70FxX5Mg+X103GUWxR9gqxxnrEjARh4+R2ezLL4OK5lek3yMkDQQMCTiW27Z93y1vN7Lpvm02+QFtr/aSOOxcQFAmVUATsNWJc8sLcgr3B1RsvKUeXgC6hwQGNGwyF/EVkVxNmfxyb3Vak81jki1/KBXTN1AqanUMiOQUl4qJyPOOuU4CU3F09P2TLx9/z9SWXmudZmVC25pm5X0+B0wSrGuYYtudYSIGc3vTMwwL+WxO9GHIe6zMhPII5YF5/5mXl/vpqj27XYKIXLua3a9i8rzYxxRXbobpZJ0wtwFzXt6vvPKSw/WsPyJUXtlMAt+Hl4i55RYwlfds7UQGBx7nbbEv/X62ulI/kToMKEGbdv8M33Y+iJeFdImX7LJiF7XeunKqYih5a9eWnpfh35u1rbfonB2TYEpLGyQ85x6vdIvRQp+WE7MMBnCzngvjkfDSkrxj29a4/ajYCD2lCNS2+1WeqkgO17zjsQSD/Tto74rLpMba99hHY4r9YbzQHyMme/qU1sGmU7Y4mfKx7cV85GVuW+c8DiEvdYmad35MpfK/gaiKdgMogcOmErMkCN3ZfhntXqHU/tsEX0eXjC225XGqPIwdgwS/HC+X7CTeb0y17/mi7X4PXmLbq+UZpn/Z8aedjKaYrA2YjantVgZT+0UcU4HWh09husyLx6BX1SaMPwdfJ9pm+5uEtq1cquSt6fvke7BZt2V4Cv7bLF/ewQQ0eQWUAwbMmKcrTy1PM8wX8jom1meGm0wA7Maz+VzCY2i6oQAVDMn0nwlwfkEObSFjrhMFAHdfvwp1f6mJAc4LBvK/7On8MH5N75mu298+svTX/vpvg1JzLoYFb8g6KiPYDeqDLvGtY00wLjTXJdiF/GMYsMfw/BuKwsK+XlPI69/bhCleWxKXbPkWliL3m+gc2xQ7Trz/FPI62Ot9OOQ/zYPL29PZlupgdQykPgvCqNbBJ69jII7N0rqElk5pZjRefL5tGVu+HsXFbUBlKRHghFLF8chneYm6HpGHyFMUe7X7+SXvMelJMpZHW4ccMFWxVwMqTrwmkxde4oDt63wIvJzi8RQvURBaRXjrCiR4bYcFv99ViQMv0SbodgKbIi9zHn2aEHnx+T7wEttW5OmUILTnJfYXmpW3KfaX4QIvqumk+VXgBYAT6486IRFj5CkHXiaSrQkVE6FOKDXtwzuJ91zFtqjzu/Lnn+K1wxBFrtsmNm+7NUUbccp2W150tZNWOFqUqA82vCePlRc+L9QdeRmWbLcTU24rGIHlE7EUi/45F972KQrbR3H+potibDF+el6iqLVuA7Z1j7b60hgZMUQe14GH2LbimDoGa7zIS8AQx1QfDChPoYYx8hLtXOQplo9j5KUxtQUJTHnHy3xMXRyPTNu6JNQd7d6lMXUIvERbHQ/0+Gl8HYcBP39f5xDquMd530b/bn1U70cvBLPM36v4uPGrlzDaFHmYCXXPeDlvA+JzcsAUD4qIh/h0iqFiohmmAGnBVkdf57R/qHX55r/92yfLXNM1XdOXm65BpY8srW97iESBDrhe8BkIhp3mg0l0XKKwYxSrtC43A/gRxioGzmD8iDPecMlz0XSisQxCssz9CV7I0QkKQnShrGP0Nghy/pisxCDw47R3GN4G8cpdwBQFBHVfuObfYXKOx1tMeESbNIr+UBMRPSDjHbWTmOSkNPa8uNVKfNaZU60DP+ifnoSy+Z/n6XReJ+aKQZeBa17+zU8kbMAEmDvVEZOdbBFoFuBYbluX2t4cg30HOknV63bSajFbDG3VwGVezmHQ8rZ/zHmKdYYrH3m0GCzPcYJ3CpPex2PyvJxrWw3TaV6m0L/in8qL5nUSq5j0309ioMuBqygGm0OZiGnetnydl9penFC5/sNzTJ4XnvWfSxPzKLobMRzRAkDMMhFxGNhfz6F83cZaMcvXYyK53mPOy8TWVs/b3nxi4Ve/5tDWOGBaErG+ZNcsL7F/6XVv17zo++Ty81OMsoskBxtB5/uLYJpcnZZtwGlM+g6WMOjvIy8y4SN3z5O8wNtq4cljUH1ATT+kRxfs+lF6dDpWr8nrWp3602LyPASeKqaWrB07ZbvZ5WNwYN6WPsQGXBp/7JiqGJaCcx8yps79gtj2Yv+5ZLt9nhEx51lbi7xYP2HJ1zm3Yjeu8L2EUet0ySYs5RWDaAxmx9Pe+KSS936B+5hKyyLWFlMUsX4yPimDvZZXeZ7Ps7PNR0Rb7QXTVTexYSjbAQOGU5gY7MXGIZqWFsNu5ld/KKblExD1eYfEGO4unbl4Tdd0TV9WugaVPrL0d/7Gt3Acm2OwQxF9LsNoBjuhYdXhUGfqiIxHmup+fh2sVNCWWFYl6OkZsvS9K181xIG4pwn/CDt8UQbVH+KI/4R3+AFLOOv7GPHdtMNrkk1pDzThVRpxXwaoCTJAq4DgoeB4LAPUEzLu04TXJFOsHTK+6OSeIgApYuPfSbsqxviOJnxGRyMqLSKIVUsCIjio+k73KePzdKyOxLtuxPe6He5LMOtNGvFH3RNeFQyvacRP0gHvyvX7NOKH6YBXJE/8PO2RqTkze0yYyskv1TEjK9JLgHGuJmSMxHVJvr6neiIVywoV/YJGUCHKllfHSXmTbXvN2RrhT08bi5Oik4u+qGnob8bybsf6TrPD1PSF2lPY5DNEZLRqR7C0Hx+QaA4kQUStLYaE9qWzrthAc/T3yE6Ul6h9hZc6tkkWFyfMYkBp11Y82Qb4xsLLqLo80NNv2nvtkByiQ2lnWucJ/qSwobxndbGOgRftj5EXff6xTK1aHdlh0u2ZdtKTzXufCi/jCV7s5EhRiUaV5YUcJsXTynsMCX4lAZnyS/3lFC9afiwYojC3nUTayYs+w2KQ4EDrPz2lyoNMEhqPAOo70fxAqfKgbdHyMi3wwqZO+g70eoZoctT2z7ZtSf6m6NtkBkAirPqENpEdICtHNVA0chHyLvknyngqfQaQ7Q/2lKFv037Gyxj6vO3jmmJbrKt/WJiw5cncX59hhYUjLwmBl9rnG++2//SRF2riudqitU8yuPYvzatm02TLG0zEKHVqfUVta+ujXizZrqgUO5ehp3K1fMPU1z7V2p7tP8fAi65asBgtT5EX7U8a/KLiJ1jb/YYO+D49VIHln6Qd/qB7jQccQSD8OD3h9/tXeFtOOf087fCt9A735TqCTdhT9nlMdfyxfV4xqPpiLvc5VF5Oj6nJ2OIMEVhXW619UscjYnK2VT8gWF7GBV5gMIg9mI+pvs97myB25DQvgLfF9ve5tE87pmo9FEPMW+09AsmpW/C22Lat9xlTbZ2WbDdTrJP3dY6U6/hj+6TajOjr7Ge8nPd1VtR4VZAPkEMHAOCJJjzQVA+4OUIOStFAUIbokj5SG1+ORRhb+AMOhOqzjmA8plx9zgzGE2W8QzuAY0cZ99QOszgS457kMAuCaJveF5yK8QFNiPueJtxT+/j5ROJT7wqGPSY8GkwiHj7hkZoAusXEEP0kFeY+IOOJGoapYLCHKjxRxluD6QDGPRqmiURfSTERAQ9QTdKWGOWAocz4j69C3dd0TV+ZdNVU+sjS598WUbtc/lOxSxV/VS9DhB3ZaP3IaRJ1NQ7pkmGuWw5U4POmNCsdWNyeaKBMtIB/ij3WIDxhwgjgP+MD1jrxI+CH3R4/4YMseyfCW5rwjifcsQjPqoAglzqo2LiuvHpIEx6MsOrbNOItjViXf7lPE/6QHrEtzueBMn7MB6yKWOsE4L6IJOre/AdkJG6Cmq+6ER03h/UH3QG9EYP9TrfHD1j+jQn4go54zUfRHiDgs+6IL/iIpyI9qG6NDrr6DgnitMs+cy6SwOr4m/3q4Ss4Q3gShEO5J8RtKS9mAgBuUzydMK4Lc21SnNteeW5fkFTQ1i57VydPy+sJJxZT2+4zr7OWsW0tAVhVDN7JmIorp9/RxCkRMXbFkNECJjYAYzGIYC1VjPEbWA4YRDwyVYx2a43lUU9HUx5FANrov6B9WVdeRoigpn22DY7pFfuewX6CIpg6Vz6H8rGtzbehRF4apoxcNME6w0Orc51Yk+dlKDaiYWrL4+17VgybOkFsExlbXnlUDAMIibrKSw/PZcVQnOkOwKqIIU8MqJC+lC0ToIChR6oBDHALaOgzlZcRbfJmsVH5v9qfaLl/RV60z7f1TGpT1XaLBlvTjpP2bNvaKFWudmhX2tpLncCxvAftT2N50LHUeQ/GgRsvU6nTA9ppYharYliHPp/ASObfRsPLofTXvtRc7CCjN26LvmNGEzveoHe8rGpd/NYzfZYK0up7tzwKD61ONdUxE+hMHSYOttj0R8U0mDG1BrPUFnPpbxYTtzFVqlR6WG1bbPqL2u6FPh/4sLzYbVt2Mq08RV56UMGhvLQXo0FtkJzQ9h2+b2LQmPBP+9fYcBIRdwD/pH+FDXcSmCTgO909Bk747fysBtAtttjn1UaIGH/jMeq9TAGTpjimql2xPFrhYR1TCcAthnpPDSZ4XnzdN2FE0fLRdkde3Bh8hpcB7aODxejGVIMhAbU/TQWFbhXTfPuwJpjX6JxdWxWr0sZ97V/nx9RTvk6CBIWsLW4Ymn+i44+OqXqPaLutr6O8XPJ11AYwlHYGSHzVKhZOElzalQNAxC7KR0sR45dDYA6YsGE5Pe5IcliGYlJh7nqoSWK8s+LjJHk9eEU+gIpg+gqEDMIDTUg84ZZ7gKj6qCqErULcB7J1liAtCHikEU/6Qsr1p3LYBYGwg5wIt4UcrKKYVqWtqTB35b3UWfuLHqqQDKa35XAMPYjkHoJhUw5VEAwZz9GBiYq4eLG1KONR4VTnNNd0Tdf0i0/XoNJHlp7/ysblKWQ45OOEqE44GW7Qtb+327gA1AmNvUf7quUFC/d1UJekp73U/eAkQqfnxSgXMJj8PuSfOGOLDgwup5gwtmUyr5ONKigIcWYS2nMnPweXFUMhz2h72MUZ8k7t5G9xXl+iOMHhn1pB+9OSt9shpDz5sgHD7Jn6G/1Xmv8k40SdTtw/lo8pYoqrSOblXQ2LS7v46JPViu85ailfKh95OcljqZgTUA99C2gBJpsyfODHtsX3ec+RF//W3ocXX8+60ge8yIstq3/9UF6iDYk1nGuc+ZtFHiMvWp7Lccx1yxe4tqs5Bq/jYcVeQR/IC4U2rbOKM7ycZYlaIEjraQN+p9pafM++Bigr/1r5KTC5Ckws8XgOw6mAZiyvPCX7j3SKF1+P2N4dgtiHIy8xEbx4bLSLZ3if9ZcTtpsx7/MOwXv1eXLvMv4kBuljusRj7T9oKxEtLwdMDt8ubLnfkZ4SJgWO5QRBq0uWAm+Xx8iI4RKP58fUaLtnbQ3vw8u8fy1nWvlZRc/wOC8//zWAs2PqOUwz233Stvr+ZW/23mPk2ftjxgtL3GfGC4FAbMbS9/B1nN0JNoSD/6Z5e+CAO2CAgh9NSz7rwph6qjzko691DmZC3cUO2cNdHL6FfHzvUah7NAF6vW79cBtadnVWXye804mNKHyp8zmhbtYxLaQ4p7mmP/nES47pNV0TrtvfPrr0r/z13wLpHgSUo1LnI2pNS0LdsnJI8nXCZQbsuVC3D5ls2De7uYQiuz+jsON+Uci71bGHHyGTv+x+q3W2OgaC4bzuRxSvPCXQeQqDc+5QvpRxyy+Jitq83UYjGAkpCKhHQc5LQsIpDBT7wFvFyMv5ehKgvc4L+ZKiVldMM/FxaltYago/j4KcUW8iOrS6ikfvMwUMY8iv0DlMHOoQV+p0yotNAVMUFY0T84jxEHipmEu5+rzKy+TysXzkRbe+aopOPwGOlyWh7jiJj20t8hInDkOoYxTwzI4AYAi8TGAnjhx56QMvDGkbZER4I6bIS6zzvH+FdW7s/zwEXiLmare43X9pFZgmApwtz+TFkzMBTwFTPDfnMbznFPKb0BaeAqjfzJuAyfevqC8W+0+vdksxYB4gsTxVXky1pkDMFHiJPGb2bekYeIk2ov7dlPdty9tuCr/V1X7Kw5Lt7uzxZnSmz2s+jKmHYLdiH+5CW/PbDeGuSfnIix9/MnlMXeClBprc7U/06ZLe0sHlVaj7FC/RJlRejK/zIWNqh+R4WBpT46EJl8bUOY/eVkfbHNtinMp96OEXaaFtOd8Hc7sW+8vIHvMU3nvkJY6htbec8HUujakzDGgBJcU0F+f3tjj6vNHXiWNms3Lqc5LLc/m73dZo62xXki6lLvg6M78a8/4Sx8Q4/sRA1Ip9neOBHfE5GnDU/DFg+mmEul2ieZ+fC3WfDpNqXf6Vf+e3T5a5pmu6pi83XYNKH1kaVp1sWSj2PYFww23AJSbcsR+A1+Ezxg13boK05d7lXaCKZTmczat2kGS9zojdOlUnQyHPQNU20jQbYGfi4z4fJ2g2L/vJfd6e5sGQrYLZlY9CqVHE2mOIE4cEqttpNL+1jhC3LQ2aVtycMULZgmRewwael8GUF546x8sayQUk+sBjDZBQuc4kdWjzcJncGCdisBMLJtwsYUArHzFuA4Y4mXITBZbtBbbOQ5s+ARBHymIcQPJe9L0zzTBEnjZl+X97j+cneDcWAwqPFlPgZY0+YKAZD/568rzgMgaLmTi0tYBBJu6dy99gcJhi24o8LfEyb1seU28wyTao1t+JqV0H2ha8igmuzrWOBsNt4CVOOiMvmxkv0c55XlY6Ka0Y0XjgMtE2TvcSL+sQMIltaxNs9y0HTAHDTde2XgCMZ7raR+/XsQkkMTapbTkAGLeg9rUaYtsHM3PoLUaU4AJ7DKtg1+xEXNqWWUBNCzzaiTSLjYjv3betFOxc53jpbfBggZduxgtmgawh8GLtGJXt1LXOFNoWTLD6BKbYFqNNmLc1b6tlm1OrcOSFFINpe6vAS9y6FXmJdbQaNTom+jF2Pmba68Rzu5dc28JZ2y118sGHdWh7EVMffJ04hm5mtpsCL92MFzvepMBbDJAkRugv3s7F4DZFPwHAimN/mdtiP96c719rdGHM9JhmfsHimEqhv/jxKPo6i7bb+Drb2Zga+sdsTP0wX8fZAIbz50oRF7DX9mx90hjkWQoCOR+UfPuf+6Tn+8+E2N8w86vtR7mM7ALB6vfaj6sZcPmobRRXOI503q+2AfgljPEAD3tqXgx+EUQOoltfhbqv6Zq+KukaVPrI0u/+zW9jmICNcdhu0OEud0jFWb1Fjxe5R8eyX/4GHbZlkJW95IQ77qsTu0GH5zyI4wDglgfcoK/O0jPusQGhK897LOKXdq++im4CTWi4ibs2sWIGF1HFttJFNZq0/B4ijqxCjCrKeyhDlv6bO2mCrMAt1W1wcl2mYUe0QXlHuYp8A/LbfamzYjoYTKoLZDH16lCyYBmQnDO0Rocty+RiQMIGvcuv0WFdnCF5Lwk36JEKt2sk3KHxdIMeW3TVWUolOKA8DejwDEOdIN3wgI35vU4slOceHe4wyMSWhfeVwZAgQaJ1ud6BsMWA24JhjQ4r9FizOHwEcSa3ZvqzQlcxEGSytZZpYnU+LYYOhGdY1cnFFj22GOodV+gchoSEZxhqHTfosUFXMayRSoCj8bJBh22ps/DQMAwQ3YEVNyd1QMIdhsrLBn3jCaL7tCr9i0naxq3BtEaPW7T+dcM91nYSWSbiGnAYyjtblzrfcN+CNKZtrRwvPW4KLxt0WJV30DB0EuySpoN1aSsdS703yktpWwMStmVDC2B5EUxb7nFjMAkvra0lEO4w1KDjFj026OsEaWXqqJhuDAbpG53jZQiYVgVDYpkUrdHX/tTaZ+lfxAXDUDEIj40n6S+d4+XW9Cdpq73pX71obxReuPKS6uRti762tQ16h3ldbUJXhJLlPT0vtrljseVbJNHYIOBrlPCiY/QlELQF4VfRVix92gPP1xlDIXKdGC8Hxqq8tJ4Iv4qE28LrJz3wfGBsEgNg/IiOWC/wsjEYpI+kYkO0v7RJ3wY97lh46Sovsi6SysS9Bo5I7vFc2xaALQbHy4Y7NzGm0raUh3WxOdp/toWXrvLC0icqL9JWtW1tIeVXoW1tKi9iB29Ln++Z6nvQ8hoUTbU/eEw3tX9Rsd3J9Z8BHZ5jVfuLtsVmq5PrP12xGWq7t6Ft9SBn16jwcss9UpmEax8jSCDRYpqKfpL9+HLAslhynayTjOFa/mtYu6DMBDheNDCstnuFVHhqmIaF/qW8dAWjjqmKSQN2OqbeFhuhbcWPqUPgxYyppb5+TO1dUDOVPj6YtmXH1JvAi6wAa+9deVG7tyo8b0pex9S1WSc2BL9gW8YjXfW0Qi+2u2DS/qUYdPzS/rLhOKaKnVQM62CrpZ10Z30dy9OSrxPH1DU63Jj+s13wde7M+KO23/Jix5/bMmZqnsn7pEdMVRxfAzj2wBtAAjLH6u8BoHbgTYbIJmh/GJFxoCaIzqW/7LkdFjPBi4uj+KzafzoiJ6AO+NM6d8bvZnA5DKN9QFW/2wZ+JvhDFjI1TCXeVvMjWDSjoGLkkj9w69Pid5uTkwklL8GsROZwGYgdsqfYaarPY8b/99//Y1zTNV3TVyNdNZU+svT6u0+QFSGEFZqA3xYdNpyq8d6gq5NSoKwcAOOpLH0eKKEH1QFtQIcX3GHkXN2XG/RFJJdKQILqYANqQqc2uHREW1o8loFjg3Za1IQiwEkqiDsXhNZVShPpiiIVs9TltDroy5GmCeLoqMBtKvgl0CQCtj2lUicA7ANigMXA5TQuj2lAQipOxciMrQyhGEDoIfUkkvfYI+HAEyYqPCDVb14rdG4y0iOhA+HI4pT0ZcKXDS8DOmTDyxY9Js7YUa5OcC5CpDrhymi8rdGDISLoXIIcq+KYUJk4qwOvq1oGJIzMYGp1bm2rd6t1FEMuG+rVkZ+QC9/yThRTD3L5DuLcTyxOWUfAMwyYuIi3lmCWFepWDAcWsco7SCA01bbaYw0uwSwqPBEOPCETVQxzXjSIkpBAGFlOqhmQ8LzUAQaT6o91BYfy0iHhDquiOyBlbiov+p5lFdwTTwBJYEju38pvIELd2hZ6yOlFwqNMzlVod1sCamQmoh2o8ij5hkExK4a+4FBpIb3nBHFmOwDPCiZtW8qLTJDkvWYwDqWtSdvi2raUF+VJ6yC8NAwMuOuxrY3MGCnP2maPDh1S0XZQXhImztjThA6pYLB2TvqPtrUNOmQwHnkEqPGmvGwLhlVBoTZgzxmT6V/avlvALjkMNlhlMazR14m1Lw+kJI77Jwk4ZsbI8vxfBeHIjIEYRBJYmjIwZXkPLwax1U+TGN+vg/AJM25L+buBccNAnvJZXpQ3bf92otsXOzYR17ap/avygtZfUrEZavdeYI0Rc170mevCy45HJGp2jmpblLY3hP61K+1f2562LeVlYMsjYV/7fLNblqfIy1TGrA4J22rXZEL1AmtMLNeE264eekCE2n/0N8+wQjZtS9vSVGyrYjiWWikvHXvbzaHOykvFAI9B37nmwRMUal1BUciu52OVGPcBuX4EIZIT5MCy8snZOUy1jjIejchE9WOJ8qJtp+d5/xoNhvNjqryzfWlbtq3omGptgPKyx4S00Of193aM5DIptryoLb7V8Yi9ndOtn5WX8pQWANcgY0Kv4zq1/tMOMvBjqgQZE+yBANvivx3LmPocK0xm/NH+0oe2tne2W6YYFkPj5byvo9dT6C/q6+iYqj6ofOQ67+vcYnXC12kY2OS17TyyfGlQ/01XHclJfag2Rn3WFQgJXX3fVQicxGetgScCDmwE14sPqv0lox1AIKve24EfslqSav/R1ZOq39QDpT/5AwTUj7aC6nYVlORFz6w3h5DoiqWJmp6SnjJ5BNetaoKpBYYyqTRCCSRBtoFS4VQ/6BJn3KGvwWUw6sp21VJSy2RDTF989xHX9OWmq6bSNZ1K15VKH1l6/mtN1E4n5DZvt62os2Hz9XSrOuny+7J745ACKsoNl3d6RISmYwK9tf8qMdPUsHkCQOF+tjABPLs/FvN1ICddLty+pnB4Zuw4l0xs/L3FQPB6E/a9tjydLW+1GJZ4SYGXzkxu5DpVp0HzHp+/HvPx90t1nGO8dD2+g+R4kaOJAyaTos7VEqZ0AUPMfygvSxgA1MlxWsBkeekwf8+2/V7CkFzu/Xj5UJ5SwESSqTjmei4ew3Kdz2OYt7UP4+VU/2m80AVe5nYuYrrEi03yzJiPdfbX4+9PYVZMDAIzV62pvhIlaSCPofM7idCR/Nfy5DU0CNjS+fd8uX8t521/8XlybW1p/LFpmReczL9P24nl37ft2QBZ+YdSxqelthYxXcJwGVO8/mH9SXOKqQbPbINyQ6DvT2HXGUB+C/tyHVLIfxgv720jOPImaYmXOQ8f2udj/me1zdFfm49P1s6JbT7d1roFjHNMHvNlXs63tWgjoq9jbbc882f3deIY2/kCs04691kR8t7/Y/8Smg/Mp+7vnzHzYenyMyLO+JB4z3i/WT4IUznvy2LgE3VGwLRgA+a+//w+L3/tKtR9Tdf0VUnXoNJHln7nf/JbIDMzcPvnS7KGXvWMWvmEXge+8oc6kvoPcS/5U8g/z36BXNwRHQeNJfE+ZjaTVp+i8OOlRi5fU/MMg3U84kkyUUdnLtTt83H5rr4jfdeqCWCdu0u8RKFuJyKKOS/xPcY6xxR1qOwEb6leUYw8ATKJLXnCHMPsXkYlNL5D/Y3FFNtKxDQ/MYvdn+nEv9vl3zZ/mRd2+TBvr+UthpnW1gfzMq+HzY+BF1lNdI6X98FgEnmtBotN87EPRvHkWPfY1iIPUWdBV0g1/uZOuJ8sLWHyvERMc6fcp8hLFPOPWI8BQ5wcxb+/j/hrdNKtzscE4J0Vuaa5bdzHoyzDxKEjX+eDavCWfvvbaeWux+B2bFtzXpb713leMLN7NkXbG/tX7PPvy4stb6/FgyLmv9Wj0BuGKGgb+1fEcOmjxhgw2KCP/N73r7EiWm57kRfBYGwGeY2ZDrIV22I6dZiFpojxc3py9VCh7lMYYr3jQRCXeLk0piovtd407/OXbES0Y5EXCpi0zzteOPBiUhRQLzdzGGIN3eEXP8WYGjFd4iVi+ir6OiqoHm2ArYOvr69zbHtxW1qszZJQ9yW/NR5IEEWt4wEEQ3hqzC/1x3OY5kLdRhcR84NWTvlzNsW5wzmhbq30f+vf+TPny1zTNV3Tl5auQaWPLYUBlwEczBdBBs9Of7JOM4PxivZuUvcKO+dYvKajm8i+pmMdHGTwj27L+cFt7uaUMmf8hNmJW+638+Ft6cv/7HlaDZ4/+nJ+7oTMhB8pu3w9+QXy3pzjQ/OTlKII4lxs/JIoYna8WgdV8tk5oKoFUOscJhaC0QfnjjMMnttY5w/FMF0QgVcHtU20/alFHPI6obOYDvRhvIwzXqaAgc9ej7zE8orR8jIFXvKMlzOiogu82LZFIBwutLV5PmKci/R6jHn23j0mnrU133/YB64WJuYH8qd2vU//uJTPs3yrw4yXwJv+xvIS21bEdO4AgqU67jPV052YgT1awJwZGCdy+T/kPV7xWPKM79AOP8Gh1vEHPOK7fDCrTSNGzDBZHph41tYsL4wlMVfflg50yWbEtrdk596fl4s8Qfq8zxubQHM7l0Md57Z8uc/b61O43/ywizO8zOzcnJd4+MWl/jIftf2/xDE1JuXN2rXIy1mhYSx9zPG229ox4PL4c8l2v++YeoqXOKZGXpYxnR9/Yp0uCUBHTMcTGGzet7U86y9xPIq2/avn68xPmrUeHOGyzzdbAcXxevw9hevnn+ACvTy/XvsXmfyZOy77xSHP8XqsE87ml4Jp50qcDwUWHtKlUtd0Tdf0ZaVrUOkjS3/3b3wbh0lE+hiMHTKOJH/mMpiOhCpiLeaaqkj1HhmfpwN+iMcaSnpLR/wQD3gqO5+faMQP0xMeS35PGd9Le9yX/NvkHW6GXzouS6bbgBJPL1nrVZYfy7hpHXxGonIiycJ1eUYbsgnhSxTDCVuCTUdh8wxTx6m+K70nOUx9wNRB9aXE2Xkq7qoVgpyoTS64vP9j+QWAKv6t9xlJtGj0+oQmTk6gugJL8wdMOGCqE9UJ2eWJCEdkt/d+Knl1RkV8tTlsVqxyRHYYxlLH/QKGitHUUQIFQZwSXsw1E9z1PSYnoA7AYdDVG1WskkRgvQlulnoaTJYXEZT3ou/KC2sboObITxCR+KPVGAAqj1TEui2mPSbsMZ7kpQO5oIyKa7Zn5hNC97Zt5TpBOp7gxQp46vH0OoGYqAluStsiN/mY4DGLGH/jhcjzoiKhmlfBT8vDaHiIwqgHTFUcX38xwU/OrcioiverneP6Gy+EOpp3YvsLlf5reUnw/UV4nGqdx8BLB38AgQqWKi8aWLNty/KiwqmtLcJhUl40L2LKhMcJGMucbZeBBwaONd5B2B1Tvf6HfMB/iHf45yyqGH9AO/x/utf4Z/SICYzv0h7/UX7A7+cdjsz4Iz44ng6lv1gbMZk8Q7Tv2qEK/pAFwE9sCVT7cOMlY2d44MJVs2Pav/KMR+mPre35/qJj5FS4U16KsG7Jp9qnFXOze2ofJvjJORHVtqUBnjEI2iomApX+wub6VPu82kR72IXa+taHs+PleIGXXPp8tOXa1mAwZ7CI3VOqNiJDxjRogBIMP+qb1RilTJxgfg0baPCMwdjR5MYf7fPWTtn+k9CC0VreYtD/2hgpdVLepT9lHBfGVCssbG13bFtjaZvKCxVdRX2GjjWNlzwbU+0hJGp7rR2bYn8xddIxdeJm45bG1GP4vW1rB/IYdLyzY6rl4UDeL2h9YHlM/Sr6OkOwAa19oHJit+almkf9fVrIg1t7t6uRMhhMLWgjT41bB31SjSn9zRonVlOVZx70wSVNAZPWSWvdh6uqg6j360L9srzIulqJwQC1A3oY7N4RgKJZ2P4t7gBwfnhIGjT7/12Fur/UxACY6Zfvv1/0i/0lSVeh7o8svfmBLCmfyn97HZSJ8cQtMDIR8MQZK1AVtTwAuC+rNA4p44d4lAGD5Cvmj/CInglrGjCC8eNuh44Jz3kAA/hhd0DHTWgQaB9adDBjNOeOAKiTb8vrqVmab8LAqoMiSX/HRaxSr6NeT/V5Wl7q4gc/HQxR89apQL2nDsHqN3hM5Mpb5yRDJrggFS9nJwA+oQk1ioM2FbHqXpwt9kETXbqtdT1AxMgHrFoQp4jP4v/P3p8127Ik54HY55G5pr33Ge5QBRSGKhCgcRDJJgVwUPNBLyLNZKbBaGqCzW7qVcQ/EKxfZHol/4GoZw1NUEObWpLJiH6VmgYQpEiBBJtNFAqFGm7d6Qx77zVlhuvBwyPcPXOtdU7VrarLuiuAW+fEyVyZ8cXnEeHhGfEF7PYoSfruDVKZkDFEnLw5lfJfrs7bkUUstCeqGOz9B5hTTIgx8ogFCMuKwX4dnTq5B+R6ypjWS00Wk8mjBgepfHUvtlTL2ETeFUMPFYUXkfAeCZ0Rqxwo15U8A0u9JrQAg4hVC6aB22mAuUxmlEf9OpsALMsh7XVbQOFF74+86HHLtT6hE81W35ofAKwBdCQixdnworZV84WXJRI6pCIqaoXuxfZskGaPEYlFMLieblPam/JoMSkvG3RtRZQunYm2VutZhIftZN/zWMT5DS8dZAuO8tJBhFzV1iwvu8Kj6PFoYAnoy/adEbkK3iqmI5oY7FB5UTF/sTXlRU4Kakl5UXF2DQhZPkdTz5pfIhVhU6kTnZKoMGrjRTD1pe9GOclSuhixvV0GwK0n2go8vAuAQdgPoq7ySBkHMP4/eMDv4BGPPGIgxj/tXuNf8H0Vq/9nvMW/5K3UienHtL1o3orsH8rbE5K0D8OL2mLjhWt7WWj7KvasvOyR62lRlpc1OqDYCtgHYwFMeNRztRovvr1o0gDHyogeH0o5Z9uL6SOUF2tb+kxGxJRxh6VpH23biD0xFaWflPbV1757MJi1/Qzw440eJJEhPGiKvKitdRAh5dbGC4BSzwceLy/lgNhjBz8matJj6XPBrLYU+zFtTzYoNGKUwyDQxljlW3moGMHYY4CcECl9gH5AATSgMUJ7YsU8IGNReFFxca251hfD8XJbxlQdfxovGVU82Y2pCT11dfzJDoMZYwtPPUQQW/puswI9BGKbOLKM24oJKFtWna1521oUT0Yx9kg1WDaorcyMqeo39NX2P7++zqbaTuubrf/m/b/pyiXtU1SbTwOmdTw3PmsyvBDJM+vHF1DVuXI+KDc/Wa9brajmR7e6sW3M+6h2ZWHDNPG7AwYNHqmPqxgSyb8oM0SEHrpS179T39AwwmHQMlg/SJOW7UWZ01zTNV3Tjz9dVyp9wdLzn9m4vPsOQJiI+41BQ0NPHNIefqjXW94GbmQ7EkzeDw5Tv9MPzzoJsvdbgcA4mOsKIZ/3QpB1qGT/PtUqYHiR3hiMkokQ5p95EtNpjADcXvSZy5MB1W1EIEzEztvvuN7vMJy4f+63l96h13O4f24S4e/3+ZP3l8cqBp7URnkEhZqmab3FMly6f1IHsb2E+6e8xOf5585imv+reYf/10tMursJ00IFTFMeT7zhFC9ztwf7npbJ52M9R8zx95d5DPeH9+V6X+vPXB8wgyna4dvykkP+re6/1N5oqnVyJHaY4jSewzsYhDW3nm6PFijT51nNiwHha/gbtJdLvMy1F5snnW1we17kZfqOiDveH3k8z0zk/RKTkZfZ5hX6gMh1/E20/7fti2M/N2mPJ9qLpshLR+eFuqdFmH4pttvyQWEl06XxCHPt8S15MX6C+aOmia3N8BIK8BmMkW/bd2tZ2d8d2ovFMR3z/OsutuGL95+vg8+DrxO3GEYfM+a9zxrej6kPO/VZvV/tVhnVd5jfUHzmpTwQVz2d92Gnv48+cHzfKWH7CYYQjDqHIYd32v80vRPmNNd0Tdf040vXoNIXLP3lv/1VpLcQ6pavZ+2LwgodbnNXe3UdCGwnf0r0UNPkRBH2g039UKqBK30e6/PK19w6AMNhiIKcCZjsBY+F1qN6CygcDeY5x2/BvulMRA8DhiqqWCfi3oFdoitfOrlgmDZNy4t+9WsYpy5z/Lr1pkLC8X59bxTg1F9rfu5+W+0q3K3JajfMpbpcXF9EU32J+PtoW9E5jPXeB0zxel09ZHkJE7635cVuOwB5bRMCTbZ7RozH0J7mhIRtPorC6+lrjSfPSxTknE5jprxYTHNB1GjN0RY51Psloe7p/cmJj8eJRQ6YJoLQAYP+xmKaCjz7FEVGF4GX+KfyWAP25ev4qQneVCtlRpTXli/YVibg3mIilHUZLe3D434OK5efE3g+hzGKws+1+XO8MOZ4yVNeQh9hUxSFj311bPOxvSxn2pftE46BlzcR6h4DhnOTVu0jbJqeAOffE/viWI7YvmKbj7+9LNTttYA6yJHz1k+YjDehjjL7f/gUO1eOKNQd++425LY6sBjiAR4Ro26tUgwiNEwOQ0yxzV8SI4+2FdvTtH1pz9XGXM8LjMM0FbXWZzlbO9N323c3TL73js/PiOPLVJzf5mfH1JB+3L7OPuRjQCQGTOLfY3uaa18224HEDza2ZkWuJ+/CBW0tmGBcuW0Z/OzKa8TA5vdnMMW+PIqNpzfAFNv8dO5wenwDyxj2V//OL5y+55qu6Zp+pOkaVPqCpTx6AU4GsA/Cw3vjjDGmIohRGDWK9kZRRDuhY8gSbSuk3QFu8EkAepPvQC5PICxiPjgNdn85gbC2DiWXLREmv2J/3QXbGFgwuUDRAj7fI7Xg2AymiGHqzEWxWH/yBYMnpwzFeo0CnFOBWz/pi2LJoinQ8vp/WqYonqxaD6cm4jp5sikGGC8JoR6KK9MwREzTOsjhunVI1R61jKozUss8E7iKTrcTFSWencR6DOfbkw2AMGTL0DmeYsBkystUWDgKo0bR3uiQRt5smTMy9hd5mdriKV6UE89LFHuNZZ6K9LoTG2eCC3lSpnFSxkvtJfJoMXC4XzHa9hJ58NdnxMcntjWdSNh37id9sS/zgdkJdT/CCzwfM5xQ92gwAm1bkK33uTbveKHT4smMaftxGGhemP4cb5Gn2L7iSUyXeYkHEPj2pH254yWIWscyTst0vu+OfX1sP5GX2J4iL7nYv+fFjzdTXnybvySOHCfyS3RhzJyOofbjjwZITmHK8Ke0aplsX+77fs/LxFZoRjB94uucH3+m+Rxsbe5QBT7JS7RF4WnaXmyyPGTkCS/TQxbOY5iKWk/rNfoJPpg9FVCPtmkxaBu1Y9xn7evEvP6f9cdsPvqkiYMPyl4PiAAsw4fHpfExiWniY67Z+6QTH9W2D5YPm9EntSve+xDEiYGr6JOm8oxzmFYTTB7DKmBYBr97GTAtAqYlT/sIt4rfJhK/HOOpG67ph5IYyEw/cf/hakafSboGlb5g6b/+P34DQ26iilsacSTGtrgeKiy8KxPVDlT3y2eIeOjrNDgx5AHye/3KkEDOEVlQck5wj4QNOvRlkO2QsEaSAYJlNdQKnawGKoPtCgnLMojecoclEpYl0CO6NC3P5R0rM+gu0OEGHZK5/wYdOpZVFGv02LDkCcCGOyx1QCuD49oEjhhUMLSvmjemzIsLmOSLY3OWdhjrKV3q+FkBTgaqcKo4ZABAdXIygnEsIr1NmwU1r1/07TGwTdS6aVPsMDptBXWC1dGzgpyqLaOTc90XryUeketR0+qQi20NBkN0gpvIaC6YdiyStlTq2gp4ZviAxR4DthiaMGp53ojmllqxVxVTto62FREltC/YwtNQhE5NGahNGpUXdcxHNGHU0dyveQIhmfal9WQnviOE16phQanyyGDsKU942SPXCZDyaAVrrUjvEV6EVwVum2A0Fx61jIJpx2PlhdCEh7XMTXBd6nlneEmGF+XR8hR5IbST+pRHz8uII0mwy/JieZT2whXTRBCavOg7weuQ7DC69pUB1346wwsg23eiKK8VsO2LVpde35PnJZZRtX70fjJlkPZSeIEoMiUm1xd3TFgh4RGMgQEQ45EYr5Crtl4PYJ+bkPc3So1a25E+ovFir9cxxPKC7ETgM6YBCS8an50IvNWD0W0V1g72GLHnsb2B4HhKM/2etictsxNQVw218oYtDbXva5PqZluic9V4UaFuK6A+GttS7ZO2YmPaRxyRKyaUyZX2iXrdnvi2D7x0UF241hdbXrTvV14oYNJ3xb7bifObvjoxoUNyvAxgrLhz+jI3WNQxc4EOa/R1TF3ZPAPv8DrwkKGaUAzxOQ5ogumqFaU8dYGXPUZ3IAGXNq+21SGBShuudkHZ8aJ9sebjoQnadzse0cT6Iy/KobUdiymFfk6DVOfGVDa8qI/QxlTpl7ZhTLV+RuNVOoFtGVPrhwfyh13oGOnHr9bPqS34MbL5OsrLzvDyo/B17JgafZ2F6liVfI+EFboaGEqg4nOmGnxZo8O6BEVW6LBEV33QFRKWSFghIbGssOnLvxFLQDOBcMOtPXTFp9T8Egm36Gv7WaPDxlzfcIc1klxnCfjYPAPOJ6XS5hSTlmdZy6wYCiaW6+uKmQom8ZOZRE9pXfxskK5YbGXsA6Y1OqwthuKnK8ZbTliD0Bc/XBMVfD0D/+R/9w1c0zVd0+cjfa6EuonorwH4VQD/DsB7AJ4D+HVmfvF9POtvAvjrAH4Roj/623PPIqK/V97zGwB+m5lflHL8GoB/zMz/4PuE87lMLz+QJeUqwltFEonxyGOb6BNjyyNyCQCp8/WIsmWDmgiifnBRodRVFVNuE3voV0P9UgMZfBiprsiRQayJWktexDMJVETDSQa98vceOkGSQE4Pxp4zDsT1dIyB5YSUHgm3xTkBZBDty7aZmudURBCpCuky2iRzXQInLzGaMsoEGyQD6BqpODvt+iJg2vOIXOqN2WpXta+DysPIKmhLVSh1gYQl9Au0WVZPTVBTeVGR6w0Wwn15RxNPZoiArfzmgIyDflVCEz/PxRNRQc7moMmkMEEEGRWDDaJkK8ILORloBSuMar+GtpUq+vsdRnQYRbAW02XS9lQwoH35vEMPnYjXIKmZoCkGdYLX6Jww9wLtpL4Mj2GECkCnKgC9KO9vjvRYMagwaioT5SMyRiZsytfBXGyhiYpydQZBwtORGTfmfvAcL1zuF6HUJ+XbgTrJel2FUiMmIGFZxFtt4IcJjvdcJgI9chEbb5P9yItiUl6elppSXjRp3k7KjsgSwC3taoQ44GmGF7HFofQbXbW9Hiiby1ogUv++h4q7dk4UXrej1S/zpj2BgY40yCntZ114Ul58PaO2ryY+jvrMkQvfhpcaoKt9ALk2rymjndaptrbDiAWXLUjF/vWEIuGh2RoTcF9s87bcdWQ5EW7bWdto3Ovk91bWl0x4nPIi7XlVbEuvi9B96wN0JaM8b0AHwtoIcxNzeaOenhl4gYwjav8IPGrZbHtKgBMaXpTrkUe9rvdrH9Fpv1U+mlfboiigLjwtOImtlIlvPEXLjqmK6ba0F+2LtU9ottWCGgdkPCmjptazDejZfk952aBDZ3iJPB4DLz3EtpS39n2SavAKJH2diLnnsqVcxiH7jjV6MFqwbVXyC9Nv6btbmayoNePI0hcnIwCtOjVzvOw51zFV+zXjnGCE/tsZXhjSd5uyTXmRJP2YrvywvGR3fxyPbuS4gAlvc7xsIWLjN44X1HLFvnyHEQljtS0rvN0w2YDZiANEBL7VswQXyNhmFFDvQSXgLryskIpfNfV1tkWcXw+K+GH5OnFMXZaHKAb1WdU/k6yIoC+QSoAM1SfVflXGHUJXVvSoD7owQZUOCZnFDsXH7HBkCaZ3JbA0Qk5ltgcb6Ftu0CNz68/Fj26+zQqE5Uz+NbLzWfcsH/0UUy64FZNujxO/uu0GUAydwwQcWILjuvV14Ix9wbRBB/1sJ8Eyj0kxXMKkq2jtWPaqzGmu6Zqu6cefPjdBpRIE+s+Y+VfMv/0ygH9KRL/yNoGlEij6LWb+tZJ/DuC/AvD18qzfN7c/B/B3y39W1O/v/6QFlADg3Z+7aRmaEeq2NxdnR/5fJzVmHzahbecyA7t+jdXUvrKXe7gO25Avz835mtOXQMzr57iS72BOmoBqn7DJx9M0fJkJTTBQA1qKV/8t5mOZ5zCwyUcM6vBrnUw1Ms7zEveiuz3+M7yoc2UxkAlghNfXd3T+n0LGopxuAYn3x3qIy/hjESImu6Q9Pqtigq+rDDgMzfLsOzyGej/JVqBucr99nnkbta1DpzDwhBf2mAgXeZEJU2tPOqk/d3/4J5eJP8kh72rV8lh54bO8AAETprxM7r9Qppjiktt8gZeofaLP56KtZrcn1T7JGg/59qTtJfKSXb0ZS4u8UMBwoj3aFCD5C1QC1abvnuPJ8sKljVmnYINU9UXa7063+ZiiPUQe469j+6qB5sKLTkT12VVPz/ws8mIOV6vvyGfaS57wMu2Lyd2Ps/fHZLcb6nhjBovZ38QxNdqSHcP0/nMp8hj74vn7bXmm5QMaphQwxfc5DmaeL/bqe4nLY6RhZobHKPQdx9R2UEdbQVr+YXZMVdzneYnjEYd+z/etl8fUqbixTW/Eu+El+gWYyUeuYj2Hbmkypk59l7n72/Ufj6/jx6O58aOrWXJj7pzPGvP2pfJ7rkFrZ5sln2zFxj4FsiLIF3Eqco2Q70KZLa9apnM+a8xHjHXcsBhcvnwMMdenfrYdYqeY5nyGd+yc5pqu6Zp+rOlzsf2tBH1+A8Cv239n5t8B8DsA/rdv8axfLr/9R+Y5LwD8DyABpH8887N/AOA3y39/H8AvMfOvz9z373367/3tryH1bThw+7Q1mbwuc9aOf4UOT7IX4Ex+JJjos0x1dNi9J4UT5aZC3f7+fXEbNBFc1ms1lOsRYxSrVCyaH4NTEaso7pfvAoZLQt1VnLLkV3avOcJedE0mb7cTAvJlz2k26f1neImC0FbnCjA6BxzuL/kosH7AKI65Xg8VF/Nz4pVx8mc1AJSXU4ELwGsAyDs85vi+pbopamt6DHPJ19V1tg7MI7K5F5iKV04w6P0G01SoO0w7gh3sMbgyRl5S4CXyGMXGowhvFB6O7ScK2HLgZd7h9LxEsfGYIi9TEVLfnpah/QxgJz6eAy9VX8IkDVwo6BwwRduK7TNiWuJ8nxB5rBjsHNO84xB4yfZmGJ50whtsKxOwJW9rq9CWHgOon8trl4+2dpiEF3yq/Zjh0b6BA8aoocHA5BAFBs7yEietU168beXAyyG0l1W4P5bZbp0Fgk6IA1reR1NBaCs2TtE2aTqGxvbU8wletE8IPEceY5uPKY6pkxVNQTcnQVYbeD8hTEzD62Lw4DUdXX4dMMb2VfviOB5B7+/O8qJjqsUQtRyj33BpTI1j5D7w4oIJmJ6uuw+2FUe+yEv0C2KS1cTTMdWm+OtVHFPDGDkGTLG9xL560FVf9vmhzf+wfZ1oB7HNxzEzYqy+zIk+QT7Gtn+Y9XVMmedErd0BBOH5wDSAeFKou6RlsK0+2Gb9e/R9Kgaf7Ec+wQB0FzBdEh9/K6FuAJSAv/J3vnb2nmu6pmv60aXPRVAJwN8qf/72zLX/HMDffItn/Vr5jUslsPSbAH5RA0/m2q8x818v//16WMn0E5WG3Yjl6F2TWzaT2AzcBbG9lRUx46nY3gb9WQHBjr2TvWHvFKwgW9o0vwCJIKDJr02+R1t2DqhWQ0vEhNsginhrMWXgJmC8zV4g8DZguIE/wWoNkgEUDYPHlBymJZLUY5sbuQFYcPnmuLHBBZ4KN1rhR2aeXF+jm/DieNW97zXvxcZ7JBc8iEKPfcCYUE4uM06EdeaIZT+9TTaAIhNEf/0mYIp1tAjTJdnPT+Z65+7okFy+B0m9ULves8fQw2PcmLUcqpcAV8+XBDcDpolIvLe9lfJQy5ycQ9oHJ7sP7Sk6dynUMzE5WyN4DMQ0EdzcBAzRaV+GtUCOl9KH2F90oLO86DYATSKUGnmxmMzkpqTIywb9W/ES29MSKQij+n5uThg12tqUF4OpaCBVTAinTrLoaPh+zmNaBgy3YZ7yFP7r7zoxkgGRQntZgFz70O0d7f7AUwguVIwGg7Ut6SMWZ3mJ/Vgcf5ah/SzYBxMWod4Xoe+e5cXaWrD3hOlpoGtjW7V9mfEn8hIxzvXdUwHbVu/LgKGfYEhTXjjy4tuLF+kl3Nj2grbNXVPsm39+uHET1yg0HPu1ZRx/2PftNdhmMFo/oWPffuaC2XPix77N0w/EyyL0CcvAQxxTE6YHeqwCL3GMXAReNhNeTo+xwFx78X11D/9RYIXO8bLQvvwEpm7SXny/FzEAsqWrph+BrzOxtRkMNgCymLG1G9uvMXDDvq++CX3CnalVAuG2lEXLdBN9ziBaveHkMKw5OR+0ag+VtALqdnzBSCKsbcZU51cziV9sMN0GTLe2fQC4jZiiX83Rr+4vYOoCpvPbadYMjLvzH6iu6bNOBOafvP+mIftr+n7S5yWo9KsAXpzY4vb7AHR73JukvwjZMvfLM9d+x9zzhUz/9B9+E30mrJiqqPUaHZ5mEQhcFKG9pyyCgCtKRRBQBrBDEfa+5d4IbibcYVEH8g1654jcoC/OlgxId9zjOXfYqOAfJzxlEcqmMpg+4Q43ueVvOOEmywD0BB1uSAblBA0yJdyxBHoIZUVVGaBSySumrmB8xj0WLJOqDTo85a6e8nYLwlMAyzLAbQh4BtQDthMIT7mrAbcegkFFDFcs71PHYMMdbrnDTS7CjJAtgerEjhANCeukLtHhhntxyiBaJDcoeRLNmCWsKGLCXcGodXCjwo6VF3GmdNnxjfJW3vcEi3oS3g0vsEQTeqQyQVSe+zLR2FSMPXqDgcozVehReOhxW8QoV2Uv/7JMWwlADxFr1elEjw5P0DCt0ZeARLO9NfrqFhMIT7CoTugaPdbo6+RC39eb+2/RV4HNNVQEvtmmBjiUlzU63BpeRHBWeBBeUgs4EIqWV19F4S0vGvzQk1tUyHQD27463KFv7Yv7NjFW+0RfMS/K89e1PfUT21qhiYr2EN0axeR4qRi6GhhSXu9KGVP5/dIEIDokrNDX0FFneSnljbys0dV8CrxsCu+LwrRqrS0dL31tL6tyr9reAmmCaYGEJ0U4WCfVKhrabE36LW0vd6a9rNC39lN4WQVebHtZQoRVV46X1gcwOPCS6gECqdTBAl0TUiURj71FO3BgiQ5PWTCp7o0eMNADeJcSniXGktQOCD+FJDpdAN7pgLuesSwnFHyQjo6nhIQ7a1ulr9dJYl+CRrZNr2s/pu1LfqOTywW6NumjNp50BcPS2J5itLwkEJ5gWXlZF176mu/aeFR4uTXtZYXetZ/NDC9WhHcBqfdV7TP6iS2qto0IWAsG7QN6Slha25oR6VXbVNu5wcKNqdoX28Mu7rCopy/dcO8OhtAyaPvRYJ/you1rVa73JZixMsFfafPCi45H2lf3pc1pQCKx6Kb9yeEpnudF7QPqeFT6tVvTr0l7avlnWEo/V2xTx0jFzKUf0fFHy2/7cg2465hrx1DFqLbVlzFVg/pMIt4dfZ0qljzj62iQR68v6pjaeLFjaiq2pH2zBsc3pn1p36W8SfuRmtZx/q7Y1rLyImOkcCl9cRtTm7+m/dzKjKFaj3ZMvXNjaudsb1kOTrF+gvULVEdS28e62GEcj9QvUAw/bF/H9gGRlw2LLXfSDeKGO9wWH5RK0OqGO9zl1q9t0OMul76apa9/ksVvvgFhTeJTqr7fCglPTSBoiYQnxQcVWyM85b6esLYpfbuOobfc4yn31Qd9wvK8tZaZCE8ggRm1nTvusCkY+pK/LWVesohkK6YbSP5JFj/6hkVf9WmZC6yJsDGYtMzPuHPt5WnxszWI+5ybLW3Q45nBdFd8/4qJEp6g+d2aEoBbyMfl/+///g9xTdd0TZ+P9HnRVPqLAD45ce1F+fMvAfhHJ+6x6Tch4twvLtznUtmC99f0Gd+POPi/D+n19/YAvKj1nlgmadz2MKsToF8RVGyvngxGqYrtAWWAKvlknBMrwLmADPDqDt1xh1skHMo777jHLfSMI8ItJJgkjkMRweZUhY3XRFgx12W5IuYnIrSHgmHBIsA6lsnKM051ubcEgrxQ91NO1QnpIYNyxUTAHYAbZrwqZRQMjJ14U7jlHjfgInpIJd9BBQcVw0sMOFBGh3ISlglAdCAcinCjiiRqEoewOWMi9NjjyCP2NKKjhFvHSxEjR9PvWBa+dkVcWyaeben/DRbYoAniLtAVWxExcnUSVdhxbSaWWm8qkM4Gk24NU2FIG4DoTJk7JGyQqrCoBJa6ikEwW0xSBjnqXgRYb7HAjbG1FXos0YQgKyaMQK2DrrriizIhUd4U05HlZCfFYHmxW6oU05FHHChX3s7xkgB0EOFcDdRY/Zibku9dPTN2nAGiwkPjUTHpBN5iyISKUcukmCKGodyvvOgJRIsyOYDhrYMuy288iUhv42UDK8DZ1RURNr8vrVQxLMovmu1YHkX4fiSuv9dv7cpLOsPLEyynvHDERHjEIJN/9K6f0/ajmJaln7vnEURTjMJJquXUAwd2pb1Y4VTLS19WlOpqO50g6aRzLP2O9GNL00cIhgVkG1lPwFMAYxZx1R6E9yH6Gj0YRMBNz9gwcGQVd5X2o9tEGi/J8aIYlRc9VUrrQEMUfW1rvv0cOeNY+r1Fkc+1fULkZSz9WAeZ+EZe7Pij49FjaS/Km17X9rMIvGw5IxsetUzaNy8rL4SEhANn5HIwRGzzvu8uGJiwpxGplKn1g6fH1D2LwLOWSbeN3KDHZoaXsYwvTWhY2pf+vq+8CA+KsR52ATltTnnRpLwkeEzaPjfo8cfHp9hiwL/tX0MD5lZLRfu1NkYKL9o+tJ/bVtuSf9uVwy50/FG/Yb69yHbYkbjyZjHWlSpoq7ZGznVMtb5OB6pjbORlV9q89t06RiovOh7p+DOENq8nGNox9RIv2hf3YUzdmDKn0obHMr6oLZ4aUx2m4ifomKpjZGvTHpP6Cad40X4r+jpzY+oP29eJfbdiiGNs9EHV59S8Jj1NzZ7YtmCSFUMELIjwDCICzyhBGBAOYOxKn7LgVIS6pexPuIladwCesBfqvis+p9rWLUjyDFD5+HrDjNeQ/vIG8kH3ALE9zavPqpgU1Rqyyr63mEB1pb1i2rG00R4SWDoi40DNr1a/QK779vOE+6o3piueBJPHMEIDZKhbou8/vAp1X9M1fV7S52Wl0vPP6B6U7WvvnNjCpquX3Da7Iuz9dyErmX4TwG8Q0f/yTd5nnvFP5/4D8Kfe5jk/7PTe19pGsbpv2+Sj9oImndyudXkr62/qDQCa+J59pt0lTSC3h18n0zZPoUwxz/Z+mmLw4tL+OtB0DOyEncGTvKYEcmKUiaZlvozBX+8nZT7NQ3ye/pvHVEpgeJjD2DD5rTpzZcaEp/OYcAHDuTrymJrzHq9PeWopBeud2MoblHG+PKfvn9aZT3O8nLM1AtlqP2H/l3g5017eCIPHEfuEaR8xxeSvTn8fy3Spzcfnxeux/Zxrf1KGN2svDpPtA2Z4eNt6jvdP+4CI2edjOjWYazlHEDI3rakUHpEQ+mrS0+BOY7JpDuPb3j9t8xVEvcfykr4PXi7ZVsxP+7Hzvz+JIaQJhjimKiaailpHWzhnG3PXL2E4h9mVsYpbe0xc/l79BpjtRyfeGfNDwHxpjIx9e8TcnbFlmyZt/i18nR+Ul7ft986Nye4ZoZ+L7cneP20v5zHE/Gc5Hs2945SvcwrTm/k6/volH/Zt/b3YqmMfEb/uxz5hMgZT9H0u+Do09YunPuzbjcER0wI+Rd2p+IzYfuYwcMDQk+w0MAcq4flXb3FN13RNn4/0eQkqAadXFukKpnd/kIcT0S9CViL9oyIAbt/7j5n57zPz75cVSr8K4D8jor/7g7zz85h+5T/+Kjoj1B2FHgE/VMix9/brVcIT9kLdUbxyKiDo9zw/lnxzquHy9iQZwJ+WA8gqJCv0SHDziskATQg3wGOSMvtBz0uETkUP4wAaMSCUOYfrq/J1S/NRbLbXATmUuZXHi1emyMMMxiiCeMqp1lSP7rWTn1AOm9fj5B2vjif/vohBn6Yg5pxkK6Q6V5aIaQwYPDtTTNH26pHEMIGus7zgIi+KrfxlEmTtw80RY+QlBknj74a5+yftx9vWRBz2zIRQf0OVN0yc+CiKnTm0qEBMFBEdJwLqnpcoPs4Bgz3NDVDbxNn2EsXH40QgWm6sZ/3q3mzP/xl5VAy2nPbvQxBTHmbbjykfBaFuAPdootdEUwfgGOQpfr70pqf6gNi+JjyG9hLFX2PpE7xQd73JjC/yR+MltpeJAPQp0V4tcihz5CXyGP8eRa4v9RFMcELd1bbimOow+H+I7SmK89e+XielAWOn7UXbV+DF3guYfsxeYhYjqphae2ECtjQ6jE/Zj5qxv4p972MQso8C0PGwi/p3WwfmWjfn61jbJHZ9QDrFi7HFKHLdhRYVxfmnh5TQ2fzwlrzEgyNqX2wwxIMjOAikxzrq2WOq91vbMfnIS2xf0dbmfJ3YZ8TgQ8Qw5cW3+aitFTHG9hIF1XczPmscY+zfo4j1gKkQvU0JJz4ihPHJpmh7h3pfKwPQ6n9RrzcM8bnnxsyIKcMfitCFj60VUxtSEYmejqH+X/Yn7tNECfjv/s+/duLqNf2w0o9b/+iHo6l0TZ9F+jwFlS6l5z/g738Dos/0v7D/WFY2/Wb4txeQFUt/700fzsy/MvcfgN/7Acv9mabh/ognZkJHAN4JZvBuyD9PbL4h8ETo8SbkRQOkNdI1+6+UOvFW520MecbUQY2nfo2T4EFLDH/aBkOWvdvAgR0gGexO7WIw7PlyXMpsfYJ4ytcchrOYJtfZOUJyf8vnsmzdlzEbTHkGw/l8xBCdt1jGXN4Yy2x5ssE5/X17HtfA03yZPIY3wxQdn6mj54IF8HNUDWzZ6y5Pen/DNDhepmWyzuYchpjHmetzvGgQqLWf8xji/Yxy3LxJ1kFlmrOVaGueR99DoOoA6T+onoymFXvx16pnQS1vBWtFmyu5iYPlJQOh/QQMNLW9wZyslGd4YbwdL9HWdJvgqTYfeZJ+Kk+ue0z5ZJkE07n2xcjc+jFmnezUV2Bkn9cT594U05xI760J8ycmdzCEakspTGLZxlZhZ9kWbY0rCtjeYOFszWoTAVNbW+kWHGNrtsxTXqY8xSDPpX7O8cRTXm6wmIypNsCwZi9qvUHTLRFMXcDk8wskJ8wtQsO9y28sL+EwC2LRRLO8OFH4DNxkL9L7Ae1cgO5NxhtrayucP4BADvA4jUn1iSqmaFuMCaZoa7cXfJ2b4OtsEG2tc8L2uj3KYrD9XI+EjfloJ+LJtv0UXk5hioeQRJ7mMBVdLc1vQnuJtraeaT/+UIUUMBXbUp4iL/B9BBi4Q2zz5zHcxfYTxp/Iy3qm/biDVli2rcUAou8TrF/ALowl400cP0zfC+l7G0088VkzhTzOB31amUyea9x3xkelgMljAPyJbzxTxtFiKFIU1g+I908wTvoEj0n/7dSUf8jA7nU8l+6arumaflzp8xRUen7i33WF0ovv98Fle9tzAL/yFlpJvwXgORH9tYt3/nuU/tU/+iZuCHgniX7GAoRbSvgSEpaQEyRukPBldFiBsAZwmwjvd8CKGAdkjAQ846UIL6KIYGPZRA+xcGLJt+hxByuMmnBEG3BUC0QHYYYMgHqdAHe9L/mhTIB0INM/j0AJROmkn1xevwBpHpCltUe0yUICSr6lATLpYgYO5vc6WI6mjDmUGSG/pdHld8j1CzaD5eu3yaNM2lVDQXVA7NqgTFqXth4LJhZnTieFOgG19+vEWvNd2XZhMco92d2vE9lU67nxajFooE6fp1K+jQcNEGjpyZVJeLEYJFkexoApwWMAdPLSAncWkwZgcsWEuvpOeBmRqfxZ72/XVZuB0Zw0z4uWufFit8Qp96d4lHe0lRPKY+TF5kUrI2AwvGkd6L93SCBqGDjUgdpi5KXiYxXKbwKcS3R4jlXdPnuDBZ5wE7BdcYc7XhgxZBG4rULCLELiN7lNFmz7OWJ0tkbBlkQTjYxtyipMrTs6wcukvYSAQOQlu3rOzvZam5F/6QMvh1Kblkebl6/trc1rvtk/ldVJJcjIMunRcsiBBIQDc+vHWL5wDyXfE2HIorfEDHyzrMNp7ctjSAWz1quKWFtRa+W646LXgR5PysEQyyI2rgLQiUT75TlWWHBCTyJW/pxFiLtj0WoR4XphrQfhKS+D+Ouy2tYtejxBXw8g6CAi2FYE/g4LbMrJRKpdo5j3Be1omJ/jRetgAJcAe2sv1lbkC37jkSAT8zqGQsfUdmjCLRZ4Ai/G/4yXFcMKHZ5hiZuC4YZ7J3S/gAgLa/tRIfHGiwjn39YDO0Tc+a4E6DoIL8+KIPqy8PKMF6IZU/SgVDw5g7FNI/4g3eMliWW/oqPpU6b9WmxPz/ISG05YMtVDRUT/RQ9+kCCSHjBQxZILpht09VCFjvWADsHQs2iaia0FTEbEeoEmjnzK17E8LQqP2s8pj8rDLYvtWnHxO+5xU8SRlxAh8DteIDHhhhdFAFoF0qX93BWe9JAFxbSiDqvCqx5KskJXeFIMglmFs2/QNwHo0h6emvazQIdnWJmDVBZ4ygt3QIe1tb4EibTvViF85WlTeemqba2NLSovT7FEX/qINcyBHVR4KbwliAbVcyzbIQhYNJ8TRdcHDZM+3x5mIQcQSJ3clUNW1kXUesm+n2u+jfG/0HxWHW80SNJbX4eb/zFAAynASJov73A+pvY57TqV+7UMXbluAz3eZ/U+6rHktcwZcJh0jFW/WPpFqmVUndGxjsXqt7cPxyMVP92841jqT5MfQz3Gvj4L5hetLhjAP/8/fAPXdE3X9PlIP5BQd9EM+uWLN07TrzKzFd1+8Qa/OSXkfTaVU+P+Gt4uoGTTL34/7/28psePZEHpJgFrAvbMGJiwRsIaTfRwBcKXjTTkgoD3OiCpUCpFgVuqeV2624Qd5V/EmbCnubQBCWXlwagjB7XltQuI/ofNA22wqct8IQOabl3TQNKon4coLA8vef3CRSSDvk7GtIzA9J2Z/fM4XNeJuGJK0ABHcz60KCPayhEmKW/bVhJWkUBXyhBQvvZpgEDT3Fd0cWnaFykG188/5766azABbLcn+ICCTjplG4di8M+Re+Yxab3x5H6fbx8N2158u1KFzROaXWq9ybVUf9/ea8uktquTH5UeBoljZutAthahBm1GU0a9J2IA2haiyEtNF3iJX+3Y/Gl50bytV3V+tU4kGNp4UUwLpGq/dtn+HC+KR+tVMXUg3LEIdefy0fcJlrgzfcIN9/WrNYGwYRGAHop9Sh/Smz5EJi+vMeBIubavMWBOoZ4B1K0sIxgDe8xA2yIxZ2t5pr3E59svxLaeI4/N/jncP9++GiZf7+yum/eQbjFpvIymzoE20dA0lP9uyi9Gln5IDyBowRRfpq4wrmXQ96norr5CRXt1VUddSVOSCkAPRQh/gYTnWLlDFJ7xsr5fRXxHZBwgAfA4/jxhmVhqAF7EkhlbHp1t+esddoadOV4ij73jZWqLsV+z7TfXPkYw2TFVhLqXuDFt7BYiyqvf5u94gVv08k6DSYW6VVBd60Xbj7avU7xoieWUrk4C0KQn73XVeKIofI+EO07YYcCnAI6J8S1sQUWQWusl1ongFdux+AmyGmkFxmvIJFWF7vcsZbKC0EATH3diyZCDI/SQhWWpE8X4HJ3D8BQifn5ARk9yUMScr9N4EV9nz7lokS2qoL+sxPG8qK0Npf3oaWnKYzs4ghomDuL9euiI4YUNhifsDyB4WgSgM4lQ/jNjFx28IDQZ2zpAROHvsMQtmoj1Lfv2o2U+Fl40r+OB8tRZW0PCMfDClZeEZ1g5Xp4gVTF/DRQ1jB2eBky3SNiUPoIgK5puz/Ciwt2aX+sKWeNnOJ+Tms+qfsMAlD6hfcwUv7n1k/ZjpQZi9CEaeNJ89Vnr+IMSHG/X7epSLWNXflKDPezvV9uJv1dM0WcFJDimGAEuh+/I861khL7TYmKtJMi7R5aVelJmA9jUj3oUcQWVTQ8f7c9cvaZruqYfZfqBViqVLV70ffwXT3H7bZwO3ui//9O3LV9ZZfRrpZwvZq7/b4iIy8lvX4j0/BeaqB0RYOSVAJzW2VHn/ob8fvl495sIdcdEMUM+z+F6nKRNyxCeH2+ozq2d1PEkb5PPhXfQzDvOFRBToUanI0IixHguRY2mKFaJcD1imtPtiMnVwRuUKd5/wpTM/eefMxc8sTzFd9KMdV2AOLH3s7wTnEDkXIrOD83wcsnWLvES7f9SJx7LNGkfoQ4m7StgtsETvf8cJgqNOL6PAnORRwrGNNHReVvbxFSkOt4XbY30H8888+15if3YfD2/6fsqL6Wv1u0T+rtLGkzyTP/E24AiljE+LeqDTXlEuB76wZl77ItqQJnN/ex/P7G98LyoXTK9fr5MMU15f7P77WoABlfeJuMZXcb0NvU8Vwfx928izl9AuKTllMBTu57Dz+f8gJgO1Da1a5DgVBnn+ogp5jfktZ4wKLZ1kpcZW4v1GMuAC9cv/f4yT9MyCiaTN5jmxZLftg1fKvMlDD6dtI1SrKohGDBYX8hjSpPxJ5bJu1/nxcrl305lXFFrmvoFep+WWf+h2JpGqMwH0dMFwNRPnilD9FljPhBz8Xmn/QqDyfQBcw+55GefCyZpeveP3b3BXdf0WSUGwPkn8L8fd8X+hKTPy/a33zhzTYNKv3nmnkkiol+GBJT+evj350aA+xdxepXUe+XP3z5x/d/L9Gf+1lfRLdro0Y4Ab8mK5TEIe27irisQnpr985PgxMxgdAxDQxTejgNs/DMK4B7M3/X3Nt/PXQ8iifqlSm8YQ/4QUMSVNXYFDKBrhux748TB56dC3Z2ruC44Rv7ZZWmxKfOcIHTEGHmIga34nktC3ZG3KCR8yWGNq150wqhlnnMuHaaZdEmoO4d8FLmOthlXGtjVF3LflBeLqYr2kv+N5cWuMpOAie+WY/vUY93tqg2bb+9RHqf3hybrfjsi8uJT4wfuN779eEyxbNG2Ii/RtmL7ka0aHDB5HuIKrWiLMZ3rE+Kk1pbpFKa+9Aqn+rVDuH8RMNhrgNenAOZ4IrDpq6MWXQbw2urpEYIlAPvgxf9cOT7+VB8Q29c+5Kd/n9bb6GxlulLS/QmAjNbJpC8I7QnwtjiHIQoJ9+G68nIK0w8q1A3IqrAqoA6ajDf7gCGOL/E9UTw5CkZrm4+BLZtiHzAJYpp+jUn6JTseWb2jNwkixTb+Ce1dXrcyaTGmY+75fizNYMiBFys+TqWWPC+GBwL2bT3GbGrV7tuLXohiybHfi+NP5CHmGdOPElGoOxtMc35BFEtuz54fI3OwrbmDV6ytRcHnOV8nYoLBkEI/p2U6Nf4AmFhf7Itje2l98/z9ccwEou15DLrtzJbH+jriv0XbA+zXynN+OgDsIy8hvwzlvCTUHcdM3fbWymN2AUCEuttaZe/jaN7VGWHSeqItVqHuEyLnlIBf/jtfm712Tdd0TT/69HkJKv1DALpVLaZfBfCbzPz78UI50W2Syr//GjP/6szlvwYR7AaAf4zT2+L+JoDfCSfF/Xufhld7vHv7WPMjMj5AE6wdkfGHVd1DJnv/Gvs6gGUWfQ4z2ta99ZqesBdBjAP6HhlH41TvaMTeOKRHMHYmPxKwNXkmYOsG7IwH5yAzHgwmBuOeBnM943UJgej1h5Dfwu/73oLdIL6ljKNxCraQpfINU3YYBvKYMvwkVvaftwF1LHVgy2wnL1F4OCNjTx7zodxhn2kH9QNld/2A0Z0WpRPAigHZXR8Bx5visH8fQn4XeIkYjgHzQ0Gt909PwPIYtgWDxWwncLJ0veUPyG4yxPAnZukz2t/lfmtrkZeIYWtsT3lhh8nzsg+8qMaSpsjLYcILO0w60bbX43bJyEsUfD4ETI/wmEZzXZ9p85/SvgbDAOAj2uEBx1qmT7DHKxxq/oEG3JvrMciTwRiMqPWA7CZ4E15m8rtzPM7wsqPR8TCEPiK26diexvKOU5j0euRFE1PghUTvx/FibY2nYrEHJrfV4RWya6MDmy3IkPbk28vobCuH9qWT3NaXZ7ygQ33egUZ8mx5qmQaM+CbdOx4+wra1eWY8yV6Y+2kQFn5Be2fPH9IWOyMx+wE94h6tDC/pgEdjW/XEuUKLTgCbbXneMthNWoUXP/7Evnh7ps0zeBKI+hhbd2rqd+kRW4PpI2xd+7mnI7YYan7DHTZOIFo0lTR/KLzo/Xsa8G1qfsERI741w4st81NuYsnMjA9p54KMO2pjKiAnaNn2si+2pSn2Yy/p6Mq4BDlMe2S8Nn3GHiM+pF17Pg34Br2u+QEZ38UDbHv5xGJixpPsMX1KexdE+Rg710a/RQ+Ol49p5/L3OGIXeFkbDDuMjscdMj7F3vAy4juOl+zaTwbjE+wcL8/YC3c/Yy9q/THt3Ie679Kj65s/gMf0Ke2dbT1GTEgTTJaXHUZ8RDuH6Vv04Hj5nuFhRManEZPpA5gZL2jv/IIP8Oh4+Wa6d33AR6FPeI2j811uOLmDICTo03zXAd5/G8B4NCvpBsp4cONPxoP1bYjx6PqIjPvg+7wm74Pe09G1l8fQfnalvWg6gJ1Peij/1njwGI6lX7Jj6IPBNFLGox1fiPHoysx4RAv4ZM64j341ef/tMYyhjxjd+LMrGBom4BgCiDbAdD8yXn983f52Tdf0eUk/kKbSZ5WY+QUR/RrktLW6Na6sNvpFAL8Sf6N6TkT0KzbwU7ay/WMAv09EdgXU8/LnX9TnMfPfJ6LfIKJft0GrIuz9LgC3yuknIX3j//77eHIzoEuP+PT1Ch8fCA/E+BaPeBcJRzBep4z/lvf4aZYd0y8o43ewwx/DArcgbFGOVJVPGfXkjB0yDpxxxz1uAdxjwBa5HeFc0kASgBGthIQtjTgWR3vNHfYYq5jfGqIzcCDGyJLvQTgQwJyxAsnAQ4x7ZqyRsCfGMTFe84hN0R04EuMVD9iU72LHlPGSj7hhed6QgJf5iBvVAiH5qr8BYQH5SnMPxhrACsA9MkaIQ7UC4bFgEAerw95g2nCHIzKGIti85g47EmHhzLLXf1/ca0ZGAsmElET/Y1m+rWcCDixaAj0SQKIT0aFMfIgxmPtHAnY8YoGEHiKCq78n6IQU9bqGEpfg8m+pTkoTqOJhZHSljHo61KLoWGRzfUA5dY9H9Ei1DhST2sWIjAQVLZaJa1+edUwZYz5gbXQP9LpOYHPJJxC2RQx2zaLPIOUWXB28aHeHhD1G7CHrZJYQ7QSLUcSaJWwi9wsG5lzKE3khgAhHzuiKLsdAjEcesEQnKwMNL90ML+rQL8vzJAg0Ft0ZQkcJA4vGTgcqtiaBKK3no8G0QCo8FN5oPMvLsijlHJGLDXiMufD6wIO0fRAAwh4DFkWfpSfCUOoAxUG+xxHPeYU7LPCaDnhBe3yJN3iHV3iZDthhxPu8xru8xusyST5gxFNe1vfqBHxLQ+BlxJEYmQeskJCQkAk4ljJLzTZMx4JBMavIvGAU3iMv4pCbOoUE07T9dKY9JkgQyvKiQahc2tei9G2KaUdDsS155gCutrMq97N7BzlbyuX+ex6wRocFCGQw9CzBBeknCT0YD8R45BF3SFhDVmPtM2NBsjX6G7R37WdLQw1yrrgr7bxhVNuRwFIJDpJIwD/lJR5wxMt0wMCML+U1jpTxOh3x+/wKP5U3IBC2acQH/IhnvMLTosvSc8IDBowsYs1LJtxjxANGPNCALY8iiIwOr+mIexrwPq/xjFf4NO3xMbb4Sr7F+7zBSxJbe15s66as9VNtriNlx8uWhmJbYitD7QOk3pfoRCC98HKE6ELty3WGaOZpH6C8HMv9HaPaN0oZ7tOARx7xLla4RY9XdMBrOuKneYN3eYUX6YAPscP7pf3c0xEHZDzBAne8wB2vsEZCzyMeacSKE1YQnaFHGvE6HfGKDhiQ8YyXuMeAF2mPgTO+lDfY0YBX6Yg/4Nf4ct6AAWzTiO/yI57zCs+xxAY9ek64x4AHDNinjG/lR7yLFZaccJ+GKkbdlTHugLFqHh2RcQCwKu1B+zkdfxIRvpHuseU13str3CDhKffoWYKnr9MRr+mIAYw71j5FML1b6uSTtMOQM76Sb3GgEfdpwB/xPd7jNQiEPWV8yFs8xRJPscAGHRY54SENeI1R2jBv8QRLLCCYtvkB7xReXqY9XuOAn8m3eI/XeEF7fIwd3uM1nmGJRxowIOMJ5yLAvSqnp414oBEP6Vg/hNwWDC/TAUfOeM5LvKYDPqE9joWXRzriVTpgLPlMIoj+Pd7iGS/xHEus0eE9JtxjKD5U4+k1BjymAfs8ysEJpb084hW+jA2e8RIv0gEvccRPFdt6RfJJ4Tmv8BQL7GnEAwbcIeOGe9zwopyoKJhepyPu6YgjMp4UDC/ogCNGvMtr3OOIj5Ng+nLeyPPSgO/wI97hFVD6TuXlORdbywn3acQrHB0vPQgPacA382u8h43wQns8pAN+hm/xDq/wKR3wKfZ4j9d4ipXYD454wgvcYoE77rFCwkNpL7qaVwNLh/IRUf23LY3YlgDJDXc4grFPGZmP8pEVhIG4+pA9EgYCXjNjU/ycgYBXnLEpKyH3iXEsPmgHwi5lHPIBN+ixLP7ZERmboik2EOM1RmyYsSw+6z1nrEFYFT/mAOlPViA8UMZj8VvXSNhSLh8N1G/O2JF85rth0aY6pIzM4sMmEI6pvINT6fuB1wDW5QPGIQEDD6UOGqZN8RP2JHOEDTostY4wYFP6p5FQMIlfnUC4L89fQbYCUxkDdxAdp9/6z/8Q/5P/1Z/9PmZD13RN1/RZp89FUAkAmPkfEJEGgn4Lsv3sOU6vJPrNcj1e+68ggaiTAts2gMTMv0pEf68Eo94tz/wdZn7n+4TyuU6HlxLVv1mPuFk/4v5lD7xeYEeMb2PEWLZHbInxdTrUrwKPYPwuDkZS167tELHiW0644Sb0+JQXeIIm9qqJ5RHY0Ygdj1U0dIsRW4xQceQ9MvacsQShQ8KBGAcecAM5DeRI8hVDv3wMJMEe/Yo8EuOeGqaRGPcY6n6HkRivaSinrnTICbjHCMojnmEBJsENBhblNKwtGFsuy3ZJVihtGQZDxrZMskDylW6HEYsyQB5K+Y5lVRKTFKcKdUNXLLQybjEicRGEprLdopRZT3s6cnveHm2DsGxLyDgysMairo5gI5x6LNeVl0MJDi6gp02ZbV2kIotcMR/BOPKAhF7KCC8Anc0zLaaRGbc66UJbnaOTf/0KlxPwiAEpE55jhbntIbqCI9rWU5YQm6yyauKvGhAYkesWgCNnCZJQqhj74hBKHeT6NXQk+b2cwGN5ocrTYDDnYgtUJpDKi5xaRLVeM7NbTXBQmNR4WhUeMyQoqbwMkKDiEDDdYVGCWVyO/eVapkO5x/LC3LbISQCh2dYRubYnLpj0VCIq9SxWsyxl9Lb2Ke3xKe+r7XyPtvgebyvGj2iHj3gngVEivMYRr8sEZ00ifzpYDCWoaHl5xIgFi/CrYpQyNkx1C2FpL2Ta0xGMxIwlUMT7Gy8M1H5pUfTllJclelBtH6i8SPsYK0blaYHO8aiYRmKM3FZxKKZNqWdt8x2jBin3hhf5ojxgUU5KUwzt6HPCjoteBUkdvEbGawa+WuRdjyx9677TFUXSflTcVYKxI57wEosSrD1gxLpu+dO+TMeTEVtsa5t+oCMeumNdffBIA77evZYTq5BwoIwPaYvjuMCXBAWe8UJbOHokPOeEJQhfJ8H8AodqawzG92iLD3lb28O3ugd8ix+wLLb6Age8wAG/xE9k4g2pz4eCUXkZDS9btl/ypQ8gJtcX2za/R65C99oHjJywKnVvBdV1W572SZkYH2GHjwymb9MjvsOPtZ/7sGBco3Pt5ctYgdCVU7g66HoGOT0t4ePyrkca8Iih8nRPR9wHXv4g8PI92iKPGV/GGgskvMMysf8UBwyJ8T3sKmYutsKm/ewgfbP2c9qeOg2Cln7zFj0SEb5HO3yPdvjvjE+L0HKHG074HnYAydjwiKGu7NIAdi5j7Kt0wKt0kJPDykesP6IHOfENCUfK+Bg7cM74GWzE1vICRI33F9hXX2hMnpcRjG929/gjvoeeBKj9WOWFjnjNR3wFEsxSXj7mHZAahh0FDMX2XtEBr7pD5eWBBjx0r+WExNpedsDI+JLhJbv2soR+3huTrLpC4WUkxncgtoVia9+hR3yXH+XDALW++7aE2e8hZXwPS4fpA8gzHkqwUXl5RUe8wrG6gq/oiFfdsaxqJ+zKqqy+9NXKC4Hx04opJ4Bav/gC+2prQ5IVS4ppIMYf4h7f5Pu6FfnDwssq8PKzhZc79LjlzqyTan1Z9Y2QMZQyHEhXqItXfCTGkaTvXaIrQRPGkhk36DCSfJxk0yc8INeDI9QHrX1GQvFZVT5AVvc88ohVGSO3lLHljDvukIhkRRLLyWlEhD3kQJ5D7bulvR0wOn9PESumvnxkGIqfvGQ5qXMg4J4yFpkkEATgAU2oOxPwQGPdGpcTZOeA9gGkGJqcwCNlPHLGTembBRPwvASzdgB2gGwRRHVvpS18csA1/QgTA2x2ovzEJL58yzVdTp+boBIAMPNv4g21k5j51wH8+sy/T1Y1veGzvhDpydee+vwyaDVEwduS1T3sI5oOB5WhlOG1RzL8iVBxx7yu/tDnE0x7puoT1Hzmpp+geVu+2L1N8kX1UMvJAZPVk9DrzH6PvsUIUn0GWwaDcqZAfK7MNNV4ifotsQ+3S4oJhGQF1MmUgbX88LyQaDCZeeaEh7F8Sdc0xewxjOx75VgNUUx5otER79eCl4uZ2PMSkkwZ2ulBYivs6larx73D3m/LFHnDlCcOAhZR+aRTzMqD2lLRhcnGLgFpfpGXABKZc/n2j2o759qT42WuvZD7xSRgp9oiioECJrvVTdr/1NY6pho4nSvjBCO4tQGSFURrc30idB/yOfDCAZMTsDW8gDHbJ8zxEvsEZ2szvESMEgTyPNrrhMiLt66IKfIyUpu86JdzW0bCFNOAdtIlQLhF5/R8Yvsa2a9EnWjPmS0lc8029msj+T5nm0ZIjFw/VviTH9dlZVym+Xqe+L4zffsezbYIVFaytSBg5CWm2I91oZ+rWeUl9N058NQjITGauHVon3OYYnvZ0ognvKjPtGMwQU5drIol3wcvj4GXtdUEpFBkOx6ZMl/Kx/a0pRF3BtMNd/jU/d735THJSX02n2EVIKKtrbmfYjADCM/kJ74LvO+ypRG33FcMa8hJlno9jqkxzfFiMW2p6efpeGjzG8hWOA2SzNlSfN+lfm4fMN1wj5caYphrf+GfxLbajbE9RV5uyrvaeATH0zwvDQNT8AMKLxtun0wTGC18PPUToq053jH1A2K/2IYf9d9ovv2Yh0YeIobMxppnrk8OlznXXgrPlpeIYayGJCmOqWmuD7iEKbSfkX255+b9X/qlq1D3NV3T5yV9XjSVrulHlL72P/5FcNdo/+l1RmcmYPXEhpIIQRSxDlYtP/gfuD3R9Zlok6Aojjwn7GjzuhVB83t4XR0y9wJFaNUXyU/cZzBdEnqMTsIiYJgTDbX5KDYeTy1aBaHuJZLTqeL6P1oeWaGiZe5A8sXPzn/sAE5TAdulmyZAAh3mPVWjpuSrgLTmg3Cq1XfRMtkydyCHKZ5G1Va/SUoootVnMMS0Ko6hPjYKP0Z+lgGTfjHUfHSklkiBB0x48XWQJrzgDC8EEltAuN/8GXmpPKp/OMMjc3MAFwFD5CkKDxO8LSVIkMg67bH9xHrfsP9+QaH9xD+jGOy9TlJKsebai83LCpD2DxnuMvqyFSjyYvsE277meInioYfAyyrwEv/czd0f+i2bPyC7d3opWdUGaphy6ZvtZGpL3tbWYTbxWHmT5/58Xrvrq5k2b9MOg7O1G/QTWzvVR+pjbZ+wp4xXRldH3tl0dxIIz9mGwU6fJnWqL35RBKH1teuAcaW2ZYtt/l7bV0l96LsB335y0cayvFjNJpk4L3AuxfYyhPwHtHX5+Lsv5dVkQvg2vMj2ocbLAglr01cTirC9yUdeYvAgtvkofP9h8sLdX84rl+8Dhvg5iwMmDX5r2tLobG2JhDvuT2KI45Vg8GWO+Q+K5pPm3zuBoQVOT3MImBXEJd3T4DSaAG9bCyQJNhpMEUN8X/THJrwEQfUvBUxvYlvneHmAbKHVkq7Q4SZ3U15MPqYYkI99QGwv0Z9TjdCGiSf9v8UQReKjcLcGdGw/FjE4FHPBuIAh8hLb0wr+QI9Zoe7JmHkaU+Sp+ncRg8k7O6BpHxAxzB38YBN1hL9yFeq+pmv63KRrUOkLlj75YI9/+b1FnW/tR9HksE7qPoha74IobxSAPiCHwcZPrHUvehUQpOwmO6LVYwRtyQuj6raClvdifiqcaoNSuyCUGkWvYwDkGDDEky5iAGRPsi3oJAacnzgA/gu4bDlyn3CwsRMyln3wNi8nYOnvWZZ0m7F3FSY3Cw55nYSa+20ARPVxWjAB7noHcuKWHZI7uYxAbrJP7L9oU3mHTTF/Y0VGZ+/3a1REfyVgMHd0SO7rW48k9UgtvzB5CWx5J3VjMXAIaDCw5M7xsra8MHwewCII3S/LSoWW90GcOmk9wctigskH54h9gISY3OSfgLM8zmFYhqGk18/BJR2CaG8UsdbtjnZTrW1fS0pOTJkYdfuZltnyoltabZlXob1s4vUQmIrtRXghk+9cvt5v2kfveCNnW5PAFvt6TEwBE/mAIJdgncnfBluzfQQA3JEf9O+Q3EqHG0L5yCCFGsiv9IvtZUmdbI8x1ztjawNz3eoLNDFyP774vtkJ2TPjm+nBTQK/kR5c0H+HaFte2H4oGkmn+uaVtr8K07e3BNH7qHmGaz9zvKxcH+HbF/KUl6g7uDcCt4LJi1oP8ONPFEy/pwHfM+LIL+iAb9Njze9orFt4pE78QQ9j4IURROKZ8QfdfduijOzGYOUh5qc8WWH685geAqYt+T5jQHZ2IeL7zRfJND1UIR5I8Ifd1tma9SOEF+/7HMn7BceAYQy+z0s64MMgWh1t0/9eeLF1dAhljgcMfKO7b1vPkfH19MoF+a0/N8dLFFCXremnD/B4TUeHaUfTAwoGTG3NYxpP80KMb3QPDtNj8rwcAk/H2cMuvG1YDJ/SAR9TE0g/wvtrUaxftdcqJsruYycTn+VJMLPLT2wt+NnCy2m/OtpaBs772fAnNkZMmdiVUXz/fDI/d1hMbC8RU7S9iEFsx69Ot3W0G0e8+G4T57+ma7qmH2/6XG1/u6Yffvqtf/RNfOdxgf1I+MWnR3w6ZgwEjEVUVERGm/grgzGS7Pm3QsN7JzScquCtai8MkK85Cepc6uRWtJLkq4fkZUIpg7yKQ+ugv4CI6Ko4cl8muCMB+5If4IWED8TIRih1QC56GEPRfmn6Fvp8WExMSOX5cl0cqQO46m7oOTd9KeOeRodhqBi5TtCPYGTkssqJRL2ExcEZSESNiWXgzyQTjVv02LMM/D06bJBw4FEmrBB566HofiTI5GXP4nxoQOXIjIEz1uiETy5f6kgmrQfOVcB4gVT322+KiLkK2IJk8qRlTKVMiYXTDfoqajxWzmVKeizHv6t49p7HGoSSbULinHRIRWRyLNsVEp7yClsMGDhjhb5MPqRuu/r75jA94SW2GLDHiA16qJjwiFxFmVO5P0MCJF3BsEJXMIpTudRJssGkGHaGBwIVUWiqmI4s5eyQcIvFDC8ZYwkGZuRSzxlMKDwKLyKCjsrThnv0kFO8VONmhQ6pXO9KG1FMcr/wps9XjKoHoe1gx0MVaU8Fs2zhECFnxdQj4Q4L7FhqRXkZIFusVsXWuJRRTl+UQIuKhWcACzAWnDBQdnnRwZL20oFwx0WmvTxvIG62ZXihYluKQXnpiNAV8U/Ly13hRdqpKIIdWVYELQ0vAzKICHfcYwcRqNfAgvKyLrY26qlrJAHFI8tEsPaXTDhixE3lJdf7NVB1gGhTWVtbkwhWS5vPRew71faUi209BWHLY+VBMRAYz6kTEWkQ9iWQ/T46vEbGIxjPO6ADY5+BQwY+oKNog5jJ8i0v0LOIGG+4b300JN8Znu7TsUzupb2riLX25Rmi77LlEUuWvjYTFzts4q7/pnuJn843uOUOr9OAf42X+Bne4Akv8Gk6AizbzhLa6imtH7UPHX9EkF05T3gm4Xdw6YuPlB2GkbLYVuFFx6BU2s+aenQs/d7AGbnY5qbYhvaDamsovObSd4NRbY3LOHFPsiWqK+PPoUz2lmxFrRl9waDtpR4wQAl/mB6w5QFfzht8THt8THvseMRP5w2+RxoyEl4OpU0xRiy4jPuGF6uxJoF5Wdnzr7oX+Nl8Uw+nAHQ1mgTzwEBPVNup8iJaLaLTtWSuz9dgQocEooQjtz6gR8IfpS22POLLeY3vJcWgB0eI1g2XOmoHRbS+IhPjUA4okJVUTfhe+qWMf9O/xlfGNZacZJsf68oVsY0jt7asmNS2mnA+13cMJXyhvHw9PeCRR/xUXuOjpJ+3ZPzem0MUOiQ5fIPk8IYll8MsiOuBAh1E4H2PdmDAI434191L/Ey+wZITXqUBv0cv8JV8g01pP5YX1UtTX2egIphe6rHxXsbbcFAEEeEb6QGPPOCn8gYfBF70IIis/ljABMAJ28dDSOQQg4zf61/hK6NoXm1J9QkLBhKdul4xlPYhWpZwvOiBHzpWKi//Lt3jgQf8VF7Xk9S4tPcd6UEQ4r+1Q0v0UBHBsDMaoNlhIjCo+pBcfVbJ65imfrjFtCBpb+rD2kNOLO/tYAnBZLUwtc7UB+2LrR0NL9qnZLQyCC9sMMjqoUXpA0BUMcjBErolWlYlWUzVtnjAklLti+1hMnKwhNSpHH6RcOCGQZgjqO5oJuC//offwN/8X/8HZ+c913RN1/SjSdeg0hcsPbwQUbtP9j0++bDHjgagnERmRXs1r3osMpjI6UdWaJgYuIUIBh6Lk3xTzCrDbzsZ6qDFdducBkTadXFMiagK2q6KoyHCqFxEd1VomI1ArZRJJxUqlDqY63uMbbUC2qR6hc6IJ5dVQqWM4LbdTcrYRG61jDq5V1FeDpj0NBsVgF4UxyPpQFmESxNE4PHAY52c9NCwljhYG7OORO5XJ0fyG/T1/ToBQB2OxcnqgHqcrJ7Gozyt0dU6p+IsdxAHSQJL8m/K2xJd+S/VMnZlIsqmDPaUKJ0IaclSmWQ1TD1GyJdoDSqgXtdAHwdMVI8JvuFFDSgRqExQU60Fdbx2JRS1LMEkrdlWRjhMBxPsugu8dOjQGUwrdDgCGCHBp5sJL2mCqUP7eqg8iKk1nhSTnjI2sLQXxaA8aj7ycuQRmRpGDZbJJHzpMCR0NbCkmMYS1NMgpn5DTEhYlpalvEjKVbtDv0Rq+9GT6hDyG+7qhCmXNqhPJFQ1mFqPewxlEpGqA2sx68ovy8uh2JblRa9HXhJaYGmDHmu0r6fKi7ctxiHwojwuIW1oUXmR9pE5O16syO4dygo6tD5C+yTFYAOAd6YOFMNCbS8RbgCsM7AtZXqGDk/B6MAgAtYdY5Xal25tP3rI9Ro9VuWERduetP1ov6birCp0X1e2lK/gTcRaVoV0TPUkowNG5CJ4u6eMb3T3skINHY6J8Q08tu0a1L5qq9mpUD2X6zre6OlrQxkbKNiW8iSnP7ZAkdoWG17qyi3YvpuLTkzCxvCoPMW+2/IkbWSoBRmRJfBU8odyelIqZdTxZ1PaobavBWRi/iHt8SGV8y0JLbhUAkCVFyN+PFIbI5WXPkvQVAM/WqAdjfh33WsQA10tfxvTtd458HKYwbQuLUjGyBG6ulLHTA0CfUwHfEwHPNCxYJA+Qm1LBdS13tUvSNx8FzlUIWGBthJaO6k9ZfxB/1j9Ci1DNrYWMahtJaD4QmJ7t6WVap0opg9ohw9oJ/Wu7cP4Qplkcm8xaSBFTn2U9tOV4Lf6MgzBtKMRv9+9rjzuKeMPunuHyfpiygu/AS9L+AMGeoheotra4wleMrFbqaKYlJd6neXEusYLiq1lfL1/qP6cHqpgeRkChmP5vW7FtIdXWFtdFF6+Szt8l3b42XwrotSF18GIto9gHFW0HWJrKO0xkxxMs9CAfvFBuYjza9C4bimsPmPLH5AntqYi2KAmrL1BZ2wN6CEHRWiZNUgzAu5gFXfQimkvVTwcwoP25xaDjowaXO8NhoPD0PxyxWT7ahE8Lys6Ky+y0ha1b0ZdITpAVr265dQlPb444pp+tCn/JAp1X9Nnkq7b375g6St/wgt1p9A5RDHlqNst3bpdEhv2ZNN0n3Q0sokg7bn+iS6LHlJ4QBTtjZhwAVOewRD3dHcBw0TMNbzDPW8GUxdqKWKID+T6ZwtSwI25099bDAl+a0+8n0CuzARyZZrXYvBpwsPkF7GE538fMcQ9+in8Qq6fz0dMl9Kb8qKp8mp4sbY2hynyQqGMl3jxpaOLvMTfvC2Psf0glLEzAZHZZ8T2MtM+DmZZPqFsT7pQpnP5t+UlaqBF25vL2zZ9iUd5h6+jaGnx/lhHTigVU14GkBNtn3aLBKuQRAQ8vYAhYo5ljDpUE/s80U/aLUs2r8LB3IibkOv0jGaaK4f8rqwK0vJ1AeOl9jLl4TyPp8ZQzS/QOfvWQxXOYZrahh9vOLSvSV8bJwmRlws8RV6iNiNCnigQEdt8xDRzPfJwaXyJxTlVZ4qhllFNLdraXP4chvjOmfunfe35FDFFHZ34jhQxxYfMYIrtZWJb4fpnz4vex/MYtMyt657BEG3pPC8Hsz1vjpezPiumfUI8OKL+vPxzN4fpXJpp05fa/NRnnT7Tpgkvk0NJgk9sD4rAlKc5M5jy4sszhusTXwHAV/7Ek+mDr+marunHkq5BpS9Y+su/+vPoFq1X1m0wmhIQ8vPBg/qvNBXqjiLXUZOmvzAhjMnurwemWg3x13NC3ZeSfHttmJzQ8MwkdxEwRIzT5/sBWJe8a4pCw1E8GZgP3mmZo9DjJEVMmAayYoqi2PHErfiqyNP58MtUe2suIHJpYh1TnNBFMcsWjJMU6yDyEsUqYx0gXK8ra2p5yGkBafLtxwdM+rfk5ZLtRV6mARKfIi8xzQXfLgl1PwnCw7EPiCn+/tO6NklSbC+xznSifiqvW+nO8TIG24z1HGso8hJ1cmKKguh90NmJLxHx8ZgPAUaDian9uz7q3toaIYR8gL3q1JfH/nxZe6Yp9tVDKHDUqnvKy8DTtF+zeeWp6oKQ19ZCuB55mWs/l/qQD4tIr6ZVCIBGYfuYYvuKffckaBv6bi59gMX0lM/X+yXbi2PwpTFylheTYr+WA4b2ntO8XBo/4seiI8aQjwdNnB8zY8Ak9gFTTF7PSFfbwbSjqDU35xvZFHmJGGIPcekQhTkMc5hOfSCpPBhMlz4WXeIltqfY770tLxNBaPKY0ikMJn+Jl8hDzL+GX/0y9VmnKWKw+blDSWD66nlM59Ml24q8LEOtzPmY8fcRQ/SN/McjP/68CS+xjJf6sZhSR/ir/+kvnL3nmq7pmn506RpU+oKlT7+9xXiMky1MBvn29+mocylYMP2SG75wXPjiEVMKw5HmT018zz9tPl06onwyGL4lhvh73b7gfk9wqwz8X4Lzxf6Zsvv/fJpOTC4M2BcmMhFVXMnwtinyORfauPT8iIngJ6Fq71Tvj8/379C8DUpZZyv+2crd/v0SL1pGTZdt6Xz7mmuPflIOd4w5F4d3Dstcmr/uV0RNgw/B4Y3HY4UUVxcuyQ9Vun2uleltyjrFPJcuOcCX+r144lBMsV/r4YMJPSc8QwvKdEx41wRpCJDTqUyk9NYK2zPwNHdO9D32c3P2z9y+lG8vTCAnq1DJ28EB48V+7WziuTYfMZzviy+9ahVOJoys8fSVs6U5Z2vxgaeCMZpie7nUJi+vCp3hPbYfw9Ncck94A/4urfadsz2bpqt3Z54fg8JzsCfVz+6yLVAMXk5tK/JyPl1atcPfJy+X7OFU0n7v3LMu8TK13fiOmfQD8hLve1sMl9pHzMfA2GUv2PsJc31C9NcwyUdbO58uraCcjl8+XerX9JlvgynOHd7WTt92lVseGR9/8/Gt3nFN13RNP7x01VT6gqXf/j//kcsfkN3IoNpAmmQC7qe9FG7oi86Efn2JX0T8tGT65evSsBMnQqoRU79mh/uHgOFNAj4JbeuG6HZ4THFoO4ZnRkwxXXJirK6MPC/PDvg67VddHU1zDnb8oR7nrY5C5CWmuVU8/pE+H1dyTJaATyak54NQczWaDAZbjlO2oPXctmVQdd8I04n/KUdN/2wnA8n/xiBUC3jK9TkeyWJgqWcb0LlkS3ElRuQx/jryUldvkdzdthfI/0bbis+bm3Ro+9EVQLb9MBivyX/5vYgxfBl+FlZuHMmjjpPwU4Fo+/72CrUNswrB8KIYst56wmQjL3EVz6X7e4j+VZcJD3REj4R1UTZ74GPRcurxPifc41hOuEt4xoQtVAQ+4Skv5CCBcvLgghMeIXpGdymBmUGkwtQ+LalsAyzdyR9hcNdjm499hGqTZJa2ca+8k9ZJnowvNh+D7aJrNO07XT+mE1R6s/YTn/ce1i6/p7gC4HxPuSgtRlPEOPd+W4aq9VMwjcjSXgymyNOlAMx0UuzrJNrmEMafmPrQfuZ4ieNRDrxcaj9xnLcnezKm7SWuzFCdN31XRVgeEm3rEqYMuC1Ec5hiitCmbTyOkf4Z0dasNpX+EcscMZ2biDMKJoMh5mOa48Wmk75MSdHWLvOSzvLi++7ykWcOg9oat4Ckjv2XeLkNK2uH0Cec8im13JGXxdyYOsHQQjhvEoy5xEv0reKqn0v9pD5fnzPXXny/53mZs7U4l4i2E3mIp8rOpX/yG3+Ir/655xfvu6bPLvFVU+maTqRrUOkLlh5fHlz+Tb/q0mQ40H9v1zU/We4fnvW239hi9zXtzt7uq9Wp5F3YuGLlB8P0tl/3zj1v7trl98988b8wLkzL+CZvefNSve2wFG0t/v1tv4pNvw3OrYo4//uYKFw/9bXRtpfJe9+Sl8v1fNp2owPrv0m+XdJgWsRUncsTZZh/lk9R8+UH7VNiHZwuR8MwbT7n2/SldKpfW6HDirsa4I9C+EskvMsrpLLSTITse9k2QpK/5b6uUOpAeMJ6jhgmGnTTMihmEQN+O0xt9su4PHE5+XtXnmne8RJvfMv2E/W5vt/x403TFJOfvM1+IHhLTJdscYLxLY338vNnbnQTzinGuWd6v+LEO+wzy286TFdOzD197l2n3zDzs7fm5fwPfnBf6dLzfZDq+2s/b/iOE/lL6ZItn3zaGQzWjiS4MX9dUwxlvL2/d/75MbG5j/D2/eb8O+ffcSp/+flv68Py7I12LvGm/f25tH11Feq+pmv6vKTr9rcvWPrZP/3M5eOXgSj2Ojc4Mrhen5uUvpVQNy4PuBeFuk9hiPkTo6hiqKdTYCo4O/1Cf/6dMV0S2X375/lyVZ2cMxjjnv4LO5BmVxadS9OA43meT73+1HLruS94HDFNnnU+Tct03vW6bKtaVsMLYKVv4LfHzdTbW/LypmXSdFl4eD5wfIkXzUethQQ6L9Q9W2af4uqRyQEDF3iM+bk+4RwvhCkvl7ZdvX2fMF/vp67HqVH7Gn+KF2qnCp14xxiuPr0gtH2pDpbh9xe3FYff174+jjd2fAq8XGo/8bIV6gamq37mdNTOlflUe2w8sOMl6q/0SF6o+/voq99kS7nLX4gqnVp16sd+uwIBZ2exukrzTd4x83MAb7Jl/fx4UzHUU6+8/l4t4xlbuzTAvG0b/8yFuuee/5aYTtXbqetve0DHpedHX6d7Www09RMu8XKM482FfiumS7Zcf8/m+RzyF9Lb8jJtL2/3/Oh3x/ZTn38CU0x2a1175vl3zqWf/dNPL95zTdd0TT+adA0qfcHSX/qbP49+2WifE+qOYnuTwBKT/WTsBzMyy2zLP8fAVRW5LtcnTjv7PwdkNzAdkOEFauGu98EJPyWW7F7J5gs+hW1RU/+3HiM9wXhiDKyTufLHrFC3Sd3MgGvzc6KiWtZ6T+BlbouQfW6rdvnbEJzsLtxP8GWKwsPxesxHoVS3LWwmP8GEaXVTKGMU6o4Th4gpiu5OJ3yeFw5l0rzjheG0PpyQKk2FuiMvcQKnWyROYWhlmccUbeuz4CUKdcel9lF4eBHaT/xzKtS9g52IL5FMEHiel3M81YmJ4wWBF18Hp4JvjZdoW8nl45+HIGp9qf1EsdeISSdLtQ0UDLbcW9slzMzGolD3z5Wjt91EG962zmF6ygvXF8+Kw7L/q73MhEnfveDkxie77cPldXITbKvWWfnje2nrMKzYY9Stab7Ilpe59tXSHC/nhO0JNNnu2YUxsz6/jifnBW5nt5nw6bx/yYwgNJ0S6m4Yoqj15ANW4CUGEOtWMOsHmHRJ1DoGtvgEJh33BZMfU6N4crS1yIt/2bTMp8Zgvf9NhLojBpuiqHVMlQcKeXP9bXn5LIS6bX4Eu759Tqg7YognNsYDCGqt1zK/oVC38sI05SWmgMHm54S67UERc5gmB3AEG4s+ZcXA89eXiD7r+QMIcsBw6hATbT8dSLatR17OzCX4gq0dgq3F1PWE//A/+YXTIK7pmq7pR5quQaUvWPrkGw/o9i1IwwAW3JlOm+TrsunEXcCDJW8nCkv2+ZXmywgie+JbSihOMrW8HUB7kJs49EhYxOtmQCSmyUkwS4uJy9HWZzAtdJAvaREw9WFA7AKGOKD2nAKmJI6JCcbZrzADGEczIRvBeCjnbUgReXKykp2EMhhbGtxEV3VW7DusY7On0Z06tMeIo8ln+MDVAdldP4KxQ9S2sSsj2J3UlwGHSZ4RMfr8axzchGlAdhiOGN31RxxxwFjLOAYMGf40qT1G7Mz9jHlNCMvL1vDAYD+RJjgeGYx7Ojpe9hgdhhHeMd8FXg7ILs8gNyk9IDvMR4zYYXCT1sG9L/LCeJzw4jHsQv4BgyvzEDAxYgDEr6vpdUJGLW/bzwLJOe5L6tzEYgDjSLlOPgZkh0Hq2bQP8jwxGI+Bl0PAEG1tS4ObFEZeYnvZYwi8ZOxNnohc+2SCq+fYB8g7R4dpG/qAV4XZ8g84Bh52DAymX3uB7La4DQwMuQVBX+DoMO4wONvKpd/yAceWeiT8DN9O+17Td6/Z980rkycGfnF84j5E/PHhzp3Q1gHBtpKsvLG2ZPPs82v2tnUgz6vypmkM7QEU+2JgG2zxEceJbbHhKZ4yyfArriKGnslh7JFc4GgR8nMT716P/C75daj3tTmNkBCCBTwXPIj5KS/nMC048ta5gGLbwGneQR5T9AscJkyDNr0NFrA/gZHBEpwIZaZgy+mMbUUeenSOhxT6QSAE45h8e0BoP5jzZU7rBQkmeitelhETpxleLA+YYLRlSjO8REwuyMlTDPa65KNP2rnVd9P24q11gc5h2KCbBEgWDiO5ek8MrAyGNIMpao32BVvFwDThwf5ipbZmrltMS3STMbUzPBHDYUoBQ/cGmFbBtmywTTHY/GSuEDBJ+4GzNYtpjc5hcIMLA90R+Oj373FNP7rEIDD/BP4X2uc1fX/pqqn0BUv/7P/yR+hAWIExlElHlwgrdBg4YwAjEWGNDkeWSVVHCWtQnWT1ZcJ35IyRGSt0yMgYGBiZsS4Dz8gqmi2D1Qguk1vCslw/Qr50iHgpY0BGj1QmBuKsrzgVp0Gub7irQZ6BxRUXTAkDc8WkGEYwOiTcgHDgjIyMnsQRUkyLgmFkVIFbzY9AdShG6JG3gmkoZaKCMZV8FzAtkYpDynU6zgQMnJFA2NGATMCRMzok7DBgJMY9D1iVgTgTsOMRi1I/IMKeM3rIl/CBGCMPIvYLQibGY8kvkLAgwp7Hwh9qQGgBEfg9lCnuEiIYvKQOAzMysvBNElRSGzhgxIEyMh+xQocFUplkSn0fkTES13ceMDpM4mgmHDFWUWSGTMZ7JGQAQ2K84gPW3GNVHL8DhuoU5hIM6Ms7tyQWtkbGisV91jJ3pXz6X4eEPUbsacTIGavibg/EyDxWcU02mJSXRx6F78CLfJlLOBRehlIH96WOehAywfGSSNqSCJS2QN2y8DIg41h4WhYeR5baSiDsaawYF0g4QgIuY3nnEgmZGIfCw57GCS+D4WVZpoPHwrsKo+7K/Qx2mNQelZeOCT0lDJzrBOaRBixKH6ABsTVL+zxSxoK7EmxmHGnEqtQllfb2hBfIBHBpL1saSrmknrcYMBDjgYdqJ0xcedGjjRWz8NJ46EEV46LkiRL2JU+mvajtCpaxth/B3NrLrvAygrFEh6HUW2Yu7+wxEoN5rFOagRjbYlsHZMNLhzUS2GAgADkBD5yxZLHTIQEv+IAN99IPU8KOGQvIYJ+Q8Doz1kRYgvEAxiNG3IJwU3BvM2PBwDIB36QDjiXY1iNhRwOOJZi25r7WpV5foQdDRZNl4vKcV1hwwkdph9c4oKOEVRk/ZAKZcMMkATimGiA58ojb3OMplviT43N8kLZ4xIBnWOLPDD2+k7b4XtqBk3yEGIlrMEj7/jqeMKqtLUttjywBsee8qqtWpC/OjpctDTgSIxdbGQov2ges0IFr300SNK59b1faC2p7WYW+uy8BH2lv0r4eacSi6GqNEJt37aVM20fW8UWCFbnUvWIktIB1Kv3LaPpDojYe9UjYsARLExN6dNiw9M+JSVtVFcSWYALXFQya1+AqaMqL+BlyPfKy0D69XF+yYCJG7du0DLm8ty/vFBtERT2wBH8jJnu9Z4OBGV3xM7jkB0AwlHoeiy+z5r60a+FlM8PLwDJWRl5WBoOGsBXjqOMSyURcPwQsIKuHLIZVwdCV563KWNPN8JKQsCh59ceUF+2Lrf8XeVmVkM5Q2pNiUl5UHFxtTXlpttYCV0OxHcuL1LuU+sgjushLwai2NaAEQZFwZMFERFhyJ/16scU1o/iDuW7DHdW2Ck9a3lXlSa4/42Wp9zaGSxCHa3i4I+mDxTegKjB+5IxlsaVU8ovar3Fp06iYpIwAUvMpx4JpzR2OlDGw+t1cMa2qrXHpj2XMTKWe1T/RvMUwICNTC5IeS3/dU6o+06L0S+JXa3tMMneABFx7w9MBQErCi/rhRLYvFtteMYqvyjXYqBgU02gw9aA6V1Dhb3m3lO93/k/fxFf/wjtvPAe6pmu6ph9eugaVvmBp/1r0I8T5AAZABgNQGWhHHMrAv0JXnQK9brdByEDdHFZdsK/fwXpIx39fvmSLA61LwFv+wBlMZbUC2pcMDS7pVyopc1cDPF0ZVPSbsJRRTzZrGAbk6sxIsCiVMk8xyEkkcPnFDKZtcZIXkK9wjzwUB1TyuRyfpJi6+ntx1o+lXnUrRNVCIKmfo+o8kKyMSVxOoyJxxDLL1zVQWbXBY/39Hma7YLn/yMU5LKsj7Al5R4gDzNzuPyDjOSd0RDUIo8LBOpkedJUIMQYMuOW+TIpQ61wwlGcWR18xjcy4Nfe3VSOoE1fFtKUB+zziOVYgyAlJdo2UBF5KLZIEAHY04mmWb2NaZj2xRDC1VU6KYcWdBLSIsYd8eetnMUnwp9PrBaNOVJQXxayrUIjLsvNy/8CMpeElG16UBxRelKcl9wA17SL9zQDGgLFOqBQT8QKrUgYNclhejoEXZhjMDHta3BEZY8B05IynWFZequmRTKa4OIO2D9AVO0t0WLL0K7U9sU68qPZTdStZaC8SVOR6GuNIsupqwRIcU146lnapGA6hvRy46P9UjPI1m4jaCr/Cyx4Ze+TqECsvC+5A1DjxvAxtSwwJTx136NC23chkijAWHtT+FRO4cxiIpY9iAvbElfdMwAMNOGTCl1gxMUYGbkqnsGPgsbQVBnAPxj1GfFUDigwcR+DQaZvP5T9ufQQd8CQvazD5gBFrtI0nMm5IusUCt3mB79IDPqRd7Zt1PJGgSVuPINd73JTtd0sk/Hy+BbFOtBO+mm/x5bzGP1l+DKIWnNlZ20JXLVJtTU8C1L5ZT6zTYFg27SOb9qK8KI/aBxATFsXWpC9u7WOPsW5D0fYyMuMZ+mobugVE+yXl3WIaAwZtL4pBMbX2QvX/Etr2OPnQ0VWcOgYeyx0dEjbctvt1IHTc1s7oyXXKspbB+gVtlUqe5UXHSE2NFxgMFpNf7axloDICKIYDxjruW94VE4ytSWDEY7CnXYkljjiaPJX+Xz4gdWCkCS8EXdXS1dUvlhefl0A8G0waHFN/qgWePC8NA83m53jR1nVwvMiq1Vbmli5j8namtnYovb76a7oyV4JDMLYlmGKbP8eLBH7Gml+WcuwKpgU69NUflDpcoq3Nsj6m5cXnZWWWvF/GAR1zFJP6b4pJk17XutZ+TutVeZYAmV0BlXEw+YRcgzLSj6HWccPU7tcPJ3aM1fakPuuBx3qQQ4cO+5IXHxumvcj1LmBawNpa6wMUE2M0cwmxhV2xraXlhaZzBcVAgMFgMZUt7szudwCwu/eaeNd0Tdf040vX7W9fsPSVP/PM5e2SXsAcq12XvJLL68qNOnM0joumuMf+slD3+cQhHw94niyJn2CKGMrfT2BgzGn3+Hzcs/+2YpQU7o9ltsv6AUxO55mIJFLymML9EROBJuKs8VCoKJI44fGt7/c/iKKisQaj0GMmnvBgU9ziMVem+Ot4f6Yf7P5LvMjq8NZ+pvpFM6K5k3r22/NimaY8Rh0PnyIv8Qhoiu2HfH5OayHaWh9tLZQhtofIc9ySGPUm3pSXen/AMOXFl4GAi0Ld0dYmuhsXeInPi3UyRNvUy9pXB0xDaS92++nU1nyZ4jk6T9l/d5q2r/PHVMf2sw7fsSLG+MMdjQ4Dl75a80uki7Z14tE17cmPKJds62J7pHC0d+BJt75VXkK/JoGc9pK5OrrUXqaHWfh0SUx5+nyfcvj36BfUvvsHSJf08y4Ldcd0CZMfjzr4vvv7wXTZN3o7Hi7xUtuJ8dcshllNswvp1DtO3fG2mN70fU0QeubQhwuYpjzgbP5AF8bYt8TQNJ00KOhvjOLjc5gihlP2e+r6bL2ZFBGdxDC5Pt9e3kRQ/TIv0zEx1v3PhDnNNV3TNf340jWo9AVLv/wf/VwQ6iY3sZgT6nZCqQS353ky9tGMoKY6yKx5H7i6JEI6GGcVQFu90V45EYP1mGiKCXAY3DBFM6fnsP9zInoYMFC4P4oeRhHROc0ni4nD/VW8ktrXoz4AcXNQmk7Mp4K2HsMecbIVefP6FPswlYmOkS6Z16Rfy9VJiO5C1WIwPEXbimnJnStjxBydmMjjwN624uQsampMeRHn14lXTnjx7cdOSmUrwnkR68pLtUWPOamugU7MzeoKLZO3Rc9LFB6u16nluwkG3yAPwXaeqPCwlpljmT3GKtRa/rjHwYm3zmqkRd7M/XMOttcyKTedwKRbRHwZ/cOjgG28P/4pvLR3RMuOfcQh8BLLHHnRVY+1Vc1gWgdb24Zwwc/yyr0u8hb7CKslBEwDjk956QImAFyeAac9d6CMLUaHwQqqJxDezU3UmkDSL5kyxr442tYLHFx51qFfi7ZmfwsUXoJovB1/KLQfXW2nGGTlmeflju2akWnfHDGNAVPtJ+v9vs1Hkd7ZifmZfk6DsJZJ268RpqLWl8bIyEvEoCvxqh8ReOn4PIaYn0ySCZPx6LKo9YVx/4KYcgq2GjWfyPTj8xi8X5GVFzve1P+Z5yW2x0sYopjyVBDa89Jf4GUyhoZbM/yYKivlPA+Rl4iBAk9TTL7vfkVeqHsZ+oTuAi9RqHsEUE6DqWW0Pqn4OqdtDTT9ODptLxyu+3JFv2ISYAyY8iwmM17VKNG8r0MzmNzH2Dj2YnqIwmFSyT51PeEv/+2vnr3nmj779GPXP/oh/HdNn026BpW+YOmTf3eP5cEO24Q7J9ApeTso33Hv8rfcOaf5NvsjkG/LclpNKxAWZgBdgmSQLvk1OmzKNg25P7n8Ggm3xlFZgnBjBsTEhFvjjBEIN0Go+w4ew1NeuInsXS6CgIqBk8tvQOgNhhUIS+NEr5BEPNZgWpv8igumWuvkBnXRUvCD/BqWFy+aCJ6KJLqABxsRxJKioHoHL165UMe/5r0wagcvoK777TWpFo3FOBFOtZgwFRWN+Q33QZzSfzOMoqOycsHUO7wwqt2KCJQl8ub+iEG1EmyKvCwMj8Q+wMEQvYbIyzlR+DleonBqDJI6kXikotuidVKW45v2MRFLNpgSTvBiMERMkZel7UMAPMFCxFnLTe/zCk/zsubf5TXezauaf4KlnIBV25OXVmWI/oNNG4uBg+1hKva6DhgmmAIvE2HhwNOUFwRefPsR7bOGoUcQSgXhxmDqtN80ZVzbCRsDt6GvXgUebuAPTbgFuSDODQGdiYDsKDtmF0giHKwYqHMYpgLROlfhmv8Zvq1l6pnwx/KT2k91TPgTw7MagKj9niaerhpg+FWXy9hedDWTyVseNmFtkmxr8e+w7SUK2Hahn5P7/fizmbEte316+icuYlqEfu5cvkdqwWe0bTm2vWxCv3YuDwY29mQ/lnF6KmLd8iK6e56X3o2p3aQvt5gqhpIkSHoek21PBGBlPRWWMlLNct1mpCmKJa9CnxAxLNBNMNn2Vtu0wbQJbT6ONxHTxE/gPtiW7wNW6CYYvK15TKvIE3telgFT5CViirykiAnSJj0vrV9jQLaMT3hp+fWEl2n78XnP01NeOP+tAzn/rUPCLXuenph67wA8sX0GgDv4YNetzQO4CX71HffOr75hz8OGfb3fIAWflLAy41EPkm2gJn9jeFogBQyEu4Dpzor3c8FkeLgNc4eI6YY7jyl7TDfsD7S5BcGfg+nTemB8+Huvz9xxTdd0TT/KdNVU+oKl3/0vvo0FEe6YsQewhwwuz7jDruzj7pHwlAk7NKHTZ7zArujoLIuztyv6LWv0WHLGnhkHyrglArNoNe0hTsUtJxyYsS8TlhuWQXxfhHaXZcDc0ogli/hpx6LDsGaZJCcAO8645VT3bO+rxgbhKUSU9gjGghoGFQV9hgW2PFYhyee8FO0SzgZTxsAZNxCh7gMDezDWZZTblzyDcEsJPcspUx0It2WQ31EuAZoOPWfsaMSaO3Gqswj4HsB1u0pmEVZOIBA1zZgeKi4uX+o7FMF0ziD2YpYDZPvLBk2cvC91JgLquQqqM1P9CryiJjaue+sHVn0UlZ7UbVptpc5QporL4qAeIJpN8kYRK2Zo0EcFjKVMtwVTKv+nwqsqKqqio6qPcccL7AtPK/TIRc9gRK51IFt7ZFXGLfc4cMaexhpUUtHQptWhQqlcbe2AYgdIoCLoqeLbhIQRGQMwywtBxV5JAlUlfyw836BvIvFoQve5tCfLCwNYU6qCnFHMciNqP1UoNSNjSR1SEVKtIroF07oIbEoZCwZqgrWqd6GYFuhqvaqekEwUmohoB8GkYv5VkBiCydqafv3/MjZ4zUfc0xF3vMQzrPAi9/iE9njGS6zQYZN7fEI73PECN1hgyQmv6IhbLooLLJO9IxWhYYiO07HUq2LokRwvVlh4KP8lNF70BCHlhYuIqGsvJI78EbnaiuVFBcIbL4wlJREfRy76IHoAAWPNjcexBIW1xWn7tO1l5XhkEKsuidiZtvlnvMQOIzLLAQEMrvpnm0TImXEkwoFlIv4cCVuWk+SedlT6DMYxA9+jI6wYMkNOS+tYBOJVrJsgGNa1hNImNcDE5X8zGLdY4Gv8FJ9ghwUTbrHAn8jP8T3aomPCEyzw54Z38J20xY6a2LXOj3rz/CMyHpP0r6rDppPYYxFLXiBhAeBYhLmVJ23zz3hZEEr5VKBeeRmRsaAmuqtCw1Ty66LTpILO2ubX6GbaVy6B6CYITSUAmktLGZBxJMYNd/XETe2bFZMGO3om7Evf2xtMK+5qUOeIJo6cmMqJmVwwoeq+SZtu/Zq2p6Pp524KZtWGS1jgyE0zZ1OuHyEaN5sian0svNygw7GML40XxdRX29N+qy+Tf8Ws441wzaXfo3oqouogHqwIfB1vRHPnDiLAX+sECxEjR/vocETTtNmgr7ZFSNhUW8ol6NP6au0TFJO2BxVHXhddNBV8Ft+lAxVMrJggh2oA7ePOwdie7edaXgXWyyEkxvbWhZcBGYkIt+ix57GKw1tMkRcV6u5M+9Etmnq/2JYe5AHHi9hWqpgihs5haPlbLOrpmVb0+lgwbApvc7zIJ4hcbSnysjK2NkD7Map99Tu8wAbyYXFf+tY1Nf9NV1Gn4qOKhl/CM+6xhRycsEDCMxB2RRR+gYQnYOyLv9Yj4SkYO+bqDz7lvvjh6nf32HHGDqME78rv9xhroFp8nSw+NYC+lHkF0SJqGIANqV9d2gel6mcvkGrAcYsRi1JmLVPLM3YQoe4FUck3X1/vPxTbelrmDmIrHZ4wVQzy8RXYc8auYFC/fk8Zt5SwYJmo7tGkLxYA1gB6Ivzu//Vb+Pm/+O7MbOearumaftTpGlT6gqXDQxHqJsINAGLGFqhBkSMyDsQ1n5EwUvlqbr5aaJ5qXgb1DYu4LZF0+msA90UBWr+c3EOEuVfosOKuikZr3uplLIuDA6A4OwnrkteTc0agBjBuQThABz3BMCJhIHGsb43JpxKAIIepA5UvUqm8a422UlfyhJeQTRjr4lRuy4RLMaig7RKpnARCDQMnvKZjFUTX/4C27FmFsTuQ+2p3SpATyFVU1H+RTkXkMdW8/jmQFxvXpceabyKc8l6VrK0THJdP9Wt7E4PNNSCxhIprq2B67zB08KKiEtiQyUeCTE7IYNIJgN4voSzCCDnuXHlQDPOCtgmjnClSMWiZmlglOUwaiprjxS7Lt8vXdaIrIsZdvW6/gltedtSWjuvkc06QU4VSD8X+FYPyeIoXLpNKxai8KKaFqddF4W0wZehKgEG/SPvtInOYRN+HQHiKpWyBKhje4TXe4XXF+JxXeM4rmXARcIMFbjSgBA1SEKxIb4KI8urpR5sa5rDCqOQwEWTrVuMFZ3khyCl5TTi14W4io56XnbEDPVWq8dL07GIZlRcrnLpBX1fstPub7a1K8M721brSsvFW7k+EFYAlgMcSWLqFrPZMkK0zCwIWSQLetr3sy9lLKuKrtqKCtR2a7cQj5RltAcUaHX6Gb2sZV+jw83xXt0qv0OEX8p3jhdCWVuvzVaJVedFTLAHMCHWXEzrL05S33pW5lVjr+QBZb6W8aNK8rsqwffeA1ldrQExtLfYRrY9p6BSTnt7oBKHRRHo131VMXRErlmdEEV7tE3Y4lhOcEjZoJ/jFfk0w+vZkV39Kvt2vZeqR8IjB8XKEngCHEuyEw6TCwm38Sa79dA6TPF8DqXr65GgwxfZDBtPNBFNf71AMHahuvVRM0mekikG3Map4sv19O4GPJmOqYjqEMVRFrTU/WAH1ah8Nk+VhHXixfoDFsCtj5Bo9VmCHya4wirY2LwjdViZqmbclJK75Y8B0jpcppj7YWuSlRw/GHoPjhTEv1H3K1iIm7YeW5RkPZYOc+m/H4sNqvq68RMITbiv1xSdtQt0auJWPYroaVU/iLIFXFhH4IwmGGyTclCcSqPnZJd98Hc1LG+ucbRJeQyTO1a/elwCg+tU6PimmunoUCbcswZ2KiSVgBUL5aAYsmHGvmFhOudyRYhKZ7kxhrlB4keBS42UNKqfZaT8IOWzEbIPUpHOaa7qma/rxp+v2ty9Y+uk/98zlY1Qx7tsm/btZwsrmH7jmW6r6DvWZ8R0+0STv/4XD9bjnPv7+5PPtgwymiIHxJqKHb/jOE7/v2f8i6hqkyRN8invPqyZGfJF5fxRPjsLDJ99hfnMuP70fIR/vN4WLhcWUtzlbi8+P77zEY6znE0U5eX9Mb8JLtLWJQHN4aUQ1Fd4+341fEoe9zOP5PsGKDuulaGuxImO9Tm3rfLrUXqaipqW/qkKp0zd4QWj/DMKUl8sivEGwecLjfBntO8/f7/8W20s9ea/8wwijJXLyHT49I9/TTfvm0PefaZ9z74t9eRTvj3+PAuoLTIW6L6VYwqj/Fbe7ToS6Q5oeUHDi/sqLcqK8+PYjK1vaM6a92tyjoy3GFNtLtM03e34TfZ/jKTzvjCnMYZqO85fG4PN9wBtjYs+D6yNMP/d2VubfoWmqm3YJwxuONyF/apy8xMtcmo6J5x9wSdT6TXnRdGlMfRNe3lbkendBqPuyHzCfP30oCab+27lqng6pk3dyeMulw2Xe1u+umKqAenz+zEMujqHn3xkDSsB0TnNN13RNP750DSp9wdKf+5/9HPqV1fHwA1wVUy7/WCfqelO9ud4wcarjd4MYuJoGskpi86d55ACfl5UZfsJnUwc/AUwB0+SHDiBmMcWxcREuxAE1TvDi85bBK4g6O1HUGvCYOPChy7EtDHey0wymOHmK1ROFUS8FB0Xk+nTgKk7MGTyxtXNaQbYs9Zns/30RhISjmCVC3mmboEy6z+TfiBeDQZb6U+DF29oAX2dRzyimqeD6eaddt1VYDDjDSxQZrZNcw0uHM7xQEaHGdDKqfw4hHydD+ugWEPEYojD3VGdnJoYcxF7npgXUQE4CY7G9xDQ5oODC/bplp/4+2FoteH1+CN6R1g/VMp4ThAaAwZoeAYvQgAb2+Z8NihaxniPmPUYnWi08TGYSJ69n8mLJk0R+opFAeGZEreNqo/KT8Hpfngd4Ud5VsK0oPDwdn/LEFmNQyLafdsmMoaHf3IQR5VLwezoGe15iHViNtbnnx6Q8KS9Mbbvx3DsiD7Ka9O14iRhi/vvF4PKmT1B5MjJiyrafexNMMUVeYt8de4hOC1bfcT5NMJHnKaZY5jfBEAMuEdPkZM0JL+fTXPDC9SEkqyrtmHpjdN0INNGrXEYB9MnhMPHl3i94Qf4czEUoaAyYXMIwIorAe25llTMcpkm9hTLHYNtxwotPy1DQLozzsV+b9jGhr0YYU8kLcetqUpt3fvFMYCza1gHnU+oJf/5v/fyFu67pM00MZKafuP8mxnhN31e6BpW+YOnD33sF3rfhhsPgJboEM184zIAWnfY+uDALTOebs19mSoqToQQfpOlDGXrSMrQJaAzq2PsFk8cQ8z37ifUiYEpzmAKw5O73wpB9qGdZ4hvFxRctgMOEOyzbdRaxYzJ5J8oL4A4Ld5LeEyzdV/yIKX7Lio5Or4EuMwmKEwdrK73mq+NGuIPH9BTLtt0wYAIDtwgC6lg6TLfwQo8beIHNTdmWo3nR+/IC6lZQfYEOty1EiJXm1RlFwq3d9hl4SQWj4wWeF8HUMDieMD8ZOsdLPBqYL0wUVM+i5T0vXeHFYQqCz3eBpydYOky38KKiWxrrdhcAuKcj9uYUrx0G7Ex+j7FuywCALUbc41jzR2I8UgtXy8mHvsZ8HYR+iov1mj4hJgr3z60Ai/Z/jpfp/QjtxYe2Op20Vlvy+RR+D/bi4/IMuH7NBxwZz5cjehNtvk0aWJL7btcjlv1Y8/dFe+MU5j7UUhXqZv+bVt/l9+G6xTQdKyIvPh0n66sutx+bv0OPZW59iGx79tvcnpj2IlooS5Mv26pNXx4Phojt55Z718/dmO0mgE5AT2OYjtFxTJ4KpsfxK4Wv/tNVMzh9nc/fP7+axf/bJV5ivg95CQD5J14KmERbcwEQ9ifI1dPtzgR5IoZp+zifj79gUDi5bYrBB7amvJxbWRdXlb4Jpku8dKGMkZdLgaxLfXXHwJ/lDVZmvPnj440IaZf8L4xPRJ6hpK/mOzzJiwrk5/MtnpuDIX4ur/Elk/8qr/Bz3O6/Db05g9AFTP7wC++DUrAtIvMhstabfT67D1a1Rw62Z/2xnr3fvID3Mafbj6c+qB0vxJZwGhOmtmc/EDNzeF9cK2U++Na+9nz7iHOJSRoYH/zuq3N3XNM1XdOPMF01lb5g6ff+y28jEYoIKYpChuik6D5vKl8cdG2ASFmKqChDnQguXypkMMtlCMmQLyLMDCYq2xXkfgZcnmpenplZ36eri0RcsGd1QhiZZZWPYKD6ew36ZMjXDRn05f6GSfKszweDWTBUwWcW3BGTNhTFMComNpioYaKKAUa/Rt6Zoe8Qx//AGQeIcOqTIkpdRXexxK4Idvbo8BQJex7KhDLhDgscVHCTEp5hhR0POBRRxGdI2PKAPUSAWcVgx/Jnqpi4urccyicLKOT/5KtU27yhToFoJnS1XnMpn5SBsGNZlbFAh+dYYcsDdPWHYlRB9SdYFhHRsVxvmERDIeNQBDj1tLZjycvvE/Ys2hGqydBzxr6IXfZINS/aE30RqxyKzoTg2PFQhFU73DE5vQstM0ECU08LxmR42RtenmKJHQ8YSh2IqPyIQ8FoV/JkSGBHVgO0IK/lxaZctBhQmWmTp3oqIBpv0p5TKbMEahbo8E7hpWPRRnrCqdhidjyoqPvzkleB2gUS9qVemYBXfMSaRFNsh1FE99FhjR4DMY6Q3665w4Fy0aJhrLjDjgYcSETzN+gxgDESY8RBRJmpBTvY1IHaoqpkJLRAeZIWX9qst2Vtr3FFl07uMxhMnpcu8BJXMqkwvG53spMpbQs24NK0PdrKFZtfcmoY0DR/Wp/i+z1iFbWWa4mAmx5YpxH7kbAbEjoCniYRRt1l4MkyIxGwPzL2x4Tvji3Qp0LWFlMLXkiZllUnQ+pZOfIrWtp11ZhpdUDhXjjMOrFRlg7IeEwZHcOtzDrXryWTZzCe5qWc4pXloIkBjFURtN2r5g0J0i0PWED0abQfW3FyffGAjI60jQ+mz5D2IiLwRaOHM7gcQLBkln6NRhwTO1ubYmpJxs82TWdjS8qbmceBEeupiaqrrYvtJeghCmJrqY4DrT21CXCzzrISkWTlqa5q0vAi6m88L7E9CYYmoN6hteEMFIHmhknLVdtrwETm982PaeNVx6IbxmBklneg+ELMZdsxUbW1OV4iBuVF2+DC1FLzXaje31azzI+x2n4683zLi8NUf99iE4pJ/0X7pS60D4/BBoy4BvdsX2ttbZxg4FkMBNseLSbfV7/LPZ6gwy9jg2/xES844wY9/uzwBN9Ne3xKR9yix58cn+FD2taDH+64x8e8x0e0wzu8wru8wke8x4dph/fzWoS18wIfpD1+ihd4gg5PucO36Yjnua9BmezqxfPWQ1Yz2754RPvApra1gARxifV5LSgjtiy1Is+T9kMkwuG1/9Z2U56hHxTUB13C+8EdpM9Xn3eErrRu40VHpcxsfFZtDzYfMZWyJ6L6vmPApH53j/Y++QTRDvBQLU0ClX7S9gkNk+Y1aQCMAPzr/+Jb+OpfeQ/XdE3X9ONP16DSFywdHyVAQSTkH4H6ZUgGdfkHXeqtzk/9MlOS3q//ok6FCuvpv3dAFazVgWBvHP2EtmxXn2GfKauWKORRMXRog6Z+WemAKlqt92awyysGdY4spt68r2HSe9rXHIthqG4yyrBpMXhRXblfhk4Rp5RS7csk9KYIQQ4k+VszWRWhx4V73ho9lpCgSirXbwymGyywQQ8NKKD8eShC3epMNIdPnQmq14F2MlmbDHDN26+VWo+t/gSDOs0dEu5kw1/FcIO+Pi9BhYm7KuxtMTUB9SaMqgKduq1qjb4GlAhWOFWSilOqUKoVVm3XWxklECWio0M5eczzkorQccO0QY8lMvaGF2t7G/RYoxPny7QtkLWt6QTbsgK0CYO6+tm1J89LtV9o8Gs54cW2tw33EAHoxoPer3nbftYQYeFXOAIJ2CFjS20liQaXVDz1gFzsUPAdkXGkXLeJyN8P0NPcBmLc01Dvt/8124uYW/trkxlfJ5YXmOc1Pst1arzYe3XSdI4XhLwtY/xTBZ9t3opga1/XMAM6odF8uy5/V+tLCdgkxrofsT10IIIIp3YyCSEC1suM9TIjv5aTJrVkYylVCmgn9RTqNaa5vtf+eep+L2VtrlN73sGNL3P9mi1f46GHnNg5kAQ3rXiyns63MNsBNQCu44UKDetpZyLSu3D92g0WjncRV24ivCtQE1g3mMaAydcNYNmw9ao8jbXvnrYXnSa2MTKO87a2yN3jLbvVq9RbNhgSRrMy0f8GmPZR/p2xDNb3aHXky+yDMB5TfKcd99v92d0PiHD2JV48Bm+7EcMYyjiEd8YxNvIy7ef882NAMbY3SfO2NYcJJg9oUBildhRtds/MBckpXs733W2b/hIJfwwrHAG8LP/+c3mDr2CNx3K4zE/zDX6KN1Bx8y/zBl/mTX3ml3iNL41rLMvT3+cV3h9XuC393vtY4H1e4AEqpC3/6Tas5r/FwH7D0KNNrJptlTy11Tq6HlQDevb+2o/V8cbzp6savW21/+zK+qR/YY8hOwzNZ9UyxEMRIqY4vuSQB7wfrsEh9UG1TbfWNW0vFtepbTXH7XSl6jVd0zX9eNJ1+9sXLH3lzz93+RhV1MFgKmzIJ/4+vfcHFeqOabqn//zvTz0/YmirQ6aYJiKhPuuCU3NliCn8fPL7qRDk+QdxzbYJExjTF51IBPKaSzPpklD3pfvnt0BMr5+ytVO8nUpzE9l4d8zHCdr0+dGWz9dBxEQggN8cA4C3FlC/VKapmOv5dGp7xCleYvsheGBRztoAAQAASURBVAxvwktMU17O/z6+YWpT/t/jyi79+ylMwJSXeH2qLfJ2AupRTyLW2VTLxJcj8hJFrY8MjAEDxTJk/9b3u/Ni45GH8ZLxhjT5fWg/ysMpTEvQRKj7bfviHUWh7tgXX2pfPs3Zln1xFeou+SjU3QVMl/pdfaZNlwTT5wJT51Ls1+aFuhuOOh69RYq3XxpPYvv6fv0KfW4V6rZ9hOvHZgp58R3z79R0doshLnN/qg86NabOiidfSNO+d75v1XRJ0+xtbe2V6vM5Qejm7LwJpmk9+RR1QN/WZ53ark/awyiG1kNYTDP+3KlEl995yee81AdM++b590Wh7rextbflZS595S88f4O7rumzTLrD4yfpv2v6bNI1qPQFS3/6b/wsUhDqth27ftm1X9Si2KtzWEm+qMA8Z18utVNU/PW5YIHNZ3gnOwrUHsCTU4yss9aFfMSkGGqepiKH+mVK36vXGyZ/fYpp3mG1ZbSvXOj+eFPmGPSJIryRpyieHCf2UzFkP/mJ13W1iHWyY/DA8+TFlCNm/bKriSFixRZDzI/wYrBWxweA01t6EwxDyEcM3HzV8jyfT6BJcMEKyDLBaQclEEbytkeTCWMrs/1y13jxZVYNmeaQJpePf49C3VF8PPIiW0hHc52cPtIcL1HUugsYWqtQHjyGyFt0eMcgam0nf3J/xO/LpHnLC4MnGGyfYMXE7X22TXtM0/bi68CX+RgwReFuWy/6Ptd+ShlP9dU86dcIr4/lGstX80xc8wCwOySX/1rvbSva5gQDTzGcS9oHVLwEOYre8YLAi0VEuGOdZgr2aGvT4IHn6ZO0d/lVEO/vg4gngx0vGewEmFN5h+ub7YEDBCfcDQIeDCoCYW0waT15DOcxRUHo2M91IY+Z/DRQlZ1tDaEPsLZnA8mn208+m4/9XOzHepATQ44Y5zC4PoHmMHkMNkUMZMbDt+XFTrxjQNFj4LOY2LyjYfC2F/2EiGlqW5d4OX89YpiMsTP5OUxa1i1lvOLRCEK39VIVE9n30aRM8WCIQ7i+Ze0H5c+2bholj7OYEDDI9i/bdwNHI2pNpCuVGgbbTuZtK/Lgr+9DPvZ7U1/fY4zjU+QlYsoBUyrbKh0G8nU2ta3IywlMJ2b9tCD8uV/9udlr13RN1/SjT9eg0hcsffv/9xKfbjNy6aMHYryisQ4eIxivylQBkM79BQ5uwvQag8s/lOX+1QkAcDCDzT1kC5Bef6SMrZl4bzGWLS2S3yPjntrkZCS4PADcE5vrjNdggwF4VTdrycAYMb3EcYLJOuKP4LqNQjHtDaYHjNgZTA804vEMpiMYDw6DF3pMKKcYlXzHhHd45QSgrbA3ePplaY3kxF+X8OKvR2Tn+G9pwNGJJ49OPJmJHa8HjNUZk3zGY10IjhJgbI5/W+7fbOtT2hmeMr6Fh1rvGYzv4KFOMhmMT7FvvDDwLC+wMBOyu9w5Ie57HLE1k9KX2OMF9i1PB3xE28YbBrykdsbIBp3jYYU04eU5N7HxARnfw7Y6SyMYf0T3DtPH2DoMqxlerOP/SIOr9x2yC7bFiYOIXg+Op3O8dMH2jsj4xPAyUMYf0X1tHyMY38a9m0y8wN4F0wb4ifYWRzcxeMTgMIxg2UpS8kPAuMOAR1hhbh90yWCHaQDjHkfniO9NHTCxC3rmcr/tE7YldNUwnedlj9G1n6bzUjBQ5CXXU/GEF/IB8xJQsQ73PR3ddYcJjEe0vjuD8YIOjpcdfCBqdyQcR9TtvB+PhMfc8scj4XCkmv/uGPuIwbUvRmjzRLPB5FPpiIyv02tjaxn/tnuFvakn9zxu2jOadHxqfe+UJ2tbR2QX+N3SiG+nx5rvUQJV5RWL0AfsMeJD2tYyHGjEH6bXtQ8YwPgutm0rEwPvsD9w4Dn3dTUSg/Ht9Ojs/RVNMVkMe4wOQ8SUCc7WBnDRh2qTt62zNekLre09mDGUy/02vze2x2DsTPthMB7p6DA8TnjJZ3kZSdqwbV97Y9t7jNiZMfUInrQfm88XMMkz/fVHOrqJcMS0xXjR1g6OF3YYDwWzDXZsz2AYw5gr9T5MeDiXt5iEl2MYbzymiGEknx/KO2wd7HCaF+XB5h0m8rwkBg451VWWzIwXGF2g6FXw315DNBit7fkysvPfBgCPxr97JMajsYstsfNBD8h4Ra3MQ8nXvpgYr8nWO3CPtopffFJG9EntGPuSjg7DQ/G/mu1lh+EAYGvGqz0Yj8HvfiAzNpQyWp5emvFmRMBAjPtgSxFT5OWlmSsA4pdHTHZusA9zhSMk4Ke82MTMeHnI+OY/fzm5dk3XdE0/nnTVVPqCpX/5X34HA4CXDKwhg9BIwEuMWHPCQBljAl7yEWsuygIJeMFHrNFhwYScgJc8YA0R4eUEvMoZK2KsWXZMvwKwZmBV3sFgHMFYgfBIo3y5gdy/oxHHMunbcIc95aprsSknfEgZB2y4K3ojwEsw1hCnZiDgJUv+AMHwggdsWLR8KiYkpIJBMS1rfsAGqZwORnjNGSuIzsUAcQoO5R0PJBMbwUDYljIfWYSHdxWDYBpI6nks9azaASr0qKs73uUFtlCdn4T3eYVHiMBzh4QbEI7sJ7uA7jmX6wfOUJHgBMLALFP8BBxYtD5E60omHUcwlmj6QgMyVkUbZ6CMzCKgeCDRuxlZ7t9jxIEyRj5ihQ4rdOI0s4hPr6Fn9LWJ0UCMj7DDLfcYwTimjD/k13jOKxHcTow/4ns8wwpr7jAkxie8wwY97niBFTosMmFXApNr9FjmjD2Jds8uyXqOQ6n3RxrwugSanvESDzjiQDK5f84rPNAROxJx3Vte4DkvROeECY8YsM4dVkh4lxd4rLx0eLfw8hEdcUwZ3+FHPGE5q+SQMr7Or/AOr7DkhCExPuItbrHALS8cL4fCS+ZctQ10Qr1AwhKpaLSInS+RsEJfXPYRHRL2NBZejliiwwG55tdFK8rysixSqwuIQ7ijAUfK+BBb3PICI3LF8C6vkJgwVF6WWHGHMQGf8l50oVhEh1VHBgAOlAHO6ElsXSbBMkFRIXQNcvZI1VXNJb+rttXu12DCoqx9zGVi2yNV23pVbLEHIROKsLLoMYGa/R+RkQl44COW5rre3yOhp1Tvp4LpwLlo60jwRCaVwsuSunKYgfCyxSj9aeHliCxi46G9HLmJ0w7EuOcBKyThkBivcMCKe6yRwJSwLTxq3/yaR6xKP6f92oY76WeowyMzFqXv7SnhxQ7YLIBFyngcCY9g3GbCXQLWifC463AcGKtFxtcHmQSIWHuHXcE0FF56pBp8WxTbYgIG5qK7oWtW4nd9SQ90xD6N+G/4Bd7nDXom7FPG79IL/FTe4P28wgodjmAklBOSkDBAvrQPyHid5OCCBYlo/wG5ivhr+zkY2xvBGGjEyCIwDwAfpT22GPE+r/CMl/VUyS1EEWaBVPuEFyTBjO/gAU95iSMydjTi36VXeJfXABhDyvhu6RPexRqL0pc/8IARjCU6vMPC5WsaMHSMb9A93uEl7nKPe8VUbC32AUPNC6YMCW4ppg6EY+m7VTtuIEbmEQsk7GjASIxHHmpfPhLjvtgqg5FLXtsfE/DIRywgovwg4LG2L70+FDFq+WA11PYk5Tma9jPFJIHmEbnq2wmGYxG1l3sfy/3bMmHV/L5g1DKruL9iAuAw9QHTEgmgVDGI38EOo8XUMDRbUwyKSfuoAfO87JHrGKu8DMR4KLwckCumJTqovt3rgqEr/dwpXpS3LY9V/e4SJsEwVEwyogovyoPa2sKUqWGQPuKRm19h+7Wh9IOKiQwvWkeWly+xKCC9zMC6fAsRf2/EuvhNx8Q4Fp90wZJ/meWgiBUnHMPBELIiMlf/rQPhkWXlzYaABzD2BAw8Yo2ER2QciPESIzacsCUZnz6F9LUjMY7E+BRH3LBgsH71EgSA8BLAmhkERq4+KwNgHI0POoshMY55wKrkR2I8lACgnIQnffkRjDUIR7QPHWsQHpCxJwlkrTnhESP2JGPwhhP2lCuGTVkpOZAEhtacant5WepkUf1wwZSL3/2KR6wgK+3HxHWusCh+hMWkdnEs+UwoH6kZq8LLFjKerKCrrSTYtCv4/sX/7Vv4pb/6/szock3XdE0/6nQNKn3B0nEvE9YM4JGlYwbJ6oetEciVvP1KIV/ltlQ0J0hWUOwhJ3EgyZeRPUa8w6JKsS//cXnHAbL6J5f8EYwjtS8bR2IcqwivODuvacSS5ZQwXbG04YQVkmAA1++x4ihwW0JL8nVmtJiQ65JcxbSDHCUPal9/nmEBEAkG5uqQHcp/2WKi9sXpQIyD+WKlmNTBG8oXr3UWh02FHjX1SHjCxZEjmWDrxOVAEnhYFUduThuHynUu9UMgLIrj9YARIF0l0pY6Dcjue606ys95WZxWqVPFmEm+TCpvI8mXRllN1ZdtNxkLVmFhn+QrXvtaOhLjY9qZ68Cn2INIAjhcVnCMKQNZ5LBvOIndQYJpG05Yc4c/KMqOe4zYU/ty/ojBHUn/SJLXyfyBMg60x7u8wi3r6oRlXcopPKQSGEDlZYsBn2CPkWSViF099xHtQOW3TLKK6pgynuVl5SWB8Fh4yVrHumoErT3a/JI7oJysmMuEXt+pEy3NP2AAcbGJwot+WSRQPdFF739Fh1pnIzE+dLzIyrFE7XmPkJMF3+O1/MbYCQhl8tsw6YT/Kcs5X7LiyK9KGc2KBwnMajC5TdK03XCpl8HY5rZOiKSMB2R0zLWNjyUYAaBsV8ygMulDraOMHst6fzaYdDKsK/G0/SxYRK+VFw4YKsbSXjpOsg2JZLLcMWp725ZJnLaHLQ0Ad7jjVHnUQDITsAv93CONOHLGe1kxtbAOUcJuAB7rNkzCAwMPI/C1JPnjQDgOCUe2vEj4yGK65d7xskInguCl3oituDxMrRSbMnX0XXoswU6ZbHyre8RrOuJPjc/KvQDMr+XEIc/LYab96C90styX0iiGNUsA4yENeMCAXxoTnvJCJtksE/tMrU94QQe8LGX+hPYV0ZEyPqBHAG3b6ws6gDLwPq+QQHiCRV2lmEC4RY/EhA+wBRPwCR3wUdmO5zDBY0LApIEf7QNuuC8TW9+edKXMUG1L+/Jma3aFE5e88iLtSQIKG/SuPWhgVldezmIw90dMlZeC6Yb7imnEgGWZrGf48UfzR9tezIoKi0mDLDuM6E2/eMCIzCyHL2gfoPVMuorqBCaDQX0Xza9ZrF8C0ANuEHlpPMzxMl7gpQOZfk540THYripWfytiehNelqUFKy/aXpQX/UiimCKGo8nP8ZKK7ejW8Y69rR2otfwtl8NlpKLLSsyGSQ6GqA0MO2TsKFedtD3kA9Qd94UnCQY9zal8bBDtOX3HQLLS/kBtTLynsfY7ozs4QgJ89zRiwVQ+5ogPOjDhhjvBAKNHRJIfDA9bZDzMYEig4meL370qvIgPOuKO9WONcK2C3/JBlGuZ1QdV+1A/OwdMsqI5VQwLJqzL+LNFxpFJPnQUTEeDaVf810u8aBBUebnlzmBiPMup8ARnmzYdd1eh7h9lYgActBd/EtLcR69revt03f72BUtf/eV3XH4qEC35OgEp/x73Xre/T79BR5HQy6KH5zuoqeihf3789RSDz2tqS8jP7/EHTX97SfRwisH/XrVMTqXLmODyimF+PUBZyeQgUduOceKdwwTzvK2cun8IzC0D83O8WAyRl0OYUMVEINywj5NfFtb26ZGOZ6/H58X3td/N83IwTrU8DxONpshLTFNeYr3G+32dDeTzK/bWPNfmbT5XRG2ZfMQUbS3qg10SEo62Fu+PZYviyqe0VOwWwEJO+fei28B6v39HbD9zaQz13F8YXiMvEVPsFyPvHP5CAVPUohvgD1GQoJRP+4DxPZxvT5GXKSafom2uQ/vhwNMjDdXegDmh7lSD1/J8uih0Hy9HW7Hb0IAp5tsTbX76nobB5hWD5uN2WAImeniX0tuKvn8WQt1xvJlseQwVffkdPl1q85cOt7j0vjn9I4vphyHUPfWNzo+pl7if48Xm9e+nML1JutReLvESEcT8qefrc1+XMbn13f5H348gdOQh5icHqfB5W5vark9R00lt6W1sjcMNl9uLT5cOIJjyMj+GxvdNx1TFNFOIi+/w6U2Eur/6K+++wV3XdE3X9KNI16DSFyz9+f/pz6JbB6FuM9FQkcVTQo/AVKjbCQZS0z1oAyZcXo9MPnU9CnVHgc5DuE7wg5OKkGqZ58THz4nywnzla3vmwwBq9DDmMMS/RxHrA58OAM1jejNe7HVyzyNZ4SIFA4C6xF/zUfR6j5lTkTjkTTqE+w/IzrZW6Nzv58SSGd6RjsKquqJJ62YHP2F7UiZ8p4Jvc6K9tp4/NNpCer8NFiR4Edw7s/IApexR2N7yJF/xvCjv0vAgec9T/LPWc8nHYF0KwsKRx10QU75BP3Foo22dszVpP9n8nrAIbnnMnwsOyv1eLDneP+cw24n4CIY90oPJ9wkdUl1x6RK1P20/9ya8WN0sAPP3mzLuMLgyxhqJwYXYD9ZnljIneLF+pmmQ50CtMESETcC/q4+Xv3wNS3d9EWwttnmrBwNMxfoFR/vNBp3DyPAivQMxPqW9s7V70+YJhKf57du8zUfb+jjt4ccXHzR9h5cTA5wLYladEMp4ETBYTcEEwsb0W7bvPhfYvYTp1G+Btxe5Fl58Pxb7BF9n1MZEnr8vHkBwSRA6jqGyDbblo+h1xDDBROfFx+fGUMsLYSqmHHmJ4v2XhLojLxoSOoUhYzq+xEMU7Jj6/fASMURfKPprPZLD8KaHKNR8sK0dZdyjaWslEKzEzpvwEgMgkYdduB5FrS8JdTOm4v0uT1MR+Ex8FpN99hyGqW2dt8UeXkA9ivVzyGd4Xkb4MTEK2yf9GzWMNs3xEm0p8hLnEjGlBeGX/6OrUPc1XdPnJV2DSl+w9Af/7FM87AbXqT8Goe4oZvmIwQ1oW7PEGdDtJ82RGeEHm10QfN4FoUdZzuuFH614JUiWy9pJw944MrL8vV1XrRMrYPsQMDzCi4qKbkgr8xHsMEjeYggCneSFUw9libImERn1mPbBSbaNMQMTTFaU9xQvY3ieH9bZnSBHgDuVqB5lXfLLqiaj93uBZ91qp0n0EBoK1abR+0V7ZKgOZ8ZU/DUKpzoBaAY+SFu8pmMt17fSo2wxKfkocCvi4l4Q2vKk76j1TIw/SPf1nQ804BvpoebvacC/7V5W+99hxAMdna09mk03DC9oCwbWps4YLM6944UdL33gacnJ3Q/AHUEuWyJavav2RuWpaM9o2mHElqzINWbEXz0vbosLmwCKSdb2RMer/Ytu1zl1PYGwpGZLy4BBAii2xRBW1IKWqWyZrbbK/sssQ/Q/TIxFtnmYfB/c4roCq/LiT/VaBF4I7NpTD9nyqGVaax2wvd4w6VZXvd6hBIYNphXIlXnNXqx/FdYN3CVGZwq5BlzY6LZndAbkC2RXbwnJBTGjbcW8TL7apOARA/5b034OyK79aF9sbeub6aGuHmIwvt7d1z6AwXiRDq7v3heNtDa++D5gBE+E792WMmJ8O+1qmV/QEV9Pr2uZXtFR+jHb5mkIbd63l2+kexcA/8P0iC3agQT36Rgm0lMMXjzZi8Qz4mlsUZjeB/iOYBzIji9w4sq5tHk7CTyGfsw+X67n0GfI9i0V2dVtdnaMtJiG8g4bfLPXdRJrJ6A2H/2GsfBiMVmhe33GqfGGwdhTwESDC9psAw+yZcwLpvuTMz1PR8i2JMvLcIaXcQaDOzWS4XiKvIltFk3Gyssw4cX7c973iQd4aN228ogOlMVkg80ZjC1525rjRfPyscufXhv9twfyGKLY+JytWcFoELmDWfZg9/FyX3QYPSbbXjxPIDiBdDAmwvbb0F4m/lzoA6YC6p6HkTymiFHlKrSMh9JGT/nROVzXZ1iu9yafCw8Wk/LSMMc+YDzLi2yB9MFPTQzGw3HE7//WJ5Nr13RN1/TjSVdNpS9Y+hf/z2/L3vUipLqlbIQcRUSRCVUoEoAT4GwiiiMWYCxB6ChhV/I9JywpYce5TqL2ZZgZIO/Y0yii1VVEVAVs5R0jRMMi84AFVPSQ8chjESpOZRBn9CiOIAHb8s4DLKZyGpHBlCATPb3eI8k+bx7Rg9BzwqJiarone+aKYUeCSYSGBaMVqxwqJq71aDEtIRpRW85YlMmkfEWUIfxYMGg9av6xlJlneIHJyzPb4b5DqdOeqUwwpPw9ERLLEbw6se9YAmpVoBXta2SPhATGUFZa9ZTKPv6x3k8QjZVl2R/fQcTIH0i+S+1obOLM1MSRCSi8DCKUDNU5yHUVBlHC19NrvMNLPM9L0UHJ93hFS7zLK7ygQ51AiS2Mpd65igpzyVch0+LYd4WHl+mAf0Mv8aW8xh4jHtKAf0uv8F5e4TUd8UgDfrf7FF/OGxxoKDwJhgyAE4roaKpBhV3BdIsFFkUIV+pV7CJxWw3AQNFbUhxiPx2Lfk8VaGVuNkgJqfCWIAEJEQPPhhfhcV15EV2u13SoGIQXnvBi8x2a+HYHwhqid8TG1piAnhNy0RvTAORYHGEVaE0Q22u6O7IyLENWN6mgt4pp66oR1fFQWxsgwvQboqrPYsXIU/k/LaO+c4MOA9tnchHbZodJeVkiYWR2vGj7Wc7wsqi8NBvW9rNi5YWRSxBLhailzmRF1abwuCz6LItSBtUiWZfnCfcJNyxi/gCXvkJ4JgCbJCshBmYcMgFEeALGAbJK6W5R3psZw0j4Nh+rZpKuJPG8dI6XVQnFaT/Wtu3K/76gPR5pwL/qPsGX80b6FfIC6QCKALtqehD+m+4l3uM1nuQF9onxb+g13s8rPOUF7tMIMErdtgCRiIuL4LmKWi9Yvs/n0lf3SFKfRcRa3tnjZRIB//fyEh+nPV6lI36PXuBLeSMnWBLX9jKU5z3giCVLqNO2J9WI+tfdS3yJ17jLPYbE+P0izL3JIpKrGAhliyqj9sv2dLxFeSfQ7HBRbCZjLKvwhLNjyY9QlS9G0n4RTehe+kmufa+O+7YvtrwsSg9zrG1X0hFj5Xwsbb8r7xSBd+GhL+Oy6gppWzuWMVMOFOgCL8kJ2+9prKLwCSIePcfLfeEl9mM9RJhbxfgXSCCimufy+wNz5UXG9BGd8pIyhizaiUsVyy//9VAdRRQMqfavufSdMi7LO+p4VWy4K+Oq8qLjSw68JJBoRJU6El7G0sO2IGSnYzlJ+VLApLamvAzF1gj2UAXVt2Qwj6XP1C2do7MtHVMPEBH4hyLEPZQDCJQX9Sl3FhMlHFnE+Z/xCokIO2b0xeZzar4RWPR7xJ+TfxPx8bHamp4cOJQ+UQ9hGEt+ga7wJD7ljrgI28v1XcGwLf5bwyQ+pdbro7EtKbMejkEApervofo6ua4gysYHTUzVf+xLvefis1adK6KKoYd8SDrW9lJsBbLyrAcVAfUm1i9+eMOkPutjua79WPMpE5ioYughvv+2HAQx1L58rB+t2vNkvqE89YaXnbG1zmBS31z7BPWJpB+UoBoT8M//H9/Gn/rvfxnX9KNLfEGi4Zq+uOkaVPqCpfHQxFwHNPE+FXasX2xLvn6VICvISTU/MPCkDHB68smGOxARdLksl99LXhdXowo71i8dpKK5ZQsOiRO75FTFjvfI6JjQToEwx7JS+3rTytxEeRVTTfX6KKtHSp3ICW1dw8QyybcYGqbi5JQyzAmj7qDBKaqYEjcR6gMYVB1XKvjJYfKCmlPh4AFFw4VUaBglqCRP0kkBkQR5EhK2BGjQp0NXnymOY5sQUpns6qQygbAsjqZOHFfo2zvK/V34vR2GVNzYYrC8DJATcTali2pL7IWnT+mAT9MBpUB4gQM+NWvDMvRLo7c1TSqMWp1aFLFkeRx2NOKb3QP6suLlQBnf6bZ1tcGRMr7VPbStPFrvhpdD4WVVbSvX+5UXLR+R8i7/o6vCbAetPCkvjR9UHpZoX3SFg646eMqD59VsF5rBEHlRoW/lZTTtbd7WJMCwpwxiQk868Wn3J7PKSaZEHXQtZIdU/2vX24aHhklOn9HVPakW2YuRt3fKVEiCNM0y9X4yeWu3kRfbfvS+qFWhPFiMy0n7gONVg7ntfjmF0GNqZViUOtDVlUt0dZuxPn+h9xOwIKAnxsNIICKsAKyobLkjoOuArmNw2Q+nvKh1NF58mS2mNqWVpBMvoLUfU7GyaoS5rnobSjhsARGL/ZB2+CjtsIIIEX/Y7fEBdvX38QACnRzrdTkldMCKZSIuBxCIMLBObI9gLFja2p4yvt3t8FgkYveU8UfdA7a64ii0FyZZJZW49cUDMlCCJJkYH9AWHxHhDssqzJ0TOwy2b7ei8hNMJt9zqv2AnDQmtV8/KNSwnhfT1w8YVuTdtnk+wQvQTs7TZ6v9ZvN8LaPt68eZ6yPkYwkZXhblRCvlJRVe1HfJpt6l3nyZnRh/4OWIDDb5sYzBK1dGX+aTvKQynhUxY0ILzKzLoSW5jAdLxYQphmPgZQi+zWGGF2bU1cLKSz25DgxM6rnlc8A0aPsJvOhHCB1TdQTKJAGLpbE9uxpuDoNbrVN46Y0wt2JS0XcNorUywvlCesKf5sVXyu66BJJanYxg3HFytrhmPR1QD2KxPqkEmFq+icS3gx6aCPzB8NIOVSCx5xn/bQjtQ4KhUwwuzyNuoH62YFgUHuSU4YyeUXhDOWgFBoM93EJ5abZ1KAHG3mICsObms2YGNrXe/aEJlndtb5E3y4vOHe64d7ysOJkyNtu0aThchbqv6Zo+L+m6/e0Llv7YX3rP5e2ECjATotb/T5JdDqurWGy6KHoYnjr3Dpvi83WAP/X79nzv7NrHcHB+zmKi6Z7uqCd0CVP8/Ujn6+zk80/wEjHE/fCEorVT81Oh7piycWKBy6Kil3javIGItuUlm7/Ltek7bCLQxTLGFJ8X8/FtURQ72la9yvo8j2mHwbhvp0Stz5c5CkJH25veH3nxv7+p4QYtg0KYr+tcEZUAgQ1EQW3NPo8m2/XO8Qhctq3ITKyD6d3sLpyyPfv7qDnztv3U2/JySbz8klB3FUZlfZ7HdAQwhFdQtI0g7PR+8r33lJdYxvNaWbe8mP132+Zj/lxfTcBE1DoKdc/1lR5D5OF8+7rc1+ufXJ7nMURMFAo1iwnnUyzzJaHuS4cuxBR5iZjsNXkepjycN+8JLxHDtH2d6ItP5Ke8TzWdLKY58eRLmC7bVuTlvG19P7zYvP69YcJFTKfe8ab5S+3lTZ+vZb6no8MQtR3fRBD6Eg+x35pgYG9rl/qU6fM9ptrmyxjTzdja2UTTvveHLdQdbSvm4+EXPwwB9bn0S3/5vYv3XNM1XdOPJl2DSl+w9Of/R19B74S6vRPehQng/F5m/ZPb11iTn4pRkvtdE7lGuR4DIt5ZjacYHTi7vAzQ1qEle0VWNoRJbcTmBsiICW0A17f0FYNiTO66vfYmGOL1RXAy6oD9BrwodCt8KqsXfHOPp1PFzmDQOj0xEY9OwxHZ5wPGG/Qu2HDKYbaaGjnwEh2Z+KdOgae2N3W2galQdxS4jULD05NnZnixtlacP6ux8Qnta1l0OxPMc6MYckzRAbbaQcDUOTyy52UfeHnKC9cH2FU9s4mm4rCHsnpDaJoKdceg6CVnMTrZE4fZOK9SZp+PT2f9Een90wBkxMvmL46nE/dfOu0wpihyPZrT52oBQh3EwFe0vQ6Y2J4F045BZ1mxZAWYABzDD/7Cunf5pwHSohuRTJn2GF0wTrcmanrGy5mJ+GkB6DlBaNsnyKot335OnZSpaU482fXNbX2tYAztK05qY1DoEgZdWWNX20Xx5BgwsXU1l+KYGzFx+G0cX8hDmLwrCt3P8WJ/pysI9eVzAf/YJ8eJ/zG0jyjUHUWtJe/fEPsE52dc4GmOl2pbIV+fGTBF8fFDwBDHk7ZhXdKc+Hj0lc7ZlqY3whTKfip4EPu52C8tkCa8zHfIiiHy4jHtKU+E7e3oYm1NMcUPI5GX2AdEQehoW4uQf1NeGqapbUnDOMeLf278cyqgHoOkPi04BVuDwxSDxBNeZmzN5pOWOY5H0KG32eSb8tIOzJlP3YLwK3/jKtR9Tdf0eUnXoNIXLH39tz/FYdeGuxGiG2DFk0e0PJeBZOqgtgk0lWmFDhrx9LWRGHaePYZ59/xXTxsoINhv6j35PKM4vRXDVEQ0B0z2T0Cdaq6YTp9MJulQBDxrsABNt8TWkf1CaAfpnihg1N81R44DLxHDlBeTL4O4mwiAnatJ8IEdu50FkEmxFSJ2EwWYiXZ5pWgJNAdyQX5r0R4jjkaEtNqa4wkOQyu32lqY3IS8Bues7eVwv1vBRb7eeueStsmWDS7a9sLlHdG2rHFGXj6kLR7QhIarXbVYmqvnPtS7atrY1BtR6w7JBUCqgHopwpKSm7RuIbpQej3yMkkcAoIsR8Nr4Fbqn93gIlpdzZZUs0FTDPIkeFH4JZILgsbrNWjK7boNbBH7yQ2Dm46XKWPN8zTAHsvYhfwyYALIlVl1W9r9XeA1BQxw+SrAbjCtgCA2Tk6oe8kWA+N2kZ0Q9zJpYEnym8WIvhtr/j94f4v/4U/ta/6vPiP8jfdamf/Ddwf8p1/b1sDSUm2zlOGBBvxhuq+T6wcanIjvpM1DVpB424vrqVqbZ/htSkDbqmTbvE26lUevy3ZM296Sa/OqzWP7gGD+PirD4cMIh4CG6ccUi7Y3FU+OK4/ihC6m7gImLaebcAYMtszn+uLZvEmNl9o4KwaPaW6ibTEl95u2mVuSainaMdPyBNAkWqZlA6TdWB4u8cLgNr5QG/djiphsXrdan7IltV033oQy2byW1/PieWRcwER+zIy8RExzK/XsO1TrxvJif2LHOv2rwxTGzI6p6BAqRHYf4bQPiLxYTNFviP5dH/JDwHAMtpYDZimHsa1wnSo9b85LxKD3neIlYkohltcwofACh8nWW6PIY4rtJ9raCNsNMoaSVz/rEqaIQfq1+ZVbDOB4ZPzb//dHM1ev6Zqu6ceRrppKX7D0L/9f3wHQOn67z1kGgQydE7AbMFpQIlWnWyY+zVHSyZs/6le/mOi/tK8Rep3d89uALEOanYgxypfjcpM4w3AYjhhlVQvLMJ+NUxOd4PbONpFomNq9JKOiwSBXx3K/finWAdBqWIi7kcx1rsup9XrnMHpdAMF0mReLQTVamuMiTlHHVI8dZlAVdM3g8gUwIUGFElOdWOfiICSSp6peg4oljyxCpVYceVW0GHqII3xPR1k9UXhRZzOzmTaavKhP/P/Z+7Og25YkPRD6PNZae/j//wz33hwqMytryMoaTFUqCQ2YBtqalkQjWasBA0ltYEwPmAnMgId+QMYTz7zwAg/QPGDGE42QNTRg0FDQqFs9yGqQqtVdqmopK0tVlZmVmTfvGf7/38Mawnnw8AgPX2vvfU7erJtpeXZk3TrHz1p7rfjCPTw8fEV8UTCEGSZUbQBYTgppEyWNFlsoE0CVlauLudi2LZ5oOK8ISJP0MVl3JA2/5gG08hqQthcRfjc84Bmv8JQ7MJU+NCECJGTxIRPdKp+QyCvVCzQIBJTyWQmolXdIiX0zqbXRi35tfU1DqazartGDYrBtYuUVhFSXwWBO/TlQIuoupx21KKTWba6T2h7yUzVBq6TwStxrSaw1oaO2NoIRiLBGwMjl+gpN7qMBAR2EC2KEBO96XeqgIa38r82YOOulM+TjqhftP13WwgJZL2KqU9HTKkvyDNXrOvUnbWvFpFxAK4hPVW60NRhTwhRQiLthfHFkIBDjpgWYI6ZIGCbR7AYRbRB5uxZ+kCYwxing7vaAf/H5hC/fTfh7H3b4udsGn1kRvrgG/r3XjD/+bMJP30V8bvOIf/fDFb7y0Y18NUi28EgD9jTiK+E13uM1dtkHLPf5BgBRyD6ihfD16SIu7xM4+TXIYIGczGBJ9obcd22fRvbdhPkkORNV5z4/Lcpa8vNpuc9rotrKdnVIBEN3vOaR0GHKPIQoyVrbB60tLmGy48UShpHO+2KfbNcEj48LbJvYXby8gEnvK/3TJ5VKgoAMRi31mMsz2fLWAJi1Wzm+oMak9dWDJHL9wZkTLCM3mCx2j0kxtPn58v8Xt2HlMTJtVX4DvagevGzrtGRrGVNKEJC5P2NISQ45HGC+im4+Rtb9xa9s8v1R36l6U3JwrfN73FUx5ugwRPUBGXNBzhlTbauN0TNQaCBKEsnGqIyBpqqOlvtK2o3y3wBru3K/EmvDxqymzuOCrVkMdfulsYH0UAhdsVljIJD0tfTz3mx7l3Zc7i/eVrXtlH8MLLLvL0OFISXejGzfbWPWiBL3ewwtbNxcF33mf/RvfQM//xd+BNfyCRUmxB9Gou4fRkzfh3JNKr1jZTKkGj7w0H/7XsizL6pv2F+rATHX8UQ58Uwb5MvgdvIJZ39fr1ghMC1//fZ725faxA+q5+5/mzq+6XWtYyGEDgDJZF+IhEvby4qlgl+TFEo/rgGMJe62waZenxMRayWcXsjVNyfP6gtvi3npmbN3sJX57EuWA/X6+jlGmep+Al5Rjwce8Fm+yeEZIQjxJxW9aFHZ68USpoeUCIGRrV48UXc9VXTFtJHnRXO3mefJmwFUpPB6TPASqbVfoRRAUJYmlT2JtX2nfmVWkurOYfSk1k36mx5VbLkmfJuQ+d+AcaYX2388pmOaXGlyq8Z4Wi+lDco78imVGROqOrSp1Sdzv8csyfkIIqBtGE1gHIYGFCQ514UU3JOQdDfNhJAm0V+6jfjS7RGPuw1ibPCja8K/8mnC7Ubq/LltxN/44gH/52GNf/xSKZdLGSjiW7THkQpx9nJ/pEqOXHwEALe9aZ7QyX9PF84zPF0YXxauX7r/u/n9KV89w2Suhwt+6m3qVJWTvvj8g994TPPOJsnxLZ+/dP3j6OlNysnnn3CgbxIXnHwHaXLByqZk2V84X07WYWHyDzi9UBqzvxd2cOb389/UDfy27aoxy7k6nRkFL9qWaZ7L979xHPyGJffPM3q5FCdjqc4lHXf2eR/DFnycvayXy68ah0te/lqu5Vo+qXLd/vaOlS//mZrUzvNRXCKElkv1xLpK2tCcUPYSUffbkin75/tftzMM558vk5ka05z0sF6y+3FJDz2J9feEqLviMnHbvIAZ+eslQmjf7pc4aDyxt/9C6Ul6lwjUbXSztO3yXIJQJ+fn6uzLJQJPr7dLRN35bVz+sAGfx1SdMgTVy9kqz+r4cfvPLS7r5dQSeUB4D2oMc1s79ZXxVDnFv3Lq9296v024iVp48TeM+TMuEdrODyg4r5c5KWndX/yvPbdJ4Xnj6n573WIY2HIm6TucbUz1W499bRtNcH18qvvD52+HSt6671YnDwcw/cPLtv94vZz0a2ea/hLB7VyPwcmXfH39F7+V1MuXyJMJ9Na2d5kQ2mG6eDiA2p6UQmm93H8uEXUvjcleL5d889sfllH/xfMdeUyXiLrfRC9vG7vMx6/zZYmg3fut2fPOYFoq8/5yfuXRJQL1S2OB93P3b0DU/bZ68LY0OEyz1YvsMXkM9fPmek+2xsZXm1jnrYm6MW+3kwc5pPK2/eVkm7GT7fMMpu8FUfelgx8A4Kf/7Kcv3nMt13Itn0y5JpXesfKLf/lHsHJE3YZSQ76YOx6ds8kEmk8EZsGfWwPrE1meMNqPQ37A7xFhP1kT1z9qESpMmUCwwnCisGKKVWVywib9MSe9Pp9w8SS8PdeYBrDDQDMC9TfWS8JQbwUrNTo1CV0i5PQTBT+JsLInG6+OzgVwi7aavARne7lOZZlIrXk6n1QC5nro/PprZyv+y+uAyV2vSwPMSK09sX1FCk8A2UkuJcJMrQsBh7xdwAeFqpc5Ca+V53qB04snIo5VOz7lVZVgnOmF5n3e1pQJ2Okx62prSmRvOMFsnedE+F6v3rY88XB9ndwzGPXkR7d8Kg4CYaJY4arqaJLjiqmY0HJ/GZysm+ns8+v+cV4vjKWj10ud7XHVimk0Mqhsb+ZkbK/7tLWLZUVSxphec+ibSn79sK1kRqxWCx2PXSX/0Q92WDdla9VTXhX/jzPJBu2mhNwvVN7Epqw+crYnq7ROjCd2cmPkWYLf9Xnd0qrl5KEJuQ4O0wIGW5TgtsZQ/NQyptqP+d7iJ/p+e9v8w0v9kEtJoELUbeXTH2w8hiVMXi9+0joiOr3UGD2ButeLfVb+q9OL/VjkMb2JXuYJ+Fr2evEY/MT7IiY/fi3Yli9U/X0BE9eYLEcbMI/vfDzmffel/mKflf9aYeJKLz1FHB1Rd3dGL0sfl+AweVvzh4ysXJ09pssfcpxMMhaSJ+Y2ccMcU21Ls2Sci0mzbaneXMy5cra1SKBu6+x+L7ESu/5TSuY5PINp1m4X9OITZb60XcCf+Jc/f/aea7mWa/nkyjWp9I6Vr/wH3wHvowkYUJH4MtL+bzeg2qFgBaoCwo7rJM4acxLexk5SgYq0V4KEOtFVE9qGKlmwRk0InQcvEwR1Mwz1cFZh4lRnrSMDa24qTD5R5QOXKtBJ93sMNmDcUKju71ATDyunzBvrhRNRsMGgv9O79jRVk9A9jehNsHbAiD3GKsi2E98DJhzMyUg9Ih4yuxRygqTs+a9PuzkiVram7eKJhq3cLmC0evRkyfpvWgJIJrVZj7WtCFePJRtvqkBftjZZayYhxa4wNC4BiCpY8hg/H29xw23WEwNVMmDn9HLEVAXVnNo1641qvRwx4dHpxeqhAVVJmj3G2Vf5ztW5Wm+yoBegJG0YjB0NGDDlIPoBQ2VbI2KFUWUtO0x4EMpXANKn9wZTJK5O6RrAeMgbAcv9NlFkkzYRjFfoq+TWDmOlhzGtwFL5gYZKDz2mCgMTz/rXoaqjnGKUk7pOLyDgwdR5BOOe+jJpI+DgMNxjyoF3BOMlhmrSd0TZFggAxyHgMJIeOoRvDwGvR2S5HwL2hybL09jg9cM2y995eYdvfuc2J5KmqcHr+5ssP7s94r/9x7+OVVO2xn4xPsnJZEJNqE6ufxDXttcw4Wemp7iNpb/Y/i5tl5IdeTypxxdJyJfrK26qlQcd132+cz0+QvhLSqHKN+cJoMGwdpgqv8X1ao7ML5LqmO3DYWicH/OHKtSk8TWZv5/QRQAN1deX9GLl6pAGXl75kJNOC3rJ5P0Gg/XNEkdQpSebkPAHFHgMAGGN5rReUCdtPCZwPaYu6UUS7lTZWm1bocLkyfi9nJMLJ+IxgnCqWQxWDjwn7/enVM71Uj7eMITHbGZbXg+VHKrVtK2zvble9HAVbbMaU94ebDBVB1Uw4UYPgkgYiGu9+I9uS/3jHKYNaltjUFVnhrMd1FualQvPylYvgV1iiusPhwxGwwsfeIGTmDrUtrZ2GOV+1DGl6y8d1XVeO0y2/2RMla8updILjF4Mhm4Bg9dL8JhwutAQ8Z/+O98+c8e1/GEU5h++/67le1OunErvWPnHv/TNNIgLuWsP+XrSQchRhySv0WBKBLWBAtagTGgrZM6c5Q5CBhtYVuSsEBAhhME6hZLBQyY4EYyGKBNAy2BXE9paUl4lGu4gXzJWrCS9QkAr0xe5HhmpzoXwdgQDJAOiLg8PCFiB85ROMUUGJhYSXVY5BV4MCQ4ihARWiKwLJiUWHlGIRRVTRTRsSK1XGVPBGDklDd5CL2zeN3Eh3i50k3LKC5gznmMiNB9ZyJyVaHHgiDUaaS8CIk9oEdDThJEYO47o0KDHhJEiXnOf7pcVBXse0SJggwZMwIEjWhAeqM/BmGIgoyclSxbiYU5cPgG6voOAQp4M0XOTbS2kFQbKocNpZUdte5qEChAy45ZrEusuy6J7vV8JJcdk1ysSWxpTO68rTIUQmhjJ1ig/f4MWX4i3eKABr6hHQwEDMyZMaEBCqMmShFihwQjGSBPGZJdrtJiIceAJLYS7R/TCSY8iq17WaBCJceQJcjKcnKTTp772mgbo196oejB60f7SoZxwaPUSIIm2niNCsv2Bomy3IrH9HjH/pwH8gEIIr/3wALEdPSnwFffYmMnkI4YczIttiW0eaMRkMDcQQvpHHtAhZHJ/aQPKtv4q3d+BKtvtECpMIWMSDKvU76akFzm5rcFIjMnpRX3igIhIjMfUfzZoEAk4csx2BmK85gFrNBhpwkSMlzhijQZbbsFE2PEEZS3iALziMU3SGDEAL3jABgFbbtBRwC71vw0IDRFeHRocGsa6jdhPAXtE7CLhScPYEGF3bNGPAZvVhPWKsdtt0fcdbrYHvL7fYH9c4XBs8fzpAdv1iGlq8OJFg832iM3tDl9+0uNf/XNfxX/4e8/xK19/Bupb/FR8hhd0xEe0RyTCBkI+DpRJ5sQMYkq2Jv3lSWyxRoOfnZ7io9jjw3DMK0zEq4lvV/+sSUDb5wFGS8W2dRKspPGFMF36rBJpU7J3Jb8nFFJ2/RASkz8VXy2+O7ASqFMiNzYk8ZAEn+0/mvhvIcGtjlcNy+Q2YyKZ/CtRPZk66fgS0nhSSOMLmX+NQT+M1Ji8XlRuWEnmy7OsjOQjim+e60UxBVIS6MQlltowk/dziSvygQSJrF+TMLKKr9bLlDE0GDmdzlrphbJtxEzmXzB4WZOxbY4r6lhptJgAo5eQMEk/b8x4tMqjNKfxRA+70FhGfK+ORyqf0kvLAZoQLAcYFFtT323fB9I2RNVGDdsDBeQwEauXgsnqqea5s7ak8gj96Kbk+FRhCCme0zHU6+E5rzJvnsRGyDxwkZFjo1XWi7RZyxENkbRTqtHEEXrYhbW1Fde2FomzXOLeEr8VvTQ5JsiYTJutoTHsPGbN8Z9iCEmPJmaVsbHEOpRiHY1RyfQfTcJqXF35MdaDC4oerL1ozJr7D8qYpO28ynqSOjds/VqZS2h/GS2m3D/l/gYSf3VoEBGT7ZVYX21fPyhL/yk5uYC0ahyE3/ilP8Av/IufW5zvXMu1XMsnW65JpXesxEncsgZLnnDWBuY6KGkg4Alt7WoFDXB18qchbwDlFQgyiFL6er9MNDwntK0Jn5cIoOGCZJk02jpHJ9eYqZIlcQH3PLlLA6JSFNNUYaC8jFcxaZ0LpvOk1o15nx6rek4vFoP/ggzU5K+aDNEykSQ02Mg7jGj11BWSBIc+I5IkpHRpfyRgjwnEEhjq/XmbF0mAoduDbJ1Hg8nqZdm2vNykNpUrkugaq3YenO15vVl79STWeoJefT1mvWidB4NBg9BTv18Z23rCK9xwh4/CESBkHVu97BOeIk/oWCxU2pmNXjjphSu9BA5Yp/tHRExmlYbYgqZl1Q5jnvzO+4vv42bFApVJhcry/DGvMhkp4gERT1nSIhGcVv/I8xhqa5wxP2LElhvoUe/HlHxrEJJtxbKNi2S1nKxIkyTngCin3iXZYkay5R7ISVFpo4g7rDKm0WCS9+lqLcr9p+PUaxf0olscVS9HTGg5YJX1wmhSElMx5G2PSSbI6XMg3WonkwTBEDFRqeMhtcn7vMr975CmzgDhOBEOo9pBwD4C+0j4sU5OmxqngId9wJPbHgBjHFu8vr/DMIn99kOLb33nDp/94AHb9YQpNnh8vMGTZw/YbHu8tx3xV37mQ/RTwH/we++hQ8BneItIEd/CXrAs9HnfX7rcxwmf4jXuphZfbR+z7el0XmWCJJf19w1QjT92RYXIZQRY7rOA9f2yyo8rGSk5uvT7uW+v5YIhmv5UyPozJrJE9x5DedKS72xQxqcy5tV9XrdaLunFE9+TqYN9s5V5QS+DwWT1UD4iLWOySYvyDoI6lYLRYpCJcTyhlyU9nJObjKHYVgDllYvLmOYHEsz1UrZ6WbL/JV+8pJeavL/46/J7/zzA2pp8uJvy+xszPimOGsO8v/g6U+pvdszUAwT8eLJ0qILXQ+ve15o4Qr1DrRdNLIWEoZRyCEmtF61D0VN9CImuclV5TPGQ2pptg7zq/KRegGBi1jZdOZr7A1h8gNOLxjqNQXW6/1i51lML31/K9m7FNI9J/UERXi+1DOOLRa82Tq8PuwjOlk5hWCo6p7mWa7mW73+5bn97x8qX//ynKtnueQZOEA9zkQHMSK2XiLrLcDA3sjn/0PkyIz105A/+93lrgcXkMFR4UJaFq/y9Juo+RdyoZXKY3oio22DyGOBkQk3G6oPOpTrPCdf9/bXsMXnuhY2GERlDjckAMX8tFz35uC9LmGbcCq5cIor077tE1O1tzRMNHzFV7ZS3T1gMF4iGPU+H5yS7qBeq5Ruuvy14TPnvHlN+fs39Q0DF0USYkydf5EpwmOb90d9fY/Z6K9vgzPO9rZ3xax7TUh0u6cWX+VHb3q/V78tHdfu12tn2/PNrTrMRyKsdAMgpb+43B/fo41Dfse5qrp5jX9vOfr+p5B9/vq9kT9afy4n+8khjhSFv8VUMwEVSeC/7dp4T0p4n7b3kB9kalWIy/CSeTHmpvh+XEPoSUfcln5FLhrKAyegJqO3yEkfTmVfl4vXgMV4ag728hMHKk8O0NKYv6sXc5jFc0ot/x6Ux2ZfcRicw+EqFJVv6mLbl+9Oc2P68HzzZH9Mfr0nZGjk9jxymBduyMi3ZVv0vwwyD7y+X+nxdTvKMnhhTPSby9/pClw8c8Ncv9RdfTsasJ3xAxmDHo4t6qePqS8T2S+XLf/5K1H0t1/KDUq5JpXes/JH/wmcrom7ZJoAcvQTUPAf565J8FATgEhx2rngiAO0cEaQnuW4c458n3p5ckNQ7AkHiemLu+SeCxWDuqTBwLcNhCPY6gLWTO655doLDwKhlT8w9cn2Aq/AamOc5TDmBUj4/laTRwkBOoBlp9UnS0VxHP0mu9eQDr34hqWTnv2s0M734ZEOwtkYu8URz2/Kkop7ccjaxn+ml1kMEV7YUuZYbJkc8TNhwU+nllrtKL/k6A0zIR81rQOX7R+f04osn4bX8LlKnuhzzBkkpPdcE0TdoseaSPCAQtspho/dwW2FasUkQUp0gIRg+iYzpfKLLQ/Wkov7+pQkmVXqsH1pIeKVUPmEp8KU5mbLHdIko1WPwtneJFN5PLEZwRfZq66p19H5tNnlyHWZdPQg4spP72pq266Gq1G7fVvLD65uqz//8Zx7wZFVW291ybWsAqv4DkntUHt1qvQDCp+I6V1G+qp8/+MH7Od/nZycOcU3aOyMeZnLJhTrhyISafBzJjxmMMGqQMbYmGva25j8qhFqNsm7C95czY6rvL0vJBuubZ5h0zDRYbDLa60VXP5zD4Dvi7ES7mV4WSK1NIdRxwZJe4DBl+SSGt/PVPgHs9eLr7DHNEopcJ1CWiO3Jjak2PnsTTH5M9bHQLGHv4rHFOOEcBpyQU8V7iuipJupeO1tbOUz+cBhPCu/jCE/Ov3LxnNdLcBg8pugwRFVJ5atR2ZrHsHJxwbn4Tt4Z5/9u7l07TK1n2r6gl7jgA4KL51ZmTCWY1eHZz9UY/IfFuV5OdKxUui7gj/3VK1H3J1kYADP98P33/W7YH5JyTSq9Y+Wrf+876A4xBxoMxi2aKvja2q/BDNxYUkOWoL818h03krBID73jgJUZfFYgrGPIcgfh+yiTrwY3Rl4j4I7bLG+4wZ25vqWAW4RC5gqqZAC45WYZA0qdLYabmRwqTBsQVkbuELA5h4kbmYhrndHgDkW+TZi0zhsi3JUmAwDcOL3cOL3cOky3aKqEYF4+nJIxEVwHOoiVbLcEqF7sVyRGHTBWASnm5LCZYN0ECJ5sfAOnJ7SVrXnbWzuCTU/02KAmr+zQVJPYFZqKzHWNBlsjf4Y3+PL0NNfpFi0+xZssrxDwI/Emt/uKA34iPskBYMcBPzc9l4kxJOj6YnySkzJCgFu2GCzpRfnJrB5tu3rSeUasvgpWk9SEsdIL1cSqBMKPxtuc3FpzwM/E5zLZhwSfX4pP84qmwMDn443Yu+rFWI7lWrIYWmdbfruIlTnVs2C+fH9r7g9cE7ILt5Vts8R7YSaRnU7gktwurHWwmFq1ZfVzjtxfeTjsxMb2h5V+w2d9Xt2fcv8y16sJGs9P8cpbnxIGT2x/S0BjKt0CWAFZvm0ZjQFxt+3RtWN+SSDC7bbId7c92rawXdw92aFpikwx4F/5mY9w05YtMV+MT7KtbbjBl6dnuY+uOOCPjM+FmBsykdrYXfoMfDFu8F7ssl/zHxHaBftfm8TVmpsq4bdBWxHUZjm3q/CM2P61RSEODiDcoisyE27QZp9BDGyM3yOW8aAmFg6VbXWox58OTd76KJjaCtOG6zpvua3IjxuEBQyGHBmE7QxDLW+Nr55hSH5NZQbPiIRXCBWGFdpK3nArE1+jh87oRXn+zunF2kqDGkOT9OIxWb2sUfqw2FZwfd6RWKORBHvWS1P14bXqLccybdWnJUHiEvqV3hKmKtZZVZg2MwxmjGVd3Vf0sprpxdtWM9OLt71aL7WtBaeXkPTgMVElN5VerLxiwgfc5jcyGBv2JNVU+gtLXLEydd5yI7aV5FtusTHyEzTYopQAwg3XerLxW4uAW0Me3oJwx10lPzExaMPALVMV62xRDrBhyLjbVhjq/rLlUGOINaY7tNia5PYGAZtq/CHccm1bNs7uQBWmDoQnpv+0TFVcHRi4Q0ncMsQnVAToLq7ecm1bNx6T1wsHbHzyKxViYN0z/sn/51vzi9dyLdfyfSlXTqV3rPzTf/tbMpiA0QM4QAabJ2jQG0LoJyD0rMTEAXdMGDgmsuOAW6ZMLtyhQQsh3hs4Ygsh7FyxnD4UkU5si0JCPIGxISHHPbLsGw8IaDigx4SOhSj3KXfoMcnAhICnTDgi4iaGnEgaEpFwA8JTBPTM6MFgIjzhVjCQkBw+YUKfiBoLJiGfbFNyYkzyGkII3TGhT4GYlQcwNlQwMSQYa1MdlTi1SRjWCdMzdDjyhC2HHHj0zNhCBvknRi/NGb1MTi+T6gWCqYeQlesJNiPkS1NgGZ8zQTkRmAv/ixCmMyxBOkMTBYboUUk6DQF6Jo6EvEM4ZhJZKwu3SSAJmsdELilyhzGtngkIuEmykKkGbCF6iYnYUU5K4WyLBCV6lG91K2rSdUG1phZtsi2dvDUIGFh4cNrcbhHvxTWeoMPPT+/hw3AAQ3iQPss3eGRZJL9Cgy/GO9xTD0C+wP90fI4XdERkIWP9hfEDfEgHPFCPDgE/Fu9wTwN2GKtJByN98UttFMFgAloOmZ+IgMxFkk82NL9Xglol5ETSS3B60chsxU0lK6afjE/xio5QHrA/Mn2Aj2iPIyas0OBnJsG4w4AODT4fb/GIEY80JL6jQtLLVBI/U2JSkMSQI3tNmJRDRWU9EGCdfq/cG+X+2ta0DdQWle8ok/QmH2NJ3oXctclbRjI5LGvSifL9MfmUlgGmQsBMKP3HE9hOkAMJQuovmhzU/rPiptKbtpc9UEC/YE/MWLNSxXI62dmQ8nIhEpaDEsRuLIYAYB1ICPCJMUYARNiA0TKhB3DTAIGAQIwpAtvNgLZhBGKMU8AhNlh3EW0YcBgCbrc9moYRwohpCri924EICCGCmTCNK/zI7YD//i9+C//w2zf45W/dICbi7pd0TKdXNfi56T28oAOQuK9+cXoPH8YDdjRl2wI0MRfw09MtXsYB3wxHfBT6TNI7gAEirFlOOhoQ0yS3+ADlC2lSn5fkt6QPBkxYo81+YmQ5zrwh9UMx2/MtWgwcsx98ghV6jqCk6xu0GFgJcGWCp2TkkuQREnchcJd2iOC0EpHSeMIZg/ixiCGNL7IiQzCt0OQxRzA1FQaCJo5EHhDRUPF7Sth8gw6Duf8OK5GTL75JvlgPIFBM5QAPSkTDE5hQYaCkFz3koQGhRcGk/afhkA8pyBhQSK+V1L1HREtSJx0DQfJhQlfZNghJL1Oqc9FbSP/T8SVwfdiF1BkLeilkyg3JpLeD2laArhi0dW5Su4utFb0ADDKHlKhuVS+cbOt2QS89T5nkegMhuRa5kMSrr1yBU/+QAwr0frWDDQgdcxojGzQQEnCtj66UHiEY/CEkFtOAqdKL2pbY0pT1orYWWG1T4gKvlw9ii5YId8wYUmw0UYn/jqnPq232WmeWjzw9Cql1l+Kzdeor4vcitpBVNS0YxxQv6YlxPYSTM1CJ31htizv0XA6XUVnHK43v2hRz3IFTzKmxjsTNxzS+bFnaYEgx6y0TRpaDKzo0aDhmTJI8FEw9RWxYMcnzVlDuIs7t1FGKg1E4op5xJ9xgLMl4xaAfMQRzRJds7ZYbDJxODUTAEzAGBg4Jwx2aHIMSUcLAqc8H3CRMferjGlerXkKll5A+EiDFvVK6NI4GEP7J//eb+CN/5UrUfS3X8oNQrkmld6xwmnUS5BSHiMKBtAahQcTRyB0okyyu0KSv2mVpK3Eh7xNHXybMSlB4nyYEDWTQfKQyKN8gQA/NlutlPYPKunUmpN+vjLwG5QSJ1pkQcTAYWiYMpHL9VXAJw8rILeq96IrpVRre5FjkBvsUrMmgGfLSfcVgibq3qDFtQLldRZaJ8s5gCIhyukbGXOtFa6iYWhAOKMebZ1LETP5aiiZ+oqmDTvL1OqV2LScVFYJ1lUN1P87KEnTVxKq2Pkvkl1a2RI9KXilB7pjbvUGTt+RJcirkpftiO7Ve1miyrlcI+Hy8wY4m9KRJy1U6Zl6DsbJ5KIDwgVnRFED4DG/xAW8wJJLdp7zC06zpumgbWb2oHqK5p6n0cl6PS3qB+U1p0XL60fu8yfc3IHyab6CrqRTj+1hn27tDhxtuMab+pa1ZYwoYSLZ6NVQT2FZbtiqMmmSkPIWx1z1puybJFLMnEZ3bYiFH9uSx5XlFztcXiIbzVgYna9pu6R2tw7BE8Dy5/tXM2nX+PvXlS0TEOtgrl1IIwDFF6S3JdX1mCPKf7rQLgbEKE/YHOTW0aRi3zYQ27dElAto2IoQiEzEofea+6SL+3Ocf0DPwd7/2FA0CPuBt+ZIPwqd4m7foav+BWYUCh/k9XuFmavBR6I1dCMGtPFMsR/t8mfwiv8Ou4lvyCXr6op5mukKDHuXQBE04KAHtGnNf7PXaODmA5KCDjIFwwFjdr9sWFZMW9Ws1hmaGQbl3VGbUJ1fqSYyKCRWGprLVbgGDvV8xjRgqDEfIiaUh6VsXHygmO+43Ti8rJ2tCYzIYekzZ/lUvWqe1qaVetxiWMBFkPLF+91jphSsC6tbppXG25jGIbZVDS7TOFpMlhPZ6WZs3nrIte79i2Hvbcn6Tzf1LeilefhnTNNNLSWCs0VZ68bGL10OHErNJwlx8QJ/1LHrYIeb7W1A6cU7av45Jax8geisYZHUb8Jh0qzEr05RPsdumpKWe4LYxGFRujd/Kq6hQfIL1GRLbMB4sBhOz2rg6Y2KHiWs93aCMLzmpCcGgmHrEfCLcltsq/tMTWrXOGzQ5Zi0xJowsermv9FJiUNWLxbykF8oyGU+c6mzsuSoLq5iu5Vqu5ftTrtvf3rHypX+uJrXLtKlmMgyGCeYxc9pvS9TtyWA9j4A3Qj9GeK4Rv8/aDzUz/gn9u/0Z1399e6LuungMvk4zQmh3Q72j3zzfTLqsnPVilh5bvRAw4/24RNTtiydKDTO91fKcv6X+fU7oWb0YGYrBYsIZW3OFQAt1PF/80x5orGTLnyTPW24zrWdEWdWV3+/7D2o9vS1Rt+cXukTuekkvvpRDwud9YKl4HyGYaluz28KW6uSLxzQn3q6L59Hx93uuBu/nqnvSP0c+racl/cyJus/3L+/HfJ3J/d5zNuU+f8In6FHY5ffA4Ii6A2rF9K5hPRF32zretLH27ofDupKbtvZsP3bXVzK7Pwslr9VF+bsn618hVFumCDQjT/ZlPr443+zkk4cm5Hdefv4lou4ZqXX1d/qeE3UH119O+TV9zBIp8KWDIc4Rdfv6mFfl4jli5ocmnPfNH1cv3ncvJfFxwdbeVi+XMPmyiOnsGLnwo7fWy3m/NT/MYqEOb/L89MerRNavuPyW34tE3Qvv8PHW6ORZzHohDjgZsxrbsv8wj1kXHnJOpstE3f7nl+JuX6dLtiubnMuA4zFcJOpO77A2d0kvS8XPaa7lD79Eph+6/67le1OuSaV3rHz5L36mIurOhND6RRqGQBD6xSuVpQSHnf/mALQeQP3ajM7tkb5E1B3BlTwA8LRq1pAbhyknUKg8t0po0ByTH/2Ky1FMddfxZK6eqDs62Z7CBMjgaTE1wFwvDlOrFVvQS/WlkstXdANhJjd1leDJX5sFMnIbzI2IlTwsEKvOyMZdAiVYPZELcs/qRd/hE4rn9dJowiOVj3CsgqkWPrjiWfJgMCvCQKkdUL7qjSmJo0Gxbs0oq75OEA0v2SrmxPXdLASG6y+1HnrECgOjTlSxw0SgLGud80lkSc6JKC5bts5hmk18nF48Mar3AXYyCMwnFn6ux+4fg/aPU7ZWVxbyddWfXlgXnyTyGHzxhOtT2lakxR9AMBHPgFmyflrA5KFMIVb/sMmdXv70k59XD5uabL+riboPh7a6/vD6BtFkzNtuAIViWz/xpEdnQKrrJyPr12wt1QSu7s4gEJ7GrsLoyWDDTAcuGe78lCdT9sTDYcFSqK7U/LrTC5tm9j5gySfMPiq4IJjNNWCe4Lw0iV2amFfJOY9pob/41Xse05xsvJa9mjwBtPd7S4TQ58iTPQaG0YteN3VaGkPfWC8W0xm9+PHJJ2RmyTmHyX9/4EW92OfNibp9f/GE0F4v7PqL9+VvS9StOM3lyin0xOhJxyNdrW2ehfoQEl0JYys/t7W6AqMbgHzMulqII96eqLv8w9LqVk8+PvNjVQOdi7vtdYvp7foLe0ykHyHKa3XtrNSvrLhXDJeIur1evNFFHxi40q0IP/eXP3vy+rVcy7V8suWaVHrHyu/8/76NtrdE3UIYWBEIsiPqRk0geGtJrBm4YUJnBtDbPLjIP6wgW7q0tCAhFEzvWEG2wam8huyXV3mDUMlbkncoBl2ybI25IhtHTYq4jIkqYtRbBHTV82pC2xYkJ8Cld3RIy3MNJo/BEj9uiXBbmgwbANtgw0Fa0IsntQ4Vpi17kupykp9yxFjyyhUabMxJSzfohCA3veOWu4o0tEPArSHcXKHBEy6koVu0uEUhetxQUxGhTmB01FSByhq1rWU5YVrBkEozqq0dWie7kiCkZdT6Ty1CRe7aoSbq/lzc4menZ7kON9TigaYcoO0o4nXe6CfL7l/SkCcHIyJeUZ+TMhGMB4yV/BI9+rS9hcF4jQEHIxNMMg2a8Kj1VJOO1mSvuhXCtoklSt2gwdomOAh4RUNOICxhuMeQ5QmMV+hzYkkxHQ2GISWqyPB4eUL1RfJXLnqykxFdgl98QlPJXq+EmjxZuFfM1opkS3pdCGtrouGK0JwTObjpP8JXcZqwdoMG9aoWQkflutS5JoT2pL41hlARDXdMFeFzYPGDNXl/7ddu2CajGe+tJ6zbSf8Bty3jto1ZfnYzphPeRD70Lb79spzo1jSM220PbXgiwn6/MtcjXr14ihjT5ImAm7sdKCVWf/dhhTEWPRPXE0ripeO86wlUJiOH6GUgrvTSOlvLJNemna0ePAF0JlvOtkKVz5DJUulvus2nJktuK9vL5MlUZLt6r0OdYM/b3E74gEx6rXXmus4ZE/R5C9unjG3qth5LlmwxBcasP63deifZ6lf0skigbuQ1wmw8mpFcG5+wYefHFJPRiye1rjHU2+BEDpXeNqhJrVsjF72cwzQnubZ13KCt9KIcarUvP6OXGaZaL0FtzehFuaoqvZzBsEjcbeqcMZg4oP7INsdkfbds2awxrZxeLFH3mgnvE+VVlcxia20VJ3ii7vpglS2H6rCYG0cAfRsIG3OqprS7RVQTd7cg3Jo6dqgPi2khMWTZ3gvcok7KbFGviBJeKxTbQR2TbhAqTEJybWJWClWcvQFwgxqTjbObBQx3XjZzgZaBO9PHA5DibrmBIbG7jUk3XOtl6/SyYTqPyenFFgKwGhm//f++EnVfy7X8oJQrp9I7Vn7n3/kWAgE3ARgZOLAMNrcABk5H3SNkcr2RhFDwFkIoOCphZ/r7iHTKCxgdyxefTRDy2haEgeWrzQaEDkKCOEFJEDntjS+TymMmsyQ8hZBSrxMB4R2EmHELoCHgCQM6vQlEuE1EjrLBohA5jhCSRSVyVJLEbcKkhNBCmkhySlkayLr0zI6EALGDENr2SOTjYPSJLHxFAU2SlZ/gqWJi+Upzx1KnTbquhOkbEky3QfSwrBchSRyZ0174gDsIMXcmtU566UlIE9fgTJQ6kBLWRvQpLbIlmdwfDYl1m2ThGJK27zmmVg14ioAjj1DOhee8xoEnbBM7wRMI0eNNbGAJOI/pWOA1tWlrToQl5FRSUSUZZShxKmferBaJqBvy1VevN5CVH0qYrESpQDlZaUyEmgGFpPd5XOE5r/CfGd/HN8MBkeQY81cYsUbAI0ZMxHjJPdZocKQJkRgfoc+BMhPwAj3WaaLHAXjNg5C7M4MD8IoHrBIJPQfgniWxJCefyKoz1joToeMGDVEiypd2LgS2hSh1YuHaEoL1DiMmCOdIIRZWQugNQu6zEzFe4Ig1GkRmxIRhAzm9hUnrHEAQDC+5z+SlgqnP24+YpO9PmKBfL1doEqFtBEhJe2vyV9WL/j1AyIunhEnJXlccoETBA8eM35LmBhJyZH2eTtCUK0a/0sd0P1EhuC2EtsrmJBNKBoNZ9EAZg8hCNFxsTflFKNnrYGyv2KpwqNn7LdG9BPpCJAwoWb/0pxVT1qMShYsP4OLnUA4gUAwNhAcpBMa2BbiZsOoijkNAEwh3gbFuJuxHws1qQiDZ5tb3DcZDi/vHDQ7HDk9vD3hy02PVTWiaA/q+RWTCNDV4fNyg60asuh7j0OGjb72Hzc0Bm5sDmibi7tkD+uMKv/d1/RzAACPrqWxtCZUsGGXs0DUeDQr5eJ+SSqqXIfWfFXPWS0h+RImGK7L+RHJtCaBXabwJ2bbk0INN8mNFbjEZvhi1JbF+SWBMKETda1BefZP9GiP3+XWyzR6FuHtKtkOQybv6AOXHUQJo5dxSn6C2tEHIK+i0jiOEdNrKuuJQ+4+9v8bUZL4c218qQmggcQFRWp0qtil6ARrwol8rPiEkkuuQ22lizvImYe4hRPiqFyGqR8bAFjMXH6B6CUYvNck1O6Ju9RmiFyHf5nr8SXpUn2D9nCZxBqOXNSwZv2JKpOyJOFvHrwAlfS9E3aqXgqnWi3JNTpVeBAOTjpGF03AF5MMt1PYtBlrQS217BVOf2kUxRUjmeJv14DERgtFLYzEx4wPIWHgTZIw5TvoRQWLYHnL+6YZZ4jXSeA5YMWfSaQLlg1XWOQ6QLcFbArogq7UHBnpOid4Un/VAFb8x1QepNNlXy2ExbfLVGoN2OUaVVeljkm+YMabnT5Ckj2IK6RCFjmFsidGyrALvFFOKo9cg4SzUmNXFyQfFkOoU0zsUA6FgGgwGxazE2E/S2EYAQiDcJExHTsm3pJch2bbOFXrSg1fSIT7pQAFmwdhTzBx0bWqDDQGt0cukCS+S/4iAr/7db+Fn/+rnT015ruVaruUTLNek0jtaKDnlKcoAoIFFAHBEWULcpglnIddLv0+yJe6uSa0JTUqU7NJsQFcUPaAQA29ZiCKZ9OuQJz0sS2Yl8DB1IGSycTnIKNWHGQeU5bdNHgSXMVAloyzZhZwglDsJSRCyhQQdimkLISRkI1vSwy2a/EVKMViSwzVQYVot6IUggcGSXmx99XrDjB0VImIhgy1JlgaEx7RjXUkSM+YUUFoCzg2aTKgumLqK/PXGrLrQgFBXcZR2L9eFtLFsp+ocBrsaQSdPtYzcqpSuCfHpmOu0QpO3mqmsRb/4KkY50e0WL2nAIUjgfUBMyTwkeSpblpIMKquMjpDTEVeQL6JChBnz/T0ieor5/gERI6Icc50wdAiZaFgmA2FWZ20JmUA0eV2UfvG1ZORyghJVemDEfELbARM4f6oXOa9qSHXOy+pVploeEPNR3ox6G5hOUAphek3U7fVSbKMQ2K5RE3V7clc94WzMtlQTC5fWLbYESN2rJfknbE31MkDJxudkyZbQVhNkZDAEh7Ezv7B91GKsiYZrotQWZfuE+gDZqlnkfPx7upb7HwFdw2jDhOPQgoixagirhjOGtmG02xG7YwNmwjA2+M6rW2xWE9arCU1gbDcDjn2LGAOYCX3fYZrkHcwB+8cbSWTdHsRXb3p06yHXKZnQWbnWS31dJ6dWDwGU+k8hGvYk1VZPaxR62JLY9O2cTrCC+qlia23Skz3AwNumtcW8SqTCFLItSiKIsEM5JSuAsi1o/9FSMNU+wWLosiUWOSZfVa4XQmh/aMISphpDbYuKaTCYQko2LGE45RNqTHaFRDm1caz0UsjGu6y15XF+idTaywTCMCPqrgnV1S7seFRsq6nq7EnhAyRxZOs4gU9iWPKT54i653oRDJZ8PKQ29Ho5hcnr5RyBumIaZv2n1GkJk9dDjiMoxUkNcmKpExGP9vcpNgIK4bO1tS3XBNCNtS0C1gRMk3z8lNgHKSFX4reRS8y6cbbl47sV6phV66wxawcgMGcMel3jPYmri16snDGZOjSkBz8UTBtIUsZiqMnG65h17WynwoCUhHSYkN5hMZyaSyxicHqpMcl/S+XEQqZruZZr+T6U6/a3d6z85D//mUpuk0OuiIWNnISqXCJPHrl29N7IPAOMHxPc6+bPv/B7fb4nSz5F/soLsn6dzXVgrt5ziajbF49pRkjobuicXjwmfegpTAR8bKJu3+5zYsf69zM9eaLutAVF66m/9hgKUfRlW6sxzzFdijfuaahkz5XlCaDDiSdqPaaMoCR23qb/EOak1r54wkxfJ/9Tf/+b6r3SEyMTwS/110sE6p5D4zxV+BzTnBT40v317/yfqpdzPmHGUfGWevH8KJfun5P4Lt9/ihSecs2Rr1sMQwR643j0hDb7pnFyXHFdramDI+4Oob7e910lD+7+n3p/V8leT56oe8kHWLkDfRdE3efb/ZIeT/U3W2crez0tEXV7g75Eau3LJUzzMdJz95z3a9rup/ycrwO5d76ZXupyiSj4MvHweZ8QHYY3Iup+S718XKLuS+8oDGnLmOw1eR7mDe3KOaJv4OMTQl96rx9/XmJCZM7jT/l8IcXb2qxSC03o46/BgfAJDB+zekyn4rvi12T8rMdQGyfUZUlP7IxxTtR9vk7zmPV83HDq+ZVfY+Stz0t6mRWnF03G+3do8XHxUvkJN6e5lj/8onr/YfrvWr435ZpUesfKj//znwbWZlUKleORAeQvTYSyiqS3RMOEWgZwdEHAPnVQHUDnE8466PEnluhyei3+FKMeXBFd6yoFLbJtqAxWBMrHuut7BltnmmM4qMx6f42J3ZDL5rdLmMYFDFN1vR5AA3OFwepFMfUWE8kzFQOBKsJNAmGjk6/0npWTGy5/B4BjCrMtRovBk1V6ouEBss1OS4eQv1gqBmtr0g5zWTGBapJrYD7Rnicfaj1MiJX8rXCoSKpXTNX11j2TMCdbtf0HhPyVVvUwuf5yCZOtu71fS+/0EtxvvZ687ZGT2b2DnU+QNTeJL4mVqLvGYDGpXi0Gr6fRYfATOq+30emNZ5hqvcjWD6+X2q+NzidUdVzA5G3MYxxcHclh8D7B399jqnyC10ukmgSeoVsMCo9V7/TSV3UmvDqm0D+95hi5kveHevrUNbEKuB73XSUHqq8fjqtK7o/1/T/5fIfOJKLUb2ZMBLymwelF71W91H5uxeb6wp9+/PHt7m3LX2/gE79w/cfZGmo9aZ2tr/Zk/fGCrc37z/k6ex8x892zdqkPIJAxtcY0LWCofXWtF58c8PKMqN7V+ZKeGvOO1MwLeql1b/XE5MabBb3ogHYKk9fLAO+rvZ5qjD4W8nrxGNTWbBlnmGobsnWsbIuXffVcrvXkMXi9BNRj6CW9+P7Dzs/1YLxmTuOPJMOjw+R99eDG3B7zmNXW8cD1xDK4694H2HbV59oYNBJXh10w0sqjPIYir57nhG1yGOYHfNS21rv6HFydR5PEEgw86/Pn9BI9pvTOOSZkvXhb+270UmFyepmVjvClv3Ql6r6Wa/lBKdek0jtWfuuXvomPdjEnMA7MeImYB48BjJcY83J8IeUdKlLe15hwoCLvELE3A+gRwI5lAAWA1xRxbwKP1xTxmkpgsqMJr2jM8h4RL2nMA95AnI+VBWQwe42ymmgA8NoMgEcwXtKUB+FxAdMrjDiagPIeU8bAYOwB7MEZww7AIxf5nhgPBsMDTbhfwJQJnonxyhBARwCvzCAeAbyKZc/4kYDXmDKmPrWJBq1T0ktv6vzaYWJw+TrMsgpnYwmf0Qoxd5JvucMdF6LTexrwLdrnOj/QgJd0yPIGLZ5jnRNJN2jxlAux8EgR3wr7XOcDJuxQSK4nxEwIrXp5wIjB2JpuORM5bSFLsuh6yrYptjPigGJLO0zYGfmICY9GPtCE32hf5eBnR1M1ETgg4gCjR0TcZ0Yq0cMeYxUQHlGW/wumocK0w1hhEI6T0n8eaMAhbVGQOo/YyyZReQchnVGntjZWGA8Y8ZA3KyIlTSeDgbEz5ONTwjRWGKaMKaY6jyyJpQjG6wWibjvJPGKqMD7QgEcMWZ6Iq3Yekx5t/7k3mCNxhXECV3o5QgjVix6woJcpT14mRLxGX+ll72xvMHphMB5nepmwN+smI9WTSK+XHhMeDSZQ2n5o9HqPQqA+OExirxHFZ4jfGjImxkeOBP4Izj4CAI59wOMx5JWk3z42+KinLB+GBq8fSyLo2DeIJrDfrse03U3kcWoQI2V5ve4RucirtN1N5a+8uMEQ7coiVBPdARH/NNzjNfX530eULUFg8ZU2wfFhOOJo9PJIY6WnQ9KTfYeVJ+JKBgF7o5cDpsrWBkTXfyDca1V/Gar+dEibVIvt1P1lR8UnMBgPNFSYdhBbKhPtqbKdibjyezH9psZcY3qsMImfsn7twWCIYDwaDAzd7mvHzLr/PLi4YUdj5asPM99c6yUSVxij08s+6dX6gMdKL4xH05/igq/eO70cnF4eve+m2nfLeDNVerG+eiSHCXWfPyLOxqf9ol5KLHNv9DTHJM+v9TItY6IyHtn+ou1qkzrWtqS/GNtzejtgrGTFaPvPQ0p7ntLLwcgdE4YY0MeUuGDGR8m3KaZXGLGvYtQRj7b/UMQDWd8d8VCNP8DrWPzUPRivUJIuD4hV/HagmA7sKHp6RWOO1yIkzrWJ1gcIf5OOoa+QOEWT/AITDi6e2xvbesCER2t7FKsYdIBSS6geJE7WxNI9Rdy7Q0heUN1/LKaRGC8rTIxXKJQAEcADpy1vSS8vEasY9CWN2FOtF+vHHinicaaXgmlM71hKLE0MfHRg/Mb/8w/mF6/lWq7l+1KunErvWPnK3/sQEcDLKHvHD2AwAS95KiS1AXjFY+HlyPJkiIgn7CkKSS+AR0QcOcqJLgh4ZMaRCRuSJBOTEFhvIdw+EwHfwYgtBxwoYiTGdxJRcJ+uf4ghneJGiUhYyJPXTCAQPgKwYZlwRAJegrFOAzWTLJuWY1TZYEgreALwmkfhhUrEw/csg/qGAxoiPKbAZcWECcAeQM+MDYA9yTt6TNgkDBMBA0ZsWHhxJkPoHFmC4o8wYgM9PY/wgqXOXZpefRSFtHuvmHiSPfwZk2CgpJeXiUy5c5g2HEBpbz2zrKsiEG65xZojDiSknzdosYoBB5ryKTErDthjwrcoYqSIAx7wlFeSWKCID7HDFh1ueIsOAR9ggwOPWLMQe7/HKxw54qMwYSTG18MjbrmVcJ+AHY9o06olkJBWd8qaQ8ADj2gxZQ6YQwqKOwQ01MiEjIUMXSfyShiqX74mRHRoJHQlYOQ+cyxFEpJpPWXnVRjwK9138Nm4RceNJG0SqfeR5PeHVOcDjfn3SphtMXUICEQ48JS+pAtJ9S5h0hOd9iyTkxUarKjJGBqkr3mMTMotJLeMMel6g1YCexZy9SOkne8Txj7Jr1iIuNdoAArp/oLpMbW76uV1wrRBg4YCjjwVVg+SCVTe2kDAQyIb36BBRwE9y2SmASGSJHGGpJeBYiKcj4kAnsAUMbEQkCrH0z614xEjRmK84GM6VS3kd6pd2PtFL4VQvUsT3x3GwhlGyJiGpBexvWRrBBzY2lrIegkgjMQYE6Yu1XmiScjQISe7jQRMJ/QitlfkNRpEIuySXvREJsEgXECRGC8Spi0atBSwg9wfGIlQfcIK6UTP7BMm3HCDNQXsmcVPgRAo4NWhw26I2LQTDlPAYWI8ToSnLWNDjP2xRT8EbNcTjoNwKk3MwjeyknTOFAOIGOMUkiwTi7YbARCimGyWAQYz8NWPbqrxiPKfaVJPI2Jg/Ba9xjNe4bPTBk/RYUAibwcle5FJzoAJh/T1e0i2NFJMRLGiF9X1mIhhRW+cfUKT/IjalvKJPfIoHGeJnH+Xrh9c/1Hf/JDuD8k2H3nIPoGSrQpfWUBLTba1ABkbVG5AmEhI7/tkayNFjAnjuvIJMfNExVwn6V+TwTSAEYlzHQ8J033yKX3yi3rAgPYv9c1tss1HHtEmDA012Kf+pLa7Z0nKCyZJDgws/UsxKcnwCMZIU8bk9dIigImxy+1KqV1VL9LnVQ/HjKnP5Pds2kB/r75aMe2SnlQvioFSGxyNXrxfm4gxpeurCkNpx2gwdcl21S8NmDAR5zqqXhSTctipb+ZUJ9WT8sHJ89LBAUYvyt+ntqWYdEwNCcM+2dpK9ZTaYI2AmDGUwwWYIh6UaNm188Fh6hMmlTVeU0xzvQQE01+esJxndx+F0Lm0QczcPVOQpMshHWgwBcYjJolJOSRbY/TosUncPUdiDDzJqWog9Cb+2gEYCPiIGVswHlOMqvGbYpT4TvRSYlSSONnEoOtEev0KQh4e0pj6GowODAIjalyNiI6pwrROmHYJ04bFjvbEOQZtARwhHKUblENsNE7ekZCYv0gY9hBMGmfrAR4fpUNHNO4WzJRPBHzBQnS+AoFBeMXAisVGxGdEHCBE+FHjaip6UUwbFlvbMeNIg8SsAA7E6I1ejiwH/mxIdlYwhNP0mBJN//Tf/Tb+2H/5CxdmPtdyLdfySZRrUukdKxQo//3IkvBJ+Qw5SUe/iie5JuVl9FQmxgNkknXDMjkfc+AuwdQE4DEFASBIkIuycSySfKnIX6wImaCUNNBATCS0IZMnE8vpJoB8jbGLwY8wS2hTnSeHAUYWDIVcWTE9S11DTurgTAY8gfCIskssknzxiU72mFoTPMnaHxkwBRPSMblSDk4vx4t6iel0khrDXcJAEELOCKl4S3K63z5NtloE3BlekibJcnqSfJl8QUeE9KxISF8719hCibq7imBzgwZrDtiTBIAPZpUVSJa3T0autg1QOkmMJWEhtiT00jdJjsTV1p5IStCb9ADdvlf0ckBZxq+BtU42BmL8frPDB3GNG3R5G9tkbEkJSG27B3BOSIyIYGYhrU6/H6vfi1400J/AOPCYyUojuS1c6Uu9l1csE2Em3SJSMMlqnLLy5YAJDSeaaG1XWPuPeTWCYgLLccilDUqdltpkx4xnWCWeB55hOKZn6vN2GPGEuzzBsbpfwrTHhA0jt7NOhrQdR8SqnY+YELmQwOr2jC4lC0Qvte3paWx6PfIkxy97vTDyxFK6J2W9dGmyohiiwXB0tnfEhNbpBYw8OT8iliek+4mBu2xr5RSl7OecbUYw1rxKmMqWXgAYpoB+LDS/fQQ+7AlfWMmJV1MMeNgHxPwTqlYsAQTm5KCyjPRvSQbA5vobFf09Aa9IUDydnokegOSrsyoq3z8RQ4n6gaX+I/1BSZhVD2vTn3pENHpIQdKj7y/eb/nrVi/qE9bGtuQ0qiIP5veVbXJJzFhMe0zZFyuGFZfxpceEgBpTbqeFOvdLPmB2Pxk/x2CO4ouNn9SPAhUmr5eMqfYR+wW9BKYKg57Kp/I0q2ONITq96CmAqhfxEbXvbitM5XnR6gXGr5nrB6MXtb01hwpTo5hQ66FgOm1rXi89IibFAOUji0KuvTB+yRha+3KLSZNLFtMeUzoBtGCQpIzBlHwxn2h3jyk62/N68f1Ft0wBlD5MQGI4kr/bLVMjmfsZ+UOAkpRPBDzShJvUXyQ+i2i5yeTZO05bblPsskPh8dT4bTR60xXu5cAOsZ1yYIesu7lJvq1H7bcG83yk+K2ncsdIkhATSCwYMGGd9CKYIp6wJLRllSIXW8QyBnsIyQ5l1ZbG2QGUY8pDwrTRjzOQE0U3KJiGNMYrhlrvc0wPKS5mYpkr0ITb1F9O6cWoOpcrUfcnXKpx/oeoLNjWtbx9uW5/e8fKz/yFmtROT+PQAaUBidNIMsnFqth92xLYmxvyhKc4HU9y+LZklDNSRcf6q7/WerUO03dF1O0wRYfJZ2MvEURfIuwcnewxnNLLOUwzLisd9KGJpvPljmuU3uc+OpJrdnds3e+1jXQ5dnAYlzBcwsRGL4Q5UffbkpEfqLa2zrWSJ+7O9TP8Yfq//P4L/ccmYQhpJd2ZanuOpUuku57nY06kWst2yf7SdU9g6znQfFnSi7d/X9oL93tb83ry98dKK0mP5hYGKv4Jb2sEQnhLvfg6+eL14tvwlB5z8I+6HbxePJfWBNl+kZ9Pc998rKs0g7s/eqLuus79sTsrf/mDXYUhJ96SvEWTglaRH2msdBlRt1OHgC3XJ0h9fELo8/3llK+3erGyJ7V+Y6Ju46s9nMsYlsfIUxguHUDg/ZrHYO/V99kner0sjfkek9eDx3gJw3wMrut5CZM/ZIGAtybqvkQC7+v8prGRxeBldjhqvcyf6A9R8Hp1LmHBF9flMoG6f1/9Xo/hFQ353wCJvfwhJB4DrA+YD8EzDAPO25Yfj+YYlvVctnHVmHyfb05hcO+g0oFmevExpH9cy97WzpdLmLxfa11D+/FoVhbi6hlR99kHSPnZv3jlVLqWa/lBKdek0jtWfurPf4CwsceUF34KkYVYWPdAL5HreaLhOXF3Lfu/YyHosbIntB3t1y0IAaEnGrYYGiRiYYPBk/JWE2fzFVBlj2EWpPMc37mEyOQwDJhP+Ow7GizphU9jovOYZGJvKod5AuUhf1OTchNbh6HG+IKO1cRYuYG0bBCqiToBiImXR+RaT/oOi8FPpJXc9VRQPQ9BGF4P3rasfOCxekjnAiUf/OVkRMLEpPHsQqKLkf/NNopZl5PeWROo+7KYvPDBnCmeEHce7NUnG0biKtjzE5GZLVFtu0sTFx+Uewy++KSPv38+kan1Et09+netRVhIdJWbOU1ETkw0TujFT4I9Bl9EL9bvnS/a/+zEwrZ0lShOevFB+Uje1urSzyYyqPgsdof2AlF3Tcztibp/7NkeY9NX9X6NIrdpmq18L5GAD+mQ6iJ6eZGS2doWm5RUKj7AT7TP93kve3LlS4TQwJyou/Jr5kPLkl+T36U6cz3JUv+5RDj9Npj8+NSAENljqO+fY2KHqfbNnjzZPkvrvCSfwjQn6p5j8EnVeVxgVkHCkY+bSe0SJkJJIqs8T+L48amusx8zPYE6AQtjpJWXyJRPk40rZjumer3Y5Jq975Re/KEK3ra83sjpxdZB3nP+UAWm2taGtKrFxj7sCdSd7D+MzA+78HqpMXiibm9b3geoXjImqm3NE6hL/HYeg+8vSwdD2OLJx+dJ0nni1ydqrTxfdVx/MF7CNNOL60+XSOG9Hg5O9oVWhJ/+F66nv13LtfyglGtS6R0r/+j/9U28PpSvvz242q41ImJHhehRCDqVY0DJk2MlD+BMzge4peGQ7WB2wNuTEH3nJBRF7EzgIkSohVBQt8CoTCSDjSXk3CMaTPJ7xTAh4hFjJqtU4mFLjNqjJrQdHaY+YdI6PoaaKHVPc9JRi2kiuccu/baYQBIUFNJExt7oZYAQGhZMEmhZAs690ZP8xmBiFO6lFCh/I+zwjbDLdfx684jfbl7nOnzYHCrCzRFzgtvfCa9zcLOjEV8Lj1l+xCg8F/b3NGHiwnu0w1gFxT1qklFLlqy/qcmUC5E3INtbLOHzkaYqkPckvbptQeUbXbuX1DKAq8+SEXK6oBZi/aLNtZwKq07TJH9W2K5+ovwOXUqP9Hf7zJVLh0yIVaLIrwxau/ujvunE/Q3TDENdZQkQSavM9aqcpSCQAYeh/kbvVzZEcNXO/v5QpoYZk71ftmT455O5XxJpNseS24SkvzQOE6ffWL3YOnSujhGMYOrkE1nrtClDi/Aq2TrXemidTFx/bWaw1CnZGvF8tdQ2t0tKGFK96nLbMIgYOcmh/6V2utlMFRH3ODWYDFH3Zj2AzfX1pibq/gcvOvwm7jPB+Q4DfrN5gdfoAch2mgcMQgqf/NbXww4v6Jh991fDA74VDtkHvAjHagK3T0TdWo6offWIWBEPg+pkQEhbaYsvnxzRfcTeEUJbouGImhQeKFuZih8rE2lO94+IOZmmnDeagD+gPoCgR5yRWNs6E6jCNCLi6Man3vjmAYy9I7W2ZP2c/HDGwJIUtb56dJg8YfSBpop8XPRSk+9XSRmHCVRPOg9Jr1YvR4xGL3GBxLrIitt+vNGtsDO96BjriLplvBnN82I1/rCzLSKqMAxJD5Ve7SElqEnhVS82UWQPhpBnTJUe/Ji6N7GQ6sWOoUfXP6b0jFMJP3ay72++v4xZL+X3Xi+9wdRxACC8YOoDfOzziEICz2DsaKpIrnuS2MP2lwOZpAuRi1FrYvs9Tdjbg1dQk49PqQ7VoQqm/4AlphsNBt2CZuNsT95vMemhITlGpdoHyLa1gmFyMes+tUnpP9GRwseKvJ9TzGqTzTbOFl0XTEsx6Y6mKs7eJduwerEfNycSriurF3+qXb4XjPt+wq//374+u3Yt13It359y5VR6x8o/+fc/TKSIjBaMIyUiYcS0OibmhEeDwoWy4wlHCMGmBHuFcLOlgJ6E0LbjIATJFDEyoQMlHiNZYdSB0FNMvDxjRUapJKJKsKmEnC0IRIRHnoSEGgFMhH0iNo7p/h1HtEgrdAiZrDKm9+8S8aMnFRUiVUoE0CJvqUEPxphIdBmy7S5jQKxJQzEhEjLx6eAw6VdPxbxmwaAkvSsIwfOeGQ0koaR73Vsgk80KP1NaHUDAI4vcgoBgiIaZsMqk1jETPK9AaFmSTY804pFGPNCA9+IK9zRgIsZr6vGZuMVLOmIypKHazg+ZvDVgTxN+K7zA80SmOVDEPwv3eMId+hQsCMcHoYfIB3IE0E4vSvjcpjYpRNwBazRQPiblplA5pIkUqJAlKwn1gUc0CBIyUSHZTUwkmTj1A6yRVw4wFo+dJxBalDxRmp7nRIQ9UnmEnhhYAmi/7S9vC0TaSkaMwJSPTtaEiH5ZbLGQvNBackpKkd6PYn9mYpJ/r/kuKpja8rRcr/r3KCTwCb/FpPcTSlKNKSWryGLQO5BasK5jQMHQOAzk7vd6aUwNAE0A1V/vLQZNyDDyT2aYIuFknUu7laI2qbXQOus7fRJK69jo+1BWHzE0mThvA71/cnoJDkMLoEuceoGBKbn3lpIMYBNyTk0I/rnYJrEQdQOFiHuahLlDibq7RMwt/EpA2w3QzCMz8BsvW4wU8VvNCzzjlUxGiPGfNB/hOa9xw20ZXxAzefI/C4/4EEfcxRYxAL+DHb5NRzzjLhN1TyycNiPJy0cIWb+SWj+yyJpBVILmNVpJyqTxZI0m+Qwl61cfMsGS9+vv1afsEol15sXiCQGF9P3IwsG2SuPNwML3ApQVJ5oM0NWCakNCci1kyR2a7CcUk3IN7fIY2YKROKJAeSp5gPhBPXtLOXH0QAPFpMnTYybiDsmHK48coUUjRNOpjoBytskKvJj6+siTxBYZQ5/J+ScqmNRvTtAxsRG+pTRGdqgPUejzIQpyvchj4gNko5fCX6bjTQchvh9Y+JnarJeY0za6GmNi0VNMxMh6qIKQWnOy1aIXxbRCEL4/Y1uRONdZp/CVHiCHIrQgSVBRIX1XvRzymFkfDNEhpJhKbK8kyyboiiLlPtIDCNTWFFMkRjT9p+hlTP1FyLstnxKSbTTpz5hsUfVSSORtfxmyXnhBL9J/CE9Z2LYO0CRgzP1TCdVjQI51GlZCdc7xnPjvxJ3HIZHfA49gdEy4RYMpxcUd5LcxxVdd8gE2Zj0mjA/pYBTtwxrvdSCEHN/FRGwfkk/JgwcOHDHoGEOS6OmzXiQx1ac4u2DqM2H6oHE3AjaKKcWonN6xS7/Xw2QeEqYch+e4OxoMhICQYs5Ezs+CYZcwrCCxv2KawCkGTQdhMPJJtQOzcCMZjJkjkeVAmC7pZUh9rmPCFo3BxJWfGRO+f/Lvfxt/+r/2RVzLJ1MYyHHBD1OZpy2v5bsp16TSO1aaNjkDEuK+miQ0kSBmuSaEntIEUb9+R5IT3dosywByq9sRCJlM2cpcyeaLV5LzhJES8SmXk1oGMDpm2bZBS8TBHlNNyrtIXsmTkCsnDD1HbNNULRIljNoutIApVpiOKKuo9LoETwVTy2XyMYLRpNPMVA8ekyVyHJ1elHxZB2ld9rziQgB9RMQTLpPntVnBMFDEt5pD+WJFEV9ryoojxaDEj0UvlE9g+4iO2HCTJ2SvqRxHDcx5d07pRdskQk5mWRu9yClButXFc/9Q9b4lwufRyUL+WlakWCJuDcbP/Sl2miG4P9Pkffa7UvJqH/Pb4K7blS0q+3f559nETrNY93mdbSKocffDtUk6Gyrf7+usW2rBkuTIq6hoGZNvE1urgqG+fhqT1umy/ur3L7eNxaRNQTSvs9ejx/Am93sMPkF3CTNQtvNYPS6+k4BGWV0hK6o0eUXpOhFAUwm2JNFUnsiwgdicqFt+VK/CC+ayEHEXP/aSjnhtTmWMkMm6kvY+YsSuGVNiSFaL3ptVIpoAsLImsq3cpdZQH9Fxmqyo7ywZwzzmnZI9eb/yWCnBbZmsF1n8mNyvieRcR5QtVTopG83HnULEjYxBTn9KG0zTGLniMgHz22BkK3ZN2Owx5T6U2ySWAwXShE4J06PFnDGUwmTGZNbxaK4X2cYodZbDMZATQSMYLWcnUq+bye1e682SXI8JcWvGSEofKkQvwMSlDSLqLYdMbmsQ1c/XxJDXS8clESTtWDDMOc9q2R+qsKQXcJS0jMGU4zPXQyPqLY7+AILq0ISEyeqFUU5U1G6syXwrM+r+cI6o+7JeLFH3PEb1eooETOZ+jX1snz9SRJv0wiSr0LcxjWOEnOQpdZ5j8CTU2T9rGzJlvyUreSSZJRiB2qfUfitqn88yZzJyjUkPPGGLQpjeIyZS+BJnt2zrVPePJUzRYWpQ9CAYGA2XOg+cJpAqO0w5RoX2lxrjEXK6IKeltX1KLMHoZaPmSUhrWedT/9BeN9xcy7X8oJRrb3zHys//pR+p5Hw8dwqoMiG0budxv5cwxQfBxtGTnoBTfukJAT2/iier9MPGjFTxFFF3qnMJbpcx2WtLGBg1n5EGWBaTx+BlX/ze9ZFiLbvrH1cvntCWnV4IhPd4VT1jTvg8f8dZTKgxzUlIT+gFp/Vy1tbSdYvpTUl1T2F4RE0+3nHdJlnPXP2Ry4QoOmLzfneTJ4R+W6Juz6VwiUT0MrG3qQwMZ0aSM2Etm/sNJm9r+Vm5+9DMFi4RcHpMS3qv768xRaegqBO6c3rxtlZxmyzoxf3et/Mln+DbYE7iW5esdwPN6snrZT5JBfoZUbdRFIDeETsFB8ETdTeOqPvgiLmPTv4T72v/qv2YXUGm/1MM53wCQVZZFfly/5kTD3tfvMCNZcqp/lMwYBGDlaPD4EuY9Z+6LPmdcxgI3i96TMtj8Jvqxd4LLOvlElG3t//oMPjrXi/zAwXIYajrORlUS5gCMCOEnmGaoaiL18Mlou65rV3WS42p1pO9Ju/DjBD6bfUy57c7r5c3jStO6eUVDVUdWrWlE5iW9HIxprzQ5z3J9ZvGrHbFssXkfXXjMBHmerKxDmhJL77/1KWbEXW/WWxUMMx5Ri0mT9S9hMGXaDHhsq0tlZ//S1ei7mu5lh+Uck0qvWPly3/mfbSOqJuZM5eDbgFR2W63sINJlmk+2PiTNGYEgTwncvRBUP1ltZYHR9QNgwEoBJ4Ei6FgAlwgQ24ANV/sfECaMTkMhHlwVSd55hg8RoupcZjSN6hKL4xaLx7DKb2ofOtOZ7PPXMLkJ3Rzclg/0ZgH6fB6ofq9VeC/oBdPXumLJ2/1984x1HV88EmlWQA7n7QuTmZStyFQXnmhr8kBawrmc1CVrq9cGrbhci3jMXLn7vdB9ohYyWXLghQ/EWdCOeksYdAvliqvHAbToUCgvCWgYFqYFtsA1GH0JNcRXBOkM2aYGhM0MzA7ra1xevEY/OSnIr0GZnr0iamO6zrfcFvVsWWqJqUMruocwdV1MKrrk7aBtjeld1a2ZtqdkDZ+lDpTO8H+w03rPJszttbJv7cj9LHIO0zYx/KMF48rvOxLnR/3K/zeQ7HPn34yoQuZ1Su3Q/YBtESefNrPkZlCloT7fGJ8djyp173M/FoLqhLBOmZqUT9p36tbF09h8gS2NjFFrm3KWywejyk6TLXsfXHjfj/39TyrMy9gsnW0f343erlENu7l5oJeFHOtl4JJDlWY257FkJ/Ey5h80YTim2KwrjNjeEO9AMgrqCymSm+uNSpbY72vXF8ql0jhfX+61F+87TIww2T1MhLnlW367yH/do7JY9Y62uLJx+fk/PWzPCZymFUvWnQFVa0X5Pb28RuB9KyPRdvTdrLlkl68LbZYiO/eRi9YsrWCZcmPZdvyBxCc1MslP1aXpiP87D/36ZPXr+VaruWTLdek0jtW/uH/4xs4HixpqQzakcuJEyPFLDM4Jzx0ULADpvp7u7KnBVVJlIG4GrD6REBt62BlRh2oBKon/y0RJvM8hiynLc+LeWk5pbro0vNTmKpgjecn/oB0kJZypFjVoXcYopMV5ykMwntRP2+kEqiMiJWedMuBDUB0xYhiICe3VGN6QX2lJ90eVgb8eWBiZeU0UrlzckzPsAHEZOocnax68bbFsJjqpJoGOtnWHIaBYtXuomeDgWpbfR+bKgESAWzQoOw2JNygy5P9BoQbw6bTJB4AXSYOSDLCTv5v0OSl8GBgy+Y6JKGy5sYkZFpsUOQb7iTBkeQAwtbsZO7Q4hZdrvNN+r3FsDV1Dg5TmzDk1RIMrBGqxNMWbY0BLVojr9Dm7ZfSBq3w5aQ6bB2GFZpKbhHwBKtc5y1abFGSNB2EC8diusMqY+gQRC9c9LKxmJJe2gpDU528t0FTEdt3aPJJY6VOpc4/Erf4fNzmOj3lFX403uZE0XtxjS9Od7mOn44b/Nh0k7+Cb7nBLXf5/g4BT41e1gi45ZBtq2HgKZc6UpLXRn7GAeuMmfHZ2wF3m8Jz9Gwd8d66nEL3/k2PJzdDlgMBq5az/JtTj7/zYsQhJZZ+bT/i33jc4zElln6rj/jf/+4GL1Ji6VfuCf+zX3+G332UdvvVFy0eo528F5+yNPk/JVsfkImJ06xMt3JYX2x9AqH2Y21ar1XkUMnKn2fHKzveRMz9ZDW+sJugMTJPjWIYUCdx+sT/kp9HXGHStiu+uK5z52R29/eI1QRuydfbMVRtmp3sJ51VMiA9Xz+EKKaTeqF6UukxZf5Eg8HqYQCnWEMx0wyTraNgoEq2CULRi9iSYrCy1fMpvQRQFQd4TBOKbqTNa9s9pxcAJ/Xix8haL1zpZXC2ZmMLQPj5uJJDVSf9EPmm/cX2+aU283pZcRBuKpS44Uix6i9eT36Lp7RlsS1CqPQiHF8unjN1Pqb4y+rFf5Cyz1Mfo3UMCZPIJQ6x8VyPOabJYPKxDsjblrN3quOvw0LcPVb9hRcxqa3p9uhTPiBjYOubawyqF+szar3QTC/eVorNMPoh4tf+za/Nrl3LH27h+MP337V8b8qVU+kdK1/5+98BoCtCOB87r0Hr6GR15Trhl69ElAebJv2LBiIhcQVpoERg+cZESCd1c05ejGCENNBYWWdxuo97pfu6WeW0V53rL0YVJhKOBE1cgMp1DeEUQwCBKGFgzis5LIYWAZEYxDIc6tkoI2Q1gMcU83WRC29PwpBWCU35+YpZ5KwX1HqJKQhQH6gpFFlNUpJNDQiUEiaKSclc5eNUxH3Qo7lVv7HCHLXdUjsTkIKH0ib298HJ+vsp/V5JtGVbkdEL669Q6U3Jlsvz5wGsFvm3wnVQMLFs/WPVCypMmcMp2dYNS7JlnWx6gCZtmkTIKnW+RYcxjUSSaGpT/yirkyILJ0UkSdqMrITiAVsErDhiZEabVsC0HDBgQk9i4y0ChkTASghoEDLpegPh6BoTWWlLAXfoMEBIPkNKygwcseYmYxgTAStI6qxBZABlTIGl3TdoEmErp98TJk7kwRRwixXWHDNnTJMwjKkO65SkGXgCEWHFDTpqcEzEoHqqnRLG6uloI8t0gIjwDGscecKKGzQIpY7p9xu0uU4gypgDG71w0YtiGsBgItxYTBCy0y7ZUcEkpwyOJMmxDg36pJcWQljfc8Qdt5LMmhq8oiHX8aemp3hFPW5TIu1L01O8ph7P4yrJd4mDTCYGT7jDwIIngPAMIndJL1sOmDitSAPhCYteB5I++Iwp6ZlTmwFrZiAw1g2w3o7Yribsjg2aADxdRdy0EQ9DwO0qgghYdRMOxxa7Y4uWCE3HGCPjozjiZc/4X39rwC9sA367j/j2xPjfvX7Ez606vJ4IH04B/8uvbPHzT0f8/jjg24cG/+O//x7+zKd77HiqfDlMf4Tpj8zSd5U8WSdgwu5SJuYMmbCKR0ukvVR8QP42b8Yf9bXqxyxRvvYFK5cVn8VP6u+X/Bgln6G+XonyOfnzFmbFixuf1Dcqhsji9zIm44sByhh9YsdjsEk8Bsv2a0I+ZW+kadEXq57yduz0e4shZsyhep8ustO0Ro1prpeQxqch+YOVe6euT4mpXUejBysP0LiCnW3JC1Vv5zBlPVNJsgDImCb9lWI8oxcbB1hOQDtG6s7ckbTOgnGi+FZ6ydxBud2x/D6U/sNJznpJSfYKQ+qToifhTZyM3irbOtNffFzxJnq541aSElxOCMx64WRdVPBRaalkN7pKRz9+snD5wMZnDWw8pyvVNT5TXift04pRZbWbKmZF4U9apxiWWT8eIush838ZTGpriqlu4+LHONlCSHqx7UwAQISRE6Z04IDajsdgk002vtMYVDmiVG+dqZPVi96vsVZJsMPcL36nTXoXjMLT5vViMVl71vJP/sMP8Wf+xo/jWq7lWr7/5ZpUesdKUKLuVNj9Pc5kP3kvSR8dTGzxy8erqwR393xbWRkQ60HU/t4Sqfo6V4Xc7w0u+/f5iiROQVXBoH9/UwzsZLsk0L9zqd0v6WX+5aboBf66x0Qp6OUSJPuypLdq+9Gl32BBb0au6ujrQKaNLrzz3Pv9M6OTbZye60jyTgKlRFxMiT5KgWmEHqFrt53pdUtyLSekBBzSmzUBoaVBqBywTKQa9BgBli/Ea3OHJmrIvENPt9KvhXICUanTCk1OaMr9EnIXDDZ5SvkkqYJBeoAmlBWjbqJqEapj6wNoJq/QYEhbOQnAtmyOy9dtO3Zo8oozSQS1ORFwqt2BslpyZdgi9LqVm9QGvQls30QvI6asl43Ty8bUqUXAB7zGPUZEkue9zxvzfMJ7vMYmvTOA8JxX2KeEomIonL4id6YNWpStcarHljmfUNeBZIVSrlNpJ0C2tT3Zjjj2cl5eGwjP16WHNAG43Y449A1iOomwa4CQbjky8Ku7ksQdAPyjfpDVXwgYmfDrrzq8QgRoxMSEf+9bayHODnHuR/PknJfl9G/RdXK2fyHnMxbeUfV5LI8Pl8rJ+2l+w/IYuvwzFaK9kQrpPSQz+ka++I0LaXJhqTLlfZd88Rv75qyn+Tus3vz7qh+/wfurMdgkfs795hKGk3pM1bqkl7LiYmHQPdHuH1cvvpzE7PVC5rrvT6fkNyjLff58HXO7L8UqNNfLUsyqY4k+32rB68XHc0tt5uMzwG8Tq68vtuupd5zAVK9u9PdjZgfkrp+Mx07WuU5meT0s+VL/+1Oy/JvUUjHNMS+187y03XXDzbVcyw9KufbGd6z84n/xc5Vc8YrA8IScGcf9F7AqsUSXibo7Z3ZvT9RdD/u+jpmPhfX55wsDsKS8DD1pxSRpXKXmRN3nySj9gDk6BkOP0XPSXNKLXCrPiO6ZS0Tdzz8mUfclctjGYWgv2Jp/iX7Bspd8O9X1vUzU7YvXyyvqK7k78bz5SimRPXllJrleuFf+XmMizDmb/LtOtnN+Rl0ukcP690SHYfFuF0z6dqzrQxf7gy++jm97P+c/Ocu1XnBRL9HpxW6dq98i5ZHGSn5bou5T99svyFb2evJV8v1njITDWN4hJ7zVoIax9gGrrra1L4SaeNtr1vuEtfP+3ifkv3OpM6NMlN+EqNv2F11Ja6s1t726+P50iaj7pK/n5Tqe21Kiv/e8bcFh+ri+2D+h5fNjsH/R/AQ5Z3eY68WTWnuOMw/ikl7mRN1vOAYb26qfV3qQPt9iCKBKL0uYXPeZlblezvviS0TduZzQy5zXsC4nycfP6OUSefIlAvU3jisyplhh+GSIumvZ1/lSf/HP922UuYFOxG+LRN3unvxhMxWfYPdk475O/tCRNz7EJP2RMZ2wvTn/ZK2XpeK3Nfv+4TEtlV/8y5+/eM+1XMu1fDLlmlR6x8qX/tT7WG1KoB+AijtFtqHABel1qQZUmg9GsyBD11errEmfVC4ObubUJkC2MuFMEBFQjocFzzHkicdSSW2xGJiZf/KJsUvJC3Z1Hvl8YNbYSewb6oWcXszMGsB8Yv4k1hPERb2cCQounT4CDaJynVERDZPF5IOtpWD9lF5M8XpoHXmyncBmDEZ+hWPVTgH+CxpXCUcG52QdC6hKlq0lMd8LIG9tLPdP1XXfrj7I9qSimi7RYrdrAIWnQwvBT3ZqDJHKSibFYOtIIBxTAkUxWFJ4e78WT4bsCTiXyF/jGZmdrBiyRE4vwBwT1e0+zPRS6+3kRCGVBxrh9VJjqPUwuOsBp/UCyBYoi4lJuD4spr3FRMAhPV+/Cr/cyworTZLvazVhf2yrBHoIsZI/Q02F0Se1/KR2zY3wg2WMbiLO6a/qAwggQxIPQlmtlH1zKXalmpbF8cT8iJ18OalUv9QnJCtM6U8/RvoK+YTlyQS8xXTG9c0+Wjh5/uGlfh6B6wkg1756tqL1/HBXj7Hpuf70Ka8XOHlEnPvqMxgunWzmi4YledxcsC2rF5EXPoy439Rw5r68vr8ef7yeL+rFv3MBK1V/n2PyCZNL/SU6vXjbu9RfAMxWdHlbs5gm4jKepDrnBIlicLZ2Mr7L7+S5rVUY6jp3S7bmnjnPyxk/aXyD1tnHpA07vThMi7Z1pn/AxTpLGHypMHDdf2L+RxifQOa3tS9esjWPYSlxdk4vvrQd4af/7Adn77mWa7mWT65ck0rvWPn1//s3EA9TduYTzFeSFOwG8l8c6qGgQX0y0tpsmQELwa0d1Dn9RgcLRto3bwZLm6Rp3JaaFQJWKHUS3pO6jo2pY0Qd6DP4IoYO5IiJ2wpDq0EA6zsY51ZgzTE0FeYNNdUAvIJsaSl64e9KLzYps0LIRMVgYMOJqDg941UzOD1xlVjKQUKe6JCrs8fgQzlyepd2sXqxGMEJg5Ht1iXBVNuWP8mMgQVMBUPjMK24qTA/xxrHzC4F7DFhn86KAWQS/4De8Hkwdhiryf4RMcsTIu7R44gxX99hxCHLQmR/NEmYR+qxE9YfAMABE3YoCQsmqZfKO5rwmFm9gCNG3KfUU1IDdg7DI8Y8wRkQ8Yi+SmAcMeXk2YSIHUb0mKDL1O8xYG8w9ZjydQZjjxF7U+cHGvFgMI3EOJjrA2J1/44GvDYJvpEiHvOmOAk29xgyhgMmvMYxJ4JEL0PGEMEVphERDxhwrOo8GVkm5r1Jpj3QUOnliFjpoeMGO5Noek0jXlOp855i/dWdgEdMWX6kCfc0ZNvqEfE66UXLjoptRTDuKebE0gTGC4x4rDAx9kavfd/i1a4klr69b/HtfciJo+PQ4NXjKsu7Y4thoix/NfbVF2pZEVkmz0JyXbZnrNHgx+OTTHDOqFcakJVJPnC0xkeQk8VHFJ+gNalPM6wn+/M+H6o+v3apgXVm8pAygdFQuSNCCMxtsRjI+a3Abgsm10kjTczVJMtpBZaZJNuEQ4N6UrqyYzDmvtiv4pzgPyLQBb24EyOdHvQdFpNyzKmvh8PUOEyd1wu31fjhff8EOXyivFPk3M4OU/7YlIryP3pMFkOeU5PqpT5lMp8G6jGl0jm9rJ2cn88G01voxb8v9x+Dk/QdJzAB5/WifHZWtrGQf98Enumlo7rNLCblpsuYnF42HHCrJ2kSsofVlW/FBxSgytGnpUOo9cBN5RO2rs9HoOrzU3pGcd2UuNLK+6yssZLKDRsfZOpo9QKUD7wSs6Y6U2kni2ml13NcXNtWjtdMzFonli5j6FQvFlPlq23craTklDERar14DO1b6sUWAoCB8av/xu+fuONa/nAKgfmH77+LX0qu5Y3KlVPpHStf/eXvpABThrEBypUik4wecoqOnhSmzCZ6HKkOdnr0rSZsQnqmkqsC5cOtBv0ERmQNyoWIMxMBq4xClK1ym37dQZb8rjhUdRbiR0lgyGQwJozI5I5EBUM0GJSaWkmmAzPAhbw1pHfqQEhgeSZxwWQwap3l3hOYmNFZDNDBueilB7CklyaNt5f0ApQl3AwGcyGoDWBMzHikMQc2Vk9dquOU9NKZNgiqB1PngsE+zQTh2mZJDw1CkoUUWDFaDJFlkhUMBoCNHkoQQ0YutuYxKQYNCEUuGAKYGVvuwAQcEhHzkSZJ4vCY5BFMwD33aCFEzCBgl66vEBAo4IAJPacTaFJS58CTBKYpKXRMpNtrtOgpYuCIFpS2RjJG7rFCkwhnGffcywlkaDAR8JAIr3tMmIhxz0OSIyIxXvExPb9BoIAdj2hBOCRMD0lWUt2HhGmNgIYCDjwl6+VU5xFHTglpAh4x4MCjEHKT1GPgSdqSkOUOASNFjCz/tkELJY1/SHWeECu5x4SRGB/xIfH0SDtLGySbMHpRTK/4iE4TugQ88oAGiYcp6TUgZmLUHQYceRSfRUh6m9ChwYoaDGCMPCGAMBFjStelX8vqoZEjOgR8BhuMxHjNE1YgHEhODHqBHuusF2T5hluACA88oQNhjwmRgNeQNlC9vEqYt2jQUsAOEQ0imnRy3WtMaBFBLAb+CiMeecItB6yowQ6MA0+4AeEZBdwfOuz6BptuQj8F9BPwOAY86SK2ATj0LY5Dg+16xHFowEw4jsKz9G2WFWpKeOvJ+HXto/a9hkUXX4pP8YAB3wiPGClWfd76OSWJbyGE6o3xvczav4tPUCJ+TbIoObPKup2u9gHqx0Ii/679lvox9cXqZ3R8yZMnlMSaxQArQ+tSfDOhJGDKJF+fz5gYCVNIvlrspmFCIKRDBpDrUN5ByQ8u+WIsYmiTL2ZMaYw8rxfbRlYP2sYqK9E+8r+g0pNiCEbWgxlUL0o6reOHXg8zDDru13J0GGybwYxfBP3AUWMa83hFWQYW9GIwhPyOooclvageJtQfgjjHKm+ml4YpPw8obaR11ljnFKZZfzH9zeuFkl4KplovahtVf8gYpf8t6aX0+VA9TzE95S7bCTPjCIBCin04rd4MlDDoibK1D6jjhtJf1Cd0uf/U8Zyi6pN925iVKNkqim3pqYsFg9RlZWRwahMTk/ZGLyHFXpE06ZJiMaeXYOxXMNS2FhzGSBqjIh0iovFdHuVL/zP9o0t6adlgquRiS9ImElOMOpewtnZBL+WdHlPRC1X/Eb76yx/hz/7XfwLXci3X8v0v16TSO1batZ61QchfEYzcIOSlxurwdTAoQ1j5jQ0k9cuglW3uVwMFHah1QNJv9SpTdT9VdWxgByL7lcRiqq9zmrTaZ2oJmGOyAb8N9slcrTHMMdnEUmOeuSTbScYlvdjaWr3UX+pPb/ezmJSoexkTIVZ6KcFvkU/XWf+0dhDSG4peCFNlJ14vNQavp2ZRnly71nqq7z/9fJDbckV6Sku5LsnLlLxL13uOmYBZt5FpiWlFkuoiEuPIE9ZoJaQjkq1x6SeyvamsYNJEjXw5ljrIUcqlTnq0ssp9Sj6scp1rTHM5ghjYJkwR5fQerbNdZj8R48AjOnlDrqOt8xFTjgYZkpy65fSNkxxvAsGsRxJZfh9y4qeccEdGT7H+PXNOLE0ppNVTIyNqvWiyqM16Q0ocNRmD5ZPQbWf5dMLUzjJZ0XYvG1+YkMnaC6aIFUf5DkuS3J/McgSvxwExr0IQTLINReXR/h6yEuwBEe+nFUKRgH16HjNjigEPh+IlJia87Bts1pLoZSbsDp3Z+kaYYunbqSkqTAyY+/We4qOeYIVHHvCYVrjZPu99NzBfbbDs18w2GKpXRqo8mfvnfqweb2pI1jd7P2b9XJmQkXu+x7Tkq5fGyBpTQGRJgi77rfnvPSarhyVf7DGe0svcU5+KC7AsWz0tYUbRi6+Dx7ykl3o8wUm92D9PvcPrqclT4SLrVrA3wzS3jTJG6r+fx3hJL/M6e73MMeCtMJxvs2UM8/utXny8Zg+KqFtF68BOlnSyrfOYkjeUPzaW+G0ZI1XyOT1IbBSrZLO/32Iov7d6Kif4LscyIY85hHornH5cLMNDSVKewrAk2/4yj1nP68Vi0n/zvnveXwrdgNXL2/SfpdKurhturuVaflDKtTe+Y+UX/0pN1J2X9KYRaZEQ2k8UHKm1Dkz6A0/UPSfUrOVLpIeO9uM0UTfr82tMS3v6rSy3GkzkiLpp/vM34vEwZc55cZ5TqTOTpfz8M3qRCZ1JYLhnLhF1vz8j6p5PqmyZ6+XtSEg9b0hwmPxLZnrBvJ18mRN1n3dxXi+PNFSy587yPAdaR62nJ69c4kKZY6r1Ype8L5XR9Yg5QW39Y092eclWld8oL8mf9VdUmLyt+ff7SSbw9nr097OTPQm83l+2aXGlGc/7ASz7NYthTqBeF287qwu21zs/5olUvV6WiFhrPdWVkiSoSZ4B6NMpfABAND9E4egoLPw2ry+g9hlz26lbxfvqp+pzfJ9PckTdfxaJutnqBTNS6+D6j+fZ8X3+EhHx3Aec0JP1CQaTx+A5z+zEO2O4QNTtje8Sv53//Uky5RPjZNYLl+f7PjjXy2lMS+962zFyPga/nV4yj9sJPeUt9BZT9XyacTb5pKofI30fPjlGnrheXiR/vIle6ufBYXp7vZw68VfL2xJ1Lz3fclC+CVH3JQJ1r5dLhNCXSOBPxqxu/Dllaz5+80TdwNxvwWG6RGzvfz4n6nbvc/KcqLu2Nd9fLhGoL2FghlnR+N0Rdf+xf+lK1H0t1/KDUq5JpXes/Pgffw/rdQkgA5C3logsS3xVJtAswdEakkQQ0LiBw09u7F50IE22jDwbjLgejCJqssqJuQ4i2JNaJ1LCcxhscoASmbi57gdDnxzYcFNjdGTkHgM8hplcB0YNUp2MXuaY6jrP9HJqhpDKXWydnuowY0bmagJyIAUdZ/Rkv0KKTLOTmlpja4K71kt+nsoOkXdgc9sKZzH4FtpxTbY8Jx2lWWCkWBQ0u3+fM03ZGe88qD45kUjFT1TmX/B8kF4TSi8liv2v2dRzKUlE9T9kDGVFRF08Jo/BF9/fLp0Cln0O1dfndT+BwZb0HD858xM+f/0Ad/rbjN24LgPHs7bmVVSOvk7F9CP90+vl0ilHvv8MF2L4D5YWN1d6qjGFZsKPPn/M8hatHBCgfZ6BZ7wqMqEirAUBz2KdiHqPuyyTjlem+PFmTn7s9OgPUXB+LfO8KSagcNVBxp/G+GpwPaaCUHHbeVn8YFNhnGNqZnW65IvP9fEGfiKOGYZKprns29EmpqoxN2Pwk9oF32rK7Gh39nqp44ZGEySKiU3C5JxeLCYz3vi4QeTa216yNf1twTTHYItPZAWHyeuFMdfL/CNAPQb7uOGSXnyZXXJjqrfNWcKE6/4jdawfF4yeZCVpsQYCYe36jz0M4E0weYJ0drLn7Gyx5APqSp/TC7v+I32+/JZAWDtb8z5gnkTFWQx+nF85TA2f18sMA+qY1PtqAmE1k98A05k6e0y+dG3AT/6p90/fcC3f88IMRKYfuv984vlavrtyTSq9Y+U/+je/hvYgXBXqzzcIZbCAJEy6JBMnYmwuk/8tQjVY3HCDdaQcXNxywMYMFi1IttMkOYBwY4LkFgE3aPMAt+IGN1zkLRrcoM2D+A0abEFZDgC2HDIm/Y1ioiRbTFs0giFjarA2mO64xSoWDFumChOBsDWJpQYBN9wUDGhwazBtuMENyvUbNLhByBi2INyAcoJO9WKTMFtuCyaWCZrFdKOYoHpoZZBPenmCBmtjC/dhrIgbA6g6ArxFwNZgED6fIq/RCCGskdcGoyQoa3LVjkIlb6yeWOWQ5bXaJlRPbfXVsENTBZBBg7PK9krybJ1saVbn9PtntKomSz1ilSEZJTqqSrUMnKUOdoXM2QkeoyLHtNwDp4qf2Pive/7XXbXJR7eKlhv9/co3YTHUz09XzARMA14CYelb+aVjp33x7Vw4YpDeU7f7hHpVTXDX/f1xAYO0SWkUT9rrvwT7ydsTt4rHr0TyZU2Ns7UaszOzzC9hKpXbW+toMRGjTCBT2VpMPF8FunEZSh9o/S6O9XVX0c7p6c9+8RX+B3/+K/jx90pi6cf4Ce5YEkt36PBT8Rmex3We5G/QZL/XccBPxDt8Kl8HfnK6weenTcYckE6DMuPJ2owvKzQzH7AxfWiDVuTs65uKoDYClZ+j5FN0AhaSrHVuQMIbprLDpH7N+vYWZXsnQ8aTVeXnQlXHFdoK04abKqG+5bbyxXJwRL3JZo3GjKFzDNszGAJTbY/J1tRXM4R7x+qlQ5DJf6WHWi92/LlBW8kb1Jg4PdPqZWP00oBw8xZ6CUxJL8hJ5cZgUj3VemkqvazRVpg23Fbj0Q13lW1KMqGkCwiEFRU9BWdrXi9tsgutc8M0IwPvULZXaX+xmJb1UmOymDdo89ZgQPqXxcSY95e1GXM1rlBMgqHNdWw4cRMmTFtu8B6anIQR2zIJDK1DbHKss0ZTffi74baK1265rWLSO25wA3J9vMZwY/pLi4BbdBlDl+I/1csqyW32YxLftRqjMrDiIjNY+A/NaqIKA0u7bx0mG0ffxhYb09/W6Z2lv1AVzwUQbrnE1SsE3KptJfkGFpO0gWJqGRUmhvCgaUyqsY2NSTcO03aml0boAyq5TjxpCQysBsY//DtXou5ruZYflHLlVHrHyu/92osUfAkR3h6yHWKLBhNzJpO94Q4TRwwUERBwg4CJhZwyIGDDMuhMLNwiEnwxRuUygXxJGVm+jncU0IIwMOMIOR3kSZKVnPIJukxW3IBwxy1GZqxT8HqDFhMzNqyyEMQqEeSGAyIDRxLS31u0GDmmCSrhBoJJSA9DSo4xIkc0CGggmMYFTCJLhxkY2CkmJgwcMZIM0ncsmBqSibliWiUMt2gwVhgCJgY2TBWmXdZLwoSEyehFAp0OU8IQELDlgBVUJqxB6CDE3Bq6NmAMYOxoQiEdFZ6ZluQ0Druf/xZdahOp8ybpoeMGhbyyEKiv0WSib5AkliI4c+WsIGSWuu1rm/QSjV4sppDqzCg8Ky1ICN6hJPGUeWj0RJEx1aElwl3SQ5P10GWCZU2mTWBsuHaJPmEzPxK6Lp7jQolQl+5RLo3ZF/rZmvG6+O0Eb7uVLKJweOSfVgmZGoNPEcWF+8+s+5Fkh7vs6+SLx+RTUP59njx56Wu9xeP1YvWgcb99B0N4ic4V/7Xc244vfiXTROe3L7QZQ31F6+n10ji9tCgnGplcWvXEzmH0dfjIrcbyxbf7Tz7f4+lmxL/6L/wW/tNvPcH/9Tc+h6++uMVPxqf5RMMGhJ+Oz/AYB3wYDtIPkw+5jS0aBHwx3uHTcYtHGtCiwRfiFp+Ka3wz7PH7zR4ddHyR8auDnOo4JD9IKD5AiYZvkg9RH6BjoPrqLvk1JZxVPzck8uRt8oO6Im6LFpELv5L6NWKdWAsmsJCNC2GuJCsn4nRSWMCICUOSW4S8FZsQcJcwNQ5T8WPiOyu/pnUiWWkTIacaii+X60qyewqTJjD1/gBk3ywJ2tpXDxwxkRDaq16Y9MRQGWPVb7fONzeVXuQDlR4AYjFNiObAD9FTOIFhStlRq5fg9EJOLwMiYhq/Wggh/1jpSbndkmz04seXLajSi7ajED5L4kZPqFSM+kFCxnmPoc0rtjWZpnqRFSH6+1gwgTFgwgRKiSaJbeD0orGQ9h/1O0UPwpdj5dqWlvWyUVuCfliUOquvVczaX1dJL+/FDjlmBWOfbFljm54jBpKExYrlQIRA8rwOAUOM+SNGy6HqL3eQeG2d7PQOEt8dITHcLQJGZhwgpNY3KX7Tw2buIDGq9vEbbnKspR8eJ0M6r3Ywplhnw2JrRzIYENBzBAyGHhqTJr8Wi16egtCnGLMB4ZalzhpH30Li8B1xkqXOOj7dpjibUgyr15UE/ibptXMyMVeYjmBMRNgwYcWMniJGUE54D8mPZr3wsl5kFVfRi8WgH7g0HicQfvdXX+A/+9/8ibPj0rVcyydViOgvAfjrAL4C4AMAzwH8LWZ++Uk9i4j+GoD/KTP/yU+qrlquSaV3rHSbQtTdQL5iDcZRdwg4pomzHP9OmQBWBzUtwcj6BWyF8uVc5LLlgtL13hBAr0A52aCBhBZdqm0nuTpQFlkmRUrUrdvGxlRnWeHABmOAnfpJUFtjWi9iKhPNFYA9UNV54imTXq+QllJSuW5JrOeYMMOkerF66g0GrxeLYQmT/1K5AiqibknSFLLLDk2VWOqcXiSQLLIn7pYTQaLRixBB1kSqwQQJl/Wi01XmcspIApUmfU3eg6/tPBlMc9tqqjrb43HLfV6+kFm48Hv/rIwJZqvWQqLHFs7W+N0VOvHnd19OJE9sNV2VLyH4butU9Hn+nnN6pIXfV0m4k3r5wy3FLC5jtPd7WfuPvVISbuefeykZ6MsQxUsEAn7us/f4nRc3+OqLW+jE224huUUHROCbYS+/AVXHem/QYBtLH14j4HNxi99v9tkHdAg4GlJrnVwDRbarQjpjC8UHWD/mCW2BKfkyvZ9REklLnG7nyMclQR6ynwrJLw0YMya5XnTk/dhqwY/Z622qv61jMETDcn/x1f739rAMwTQ/7ALOV+sJjiqvNK5gpITDEoZaL4DXS40pGD00AKLRk9fLEv+Sx+DlNk2ELaYxHTqgp2Yp8fASpqUx02NI51Dmdm4Q8yl2TdLLEgYfC53SS5jppZHVt1lO8dkZvcwxnO4vWqfxhF48IbVvE10la+tsNaexix46oLZl9bRGyFtYNbmk46tfja3xGlVyOjgBxRYHcMbUJTwR1lZrTPrBwMuqJwLlVaIBsk1soNJf1gg4Ggx5ZaViIr/abcmvWRlQ2my9zohZLx3qmFViVIfpjK2VuYPxYyynvlo9RYsB+qlwvkpe9WLlLv3Nl84vr72Wa/k+laVkDhH9CQC/SkR/8m2SNW/7LCL63wB4H8BHAP7SJ1lXW67b396x8vP/Uk3Unfc0pwHK79MmJ4vI5u9zou7RyrDhpnmnKZc5ZOoKDG4lhzdij+lNiLrtFh8mh2nh535byaXJ1pxUkU/I8mceULNeakxeL3JprpcsE3KSSn5P+NRFou7zxW+dObk9KGMIyxhsU1zCxLGeELtZcMNvpxe/CmdPNaqTvAZs6mi4PpaIuv3Co4oQmmpSeAngQt347ve+nd+WqNvrxZ7MpM+3XAaZRwrmfiMvEnUbvSxNti+u4nH3XybqrjHFcmP+vdXTEn+Rt7XINY+HbsvM9zgIDx+TqHvlVjpViSzIVkyrF9b/f8LPLRF1Hx1Rd+s60Mcn6q4f8GvfeFLJv/C5VxUozxNlt9cCwCPG6pneV3cIwg1nbG3W6rPxqy7zAwfO969LpNb579kW50TdnuPsHHkyLfgQ/+5LJNdeT361o/cJ/j1ZT74/VbfWmCp+IxjewxMYLpFcnzzMwmPw5YRevK+eE3Vj1u4WQ9bLGUyX9OLr/LZ6yXU+oxdUtjW3tUsY5iTXNYZLRN2X9MJO9uTjL2moxosWcz6ws0TdtNTn63/pZxjorHwyqjihF0+g7n+/ZGuLejHypZhyFrO62OjS5M/rxWOYUPf5Jd4pb2tY0IuNV+ZE3efjBAD4o/+lK1H3J12Yf/j++7iFiJ4D+NsA/lbdVvxrAH4NwP/2D/NZzPw3mfmvM/PfBPDyk6qrL9ek0jtWvvALz3CzKWpvIMuIQQBYHPzGBDIEwtYRQG/sKRI0H6w6NxBs3BC64TpI7ng+GM1JEIs4oV5iR0A11QlLmLgOzizRIwjVXvYlDPVUCrN93iuHqbmAKYKrZFtEPcFrkMgoEwbhezitpwpDkldOLy1F2Eo/jV2FwU+0W7M/HxA8i0G2wWQnEgE1ga18Ga0xeKLuilCdzIkl6fp8JUBdZ09o64lUPYH6hmseg56n0+SvLEF/a7i4wMhH12udLQeUfkW0GGaTIaenjcOwdFKZx+iJ7ud6qd83Iw01mBhzUtGV0YvYnsFE82SeT6isHSafFA1cyyuHiTH3CRUmUE0iCkcqyslWqv5TY7g0GbqklymtxMj3G441xWjlkWu9tNpfUiGmissugmekvJYXjkC4cT7AL0XuVvX2tSdd7ROadqplx2z/vnui1+OE+v7ffrnOW14AxueeHNCFxOrF+oyCuQHhU7zJGCTBHytMPmi5U+JuxXhBT4F9f6KZrZH7fe3XXP9w/QmM2q8R0MwOt6h9hO8v3xX5+BkMfoLXsCO1dpjAmPWnjpu6f7nxx/rqyu9ZTOf0csHPAV4vYaaXtyVQ94dbeAL1c6uPgMt68ZjYYfKHlMh4U+O/pJdqPIIZIxfkk3oxxWOYY8LM9rxezhHbL2FqzmCaCKAw5R8TqHDDsYtRU9m42MUfpNLOMJgt4QDWqMeXjqmKQQMLp5AtlkuIkeIvlQlu5Q2wMb/1cTaBsI1uDHUYZofDOAwN4DDVttU6TGQxJQxd6hcZk30i1XGx6KXGcOP04vW08phmtlZj8mWzIvzoLz47c8e1XMsnVv5G+vNXFq796wD+2vfpWZ/o869JpXes/Ob/5Wu4GSJWyVMTgKcoCQxi4Ak3koQhGTzvEPLgQAw84xZ3hhTxGRrcmkH8WQh4QmVAW0P2favcgfDMTLjWCHhuCANvuMEz7vKAd4cGz7jJA94TIjw1E6YOwFOUAY4APOUmYwoMPOEWmxiM3OAmFkxZTpieU4D9xn5HwFODqQPhqQme1mjwzGJAU2G65QbvcZsxPUXAc5QTQG4D8LShitPkKQgrM5F64jA95TYP0iIH3OiyawaeIeDWDNrPG8KdWYr2EKaK7LVFTWjbIVRk42u0FTnlllvcYpXlG3SFGBUSjN7CkItDycULEbcnUFdeBMWwRVu4aljeseKip0zuaiY6cwxdpSdL1P3F6Ra/ODwXskgAz7GakcFu0VQrB+7Q5aBXSeYVU8vyfkt8v0aTMQiheluRVVaYTLvDtPsNSgLwlruK9F3b2erpzujlFu2M7PUGXUVge4cuY1ghVBhEL0ZvEAzbClMnK22yXlps2RDWosUTrHIdb7lz5MmCkYwtPsO62JaztRUabIwtBgTcYpX1IiSjVk81Ka/WaWUwKJ+FKn6L1umlqfSwRYsbg+FTvMat8QkNCE+5bPHacotnXOr8FC1uUchfCYQn3OWkZIeAJ0YvWzS4ZUuUSjM/91R9MUR+xgHb5AMIjB+5HfHspocq6uk64jPbCZRAfOqux3tPjiDdWtsA6zYpFcDvoZ9tYbGrW1duw8p/7sdeoe0i9LP7P/rGc0xTqBJE9heBCV+Mt5mYe8UBT4zfFJ+gWyEABuNIiQvN9B9PAH2zIOdDE7it5FtucYu20suN6T8h2ZbtPzemv6isemuyTyh6kUMVSjsJWXKo2tES2Hqy8U3yxRaDle+4q/pTh6bCpLxy6quVeDjbVvIRtv94TCKX8cb67qwHoxdPLr52mLaoD7fwelG51ktn/FooJNYodS6YRG/WV1tMgamMRwaD981r4+dELzWpdU2g3lbkyDdObhCqbaBLevHE3FYvXfbV3taK714jFEypzpbEeslX13rxeugqPW257k/CVVR8tdpWY/zajcO0rfRU6+0OAZ8JDTYmI7IBiV9LmG4QcGfitzs0eGowPmGRtY5PucFz46ufBcLTpkyIWhCeE+X0WwfCc25zDLpCwDM9OAXyQe8pl4NTNiA81T5OkqR6lv6UNgLuAGxRysYmkhi4RVPF2XfcVpieclPF0c8p4BlKjHpL8k7F1KS4uzG2/MyMN5uEqcLABcMmxfEaZ3ep3Tao9WI/4M4woMETIz9NmIpeAp4ZvTxvAp43yxPVjoC7ifEbV6Lua/nBKH8dwMsT28Z+G4BuOfukn/WJPv/KqfSOlT/49ZcIBDxvEuH0JHven4EyISGB8JRb3CSyykABTzjgBkKKSBDC6Q0XAsEtZCVNz4xVoDQhAI4sK4tWILwP4AhZ4tqA8AE3OCaiyADC+9yiZ0bLsn/7Pe7QM2MD2T7znBsMzLgh2ZP9DIwRQjgeiPAcwMCMA+R71rNEQNin7UVPucXNlDAh4I4DtooRQkC4Ydmf3xKhJWCdnteRBkSMI4ADS2DxPghH1v31Ae9zhyPL7xuDac21fJOuvwdgQPoyRsDTAIwA9pNwdzxHk8nNkTCMqc5ECRM4EZ8mTCiYRC+MgRkdSdJqRcAhRuwpJoJbIUqdwAgUcJdIRgkSuKss++jLdSW0FZmxTsTdSsCp5K8q9xDeKZFj3va1RSeE6ShE3WsYUngE4a1KmFZIRI+ZKFWJHSeMkIBQCWwZSKTwq0xwa+v8lCUR9qeH9/ER9dgH4ZxSouBdaudtkvWEridYYUxHwlPGXEh5leD2iAmRhJB9jTbRpBayyomVBF6JhYWkVzH2hvz1acIghJwBt6nP9pjQkCQgRlby74CnqY5FL4WUFxAOG6unu3S/JX9VImGdwAnJ6IRAksTZIGbS3Uz2iloe2BJ0btDzlJMPxbbUlqQOWqf3sEbPERtna6r3bbY1ITa9S3VUElHBWHi2VK9DOpDgFh02aFKdg0zAoLZobStiIC7EqTzllU1Pk63dspxMqAcQ7BHRUcB7vEKfSEmb7Ncitkkvd2iS7xUMT1gwcvKLz5LeM1FqIn8l46vVJwQKeMYBt8knNAi4ASTwp4guAN1mwnY1Yd83aIhwFxg37YiHIeCmiyACPvPeDodji92hA4iw7RhTZLycxH4byLygcNowmBPfmxlvfvz5QQhgG1nF9bVXm/J7LqS8BOHAUY6WH49P8Nl4gwNGKAF0m+xW+TVaMHZgTKm/aP8Rou5CAK3vKAdB1GT92p/UtsqhCtKuR0wAiTyldhY5HZJQ9Y/CgZNl259QCKHFrzH6VGePwfafYosdLFG3+jUhjy7yKsmKiSFEw7fZF8dFH6B9XP1a7j9cY1I9bNEmX80zTKPrL3pog/o1T9SterGHW1hi4c7JB0wJU2f0AkPMzWf1Yn31iote1AcoBqsHqxdL1K3XLYG6JeouttbkpOOUxjyioqceE0DIepqSH/JE3V4vWx1/0v/Ud0/Orw2JvWuNFh0aDDxlPkKLodaLPLOt9BKynjrXf3Sc1zYYE8ZbZ1ueqNsTqKstfhoNiIC7BtgGYDcxjky4hSQ0DkmzGr8dMmG7nOh7iDGvDu5Y4rV16k+fQsCBGdsgsdF7DdCzxMaAxKw9kOOv91L8FpNv1piUWJ6nMadyTD5Nvr0Bg4J8DBVfjWTrwA0zdgAmBNxCVlkd1adwwdSA0LAkbg+IUD64DxQTCQfdp1hi1BXkYIb3wOhTzBpAeI8b9Fw4o55zi4EZIE4YmrSKlrI8MKOlNN5AObOE3PtJQ9gysI/AkMazLSRmtXOFY9JL1lOyLT3J78gR64RJ9bIB0BLwQSNziUHCL6xD2m5HMqe5lmv5ASh/CsJntFRepj//NID/0yf8rE/0+dek0jtWupuy9LkjYBOAXdpdIF/zkQ+NFjLMkPduS/KoJoRWWQmgN6C8PzUQsCXgIT2A0vMfgRzgbZBOgCOR12ZKonJr5JWVSSYXdgNHR/L+g8FACBiM7EmtPfm4both1hM/IBODlMzaQgY4i+EANnIjvAa0jGGNcgyrYEL+8k4kf5+CDNJA4W+yemmMXpYweZJrXWrNnPQSauLGFRrsHVG3bjvxy/5VtuTi9thighJw1uSvjDKZadJUTxMcSySj50jh7daEIrcY0+lUer03GFYoxJBaZ7UbCc7WeBlHHIIEdJpEGzFluU1EqtLuc64VTzK6QoNDald5Xltd1/sVgwT6CQPpiTiljp6Ut4Oc1Bfz76m6X08qsnqBIeiUPs7GluYEtkoUrBgCmsyn1SBU7aCEtnUbhBS0qi2WNjhlW5r60gSctzV7v27DsZhsYsMnOhSTtcXG1dkS21PCNBiS3g3KZtViW1ZPhKOxf09CuoRphCQts23qCyBflS1umWAUeckn2K07ihkQH9AE4HY94djLPYEIT1eFpSMQcLMZcehbxEjCv9QAuluOUhtbMmTbxvr3YUoYpaGw6mqeKvsrL2/Q5NVwet32OG3npKhMNHzgyfjWus/PCaHn/SngdP9qk88YjRxRDqfwttakhJjVg+9f1kdUcsYUss+xfu8UpiXS68kRPkdwheEUUfcShjchH1+hEV/MhZRXibr1JL3LGLxeakyDIbVWTJ6o29b5nF6Wxp9OMaD4sYMhG+9QDppY0suSX7MY22RbjIIpOkx+DL2klzch6p6crdVE3XO9zPVEJ2XtL4UAWqi6l/Ryyld7Amh7R5Ni1uNUrm8hB6copi2CIEyYblATdW9R+5yteQMRsCYgTuVU4TXk72OW5WNOzD6mfp7EQqW0qMeslmQbWo6rSZIyDwbz1sSs+kFIIHElF8yUOZiIJN7L/YUEw8A1hh4lsSSHy5SY1fY3ICXpzSpfTxLfJr0MsWCwcwnFZIm653qpbc3rZUP1lsFct5tm4V+v5Q+zREd3cC0A5OS0U4kae88n/axP9PnX7W/vWPnZv/oFADYJI1IJiutC9uZUPEmuJ7UekCYRqbTufv+OS0boCaGH9DhNXumrlKCyzbXkk8+fH5PO5pqseLKE0K4J4DmXLmGYkyo62WHSbXC1XmqixHN6YTiibhD6WPRCRPiMyynPiLo9aFe8XubHwJeJuTxflqernpaGJY/hLCk8yqT/FIZLennpyJUrvjAU/qOCocakf1fZk/B6/gn/W5BwxtjAPIBc49QP8ESplwjWT+lF/znfz+V+i2nJB3gztP2HZvXx/zInd/XF8xm96f1aZ73byhbTJb3YVTiKwRMNex/yQHWv9mT+vnhS0m7Btqw8otaLJ0rNFU8lom63MRL2AxkfgLTNrdSzHxznRVv38h8LNX+R16wnV/6Vrz2VaqVq/OIXXlQVjQ6TJ4P1PsCTwncIst1PMbnJ0FKZj1+eqLu+Pk8e13rK488JW/Nk5HJylO0vta8lM0HM8gVMvo972T9h7icv+bXzfs7/NmOyGJzsi+/jb0vUveSbrfwmejlH1P0mGHzxdfa2dYmomy5g8nrxGPxvCfX48N3oxY8//n0fl6jbk1y/wCQfJfT5BNAFTLBujebDl4+/BndD46pce73TccUpvYxARQasWs3vQ43p1LOtfmZx8UzvdekcplOpmFNj6ASJ3TR+E7n8Tk5irvViy3ejl/5Mk+iln/uXv3D6pmu5lrcrP0dEv7r03xv+/uWJf9cEzvtvUZfv5bM+sedfk0rvWHn/Z55g6mSYlw8T5eu4DlrHFDSofEgnYjEYIGDvgoqDk/exHmxGzIO3arLjZH9q0QjOwRhDtrwNLJMieQ/nU43kuOyy9DZjgMGwUOeDG972KMkPQJYOW0xLJ8d4TBbDYDCorIESgzExctKHWQgKddueYMAck9PLRUxOL5/hmqj7luuTlzYofC+AklXaBM6cpD0nZVhx1hjGtJ1M2653ehmM7YHKdS1ezieVpTLN5PN6+nY45BVagokNsbA4yKlqd2BIK5c0aBwNRlAJ7lRPA9UYj05P/nQ2j2lwcu9kdpgiYjUhs/2JwYmQMyWuGCCmivCZibHDWNmaJbUm0Iys3weQPSaHoZY9Ri/HCz6BwRljsR2jF+IFPdX9p09JoGKLRg/k5IU6er3sUkrkFAb9gl9+X2PSe7ItQbaSFEzlBEe1Na2hYppc//HJ7Ff7enr0OITKJ+yPbSUzxUp+blb+6HtO9TcG4ze/fYvf+uaT7Nc+fXdEE+T7uL3PYvqQDhWG+YlAdSE+nxzwevJ67NNKpHJ9nvSx7Trr85j7BOv3xCfUvtraFoHy0dun6ugxLMnxjKyreGyxmLJvPuHXpD/VmHt4X/3xMF3Si8cE4wMsplovpzGJXpYxqE3OMFzAdEle0ssME5+2NbEt7+fmmDMm1OMLgWZJoZHezlf3ed2blBVCRVq95lDFBS2jcG2x9Ne1JX1nYBtrEvgneqIjS/LiPiZfkeI+ewKwxKx1XHB0mI4Ow9G1+yEKjYIW318YtR9i1O3MVMdrEXVcHVFWUymGA6ss28hsUmgJ02GGwcuoYpeBa0zMNaZ4AlOu8wKmI1DFb/uMQTDpKXraf3ysc6DzmA6offfR6aVgSX65IXzwR57Ob7iWa/nBLM9/QJ/1PXv+Nan0jpVf/zd+Hy/2EceUwNgBeA3h8yAQekTc05Qn2hMYD4jYJTmC8UgRD2Y9wwHAg/l2OQC4N4PBPRj3ZhB/IHmHDnA7iniFMQ9wB4p4TUUewXiFyUyogHuWrxhEMpjeoxyXfQDjnuIM067CNOHRfPs/UMQjFUw9ZDmyDtKH9E7F9Joi7k1w9UgTXtOYMe0p4rXB1BPjFU05cIgAXhNnTBGyTVATS49OL0cwHmjKybFxSS+IeDyhFwAYmfA4FQxTbPD5uMmJoztu8dm4zYmju9jhM3GbiRyf8gqfjdt8ys/zuMLn4jafnvYp7vDFuBZSd5KgZ4cxByo9JuxpzEHxBOHF6A2GI6YcTDEYPUUcjJ7kN6PRU8TBBMF7jNjnTQUSXO6M3ENk1dNAEf9x+wIPaar6QBE9lcB/D2lznawc0u8VQ0wYSqAvgZkGnFNqgwNKAuOICXuTgJiIcTSYdjRWdT5iwmOaggFICcRiezsa8ZimAnJ/THKs7i9bEJSUt5C9PuVO9Jgm8a+ox2Nqk8DC8bExpNa3aHFjCDdlGx2K3lK7satjNJgthhGx0tueRtyn6YvcH7E3mMbUjkUvIx4w5CTMkl56o5cREY/JVmydix5UL6U/PdJY6a1PutU6r9FibyaN92HEPRm90IR76sukjoBHTNlH7GjCI5X+ckTEPcaMCRDfqIG+Ttv0fRGMgYSzI4FCA5dwGRu8fOwQWQLzjw4Nvr1vMKVb+qHBy/s1plTFx0OH/UDZZ3yFS4uIfYsP0zo0oLyCSrZZNPjX/t6X8RvfeAoi4Ne/9hx9DPm6ziN1VdgRE343POKbtC91Rp2AmCCTF53ofCccKz3taMw+QvRU+4ABXMlM4jfyhIuk32df7nxAn2xVJ/sDIvbG1iKkz9qEeY9YJcQHxFznCMbO9BcGY4+x6j+H5DMKhrq/RKplOExD8qPaf/R5o7G1vfHV6ptt//GYBoOJwRgoVnrYY6x89cHp5ej0Mp7QS8EIPMKOsVOFSceCqdJLwTT3Cct6sePRPo1HFtPeYoL3CbWeJqp9hPhiOz7Fajw6pDHS2tbO6GmuF856WcIUk1zbWq0Xte+il3jB1kQPKn8qdvixuMnE81tu8Lm4zYmkLSSO0PHlljt8Om5kPCHhWPw0b3CbEkk3aPA53uBZlJXUGw5ADNgnNY3MeMXAY/IJERLvPZj47RF1fHZIMWeJAxivUZL8DOB+QvaDD2C8QvkQeE+xit/2iHiNKfviHox7KnKE1E+5kQBgxyUJMzLjAcAur/phvCaJ5xTDPU24JxsXSIxZbEd+U/QEvAYy99YRwGsumO4p4pUbb16n8Ub1bjGNqV0VAwPYmQ+2kROmNFYMzHgN4aFU23tN04JeNE3JJ/VSfALw2uhFC5HEyi+PjH/wr/8eruVavkflN5n5Ty7994a/f37i33XVz8u3qMv38lmf2POvnErvWPn6P3oFQJI+uyjJDpAMojtOgQUBjxSxT6SNIGAHkfVI+D1FHDhinfbAH8FC0g0hJe4BfBRlf7p+WX4JFhJPyH70l5gK9wgBL3nMPDeRgFcYhS8orap4xRNaANvE43LPQMNlsc09ZJAewUCQBMGOMwkIHmnCnie0DtMGAaCEARNWTFgj4AghaeyYEUGCiYE1Az1J0PuSBUPBNGa+B4uJQHI/JnSQEzICCK/AaCHEkQ0IDxFoInAwetlzmuAYvQSD4aB6CRLsqF5axcCMNRhPENAzoR8ZHQlZ5B1afCne4oE0bCX8aLzBDlNKFBA+F2+wx5RJVz8XtzhgkpOoEPD5uMUBEU84oAXhx+MGe0z47WaX6jgiMEG5HA4mcaQJjyNP2dZ6TBgSETJBJkRjInJdUSMr13iUCTNJQPaY5FHbiYdMpspZppkcQJiI8Q/aF3jOHZ7wGkgTR4IkApBWgQWOWRZMU95yoZhWaNCScDkNnFYDUJqQKblz+iKupKcbtBipYJrSV9h7HoTMO2G65x56ck4kYM8jmlTXSMBDxsjgJAuXQYuGAg48QU6d6aCEuJZs/CkLSfZ36AAE4BX1eOAB72ODJyxkslu0GDBBTlsL2HIriU7SbQjC08AkiZuHRMY5kSQEX/ERKwSpgcGgGHepzj0mRGK85h6tuX+X7qf0wiNPCCh6ecSAA4+yNSbZlrY7UZjp5YARR70fJfHUIghHFzHG1G6RZAIzcC8cLmklkOpJcAKPHNFCgvSJGK/QJz2Knl5D9HTLopdHntBA+i4T8EgjGpZJMAi4x4iGJzkxjBpJLHHElqU/MCRBlANxktWcazAIlsNLuJL2fYtD32DVTRhjwBiB/T3htmPcNYx+bPDhyy02qwnHoQEzYdcLD9N3uCTmKU3okBJZBM6cYZpq2DBhP7T4X/3dn8UX33tE105lBVUitNVVS5owBgG/3zzim7zHj8QbfAYbTJDJkvjKgBFI/01p1YISk1PSk/aH0n9UVr+jPmCFBpEo29YGDQIR9ql/9yTEw/tka32ytX3yazpm7rMfC1Wf7xAQiLJfW6HBmhrhBEoHIiCtmlGi5Nx/MMeUuXwMhgYBRIzH1H82aBMGwTQk28oYoJjG5ANLf+iZcp3UN3cLmLrs52LetjVQTMTiSCvrYiZ7lv7C2S9FpxdNSj+m/tGiAREl307JBxT56DAMGcOEwBEx9fE9RhzTQRkW0woBTfYJ4ostJji9BKsXh+k+6wVA0oPy01GWCWu0gLE1HY92FhOkznrdjqFWL32qg9WLjD8Fk8YJamseU7OIqbY1Sv1d9BKSLxW/14Kw5g3WCPhS3OAREYdE6PyFFCcMJIdRfDZu8+qzAMJn4jYnvwIIn+YNnk0RIY1Hn+UN3lc9grCPwCHK2CZtIB8SmzTeHVISp0t66cF4keIv1dMLjMLLyQQmwguOWAG4lc2OeDXJNrEjxEe9BKMDY29i1g6SmGYCXmNCa/rwPU1o8kEUkljSGLNDwCPLiiXderaD4CBZno4DcfIhqDCtDKbvYMAawmsWifERJqwhZNcMwgsAK5YUIYPwkoGOgT0lDCwx6MFiSHqxmLS/PKSYc538zGNqjxWE2P4xJctUL3swDurbKcWkSS9MSHOFsdLTRxjl+UwYiPARxzSXIIwgvJjkgJmWZKzruWz/+/p//ArXci0/AOXlG9xzicfoD+NZn+jzryuV3rGyvi2TjAmFyweQRM5Atdyb5d5MKQllZN1yxWlAOuZvEulrSVrJoKW3YnpeXilNsqxZJ9WgNEGq5HrftRIoWtluj1jG5DA4jEfSr1eCokf9tf8IA0IxGExDGrxPYRqIq+XbOkGqMJk2m1I71BhiJR8dpuNML8gyQOjTMeOABHRPzVHnBDlhxxLW3qDNRKEESVToRFzkpiL53KLBHRdbi7YNsLCc3GHUQLe+Xm9VSBzAtWzafaRY6WV0tjaSWQJPwMsw4NHw4jjTzUkEi6mqI+Z1znaQ5MH3J9SYRuLKtnSiZGU2dbZtmjFRfd2uwIhU83xIwqapZEukPRFjb3inGtSk05bYXl5hSHvZYKj6S62XKSVQT2My2/nSdYsxUr1kfkpbQrTEBduavF5O6LHYFleYRvvOhNG282ier9etT5DEj9UTCqaEYXJy7zANrp08d6bnp9C7mWWycehbc43wMATTium6UdQU6+2vVf9I7+eqx9T95/de3OKffvtJXWdXRwthoIiPwqG66HlE2Nna6GxtdP1npAh240t0/Wlycm51KolFLd6vReOngGU/Nsz8mret+RYr7xM8Bu8TPCZ7PbrxKZLbFuN99aIvPn0dC5iyD+BSp7mvtmPim2CqMXi9WN8biRf0UmMYnOz90KS/t5jM9bleal/9RnoydfZbfue2xifHyCUMS5jGN8FU6WU+pqofIsjJX2sTR2zRyla3JK/RVOPHCk01fqzShwotwplW+6nB+iCSD3yKQeK3ecxq293HnL0b1/22sQGofMDg2tG2ASC+3I8/1rZkJSMquTcyO9/uY1IkjNbWjlR73h4OEwy5cnr+5GxzdJisLQmmus4z2VRgaa5wSS9H5xN663shiaRdlASWHQfsnOZaPpnC/MP33/eg/AqAL524pv/+ptxM38tnfaLPvyaV3rHyi/8VR9SdInt17o29eKJUwxc58uQ0+FhCQU8I6IcAT+ToXx/dv1QTcZRxSOXWYbpE1M3+HVRO9zlVp/lJLHVx87sZBssRBdQ8PADkRJFKL/UMjBZq5TFZvUgCoyYe9uSTl8gofRt4rpPeYfhUlCcqN5V+i6704h7qMcwxRaeXj0fU7fWyd2TLGhAXEvhQyVpHux3I1rkBzQjPK0xUuEwA0Yu3LV88148nrPW/9pxNR8fx5Ot1y21le49mi8kSBgIqjAH1STEEmunlEtmrv9/zwej9+mfn9BKzVmpZS+v60yVbI6SEyhnV3DvS9xWft77eJQ/0fk9kX3xErDANDpN/myTca0wjoyLq9r744LI2weH9Uazr665BTtmaNrbHFFH3ny1qXrfHtP3PYvBE3XfKvwJNap4vp3xxkWsMS6c8ArWeLAbvExSjfb/nbCKGw0DmOs3MzvviOdl4LfsnqI8pvriW9e/nMJzyH/q84HxAULAnyiWycS9/XAJ176tP6iXLdJHUeq6X+l98/7hE1L2kFyv7/vNJEHV7W/sO9ZW8mmE6rxePwZP1j64OLVBxPS71H1/eNHbR4g9Z8DJd0ItuAT7lq30NF0nhZxg8Ube3rVr2ejulF18nqxcrXzoooplhmGPy5W31Uv9Wrv2x/+qVqPtafiDK3z5zTRM1v/R9eNYn+vxrUukdKx986Ra8Ui6LRDxMjujRrAhZJEGcyecJBH2QMKEe8Dx5sicWnsDVygHl2DhFyOkxCTfBebLkS5h6j8GvjnAYzpGPMzitTjJEjlST8AbM9dLP9OIx1F8ZZySJs2Btrhd/vcZQEw2PFzBt0CByIeYmeCJizEisKyJumidQPLnrEhF3jeE8MarVG4PR6xbQJAcgEWkWvUQja25COQf0Hfr7NwmkakTzBAecPLmr5K7b30t/ibXMgtkScL7CMcsNZDtMIYMFvkm7CtMrM5FYwmh1rL97m0mpx2Tv178xbH+hSk8Mq5cyqbQYXIWdpc2D8nPtDMzJycOFNpi41jzB2Rbg9IS0EaRgtCkb5Y2xD5wRgUc4Iu7aHsdI1fXGZUR/YdXiqYkaPhMC3g/lH560EV/YlFqtVwN+7nMvYFvP2hoT40M6VHqc3Ff5PwiFXwkEfNOuXgJMa6R2XfAB5/ye9xHW74mtOKJ7iO6sns6RKcOsXPCy1L8QrJ+r49tg8oTQjHIAQZkUnj+AoCK5Jp59+KgSJDRPmEzOdvyqlzlR93nMfoyF05OMQecJ1D1Rd/Vxh+pkHBlbLHW4pIfzJNeLeqnatbY1X2eGJ++vDyDQd5Tn1RN15cqxpb9I1H1eL5bnR1FZDFjUi+8vDDveVB+oSFbAVxio1tPgEvTeF/vDLbzsibsZntg+zvTiMVSk1lQTdVsMOv54Ynvff+aHXZyPs3vyMagfw5Ztq8iOqHuGCRcxDRf0crygl0uE6gVJ4nVqgU/99JPZ9Wu5lu9D+T8CABH9tYVrfx3ALzHzb/sLRLS0Yui7etYfdl3fpFyTSu9Y+eW/83u47wvp9R5CrKcJiAFCCKiE0BMYe5oqcspjIgXNAxMx9iZgjCT7qnUw2FHEowmmHmlyhJsjHqiQ8PYU8UBDDkQiSR0y6096vmLowdhTGQCFILrw9gyI2CcSUUAG2oPD1IPL6U0sy331ZAoNenYegyEY3IUJD4ao+0hThUlJSPOqFBI+JMUA1Jh2iNgh5sCjT3pQDCNiIiotBJyilzKlGomznP4Pe5RA42GmlxGPsOSWNaaBIh4NJiYhe9SgNhCwMxj+gA44Gr0Nyc4G0yaeqPuAqSIRHYmrQCSmYM4GdjYwkd/XGGoS6wk7Q/gciSsS6xvqYBMWR8SUOCqBoG5bKImJklCSL8Flcj/p/VwH5jlJwvJ1WpMgOiG1SRRFp3KHJt8vthGr62zulxVpoZJXVFaMEQj3GPC18IgXJJP9BxqwMytEIhjfCDt8gx6hgee3aI9v0z7XUyd8duJj6zSkoFzlxtQJGbtNLsZqMtOkNtY6w9yvelHeDPuVV3+vX+hVXtQL1Qm+kPRobc3W0dYBAJ7wqpKPJFZmMVp5ndihtHgM+m6VW1CFoUmo1LYjJOGu7UwsK1IspjYlkXTJt3JT6PVVQCbxlmfWK38+czfiv/WpDp9ppd5/fNPhv/HkBp9v5K4/937Ef/fHD/ipWznh7T//U9/B//Av/Cb++I99BwDhJR3xu+EeL1Ii6QEDfifc56SlECFP1YTrQzrga+Ex4WN8PRzw1fCYbe7bjqh7nwihtQ96ou4JNfEwAeiNHAiJBF5PDo0VKfwREw7Oryl5supBONYKCfyIekumbGc0vhsTeuP3DhirCZaOV1pHT2wvW9Eng4GqU7oGCO9YwSR+UjHoAQSasNDnFyLu+gACJDvrTbtbTAVDLXsC9ZoAuibvB4Cj3XBF9cljB6oJ1NW3ayKpN3rRpL9wptXE3DUmVHrR8algmGaYzpFaX9bLlDCW2OUc2bjVS42p1ou1xTFhtpg8+bj2D0Y5SCL3lwt6eY/XeERJWDwQV3HBnibs3AEEjzRWpNYH1+cP4PJRjIEBlD+K6SElNvbZpXcUHyBy9gHpIJaCCVWsQyl2UQyPKTayso3fjogVJomba70cqMTVYu8F0wQhvNY+PoGF89PoRTAV+UgS8xU/xhUGiccsybXErEUv0iZqW3t3MESPWp4gBwionrxexPZKYmkEY0e1XuzhFgyJu3dU4pueYpbfRC9atM0fxoi//3/4Z7iWa/l+F2Z+CeBvAvif238noj8BWf3z1/1viOhXAXwl3fOxnuXKcxTC7e9JXd+0XDejvmPla//JKyAlZY4sAQRSAuXIideDZP9zbwgIVVZiyD7JHQLWEPLke0zomHCHFiMBD4lYdUzPuE8Etkpifc9CxJ1liMyQAfIBStAp2wF2NCHwhBtOJKSuzkpyqOSWgqlwsSgGJa88GgwtAgYwBh4TQaBiKISFE5DILNOXNALuMTkMQ5bZYNIJ4I4nNBDixoYCdogInMjHibJe9gmDEG/L6T6CUTCpXg4kpKOZADphErLxVvibEpn4Gi1GyKl2DWLmfSl64UTwPDoMQ9YLjF7WQg+LHRIBNDdoDIZXaTvQgAkj0qkjpCTVKblFhWQ06wWFDLZFk8mSOwgBraz6mvJkVwPlgLQyg5BJdpUI9SERPk9JVmLUNpG/Kon1c6zz6iNmx8OBcoS1rjyT/pDahutVOwzz5ZtKAqJsaZD/XydJCg+TkiHb5zHYbCeQ/+wJNjZ1dSoJo7w4Kh9oBBPwdXrEt3mft6moHtT+v9484lu8w1NeAQS8oCNecY9n3GGbNk9y0ofSN4hc+ITGhGmbNoyeStIoJr2/dfcHh2k0gW7WS27jecn3J70IOaz0IU2o2HbzmJbqoJxipU6a7KlrorLf+qKcFhH1ijptj5VpA6B8EWLIiWtRKi2/Z2DtMBAkSM8JPC6rs8Z0vU2OJQrxUj4qWrebrLoJTzrC3/xMi68eGbexwRMK+O88ucXvTxO+sH3AXQv8937igK/tAz7/uUdsVxP+R3/xH+NrL27wv/jlz+KffXOF36MHfJN3cpIkAb/bPOAPeIdb7vKql5Fle9uaGnyLDvgOHfGEOzABHzY9Pgo9nnCb202J7pWbaueIui05P0CZDHmDBgzCEWPhCCNKPgmZmPuICOJyspaeuqV+7IAJZPqL9p81WrQUEjkyElF9g4mQjo/nvKpswghKdjlBDs8IBpNiUF+sxParVOdD8qNbNGCiRGRftizJpDetZkmYBq7Jx4885fFljxEHFu6bxhDd67ivvljJ8ydiTJzWvCYM+/S8cqjCkMnHLaYm+WL13etEnqx66RKBumKyGMICBjZ60TFSk00DIjo06JxeGgqSmNVVhCQ+aHQYdvAHRYitSezCJ/Vyg1b4ZZKsPuKIQqCusUvgaMjHhUBdbUUwjuicXlYIWKV4bDRjpMoekxKqj4i4TwcQ1Jgu62XNIR1+IaTZwvcD7CCE01kmIRvX/rIjsa0uPU/0BGySXg4pjtgke+4h1Ap6yEIPWVlMydYGMAaMaBMmkYdMMj+Bczy24oCJCPfp4JanaORUO8UAjYWiYMhxg+hpSOT9jwmTjpk7mnBQEniEFK/JCXZravKBNtq/ejAG/bCRYqPeEd2/Qsx6kYRaiSkZJY6+SQcOPCCmiR2l/hUrPTxCYtBeZXcwhGLqNGaFYNokEnjVywqElkLCZPSSYk61VY1JlRR+yP2vnDZ7DyHu7pxe7oxeWrCx5xInfe03XuNaPtnCnsDxWgAAzPyvEdFvE9HfBvDLAD6AJHj+ZErk+PJL6frs2ts+i4j+JwD+NCQp9KX0b18B8GsAfpuZ/9bHrOsblWtS6R0r2yeFOUdIe80kmOrtEkvyYCa1IGDkiLWcvwEi+XrAnCay5MhiF2UzpSSdRCL/fgKj4cItEElOAVIUnjxZ6uzlGsOMODWdLGYxyP+JPKXBzGJK4d1JDF4GUz4NY4JsQVIepkjAyGUi/N1gyoN0escAxtpg6JNeAF0CDzPTXNaLl20bKAZNBEUIBqsXDWr0VdHV2cszTBxzMgGpjeRZupIDi7LeP80wxNn1wJwngYrB3uOHTi9HGD4twozwb2lr2FKxyZ+sFywnRdjesFCny++qi01uDJYUG8iBrPb5kRgv0Wcy70iM1xiw5a7G4HB4TDWCy/U9lRzS4p/l7/ey1wvXF/M/KCayN1F9TcvSdrlz5VKdqoos3M/uXzyGKfkxf123CdZXyOmlrovezimSJyJ8aUM4HglTFPmLbYvnoYV6qy9sIz67Ks/4wns7/NEvvMK//c1PA0iTjf8/e/8Wq1uSnAdiX+Ra67/tvc85denqC/tKUqLuttiSSMsez0gjycLYmIFtkRI04ycbGhgYwH4wLIwNG34yTD35wYAh2QNbkKWRyJnBwLClwZCwhJGlkUR2m5JGN0oku5sU+1bddarO2Xv/l7Uy/JAZmRGR6///vaua1cWuPwun9o69bvmtiIyMjJX5pUra7ilixL4mz3KbFxaniRhv0x6LYnvAW8JjlSs+Cubi1xyBNBg919lXMtup9C/g2qadH5Y66fc859cmdb/kxyaz69zkfMzRZZcZx9Rgan0xM8pANWZZ39/XWcuRvOzsKvfzhUvKY4BN5BpMXOuk20/rmxlBYZjAiFx9a525SbOY5jA0emGbbJ5cn3lSL9S27zlbO6eXaPpM/QlA7q9k90yvlzijl5HTrlz1nraw/kXrQbcfhXnM8Vd5RxpTrnMhxyc761FkXYeWUN3GPtLvDwrTAcBaVVPHrPIMjeHgMBxyUqbGb4xB6WXMthb8/eYwFL15TDZGHVV8J33okqvc+gz/zFYvgpqIsl5qexMMXZGBTsXhc/fXepkavTBGholJJU4umJjLAJJde/HynC/2ejlkvWhMbOT5srq+DGMv5YNTmPln8EA+opzo+dMnjj/mXn/mQRV8l/d/aLksf/uQlc//Dz4FoHb8DyOEtoWbDlGRJ/tOHXNE3fau54i6Pam15hbSdaxkyhbTHCG0f55eziRJGj/rRBdP3HiM9FCKD0hbfgorLxB+XfQiMoEa4sbH68VxAJDF8Covjdw1eqHmpn7WSht8nSbqbgnUPQYXmDv5ZUM62tXKQJFic72euQ6YPJ/LLFE3W0yeqNsTb/t39Hii7sncp5AnZ/mGh0fpRc+iAWS5RcUwR9Tt9eL5I/zzPKajxN6n9OLqrN977/TCaPXiibplNuCxOj+WqLuSWKeyZIuhPCrLhWMjy3NE3RqTcJzp24wqoUQEDDJqyeXeqcXb0u3WBvBdZy+438qQNj33nbeeJClX4w9+6kU+qutVcczpLToM0WC2BOqElhTeF+8DHkrUXf2Y33DA+jV2z5jjfdMYck5CyZRmhilMj/XFvn35hKUn6vaY5HeRz2Hw184TddN8x5WLv5/nmfKyJ+r2myiUuMDZ1kMxzZEn6ydS81ZbvZwjUPd6PWdr9TkWwzFM/loCWttyGxD46xteNid/m3ZG9n7P25rXi8fQcjhZvXii7jDTXs7FXx6T559sibqPEKjzw/TifbUvs0Td1jWXvx/D4G3LJxQHp5fzRN02njtP1E2/DkTdHkV77e/5H37q6DmXcimX8v6WS1LpQ1Ze+/QGwRF1R7JEjzoQSmurWxJRXXyH6cksfZDdyvV6+V13aLIcROoowZ+usya4JaQvL6cwzX01sRgtBs2FIiBskOAHQzCY5pazaAwRljhVljxYDPX6h+ilJW+1Mju5xXB8gKcxFNkRQC/zcgCRk61Zwk5PhGqCP5oPBk/V0WM4Z3v6fgzGgWMNhDglREvQzSnIX+QlO/lmZRq33LZXwRuByqweKUuXZu3c9IclOiPLDo3qtRh5gc7UOXAeKGSZoQYSnO1MyT1Co5foEoT+C7afaeA7Eo9h5WSfuPI7xywQDAYAVuZWL4PSCyNxT5XCdhCa9GL10AxSOZzRiz2uEz6C2eyKxxZDZK6DI05B+aAwEZOxtQjUZF1+1FoF6gTCtR44ELBw7Ws9mLkEeDKwkYchLScpdSZ7fJyCkhkhRJAyvnGU46mS33x7hb/1q9dp2R0Db2xGdJ0luNXk4yA3EPe2hrScUhfvx7xP8MfnkgnaB3hiewLK7Nvix+B8s/LVgkmun2svvj/yfinSaUwthnhUZvWfxiQ8PqXPRIvB+IRTPsAfn3nvHpM/PkfMfewdpDq35OOe6F5jkv5krk8VTHFGLxaj19PpBOJcgkRjmPup6+htTfpdr5ejmFx9ZzE1tuYxHbctAIUzR55F8OTjWS94oF7Ixjre1ggEbuKG03rw7aclUD8eR6SfLSm8tjXxG1VPaPTkMTQ+YCYWOq2H07bmfYrYksHEGpPzAerDSpVPY4qNbMs5W2qJ8L1eBFueudUBH/ncVXP8Ui7lUr475ZJU+pCVv/tTX8FuX8n8hBB3Up1E4rBJzj0RPbKicUzBZtmJggGo48iDI90hHsiS7u4oml1QDkgk2xJYRHA5TiBQnmUjHdqAYBJNExJJ6FTuFzHmf4BM0baYZHZFCRwUySg4EWrWLzPI96md9NZhEp6GSqIYDSYQDKY+11vkDmlmgWDYOr2MSNPMBdM0qxe2esnvROSeyHxd8hi2Ti+jwxSzrqTOAWQwDSTcLkn+Ju1M4mlEIo30vET6q94EGFtiZ1sSGNX/bPC1V/cDZElNlZPea52I6u5PBMIrWOaEBnKwm5IJejbEFQYsOSUkBgSs0JevgD0S58SgEkULdFhxlxMFwAp9kcHABn3iqch4OwRcYSgJiSV6XGEoCYgr7rFWCQsC4RqLUscFOlxhKPIaPVYKwxX3JmnzNu2yH7C2JbYnPuBwRC+BgSseCmYGIyCY7eEX6PBEYdhwj5U53mONodSpQ8ATLEoSZcMD1ugNxlWjl758JV8iJG4OiF4S14hOFK3QY630skaf9FrkruhF7rFRdV5lvYj8Oq+wQae+ohOeiB6Q7v8EQ8H0BAPWCgOBcIOhJJIWCLhRtrZGhzV36T0jJZSegiAhdWDgCTo8iQHEKVH3lAgbkiXFjFfWE56tx5wIYlwPjI+tYtnl7fWrA57d7NGFZAshAH1Xub2eXO3yMc53JPT9lO9HuL7aogsxn0/4L98m/K//i0/ip3/5CYiAn/mVa9xPetBY/YAURt1Fi4C8BHl+8MFIfYf2IZ7kfcz2W65XvhgAOuUXZUaa9mOenD9xxMVZP1brV2ViwZTqnCkADYY0G6MOWHeYTP/k+1CGHXAFBCMLl5Rgkj5PMMj9ZdAo7/CYXiRnLjX2GOo1x/UiZMyn9KJJrEPmN6oYa1wxp5c9IkaqccJxvcSCSdtSwlRtLWYfJ/xKCdNk+twR5/RCTi9k9JLqo2yNEkl3tbXofPFxvcxhknhNYzo0mCoGhuy2W+tMZPXcOb28yiuMCsO9iiNELwelF4lbdFJldHoRnIDMSqLy3icksuhRYdphMhgO6ri8N92eiKxeBhAO6j3uIG0ytxeHaQTnpeKSZDmDIf9V3nqEjXUEk96EZK8wSGxkY1Yrd87WQHY2UdKL9mPRYCj2jjpDV2MKDpO3tRFpObOOsxPXl/VzR8cSM3rpkagatO+XEsE4TIy//R9+uTl2Kb9+hRmI34P/PHXFpby7clmM+iErv/ZPE6mdLLwQwunEkVOn0E4lIYF8fpIT1WX6ArFHIjUc0Gc5cQqEvDtV6qxSZwgCDpxkIU8+ZMJp6bTSEpo6TVbkBQKQO5vEpxTKgD+yHfxKPSqmmkDQiSc5P2FIpNNMKISClGWpc09p1s3EyBhysA8uMqs66wQXIQX5gVJHnnZl6s17lWnusm581+hlMufP6UWSeXtwXqvep/X+mTcoZJLQkRP6KUcFgnECO71YTEJwK5hXmUFCji9ZMKVrb2ksegLnJX75q2TRm8JI2U5Er72yhYSRk17U+823zrJO6tUvplqPOT5Ny4CQyZVz0DwxsOSk/QU6RM5bIVMiOY+cE4+UEksr9JDBwQo9FqgDkwU6DGDsOQ10lugzgWoK2ESeMnG86G/kiC0l7oIbLDDm45I4SrxViSB9neu4Q0QgwhWGwgsS8vkTx4Jplc+vGMVeEjnsiESOzEf0kshdU/sbVCDdI2QMHXqk2V4jJR6ZKwwpqKQ0c+gZQuHMIBDW+b0K0e8GPSbmQsL7JGMWUvgNhvLO5L23eqm8bKIXQOsl1WEixhoDluhLIC3HI0dI8lf0sqf07nsEw2Uielpzhw6JMHXitJtPSo4NGDOXSgBlTBErFkzp/C1NmJASSxNHTKiJpg169Nm2VtxhAcY6v4MbEK7AkEUoN+hwxSHZeEdYEbDkNKsiELAaIpb9HrtD8tbrDvjUOuJuAlY9g4jx2tMd9oeAF3dDekrHYGYshwlEKEmnaerTMrphQozAYhjT8S6CGfj6PmA7Bvxv/uYn8Wd/fo/Fcj9rWyL3SEkeRuKLqRwehIkTobr8Lar2DchsuiqLn5I2X3w5KA1eWPcvybcDXJa+yIcL/XGiyL5/URiEV0cSBnI/aS+D8mtyT+Qc9JTbH+cZMDtFEK19NWWLFoy1/0jyMstTfif1w0DGkAmgJWkihNDH9FK48kpbsr5X6iCyxlQG+1ne5vfuMcmmB7Jpw+D00im9A+3HidHJ3o914JwQSXrTxPpTeacVpxAPy3FWmA6ZYP2cXvozepE+0MQyqj8anV7k5YssS9hLIs7pBU42ttZg4nJ/kaXOwqtFQKOXVU56S3JMZn1LXCB6keRYVDKy3jtKSVFkX+/bU6oTYeRK0C5xBJd3yHnLe9FhjUnFNkXucywkGDc5rjjAxnfyzqTNS/xWMVU/rTEtlJ4nwPA2QvWxVe8V017pQWMAyGAYEMBEhdh75Wyty35O9CS2dACDuGIUDDbZm/rvLsfdc3pZqDpN4LJUrY4dWGGoHyYeo5erPJt4hHzCqLqVImOaS7mUS/nul8tMpQ9Z2Twdjh8k1GgxF/+FIDp5cuf5acisb0kpkPSyfibPXK+f6EkOU51dpR0mv1HBMUycGShlSVYJuEhd4zF4jK6+s5g8BthOch6DBXFeLxbDRPUrXnknKkg17+ioXqwcnTy5Opg1++TU5G1tpg4NYWz56d+wvml7vrk/Wdmfo3d7kySAljvlMmX3OHu8nk/ueJplJzt4yawIL9eZMXK+BKwyS0/fr1M1lOt1nTsnh3K3KptlYoSyq4p5b0r2Sxa1rZk6sqqzwrRQzxMM/p0Fh1l3VHOYOoPZcjh5vZE737+DdPyIXrjqpXxdzXJU189h0M9s9eQxBMPrMWdr/h0snbzSmEl2dkPZ0W05yIwjBhFw1devdUTAchHR5WlXRGnWUszGQCT/qi0EuxoQRMBamdavvljgn765VifMtHnn27mRMwbvA1j94ObP5nl8QtbP0H8+WuZ8pzvlwb5eOhLxzVmOMtVp7nnqVC2f7E/kRnK+B3isP3DPOCXPHlCYTt4/Yy7vrfjtR2mm1b2TvV5aDEf6E43hkXo5+p7ax83LZ/rI83pXlfHyA/pkHwulPtPHe2Tkc+/gJCH6TH90tI4s92vfifYXhuTdYyrH6Lg8Exuda+OTw+Tfa4tpHoOOs/X5nqjevOdyf4uBGwy2eN/r9eLjAG+u7H7x93+IXnyMGWfuc3JMcymXcinva7kklT5k5fc6UruFGiwBjyeEBtV11yJ7cr2WqHue9LDe35bC55J/7GTgX2Zl2OK5Ts4ZOQNlfTwAgGaIul2lFu6unZP9e/NBx4HsO/Iki14v/SP1MkfUvVeyzFTR5RgZ5dz9U52tvHOYXo1LuRBAfkcK0yyBupJlpsBRTDPFE0J72T/PJ8LeyqSjgrV+zeaMgYzsf/eB0hxGSVQAaNqPT3j4+wOtrZwjiT9HdP9aXD1SL5Y49UARW4wWQ0PSa4t/7x6jP//YALDqxerJB+H693T/dvTf+jVLbC9fzH0dpHii7qEZrdvi9SBcXP5d6C/IGscWlROjVs3a4qRuxUzYj1SSuzUpVOt5GO2bXwzW1m7vbAAvM5akbHeL/Kwk/75n4qvTj975AFflpv3o5bNyalR6mSOFf/ymCZYw3bevAUe4t3x7Ud2Ux+Blbf9zRMNp1k6Vjw7Yyj1tnc8RdS8cKXx5Z0dGpp7bxOslnW4xeR+gMc2B8IPFlufQXuD7q6MbFqhBra7jOUwBLSG0x3ROL+cI1H0fW2ztPejl+EeXVHVvaxrTHAjvqz0mT9S9PELUXetg5ejqrJdDJdkTddOjibrP6eUcUbcnH/d688Uv1/WcTf7q4DDN9Zny9/IMF5T6uNuTiJ/Xi8fQ6t3amm1PXi9ztubLOb2cIuqW8iM/9umz51zKpVzK+1MuSaUPWXnl42sMg/5q33zEMB0mzXTRpwb1QNtRBDcl5Fxn1tyPLbFwBKN8buf2HoTWsO3xtsOmpuIzo+oTiarzOw7ZEl2H37wzfCf0MpOsUw/yBNE+UDqrF1drj0lzE4Gdrc3orZHbcf/Z4jEY25v5yU7e5tAp8SRUQvQqp0GoyIknwBIL68EPgczsJ+TrTwXRE1nZB3NaljpEJZelG06WOk9OLrNojumFnb3PGMbOYfIYfFA9R8rrMWh5cpjYYZD36PVSZLJ6Ev4SXXxA29SRPAaLeevOj4gOQzSzukb2pLu2zkDimKmY7A6OzMCdtjWyMtDu5na760yC/H4kI49TMDKDi8wM/MIt4VuHjIEZvzZO+OohFvkbdz3+xcuuEHN/dCA84eG4D5hp4KSTcQSb0Z+xPZ/Qn/VjbsCmS/sF3VbKXx9Azc5M3q+F5qC9ofedvk4lAV+e6THYciwRqf/iqmD6VC+X00lfegLTDIamj2ymhqLF5GzvOIIj78Tp2WCaqaMp5MW2j236l7k6nKhza1sqrmCFgeblOb2ci8fs82bihrl2aPRwQm+cfL8uXu+zO5vN1KupUz3Y6NW3+faj3ulYptWLr89pec5x+bxcg/LEO0jJvXN+bEY+116Unjont/VvUTaY+HidfEI/xdmn28/5scTpCLDrCK9+3+bkOZfynS/M33v/LuU7Uy5JpQ9Z+bs/+RVMh1hc+Yi09EFkRhqclC1TIUtmqvPvYL8CLvTyFE67HmnDirDB1wR2iaV2KYe+foHEVSIBYlrDbzvUMlhBnWEgwRK74wmDrXMvMgumzh0ng2EEO4zCYyT1sZh62CU8S+rMe5QlPiIfnF4iHqIXMnoZdA0YWHM3j0HpxYdm7RKdWqcFgpHX1BkM36Z9HaygzjAQuehFglpWAzZG5p5SWst6spZj9TrHjVEwUv76rOSBQ521QsArvDIEnfcYDYn1FlMmnJ3K/fdZ1jNKJFE0ImJHE3ZqnskB0SRhIqEQ2DIY9/kZMgA5IJZkl4De5eMEynU6lCRLOn8qCQqixGkgGAaEwnsFAM9ph7IFuH6vooes+yA6YjvbMDCwoM5guMNY6ggAOxpxr2RWGOSdbTEWDDuKuMdYMERig0k4HATTDlMmH56Kbe0Ri5646GUyetkqvYyI2Bd2tDm9jEYvo9PLGh3uVeLoNky4U5j2sJgCUSHkJxDuacI9pjKbIZ0/mUGbtq0AYAfCLTOYEwH9LTFeQJPtA7cxEVECjHEKeOe+xxRTIPXOvsO3dwFjHlX1XcQ41UTT3a7HbiRETv7nH8c9/m/fiPjyNs3s/NnbiL/w1hb/YjeBiPAP7xn/9y9t8A+eJ66lf/TtFb4vXuNZXJj2aXbFU7Ymy/rI2xpz8RF64CIJSD2DsLT5YsvWd3euf1m6TwILJydetVY2fabCRLB+qWMyvjmwnf0kCcPqF5Osl8LCYfB95HAGgx++JZ6XUAaJ0WFIz6iyvLOKgZoZx3YAyplrxmMihcHGBQOH1GfxPIYUZ9S/jGAEdcKU5aZ/cM8rehFbU5h05BJn9KJtKx89oxfbX3lbE9uRX4QfUWSJnbRteb3YuOb0QP6YrenYZ04vembngruaoCDgDV4bzAdiExdEYEYv5PRQj/fOB3RM1S5YPkDUBEfBUOQ2/upglx+bmBXA2skRNs4daT42KrYDMn6ld5iGfLzGpGyuF1sLeR2bfNCyy7TR2JZeWeDjbjPLjVJM2UsdCFXvqug69Q5TiVGLH7btSTg5g7ItADMzsHRcTCf14jHpQgB4Yvztv/SlI2dcyqVcyvtdLkTdH7LytX/+onToEiRpeVIyoZI1B9StaFNnVzuNen6SpZMIMoCEdCZpYJBmWxP6fGxSHajMBtHP6CDnE5gZPdeOj4E8aali4HJ9/sKfl7bp46meAUE9L/2XZkUFh4GKnB4aSWFSGLv8eyzPIBVAVEwJQ4vx3eqlvrM6w6Yi4hyQVEzMjBisXiIxNKbxyD1rnecxSZ13NJnjY9FTul88opcgz3P3C0oPEklpWetejkdne8Z+ud6zy7YlO20J4ea+kFsmEus9TSWps+ep2PohJzQW6DBQV0itCykpMUYeS4A0IeIOET0IawwpaZJJeYUn457H/O5Tm7nnEQGEq0xmKSS+h5xC2CIdF7JXqeMKPXpK5LFC9A2qhJt3NNb2hUS0LYNm3cbluATzoqc+W3eqU07C5PvfZ8wxj5zuMiYh39/xlI6nh2DLEwLyLjiUkniBp0J0X997OKKXWMj2ZXfCAxIxeMhksCNPZdbTgdLuNJL0TTOipI49IiViYWRMrDCJ1d3jgABCj3WqcyZOPeRr7jAhqPdynzFdYUBHlOucl2BkzJQHFiLveEq731GHAxgHZshQbgskku7MCbclxpYZGxCuETAy8IIT2fJNDxymgLduB3SBETkljN7cBiwCcLVOihinlEQ6jMlD7sY0MHyOCe9MwH/wjYiPD8BbkXHHwP/j+Q4f6Qg999hFwl/4ygavfS3iabaO7+NrvMETvhJe4C2Kja8ubZyrL2Zw2TnP+znjM6gOhsSOtB/zPiDAHg+wfqZzcpx55inZ19HfT4ZJgpFVnfWXEiGrjpx2N9UY6AgGud4/E02d6y6kyRdPs31oqTPrNACXlFjx1e58rQfleDMmSXLKPUQvlOuUZst5DLUPJYOhg8V0TG/H9FwxkdMLGwxaTyHL3rbenV6yr5VkAtX+aITtI70eu6aPbO+v9eT14jHJ/a1ebGK29vvp+JplaxMbu4h8gI3npoKBZuvs31HPFsOBU6XEJ8hGMNUH1GeIn5bYR+IzeYZg9rHMMds6h6HL9+yN5gWT9Kl5tymqmDyGKWf+QrlHqxcTJ3OLSZ6HfFxiVomjD0C2NR1/aUzBYXJ6crYnM7QDpTuMBpPsbmn1IphEL8Fh8JjqGKRe+/V//gKXcimX8sEol5lKH7Jy9WxRfk/Omh4liyNnZiujyrZ7qmHbnOyJg+0ZcEfnZDTXv2tMkKUlNmi1mOwzH4rJY2Ane8zvFkOVYTDJPkgak1TinJ6OYTgnD/xeMfn7t7Zmrw/u+jlMp20r2j+ZMxoiVmp5Bwy3CaEloJVrIYk7rjK1pLyT7N0t1+slWPn+ehaFXYCFhhS+qTO1yyofalsiy90EAyQKZoXBYeJ6g/TOHUZd0sdbi0GfM6eXY8T18oyGfNwtgPBE9+wwGVJRyECm6sXbUSQ2z4wzetEvlt09mNKSQlNnR5BrFqFQ3kES2tbyuXkkOU4BWjH7SGqwT2AmRcRNiExYKBBfPQAv1EO/OTG+PdU6fmsf8PVtbZMDOlzx6f6nbZ9a1oMkttezuh8fv5+219bL1YSCrSPcPbx8DgNOyuVvPH/9wzCxk99bnb1eWgyn9NTqpfQ3LAPh03qZWyZzrs8856ce2yeX/oRPYHpUfdpn2Dqguaa1vXN95Onzj7aXR2Dy7Uf7ofln+jo9rs7eto4usTqhJ90+/AfSR723I5j89adlG1fMYdKzjOaeT9TW7zSm9pkthsfZlpd9HVsMMPJD9OL9WpnJqp61UWOaS7mUS/nulktS6UNWft+Pfdr0LoUQOpdZom47Piszf+SEc0TdDXmyWzveuVGhe1xD1L0vRN2ujqyeZ76EUntTJcsgVGMYnewv9yTXzVIAd0F0GA4OQyHwzPJS9JLlc3phwBAzzhN1W+LhpcPQEHV7vThMxwnU049X2RJ1F72oL48n9YJ24D3isUTdzsW55/mk0DuOqFtmLoksS1LkXbM6JvfzX4i9LbDSA2AxEajBwK6Onuz1HEeZLBGT++xoMvJTXpy0NcDqvsFMjF3m/qkYAqrpPZ6o25P7myQP1I6NWi/meP3CLOfrZ3iMHlN65gyBurxcas9/B3sje3JXf74n6h4cUTe56/YuZbiHJbD1PmGC9WMMwiHCEHX79/xiZ/+yckTdn8LSyH7w73mptlT3BwWAV3hpbE0dAtDqycvi56T/IRwhhFal8cXOkR0l6s6nefLkhxB1Wz20mCwhdEs0fHSQmYv3xb49nSPq9kTEHlP5necxvBuibtN+0OqlIQZ2II8SqBc9WQw+Loiw7+2cXggt0XDwGxCc8JNzdT5H1O1ttzujl8cSdR+1Nf3YY/18kR1RN44QdZ9qL0ouelGxkMYwoiXq7lx81xCoK4yAnRk3h8kTdXu/6IntdeJK/WjbS8Fk9eJ9dcDMMrFHEqh72/JW4Psjr5fyKI2B+YSt2Tb/EKJur5dzfuwkUXc+9Uf++IWo+1Iu5YNSLkmlD1m5eX2JZadndNgECYHMzmYp+WDNZIHO9FgDn05MDVrmJJOSTWfEqSMqiSbpxKUzkoGvktNAAqrzwlkMPoHSezLxM/KCQ4NBy53DRKwCH06d6WlM+b2pDtlsJ89zmGwo1OqFTx73mAbAYGgwAQ4TGwwDgtuZCc2uRl4PZlc9OhFk5+KD8rkdgTQmzUchGPQdDnmZknwlI1CZFSHLPCbYpKoP3uzAhJpZMu1Wun4YMDOQzrJMlVcQyt/rlS3ptcYkgyeRO4TTemE3CCXgY5Mlx4ztHKkZjDogtWTjLQY4DDAYMCNPrEiuqS5N0TWqEMgOiqkdkHFT5+N6AYCRHodpYqsXAqUloRoTNPl4Syh7khSe0uwkrZWRbSA/wsp3ux5Rba7ZdXpOVl1yVx/hLdeWm/Uev/dz34A4hQU6fITXOmPWJH475wM+Gtfm+Mdlt8JcLPdQ9oPmuO1/OucTCNYnQOTsx8qAr8jWlxO7nc34TIKe2oS9x+DfiT/eOUzer+XH6Ec2sq5DgNpFjxUGdVHv9NKSJc/44ofqZeb6WV/tMGu9dAjpg9UJvTT9idOLlkty3GCY0dMJvcyRI+sa+FnNCZPVS/cYvQAID9GLKv7D4jm9+FksE2ITC+k6B6BtLw7TQusJOd4ydbbPX8bTGJZnMPVMJ23Lx6RdgwEGg5eBHF8dwZT62Jm4+4StDR5D4wPItQ8fk7bxnNGTxyC++YRePCb5CHcM0zlb83qZ82vldwIWgfD0jRUu5f0tadn899a/S/nOlA9UUomI/hAR/Vki+l8S0U/k35+9i/vItX9Irs+//xQR/alfr+f+Rihf+MmvoDswhtxpMFIyYRGrs18gpK9NubNcosMqJxySHLCSwJyBDXqs0RX5mjusVIdGoESEKAEgCCvuitwhYIO+dHBLdNigKx3WmjuslLzhDktJWCAZ8QIhLbcqGCh9mckBg2DQmDTGFTosDKbOYDSYM6o1Kobg5CFjkk56xR3WXDFc5fuLvELAElT4AyLSF7+FwjSASiJIMAmGwIkoeKn0tOGAlXTSDFyjwwo1RuD8XK2nDfflC1mPzuhlgZB4XbK84aR3wXCN3mB4Tgd0VAkyGUBPwQT2A0LRU2DCEn0KTDKmBboSBIvedBDdIziSWjJkqAGEDYaCaUCHFSrGJTos0zATAPAUS5Ms2GHMiaMk7zEhEpsEQ0RNOMjUbEmiTIiFt0eSFOwSSx2CxHBgMHaZ7FnPshFZEj5yPiHNWJlQZ9sJmbMks/pyfpKXsLOvXtJhVi9iawGJX0jkFXf4FF/jc9M1eqaiJ4Uwz6qBkQ+KQFq4n2pSpeInUDlfuMSE70iuJ3V+0tOUeKtU2oVRk1mU7VvqMyJiIsbIKhlGZN671mPCMBkMaTZgrcMNFib5taXJkL5PSi8EwoICImqiaZsxiN5GcP4Xsx6p2ENKBiKfF7OtMUaqX/opB+WVejy9d0ksMQN3DNyjfsnvAbxzO2CcKHEqHTr0JMkjwpexNwNKO+cu+Qgt/4EfeBP/k//2L+AP/JZfQ5dHNJ+K1/ho3IDywGahbK3L7Vfa/Io7fDJe4TPTFfo8GP1U3OAHpysMXBO9kjyWd7+U/gjJj62bNl/lFfdmp8ol94mDq/hizjIpnF2ZcZsGT13B0OfnL7IfE1k+TASm2p/lOgt/kpY1UXUHwgq9IbE2fow7g2Gd32HllEl+smon2Z/2nCtp40g+I2EIJZExIBTf2zGVDTTS3dI1YqOil9KnZtvzekkYkiy+WGq0RNfoRcs8o5eV6AFiW1UvA4LTU6gfPjhhWp7RS5ffi/SpPQJWCtMCfdVTrvPS6KU35N2i51DeW6uXpbK1c3rp8/1sH1n1lDClPrfaVurXBVPqIysmr5cUK1X547zGGlQ+KEXAxAWUYyOR+yzLzJkUb1ZMSwQsVTw3gLBCgCxyimB0RFhFUrYUTAya4q/O2JbGtOEOGxWDSswqMuVndsXWyMRv8jxZ4j/oOqPGixK/CSaRpW0slK11+ZyKiWqducbFgmnNSibgilNMKfKCycic7yfxW4qNKoaKSeul6uGoXhSGngJWsTN60XH0IutF5DV6g2mT4+SKqTd60aVnoJ+An/1LX8alXMqlfDDKB4aom4j+GIB/n5k/r/72wwC+QESfZ+bnj7jdMwB/Kv/T64//DDP/uV/H537gyzd/8TYHwYQBjHtmjJSWQi2YsOOIKdTBvHwJF1kGREMOXGQWRw/CFdKXdgk31kiDlTswAqUOKMkTAhHW3GPK22qDgCskOSAnONCXgF4GCgM4B0S5zkhf/Ikqpi1HREI+TthzIv31mDyGAZXEMBQMqc5ePlAiad6gQ+RMrkupzhPXQanIA1KyYc0Jk8YwgLFkMpjumDER5cFCwjQGZIx19osE3jKUFowGE3MhckwY0jvfUvrb2unl6oheZFeWDXpErnpZZz0tHSaZZZHeM+fdvlBkIZgWPURnawz5WlyXf8h0/UoQmwa1Q05qjJjK4IUh28wDVxgwcSz3WGcMvbKtCE4JF8njcSLY1kXee5rtk0gzO0p1ndhm6eX5QOLU2SPZdoeQEhKcrq/Lk/I/0s+qzxc5uPNFTxFpaY/enUzeJ9Sd6u4sqci29V4vWg+6vVzF9N34NV7jlWmF57TDIb8nSeRIACiJH8Ek+hhy1yOYatInna8xTKiJMJ1UkvO1XqZs24mYm9Ib4CYeLRxKTLILIiOgS4mlGb3EGQzyFXfKxiIzCNIzuamTx7RStsaMMssonZ9mf4GEUL3eX86n/CJE7+V5BEzMWOZ3lJ6ZdzPKg4tD9gmc3+FdtotnAKYY8PbLAX3HJbnUE8DMuM22QqjJNC170t2P3+wwdIz/0e//Rfybv/sr+PN/6wfx//vK6/hkvMbHsMHX6A4vw8Ekj5HfbQfCDYutrfDKtMQ9Eqn8q7zEK+MC36QdfqF/kX1CwMSMHUV0CFjl/kjquEKHmH17QErSaB+wyMeFkHZAB0Yidpf+hcHY8wQmOtpHyvPEN4uRJkyMoBIEHRJ5/j73J4JhT0I232HK9tIBxW/Je9YYxO9pTOIXY/amgmmLRPK/yLK0+RV6LFCTvcssCybpI8UHpYRFPV9IfSWxrTGlXcGqXsQ2BUOnMYFzqqXVi8gjvF7S2k7BMOW5iqIXKhiSHwu5z039S6uXA0eMhBm9JAyyWUbqQynrBdB6kb5K9NJpDKhtVuRd/ovIsrdksaViWwkjHdFLl+1BfI7oKSXTYzkutpXitwFl9zmFSeosfWrtM5Oe1vkM0etIqo9F2oAi5oSaniUrH/KEnF8So0IALfFcXxI3hB5cNiZICcFE3L0LyeavQKU9Skw6mZg0xWuiF4l1hvw+BPM9ONtS0ttttjWJ38bcqazR589Qus1XEmuRZRMTwTDmJElKCDL2zBgpFr83csREdXc00UsQTLHqRWJQ0f8aXcEscmTGy7xximDaI/kxwSAze9fociI064G7ogetl87oBdhx2vlvyB+oDhyxJy7tTcYOPQjXChNA2Cg9pY+bCdNQMKTjskulbGwDAN/8xZe4lEu5lA9G+UDMVMqzgn4KwJ/Wf2fmLwL4IoD/y7u47Z8D8DP5358B8APMbO7/6/TcD3S5etUSpXruBv2F69TxSpRaeUDS+bIvSr2e3P200Z3bEjfMyOTq5AkC+yN1PiZ7DCFj0IHy4zHRUdljkI5V16l976ePt7LH5HfMITNDaU4Pp+R22r7FkL7Aelt6rJwH9UdI4T0xt7/e17Fzf5mrs17OBGqTEV5md9DzjPjleYWom2siyC+zcrdoin8GecFV0p/vl1Ade+8i+/alZwoHUOJkUvUm+V0/1sE7A9FAkEQT3N+OnQ84zDR3vr3C65HL32sSS1fc1Cm/c7/M0dfJP8/X8VydNCEuyJGBe71TTYjqGXVAtr0ZQ4nQtiFE3kr3OVFfz7DX6ySfyC939bvV0/UBP/Sxt4vcI+BGLWyZsz19vwDCdU4yiQ94VfGBleuNX6ttvsr2njghz9m/9zvt8dO+2aqpJbQtGLjW2Z5/egnwnHyuz/R97Dmf0N7PxgWz/dMZTF7X5zCdwzC3ccNpGUbWnDNH9eQwHJOPYWj71OOxz6n3PvcOTtbJ6+GBmFIfaeus/V5w95iTT8V3cxi8XvyysRIb8TG5jUl1aZdd2nhuHoM//+HtK9XBYpqrc4tBnU9t+9R6mYvXHqMHj/Fh7eVI3H2k/Xi9eIxzmCR5qp9+9arl+buUS7mU7175QCSVAPx4/vlzM8f+CoA/9tgbMvO/y8x/OP/708z8S+/Hcz/o5fM//imzW5Rfp204AKAGU7owThJ1H9wFfjpcwwHg1rOy+6XszJTlPdlhsR/wtUTd8xj0Dd4rUXfnSBDPEnU7TJ44ciEPPYKpwQAZLObf8yDX60UPsDwGT976WKJur5fX4uI96YUzpqO2NnP9Ods6Stqbf9zRaGSZISNy4RPTl6l7et4dw0MlVT6BKQXNzi276z2xcMPfooI3IM1E0vKO7PVX3BtM4Yyt3WPETtUhcZnULErBYGSrh3Okoh6Tbx++PS1UAAu0JKNeL4YDDdXWinxMLwqGJ39tiLpx2ifsnF6WDkPRA9fzNQZP/mr4JzBH1J3IjwvJNaHMQpFyf4IXFQA+A7vTTkFY/Ji9wd/85dfMCb/3c2+CFKhrHkydYz0VAHBL1ta8X+sR8IwHY2ueN8cblyfq9nU+R9TdufZV/NgRnzDHodYSddv2o8mTSY6fwOTbx4Fn+kh1Xe8weEz+90SmbDE0iV5lW34Q6zHNYfB68Tsyej0t3rNe+NF68bJv0x5TSz5+hKi72JrHcEQvrDCo9zZL1G363CNk40puMJxpL2+S36DA1vkcIXR0sieEHmET8InfyGLqHAZPCN32ofYP5zaXeaxePIaHEHV7DM2SrzO2dbZP5dNt/rF68UTdhrMJ86TwjyXq9pjmyu/5Exei7vezpFjpe/Dfd/vFfo+UD0pS6ccAPD+y1OyXAMgyte+V537XyubpgHVvv0ho8lUCYcNedjsCOYLnpZftsN/wK4HTcU0YuAAZYu6OLWFgQN6ePssEmKENgbBKvySZCWuNgS0GQuIb0nVeRyuvmE5jcqTWae16xdDDko33MxgG6WAZeRaADWhXbmBxdQITkNbYGwwuQFy6ccm60UuY0UuVO6enAEdW6QapiWPDJhfM7CVuycbPkcIvnN5aEnirl4WTez1AY+CGezyJQ8EQmY+T8qLyghRj4DnSd9t+1i6t6jF1TfvpHCarJ3Ly4GyvY0eECtSBBKdA0M+sW2g9eb2w0wu1CUFP+u7fieaDSXpoZ4xoeUAwtkZwX5S5JeldaGJUzu9ZXXJOL54Y1etl7fTmbY8A154ataciAAEAAElEQVQ60556UCU2zUFMZzA4H8HW1hh1h7hSJ5VsIBCu2epp4Ua9m4WmeQee9rIALj1huRxBs8yoqfj2WQZHyrZ0ebHrc/It1XM9TAhqZNEh4A1WRNwMfGJSsvNZ6RpbVu4vvv20PsD6uc61HzMYmvFzpj9C0pNuP/JMXRbaVxMM/x/QEth6H7F0GNrNLiw9cwAsJrZEwyYRnG1NY5JnlMIqiVMwnfbVy0YvwejFY+qdPKsXh7FzevGE0I/Vi8e0nNHDaV89g8nUud2UJDgMxtZm9NJiOqcXX+fTtrZwemr14vojiqYGQ4MBxq8FphQzlrggx1vqRa2dH1uTFnPMqn2zi32aWMjFaz4GHYAGQ2fegfXNHSe6iGprKQY0GKLvA62v1ltdEHLMquq8mcFg2s+7wNTr/oY9JmBpEo5WTu/V6sVjWjf9k8fg2hPTyXhtwOlB6qoDrl8ZTpxxKZdyKe9n+aAklX4PgG8fOfY8//y9j70pET0joj+W/z17v577QS7/8K98BauRoffTWSMlkigPjNbocJXJ9oQAWssbdLjOZHrEieTwRsj1GHhChBvUDm0A4SlC6dCS3JcObYmAZ9yXL1xr7nDDfQmOrrjDDYfUwQG4QcA1ANnzYQFgA0oDrIIhYBNDIav1GK7QlzonucM1h4LpCQKeqMBiQzCYOhCeclcw9Qh4ykPBtOIeTxSmDXd4gq5i4A43qJiuQbgmMnrZIJRAQzBcZwydw9Q5DCHr5VoNoJ4Q4UmwGJ6gklGKXiQgXCDgicK04c5gus56EflJxiB6eU6HzHtQg6EFKoFtQEo2rFgwJC6KNVc9rdAXskrixGFgCdQtWWXit6jE3D0CrjEosvEOVwrjJ+MGv2N6io/EZcawgN75Rfh5OjUIXKMrwVEi6OwKubgng2WkHa+uuFdE94o0NLcvCaaEl+YKlYR3gR4bhWHjyF+REySSsFigwzWG0n42PBSuimRXfeFuANJ2yl4vS4VRSIJFLyvucMOZFYnlKzKV3QNladJKpYE6kNFD0mMdci3yexQ55PMliZI2A+jLV+8FElms3q1pg0ryLuSyC6UXTT6OjHGT9RIYmackFD2t0BkC6A5puZY8c4UBG6Wn1+IKK9Z6AW4wFFtbosON0ssN91hyJetnJN8qxwcEXHFfAvMr9JnsNWS7CbhGh6scmAdOZPxPY6pDn9v8FQnXC+PpkvFsPWXSbMa6Az66YAw50fP6ZsSrT3YY+qmCUOWX3fbhBWp+p34Hyn/tB9/MSaT072e/9Domk9wD3uA1Ph43CEx4wgM+yVf47JhI4Fec3pnclTgP+LIckbhCWlvT7afDlbK9lWtPa+7rBgQQ2RINaxJrQuYeUuTiK+cDtE/o8/Xaz60xmKRK4unplEzVtsQWoDez6F176rBG3bJggwFr1T4GdA6TJeaWNi+YKtl4KJhWqn0JJr0xRGpzFtNazfnoM4aH6mXFyUfU46lNV00nv2f1Yom6k15CGbB6X20wscUkdS4k1llOekG5p7a1lcO0RpcwFb1YWxNy5GO21mWMC4VB29oxTGJrtb85Ymv5HkUv+XyNaT2jF010/yle4gnVD30EMnFBj1B8HZCfx3XjlBUCrtCVGHSFxLGzyX5tCeAqEDbEkv/I773GNov8TNHLCgFPuL7nK/R4xrXfv87xmMRvT4nwlOouc32OjRaqPer4bQDhmvuEARmD8tUbDtioGHQFwhWlRBJB4rmAq6yj8t4bDF2Kz3Lc/ZRre7jO8VjFlGJWwbQmwhNUTAGEG+6KXoYZvdxwX2JO6V9E3iC0elGYgBTLXwmBOidZxgpyz6SXJF+jrzIBNxzwVOnlCQU8UXrRZQVgE4GfvxB1X8qlfGDKB4Wo+xmOJ3f0OQ8uRPQTAL4F4D/K9/4pIvppZv4zv57P/aCXt758B6KUJFkxcM/AHokIbwXCjhkT5d3ImMo0YQnOZDmFBJyV+BR4yl0iFKXUyT3hRDi7RU7CoMPIjG3O/DxFj5ErceNTHsr019QB9pjAWHBaQ33NHTbgtIMZEa4ArPMz5MvPGmk3oxEy+A/YI5Hsagwa08QOExQmpG24PaZbwcQJwz59ssNTXpQp7im4SpgWIqPHBpxmCSERFm7kOAFXBKwZuGXgkIOrNQhb5kx2WTEZDFnWepElbgMokVOGnPwJCdOLPDh45vTyLOtFdP2EB0P8KJiWSi+JsNNi+CbFXIc0ON9zRCQupKMyjb6SjScMcr5MfG4J1S3xYwcheozYgdFRJeaWe15jyNP40zVXWb7ilKj4rdNTfA4TntMBoPTOGIkElDIpr5D0xkxuuUJXbLeQwapAugNlstd4lOhe9NQh7dA0MWNLEzqEQnwfsu0IJk1cHzmR7gZKA9W621k6f52TWlJHBmPBSRaC2nsaq/3P6gVGL+vYK4yJZBShksOOzNiHmAeVlgz2Jr934UUQ8lbKGIUwXciwryHtJ8ye7/WykSSkup98ea+YExHqqGxR2s/cBgQdKJP0ThAeoEr+SrhCwMQxJfqQdgmKzLiliEAVM4lfy5hWWQ9LzpsmZOJU2XlSiFM3POSBJpk2vZIkCAJWYByynjZ5IMDMoEBYSFAegEDAsmcsuhH7kTDFgCUBH18kPS47BhHw6pM9DiPh+YtlftsAM/ByZokFoXzsLklBKR+93plZFd98Ybd/Fj19hNd4jVeI2Xe+wSu8Pi6xzUvfkm1Vvaf2knwWExpb67JvlfeefG1qP4WkN+ulbjgwmI0hpH3fZ6JhIYBORN1JXkL8pCQ96gYDnqhbbIvKoC7JB444ECORKSdbSqTW1a9xwRQKBo1JiLo3DoMnRxZ55zDJklrtizUGmUdY/Zz1CdG1n0TSG3MiacCYaOfRK72IrVQMCdNG+YggeuF2U4UtRkRQoxePQfQEpxfRg/fdRzFkn6FJreFsLTi9dEovEyoG0YPcY3VEL7IE0BNCi60B4hM6M2M1EUDTrF4OijxZ7yzpyZOvYYm6N87WhIz8Ch0CATeUNi14wcCEGhdIG73mFPtIH3jFPdaqTW/QYQ35uCkxKZfE0SoQljlmvcvJsAGEPTMOOUk5lPgu+cinnPoj8dWvcHoHQgAtMeiCkm98mjHcc4oUbtBhQtrQJhJwgx5X4BwXVwyil6uckA7MFQPnJDgBKyIsufrqtOtvJR+X+O2QYzGRR1Si7qdMGBVRt8Sgi4IpYR4AhJxYmphxCyAiJZYmSMxa9SJ+S2TRy1XWS+f0IhNOBdO9wZDuPzoMshT+KQ8KE/CUexMXaL10BDzJesnkBBlb+v35l25xKZdyKR+M8kFJKgF1ZpAvkvR59ZH3+mlm/hn5AxH9GIBfJqLnbge478hziegLRw79lodc/36Vq9frwrFAyQD2udNOg6i6rrnK9bhMiT9GYt0jDT6IUuKnB/KX/lRSoMhlaNKDMKIenyNRPEUgGNJ2RuX6VEcunY/U6aDqeIzo8RimYRYTG0wHaIx1kCoYNKo54m49uyHkQeBB6WUAsHN10nrxGFpMKOvXKevd60XTVKeA1OrFL5nyGDTGQGkGnH7PnQpykxxK0CzH7fm55MQOHcFY30GHXdF8GmhGw/1DZkjcgRL5sQSt6LBGxL2r08HVOZ6oc0vISc4W83FOttSSwKOM1P39BRMrWQYxco85IlV9B3L3I1CaSUa2zpOvk76e3PViGVzbB4qttXr2fBXHCGy17dHMcV2HoPQi70QfnztfWtBce/G25vXSo+4+mOpYB9ZSB01iO+fXfPvR792/gzkyWMDbv/UJncZAlNq78gGLnnG/z0MJSstjxc8BwNAzQmBMmRGcKC1Tedu8S+17Ab/87e1tb06+WVn+FV0CCAsVksiMPY2x5qdkgBLO2prlY7HWNkfS62Xtt0L2AaPxATB+TfvJedvzegspqcMVw4Eng0nz2HgC6IcSd3tb8phO+WJfZ4/R2FrWyx5R+YRQeGuO6cVisvbt2/Q8hrrzl9RRxwXn9DCnF49hNHrxsVLrq1tMtUj9T+mFnawLOVRzcrvhh7W1kljiiomPXD+HKYBKggRICYCOqx9Keqnx2LwtWky+vzEypRlRd5zuIrHQIQeB0v/oPlc+EMm7aZare4yUZn0Khi5jkBYYILqvsu+f2vajMRAGtr56AS5zQOcw+Zh1yHGvxqA9b+/q1BGh44pBMGkMurRLTc/phbBgNBhGp5dojusdfKlgkJp4TB21S58BYPP6haj7/S6eC+tSLkXKB2X520PKs4eemIm5f8b97TnSTnA/8ev13N8I5Xf++KdBoToF2UtHyixRtyu6gwahzBSS4ocNnRto+I7BP0PCLPk5OVnuXwZIkMUVqfhMqed/0feSGxiibgAHh8n7UD8d9xymsvNSvtPBYZLATDAt3FMfoheNgcmRjSMlDws/NAGDQzX73tz9dZ1HJ+/YYngDg1GM3pmpYPAvtpF1pVs9+UHsuYSFL2/SztxnLRwbRQ/ByHoXo7k6e/LXAJonc5VqEcqMFGB+cOLfiSdKLTw9/vz8syQ484+dIyIWriCd3PJFY9pickTd1BB197CytyVPyOn16PXmfUCFqJI2rI9bPbB7xjGfYP2aJeo+Z0vv0MHIXi/erx0ysb3IhS/J21aWD7CkvDtYYuE5n6NJrRmE/UTGB3SORX67d/x5C0vq/llH1K2TPEC1TZH/5i/NE3XrHeksKa/F5PXG5Im6CU+4P2lrvvjdEFuibqsn/SEFqMkBszOgKk2dnZxmqNRn+o8KBYOS557xEEy+jiKXXVyPYPK/t6TW7TN1+6EZTKdbT0vMfYyo+zgGK8vv2mecxtQSddOvk16knNNLOKKXY35ujkBd9z+Gd0owOdn3V+xGkF4vX4f1e8LdWDHNt5djPsATQI+wmyLILEW501z7ORZ/6XvqsnOY+zM+QHyMt60as85h8NZRS4CNt0jiDAXE69V6ZjgttJglZj3V5rXsd6Yd0erJ60Wngebajy/n9LI//spKnPm7/sRnjp90KZdyKe9r+SAllZ4d+bvMFHr+HXjGzwJ4RkR/6Dv9XGb+/Nw/AP/0Xdf216EMVz0mUgMLcLMTxkHt4kUgHNyuQ3vzfc3ubMFIU3vF4TPbzoiRvo5EI7MZNOrBkJeB1BGlZUm1ziNscO93jfA7k/ndOA4NJjs2n8PkMUSDgWcxakx+Z6YDQ2E6rZc5jC0mK+/ZYtCBD4MfgOm4XkTWGJYc8BFeFMUEJrwe66CUmPA6q+UwDLwWlyYy/4iTPzotDJGjDqLlvfMJDOzkt2iPd3AoGDrAEKN6AmhCWnqgIuOaiMpFy4S0JEtj8OSVhuieYTg8wHME6pbAdoFgCKATqWgo2dYAVBnpx8INJPyuenrgwN4Wqd1lKJKV9U4xoodTsh7wzbUfRk0oMhhMbHwCAIwUVXuyA3epsy4Htwve6HzAdEJO7cXLDiOdaT9q6S8jLXM0Az5GWTYhPwwJLwFrNQIkVJ45KVeDnm/YDhA5Wp8QI1nZ+QyZoaUxGb3k/0QP9zGgX+8KiEU/AeF0YtgXP1Ce2+HqlG091kfo5WIi+/YxspNdexmd7Znd2ajdScm3nxZDi/GUr54aDNb2AMbEur34BCQ37eXoLnlFPq2ncz7gnJ4aH4DWB0xOLzphP6eXQ+MjbJs/p5dzGOaOn/JrEdHY2jG9WIw+2WDlj/s+VfehAF7hpelvXuGl2SThGQ+mf3mmeHjAKbk9GZ/hYx3OCxUrJivPxDpO1skFoplYx+lJx3Nyfy9HI9cECTOa9iJLFavttRj8jsE+yePlPapaUpwdj2J6MIZ8bbKb85h0neuyc43JJoNaPdVChEQ1YTD4uPp0nzk6TDqh6HNyRMBEwOL6g7Tg5lIu5cNd3lNSiYi+QET8Lv75HdWeP+Bx57iPHlO+/7v03O96+fm//BXsR8YhDxa2SAkSSRQdkNZBizwpWQKmqGQAiARsVacbkKbBTjnBsBM5H98ilvOB1BFtEUvAN4Kxyx0MACB3VtIBBSS+IcFwQPonnfQOwEFhGAGMlGZoSFA35nsew4R8H+mko8N0T2ww7Slih1gwHcDYKUypXhVTyPWVQIGQEjJeL4cjeokARuIZvXCjl6ieueWK4c7pZYfESSSyYBBMEel5ZemH0guQBsB7rsmrHVJA+7FpmQjeucPrvMRHp2Umq+3wGq/wsbhGz4nr4lVUeWDCR3iFT8U1FpzW9H+cl/iBaY0VBzDV5JwE5ntMmb+DS6C2zxhS8iTVtyQxCfin3dv4Bm3BWc8brgS1QOKoEVLRPieJhOB5gUTcehWrvEaPjRClIvFjCPFpIrrv8YQT8Slx4hS5RiXgHBASYbgiSn2CRUkMXfGAG0ViPSDgCS9KwmGFHjcYEnkrErH3FSphrZBxLjMx60scMFLEmIdAExKv2lgsKw2uxPYWHLCgrgyYJmUn8t8OEw6qPe2zHkQv5PQmAa6cX/VWB30HJUuALM9MemcTtCZd14R4VJgmMA6U6lnaT76++ABCuV4w7fP5UueDkq/Ql0CfQNhSzH6NlV+r7acjMrYYsy77rJeAtDxF5BUHrEBYZiLUKwBXHeEqpB3cCMAqAJvc1ntiPFlGPF1N6Cids+xdcjwnkWRC4DBETDFxsBEBd/sOh4gi/1JehMuqznrWSp/nEMg7+yO/419i/fQOi6t7gBg/+6WPpPsrv6eTBGkWgv+iXc9HblPa9t6ivRm8j4hFj9LmtV4421Lxi0TGtoLTy45i8r+5FntMub1UW4qw7WXKtlEGTOSSllTrIHZXLTE9Q9tWwmTbi/ZrtX2Ir0+8LCJP2e4E485hGPO1IotedZ2jxwRgr9pHBEodpX4Hrv2T9wFzetljKkkVyu9M9CR61z5lVO9tjwkTcZHFP5zSS1R9KgEAkXoHyUdI3MFZT6Pi6hvBjR/Ttqf9nOhFYxBbFb0cMiavF3nL0t9pPydJT8EgCQ8GY8kBb/ACn40rLHL/8woW+FRcF0LyZ7zAJ+NVSRS9wkt8Kl6njx+UNiD47HSFq5jkN+IKPzBt8CRz673OA7aceBqBFBvpuGBPSc+HgsnKqb72Y+UEKgkKyra4y35oZMaO6kzNZGts4jmJXbRt6dhGYpfKywiDQTiOBMMWKSaVpMo+t8dDsZVWLwmTxkAlNorleO3L9i6eO+RnRnU/HWczWUwl7i5tJceRgmlGL3vUZNVY3mPFdFCy1wty3QXTAYy904tcH9UzRC9yvcaAGb3scsyqC+dYeT8BX/iLX8alXMqlfDDKe0rx5pk434nycwD+0JFjkgA6xllkChH9WQB/CsArecnb+/Lc3yjlra/cAUgdzoS8BpqyzCoIpSTr4GvHEUINqeUlupTAYEYAY5UHFnukr+0yLNwjzYyS+QG73NlOSCOFHRikSD/24DxTIw3ADkjJsLRDGpVkkvQ3IyQRkzthQiEC15hkyCJyQJrerDEt0CMidcqE1FA0pim/tx0AyuTdyAFqOs554JDInoV0VAi208CvYlghkRYecpJsm+83AoU0e04vE3HB0CFkDIxO9JD10oGxoaSXHQOI3OhFph4nvXDBIJgIABU9pPtrvXSil4xBlkV+lJd4fVrgZZ4Z8iov8Wxa4D7PvHrKSzzhBfbZMm6wwHUcCuH5DQ+4nnocOCLtCtbjh6YOLzDhn/W32Z5l8JB1i8SmFIseIkbOtpJnrUy5zpEIv9S9xK/wLT473eAqJ4VWCLjDhJFkt7JMSl3krhBtr5F23BG9CBnsgSMiyc5iXSGFF1JRT9w9FtJewlMsMWbMBMITLApRt+yONuVAFgCe8KIMPojS8Q16DPn6TcYgBNFr7rAC4wXVJMyk0jiR7JT9SIwdc10SSISJ89d+yoMZaW9ZTnVjyIdusSXZBl7PUhQZRm8pYl1kzKkdZEJcoqLHMRtoklNyossDuAmJ+LzP7SNynbGQ2s+Ulx9kcnYkuceQ2iDnoJrqQLomQ4BDlmXJ35jrPOb3IpjF9vb5eI9gbFHumWxB/FYlVBfC5CUIC647eC4DsKA0e5NBWARgYCDk6W1CzD1GmNmdWYkAUBJLifyUEHPiZ5qSxx8jAHAi6iY9sS5VPB+u98vH33i6TVxMT7ZYXm/x9j/6eJl5lUyLyzUwv7X1jEjLXmSBW+q/ErExADX4FzmWQbbWS5ffs9hAQMgJDNELJdsW28oYRzBGru0tDf5rxSOQ/UFNgExI5O5D7iMT4XTGT8DB2Za3tUSgXduP1FGeKX5NbKMkLHNPLf2GToIAyv6zn5yUHqO6v8gByV7TAD5h6vPC9n1+zyH3+2UGhfMBtf1Eo/Y5vYyIWKMvs4fAQKd8hrz/pr2h+hR2GI7rJfm1IftlUCI6Fk/IpW0pPTlMo4pdqBxP/YCus8zT9X6uxWD7L7FFeYD4uR5U9BKRbTfrYQSX3Wuf8YCnU4+XmDAS4ZoHXE194g+kRLr9qXiNHWLWLfDpeIMdprSjHwifjlfYxwkbTn3V5+IGe8Tih3bZh+2LbXKOBWz7YSeLrx5znRfIfIdIbXwBxlJkrkukJObUPmjHbPSyy763J4lJk57WIHCOMSnrHkhJn6S/VIRqQWLKlEiq7UUwBKTYSOQBhJ4yJgaWSH8TTDVOyTOKFKad8gERCaPoPWFKdV5kPyXydda7zAuVGQP7LB+YZ/UiMoxcY9ZjehnARj7kNj0RcN/oxbaXHSefcU4vC6cXmVGn50i+9ZULUff7WpgQPeXC90L5XsT0XSgflOVvP3XimCR3fubEOf7850eOCcHDz/06PPc3RLl+w5LakRNMu5qRJYDXHUYJ5ZUsxQ4Z5mVdeO6ZOCHP3MOUh2Aq95nBlO+vn8GwDaehtJHoVT/TVcuvh/eYvF6a+53Ri9y/yGT1AqJH68XXwUy7P6OXDpS2ps0lgMp2vOlywtKR8i5yQJ6Gymkmk+iFQLhGZ6bxz3EpGExn9HKgtBOarmNLHu7lcFLuj8iCIc3sYLXbWDCVkt2CpMyRv3oCdU9sT15W74BAZUZTLVav/p0dSNpFsq1AVC+jnLhQjabkDuTuM+2hLaaS1nbhrp9RemO/ZzBFd573Cf4Z7O4pgzh9T62HOdub3Pns9KL15i2bXKWIgF5fr55fZiF1NXlkkSjJvdhgOJco7zhlqm0EvxTnrVu13DUArz7ZmvNbPZ0uXH6m30p7OXJh8+eZuNHbhu9vTvpi/4wZTK2ftO2n3E+c8Nz9rRrMOXPt6dx7nOM3OXb/s5jQ6oXkj0d8wElH7e5V62CfaTDMvDd///N6seeT82vn9DI3Jjn33ryf81nfxs+dio3QyntHZXAl7I+c5LVqP2VptypLJy9y6q/KAUH5BB9HzPrmR9qWx+Tv59vPXDxmfLV7ZiPPVNv/pWnzp/RCbbx3tL1qW2Nk591WaA6jfuZczGrKjF9rMZzWw7mYlU/phR6mF49JZlDqcvOGX/R9KZdyKd+t8kFJKv0kAMwsiwOAHwPwM8z8S/4AEX3/zPk/DeDzR2Yp/TEAX2TmL76X5/5GLv/1Py5E3cl9zxNCV5nQdkgypVhOmJy8c+f7IWtLpmxLTeakn5OTPck1wXZOvat1cJjgzp/DcNAy2g7WT/Hzu6TU/lQwRCPPEXXrRNbg6jyvF9/pWwyeqNuTUXqyca8XH1hFV+eGqNvJXYOp1XvD8eKCDMMnQZZAPYDwjK0mzu3mNPfO9N/fCnsjLxx5ssfU1BnWVshjJKcnyKCf8uGWaNjbnufSmiNz1XJJXuQfe2eLr/DCNPKmzu7eW0y4w1gwzBF1D7A8VI8l6u7c370P8D8luaCTQvqedaGF3N9FsDN68UTd3ra8X3yH7BYFizNE3XtH1O3PkzZezncYZCmrgmBqNTHhMDXj1JNE3buD1dRqsMOhz8F+lLDDSW2bSf6Zf/TxJOXH/P7f+msgNdDVS+cAWU5k7fuUT+iQttS2tuY913ybr8/0vtnKg0oEp2fWJX7lCSfai8wi0Zg1BgLNEEJXDHMJIG8zx/iOqi1ZH+FJrcUXn/JrpzDJ3zSmADrpA4754uOYbPuZ00tT7xOYvE/wsybniIbtuPi8Xo6Rjddn2Os8qbU/fg6D18s9Iu5VSuMcKfw8Blt8/+N9syeEniPq1n7N+2rN7Sjy5GKhZodFh8mXtg91fs/JZTZhweT1YmVpH7q/OoXJ++puFgMb5922eSvvnV485nMbDvjn+I+rLWeafUYHNKTweKReWky+l23r+cN/8jNHz7mUS7mU97d8IJJKOQH078LtzEZEP4w0Y+jH/DVE9AUAv5jP0ff6MwB+wieciOgnkMi3f0yd++jn/kYvYRHS9Fiq3drWdUZ3jsD2PncnVda8Coytk/U6cEZdU11kiiYQSbwFNQiWJT3SCY35HoVQkPK0ZtUp7hyGexcKeUx3ZzDtEB1GPolhT9FgOCAWDAkTDKaJYDFBpi3XjveeTuvlTtX5IZi24LK0gdmubU8YppN6EQ4BwdToBXkas9GLJSNv9VJnBjH4ARisXjxZ8oEspoNa0CXnazkN8CqGW4x4i3ZF7pFnWGW1RDDewV7ZIuPrdG8w/Cq9MBjfpHuD6Tl2ps7XmdtCXtIL2ps6PscuL4NJ8pt0j7tMkclgvMABd4psfI8J9yrp04OwihXDniK+TvdqAAjsnW3tnF72Wm8EfCW8NJh08Jns3enF2ZrXmx4MiQ+YlK1J8kHbVoQlf03L0myyW5d2YGHbzzli4ZZU1GKYI/HVmIT7pGBiiymiJbTVyW3GTNDtPtveRZj8+WGyxNv7EUa+y/xJIo9jMMe7zNeU/4LPPxvx2U2dB/mb1sBvuaojh09e7/EjH70t8r/81jX+6t/7XBkbhX7Et8Jd1Qkxfo3q8gUmxpfCS4Npbvarai4N+avwXh2TNdeQ2KrWi7a9+t6PywBjp9oPZ64uXd+9tjVqbW/v/Fwj0+gwxKa9+PZl24/HZH03I/kA67stpq3zAR7DwdV5Rx6T1dPujF5GqCVoM3pp2wsbHyB9Wv0owWbgzYDBCAL2rv85KHkWg9OLj3U0z1XFZPU2nsCU4oLxpF5M7ENofHXqfSqmLVkM9w7D1ull6zDs4fVUP2CJvHeYdkYvLn4jNnFBsjUfz6EkbglkYk4AuCerpxaDlXcOwx42aXkAO0zxJKaY35PFZPVyr+oLpONWL7a9eEz3GB0G7+csJsFQ9WTj6sm1l0T3YNtLqyfdflJMqYvGMIsJHtNpvQjnp8i6EAg7AsLyAzGMvZRLuRS8R06l72Rh5j9HRL9ERD+FtEvba0g7sx2bdfQz+XhzjJl/jIh+goieISWSniHNUHrlO/Dc39DlZ//KV3A/pSTHEsAdRWyJEXnCCgF7RGwpIvKINbrUeYaIKTI2+ZvTgRgvecImfxscCXiZz+8zj89t5vzoQbiliAhgwyHLiVR3zR0GEO5pwh4xESQjYJ+JUddZjsS4QxqELUE5qEih8gJp/fUuh2hLhEQEHjIG7nBAxDZMmJix4cSOlDAdsEGPDoQxY0oYEr+SyB2EIyhhGkB4SYmAd5Mx3FEiJhYMO4oG05g76HXhpCHcEyNyxBKJZneL1HEuAdwiFkwrBOycXqaMIWZMKTHAiDxigy6tdVcYek5Dw5cANszoifAyd+drDhgQ8DLr5Yr7rJex6En0IpiXCJiKHXDaoUxhWEDILTNhKALuaMIuRDAn0uEDYpYPWHOfgoistw13aT1/AF7GyWB6wRGbPOn+myGF+Ut06BBKEmqZbXFLiWp5hR49QiaCTfKQMRw41bcHgYjw5XCLQ4x4jVdYIG1Z3vGEW5rwIhzwPBMDP+UFbjHi22GLGCM+whvsaMQ3uy0OkfHJeI0Ixlthj12M+Eja1w234YBDjHgFSyy5ww33WDHjRZiwp4jntEfAAa/wEiv0eJv2eI4d3uANrtDjrbDDN3CHz8QneIWX+FbY4iX2+Bhf4Qkv8JIOuKMRT3mBKwy4jkPCECfc0YSXdMBbYYeRGR+NK3yDtjnBmJYzjIjYU9LLEn0JSBkjFvn75otwwC/gbXw6XmOBLg1sGOjyODsFp2n2AKEO3kRPiWw/5uV99Yu7LN9LpNix6gVpIC/HGZL0ifn8seyOOORFf9FdA6AkokZEjJQSU0M+yoTC8SHLBidwmTUlmAYEdKhkyX2Wr7HACKBD4m+5y35NzpeZEAPSV+Ihc1IxEieH5oLpIeTMMben1EYjUea7ABbZb+wiYyDhGKLk50DoidERYT8CQ5/qNE4BMTIWAyMQ8PKQdHHVMRYB6Dtgf+jQ9xFdYBzGDkMHjDH530+8fot/7/oeP/UrS/zcWz1+3ysRv/OG8Z9+g/B33ib8gU/c4b/zyTu8shrx13/1Bv24wJ//z38XXtwt8d/9kV/EX/2nr+GrvMOOCB/hNW5xwDe6e0yR8fG4wQERX++2GInxmeka6/z2C58SU7GXkHXwzbADZdsKecAJJN6uPvutHabiA0ZKZMvL7OsZwDbbdp9tM+kt6WmLsSRMegTsMJbkwpD7zH3xOz0iUkKeecQyzUHARIwdT1jkOjKhyMjPG5mxoORH75F4vZbZ7+0wYYcJawwJA9JHjEU+nrjzJiyyrVG5f8IgBNCC6Z5G7HKdFwjl/oy0xCn5gAnMnH1A4i27z5hC7iP3XNuPxojc5g+g0jfscvsRH3BAIiMvmGgyepE2t8x1ThirT9jm9iXtZYsp9zfJjx0QDaYITtxrPBUfMRFjy2PRS+LpGYvf21FEYMaCupLMCNm2Ekdi6ve9ba2yXiLSR7mCSempz9eLLfUIBUPMccZe6WWJLm9gkOxb3vNEEVvmgkFjWnGHQAEvc5+JHPN1jBLb3NKEDhEb7st73WHCFQ+5j5zwMscyguE2x4vCE3SHxAs5AHgp5+d+/5ZS35nit4TxnlIyYcU5lqGUTltz6l/2gcE8Yc3CpQfcAlhz2kTijhg9x7R8D8Bdjpeu8nu/o/QeU3wWMiH1AVe5348Uc2wUygyeWwDrjOGeGPdgrJlyfBdxRxMiJ0xbmrKcMB1yfMYZEwM45FhHMBwIuOWIdbaLfY7/Egcp4z5E7CNjk/vYe4rYc6pzh7Txwx6HHJ+lmPIFDthkmYlxmzGl/iPFxWskDLcUcUcRa059x73DsM96YTCWWS9pB7q0Q63oBTxhlWWN6QDGPUUcmIvf3iq5U7LEc4k4vOplzHrZZAzIMavoRUrMCacdA3/nL34Zf/R/8VtwKZdyKd/9Qn7a9qV8ZwsRfeGHf/iHf/gLX/hg8H3/x//+38df+z/8kyLvMOFlyF8fOM3auFMyIXWOIndQk8AZJfCV0jHwinL/gYG3aSqzJAID79BY1lcTI33RVDLlwEXkFCjXZUhXOQkiMoMLpxA4fXHVGCQxpuusz+9B5n4dAzcOQ6Bg5G+Fg6njncMUwUaWIFbkTR7AyDNXbPl3drAYRkTcO73snV6C0ksPKh07AHTR6oXA+HZQ0+IZeE6HUufAaUbLKb2suCvPJE67imnOlRGx8O8g3+9OnvkAvQxQPEucyIevFYbIEf9geF5kMOMljU4vB4OBE3ill87YswwG5B384HSDV/OSHwbjF8NL/Fp3X85nMLZUMfUg7BTGNbpK5sswAyYwcM09fvf0aoGwxYS/u/hWkXsmvEC1tZ4JW2VrQ97RTd5bx4l0VWP8reNTvMYJQwTjl8ILfLPbleMRjJdhNJhGZ1t6fUQHMrZ7wwNuULlzJjDeosqdw8h6yYWQrjnF6/ISB0xqLv2GO8MnFWCXCN1hNLNFUhKm8of0qBxdQPZ7dFD3gzk/ALhSmCIYz6ku7CVWXFJZ/qH4zPipb9HWYPDlKS+q7+SU8NI8FBFpACXyNfe4Ue1hA+CV4pcSke+teifrwPjYUi1HY2BSPGYMxpv7+k4CGJ+6GdWKC8b9TlJkADPwO37oX2KzTu/txYFw2A9Yhzwom4CbV97GGzfpPd2PhL/8Dz6Bf/7mDQBg0Y+4vXkL/+hFfWc9QkkGpvbS12/hDHw8rvH98abWMftOKfeY8F8u3qwvlRn3yg6IgZGiaQ+d88WSIJByxYPxxXc41Doi7/xEtn+ZjrWX7PsX1Bl5o/QYYbncmvbCXH19rrPmsZFEjfZj6zwQFZlVfwROMzv2CsNEMb2nLEuSVeTe9cGyy6U+X3MQJZ9S2xcxY2tm3rJpG3N62ZSUcypLLWcMus57TEYvTIyo+p/UR1YMPQjDGb3ckt0I/vaEXgI7HrTs78vSZgY2JQWXnnHAVOsI2ZWv1nmkiOmEXlJyymLQPuUJD7X9ZDt43lVfD+37cx31qt3AlQRejt9w1QPlhISe9fqcDthnDBLfHULFBBev9S6mXDkMSybT5idEvKX6WCB9kNF13hm9WC5C8SEa0xONCemDwKR8xi2NJpZJ7aXKeqln1Uu1tTWHyleV66yvj4h4p6uYCFzjv1znaPRCWKj3FnL/oPVilp8y8CKMGF3crevg9SIbghQ9INRNOjglppZKHhHx3OgFuA8W00Ettw7Ojz1EL2IF1WKBP/Q/+834k/9Hs2Dlu1Y+//nP44tf/OIXv4ObWH2gChF94RP43A//T4f//Xe7Kt/x8n8+/K/wa/jl71ndvV/lMm/wQ1aefsyT2pH5tSWAZiObqajUrrue5FgukcwTGnmWVFE905P1gVA7wiN1Po8JBsPoMAmpteCI1GLyRN0ek35mwmAxeZLeyb2HcximM3qZCoKsF4eBQWb9+5yedJnTy3QKE2Alj++EXkT2ehmdXogyP0S5hs7aFk7oBU6OZJcckkvUzelBDz5Bbrkf1aUJgkm+2AqmJQI6VfGR2HDijGQngR8omjpMxHWglTFuFYYAS8bKM3VubM3p1RMNy0BLapY4zGANgO2vJ8lX0ZrLufNP8lCRs0XMcW3ln5kYNVVf2Zo+CZglGT24Z7bcPqfrCPfe2zYfnQx7gnveQcYLnI7XDcflAEGDiiC3dbN1CkTAYay2czMwrodap6sOuFLJ93XP+NSTmojbjz2eP78u8pzt+SVWb4e6zBOqtiIP4sc0JFXmSXutPMcNpMup5Gd67fO+uMjNccV3RJjZkQ+mktGqqbU9tH0kuzq0faQ/HyfP97Z6jGReMHlT8/2Jf+g88bDvT+wzT5r/DKZmw49Tfq5tTun5HpPRk11mdi4OmHuGKQ/oM32d/f0Nb5u+ntX9TrSfeKa9zJEpG77AmTqfw+A3PDDxHoCyf2/GEB2GqXw90hhsv27q7Org+4qGgH3Ots74gMOZmJXpNCbffqJ7J3N68vGa14vHdK49nJPdDiAmoTuLCa1eWltTMuoOz7q0Y5pLuZRL+W6VS1LpQ1Z+75/4DKirzn/hesiGwBawMrWE0BEwsuc38mssW6Juyo/JSRw9aMU8ybUf8OnOaXAYyiDXQDpNNt4SddsysG06nsRXPydhsJg8WfLoMHkMvZPJY3J68YS2KaFhX4Inzu6dO/CIWqJui0GSFyJLnY9hOqaX8jtZviMmSz5OIDxhSzfu9eB3S2OH4RymN8PWyB+Jq7a9uOInf7YJRc2txfi24nAiEF6LC3O9T054+RyGrzsMr2cMVS/htG3B6QWOC4gsNwOB0hfNYnpqJmAuB508mCkL81W3JYf1A84FOhOwjmBDnuz5knoQgoqsGUg78FG1NU88vPDdpXtH75DdosDvlFbOzz9LAiXL+ms90LYPzScGJA42/R4CZDPxVEYm7CMMMXf6nYq8ckTdtwfXftzxb711laoodcxf00Xe3q2M/Ls/8XaGlP7wCi/P2JbV0x1G3Ga+MCDpRXOb9Ah4JS6MrZ1P5p0mgNb8ZQCK3o1fM/0PNW3eDJYwR9RtSeA98bDfZfKYL5biCaE92bivl8fUZQxeF/p5Wp7QEnXrPrXsnKn0clorc5xnvo+0sieA7h0mAowP8LY1R3Ltibq9XjSp9Rwm/749MbfH5GMfj6EDZbc2r5c5Hjj9HreYDE9OAKFji0HraQ6D/6jg4wgf2yzZYeIZAnVVb49vdBg8IXTy3RVDeIBeWkJoqxdPct07DJ4Ufm5zDPtxlU9i8qVDS6CuXHXzLLnnKQx1jmrG4DB5Ynty5/v28RCibt1dzBHdmwfReQJ1j0kXSZT+6IWo+1Iu5QNTLkmlD1uZ+SpjvhYDODiyvXMkop6wtiG0JTvw1R0sQwg4NWGtJUL1MiN1aDp08B1sg8nV2ZO7evkcCe8ITzx8nJRXMJidzGYx2UTW6DB4MuVzRKktsfBpeUJL/qoDxjkMrd7s8QPFRrYYLPHjOb0cmjqflr2eWltrSXl1MmFLEV9VpNZAuzuVT5Do9sN0vn38andvBkw6yD6ml/OYqnxHI96krbGtiZweGx+gZztZglogDWJ1HX3ybuFSySt0hoy8d+k44TGS0sPuKJcGqXb5m75DmYElcSvDLHcD6uBG10lBqompXMeOg5GXDsMClmC9Z2qO61lnHeAwpeWKIndMWCpS+MCZJF4Vu6Mc42qoAIgYz7pkPXJ8tRiNfLU6QBNvP11EdKrSfR9BSo6K+JsZiJHyboX1bxy1TEY+0IRv0t1RHyBtuoKAaS8g4CvdnbH3L4db55faNu99wqn249t8Swo/57uP+2ombpKgHlPri12bd2TKif/rMZjYfvwBTvo5zhg0IbQf4PnkwkOI6k/GCdT2mWxkX8f0n+1TbZ0bQnUzW6P13dMZv+b1Mjq9HMjW+RyBuiQYdZ297OMGT0buY51zmM7GZ2ePn7c92z5aTC3Rvf4A5jBRG8/5hMbo37vXy0wccTpew0lMbZxgSa/lnrq9tT7AYvKk7x7DY/VyDFPFEA2mCXFmY4j2I57Wi/cJB29rTi/7M2T9LcbTetJFOA8RzqWrL+VSLuX9Kpek0oes/J2//GUcpjo43+blM7JryQFprbjIEVxIpsW5T5S+gJUOilA6bWIqBHwShO4QjbzPJNbydVXIKKWDmnLnIzKhbjWdBrBCwsul45modnBbh0Efly4s7VQWS6fLlOo5ZQxEVGTkYZjGsG0wROxQd4A7ZLl0uvn5giGAym5qSa4BZNJLWu8ux/dIepIdP6asl33BlNbDy05HopeCkQk9EQ6ogcaWotltYx7TVDDFXA+pI1ElH2Yk0toRrs5QeqE5vdTdmUQv2pYAqpiYEBQmAHiLdvV8VOJTbWtaL5PDIIPYYltEJRgT2/uVcIevhFscEPG1kHhyNMZRYZiyrek6RmJTRyKydaaIf9K/g3cyf8c3wtYE7kIEXPTiMMlMoaIXkMHUI+DL3R1+LdxhRMTX8/3HgiHxeog8NrYlz6iYkJ8Rweg5cZEIobaElWuu/CEdCDdYlBl+a/RYqtTSgC4TK9cv6tcYUpKF5fyufDHukXjV9Oy6FbpE9JoTQAt0WGRZzu3VTnvCoRI4zVpa5jqETAa9RCjLq5hSm73CUBJDS/RVBvAqr7BSiaQIJALSjGGJHhv0WGT5mgcsJHnGafbjmjusY63zGh2usnzNHVYIWOXk1U0ArnrGzWJCR8mHXHXAR3rGQIxFYNysIjarEV2IIACrRcTT6z2GPpNZD4yPXY1Y98mWnq0mLBfpfCARe08RiHl89NqzO8SJSrJpGnvEGEqyab3eAjmxxAz89a+u8DW6x1cptZ9vhS1k18jaXrhpL2NpH8BtGPEL3Tu4Rdo44FvdHv+4exsvKKXR38yk87W9pP5E2svBtRfOflKOB9fmO0p+TPzaNu+KqdtLIlFPZ/g+kwHj1wAZSItfS/Y9qvNTe60YpK/QsvZr0hcIJsrnCKYOAdJ/S6JiQt2VsfYjGlMd9M3pJfnP2idDYarHJfWTMbD1Y6IX8VE7hUl8scwk64iMHoSYXTBJnUufmWMI0Yu80325wuqF8kO1r5eBqgzKR6p6YbS++OAwpJ1p6/FWLwTZbbAOmqvt7WgyvvuQMerYaPTtBTCxkra1JQIG6lQ8h7SJCNfrd0hysS2wsTXk2EhsrSMhWK7HZacxBuOe2OhtlzdeORTMsRCOa72YWEj1oWkWUiLrlhj1QCmG1XrZoe5ee4C1tbbNw8Q6vbI1yDtSehAM1QdYDBNgbE30ojGwikFjxigYJjD2zoccwEf1IvGdtj3RS024p6Vi1Y+xiUH32afIez84TPJMbVtaL8nWqGCQuEHaS0QiI98qvYyI2HLVg28vVS9c9KIxSSn1Zcbf+otfwqW8f4WBtHPt99g/Pov8Uh5SPjC7v13K+1Oef/W+LFnbc51eGomx5/qFNVLayaV2kFx2PwoIaZcUTIkgEEP5ukTMIHSlU0zXon7l4PzFs8hsAoEDJNNJRZbB5pg7LpmuHZGcQQ20gYm58AhMxJi4bkssnbwUCUYC0iwFWVoRGGXWwyFj6jNXyKgxFIxs5ANaTEsEhDxYGZnLTAvBtEYAZHDD9SuxYBAunjm97JB2pOmyXnaY0DFhkfVyKHrps54A5ljW0IteotOLHgwAdUcswbgBAZJYYmCZr5+Q9HAgK8t9zulFZCGEZlCWM0mvBLEKgwRKchedCJPzDzLlQslJLznQ5xT0d9m2pJfpCPgabfF12pYZCSnBxmWWUsKk9ELAjpNt9Qi5fU3okJeC5SCWOO1Et6WIf9a/wMBUOFii0rEkJb2eDpwCVklUHRhJL9C7jaXZL1/ttvha2KZ3U9pP5WBiSrY5Oj1R1r3YXodMBp6fIZ1Ih4BO3j2lXdnWGCBfRDskXxFzG05LyvoykCAkYvZFtmlGIrZdg3P6KZ0/oA4AB1DeRSkNRVc5+SRfW1Myqc4gErLekVOSVo6L3vqcfGJOgXsHQgdg4ogtJexXGBBzG0auYwQXQttlvt+BJxARNnlHMKnzGj1W6vwFCAO4tK8VOiw5lMGDyDJLKWEG8kI0LDtgESLGCIAJqwB8lBjIiaGhZwz9iCkmfq6hZzy7PmAcCfuxx0DARzcTxgj0IZ2zXExgBl7cJz1HBsCMvk9zRDnmreojGZlkvQMTwIxvb5PtvUlbfIszcTnlne708sRsax2o7PgZOb2BBTq8DCP+Cb1d+MBuw4R/FN7BwFT4QUpCI8t7REPOL+1lQE3sglHao27ztY6Yby/l+KT6H9texCdIQjMlDyL0+o8yG5TqDI6Yeb0SpghmiwmMps2vczp2zP2R7DBqfAjqDoN1STlKAumUXgakmYJyviBgyEyaupxGY9J6EYwJw9RgWiGUDxXIu5lpPfTlmVzqoZ8nekp97JQ4ZRSmDtJHJl8sepnHVP2gzNgQvaTYJmdNFab8OBBRwSTE33N6kX9iWyWuIJT+SGxN4oZWL8nnSn805P5F9FKojfOukZPCVBIgGpN6ByIvs15qn9mpOuUdeZV8MO2j9sUS67CRJ/TZtgRT2mQhJzD08kVCun/Wu/DYRY5KD1OrF8SyK7HoZcixkMQ6a2drPp47wOrh4DDo3UKnrAfZcXAPhiykjJR8iI4T9qrPjTlRxN7WnF4kptS2tlSxEXJ7Se0JWQ9s9KA/gB5QZwIJpgEBPYXSfhL5eK3zgDSjOMVr9Z0kPan4Lo8VtF522WdovZDRi/gEiynkWopPB/KY5lIu5VI+EOUyU+lDVl75xKYK5PhZqC5bEFkfBmrMrb/G1G+TaEhE5TbmGc0z7UPs1TUgnpVTFPeo+/siXbbu6E9iorbhnH4CVFiAHERaTJO7f/POHMaGUNNjKAjmMRCR4Zede2/nQHk9mEVgcxicPM9Q297/mK11jqh7jkuhfaaVPQZ25+t31kwHx5l3Rq69UIuJHaY9xaYBnH2PTj7VXpha4uCT7WXmnXgMo7I2oOVlm+OEsqZnXxw5TXq9zh0PZ68/fb7sQiMYCGQwhRlM2jZCHlAce0aYqYMucxjPYYrKCRABvXJKRJXvS8ZlXUi/F9kslUvXG72Q51QiHA6dkW0TJkyTZaF5delsT3vC2fZibdP4Nao8VE170dVUvz+IZLfxAafbB7x8pM3P3h/VT1Zbg8FA5PDMyQ0m3+ZPl8b+/P29nzzS30jxccE5sn4QNZjO6cU/82QfPOvLT9wfbR+qd76SKmtMjud+nvz4jF58nX081pzc6OX0/Q13o/btXi8+6HKHzTPP9JlNTOmAsJNPxkbe9uYwiC1pvbj6H/Mrx545559tHfwzTuuheWdnMeFxZU4v7hm+H26jpdN1bvVyJBZizGI6pxe/icIxW/AbrrzyifVJHJdyKZfy/pVLUulDVn70T3wawRB125FEB5dsmClpKmy+Bzl+CZohPXTXe6Luzh33j58jVeTEKgqgNWJPCP2Q/jk6DA1Rt6uUJ+31hM3+mQ2RasMtxKaD9XqZJep2RetlnqjbPnPh7uKJu48RQus667JznE8+ueAxnXM+HsM8Ubcltfa25Xl0fPHTqvc2NVYSWVI8qfU5YnsJnKxeIo61nzT7xtbZy173/vGey6Ftj962ZvTibuqDP91eJmLcYzQYtB58ggSQGRvt/U1iSsmerL8OYgUDNfcxdXYYfJJIrtF6iU4vvo379/4O7Y3syV39z53D5Ae1Ppewd5juIzA12YN6PDLhMOrET8YiEAllmZuUyW1DmTiZavlGQ9Q9Gfnudm3kf+2jO1Mtb2uuyk17S7M54km99GkUqOSHbTggxbcP3368r/c+4Fx70UtZgTQY0z4gSPtQGDxR9+P7SOvH/Dvw7+icXiZne9FhSqfPtJcjmObKHGfTKbn1k5YjjRwGb1uNXmC5gAIymb/HoGTfu7R68X2mxeDfiMd0rn/xevGYdpiwVb45EXUfxzRXvF78RixeLwuXPTjXf0WHoeFPcph6WLLxh5DCezfp9eAx+VhocJjaDUBa29LywWHw9evQEqifi1vb2MViiIUML/3w8d5D2uMpvRwl6lZ68eTjvpzTyymibiD1Yf/Nf/uzJ8+5lEu5lPevXJJKH7ISJ0azVY0r3vWfk8/eQX8JY6CNkh55P/nLiYq8iw8954/7keyjnve4r0Tn7zAnn05sNaXRy+Oed+78d3uOLc1ozdX5AZgfYW5zmB/9Xs88/tz9/FdPL/vy+Hf6HgvPj3N00kQPFB4i++SbH+DJ37Ss4lUwXLIO819aT9XBEwvrQejccU/qq3fPStdHU2eewWCOkyWHbTBgZuA9kSHS3kcrT+542q2tNqC0XK3KUXUPzCkxpbuLLz7v8M9ehJKY+id3wM+/rImqL71c4G/8y6si99yl3QaVkZqPFjzT5vQna87nK/l8c/btx93/Pbbnh5STOzbOYDhXh/OY3xsKwnm9PLbXPpkNeWCdTh+fiQu+w8psb3fats5d/56rN9deTtka2vbzXvVw7vnv7p4nYsaZ88/1+9/p936uD35QHc7GW4/zSydnU8n1qpM87wfPvWU0H5zP6f7cjP52APp43xynx3umS3lvhUHfc/8u5TtTLkmlD1n5u3/5y8jLwwHktcwqEktr+ueWm9SSgpb6FURzkoDbrbTLN1NWz1BFs0zI83TxX42WmZdAAg921xyQSKT1gPNUB0pwX57YfZ1m1VBYnuG+8Du35N+Z/yo0cHqL8teFu2KvlST3P6EXgg0mid3XaM6cFer6g9LZHAY9aAdkCY/C4PS84s5gmgBjW14vEWf0wsg8HlzkQWyP0yD8Be3NHSZXZyHJNAGdKo1e3JwAYeeRs8bcXirG2Sjf/HpOL1pmzO3uc3ogI1sqy1O8XvxMi2RLFpOus3CgWUi+vdQ233HiWNJJlwNi4Y5ImKL5iq5JdwWTfPmU8zUpryxHs4kgmX0gRLXtzkdCe0pItijJq4g0Y0TfH+p64vRO9fM8BnmuzKK6xmC+3u5IyJG51F3LwrOjyY01IfSENN1fvhAPOfgReUlJG+NEhWhy4oB9THIIjC4QxjEgRoCI0QVOpN3Eaac2JgTVOLpQiSsBYLvvINx1zMAvYoc/96Ul/sY3e2wn4O8+7/AXvgb89LeBuwn4+XcC/uIvvIL/+Bef4p19wM9/7QZv8Bofixv0mScqyNJbru0jZDlxWIUykyxQkssAydleaS/FlbXtx5e+aS+2zfv2MzuT6UR7KZhQ69spOUC44lRCkuqATRKYGtPJZVNoZ2j6nQ+lBZs2r8ooPsHphZRe/HLOueU0ddZdsl8YTKfLnC8+1d/s3B2F20n3+/oGwtumn+cx6TggzurFYjqXHBzcW1o4TP76ubhizrZEL31uK3KKYBJ5hS7z3yV7ipQ2kmhs60ST6R2Gpd9V0/Xie5d58HrRWObqPGi95Piyg+1ztV6EFFrryUcWHU7HLm3MamOh0WGqHHmpBNj4qHfxnMcEsjWckDZaIWNbpwe6HpPv583zuJ1Z7n0AAIPJYyjyEZ8g/ZWUOINpbixxCsOy8TK2rmDgb1+Iui/lUj4w5ULU/SErb399C6B2HNKtSEDISoaT9V8830f93cpcuniR2xkG/v76Hr4jYqDszlTupzppVijkjrqe7GRdi6Bkj8HPkNCJsIoB5YkS1mhMutgA194fOM5ZcUwvHgOZYwCpZxBUwNxgqk+Yw6Ax+oy0HqjpWr9bvdCMrN/TyIKBMqbY1NnL0WXKHvJ1UOup1cPphI8vop9TtuYr4e859wyN8eQsCXh7nsNg5XYwQOZnp+RERlwx+KUNknDxpLv6+nSePT9kTWp/IrhYnSeJGQnyJYlU6knJX0zufIBzco/ygCJtOGDurzDpIokieQ+x/D1VNIrdNbKuQ7ZvAoQQWi4Rgtpena8XpUUmxLEmgiIIu0g5xZUeOk0dYoxYLSYQAQGJ5H5/6NIyOGI1I4nKrKsp1nfMAO454gDCf/LVBf5fX08k7BHAX/028NNvATf5zf21rzzBf/4rN3gjpKHPa7zCq7zEl8MLvElbeE4qAiGAC0daklF20vODUuP1jo1WTxTbXtpjupxrH+29632CsgvKFhXU8YIBKMnqc4nqY3jOnX6qzYsfsr1L5Q4L7vRjXyMfqpc5Pzd3+qk+tEVgMfDMOXN1lVL7TsGQWvJ71Yu3NV9HXdolhfNF9NKp9gLl+0WW3TYFUyGBJ3V/auOt+vwajxH0OyZ3vMYF88siLSYb+xzDIPEeikyoyRHRi/jmGgfUOEPXud6zbfPt8uzTemox2JiltnGJlSwmHbOmO8zYGh6nF83bp/Ui9dV60DGqnK+f5zHNYdC+Wj6a2HckepKYcy4utnoRTHK9JJ3kmbpITWVMcymXcinf/XKZqfQhK69+shJ1EyyfUQqCaV42wQuMh9cJAx9U6MSGPLNNQtk6wMlsZEsQmAaXHkMwMjlMLYY8WC2jqnbAY2X/TI/BFo8JsEkjjxFoG6Z/R+09c0esd0sxemmJhR1fc/MeT+ulHVxN7rh/70dty2NyL0PblsbUwxJ1BxcaysD0GAZ9bymngvp5DKf5Ivx9PMl1sT0d1Dn8jxnHzNmSx9TqxWOwT5gbvOmfdaaNYJi5qLnH6XJuAOnL8e+ZM3egtHXx/FnztvYQTH6WgXmrM07iJFvE3PmuzpbtqF5Q9JIHlHU5GxmibnKg2qVDhOCyCRuFah9T8krKgYFbRT43MeHt0draFQ9G9rZon65k19/U/ghzBnqy+DZ9zL6P1eucrZ27v39OwcDq/o/G9LBkhNTpFGnvvF7aQfepepwj6p7zc6cgP6SPPEVsf6quUrxvLn7R6+UIpnPPIFDT75+zrcf4+rn2U3b2zGd2DoNvP+fjr7nYyNa35Zc8F+9Zvfn7+VdcZuUd0cs8huN6ANo+8lSsIvWyGI7XmeBj4nbmezdna0p+iF583O3rYDG18Z6/f4uJnWzP747VWduaO37aljwm+0+KHtNcyqVcyne3XJJKH7Lyo3/iMwh9dclLBJNcmCPqll2iS9EytYTQfnB1lPRQOlS2Har/WabpZrlshVurYHq4wWEoy590cZiYUZdqkVtyNBPjLx0BdO+DAodhcqSJeyG1LhjZJISWOE2gTjOYmLlgmCfqthcsG704klCnp+gw+eVzW5rMgK9Xx4B5gttTevGE0O+KqNsnTLxeHIaDszVraS0GT6Cur5VftaklDJZ4eHKYZomBVQlOLx6Dby+ehNSTvz6EeNjAc3qZiLHFZDC0RN22eOJ6n6g6T9Ttzw+myu0MKRsUzyUGPFm/10tL1G1fkifqXkhS50idZfnOsUSWf8Ye9mvwltMMJikS+EudIxP2jqh7HCsfEpFwLKl34EZba0fU/RmsjOwHP973bzEZ3qZXeDnf5uX5DnOU0Yt69Z5o2NtaQwzsnte2+cnJtv0snG8/R2zv8w6e1DrO2FYADCaNwWN0jwPweKLuuWW+p/zY3IzDc0TdjyVQP7ppguojLQarl070UgbmHkP7vDlMgmGOqLtHMPI5ou6WeHhmMwt1oU+Y+CSQv/9Zom6K2CnfHEApHjvSfuYeMrHXi20fvj0tXf/k9eTjtQiGJm47R9TdgdArnxBmbM3PrPM0or697BymsoRDMPiYdU4v6hnnSK4BG1fPEqjrqeTu/oAi4s7F25q39wV7W3Nxt/yu9aqOtUTdVu5cnecw+bGE10tLoH7E8HOhAPz+C1H3+15kifz30r9L+c6US1LpQ1YO2wmdIzcwO1uwTWgQU+Jn4Hrc7OLFefCkZJPU4bwWWzXaTjp9EhlNZ9SfkOeC7vr9WzB5DLaOS4/ByYMji/W8AT7J02KyHWrvMPjAiNAm3xYmyUNm8E9MZzF4vZgEyBE96WCsdxg8pm4G09Do6TimB+llxrZ08ckBzzPQI9QkzCymcBIjwX55JbSJq6VqH8SUEo6n9OBty8ldoxeb+O3dYKdgPIIhoJ1Z5xMkmoPlIRj8wF24i9Lhygsk8haTSQw1A23YXb4OiNirwRDDJuPkGSWBAjYcK+l8Gyn4Ou1yWCzXH9xxT8y9o8nMZvCDHb8bjvAtleSbqzNcciHVgQ3Gdqelen8G436CIdZ+4eTdIRj5ft+XxBEz8GLbY1Ry1zF0BP9kc8By0O/Vc8fB7fBjx0Gf/sTb+Hf++z9X/toh4FPxup4gbdrYt+Uc+/S0Me3hM9PGJLxbLp5gzh8QnF8LZnDTy3HVfppdv5xPMP0Pk/PVtv9p2nhs+xeT1PFtnjMHn5OtX7PzNDsnew4k78eapM+Mrz3HPTW7o5w7X2NYsNXL4Hx18YPKj9k+OMz7apEfoBcvd41e0Po9h+GontDyEXVODoDz3SHtWCqYBYO2vWMftOZkPvLxyGGy7YWa9kNGT22s43f58nox8Ry7+G2mPznVZzLzLAYfCx2NQfNxH+u0MSmcXqxtDTrB6NoLwcVvzfEcs56wReMXZ+O1I3rRmNQ79UkeH68FicfOYTL27+ro5Lmxg9UDNT7hlK350kfCuD3H1nYpl3Ip71e5JJU+ZOULP/kr6CIwcOo0RjB6ClhyDbR7BKxypysB9BodusxltEBXZU6JgCXylqgMbLjDSmQAAGElASAneYmuBAoBASt0pVNdIGCJUDqYFXcYEErAtuEuJWny8CvkOi5yfSKQMKkOrM/PCJzOr3LqeBfosMxBLTGwRsASKBiWoIQpI2IQVgoDOUx9g6nDQmFYc4chd+rEiUQ7YUzyBGDQesl1Xiq99FkPgmFQGAISSafWy5oDBqRBYBo0K72kU7CU4GlGLwMCFur4ioPBcJX1IjKQggKvlwV7vYSiF21rXX6nUscApRckDLc0psFIGYiTkanoKWS9dMmesrzkDguFcSW2VfSYhgEycJ3A6CiYJGPSi9gWYcjPCEzoiLJeRE8pSdsjtT8JqEWWNMbCDLASEba0nw4h2Y/ohZPtyPFltq2ipzy00RxEJfHESe4RsOAu1Snbkscg7aXLGBb5PXdMWKIv5NqSRNrxVIiv72nESzqYL/VjTrpIkumAWBI/9zTijkZs81/k/ENO9SQi4CpvMeJAEffq/IkYe9REUEQmEM8JoZEk2ZUSJUzpK7wkeoionM9g3GPCHcbyNXUCY6/qfIMBI2oy6p4m7BBLskrO3+czegRHzJ3O3eU67xGxp4g7jJjA6EGIRGXG0gBCBOE2phlLBwBbEN6KwJ6BQGnm4t2uS7vEAWAmvLxf4DCmZNM79wPefLnA3T6FAn3H6Lu6K1zfR3zs1Ts82exBxPgK9tDkqjKDS2xpkRdySGDxR3/0l/An/60v4n/+P/4b+PgbbwMAPsIbfG56ghV3KTGdbYny4K/PvpAAXKPH61jjN09PcRMHLBHwBq/x28YneBaH3FrSwDtAkl6pvfS5/fQIWHNffEBqL51rL8fbT0Q0PoFz+5D2Im16FZMPMBg4+bweoQxspT2JzJTqLH5TMCylzSM9I2Gg7Fc749eW6JNvzppZoUeP4Picqh+L2f40kbTuY4tesjzkcxf5/HRtV4inpT/qs3UUDFzTKEH7MaOXbDvc5T7U+mIhcV+gM+TAE6LRk/ixPtdZ9LKMncKQnkEMLLJeqp4o+2Krl97pRWPoNAZIbFQxLZFtK9d5ic4k/OTDS7U1Nnogh6FHSHK2vaTzUJJXg5M36LBBj1VOMDCST1hzZ2xrhSpLHyyYlsXWKMcRKa7os16WTFgoeUJKFgymvVjbWioMxbby8WWWJdZZZL0MRS8AEWGVk5Kip5XC1OXYRetFY1yxxbThzmBgWEwRjIWqY7KtGp+V9pDlBTojryjkuLZuEtCLnDEEotLnVr0EoxeDQWOa0UufbUti1giUGFQSPRqTtIVqWxbDkqteSOmlYkgbK4jeQEnXG7ZtXmNY5hi2N5iCwhSwUDGsFOKUwOqZ8Pf+0pdxKZdyKR+MciHq/pCVF99IpHYpOGNMyvmvEHDgiANxCUzSdOocPKHuWKPlGrACQCVaXObg8mVeliXybaalTZ0Wl2VUyzy4ACSYSp3ikAPVAVQ6SkB2BanTfEXectrhJAUWVAZ6HQhr9GWQmeTOYBIMGpOe1i8YtqgB3wDGPU8gqjKjJpok8DOYWDClRjiww8SMMSf4OhD2HLEnznUMZcp5h4CN00sHlKSNxyRT9jtE3JfBS8L0Is+iSHXkwtkiGMhh7o1eOA2KQOiRkj6HrAevF8FU9ZJsyesFDgOx1UvAVIi6exAiIvaogTrngbnWgxCsp2RSUBi6bPNduV+Xbab+x4XUOQ0MOM9G4YJJ4h4Z3Fi91GAuQBg7rF40hkXGcJdta4m+JCegMAhBZ8JQ6yx6kV1bhCT4oN5zyHqKTi8y6PQY1qjfIUQvErQSCLLDWW4uJaEi+bE7GkEMPOMlgEpyLWVCxIS6I92WJmx5wjUPxR9NmCBJspR8mUqiZyTGyGMeAHeJjJojuuxHGHUWFJCWIm0xIXAaqDPlGUZZBuX3kQluGel8cEr6AikxP3ImZKaMieuykAMiDqhlBGPElL7iUiXmFsLZdL+pXC+YCClpnDAJcTdhYsLtlIjr0/2B5xFYEbDJFrY9dAgUsVowmAl32wWYk2djBp7fD3j7nvG51QiilFxKS4LTv9ee7vDKzQ7xWxNoIsgObJKAE9uq7QUgMF57sgUR8Ef/1X+GP/Kv/DP8n/78fwv/77/+2/Eqr/DKtMQ36A7fCrsy0NYJiAU6rDmFKFfo8ZviE0yc9LxBjx+anuAFDvji4q1i/x0idogIoJxo4dLmV9yBs42nNt6ZNi7tpcstSnzAxGnHR5F3HDFRbfMyv61XA0Dd5kNp8wmfHvh2ACaOmCi18SH7sSn3o0v0iIh5Bhuw4uQDAmz/UjFYHyAYtW8NRW91Z61jfkz0IkmRggkVk/glgwmEA435eIeo9LJSfTAUJqlz6l+C0YPGXP2YSsoUvVRM8oQB6UMIKQwrowdCB5tkCSCMPAF5oBxAmBAxOr1U2+ohs/gkIbhAJU/2/UnVQ7qDHN/mzSekPxrzMzwG0VNAxRByf1YxpA8DIq9A2CNih5zAQIcp68XGQnXAv1DvXfr9qicyctGD08s260XiN6MX1Nk06R2EMhNL9NKr9rNAioVAFcPIESNNOaHRlfYoO0kydEzaGVsTjL3DcM+MSBXjLeSDVcIw5meInlAwJL30GYPIC2NrpOJqKvHdgaxeDrmeOgYlpMSLtTWLqerF6sG2F8KOJ4WRwO64tHnBILPJZKzQO0w7nrCjqrcxx6yBUtxdY1YyYweNqfq11OZ7hYnBlQ8wnwcAL765w6VcyqV8MMplptKHrLz6mavyO6mOY04GWkJB+Qrp5bq2uiUM1Hd8mGzrBHecm/Ot7Kf1t5hoFtPDibpbAmgvPxaDP/5gvfh7qBt7vVhOGTvNeB6Dv7+tk8fgZU926TH5pWutXiqO9NPaWhrE6etDU+dzMs7oGe78c5jsFa1eCKf1QiD7RW62zqflc3rxtnmelNTLMJiEB0dwzHEyaVtjavlTfDF1eND5toLRGrd5x+b+gkHE7AM8prLd+rF7ktt6ns4TOk/uesOUbZtbSjY5TKO7fdVTTmaxYMoY2RJ1e+tgEMZJ2YK7fwjAU/UZ6iHt6WtvXpvrf/Czb5rja0fc7cu+IRoORi8b9GbJx1x7ONd+2k0TLIZTvniuPc3h0EUvqQSOEA07v+br7OVz/ZV/B6fa/JyMI5hK+yjt6QQmVeZ8TOu3PKbHYTjv+20duPwUDJ6j6TSmd+ObfZ/aYjgdR3hM3kseyNpa7zAUTOou5+p8Pnax8vnY6DhGoOlKavs7qhdb5mzJt3kfsz6mn39YvHc6rp4lH1fyQ2zJY/Lnn28vpzGckoGWbNzzTs3FrOfauMckCV/9/Fc/fSHqvpRL+aCUS1LpQ1Z+zx//tCHqNmuaMbcrGDXkeqTWYUu/UZw8PYSo23U+bDtQ/7Ml6jYjo3R3VWfP4URwA0KRdbUYx4m6gYZQcOmaTu8w+Z+FVDH/8GSwo+59kfSiq3CUQN1UsmJiaomHDw7TUaJuCQKOYDmmly1F6EobPgo8nkCdyc4SE72ITCA8dUTdnpvB21ZD1O304jElEtEqt6TWPijHvGww2faikwuElmjYc2Z4om4+ppdcRraEt55c3JP0ziWFtMyw7Udm92i9LNXQgkCGswlofYQvy/yFvbZ5y5vgSYINdwMyiahqtJ4A2vPmADBE96IXjclj8D6hEHXnv69gMfifW5kLqAdDPghXz9gqzicA2MO+hzRTqCpmAmEXYYi6ZfYRkH6uF1YPt3uLMeZsm2D9bSuZXyfJBBhZ9Cq1+mt/+wcM+fe/+iO/hE6R+l1jMLN7GDBJoi1NuMdo2ots9w0kPb4aqw8gUPmCXv7m9HTOF3vbbDlrbHvx/Q+cPEc+Hp1tGS4gtOTJncPkn+f9mMdEzmcMLmHyIKLumfZEtgEV4yoYFCaP4ZxeSh98xFcf1Yu+r/NbDSajl5aoe1YvSvaE0K1evG1ZX+x9eUs+fk4vpzHtKJpNFNLy7OO2NhcreUJoT9TtY6WliyN8XOF/93ppCaGtn3s3RN3+Hc7GlKr4JM/Cx6xnbG1yBx9C1O15Q981UbfELq6/WThMTczqfve25WPUCdaveb7KkmBU8qlNGtI9PbH96TiBAvCj/85nT55zKd/Zwt/D/y7lvZdLUulDVg4vR6wm3XwIG0dqvWFLrncFK28cOeU6WlnW70ux/ErI675r5yO8PCL3yIGJOr5yx/UynMCEtQ6M2GGKhKsGU+8wdQZDg9EFKh7TwmFawBJsprXqVe6J0i4pWe4IBkPRi8J05fRk9BITp9EpvWwAp5fgMAWHIRi9LEBOLw4T0hR7KQGtXtYPwGBlpwcn91rGHCnvacL0wWEu0+8l2GNLyJnegyW1XsFi0jK4JR/3CUlZWqgxkDlOhsB2OINJuE2keEyFIF0wwMkzGFZOT58Zr03S0Q/wOidrvotUR83M0xIJC8dGbS/B3LMMJAoGlcQBCt+IxjA4H+AxerJXT5wqvFm6jkYWLrEjeknEqMHIhgyWbfsKTNgYP2eJUYmBayHQAEDEeBoAUpXeLEdoEJv1DkSxyE/XB/RqB7ir9c4kfaaJECOVRNQ2RjPwjmgTJAoSNqsDECuG+12PKVq9fTJeKV8N/MB0U9t0nLMtm5zwpNaehNcTQBf+JOXnmvaknqGXfgjGpWsvpk0zzPJdIHEe6eN+h0dPaNuQWj8Sk5fToDUY2ZLy5jZfMDkM3gdw4kCCq6PF0Ln2Y331UUxHMLTtKRjb8JgCez25Ng+Y5PdRvRi51ctpTN1JTAGOxNr5CG9bwjmk69xubuH7UDLHN/B9amd8+drHBWyXdaY4AaWOS9iNUnxc0CH3+8XPJa4njemKZ2RVhzq/HmAwVs43+/htBYeJ7azmJXfG965AhgukUBIoDAYT5yX6xdbg4jW4eM3qgZiwgdWLj202sJiueE4vSp7Ti+uPFg7Tag4TjmPaOL3o+I6BZuzQxNUO04o7h6lzmKxefFlF4PBiPHHGpVzKpbyf5ZJU+pCVf/CTX8EShCtULpQFAq5zB0VIgdRNJp8Ubosn6DFwSqys0OGGuzKIWmdZ1o1fU8AVUAKNAMINupRE4dSZ3XCHlSIBvUaPde6AVtxhwx3Wmfh0wx3WCNjkTvUqE4Ff5foMSB3qlXSylDBc54FsRyl4fMIJQ5eDT4/pWmG6QsAN6lr4FSjLADgNLJ4oTD0CbrgvmJbocIWuYFpzqv8mVgxLBKwzpg0IK2r1chW9XhKpYaf00nMiU14pjCHr5YozASyAayJcgyHf9SnrZaH08kRhWGS9iLzi9I42WS9X3GHNAeuM6QYBKyKsUXcc83pZar0Ipoyhz5wIgqHPmG5ycitkvVwhEc0nou7JkFgT0vp9SQj0SKSjlWw8kVtqQs2lklfcG9LQBYIhswQkaO4UkX0lTE8D0A4bVLLxBRJZalfaU5/IKkHFVoQXRb7+r9GXgS2BsFEYBJPsxLJ0mFboMpF2l5MtgskScS9VwLdAJeYOClNXMIWC6Yp6vIolfmh8iqdxyIO3DonDIemFkd6lJAACCDe8SDOQGNhgKKS18k4XKhlGIFzxgHXsjV4k4SaEtDoBt8ztTepTiesT/5E8o5KIVkyF1DcP+qpeUkJPOCyueKgk7xBS3iS/yitDKhoBrNEbW1up937FfRkoE+ekEjThc8AKPa4z0ekVEoH0Eingv+6AdQc8GRg9JT6KVQBe74AlMRaBcbVgXK1G9F1EIMZmNeHJ9Q6LISWbhp7xsWc7XC1HEBivPb3H05tbrJZ7AIzIAftDhzETe//jbYSQpAthekTdXlq4bGTO4h/5fV8CpoB4COAI/Bd/7/sRQWVGRQDhGZb4/vgEG+7xDAu8xiv8tukZnsQBV9RjXZjOUMi8Q7a1CYwXNCVbU5w46+zbJUGj24+Qw0r7WXGf7EU2UYC1NSFPXqCms2p7QWnjYnty7lVu80IQLYT5fT5ffICusyFP5s7wlmyUX1tkH1MxVQwVkyVH1mTJ2o8l4uF0jw33CJyIxrXfWmQM4udSe8qYlM8Qkl3R7drpZYNKYp30UjGt8v31pglLh3Gh9MSA8XOUfYDXi8iDw7AoeumyXkLRS8i+OFDGYPRU9dIXDKT00htbW53US3qm7l80AfQchmprsBiYsKBKRh6YcE0drtHjGlS4iVI/3xkexxvuy2ycJTo8wVB2AF2jxw13Rb7mgGsErCT+I8IGwKr4f5i4IJE1d7iOtc4rdLjKccAqyzcx2co6b7JyjcSntKIUG92gksB2IFxzKJgGBDwxGAJusu8V27rhvmC44oBrrvFbio0qhqTnqgcCTPwmffAVa0w9rguGpINrpNhnnQmsb7IeQtbzjUoE9Qi4jlUvg8OwRIenXPWyyX2D18sy62UFwhUIK0YhF7/KMafY1lrFcwuHSYjAr2NK9KRNUkLBtCLC0sWsYkt9jjkHhDJWENt+ojClscNQ5Cvusq2JXgKuASxhJ211SInGFRF+/j/8Mi7lUi7lg1EuRN0fsnL3ZlqisSDCwIx7APeou3PsEXEgSZIkYlwWGZW0V46zIk++4oCrHIiBMkksM+4AIA+M12DcciLhlWTRIR3GOgelSUzB2yrv/kBIs2BkFzYg7zCCStS9yIHzlhk7qpg02eXAoRDizmG65gBoTAA2qESPVyBswHiel8pcocMGjPt8jw33WOc7ElHB1BcMKThbZqJuIUlcSTJM6WXb6KXuDDMpDE8QytKEHgFPMgYgD5wZAFJ9O0qd8ZqBtyGBRsIgerniHhtw0csGCVNATXCsOSdaFKYVkt6XRFhwuj6e0cskMkKZzi22BW1rQJFTMgAYEAtRtxCnbgupdUrUyJTwVU4Y5Bi0HBcSeCGHraTwXSGoBCqp6I6nQmSfSK1jJbWGJhv3BOppQCWlEHfDko8PINzRVDAtkHYo0xgKUTcsUbfHJBg80f1e1bkD4aCIhys5bJXZYdrEhGONHj8wPcEWI97uRgj5+JRJttN7FaLhWJIym5IkSO+dVZuXOu8wAnmgnXZ/FAL1unuSLN3oQNjlXdxEj5XANhP+qgFVhx4HnjDRNKOnSmwPJF6VBVDIwwMlPWry11XGMOQ6CTHqnpMPWKHHMt9P62lRMKUgWe4nMwQ5t79FvveyYEq2ssr3HALwdMEYIzBFwkDAax0Q8ifgrgM23QRCLCTcN1d7TBHY7hboCHj95oB4fcDQpXOur7a42mzxjW89AXPAOHUYp4DbmJJNDBSyWeQP7hMDmjuEATy9yiSqMYAj4fnzzH9B4qKS47vBgJv4tHy1vuEBv216Vmxd2ggVvaTnHJDJlCEE0NXW5L1Lm5f2Y0l6q28W27EbEBDuIaS8SRZSa/EJmqjbk/Zel5pWons5I+Q6CFmyxrBDREeJaDhmgmiNQXyxx1QxiJxwyNyz0r54QqSKSfZMlGu5nG8Tt9JepD1JneHazwTCHaZMPGz1ojfLsJisXoSou8WU5Huecv+RMMlOj3MY5FrRS6/0MKeXFTqMoETinzFMiNgXUutgibqzrdEj9SJ61XrRmLxeNAZN1F0wsfV717HLckowHBBxh7QD4U2xvZqkYTBA6SlXSHGAED5LvCb1WIOwAqMvfg5YMuMdJD8gccEeEZFQZPEZpf9SybSFmn2TNmnp0edNEnoCbgDsGHghmLjDiIjdTMzagXANS9R9xR02GgN3CQMox2vAihMxd0SNOe/ZYhgBsMIAhWHgOtNRPkoNLD4hfZwU35nkDnuOuKM0I/eaQyKFp+pDZDYoAbjmPsXZR/SyAWGt9CZ6epnJx9cZ1y7XQTBJf1P1YvujXiW70qxC0UtKyO1yrC+JpRF105+bErOS0YtgkpjTYmL0SLa1AbDmuukC5b8DwO2bF6LuS7mUD0q5zFT6kJVXPqeIusmSKgLt0oJiILlTlLBeArYks7qCzFpvohoIyfnBnG1YGbJsz4eT+cz5no/iKPGwwXSaPNk/02NoMXkMM88391fnz+jlPKk1ZdFiMATqSi+B7Jefh+jF66HFoGQ6TXZ5CpO3rWOY0tI2fX1o6txi8HVmd9zL9nxNmptkfw6aaxKmet9zttZwmp3B0GI6LZ8i7AROtJdcRkeeXJbuqIEm+Pj1D2nDLVGwP9/Kp8iT58pj288cJq83zcUzh8FjPEcK355vy+ToJkI5PZ/Jlphbdnqz51ufME3KvgnoO0uV+jScsHeydg4A/1IRdQOEj7/+wp1vi38PndOLJ+svM8+OXP/u2ovVy2MIbjOsk4XLT5sgM3V0fu0cBu+32vZl5VObJsz5hONYantpMCmf4Os8h/mcHh7jx+bjinNYLCaP4ZxffIhteeLhtg9+nB88V3aOqLslT257rNbPncZg4gIXuzzED57DIbGR+C7/JXyWEFpjoPMYHhO7PDbec9XJdbTnHCVQV7LHACef1AseT6B+Ku6Qv1oMtsza2pk+9KSeKM3ID0SV+xDAq5/TfcylvB8l8vfev0v5zpRLUulDVv5rf/xTjqjblqZDlo6Ayh/0D4DanZkOsMUnSNqkz+kiX/PkKQfAdUb+/nAYbCljKYUpiRWcx+DpAv178xh98dcfTGIhY1J1nr2/d3wOgyfmnmCDgb27vH2GTep4vbD76Qk6d4Ahc/XvZHAY3JgW3tQYlpQXhDx/hbJI+Igj6l6wfaono/Tk4+zIXxuyS1hbG1xg9JDBlye09Zg8UbdPvnnZP9GbhSfqbomHZ+5/or0IBil7ioY8OeAc+Ws7SJU6+p2wjg20J3d+3Z1NMFlr9YS17DAEUEPW70nhPVG3f2/+vb9D1msIMeoxjDunF567qZIP7g9bBkZti86xRU67uWmi7t1BcZcQ0HW2Dndb255WK/Ea6UG/a9UbuXYlnOs4Gfmv/Z3PmR3l/pXf88voFWeTb1/pC759CV4vuv0EEJ66HeTOtUl//7a92OOenP8h7fGU7TEle9a2dT7R2z5Dl7YPtph8Hf0A79w7m8Nk+hsnFz+mfMLj9WJlT+Lr26P3AecweNtj14cGGXgfwTCXDmn1ctoXe6Lupr9yegJgd9KEJbaPYCPvKOLOEXV78mSbbGiL14uQWstfJ3f+0skSU8r5vt9vfUArT4zix7rZxJXFdL6PbGMXXQYntx/52ptq0WMYYd/jXHtsSK31iTOK8W3e68XHnIJJjs/GrI/QS4QdjHd05MOkHzPUE87qRXrUY2N+CsDv/rc/c+TopVzKpbzf5ZJU+pCVu7cOiGokwuof0Dpv/+V5zruf/9J0+p4PSRLLtFfkn/6Zet+xc/d7yPP0O5Fn+uc99p66eAwEqMHf4+8nF+iB62wyTRWPQZZx6KTO3GOOxTkJA5lz9TNO7+Mx/0Bvm/6Z3xeXiWwyl4/xMpFF5vIaL3Ed+3LhK7zE07go8lNe4LW4VPKAjys54bKYjtX1oeVcGsq3Dx/UP/b+fjB39G4PfQy3A+u2TZ+W5W/23VZ53vb8+VU6ZlvluWQTTe1ePPPX+oTHKVyaOFmffwyj10sHvwEB0gYFIiMtv5UigzPJi8aY3kltL2xHoADefHuJw1jvMU3BJLPffrHGdle/OQdihFC97+/7+Av8Nz52W+TPv7bDv/7x+yL/zo+9xI//rl8r8vO3r/B//ckfKfd7ebvENBHeUwNyxQ+uzmvWlnN+kt0f33PN/Q3xkPZjy7k6n091P/SkhxedtPFtBzivl/OYHhdnPLo0oU5b4/eqF9/mX+EBb6j+6Ao9Pjati7ziDt/Hdcv0IQZDbN9FwmfiVWnmxMAPTOuaWIptkD+pevs4Z760SdRTcUB7P0Ikd567yNrO6Rowt3qZ+4hwqjw2Nmrb68xFjygSG1U18aNjymMzoo7pJbrjswBm/nSq3Z7Ty+PbZDsj18d9+niMwO23LsvfLuVSPijlwqn0ISv/8Kd+xch69kpJApzpcU1QkQeYerDkZ8D4L1lePtfxyABWhjbDTEJJ32d0dZ69v+ulgsbAqWFE1LX4/pX4mUweky8+sGu/striZxUJh5IpM3oB8sD1iF5k23TmFoPeJwqYf28ShBLaxIL/QinvRPTm9TJna+R+D6CiByHp1Zh6EH7btMGvhh3epAOe8gLPpgW+Gu7xLdrjaVzgdazwDdzj27TDK7zEBj2+Gbd4k7Z4nVd4xgusuMM3wxYfjUt8jFOi6qthh70blI+ZL6hieEhIbsM4b2taTwxubOlcsOnNwu+85m3Nfz33tjWHSWNYozO7Ik1gjMopFAxK9ncUQmeY/9dkqK9DXRrJRhbb8piEn6XWH8XuAT5ie9ZpdJnLIkAwccbE5Xxd+yfu+/aeuAyWdBpF5MF9K068ZIljZJu5W5YICJGxo4gNEjFqyJxri5B2jQRSYklqJW+pC8DQoez0HiOw3ff41W9u8NqTPa7WB4x5uVsgBhEwjgFf++ZTPHtyh5urLcapx2KYMI6McQp4/fW38e999g6fe7LHf/aVG/zoR3b44dd2+L71iP/s1zb4g597jn/jB7+Nj97s8J/+Vx/Dm29d4//5//nt+NbzDX783/j7+Ae/8DGwTpy5955IuP0gVunRtZcREe/QeNLWfGmXnvj2YmU/u8Tb2lx7PLXEJ8D6zujqXDA8CpOt8+Bkf71PxJ3zYx5TmNVTao8BmcDd+YTH6sX7Md/fnNPLQzCcwsQA+ASGhyQvvV68L36FezzlHmsO+FrY44Z7POUFFlPAN8IWNzzgdV6hnwK+Ee5xjQGv8BJ9DPh6uMcGHV7hBYYp4KvhHgMIr2LAcgr41bDDAdHsijnN6EW/tTlE7YzjSoGQ+jNb/BBfZp+Ir57vvzQHltVLD720N8UV9mMVFz0xKa1IBWdCJ6+HY7GLx1Cf2RZ9R+EzkjIAjW3pnxGtrZlAe0Yx/r0PsAkZf/wAG795THP3975Zyx3sh1CdrEyYLIaH6aWeAtSxhMiE9nX8/b/yK/jD/9vffhLLpVzKpbw/5ZJU+pCV+2/bdMW5Aeuxbsd/DTFBNPmu4mH3PFaOfaU4du/Hf/GRnzWB5GdMeETvBcND5Pf6xWcW0wP14n8eP7cdVMzdT34/O1PpSJHB+5ytAWkA9bm4xqexxMtckU/GDT6BNbY5lP1Y3OCjWKf7EOENXuMjvMq7lBA+wiu8Pi2xzvLrvMBr04Avhy2eh7pl7WP1cuyNz9na2YseWFrbsn9pMTzOujo3I6cMSCXBMVeJI+V44tIemcNA6vcH21YObjW/2JHTynN9st37BJHbGWE1amZ3Ec8E1IaoG5VPYgBhyISyIGCgtEFB795RlbJtZe4rcnWYYodvPF8jvL3Ea0+SbUemcgIz4a23r/DW2xs8e7JFCMAwRPR9xDCM6ALwb37/O/jvfe4d3N0tQQj4w5/Y4l//+BbXr9+BCPiDP/At/IHv/xb+g//vD+Lv/OJH8be++Dn8rS9+FouF3f75sX7R+4DZZPujy8P92Jz8uLvPtPeHXPToZ5wuj50t3HK4HK+HDFxPnfgQn9Neeq7/eiym0zLP+bVHlnO6FyLvN3iJj0wLvARjIuBVXuKVaZGWNBHwDEs8i8vit254wM1U0wjX6PGb4k0iTwZwhQ4/FDczs/hqxYyeTlX6xOFj/vuYfPSZJ4776hyN7/SJZ7rUx8dfj9P+Y+5v+i9va+rCc23a90e+PEYPc8977DubPbHRy2lUD3nG3bcvM5Xe7/JufOGlfDjKZfnbh6y89oOW1M5/hTrWcRzjiJgbAPoB22MDXl+8A/NfVR/a+TVBJ1sMpzD5Opx7b76cG5j4QMk3zGN8FMeWGFTOmYrJEqjPPcOWxw5MPIZ20Pyw+3s9eEzHSue+C/svz/NklFaGk9dsa32OmLvFchrTbALFQXx8e/F6sfJjCWf9fXeOqNsTchJgDPzYNP1TpU0inW5Bj+3IwkyCdU4vIntMc3XyMyfMzAprWgC1s0Umpfg5XpDYvJN5WyztJQZD1B0cEUhkQoxzd6jyFC1x935f56EGAhZ9NHIXLWfTp165M/fb7u13rHN+0Lcf79cGBMMh85BybsDo5Yf64uPPY/MzOnn2bmfaz7FnSDmXZH28H5v3KcfiAqp/mC0P8Qnn9HLOb71XTIVP0uaWHlXOxS6aVy3xtsHI5za3OPYOjG9WcnEBp5LqjZ/zGE4fPxdXnCv+HZWZ6PnP1cN4TEcqRecx+JlJ59r8Y+O9Y7FRo5eT/c3p8li9PB7DaR9T728x8DG94HycfW4FAAC89gMXou5LuZQPSrkklT5k5Xf9+KcQhtqdpCFCdeWy1EMKgRoCaC+fIz2UjdyPBTq+g/U/x7JiPsl7+DpauT9yXM8OiXkZmPxhcpj2DpPHWKfpCiYrw2GYnLx3ix4SUXeVFw6D1wswR8xt5QMsn4vXi5/p4PUi5ZheZBBdkg0Og9fDrF50xOFtC45snNplgT7Q8XoITvZ68YTROye/yoOJdGT5nZTgZPusWkeLybef47uGyTP0fZvkwRlMB9d+OldnL/v25DEcKOIF7YscQBiYUCG1pNZ+8OOJt/1Pj7kl6maHIRj5IUTdvjCsrXmibj/A87b3Du1NHYeckDyGcZdDZm17p/Swh00MT5z+FUyu/UQm7EcqM5WIgGWvhwLpuC7BMdnvD8HIz9+6MXLfj0a+e7EuSwwB4Ed/4JsghykaPVn7n8DYu6HEqQ0IAghPHFH3uWS1by8Hpwfv1waEzBcy3368nthhFLkM+HOb17Zl840thjbBeL7Na7kdxD7OjzWYyJKNy/kNJuUTzg1ifRv3mLwsy+BF7p0PmMNgfcRpTOEMhjlErV5O29a36WDkIf+u44pTmDyGCa5/wTHy8aonXeZ8/+gw7Z0sxPbSl8tSsodi8HoRDFoeGYaoO2RvLRisntrnHSOy17GLxtA7jD7em3uGx6D1Mro6SDxnbc1iMoWOE9kf04uPOetSsmOxUWtbpzBFAJPemIXmMagw22KgNml0aDDleh1JglJH+OELUfelXMoHplySSh+y8s43tnhxiMVJT2C8UIOZCMYLjEqOeJGHpUBy9i8xmg7yHpORtwBG1sejSXDc04S9Ct52iNipHUrS7lJVnvI9ymCJGHems4u4dRhuM02u1Pkdh+klHUwHd4fJyDuwwXQHNomlO4o4qDrdIxpMW4rYKgwHYoMpUrpGSgRDf9MfwXjpML00mKxeIiJuc/pNv3evFz0IvUM0mLY0GUxbmqxeYDFNBKenxPVSMUTcqQB5chgiGC/I29pobK3FxM72nJ7I2RqsrW2drY3EBpPopZ4/YUc19Jny9RrDvbO1e3M8Yqtsj5EGzRrTHtHIW4yGH2SHyQxC97C2N4KNHPMz9CDWnh/NwH1CxJ1pHy0GL38p3JqZOQeySRyP8Q4HkzxIxKTR2I4e0O0wYat2mGPYgTjn86WMTR3ZJG5jfkcWk7U9rVepk5a3ZP3c6GyPmcyAbgfbng75vdcECWFU56f2E839X5K1rT1qgB2ZcDuSIep+a4TakYex23dmNlLXaSrvNNOI1AypvosIalu85TAihKnIq/UWoaty6BhdPxZ5WI7ohiq/fTdAp0QOiPgqbgumkSZ8hV4WW5ko4p93L8yAyCQIuU0Y3jlfvnN+z7efg2s/ksiq7ce3F8aBbPvZqfYTkXyItqW7xrasD9i69rH1fo5GhyEaez8gGkwTuJE1pgmMg/Z7DoNvP61PsO1F/JhvPx6DxTg1etGYvF/zmOIMhr3yEQdEM/NnTi+tX1OYmI0PSHry/Y/Xm8W0f4BeNEaAsDW2CdyTtdU77asp4qWPZZRfY2Lcq/aR4gK7o+JLZ1s+nrulyfjqndPLHoy98lsjgJ36SLdzsc4BjHuytvaS6jLYiVLsUupMjDuNCSk2Kn6OGS+cHhpMNBoM9/CY2PlmYK8wbMFGLzuw2UXvgIhbjYmSbN97NJheOr14jC/JYrp1mG5hMW2drXm97HO9ayxjY50DGHc0Qrcnb2s6jo7EM3G27o+Sber47R06ONs6mDZ/N4Pp4DBovQA2wfRyjHj+tS0u5VIu5YNRLpxKH7Lyhf/oV7HnFDivmHFHaUD4Dk9Yc8CIiENgvM0j1py+MR0C4zkfsOEOPSgdjwds0GEBwhSAF3HECgHL/M3lBYA1MxYA7okRecrHCXeUkhkrMJYccjKD89+6FFxSGrCtOKQvV8SIzFghoEfAnlIntgLhAOBAwEuOWCFgR6nOL3jCigMiIsaCKS2RGgl4hw9YI2GaAvBOHLFGwAIBIOCWI5ZI/CUjgLfB2CB9iXuJiAnACqlO9xnDCgFL7rArmCJW3GFExEgJ45rTO9qp9xJQZyKsANwS40AVw5gxvZP1wlkvb2e9dCCMAeX4AEIMwIs4ZUwEBuEdMNZMGMB4SQxWernNg2bBcE9TTlgw1txhn/WW9JLqsKUUsC7zM3cKw5ZSoCN62xJjzHoRWxspY8rfM0eFqQdhIpTjCxBAhHc4ZkyMEcBLpOcNAG4REZF20bK2FrBSGMTWJjD2VDEFAFtiTNm2vhUOGPN7GhDS4I4YW56wQMAhy3c8YZmJnZM8YpGpZicCbnnEEl2Z7bLFiAEdeiYEBNwjnd8hDVQAYIEuPzOFYQswBoSShIpZHjPmCZxsF2n2BefjHQIOFBG5Xp8wjQXTSFzqWDEkjIQc6HOt4y5M+Cf0HJ+YNnjCAw4UAa7b2u8wAQwMFBBAuKcR9wDW3GOJDgGEAyI6cCbETqEoZ/meRuzzgG3FiXlkzGf1+Tt1Cm8ndPkdHSgly+X+EzF2WW8hp1LSM6vtaUxMwDaf34FAFLDniD5fLXpZIiTbBGNCOr8H4YoGHJhzHakkz7WepP0s0GGB1K4jp/M75xP24CQjtZc1AmJuYwOnVM3IhHdGYN0xJgb2ILw5ATcBWOfP9y/ve6wWE/qOAQ5YDRGHKWCMjPUyYRqngCkSQgAWiwnjGDBOhPX6gL6Lmai7w6uvvY1hccA0RkxjB+aAYXFACBHjocfmyR26PoJoRBwDfu5LH8kDhDQUeYf2eBEO+BV+idd4hRERL8IB/4LfwUdj2vvuRTjgv6K38Mlpg1d4Ccq2HYD8L2AEo0MaCL0VDgAnLqoOVJIliZsq5GRebT9poD/V9kLAjtOAbpHb6EHpbYvRyLvcP0Uekw6zLd3n9oLcX73kEatsWylRe8j3T8+8z7ZHSMntKbfHAMIO6SPFEuJXBZPYUkqwiBwhSZokByLsOPkFeQdjwZD6pz1FRE51Sn1ubT+JfL/6BMqYRO5Bub0kP5Z8RG0/hDSjceSIRT5/XzCF4oe8Xu4wYomQNgLIehFMAFR76rDNSduIMd9vKn5umd/RnF7EVwfIx5yx1DEleRIGztdPPGKg5MsrptTmJUEpmMZsW14v4rc6Iuy52tIVd/nDSOpvbmnCjtLxFQdsKSaZD7W/UnFAB8p9aOrnh9xnvmTGEtlHEPAi98mU++wdj+X8HUXsOZY+VvS0RoclQrJlTCVe4xwbjSAsQZgA3CF9SFwBeEkR24xB4ogtRUw4lDgiYdxjw32JZV44TC+yHxzyM94BsM6x6z4AY46NAoBdYOxL/FYxbbKfPVBqL+tsGxMBLxBT/Mapzd1mDEsAd8TYMpd46I4m3IcJE6f4bUsR25wEWnOHEZzaU5bJYehBGAl4mxnrHIuPOWZdSgIlMA7lHaDRy0HFSsvcd7zAhFXGJHqZsl5GpI8QExhLEF5SLB8SV+hwTxH3FDEhxcV7Z2uc6xRzvOb10hm9cLZNYOQx99nJVsc8VhhAWU8Ho5d3kDBXvaTnJbY+q5eOCESEA3P6eA3gZ3/yK/i3/ne/E5fy/hSG/nD1vVO+ByF9V8olqfQhK/fP04TSNBgH7jJj7EQpGDhw+mowEeMljWW5RcwyOE3/jwF4iQnEaRtcDmmGx32MeCXvgnSf/8X84XuLiC1XctUtYv7akuQdInb5+UVGxAKEDgF7Sl9HN5w6xZFSQkGm4CY5BUSC4ZYmTAbTVLxHJOA2Y1iiA4c0e+c+RjxFn4JmMLacOjMgzVi64zxttxyfCgbB5DEOuYPcI2JPEeuYEgYS7KyY8gBF9JLuPzZ6QfqiJTPNKM32STujhYSJJgSll4QJeE3p5Q75NZzQS5UnbDFBdgMRvZQEHxh7GnEdU2BwQP3yVzCgfkUWPYxaLxiNXl5mDEt0RU/3DDzDABDhHoz7ksRIerjnuqvXPSLuZzAZ28qDg0CUv/KNuOKg9JK+mEodJ0xlcBfzDCfBEPPX2fLVLr+3tFtVyLaUMK3z5Po9JhwAXGMBygMUIWZFPr6X73qUBlQyINEyASnQQrKTVU4kjXkguUKHAV3BsOdpFtNEaYCl2/w2J4cCyGBaIA0OvtS/xBAJr2Fdpuhr8uQyOyjL9zTinsecLKiJGSkiT4hZT6l+VzzkQVryAcKXlZJrU5k1lRK3IwZOA9OYdd0x5YGizHAQvVlMnN9rYKBHB6JUx6iYtZPtpISZYDzIYcrLN7jOYpKBp+hN9DSASpvdg7HI71l8gnzBPRDjQBMQGUv0eaCaEiwDgIkJL8cUaKd3CDyPwD0Bn8gGn7iMGF1ItrLoGQtwWZow9BE9A1NMA+tEzA10IZ0zDBP6fsIwjCAC+mFC10/Y7xZADEXuh7ScJ3QRoYvYTpRrkFJL8hX7jkbc0cvCH3ZPI77UvUDH6Z3c04R/3r/As2mL3xKfJV2psC8ty1bLlLPemHX7Se2D1fE9x5wwrO1ljQ5ByVcYTNJQbEvkvWov97C++N60l9SeOqYySNthQoeIDQZwtm+5XmxPbI2RbPN+BpO0eZGXGcOIlPRYoUNHoWCSNpgwjE17ET8msrxW8Qkht5/k50b0TAXDPmOmnGjaI5Y+WTBuXfvZ8tRgEr2Ib75CbzAt0KHLs/tGHsuyxQlpFpfWy92MXsQXi6/ucp+bZjSN6BFwlX3EHnVmmGAsMzBIMHif0OpllX2I6GGDXmGYlG0y9szYis/IbV76/eQTql7G3O/3TCkJmPvYBROus9+7B9fZPZRnWyu93GlbozRbW+IOIM3uuc8JOCIqfeg1J1vbgbFjxqrENnV2TMFEY+l3E6Y6k+VAjLfpgC7HLhJzDjFgnTHdImIQTABuVZuPlGYmF1vLsc6twnSLCbc50Zn8TMR9TjYRqMzeeZaTWTsk33pghYGnwiO4p5g/TFk5ZPvXelmUGDXpZVP0xCZOuPd6IesTtF6qrPRCEVuuekkxKaPPtrhDmkm213rhsbQXwSC2JbbWMdVEEk0YYvJjopdke6HoRXYTjhmD6EXGCqz0pPXCSOff8VT0kvQEPOMuJ9mTXoj9okPg/rnfx/hSLuVSvlvlsvztQ1be+M03RvaE057Atu4cVF25XvMvswvqBe3ab3JC8AfptHyOVNFz7jaEhPmEUk/BpIJEg4laTF42743cGnhqMTcYHBuzx9TqxWPKGI6QjTdE3dQOygzBLTmemRkM7GSPaXSYWm4gj8mDypiOYGiIul2diKixLY+hsS2y9/N6WLhaN4SdDoI7DD6DqWk/wGmibnLPfEB7aQg1yetlXg9e1rak5ZHYYAoOA4EsJmo5LnzxJNfRofDvrOE7ci/x6Pn5z8UH8LytEaHB4G1xr+tIbZ1MmXkH3KjB/uHQYLLF6/HAyETdyne7i/TSuKY5EjBNZOT9bmHkEKI9f7Se62NP7428dN+xPGbRm7zb+2A5aXz7WSDY3QjnbNe1D3Zyy/Nxzo89rL1I0UtcEgbbXubeu6nSnJ9sMPk++MT5MxjO+zH7Tjx3kLSH4gMchuaVPQDT5PTiMTaxyiMxtcTDFhNJB6PDhhOY5vsXJ7vzJVkh8rF+/tgzvQ/wPDredxe9yOEzenpIe/H9yzlycV88Bu+7PSa/MYTHhBlMbYxqj59s8z42Kg85juGYXvzlJ/Vy/HFH9HL6+MmYdeYZTZs/035CBZXkc3rB6Xhuto9EWz7qxjSXcimX8t0rl6TSh6x8/sc+hc4QdZMZabgNgkAgsCO1jlAdEjkSaz+4QksALYMAPQjVsv/puU08yTXBdk6dwyTHj5FXyjM0Jk/U7TvQ3mNyshTNUaHl8vU4l4PD2OqF3pVetLxzevEYeqcXeTt6MGQwOEw7h8kTdPZH9KKLJ+X1mLxe/PWevNXrxf/05K97NeQDgCfcm/feIxj5YUTd0WBoCdX9DkA+kTV/32N6aUl7LVeQJxruXbR3Vi9O9pxNhPSVVpclW9mTMfuykPNzNbzt+uBy4fQygU0yxSeJOklG6ECZAU/eL4WQZgSYOsj98w8h6hZ55c4vj8rH7zCme2T5oH4HWl+suVLqof8/e3/aNMuSpIdhj0dmVtX7vme5S/dMz3Q3ZsUswAwGIAgQi1EUQZFGmiAaTRS1mX6AfoD+gb7oH0gf9E1fZCaTRBopySBCEgWaQIIEREDYlwEwmKX7dvfte5Z3qarMDNcHD49w98yqOudOT/fYnIq22+f4yazMePKJxcMj4gmDifzS4wxZgdcG8BSWrRMOY8xjeWq5b38cnP3F9186W/SVmv10v3Pv+HO/8G2n2fSSN2cHFgxftg6U8dqIwoPgtE4SCB9lL9R96aTMZTvmbS2bautWKE1RrH+tvlg7U6gvWIrA+/HfUhT+EoYo2hvbgPj7vvQfmt5XqDvTUqhb865/Lk/ejFj8e2LwIPYvEZMKczf7PA98EZPXP6qnh9ai5yctloiWvCz6/VC2XgVx/w2fP0QhYprh9ZKiUHf0fRJIWiWDKaJYCkLHPvJ82dsEPyL6AQScbZsjphz6zE55iLwYO6ZYtiKmfbiuLcop3yiBw0Tru/HSvgEteLmE4RIvsb4shbr9wREqFm59ItduXcAUReI7lMmjWLaMvQzueUxLAXWPIabUE/6V/+lPrV67pmu6ph9+ugaVPrD0xe884XHMruM5kA8G7MkLckbxyktCw/GUiCNl5xTo8mEvnOpFRa24ci5bkTRxsa2DHe09+YH0PmCwApwMbttTShpDBzoFTAfKzqleiid7O5dgmx2I+2CcxzAFXgTT746X6ASs82IFOINQKgVBaPI8gbyY+Rx4mcHYG0wMLESuo1hy5GUKvBzhxZIXvKyWNSv+iiBqzUEoMmMqWiOCIWMks80NXgwWwELQ9pIAdA6YRsorPJ0ua3nBkw/y6D32/TYPc3meLWtLXiZEXqrNqNsLNHXBLd6icytKhqJ7pEm0cuz1JIElarYNtiUsg287dHWkmngZaLJ5ZLC/rhjM/T17ewN/fH09zr7kccspONV+1r5HkhPhqD2vRzIYCTv7TZhwxw1TB39aJ4Fx1zFsJl+4OBnj2XZ2QZ2jE/IGponcaqVxSphnqjPlOROmObWTl9KMaeyqPY0DxmNf7b/5ref43/6Xzcn/7M0OR3Ny2gETDkHQNtafKZSt30z3brDxT7v7qm8FLAWhowB0FOqWLZq2fvAi0GvvVy0smz8vUr0UhD6ew4RlGzAFewyivYrJtmMR07TAZAWil32sXVmqAtIeQz6NgX2wmsv7z7Xdqvmk6bjgJSMGqhwvwR7h+ysVxdYU/YCFGD8tedEpBcU0Bt/ocIIXi3nGubLmg3Ed0qK/sZNyU8izHBRh+lBa9i+WN/ELPKZD6F8ipmPANAUMusXZ9qHTCgbrR9iJE9ExzGYLGHtMWGKawvX9O2Dw/pz3deaAScqvLVsItsekGComkq2BlpflCb8RIwdM58X7j/AHECx5wVleRnDwUXmByR9Ckld4MZhoWdZs2672OZ80Yoq8RAz6XP3zaZrxvd+0R9xc0zVd048yXTWVPrD01/9Pv4WZIJogYDxRlk697G8ekZ3gJoOr7oiIiMIJ2vYgJEpVDLNnQiLR0+khA6FD6UZ6yFHj+xLMUAHOI5qA7YCu/l3FLDs00d0eqQr6cXnHjBK0KfaBPIa5YHgyIqJiT0XcVQZ2FRMrplyuy7DtCEYHEdXdF7erhwhw6slQmueIASjbhDijh2g5CIZcv4vFtP+SvOg36kGgwEtHqMLDCXLSlOdFMOVia4evIqM6ELK8qIh1DxESVkwidrvGC1cME7ITgG68tLKFIjg7gAQDRHNjKBhEX4YxQBqzp+KiKC96EtRseNHBy1CYPRpMqoOgvLxOEhabiZGgItkS+Okg4rCCSQRrGYycIJiK8LcVtFUB6JFFaDgBSJQwGkFoHVTo9WPApEGnDMbAqQ6EGCJy3XjRsiZ6FIyMhCJ4Xcpah+LoEWPkuWox5cR44gkDd66+DEXQlkr56EH1u6m7qPVtwx0mE7h8xgMOLKfp3RS06kSqhLkOwjIggqVMONCMHfryCxlg9FpvoZoqXOv2kXMVKCcwJs7lu4g9lwFEAuEGHcYiaCzPFH0LZi56KxmZSxCAgFvua1BPV2NNLIPZj3iLHlTvnwlFJ41LnmXlQ2LCiFn0VSCzuyoIK4Ercd5TaScSi0bYHQg9ybbVEcBAwCYBHTH2sxy7PSTCpwzcM8CJcTMwcjfhMCYcxwRGwn7MGDqgT6KxtD90oqHUMcayfa3PjK7P6BLjeOyRuxl9n3H3/AnT2IMzoRtmjIeh2v0w4b/+7A5/5bdf4HfebPEf/Nq38P/7518pZUvK7is6SjC6tBkzGLMpayqWLILqUt+PxPiH3Wt8Ld/gjnvcpwl/F6/xdb7ByzxUoe6ubH/VlUZDqS8TZflepb7oADJrfaGEuQS+NFgpAurC2YFEjF/buWOxbdssGGZsWMogEyrGDgSYOi/1mkoZBFDal5nlGqENwrvSto8BQy4DwCrMjSYu3pdgZS6tdQeqgQBGwVAG3cdiT/AYM9j1P2mFF5TnaB5R6qYGh6ei06K8aEB/gOrWRV5a8KBDQlrhRdu6rrQ/UxG2t7wwz9IGlu/6hMaLbav7wIv2N2pz+SbKCyBBprG2L1QxbLj1kSLez5X7qfCg9dnycst9ncBS30jFxjewhyo0/ZnZ9KEdyPljA0jqeOkTdW3IAVxXco3EADOGMlQfS9svfa5OJgkG9V0OyLX/6cs3y4WHjkjazGI/UXb9z5EaT0P9RhLcGkpfkklWOqvvwkTYl35/KDypH6HC+HM54CBi6BQDzxio+G/VNyInmN6bNsAesnAoE2zONvVjLBjE/xJ9t5maKHwHcr7OUOuLYMjqv7HwlCumufhnRd+s+KhrB0NEXoZSdpUXnURUDHrwCsPzwoYXa1PA0MT5cy0rS16AufDG5XmT4WUuGCMvWpYjL4kIR8OLti06YZkJ+Gv/h3+BP/SrH+GafniJL99yTR9ougaVPrD0+FqWW4uArVleWmYdVBjSiYZCgyrq6FLdtjMxcIdUxChlQHaLvm6/mrg0QNUuqzKodfyztYsYpQrkzpix5WQEbUUgcICu/mEnCjqirWpSDFPAxOb+AzKIM25KnhXTtgpsMkZu26p0GXN2mOaKSe63M4vNEdATqWZwEUFsGERElKp9fE9eCGU7QMEws9iKYWbGi4Jx1oGzrjaovKzwhOZkJnheduaEthkiRqm8ZDMwehde9LQwApnrMLwIhlvIPW6VF+T6Ub/6Ci9NGNWXtQ2nIgYrGIWXrmBis/y6CcKqbVcwZFqK7h5IxGGHwssRKg7bVR501Yh+Vys0PEMGNA2TfLNW1mSQps5Wqy9dDcTOYFlxUzG0lV1cv4O1sxEfbxhS5WXGxCS8lLKRyu/b0DJXTBJIa7O8O/TYFvFN2erXtvroth8R4JZj6bfoysmCqbQ9GhyCs4VNHZS0nMhArnN2GfZjKva2ho0lD0O5rphEoF5OqiKS+zcFAYAiuE012KbBQIDr8zQQbO2h8KJ50i0W8qyu8tQj4Tkn3BTeE8kJlLqLuSPgrmdMWU6D6wh4SUBfQKcE3Gwzhj7jeL8BkDDOwDRn3O0E9TR1mCatU4Rplv9utmOxe0wzQ7bHEea5l/+mztn3e9k48td+4xP8td/4BM/QYQBqu3QgFbr37ZiWtTlLGWHo6h1ZnXWkjH/RPZT61GFKjN/AI7IuHdN2Da3+NJFquPqyLW1xhgYkJJigg7ChPFJWYrbVL5rnsdolsGOF7csBA7YtZk6ynabk0YqduFWKtU2wbUAWEV+LCRl6aILWVx+knWubYANo+j45IKC1Y7rqyWLULGlbrO2W8qJJ20Etp/qOGed5ORqhbsW0K3VK2r0irmx46di+s71jjZfseFvycsSMXE5U1DyS8kLa9q7wYsrS0fByLCd1KS9W9J3Q2t1tuaOtjNHnt4Ey0MTF7cEps+kj9QCCoQh1c+UtYYs2CWbTZL6J9qnnMFkhezLi4pv6zeRAAj2VSzHoCjjtf2J9qXW+9K8dyPl3zBKw4OILgSEnppX+6hj8vfkSBpRVqMYPuEMHGEw3AZOWVz0MoGEqq/4CBqDxsr/Ai10Frxgnhyk7XkT0vW3N1oMhdsW/s7yQwdBB/QpfB7UsTrA8tdXXauuhCVrWmFsgSNpuwo3hwfIifrkta7leb21x40UxRV52lTeUb9SeoenpzVWo+5qu6fdLum5/+8DS13/5pbN72zrDiF/Wwe7yGboqQm+zS3yjIDRoKcy9EIQ+IdisaSnU7Z2lpVD3CUwnnr8m1B33enOwo5BwxLTE4H8fhbovil2eEFBv+fMY4n74HDARLYW6I6a1d/g8B6f1glB3xHSK94ih2rTkwf+clhji8yMvJ0RBNV0S6j4peMvuD4OJca7+gLAQhH4vAXWslLVYX96Tl4iBAwY9qlztBHIYUvhKUVuB4JU91nRxTrOu7zh/f7TTousjhwkhjxHTGga7bUXKon9H/O6Rl9gmLO/39lKAXf9WBgdMRahb/rVLAJl3MvzWt0XlAGGevYrMwQh1AwAln+ev3U7OHsOHX+hMnaiPtr5YO7bVC6FhLOtPgORvX2nro/3Odb6kU/XxVBtA4UdrQt2XMF3CENMCQ3zoAtP6813f79oAnK2ERIEICuX5fftgXMZ0mRev51LzaH2hyMN78hLr/JG8ttylfv6ib0RLXmCyWbUZz2EK74ti4w7DSv+z8Cnft2xdEuoOvFwShV+8Y6WsRUyXfZflOxyGaC/a9poxAIX3yEv4QcRwSUA9HoKwrC/Ld9gUf7/0WVd4AU5i+kHwsubDff2XXywffE3XdE0/knQNKn1g6U/9D76JftNojzoi1RksDfeaYCDbf19p+A/BOWtiyZJ6Xu/clo5QG7Taa2tC3RZEHzydiw40pIOMmhr2BWrpYze81JBZS3FwVDG8k1C3xQD4z/zleWnvaCtYgDUxSm+34ILm2WPYrwh12ywseVkmDjwshbrPCzYPHMraCV40RSc/ajk8D0Ldsb50AVN9ub6WfNliCgK3oazJShb/ZZZOuk/RuZvCN4qYIg9L8XEsnHQOGCwmmZ2dqi0rkM4H4+aF2+1TDMjMoQb5EonF+8SXZW+zLZu0Wv5O1Z9FwBJL2t+qUHdJW20jYsUpf0ZeDs4DV//Ztntw+kgze32kRHp/4YkJo9FHIgKG3n53whiO9EnJZ/I4Jmd/Pwh1c5qc/ed+/MlhiNpCL3m7ON3QfkhdlXKyvsCXRV3t1hAty15sAU4J3GqKdqzz0Y5BoVj2MnkNmlh/CEsB6Ev1J37CWOdjOxm/QWwD1vovh2GBKfSZJu8Ng+dlMTAP71sEXOBFrSPGS21xbMcWvIAX7Zgta2tC3ZaXyFt4ncuzvvcY7DdYaTPeg5eozTWHsqZ5UispLwaTDfOu+RVRbHzJi2+Nt2u+Uagv58qWbrlvmLyujqxsQsDgy1pE8S59pE1RqHvglT4ypHO8RC1I0m9C+rwT4uNn0rK+eJ5iWYwTZGu+S6wf5zDFtroDyWpCh8GXtZgu8XLpQI/UE/7s/+Snz95zTdd0TT+8dA0qfWDpe7/xgOnYGm5e/GUpVhk7Fz/0WTqHeqpEc9bYOTZrM1Fu0BrsFNwEtZd5Cp2pDnzM/wDfca79XjGtzfZpLmbynd/yyPPl4MemROSersvm7SodD+ZdeDE2r006+nfOlB2mqYiSWuHGJS/eQbW4OiKwwcAAmLhtN1QM8VzzkM5hSAGDPrdhCmVthev4PJs6Sg6T7Ntvec7BXqs/MXMU7EtlLTqLy1UIyxQHqQ5T4OnLYIi2ewcDfViBEusOwX+H5UqhZfL3e1TyPKqZY3guKdg1z6ZNWNTJle92LsX7N+x/kcFOyJsAZ/eU3DueJeDHBkUDbMD4Wm/sxPiJF4daAwiii1S/AQM92daZ0SVrS6DJpt12QkqtRA39jC7lmsmuy7AtX54SHh9uaqDqr3y2w//+N3bV/u3HbnGaoR2MjMgyA36mEuu6t3Yp1nmPYVk/zgeeCeTqy6WVSLot2L3vAgY3AOO1ttkHyRYrGxYY3rMdW2n9F1k1GFTk1/cvZ957PjvlmbH/XPanp3PYTqRr7drK8x0vcO1a/dGZgXNsm+31tT428nI+NN6eZ8uateMEwhwwrX3mc75P+GPlT17tTy6Vr3MY9PnVN1rhOR5HH/vA+J1tnpeYfH1h8ErAY81nPd9H2jSH+2MbwKUN8WWp8UL1vnVMaz5p5GGNkZNlF0u/O6ZlfRT/bPFvBkPEFHlDwDCHK3n17mW7cLotPu8n5InxnX96f/aea/rBp/wH8L9r+sGkq6bSB5b+xv/5t5x9RHa9k+671m6izSS0/xeJZEmiBdT0QsDLY921o9HfLJ0ONp1+6/D193HVgs64uA7fPGsMmGxnuuY86QA0Q4RTidtxxfWespRX/2UMz4mNku1o5fkeg66oyeV6HzB9GV6o8iLPjLyoSKgOxnWOlM07LA8ZS150iGrzrGlTtXuo5bl8YIboKVgMsRzE7xdPBCOWgbgMGlYGSbDHg0s6P8+1FhjwmN6S7NcXupqIttpT4Eky6v/qA6LKi/ze1h/5l+V3WXPS4+sYtiz5AM8m2FZDCWA55trkOQ5ssMDgt6cNSNihc7OOs2aKtC5QcXoln1YXKbKpZU4DiFIvU3Bw2/BA7sk18KT3J7QjxzXPDAZz+VZUdM1MO1MHXYUXiykD9XS3tTy/KENEyY+UPd02N5s8UNEr27F+BUH1cSK86EQr6YuJsYEEmr7ZA1/MjGfbCXfbjG9+sscXDwMOY0JKkqfMgotI9HtmZqSUMXTy7wxGzsCc25AQYNztJjAD49RhHDv0HaPvJoxTwjh12A7Ztca73YiHN3eYxh43t0/4q9+5wX/13R1+87HDX/zJA/7r722hgtAdCJuijzSX+vyKDlqg6nezH1J12zJrG0YSgG9NiSt7Knhry9qlOh/ry3JloLen8ESrSwMsB5xa5yU0p2LC3rYY6jcwGCKm2L/EJif2kRFT7Pds2wyU1SgkK99qa1Rsi6G9b7lFdRm4XsGwbLrdM23qSzuppTW2a3FFmZ6VxSQY5oBRJ27a809j0na4TYDxKqaYIrSIYah9qNjP2W8nPYbJqlN9pObbYuDy/BR8FS1bUg+x5IXkYgww2O/iMfij6buKUV51CBi0T9ZQddvOJv/fJgnFVi1IzfNQ2+72PBukYqBiAPmwRfO/PIa4+jeu4om+0LjgRVcFtf8nw0WcyBlADpNtM6SsZVfWlqEXi3fdL+4XvHiMcfViXEUXfUqtC66sGQy9ubbudyPwtBYyez9e1tJ/9X/8F/jpP/7xxfuu6Zqu6fc+XYNKH1h6eutF7dZmL+zfo33qXtuBxpmSOHA495wWFDnheWLNJ40Yzg/CTz+XzmN6RwzruYvedBhUXHjectbN3xsHuHFGTq9bBzR+yEtcx3fEtAwMnE46qDuf4qCl/HlC0GDNEXu/N5yYDTfPOjlD/I7vO8W7K+9neDmXTn3z0zXp3Xg493t7XZ1QdV09T1zdbA3+2LK5tiLB3p/Mv/l7Yq2i4tDbZ0S7BRvb1gletR0m8u/37UNbuSd/X2Jm80yLSd+hnfFNAm42qHpHuwT8RAJuyg3bnvG1l0fsjwmP+wFEItYNAHMGiICeRENJeJD8WV5I/738t93M2G5mjKMMvTdDxmbISInb9jkAqUTVDk87HJ52eP0oA/2/9vkGf+3zDXZFzFW3Fm1M6yfisOfnBOs3LQPeuuiECiOniup603r21netL+/bpsR72TzxbLtI7Z5FRt4R07vnK7RbpkLV4E+xGUBcXHrpfZcwMHglcB3t9+sjbcoXrq+9ccn7iT73PXjxz1va78vbpWTrj3upli0bncUJTGfSl+v3l6GEc3Z9nkJhf/3UBF4tq6vPpGD7tPRZz/fz555vsr58fuRlxVzD+C7pnevkCXt57YR3VDGs+Pkn/uXUWOJSHX+XYnm4ny7fdE3XdE0/lHTd/vaBpW/80ZfOjrOyXfA21hp1Btfrax1unF2LhezSdoOYfrfCw5eevxYs+N2LhPq02N5wQSD6fZ9fMbC+bzkvFPf0B43di5oXsdO/JD4ef/++vERB20vL9FtA4P3eYVPkYRtmxy/pc1XrRP24KNQNLDRn3oV7my5hivXxkqA0h7/Epfsq1G3zF0WtY4p5Xn7H8w5rtC/xHFMXZnWB80LdEZP/raQ4E7ysT96OK2r2ceAeIM2z/4e+0zJUglVh4JgvCXUzMM0X6kcYOEyTrw/f2MWyFvIcvkmsT8t2kmve1F7tb2z/FL/bhWhCvHxpu+lFoe4Lz48C0DN8/YkY1urPJUzvK9S9aCejKm8w4/alKJ6sf1drTah70SaE68stgOcxfZl+fu15lhdrV82ZM2Xtwme+6BvFlUkdny9bMcVvVjHY4JHBUEWu7fPfs7787nk5HcABlt9IDwDR+/rAS1opSzFdeseyj7xU58/X+ku8xAM9FgLqSwiLdImXeP39fcrzPMdDFWJ9iZjW0vIdPp1bza4pjmmu6Zqu6UeXrkGlDyz9qX8/CnVTOKkJQQdk2X0Sk1sqEAWhF4Ka6ihxe6e146A2diNrIqRWNyE6Rt0C02XRQzcTS/7YZLluRjVYLsuNy3YXA0jOLo96VHC1wS4Pm4AhYvoyvNTtAoohCAnXLRMneVkZRJt/OgSMUQiyX2A4ORdWDbuCZY2XalZewsAb59MceD1gdoXhOQ8Ow5o47OoA0PDgUJFuu1nHRFiK9C558fWn/rr8ZQxD+0NwzSIvawK3q6dN6WvJz85mAp4wmdtpUR9aFuXBuqXIbvuzf8YtsHPdjCkpBk07LHVG4iozaycQmP2KyMhLFOqOeYqD0jdFqFvtuE0k/hlFrD+f4YS3AW8fp4TZNBtdYlc/qORZV4gxE45TOivUvT9okKcM2Hq/WTnXoJPY+3r6m9h//uO1LUgt00vh+81Zoe5atkxZ60O7NnBy/dNgOBTb15cY6K3lINYXa5+p85eEuiMmPbWylp/QBsRg+FobcKnOXxLqXtVcCm3zWQyhvkUMLe8Ng92C5zDWQad/z2Vegl8ReIgYIi+8gimKwq/yYspaFOp+X14ihtc4uPs3K/3LubQQUyauW3tdOltfLgWWPbhj4GUO4KPY+CovDgPc9Rns/LsoCr8mNh7L2kJAPfgJU8jzIWCKfsTAK/XFPj+8z7d6DZPyEv2EdQH187xE3yX6d5G3VZ81Zjzk+RIvtl3rVuuLtxeBqwUvHkMsazF1PeHP/o9/6jSIa/o9SfwH8L9r+sGka1DpA0vf/fV70KEN/hnLky026IJtXFIGtkhuYLBhb2/hFYQIMVBVZuSK3YVBaB+chAFp/boOGrg4RtbxN5gYvNT/sR0cA1vt5E9g6hWzwWAd9QTvAPYBU8QwUHLOXA+P4V15qSnywiu8cAqOjOelg+clAWcxbE5hsjyc4SU6g2uYNmE4NARMHRB48Q5lCs5ZH+wByQ1aB/KYRmR0lDwvdJ4Xh7nwYO3I6xAwxmCb1B/Pi+VpgQFdwJwWb4gOpatPID+4WcEQedIBmqY9ZrdK5RETRrSTlXQrlNoTMibM1T5gxpM5UY7hB2Rqq+s+IuO+KmFInbcBDSZ2AQ8G455GFxg6hDPmxrACa0+zy/MR2dlgcvYjZhwMpiOyOyUP5LXZehDeTk0/aGTgc2MDwOPT0FbxMPDqkGrgiRn47kiY6v2Mp0PnAlFSttoDN8NUTpSTPN3d7bHdHqstIt7t+jDMrsL95t4PExbi/fBaWBOyWy0hZe10fSEGfn564QLgPz89ww23FU+xvnQgV196kKsvPSdvh7a9R1oM6GwQhnGhvgCL+jOE+mL7IxmYsft9XJ3Ug7zIO3tMG6dSJu/zwvVxkNq0d9byTOxPICUsMcS2O05CJHheeqTQ30RMyfE2hPv7unHWPJM8RstLCrxUDOG7WkzWZvDqCaaeF9+HDgsMkRdv36J3J2bJPb5++ICJb3sXNgMbGwDhcpKZ8YW68BX74K/1oQ8dkBZlzeZZrnsM8eS/wfBUeVGbseDJlT0GtgYTg9Fz40H8O8/LEDANoU3YBJ42oawtJ0aWpxk6DMDC9sG7pV/g/T3GwMs673nydqwfm8CDtHsWk+clgbCh5G3HS6xPS15s8E15sZg2cawQeJHvHnlped6GsuYSA2kEvvUP3q5cvKZruqYfRbpqKn1g6W/+R79dnArGxDKoSUk6k5lZbCLs0GHijBmMjhJ2oDLIak73yBkzMzbokJGRWWZPtlDBWyqzWFTEY3UGh9CTOBM6DBxIZHUnZPRI1dEZS8cktlzfcVcdo5nl9+puTswYAYdpKpi2SPVo14SEDbi8n9GjQwfGxIzMjB1SwSQYtDOeywB6JumgRZC3YUwQTDLzlJDKwHMoGIhFlHHLxS6YNpzKb2SG6RQv28JLNryoQGmHwhNnMGPBi2Bi5PLdM4ljY3nZkL5PBseJqH73rmISe8udw3STU+VlYhHM7ajZRzC6VHhgEUJNVDCWctAh4aaUNQYaL5BZsm3gRcRVGZlFaF0wyfP0aOXIC5XyMiFjg1Scs1K2cilbJf+PaZJBAJX3lmcM1N6RsORlW8oSWDAlEKaykktF4LXsDgUTg0SwE01YVM/nG0o5mCsvrf70TPIOzgVT53kqAxl9nmJoZQ1IJSA4Fwy1vhgMWrYAxaTfWMraWMoIATiSrPboSd51KAGWLRK25a6xoO3R1XBOhgSA95gwUi7tiQ6HGYdyXefnGXO9f6KMtzxiV/BmAp54woAOPQhMwJEzem3LCLjnURzXcv8jT7W96SjhwHOpp8ChYBrA8q3AmDFjKHm6pR7HwlEPwhNNOELa0A0SRmQ58ru8c4cOEzEyzxhKuT9kwhcjcNsx9hk4MOE7E/AsMZ71QOaE+8cB282M/UyYOOGLA+O2F15HED6bGM+TiHwDVO/vu4zMCV2SNoCZcbubZYscEXImbDcjdtsRT08jHp+26LpcVg0xmAnb7UGCUMTgTPj/vvbb2WIwJh6q8ECjlD3yAulaX4iptM1SFp/lAc8x4Jenl/gsPeGBJrzEBn9k6vHttMdnaQ9OMnjSI+EB2/ZLmexMfRlK+EPr/Kb0J5lFTHqr/UtpF+cSCGv9DddTIieWQKWtLyq+vy3XJbDt64uW4QwVFid0kNWqMxhMQMfJrabRtlkxkMEwlD5Z+6MNulrrdftdKvZcymQCgai1CR1MnQ+8dNwwTOVei0mCFWLn8g4QYeCEmVoAeYOutP3KC1VMm4Ipl+sbw0MufbRtx2Zw/ZcZGWOph6m2U4zO8JIKBiplS1Yw6zfymDK4rL1U36UIfxNhw10tF9q/ZGjZSsVP4Nq/JMeLHjlAyMh4yUMJGMr7ZuLmF7AwJ2Uvlf4Ljafil7Rv0OxU+pdceN8UewSA4ldMpX8gImxZ2qJaX2r7xnViR+vPjlMNck6QYEjrQxmTYig8Okzlm6lY/ej8PeFtYIOJtX8rfghDDhhRDOWdRIQddxVTRxLMmAmYOGMo226Vl21pA9T32YWypn6E9qETPKYMOTSEih+hk1eneNkYXqbKC2FrfFYY30gxbUr9ab4OalnamrI2g0u7hdpuqQ+t9mR4mJExAbVvG0vZ0sCtbVOo5GkTeIltwhGQshQw3KDDyPINl7wIhsnwQgaTaPSRGysAbcIzgfDf/Ie/hZ/5lz/BNV3TNf3o0zWo9IGlw4O4SjIrIRoYB/gTnQ6lk5SgRBuc21Ok1NYhRCodmJ4IoStGehCOZba+L/ZYHH9xXnQbCJXVPW0er4OIvuqsruZJAzyaZx2QynVxETWAoEGEY3UA48xmm/2JdsPUZt/7cudDwaQYZkxAxdAGTOowKQa5v1vYQ8A0liGz2gwZMFleNDhgeVBemgiwYBiqTcUxBR5IZ+SUp+bw9UiFF6zwohhoFZPyMBoeNqDiqDd7KgMBW/bWMCgvEZO+X8sam/uVh8eyMiTy0gF12LWGSb9TKwuEhK58EV+2xsALG4y+bHlMduYx1W+X8ERzLXHqeFtedFuIYmoYEjokh2GDtmpJy2vEYINlqQR4porJY7ArIlqeGnc6ECk3tNVB5ZYDMg7IeMFS0+T+Kfy+rRgaKWNExk0JYGYwjphN3qVu64qfmRgPmDAgYYNOAkmYMbME/iRP/hS/PWZoYAxUViBxxh02IJI8ZoNpRMaIFkARu50Ipt9AT9Fz14EyeJtkxQwkGHJAxszqYBPeTISxvHJkwhczIVPGV3pG5oSnQ8LjJO/PINyb+zMIr7NoNP1kL8Hi/bF19UQSZLFC3QCjK6LcRMDt7RG3t0e8fXsDLvkiYi/c3TGOZha6wA+2/xf9jrHOa1nzZavDrrS4AxK+ke+qDlyPhG/kW3wlb/FfbL5XT/JLSJhrfyP1RVfMtfrS6oIGfFueWp5bW0w1CJNKO2bb3tnUH1tf1uqfXSmpeSC0IL5bG0FmME22DdDVWQ2jBiq0P9J32Dpt7dH067p1dDYYIi82z0Ow4woOPfnqUAIWinlfeBnKb1of6TFZXsjgSYt3zA6T7V+26KDrDGPZ0vsjD32wgSwDZWgQhGU1pcGkvKjvY7/JGi9qS9ve1R5B/bER4pNpf6RB6fWyRYi+0IDTvIjN2BtfqPJCjRet0utlrZ1s1tV82j5UeNcgSFf6zGxs2wZsDQ9qR19Iy6MG8Gw/ryfDTZgcBplIVN9He2oYXjymWNbG0otpnqeAQVexqv0+vAxobUjzOVtZE17Y1R9bthKA3qxki+2a+nOtnUPlxeZZelqufnbzjeS65WVjMCimPmBiZBwMpoRW5zfoMGgbs8LLAKorts/xspZ0THNN13RNP/p03f72gaWv/+pHzj4p3meWIpcxaE1Ru+SSCGIsZCm8Mw48YloKQvvr8feXMNW/s/2rx/S7FeqO6ZJ4chRCXd1+YVK1TmCIotYc3kkoS6PdO3w6j2hF7PLLCnWHfKhdMajwMM4L0KrzsfqOE2lRdgOGLfsnLstuzEN9cP3DCguv8XJJqPvkO/yrarokpBoxxPoZ6xOHv2QUbYViu6ALlppMhKUo/CUBzpjHeP+l+niq/jqxV4OJgYKplbX3FequuhwlndKV0hT1Vg4UefLpGER8h/pRW6DUprHAifnUxAxMU/huOWxhSkEzafLzUN+88deX7VwQ6uaYy5AnSwiAR9K1pOu8bFC2fpp0qd26XF/O6xFd6r9OPr+WrRWhbve8Zf25UF0u9sGX2uJLffBaGwDAaazYNoHcj5Zp7X2XhIHj9Uu8RNQnn2/aMda2beV5q5gu8HKpLd6HNiMKdS+0gS48v/HuHLZqxu18EdMaL5fEky8KdV+onxeFuhdtNxymBJznhdbegWCfL1sn/a+V1wFr38zfGf2EpHX8HevPWpOw7CN9en+hbp9OCunXlY30frxgrU769E5C3WFMc02/t4mhvvgfrP8ul7Rrepd0DSp9YOlf+u9/A8PW6hX5AV8Hr9WgMyO1x6HQGcXOjZbCjQuh7mB3wWbTMQHFqTD2MQhCRye8AxymFDDJv3lM0QmJDicF0cNtyHMfbKttBCxFD0d4DFMAfVJAvWbR61Gs8+I/0uJks0tC3eF6FFWMGA7sm+YoYt2HskaKyWY7YAIDbWnE0oGN3zmKj0de0gVeYtl6wb2zq/5KSSlgJLUNBgI5e+GsmbIls3oRg7dTuO4iIygi8GfKWhe0G6oGTcui6D6Zf+hD/bGCnExe7yiuagSWp0xeOlo+iopGgdv4DaN210JUFFIfdNDUIS3aBMl8K2sxCFsxxXFb+VOFumsbsQjz+PQELwr/BrNDFjVpnmZTVgAMCehMYUvklx5nyIpHO1D0QuCEx72sYdTH7g/eHgYv3P35/cZdF6Hu9lANAWmKQt13GBZBIGszlTpc/ulIGY9oulTSBrSUQPg0b2sWJbActX1iANGLwcbAVxS5fhdB6EUg2NiMEnBRAfWCQTHJzLzVyVmKjUdB6JiiaG8UvKU1oeHQjsVnWwwZLKSbOs/wgtC2nXMYVjDWd5o8xj43Hsows8fUR16CVl0cmPMp22GCE1NeaAMF+yQviumCmPIbGt1vF0LdvOQFjpdg137ft+eWl80pTLWPjPXlPIalX+HzHOuPDTysYjiBya4g3Fwoa5d4iT7qQgQ+fIMNvy8v3q+YK+hWtqzvU1czGUxxUiL6Lifri/4RhbpDnhcYFrysYAi8wLRrdbXfCQwLXiy8E5giLzF1PeFP/Q+/efaea7qma/rhpWtQ6QNL3/0HbzAcfEN9w15o+BadG6w/4951aHfcueDADSe36uWGkyzPLZ3GBiSddLEHkBs4bJCwM/YWyQmx7pBwazr1LRFujBOcmHCLhoFAuGWPIdp3AdMz7hyGW/aihzt4TMMCU5IgTcXQYZe79nvucGMG6oKxYdgQcBeciJuICUsM1r6xvDBwF3i5hV/Js8Tg7e0lTOiwMw7jTnkpKYFwa64rL3agEzFEXu4uYLoBzpa1DZIra1t0rqztuNj6PEq4MXlWTS9bP3bwGKwt1z2mnRUXZxiNoJYnLywchYRpYQ+u/nQLjNbJvuMBn/C25nFAwie8c0Grr/FNzePACT83v6jB3sSEb+ZnLkD3Fb5xdgwiEbzPGMWPo2BtAoK9FOvvwnUfPCBsqTNtQhRT9s9fiPczvKgoL1ca1WC14cHaN1qWTzjVqkmmaauYyjufEeEmGYwE3JksDAnYDi3wxAzsUhF5LukZbKfOeLabkKjdP8YT5hjImWos7f5+h8enTbXnmWBHAH/lNfAffqur1//5U9vCALTtCg2z/IsOTBMI38jPQ1l7Wctax4Q/Mr2swWFiaXttfmOojoEgjrwmxm/qC3eu/mzRV80VsbvFIHUgv/V7a8pWAsk2PVPWXJugdf5UmwAVsCVnezH+binO7+7vXOBX7Iax0/rk8tw5+xaDadeAm4BpGzGFPtXWHxVPtn6Cbomx3znyssBgeIjtXA3Am/4lYlrykhzGyNON6Y9Ua9G2AlUcudqely2nBYYhtM32+gsMrnyn0EcmEJ6ZiY3EwQbwzJQlYuC5nTRg6SOTwbRlj2HHHsMNJ9eHRvsWnQQoqh8g2kAWwzlMPZLD0IFw53hbYrozrYpg8GVrp/UFLc/9GQy7BabkMHQgbHO7nkDOT+4gvku1Odgg3HFymO4CL7dhgir6b7fKi7l+DlPkZQvCxvRHHcj5Ot0KLxZDD8Izh1l4sfXnFmTqi/DgMIX6chvK2m3AFHm5QcIGp9N2Ynz77745c8c1XdM1/TDTVVPpA0t/9z/+HfREuGMR1jtAhCCfocPRiOm9wIA9z0WUM+E5DzhgFuFEJDwH4cCiPSJOeMbIskritgwiJiYcy4DklgkjMw4kO8lvmNAz4UAiDLnhHj1n7GnGwKKHkjLhQDN2OdVTIg7IuM2pauwcy2xMj4bhCBHofMYdDmgiiy8iBh5w4IwZIuTYcxJMyLhBj1wwHZGxLY7TkYEjZN7sFqliktVQHTpOONKMgWUA2WfCnmZsWQSKuyyYb3ITiD6AcVNOsHsOxqHwopgOhhf97vMKJh1oHDgjFwH1AYxjEfq+pYRcBEEP0CBPwpEZR8rIINxQh55Fc6YDoefyXWjGhiXPnfLCqQ6Gjpxxy8qLYGDIoPJZydMIRk8Jz7npLiiGPWbkwsuzgomLfceEI4vg7BaplDVZhSEaCoyxlDXlRTGpM6hlrWfRauk441B42TleuorpwBlPaYYV3VUebgvmjIyEhLtqy/UbDBhZMFTxcbbi4wkTMjJnbEtZm5nLEbpF+Bu5aBJZ8cuMDgk9yUqyI6S+aCDqiFx4l/oyIeM5D7jjHj0T3tJYBlc9foxvcI9mf4Pv8ApHDJxwiwG/PH+M76Qn0TTCgJ/NL/E57Yvgdocf51u85RGHomGka1RmiAh2zwmZmnaLYPKCnASZndQhdUITK1f9JhUft6K8XR2gqpixCL4mEj0M1WRRkd1U/qfbjlQkfle+s5bVJnDLVcMJaEdEW/F/HfCqqOhLltAEcxHupVyCZzmIG6vgrQbWRDj7I0oYCEhJ2hlmYCDgBUQf6dmQ0SWAhhnznHAYEzoi3HXAMYuIbZcIL1nup46x6wHuJhxHuZ/R4TiL8HSXMjYD43js0HUZXZcxzR2+ePUMh8MBd7cHzLMGU+Q7/L2nGb/5ZsA/e0z4N78642+80qCSCu37QJyKydpVBncY8HP5I3xOT+hZ7F8qZa1jWc30a9PH+J30hD1Noo2Ftv5CNIAkR0dkPKYZN9wVDbdSX0jLmgit95CB34gmXK/2Bp0pa1K2rWCtHh4hvLV2K5k6LW3CgCPPSFwGaKVNIPjDLUjbIHCt01TKoupvEZrArQrgd9RjKrYKdXfggkEFbaVsbrmrAZAJXL8bmXZMDscgHLlo51HCXcEgAdEOz5Bw4KmKXO/K79VOULFyeyBB0x7aGvFkooQtowp3q9bgyBlHzFVHrysHRSgPtg1QTKPWeSOYnsHQU++OXHTnDC8dm4MgONf6eFMxeZ5GxYC+lgMNXE0lj9IOiW6QliVAD6bIVTNI22bhpSuHKjA+zoMElxk4oAiWk2A8QPuLhOfci9Zl8SvUH+urTdgjNxuMQzlsQsqi6J8dIKvL7rgTv4CkP7ljiC8DEU8eOOHIGQfK2LG0dOrr3LDoHvXFd9kiFd0t6fcntFO96kEF1FX/rSsB/xfcuzw/K/VlYFRMB2R0wMJnTUSlbIpvA5LAlPh/uQb7joYHFH/xiIzbUtb6aoumVV+eP5e2q8viR0xqF160TqfCS1fEypWXodqCYaN24WUyvtGRRYsoEQnPnHEsvDxjybPy0ismkgNrSDGQ+F9S1rj4AalMSMkhKROAHSV0WbZa1zrLcpBGx1R4E0yDKVuKwfHCtmxx5UV5GIPPeix13mLaosMGXMvejbZrpX7datsNEWifSx/QA9iUNu3v/Ee/jZ/+Vz7FNV3TNf3o0zWo9IGl8VGcrY4IN+XfVNxyVwZ9Kp58ix4q1C2DcyP2Wu7XtS8JMtOzRZOi3EBWjjyUAckGskLpHrNscyj2iAwmVGdGk9q6XLsvQY5tsTvIyhjdgNEVRzwhY48WUJjBGGmJIZX7qayKqph4DZMksQlfVAFCwfBUMKitM/OKoa8YZNbcYrhlqrMxHQi35e9P+t3LYONobDk5CCd5saKmWxB2ipnkXQMzXpnrW054Q3PjCakuPVZMS15S4wVd5UkxWNHRW0iAb18c8VsdbBRebiMvZsZY85i4iVkrD1Svi5PxqgYwBNMjMkA6y91VXnQFk+ZZMW0DJitOWQcMpWxJfSFnZ9iTXdpaAt0+Zbe8DKH+pFI+3tBYrw/o8IQRAFUxS13mrqKjOuxvovCNhw5t1cUWHbbc4YAZE8kJUh9zyXOxv8o3dXZ0gw7fyM+gJ1T1SPhxvq33JxBeYgMupbetUVFh5yY0fKAmDmsFOdsX0O+EMkiTDTxR6F5Fdm2QQgJRXAJ88t2jILrWYKr/AwDNkxe69wLqPkhiRUS9+GsU4W2pMxxZ22NqK6M6Am4ImLMEp7qyYum2VIhEQOrlVMfjnJAI2HVyktExy/VbAjYlE0TAdiNBo/29yAXPLPpJsuKIkHOHnDWXhMenHR6fdnh2+4RkwKgY+N960+FvvfGrdzQo6FO0JW3R4Sf5WV11uEWHb+ZnddvJBh1+Oj9beX57qvzHBaOKwYrQPdDEX3Nti7u6Qs6WReXh1KEKrWxJm3csUvIqLGzr/M7UeW0TbNmLwt26qupgBG17JDyVAwYU00geg9afKAhtxZQFg5Q13eKnmIB2ittNCZpkaNDFrzK5Meu20ioGXw4U0yNGJ558QDYive03Lai3xNQwpNqrNWFhG6ztMFbhYcGkgeA1XqJAtD0ARL+7BLOmirFDwqHaks+Z5H6LyZYtDeS1ttpj8GUPeMRcT7HrWU+MbH6DJulD+yrYrKuBtP4Iby34qn1kh4S3pd2TlSyEA3HtU+22Y+0vlBf1A/TgEsHYBhFa9iTA1vrQvQnE9sY3kmBWO2Je/Tfb50oACwChTAJIgOF16ed3IAxgPFZMMimkp97tgOKnUsEkEzSKqbUBikkONXmofZ74nI+YHQ+TTpxc4EV9nU3gRU5wa21ED66Hv+wgK/KOhRfFoGVrB2CXWxugvGgboP6b5mooOO8xY4b6OuVwCIOhaVaJXVePhrKlttbgVHhIYNybscQGRWy82NsTvGjZbBNNDUNXeWqHzcQ0PkWFrGu6pmv6UaXr9rcPLP3kH//I2Uth45LMkvHqmeglK84JwGpmAO8i1O3T+rCjpaUY5fnfXxK1rn9n+1ePaSkS6lOMxl6qSPH3EUPcOb58Pq0/KPLC7XlnhbppKWr9vkLdl8THL/EeyxrgMTReuLzvPC8SpDj/zpguCUPufsBC3VagV68vhLQDx3ThnWeKBIClRsz7ipdT+HdtE04JQBOwrjNl0nmlhGUel++KZS3eH+9WAnRA4+uT8sTwtiYNYpzL01Ko+3zpi2XticN3Dy8cZ/+8LohskMk5AIyZrGSTrHIyRMh2uPNlaw7C3T+5OV92YlmO2lnvKszq6wi7+y8Kda8XS/O883mOvLzvoQyny15730Ko29UXz8Na/bn0zoX2XLh+SWz8XZ9/iqeIafUh7/iOU3bUzrrUTsYUhYajULfdmnryeRcwXcLwFNqM9+XlXeqPTVGoG8Fee9/Sdzlfhy/5Fe/6fMXQVN2UFzj/La09ZPGO83mO54fFlvt9he0v8bL0WeEwrdYfn4GLvMTrv9vDZZa2f1MUUL+IAUte4u3vcq7b18OY5pp+75OeafIH6b9r+sGka1DpA0u/8u99Hb0T6l6KWkddkDKZXRN5o3UE5XdRYDMGSIZTnZv+zHRMQOlYjD3GG0JaE+peCELD2CuRgUsddBS3jKdJxT9PnWiiaQxvGeAHR0lty8sCEzlMS8fJvzPO/ERxyijYueSFnX0IGGLj0ofBUSxr+m9LXiroBaZI3ebL8GLydAwgP+bBaTjJlsD21gS/iotATocKVAJTJqNW18CVNdaZei/SG7V9YuBq4cAGoe57jM55k3UKzSZ4h1FmUe112ZJmV1l52/9eZ/ptikGcS6e6RAd4UR9DWYyDpfh01h9RmzG2OjzaINi3ZlNWHC8n0j2N7uWbC/Vnj9nZ3y/hBk3kfgwcZ3IB/b5jdCnXOxOhzmcLXMJkCgcRsHPC24T90W9vSyFQNU6pPEv+9Y/feF5jkDQKdR+DUHcGzk5K5FIfTg7aQhtAILzkwdmxzkcx/0UQqWyV0n+OwvZLUetFls4OnhgFs2aLJA+2PtnyLvZ5UetlO+ZbgShwG79nDJisDsxtfQp0RAzyDv++9SPtT2OIr4/C3BHT+/KyBi8KqDPghLqfs1+FdacrakubUCcdysOXh13EySCP6QsaXc6GkNFLQaA1UWtftpa8DMGuCC/Vl8qDz1Dsf7aXMIR2kFcwWWFunUyyq1N19ZJiiGUtilqfrC/FPl7wjXpzr+QB78XLTB7TGi9R5Pp9eYn+XUwXy9YaLybN4V9b29146YGAwfMSMUQx8UtlLaZuIPzaf/CNs/dc0zVd0w8vXYNKH1j67O+8RjJC3Vy0fGxb7k5SYhmo0xm7iiaW/mMLcgUrwc9WyVaPlupAvfy+RzndozpqPo8bQt0+hvLaKOYXTxwZLmDYLIRTPYYBWGIymAUDHAaLSZfL2/zYPA8ANkTQTHP4BoAXJX0vXkqKvFDARAFTxNArD+YbbVCzjC2ZoA7WeYmi17GsbYEFBsvLLuS5v4ChgxfyVl0CtTdIC0zW3oHwK3xbv+Mtd/il+Xm1N9zhD88vaqCpY8IvBqHhX5xfusHHL0/P8Cy3GjFo2Wuxs4VtZxVXhbzN9Y94i68aIe6OqB7NDogD/YZaoGkG4w2ObfUBMe5lUyoAcfTeYnSzrW/pWFehMEQLyg7WTfYLDz6IMyC2EUvbBu86LIW67aBSBktemNudqMV+EMrgRZvgAllsgqCWl4jJ/MutisybYKgta/V0nJKiUPeLBOz6dppaIsZN3zz9vmNsN16oe9NnkKlA246d/fz2gJRyvX/bZfQmELXZTK6wJWIkate7xDYWh98aG8fmU6GtImibC4FyWqJtE7iUZfOY5XWfUuAlBhzHonFi77c8xBNN7dYqYCm2vAm8yG98WYuntW0WZc/nObbdVghcB5uLSQSDSSZKQp13the+34T6Egd4AKEjj8EFaUJ9WasfcXKobTIymMJ1f+IVFjx5DEtxcnudIW2bx/DuvBAv+5+evf0L8zMRKy72z8zP8CIPNU8/le/wcd5U+xvzHb6St9X+er7BT8y7av8h3uFnzfUXZtvdep6DzcX34fYNbR9MgBOcRrEtL/HE3yHwEg8gGNj3N1vEAz/ixCGFPHlfJgVMKWASv8H7ETuLgf0EFds84wSGUF82ejBLsXdEDsNa8G2g0zxFDAlrtvko5btZXuKkW8QQ7c078BIx2LKWAi9dwNTB+9lS1jwvtqxJ2YLDEE8xXpa1tFLWcJKXmLqR8e2/+frMHdd0Tdf0w0xXTaUPLP3D/8u3kAjYsMw8jNA90Sjikyj6FCiCtaphI6KiGSI8nNRmLhoKjLk8cwfpYDIIM0S5ZAAjQa7PpcNWwVpAT1VRIeKmazIxY8NUHdaJWTpPAnYsq5gymnM1QwT99ASSqYjoEnkMFpMKQgsGuX8LKloZVPbWS8rQdwqGjgVDBrChVAQGuTrIiqmHarvI/dvi5G8hAopbEu0UEYSWd4j2A4rwqWoKpHUMgRdmruLJwgvjpiPkzMhEGLNg6EveZRbKY6LAiwYvVPxVhBsJBBEJ3hVetiX/8wletkj1O3eUsDMYZL+9PM/yMrEENzZEyMyYQZgA9CQrShQDa9kqmDNIxI9ZtcOKflHBpGKUZHiXffyCQYSSe/wpvsNv4ghkEeP8tekjfCvtkSHCwr8yf4zP0lMVef+VSewjZtyix6/MH+Ez2uORRjzHgD82v8C3+YDP6FB0XzKYSf6EOJBtu598V4LO2KqDSUW0WrU7RMT6OQ94jg02nPCajmACRmLcYxKdKZowUsYrHLFjEaqeifGaj0XfISET8IZHbFH0uxLwho/lpDqZeVV7gwSGbP/qShlhEiFxNkLdA4QrFbnWIE0uvEiN4apR07uyp6pT2gZRnRnNRZy4I1E3mVkHtMKtPJ+QkDCUOj7Vdk7uZzShbt2e1Ct2lu8Koio+ru0gDIbnvKn1YwZjJjZlq4j5mzZhy11t1zIzPkmEPole0pjFq+4TcDcwjjNwu5nQdcAuzZimhOMowuQ3m4xxJkyZiv4S45gZXZexHRib/ojj2OEwdiDq8Ww74TB1GGfgdpuRMwBicDkFrksAcUbOhL5rASlAhLptYvcn+wAQlqcCtqCTBKvUbnoePhRBpc1YCnWLfUTGUxKhXFmloTpZqZWL8jytLxpUyqW+qDgzFd4GbsGLzE3U3Za1RPIO3TKl7dpUPlQta6bsbUrZI1fW2sqsruR5raxp22zrj8dEUCH7jCJUXL6kBoPbyg+udYICBhW2B+BsKhio/hbGhut/6kpHKpjKb5SX2vaX/FBp27VNEI20JuSdyjdpGkURg7b1mmePSes4BV660CZ0nBoGlpWGt+jwx6YX+Fba43Ma8QwDfjG/wHf5gO/RHi95gxfzgM/zEd9JT/ikBPRf8gbfoT2+mnfYQQ6j+Hba42u8wUfo8SJ3+C064pM81ImRqfzXmbI0l3ZN7VSuq7/WVwF16UN7SKAtFV8sQ1Ywqq90LCVB/IrSz5OcEia+Ddc2XHnaFF66cvDDFlTzLBo9MH0sqhaR+gXST4vvM7KW9Yapg/d1BqbCm+oayQEE+vwjn8CAdohCV2r4sr6gYJL8qK+zIzldMzFanhWD4YWgqzGbL3OKF8U0Fx85EVXfKPqsY6mflneihA1nzGgYksG0CZh00lB5kbLQeDmiBabUZz3HS28xQf18krIGCTp1RK5skV5n1LHE9iwv0pZLOya8kMGkGlpaP3S6QyemEwF//z/+HfzUn/sKrumarulHn65BpQ8sTQcZFCRqDfWRdWZGnP1jcQC1wZeG3K/gUFv/RVcaDJCOxDb8E+ssSbGLkyy2ntrVRET1merc6OyKzqxooU1UOmVunbQMO/WUCIKeRjZWp/Y0BsWssztNQLfN1HflvyfW2V/J5x7ZYKC6JFwxWVHDDdqssdjwmEi+GbjdT4aX4R14Scbu0WaVUyrOVAIes8WA+nzFpEuPL/GiYsv1uxVexhock/+sOGWqDtspXtogSG0d6CVqZU3fJw4i4wm2rBGeyiBT7SUvFoMpW4Dj5Q4dfolv8MjAE0Rk8mfyHUYwjiQn7X2ziFozJBj3jXxXUfVI+DrfoiwaQQfC1/MOP4YN/km3h8pqJiSAZseDnjqk3zlXXuB4URFr/U479Nhxj7cYcSQJHD3SXLV/ZmI80FSfl4nxiKkIyXdgki1adYVSsTN5+8CzHN0NcQR1BZO0A8qzx0CFJx1EwmEg5PLWKAys11O4n0tZamWrlSXlVm0pt7m2EXGlQLfy+wQ5yUjFx7vF83V1ScNEBUMTR255XsNUy14CtomRswRJEwG7nrEt6q9EwDAIa+PcgQjY9IwuM6ZZxLe3HbAZ2v3bzYy+yzgeezlpbMi4KderEHdizFMJLBGjS1yFvDVNZtY5pjOXTGo8EOC+s/1z+avWp/jfl9+RcpCEpy9RX1rZ8vZYSmMrmy1Qqn0kY70tjiLxdlWh1nEJ7LQ8V4FoI3Q/u7YY7vfdAkO3qB+6jrDZLdDTQ09cbHbEQC7PSwzAEtPBYWptgHyDtulR2znfJqxh8rwc61SI8uAxKO+W01M86KSPxaCryToQvpFv8JPY4Z5kYPw1vsGP806C0yB8lXf46ryrbcCnvMOnvCuHSRA+4Q0+mTd4Vgr9J+jxCfd4gg8wtICD9PtjaaeaH9B43YSyoMLZgNR5t/KG2pb6Y71fTzvj2qdKwFZSO5AgljXLW1uF3lHxI4o/pmWVS3BIgiytD1YMKdiab+23dbWzYkACnrL1C1D9CC1bOhla/bfy5dqhCt5/cxgImHI7ZESE7rlO9G1ALrC0xktvbPXxLIbM/iQzoAWWdJL2WAJLvbmnYjKrwDxPjZPKk+HFYjgi17K2xkv0WWvZKn+vZU95CWWrA2MPW9/WedGvZ9sA9ddSeb4tZzFN+6tQ9w87XdLEvKYPN123v31g6Sf/xMfOjlHFprDhhwinBDl55V6d6dS03M7g0/owoqX3FerW50dRxIhB7YiBV94ZhdzeV9Q6DrgWoofhhlNC4Jd4UXtVqNv8VDtqm363Qt1RVDH+/pSI9rvykiErBU6lNfHxSw3cUlAzXI+8B1CnynLEcIoX2cYSnhntE3k/lQ4UBKODIMpJIfuSogjvpfq01gZYcy1QcCkAEX9zSdBzeb9PS0wE8LuXPQAXxZL34bvH7xzTHB74EApjFOqeTgh1a5VIBOgKIED0kGz5TYm9UDeAeT6fx5z99W9szpfGS0Ldlw5AiIK2l+rPBtS04AAzRDmdLrbFwY6rr6J9+j0Ri/xZBaFDfbIpCt2/67s0XdIsixgufzOPIYqNxzyUongyvUubsCwr3l7qTsV3nE+xTYi8HOu60fa8S23A8h0+xT7ych98vl3j+qdiKLbVLSsrl9eeHx+69s2WddSny0Ld58vaknf9d7mi30whdfWq6Z8u8BLLzvvz8uUwxOcrD1Rztc7LpfpTui+XIi/x+tI3ej9Mp3iPZcu1az9gXtbS1//kx5dvuqZruqYfSroGlT6w9Mv/7teRjFB3D++86UysnZnUGUZNU/BCVORQO4h9udQcm3cbpGqa4Z3VKP56gA8uUMCgs9OaZ52ZtRicTU0QUN9zCHa9fq4Dhe0kfZ4jpuPC9gGMYYFpycu8wovFFDHsy+Oqc0b++lqwwNoRw7iKwZYlXuWlXfeY9B1rvGg6aJ7Ke3S7idopYNZ0aoA31bVFiiFi9LxswrNTwPQ+vOj9u1IjGG3blsfg7TVebHpT1/5pnpMXeAYtvo8X6uaFMPfZskcteKAY2NhreZ7C9TjAI/jvPAeedFCrKfIQMTH5spVAyHS+7E0mT2u8xADIGxqdrcG8OBDXdAyYPp99WWP2geBxSphMEKjrZGueBp+IgImp2syEx6cWniYCht4ODagKcStDLehU8pzJ2X/+ubdjim3CYSHUHQMR/tS8TMBjOba9/QaOF3saFIFwl9sw0+bsVNmaQ9kbw3BpDLzoylBNCb5s2ndosvWDS/041SZQKe0WU/s+5+v8aUxL0XdrR7H+NQyXMK31qe197UprEzyGd+XlFKYeXrg+YryEKfIS7UzAvSkbBAKT5ymHPE8B0zFc3/vsIIX60AcMsQ+V72Trky9LGWUrE1le0MTHaVnWLvEQMaz5RpaH2Ed2izrvMXHEREtMR25B9lSbAlN/Ai8Rw7vy0gJXfBZD9DkjpnjYReSFqK2mVwz++b6sCYZYPyKmeH+xC6i1snWOlzUMEzxvFlMicu0XgZCphYkItGi3lrx4ex8wxEQD4Y/++1eh7mu6pt8v6RpU+sDSb/43X+DVU66Dl5EYb6iJ7M5gvDaivLnYtkN7g7GexMJgPCDXLQeABJUOprN5AGNvrr+lGQ+Yq/1IMx6ozUkckPGW2mBkJnY2ALyFCSwQ443pECcArzE5DG+i0DAmh+kecxF8lTw9oW0HA4DHgOkt5rq1SjE80mTun3FvMI1g3BsMmYC3xklmAG+5DSqPBXPDtOTlVeDlPmB6QPaY2DtnbznXLQoAcE8znhwvE+4NpiMyHgyGiYB78hjuDS8jAW8NLyOAN2a7VSxrDMarE7zo8x8BHF3Z8ry8gcfwQDMejb0vZa1iCmUrQ8qrtd9yczYPob6c4sWXtdk5Tw9g5xC+pdENZp5owmjyfKAZR2tjwt7YIzKezJzelnoXADwg42h4Opb77QDVCnODZKBvhbofzXVpA6JQd3aDzgNmh+kBIw4mzxOywzgiO4xPmPBg8pjBLkDB5IMyY8Fg79+b3zMYY8D0tsiL6/UnTNXWPFpMDzS6+nSA56Xj5NrBB5pcgOSIGY8mTyDgYHjZgPD6mNpKIwa+dyQXaHrc96KBBGCagc+funrCW2bgO0fgWCEwXt9vcRxL0JKBOax26jsV/tYAGJwtp8E1+5c+PuB/9of21Y4TAlGoe3CbEdtWmlYWZ/xzelPr+IyMf9S9kZPxStKtWpo1q9HDYLxKR19/MIX6MruyNyJjb3jJBOxN/WGSOmPrjy17ExhPsG0G4wFTqC+Tqy97Y2uebBuhZc+2veN7YJrAOAZMFsMEdvZaG/AY7IeA4WmBIYfrs6tPj6Fde4THtA/151i+s9ozMQ4WE3yQ8oAZB9N2jyXPpzDlgOESL2CZxHBtNWZXx99idm3xY+h/jsTOT5jhVyTuCXg0bfUjMt6EQxXeGnsq1+2W5TfG19E+eDaTLW9hJl/AeB14eEOT8wMeQtnaF25b/ZF8erulB8rOL9gvMDBeU+tP5nLd8nJveQBwn1uAnZnxOvSpEdNbTA7DY+DpAM/LVHhR3+iB2PkBT+T9tyPy4rCLt4EX679FXsQn5VUMar/B5PsTzI6np4DpCClLDSPwYHyjR/L+2xOxK2tT4GmG93WYGG9DnY+YlryMAdO44OXgeMlurDABeApBUk2ZGa+PGf/8v/7+4to1XdM1/WjSVVPpA0t/9//2LcwA3rAIaj+CkQl4jRk7TpgoIyfgNY/YQk6lygn4gkfcoEPPBC7Xd0jYcAIn4G3O2BJjyyKm+RaMY3nHU+mmjpixQ8IjZcwksxw3nLBHxkSMCSN2nHAksWfIdQZKHifsOBUBasIrALsiADgT8JpF2O8IxTBhBxE/tZg6Jnd9KJje8IwtcjkSnvCWMzaQ/eYzxCk4MmML4LEIqI5g7JjwVDRrRozYcYcDKaYjbrjDTCWPmLArAr0zAa844waq70B4bXiZDS+j4WUHOaEjJ+AVjyKuHDBtyrH2bzhjC8YWCRsQ3mTGlkQg/IEkWnIEYwfBkIGCSTQxBEPGDXdVl2cu1wHCZPIoWgOE14WXPViuF14OmAVz4XEmdpiIAU7Aq1VeGNsiSvoWwJa5alAoL7vCC1deEp5I3nlkwXCAlD0ta1Mp/1rWBiSMBLwpz5MZScKrwstD4OVIM+bEeMXCM0Pri4heD7W+rPEiWiOPJEeY9xDBXV25IeKYqRzLXkSEkTAiy2wuZ2whQtuZgJlHbJBwwztkEuc7AdgXZ/eAGT30mzAeeMQGneh2EFfh7S0SEiU88VRExBlMKPfL/GYmVGHvLTokIux5Ro9cyjZj5gkTpYpJgzDboo8igSgRIFXXVTHuMWOkjJkzdlXtRMqUCvoyAQcWTHuaHIYEEQt/4qkK/qLeT/Ubqhi5Huf8WDAPSOgo4cgZXXHUj5Rx5Fyuy6zrXIJnG3TYUYeRGJln9JzwSA3DFp3gJcZc3nmDDjMBTxDB+I/Q4ZgJnx8SbnvGfgZGJnx2AJ71jGc9kHPC28cNtsOM/UTInPD9J8LNwGBiTEj4bGQ864BnidElwne/uMHdzYTdZkRmG1RibAYRJdYwT1tRIv+fUgZRCxTvdkf8Oy8m/Oxdxl/6bMBf/6LDaLafuVPPsC7UDbQZ+geacEgZ/4hf4VPeYeCEY8r4u/QKP5Z3+GreYoe+6GVxCVolSCiMMSLjLU1Sf0pZ01UII+S76/BVeZrB0r+U8k+QQaDWnwHSXu9D2dL6cCDRFdOyMoORiXHvnodit7L3wGMrW0h4wlSCblyfr6LhI2WMnDEh1fI6FkwbdJjAmEzZ01UGM8Yq0i1lTwR9tY4/8Sz1K7QBR4j9tpTNHDCp+P6DwdRRwlOpT6nWn7kcyiHfeCqYBhAmyphM/YmYRNx+xsS5vlMwjPXkN9EcmmsbMYPLd+xK/9LyrGL5iknbDOUxYhqQkKir13elXdO2ugdwTIxjnrGljA0TjinjmCVov+NOeIP8t2PxU55SxsjiJwwg7EGYMrAj8Y2OJAPzLSQgcyTGFxhxwx32xY94VfyKXL6rXu9AxQ+Q/mXLEsR9XfpIWR2M2icTGJPxdQYmjIkx5glbStgyYSQJwB8hhwnMxHg0fSqB8ETAyBm70l5MkMDVDsA9ic6g9pHSDgoG9SMEg/SZpL5Q9e+EF8kj1VMyX2c50ISB4lfMcjgICFNivOEJ2+I3NEziz4kfIxNUWxa9wCdkTMWviLw8gnEovOxAeEQumMR/eyqYlIdMwsvrwlOqmJpvpLzsWAL1ufpGIiI/G1+nZ2BKjLcF04YF432ecKRU/CeUCV3LCxcetK40Xh4o40CMSTFgLmVtwg0njAWDljUAhSe53iOBi8+6g+qWoZa1jIw5NV4So9hj8eeS8BR4uWfJx5bl+Y/IGAsvoospYwUV7QYkgHYo+P7O//Vb+IX/1o/hmn44SaeZ/qClP4iYfhTpGlT6wNJ0bKs+nrhsVaPibBWHCEAR4c1VlBckMyMg1AHYHrLS5RY9kGT254AZH7NIex4hjT+X36sDqRN1IzFGajMbU5kNqnktsz2bckLXTNIx3mQRSs6QGTL9RS7OQF1CWxyHmTymOu6pGIAturo16YgZz9EDVDCU0ztQ8BxR9n6TBGBGMqukiHFPk8P0ltpgQTDM2OWEDeSUrQcwtowqlqhi0Kd4eTK8cOFFhDlTxXRExh33DRPP+LRIrh7LDGyJYwkGcMDUZgqFp6kIsFLlaVscDeUFOWGnGKAnzTRe6ta1gmkKmJQXtQ8QngWDDEBelkHxAW0rnPJy0Dk2khneI821bCgGW7buaa6ntGhZe8aovDyCy+lwaLzY7065LaMnWa2W4XnZUxlYG16eGV6UV5AEkUbzHSbkNo9eAl9tLQCKsz8VGiWQ8wQvrC2/Kd8VKMKvLc+6okjtPWYwM25LWVKRYs3j0fwe5f4jZ7zExmOoeRbHXUZ0kMAMMl6wSOQrJk0a/HL1qTjuepLbEXrKnDiho76jlLUnzEVwv6vXM3Ot4zGPEuxqPI2QQNBdwSQrZdr9OhhWsVcZ4LeyNRMwU3YY/HXhbeAk25BIVjTM5RUzE96OhLF89hmE1xMBlLHtGcyE/bHH06ihNsKjuZ9BeDsDh5zw9V42jz08DXh86rHdmO1yJT/J2BlwWk52a538KS/5xeczfvH5jP/l39/h7719HzfCB53satTv0BPq6V3E+Fb3hAea8EvzSwCqt9FcPw2A62OnMhhp9Ue+u/5CbRWelvoy1VP4MjH2mJFYAjm5lvdWn47w7Va8rgFhDWoekMugrpWtrPUL2h96DEdjj9Y2GLTOq73ldqLdARN26B2mvMDg8xzbgMpPua681DbAtBFTGWZoYGkN0/gOmCIvN9wwHDDLMfAVo10VJRNWiiEXDBbzHjNEiDrVb5C4HKFe7MxAb3iqWj2kK1tKnouvs9etPamsZqNc+8gjJNB0x33tX+6J8SJ35bAS4J7FJwJJm6GBG6kPsnLYYnokv030ofRfm4JJgyTPuAejyRBo2sNo1CimBYZ2v/ShUw1UqV/wrARNJgLui+/SQSbeHlAwFQwP1LjWPM/BlgMyUvMLmCQgR7LKaeaM55AJm735ZtDrri3P2JPlSXhR0XXFdFeCWeq/vcxylILyMmnZLRiPxAbTbHgSf08OI6HKU8+t/3mijJkJt2XSScXZNc97mG1lBYP6GWpXXpKU1SOyTPqu8DIWH65nbSNk4s3zMlffZQ5+t2LQ00pz4XHDjF0NyDE6ZuyK4MDePL/yYjDskfGk74i8lPon9SXykhyGtTS1pbnXdE3X9CNO1+1vH1j6qT/1ibPjzLLOJKuzr1fj3uv29zXtBW/HQnZJ9DCmhZhyUMuMv19i8Lb+3W7bOouJ/HVg+d0uix6Gb0Txm/m0FOo+z0vEsCrUbWzCUiD6fUVCF6K89H68R0z6d7v1LGKK74z5je84dWJIe59PU/iX+L5ToteXeDmFSYS62zMJhMTny9Kl+vJIXt5yCEz07O1YdqPOQb3K6/frdqRTSTD5jMfvHFPkMbYp8dexPsY2I+qGdGW1nz6IAafbEMsaAQteYrJbEIHld49pDLmsg9SS4q8PQVR7qBVYMYXnc9BoAtyBA4z3F+o+Hgdn//wzn+fI0yWh7hvuW2Zg6438+UiqerZef7a6+q8kAl0UU77Ujs2IPLxfW9/eo3lm2DZgVajbdzfvLdR9SQ/pVB/5ru+IvHwZoW5yf1++7xIv0U44344t++Boe0yzQQW8m1D3JWaW9eF9faML9XOBwdv699bu4WxZW3+HTxFTvH7Kd7Hv9L9f9x9P1ZeI4V2Eui/5qJGXhR/BsQ3w6aJvtNanMs7ychYTLS9f6iNP+V+n0sJnXbQB/r5OM1X1LVcyceEdX0ao+2f+9CeXb7qma7qmH0q6BpU+sPQr/92fQLfzQt22YdfjuZ3YHtYFORlcZyKtHUUQ40BbT7c6HajyzmoU6DwyL5y97DDAYVgThHY2hU6f2oDP7je/hOEcpigIPTKH6x5TFFPu3oMXxXQMmA4BUwyIREyRt4sC6gFTFLSN4rBfhpdYthbBggsYls6e5+UQ7Cnk+cvWF4vJanQQqA6KKw/vENiNmOy179PB4dxqAKWkIXikBO/oz8QOQ9KBeoUQgne0DFhGh7UPXU0MNsQ0hDzHAMwi2BcwZbCzmXybILPjtD4qLFhzwLQIErH/874Idau9vRDSfMLkAlmvS8hEk6yEammf4YTw+6Ri+4Un8gM6BiGn5voDVFdDyWMIx7EztvltsaNQ936/cXn8s5+Mzo6DszWh7qMJoe/QubLF8ILQEzG+TwdXf96WoYby+bwEpk7Vj7XggbWXYv0+z7Ld+nS7FvsfxVknM2jZBljbthWK6V3qvMfk7TFg4PCspcg1L961JqZ8EhNsdeDSBhSbv6xQdwxY5iUGY8f+hVcwOJuWmKZgP6GJhUde1jAteYgi1x5DLEsbRMHmZcDe2iqmbLW0oii8FbpfwwBjC4Zl/bB27IOjOP+Gz/MCnOcp0xqmhiGB/GrKd+Al+m9R5HofMMV+PmKgYMeJlYXIdeCF4A+KWGsD3qXdsnYUuY5BpuECL9HvjphmnG8Dyqb0uqx1DVOs85cE1KPPGlMaCL/273199do1XdM1/fDTNaj0gaV//te/wP3ei/M9mqXiolEwu8b/EV5UdI/sOpMR7DpMPSWiiu+RF4zekxfnO0LE+awj5gYjBHedyDtnM/z1iEGFVC2GB3hR0Sg0LNty2NlTwHAMdhRPtnnMKFuLDAabZ5Bu32pOj+clL8RgnwIvB2TnSIyUHQ9z4GVPsi3BY/KiiU44FV7sNQraJpJlz6d4mcB4CELdkZdTmAgSNJCtEuy+sxPpTZGXvChrOlAAiqAtnS5bCJhGwJWtOfCkvHgxWC/+ejSYGIzHNLmydiAvcn2k2YlaH+F5ku0l5jtTxm/Tg/vuyXjhGT4IQyAX9Ensg0YMlq0p3OzBho0Y3sYyICLb1dq/bMK8aYIPRBEIA7U8qaaKvd/+ngF3fyo6GRUjL53cPmCoGMnY5h0EP7vbwa/AuuXeBUgy2KGsgaySdkU3RvP4ghI2hici0fGq3ywB256hP8gMDAQzhAJu0Dp1AuOrL/flxLdSVmYJLJEBnnMbpE2znDCndt9npJTr73c3h2LLO//+W/+V4jeLQt1PNOGfdK/qYPuIGQ9GtFfb4jqYYeC30gMeTCDp17t7vKGx1p9XdHT15xjrD7wI/Ax2NsgHyInIBZqOsX7Bi8bP8ILP0m55AWi3JQxefJyhW3V9W2wxHODF+2ULZrMzwfWxBHKTALn0XxaTFe+XttqLj0dMVuhe2mLfzs0Fo/JS27lSmJ4WGHy7NpV3+AB8Cyxx4GkMvIyBF+Uh2ud4mULZswNpBuORJu8HwB/woVuTalkrW/caJnInjB7Brt/fU3b90QQ4UfgZ2fMStjdq/+L7H7NFE4xHU7YYjKcFJo9B/TFb1ux12U7YMDyR932OJQ/RP7O8OBF49iLw+l3P+aRPob5EXsbQZ87EDgOInAj2HuwwHSi7+jEFTLLl3/LiD7sA+7Kmvk12GKZQ1jyGJS/srueAaSKuQRnhZQ4HEPAC06PjBStC9pGX1o7lkmdf1iZX1vbwPGkd9m1zLFs+SKqJwXgYZ/zjv/q9xbVr+r1N+Q/gf9f0g0lXTaUPLP3tv/Qt0R1hRg85EYJJBTaLI0qoApwAAGPr7L7aImhLOLAEMAYmJOpx5Iy53K8HnM8Q4dODCj6zChGr3URIMzFyFdQUjY3HIjK6K5o3TyzCxprnR84YIHoGimGA6E6IIOeEjQ4LCXjgGQNkXzcRYc8ZPWQAPVCHA89tMEyyukgx7Mt3m4veUsMgwqhHiBBwLnnW7/hY8rBBVzEM5TtaXp5odryMBdND+SYwPA0mj/vKU8JARWwbhIEJHSUcCi8d2nGtc8F8IBV8brzkIrhsBZsVUw/RiHpa8MIYgPo85WmvmFAEbtnzkmpZa+KuRFTL2gYJVDBMKFpHJKs3ZghXT6V7EMFnkvO9DKYmas2uLDxhxsCCYTa8iJgrOV6ywXyA54kBZysvimkDQkddKWsSvTgUoe4ZMrs/FjtjRld4aDylWhYUk/Ai9WdAhwEJb9IRv84zPuEtuqKJobPiE3LRSJFnZMhxwBskqFB2QjtwWGcZe0ggQweK2yKGqwEaf3+CzpFPkKCG1GUJCmqQSFdZEdqMs86Q9lBx3lzKR7ue6t3atsi/KQbVZxlKnvX5dtBsMUgASFDLljGPSct+z4RMhJlzDRil8k2es5QoZvnNRIqBa/5SycUMxpZVdprBDLxAQkfAFnLSkfAC3LIEM5/1Ipo9dIzMjHGUdmub5P6RJVh0V+4fBtFg2rzc4+nQ4/Gpx5w7TDOQM9CljL4DpomQEiGljDlLW5WZ0SVG12WkBBBl5Ey42R2QOgbRjJwT/tar3vHQV5bEjkLd9zTiiWb8ve77+Gq+ke9LVjxZ6uSh1GdpFwn/qHuNT3mLZ3nAmBj/kN7iU97gRR5wn2aAS5APLRAxI6MvdR6mvnDtX7i0M+XQAJYg4A69BGkKx4dS54/FPhah7n2p01PAQKUN2FeReKnz+nvtbybmugZK2rFch71TbRPkN6pbpG1ALhjmgqGDaNzMpa3coS91nYvejQwGx9Km6ID3UNsYwaTtlLZja7xov09IGDG7gLC8R+qZbPFm5MKLCHVL4Ea/m8XEEB0VxbQpgum5YOqQkIkxFp4iL4fAiwiot7ZXda72Rrw/ES14UXtbfBttq6nU6ckcSDAVYeSp9DcZbdJgKP3waPrQAR2m0mf1KFpqxKXPJJlUKdp4A4sovIiPT+WQBDhMPRLI9Ddb00d2OhQnVAzKi3xjLrwIpg7Nn9IDCKrmTRF9HzhhWzHJO1VfKdc+0ovCKwb137QPVjvVPlO+kehcJexLHjcgkLEnyAEftQ/lhmmC5CHaGUXfDNLvSz3O1X9rvEi/rwLpgomqsL3m8VD8PcXApaypL9OXsqT+mWI6VB6EF+Upl9+r/0ag+g1HSJ7m8s2VFy272t9tAi8ZKO3cXDAoJsnzMWCaStm4r/4Y1bKmBwyIL5RL2SYkIhyY0ZV6zAYDSllVv1r1mazNpf4qhs5gavUHxbdpqx8noLa7f/svfQt/9C98Ddd0Tdf0o0/XoNIHluapzaSoQDOAui2nbkuhsCWL2ioRDSxNkA7sDn1d0j+Dcccy2ysOFtcOVGb92kyHCnA2G2W1T9lSQOIIbBhVyPGIjL6IJyuGOWCwIrwRkw7Q7fWZZ9wUDIJJhFUVQy6OB5M4yEczVyMY2ndShzDX64JBnOIm3ioioV2d5SNunaxg8HmM4q15wRtXB3BCcxyUlwzGcxZMumKp9Puep4JhtrPWJc8qQqo2FUFb5WVgGcQrprrEPJS1KhZLS140sDRBhFN3hpeMWU4lqWWt3Z9htFBMWWw8aFlr9h5zdTC5OM6bMqhWDENZsVIxkMcQy9oaL5vKiwy4Bu5MfWq/z6EsywyKv35sd1RMKhgteZrRFfHxA834Fj3iZd7iprqqbbMAFcfQrsrTgKReL2ET6Cq+rti52L1x9FqYR/5TzRNx2GcQi9Mo5QjlSWSstrVOF8pLoKirz9LryWDQgBEMBnvKWFev29VK/hv4969vFwGkXesAdOVLaO6Te7L/TVyFpXYX3qHfMZH8N+cWWNoC2JDmAegI6FKze5LVWMeyCmkD4Mbcf7ubsBlmfP7qFgAhM8BzqpiYgXnWABCBmTDNilDEvbuOoYvBKElQikt9aDxg1dZkV9N9q3swH7aJWGsgSkp6LoMZ4Ht0wOfpgC36Yh/xnXSov59LfdNCqO2YJq0vQ8mdzOxLfdE2QNpOVAF12weqbYW5o5C9zLqXcl3qPIpor+YRnLEt90sdt3XetyGzbSPQxPq1ziuGHZcQdWl3Nswm0NNWXDD8ahy1rXi/23a2wstUeFHbBoGVY7f1J7RrenJdxBR5GcoJo4qpbs8+wUsOvEQ7oR1mMSGDmbE1vgsZXmpZ4pbn6Av5AwkEo7YdzRcSFrTP3HEbrB9DWTpCThatNkVB9dZHKiZWXso3IjB23PJUWVjpbyKmirkk5WlXWjc5wXbGkOWAAcHUhLrXMXkMa8L3neFFv2nPypO0a7uaZzhfSAMhqxiMn9CbuvCEWQ7LgLYRXE87U0zWJ13HlJ2tbZ3ylLkd/iK86KnCp7575MXbU8A88YxbqD8n+RtcWWtC3RGDlsXIS90oTervkfPvLC8jZCJExwLzGi9n6otiUt9IMdw6/05OhLO8rKVpvK4zuaZr+v2SrtvfPrD083/mU2frqWbaXtfBD+tgQRObv7H7V7fnXx1pk6KyyPsLdfvOJApCx993tVjLfQnURrr1it0acBmTrtbQdErg/FTigGEp1O3tk89v/bR7LsO/ww1WynX7DsKaUPd5XmKXHvO8FOr2Tzgtbu7L1ileIqaYpxggAC7zsixbOVz3KYpcvysvdoWMxdThslD3UijYp0u8jORl4KO+UfxCdqve2vUowBl5ikkw+QfF7x7Tmhi4TfF9ked4nQOmU21C+zuC5kzTHKv/ENIeXlY0lsWYYn15DHmm8PPj7OtL32Vnp/p3sQ9TqhpKANAlRjLlmyHb4dw7Yx4nX1aiUPcffu4xL9qEUIOqMHdItn5E29af2M4RsBC1plDWYop1OuY5CnV3ob68qyC03e5jMdggT/29726WmE5g0RTrR8QUn3DpoIlTzz+FyV6T52Epan2+yl9sxyLGyMu79l+nylrEFLfGfRlelvXhQh95QRD61PPbFqa84MWmTutHSUtMy7SsL1+yjzzxjlP10W7Lspiift6XEYRe9JGLOh/8iAuHW1z0jQImrfPax3QBU2wTFokut2Px57/rw2VW6ou1Ky+1j72AAcs6vfDHLj0AwB/+s1+9eM81XdM1/XDSNaj0gaVf/be/ht4JdXsnvA62nNie99Kdc0bLziWK7UVB6H4hTByDB94pioLQR85YOE1mANgcAmqYmllT3Q4TMZgZs9aBeuwDe0zxJBqEPM8BY8QQMUbHqTodFYoXiAaak3EKU+SlD7x0ARMh8oKzeT4ETEm8piWGen29bFlNjUu8sPkdYHmx77D5jrycxxCv9/bhsPVFs7zkJWKyDibBCHWz58V/p+CQhm9g8xhFep94JdhxZmCRiReYbI50tZAB1x7H4X7WdyZnW60J9yfM/ebfFg4z+9/EwdLa3GVs53RrYgG1GCJGTEPAEJ3wvZ66V67f5M5/55DnkWeX51elhtX7wUjmBgkqNRB9Agajd0QEDLp0D0BmwmFqAXYiYDPYloxMUKm0AckHqsapc/bT49aJev+ZT48uz4u2Gr4+3a2E2mx9YSpbE41tdUYAHwyQQLKvP2unSlp7OXCZQ569HYXtO5D7BrGdvIQptmu6NVUxSP3ymJYYvB2Dd7ENiO3eWhsQh28uYLTCi8Nkfq+Yar/PwbZtOk7zEjFEQfUoNh55ie2i2ufKWrQP8ELdtY98R14uCXV34VlS1mwfGjGEQB55TCJy3doyW9e0H0rmWXblasuH5+WSgHqs85sFL6e/l77N+Rnk9Sw5YJK2GzXPa/Un9pGXeIntVCxbQ7CjsH3kxa04hPIShbmb3tgaLxaTzWus86fs6HMO7PvUyMsSg/+9rnhfa5sBXYGLVb9BeYllKwZ2Twt3r6duIPyJ/95Pnrh6Tdd0TT/sdA0qfWDpn/wXn+O4b92d6A5w7VyqoKfpyOLAWleMUHFMGd4Z0z3iao/hNKmJsrPXZj1thybOaJOj7cnbQHGuuDlB1gGtc3cGU9NyIfdviomwdjJZc9IiJrutT59nMVHA1BM5Z6oL13VZt+Uln8DQ8mcwcRvsNF5Ek0Ht44IXb8dVApEX0cRp9kAENrwwqDq98o2WZc1vzWD3Tey3VEwRAy94yWBj61YPy7PFlOCd2p48psjbBARe5Lu9Cy+aYcsLQ0R6Gc3BjAPEGbG+rA/oWllKLs+31LcViYWXLbUVIwkk2+NKFhMXbQ5DgxO1hpwol5jqaHTLxgbKtjhvD2XpPABsua9L6QERdB7MbLBomrSgzFa1Nkx+NuY6QXRk1NZtc5qIIRpalQZZep9aYS3b7FqwbIBfYVVXlVVMya36+om8xUe5q9dv0eNT3tQ8veABX+VttT/GgB/j9t0/6YDn27nWoD4BL7e52ps+4+7mCNItmAzcbiez+ojxbMjo65Y0xu1mKvfLgDsBJVAlmdxuJifEnbqMrmvC3rvtEV03VXuzmcC5Dd7/1qth0VbbsrgQ6sbsBqFSX8KgMgzwqDzTl/dWf1SsWetPHPzkYOu/aeqb+kyxk8MwartV2zE4W9ugkwMyDgNn9ieU2j6WSOzabtF5DHZAZ9uZLmBg+DzY7c+aX/v7yAuZdqs+MGDWdlUxTYGXZf/iMcSgbsTQuWFq2SZEHpPlZcHDCi8RU7RVh6iWNcVQeYn9y3lfSPV0bH9iMYwBU+QlYpCqTsFe471hm8jzNF8oa3GipDPva3br91VP0veZkYfzmJzvVHlp2LQNOVVfYp+pv4v15TQv7HyX9+alfneLyQeG5mCPxi9WXmz9iRj0O0ZeKkaSnGgOGya1fdm7yEvAhMBTBruTAJUn5UV9o3P1JZ6m2xdfxrcM9fUYR8Y/+CvfXbl6Tb+XKYpc/0H475p+MOmqqfSBpb/zlz8D0BwNuw9aO2fUGYjWveRi68yWdjYJPrhArB2B/DahObAziyCvnvUj72h7/xkq2KvvlC7RHuXNQNUKAjeH3mIYFQNLnjOaAx07QUIR/aWEzFwwUR0czQUjEZXr0t0dA4Yp2HZmjNBWnyimrq7Wkv/XlU56XWdoMomtmPQ7RQwys0WVN9Vt0ftTcZBbB85fkhfRZErgKkytdl90CawT03hre+rVWdMZUIvBfoP23cs3A9BRC2RWzllnMpsWlV5XDKd58TzoKrpW9nyelrzITPZMfvbSla3qGHHVA9LvOiPXbVDKa1bvjfx3bBi4CnVbXrh+N5/nHXclyNI0JxIkCKMDvwTCLXoRJy7C3huImLoIc6ci/tlEp28gYsMiZtqhg/y9njbHGYlSde83kKBMFRqFbPWbkWt5TeV6BmMg0bsaOVex4C3kftVN2qHDVA4J6EgwTJxrO7VBV+tw0t+zaIVkFeouYuVdyZOUmYwenfyNgRkzQLKqLEO15ZRdydNXeIMtOtxkwhuSPGx5wJYT3tCEW+6wRYcNJ7yhES9zjxsk/CQPeIsZX+kYQwe83M3YTwlEjD4Bn9xk7CfCbjshJeDu5ohx6nA4dkiU8GI34zgxxiw6Sy+3GYeZQGnG0LMIhzNhmhMYCZteND/mmbDdZOQMpMSYpRBj6DO6xJjmhO1mRNcxEo2Yc8JmcwRzAs8MSoy//bp39aetEir1Kcxb3dMIEGqd1jps67i2xaTfuGg+aX+iQaZWX1r9AYrGCkvwV4PGtp3TAaTWp7jVJbYJWsfVVj0grV9zaUcVA0EnJVAw0Kqtedb6bNsAi0H6MLg2oLXFYsfv3gW7rQhQDCFwTXyWF5tnoAV4bP+QTBAoazu2xku5H4Brx2zgW9/hMfmypP2Jftcp2NrvKwZVZWs8pFVMmmdtc9bKmvazuo5C20R5v7ST6hvZstaCF1p2fJ6PZFdmWEzrfWTzjeS5Pcj0mfVS7TM1ECcvkJwoT97na6uFbH/l+0wNNliegANpnyt+QRPOFzv2+zppaDHZfn/jyloLjmgeWlmzAQ3Pi0CmiqG7wEtbyST/r1vIXZ2vGE77rGpvHKbWJrXn5ToxqigUk21X7XdPVAS+ufmsC14M98ew9TmWvRwwqWqgxbDWJuj1eoCIeZ4Gsdj8v+VF+04dWbR1sXKn95tbYvP3v/OXv40/9m/9BK7pmq7pR5+uQaUPLOWZnc2Itv+7X30j91tnL4f7/dNCBJiW98T71xyVeI993lpyAYeAYe3eet3eb34iA06qorRrGC5hYucUnMjvmeed+03Llf1m67xGB7D84zvkablqy94T7dNffP0ezXNa473yAhdssfnXPLzr+4Dm6GDtm8Q8qG2W76yV/6Ud68/5PF1Ka9/Frihax6BDUNGcUhFNgggI2xVuG3ROQFpWHEkQhaAi2W22cTClwl6fwUhF1Tkh1cCYCoHrb+R0xbaiSFcYqSB5ggR+6klrILSzqFAxoKyA0d/bPNVVU8YGUI+YjkLdPdrmA3V0EzocMRWhboLVietqjuQ5WyR8lRNeQWbsN+jwFW6/GJDwKW9xU+4fQPiEe9yxzF2nBNyWYA9AcgLcwNgNpW0k3cbGeNxvQARsh4whA1OW06B2PWPo2/1EjI5ztUXoW+xUxC9S4rIdjpASY5PmquuUEiOl2WzHI3AmTLl9u3cq242Y1TaIdbSodV6XROkgMjz00jvX+h+E+nKuDr5X22yeT+9y/6V32naN/PVLdf6Sfa5PXeVl7UHv+U593uL6Ci+Xnr92/RIvy61x51PsZs6WLaAEkujk9fft59fv931kfEdtjVd4xIq9xBDfue5HnHr02je65Cdc5C08+Nx3XfN9Ii/rZfP89fN51ies+6wnfRlzPS+un8fgEi191nj9UlrDFH3Wc7y8iy+0LBt+LBF5W8vjWopjmmu6pmv60aXr9rcPLP3Cn/+Ks6PWSR+8vrX+yDb+iw6QZNWOnwH0aSkU7N+y1vnYFMX7Yh4jhksipOJwekxrIqE2n6dmVU+/I2D4AQl12zzHZcsxoGG/WxxMr2G4xMtSENq7eyeFus/wslh6zd6O74z5fX8BWp8iL/F6FCGN9WeVF11mgbY1R9NJoW7zoMjLZaFun+uq9XPieTHPUedAJ0yjLoZ9/8IhdE1CLEmXA4BLIdQ4uPH2JeFUDphU38u3Zb6+xHdcEhp+E77zcOI+TbEdO0TR7PDRVDRbaeiK0n6NuxSi1J6mVAJTklJikKuj9A5C3d1Z+5eeexH4SwK4tyeEuvVndfuFqS/neCF4AfW1+hNTLHuxvlwS6o72peBD3N4dNWgo/GgN06WytxQbj31kbIsDJj7xwQwPNq1tjbZ/XxPqjgcQxLQWpLHpnfvIkk7yUjHpahSu77OYfi+EusdgXxbqvvTN2tpbwAh1xwhaSatC3bD28n1L/yufvR4xXPIrljxnl2/dUuU0B81P1spaTBd9l0Wdj7xEoe73e37VO7IH4JhIy6pQ9+Id532T2J8sfJcLvtEpP2Dx/BNt85cR6o6TlZcOTVhLv/Dnr0Ld13RNv1/SNaj0gaVf+be+hmHnZ82jgK3VEWlz9i1RMBYBk1NOBus73y8gEzv8IzLstOMyqJTOYlhzBp3DScsTsOr7KoaV4MIZp2A2gQVAhLptWnyz4Py9Gy9kjeYUlN9NwVnbLHjxAZJLJ2otBsXs5yEJvO7Q2rIWMJx0oisvHkP9RifKVuRpyUt2eRyDvRzIeAe2W+FlOSlcBrnlPj9QIWx1FQvrOyjYnpd3OanJ5vGeR8ddhxhw9EeAc/nOVlMjIztRUScKasqWOok1MFV1znxQ59SAriVvL3XdlgPz5eyuWe6/gmkuW9RW80RezFW3X5zD8D06OvvSAQSHcP1hIndaGzMwGXuaE8Yp1WBTlxhTbsEnIuCYCUQo28UI94+b+iwioOtytQFgHDtnx+buGIJI377fwE4M/+mPJ9gKsxTq9mLLd9wvgwum/jCV/9NbyKxWKvdZliWQfKLdsoMbY9ugFVB4NnYcNC+Fuh3kRbAhVk/dAmJXkcQ2wNb5NUwpYFoOYmMf6YN9scWIGFYH5oEXF0CKmFb+bjEQqB6iYCqS+3N1IH6Wlyg8TMsPY2w2bbDFVFeYBExM3vcQDOfLWkxrAuo2RR42KwGTc6lp4lCzGU6HpyblIZS1SxNWc2gcYmAs8rZb8IKT36deMtcFAweeGqa0giGWtUt9ZPTvoo8ZA1exDXjX0xIjJtuHkvzlJC/LCd7gjwVeYlnj4HNuAi8RY0zxMIyqh2nbapOnpHk2mGK7dmnyJwauYlmLqR8S/sRfvAp1/zAT/wH+75p+9+kaVPrA0j/+z78LfpqdI5dM58IoWgPBWbNdwWCDASydle0sdmEul+AFbgGSQJNxmO0sim6R0bRBcqudxG6/jytUcsDAWAoN9xaTYlDfjFV4GDXPMVDF8EEXggqI6zdLCwzWCd4WvRhNA8itbMjwnf678mIxDWwChgzsAqYMDke9e54iLwOSsyumknYBE0DumzBMENNiMr+IvDixZAY2HIOgWPASGzWbpy5gGEJZ2qJz333JC7nrGYyefABwDYPlYWMwMxgT5eZgQgc6zSZgwUtn6k9nBwYAfjzf4qfz85qnHfXudJsDMp6qCphoINzXDWeSjmaWPoPxhEkCcMV+g2PdPsYQrSldochgHDBjNIGoB4x4wlS/zES5/h4Qp94GIB5pxj1aMCyDsTfXM3n7iIw3VelM728YNU8NM+MNRpdnEZFu9gh2qy7vacTB5PmI7OwdeuzN/W9pwj1NNY97zHhrbBDwCBuEIXy+72rQ5pAJn+2TCyzdPw6ifQRgnAnfe+wwlnHqzMBne8Je5J/ADLy+3+Jp31f7OPbIJhCVOtFXUjvnhHkmF7jKRpj7L3+/w//m129qnv7m6x52YBG1dzZmWyAgZc8N0NgP2ESTL1737VjUF1nWl6KfoxhCuzZw5+s8d25WfQj914yi5VbfSW4SofY/BoMNbkcb7Fc7VQwFo25x8nUeoT/ydd5uWwWAbWhZ44AuB0w4hUH7aA79Ha+tfGglQbcWW14SEITufUB+ULF/xcTJ8RJXV2Vw4MX3wXWgbjDYPpgCJqzYW/MvWs5SbIthylbgZcuda6tv0AXNCf/dZ2Dh29g+NgHuwIIUylZiCUzZyZYaMCxli7iVJS1r9lCF2J9s0Tnedoi+i/fPJgADeQ9wMLykiInJBTwS06JNGMw3lFVLAVN5bsPg24lFfeHkMEVeGLQoW0Oo854Xcrx0oAUvsd2zk2zCC53lxW7jBkqdNxjcQRP1fjhfv3NVlhxPkZdObfUzAk/SRthv1vSrGgaEttjzEuvLJhz4scXyXGWXxoy/9//47Nwd13RN1/RDTFdNpQ8s/YP/13eKEywCtIcy8JPjRWWmgJJ0JirKS0gY0E61khBSOx1GBW0ZIoK7QaodSoaK4EoHqqc/dCTPEJHcZuvecdFmSZjBJYhF9Z0bVlE/cS4yZBarh/xdB4IDUhUOBjVMuWAY0IQ2RaRXvgkXYWCGBF0kSEXGFmFTDeqIcG8JPNVvpo68YOjLV1PxY3GY9ffiCMp1ORXkCNWsEWHE8QIvABaY+oKBGWDm+tuO9SQ2cWgzt1M5ekpIRZz5NC/y+43FBJZAnOEpQwdc67yMkJk7zRc7DCoW2XgBw2NCO10nFUyNFy2fnhcZ+DRMygtBVkQoLwNkhrYPvBwqBhQBZ6k/A7Uth+kUL8xlIFMwQIIpoo+sZSGDSQaUTMqL/IYMTx21PKv4t/Lykjd4wRv80vwRPk/tEOsDMjoQDjQjE+OBR2yQZJsHAW/4WE5Z69BTwoHn+n1BwB5TPY2FCXjLIzaYJRBX7p/KOzIxjiVI04NwRMaRMo48Y1fO2xopY2YRxFah0pknDEgSlKKMV3zEzgyYn0oeUPLwWO5/ogkzMV7xoQQGRWD3CSPqKW0E7HlCB6oi9W95lJPnivP+xFMJanfoiHAoIuAJsr1zZAl+aZmfacbEGRskPOceR0KxCQ+UMRJjwogdJxwoYybGFzhixx3u0GEmwj0zNgB2AMZM+M5Dh9uBcczAxITfeUp41jOeDyKY/up+i+1mxnEGmBO+90i46WWkmJHw2YFx2zGe9YxdInzv1Q1uthN22wlzlvVTeQYSZfSdBJKYGEQSQAII0yQaS32XRZib5fo/emT85mHArz8k/Js/NuK/+r53IeLqxiFsfn6iCSISn2rbb+tTYtT+hZmRWGtr29an9QdAbdu7UtdnSMSsZymDWgdt/6P1hUqdVNF4Ku1M7G9yqfP6jgm5DsByFbJvGLTtH9D0+ComaCDCY5C+ovVnICoTGSrWLAF6batVVFr7n77mWeyGCcjmvWpr22wxWR4QeOnYY4iYUNo9bdfmE7wMZTDdBJJTxaRtceLYNgsvXbVaYNhiUk01/e6MWLbI9T8Rg9qKYSj3qq1lrQdE+N6UtURWFLq1xTppUfuXarc+0vY3Ii7f7p8ggsza3mjZUluDuH3Ns/9m+nytPxMApNInOz9AGJ9L2dIAgfVd1C+IZauVPa6+kfUL9CAGOSiiBR8ihk3hpedk+kxgYNTnMwNHAJSWPqv4GbKqtp3v1vwvrWMOQ2kTNiDHyzGUrWzzzKoZ2DBoAGgb3qdlUf27wfBS66/x76Q+yMEQnpdcyr/8qb4JGV60bKnfrXnSstDKVuEp8ABgwUv0WW196tn7nEd4f24qtvp/6hupXLq8o3NlTU8LbbwopubPAdLG6qENf///+Rl+7d+5rla6pmv6/ZCuQaUPLGXxGKtDqbMG2sGJ3UR59aQLt0za/J5Wfy+pzrSUJd+nbCvKa+e1dQbY5nEtzwhOcsQAyMkUaqs7v4ZB7M49f4mpTprXPOvJaWprJ60Y7DsEUxQCttebDpVezyDHQ+SFwv3xG+kd7d9bat/d8xB5SeYda+LHXcAUBy+RF4as9lgvW/598vtm2/w3jBETMAaeWqBHMVvuz5c94cViQA1QtLIDU7YiL7TAYL+Z5EuGI/Y3a/XFY1jP8wYdfiLf4g0dcShaOjPMVjdCXWGk9gEZXIJ3INRBgaYJefl7ZrzEpt5vl+FnMA7I9cNMxLjHiBcs6+oy+a06TGGVFDEeMeGGW6BoRDstDiS2LptnkhVBA2dsSi1SnZEBXc1j3YZSfy/fCySDlJkn3GIw9zfME+QEsHr6TV01VTATsK9DX3HmH6hhzCQrsTZZRMqZgENx4mUQQrgfCVOdmSe8nQhEwCed1KjDscfT2Jh/mtr9AOFxJkyZ8bWd3P90GPB06DH0cp0BzE4nhJpIdrFzpsX1zILj2/sO/7t/0VWe3jdpWdWAx3q71dqFWMe11Nv6I9dT3coS2+JYX9bqz3p/0Oo8BVvyl01bjMXzIgZrNwzzKkYNgB0o9qERw+l2TII42bVLCRmzyZO2jZpnwH+DiGHZB0c7Ykp15aK25dpKrPMQMS25x+L+DNs26yB0rWzZ1TinMMWy1Zdcqz0g1dNAT/Pibb1H+6fJlP8eek5oK1vZlK21AwX6RZ7tN9EtuPZ69P9SDShq2bP3r9eXc2XN8yQHQ+RatjTAYDF34Xk9PO/L+sPBbrw0TFy/9rvw0kpt8+88xsaLTDBaTMs++BwG+UZc61+HuqbPXO8wmfqja8G0XTyH6V146QBMaO2YtsUWQzywI/p3EVPkESCMZXWyrfOxvlkMmmzbb9+xlk5IPV7TNV3TjyBdt799YOkX/lUvamf3cQOloedmk7mmKYpaL4W6vfhe7AyWwsPejn3EUkz5vHjfUo8CDlN8iVzymC4Jdb+v6GHUI4oaGFGfKPKyqntgMDE8L+8m1O3T77VQ91LrxNtQDNwweE2apVaB2eJfnZ9zeYhpoRO1EOo+wUtJXShrq7ycwdCBnLAp4V2Eus/z8pZGn+coLr4QHfXPqwEaMxj39/uX6kzuqbSGKZb3mCLmWNYib5H3puHU8mh/V7cvnag/sV0jYKEFFBG8LppKmmJZiekYylr8JrFz3pdtb4ph0ykAsWM7O7KuOjF5djZhKsGq+i8hy2PQVPq53fl27pIA7o798+rva50v60K4PS+2zZYnAhbiyZeFumNbfL5t/tIHGrwjprWsLgShLwycLmGKeVyKj5/4YAZDtGMdPMcLsMQU0yUM8folDJf64AxeHKJg7xltAB3rZc1uxV5L7y8I/X79V9QGmkJZs9f0eT9oXrxKFJp2VkmXhO1j2TqJqbbdFDAty1psnC/5Lmualh7DSh945vkRU9QKin7CmlB3xMRsfFC6LNQd87S2XdWmk7yUFPUs51DW1nhZZCLY0a++xMta+sV/9SrU/cNO+Q/gf9f0g0nXoNIHln753/hxbHeN9gEJnXGMkg7Ma9+1FAx0wQFCG6mccEA3YeC91QEdzPNsh2o6W6B0NMYe2QsRV40A87yePYaqe8BhFqRgcIMbG0krf9QBpWIKjtPAHlMKGHLAMC1s70R0wIKXjld4IZzmxWKgpZOwCaKjm9AcLIQcA6YopHoMwpBphZdFWVsLoCgmAog9Jo682LxBdKOsbbW7NE/neDlGoW72vPRYw3SirMk/+LJDPs8EagPt8twYmWpn6AABAABJREFUUFyc1HShvnxBT25wFOtbFB0F7OHBqNuG7Iy0ve5mDQsmOxCP9wsGjymKisYURXjjYGzVYXa8Slkhc78V5U2hTXDPLJHKKKYchezjIPVVCCptQ5sQ055nd/0QkBG8o3/MVLZXyb92CUUjo/BEPrDEIKCbqwVQPQ2uCXUnZ1Mp7PYEOZunP3rrMUR4l4S6b9A3YXoIllvul/XFtAE3emJcecydqS9rvCyEuy+cOhYHLlNoA2LZilp2awFHG2xgbccMphp/WcEgbbvHEDFSeF8ObXFsm+MXWAp1L4MNKWBAxBSeWu0VDILRt3Nd6FPXgj42xUMVIi9RcxCh7Y6xRtY8m7IHwwtT+a4GQ/RlFqd/BkyRlygK34e2exN4WARM1jAZXrLCqb4OXFtNINfvE5YC6vFgldUJsTN9aBQb75nOY8AKhkVZA9r/E7ahrA0c64/HEP232HJFXiKGKHK9qC8BU17BZOtP7UONT7qJmBaTox6D81kBcMAQYW5CfxR9o5O8KKYVXqK+WMSwCW3AYmJxwYvPdyxrMQ1Dwq/+2187fcM1XdM1/VDTNaj0gaV/8p99F/0+1w4pg3GLzg2Ub7gEmgCAi4ihcYpvuQ92EsekPFRsVLsHYWuud0jYoXMO8y36am+QcMvt+o47GUgU+4YSbkyn3oFwqyLUisFiYoNJ8xww3XDE6DHt4O0OCdtsRAxRggMVQ+cw7dDh1mC+RYdnxgnegRwmgBa87DhgghFqZOA2YLiLNrzodA+S4FjlKUlQxvByA8/DLTdMN9zhxtx/B+HFOkG37B39XSxr6KpjQQVDdwbDs8DLVp3iyAs1DJaXLTqH6SbwcocOt8aB3IKwC7zcoHOYbrmvmKiUrc5gukPE1DCoSK8PTEVB2+QCfkOoPxt02Jmy9jHv3ICvbj8rSVYSwjinfqm56thoWqxIQNsKpJisdk68vz5X7y8Y4sDc2lGEN96fQOF+L9K7XE7vB8EacPIC0CietJRhG8xTnrzoqM/TJ7x1Ab4JZuVneb/9xY3O4dey6GeTibwQ6iYxhq69YM6Ki6GP6WG3iTK++mKP7WaC/bp6Ehwgp8FxbvY8kxPy3u5GdN1c3/n3n+CSDytcFupOIPyh/LwObHfc4Rfmj3BTAkWJpa3VgEbHhJ+fn+N5lq2IxMDPz8/wSbEZvJhE6HWQWduIzgWytujq1khA2iR34AD6MIgkbE19IxB2hqkEwg362iYkJtxiqG1CxETsD4YQDKkGORlGLLnWlw4b7hymjW3X2Od5W7aL2v7JYhZMXnj4FoPDcBPsnemviIOILvtDFbSuRGHuyIvH1DsexLY8vSMvFXNymDoOvLEP4tAKTy+5k8BP+dEGsf9JEjwu9g332OWG6Ra9+8533GEX+sibgOnW9C8dCHcWA6icoNgweRvNF1LfBlQxMESnxvapgqlh2KFbYLIB8jvusLPi45wcJoCcX5BKnhVDj+Qw9SDcwWO6RXL15xZt6ziDMbCfoNpaXlgwbCwm7rAxfsEt987XueNOAlXWd1nUj87Up4Q79A7DLUe7C5jI+W87NAwM0SzqQ9lyvHBymG7Z8ySYyLQB5Hihkifvn3k/3GKKdr/Cyw3aJJtgIOdnb9lgKD7rxpUtX3+kbDX7WagvNhEDmyPjH/6n31levKZruqYfSbpqKn1g6df/39+RTh6MEcAe0rk8Q4exiCeDCHdMGFlOpkpIuAVhYsbEIhR4y2LPyBjQoWdGz6Ivs4OoFvWMcoISsKGErjx/BIsNwsgS4CIiPMeAI88YWIR1n7Fc33JCZ+wbTsXZki0eKvR3xwkjs2wrIcIz9AVTLh1oyTOxw5RZhBU7iHC4iI2LM9uXPMueculYHQYWPSUVIexYRIlV3FIxbRRTwbwrGJ5B8rwrA/nbgukAEYJUXo5gMInjIBiEl7uCYQ68qNCpYBIB9W1xy3rI80aI49I7Xjp0SJWXniTfB57L6W8Jz3nAETO2LCep6XffBV50tcuzcn1PgukWHabyTsEo3yRz4aVg0MHWTcm/CDl26ItTORqMffnuI4AtdehzwpGElw0aT8pLj1R4kQHlcxCOnHFTToa6K7xsy+BOeXkqeb5z9QV4xgNGzrVs3RVMzL6ssSlrAxOeMCOncgqKEX8dWIToVQNpUF6QZbAGqRNHnsvzZAA18owXvHF1Pm5LFA2NkljjKCoKqiclWgleDciIncv9Xb0mbUi8X35RBP7JiK6jCZnaEJS1VWiUyt/t/YANEpUAC7xmR29yAGgQyov8WgzahjDgnG6LSTGoyLvNAwP4KA/1N8zy3SsG5trOpfKLbRE+VYHmDRESiTBtXZJNwKbYt32W1UgJYGYcMzkMUwkW6e+3Q8bQAx89P+A4Tnh86jHNPZi5BJa4CHUTiLmcECeochZ7M4xIHYPShDwn/JMQVIq+/iWhbq17P5c/wis61BO5/sj8Cb5Pe3xBByTIIHVmxl2WwMLP5ed4wyMeMGKLDj873+ErecJn6YDvpX05CUnaehCVtinXtr8zbcBQWOwgtpycJu3CZOxdqbMHzOhIgsmT9ickgaSptv0y+B/LCYkECcpMnKv4+LZgIqZWFxhVpH5Ahw6i18UkQSDVNCOUkylNO6argUaei6BtwVCE4+thF2VZVCLCDh0miIh+ggSKtL8g8hgU08QZxIJpW56XyrM3EC2WGeYADy5tTGlTElMV7t5yyXPhZVsCHLZtVh60vxFdrFzbuV3BeERe8NKRtoMew8hNh01405OpEjYQHyAxGVtWEWl/M3HRjyvfcDDvSwXTEXKyISGhz4QjZTn9DbJy5sgZN5A+U/oT0RxMpr85EDs/YS68iR8hPGiQZmQuQeRoJ9yAMZeypfbEMsGQSSaEZmYcSVRubli2rY2UazkaWDDpgRzqr+2KL9MXv2RT8CmmCXIiqvoFMzGAVPtIkLQTiqkrvs9d8dd6bkGdydg3EB2ifWlHb5AwF16YCDfcYVMwdUi4QcLAGUfOpT9I6HPCSLkERC0vVE4iQ+nXgYEIz5FwZBbNO2q8cOAlOV5aWb5lKZuqoyk8tPpyU8vWjJzaAQZ6iMkNZGXZkb2fPRZeyPCk/pf62XqymmLaQ/w59aMnUv+s+OEk7ZJi6gsv6kcPgRdt11rZKnnmwgtJ6b5hyaOWrZ3muegecsF0pFbW1J/blfqiGHTdrZ7KSyD84//sO/iVv3gV6r6ma/r9kK5BpQ80ydJUFaFVW4QiD2WAtimNu55Opaeh6O8HtKXUOqCzmgA623pflpCrPZWd02J3TuR6Z4qkOJ1dnVtUW7cHKYZcBoN1CTFn7Klh6EBVEHpAm7VTW3Osy6bjah67ekAx7EuepRPv8IRZlgNDViyxPLBiihi8TauYJsMDDC8D9HQjw0Pgpc6+Fl6GgGEHERM+x4sVIb0x6zYEY8TkxSk3kJUaMxovmYE9NR5SCWTJdb8lps56G142AVMUw9whYV/cjg7iZCovylPkpTMYdiu89CZPgsnzQsj1pL4NOmTmujVkY4bYDbO15U0WQ4KcfKZ5kAHVbPLU1a1jisGumNiiR9SwOJXI/GkDQVFIuAVy9NvIv+n9KdwvEr3tN14OeikiSuG6Pk3fEe9f/9M+f5mnc3/aJ9hvssQsnyLRUlTUP2MdA7v7aZGH+k5q25OysfU4aCL5LyVjQ+6Zud0/mPu3mxl9l/H91319U9RXWrcLBgK6XgYeMNi/bEogfMK7NusNwlf4Bjvu8Z30hFrn0QRqX/IGH5WAqdgDbuaE76U9gHZ616H2NxKEaCfAJdjVZVqfLA/DwvZCwwMkaDhVW8TK88l2rHP1ae3gCULCXER5VZh7knO6WmAoYLDfcYsmFZxKHlJ4pxXhHSBBGotpKhu9TmGw7daauHIUiCYkHCsmqT9jaWUUoxa3NV4sBmkHPaahtIPzCV426Bzm9bY4YvC8+D5V8vm2+BH6DbT/Ej+h8SKTIR7TLmDagnBACyxtIX2LBim3xTfSPnQbeFH/zNoDW96B3tSfAdK/jIWXHjKR8VQmHXokdGWVCDGVgF3DoH6BLWsyGWbLIuHoMMgJmjO1+mb7yG0oWxt4X0iDBxbTFuK7qJ2Q8GR5YcJUMl1P/rQYzKrFDlRWjHpeZrQz5HaQPniC74O1vix56Rwv4id7u0M7xESCI53jJYGrX+HL1lpZK6unHcYlL2PAgDoJJjYbv3gb2q01XqxvNJS/HS0vnKofHn3WiEGClL6sLTBVy6eoA3hNv/fp1Gr0a7qm6/a3Dyz9/H/7x5z9pYS6zT/oqoKa6P2Fui/1CVEIMmpgxN8vBaHhMNlr7ZLHtCYMbDG9ryB01IeYwvX4vqgJEG2T8ZMY3l+o26d3FqMs6ZLQcMRQy1bgQu01oe74nWxSZ8Xn4T15CcIiCxHS8Lx3ElAPGOw7ezMQUAx2y4hg8OlSfXm4JNQdnlifV7IVBTkvtQmrQt2uSTDL/qHvOO+UxDZiIdAe7BhIi/dHnbeIKT6TIauLbLokAP0qeU2lzQWmjmEF2TF8kvjrw9Q2gAAwW+HKShRzDQD2Y8JkCnBKjJTsOwnjBaHuw9G3En/47nwel8LEvgYtefR/1m2d5R8eaHLPjPVJtrc27gl0UTz5UjsWhbovCeXH+hNfFAVto8j1Wh97STw5pstC3T5dwlTTybbYi1y7m8v7zolar2GKny/ycEmo+yQv8fmRh8hTSXIypseUzmBaS8v6cKGP5HfkJT6//BFFrWNaE7X2PKEtPy3pkiB0vH5Z2N6nyEsUtZ4Ah6lfyfNZoe6VTxj79chL9IUipkt18hIvy/p4ARMtaFl896XP6tMloe6YTrYptb54XtbExk+1iXrDUqjbp3cR6o5jmmu6pmv60aVrUOkDSz/3r33VCXX3IKcZkHRGQiao6ywDgNqrOSFHWg6s41AhDq62QSAwCgbGDjXDC3OPWHbKtiB3ARMtMJkleoohYKLQmVnFGAB1K5mmKOwYBaE5YJoCphlAMj9YE+q2Wg4R0zovHmN7oWLwvF0ScoxOwhwwyaxtcMLb5VLW6GRZA8HpIoCCkKPjRR0Zn3ahZLwLL9YeOYhWw5eFHmh6YwVDFIXvL/BidRUIhJ8M29U+yYOFiJd5cNfvcu/yvA16Ym8x+utIjqcetBAWtgGTKMgZMUnZMyKi9lHlemwTouhoFHeNYuNRqDuK9XO4P2JaG+t5/aSCwfC0HPw0J1pma4NwahAZfROEum9CfYpl7xCGBUcwkiGKwOiNPWYCle0qgGyD2/Zqy2qirSlcDMJxpmrLdjYr3A3MmZy92x5cng77wa1g+jc+HTGcOYpsKdSdnR150yZGc9EjyWqkwksm9oEpX51BILzIGwthKXAbynosa8tDFN5BqNtmguFEres71SZjazsW2oBLotb1xEZWDD5PsR1bDdo6TD5cEQMmC0yhfsglj+ljI6hOIHzKW/fej9i3ay9Cu3abO5fHKFotq4Va2qk2nWJi2fZoM3nDvod4lr0o/MuizaUYPrI9PS2FurehzkeR69XVFKHft/8QJ3YWQt2MRUDe9j9MnidZLQ3YwmjfIatQfFmLfkDvu9jFICEvwhnmZohfEQ8dWa0v5pcLDCcx8SLPhLYSaM2WPKz4qLENMP8QD7PY8JKXVWF7g8n6b7n6Y1T+n1Z48RgWAur24QAoTHrEiZbI20JA/VQ7Zl5j7bzCi8WUVjBcwhTF+qPfHXmJadgQfvG/8+Mnr1/TNV3TDzddg0ofWPpnf/kzbI8Zds77Dl6Y+9aIWhMHcWQGniE1gedy3QpxvyDZXqX/sAHhxjjBA0RnR+0tEp5bIW4kvEATq7xFwjNrE+E5WuHtAWcDIobc1c5XMOrgnxh4zp3D9NxiYOA5ErbmebfAAtNdxICGYRcw3XLCM24Y7iBaQmrfEPA8+e1Rz5BcAOIZdw7TM/aY7gKmFwtegJ2JFlReyvUNRFjbYnpmeeGE52awf1cwK4ZnRHiR2ryTaEZ5Xp4HXp4ZIVRi4AVaWaPCgw2mvQAVXuQfbiovkoay7cBhgC9bnpfOlcXnlPCsPl14sZgIorNghbmfB16ec3KYnnPEVLbylYf+fOrxU2bT5c/lO/zMfFuv/6F8h5+fntU8fjPf4RfnF/W7f2O+wx+ZPqp5+pS3Thw2A07AlkC4NbaIjg518N2zF04Fy6lddgXVLXonwBnF+4eynL2VrXLql/4+CAsP6JzormpEtfrUL8T9rTg5gQoGsXtEUV5q4v3lH7fwAuo36N3gfocmEs8QrRMn/gp/ktlP5K0ri6Ib4sveS9MGPEeHu5YdvBwYn9xMNbC06Rmf3Mzoin0zzHjx7ICurjZivNhNGDrdSMH4eJuxTWInYtxtJ6QSiFKB7q5rgambKsQt9scf3+PTT19DMz0MM/KcamDppz/e43/xK6+xKR+6beJr393+y8ZtXpSBBwGNN/bBP2Lgp/KzOvjvtCzqDSyDVivaO1F2grZD4KmKKdc2wZelGw42elcWUcqSLWu2Puk21CZgK/VL61NiPaCgtQHukAWgbg+x9qrYuLVtf8PevlWMaN/EYiQUcfFyXetbFRZGFBsvNhqmG4OpY+CP4w5f4xak+cX5Gb4+31T7Z+dn+KZp1346P8PPzq1d+5n5GX5xfl6/68/lW/yx/Kzm4WewxZ+UYxYAAF/lLX5tflEHqp/wFr86fly35H/MW/zq9HENLD3PPX51+kjKFqQ/++Pzc7wsZW0Dwr+MG3xVh8oMfMJda6tL2du6drAcVlHsu9zh1hzg8ZxFh6cG0hLhWbIBH+kjNRHI+Qk9CC+MEPcAwgv0tb/pWdqYrvIGvIDoJqJk+w5e8H8Hf0DHja72UwzocGNErZ/lDncWE0m7pemu+C6aVKPTYrB+wgZpicn0oX3pIy2ml4kLJgk73No+lMXf2ri2PGBSXhQTd7i9yEu7nkB4bngZCoaGifDStAEbEF4YXnqI79IFXmxg6YY9hlukIMS9FLG+yS2PzyjBHs65K+/wvNg+l5yfvQ1lbVN4qTyt8PIcqJgAyfPgyhYtMDleuMMu8GLHCs8T4fbE/rYE4GZi/JO/9O3V69d0Tdf0w09XTaUPLP3G/+d7SAQ8T0V4mGXu5zlSFYQmJDxnL9St9ohcBqGMLQMji6DmAGDLjCMytkn0DQYQjiwrWnaQfdeHIk6pAp0HNAHNj5mw51z2byd8DLF3RRD6BTocmXELoCPCC2YcUWZUjC3/RnjOCSMDY9k3/hxUxP7YYZqKCOgdF0yUsSHR0Nkw4wARbexZRCkPkNVSOyQMJY8EFbVWDCKaqJi2LPe+5A4HZjmRBYSXAA4swYuOgJdJtsE8MQAQXkCEIlW74SX3OBqh7hcVg4ha33ETUBfBT+FlBGNXRFk2zNjP8p1ENFFEFmfFVHhR7QvlaQPB9xEIhyLMLRgE0x0BPQEfJ8E0sedJeXnJwqPy8qKIjCovL5Qn5lrWVNxyIClHG0bhRRzmodhHw8uBJXjaU+NpKLx8xHJ9y1LWXjLhyIwbIvQmzzsILx8VTPvCy0eFlyMEQ+OFHS+K6Rk3DCrUvWFZUbChhD+CHX6SB/wWj7hDh5/JN/ixvMFvpz1e8ICPeIOP8wbf6p7wkjfYIOHltMG30hM+zVvcosefHr+Cb6cn3PJQNAlEUPNIOkgUEdEjZnSU8BwbEUiHCqaLkGrHEhi4RV/LUiqBp4mL+DE1e2YV0aUmYIsEEbZPVbR3W0TRj04sORXxf6rtwFTzJHlUoXsZ+FI9LKCK7rJsUyECnhVMhKYFJrorGgzoihBqRi5iy7PhSfQzUuGpE10SltUyI0lAoi/fQAR4JV8jz/iEN0W0VsrOXts50yb0IHxS2oS7KtYv9z/vRDj7K3cT9qPIefcJ+LHbGU8TYbcdkRLw/NkB49jhcOzATPjkdsRhSjhOhJSAT3YZh5nBacbQyzalxIxpSgAImyEjdxlzlr8zAyllzHPCbnfEzc0Rtzd7vHl7hz5lMCfMEyGljGEz4k/fzfhf/5nP8Z/+zg7/yW/d4n5K0FHAUqg7blESHnSlgASZmiC6aqD8Qn6J13zEHhP6cl2HLlJWxH4CYyQJ8A1FvBkEbFjEticYoW6k2l/pv6nIdW/K1qaIK6sA9AFzE+Y2Ze2m1A8u71AbaIHbibmIKzfxcWI9AZVrWRRh7lQOtxBb2uJW1jp06Fk0cTR4p+LJA5ZC3RVT0ZsRkV2qdbgrdbgdNHFaqNthKvXJCaqzrID5Ndzimzzh2yyC6r+Yn+NrvMO36Al3GPAzecBX8xbfoj1elnbtk7zFt9ITPuENBk74qLRzX81bPEOHPz9/hN9Oe3wNAz6iHv8a7vBbGDFwjzvu8Wemj/HtdEBiOa3qT4+f4rO0R1fq+780fYrv0h4ECWj8ieljfC8dkEs79Cfnl/hePuKYJmxSwp/kG3wPM76LqYiFc+lvhOk7lj71QMLLTTmV60C56htuOGFfhIa70iYcmHFLhI3pTzIDRISXpb85lO/8ovSRqgf4Efc4sKwE7kD4CGKrQPRzyMERnbblLD6KCH0DdyzbyPYQXUAJWMhqyY6o+Ami8VT7pyyYNqXsDCxakjeQPrIvvtGWpB/+OEn/uGcJWKhfMJc8fVRsgseUSllTzKqJ9xzio3bESInwnIrgdAbGEiCZWLUhZZJvyxkHykWjR1bx7tF4GQomPYBDebkhwlB42bNo03XGPxtrPy8YQBJ4+pj74mfI8z4uvKi4+Mvis/aQgP5zJowoJ4MSiV9QeM+QydapCLbL4TTKS/OzN5xwKH4ylT73AJbT5AovRwCb4icrT4fSHr+E+Dp6wurHxVfS9uSjgqlntRsGy0tC4aWUtT0Dc+WF62EzOlbQA2z6gmkPbvUrljXDS58k0HgsPiUVv29D8k1/4z//Ln753/06rumHkxjLrZd/EBJfvuWa3iFdg0ofWKIyG0OlUc4ZeGRxZDbFWVfHRoUfVVxvgygIDSfqKeJ7TbKzL0GG+9ICdcWpfSwDgg5yOsYIriLXt2ZYorYVT95Bgj2CQVatiN5Ds6mcdEHl3o6B0WCo36LYumS+YjIzwj2ZZcrlpKVbAK/NjO4dOifcfYeuNrqKoTP2Dbz45A4wmMRJy1kCS7qEOJWBp9oceTEz0Fa4G0CxJTELJ3cdcJw9Lw8rvICabXnRoNgqJgJ2BIxZnCflBdzK1hbi7JzjhYw9gNzKsZ5a48Usp810LEGlhqkzor2eF72uz9CypSuMUlltZ8WOd4WX/RlevFA3udVBFkOrPy19RB1eosPnkgU8Q49fzM9wX7q7W/T4ufl55WWHDj+Tn1Wmt+jwU/kZ9piduH5nBG1VwFaF69W2Ir1WAF1PkGmCuDpYb7YVU25Cwy3IkCABazldxou/qigvgn0oG3ii0L2+k4INzE6k15adKI6szzoYcdc+3G9n9gVDhxETwEBHXixZBvxeMH0HGYTaNsFivIU/cGAL1bxgJAJuNxk5l80eBNwOjN3AtSxuNjOIGE/7QcrmkLHpgHHuxO4ZQ9/uJ2J0fXMFU4LTV4r2ZjPjK5++wds3t2CWUFDOXTkdDvhkm/E/+plH/P3XG/ytL2xtfbfU+Dttf8RbtHWJcoddyUmIBxBIkMOK9Xdogs1NmBvGbhvBtOxZgdqlULcvawMIclBEs2O7dU7kWsvm3olay0BYy1pCE9rWsgaHwYsnR5FrPUWu5Um+ia0vKkystuVpCPVpWMFg/YJPMeAjDHhVfvOSB7zgHk8kgcRnNODneahO/C16/Fx+XlHdoMPPzs9wUwrEDgk/l29xU5ZMbJHwc9jiLaS9H5DwzXyDPeTQkQ4JP5lv0U6dJHyNb5wo/I/lnavzX+UthrwBkvRXX0WPj9HjTcUsKzPuy29EEDphIoC4+DpBAPrO9Jnax1Y/gGQiaZ/Ff9H+Zi4nj2l/NDHXft5u7VZ7KXJdbPJ9C5XJl8SomPryrY6FCRng605APXjFY6iYSh95AzhMtwRMMyqGG0hARMXGd6DaB1cMpo9cOxzDYSqBhHH2vDxUXuSUx1zi1j3Jyi/U64SeW+utvNQ2oWB4nFWSQDAyUEWubyCB1MaLrx87w7NiirzoKaVUJskSMx5g6leZDFJeNDgvK2atn63+GVVeusJLFeou9swNww56arFi6gIvXkB9jZfaJxdMBOCebRvBVVB9gIjGa53vS8DMY1jWl2qX+rKWrkLd13RNv3/SdfvbB5Z+9l/3onZ9aZC5Ot7eLoZLZ4W6IbMYtqFfCnX7FPuEGDFePP/E77k63t5WoW6fb49hIdQd9qvrkeCaYjT2UkWKmBaChOGGIfASMelDz2HyQt1UjxwH5M8ftFB35CUFYmsQ6EvykrHkhUuwAljHdFmM0qcooJ5P8KIp8kIl4+4o+oBhIaBu3iEYGLZWvG99WawWCZoyUeC2Xi0PioKcimlhm5+dOw0kbpEClmUnpihQu7zf2/F+rn9y/b3+D1iKitp79ff2naSDnzMO7BdRIP30rQCW4rBPk394dJbHUUqCVgHZxsbVpkDMOCWjmQQkWgp1T1Ny7zkefa773rdUh73X//pjH3sdqVifTgl1N17g7CnwdKn+DKAvIdTtv3vUH4r2uwpC2zxbW0Wu1Y6C0ASsiydrW30OTHjXKQzxCcs2YP0dkYdTGO6RXXmW1Se+/nhMy7QsOz7N79gWt3euP79h8JgmhtMPk1PsAk/u+aQRmJNpIQgdMHTht+/af50qaxOkT2QDxP5dwsOhbNj+xz1V0lIQ+ry95GW9vsTnX+JFYfR4T16WTf1F/+sSL5d9Vv33dV7id149jGOlfyJTgS75LjFPy7J1npdT38zxFHhB4GXZzfvCFg/AucTLWvrZv3DVVLqma/r9kq5BpQ8sffPPfwps7Sw71+XxgHQ0Y7G1wddTirQz0ZktBgPUjqbX63sdk7If0Gm6ZM/wp0nNYOckj+C6zUDfa0+c66gd9asYRmqY3gmD2qz3+8RBgHbtdByLYQr2MWCa4DvQd+NlbpgoYMIS05Nqjio/YSTzvryMwT6wd/ypbMvTlMifDPguvOhKo4oBioFLHrzNwdWKvMyBt8jLAewCVxMHXiImw4tiOlpMF3kh7GfFUP5MceC95CFisLYeR69pg6VQd2cDTQyn58JkBrXcZh6t7USrg4NLoCrm2pxqz8sYeIi8YAWz5SnWL4I/LYpD/QGhrrbS+jOFdk0HxcrbGDDEgcIYMH1OU8AQy15sA3yA5HEijMarZm6rCQFgzgnHsQWBUgKOs6xkUr2kfRHmlrJELhBlg05a1o4hUPXmzY3Lf9fNbqD9z75/i4PJ05/45AAEjOwwrreTdiDBhhcm4BUdXZvgBjPUTgTS32nQ9NRAO5atWPamC9c7xADj+olxFpOWvZbn2Ca0skUgzOQxxeBbPAntUp6jzWsYXICez9cf+PoT6wcT8DoLUxLoF5F1hyHYsf4cQ9k5wAdHjtkH+ftQnxJ8MI3DO5jaCk29fjSYGIS96SOJsOBlDm3CSLOzY3k/BEx79oErsMfQBQyAbzsZ7PobLjw0DGULHdFqH0nUnn/Kv4u8LDAEXsYLvBA48MIeEwVMWPJyKHxUXgKGKfCy9Fk9pn3A9BR4oZWyFSeDzmHKq5gaL4TmU+rE2BTahNg/HQPGQygnkacpBBcT4imtS16snSNPaLx4TGd4IYtpiWEN09n6EhIPCT/zr19Pf7uma/r9kq5BpQ8s/YP/+2f44jHXgfIBwGszyziC8Yqm6nzNYLzCWJfnMxhvMePJODJPyHg0HegBwEMGdJR6T1y2VnGxM97SXO1HmvGaptrhHSjjNc3VHonxxhwtzQDeoq1aGQG8RhvsH8B4TXMNLE1gvMJUt7tkMN5gcpjukQMm4BFtFcwTgHvTSb8hxj1lg2nGG4PpiWa8MZiOxA5TLnmejf0mtwDGU+FFMR2R8XrBy4SDwRAxPYAdL0cmPM5tBcTrglvz/JZmx8t9wVCDIZTxxmCYCHiN2Tkqr3MLLB0IeBN4eVV4Ed48plww7Q0P98jO3gN4LE4YlyXjD2a10lvKeLAYksf0RNlhOgZMXLhVXubCi2J6Isabsv1FMGW8SlN1xCdkvMIYytrsMDxAtGDEFsfJ8vKKGQ/GmXtDM+4NhgeaFrzY+pNBbpUYgfDcCAt3ILwwwtyiKbWpp9Q5oe4SYHqOwQlzP+e+iYhyPBmK8YS5lk0AeKQJD7LRtZSdjD0apiMy9miYHmnC2zI0BmRw94SGcQbjyVw/IOMtjnXQl8HYY3KDwD3mOlCekfEGRxxNfXnC5OwjsrMfSDR+an3CjCeD6Y4HPKI5yK9pxiuymMS29eUBbbCSQPj+U4+pUL+fCd996lxg6e3DFuMk3fZxTPje/Qb7UQJLUwY+e0p4mFoAiYiRcws87Q8dponaisUETHNzAx4eb/Dd770wQacBzFTtv/x5wv/q77ysq6r+6ne3LnArG7FaWbBbs4AyADH32zJDkADtP01v8doElqbSTuoKhBktOM1gfC/tHS+PNGJv5u33mPFkytqIjEdT1mZiZ4Pg7t8XnmtbjoxHY0/IeDBlbQbjAaMLJNmyp8+wwYBY9p5o8vUHk8vjEbOrP1o/bGAtYrb154AZj9QwjGC8xegw3BcMgJTRJ0wGk9Q5xZAYmLnDPreB8xfs+9Q3NOOBGqYHmvHW1I9D8AsmSFvcbMLbuQUw3gB4hVzb6kdkvKax2sdiTxWTtKWjwfQW7AbKDxk4ZCmnmRlfsG2rGa8w49Hw8pZm3FMraw/JY5Dv2vpY7U8UwwMYb9AG+/elf1IM2rZP5nmvqfU/M8QPsZNo9wCOpU/MzHgD0bIk0j5W6oPe/xoz7g2me8q4D/3LW+PrTADeGl6OAN4aTG9KH6mYHonx2mA6gh2mGaj+mvJyDzaYhJdj4WVmxvfBrk99janywmC8pQn31NqEJ8qurB2Rne8zFwzazr0NvLxFXvFRW1mLvGQAb6j51ZGXuTz/AMtLqC8B0wNlPBhM+1BfjiXfLUAjfrL6rG+Dr/NYytZc7894ZTDNJHW2YWq8KMa3LFpHyssXyM73iWXtDSY8mLb6IdSfQ+BlCrzYNDHwxT7jb/8nv7O8eE3XdE0/knTVVPrA0j/7q5+DIY7NhsRhYgJe84xNCVaAgNeYyt5uAAl4wxOeMGPgBE7APeYiQE0AER6RcWARptwg4RGMA4tOwB6QmU1mbAHskZEJ+D4m7JCwp4yZgO9jxK7otczl+hZy0lYm4AtM2EK2OyQQXkFEp1U74RUYm+Ikii2YGFwxCCYCEvCWJTi25QQkWcKvwuAdifbTAYwtE2aI43EEsGPGnrjMEs7YFZHOmYDPMeEGSXQEDKZcMCimTflu32fGDly0OAivsmgqKS+vCi+T8oSpafUk4DVPGAovFtOOE4hEJ+nAM3YQLZsnJhwnxoa48MI4MhctEtEJGDFVTJmAzwuGsVxX3vTkny94Fl7K4vovCoYjZN2Q8nJY4YVNWesLL695wiPI8NLKmpQtcZK3hZMniLO2AWNPgmnEjC0LDxUTmq2YmGW29wvDSwLhCwgvHQhsMD2Wb6C8jJTl9ynyMoqWleFlX8paIsI9GPvy3bcgPGbgkIWXQ+HlUK7rdzsueDlih67qbmhZ61nkj1XMmFGOaseAQxEaBgEfY4MDiwOXQPiINzgWmyCivHOpXyKgLiK+I1S8f8ANM/Y016X0XDjPxDhixsQZfflOYBncbotuDVPGA4tY7gz5jg88YkDCATMmYrzmQ70f5jogvD3yiB4Je5qQCXjNxypSzJDBuGhQJIAIe57RIctAk4B7HtFjriuxnnguQuIJHUl5GYuQ+ESMCXMRRpa2cibGyEds0BUdMhnsbsB4pIyRGN/F6NqE7xX7jnsZZJb77wBMmfDZfY/bgXHMwMyEbz92uO0ZzzcZ247w+u0Wm2HGYZay+fnjgG3PIBKFjO/tCW8T8MnNiJQIc+6QMyMzI2fRzpgzo0sZXWLknJAzoUsZORPevr3D09MWz58/yUdGOTmOgV/fA79z3OJ//l9+ir/wE0/4G59vCu/CvdU4Qil3NqXynZnlfnsktQZTcgL+Eb3BCx7w4/MOL7GR1angyuUEGVCPmLEvs+HKy0QMsMyyD+hKeeciYF00lojxtvCmZeu+lK0NulLWRKh5T7Mra4diPxRby+49T02/y1wfIKvLnnhCBzkYYEMihit1CaV+Z0xF9HcmxowZE8+Ct5a9GZsVTFQ+o9aPoXzZhyI2PZZ2TzGpZtkDJI9HCKY3oX69LbbqpzyhYeiow54lSPOiKC/dM7CfZVXqTMBD6VOlrZQB6QHSlo+QwxqOyNhxV32P/z97fxZzy5KdB2Lfiszcwz+cc+6tW7fmYrFEsjVYokRSk3uAJVM21HZ3wxapVnsADBgQX/zkBwltA36wDcjSi58MWDJgoB/c3RLdkCDb0IModhu2JVJkUaJaUostTlUsklWs6Q7nH/bembH8sGJFrLUy997/uUVWXdXdUbw8Z53MnRlffitWrIiM/MLG4gMIXy+xuIfoV701MdYEvNQ8gTM2INyZPGJdeMnG7phM/5PrpPg7nDGg7FSFhHcnxoNOLJX7PBah4ik1TGsuMYEn7Ej63BGMMTH2nLEtO2dJHaUPln5U+pMNqXA28A0w1pCXQJPJdfalv/lGwQDTX4nmZRKeSgxbF3HldwAMrO1LJhceitB3NhgGJkyJcVf62E3FJELkW+4k9yl9qmzOIS8ulBf9AE0x3YExmrzgHlPN5zYll7GYUsH0VsGkvLxteBmQ8G4WAWyuvikvL7rKy4SdYiLGPSbsUDABGIuvbYt2z44YB56wQSrPmvD1guEBosOp+dk9ZYwmf9tXTIWXimksepGp5DZTwSRxQXlJxdffBeMBIlbOJgcVXlB5WVdMjB32WHOJ46WfVV72JXdZgzGWCblvQITl74kxEtf29Vhz1LHk3b69aN6tvMiOmoR3mDGAiw4m4R2WjVK4bOX5bplM7kAGk4jdZ4Npw4SJgAfO2JPEgMjLKvDSk3Q2e8jKeAD45b//VfyhP/MpXMq3rizM8V3KpQC4TCp94EpSESXIG4Y9UD9K34Pb0meSty+7pjRcksCp6jGMZUXHVRFCnAi4KzvPAPIm416jT0nQHuo7CEkMHqAfyjRbqiMJoO7coYn/DrKTkYpW7uE/vZEdVFqd3WdmFUOz5S34JNsxQ1bf3CHjGTrIcmCZXNLkLINwb+6XSd74WAz3C5hUwFgxoXSYKIklM6qI845RJhaWeZFEM2DCVAbOgukOE25K8x5JVvOI4GTBxED5lkkwGF6WMEVedDKur5gYHXNdsSI7pqB+UiW7v0VevK8dAqYJU90WeySZ3NDtoieg8tB48rw8UPaYFngZAi9JeYHwMqBp4+xYkjbdB31fJjBP8TJikgGewRR5WZf7VV6KoO05XuT4VFeHKKYtUOSH5X2gvrskiADnDm0V36YMsvW4FTImNFFrtUXIO9WVIzpJ+1g+A5HJrEoMMskgUsceuuLhmvta5z3aUhwdXNsY8VgmCNW/ZSDeBu8jsvOlPTIycx0cyyeOuU4WTDDL+uvv4Y5nnnClcYzM50cVU9tRjklWftjVbvajMI0JCPZQBm0A6m49Q6nU/YHMZ5eE+1FWn607kVPeH3rsxsbUbiSMVVuIsMvA2/sOuicOg5Bzm+BhprpCST5dkMknLePY4xvfuMWzZ/foypK1Ml8KAHjnkPC3vnBtmHrFQlqP8M+mv3iHZBXY86lNXMXPm7Lxz0xcYqvawks9v9i6c5raa9ZJTvGdrry0UF+rGBd8bTQrZTT2Upmk1ePMLP1L8S1wFhFlkr7Lfk479zWPIZf2oLvoKYZVqfMMA+YYDrbOmGNwnz/pM+D2yetUnnxnMO15MtcrKzsLNZP1/zLJckeep3uasCq7TuYSx3q5AxgyyL8CipA01Z2mNBaLSHfDsAs86S6zGkP2JSZsa0wBwFzEral99lwcciTTf2GOYSLGXZlcVwx3NOE6N14ewBhYMcgnV2OpH0P6m6ojVXKdMWAAtYlZxbCqGCTSX5eYcrDXU16MPRHq50nCC+NOP/cjRgbhjiT2KqZ7yrjh5HhZAc22mAovJkzJi6vAU0LR+DrBi8bFseYVXNqX52UklhcYFhO49pHKy1VpH5oX9Nw5XiaD4QFNr0jzhClg0L5AeZsML/vSv16xtkefs47wMWAkNAzFt+7NZ5gTyUTdGp6XW5YWnwsvHcxqaMO9YrDt5THECNn9F7P2sqm5jKzk0zz8gKIXJg+i8NIwCC+2/QgvPRKYJH+7ownX1tcKL9a3lrqb1F8+uLmUS3m/lEtr/ICVf+2Hvaidvlm2ny+Am01y0BX76YKkl+aEktzYTx7mQt3k7HOC0FFjwHZOtY6mXn3A9BRB6KXv5a0eiw66tfQBQ8QUS/zcYzxj/3bzwoEXmRDw5ZV5CTxE4eEoBDnnhU7yMtepmvsCB0znxChjiYPiyEM8HjFEO/oiL2CYCXUbm9B2oGv3PI0p8hIxxCdwTDg11jnyEjHa30ex185oNLmJplIij7HEOi7xbktcEWO1HYAloe7kHlzkKbYf+cSH5uBN+UbyymsrPt29Rp2PqNsWf930kqReQ9IsWzH58nBIOEytwinJ6qRWCIcg1B3FwceDv+q/tl32HS2Rp70bxs6FuvVstTfoJCYUjHc0eq0SeF4GUH2pIfWhs0LdeWb7Okf9onOxPm5uEdvPFHzvvQh1Rzix9ZzDMI8Bp8XH232W20/EcG8+K5Proe7qpRhSwBRL5CX2J/M+MmKKvPjYPNep8phG+OfYYR7XIqboa+diccQ021RhFptP8xLjXBS5tseAItR9wtf0fHvf832kLxFDF+8Xzo9adUu8WAw95rxQ4AUWE53PKSOm2OajHXk5dv2GwWOK+Vv0NSzYjhc6z0usU9yw45xQ9xIv3va+1ocHvRTX4g1z8LWZUPeZPAEAfvcPX4S6L+VS3i/lMqn0ASuf+WOvI22sULcX4JSl914QOgoGOlFEOi+KGAdsQEx64sB7LtTtRK85Cgz6SSDZAt1jsJgEg+kgKYjyUlvtFM+v9+Tjg+4le4ZhhtEnOpYXAOd5WcAQRRAfgz0vvs7zSR1/3L0Bx1x8PAp0ipDqHMMpXvYzXjyGmIToZzUe0XEMSwLqnqfICzteaAmTsc/ysuBrsSy1D48hivQGoVT2yd3SwCIOJKxmjd7DYrQJqLNZ7DpYYr1nnCSKQxFf4u5scRAbn4lOHMfjtqaMNhhIto7mGdQ/ac5HxBTLO2H3txUvjGZMeQy87QEnrBrLWHRLRD+M0SXdYbH4IvkOnUF4PNjVSKiTSnob1WfSQsRu9ZDVWwKA79ucnqSdvQAIPGeI3pDykInxDpp+Ul88hUjsTMBX6LHgEV6+TvtqE8rnMmh8xcFWDs95LtYfefB2Avn2tHCPKNQdRa2jrZNtjLaaAEAR8fX2EqZzGJaEuq1vRQwiTGxFednFNablmKDnMokGn8NE7VpLGM7VOfJwQJxQ9PZcqJsdL1YQWutstYhklVf7rWDw4skz8fFzmIz2ECD9l7WbvLaUuSj8aQH1mVB3wCR1DJhMnFPtG4vp3KYKUVA9bhTRzzAsvbSzKzfnmKyvvTdelnPWYxgiLykcj0LdwGnx8WwwLbUfyUkDDwFTFB8/x8tMqHvmW3MB9VO8qFC35yVuQACHiQMmy8NTMEUeYh8ZCw2E3/VvvnH0+KVcyqV8a8tlUukDVv7Lv/MlvPtoxfnK9+Im6N9TExXNkG/T96YzeYQXsFWdhDZQ8J3DA03OvksT7oOo9R2aiKIKqVbhYRLRUbWJ/BJkEe1ttgipelHee0w1+RJMx0V55Z4clu96TPfJC6Xe0+SEVHcQ8VYnNGxFegMmkCwNrwKdhZfJPhOymNhh4sKB3d3G8cLyqYjdMeSe8hyT4eWRvDjsoTxHh8EIPyaSJf5N/BWBF3a8qMCt5eUxYNrD7NjD5VOLcNz71ugEau8Dhh28r4nArccQl+hb+xGMB8cLB19b5uUQeLGYGH5XlZeUXTJ1l0Y8OF688PBI7NpT9K0ehC23HeAIJEvni83wE4hTaR8xBvjdB/0Kp9pSSBPsVhdgacXX6a5HdZ/a+X4qi+DfFuvnClpSOE6QyQE7wGXw/A23/sl+NQfDf0aLcj07xfKhvIYtO8onV8xcBRHrDXTCyFTalHXH6Iih02MyyUTQmStmP4eViHG1Kp8lkhzfj53bCW7oMtgIoeoncmoPvZ+2/af3fnVFj1Q/HQbkE8LBPLcNenf+HUb8anoH9+XDnAeM+Jfd23ViSQSkR0zc2seX0gO+Ro/VF3813eFL6bH64tfT3k1ePdDoRN938LE6l/Zn24u1E5GLKY+Y3OeNe2Q8GFHrESKCbUXi95jchIZ8ctZs/QSzxYjS3sgLd+uje4THJML2BlPon4hIdJI0RiBjR/Pft1jNDmMutp1Y2iO7QeYBE8bSZyYGiJPbtesl2uYYDMZLGp2YeBRQH8vni3XSg6T/aJMg8lmP1lE212h1fqQsvlMxS9yyG3zc0+gw7GB2jmX5jU7KyARodv3NHbyA+gN53zos8PJInhe789iO2PUv9wHTvtzTCqhrbBZMvv8By2/sBMaj6X8y5DM9i+m+iMJreSz+7HlpmCIvE6msQemvKLu8YEc+n4vC9rk8RzuhYTGAhSflRUTkPS/38JuWKC/1epTxaPxfeDGTLoGXe8rONx9ocvnbHhl3OARfGx2GhxkvbWJJch129h0ml5Pek994Jbb5JV4eHS++Pd1RaC8FQ4sBykt7RppzWt/wGw40DMKLzxPuyWN6KLG4/p6yyzmXeLG+ZcsExruHCf/ob1+Eur/VJX8H/ncpvz3loqn0ASu/9NNfk6SAGR1kgAxS3Z/ypqIMSjuU0QZJArgvorsoCawIoyb0lLCnYnPCCj1Gkt0gepQl3wRMLHoWe4gg4LtoIqITMd7hA1ZFryWKhBIR7srvt0hgIjxwLm/2UIRUxd4rhiLKm8v9VVRUX+4/QIQdV0h1IHEodo8eB5JVUTpkspj2yEWsVTDsMQmmUueDsVc6/CQVTiWsuQMT4b5g0jpEXu4LL+MRXlRYuIcsU9hBxFwHTlhRV8VfV0jYoMceMtnTI2NfRtSCiRomeHFX5YXLc1bMg/ICwXDFXTnO6MHYFxHre87o0TQhlBcVZr0vAraqm/VYxZLJiSWvkDBQJxpT5bkxqYaHPLdduebII1ZIFVPjJVdB2hVSuaf41gDCFl1tHz1EiyER4b7YD4qp8HIImKC+5Xih2n5WTFgbXgYkbCACzyNEwFM/7xxZhI/1uY2QZ6AYXhYecrmntqd1EdRUTNfokEC44lQEWBmJRDR2YmnbIO1YufraXeBFeVIhbJnO4NmEDgNNW6qck3Xuo5x37nPRuAJgvlTf2/GNZzxfbTuo1xU/eubSJFStf8Dk6yH/fsv+g5z9wvm2xM8RhnJf/RWjTQYBMqlE9QTGOOnd5ToZOtkmp2yHjM7M3eVMYF3VU7a17rtCCkvaLvcqzDLQ9/65fn7XJtNyeUYJos01oW04IH7JNfapLsYjjZiI8YvpbdxihY7luf5C9xae8YAt9+XZZSRo/9Lh17p7fJV3eJYH5AR8Aff4Strhee5l8g5AZhG8nYrW38heqPuutDet/2OJW0Np87siyL4u9mOx90WYW0TeqQp1q/C29lcxju14qhgG6nBg1ViTTRQOJQYQ2ioAncTJRUNuRBOJR8UkzzYbTB1SqYP2kb0M0EqddTj8CKnjDopBjh8qxrG1TYOh1z6SRYtlVZ7bAfJC6hkGdCQvLQ5GELqKjzNVXjRvUKF77Z8SqOjMSdzaoMNEwMsiwL4use4OwFBicS7n95AYq/1Xb3i5iwLq5fiaO/SUah6xKd6sg/9c4uy+8kQV04Ez+oBpVeonvIxF9D1hJMJd6QuuuSvakyJ2rELc2t88BkzqeyoCryvAFJP60l3pfzalvexYJmGS8lj6TI3FdgOCTAZT8b09y6quVZlat/3+BgkTUeVF9MgILwumyguEx0eTK1leFJPq9tyX3EY2s0jF11C0gxIe0bR92GAgwPlazx7TUNqGaByW3IVT0c+UmBV52ZXnVH2rYhpdrvSyCtt7TC2fK5jQoSeqvFBtX1xXFltMqvdU8zkkZJJVl6OJY6PxtY36WuFFQ7na1reGEsdszjoFTK29TOgLLz2lEhflufWUKoYJDCSZeNpzFmnI4Gu2PfWVF5moGlg2NbC8bFljgPCisWkEQ7W7fvGnvoo/+mc/faqrvZRLuZRvUbmsVPqAlW5oCeNEZvBW7EMbYcmOH0ZEIBPXT93E9p+6MflP4Zi8/pHaHM634sbRPlAQQiWe1Xkkb08Bgz/OTgRRRHe9EKr9xEqXLdu3QRHT3ghCN0ytDnvKTX+o/P4cpjnGI7wUe8ZLsHeWF5Tl5Ox5mWE6ieE0LyOZT9OKHXmoIqERA81XikVMts7HfG1Hc9+cYcIpXswbjAVMc98zvrXIy2meGE0QFKx1nmOqn5VUTMd5sZh0sK/6EAQqST1hsSzwMgVeCH4FkSsc/k7Lh47c+pXKufOP3Y/M/45fe/4539I14tvUs3U6/tjdb4kw0z0i0k/f2vnuN0fqas/Qyag6kcTxCjQT0u7qUXLrrKgMDu3kXRds98khAe/SHm+pDhUB76QDvpIe670y/GfHDzTht7pHZ/+G2qW9jEXkvrWfttonxmogfCJS/LseL3ae2f786URc089g1Nb+REuts9rwQt2MMnFtYrVt8zNM1DY1cJisSO4C5ukEpoghkxHFhsTfwyxWw9mHZDARsAu87GZ9qOfhQP5THfkUrvnSSOz6/TFgGAMv4yyu+VgrvtdAZPLiyUzAPnl7d4KXlvvY2DzvX7ztV3w6EWrFAB+bD873fJ+YbR6B0P9wq7P+vvJkMZuNIhov1obzvQP5zSuWeIh9ZsQwBl7sR8ZLGHeBl71ZKRbzAPW1iOFUe4q+daDs8oCR/MYq85hg6ryEkc7kb+RXVi7noNHXIsZoewxiR55CroPTGPzYYY4pjhX2KYdYHWOArGJ6pCL+Xs7tV5dh7KVcyvulXFrjB6z8/v/ux5xdtw8uo4cqCM06EJ0Xdgll+LSF2jf+WqKA7BDc7pzw8Ez8NawAqEKppc4qGFg/ZygXPaZXEjHI4N5goHmdzgs5+hI//7EJKrAkQvpqvMg46jgvHHjRCYVTGOa8+DrOeVleLdJ48donEVO8R8SQF+4pn2I1TFEk9FWFuqOQarzfcAxT4MV+ssEBw9zXmk0gWcFiqj3nxZfomyNFXrzdc+Td85LO8BL1waJGUwLNhLrPCW/H8tsl1K0lgwUP6/nzRu3xep4oYJLz/e+jUPf6FYW6d+G4/fgOAB6q/pHYq67Mntg4ZydhDgl7M4pMidF19p5LQt2hPYxBqPvK13Eeq32Jmko3rDu5ed+KnyXaTzFjTGDHC2YC0LpS6FiJbX5JF8eW6FtR5Dq2+RwwRQwZUdskTgjORa3Pb2YR+xNvx0nT2L4ipnafp/HyUD5j1vJehLrP6XHFuLaKcSzYS7xYezSo5H6elycJdQcMs1gcMOzDGeeEuo+t6DzGyyHYsUReAMxE4WM51z5ie4obFMw3hvD2XNPJY5hrNtF5oe5QzuWU0ddinzvw03JWW2drH4KvUahUdwaTXsvmpPGTnbMC6nzat47lrLa9WDsKqp/jZalki2kBQ+RlqcQxzaVcyqV8+8plUukDVr7rB19DH4S6mblqOajuiNr2DbztTKpN884mdgTxLb68TD4+SIxJUUxgR+ZZImMxEAAmL4qYA6YcMERMEUMczHQcMM0wxMmEOYZTA/UlXiKGyEvENBdF9M8shTqmGS9xMOSPx2TvEDARuGKw97O8WF/Te1gMc1+LmH05xwtwBoN5A6jXP8aLXj/z3LcsP3Neln2tTer4kgKm6Fvz9uEx7IOd4CdQOkRe8AReWp3dBGW57DpMJa/gd1uz5wpGbw9ILiHN8Akqs7c7nfQxl46Jf51sYIlJukW63re3Npnrlz834WvxKCb+EIS6rY6VYrT2vq21ACB+0Zu37ATGKulHbcDIQNdNUBApySduahMB172ttOguqU0ErIfRHJ9PjF1td7CgpjE5+0+8uceV1VkKvMW2tseEx7b+TnZ3Qxv4qefW9kLw7WexzTebZlMyxwaVts3nV7I7kGsvsf3U9gLfXiyGGMcihjgonZdzMeA0hhjLO8R7RdFenvGwxFO9MqFq2CimOqlz9EVI7AN9nWMsjv1LH56JxuYlDFosJqa5gLr1NTuZpwLq2n71PpGtWT8fMETxce0jj2GiE5j0TpaXiEn6I/2tbxut/fgSeTknqB77nz60l4hh7mtzXmz74dB+nG8FDMdeHM76SKNFtIQp+lK0o8B69DWG52GZl4CJ4OyIKU6EnWsvMV8771vzHNZi0pd6x2L1km/VuBY3IICP5ccwxfwsljQQvuePf+jo8Uv5nSgMpu+8/+bR/FLeS7lMKn3Ayj/+f/4GHh9bKN+D6/JeEduTZbCZW2ehO2Rpp2A7F72QXbKvu69pZ7An0V1pdnadvGhJNJvhO5NE3u6J3PVEx6B1ZGOo8wRZUq3irwxZ7m938WJrc9ltLSwxtp30I2WPqfxe7SnYhNMY5Jm1TjbyMiLLp0zcEhKLUZ+DxUDmemCgI3JJ7y7wspvxwqd5CfaKkntGlhdANQ1O+1pGTM4CL6RJsviiJm8Wg02ODsG3Ii+JyGEY4G0CZjzb5fBj4CmX61sMcs8840XtjsgljI+UXSK/o+kkhshLX653jJcD5DOIhik7XrJiOsYL63Nv7cmuTmIwOiSsuTOTTD2u0Vf7mgeZpCn2Ch22xu6RcItVHcRdcY8thmrL+QMS64QlFY0eKjwmXBmR6I5FZ8auNlqjkzfQZQLpCp28ZS8TT1s9DnNPbnXcoJdJkmJ/Im9wjVY6EF5wbzB0eI37ulLgBTrcoHXCr68Yb1yPdWJp2zPe3E5lYgm4WU94frsr4tlSyRfbEZtiJ2K8ts647mVI1lHG7WaPLslxFehu4tuMq+0eQz9CQbz22ku8+eY36oqlzfqAlHI9/rs+/g387/6NX8ez1VgxdqiHq46MDi92NOE36K5OLL1De9HUC77r45jftQvwO2HK75pvqii2bfM2zonvNn8n8gPlHsnFjGirhpmNizauZbS+wbZ5214cJp5PsNtdKBmMfRHIrW0+xDXA90fdGQxc/7Nt3lx/VgfPS51MCbYeTywaSHaQuYNoRGlM2Bf7WBxDiFsdkou9Q4n9vg9mg4ndZ3LaN9iB6xQw2ThGITZncN0NVCfYpY9smMaASfvg1kcmZw8B0wESayumEoutr9njMwzwg3+JLf7FhuZsOvmp+ZceP5zhhQIvPXx/Ii+8mv1Ak6vzofASn9EpXvRlzpKv5YIhzzDwSV587pJmmFwuBPmcstnZYdL2ssQLoH50mpcJrY/Ntb3MeVFMU/m31l4QMHge5LhvL6d8S+PQMUwJc17Et9omJXvkmqO2Nt/aj/KiReJMw6TXOYrJFAbjcMj42b/5xdmxS7mUS/n2lItQ9wes/MrPfh2AdDaE9gmGdh66akK1IzT8a6KRSiqjtohHptrZJDA69NCEjsp5IHnTnmrH2ISJ9Z3RWM7XxFztVRFyHFntrl7PbouqaydUPHliFTstnSgxJkx1aKID5Q4EoiJ+ykWcuXRmDZOICk7lnmOts2AaAyYOmFTYuGIqgrRluFdXeujE0i7wojw57aLAS1eSk4apvA1jedOmQonycqp9Q6+8jKbOkZdUkx0qAqBcV6Mopm0ZgCsP+tzP8TLR0iTMnBcVW20YUN+gT4qpJkiovmcx2Mkg70ti62oUPa6fIY7levqJX2wver5NOnPhpa/tI1exVfWtHqiYJpZ3uI0XrrwAnhdrR14U01QwdaX9ZC48UHaYmpB+Ewc+xUtfooBikrUi8ulhx03oe4UOPZKIqRJhxR0G6rArwqPybIYi4in2TbE1EX2BNfY8YQ0RVb/GgNGcv0WPiZtvPcOqCJ1KnbboSxwSe4MOmblsFkC4QsJU7peQsEXCihlTuUcHSWwPPGEkmUhaQTB0JfZ1SBg54wUPGEB4Bi47H8oKrTd4wGPdAICqfcUdOhBuy/m3XUafgI/cjHgcZRKoS8BHryY8Thnr9QGJgGc3O4xjwsOuR84Jr12NOEwTdmNCSsCHthm3U0amjL6TdpFSxjh2AAirIaPvMqZMGIoQd9dljFPCanXAen3A1fbLePfdLRLJJAylDGbC9voBv2+7x3/0b/8K/osvPMN/8s/ewFuPAzqwCHsX/1YB+QmiP/JreIlr9FVLR9ubtmG1ZSOIMvnNk/gayZm6aQKZCZMMLhM+OthpmnwaA8p4DrnEbm1vKoirK9b0mk2gvQ1QrW13rQJa/6bti0qbtjHEthe1gTZYRHlpgXIN0eTTQSeqRh8XDOrPGWr7OkcMdqKFUTReCFUovNnLvAzhGdndGDMYV2UzAO33VfRXeYHBoDxpCNc41hWBdI17CR20jyUw1iaO1Vhs4lyLa+zyAhuL5WWR2INeDwBzFkHoMnGVeY6BZ77G5Xm0PEE4oWrrBhcOo8FkY3nFYJ77GI7HSUvLy2RjfcFAhUftI6eKQXwLwKz9RF76wEtX+n31vb76gelPTJ21/RyO8NIVb1Zb872JUWyqMcDGes0LuGJgtMmzyIvEoz1kQ4/Ii/W1ZOqs+Vn0rafyovmc9d064U2tT20x4Bgvre3syzNblZzUthfLg3BPNU+e+9Zy7qJ2VzEoL53jxfKekWseoTmoxt2Wo8Kcb/Jqw8NSe7GYtNgppl/6ma/hv/kffAaXcimX8u0vl5VKH7DSr9tnKdLxUrARbP+GIAfbLevHXLfAnU0tsWzX8yXe09WJUFcMWfuY4G077q8X7+kwEcygpGGyb3/i/ebXW3qO3s44Xif/hM//3tb1SZgUA9vjr4Ypfha29FyPlqO8PA2D2tV1WW0PIj7Hk75WfSv6XrA5tpcjvnoUky9tzQg3THqh98hLbC/WRrjeUvuy/v0UX7OWTqLpgTpoZ3njrRNBegsClR2G6Ki9Rl8TXJmw6Jzdw4uPy7b2nTtu7Q7J6bp1SJIwV5vc53upXNNi2pZhtT3O5vw12qczCYQrdK6OW3RVP0Xq3HSniIDtwNiUT9mIZNXSlbGHIWOzHqu96hnXq/ZZ2qoDbleNmURA37XonBLqhFJbwZTrZG3XZbx4cVdWKcnxlLj6/7Zn/OnPvo3PvthVDPrCoT1nL8x9RyPu9VO46Gvl73bCPLZHHSwvlnJanZhh98/uHu56FL35myhH2teSvlf82WIdawxgF6tj//NN1X8hRizxEnc+nMfW+C8xFntCTsYx8itc9WdH++CIAc4F5r9fOk5o4sv1mkf6k6dgOHJ83r8cqbNiPNFHno3NR56Tt0/3T86uvBypc/j7sePn+0xf3xzqjLMY5pj86pulPpOdbW/CC/Y3g2m5DZ/IdTB/rtPs/BM8nGvjsY5HMXH4/em84NhYoR2X38Sxgz8e6zR/Fv0qqrZeyqVcyrerXCaVPmDl+/+0F7WrWiclUlcB29Z/zErsbNynCaRaIe2XcTncNyvUHUWuYx37gOnc9uUM1LdDgHSYY8AQP9WPgppRzDXeMXawY8AQhVbr9Y/wsoRhiZdqB150ZYnH4O1vVqg77pg1mMkGd/zIPSIvsoQ9xx+4hz0XOj0d4ua+dRrjasZLeiVe9C2ePT6a9lN5MTDOC3UHDGd4mYmQBkxL4uZxSfx8YqnZCfI5TAsJNLtifK6xRN84N7GV6ht7tlBMwsqwCWzUQ4rXjAO2+gkDuR+48rWgqTQsATMl8nR/CDFEaSmn7Q+ds2WSiKst57drHsaEaWoVJmJ0RqMJmAt17/e+1n3vpbfv3rl29g999M7ZsX2uZzpUPgbUv5uB+ilfm/OCmSh8Cu1nHot9iXWOduyvjgl1a7Vim48Y4qc/Ye5AJuTOtJ/YemKdl3QNHaZjwsNLswJHMFj7HpMTnk+A0ziL7WeOyMd6wXTajoLQMfYv8W7rXD+7Kf+0JNTthbnnovCvzMuxPlIxhNmGcxtNzLWC5rHZmp3yUErEsMTLFHiJvhVjc+RlvonJ6dgeeXmKUHfEdK7MBaG9PdvE5AwvT2mPgolrnW1ZFOo+Xn0Ac17iPWOdzguo+xJ5Ocx48e1pCBjiBh5LRZpTu3PkJW5msVT+0H/v42fPuZTfviJ98Hfef2dc9VKeWC6TSh+w8uk/+BqGtRfqTkBIyqN9okNd6PnigLELrxHPDZJjyWbXJkCW7+JEEpFgMLHBBPubI6UObhaya4fhdAc9v2xIAEJCEHdNqslfuWxa4CXekQIvUbQyYupnvMSBxukym5DhhbVADoNJyo/yciTRKb+b8+LLOV5mg4CZb8WE2Zea/LU51FfnxTvvLDlcneXltK+NyO73e85hYIGQ/BlMvJzQxjZ/bIKRw5+2Tvbf5mKv3o6Tb3EgzogDc3YTwWxsXQWmk3dc/hzNlsZap2qTHxQDR9qHgfkWjQ5DnABRjTIte/g2dD+S262NGdiNBCL5e84Ju31X7ZSAXZkU0tVG9weqvwUIk1n2IquNwmR2Jgfi7uXWTaB3Rm8JAP7pbzzHu/v2HH7PG3cnJxuebyb8N37fV9wzs75WT1Wb0F6hF7vGMdPuUH8238Vysc0bTHPfPT2pFCcgI+/1+uZRnuwjQxzTVV0w140TV/GescwH5kdmh6DXp4CBPQb2PM1WA8c5WQIOphcTXnw517/YASsw5+UQjq9CJea7tc1jseWFnc/Jn9n4muOlYjrdv0RMsY+M/X7kNe5KuRSLrR2bhPs0fMEFCIReJxdO+Zr72WleZpNKZ9pLLLNqBl4iJsFAzp7z8GoTJvM2jzO8zAFFXpYxUa1znMw7h2mx17e5S7wr++PDEi8nymIECe3F18/H4qX2c46XpbzhVOkHwnf/0Osnz7mUS7mUb125TCp9wMo//tu/jrxruw6NYCRqHVxWO3Q+1lE6a7OsdrJvOjeh68jwicWEmIz5zqcLndOgn7eU32+Q0CMOjOP92kBZNSbsHUVzpWHoQVX0VzD5Gnb6e27PyS66ZbD7RTqGoZQ1de73q5KE6xnTAi8dnX7L2AVMK3SCqSQXG+5gNzmQQbbFdJ4XW+d1wLQln54yCMlcTle0neIlYhBemr3WHbXKf3WQyu0ePqjNeekcL533LeoCb56XQxmcmyqio4ih2RQwEZedzcwF1miYZDLED/qib8VkrQ88bIpWj/7+SocNtv2R97U4WTbHQA5DbzBIndlNytzTiF1VtAIeaMQD2qTLRNnZB2Q8mvMfacJdVV+T8++tDcauKpmJkOo9Dkb/hrHD5CaWVJyYIML3dzhgh6ke32HCTgfGDNxgwKaIjetElJ2IHZBcon7DA+7QBixv04S3aar2I2W8TaMbaN6hDTwTCF+97+vE0sNE+OpDh8cysQQA796t6sTS4z7ha3cD7vcysTRm4KuPCe/u5XyijPXqAErtM7dx8lFrZUS7AWB/GPDWW7fIJZdnTuj69sHI3/tKj//1/+cT+NqDXOcnv/CsbmOufmPFYf87/84v4P/61/4Ovv8PfLnepQ++Vn2TxLeq75LxNTOYsTFD7+wmC2A/6jaT1+Wx93Vdm5QY66M9hjafARfXZhgUox5jH1cVk62vnmftLnyzYmN1Bz8h72IKRIQ+Dt+sPcGsskSJ1UsYip3YDwiJ/TPvWPTOLC+137eYTsTiFXzc2sD3kRtOjkfVlrFxrT8Ri1OwO6a2yyTJ8x/0mZBiYBzzNY0Jp2LxKkzZbAMmBqE3zjUiTmDQaQygwIP+nt1LgohJcx1tK+kEL4N+jlzqtA6YhtCe9sQOU4b0Nw0RufbRRZvJxYDE5pmQvnBo+R+XA1ZHjOCzox7JYVqrr5USedE+0toWU5xA0Wem/9LD5w0NE1ceyBznBUxxEsZ9Tgx57r69eB56+E0UDmDnW7yA4RQvPea82Proa6HkMPjcPAVMT+Hl1CA1Hxg/+5/92okzLuVSLuVbWS5C3R+w8vmf+7oL9DsdLEFFnmXQ1VPboUITGxWgTqXzikmWbj6tCbMelw8uyu8ZYGqTCXLc26rN0dfrGZtlGa8kc3K9CSh6LTpAbZiYuUwEUN1SNQcMUnfVaJGbasfG5R5O+JRFf0FqoTsLwWGog9BidwHTwNQwGIxq76GTB/qMGi/Z8NJWXixhoqOYMjNyKiLRBWM+wwsh1jktYlIedBJJ7eYH8oPIS/Qty0sCu4EM1zq1F2eZRRS4+hrMBGPgRe1jvhV9TzFn4kWMA5pIOtAwKYa221MclEReUHkhQGwy9pH2kkAYynEVAu4KpqFgSmCZICE4TAfra6yDaMtLS6KXMEzFySZwXXWVi8i3iGoTpiIwP/K+aCIRmBgv+VB2RJJk+55H9CDsMSET413et+SZgDs+FMF2ET595BEJhB2N4HK8A9VPlnaYcIDUIVHCDhkHLoLuBDxixJ6nmlzvMeGACdvi3Wt0GJCw4wn3NEEEwnUXRk2Kxb7iDiOAdwCswHigjJGAr2HEGiKkngn4erGvWaLCuwB6MG4BZCb81l2Pdc9FEJXwlYcOq47xfJWx6YF379Z4eJywz+L9bz0MeLnLSEm84Rs74N09442bEV0ZVXBijIfkNMEIQNcJX0Jbmfx6XGO3G7Dd7rBaHZASg4YRnAm/vuvxG+9u8T/7O9+Nf/OTL/ELX9/IKpUqCu83IPje3/tlfPiNB/zNv/G38Pd/6hP4y//HH8Tn/smbtb2pELxu2Z1qXJTY3ZnJDOY4gSQ2U5tkUSHiGtdM7NL+J1kbKENmqvij3T7v1jgWY0C7Hrj1XxoT1O6gE8ReqFvnD7Q/mUpga76WMZWJHSau8wWnMDQh7To7sYihRyp96NT6UHN95Ul5oYrBDuK5DMqbPRZeXB8Z4hhMHNM4XVGUiQT9vY3FWkeN9Rq3NK5p7NZYrH1oQotjIqZM1WZm9MHXDgAoNd40zjVf05cYDYM+N43Fts4MeUlhMU3wdXZ5A5d+nxoGvb7arX+S3+pkv7SfhhvQ2N4wJZQNLogrpoYBFZPmLo2X5DClgHGCz31a/+Lbo2LoHAZUXjQmtFxJ7BFcMJQctYC0MWCCxoDWR6JgVl5si4m8tAlD3+8rpjFgPM6L/H5V7qW8ZEjOqu3pUGzFlBd5ocYLe17yAi/aTxNafmd9ayq+FX1v2bfa9ZWH3vICrnmDjhViHqEvTywmm6NGX8uYY9JC9U/Cr3zuG/jX/yffjUu5lEv59pfLpNIHrAwbFayVEt8idEh1GbtOAGhn0MI93HEgDtbt+XDnL9l+0sJ3GNpZn/p9fctTE4dYx5ZM64DlXJ2WMNn62Tp3C7/Ps+t5DBFTtFP4fappbMM3nuDlHCb/Vvo4D6d4ide3GNqfTS/IYlIcp3wr3mPJ18o/gAiLvEYMc16ejomAqhUUMSoeoK1UOYUhHp/xAtTBhD2/W7g+heOnMAFzHue+Fnk5jcG9SSTzaUHxr/o5HqFoe03Yclm/RbJKqT5rAtxHZOU4uE0sjWB0kN3Z9H71nlTiFec6sZQrP1IytZgmNuPAficlrw8ju8bdYyq+Nl/mL4lzK/v6pGWEvrNHi70mRtHexlj+W5UTdiOZGhD2E+FhbOLd49Rhf2h1GHPCZL6hHZnw7r55AxGQOq2DkFGt0n5sYU64v9+i70d0nazUoY4xdPLbQ074yS88c5gYcJ/cMoDdvq/3/9f/+K/jh3/+DXzun7wZfL89x3kMeFpcU17qm3kT10758lL7iDY9yebZcWD+Zv4pdaisVUwJB54cplfH0CaH27+3OKpt/niMOM1LvOfRGFEwJbT1ZMfjVuwjI6Y5BmsDbfLMxjmgTYT4Okb7NIYOGmuOx+o5Jm9bXlp/4zHlgAmz84/dAzM7Yoq+ZgfvT8Uwr5O3NXNpfTCH45Hn0752jqfIizxRrtd6mq9FHjwGAiHmhKcx2XtG+2m+5uyWdjyZJ9vGlzDG3IgChnNxLB7vTM66xItORr2X9mPLsLl8cHMpl/J+KZfW+AErfyCI2kWh7rnWApwNzAcOUaj7YG0siB4GtzsnenhOTNl2wPV+JzDFm7S3msWmINS98PM5pphY+zITPQyCnfXb8XKabnM9w9DGzjMMS7xYTOeEus/pEsRnEL93PyfUvSigbmwsYLDPLcOLWteTjHkOU+Rl5lvBjsfXAdOr8qIrjerx4GuVlxOYUiDinAj8TKg7aGosCqif4CViIGCm0TQXT/blnFB3bE8ndwaEWR2pK6XKcR0iRaHuqJHB5lxAOKmfwhUMPdPcgUy5o9HZq6PbUkrZBQy7cFx/rY/+YZRVJWqveq21nzSr9dn1eDTi3ykx+m4yVybsD8lNKFGIrYeDf+/0+29Oa1zEmPD//cnPOvuH/4T/VKG2l3LbbPAAR0ThjS8mzEXhZ20+tpdgxzrPN03wT7YP7SX2P1nreALTrP3Y+mIuaj2LxQHDXH/I23FIdlSHit0fT+ZFhLpbe0mYC3XHmBBDwDmdm9jvx/YVxZSrdYSXiOE9CXWH/mfOi/+Ho32kYprlRt7X2o0UE9eBOXBeqDvNMC0IqJ/B8OpC3d6e8+KdbgqYDgGT+yQehheD6Rwvs9wl2HOh7tNaWrG9jMd4OZInRD0wqG1vE+xzvESXiSLwTxbqrhhOC3UvCahHjbOIQV5otH+YC6if7m8A4Af+3U+ePedSfnvLt1tU+3fiv0v57SmXSaUPWPnE73uO9bolKgmlAy1vPmRQ244TaJZEuw6X5oK2UZgxCjeuODm7Z98ZJfadUQY7e2J2OjuSsMJgWMIUJziMvYCBlnb7OIGhajHU34ckgT2GHOwJcCLWqTyXZhdeTmByOysR3JseAIjikuuAYYkXl5AGnqwGACAipHFyYYZpiRfz1q2PGIJob0x8oqBmxNQHXqJvIWJAdjYDztc6Ozhio51lMPWRl4AhBt2Iac5LFzCd4YUXeDHXT+AZLxbTEi/DCV6W3iEu/ZtNQOe7ufnjtHC+teP5CTJgJGqfPekbfj2PMX/DXOtFLbHgUgErPLxUJ4ajAbuQmnRM4fw4iI3i5fA7YHHhkiT5noKtuj4Emq024nJkbyaViICu85gyxwGfRzWOnRuQ/bc/cY/n6zZ59vHrPT68bbvePbt+xHd96GW1//k/exOHUjEG8H2ffQtvrIzvMOE1XjdfozDYIeB5XllQ+BCvXJ3jAHAF317mQtvezmagBLS36fb3892mTHthHxMkTiSHKcU4FvqvOPCOE1mxf4kYuP4/g8mU2BoTTkwEFwwWoz4He0EKdjYvRggkccxh8HVeEqU+xQuHOLYKvNQJRr3eAi+94YUXeIkrRlZhYmy+49xpXiKmKWwMEScTevgJEonN8L5lbIbPE2aYYPIAPoHB2bG9eAwINgeeIi9xx7noWxxt+P4o9vsOg/ZX7LOd1RlezmEYMOfFxQDGDFN3AgPTvI+1eQKBsA55d5xgnPX7ZzBF34u7s8W4Bva5Di9g6gMvMQ+Y8XImrs1eYof2ETHFfxv6hE//gecLJ1zKpVzKt6O8ryaViOiHieivEtFfIKK/XP7+4j1c53NE9ANPPFfv88N6r/L3HyeiP/+q936/l3/yt34d6bENKjPkjZ99i7hCkjczpfNYgdpbDhYxvUEHvixCwGtjX3MnKzpMMro1nXwCYaui0ZBE7wp9tQckbNGOb9Bhg652eFfoRJTQJBxrpJZsFduuLNigEwwlod8g1YSRGLiOGNC5Xbg2nKTTLzaBsAmYrkydV+iwMZjW3DWhbIgAYcUAYIuEDWiBl2VMgqGrvCgmy9MVGwwM3KCDHY4lwGEgEDZmQqMLPKyQsDWYrrgTIcViX6PDNiSQm8DL5gwva7RdUJYw3QRMKyTnaxR8TXyvDTJX6JyvbbkTIeti36BrPEDqE3nZcpq1l85h6BxPlbeCacsFc+UlYQ2FyPW+sb00TJ3jZY3O8SI8pGrfUIcNbLAn134Y2n6otifLS+Ilu2FSvQS7GuhQ93OTShyQ3cqAJflNNvhFVNueHz+D8OerXtHShJH9BEHtCRkj8Wwb8/ppBgNr9A7TviJovykUynMOX5M/kn8GbJ4RIDHAYloDYGpTv1P5TyeS1uUzNJ1AOkzAxCQT1CTnTWiTY33KeLY9tCfFwDj1ZTWS/LcaJjdis7LEALBayQSSPqZPf+Rt/B/+W5/Hm1fygd+//Zl38L//47+JT9yI/e/9/i/jr/zoP8L3fuQdAMCf+pFfQH6dkQe5zU/9ve/FRx5ewy3LP9xiwPfm5/hQ3tRBygZ9HXCtOOEz+Rpv5o34ARO+e7rBp6ZtGeiIpo2dAO+RsEHfBh7osDYxILaXLfdYmfay4c7ZGXC2DAA78ylsEZgtdleOd7W9UIkRML7VbNEoSk6LMCG5AZhe08Yxa2+4c/3TFr37fUIKAuSEtdlYQeJmfxRDB2pC2lBMXV1B1TPhBQ8YAiY7QS68RB48Bnv8mnvZ9KP2+wkbNHedIP1mMrxstc5on60qhr7EUY3NPUtf0dcBMnAF0UOyGDRWq73KLU8YkIJv+TzhKncu17lFj40ZzKfSvzSBZnJ9agq89AHTUM4/holK/tYHXlaBF8tT5GXLvetTr7hzvGxZ+n3bXiwG9S2d7OpLXtEwJGxMnzqAcGUw9IUXja6Coa28Ycg1ViZ/WwVf28L71lXuXK5zw53jQftIy8uGG6YOEqcU0xAw6f0rJqZZLjQAjpcefsJvVZ6LYtrMeOlc/nYV7DWnOQaTN1DwtaHk4RbDlj2mrcnfegY26lvUMNgVUQOSGyuskLDWXIaBDXrXfrbcO1+8YsmLTZerlRdh/QPjcz/+RVzKpVzK+6O8bzSViOhHAPyHzPyD5t9+AMDniOgHmfmtJ17nBwDo706d+qeY+ScAvADw58t/dinmX2Hmv/aKMN735Ys//1aZECFMzLiHvN3flMHJnjImks4nc6qf5qyRMIBF3A9UdisTgUvVjehBGJnrgKADMLLs0tIT4QYJIzMewegp4ZrlfBEQlEHZaK53hQ4TM1acaoKYmWUHsNLpy0CqYCjn75CRCdUekcEkifa62AnS4a6gorsNU2YRSJTdLxhjbrtvdQXDgSQ5uyqYD5Dd2a6LDehEU4+p6LXo5MBUMCSDYV1EDzeQwWHjRc7fU0YmSc4UkyZr6zKoTyWhHcCVl1XBkA0vPaS+e9LdzRIOzHgAo6OEK8NLMhh1p47rwpPu+rctz3lTeREMBzCYxHcyo/Ki5x+QgcLLikUkPpWBQy6DYBkMSZ3hfE2EINXuwDhwxoEkab0B4VDuIbx0GLkJzN4EDOprjRfBMMx4EXHLq8LLjibTXlr72KBHZuUhYc3AICMTxwuqrwnGPYAHagLQtr3cuPZyghdWTAkTA5siQLuBaI89QhNM4eURGWTayzTjhSumlcUEwfTIU52xYuWOrC28A/r5ogj7LhWdKNKl/Xp+H87XyZh2vkylqABwH47b4bSIipYzS76awCDST+jE7zpzjQyuGBhNGL/dA7OVGfq5Ti7na16cyy+68Ha9r8f9nzqxdEWCnAEwM/aT1o8wcRHdNfXZrCYk5YWBnAFmqiuaCNyEuu2zJZ1EYnSdSvdKe1xvdvie7R7/0X//F/H3f/0Wn9pmfOxqwv/pT3wRn/vyFb73s9/Ah293+D//T/8hfu7zr+P6T/4akAiH5wwagV/8xTfRIeG783Pclw9bEgjfm5/jE/kav5UeMBJjjR4DGNcse7V9PF/hDaxxhxEdCB/LW3wor/Gl9IAvdPemvYiotey2OeDAuTxb4VPbi7SPAWPR3pI2Ke1Bhe6HYo9FxFqPH4q9rm2+tQ8VcJc+sy8rUlXMv0MHLjupiff0pc4jtXY8ImOi7GwVF1YMOsm6Lf24Ytoguf5mhSSffUFGfgNEOlh3PVyhQy6xFJA2n5mhk68VA+DOp/I/vd4Vd+iQWhxjYJ8YK3Slf5lwqP0N4cAZCSiTaRKrGy+l3y94tyWO1T4UIsR8KL6jx3ckvqr9i9ZT+swMKrF8y8JTV3nqMLDom4k4v8S1HYBdGUz3pX+ZSJ5tzyK8D4NJNyXQTzBdbGbpf9asmKS96mYVaj8gI1F7BrqhgNpAmwyYmNFxtMlhanlBwcQZSFw3PxgtpsKDzedEa06ueVMwrcpvt8XXVPRaMYykk2EtH7OYGPpSTtqPisBrrjMcwVj7G6C0P8IAxp4zDgnV1zQ3WkFW3B441wnbhqn4GqeASXmQ3XfVtx4wIZl8LJdv07YFg7YHtbuaN4jds8esItaKac/SR65NnZkapgOy5yVnqJC25pwtl0nFv337OdDkeJH8q9mE9nJUnrvEwSuW9tNXjFS/FhBeCAMXXlJ56VwwjcSl/TQ9pxoDkE2eTSUWl/YTeLkqvMg1mtg3gfDFn38Ll3Ipl/L+KO+LSaWyQujHAfwp++/M/HNE9HMA/i8AfvSJl/ssgF8u/y2V1wH8cplQ0vLXyu8A4OcA/FVmPvb7f6XL6qoNZDSYq7aHvPFNmMp3/9KBJbfldTKDOyt2yabD0OGT2DKp1GwqW403+8BT3bnF6sfoEmEretjNbCk6AKsdVLlnV7pK/TZbEm2PwQ44rbBqxNQSaQIhOwxjwGTFYSOGOSbMbNkBq2HombCnZlPgJWKgYNudeZQX3UZIE7DHgEkTG7XtW+0B5zHJYMVj8rxQ1TCS5CL6FoI950WLDnjuMRqb6qbzS+cP5prHMHQzO0G9TXjx7YXKIO4YD3baYQnTSnmBJM5D4cXWec+58jaYOyxjmvtWVwZlFuMh8DI5Xpbbh9pxmX4t5q2s/TuHQ+eKnv8qJZ4/f9FJx4+Xt67yf3NReFCbrLLXWXiZevQYIBNa9sApjDKxFRGcfoKjuSCRJPx6NX15oiuQ4vsXtdtCLvmHrKsNEvBvfepd7B8H5NyhI+CPfPQez28O9fc/+JmvI735Tr0gD8DwvH06d4XBrWq8Qo838gZf6h4AzOPaCp285a52wsfyFl/o7gFGEVBPmEz7WKGrsX85BrTVYtoeom0FbkVstoknS/2aFk8XWFlqL3FDgQ4JoxG07SG7FFpM+xMY7Lbfavvry8SkxkGJUm2nV9lxKhuM3hmegsG+wJNPtUthIJHy0ITu7SoqjdVzDDGOwdky4dZ2tBoNLzqIbbz47da1T/WYPOZBAVQ74dFhkF0PAbWNMP6R2BwxSR09pslgsLws6WDZf4v2sVj9YDb8kJ03G6ZV4DXa533Ptxft80dj60e/LZ/zmKwUQYe2Qsnz4jEdSntJxbfGEr+p+J7N385j8sLcyov1rbFMAikG+wyWeIh9aA+VsG487A0vKxMDUpnABtAwUVvd81ReIgbdRXgpZthcSHhIrr3oi7DIix1LrExc03wuWwyBl6X2E3mJbQDwY5pL+daUmW7bpVxKKe+Xz9/+bPnzZxeO/XUAP/IK1/rDAH6Qmf/U0n+QCSU3QcXMP2bO+YvfqRNKAPAH/t1POLvqHZUYETVqKNgAvJgyzYW6dSJBS5y5jB1DFCGNZS7U7YdXUSg1CnWf1wQIGhQUBKFp/vNXFYSeCXUHuwkUyp818TmCKfKiqxesHYW6Dzgt1B3tiCE+g7kIqbfnQt2Rl4UHGzHBY5oJdYdyjpdYzvEyvSIv5zAsCXVbYfs6sWSqPW8vvsQOfgo87MPxqPkUtbnSIiaPwd4zDgTq50i1+cwHRDMBzuAHUXshCqtGzFH3bUnY24r0RlHR2H5GtNUcimEwmAD3SAAA7wah7g2f7l4fg2bT3tXG3krs+5HqCiKgCXVrSeZcQIS6H/bmE6oFoe7DmE4KdY+jT9hfvn3j7NR7Xh7vts7O//WzUiu57h/507/oMEVfsp+lASJ+bn0lxuoBCbe5d7420ywLPMVPHqPIdfS1qHfUBV+L/U/1peqLHuOiULfrfubi41GcP7aXGIsjhhgFj27KEOOYaU+nRK7vMTlhe6cFVDC8qlB3jBExNq8Chp5jHIOzKw/FjqLWh1CHKNQtulMeEwEnY0IUHo6C0JGHcwLq7UbyRxS1XhTqNiUFTNW3TsyAz31rHlttmQmoH8srDC/Wnotc+/YTdadIbctLwBR5meUuwY55xLmclcNfzvES87eocQa1Iy/GPpe7RC84J9Qdf8jtLx5DxTjn5b0IddsyF+o+7stavv/f+8TZcy7lUi7lW1PeL5NKPwrgrSOfuP0yAP087inla8c+lSOivwzgL72XCn6nlDe/7xabdaNdlnuXZI8l8G9MIkMwgpslvs8EOGdJxELyZ/5pHQZ0QxAaThxEEMGwu2FP7EWoZcCHiiHxHNMaJzDQPBFahUH1AF/s9/hyvscQxcfjwIADJvm8ofW4HYpIqMMQ7MDLKmKKiVHIIeK36lYLQq/neYkYPE8ZjM4Ncue8rCwGnvNihR5BwbeofEJmipfsnfOyDhg6nic+EUPE2AVeBsNLUt+KPBkM0ddm7SVkk9vAQ+RlmGEKEySh/UyBlw6oOghg+b3ztaIBozaAtkKk/M4K2RPm4q8r+MkIq5tQHsMsqXa+hzTjwT01i5Fl4O8EaxESf/biycKTwYQweRArCJnw8HX07SeHAaPVUAPmcU0+37S/ZwxGQT0RY2NUeScG+n50x6+HJi9OBNzYoAKqn8hpGYJQt3sAAK6vH9zEUs7JHf9HX3yBrz2YFYVpcg3q8Nib8xn4rXURWJbVnh/77DcwrAuG+rNWxw5U9ZPAMukaJ/xjuWL/2iKKJ58TUwbiBKPfcKDTSZ5SJ5kw8e3FCdiyF4QGhR0Xab4zWpxEjULDQ2g/i+LjpnCIc9H3ZpisrmLF4O3hDKZkXvYQaDapOuszA8Zzu0cJTvtMqPWhmMc1Yh+rgdK/GAwr8wxAvo8kEK7Cc93iHKbIC4KvebHxOEEyMLm8gBgz3xpCnLOxW/pIX2wfSSBsZ7x0JzHMNuwI7YPgm+Uq5Dodm5cO6luBl4hpiJgCL5uw0i362myzi4hpFgM8L0PAEH2t8mIwzXlJ3jbXFwz11jMMS5jmvHiM3SxueV7Wi7y4RzDrQ217WuIlrvramGcivhbygDOYokg8BV5iWQ+Ej//eZyfOuJRLuZRvZXm/TCr9EICvHzn2VvnzDz/lQsz8V5b+nYh+GDLh9HNHjr8goh8p/714yr3+VSz//G9+EZt9donHNRLWRnT0ijuxIZ3nFVLt4IhF++jKiFU+4w7X1qaEG7QObYDoKTVhbsItmkDgCgnPuK/2hjs846EmItfc4Rl3tYO7LdfXoUQP4BYkE0EFw7ViIKnzNXcVQyqYtqXOxMAN99UGA88gujzawV0TOUw9CM/MoHGFzmFYc4fnPNRO+5oTnqOvicgNOjxDE6O8JsIt+aXdN0g1YWyYGoZreEw3AdMtd7gyicdzIlybHroPvAwgPD/By1Xg5abwohifEeEZteXqXeGlTizBiIeTBJ+I6SZgesYdtqLADCq+dW2e0RZwvHQg3LDFlHBrMGy5m2G64b5iuOUOtyaBvCLglvwS/GukJi5uMVDhRcUmLS+Fh1R868ok6s8T4cqMz6R9eF5uYYXrl3hp9g0SbtB4eU6E29QwJNCMlxvDS1dsxdAxOV8jNoMhlkE4QFWQs+mxtIRyjQ63GJqYOA9ONHSAF7bvkPAMq+prW/QijFoqrOfbFR03GKQOpEKpfV1V0iM14WHocxTxfMUkGlKt/byW11jnhmlAwo2p4xa9s9/gAVftkYJAeM6D8b0ez7lheo4OV2gT5C8Gxoe2E1ZFx2jTMd5YZ2zLxNLtesKzqwNWw1jvcrvOuBrKJwbEeLFi3JbVQ32X8eJqD6KyRoOBKSd0KUMD3Xa9L6uXpJK3z+7w4Te/JpNFAFargxH2Bn7yKwP+4n/+XfjiOzpEIgzDodwDuH7tTlYvldfs9Pu/AQwjmGSV5D/8f30vxse+TUSY56W+9ql8jY9MMuRaccKt+TBWxfzVZjAeUnaTmFEQeoUO14YnFby1Qt1b45tX3C8KDVfhbYhWXl/bi9jqeyLi29VJl47l90ONCaJjMpjYLILQzZ5j8JtZbNA7TFv0crw8g2v0RRxZr9c5seQ5JjjB54ZBbBGIbhi6iqG0Rya8ST22pUIM0US6KrEbLJPjN+w3Sbg19nXucGvEkJ9zwjMzEL5NhNtkXyiRi3MdCLfc19jcF1vj2qqcX22WOLuuzwi4JWBdMUidbawWDFZouHOYrrjHM2PfcOdi93NKuKWWeEsf3PobApX+iMoEUXKYVhWT+NoaCdcmdg8sfa5u/EAAroA2gaGYTK6zsZgKBscL97gxuc4z7hwvN0R4To0XAuHW5AWSK7X2sg6Y1kh4hpavrUteohN+A6QPXsPyQrVPBQSDzUG36Fydr1l8y/LyzPDygsjx0oHwDMn51jOTv60KBsW0CZjEbvnbuvDseSFsdAKltI9NwHCdm69dce987SZgelZyl9rfEOEW/rNRm68NSHjGQ8W0iAGd4YlcTjpAci/FhMLLpokPYhN87SpguuZ+gZdk2gvhGS0PVAcAVyPjv/zrv7Zw9FIu5VK+HeV9oakEEcs+Nqlkz3lPpUwS/Vj87M0c/8sAvgbg/17q8eNE9HePTVAducbnjhz63a9Y3d/R8uV/+ra80SZZ8XPHokVwgw5bZuwgIrs33GMLLgKBCdecqq0J6ZpFZFRXOw1FvHIgTXBEePgAScSfQwSh9wASyaCqahJAdo85FAHNDoTn3Fdxy1Q6xJElSUqlwxy5aRLcgoqwsaz8ueEeW2bsi7iy7CbThLplskwEOKkk0StOmKqAoLxd2jHQB0yPkMH+a9xhzwxZEJAqBlLMxZaBEFXMV0VM+RkSRgbWBBBJUjsycF94uYUIfO4rL7Kzl/KgmKaKSd6eKi8bFG0hZvSJ0JOswtpl4B46kZSwZxaeiPAaCHsjqKmYVDj1Ofc4FGFuy8uWWHgl4MDyH4HwrNz/AbJk+pp7ee6FF/W10WDaogmoX6HDpoiOdkToDA8dCU8Di7DqAyRZes4iyDkVQfUXPGBfREeTwbTmVAcjI7Ps9AbxrYmBFYmvPiu83DFwKO1liu2FGwbFlCFCqddAFTYVsUxJkidumFYkvLxkGTy8hoRdbS+EF4UXMrzsjZjlC8NLZ3xnWzDcJvmUYJflvWzkRZ9B5EU/b1Vf05gga1gYe1G2horSHjhjn6zQsLTxFTq8hoR9EUcmNNHPJjzcF7FwBojwHCscOFcR0g26siJOReFF+PRQxPhviviyxpQN+qIjIbbu6HbgCRMV8X50ZkMCEYhO3PSkBhYdq13KWEN2BtsZ8dfnGLDnjCt0ZZAoWmLvQp7Ja7zCntvzUN/TGHAF0bi6TsLTG9uM/ZSRmZAI+PAmY5+B1TBJ7N4eMK1GPOx6jFOH55uM61XGrnzK9mLFuB0Y1B+KULd8ujSOMoXTJVnlxEAV6h5oRGbCMIxYrYBPfvLLuL/fYhy78nmcjAJ+Y9fhN3cb/M//zu/CD330Jf4XP/BlfOR6RL8awZkwbPYgAlIneiD4yIOMoPoJzBM+/1+9Af1sSDcT0E8MVbSbQPh0vsFH8hYPNMKKWmtMEq0j2VzACQ2XdU09moCtoE64LcLdTRCanKj1FQa/qUJt4xNQNknIpT8BoZzfNG90UwadVBVfTW0lAnqsymqCJp4sItYjyUSpilpPxlZ/Fi0WxUClzxuCWP+ACYyhtJBtrZNOhpWNH8zmFZmbcP02YNDjtj0pBmtflz76imQC44ElFq+RSqxm5CKuvOIBO86ysggJr/FQY4LEZolz68LpC0hfsiGgI+BZiWPvljh2i06Euovw8DPuRfxc8wL2MeGmYEylf7lBhy0YCYyUqPShwEOWvn+LhDUYO2YcCLVP3dfJ84ZJeVFMGpu139+Q9MHPS14kumeay4hAdIZMyqhQdyLCs4KBKybBqCLX8tKsiI8T4RrAhiUOiUi22I8AdqUvWnPR0ySZ9F9xKrxI3Gu8yD20T9UNTZSXdeFFMd0VTM+KOPm+TDA/K/1LLr6omFLN36QPVQHoa8jmEh0zKAHXHWFbeHmofShhV/Ivzd/20Jy0YdJY/VrxrVXp51+D5G/rwMuuYJCcFbWff1761NHld7nGLcWk4uLKY+TlgIZxC+mDD5CJpHXBoJvPKCblZcUDdrnxYjF1hZc9y6RLR4Rnpb730Bcd4osjcalz7zaXUQyqdaR5RG95YWkvFpNgSNXXduCyMYuMFZQXi0m1015j4XGlmCCYNiU3egH5PHwqLyNWaKsKv/zP3salfOsKI+o7fmcUPn/KpTyhvF9WKgFtRVIsOtn0+jdx7VOfvb0F4O8y819h5l8un879KID/kIj+/Ddxz/dlWV23eUQdyFYbXsRQ7PipnBdT1jfEOiBYI4G5LL8nwpqk0wCkQ1qhLdRXO4XjurpAPwvwthc97MnrtfQgt8w4YugWMJzCpJ8DNkFbwWQxrJHq50DHMM0xNlt3w2iYPC/9GV46U+eIyfICKC+A+QKyYQj2q2Kw28QP5JesL/GyuGW24yEt2sySaG+M2DAZ29bR8nIO0xAw6W5LFUPA1MHrUi3zEtvPMUzLvGwWeCFQsD3miEklaomWebGr4/ozGLqAgQLv8tzasit9jva45VnPt5j6GabOxYAuYOwMb4LBb8eeQh2TrSN8m4/Hm4C6x7RBB7shwRrtA0NtD/YN8Rqd863Yfnp4LaBVB6zNtwmrhPIpnJSuY6yG9ilbn4Ct0TfqCNgk89ypTSAB8qlcIjaxWjSXWNtLAq5vHsrub3KcCNiUSmYm/MPfvMWvvL2ux1PXPlVQYXAajbMRsLndGdMcW7DX6PAar93xKBBt9cDU3/1x71src4UlX+uDb/WBJ92trD5nJOdL3YJvRTv6YhWorRi83QdMq9B+hgUM0e7OYOocplfHYGWwE8kEkD2+BtXVCdp+fBzzvMzjmtlEocQwHVRq+/F5QHKxOcaEpf5HV2FVDKZBVgwQDM5Gw2TtiGllfbH08XZ1j80DlKc5phRsz5uza/6lmNpKGcUUpQ6WMFh7nr/RDFNvjutOedY+xctSrjME31qf5SV8RjaL1f74+gwvMlnjMVkMwxmelnixGIWHiKn1NzoRI2bJSSnyFPME214IA1HAtMTLcd+K7SvGiI6ML2HePpZyn8hL/KRRzm+8rAm4SrJ63H6masc0l3Ipl/LtLe+nSaVz5cV7+RERfRbADx/77K0Ic/9E+Le3APwEZDLqSYWZf3DpPwD/4r3U+3eq/J4iaqfDi1WxNLgvCnWHwuEEJ9QNeeNixV+jxlLsApbuYctMqFvrUd+g+nr1wS4v649jQBBPhhdPXvj5DEPcfyJiijP7KkCo9dCdmnTyaqhH3xsvDM8LQ95e1e3Eaa5PFDHE4BCfwUyENGCwn6g0TE/nRd6IeHvktnOV3sv6WtSTmGM4zjvQfEvLFDDpxFjk5Zg4Kod7ZgQBdZQVXSd4Odde4p1nIqThBE3IzvHiuTj+HqeD14hZEuqeiSXPiQ/X9Cjj+VFENIons/4/br+3GJZF4ts/jGA8BqFuKzS8VF4G4e2o9xVLFIe9G9sE41K19oeuTgIBwNDrZ2xS2oqidv7+YPWPGF0U6j50rv3sdr4Fdb0XH//+Zz6S/f9+/dbZu7uNs/ELzx2GP/Lv/IKiAtDEk2scDDzF9hNjwoCEm9x5X8PpEn3pnBDxMaHuNiCCs/XvXDF6TBlzoe4oNByFuq2GWbmBxzQTHz/93jWK9afQfurfTfvxYv0e0x1y3aUSaCtIG8YyaXqCnGP9vJYxQFqHa/W1rzNxzNjqS83XPGcjgGzukSCr4ZpNM57OxeJjfaSWLlxg3n95TO0+YqtYstoHtLyonjvD1EqNzaYe77WP1LIKmLqAIbaXiCHycoDnRbSCfPuhM7zE/OscL1F/Mgp3L/nWKUyRF3K/mn8GTNo/BV4ssnPtJWKOvnVMqLvFrdOYJnjfOsqLxTS7ly9zYfvjRc/8vf+Di1D3pVzK+6W8nyaVXhz5d12h9NZ7vO5fhEwQvWr5GQAvihbTd0x57bPXyIOkKszSCegESu0Aiz6GdmLndmHZ1U1i1fadTdwlYoJPVGKSPYFrh8nl76Oz2+QCl9GjxUBoO50phr3BBIQBHc13mtmFOu9nmDhg4lfE1HYyY8iS8LFMLsjXRK/Oy87a1LZ3rcezxyByF56XU5jGBdtiGgOG6FsE1M+MKg+BF+dbCxge4TEcgh0HO6+CiSHL0mc8BV5G51vASMHX4DHtzmDaB16mM7xE3zrMbI9hjzBpyex8L8G3F0B4cTa879lCWBJ/9aLWUai7Rwq2n3jqkZqQMFQk3g+ErbCwiMKnaoMxExu3IvDxrTwAfDib9/gEPJKfJBpDnDsEezy2K+WRMlkwAPYTY8rN1wBgnJqdmeokKlc+y/Ck/PvohLkJ+72fkrSTUgBwOPTOfvnONXJu1+iSfwYfWXmMv/L1TT2fGfj1r9zgX/zGs2q//MXn+Pm/95la5w9/+i30a/n4wz676mvkfReQQaY5cTaY6thfax4DTtsj8smYoL/xtm8fNiZon2UxjTYmEHAwE5AEwuvZT0E+z4NrH1bjBhB9FWtvObmJ3bWK75eyYr+xQ89FCLi0j45JBM9N+7kO9i0P9fcg4LVshqkEvGTvG0u7tp5sP4GXPXyecGA/uUDMgRee9S+HwMsh8KKD1hqrbRdKwEgRw9x3TtmHgGkHj4FnGLyvccAkGIxN8zxhV6+tdbCY5nnDGDDFOi9icMc9Jizywq/ES31xqJgs7+QnHwg0i73Rt6K9X/K1wIufTOPAy7zNW0z5DC9EfsKEQLNdKGN7mdf5dHuZAib5N+9b1s7Rt2a+hvrZ3jFMNn97Ci/72dgh+BrPMdT7Acgd4UPfezs/4VIu5VK+LeWbmlQios8REb+H/+JObm894XbnNJeOlT8L4Jje0VPKZ7+J377vys//Z1/Eu7tcV608QL7j10HjAYwH5DpBMYHxiIxdTcXl3EdjjyTX0M4gQ66rncEDcdEK4GJnPJhE/gEZd5hqB6d10MQ8k5yjiQlBvqk/1I5M7qcaBzswHshikvvpm9RcMD0YDAcCHk0HN5VrKqoD5Jt0xXRPGfcWA2XcGww7eHsKmEDAvUm2ANGhUEz3T+Ylo/HChhcUXhomBvBoJjDuwHg0vNxTxp3BtCvPSDGMYMcTE3BveEkQLSjF8FieoSZXj2A8EtekdgyYMuQ7fIvpQOwwTGgTS8yoOkqWF+tbj4GnXcCQSbhTXqhcryXBkRd5Zpps7QsPFtNuAZPFEHnJLMmTYGK8hG8v9zR5TIWXjOZb94GXB7SBbQfRodDJsYfiy8rLAxgPlEXHAbToa8oLsPzWvEeSnV7KoRUSbnhwQsJWqPuKxa7C9uiKTeX3HZ6hicKLqO9ghFE73ASx5FsMVcBW7t8E0wckXKPZBOAKfa3zwITvylt8atqIXgwDHSXsqPniHY3uue8DDy/Qu1Vlp96yAsAVUdHFKHZHGCeqE0tjlt3bdGJp6HOYcEo4lPMBYMrAfiLsxzIBmjKGIeMwtk+SH3YrHKZUJ+NTyhjHrl7z4XGDL3/5Q0V/CTgc/Pvtn3nbT8T9yU/d4bBbIU8EIuAnf+VD+At/4wfxuV99HUTAf/FPP4m/9D/+EfzU/+P7QAT89N/+3djvRB3JrihQn1I9FT9Bv7TNuPCSwfh62tfjDNFAsi86DqX/su3l0dgyudDsRMJtrv3JhD2mOpG0L9fXQeVY4nSbOJL6qo1i28H8RIx9idXEwId5hY9Pmyp+/wIrfDRvjGj1Gh/JV7U9vOA1Ppav6icsH+INPjld1U+4PpLX+O5pW8X1X8srfNe0xRXLqq5rHvDx6QpXZZXXlju8mbe4zjKRdIUeb/IWt2XiaIsOH8kbvCj2hhM+njf48LSqO2EN3OEhc5kAZbw0sZtLTIlxzPY3B2Lc0eS4v4efnLrPbWWMxkmN1Y9g3JdYHGOz+JTE/73hYVdiW3EDTAB2k7SViRkvAYfhDrnmOgzNIwwGsIsJXGJ99S1IH6kYHsp/Gqs1Fiumfbnnwfia7X8AyXsspj0Ij9z6lkcAj6X9ZzDuF3h5NPYjfJ85lT7yGC8ZoqNUeSF2ecFj6Z/GE7w8zDCwe/E3cnspNjLjzuRrufBu87lHg0l5sZgywfkeQfp5xXBPjDu0SRd9ZoppV3i3MeDBYGIAjwu87AovU9G3ekSb3Lknn/toe2lxbc7LveGFCy9qq46SYroruZD62mPApM/I8rLkawdzvz3ahN8ILvlR40V8a5kXnUx8CLzcB15se9FCJDnZywPjc//pF3Ap39rC34H/u5TfnvJNfYxaPu/67Sg/C+DYiiCd1HnliaGyyugFgF8+cvyvAvjzAF4rn7x9x5ff/GfvAJAOdMeoQo2PECHKXOwdysQTUJJuEbftyoTICMbIU9FkSRiJ8S5z3eltBPASsiXpWK5xz7K1+QEMJuCuiHWOEEG/l3p9lAmLIuI4gEBEuEeuO7clEB4hy5a12xYRyrKqiYBHEkwcMHUBUw9CT4JhZMbAhG3BIGK7DIAwGUz7co2XnNEDBpNgGIt9X2wValRMGyR0RLiHCIZuIN+sP7JgengyLxkHRuVlD8aeJ6wg2hsHQhHXFOHTEcDLDHTER3l5N2BSDFzOF4xl23eD6aZoc6hv6dvGB2gyXzCQiDvnijFjFzAcmKum0YG4CoReo8MBcm3dvFx9rSsCmCi+o75lfW0qtvqa+tYDBMO2iCc/QFYlrSCrYBovqKuN9jxVX1NeEHiRbbmpYlpBtAMsLysSsfaRZdChvLxkRo+G6a7wMgVfo3p8qppHwouIad6CABAeslxf3y4qL4+US3vJ2HGu7SXyohgHeJ0L9Ys1ElYg7DjjQFyFUveckYgWhbqfFSFu1bJ5VoSHGbIS8TlWGM3xGx6qsLcIqg9FlFfOv8UKE+fyJlPO35akgSBiyhsw9tzEljfoqwjpR/MGb+QVvk4HHBJJTICs5sokCftLHqU9lFUzdzyiB2GNNRLJDkyM82KWPcpkEWTwN5RvOMaJME2MiYW3/UQ4TIyh7u8sT30c5fiUSVbgZSFizIQxM27qJFSHw5iQM4FZ/ttlQpcyrhOQc8J+T0iJkTNh97jGF3/to7i6esR6vXefx/3mjhyGT9/uASYcditQYnz+G1u8fb/C//I//sP4vo++jXXu8fDuGn/pz/0oPvV7voLr2x1AZfFLEbC133g0dLogRjThJsiAvwdXfasJwA5TXU0iLxWEJ4DxUNpDjTOuvRAeeYLqzzEBu2JvkKTNcgahrKYsbZo4y4rR2sZbe5Hj2l6o9JHc+hdkjIyiX9JjIsbEk+w0BxFGfjb1eIdGEcrHgKvc4w5j1Tz5dL7BHUasy28+lW9wjxFX3KNHwmema9zTJDuEIeF7pi3uIAK5AxI+M21lsEqC9RP5Crs8YUdyzkf4CvtpqgPPD/MWL3gNLgPLD+cNXsOqTri9yWu8Pg14KJ+KHqAbNEgfPpY4lkofL+1H+g/l6d3SB3cAmAgvIfYVJ2QQ7iDbpW8hsfg+Sx/+SG0CPTFjV3h5gMQx37/kGosldkssXlEqNrApfeQBwCG39quxOpW4e6j9U8NwVzAAcH3mGoRc+kjZDTWBQbhnoCt9pE4GJDB2xDUWJ0YVhZfcpwzua14g/Xxn+pd16YP3hQuN0vvyH1jqp31qpzxBcplmN156k391kD7S8jJAYuddwaSi1opZeVEMtn/ZF2FwkEyoPZZcaEWpYALWEPH8PYtv6WLMPQH7GS+T5AUFw0vlpcRqtVeFF83fbiGYlJd9ucZdyY12EGH7h5LrHAqGh8CL+t5QeNH8baN9Iwh7E+d0Ixt9JspLKvdfwvQuT1VbVNqLYFBeXsJKThDu4XnRXEjF+h9KXq11UJ6Ud/W1NQiDaS8D5GXSDl5EW31R8xIdKyRjW17GwMtkeLkuvNyx5N3qzyNa+/zSP38Hl3Ipl/L+KO+Xz99+/MQxnVR6L5+w/any57FVTp/F8VVSHyp//ux7uO/7tqxv2zxihh/4MLUOu9nsbLccnNoy5Nophlnf2acLNLfrKv1yv6z3IEna7AcYMztigD++hGmc2QGDtbGsvVAvEa6nGOaYmp3Jv309i+kMD0u8HAIve7S3C0D5HMpMgkRexgVe2PAykVlqXTDZJekRwxKmfISHauMEJjTfUnsyg9On+1qzs8UE1T/yGOz7DMHg63yOp/h536HcX/UW3MdGhYfoa6d54Rkvp3wrQz6r8hg8xpO8wNSvTMxYkVEVBW1VWhJ/7ZqoKFRc3Nr+uBUaBjATtO1wWpQ3LdhWN6dHwod4VTHoczUzHfLczXPWyScARQRb/jtV7FOM5zLa5gBqj7bBgNxkj0y/+OOH0aun+CkbwpTbCiaAkLM///5+G/7NixcDwP2hyZFzTtgaMfH/+kvP8S+//Kzav/ZffRj/4h9+0lXJe9K8xONTsKs8bTlRtH/a9SfiBnshNufAYyZu7cO2Na1PiBFLcWwKsTiHNj8FezSfAOsujoopQXYra6fLZBMZ+9qsdyPILo1W2P4GXZ2Ik4nVTlbolbIO9godtuaeAxK23Fas9UjyqZyxb4NiS+WptheE9mNOLu3H8jJaHsr1pmDHT7ldXHtC/zIFHsfAtZsUtscLhkPMhRZiMZvjU6jjBO/fs9gc/C8v9S8Rg7Uxby+Rl/pMom0w+fbj6zzhBKYFzDlwv4wJx22EVStP5SXEag6/P4ehxlZSXkL+Fu3AyyHwMsNkbNA8hihGl6OSP24fy4g5TzAY3gsvs7w6YIj5XfSlOaY5LxFzxKSTo/Ze65uLUPelXMr7pbxfJpX+BgAsfBYHyE5sP8HMs9VGRYT7VDl3/O8C+MEjq5R+BMDPHRP4/le1fP//UJJ6DeZDyezVjoLQS8UtFaS2dFvtKBgYBaBjF3BOEDrqW0TNmpZTcLm+x7Tk5Bw6+Rww2M/SlupkB7HAU4S6/RXGgClOmKxmvPgelhZq5TAd4cUOPqJw43mRa1/moooeQxTqfq+8WExzXrwdBTUjL7HMdT84HPf1WtUn73nxvugxWEzLQt1NfFwmWXx5r76lZRd4icLcMQac4yUv3DMKpVpRa3IMLdc5Lj9eEvX05/u/xMkFfe5csft7RJF4WdZvhIZBGAIGfbM6q0MpX/dT6G6npaXyENuP0SYC2kRT/TRtH4S6Bz/NKec3e3fosNubybPE6Ds7JU44jF6om4L/R02mPxiEuv/Bl66d/Yc/9lLqXOPa8U8mgWWh7lO+wfD+PSDhtnyyJYj8DnFL5Vx7Gf10Qp2AbHFMBdVbmz/la3lmzzXR5qLwcJjOx2Jf5ygCH3+vcdLFMcRn3TDNdajmPFk7HcNwgpolDSZbfOuC210KMLy4WIwZL8deFh0gnyVp6eCf2xKmCOepfaS9hy0Dn+fF2nOR6/mnHDHuzcTGgx3LvH0s95FaVjNePIbIS4wBSy8mrW/1iqFiOo/hVXmJeUTM915VQD3yEmuYgJmo9dy3zgl1H2+PS5hinFzixdr2E2OLsV0vYphjiuVVefG/lWN/8M988ug5l3Ipl/KtLe+LSaUyqfNjCLutEdEPQCaGfjT+hog+B+CXyjnHik4qvXXkvn8FwF+Ok1NE9JchAuGz+/6rXl779BXySros6aQWRHmNQK18P+7TuceQRszF9k4LcEah7iVh7skMRkSou9VxormwsBfmXhIantfZll04HjHERMetVMA8yZ6LWC+IjcMIdVPTuGEU8eQZL14seTfDMLdtHR8xr/M5DJ6nPMMUhbpn4uIzXqaTvMzFxl+Nl5mQKkUMcUAXMDECT+dE4IFdwDTnwWAguF2SgMIL+zq+V5641Hdytvc1wtzXYnvROi9iIm/LBKVPGLfshbjjpGjEFAfeLslms6NcsYnRJn1YB3zN5rLSIYqO2jq7zo/mSTmxryMH34qTB7uQxlM4bgWktb3YAe/ImAt1Gztn+dStCeHDiWoToXwy12rwbtiNre/CRFTn10sMvX/HPVX9JSlvrLLD8P/+jSv8yjtlr0oGPnqzQ7axuvhmjXNgvIVd44UYX6EHZ/9Gund1dqwQ8KX0iPBPoX2cF4TO4XzbfuZC3UF4G8DIWTaKUNtglmtEYW7ffqJ9T6f7zNjHHpARJ6ayO38uwjsXQD8nau0FofcnYoDe05YxCnPPhIenk5j2iLHaCw0TfJ8a66z3OIUpYng095PP+c6JJ3sMu2DvT2ASXhB4OS827jARVy1J9bWIKYonx8m6Pc15OOV7c16W24vajCg2jqrft8gbhRchxj6G4Twvc0zZHfeYeIYhuzadoy8FXvICL7b9iLaUt2eYzvAwxxTjGk5iyvBxiuF9LYMdT5ngMDH5Nh8xEAg7inn3aV7OYbJYCISpB17/7uvZ8Uu5lEv59pT3xaQSADDzXwPwY0T040T0F8rEzo/h+Eqin4BoJS0d0/KzAN5aWuVk7vuj5b5/tdz775Z/f+3U7/5VLT/z41/Ay/1UOwMVA9RE5AARilRxvQmMh5TxUNLcDNFguaupexFTtkKOhEUB6CZ6OOEOY7UfaMIdHZqQI2W8pLF2cBMx7mmqNkHe8qstb3pb0qsC0zowHkudFVMGY5e8sOMejPuCCVzEKUvioQP1R5OI3NGEl9TEkR+TYNDJsB1NeGkwich1w4RyfR3cAypWWa4PEVVUXvZgPNBUJ/RGiC6G5WVHFpNMqFQRRPk/EbUu93gZhLnvacK94eXRYABk4sHyxCS/UTuR8tIE01XoEVCB6Vx5ORRedsbXHg2m6lvFBuTzlCj0+BgwWLHXexrxkhqmPU24o7HylAsvo+Hl3vDC8JiUl73BdO944Rkve2oC6oAs677X5ImtsL1gegdTEIGfcGfEX5UXxXAgxksaPS9GGLWDF+a+L21ceREh8NZe9sW3FNMExo4mPM54aZh6lN2mZEyBFZLbsUo+OWsTS0w+sZ/KM1Vbz9c30Ffc4TkPdSLpCmKvizA3Qe5pd8DyA2kUAfXW5oEyccWiObFCqoikPekQSf73UJ4pm2vat7WvYYCdsrkvflNFSI1NIGxAyMXHCEBPhENuQt2HLBoiY8nT10Px2WLvRxHqHlVYOAO7THU3QSJGnjq88+4GWUVupw5J1aDBuLl5xGa7A5XBwDBMuAo2c/sU76ffTnXShUB4zMD/6qc/jJ//2hpEwH/+azfYoYla9yA3sfQu7fEb6SW+TjIx9BIHfD69xJfoHgx5YfH59BKfTy8rd4Q2ITeB8evpEb+U7upk0FfTrg64GIwHGvGosRwykLk39oTsjhOAfbmaxjGLQTeq0Pa0w4RdiXuADMQeMdUJch00N1smP+yAKgp1d0S1D2VIe743bf6BJrwkg4lyiWMaF6Udq53IbwSxgxdPvqfJ9amPNOGBphrXtM+0E+I7E6sFN0If2kStMxgvKTtM9zTi3mB4LP283aDD5gUgERd2Qt1oE+Tvlv5OMTwUTPvKk8RmxSDCwx7THk0cmVg+oX7gXHdle1mem2K8w1SFuLnE+rvAy7uBF7sxBBGqALT6luXlrsT6yguEF7sRhMXE5TnaiaQRbXJL+5+d4eUu9LH3BgND+uB78sL2Lw0vqsPjhLqNr70s+dpoeLkz+dweGfc01vahvNgXTJI7FEwMHEDVtySXarlOxUTHeTlQdnnBtMDLPawwtwpxa3vJjpcdpP2pr2m/vz/BywFtYkg3v3g09l2JU2wwWEx7yjNebF4QedHnpPYdTbg3ecLjjJepYJLJsQzp8+zk1yN4hkl96wDGffJ59l3J9S0v92THDqd5QeDFlj0Yd2PGT/0nn58du5Tf2ZK/A/+7lN+e8r76GJWZfwJP1E5i5r8I4C+eOefHIBNTT7nWB6L8xr94p076iFB3rqsndlw0YkgSSBUqBYBdsmKXkjyp4O4anYjtYULPhOfoZWeKInLYhIdFfE8FAlXw9oAsQt0YnVD3HY3oWAaXqSQnO55wxT1SFXYsSS6peDJXIVUV6KxvikiFIaUckgitiuhhKqKII1YQQd+JmjgykYjF3leRQ7mmiopWTGiYrC3Lpwl3mJB4whU69JSKWKWIHPdVFFGSA89LdrygPFO1eySHccWENXqMJCKIA4qNImqNXL/Tj8Lcd7yMQe+pvKhY7D2JsOMNdzI4gohTHioGBjFXwdvGi8eQjL3jjFXRyhHxyhErFmFm5UXFLJWXVBIbEPBu4aWKj+NQB7hcEpcORYzS8dKjL8LdO5al/MmIiN4bMdhHLnooJIO+Ry6qTgaTClJXXkDYoK+CnGuIppDykpgxlW+zVLxSMWl7GQsv72Ks9YfBtOFOhLohvNzKwnQjzM2lzsLL45H28ljaWxXqNryICLyIiK6ZMKDHAEIPXT0gopuv8YAdZzwkSVRXADI3sXHlPZfnpjFnXXSVBshkyFAE1F+wCHerUPdzFqHulzRhItGHyRBhUdWXkp0B29viQ4ljqtTEYKxYeEKpiwq8l19KElzmxLTOXYkkEwCCCMzq74G2QkAGJu39q9pJ1mPV84fSwA5FaHsqDeTAwMiMbZK1V5llqdL+IL+fMmGq5wMjUzmfQQTs9gN2+x6rQT59SwRQYoByWbkEdNePmMYOzCLYfX31iGlK6PuCjoUHFerWiaIMxtd3Hf7CP3gT3/Nsj2mUlEIGJhNuysecuhr1ESOYgN+kO3yFH+rufb/WvcRv8h1ueAAI+GJ3hy+le3wyX+NT+br1Q5gAAr7a7fH1tMctd1WL46GIwarO2T0fnFD3XbFTaTMPGJFA2KIDQyaLCBlbdBBxfRHm3tPkfEcHjnI+6vV3mLDnCX25wwEycTsgFaFuEaxdIWFAh4mAiTM2RT58JOAlxP9V3+1dHmWDgYLpnRLHNHa+hGDaoEMucawDcMt9EUsWIeO6cQRElPcRLW7teMKebJtHjSk2jvWgaq85YUt9EeaWPhSEYpepWELNC6zQ/bs4FKFuwaSxuSu8aJy7QV9idROITqAqav1Y7qHiyLuASXnR2KyxWDYcKHGMUt2AYFNymQNE5JqZgdSEubW/EWHhsYqNZ3Dgpdkb7kBEdWOIZ0UUXgWg94EX3TjlvvRHB2oYqoyOwSTC3KlssiC78m2pq7zoW2PtbzS2a59qMUmdtU+ViaTISw/R5LLi41XIW0WtKZcXTtL/VKFuGpG4xfp7EozaXrT/WaMzAuoSV7eGl1x4VhFrUkxgHDA6Uet3cCi+KX2/9pkrTkWou/GSF3h5qLzkmjcILw3TI5fP4Qwvq8DLlhM66spGKk3EWn2LLYbiW639NDvywgDeLbxcB170bYsKczdeBMO+2Hc0InFbUXUf2ssDJjyy7LgqOavkdyp0r21eX3Ltk2xiory0vJua+PgJXqbCSw/Rg7O8dKU/HsvzAIDf/BcXoe5LuZT3S3nfrFS6lG9NuXreFFtEZJScPRevNG8IFmynmUFz8b2JUAcEctzbczFLI9SNIDwMzAShl4RS7axzFB7Ggh3FxvdBuFsEA09h8s9kSah7Lsx93GZqHWbFMMPkz3dLpymIjVP7LKyulpGDBkN8RkuYPC8RwxhsDr6VA8aZEGSow+yTkYBJeW82neQlisFOQQx2kZfAg31ftuxrgZeA4aSvofDseOFZe4mYrLD9WV/DvM4R01PF+dW2vOjqlHa4CHdzs+sOXOX3mdAaFPk6yWdqBFvLJaHulenKEoKuzkKMsM9EV6TZUmvYHm1dhQWaf67HmGuLWHeO15eJqvm/tb974W0R6vZC2ueEusfwKdz+IBM+soqp4OZm98NUNZWIgL7P7vcAYWuqEDH94jsr/Ppd745PAaVhHiNl3KfR2Ix36ODsr9HO/b4zvGQC3tLfF16qoDqMHdq8rbdOjLU686x9INguNmMhroUnMxPmjjb5PjQHUfgxYFoShM7mepOtQ/F96/9LAtAcMMw2IDiTF0Rx5Hq/yEu14c6P4slxw4Ep9IF2RaBiiBhnGw6c4GmGCXPx5EVR6xO8jDNe5phmPATB5+hbM/HxM7wEbf9lXhymI5gtRofJXFMxmUssC6ifzuesPpjkNnDl6IYcBUP0RfdJ/BN9LWI4Z89FrWN+Ns+nrB15ir6mGG2eHc+PMSBurGLLnBeeiY1HXg6BlxjHIobIy7iQo0ZeIqboa/viD7bdbJ9HFcpLuZRL+XaVy6TSB6z80J/5FIDWKT5NENoXDifUT4eKfU6MMgoEpmDHwcpM1Nom4aaO9lMce5Eoyhsx6MDAYjhYTJgPAKMY5THRw/Z7X4H5Tmbe1h2z3isvktjkgKlhlFUj/irHxCjb9X1xuiGYT5Ck+juxh4DpqbxYTJEXtrzhvBglhxseE4dtkzwek+5sdoyXWDjcM8MLqOtnYK/CyznfcskbINtUm3pUMVg+xssck8ewNNHrMfj8cq65NBceDhiCvQ+YuP5Z2gt78eReMRkxZVvipJC8PW33WBLqXpXVgHrBWOevkd+iYMunu9co1D1W07cfte93XfkMrWAe9OM5rTOcfZgIhzB61wkktR8fBy/UncJzDn7wA8/8P8TnGttT1ES74cH52pIv2+f6Lh2cht8Aqp88yu8JKfD0LRPqDu1F7YhhyXbaJzQX6rai8DKx6suxWKwltpf4+9pebBxDay96zMZBi+GcoPqSqHVnMC2VeL2oexgnfdYBQxS5jv1P+4it9bkxBlj/7SCfxXpM3xwvu3BG9NXhFXlZwnCaF8wxGJ7i+cC8TUde4v1WIe6dF+o+zUv0tSWh7pn4OHw51+bPCXWvltq8sWN/FEWto/ZjrF8VUK/HyYmP67UtsrlQd+TFl+E98GLtGAOiUHevdTYYKfASy3lejn+YpPf+Iz/6qaPnXMqlXMq3tlwmlT5g5cXHNqBBwrt0UvJGw3dWLZATaPa2ed7p55N2HFhbWzvefMKW1RVe7NXaUmcvRDyFpHoJgwF5FkPsQMGvhkkxqK2fgzRMHoN+xuExnuMlYp4nnL7Op207GLLP3WKwPEzsbcIyLxbTUp0NyNnxJdF3z8txTEsYZpgChsgLAYsYj/Kw8EZv7mu+zsBxHuSo97VjGI5hIsguRyo0nCBvTo/5GoMXMXjMkZfjdV6y7SSP9S2Lwbcvz0OCfEqkmKrv0RFfW+AlBR6rRlQpW+6crZNx7Rp+kmerg50CuGMzSGWpv5twJ8a6fG4GMBIxtqtmT4yykkgnH5rOEiCTRR++3dsLIiU/qeOHQEDm5Oz1el/1lNqprdKvD3HA6su5CZUOacHXPA9T4OnXuztjysDlqe0DOB/XppmdnS3Pad4+nG0wMfHZuBZj9wFewDaKwsdJ0Pkkj6/zuNBeIqZZbDbtR59LxbgYxzz7caVe5CHWOfK2NEHieAmYCAt5wCmeyE/oq30MU+XTYgi8zAfaxzExvMaaXtsP3pcweV6Wch9bTvGiWjmvwsM8tntfs32w5QV4YvshnPW12crSMD8RMZzjxWKIGJ/Ci/qjsxd4cSszA4aYz2WKPMYc9NV8LbZ5CjaDF3jxQtxOYD22lwVMeWbHGHAO02letLA+2w548YkrXMq3rjBQV+x+R/337X6w3yHlMqn0ASs/9Te+gP2hifftkesAjlF2KStJsXasI7juRCH/ZoJ9aYm1A2QU3ZfWGewpO3tXxDS1k1btCbVzuZ/aCaJnpHaP5CZpdILGYpLd1nLt7EdijGwxZSecKruvNQyJGgYNNna3poeCKZt76k4VKtxoMYDaTmP61tbunpbK9atIdsFgRRctL5NyFXixGNwEBosQsE0AH2e8NB6U073jpb0JVV4spoEaT0B786sYdoYXxXSgXAdUGbrbWkssZMeRyItN/CIv7H0v+JYK5taEj+CO94V3tekMLwfkwkurz2R4EQzseNEJj9peAqYH8ol65CW2F4bHINdr9oqS4+Wx1NlisjxFX9M2ZjHIPafGC2x7absdNl4mN6CyvMj1va8ReV8bDAZN1C2mB0wFU24xgNpkmPqWG3yb9tGzaFIMpa1LzcmtGExIuOGhThRdcYcbdNX+OA24Tm1yikF4jg59aYtbJDxHV1dAvUYJV6kJGz7fjHjtZo/tSj7pWg8Zr1+NuF7LsPB6PaFLXCaWGJkJQ89YD+ItfTfhzRc7fOzFAxIxupRxsx0xDLqjm0xUKUKAsd3sjA2sN3vcPr8ru8KhiHrrccJPv306ZVB9FC3rovql5W3al/icCy8tfrfBAzCWfyEA30gH/Er3Lsbyuzsawdx8bY/J9U8iqt2up75YBzw0by/a3rR/sb62x4RM1nenUucWx2z70X+zcUwwiU2lvUzGFl3ChkHjDJt72vZiYzEg17PtZ0DCaDBI/Zqtsd/1mab92DimJQcMsH1mxdgG5FbYXnmx548hBtg2L75Erk/VOKm29MEN8w4ZI2XHy2h4AnxslkE2Vd9LDBBRraOKKU/G13YBk8biGusDLx2Rj2NQXSDNfZpvEqjGeu2f9phK/qS8tH6/uHLlSmKU/KvLC8jzYvt9wZRd+5FY3MSTbXsRTMlh0j7S8uIxZBwo9C9HeBFf9u1FViE1TBO4xhDFtEOu+d0SL7aPFF9r/XzztYZhB7+pwmPAJH1k8zX1/Sr8vcALmz4yQ3YxtpgiD/vSJzZeQkyZ8eJ9TZ5ri2vCu41rGQcKmJAdL9bXUsBEgacRGXsS3TnFuEeuE9wtL2iYlBfFlKi1R+XF1tmWDMZhYvz9//hXcSmXcinvj/K+Euq+lN/58qV/+S6Apq2igtMZMjjUDqQl+ijni3ihipzqbzswBvTFFmHIhK50FvLWagIkMWGxVTRURXntAJ3QlsmqvS4fdkzl3KFcLwMAl9+XtygTowpCi90Sh6g3IxhFqHFdBDRVyJuKrXXuSYaKB0bFAEinS7CTDNEWDD1SmRDJmBjoStPT66jIryqM7AKmEZOpc+NFbdWRUZ5kKNfJxFIRa01F+FQ+s8n1m3fFOBVeDid40URYhIlFKFgSEWDFfakTGjaD4RB48UnmVJeUKwbPC4tgOorYoz6A8obhoJgWeGCDwQ4M1bd0IEEMDOjbm9IiRomS2ADRt9rybB206eBceenKIDUTFwzSgjQJFYngrmLSQQAgPFVfOsFLV3lRu6tJOFhWzEidpXr6GYn6ngoRK6YpxADlRe0eCQNQ2/wAGYo3/2XDCwPIFZP1NYtB6XRtvgwyibnaGfLWW+IMVV/bO0ztU7ZjvPQgpCICmpmxBlcUItQqvqWC3iMzRhLx0me8wsiMrgzhbiHC2NdI6Ai4SXKf/STcvEBfhX4TZKJpZMaWZCB91QETA9uOQQS8uD7gZjNiyjK59trViGcbgCiDCOiIZbe3Sc5fD4xVPyGVT9c+dHvAa9cH3O86EAFDL4Lc40RA/UxQrteVpVP6WV1KDKIJz1+8i/HQ4+FhDf1sDmD8ll0ItVDilFP8vGdXfE0Faqk8Z/W9HjI4YgCjbkAA4Gtpj2/QHrdFyFtYbjEL0M9Im60xgMs9Ro3lIBlUlvaknzVO5UHopy/64sJOTIoPLfQvBkOCDlozRkbZcCDVNq8Tl3pNbb/qv2wxlPbTMNk+ssXibVnzpse35blpn6niyNp+dBMFiXPt0xltP8qatpcBqU6+TcxYl+PaR6YSFwRje0YaI1AwMeTlghWuj21eeVpXTGIP5bjWQUWsNc7pZ7+Kob0cEbsHoaNUeVPe5ZmYz+VIxPEVg/KmPGdo7hJ9b87LUO6hmJSXA0weYfqbAxqmkdtn8gfIhECbLBBeVpVniXMqGJ1ByNw+aZI4V55VxSDPRTHuDS/Ck/TJa6TyTATjJmBaBV9rviR5weh8C+qNR3lZivXKy6i+qrwwIwdfo3qflpN2xTfV165qLiQYrqqv+fxOeWztJZd8zGPQvFh/t4J8Pqm8dJUX4aFOQpb+p7UXdrxkyKex7XO75murM7x0Jc5pXNO6TWj+Y3mat5dUJnJl5eOmtj+Jc6JkRDVOKu+ZitC5bS/lOQKNJ8tLwyT518T6XNtmGBltIqtl8W1McymXcinf/nJZqfQBK1cvvKgdRcOPAUzqJ0U7HjYdlLXjcle2lyRJQqNt78kLv491cBYBXhTE17/e46mYCEWosXWKTOY3EUPEGOu3hImW6nCikCRUT8GgZQqY8gKm+pP4jI7wEjHlmR3P8tecYzqNwdmEKiSpGOo1lQCiszzMMXhe4j1nvNgHFX1v4R6z6wXNplx/ZzAFXmbtZ9Zejtt1sGzrHAoFTEufFnh7+dMe+1a4VuSIr0UMtiy1l/gc5xjm/+brfMImOIFamVyiWplqc7MHpFpHtetbagJ68p2r7DDZblJ37SulIw+s7xiDEcruEjCYb+WIgJSi3R5CSsD1pkyncamT+faOyv1UqoUKJ9YeVmO9ph6/igJ5ocy59P/SnfK1xfbX7EyoQt7t2fsbZ/P3WX1qLD9i67+FOi+420kM8/Z3OtbHPrVW3LYf+EPRPhkDFupMsc98xTgWhbbj+WTaT/2DrT2/35yXE3lA6IOXSJpj8OfPY3O4HnkM7sLx/COnnfK1GUcx/yK4wLbUx57rM6NvksW0GOujzTMMdgXT0mcjNq4t+eGr8hJ9jc7wtBTr577kMcXjmGEwduQpXH+pDtMZXmIOe+7zvifFtfjccLwsxYzY3iKG6Uyny+Evr8pLjMVcf+PL1YsBl3Ipl/L+KJdJpQ9Y+aM/+mnXu0RdkChyvdQR6XJaPSEKQkdxvbgcbghu91Shbi31+qy/X7i++ck5J9dkzWIYrQ3MBGtX4apzoW5vx+QvCqlGDY66Y1b52VN5qX+n9j28/mBvMBEI63CV87x4DJGXXcBkd2qq1zeYlgR1Z0kEe0xRqFuTYy2Rl3Mi13HAF3mJx1dneIklDoZk+XjD8BSh7lflJQp27sirncRn9Kq82E9PgfbpqMVA8pejmM6JKY98hJcjCep6qT0aTPFuMUl/RNmS3Px+ML5VJ5aC69ny1VCrTUi6I087HWCXPx/3nbP1VmpPmVwc6jufYk9TQg4jXSvMTXWQqucQHh/9S4bx4KN134/O/qFnHmN8rrOY4Kc08ZxXy7MgpcSBRkbYnY18rE4g9N+kUPch1HEu1O1n0vpZe0SYMPEYlrRQ3IrZJwh1zzcc8CXW+TFgqr8uP1SR61Nt3pYJ7MSio3hyxHyUlxO3ibE2xrEoprxmz8u5zQBim1/SDpocBjix8fci1D2LxTjSR5YyF7meZy+nMCwJdVuzO4Mh5i3AeV7i8fUZDEu5kceQZxgtpg40E+qOmCKKc+0l8hJz1sjL8ZyVa50jL9aO9VsS6j6Xt06xjwwYOByf50aRl3D9WfvwvCwJdXsMOCvUfa69nBLq1vLH//3vOnvOpfz2Fu2Xv5P+u5TfnnKZVPqAlds31uj7FtyXcjz/gmPeFSz9iy2xeZIdRPC8Qz59NR0E+IGGjJYWblZ+n/j4PZYwxbIYYk5MVJ3DMHsLFDr82TPTa/gXWGfu+WqoyD/W2S5956/m3zdn9hckvWWb15phmvvCAm+mjgxefiV8pM7x+nMMwT7Tt1TeDaZzvnCSRL2n9a1gn+N9dr1gL/Ey26VlVs04QDuNId417uxH4ZX2OQzuklwSaPUljidI/SIm+xf9dNMWCkbV7iplJjJKpwcKj8zIZqLIbgkuGhN+VdfIKOLbcv44EQ4jVZsB7PbGZsL+4L3t8eCHhA+PbThEBOx2vfPpafITU+PYOfv+flsnpphRtJUaEc/OfDC/tILSDzyS+EadMVvw77ga8EyjjG38XFJzbsJ/KRZ73z0ykXwirp284MI9z+2QSosVaGUxSTbth5bsU4XDc4t978IFzvFybog5D/MLMcZd7wgv8Rx7zYCBA8+viuHcrpaLvhXtpdjszjnD1rn2MovFp/OxWObD/NO8YKnPDuUkLwvnvmoOea7E2527/jIgk+zgNKb5M1/CdBqV83c+Esdc3n3qast+NVt1FmBzwJuC/eo5pS/nppRSR3j25ubMWZdyKZfyrSqXSaUPWPnpv/F5TIcWug8ho1TthZbzNzFGLR2M4zCwAjl7HbqS0RwDyVuc+I7EdkYJ/i3NULR7tKzV1gFcwDhBPu/Q5InLPWxJoQt3STyHtzrs8QomjyGHO8QOtg6mKgY/bBjKcf23Q8Ggtuo5nJoccx06hxUuLM/Nnn8IDzBi8ilSGbg7DL7OW+rcGaqlpWUMGJQ3+xsKGOoVWeyV7lYVJl7070tvUeObWPsUhvBMIqa++KLae2S3Ur36WrgH1b973yIObwjZrLJhaW/7wMsUJu/mvEQMnfuXLTwvY/CtaOv128oJz33EQLW9tAkTaBsumEbFUDGdLr0iKJVRzRj9fQfvK3tkJINBebHFYlI9h8ozUxFLZqjI6D0yDkZk9BFtgwG9x6OxX3CPXW4TRe8y8FCxi86KtQcA+wyMxWX7xHjY9XXiaH9IeNh1eNw3HaTdocfjvit/T7jfd7jbpTqZtT/0uLsfkDOQM/C473H/ILZMXHU4TKlqJK3XI6apTSzt9wO+8fXnOBxEj2k69EXcW4j4mbfTUV8H5u1pE4S63yERZbIT2mRs0YZLdRIyqa/pLBv79uR8C23y7lRi04X+ZYW44sXH5jG0edWl0aJ9phYy/+n9evNcEhN6c8/Exr8Npti/xD7S1nFV1EdqLD629qjGydgeT4/6NYIoTx3LJ5+Vx9pHthgwgutE7xIvS7HY95Fz22LaE7vnoHHMQl3qvywvSfMIllVJdtVmhujhWAwT4HwtygeL/x6v8zZg4vBMRuLQv8z7E9sfdfAtUDXgYHipPHNbYaAvLpQXW5Zyl9i/2NKHZ3Agdr54LBZr0fbo+9zGSw9dcdzibibMfMvacYqkw7y92Oe+qQp5UsZQx5E4ZKHkfC+FO8a8IWKKnpOPYPCTNL4MSG1FLgkGW9xKcZqv9MuImHxcWeKFDIYOPhar9mOKGIw9H0tEXjyGzZnXgjwx/sFFqPtSLuV9Uy5C3R+w8lu/9LImVtI3tM5NB1MtzLf3bFR+oQMz+ZPrMWsncz3AvRCVDpV0BzRNPvWtRpPvtMeTq5EktNaWTzwsBlunslKD5N/8Ev0EDpisbTE0W/5fJk2+WhLtn6vHpEKOHlO7ZxfqoDyobUU6j/Giz37p+ioSDHOFTJ4XxaR1VAz+ubTfREw9kzuOJ/hWu34ryhNFDEzmenqu9YOAyfHQMGGBl8ZDfG7ezuR51vqq/0/mnkATuVZe5tf3vsYMcFrmpT3VZX+NdVaMfa2f/DaH8zN5X/PH2zO2GKytyeYSj8lhKmeU+QHdJtuer89BnwsVXmObV+4rpsWYMm+PakcM63pv2Z1JJ0AZqKKjVZS3CKNSEZR+ZBEdXYHAIOyy+MIBABPwCEbiJpb8CBEfVxH4A4sou2gmER73PXYHRi4/eNx12O0S1quMvpOJo/2hw2GS3+/GDrsxYTNkXK1yPd51wuRh7HF42aHvxWYm7EdCSlPRTCJMk356RxjHHl//2gv0w4j1cDDi4Iyv7jv3nKMvRf+OUxv78pmXHo++rLJPwkvTYFI7+jqXZ+q8L8TmOIGp17Cx2JZZm5/d8/QETKzjUnsBWpyzO+ZFTMlFrfip0olYHNq8no9i645PFVPoQ/V+ats+EZBYbzF5zO2FwjFe9A5yDf/cFUMX7BQwtT6ybetuMQGeBz/wZzegtb6m18tlxsddMWKCt5tvtVzI1jliiv1T7PcRMC75lsWgvjyPxeWZMVdMSTGSz430io0XjzHVGrT8cYkXxdSey1IsDrF+CVOIATqJL/7a4uppXnzvMfe1mCeE9hHsNtlneZnzfAwTh+feXhpa7/Vt3j7zcnqtM3iJF9PmGTV30TrM4xrqvxzPjea8OAyQHdxE7FwqoFuTZHPP47x4X4ztxxb95Zd/6SUu5VIu5f1RLpNKH7By/XrT0CCE1S2YL1/VLkptLczsxD7j5BSZX2uHoGf7RNd2IfaezYaz58lSvN4ypjmGeD+LaTmxphmGiHG5jvN7Rjue3y1iiHU+jkmL1psXMBHDCUHPefG2v8cc45wX/9xphunVMByz7f3O+do5Xs4dT067Ae4MxTS9IqbZoLEmnB7Dsq8tYeBg2+Pz1QJzPYr5RM8pu03gLfFCetAkzXNMx665jCmej8DLfPCtVTiGYf623vxofgHo9B4VojJk9YdOGHBAMRP1JT/ZwZAVTtVmqquP9HrjREZsWyaHbI3HoGirE0UKYhwT+r5NIOTcGc2l+VMdDwOGfkRHOogDrnsAOz1jPog7FRMAuPUAy7GeTtiWF4nV9jPLKEIcByxLZamOsf3MV2bNffbU9U/dz/qetp9FTEdiivybHreDvHjc28uYTsUtz8uxOKl9aF1vwIGXgonQPm2hGYKnxOLzGMSymKJv+evF+9nVyVrnGaYzsT7ykMM5y7lL7DPP9yd6fd8eMTte84iCYdnX5hjI2d7X4j1inT2mpf7rNC/RnudGcJiqYeyYk57ztQRqk1cLPCRwjd/LvuRjCIXj87xBMgfHS8Bgz7cPcdnXKGCM95zXIf5+HpsjxojB8xJjQIJKV5zn5Vj7WSo3r6+OHLmU36lyXunqUj6o5fL52wes/LE/+10g0yMMIBe5u2AT4CM7woQSzYW64ydIUSy5D6KHXdA/4vAX3eJc7SimHIVSo3hyxORvUt7aBExOqHvh51EUdCZ6GH5Qv3cvfxyC8PAYjp8ThD7GS/37Ai9RqDuKJ0eeZryE+x0CL7uASd+gNV9Lrs5RdwfBZnhR3kWh7lDOilGG+1Wxy+hb1ff88TW6V+KF4XnJgRcOvkaYC6hHXqJeWA7ERF4eyWOovht5qbydbi9PFuou5SmY4v3i5zhRBD7GCPsJoVzfY1rCYHnZg50oqAh1U81kCeeFur8GL2odlR7iCpeHYuu/7sqkkFYrkfqP2GPQQxq6tk0zAIyZyuomf1c7tLDC3QDhIQh1pxQ2EBj95wh/+PmyALRia9uGy5/7MvTSWj47K9TtVwIt7npkQEReZDAT2gt8ib4VRXtj+6lC3ba9GDv2PzMtrgVMtv08Saj7zBZwh/APUXg4PoMo1G13O1y6x1y0dy5uavOC9IT2M2vzZ4SHI8aIYXWWF56JjUdM1jdE1Bq1zkvi4/NY7DHNBaF9++lDnVfHBNQjL6Z/shgWhbpNWRLqngmon+El5ndRnP+cb9VbWQz6eSvOi493QF3RCBwR6rZhD3NezglCzzaX4ehbp3l5klB3yIWSqbP4Fk7yEp97xBS9IPrWeV7g9B4jpuh7SwLqEVPkJeaUsb2cFOouv/1jf+67jp9zKZdyKd/ScplU+oCVq+cDVl0ygR6S/Jlid1KSyYeFgbrpDDoOth2Usgxiydh9sDvA2YlNB8smqS62Lle2dewVTK2jf2sSMawChiGIV/alLg4T7PkpYEweA8xuHgwQm1Uu3HA2TH6nGVIM5rYWA/EcU5y06QKmOFkwRJ44neQp2SSay5tPiwnsMKXAC8EkZxVDeK7WJtG68bzEyQlfIi9zDN7XBAOO8kKIOwBFXshpVx3lxZQ5L6cxnMPkdl15AqaE075GTJ4HDhhoob0stZ9TmEJ7mcWAgEnrbes0x+QHFgNMnGPMMPUB0wg/7RM/dTqVVDO4CH27Ks+Euq09oWmxMYDMhMNETqh7P9lJoPmkT2ezeNDsuNgm8Q+2n+FhXF09mGswstlxjhnYJo+Zy5+6msx+KqKfRMjEsJSBE97krZ2Nmk9mhxjw0Wnrjn8sb0Mci/3PvP34Nk+zGGBtgNvgxx43cc35mrYXU+0h7EzmJh9oLsbfaydgntOpWN0txOZTmAi+/TgMGqvtstXYXuBjt9Q5xmI6iWGlE/L1+jiDaY4hxoxZf2MwEYeJrBjHgPoZHyDXmcet05iG4Gsx9+kW8oLFPGEpjrH4TRd4iXlBfEk3f+Hly2rGy2lf6wPGOYY5byn4Vhd5mWFKJzHZSVUCLfjWq2GKvjb3Ld//dBETe0xLvJxqL9I/wdmRlxjXljAg1HHma+H+sb0kxwvO+toMU+Bl7ouvzsspX3OFgCERbl67rFS6lEt5v5TLpNIHrPzMX/8C6MDoS0eYAfRELnkakORtU+loVuiwLom5ivKuNFliEQhcoav2FXfYoL2VSCARqNQODSKKqx1aQsIWXU0cBiSsjb3mToRIi32FDiudsCiXHNAwMKQztJhWBZPFsEaz1wYjGNhyh7ViYGANEkzmWW4MJgJhi752ygMSNhZDuZ/aW8j1+1K/LRJWQOVlAjtMKBg18SAIL6tS51R4sJi25TkphmtODRMABjkMjRcYXhqmVeBpy73nheV+9i3ioBidryXDS1d9LVUeyGDqq68RA1flOZG5/trwwiiim4YX62uDxUDlfgaT+FbDtALNeFkhOV56k+RSxdTV5HONDiuDSblewqSTDxttXzT3tW7GS+d4ueLe+do1kuMlF1yWlwHJ8TIgVV/ryjNcc1cTT8uLYhrQEsDe8KLTDNvAi7UjLxvuXPu5Ke1Fh+rCS8M0ljr3oc0rhgRaxKQ8doUn3f8tg/FIua6UYTAeacQOU50YymAcilA3gfA6BoxoE0UvwdiBq37NVGx9w7wB1YklAOgI2E9UtJLk77tM2E0yoTP0jJTaRFHO8puexO5TxmpgM3HE6BKcPfQZQzdBP4i9vX5A34/QjyW2Vzu8/qG3MAwHAIS+z8jcVjj99NtdXYnTJpIAnWjq4D+1XRW1kuJq6ED4ZL7Bx/IVElOZeE4yGCm8DOjqAGzLHT7B1/jMdI2Bpd19Mm/xfdMN1pzMfcQXVQuk9kckA9Yt9zUGrLkTMe7qa+LLOojccO8majM42IKrN7614g6rnOoA2banrvieTiYnlvrpSs6OCbc81Jigz3atGKB9aGsva3TYomHacOfi3HVpL1rnrrRHbT8TGGttL6WsTVzrQa79aJ/cbOk7BrQB+crEAMWwMRN6EUNf4pbaG3gMmkfo8W3pv2ybt3GOLYZyP2njrc62Tx3QYjNYBsiKCWi+pP2R2huT6/Sl37e82P5ny2oXXrjDBm2ljb7wUgy5+HIXeOkNL9a3NBdrNmFd4j2g/ZHvXwjUcp3iG5UHbrG4YUoOk/QvjZc1k/O1OQZ5Zjrh0AVe5hik/panDRKG2l8xElHNfVTvp/aZpQ1WDBDf2gZe1qZPvSm82JU11tfUt5ruFlz70fahGNZIzteUFzvhNxRMDUNyOWgfMK0CLxtu+V7D1HhZIUn7qW0eLtehUie1+2L3tc7Ci9qSw1JtL4P6WrEzGB0lDCUOSrxvebblpeXVc15srnMVMNXCkpN1E/DT/7fP41Iu5VLeH+WiqfQBK1/71TtQSa56MB7KknW195wxEssADVQHQJLopzqAkl1GSJa8l2Q1QTQ69E3zBrLs+LEkAVfoMDHjJU01OctsB1ldfautSXWGTK6ozWBJJsqgcgDXj04GiEM/MmMirSNjZMZkMOWKSWzF0INa4m8xwNsMYF/+TTE8IiORJJiZm+CmYuoNhgyWSQaDodnAAMYdY4EXlPMbLyt0GNAGVw0TDE/sMK0hn0zdk8dwV3npHS+KScUnt+gLL8rDnBcGY8+MTA3jQ+FlKPU6FCbmvHTuzX2PVN4sssOkoo9d4UV244LD8IgJiRpGlN+obX0rL2AYIi9AxTyAseOMA6FimiIP1TcFEy3w0tqPrF5pvMiuXiNlx9OkEwAFo/rWtraXBP3kLPoaFx4sL/fQ3cgaLzLRRAFDcqsR1E4B01QSwMYLsCM2GOQzECLCFXpM3MRatwWjYtocwaS+qJimiqGr7YWptY8pYETgRSd3Aar6SAp1Ku1Zx0g7nkCQhJmhn/61FZ5T+U+vsYcIc7NcHgcwRgZuCo/6QUxf7r+fCPuJMRUF2l0m7DLjeS8TO/KfHge6BCTmIsQNdB0jJa4TQV3XJqKaLdNZXRk1UT+CWVY6EQEfeuMtHA4d7u+28kyYAGZ8Zd8Gv23qqL1EpplNzkbh7eP5Bh/BFX6T7vFO2lde9PcdZBuFa5Yh/uu8wWvTGo8YQSC84BWejwO+Rjv88/4dyE5FCRMzdqW9rEp/pJMBV6y+pr7Tubi2CrG6L751KLFYbf1U2voWUHytDJybLyY3sSMrUZLDqDGn9VfAIelAWfpM3eFuG9qLtp++to8S11jjmrQXFWRWWz+2W6PDCowdT8hE1db+S/ubZAbP0k/aGND8QGK1PDMkLhPgVHlRO6tSscGkPGxqDEjFJhcTVgXDDqgYJa5NYINhLO1LbOn9bO6jPGidezO47sDYF4cWHkRMfyy8bNHJLmSQOKexWHnZmNisk2m+v5FB+I4BUItjyrPmOrr6UTGxw0BlA4NmDw5Dm7CuvEBicVcmHCZm7ClXTDbX2ZZY3XjxmCIv6lt7tD6SwXgsvrVBBzaxeJmXiIkNJsEgz4zRk+x0NzLjkaaaJ+hmGYKJCi/60kjbS/Q1tUtuBGnzium++ppg0k8xlReY4zqhZjG0ySd5Gap11PZzYNlhri+/nSD5nubZNtfZokPOML7WLfLS1eNUXoD4vHrHsgxWMWWHwcfJweVCkjek4Gs7lh0ZexIeRs7YG1/LxXs7EK6KfdzXurlvsdbRiscDX/3VO1zKpVzK+6NcVip9wMrNG+v6d8JcEPq8rd9lq6io7k+jdtzBjcwV5ts5p3Dc7mChNkIdKNj2ekt1ngsIpnBcbCsaaDHFXemW6/x0DEuYbNEBxilMc4wFA/vjxzC5JetHMZy2Y50jpvlzP83DnJeIwfMUrxe3Pn5vvHhMFOy4DP9V208bZPv24jCx//38uR+v87J9mpe4hP18+zmNyWppPQVT3Bb7nK/F4wSvbfKUOsfjMBjcPcvY1+rQgQCZe24NSCeXfD1bYU/DTKhbr2FRcUA5GrVvIiDZr/ds/cJxnVyqn9VVu33aJuezE/8ehil8Tke4id9qnsTgn1G0OyTcmo9AlmJ7NkGKQLgqk0zqay+MRtOSr8U2v9yejttLvvKqdsQUrx+FuuvELc99VzGcsiWmeDtijp+PPzUWn7MdBuBEDAifNy3UOWKK9vk+8dXyhhhTIoZTvCxhWuIhHn/V3OW8bz2xP4q8HMV03rfmmL659nIsNqu96FvORrBTiDtzDNGOOeq8jgj2aV7O+d4cQwp24IW+OV6W2s8cA4J9GsM8Z/UYbJ8aeVGM53jRSTZbFzumuZTf+SLh4jvxf5fy21Euk0ofsPJD//6nQYb1pwh1R3Fjp/ZKXkwZNBfUXNQjMiWKXdaflz+jUPcu2En/Xt+eegzJnDu7xxEMk7ULZFtmItcBw6sKdcdntnoCLxGTpUUGrVFA/bRQd9RiiLxw4CWKi0cx5blQ96vxwpgLdY9RqPssLyHEhfMnjiLwHpOXXja8lONRR2QJw1xAPWI6LdQddUBS9K1gHxVQr9cjd3wImNIZTEtC3REDyV+qHXmJMSHeL4qQ7oOvRfnO9TfJywSPoUNZ5u8weB7i5b9KB2dfHfO98ud9uMKB/YldbeRi3x+Si0OyE5zBsCDUHYW5Z0LdD16PYjz4WaNh8C3gjz6PU2G+nBMmjuKuN7xysZLr/5Nyh9FdI7afHgmv8crxdE4E/qiw/RF7psMT2k+MxRFDFO5+ilC31WgizIW6zwnc7gLo+uvyz1HUugvtxx4DloS6fQwA2oQSMNdoWpqgOLppQilzoW5vr9nzEEWvY14QeZkLdXtMUai7+paxYyx+VV7sBAgAiTnGflWh7ogp/rZD+ew58kLL5wPn20sUvj/HS/TFHO65JKC+KNRdLpS0fURebJpwtn853UdGXlI4Xn3ribzEmDHXOTwv1B2f+0yoO5y/RvQtz0u8T+WF9foeg6y28rx8s0LdEdNJoe5S/sh/8Omz51zKpVzKt6ZcJpU+YGVz3WOb/BuLbRBP3hqRUYLoIdlYv+XO2aqJAwBgOM0bAE3XpxyvOgnFHmzSzNI5WcHNhLiTDOT7erVZlpPbzmsDj+kqCKdGTJsgkhgxrQOG+p14xXwaU88GA0udHCaS51brDNGjsBiivYXHFDGoxke14csmYFhzchhWM168EGrkiQAnPpngeUkLmBwGFt2MWmcCNkYjBygJq+MBDsM2YjrHC1IQdw2+RUuYyPnerP3MeIntxWOKu4TNfI1PY+pnPJkEVTGZ68edzRYx2a6BzY4+kOtugm/Fd4Xr8jv9/Tlfm/NitLlYOqreYEoLvKwChvWMF49pEzCdFExHiHssIr5eGNWvLdoEDF3AAPgNB1JirIcJCiIR43rI1QZjYdLID9Sn7BP1fMJmBnJOzn64XyObXei6fgIZkP/WRx/xu273DVQo8/GJH4jE4x0IH+Mrd4FPTcZemBuMScsqMOfEYHne/9hP0oSX5DYgmL/V95Ogs/6Iw4Qjz3ehHGwdaS5yvSq/07IJ/U9sP7P+hmNM8P4cfW8WA1j0UWq1YvvA3F5b3yPxd1u2fKKPfUIfGjcg6AKm3mKCaFNFXs5hmmPwZYPuDC/dLLchx0v0tRMYFnjpuOgoVkziC/ZRb2c8BR7KvY9j6k7yEjdVGGY8RUwhT2C4CfqksdliOuVr5PuXmhsd4wXlGVnfCn3oaqG92BrU/meJF1ZeyGFw/U/EAM+L9EctuNWc9RhP5Rn59nK6/USx8apvaXjxMQAzTBuDCZjnAVtzkHQscazPfAqm0KeucHqQuknA9mY4ccalXMqlfCvLZVLpA1Z+/j/9AlYjY4PWV6xB2OZU9F4k8F/lzoklX6Oru7Jt0eGmJEvEIj55zakOoJ5Rwi1aotGDcIMmwptAeMZ9/VZ+hYRb9HXL0w13uOVmX3OHG6Q6GL+B6DKsGTUh2CJhazqkDTpsVcS62Ne5YVjCdI2G6QYJt2iYrkC4NZ1yAuEWXU2eOiTccF9XLK3ROUxb7nDDXU1ir9GJYHPBdAX5nl+TJy68bAIvW+UFMnlxzQ3DFfpqE4tA85UmTwzcEuHG8NIwoA50bpUXkmTyFo2nLSfcclff2l0V3tW+RcKVwdAVXuzE0Aap+prycqUC0BCdIMXQFUxXhZfEco8bNKHTLQg3JgFMIDwzvPRIeMZDxbQJvFwVXjwGwqo8sytIUm552XCqkypUMF0VTJ3hRUWtt+hwxcnw1FVMBOCGCDdlgoEhOgM36nsk17zloWJaocMzDIYXuZ/a2h7VvqWELfykorQfw0vBRNw0QpSXvmDSmNCz6KNZTDdEuEbrUFaGFy68SAxA8y2DSdv8YHzrBg3TDRteIMmu9TUu/hl5UUy98S2PqWAug7VeqldWk4gAcxMeTrjhoYmJo8cVmmD6x2iFrZmcGkG4NbxsQvt5QQkbMzl2u5rwbDviajUCYKz6jGebjNu1CGtvhoxEAJeJoXESrSOdKEoEJGq2TBaRmUgSLSC1iRjrzcEJcY/jgLffusVh34MIyFOHYRjLZ3CEF7eP+N/+0Nfwb3zkIUwhSImretZOKQlVI0MLAXiTr/DJfI2eCc95wCf4Gt8z3mLFSeKmuSrpoLbYExjv0iii1uXfEsjxMqBztoj2tlitYsptE4UidF+uKLG4g90t0IpWd6C6EYQOwq2wvQjg9rWOTui+2C94wJUZBHYg3HBrLyskPINvL7W/odJHGl+7JYmT6lsDyLUfhmwQoDGgg7S5be7qgNW2+XWxtU9dgXCFhG3paxKALUmbTOX6ikH7H+1fLA8Wk8ZitW9Y+mTVO7suMaYJaROuuPWhVDBYHq7QYcsNg+1D1+X4VckbVgCuE+EKXDH0oJoXKC/XygvkGrdoPGy5x7MFXnrDi8XQgXBteKFy/bXxrWt0ddJkBWkTimFTMaQ6CXCFhOuCKZVzriF/n2EqXD5TXqB95OAw3BpMt9zhFkU4G8BVwASQywv0mW0CL2qLb7W8IGJaA7giwhY6HyJaO9r/6DXF16hcs8Mz0+YlZ232dfA15aVt/iLP3Yq+3ygvkPtdo/cYuKv9j/haqu1FeVFfk9wnuTY/mLwAEK5vTFzaoHPt55p73Bjfuym8aD63Lb41GN+6Ret/+pKzrg0Gi2lTfS2VjV8E06bGgNbmyzyVPBf2vnVj7A0SbkOsvQ283AZebuFfIGnZANhk4B9dhLov5VLeN+Ui1P0BK2994R5UOuhNESTcQ8T81kyyWxG1pHks2ZoKEOoSdRUlzWwEcFn0ITqSDuEZZEm7ihzeQERHHyBisLfcY0IRHibCDXon1H3DYq/KQEQmYhgbFnsDwhoibmztB2bsTZ2dqCIXYVUyItcVgwwcuAg7Jsgkw4S23PkWIm75DkR8XDHpsnatMwCQwaSDqWvusQXL6pMysN2AsWI5fwNgzSII7XnJhRdJ1iIvOfDCjhdZK5AKLzcQ0dF3USYsinjlAzI65YUbL7cYMIHLgNvwUjDILj1lotL41h6S+G9B2IBxz4xDGUysWXjhBd9SnvQ5yq5COnBo4pfKew/gGUQY8t3if88CL7c8YOLiW4YXFYBuvAhPV6XOwxN5UUznePEYBFNKhETyxnpk4K3KS1faDxdehioaTYGXVDB4XkQMcwMCEQovwD2AybSXe84YqWFSgWndTbBh8Lveqa3PdCCgZxXOF22L6xID3iXva9omnxVMKrx5y0PdYU/bfAbL6q3iS2swOm6+9hRepsALB0x2J6TUXh8Xu4glFzHYW15h4lxjgoq/bpGQCNiSfJL4wGXilrvyyZa2H8G0JZnIWROwYmDTiZD2zXbC1WbCOCaJk+uM61V2n+uBgUlXFEE2G+jqK2BCdt9ENrvvxJZriaA30IS4ASDnDu+8fYvUTdhs9rJab5jAPKHrJ9z2jL/w/d/AVx8T/jefex1fuLPDSV+WNIq8LeUN3uJ13iCXz1Hf4A0+NK7xUD59SxCFDfUTFbYfkcukZaqiuiOyTJIUXuQJyURTrrG9bTjQBKG9rQK29+A6sbRCwr58kF3jFkwbNxNPNW5BB3EdRJwbxU51QsrGtQMzHojrJMzIjFwmK59hKKLWLRarULfEgK71mWUSRsT95Wlr+7ljxkit/9kXjNsy2NdPDLX9KE+6s5gd+A5gqO72ighDif0voRNJHUZwEe1t/Usq32EqJu0jb1ja21B40hiwKhOfV5D29Q6ADMKWBdMjMjJR3UFqgsYIsVVvUDFFDDqBt04yyfPIwF3h6QaEAzMeiWuuMxUH7kF4hoSRc/XPZwWjYrgpMUB5uSq8aB+p/c0dy2YWVwWDxuIrSP+UCwblSXnZwO+MJ2LKTbdNMe6Z8ZKa4PpY+tEehGcsG00oL7cYMLGIeFPxRYcJgmlgyS3U195RTKy+JW30KvCimBAw6apB9bWOS75Gsor4Ebrbp2xhfwCXzTI6PKuxXvrX50gYc64TxIqhs7woJoPhrvIivvfIGblMemyh/bxg2BT/d75V/GANWUGrE6Nit8/qBSNjx4xHk5Nqm9ecdDJx6zl7X7uB50XzBs0LVBT7jmWDjpuCaVfavOY+OfBCC7xYTMrLmggrZjwAeEDbhfUA2SBHc58JuilQh2cGE0DCG+caA24DLzdAyUklmvalrgDw1hcuQt3f6nL+o8RL+aCWy0qlD1i5ftMIdRO5WcUlsb25HcWSvVC37ginpSP/ZjoKdS+L9D7dJiwID5+xzwl1R/FxuwPWMQxR2HFe53i8FYqYFnlJJ+1uAYO3PS89+QHgOfHkp4gpRwxzIe3Iw7JvRdthCLzYEoW634sg9Elfe1J7WeZFba2h5wV1pUgfRuXvhRdbZoN6wlkM5wTVIwa9PzPXXbLi9ax+ylMwzTGciAkLvHyzovBHBW1rHdMsJlhdtETx86O5UKr9dE1EtMn9vu+yt0NvnZwoTZkYMrY+M12xBONr8vcUPqfzzz1PHTiIg1v7jU3Gp2+85hIDweaTtsMDmdhptZEBjrUReFqhfE7B874AeG8i8LYs+VI64jtPtSlg0CeidtQ4q9p0BpPlarm9GJvmz2Au1H06jj0VI5fJXruyoMaYiGGG6bg9iwEhjj1FePiVRLDLJIaUOS+kz9Bg6Msw32KIMcJhoiXx5IipleW49h5zIT6RG4U4Z8syJh+LI4Y5xnMYEGzji4SZbw0BU/Stnuax+hSmFHKXJQznMJ1rL/H8iCGKwvehv+mfwEts8zFHnfvaq9WZHC80k2+YC6oX32I2mMxYYaFPdTaRTFoT1QklALh5M360eimXcinfrnKZVPqAle8vQt0arKPOTkyUEG1qya/auhWpll34eR8uGCcDohNqR6N/TsE+VLtWwd1hCHUO43T5LfsT5mLjHlOcmY/LceebIvk62x1+gCYU2TDZT1aeyst8wGYxRLHxPXwZzvASn1s+w4vyrtXSZ6J3ibykBUxRfyUKdUde4iN5Ki/HMO3hfUvf9EZe9PyYwLqTlzCRF4RmFExKG9FMnyguJz3HS/Stykv5s30+wsWmb44XAIcyoYSCxU9v0IyXY21eS/StyEttT0d4WRLqdoLp4Z45tJeobbI0iRlv8FX2EywbWvYD/fORPYbHfXK2TDRx0zyCd60loe7pjFB3DvbjzkcaCsrD4+hb0H7nmfwTH3vw57+iUHcUsY6ivMC8/USeXufB8aRbxVdMJ/zA1bn88xjE++vqoxrX/KQPmWP1r85mZ+fyr4phJMZ9EOru64XnA+16TYfB2zEW6+9bv98mtgTT/LqneJowF+q2vrU80RtLbPO+7MNxlcHXf22fvpo4ZmxCaT8mdpzCMMKLhXeEsvqv8dIBjpd5RHgaL1rO8ZKCHf8exZKXBdRbWRIf95M48RfneYl9ZOSlP8PLkm/NMJlbyipFW+cFQehQ53O8xNxIc9ZjGBpvnpeWG/ljB3heYv26YxjI/iDmLr5EXo7lrC53wfzZRF5sXjFrPyd4SSAnzF19y2zyE1OnuDFK5MXVs/z4D/6PvuvEWZdyKZfyrSyXSaUPWOlWCWasVCdUbMkhC5+Qj3b6DHYDBbFbwGf2ScPS+XY3HD1iB60Z80Gsfk5S6xxwRkx2VwnC8o48MwzlGNfzo20xeNtiWMIUbcVAJomIO2FMjhf/HHVyz/P0FEyeh1N2xBR5yQAmkzMITz4vyrOdY5rNxLNkLNZhXMRwCtPczgu256XVmQOmpcm6JV5sOetrvNRejmNinOZluf3YRJYXfG/e5uvZxH5gQcsJpsVwztdiDGEs8+R9zSfj+Qwv+ZV58UlufM4TxfZ0Ju6x97XF9mMwZCaMI5lJH5ko8ru3+eFIDsMT1Ueyz8jVaSJndyp2UWop2knN7voRVHcP5NmfQ9z+arGYgRcdH8Qc/7X3tdh+PjptnCDtG7x2ou+v87rtOMrAC15hrRs3MPCMRT8M5e3EDRJeqA3RL3ott4mrgRNe53W1OyZ8mNvbcmLgTd46+B+fNu0xEPDJaeWcbTR97HLc8pjjn/PY3XxLY8qs/WCpTyV3DVti+7GxGOX6PgbE9nM6D5jHgAVM8LH5FAaU38QXYLbMMJr2UjGd4GWey5zHYJ/RvL+Zx+aJ7YuV87zESaDI0yyuncW0hFGvhZmvLfHiMQVeFuq8hKk2HyJXJ0Bi/dnYfI63GS+2T13gBXNe4vGI4RgmYB7XzvWZ53JW5cbbsY17XqyvAfMXxvM8wRSavzQ41+bPtRc7cRXeBYjmHwHd+jKMvZRLeb+US2v8gJV//Ne/gGlqA6gd2lv6GsSNzWoz13+Rt8US9AlUB5naQfUob2ZKonGAfyt4ALs3aqqrVAdg5fpahwRvd5DBlHaicu3WSe/LNbSDygXDCI8hc+nQuCWkDAaxvJEc4RM+a+8ChnOYMMNAdeCsmBgtqd1VTHJ8BAcMnid9braTJnNcV4voM6LCvfJCIOwXMNiVA8qL2onIYVppnQuGEZ6XXcGgk5RTxZQdBps8EcjxkiBv5DRZyid4IdCMlxx4ofJvykMPxSR1VsFWxfQYeDkEXpqv+YlY5UVF1i0vPURLSZIm0SawmA5lUkfrPJ7hpSPvW8qLa/MGw17bA3wMiLzYiSQiqjaV5zSCa+I3GQwA4zHwMs148W/Ztc2rPQRe9B6neNEkWmvNT+Alm9/twC1GQLY3tnGO4ePea9zjwC0Jvi+YpoCxafAI74ph1WWMk0wsMQOHkTBOhMNoJoJAyLkcL0Ld+vsm1G0/c0t1YolIAvI4UbWvrx8xDFOZOJIJLNnxTez1Zo/1ZofUyfBhvdmX3eCkQj/5m2anNsw/y1iHDzH0cxnlRaw2cJO33X6izB4HS5uwcW9Ah+8Zb+oOn6/xGt+db3HNPUBifybf4oblXf2H8gbfPd3gWRb7I3mLz07XeC3LWpeP8wrfm9f4SO5lc4Dc49PTFd6c1iJKzwM+ylu8mTfomHDDA97gDT6at+hYtM4+zBt8Il9hYNE9epM3+Mx0hRUnXHHCx7HG9+UNtmWDi23Rp1FMB/gB18G0eQLNYn0icu1HY736osZhbT+PpZ27/sXYi/0LWptXPZc4kNWJVSbRNTzW71Pp/yym+LJH27z+voePY4/UJp81jlkMEsfYvRRjgylVTHK9rjzHqawOFO033x+NISbYPlJ5cXHsDC9j4GWH9pKt9fsNg04UtP5jzgsMJn1eh/p3rrmZxTSPxZ4X22f2IBPbTawumB7J+9aBsrMXeYHnBaaPTCgTCOW8EYzR+H8u9bc8RV5geCHQWV725nmJvdRe2LeXBV5szmp5aec37CNxzbMVw2R44oDBthddSWt5sbmxYnK8BDsv8GIxaXvxGIGDyfdGk79lyIsYy0sGRC/K8GJz0C7EjB66ghCuMEvfOWbgcxeh7m9xaTHqO+k/P8V7Ke+1XIS6P2Dl7S/K5wrahHS5KZME7vppWbHtwHWEDiBL8sQAQURCa+fAsksS9NrcOrX45zSz20AfOjDmNvOpCdIQ7Bzs9vlP67ArBhM3dDBO4LoUWN4+MXTxviZ8es/J/DfDUK4HtgPf1jlqIp2hy6up1n0otiYCo5j1GYwBg03GRjASWL5JL7wJhsYLMYMo1TrL8nP73PgsL5LcUcWY4OsI87scrqMDaq2zJn0WgzDQfEs/PdDnltB8Sz6DaxN+EzQRtjzxWV5W5Z5t8q/xkuE/TxBe+JV50YF2rkfknpNiIvU9TfYthuZb+QiGyMsQztdnFPlVTJOpMwf7OC+QCYpi2zZvu2ZNmnXhyDFeEGxVJ4lvd5UXXWpfB02BFxXmZqCs1PCYutJe9JpkKqGDMH1wdXBRMZQ3usHWT1c0xqi/23hhbSq+NrHYm3L/cSKMEyNn8fApA1OWz936ThJ7ZmCcVHNMBXYbL06nG0VsnYGufPsyZUJKUxHqBoYhgznjcOhED60Xu+tkU4X1eg/OOuEkE1LMwNcew6dmga+5hlE7SSdR7a/i79u/Vy+svlYnIEh2Efre6RYPmIqodYfP5FvsMNVprU/nG+wxYYMeXbEPyLLLGgifzlf4ODKeFa2bz/Aan+QV3mIZ8nw8b/GRvMEdTQARPsxbfIg32EE+XXudN3iN1/Vzuhe8xnNeVaH7F7zC83FALiu/XqDH89zhjjMmmBhgfM1ilOMykNU2r21cH562HxsX7Z8xFrdY7duPllxevnSlj9ScIbn2JPfrjT0VWutLArYYyieGAdMaOuHoS7N9nzkWzPoMJvIY7CRJXuwj21VHmE+lSyw9mOfwqrzEWBx5WeprfZ/J5Xh2GGJupHlE48Vjsk9OJxGOx7XIU+TF5GemrjFWx9xF73mMF43F+gwsL9pH2txIP4lyOeoZDJ2ZwFAB6FO8zP+0dW59pOZNkRfN52x/ZXnhYNf+gcwEnsEEd1wwrMsJmldojDzKyxIGwwvPeIF5+TnPhcjwckBpL9RyITd24OX2MpQcVepQ+tCF3KX2mdzqoOWtL97jUi7lUt4f5bJS6QNWbj/qRe2cAxDcpxczG7YzNIM22LeZrXMylzlpx+J+TfP545h0xjL/oj7cXAc1ps7RtphmdcK84VA0jjy3Y3bENL8eBXv590d5Ic8L0fwpncQUS7heTdBO/+SkHXl3mHDM1+xP5phelZfIQzzu7rDQXp7Ku8PAXHVeFi4xwxDbZDw58pJpdsor2Sd5WeBp6ZdR1+YkL4tt3v/LvD2eaB8Lz+wYz4qhapjpPE28aawjyUomX6fTZTZhFi8Ib0chbqLTx/3wTGyr25ZzKhNX5RfRTwj+uC7bM8dfX3sUp3ijeHyB52i3f1+O1fUfi7kJQsO6UkrLKsj0DmHaq0fbfUpskmuW0oHqtuKA+N3aqAURini4se2OcATCqqyo0h06r7AwMffUB1N+cKyNnvjJ8X95QnuMvht5qRj0QCCfFoLYOcgn+2B6xVhPAM8+8z9xfSxgWqpUvEewT/bzi7b/l/O50XKcdLyYA4s8hfKqfeQ3xYup67H7LeasZzH4PvHVeTmdtZ67XvwU7qjbzHg5cuYTeIplvgI0GDNeTvNwPmc1FVvIu2f3eAIvsfkBwLOPbnEpl3Ip749ymVT6gJU/9Oc+Depskg3YMC2DqdgBxs7lhCA0zcUoo0DnMaHuNnDwf0bh4X2dWmiJkq1jXH6XjmA6heFgbcyTtSFgmIuQekz6xtF+zuBtP2GyCnVeEuo+z4tPhnbh93NR62Ve7PXtfceAaR+OdwFTfGYJmInmuoQj8KLLv71Qd+QlYlouxzAcgj2G89dA4IVOtheG950loe492iAr7qKyhCHmk5GXyMOj2qw8eF76MOJLmD/XiCnysjd2Q6b2qwt1n/OtOJGl7aX5Hp3FYHmJQt0JVN9mK4azQt0UhLqPYGy8lH8vl3kcl4S62+9z9vbQyapKLVOmsJub1lHrrZ+9odov77wsfNf5ofXh4Jlrwt1y3z/5cf+W+JxQd/uIR23PyzGhbutrlqcoaLssCO1LHODFWBxFrpVHG8es0HDsfzjYdUVIvb+seNQ2L7uAtRIxLAl1x2c0f+4eUwq2rnI4FqvtMcXAAcNco8y3n/Ni477E68U2X4W62bR5eF6sfY4X+5kNUD7fCTvXLvJgMJ2OCOd56YK9QnK2xuJjvEyI7WdpAsPzEgWhI6ZzvBwCpripwuJmFpjzYmN5xBDbixVQ7zFvLzEGxBLDYsSwCxg1h2x95GlM+veW753G9P9n72+CbFm28zDsW1lVe+/uPvfn/RAgSDwABGVapAOUSJAULMoeWLTs8MByWAQlmxppQA7ssREa2FMHGeG5TU88sGWRkGkp5LAtEyFLAzEoEnwULVImzQAtEn98Dw/v3XtOd++fqsrlwcqVudaq2nt33/twL/zOzhvndmfX3lX51bfWypVZWV9G26w7pDoMLlgv+rOl2LjHFPOCl2Cw9bXYfCmudfAPj5ZC3eR+AmtxbD02rxV9qPXTf/rHz37mVm7lVr7YcptUes8KE3AMuyDtQ2f0TJPrPJ4x1zqDsQ/1A7Krqy5Aq2eXeJwou4miEzFG5NrZTPD1meQc5wax2gaPyQ/w9uTb/ITpIqYjssNweBGmNhAekT0GSKffMPl6hgxm7GTDgTwv+zBotbxI3WNa5aVwz7zEeKJrmHiBKdaPhpeMwBuAfRhk7qnVGbzAcM3WFrwQLzDYCb1T4GVaweB5kWs4DORt7Zk8Joeh7Ox0CcMebZWK6Gnli7Z2xJKXyWFgj4GBkxnEZvI8AcsYYHmKvICw4i+8qDv/oYCJLmOKvEjd25aPAcCR+KKtPVtM5G1L75vFMJPn6RR4mQJGeRVD75m01w7IpsBTBpwI/MyEoxHqzgD2U5i87jxPQ6j3vVe56TtfH64c//hrn6If2j5bqfNC3anLVW/ppSUOWtwxYj9wIB+rAT+4YSyFgo80X7Y1zD4mrPoPe1uzvBBcHMvlGudsTfzF29qzsSUA2KNNjmgsdjFigSnUQ0yY4OPeCD95LbGaXYzQ1/b0Hh9MXWOvw2D9iSRm+LjmeYp97hLDvIgBHsMaL/514VOIex6DYLrEyyHw8gw4weZFfxMw7K9iYpfrRF5irjOBF7a2sL1FHDMxIPACSP91iZc9TR4TZlzMdQKmaYEp9qlrtmbzuZC/RUyQCXj7ACra3p5i7rPkJQcMHhMCpmh7fNHWcqhHTCDg2dgZsJIHXOElYljj5VIMWLO106UYcIUXzb+s/xwChudYx2VMMa6dsJy0bLeUqn7qrXxxhSH3/Afu35d9Y39Aym1S6T0rf+Pf/sc4zIw9ywTDMzKOxHgqydCx1ieo7s0pZTzSVLuDkRiPmGtingl4KnUV33tCGyw8U8YjzfVJyhPNeKKp1g8045EmHMuwbqSMJ5pwKPUMxp4yDmZQdwRq/QSZmHouHdQBGcfEeKKpDrCPKZe6dFqnlPEOY8UwpYaJQA4TIE9JHw2mJ8p4QsP0XDDpk/kjyT1TDBNJB6t1we0HQAdI4pEhvJyoJXiHC7zM5T6MxHiHqbZ5JuARMoFHped9RntK/o4y3tFcn9o9FR4U055mvDOYJoidKE9cElgdEKXKC9fJmCMahmeaDQ/F1lLGI431Hfux8qa8oPDClRfFBMgqH+WFQHik2dnac8WkvHhbm4nxZHkpmDThmwsv+4LpERlHeFs7GV5GME7G9rjY1lPBABByAp6UF8iT4XfgoknAeKSMp8DLO4yr/iK2KbZreXk2GFLBcCg+/1S42Re7UV6eSxJ7qLxMq7yoPVd/YVG6eUQbbBzAeEKu/vJYbGk0tvVIY+XlRDPe0VgxzeUeKCYi4UAnr5QXtbXHYoeapO5pxsFgOCEXfxkrL4JJ4l4UUNeBz2RizjNNeC7+ReWzJ5MEfxW908d4pIw9ySQmF/98puYvG+jqCBnAdgTsx4T9KOLax4mwnwmPo2gkiaYSl4klEQzuE7DpZhAYQ8fYDIxhyCAS/ZW+B4Z+LuLawNBnbPoJqUwUffjhEzabE1KSVn/w8SN+9Pf8Gh4+fAQA3N2dMGzHKtS92Y7oN1Op84uFurXIy2Z+FDCTn7CbSPoMOyGnE0si1k+VQx3YPJtY/YwZj2i2dii2daq2JbzXJ/sk8dzGsWfIyk5m4C2ER51A0HihA6QjfFybIZPZjyUmCCbGk8GUATyiiNYSsCeuMYEh7Xk0/vJMM95SiwEjZbw1/qL9lR6vGIo9Sxxu/vNIs8O0pwl7mvFEYq1j8ZenEhNy9ZeGaS5xpsa5ck3VTHtCdv2R+rwObI+VF+2v2PU/XGK9nXDbQx6KMTPeIdc4p3HsgFz7myMyDtQwTIWXp8DLvvBCADIITygC+sTYJ8/Lc+E12pbWJRY3DJEXKrwrD3uUHKxgfCo8tDgmHGlsHkts1joDpb+ZDSbCE7jyMJYJjbnEzX3NdeT7e8p4RMNwusILAqa58K4ryJ8ou7xgTzP2jpcZB4NpBjtMgI/N9hozS753MP6SIX32O/j+5Z2xtQnsjksf2fpYy4t838fqZ8oufzvQLLgsLxR4MTmp8CI+IfmbHtc6S39V4pjy8s7wIjmlwXSFlwmMZ7Dj5YlaXiB21WztWDA9G385FtznbU36Zc19jgZT1jYbTEfyPJ3ALreR/M7EZgBPaKsWtWh+eWDGX7sJdd/Krfy2KTeh7vesfPrrItQ9ln+HImo4EmPkuQ7mpT7W701lwiKhJPVlUNkxsEOPXBJM4oyvoC8TDjJYU6HGZ8ogLstoSRJl4rIUudT3PNeJqQPNOPCMLRI6JBwo48DAAydsqMMJsgKDXZtnjGTqNe1oGCqmxHjLIzoQNkiYS7LV5RkfYCgJobS5o1QSZa4Y6gSEwbQvbVahxX3BtCnDKcGQcY8OA5JMiIGxY0KPJJjQkpuKyWFsUo8TMd4WXrrCyztM6Bi4Nxg6lkFvhiRn4Ixcxn9PhZc58KIYlRfduWmPjD1n7NChI5LJIQbeQARvFYN+/wTGiec6qFNessWIsb7zrzx1EL2SuUws9Rn4AENJCFluAaHyAs4LW/OYSjJkMG2QkAwvD9xhoFQxbUDokHCETJjtyWOazvCimPry/SkxHnlCD8IDeuQk/tJn4MMit/oE+brysjcYJGGcrvJy4Iy7wsuh2OZHgRf1+SMYR+aawJ2IcTIDrrFMiEReei68lBgwcMbHGMAgPAMyTVZ4eYa8s6XSPE/FtiwPlpcnmvDMMhmRQDKo4owPuUciKm1uwvcVU+BlrJNVuTxhxoKXAali2oHK7mFFpLfEJBksZ2Tm+kR0D2mzauWob+rrNyoqqkLCR5L7rJOWRxLb2pnrzQASyys3x0n+yY43hONMOM6Mr6SMewBdElFuHglAQp+AjjL6XtrRJUYa5rriouvktTYu4uJaB+Ui3A0MwyQTW0WI+0e+8W1MY4f94x0AwrApxzs53g8zuJ/xvdN1oe5Lx7XMZeejHqJJNFXbItyXl5Ay2mtcKt5vRYDV1vSp4xPE1nL5zBM13ghU49xDEe4+kAxSPuISE9AmLqu/YJYVpIQSI9qEh9paV/rIkTJGztggYVswvcOMDRM+QlfiFqqwsPahtV79pdneE0kMqA9vaMYzz7gv/tF8vq+T/Edzn9R/jhWTDJxHiwmnypvGgB7SP2ns3rLEsYmAR85IkAnFuWDKJgY8Yva80FTrFtM28lIw7cvg8QEJPahiUgyK+YjAS40JnpcTZZw4Y4uEXeFlwowtE4YyMfyIJjausdryJLbVMD0WDBqLn4vt3aEDiEpuJLx0kMmxA8rrPSsYtD/yvLRYrLa2QTK8CIb7wss71k0WZALwidvKSu1T4TBNDtM5Xj6ovEibax9aMJ2sbV3gRTFpH6n9zxYJG4Npx4QHdNW2VOR9LrmN8jKXCT0y/vNIExIDqcRqjQkPhZd94eWDwEvFUGL3iTwvk9bLpGYq/qi2tuGEQTHwjB0IO/QYqWwqYfK3R5N3aw6qvEg+N5ZXFqnEBOFlU6S4Gy8N04HLBD5RmXyR/r1hgMEkOSuHmDAUXhVT5GUDwhYJE8nkeHuYyXjS85X6Y/EXsTXhKTGqQLvmNvfBXz4sL50fis9r/LdrkD8pY5pbuZVb+fLLbaXSe1Y++l1e1C4KD0et1ypmWQfwXKotuDPs8mq/TJXJDyTW6gh1J6BJ4X34kkz4NnoMAeDiuJ5fO9G4vHamgImWmKzjrGGK99G9O75Sn2O7Ay9REPrc+bWd+mQ/YrJfsrf5JbxEHhYYwtOkJZzLtpYXvF/mZck1XcVgP8Av4MUvwocXnA7n0+Tc1p1trdjaFG0tXOMl/pMX9cu80KIS/OcKLzNFDOwwZAVi23zN1q7wMr+Wl4BpgSGcbywfVwwJpMFMPkJLTHE5ftTl6EIbor1H/QiPSVZ/2fppNoLPBHQmCMX2EQGpHI8aTfUtEqaFUHc21+iHGcm8Xiff95//+p1/JTdGgKiZcSFCnIn13tZq0ytPcDzxCk/u+uTbsG5rsVkhFoc2Xov10dZWMRkMCBjymu0Ze36Jz7vaSn+CcPxcLNb6tMCs17ENxVleoir8NV4WGLEizh8wRMwLDAtMnheHQ69hMK3yssDg65YXjg0neAHzF/CytC3/ebVN7X/qOSMvFlNo8zVeok9H/1j4S8QU6ud4WVzhEobgPzF/u9RnLmIULWNAPH6uj2yY/OdjzKj+cAFTxGDLGqZ4jchDxBD7/YVtXak7DPb6kRetY4npoq2hPbCx5Su/6ybUfSu38tul3CaV3rPyxxZC3T6Sd4teH7WTAFCTs8tC3f4EcTncUqibymV0UBoGrciufkJ2g9iYr/YBAwELTHwFw1Ko25chuE4Xe3lzHcHgMZ0Cpgl+YP4SXpw+dOCFX8DLJvCwFOqOvMQ2+/qRfD2ebwgY6oDQYgpJRhSEjrzEAUAUA1+KK/vvxUmeKA6rr0M1XtJFXgieF8aSF6urE21NRK3jfbu8GiT6SxQe3gdeNoHX7zcv8QWnNUxxBUu8TuTlGGwtDmK3hRetxxiwwIAgBkteb0JWySU0mvwuYLYNWr5DJ1e/19OXnxTqT2Gw1LYwV/8xHwbwfEpuhzhZZWQwZMIcMu4ozJ2ZXP3x0Sfk+1DvN6OrH0fduUzqf+Ibj+74mlC3mQaukdu10dTlVStbXxPr97bWmxHTmqB6tLQ44RJjcRRTvmMvnqz+6PqfoFNoMc0B0xwwyOpfnMWwJj4e7+EiFod63AxjqzvQvdBf4gBQX/MzjXRxLq3wEvuDWCIvcdOEGJu3HONYk7UuTXodL/C8dCB0JvepGEz99QLql3kZgq118KLw9phisPVrQvdpBVO0vViW/nLZ9jYBQ3/GX2y+d4mXKD7eBwxr/nOuj4xtbpg8hj7Ylvqje+gAz8VrebGlw1JAnQwmOb8v5+KYlpgXbAKma2LjkZco1B2F7jvAYTgn1F0x0ZKXKKAebc0Whqy8/ZmbUPet3Mpvm3KbVHrPyjyzexLEQH1dTMspiOvpwOBcvb1FrnX2dfIdXOxgNUG1Apt24L1WdxMmWCYJC0yhzWNoc6xHDHOoW60V/bzt5AVTbPPLMV3jZQ3TNYwR0wg+y4titm2aQ5vzKqaAwfCyhmk0bc5lmbVvY7S1yMOynrGOUa7hMcVBa6ZgiySfucaLq1tMdJ0Xu1PMuv9ctrUcbC1iXOMlHj8teLG8seeFGdOVGGBXxq3xEv1HBxJWCDW20fPihVRz4cVhWhk41DbRkoc46O3so1OWgbidGBqYXL0Pg5khDH56yHe03pHf2a9PjLthrl9IxHgYwkAhLGmcZnLCwvOcXH2aKNT98Zx9/ZPvfojTsa91NucDgP/oV97gm9++a2LicWZttbT7IjEhDiTYfnTFP675fIhzwV/GM7amJcNPiCxjBAf/8ROQizhH7G0vYuI1H4+xOcbB6D+46D9X4xx40f+s+fxreBkXmK71seeF79d5WcatiGnEhf6HfO7zEkyL/ohinxsxfD9s7VJewCv+s4zdtk9d6/cvYbzEyzlMPk/Irj+az/iLjeUOAy0nMGKbx7iJwsqmCq/BFHmJ/c+Sl4gp2FbkhbCIUwseaNnm6D+v5eUypis5KC1Xja3Z3kUeFrwsc6FzGNZigi0EwoiMeV4/fiu/dUUf/vwg/buV70+5TSq9Z+Wv/dv/CGNuSeqBchFKFR2gEzImajuDMXT3tSbOlwlllxPpkJjQjrMMlI5oA98jstuZQvUAtNOcILoNWlfRP+2wCG3nCh38qe5JHWQTaoJ3DJgmsMMEyLvp+vmGoQh2MiER1TYzdJDaMBwKBn0Xfg3TEU2kVztkPZ5ADmNC6+QZIgRpBWxPyK4+g+uueJYX5UE1N2qdCR2R201DMFhMItqoE3RHiFCytjGX62nCRgWTHu9BjidpM2ricCCxLcWgvLXEQgR4bZsBwrHwKLzAJfI58oLZ81J4aLywszWU8zUMCbqbjdrebHjbF160zcfCi7bR8pLL93PgAaC6S5AID6P6o1wjO/9Zx+R5sRgSCQ+KYSiYNInVHVbO2dpYMKj/cL3P1l8aL4kJqehQaZvlPsNg8hhUVLvqMMD7DxW70HpfMekZfUzYF/FQrR8xL/0FlhcRfdfjAyfskGRbZGjSJE/dE8vAh0B4g6E+xd6hxx36Wv+dGLBFmyiaQKL/VianttzhgRN2ZTLqIyRsCBjKjMubIeN+k/GwmZGIsekYbzaMDzczOmLcDTK9OZeJpNOUMHPClEXIuyuP66cp1cke5oRpolYH4TR2mMu7CHd3R0xTX1+Dm04b/Po/+hE8fvoAABiPG5lYynLN//DX7/G/+Gs/jL/8Sx/ieSL8wq+8cf3LmlC32o+mbTM8LxLfzC5AJiaoLog+FadSP1V/sbFY7Xsu/lb0zoKtqc+rLXUlFjd/UZ0rqT+V3UrVttR/Wv+jfWbzFxsTKGDqIP2L+nyG6pn5/uVoMGksrptjwO+YKPfE+ktymCZi5z/PNDtM6i9ab/7SeMkBA4jM5Jb0ocprhujNWCF71WqxMcLGBJQ+uPJSfF7vQUcE3dFKeJkdpgPJ/dGB63iGl5PjpfEgkvIN01x4OXITIz8UW9Izaiy2m5bYOgVbGwKmkeD6mz3Nrk/VfKzG+uA/gMbmEovLRdskJBXerK2JplTNx5Bx4IbpEi8ASh5hJkZrbtP6L5vrHErsVx6UF9u/TMFfbJsbpjbBezKxnRXDBZ+PvCTDC4Dav1R/KzGl+keIAXpMMegqt9ZHwvUvqdiaTpJw5aVNLI4mn9PJd8uT+mOMY3PF5HnRc2j9QD7PlhwixDFTB+BynYhJepBma3Ph0caAE3leJrCztXP+op/vo62VUv2bgf/k//Bf4lZu5VZ+e5SbUPd7Vj791gGALMGfuS3HzgScONenK5m4ifdBEhfZFlZED2ViKSNxxhsM9alfFUFEe6qRgfaUg5tI7wTGxC2Rbtu4yhe0vi0CnZro6hL0DBHqnh2G9oRVMdXjCNvxQjqwBGCDribFiYE79O1deAb6MvCbAgbB1DBIJ23rGSPk9ZxEqWJWYW3FuENCX4QYM7enkZm4YJpr/eh4keQgoYgelk66Y8JgeJkY+KBgHCFPy1U/IfJyQga4PQlXDDrAG5ExsogqJiq8sAzGQOW9d5Ykqdla40VFeRsvflWJ2loHEh5ARWhVhRxbm2F4YeZ6Frl/bDD4J4N63zdIbRKGZVKpYQA2kAS08eIxjIGXbHg5FF4GdJWXnqkKbCqmN8VfpoKdAy/ef3jBS194mQrPD2XAJ7wAu8KrYhqLYOc5TJEX9UfhJRdeRFDzhFwnVXQwo8Kpiok5YmoY4mqi5g8dyMSIbeFdbSsBxfaMbRGqLbadifzqA+VFReBzGTAVvWp55QUAyj1LEOHomTNOSb73BgNy8WFAJpe4xCkisRlmEZUlEO6YhINa77ADYwt5FW2AdMSbJJNpd5uM3ZAxF+LvBsbO7ODGLK+5TUXYJjMhz6XN5fg0daaeME2CfhhkQDNOHVJS3SXCPPcAuKxO6vAbv/Y78Jvf+io+/OgdUgK4TEJ979jhlBP+1//51/G/+y++Wq+hhYBQb3+xn1ReUHkRW1Chbo3d8tpkV165FHvtq60J96C2+oGNALTGMb2u2oTYVvN59ce5DIzuahvln4opV1sjb2uzs7UWi8WfRBi8L7FZ2iSYdFJmZjuZJjs0KqbTGia0XfQ0rr0pcUsx7ZDK+Vl2MgsYxuAvY/AXz9O84EVf/OLaR8pDBdaHMUVM2fLiMJlraKwW/ymYmLGpPi9xbCgGpjsmahxTTFPFKPc98tKBGg9FQB1oeYNaqkxYm9fv7IOMguGIDARMQIvFrY/sXRy7L7woJs9L24RBPx950Vis9UF5qW1ovIz21T+d+OFs6iuYTDnHi8ZitS2NY1qfyGOYiq1JXaaRAY31jRf1l431F4NB/KfhqrwYWzvHy1D8Q3kZan4nbbwLthZz0nP+ohjUH5WXTfUXLrbVbC2bV/80H4uYOMS1yqPBdFfimPapGxcDymYWxtamgCnW60RSwaAC6poXCC/NX4Zi7/pgL/rLzC0PPwRejiWv6JHq58EimG5znV2wNdL7Jm4AoI1pbuVWfjsUIvoTAH4WwC8B+BqAjwH8HDN/8lt9rtd8noj+XDn+8wB+kZk/Kd//swD+CjP/hde2F7hNKr135as/araApqXYpRsUxBECWoIuQxPpULQz0hU/dsClp2FTIVBLKikch5srcNfUku1fSAcuHOoWwwoQdz6PIZNMuth3wBWv1nVl0TkMa9eoz/DLPbqMCaHuMS3viayQaLzwgheLiUhWS1QpqGIL2dzHiyViIMCtQl7BkEL92l2rKxfO2FpsIxF5Xq5eQc/XeI2YpG55j/4SbS2ev12HILvzyUC31AMmAlZ4uWxrzl9exIv3l6Xgrb9C9MfIy0xctUvINtBgiJiu+4uJISuYEDBd5GWlcLi6ToAqJqeVpec3mBKR9yfIYFq1o4iAjpuoaGwP1fQY9fPZqBkTlclMhqvbM6TgUJnFUpqOUrwH1HgiefVtnqnuABc/n+cOee6QUkPx9e2MX36StOEwJx+3sBaXLrF8Pbbr6lflRYa5zdbSC2wtFo2Vejyzfw0xCsE6PaNVf7mAaSXWxxjgRNYJrX4BQyzRX2Y2yd3SDJCCILSLCavn999XXmJpmLz/xJjgcoD63WUc6wwmXo3F1/p9H8cchhBT9AGSYqj3k/X8cJjOyCi6c8Y2R14WfeSCF1+WsdiX6D/xiynwQubYubLGi7W1qO24zkurs63jir9QwWj+VO+RNixgWuMl5m/O51dsLYHc5Ooyx7xwfqz4S+y/QlliWn5micnzEnmIx1O479cusYyTkRcfAyp+9Zdzwt2m/ZEX8zxq3dZW2unGNLdyK19iIaI/CeDfZOafNn/7wwD+JhH99Gsmll57rs9w7Y8B/Jnyz24S8ec/64QScHv97b0rP/Ov/ThS36L7mvDwYrONUGJHMIV6fMe/D73JS0V7tcTzHcOTzvjtKDr6EiOXfq9hiCsowrigPuV01zQltmkO51tqC/nlvdvAy6r4+ALDeUFb0PJJ5Bav4yUOEKOI4jFoPkUR6yFgusaLrE7IDlMU6o5ZxkJA/YptzRFDuEd20gdY8rIm1O0wwOsarAl1n+AnJ7YcbcvXr/PiMRxCPQpzxxiwxotbek6vF+qO/nKVlyr0oxj8UD8OpiIvEWMsqjehZSRZwaQtlxVKbfRAWApAx/Kb8Duh7S5+GtiH9h3G5HZnCxtkIbOPQ31i2KmpOcu/+L1WaCHc/fjkW5lSiLXHwdX/xR/R7ZvXb+5SANfHhGvFThwD8pR7Dv4iLwE2W7Nxa42naM8xFp+CbcUYcFdErbVZyzjmr2cnvuR6a0Ld2dlaV7C9FNNiUnTRR3pM0SR2GmPKaa7ZdkabOAZQXxWyF7BxLimGV/jPtVgc+5tdiJPX4ph90KLXy6Eehbp7XsFg6teEuqMGTYxjUYB9E3KltTgZMdj6qgaNmV34fgioR16iz0cML9loImKIdduGKKCuq74tpuU1fIn+EvvIaKvDghePKfr8GoZLE+yC6bJtxRJ5OSfUrSVuzPIin7+AKQp196CFUHcUhV9ew5e1XP9SoQT8C//6T1z8zK18/wv/AP73eQsRfQxZ9fNz7l4xfxPANwH8b3+rzvU5rv0XAPxC+ffnAfxeZv65M599UbmtVHrPyniYwWbpwporUfj7Wv1yWRlam84lOvA1h45nkwc5L3iU84qyXEmwUhQDw23prIeuXeFyfXmp15bX3pM6RlCCr3z9GgIK6VzE8PnDNtqEpzVKw0ucEX3tNePW7HKppW1cOm88fm3SNJalP7wOxYKXtQafn5e7Xvg6psXlAm/Rf2IhPQmZ+iuu95K4dvULK3GKoStmmtG1gbQvl9PhFUyK1XLD5+vMfiVTnPheKzpppZ8n+HpmP/E0jj3mOaHrBM0f/5Fn/Me/scHf+PbLnw6/Oi7B3Bt+vX2+Ps5cjv286L/Wz+D7yAuYX4Dp8/Yn11fq4Sqm+AUC+Vj7qhZd7+dff76V84cPXYvV10ps82tznxgTrvvCcoLyteVaH3kt9l5u0Xq/b8vy7Mu/XPWXNQz10Pr5Ll/xclmbuvt+lwUvK7b6eVrw2j7yJda8+EbA4PO96x6+zI2uf/5S4Qyc9nFt6a3cypdS/lT5+Ysrx/4iZNLnt+pcn+nazPxnX9GmF5XbSqX3rPynf/Efu8GHapFokXf8lysNbN0to2V5QsGmvg1mVUO+PM6p73JruTb4WhN/vfR91cBox68PYN3TOpanaxZTMsfqNUyJT43iPYtPA+OTr034RuRlCpjW5gjcK4crGLamzjC7yHC7xqUEMiZ+8QlkXGEzhzaPAdMa7xQwdKbNgkkz4/DFUo9PsyMvscQnjhv2thWf5h2RQe2B4oIXxUD1d9U/aZj6gGlj/IfBOMat5heTG/6ScYLnGi/xfNHW1vzF8iKaMe0viWWVgMVQG4pma2T+9hKfr5/npc/HjuuavyiG2mb4+7YBYYeutn0G4+TCnGpyGXzUnlAzGF8Lz2iOVzDehfbt+qJJwXbCiNxEEIjqiqUpE3StEjPQd1zEus8VBhGZ1VCMh4dDvSYgr8Tp+ZiBlBj75x1Opx7MwGYz4X/+R7+NP/VPfYI3wzKZvxarrxXZHrzdGNVb0SIxofmLCstbnmL/EiNXbGNcRRf7r72uKi22uBbH1mxL690KJhubM2TDggUGU5drWES+xFWmEUO8I6qVRgXT9ThJDROLgG7sMynwMun5C4ZrQ7/YR0ZeIsbjhR0rS5MCL76P7QMvPfxqqnmFlzlgirYV3W8I0Xl3LjeqmOZw/HIs7gKmAeG1PfgJ2kxLTPH1slhi/3Jt1enpSv+lGKJ/aD1iiLY2Aw5DhuhDel4iBl8WfSRiH+lLXFmuQtW2n4+2dZGX4MDzCoZrEzSL1VRXVjQv9Qsv98LRthwmFsH2FHixaW0GgwOmtbGErUcM0dbWyl/9t/7Lq5+5lVv5AsrPAvjkzCtu/xCAvqL2W3Gu7+e1P1e5TSq9Z+Xtb3hRu3OaGE5TwNRtgibJsyYIVD7X6vX1mPp3f42XlmtPytZWFJw/er7ogCZiAloSpH+J3fHaNew9i22OHX6csFme/2UoGgblY8lLPSctebFtjvUlvsv1WJbzQOuYov2s2xbM3/QJ2OvX+Cx5uXxcn/K2+3bZfywPdZn+GUz1++Gin9e2rr2i8dpVdxQwRVsrFT8JSsG2rlxE74t+/trKqLzAcN624uASaAm6/t1qWMn5/O9sjpfN3RZJ/mtXKqWIIQoDmYsyUIS8w6Fr1ySUd+cJKXEV6o5TFjpZpdpMp+MWT4/3YCZsOuDf+AOf4N/6l34F/5WP/NTZMiZciwrx876cS1AW/nJpxgWX/eXaNZf916W4dd4/4vkdBtOQVUwBQyzL/uRyaRNh6o+XLahZYoljZwSFIi9kB542HqxONPhyvY/kUD/X9nO8vzBOBl4UU7wn5/pIguZJ67Z1qX6tnMO05hIEo4uzgumcr167b4s+csHLNX/x9RQwpPD1VV6w5OVSmyMPy1dYL/eJbcLS+3y73vr1a64STlgfMtEyXry0XItrn9fWLC9A40XvwnIsoZia/evnk7lvr8ll1srb37j2+OZWbuULKX8EwHfPHPuk/Pyjv0Xn+szXJqKPiehPln8fv7B9Z8ttUuk9K1//8QdXj0+ZXpLY1dcBSrHvpDJ8EhFTlbUB4ksSYF/3ndcyYbicjMZSVxuY98EuvaK3lhxeusLa9ZcJsa/H5/svwQC0wUHFdIkXc8mIacnb8vrL5DG22ZfXvwrgrxMxrdnqMll82bm1XOMlmcHUa2z5HC9RQ4aAhabZJVt7mW3F8wV/4df6C4efHlP9oz2ns7XrehH262sJayyvxVCvU3gZA6ZOG2HHL2cGAvqBqP9wbY1O5GXOEQOHmmc+eeXuIvS9NmHX/mA1m1So257TFzITWxr2g00AAPZQSURBVFKf54Zq0zF+/AP/TD9e+hpvy5b6z89XbC2tXPTS2z0U7upam+PqER8X12zNnz+Wc/fExbELtrYcsL6+P4klxvrXvs6a69/PDCT1S6zXo4uY1q9xeaI45i6XMLzkninvzbZonRczmH7NNQgv6SNflxtdu2fx+905TJ/jGvH4chL1Gi/k6udsTUvlvdoWLvIihy/3iXFF2LUc8rP6fDu//2BcXfaSyZTPy8vnsS3Cmj96nTZaszV3fZ9nr3N/vf/42o/dhLq/yCJjiR+8f6+dZF0pH3+fPvNZzvWZrl12gPszEN2lXwDw80T0P3vBuc6W26TSe1Z+5l9dCnXbJDwKda89vyIjKAjyor2g5TLbuGy9CnfXDvSyGcZlukdk92Q1JkZ9wGCfkpwr8npJw+BeoaBlwDkrpnwmMkXh4bhUv27FXkoUHY2Y1p7qMLPDkHFZQD0KNw5BvHUh4Mn+Z+W51KtQt/2+afOaUPclXjhgWIiPr5RN4OW1gtDHgKnu1F7qa7xc6o0YnpeISXjxiVUUoL22rD1f4aWKw7Kez7f5JULd9ni+wsvahORS2P6yz58V7NQJEf291F8r1B15GYmxvyLUHeNYPP13ilC3mtS2hrk4MSI/VahbP3+YlkLddoJIX1nT0icGmaCwLtTNcMEa9jjhKQh19314/aZOOsl1Dvutq/+3v/HoPr/kbVoMPi7xkgEXB/NK/yKImq1Z2yIsBaFjBFj6vPePKNp7TRB6EYfNuQTTmlC3F7XuzYnW/OVsLC5ljLE41OMgdovuYmyOJQpCq8i15+WyUHf0n8U1rsTi+mqzYgj9VeXlzCA28rLAROxsrcNS1PqayHWc0J0WvHhbixMkm2t9cCgvEuo25ZpQ9+rEWAAVbS1i3Ib8bggYF+c3OYNiWLM1LWsC6lGoe7Hy6Iq/xD4z2uoQMK3ycgHDSwTUo1D39dxlmUPaduTgT59FqPsyL35iqQ8YXiKgftZfSom8xEKJ8C/867/nIo5buZVXlH+aiP7m2r8Xfv+TM3/XVURffUVbXnuuz/L5v8LMf56Z/2F5de5nAfybRPRnXtFOV26TSu9ZOT6O6CY7UgF6NgkllwGfq4cO1g7YuExG2HroPLqVut8lwhtiCh1qt1L3OhthIBEwES+T9NXd2xwmX197+mYneWTnCwqYAgZ7nHybE5aTB053if1ghpj853nJS+R1WGmzRZVQnvKbpMC2KGLokEKdxBbMSSMvG76AASGZ42Vyt3w67UsX9MD6gCHa2gITxZ1l4JJwIOxmuMpLsEVEHiLmgAG4ONF7DUNM7iImwopP2xVYK7blBtJ56R8xBvTlZ6uvxICAOeqbLOqBF7tjFrDkZRt4ibY4BEx2txsG40TZ1feY3cBgRHb1DMLMbdLmgFy0a8rEFVg0uUqdAYzm85kJ+zHV+szA27G1mRnoe/tMjbHpQn2YXX3oQ32YfH1zAhm9kDcfPmLYtNVHshtcu/Fdmsvnpf40Rq2rZZyMWm8beFvbLOKY56UzEwUS17ztdaHerz0oMW2KtjQguXpPy5U8cdWZtaXFRBav9SceU8QQP9+xiQEr/jMohtqegCFgJKzEgLBN4MVYvHLcYViJCRHj6gOsNUy0Xu+BFUzkMA1I7vh1XgIG+LLof6LtrdgWXeQlLeNYwLS641y4hm/jSi7j6rh4fMlzxJSCrUVeoq2lxeTCcAETxRxzrY80952Zr/rPEoPnZeDkcp0lBp9rrE36RAxDrC/6RB8zhvL3c5jW/NH7i/enmt+ZfGzhLwFTf6EeeaGVNtnjjDVeLo8lFv7CaSWvbhhi6Wbg+C4qYN3Krfy2LR9/iedyn2fmn2PmXwh/+wSyYunPfdZG3SaV3rPyi3/pl9ExYShJ60SMjqh2UEzSGW1M8tMhSR3a0XTlOJVBQsIGZVKFgTskDLDGRdgi1Q6NIZ2TJmjSwaba4fSQgbkm0lt0VUSTAOy41Mv1dZA8lHomOEyKYYsO+u52j4QdutrxbtBVDFQGpBu098aH0ibFlCG4LYYdUk1+eqSKAQWvthks21QrToIIeFoMExgdpZr8sMVQBqK9wSQJQVd5Syz3zWK6Y+GlY0li8oIXWmAazPEBCVu0Nu04OR4qJm6JQuSlJzmH2pbHoPVUJ+UGdPW+EwM7dDK4KDx0gZdZealZiGBqtpUcpk05f8Sg9Q17XmYw+hVe9L5T8BcV5W28UOOlYiq2BknMJsjAWwfT0dZS4GVTzq9JrPUPMHDPcs/64vMzeBXThq2/UBWZ1d936JCY0JPwYm2tYmC96xJjEgumyAuBql8LLx22hqet8lLqiknvQV8miXrjL5GXaksMpFLfFEx9waTHh4JphDxRnsE4kEwKzWW66ZlmPGHCqdRnMA6YMZb6x7nHkWWiiBl4R4wnytiXyacTMZ4p45nkjD3ks6csq80IwH7s8O7YYcrAfkrYTwnfOyaMGRiGjL5jDEMGESMzoUuEbc9IxNj0jKGXiaWU5DNdBwxaB2PoM7bbEV0nk00fffSMzfaErpPJprv7I77+w9/FwwdPIMro+xldpxNJjLuHA1LKSEm+/x/96gMILefXGK31bWFc613x6S3Lfe+InM8L581fetK+QWxXB28Dmm0xUM7XduXboqu2ov2Z9Rfb/+w41Rgg/iLX04mkE+W6aoWAwl2q/qP9yWBsq9YZGCi5GDCQxF2dNNE2b9jXt5yqdhEFDAM6iYUVQ+cw3XPnMKkfa30CO0yAtHPjfL6rvEgMbXFtKP6jA1ntjxwvRNgEXmyb+wUvElNsHzmYOLgr/Vdf6lOJYxoDMljuc4kB6QovG1JMJQcgKrFUvpshwLacamymwku6wIu1vSUv3tYAcrF6Rl7pQ1PNEzRuKU/KyxDq1g+TqSumDSckUMW044ZBcyMbi7eGt8jLJmCyvIBbvqe8dAHToBjK8a31l9IXDqDav2SCYCj+pBg2hpek/gMqDxi8v2zL+aO/KCZGy0FRfb7Z2pKXhI2Ja2pbamtb8rxILGy2xwCo+gsqhh13C16iv9g4ZvMGzTn1eMWAlofbHDRV/3gZL3p/hmJnWTEYXoSHzvGy4fKgobTRYtgGTNHWtMiknVz/P/0//mPcyq18n8rfY+afXvv3wu9/fObvukrok1e05bXn+n5d+28A+JiI/sQLP+9KfIhxKz/g5fE7ImonKwUYsxlEduhw4hknks5ggw4zZ2RCrWtk75BK0q07Okinr3VAnvrpIFmOSxIzlqf10ikxTizvbPQgdOZ8elx3odDj+kRIVzvoegJd0cQ8YzKYJs4yeVbqVjNhazClklBGTHZZv+509wy4Nh44lw61wwCWpfyE2uaIYYGpLHtXTDMTYNqsvEi9r7zocRhMGzOlopgIbecNmexgHMjzcjrDi9ZV4FiTvKH8pWHwvIwsO81onZkLLwkdEkbOmC/wYpOvrmBQTDbJV15yWSptMegrTVrXvCTaltZ7Vl40+dU2CIbJ1RNOFYNgmjmDaY0HqbfJsIZJedmg7Zhn23RkSda0PhXbirxoktev8NIwMXJJzJv/CC7lYQz+AoP5Dp1Lei0mtTWZlEERHQU6ZOxpnRf1F+VN69E/enheulAfTRtTsa2RuCTynpeta7PU20otwgSjsUTyey73nCGvEx64rXYckTEaWxlZ2qO7UB4o48D19DiCccRcdhqU600M7CCTX6cp4TQRdEHpcSYc54Svpoy7LdAlRreZgVPCNCd0Sf7Wd2L/KQGblOurBXJcJoWIgI6AbiMTRamQOWwm9DyBknzm46++w0cfv8PbT94AnNB1cj6ZYAKIGEQz3o5WGrfZoq0X2PV+AzJAkliNOunfITleNuhkMAFUrsnEiKR1E8fElnO1JTaxWG3vfP+iPu/9ZY+2Wimhae9Ie8U2bCy2E2idTjAYTL3xH7lfGUcwEgmGGRlHh0mO2zYT2sTsZiWORUxTvc+CYaz3VPxLJk+58WIwrvHSuzpBjU3jmr7GopgygD1y87carW0cwyqGdUyMQ7knikF4aBhm5vqQTPqM1j91OsFgMAwuron9KoYtOszIGEnjlvAicWLJi9peuogBODIjk+Ep8lL7ebE1Chi6UNfcSG2Lnb/o0B/G1mQXPZsH6DU0Fif42BwxpYgpYDiW2Kv9k/qjYlpg4MCTszXJI2D62AkZE2Zja7n2P1tgFVO0rYhJX0/V+lPhVjGNBZNiiHGt53VMyoPmrGp7hIxT5aXYWokJ22JLimGLTl7dDv6y5KXFzVVeMCObuvX5VGKBYkhI9dXMZntn/MXwckSuGHLxecmTPS8vjQGFeqB8DgDefecm1P1Fl9dqJb4n5ZMXfOacmPbnPdf389pafvKVnwdwW6n03pWv/54m1C2JMrnjcYv1KCAIRBHrZf2yUPfarnK4+HmEutWzpcU3rgt40hlMDceagKCvxza/FgPHesB0DcMaL7bIgx37Oo/nJcEvM/5+YIi8RJ5fz8sSgxfqjudLV3lZYog8X8bYGX2ViHENk0Wi/1/DZL//eXnJV+oLXviMz19EAoMBgRc4DmkFU8RAoU0L2wo8IRy3u1Gt8RK/UzGUwXAUT14I2socrz1hiHtLLR631J+AAHqx1bb/9vILpyno7HTh++UeWE0mW1/+TphnY88EsHFiSkDXZXfcCnUTAT/y0F49WLc9y5u/Z8vIjXBH1mzNx4Co27Zma7a8xF/mUI+vrUT/WaK4jCmKXOtTe/1gCpgS0gJjxBDv69Lnff2Sv6z5z1r/YjG04+uY6AWYrvl8rF/jJdZjucZLj8u8REwv6iND/Xpu9NkwLL6jE8wvwXQFQ7S1+Pmo0bTskyOmdduKdcfLBUwLXui6f0TbupS7XOMl3rM1TBQOnOXFYrLfp+u2tchdrsaxy9+PthUxRX2wq7ys2FK85rzCS4y5v+P3+M2HbuVWvqTyizg/EaN/f6k202vP9arPE9H/hoj4+7HbWyy3SaX3rPyRf/XH0Dmhbp+EJ7RXWIASyOVhnP7Bd28UZq0piFwjaJ1gKUaZQr0OfMrPKAQp4n1+sGIvuSpqvdbLG0zyo/6ywBCrVQfEdqCmTuzrtXMsP0Zk1+GOtoIlL1FXB4opYGgHLwtCA0ZQ8xymgIEDhqUIqeclDvgiL1XD6QwmfUMg8uLSn8hLFFAPtmV1SoAlL1FIdQ4X2VzB5K5RMFhjYyrLxM/wQiDscIaXUlLgJa/ZlqnHyY4oYh3ra7zYwsG2mLyY8tpAYiESGniJP6eAKQp2xgQ3CnUvJxsCL4AT6p4JdQUl0F6fsLFhB6+sE5/WfYe8tsND4Cn+fCKPYmT7IX39qtWfTgnZfKVLPmbknDDN5IS6ZQMCrRGy22GO8Ph459pwPHpVmX7jxcffvtu5+r/0Y29LK+UPGhO0fixSwlqisHCAKL9eEeq2/kMgbMPgKGrEvNZf4i5+Ww1E5XgUtY79T3SdDF6Ij0/B1qJ48qrmnynLWBzjmMdQz1aO1zjG5vwXRsIi2mt5XPYvNs7VFUwGU8QQd9GLsTj6/Nn+6zPyMgde5mBr8poxHIYh2Fp8UBJt+5ptxQmSmBu9npcz/lUukxTDBV7i15f+ciYPKCXyUnV1tA9exdDqU+QF3tZEuxFLDKYeBzbxnsyrOWUrG77MS+xfQuhGDvUocl0nvw0vEYMVubbXbtfwf4j5WL2H52wr9sELDJd5kWzP9ldRt21NQN2UmLNiaUtx44dYUiL8zJ/+iYufuZVb+YLKz184phM7v3DhM5/nXK/9/E/i/Oqmr5Wfv3jhnGfLbVLpPSuH743YzL4zug/iyfcwO8MwcM99q2d5/9wOzndBXG/HXkR0A8A+VK/v35Me9wLP+v59qxN2udV7+B2yEhPuTCdPTLgLmO64cxhcnYFdTpcxIWLyHWjENIAchg2SG6T2IEm+Sr1jLCYTdhEDAk8LTB7D/RoGc/7NApMX2BSdHjJt9nXhiTymkHRbTOu8pGBb3tbuAi93AdMd/CToVnmBtjHaWnK2tmFvaxvymLpyzobps/Dibe0uk8cEn18NRldBMCW3smCzsDXPywbkMAzlNQAtKfCC4B8LDIyF/9iYIRj8k84d/CTONmAS/6Gz/rPlgIkSNsbfesBhIoiuU62zaJxdxuRtbXUlnbWlENeGsDIu+pcMfsi1OfJi3z/vE+NuaEl0oowP+nZBIsZYdogDZCx5nMjU/fGcgePYuc+fTp2bmMpz5yaaHj99wMlMLM1TQs5touqv/PIb/D9/+U2tf+/oX80gINTlBU8tMj/jB1hR1D3a2nI1ra9vQkyomm2l7GJc47QSE6yt6esc7Xo7EyMSSh9ZSgq2pfp1FtNDsL37GOtBDsMm+MuOQwxgj2kLj2mLMiFiMFj/WUyaagwohTJCrBZ9IM8TufouxIDtS3m5iAkurkVMtg+VuObzgnuLKfBA0dYYsJuTM9hjYNH0c/2P0fEBljxF29si+HyIEV3IddIqL5cxPARe7spPrS8wcbewNdf/cHK5TrS1NV42gZctPCbLS2KEPjT4D6R/0cJgn5+t8tIFDL6+4e4iLx2w4MX6Sxd4UV1BLbSC6X7FX+wE0ALTIq9eiwkGY+BF+lS4XGbzSkwxBsS4ZjFx4cHbXszfoq11wX86h2kXeIllmxn737y9/nYrvy3KXwIAIvqTK8d+FsAvMPM/jAeIaG2F0WvP9drP/xUAP12EuWP5kwC+yczfXDl2tdwmld6z8rd//pcxgHAH6WQYItD5pmgMEInY5Afo0bMMkgYkfMiDDKog70u/Ke+JS+fZ414T8wy8QcKDJrFcknAug3WWgcYDdzW56ZHwwB3usiQGW064K/VUOqIdEu6zdKoPRZDwrgzyOsi78vdoyc9QzikaOVJ/w4JJhVvfcF8Hijt0eOAmvnqPhHtN+EoC8MZgIhAe0GFbPt8h4Q4N0wYJ9wbDjjvsOOGuYLhnEUG9y3L9u6IHcAcVCRVeFJPy8lB46goPHxQMWn9AwIQm+vmG5PwDtN8nuZeWF0ReeuwMLztzfFcwaLLzhhO2BkOCvP9/z5EXSbTFtrrKkwpCW0z6/b5gEl4gTypZEtrIyxtuvCiGygt7W7vjDncLXqhOjO7KRJnlZRN4UX9Y46Wv/lJsj2XFyz1T8Sfgngj34KpBhuIflpcP0DAM6PDG8LLjDnfoahJ6zx12BsMbELZEotlT4sAGqQyIGi/3JdFOBkPPVMWSHwqGvtpawVySx3u03ZM6UOWJeYmpCzFgy53c+6y2JXal9YdiW4pps8ZLwWR5uYdg6gMmFSV+0DpUcFdy7AzRAxtUaJhlquSO+yqIXgVsS1b+wzRgQ01baS5xTyesJa41W/sQCT0BQ8nzH4aM3cB42MzoiDF0wN3A+Ggzy4RTDzAnnMYOc5bX4eaccJwIcxY9JgLJ8Vkmm3JOOJw6TKXOSDgee0xTkoHM7oTTcYNpksmncRzwnW99Be8+fUCeCeNxi5xlYokZ+Ku/ucH/8hd/GH/hP/8avv3c4z/8lTdgtJ3zVI9H65sy+aJrGOVpvHxGNWc6NMHnTeHljYkJqv0FoPi06im1CawH7mqsTiC8QV93mtSYorZ2xxJzdsa2dmWCgtRfgOovM+D6Hypx7YH7alvb4pPNtpp/bAumDwqmDYAdER4gtqL34aH0oax9Zm621hsMYns97tHVCTWJAalifEDCDjLxSmiT4+o/DJT+pwjZF/+5z+IvFUOJCcqLxohtERt/KANX6YM9JqIlL3fcVUybFV7uuWF6qJhKn1xi2K76qGDSPEB5uS8D18pL7kubOxeLtzUGCC+7EicVAyBtftBJyFLXvGGNlx16vDF95B1LXrIpGB6QcGd4kclwcg/iduhwX/KGDtJfPBQMG+qc7e0gIvfqL3dFKPlN4UXzN+Wp2lr22kUPXPwlo+ZG6j/qL8rDQ8FU8wCQs7VcbEvzAuVFJxSGwstD4OWhxGrZ9CHVvCHywhDtIfUXi0F5GSyGLPfUxgTJIy7xIpxszQMgyd8iL13lZVMwdkzYqW2VScW7skHJkpdUNda6wIvmxZpXa38VedE+tfEibd4i4c7ENQK5/idBhMAFkzzYtba2g9qaYLoLvGyDrVUMaHplfbFNxRR5uStjDfWfh5JLtVic8GB8XksH4KH4/9/6i7+MW7mVL7uUCZo/i7BzGhH9YcjKoJ+N3yGivwngl8pnPvO5PsPn/zyAPxcntIjoz0GEvRdtfWm5CXW/Z+X5uycAutsR8MyMAyQBe4MOJ84YqSRLSJiLuF4Hwhse6hPmrnSIMPU7AHdowsN3IOzAeCrX3jFhC8YTMpioThapoG2dsCj/bUvSrEuR9YnytqxSGspTjCb4KbtTHHjGkXS3jg4jchWMfuDeYKCyMqZhuGcALBi6MmjdGUz3INyB8Ul5dUY6Xsa+KAjq7hVlrF4x9QWXYmoYEnrmunJEdzZ6gvIiQsOnIDysQo/SaVseCPfoQYYXefpaMJE8udwy41OY5AmMd8gGU6qvVNQJC8sLUhGYbMLdW4OhB2Ms3Cgv+yI2Lm1G5aWH3B9nW5xAgRdbX+Nlh4xPGaBqW4x9sa077rGrUzaNFxUbt7w0TFxXLCimZ+AsL2+Q6isca7w8oC+WUTAwQGXwpbxsuAlqyqSd+AsIuEePO/CCl+4ML1sQNuDKy4YIQ/H3sdpah2eecTI8TBBxWBkwJe8vVb5T653BRCUxZ8zGf7bI+BTsMB0KJp2YhGJWf6m8yFNvFRvfQCau9HlqE1KV+6a2dixi49ZflJcPOBmflxhgBaE7tFcLiMwOWSRCw+ofui5DxV8HJJn8Jdmh6onbaj19JcRi2oLKrlnlybg++e8ZQzdjzvKNbQdsu4xURjfMhHHscCxv22UmHCdC7mbs9PjU1VcVZCJKpt42gwwrT2NCqq/KEaZxwDT2YJYh1dtPPsDbT95gux1BBOQsjyDejYTMhL/0D76Cf+cffAwyj53bb+fr9W/6gLtMODaxZDtIbBsQKC9WqBulPlGZsECHLTL24BITZFJC+4d7Fv9RIe5VWwPLQJNkhe3AMql0Qut/DpA+UnddnIq1yIrB5vNqe3bA9YY79CUmdSQrYyYGnqAYCBtkvIOI9N6VSe6JPIY68EXbNbFh0B2dZHJsAy4bDDT/eWLGSNr/UI3FisH6yxuzQkL7VItJVl01Xu4hr8p8Chn8W1460j61Pc9UTBrHNCZ4TGXDgbKKbGDGWwDZxOoDZ0yKCeTzAm4KMhojOouBy4YBhpcTS5yUh2IioP5Ewss9+iYIvcLLHSS3qZhKnhB5OQYMzyVuqa2NEBH4DWRFLQdMneHljeFF8rmmFaQ8jch4dLaVcSK9Bwl3xms1P0vw/VHDRHWFj8X0FpJtqB0eudlWy0waJuVF+9AeDUPv/EVsqy/cK6bJ2Jbw0jZueeCEezQh7XO8NFsTDE+FF4nVjD0yZmqxe4KIwG9QJknRJk2sbQkmVBF45WUG17z6HpKjPiMLBlZReM19Up08J+Wl3DeZKJJcJ2LqHC/i8xbDsdiW5j6Wl4Gb7praWh9iQOdyG8IRGY8G04yME2QX4weTs1peWv4m/qO2JjxZTJJXaButHtTzd28rlb7oEvv2W5HCzH+BiP4hEf08ZBe1r0F2ZTu3KugXyvHFsdee6zN8/meJ6M8VXaWvls9+k5m/8hrMsdwmld6z8vV/6o2r99QSQkACvtUu0J0qtMjrDPKoU/RI/I4hKJ9vSX/9Rq3r099zx20h6PM8e31/3CPQ1yM8prm0GbS8BkwL9HrLVzhaK3SAYzGkkiS0c/h7FjFFDPHN8X4Fg9feiYFdrqE6MbyCyfKSiJDYt1lXfGj9Gi+XMMTzKabTGi+La8jdjhi0fo4XEeqeA6bLvEQM1+pR5yaFc0bM13hhkNP2SeEcn4WXpQip8Z/Cuy2RlzWfLyDqKhO5C+x4ae3zbRJR+LmK0UefXbetxuwapvj5HrKrmhbdSal9BovvWAxWH0J4JttA1FfhDIZoi0dkDMVCiOSV1jlcz17fCUJT2fFR20Cy8ihfyN5SWGecs1hK01HydxnV1trnpznVXePW7hIzgaid44d3jF89lO+D3Kt08rdY9wCuTTwtFTQ8T6u2ZrYEIhCo7Pql9TWfp1C3xyMvPcukkh5PTLDvpaQQx+J9tALQ1h/V771Sl9pawySi1tlh9HdI7DeFuj0eY4jtT+S4x3BNrD9igrmPBNWcqTO1qzytifRaXmTQfQYTtQcXFgOcbSzUhVxZ2p7nJSbHkZfP0s/PaEl3jJTav0ymXjzafOYyhhibYxuu8RLLur/42Bw/34EDhmZby2xtWZaYgr9ozlqascSExX2PsfqibRUMvg/2GCSHtZgul4gphWuu9zfR1kwbiRY7ocUY4D6/iuHlOesaBg6fqTkrBwwF00t4uRYD1u7013/vm5W/3sqtfDmFmX8BL9ROYuafA/Bz349zfcbPn732Zy2319/es/LP/KlvoBtaaB7g8mN5UmDqq4G8TigBoKVQ9yl8PCZnC8HOeAX2P6eQHI6IoofL868KdZ/r++t4sWGKoqCxQ41isN25D5YSB1cRwwi4+iacK/KyVuzkBAjlKWprZ+RliHUdibFe8zIvUbDzGDDEwVIUHSV7TneRhiHyshBQDyUKQl/jZQ4HomDnFL66DefqLpy7XtrwUlayn+VFt0G2pQ+8RDPOV3g5BFtb8P4SXoziM9NSqFu3wtbvxzYuebmciC958fU4+RD9JQqpxiJvDESx8YZBdEDIJfVD6C7D3By+46axZMn+pbIP3xd9JBPXAhGZ/TX7ZIfyMik15UqTE+jWn77NhKdH38q+1ykV+eBUdpzT7/3xr3qMsUz1eXTBFKJ3FBKOYq/yBD/GXi8IHUXhbZyJ9fIVV+L5o88fwuejP676SyxB0Nb6SwYwmZgQJzDE1ny5Fouj8PAhYFz6I17lL5GnhYB6uE7FYPzn2hPMa7x4GXxZ1QmgtvsaLwxcFBqe4XlJK7zE+kIQeiV3sfVjwBjvScSw2r+Y+hqG7PzDl6QYDC8Ww9qw/VosnuFL9Re+gMGUyMuMJabZ8LIuCO3rC+7D9ZcbdFzmJdbX+0h7fo9hwuXJwbSC4drgbJlT5nDclxhTruesSx5i7LZtWOMlAa/iZblBx+XkKnWEP/ynf/ziZ27lVm7liyu3SaX3rDx9+4g8tkBdn3aYZCjW3QCQ9elW+1PHK4nQhRKfH8ZBaALcjnO6esMe99ujLg05PgOMSfnq0+GLx+P5OVzBT1xFTLHeBQwptIERkjEubdCJBQ5JBy8HBv0reQH4KgbLSwcK9eVkwVry1Nq03D3H8RBtD8sJyeXAYcW2LmBqLzE1TAtbNPWMpX9EXtx95oB5BVN3eX4F9ukfsMTcwWOsOwWWeo94TY9xYWuRl2hbvPSHz+QvF+pWR0fPf4mXNX+x9TVeIsZrnWHcKDoKeceJs2or9fu+3od6R1x2dCufJ0YKxiarhsLI1YCItkHhc3GiKnWzqz988IRhc6rfJGK3g9z3Tpf9L65US6Guv11eQ7I8Zy0crdf7n/2cPR593pbo85EXxhJnjL3L+uv85eL5sY7hks8P4RzR9gAqtmXaRLS4b7b0gYdrGFbrF3iJPCzrSwzuYVG4z8TBUlbiWMRgY/HaAh7nfljaUlzRWG3TxOJL94lBbvdGQFfmtDZHe1+2IWAK9TXbinV/39OCh3j+hW3Z/irkKsSfr39h5pV74OtreYfbTZej/1zmZW1VWaKIobWBsOznY3/l68sJ2uu8plBf5rALf4kYFjz5WL2s+xIxWB5Y+6MLMWXBo+ashpdLhWfG4z+JjwFu5VZu5csqt0ml96z8v/6dX3YDMl1hoMFdB0JuoAyjK4KW7BEDlOWd6w5lwoGBLfnERJfltjq5ui7Hr69mleNdOV9fjmmbN+X3mDRbTInIJaXJaKPIZ1Ors7z7rm0SMWRZjFu/HzCIZky7Jmu9tDkFTJ25NqA7R1lM8rqLw1DOSSxPhvUpIxleapvLNfQ4ZSNoq7wAIBZMzFyuseRFMURedKCvvGxUSLfUd0UbqIkd+8F/5YUu8UL1+wnl/X3DywayNF3PafHLNbxtRV66gMleW3jw3+8DL6qxof4xk/cfaVOzLZ0AVR4TG17Kvy01W1NeenPfsvm+XMO3sQsYB252DW67kkXb0vpceWnntP6jvKhtKS+Wp8FigNojSp0X/qITV9a2bH0Ibd6Gegc4WzvnL1onWudFbasztiD3pGj1sMXQ6jrwsf71deodLyO8bVKo3xGKuHapDxldArqUoS8CpASksiKpS/bzjGkmkPGlPslnbCHzeSAj1UkrqX/w5mDqjO3uhK9+7RM8fPCElOb6eWb599c/8c/s41xOnPRVoW4tqpHRVoT5oY7GeofB1DXO6aSUvorTQ7hRQXXLy7k4Zn3e8rIjz9MJMY7Ja8Tqb7AxAMG2WH2lXbOHvHau9cwtTqmtZTRBX4bFoPcRwed9H7yjZR8ZMXTumsVfyPpHqjFAeVF/GeBjAEH8sWKC6LV0xn8sT76PbNzbGLFBguVhEzCcYCYLGJiJa3+kEwbJ3TNyMWGAjwFD5AVLXpjM+bnlRpZ7a3sDJ98Hk7c1zbda/8WuzZUXrPcnMTdSTNa+JV43XpisbcmNUp6AdV6S8Z+NyZWApgnn+8iWJ+TASyKPacELrWAyvMyWl+LzUH8xvNhYXduovIAW/mJ5mBH7TOHFRqYOnheLQX1ebWdjeNGi31P/g+lzGZAVjGxty/tHb64vvCx5jxii7dn8LZHHpLw0Hny9N7wAumLN5Kiaqxh/SRC9Kc2XFv6iGIy/xElOLQnS5r/9l25C3V9kYYhP/6D9i7nMrXy2ctNUes/K4RNZRK4DKS26hLgK1JbjumuPJk/qei3x9/WkT1xKYm5eqW6dZzmfHazp9dtgWzv5NoFgPwO0DkmftWubJ/d5gr45HjFovWGwU0TkENqBYRtLaHuaEKrWS1ZQ29tkrlvb9b4l/Y58xT3x0uOZuU5g9NDXRGDOaTHJfYs8EeJTUM8Lw9/3mVE1Py7x4iYBqU3CZG5Jcwc4/YtrvFhR3nOY4oRSNp9vAxnP05IX//klP1jlRc85l8fZWj9nW64NBkPFpMQYf7G2bs+fCy/nMEZM+jRS8Z7COXXZvPI4FWZ0IMFneIhttBgs71Q+HP0l+rOPAeQ+7ye47DVbgmoxqL9onQ1PMnnkMSWDSQcuwru5zxRthep3GEXs1cQ9Nudrca/VdaXI2s/UMaZZvDaVG1ljEIVzlnpceYL4eW51+ckuHsiKJPnbBx8+4c0HT/j0ux+BucXFp+nMRQw+X3/t59fr7V6zq9vraMxQofvKW/B5CsdtbNan7fGeaVvs0//qL0XD6Vzc6sz3aaXutY4AwMcUFSNvE0vnfb7WucWsxLZPlHug0rbVX0xcsj6vdeujPSDiyQEPzH3Lxtb0no2hjXonFRNhHZPjxfzTorF0DBNJkZcYZywPPdrrQYrBPrypvKD1idn0wZEX25/EWLzwR3h/ttfUl0XbpI7l5TKmGHd6W6dmWzP566lvRV5s/LXnJ8OzTuTo5xOAOfCisVgxUbDnztwXz5vn/hwvpDklWR4U02V/8by0XEeL2tp8hRe7e6CtKyabsy5jAIEgG+QQkeGhZXuqi9hyqTZhROHc8Z5Z22wY1njx99ny4OqF+9nctx7tVbaYqyRK5d7EPnQlNq/wotfUsv8kCjvcyq3cypdV0vWP3MoPUvn67/Oidsul0TFZl+LFhVsdWApu5qALsvZ0xn6eQt2mjLEOLN8VjwORc5jYdMQWk2I4jykmfJ8Fgy8RQ3xxZbnE3B9vw7x1DLyCyfKSzBOmz4opzuxHbYUYXK7bmuclYuAVXuL5Pg8GSeV8iRivYVi26gWYQrL0el58PWKKvLzUtuI1rC15TGXwU/3Ll/jqwRoG+py8rIrqBhRr9XO8+NcBVzDQMu4dTCvrJKS5GoX6HEDMHHi4IqLWB6Iya5yLn2wT1vYYM1XNJD2eZ1/vOidbjR/ZLaW0XRtCfQ5/iU2LdSsAbY+fj2u+0IqtXfd5z+NsP08vj1v2L7ZEDBnSF6m/dOGT8bXKWF/DtBTnN3Va6yOjz1/D5EsVtTYNk9VsBVP4+vIOLTFd8nmpW8zXeYlx7JytaalqYgsM67xQOOlLbC2KwMdYf+2VwrW/2BL9J+ZvNa7ZXGiBwdcv8xJyoxf4y7lYrOVsTLjmL2YyymFaidXX/CX2udde638pBi0xf2sPRl7IC72SFywfIn9W29JyPjdSnshhwlWfX06sRn/Rf7b8jt/3wcV238qt3MoXV26TSu9Z+YM/+w2kINRtO9wU6gQv/Aha1qOoddzgM3agXagj1OPPKP4aRa0p1Lu141bEegXTHOpLMUpfjxiWkzwewxzqpzVMZsR3nRda4QULXmzqEHmJGF7Liwqpav0YMEQe+gUG/3lgjRcEXrD4vC06uXCOl/gz8qIC6q5u2rjFZVtbtCnYFl/hZW3XoWu8LDF4Xg64bFt2lVhp8iqmNrmkS+lb/cQwwsPL7y8nfTyGHDBMC9ta8mYxbfACXszneYWXKNRthU3XBhaxzd9hSYH1MlvyGOPPPevkgnzuMKbFBKObBIoYk2osKT7CnGPSzWiDBZ/UA4SnJy/UfTxuHAbRV2r1f/6VQt2n+kxfSuRtTag7CkBfigm0sN2lwG3kKdajbR3K6SqPoY3XYjPDx4BM3l8yyqod4y9236O2AqMVCm2MP9d8XjBoHPSfH0yMA67HsQzfB0ZM+vmKKWBYG8Quff56/yKY5OeuHNPjq/3LJV4iJgCjE+r2K6qibUXbW8MUeWkYtM+NvFy2LYR6FEuecYYXE9cSuAaJtamFOBEceTkGTJr/KaZNaOeabV3iZcaSFyug3hEt/IVQq9B1LpcwXOOlD5+PeUX8PdZVMP0cJrVNywsCpogh5jpLf7kc57Q/i7zYnDXycglTRlmpXcoaLw1teZBiMdB5sfFzvMRCHeEP/Y9/fPXYrdzKrXzx5Tap9J6VT35tj3enXIP0BMY7MxBgAO8wuw7pLUZXf8TkOoc9Zlc/QpKAdjy7gfSBMk7ItX7EjAPmWh8pY2/qExjPJtHJxHg2HeCMjGeDYQbjMQxm3tEUMHhMTwHDAbyo253H9gHDARlH0+YjssM0UcaepjawILkvFRMYz4Dj5dFgymC8M5gYjHeImCbXSe+RAwZgMn3zHtkloHuaA6bZYTqRxzQTY0+trhi0TFd44cKLx3TN1nhRj7yMBsMec7C1yAvjYI7PxDjADwD3hpcRjGfymJ6crS395SnUnyMv7FetPFF2mJ5pdpgOFHgBB17gMGUw9mbwMML7zxR4ycW2Ki/kbUswtBgBLv5ifP458PRUMFhMkZejiwERE2NveSq8aDmB8URzwORt6zHYmvMXXu5MdqTs/YkmN+A6ImMybQITpjZewzMYR4fRY2AwRqb6+TkT3h3bUHycgU8ObaKJGUXI2ww6g3C37N7W6l2X3ef7TvWapAyb0R1HJuTc2jRNvav/xtGnDHFIGoW5m5aRXIN4+RR+svedJA75gbM5zqEO4BE5xIC5TkoC4i/W1k5gV58DTxnik4r5SIy9Of8JGc+mjXOwtUw5xLngL5BYnM09eAox4ZFmh+kpxIAY18aAYQJwMAPxU7C9E3yfOiK7ODYje/+hZZ/6DA4xwU/cPoY+9QmT42UfMB3h+9Sp/M36vOXlAMaBPKYnamsbpuDzmTKeAqanMAn6zI0XZl5geKRpUR9DTBgv2NoE4Gh5Cf3PsWA6x8tEnpccjoOkT7S29xR4ekeBFwq8FAznME3AApO1tQOyywvUXxovwdYCL5LfeV6eYHgp/VW+yMu8isneZ+8/wMlgOC548fmb5DYGE2Vva8guf1vnJTteHukypug/h4BpBLs8+1RwtnyOXV59DDyt8WLjXOSFAZezruakNAZbGx2GZ0SeOGDyvMBejxnvpozf/GWbdd7Kb32RePKD9i9O4t7KZys3TaX3rPytv/wrmCCd9JZlcDklxluecccJE3KpT7hjeZYxJcYnfMI99+hBmBPjLY+44w4DCDkB7/KEHRI2EHFPPf8GwJ4YmRlbyDbdz2XQPIGx5YQjyaTTDMYWCSdkjCT1HSd5ykMZmRk7JAxIGAl4YsYWktRMBDxxxhYJBxIM73jCjjvMyJiotBmyZ8ZEwFsescM6BiLgkTO2kBULM4AnMLZgbEBlEADsSpslQRZMO+5wNBh3SPI7MWZM2LGIdB+JMfOMHVLVHNL79gTGaHgZqfGyK7xYHjoQ5gR8yhPuWDAIprlgksHdOzDumDCA8UQMdrzM5UlnwnaBocOp3Mep8ALIBKHyNCDhBBSegAMJN8rL/gwvnxZeCDIhojz1IGSC2CIStkgAEd5yxh0SBog2zwSxgw1QEjVgW3nJ1a523OFUMOnfJohI31xssQfhRIzMs1wPkpxl5YUYYxlg7TjJ+RLjkSdsuUMu/vJp4aUvvLzjETvuMCCBCXhXeN+CABDeMWMH4eWxTBTsuPEimIQXvedqaxNlmcgtdQA4pIyZBdMGhCMkKd8CeCZJPsV/kkxaxRhAxdbKlMBkbE15UQyy61nCIxg7lqe8I8lT/x1kVcRT6bZ3xR/2ZXpG7oHY1mxsbS4JstZ7EI4E5OKTc/H7uVzjibLj5VAxSRzLxf8Uk/qLHt9C1iGMkNUDGYwjZYBFVJ8gA3kA2Jb2zMTY84wNGAMSPkaHY5kgHAh4pCwTucjYsdiVYrrjhAcQRgA5y+c7Ag5jh5wJ95sZh4lwnBO+uyc8bDLuN1lEu4mRMzDNsgMRJbkPfcroO4BTxjzLa5Xy+YycCZyBvmfkzMhMyAx88GZfXltKYCb0w4x57MFdRupmnA5b5DnJjksp4xc/8WtoYhoWV3Nt6l9kKktFfxlsVmERpnLfEwCmhCdkbFn1rwhzOSb/UhGaLhNziTHVOAc8l0H5jhkbpDKRnKutTZRx0rjBCYmAA7c4sQHhWCYXNiRxX2PCrsSUU5lwlJjibU37TI3VvfYvLLa5hSjSPQLYsqyGORJw4owdZKXinjIOnKt/HQyGHSSOHRUTd2XAN7s4ti/+sQVwJJQYIP7zRGLf2qcewIKJ1f9aDNA+c67+02EDQibCYzl/X2LkY4mTCYxjYpxKHB1KX3HgjDt0tZ8/Ol4YI2bpUzmBiLBnxoxc/FMxSRx7pIwjMTJmbFn6/RMx3kL6wFOJCe8gPFDh5V3g5S3nGmsZCY/l/Cj37VR47wEcU8Yp55o3HAsP99xhhw5jsa1twZAJeEautjYEXvYkGmAZGRsQ9gXTXOLYkRovdxoXja2l0mdqLB4CL6rH9ZYZd6V+JMap9Kl9wSC2J7yeIJN7amtziatb4y/KyybE4i2AJ2KXFwimjAzpA0f1n2JrvMKLYMqlT/T+wgBOCRhLf5UAsbU8lbyAcCqY7gqmieSh3E5zSpLJaLW1DoRnyMNQ7SP1waLmEYJpLPmd+o/kkBPY2ZrkmKVPLW2aDS+AaFk9FoxseN2ZPGQs59+AyqTRVP1HeWn+AjyzcLIBYQLjBBQMhCfK9UHjDgmHytNY4pi3NQZcn9qBMNW8OJWVgVR9fkbGmFB5JDBOSTBo3nBKjDGPFcNYfP6u5CKZgHeBlyfDi+6EODKXvhX4xZ//ZfzoT32MW7mVW/nyy21S6T0r+09FLnmGPGXQOf65DIJGloQ8kzwd1SePmeTJCbjsvkOy2oAYeEAPTvI06JAzvloW2h6BOpgFyVOTI5cVDISavEylfixJJsrTyBMk+RiY0JkO6L4kIxMVUWHmiuEZub7OMBcMs8WEuY6EJOETDFt0DsNH6E2bZUeSiolFCBJUnpbyvMDA5bhilB0vCCNljJSxyx02SJg0YWMqkxzSUZ7jZV7h5anw0JcJi+eSvHtegK8VXg4oq28QeYHD4DCV61teJPkpvNCMh4wygSaDi7EIPyovh8DLdIGXJ8xIyot+nzM+xgAQYQ/Gnps48RGMAxfp74pprrYWedH6hhMSlYSNZtznVHiRyYChDGyVl73D4Hl5NrzMJE/JU5mUyOV4yhlv0INJeDky8NUif33gwjsV26KISdocMenA+wTGiWRAZXn5IMukyQiZuNwXf1SMDZM8LZ0NBuWFjK11TJJ0FgwnBj6GSJ8eYCYain/si2Cu2J7wmOtxqcNiLElrooIJE96w+MtI8kRW/UltTVctTQXDqfJSViswav2p+Lzy8kQzxkx1Qm6GeaWXZLVALrYstjbjWPyt+jg3xZcJsiJwqjFAJyXY1GdsyqT8jDZQHgg4zQmnfcJUHs2PmfDJQaa6tmL+6DrZ/U19siegLwq3RDJ5ZIW5u45FRRcy0ZTAIMpGoyK7SZ48d8hzQs7CK2fCnAnPn1Gom+o/qn8nLF+v0F2duNh/lxn35UUq+xRfNUSqDk6Jc8+GJ53EUJ9XWxtAIGqD5zfcodMYgBkflkn5ESL+fCjfn8pAVOPYVGxrWvH5DqnGub74Sy6xecyEr5QXqw4WA0l8UTtR/3KYjL+QYkLGPWTjd40JH5YJ7BNkUnwqPq/+o/pf2qfqypSprEqE8ZdHTOiYsFFMmHFiwgfoy4pbrjterWE6IGOvGEgmZ595XmBSXhTTB9yjqzGAca+DbegqDDQMNFdME+lqHIOJJnTFZ2diPNFUeOkLL4wpAx+hrE7lsrGE4UFju9ja7Hh5JsGksVh5uCu8CIYZH+ngumBQcXFdZXJ0tjXX/mUqExYai9XWeiZs1LaQsWHCm1Lfm4lb6UO52qr2qdnU95hr32B52UIm+Kxt1djMXB9YNV7Y8XK0tmZisdpaKjml8jLk1PwFjIGBN8oLzGtexZ9mw8szchWchsE0lAdE1l8IJPkbZnxcHsw1XkysxiwPGAwGvY/iP42XKfCik1eRF3/fPS97usyL1OfKi2KKvMiGA4pJfMhiOhUvXePlXfH5xsuMIVOZZJT7LP5DhhcpmuvM1tZobiuMkuTdzzxXXvaUsed1XiSuFX9feQ3u8HZc/O1WbuVWvpxye/3tPSu/8/d/6OoLUcW6zLQNUAD/TrN9D5sR3jOn5XvSzsgoCDdSu4b9my2xG4nCw/HzC6HhcgG7FNnWmQKmiIHC+/MU7hsFbQIdQVkMoZ6DCG8UQTzPi2Iq52XPQ1t+fZkXAukY02C6wMsKpoXQacAU9RquYYq8KIZzmIQXUyVa8BJtb4HhCg/Rljte52GBgVubYdotW5d6TJ4XLHiJGCjUo39EDFPAeE2o+yym2uaAIfhP+bA539LWIgYEW4v3PdYj5sjLYie0M/7YXivxmDpQEOaGq6/FhH248328aKhGLbocQFEg4jT7yNZ14fu5xDkzmWTrIJ+Trwl1M3si5PW5Vv8RL8G0KNeFui/HCPt6CCC25erwtpaw5CXWo20FiO71DGmzL5HHZf/i60t/9JjmYGspfCnaWrSDq/5CSwzRHa4KDy8wxXvkMcX+J2KKvKzFmGu8LGLxgpeIKdqWLzE2a5xsMQAKrLU52las+wYsYkTEFL8S49a13Gjpbx5DjN1J23wJU8RwiZeV/ucaL6/NjSKmKgBdPpZewEvkwd23FV6Wou8v6yO1nIsB8fsXeblw/jVeIqb4naXPX+Ml+N/C9lZ4kT8AWGJa8ILX87JWfiSMaW7lVm7lyyu3SaX3rPz0n/wGuk2jfROygpYMSgdBIC9yTeuC0LUQ6hPD2NnUevl4TFTjgMLqo9jPRpFrCufqw+hJX7c4K/6KpVB3HPDFxGaImEId4fMLMWX2GMaAcbPA0M4pTbzOi9XkADWBTXefLAb2db0753gZAw/HgGkp1O0xRd6ANVF4j+l0ZZAaMaUrvERB6Ghbc7hG5EW383WYAi/RtqZQP8HzOvBl24oi13PAsBC7DLwMoc3DK3lZE7m2Wg5r4q/XeIk/o78czFSWHo+8eNtbiuhewpQDhgTChs2ECwhbxFe//Pl+k/wT04eQZJM3Qa+5AY05531+PybMxvyjvlLmhGkmNyDJTrib6uomrT8/+1miaSqbdJfTbrZVKhUA8DMfL6b0/fdjTAg6PJE3OTOb3y/bWvSnNUHopc/760R/iYLQsf9aCnUnV6/bcQcMWnJoc7S1NQzndgE7H4t9PYopq09r/bX+Eie/F0LdIVYT/IYDwosvi8m2UI+8RCHiLfs2X9sIYoEBfJGXpDxUiOd3F7W5iq1HXg6hHjdh2ARM14W62WGaAy/K+yVMMVpHXpZ95DI/s/Xtov+6jIFDfQ6Yoq11ysMFXmKJthUxRV6iqPXAK/38BUwRwwQ/QULwOWlawRRLnJhabmbh65HHTcz3Fhh8bF7bRCGH49Z/6oOYaFumHieRXstLLKkn/LH/0Y+vHruV37rCP4D/buX7U26TSu9Z+c4/esL+ZEV5gaMR42MAhyBoe4QX7j7BCwqO8IK2utNFFQws79fbuhW4HZFxghcMtKK9OhDXQvCTMAxZcm0xHRwmWUp7GVMOmDjUPaZDwHAqwpBWnNJiYnhxy4gJZXLBJthHIwjNwCoGxnleppUkwNaPq7ywwzAGXqyIok4mVAjkeZnhMS15AfZBTPkQMERepoDhBC8ILZiywzRe4EV2YjqPCQHTFHiRpd9+4Bx5chh4aVsR05IXP/gZ4W1vJi9umcmLkFKwtQkceBJtBc/LeVtb8LKCSTVnbN1jmkMM8BgiJiJaDGLtZPNU7rOLa26Cgy9j4jZR7IoxhY796qUeyXWg95wWHWpvkuwBhA1TrW9BbhXMkIBd31KcRIwHVwfm2Qh3AzhNZOYDGfPkhb2nye8o97Qf3MRSP0wO5DR2mKZUJ6I2uyM2u2MF8a2jv0fxjq0JddvBBJPnJb+AlzgRFSd6o6D6oQiqN5/3tjYh+kvckZFcfYSf+D1ra/V1D17seucm4NnHZi4xZS0G1Dqiv4QYAHZ1Ltp37bgfmK/FgMjLwbaZ1nYstTGDFzHgcAXTkhePiQMmBEyncs3GC5a8UOTFYzgFW/N5xTovOXz/UmzOEQM8hhFRMJqdSPYMPzG7zovHcAq8nAKmJS/zFV44YAq7GQZejqH/mQtGLYIh+vy1yWiPyedGjAPFvMFjGuHzghns6oylbUWeRtceXvByusQLlrzYnJUhm544XlZyIYtpChgiL9HnT4h595KXmFNe5CXE8sjDOi8xz/Z5gfBy/oGvn4xkHKYZ3/qld7iVW7mV3x7lpqn0npW/+X/+FWSSLcB7sLzrTCIS2oNkgoiAQ3nfmcHIJJ1Jj9T0LsrxHoREqQjWJnRMVfh0KIOmQ+lG+lLX5HKGCNxKIiYJ6QAV5hZh1E0ZuM0EMM/oIHoxGdLx9ygJOskOJAMkSbIY5nJ8X+oEuOMdZKBXMbFiEgzyFFcmrnpwwTTXSZq+iI5aTPq7YuJy35jlPqo+BXNGByoCm7LThQi1zsgkukB9uUdrvBwu8EKUcOQsGBnoiSrPCVjwciDFRNUWGqauHMsVcw8RwMzlmqpRM7KI6J6QMZNoUPWQCSWLYSqYnnmqgr5LDIRjafNQ3vE/QjAlcBnQNV72Je3qSxsPpb3Ki9qZ8kIQnavMXHmZSARth3KfZpJVYWu8nCB1xcDgoiMylzaK/ljFABFXVp47loH3AWK7Hbi+RtUX2ztUTFT0OESTaDa2NRpehsKL2poKYCr3B8ryCk7BrJg8L7zKi/IOStXHBxC6wpPyMlMRj4ZoO0RMEYPuGaMYOlCZNGr3TXmpEzEEcLG1Z5qLrWXHi2LKYIepC5juiv1ysampYOiYqr1kArbc1WRe9SDUR76OAZ00CzJZKU+HU5lE6Ap/iSWZf1P8liADgLuOMXQMIsZpTiBmDAl40zOOMzD0shZkmhJSxzhNhIyE08zoknwWRDiNHfouA8RgJJxGeY0tEWPOHd4+EnbbGXfbEQ8PB4h8CIOZwNzheNhiHiYMw4R+w3jz4SOOw4jDfodvvvUrmxi+rAl1C1VmkHCRlxaLxR8ljk0sOlAdgGTqgIjLglHjoD6xH0z/wqae0QY36vM6IdKjadvl0r880ezafAi2NqqtYb1/UX/RODgAJa5xWREhYsoox0VMWTE1f7GYbP/SI4n2EKtdUhUPVkwjsfOf54JJY8AReZWX2q+DABuLkUpd2qyrLDSuCS8MMJc+tK08kjhWNq/AXDFx4GWghJEZucQAFccXnxcMtv85FEzHUteYeKS5TABT8fmWm6Bg7yHixgTRhRvKvYu8jMQYC6aE8gCCZ/QkmFrMEUwdEUbOhifFxEWMWbS6uNzXvcNEMplocqEMrhsEqG1losrbUDAdoLywyV3K5AmJho/mAYJprrlO5AWBl77amt4HcramGLT/OTj/KXmFsa3mL8pLAhPV+qb4j9rWVPKK2diaYNJ8DrXeE1UNULFd6y8ZXcXkeTmWiTKtH4Kt6aYlbPIxtT3tvyIvXHgZCg+aswovck9m1rwBC0zi83O9RyixTjENhRdtMwMBQ64YejQhe7U13aAjG15iPsam3295gGBSXlofzQ5TV2L/zDMGEozCy1xjQl/9RXgT/xEMupOo7aOZgL/xl38ZP/GHvopbuZVb+fLLbVLpPSv7d/KKhqzIKGKUtS4Jk9ZPMIKBkIGr7I5EZQVHxsTAA0QwUHc2euC+rCTQ1QSoKwvqE1pqneRcRBE1mZHDZXclzHXXlEwyqdFeD0LdNa61mZ2Q4wm5CkJrXUdCWicGdugaJsjgUVZHyM4TuopBMWWHab6KaSg7vs0kT91EBBEFE1exylwxWF6aIPQ5XiY04eARGXMRitQVHnP5MJHu1sL1nfzGS+DJYRBBTfm+YCSzE5iIXuuTS31Cy7V+jZej4b0dB+7Q1zZkZtxDPuNWeRVedPBo7zvD88CBl63unEeCScUpBRNjYNn9TzGMBsOIXAWhFYPl5YSMBGAootYjWHaUMm1UHR3BVMQuAy8L/ynfUR508k3ryeygM0N2NrI+7nlp20ef44UYdUAmotWEu2pr0p4HtNVE9kmmrIPhBaboP2Bf3xXx5DqpWV5FUx464y9LW/O8OH8pmBLLhIdi6g0PmsCjYJLVNgyU7ZeHMqjWiRJJiOUnQV4r0Nda5PP+lUP5fldfR9BdzfQ7fQL6lDHPAINKnasQN4Mwz4RpolqfMoHqtt2Eae7QpnwI89w1MVgk7I8Jp7Iiqb2pyZiLWv80DpjGAW+GCSkxdvdH7O6PGGnApQXOtKj7v2iLNGZw4KVjquL8IzJQ6qCit9EgwQp1i+3ILqJ6ybHYNhfb0vqm7CymtiYPEYpgOhi78gWZfCqC66bNY7C1acXnO6Rqe8yy+5naN3G94dJ/sfUXs9qH2qoqLYpBY7FiuOceRG2Cc8cycNaHL7NrMztMNgYoRttHHiGivFsTx1B2C6uvvnJZ6ac+bDCNaCLBgGKaFpi2gZcNJ9OnMoYipK8+rxp+2uYpYKgbdBReujphUVbQsr4ypyvVYNrkxfqnwFN8XV3brOLIiukN9y4271gcTm1NeZlJV5spL7KSpW1mIZOW2kcqxmx4kdwmldc1l6/w64qjc7YWV64ohjvuzvBSdhZjOFubHKZsYrNgapuMCKaOIy9loqXUwcDOtPnEkZdsMOS2qtD0mUPprxTDA3eFB+HlLmDSzTAqpmhrRpx/Nn2k+pMKda/xcjL3vfbJzrZaf9XilrXNskviir+Qybt7tRWsxYBseJJjHHjpHS8Sx/RhzKn0+3emfmKPacFLwARgwcubMnZQDu4DLzDn0HJ8bLHkVm7lVr7ccnv97T0rv/u/9pGrL0RIm4IggDbgsIVNQsWIS1LXRA8R6v6kq0KkpsR3yZeC0JfPvyYI7TDQEkO8Jof6NdHDeMmF+ORVoe7LGNbEYS2mHJLeiIlACDq/VwWbF4KaMWmlyLv/wvL867zb1xccJlpe03+dXi0SuhTqfh3v3VlezmHgi5gIQagbn10YWMtSqDvy4q8QeYmi1hkRAy/uk60S6Cqmqz6/4MWXV/tLwHQKvPTwr7oRAFpA9H9YCnX7EmNETIXnEAQWbQ4O2NWbWAYHuagw1WaROy711uZ5TjieQisjD0Ec/MfeXE7grwl1L7qTM/5YX8taEba39YVQ90o9XuNqHIs+H0Xgr8SxePmo4bQQ6va0LGxtTffmmr9EDPH7r46TZ/wx5gFa7+gyL2uaMZGX6POxvhRQv8zLuTxC2xy1ga4KQr+gXItjMQ6+tI9s5/clYpLfW7OTYrKnu4IpCjRfi8XXeFn6Y+iDrwh19xR5oasYYqw+J3CuZdlHXu5PXstLSBMahgt5dyzX/OVqHxlPuIjFsb6eKzWfP8OL7X5CeS0vEhz9n+KY5lZu5Va+vHKbVHrPyh/9V76B3gh1D2HwVJP0ErhXkz/7d1ruBhIFNpvQsJSefT2KVSLUF0LdQXhYEqNW70PitEhq6vfa33PAYJ8O16fkps0q4tsweEwRQ5zkiRjWhbotBn/yl/AyBQy61a+eRpe2L3nRAZuv6+f0ZxTqPqwIdV/mZVkYUfw16uhEoW7/c3i1bUWxS6+DMIXvbpAchi5gojpwb/xYXpiWArdOlwq0sK2+1qM/Nduy9dFM+wDAfiHUDdfm4ZW8cOBloa21Yp3N1tYxxJ/XeIkiorsrvCgK+5vFMBNjoqa1lUC4N3eCQNiqcLcmzW1mCgDw3SDUvQvH48+9y7iB4wxXpzDim7Ovd4nRJXklDgAyE6bsBySJ2nG7KklRffrpvWtU102ufjxspFYu+9/90acAxpdrQt1r312b/LZ6R05jg+SpddXagmx13xA1nao4lqmTOiGGRPH/Q8CwC9Z8zV84YFoT6vZiykuh7iGc9SWx2B5vYuOmjabNm4ApxmZ7LmCpxyeYvEagjXOWB62nK7xMAZtued7qHtOOvc9HDDEGLXjB0tas5syaqPV5TNd4kRI3y4j9U7StKNhuPwus6I0F/b3WVlRMEUO0vXidpbD97OqRty1f6yOXPERM2WHy/rPGSxcwRdta6yNtOcJvQKBT7fr5TcAUN1FY2havYrL+AZMmJMVgMC3jiscQJ9tiDLiWs8aNU+x3L2Gox0Me0K3wkgKmWJa8eNs6Bv+JJfWE//q/9uNnjt7Kb0XRPvoH7d85G7uV15XbpNJ7Vr71S484nVrXoImV3SXFJipcHS52oK3ErkJ3LLFCjnaYPYd6Dp9HqEviRvWasgrB7yQhekUtubGY2PyndfuzYWr19V1XWpsnyh4TfF3P5zGZe0TkrpkgnW5MCPRLa5iWvJg6Y3GP4nTHHDBMRfzSiiZGDNl8XkV4tXRE4IDB8rJmaxGD4lAMy+SYwqcjpmBrAUPkJYF8YhQeEUZeZkgyxY4XW+dFkrzkxR+PSfaUgm29gJelv7R711depGSQw9B4argjLxnGfjn4i/+x+B14mW3ZOpHfHac3r5u1e9Ywia4ahxgQMa37tJYf7kSLS8uH3NdJSqkP9dUPAPiAexlAlfo9lkLdnSGyQ5m4LfUNvL1te8ZuM9dWpcS422RXv9+OtU7EeLOdzV3gsCU54839ESm1AVQiH7232xOsB23vjhiGU61PY4/TcaiTUf/s7zjgZ3/vp/X4MvaHmIDkYoIycCn2rscx82F43uIkkU5jtf7F21qMKdHne/IYlBGu9TVbi/4SMfh6CnYfJwdUY8xjinHMTxY4fymvI9n+yMKeQxslBvj+xf6UMbDH4O4j+3skGJaD0su8rGHydYtJXuH2MepVvNh7UzF57EuR+PXzneOFAoZoazH3qbaF8xi0bfaeeV4apuVPDpa1FL6PmPR7tn+5xJu+Ota+W/pMU48+bzHGCaFoW5GXNZ7WeVn2kVriKh71D/289i8OU8Bg41zkxfkh1nNSK0Ye7wnM987zEo7Tkhfvf1isdlq2mVYwrMc1weDbGgfrfAVTtK0YA2Jbp4nxa3/v7crRW7mVW/kyyk1T6T0r3/z3fhVA69yOyDViM4p+Q00A7A417f8ixSuFWAcOpSPg5Zbl/tn38smWTsjIOcp5zTns6zmM9h42WDocq6vBkJ13LAa7kmq9Q7OYRB+ih982mspSXv3LuMDgE0r7BIYMhlzqvXtqxFV4UTvTk+Gl3rMrvJDFgKI5o/gYVehTV9NU3SZzDctDDvU6SVgwxtem2pOwliCXhq3y0lajWAyaBHLRmjETCQz0lMqgwacZiuGEyMv6IKnxrpikPpxZFaTtqk/OyuVVw0Wv558O6n1rvCTo9t3lOANDEQLX647uHNd50cQr2ppi2BQtEufzBkNdqVFweP9c+rzyYjH15jjDjGxIMfn7Hp9Qwn5X7xEBzIWXwHdM0g9kMcU4tuTFTn4wgA9B+CAl3A+MtzPwWESfvs49HjnjuYj9fjUPeKYZT0XH5oFFJPyJJnyd+ibUzcAE0VNKLHYoT3KbcPc9kbwmBGBm4H6TMfSMRDNOkzwZ7zvG/Vbqm35G3zMe0ojT2GGcEoaO8fH9iP3YYZ7hJpW6xBgGxkfdAYfjgMOxA1FCl7KIcoPxlY+fysQbgZkwFIHu03ESwe6pw/7pDtPYY7M7YdiM+Dd+/yf4fR+f8O/+fz/A3/nu1vESB2dthVq715ZrO3i2vGi9ibM23m09Q8WUUW3N9jd+gN1ivWsj+/o21A+U64kYwBhsbQ5xLPp8HzCp+LaWOrhjgEli+1zrbXBmMej5FGOMAVWDDNof+XKiEovLwHDSXpTWfbIDyURv+bwKNNtiJ/xnFM2jgkn6rIbJXmUZt6RoTFGMusJGMVWfL98Y4XmJfWS0LdWiU151EwWpF+23ClF5iZgu8xIxbIJtxf7pRN6WrvWR9sGOYoi5irVdfSjSUJWJuYLJ+qPlxdmWuT7Q+gbFeCRvbTFXus5LWvJibGsMvOhEnOVl6fPeP+IrepsQE6oOVPm88qL1OWBQXjTOLXnxmFRTUNuom5YYVhwGW9p9j5jS4ri97962lquB13hBQcblnlkMPbwtap+rRSZ5fbsjLzjDi35yCLbl74OUX/x3fwU/+Ue+hlu5lVv58sttpdJ7Vo5PTRPDd7/tb/74y+p+FcHKCzBk/oUSz3mtkP2FgCjesGzjS85qP6+n95gshktnjMfW6nTh+Prf2P126Z5piiP/94mFqxPO8vISDLFETNfu0SXbWp7RPP0lWradsNBmuFbsfVqrr5bF08rLvCx5itcrpz2DKdraS7iPCC7x8hKelvXz98ydz17Y8YTFE9JlofrDLO4528bPGre06CC/I+ArPeN3Dm3A9CF6/BBvav0ND/hh3tXB0AP3+KG8w8AEIjnHkBQu1R3F6jVKvS+rFlL5vGokdR3jbjtjM0jS3yXgbpOx22idcbedcLed6vE32xkf3vlXOKjYakrA/d2Ijz44lr8TUgI2QwaRHE+J0XW5HAe2uxM+/PhdOQdhPG3w9PYN8ixisP+N3/WM/9Uf/xb+4NcO/prhvsaVmp83bsZ6Hb5GW3vhOdbKucHLZ/XHF/dvlxz3yjWij7+4f3mxP/rPXxJ9cXGR2t9sP/Oy/sTbzjVb8qtGlvXl9VqMARlIK/3Jmq19Fns9a1sr9ZfYztpK3tpG26+f6SNXY/XV9q33y2ttjmd51T2LvCDwgMDzBV6WtuRLvI/XbOml/fqiXMiD7ffjJPC1crbfv5CzXo/FZwJSPWe8Z+tn0d9ewkssa7YVz2XHNLdyK7fy5ZbbpNJ7Vr7xUx+5elxt0oWeea3vYxPWY4cLvF6o+5zmkZblcm1fX7zOcC7ROlPWkoZ4zYjxqkhouMYCwxkxys96/ohh7ZVFew3CUqj7Jdew5Rqm+P3X8qIY2pO05TXj+a4K0K5cw5Y5PGVdCKhHseSX8MJcb95ymf6yDVHU+prAZrwj0ZauCXWvrTi4dP4lL8sl7bYqtnYZQyzxfFF4OLapv3L+JS8lfpUVYo+QHXe0LiuO2H3/mlD3MVxjTQ/Flimcb5oDD1EYNSinpqQYQrvU1nICc6unxO6c85xwPPbhu8G+ez9RNY3+87/nQ68jtYzVrxse5cDLvLA1f9/XhLqj/8QSeYttjrYWY/G1OHYuTp7DtNTLw3Wh7jPXOIchlqW/XOsjy/kKhrjKof2u/kOvFuq+ZjuvFlMO9XN5BFdMnpeFUDeWtnatXONl8RoWv862zomZ21fMLYY1faMYq5cYLl8zYrzeB5+fwFk7fxRQ7xe8rMyYhPLSa2i5blvLK9hy7p4pL/X7EcOFvPvyFV8v1H09d7nMc1xtvPSX1/NyLddfK9/4qY+vfuZWvr/ly9Y/+q34dyvfn3KbVHrPyh/5H34D/fa8ULe+ntEeSizTDDL/B4UOmZZiyjWB5XZNW48TW9G94/nsVtS1JeZLceemtJoq+eIGZhZTzaV9PS6XjgOPeMXZTCwAqFuea4lC3Wu8XB9okPs1CqjX+6gYgvBwFYc9y4tnJgrcHtkp7ywS2CUvV5InWgp1L5IM9j+v8+LLxNm18RjqMdncYilC+qIBoHliHHkZja0RloLQkZf4+k7sEGUr9lY/8OwMfE2o+zW8MPmnjBx83t2DamvR5y97pG6lrZ+X7bTtANaXKGy/Oqi1GCA+rbsrjQA+5VzriYCNc6cmnKp+EF9deaevMCrmsONPTMIP7OPO86lDtqZBcPU5k6t3iQuG9nkr1M1MOI3JHR/cJBHhk08fzB0B5im5+rDxL8l+5+2dw/gv/u5H2Bu/2FRhVaj7fIm8RFH4OE4hGKHu4j9R5Ho1FjdIq0LdtuzYX/TahgMRbRW0LZjWhLqjeHLsI/srsThuH38IwsNLoe4VMeULRfTJuBrXmlC3/SXyEDFKm8KkT+AliilHnj6LULc9rvpLlpeMZi9JeTC5UB8wLe/bSiw2f45C3X34ylocu1TihP5MjGwwmcbWNg/B1q71kdFfVExZ67FPjkLd13gJ+w+47e2BpSD0Gi/R1s6JXGuJ+d0p+Et83ToKdUde1iZ4HC/wvJD2T+U0VUDdYLrK/Tl/4fXja7nLpdA8g6/ywoaXNaHuGNcue8t1XmLpesI/96d+7OJnbuVWbuWLK7dJpfes/Prfews+tEEnA+hMhynv6V8emPehcxhCergJdQLcRBVCvQudT6z35tURuR65DpGYXOLCKJpFph4HGkMY+A5IbhC64eQ6/Q6+zuBFmm9XJtTdPOr1ksM0UAoYPWYu1/TJ2UqydgFTxXAGE8Bhp7+yo5VJdLrQxojJ1je0TFAv8QIQNmE9h0vmONgWy+5ufrINC0yWFwIChsDDAkNyttXD746TsUyS4wCtX8FgJ7+if2yZLvICRF6WmDwv3UVMDGrbMkNtzfjTKi+mRAy89K86iHW2BWdb9i5ETAOSPLUvf9oguSefHbwgIIMwUOCBPCbXRg47LTFA3CZ1mIEn9npsjzRhNAPpPWac7MAawNjG3XikjGdz/AjGk9lhjgAczcQSM+HT56HWTzPhN5/62iYCMM9kViIBb/c9chlLZAZ+47nDZFT+T6cec1nhxCyrl2y523mh7tRlV89zcvX/+6/e4X//9z+qGP/Bp1vA8eiHDl35i9X5iLu1bQIvm+gvNo6txABm10R08IlNBz+BMSA5WxzIT9NuQj0jDsDI+fRyUOtjAHGZVHUYfJ8bV8EQI/Q/3l+6MLW8CTFgR2mxq5edWGIs41j04QWG4C8ulrP334rJnC/WVWOsXc/zsgkYNkhude0aLz1523K8sMdMKzFgMDytYmAsH8KZ4zEWb3iJyfdPFO6bz2WifxCwqA+Bp4jJTlw17SePwdZ7jbWKAcn1Pxt03n9W+sjkJrWovuqrmCwvKfSRFZPlKfJieFjjaR1TKwNHTPFRzXJSJ/LSX+AhIfgPlv7j+2RGZ+Ka9skewwqmiCHEDJ+zeqF4AmEg22Zvaynk1QkrvCx83tdVY/A8Bgq8dA6TvDZ+vqSJ8Wt/99MLn7iVW7mVL7LchLrfs/K3//1fq2n+zPJkICXp5GcWQd2UpHOZIYOqhIRN+T2XSacE2emBmTEgIZdnSZkZG4jINYPKkzSqg39ZaiidmwrYMoCBOiRkTFAhU5EhnJFrwkyQ7284VQyZpY+Tp1fyVG2yGEqdqGHKBdOAtmuICnPP5RWYjWJiwaCOkrkJENo2QTEC5Z4BVO7ThFwmlRISS33LDdMMxqYMGqjc16l00C/lRSehkqkPFZPwtIUIdTOrkCqhr5iEl55kNUQ9Z9kJaUZuQsO1zS35zGDsuCuYFIPnxWKYyoA9EWGHru52ZDEBTTBdX3vZGAwZbaCi9XmFl758Tu9pQqq2tkFXeZmRsc1d44W5JD0N01h5UVsDUhKNnMnYlsVQeSmr1SovkIZv1nhROys8WF4AFXgWXhb+wqlMgkr9LqfKS2ZgJBXelfNFTDoo2BZeEHihcr1kMA6GJ33a3zlMkkBaDD0VzkpMITRMOgmrMWLHbXoicxuQKi8HyoKBksO0ofb0s0PCDuQwDYWXeyRskXDMXNrFOBbD6ktyvE8ZyBlbStgwYSLGhAkjEracsEOPI4vo9kDAOzCOiTExY8eEI2VMBEyYcceEBxCmck82AHoCjmOH33wkPGwnHEbCcU749uOAN9sZH2wnEBHmLLu4HU4dMie8PRB2vUTgKSd864nwZpPxZjMDRHjeD9gMM7qUkXObJCLK+OijZ8gCFOFKdZV05DCNg6t/85MO//DXPsb/55MN/uWffIf/5J/cuf7lnFB3W2XQBi82bm0LL+qfm8JLKhMBLY75+gRGTvLaEKNs+mBiffP5Zms6wFTbarFY7Hdn+xcYf4E8/R9L3NLYnEt9U2JACrG4s/7CXAdrXPxjAgATiydkcGoxQH1uQ4op18GZHm99pPjPjov/FP/IgPOfyWCqcUwxoQk0p3IPu8BLV+4Zl/Mp96ncswkAE2HgVLa5lyV0A+sqJyNcb/pIQssTttyVXR/lPm64+DyXWEzc4h5n5IrJ9vMNU+ShY3IxoDe8zCyrF5FKXCy2BcVkYmGPhExSV3vX/kb7yBbHvK3pxBjVOGkxFfuh5h8U/Ed50VxGH5Ik9RdoH1xif8HUl2tPFhNpfif3eQ685OAviqnGaogdWdvSV0tsroPaplT8kSqmiRlD4GVgcpgcL1xW6aV2PslEE/qSAajPo7RnLv1+srZWYoL6VK7tku+foBNTjIlzzWHJ8aC2ojy0GKB2MBQMGTFnRcOgDzMCL7riXjHpBJDlJRVbyqZNmSXOOp+X6FNtbSoPP2ws7i0mZpmIC/5ibe9k41ixBVDzH82NemRzjyVvsDklBV5aXt3m5CTGyj38W//er+L3/nNfx63cyq18+eU2qfSeldOziNpJMoS605QuVWXIoEfr2imuLWW1uz/ocx5NbO2S2EM5X1fqR8z1mwmEsXT+HfxTCUlu2qoLXd2g7dBz6sBb2yiJS2szIWM8i6E9OYn1iEl+l39srt9BB6qtbpOnTR0yt7omOWuYhBdyGHJJ7s/xEjEkV7c8tcEdyGPYV57kb6fCkxxv69e0zZGX5OoyCTSZNk3gysNQeJlqvTG/hsGuNtCfXT2u7WL3+a7YlsWkSYnamsewtDWt633091WGBnNJ+DaFp0u8LM/3el6Ozp86cz/W/KUxp7yobSlG4cX7T8O05MVjIMOD8tR4r0/FKfqLx6QlYlrjwa5EUUxdwMRgnIytKe9qa5GXrWF2YuDEEGshGSDrroJI8grLkdqT6BMyTpTBWbrTCaKXNBfcJ2KczPKGkRgjSZIuvi2vwu0gr9xNc8KnzxuMZX5nyoRP9j0AxnYjcSYz1VVHzIT92NXPZya8PXY4zoQf3ZwAEE5jX1c46SsYXSevztnX4+xPPbetn8prjH/92/f469++r6/0afFTSi3uxE80nlDrNk4qLzEuLuNawyS2lnCi2Xy/vRaitpbQbHMtbsW4o8X6y+z8J1efHxBjb8TQXj/SNujejHo9HcoStfaOxOZ8OlGH6k+6Qkz9x8eAsmOWwdRipvKQzQRcWM2w4vMWgz1fvGdELWaMmAymdg3FROb7dmWWTnJETD4GdC5uJcjkWsa5WO4x9JD4bW3Lxoy+8pINJsaJfP/ieVeOz9ua7uypx07ImN1n82osXs8bIibDA3z/Z21tKra2tsrY89K4s5isLW0APIc2ToGHHDBbXga0VUznMOmqR8uLrhjVScGpTGCI/bQ4FGPAOqamj2d5UQwbdBgNL/EerPES45jkCe24qjDZ/O5kbM3yCKCu2LMYFIH6j22TLZYHa1sxFkd/6QMvEWM2GLqCqeUVYntyD9uqMD9WwMLWPKb1Mu4vvyJ3K9//8loh+Vt5f8rt9bf3rPzYH/qKq5/VOTBLkcscTS32vWo55AcWrxXqjsOOWL5vgtD2awZTxMAr1/y8Qt3X7lHsFmMH2q3xYuoMOEHoKGirT7da+5ZC3Wfvm79ULQsRUoq8++/H80dba0AChmJvX4xQ92t5j22oX6w/BEM5P64LdV/j5aqGyxVervN+plRe2PEiTxAv85JeKdR9TeA2Xu3FwsPsftRf9vBC3XbCAuX3KAAdMUctnqjLEUvUwYkxIN6j4+T/MoRVRV0I1uPsNZjsZwER6j4cBn/0ilD3j99fTuCviS1f01fiQNBnEeq+pKWl5/BtvGxrwxXbOhsnjb/E879aqPvybbvqL4s+8rP6o+FFqlz/bPufa7yseUaEeE2oe+HzV0Suz4oAnxXq9o1awxQbfTUWX8mNlkLdl8u58zs/M31qxBRtba3Ew1dj8Sv74LO5EfvrXRJQvxJWruZfn1+o25fzMYbb9x0Gj4naR9cLrfnLZV4+b250tl5tK/Ky0shQvi9C3f/sx1c/cyu3citfTLlNKr1n5Q/9y78bgxHq1ldMtHQgp2VCKE9eTf/jOiMKAwFaEYQOkwdWWNWdz/a7pk2TGZQDwCmIXgNY6hy4ZJDce9oVDtkK3MHYYbJtG0QHx9ajGDmFz0fRwyimHDEuxZM9BlrBlEAOk0tsLC9YxxB5iRNZkZeIIYpcV72jUqKt6WsBF3lhmCUUS17ifX4tL3lhW4GXgHmzyottf8BEZXBzgZc42RcxnBW2Vwxrgp2mTfsgoL7UUqHFgG91QKjNWOHl7ITlC3mJP2MyGQWf9VVDLRv4BLULGIEyOWB4sDxNAD6BFeom1Be7WDDtuHNtjDHhMUwL3V/xnyf4CcaR/QdSGFnsx+QmiYae0aVcQSSSV+i0nplwHJtzEbU2y0/C9773gcMyHgdX32z1mb384We+4jHG0DnBDxOOgTdvieUc5g9MS1vTVUB6Qes/BMLO+ANBXhkxTW6TDdbnTT0KDx9DK7fBlqK4cpxsYHgMKmhrMVrhYV2hYTFFsf7FQ4Vge7HPjYLQXbC9IWCyei61HYEXrGCi0G7bP9l+f42XiKFervxyCpjiJGzkxWnXYRnH2F1EMCCIj7PigK7Y8PiiKHwfeIk/o60dA6aeI4bAy9rA3GJYwbTkBeu8YB3Dah9p6tHWptD/RGH7gQMvwRYXGMCFl4bpmlB31Gnrgs/HWB0nrqLIdeQh2lbkZWFbIa+YawxoPm/z6jVM13iJE/BR5Dr+3AReou3F/iliijls8x+pdysYFgLqZ9p2npcYHHzpBsIf/dlvrB+8lVu5lS+83CaV3rPy63/nU/THy7uo3HHnOrB79K4zuOfeJep3uXMTUXfcSRJb6j1IOjDb+XCq9QFJdtcw9S13bUCK5Nq4JcKd6dQTE+5cp0+4595huAtir3foHKY7FdSs9yA5DFsdKBtMG4OpDxg26GQQWr/fYYeAybR5AGEXEhWLiUArvHSBlyuYsHy9sHcYPC8biFaMw8DtDDvuHC87Sg4DMTmMANw90DpdwHAWU22j5+UlmDYRowmDO3gMkReG2I7lxdqq+sslTA9MgRf/yoj4CwIGOothiw6b3Oo7dG7AdU8FA1qbo8/fB0x3gZeF7VnbinUAWyD4S3K8DEiOly17TDt0bWANmeSxq1RGMD6hNoVxAuNgJjAYPvHvmfCNeVcHG8TAV3jjBh+PXCasATCLBslSMB3O1uzE7p1Z1g8UvRQX9/xT/Dv4Vxs2BAypZfZEjDuztGDoGEPXlCVyBjrzeQDYpfYaKMBIRStJMAHvjh3G2b/SNo5drb9794Dnp12t5zmBqE1c/aNn/3y7vbxg7ompD/CivwSfdCT2ArbEwJvgL27jCF6u4tywfxAyhBiwDba2487Z2h06mfQs9egvgI9j4h+tnkC4R2/6I/F5Mpii/zwYW2FI/2L9Z7PiL7a+YY/pjjvXH92hazsuQnhxsbn4eOxfPIbe8XIPj+neTkQxcIe2mo9RNJCMv6yJ71tMuxAD7rjDJhtMRNjClhVMDkPgBb5PTQzcI3lMxp4VQ8OkYuHWtjpva5yC7XUudt8jOZ46kIvVKdhaCjypbVlM9yaW00qus0PjSTCFWM0R05KXYc22aqz2uVDsX6jkY1rvkPAAWyc8IGC6yovHsFMMWg+87AIvOwRM3GEIsX1rYoDw0rk2W9vq2NteB8Ib4/Op9JGXeNku+lDPS8Qgbfb9z+B49LwkkO9TUR6UaB8ZbE0w2jpc3k0s9bMYeMnLHZZjBc9LwMTJ8eIKA8MJ+NX/7NOVg7dyK7fyZZSbptJ7Vv7u/+XX0YPwABHWO0IEBx+QcFKRayK84b683y9ifm8w4MgZM2f0SHjDhBNnEZ1Gh4EzJpZ3z++gYpdUtBwIO5JVHyMYMwhbkg7yBBFn7Uk6nxEZA8v72x3L08pt7sqOPeX8WbRI7qFP9zUxEQwjGF0ivEFf29gh4YEJI+cqhnkPwZCZMaBDD8bIIvq5Q4eMXNusT8Kmcv65JH89M47EpUOVDvNETTy5Y9GQ2nAqAyxZDXPHqehvSJt3RST0HjKwPQVeVBz2nvv6Pr8kZ0PB4HlRMcrBYLpDqu/yyxMgwg6el13gZUc9Os44YcZQMHSZcKRZBgEVY8Z94eWu8KIaHorhBC6YutrGjoSHsfCgPJ1YXrLqy/nlfGJrGbkKdIogZqvrAHBixkjyfHNbBp0jiR3oarwTMrbc1d1tRmRJ1CACmydmbOF5af7SFdti9FRsK/jLieciLJzwUGyNo62BsaOEXMRnT5DnzDsW0V+tbymh4yZAvaMOPSecim31hZeRcuOlYHiotiZ2JaKjhHtOOEHO2VPCByDx8Su8oPLCdRJmg1RsDUXYN2GHFhOgguzM9anwjmXwL/4iPCtPkZcBSVatsEyanCjjSBm/gRFvuMOeZszEeOapCMs2LYbMjIfcYYsOPznf4btpxLGc82u8wTPPVaj028x4U3ifIbopKoSaE5xIb9WYYHky/WGZ/iDIhJLeZxW0rfobpX6PNgGTAWw6RpdkMmnOMgmUCLjvgDEz3mxHpAQQZeRMOM2dCKr3jCmjCHgTHjqdHMvoEyFn0U7KDExzh3dzxrZn7IYZbx5O2D/vMG0mbIYRp+MGp+MGh/0WD2+eMU89UhK7ZSb8Z5+odDLXtTAy3CuC8kiuvjEvXehEnz2eSpzcgatI74CED5lwKK8k6vUAGXCKQLScL4MBIjwUWz6VNQ07TpgI1bZ6CHdHzDKZUezthCyTTBCx/hEZ90gYSAaCp+KTNlarv1SfBor/DDjyXMTFSyxGrvUOEscSy/n64o8jgAzCPRJGLloqiXDPHcaCqQOho+Y/ultp85cSm1l844FTnXAXbbGm43NixomkTdIHzlUv5qG0mVgHxn3FoH3myBldjWuME6swcMJdiQFj4eWOC6aiCXXHHcYSmwckDLVPldiegNr/3CkvmUtco7KhhWjAnUr811itsfieqa4+600sTiEW90wFk8TiDrIhgsRZyY2ILC8MJuUlS39WBuJT4WlbBuHa/6gwd1++f194SeUe1YmqguFEXCdi1bYSUb3vyoPypBi0/+k1dzL9i8V4gmxacm94ICTcseQB1l8sLwTU/ufO2hqyTNoaTCPKLnesWkSlT+QeR4jYuOVFMbypvMDzUmzxrvIuvNyhYCj9ywNLn6wYUsFw4ix6VIaXOxZb05zzDlRyGc3vFIOcf0TbJVL6QKCjhDfoceSMrtx35UVF5d9wJ31NwXgXeHkovI9g5CSTOIopUcKu9KcjZ9nVlUtOSpKjAii2JZg6g0m10DQGZMVU8oSs/sOEE2ax0+rjM/qy4Yf6y0YxFgzJ8KQ5a6o8NNvSvEF46cr5BdMGCQNztb07TsXWxJbuii1qfS79awfUzW3+zr//a/jJf/4m1P1FFel7+ern/v+t/OAh+nLKbVLpPSvTUZKtVCYUVExZ6lSTJX2KkSE7N5E+qSkdGYHcyhXZGaZs/1z+S5Cnxo9lwCYijPqaSBP/U6HuviT7WjqkOvkidSqJZqt30BUMDUNCxkExoMMEqoPxLTp5ck8Ngw56dGm4DvUqJujACRXDp5gaJgaeMINJV2SUtQLUMPW1zUmeKFlMaEvSFYMVgFZMR8XAnQzqqD1Bo8BLfcq3wCS/9QCO1MRlBwDviniyimXq6weS/Lcn64pRlzZ3kCQ18jIG2wJEd6bx0nZn2pr1B4ohBQyJGy9iW3D1HlxFrIWXhGfMAKHWz/EittgteGnXEAwZTdB2h875y7b4C1de2jqUiinYWhWbpcbLHp6Xt9bW0JaEK0+Rl97wcgcKmMTnT4qJxbKPZfe0uxfwYkVC6wq+igl1txf1nwEJn5CNAQn7MuhTXrToCqbGi48JIK9DNZGsWNJXMphgBsUSizqQO98P5S0myGRwgkw+a2EA7wC8Y65xzAkRUxPhVcxe/HVlNQ68+HEUqFXRYb3TiYDU6cQSIRGw7YBdp20Qke1UHIRIVjElQl2FtCWgq40g2R0xtxYcJxEAV0zTOJid3giH/R0O+zs8PDwjJQaVd1Ymh7u9rqBTRdbefR2rx63Y8sbYaioxBebzWDlfPU5iixsQHsvKqgFtErDGALQt38/FgBqrSVbfnCD2rP5EZbJXY8BcBmziP73DtCsPGhTDxsQU8R+JW0/meA/C2yKerPfkSCxP5skKGTf/6SwGbiK72madwNB6dpMi8qBCd3m7M/e9YjC8bNEtMCgbGgM6pBqLNyAMzHgqMWBjfZ58HLMxImJSn1P/i7wcIBtyyEC6r7FYMTpeTKxPJY5VTCQYVOC88cJ4V16RrQ9siCtmFdK2/Y9mQ9pmhwmEY7GdxgtXDHdQQei2CUPkRV8j1v5nCLZW/QNUB+Gj4aVnKjtnlljtVowT6o58aP1PgvcXbZViGosalvJ2gHmQx+mz81LuMwE4Ol4IzwXTFrIKcSKbvzXZ6saLYoJM1gRenpEbBnTImDGh5W8qPi6TKsvVP4Ph5S7Ut4Vnfei2hfQFj5YXkMQYSs62bJ5ted1gianlBXK+d5gxG16OmOtuuXfc19xIbK13Pr/Gi+0Dt5DJXs31t8a2LC+58LIFSu5NzX94aWsq1t1jqdWlZTzchLpv5VZ+u5Tb62/vWfnRP/wVV4+BelUQmuGmcaMA9OuFun1Z7ypaWYoeXv5+1Gi6JggdMdQn4O7jvh5fwbjmSHEWPGKI17vGSzxxxXAB03Whbl9eLQgdjkdezp7f2VarR1Helwl1n7nGmbKwrSAsEo9fE7ustTO8vATTUqTdl3hfl7bl/zKG4/FJwln/PGNrVZg71s+UNVt7sTDwmfJa4dQjlUkntBUvAsH6CC/q9vxRqDuWQ2jzcOZzWqJGjE7y1GsGUKco1N17oe4UgnXO1LREynEy15wzYX/w1hCvmbO/5k88eC+P9/26wPpl/4oC0PH36D8ELEStr/F0zV9iHIuC69c3ZfC/NE0arudfCHWH860KdV8w8mvCw4tYHG7C9T7YBDRYn1/n6bMIdV8XUPflxZsm1PadOX/YcOCcUHfkZfWkoURMrxfqvszMOQH1cw27honC8bUzRV4ixmXucrmc50Xr/pMVQ8xRz52U1nLUM9c80+Zrm5jEcl5wWifhfYli4y/h4VpOGY+/VkD9mlD3NV4iprVGXesPos+vlR/76a9c/9Ct3MqtfCHlNqn0npWf+u//bgy7RnsPP1iK4slRUBC0JtRdSvle7KCj0PBCqJtXOjdzioVQ90rCZM/QKSZqmDqHCQtMbjJgBUNsYcQwhHoUo1wKdXPACPeFHj7Z69Z4sQMNKomOqV/jJQqoRwxR4Db+vs5L+4Nd4SGYrgh1ExZ1V2iZ2MSPbK9gui7UvZY4tb9t4HlJ8P7zEl4uTZISqGmhnMEQRbBjibwcAi9xZ7NeB62tiUsMa7w4TK1Ra5N7EVMfRHvjzzmI8ccJnwGEOLlgbYPh7f1IXF69aE9bZ2p1oK1KqJhN+0U767ItvdXVUqW+M21fw/DEcDtpnrLniQJvx7HDbIyn7xjJ6B1RbTOV65H7PBGwcRNRhE/e7UwdGIbR1cexc5j+Oz+y96ANPkBf6TGY1oS6L+weGkV5G5pWif4SBW1jfxPFYaPAbZzcO4b7vg2xPArdx4E56/+0GQRYQWguMaCtviI3AbkWAxYbDriLLQfip7p+V0r0x1cLdQdMbf6zsWOTSbdShtvqA4fhCi9xY4nRHsSaULevr2Gw9YVQd4V4npchYIqC0JEX3Wa98eIbuOQFgRdcxFRFrg0vVhDatQnrvET/if6yFOq+3kde9JeAaZ2X85iS8mJyoSUvHsPSXy6LwK9tZmHraYUXW59DPddZomZbcTVrFOuv0/3la/FhT9ygI+6WGEvEEDFihZdLmDhgStpmw0sfMDkMZD58xtbGK5i6gfDP/Cs/evEzt3Irt/LFlduk0ntWfu1vfQ/p0AI1Y5mcbRFEra2w8Ep9GwQ5d2FQ2QML4WErIDiAsDVP6UUc2QhzlyXHtW53ZoIY8Q6+bIOI6HVMXpg7iidv4Vd4qPaDx+SXjm/NZJkIc5PB5AU6ByoiiK1JC17uAobdCoa0dvwMpg6RF79D1gByQqmb0OaIYUdYCEJ7YVURyIwYvNjrUugxilrboLUBAiYvah1tbaO2RorB83JH5GxpgMfECGKVxVYvYVqrW0z3Cwxe5DpiEmH7gMmJlCbHyx0RNuR5WfiL8S9iWuXlrFA3REhVX/6QNi158f6CICq6FFC3SfAIxt5MUOyR8Vhf6pHj74qiDiArzh5prHVi4B1NdfCdwfguTu21OTA+xeR2AdoEW4sbDmwDLx0TTm2MirGcNz7V1jb3AI5oq4k2icora6XNJBNHWu+KM+vn2+ts8gfmKNzN6PvsjhPrZJW06YOHvRPifvPhI+4fnmudSFY8KaY/+I1P8T/5I79Wj3P9V9oIcvUeCYy2Poq4PJQwgz03gcTLiWK3SoCXT9wHeH+JQt2bwJOIwrf6nfpTKfckfUy75GWR68SiHWQxWRHeKGgLAA9mkMgFQ7Q1j8n3NxsmRKFhh4n8609diMWEpZhyFIRe1Nljuoe37DtYTLyC4bL/1Ne3Sv2+vCajZQe4OIaQJwiGVu8CLyLU7TE5ngA8WAzsH4QwlrxscZkXER9vn78vr9ZpWeMlisBfxIDCg8FwB+9DOyx5WW524f3lslC3n2zbAs7WEPKCBS8BkwhAp2B7cJjuDSbxl6WwfRdsy+Y2Ww62x507fhd4qTv/GR52VzAsRa1T4Eljb7tvDRNjeyWvXorAJ48ByfGi0g0W0+4Cph4ImERPzGPyvOwMJgYvdsd1GxCU3Ke7yIvHdE/e1mIZRsav/I3vXvjErdzKrXyR5aap9J6Vv/9/+3XR6GB58nBE0a+AiCtPgBHpZcyQ9+3veV34cWYRsRbxZMIExh0RMotAt4qQSvLVxPaa8HATbuxyEaosgoAqVrllFUsWwcwdCB2RtAnS50kH2IQcdUtwKxwsgoMi+GwxZbATt5yYsUUTtZ6A8p66/D4CmFC0I5jq+/WCSTCKUDdVTBtW3YgiAF10MEQoWzEB9yznP6Bp4EwFZzKioSp+2TDo+/5F1JpFCLWHiCDOYNwV0d6ZZPCLBS+ELTWh1GR4GckIqBcMm6J9k4rt3BUMdwXDDNUZEbs6oSUqaksJCQ9F8JlhxWAZmRsvE8sKiA3JoHoqXPQkSWiGPsmmsvMYVa2uLYnAZdXbABXx1yUvO1axcbnn23KNyMuD8Res8BIx3SkGZscLg7HtDC9ZBrFboIqPZxA2RqhbJgNLnXLVIOqKEKuK9qZiz/dU7hOKGCtkcKRi/crLHUTgfA62pRjUf4itKK9MIWxItMXGwkNHhG0VHy+8sNjWWCYxJPGXNosdUfUfETImqNjqRBkjMWaesEWHZ5owEeMtj9iiw6HUP+VT0RiTiaVPccKOO7xBj0yE72LCHRKYGXMCfpNPZTejhJyA77Icv+cku17WGCCzRSqgriLxMLa2Q5J4x00bS3J4k2WXooO7GcAewMDAQ9FFoiRPoXURxVD0lbYb0aLLZWLoNHWgosXF0M8n9OX7KWX0HYrINmOaCAzCkMS3GIyvfHQok1MZOSdstidsdyfs7o54erwHAci5A3MGEWN3v8ef+gNv8fu/vsf/6f/9NfzHv/IGx1n3m+O6ilXrqpiid8AJdZcJJlEp0kkoPY5iNfqZJgzel88z2oqfLdqGA9C4iiJeXAaYKgovwshU+x8VgK7isEQYksSVkYFTmVxQsX61bxHVlQ0FOohY+Aiuel7qH4lFR0RFrDsw+q5cr/zLIBErRxO53hY9qCrOz8BU/Ee1btR/ROOkCQvfoYmNj3oficpx6fdVrF9iv1xDNyCgGue6IhBNLiZ0BNcHZ70n5XontAn3qQpEJ+w4V41D5aWrmEpsZsZU/Ek3GBghDy36Mv6cuGG4K7FXhLrbxhBY8EIl1xFMKhCtvPRgdB3V/uvE3rYmiMj1tsQAzSu25VwjtQ09tA/dosVmER4mbEiFh+W+WYx1EwXTnyQ0IXoRR268RLHxvvCgGBjy2uuu9JmRl8nwMgd/UVvbVltrmISrIsoNOFtTDFRi9wwEXkr/UzD1RdT6oWD2Qt3iL11qtnXk9mCk+jyZDTqQDS9tQw8RhddYLXGzK7zegTAUXlQ832KYIHpmqbTR+rzwQpWXE0uulEyfOhReHrhpgdncaASQTR4xltzoruSjdlOSnsV/dFW2YtBNRZQXvaYKz58Al+tkcBEfLyLwV3iJYuNdsDW1rTvjLwiYOhRbM7wwuOTRgoEMph0IffAX6UfKRDwBf///+uv4yf/mD+FWvrhyTZ7gVt7fcptUes/KfJKwnMogc65JZ9tZ5WTqGVRfR1gTftS/NPFkKudvwsNPrEthpdN6ggpziwiiDv7l6Y9/unoHL57coT1RSmWL4cwleUJ76ndAE9DsIAmVCghyOV/EoHU9h4paD2irD3Ry6egwddhXTLJbhX1yf8dtGXAUT9YnYuqIiVAx7c1xKw67Rdt96TwvTchxQHuSmFLj5RR4UZFFxaRC3SrsqE871zBsVzCMJZFNhQcGmtg4qCbmyss529Ll7VXkmhoPej1JEJvtqljlc8XgedFVJ+d4UfFlew2d6NGEUMUpLS8ZulCfaoK0igFe9LTykoDn7Hl5V3mRv01XeOnh/cXysiFZ4TJCn1RKUWH7DajubqaYLC/bgGGDtvqNCFWoe4KJAYYXWbUo4q2gJrqrRXmqotVoArOAiNPvMdcVRZkYe0x1t6dMjGdM0F3FmIA9zegy4YEHMAHPyGViC6U+Y0+zTICQrIKaEuPD3Nc2JxQBdWoionIPgCiMOpd/lxfu67fFL07m80QiEp1zeUuAZMXSUN/pIDDLP/08ldNlbt9XoW6i8ree3fm7VPqCsjoqpbl+dnd3xO7uiE+++xE4JzAn+6YQfuqHnvFTP/SM/+n/48fxzX/ypuKwZb3eYi/VWlutdE6rRF+ptLYn39cdgYSTHsBz3YBAeJmrz8P5SxMaXveXrtynI8sgqW04kKvQvexG2Qb/W172J52rtz6Sij92DDzmhqED6i5dbZAoGER8vAlCq/+cE0/uqPV/jDLIhLxeWjGUgfZMTZRXi2L0GKhu862i1hVziQFdmfTRuNeD8VwmMISnZh2KKfLi6/CYCDjmJtTdQYS62yYKLRZHXhSTFRqWVR2GF8jk7iHwMpoY0KM9GEmQieHGC1Yw0IKXY3kgov1NLhMCbbOLXPubncmNIoal2LhfpaJ9JjFMHykYjhBBaJ1UiLxQwFQxlDZHTCeHicouwljlZcdmswosBaAX/gKxNc2/lBe7uYVM1hte0OKKjdW2j619KMlqnMzetjKyq+uDxDVedoGXDVrOSia/05x0KJg0F1JR+BP8hh1yPr9JyRqGFhMUk/CkE3yaJxzhReCbxptg8uL8ftOSLZb9PpmxhPJiBdUH6IYGnhfNVvU+nOPlnDaXjmlu5VZu5csvt9ff3rPyo3/sa65+TrRXOxgK9eXvyyfxc9Cl+fxC3eH8V76vnU8UQo3tbFonS0wLkcIwQromdhxLHGBdw3SNF6zUL/HCkAkRLbTSSX+/hboXIqRnjp8TS44YMoyOwEohWmr5XBMJvSakuhQh9eWavygGra8Jdb+Wl2jvV3kJH+jCCc6d/5ytKQatz3g9L6/1l4F9o7twhnOvmGmJQt0dCODzMUBXb7Tze+2stbL04cuRLWqcHYOxRdHsMQh1d6VBeuvl81zr85pQt3k3Yc4J+71/uWCePFN97736uPcvtP6Br+1dfSmu7EEtN0DQn2pL7OrX/CcWwlIbKJZ4OPK2EOpe+MtlXiOm6C8ThDPlxq/lKgMrGxMW1r0s1wRu4/eXcezyFZoSl8XAVR+LS72db3nNiCmWa7wsYvEL49i580dMIzwvffhW5OUl5Rovyz6SwvHX8aL3zOmWGZ5W+8MrvFzbKOV6H/kyf4nns5gsL134Fq2dZHGNy/lW5OXzC3Wvn1950McJl0ThY1n2x75cE+pe9sHXMKzfMxvXACxsy+VCr+Tlswh1fyOMaW7lVm7lyyu3SaX3rPxX/3u/E8kIdevTMS0JhNkI2lJ5KmM7UR14MxigJj6pHcShfK4lNv74uckELdl0tsCa+OtyEGsHM4rJYlhi8lonY8B0DG2ux3kdw7nJBC1TfT6nGNjdd31tRksPz0sHWmCKGNyEyAov+3K4DWb8QHsNg63PV3g5wvNCAeO6rXkMrk6Bl3INwVAGN+x5ofB5LTER0rLkJfJ2mZcU2rzmLxFTtK1D5IU+Hy+ngOlozg3Iii6LYYlpyYvDREHUGp4XQrODc7xcm0yImLZlmbyWDbxQdwoYGEYkF8BIubxq256+Zlr3H40Bz8Y/9JUt30bP0wFx4iomzNFffP1xIjfByOwnHKeZMM2tvV0nrx/r5BMRMBr9I4BwHFM9l6x4smLihE/e3rs2TmNvjgPDcHL1x7cPzpb+xE98ChgM08IWvVB35JXhY3UmLOKaFbUGmQFa+dxyxzhfz6E+Bp6OwV8O2fvLNrS5C3GNsL77mraZAyZGWWlheGv3g6EvBF7CEDGfFrboJxZgJhYAWRXADoPHZK/RMGSHYYRMGDfMeilZzWMxrPvPZV7ibopH9rxsOPKyFgPOY8oEFxPWeLGxl0B1VknrkZcpYFjaWpx88xiGUL/GS4a3rQx5RdPyMqPxJD8DBooYLmNay40spg28bUWM0k7PU+QlYhJbK+cLcyEEAgdeom1FTGv+AtiJq6XPX+KFQz1HTJDX5RsPqCssK4bAC1/BsMyN1v1Li12pDVznReQfztsaB0yJyPg6FraluZHH4OsxZ435Xiw0EP7A/+B3rR67lVu5lS++3CaV3rPyj37xe/hkP9dB30jAO8q1M5nBeAsvaPsWk+sM3hVBW+349sg4meTsBOBoOptnZBzM8Uea8Uxzre8p45kybIf/SG0wMhPjHfnBySPMxAIx3plOfQLwFnPFMENEeG2n/BgwPSEbTPLqmS4/RqkfDKZHzNgbTM8045km8/nZYRjBrs6E8hqgx6QTGKfAy7TCy6cYV3nR+jP8QPoEOCHhd+AlL5gdpkeD6YSMJ8cL8EQew5PhZSQ4XsbCyzlb4xVbeyqvOmkbDvCJzB7e1t5hxt5geAq8HGjGE7VneicwHs3AN5c220kosbXGy2PkhcYVf7G2Nrv6HuwmZQ4ceGG/U9kTzTgETE+Wl+A/85ptmQHZkYBHw8up2I7F9C7Y2iMmN4nyhOwmMfeGF2bGE/zg5hFzwDQ5ng4B01Rssyb9NLsJwGOJOc6/0IS5MxgHgymxTHDY4++CUPdzsT0CAay6XY2nT2lyPEhca3UmHzMeKeOJ2rPWA7KPYyQD5zZ5SPjkmFoMYOA7x+Qmlp73fRXonmbCd/cdplLPDHz7BLS3ARiHY4dplokmZlntZF9ju78/wJbUze74NA2uvruXNF9t6ZvfegP7XD1qIon2T6vraydxYqnWWeKMHdzMxlbBwp1ORKkt2vv+LvoLfFw7EuPJ9D8zAc/R583E0hMY75ztMd7RFGLA5GzrMcS1J2Q3QHvmtoKQmfE2xIR35P3lMcS1A/n6SOz61AzgGS0Wn+Bj85449E9wGCZkvDVC9xrHHAb4Sf2nUqcyuHwbYvcjTTg6//E8HcEO01TimJZc7lvlhdjFuUPoYycwPo28mPpLePkUufIifezscp138DFhj+wwnEjym2prAJ7RVhA+l1isbX4q963lQtIvW16s7WXysZoLL/MKL4o55m+PmJyt7TG7vOAAdrnOWCbcW6z2tvZE2eUFBxJ/sbxYW5uDP63aGrcJ9syMT0Of+haT40UweV4Ozl/gMM3lGhrnnoldTHgOOWiMAXOwrVw+nw0vj4YX6X/YY6D5oq09Y3aYDiGvPgVeTgCezWTME/m8OvISc9QMeF6Kv3n/8ZjeLngZg635uBb70BN8TjoB2IdJUi2ZGZ+eMn7pr/7m4tit/FYWRqYfvH/24ditfPZy01R6z8p/8R/8OmYAbwFsWQJ4TrIdtujcSP1THuuOaTkBn/CEHWT3CU7AW57qjk2cgCfORSRYhI+fICKLW5SnpmCMmLFFwp5Ev2GECCMfkTFREefkDidiEd0txwEZsH2CSXZTgewo9GnBMIExE/AJM3aQd9EzAW95Ljo3ABdMOyQkJsHMM7YQoWMm4B1nbFDEAimVurw/PgN1oLyDJBmZRLBwx4QDZczEmDBiywknUkyMO06YSSYsPi0YuqLf8pZzeV+dAFDhRQY5lpdReSr3HczgK7yAgMeCaQMRsnxkEafeEOOZJENX0cc9ZXl6y3LfD2iYdgWTPkXccZHPJZko2nIq9kPGtoSXT8s9O2CWe1B5YdfmxMqTYiAgAY88Y4OMTRGgfgQwMGODJtg9MmMDxp642Jq0cU9zeSItGFQ7RDHMxVamch8HJGSiYksyCFZb27Ek/bPyUoR/hdex7qBm/Ud5eccTNkii7UFUeKFqX49Z9FUUg/KyKbwwxF+2nHBEw3RXRGiz8R9dhfOW57oT3ATC2+KPz2BMhpfnck/0vme1vcCL1gdOQALe8Vx2nkvYgPAIWT3QG15OhheUJHnLCQfKMgnDxeehtiU8cfH5mWdskPCsPHIW/RSakIlx5BkdEg40YSbGWz4VrRGdHB4xIOEBA0CEPc/oTZx7V3kSf3niCQMS7tChI8IzM3oIpkPKOOSMI2UR7C7+rbzcI+FEsnqoB+GZZollBdMxxIR7dDKhUYRc7wCcMuE7h4T7nnHMwMiEbx0S3vSMNwMjc8K7pw02mxmHiZA54bt7wl3PYGLMSPjWifHQAW86xq4jPO17DH1G32XMuVg0A12X8dEHRzdp1A9lg/CSX40nUbrQAePdwx4yicRgBv7ar75x/Ut8TWQIL13o8fY0W4qsRmJ5ykUJh3Lfm4YJI5U6IRWtNkkE5wQ85YwTETYsrzoeWSZbpT8RWxuLrU0QkX6NAT2o8qY7Wo5M+HQGdkkmeUUEXvzpqfD4KUZsucNU4uT3EPsX9RcCiGp/tCsTbe+KzxNkAuVd8ZUeMvF1ZPGXDUgwQSbcKoY0Y+KMbdFYOhJjwlRj8an0W1tmHKGT+lJ/olmE7svntf/6BCN2LOsyMkHqK/3Ltoj2vivnk1UQwLsSAwiMMck9H8AYGDglxinPGEli+UjiO+o/E+Q+j8xV4PpIhIlz3VH2BMLEsuvUU+FR7qvEeuFFMI3UeLkrmk2ZIJjRdjRTXrYQAfe3GdhSWUFT+1C5/pgYo/LCJPU8V1sTTDKZtmWx1kP5mwjCpyrUvGWZsDmZWPxUNiT4Xtkw4FBsTXnKQOOp8JJNn7llEZNWnlPxLeUlgTGZPrWvGKbiPylgSJghE2O6SUoC4VB4Uc29qWJiPFHhpeQFe8wYjW1pbqR1Kvf5E5Q+mEteEXlhuWe55FLa/yQAU+Lax1pejiQYYqwGCIfEmHiu/dcRMqGofeSJUGPCnhTDhLuSV1hMTCz9T4kJHajkBYJhwyKIrTkr1RyVsdWJKYOpB2FKbHKfUi+2tim8PJdJz23hZU8iur0DySproGw8AzxTxqn4x44TngMvU41rU71HlZeSe2nOuik5K5uYkmufWnhhSK5k4qDydCy2OifGk/EfJpSHbnPZcAQ4gIrtyWpELrHsWH7/u//Br+Of/m/9MG7lVm7lyy+3SaX3rMxTe3JygFn2W56a1yW1JE9CdPkqSh1UtEKorRa4R19fiRnB+EqZcNCdoLh8Xwaa7aWUqTwtnUynaleRzOWJ8qbsOpZJOkbOwK68XHKAedeb2goji0lXWFgMWj+CccKMLbr6ytjIjA+QQFQwMJcOlDFCd7SzGNqT9Lk8MZ5M/bGIAHelk36ijF2WbXBz6UQzowhwC6a67PeFvBChCg0fISuUHrh3mHQwozvblHmsylvkpT4dLfUO5VXCwsuWU+VlTxkpp/KanvJgeeEFprpKZJWXjBHCs2KYMOOjMsmotqVFdx9RWxvBGGleYIq21ZddWnR1z33ZCSqTJJayOxzKBIU83attJm7L6AMvbHjZVAwZE4A3hhdJ+GRQeOLCe+Cl+Q9jCpje0VxXh6j/3OXGyzMyEhteuPBClhff5jnUQWVJa+WFZVvrgmHGjA1LV3Iytmt5KfMQktxTewYtvLTVPMqT7o6YV9o0ofmbvpYzuTbPGJjkvkOW2E8mBkxovNk4pjzJaj8GeFvjlsYUJOHxRLned7W1u5zqAEnEzj0m5U1jwpBFkFhXOEmiDsxMeDdSXTGRQXg7Scz9aidrdI6nHodRHIZBeJ7a5xmExxk45YTf1cl0zTh1OI1Nbtk+l1s+BG5/4Po7hUPyy8yLL18p5z/P9nqkr55ynYjK9VOo9bqOJYm/nIjrJUZijNTW02l9U+Kg8vImyySkrljqWIR1M0Q0X+1X/Un1uSTuzc4298hIhCoSL+LRhDvuan+Teca2pF4nLv1X8fkTzGtfJQacTGwUW5tqLBZ/msqkScFAGX3uyqu5ZUWRuWc2NmvstnFsb+KkYurK4F79JYPwpsTiI3THLyk6aeIwUPMfqbdrqP8MTA0TZnzAvYiKk0wg3TOVV3VlVcloeNkj12soptlgeqa5iLBHXpLhJdeYceRyzyovZrVcxZQrphMYJ8OL8vTAfetfiNFluU/Ki/ZhilHjTC79kcYtxRR56SETVS12e15sORk7UEyHBYYlL1s2/gLGmzJBN5VYumWZLI6YtM2jwfRs/CWv8LIvvOw4tfyNMz5QXiAbgFheZsPLCRlHsrFaMOlOnYrpoUz4TQRMxV86w4veBY0JFtPTCqYEeaVa8gLJK4YS2w+QCZd7bjlrZZIE0+QwcH2VWuuniKk8oK22Fnh5hOyiR4YX5X6uGJptPRveaz4HmdBn9SfmOvFzLLnLDs3Waj6mvJgc9Yhccyfl6USyklVjgvhL4QXCy0fap0Ie6q6VebytMLmVW/ntUm6vv71n5Sd/Jgp168BEAnMX6joE8K8r2N+DbgEt3+W+LkZ5uSyEIsmfPw5TlhhIxogBQ3tn/Tom+644sBThjaKHsU3x3fWI4bpQ92VeIoYcMMg6kVYnyJbWtiyFTj2K2HUvBKHptbx7TPq7XX59CVMsBFrwck2oO54t2m68Xr8QjH4ZL5cwvZaXaGvXhFSj+HjkYSlC6jHo7w2D12KYcZ2XrqwK+P+19yZBllxXmt5/3P2NMeacmMHETHAqgFORBAcg2WrJqk2LJksLadtFM2mtovVOpo2MrYUWWrG1l1kLLbOWSSaTNRMEp2JXkQCqWEXMQBIzcgIykJkR8Sb3o8Wdj/t7L14iEpGIOB8tmLjv+XP338+d/Pr1/wYNs5H7yzn9RQGZTjXIazC0n4R6LnPBsZ+neo1Rd7iyBLP0eYxUPBaftGu1gNhelBf5e3mNhtZPyfsd+YzCjduPGbUFBuKzLssMm9vt5NtFjbofPrqV/l7WCSJ3zjPqlv9Kk2tZfgioGUBn7qYz2mbWOTT5IcW0ZHnh2XV93WiYEw0ToSGraUhN4QlUM4ieV29JDfIcC1GedmraG7/CNKsNlZqAukaJ1CQ1zDPCr8dF1pOphibfnVhTk3myzGvzhlTnxUXW7VLTvCNM86KbVnfnNQ31OEnq7YtsI1NkGzmvbzStPO40LplIN7Foma+1kTVNKXP7RkIT2R/NymszNdH8OkB+P6/PKpF9VqlB1nN+8YvYd3ROXGr94jlxaeKeP1ejbkW5WdBBpQPGw//8JHJh1B0PmGRoMNtDOqCSNPrUZOQ422jYdZinD+qknaIxhJmyMBqG+H0uNDSZ8joj4qAh1SSNHGWDmgsNTcTfSUPosTAZjWdfALCv76SapFH3vLjUzccbVsDC9LiQ0DDXqFvEJYOMi7zxqGtI0juIi7xRyLg+UCW3nxUXaXI9AURcZmuYFpdYk4yLNKesraJSy2uycyfylvC5kobQ0nRU5rWmuMSmos1xCWmTb9I4NeWtVEMaL1nm26IX3XaDQpGGOC3jPLYzF5wG91qVPxHZv47KC+y1aLsbcR8GTtJ+e5vucHqO8hDbXCbGw8Nk5/Xth5UZJPKvqmVATuy3NDNkAgyKOuXG0Nv91hl1X97oJ1LGwqi73fHzCwEAW1f7yTk+fteVJL0To+6mG7zYl0qawjuj7qa6Or6xD3krrQPkv3KgSxp1y/LSiX4L1OsAQvNNa6xJpkdCA6QmF6cp9Vj9xluYjYs0CU3SqDtriEvyUELERZqPm3MK52heUkzTUkMF2cZK094074yEBmkILdsXCE0MJHVAzUCd0gUImjQ0PTRINaRxmWcKL9tINyPaMc8QWuatJqN7Rig/Mg5NcZFxqMclLT9ykHR+XBYz6pZxykT5aNIky3zdFD5Ny/Iiz1mmZd/I+byFdJOmdLGYuE+6Mw2LmVzL/lrBsk9Z73dLo+4mTdPqtcxeFW9G3qCpaXA61ZSmpfm4JGsTPv8v1Kj7k4QRZgnvp7/mHKYsig4qHTBe/U8f4OogNRndQmqeHKfZpuNG2Uwdj4wbwWmHE2knYECpkfeAUsPBIYxZX9xYxmlQ2ugTpZ2zCml6AmOWGRt0biE1Tt1C6c+ZwfbVpHCOldBUivQ2pSaKxvMiNoCuaucYayISAxiU3syMa3Ex1yTVlMZliCpp5MdUJXGoRFzc1PRYk4xLrKG0x0jPOaQzSldPk9tPwElcSjA2RVy2USadp2EcF3avFYVzlnEbZKk5rItLvH0cBxZxmB8X1MqLzGvbtfISNIHdObPXJOPipqb7uGRNcYkMbW3+jTUNo4GlHJTExbxik5pcb9O8uIS0u45lpGEC9hqM5rS8bGXlzDpgjLT8VCTLNCevacl0BaCIPnCvIzgKtoNIcSeVEXoSDOvXE9Jdvwd3w2ZfziJ3DOM559IdkZ4QEoPRDOkT8C7y5Al1F+nTZPNKa6CdudlJNq+xM74ON7hFODwIjJVuiTwzwzLMwKSiZGCqXZSYTPJoxStGFa0gRwCK1tjvdXn9Gor2xJ/D796fbdTdNlcpiKC6YfoWUpNe83pVetPpbowdsVH3FqVlvlY3I21/TL0UzXuhdMCCkNZj7hXR+OYtrkNkHcB2/7GGAUWG0GzqkfjBxnZUV7t6cCzKS6xhbI8RDybIeky2J3F5GpBpI+PyFRvbl7bMT40Lw7c34XtONG1RmdYBlJopD2Q9RuZVpXDTSrPjQpzUczIurs2NNcRxAqev1pp6LH1QsWlfZQ+aJmlcRJzGMq9RGicITeZVpiguIi37Z5WIi9lHGpcxqlrcpsWlSZMpL2WiIdbk2kwHk4xL2m9wBuxxeUnaYJH3wHWz/vj1w7jv49sbkdcGqGpxGS8QlyE4eWg2JNlHTTXV8hohrQOEJlmeTB0w8YOeTfXaUGhw7X7QwOn3xImmbSqTdl/2uydCEwO1vCbr5qGMC6V9ny2aJHmtqbzIuMi8Fht7xzAYm6MSL//qYu07RVH2BvVUOmA8f+aceUeaGS2wN8zd4hIt2KVYCd7QFkCSzm16wJU1sCUUlGHIplNcMKFLBUZs3u8vYBprkDHdbYEwsKa7JTNacObJjNIaLU5gjIe3rGmu8adge44Zus7Hh42nQAk2767b9BCV1WjOufKaJuGmx2uuzApFREEDCC3KMWbjF+NmNMRpd91KNr83RsNGg9NUec2Zvxl1mjrIjV+MPeeW88CxcdmiMonLxGp0mrgWF7JxMefXshrMoIx53SHzcTJxHPq4sDWrrZK4OE2V1VDZc3CaWjBeEeYcjPGw0QQUYAwpjcsAZaLBxc2ZI2eJpgoFMmREPq+1QMhs3nI36CzjgsrnNZP30rw28XExec15nwztOXZsHIbWELoAoSLCtjWjlXEZIS0/DCQanf+Y09RChpxyH4cWjLGqu8nM7XUzNzjmOrv8HJcXp6EFY1ds8p6LizGG30aFlvV2MAOvsPuvbF6r0IIxITV+FjavcT0uIW3yakGZz2ttEIgKDK1pfg47KMTGGyW3ZRJWYxFdtzguoTwZf5hJpGnsn+qaLm/oiJq0u8FwnithcMN0cLso7CxMwxjmiWoOGKNqmEEi1wUvALsgQHiSXpF5DYIJqKwJLsGYWDPMzKQsSo+sLwUjnulgzqpCMLvPwGAGOkTICGixe6UQPl0B6BfGoyvPAGbGaEIgCpondrCobX/fzhmtHCiyCpOSMRqTzWHmeDlVWF4aYzgsMJlkKIoSvaJCVeWoKkaWVSirHK3WBHlWYjIpsLR6DXmrBOUVynGOZ871k/alyag7/sSVj2FUjzEB12x5LGA0ufLTRgYisyKeiZEZqKs4PFmfkPH3MHW3ue5gE7MWjOcIiDGxdTUAVFT5vNZFZvMa2/ydo4TxPinAfgGDga0DBr78pHWzSztvFafBlxfYOsZ6Bw1seSSYBQ1KNnV1BmM0jMr4kuTsnuCzLz+VzY+uDihg/GEqWxe3rAn8tjWBH9tjbLsyj1hDFtUJrk5xmsL+iQhbVlPHxsXV7aFfwNbtEElcMlhPKzY3/4W9bm6btvO8IUaJCQrO0EWexMUsImDqsQJmRTJXzxUc+hWuPRojjZOLi6vX2iDklPl+hPMcdPWkK/OuriavKdIQaWzB+NaNqPJ5zdVdIU45Jr7eA0YUjmGMycuk/TFxYX/OEHExbWKIg6mLM/971+8Y2XQFtn0tEyfjWWXqWafJPbgxC0WYOm3sy0uGDjKUxBhEfY+SyLf729YgfdvnrTLJa3Fc3O9jTW1kiM36nSaXt0qYhSQGTiMHTZNEE/v+HPu4mDjlIIyj8tOycanYGeUbDZXtGw2oNH6ZdvuRKD+wecXltcL2KbdFeXFxcf23YRQX1x80dQL8NRzbuLiFKSZRn3WMEJfC12Ou3+v6BWzb+cpqCGU+1jSxecPVxa7dj+PCRL68tEAoiDC0cXH1oMsXiDQVtg4I5cnGxeZNV35y2w+dJJqAyh7TzYIw+dNcwz+eOYfP/7NboCjK3qODSgeMyq3LSs7sOE4H82SQeCWL3GyEYNQ9gVvpyJhdus7Isn1aXyEyuIWbfRAmslaUPtF1prwEO72YYFdZgTdyHNkOZIEwXb1+jtXMNEvNXHqz8RKmI+GMiCuYjkYLBCZGZTsAQYOYNUXuaY7Bn3PUeQoacn9OmTOktXGJDTWNEePsuJgbqBAHZjYrL5G7Qa0Azs0NGepTs0cNcZGanAmp05DZlZNMHCqUdrUOJvckHsk5TsQ5x5rcf2fR9xWX6Nq4OM1LUd6Kr4HRFJ6eTtNURd8PUKHLwVR3DLNKkYvbBGaVrKCRg29UQ1ya8mJpO+ZBQ4U25yFOYMCu3lTF1wzO8Dk8FyyJ4zlPPi5FdMM0QoWcozQxuuYOHIywKlt8znFcjMbpcRmDbQcv5LURgL6NS4nUdNSkK/e+gNVQj0sctyFKv4KO0+TyqxuUiV8bcPWFS+cIs5TSqfn1t92afk+IVylLX0MjMt/Hs2+m7SP9Pt0+tzFr/D2ZhnliB5OIzKsKOYXviYAsC2m3Ko4bWCoAtKLtWwUjyxib1nXaDESS11RVOUaj+OU585kLVJYz2vkYWW7zQ8bIOhPwPEMWv7f031AXh/QIFUomb84/AQNc+TQD4XVBCtPwXbqM8zJCXnO48tK2V9zltXZcXsDoMvtrFNfFrg4oRR1QivKTIbSJTkOcpgxYsideIq0nS4Qyh8xqiq6xa2NdXezrZruKlpux1LVG905TvJjFKNqnK19NdXGcrpj8YhZm5o5ddc7Xc6FfUALJNUni4uv+NE7bKP2gTkVmAKBT2Xl49pzbYdKHWSwj0mAGo+I4peb8Mi5GYzDqdrM+lmxdbOKQaqhqmqok3RSXgjMfl6GNS6wpntkS5yWm0H7EcbLZwmtgztCNrqv3sSHhTzPlnKXGpPzAxKVvzZN9+YlW5B2DkbEdvhftvqy7m9KuzUzjAr8a5wQAMbzGElGf0l13mp7XXFxavsybGXV91+ZaTb0o3RSXSmiIFxkZwTzkymz+H4PBHBZ+MHExq9DtNC/V+7Ts417CDBx1kcalY/NaiEvcX6trkHGJ+6ymvxceio1tv7zguF5Ly/xYnHMp0twQl7Z9YGwGi+txcas/u7g04e9pFEXZc/T1twPG/d88lqT9bCR382DTzmzP3QRE3X/x39HNvf1B4omBJjPKNNuR+F42EdLrQRpCy9+H/ZvtMn9H0nwUN5MgTssOmfSYkeatixp1Sw3SoLBuOD07LlJDMugCN6AQ0m5WR9MxpmtIkec8jlanAerXpIjOOjkep3krnlIuNcljpudbN+qeZ0Y5z9S6Et9Lg9vc5jUnYVpcgqbZ3gsEMkan0WnPM7afGxeZt6aYjYf9U6LB/Xf8+kL8XZNPTgyhyah7dlzk/uplXGpIr4r8vR+44uj3UZ1gBizCb5LBNnv8xEC94fRlp7fNs5vXkSgvchGbmlH3JC0/0qg79/9t0qOSUEaHyAjIonqnqjJsbrfScxiltQJl4jpudZP0l06ma/LU854sQc3E5WNWXpN1Qoa6qXUm8poMlTwjWealgXpblhfeWfslNcSvmUgNc426pxzDIa/7PKPu1hwz5XCcEJc4fT1G3ZnQKJkXl5qBeq0unq1JxqXJzyXWVIBmmlpfT1zqZvzT2shmTZK6L1WqQZ5TPldTHalBpmVdK/PWvH6FjLv0DpKapH9eU16TzI9LehbynOcZ20/rs07La2R/5NqcXGiScakdgxr6xSItz2nRxWWm7X9avSbb1J0aqMvXmpuOOQt5T6PceFw/dj/9KbuDDiodMD73z06iFRl1F8j8ky0gDMCkZnvSOBD2X06eiIXOWdopiM0ugeaVNKbdwAIN5q9cQXaa4hvC0CGgoCkkraIZGqhuTlnF2yPcmMca43MgoakUaamhZqpY6zgRwNIEUTbIUlOVpGVc5Mp/jZqik5A3dHWj7lQTgRviEjKbH+yLfGfYals8LmjUUO+Uy7xVCU3z4oIkLrkvL05zkyHqbE21uDCSdC40SUXyHKUGaUJqNMRxQT2vTdHgTqAel5BOfzdFk/i+Xubr5xzflHY5TwbHCibzJDg6326UHlNlBoWieq5vZ1q4w7hXcFwW9U+P2Wh3T7Pd9r5e4XDOMV1h1I2oww0gLBvt0+ZVKAeBrRG3YVQR7NwlAOY1uHYe0kRAm4BQ+xDG/hDGg6pdpCXm6qZZzc0bdY/SQSYSA19/em8tGaj63mc2ElHzjLplnMOZ2jxOTmFIS1N4aQjty3y86lCUjo8N1MuLPEdZj7Wjtg+wRt2cBla2R1VNU90QOtbgF35gl56iydd7aZsry8tQaJLtkTSElu1XfG7TNMSeNk53qiloMK95pprQoCFGLpog020m0b4sHpdSpGP/JDfrMdHAUkM4krwGQH2wQuY1ec7z4iLLTyXiUonyk54jUk0Ir+SmmmRc0nR9MYv0nNrI5sRF9vcwUxPbMh/POpVxoWnpqMwvoilHmrcKkZbG91UtXY9LnNd8/40oKh/hnKWm+FynaZJ5TV7XNmcz857MW/W4cEO9lsbFzaaaFheZt2Q9Jo26pSm8JG8RvvQXatStKDcLOqh0wHj51xcxHIRx2QnMe9WucalgpuLGDZnrhPsGElGDyfXOmlw9aiI6CWOqkkZYPvFwx/CDG/aVLZduEQHJ7ZdptN05T1AlnezKaYg0VUKT+8xpIjStTBYa0JHV4DXCTMOOjxlrdLeD/iabKBloysT3fn9JXLgxLuH8Ug3uM5fOYTxi3DkPRSdhLNLz4mK8AOK4ZEm6cnGJ4hx3QE1c0rzmOjJyYCLEJUtvOn1cYDXU45LO2Eo1ZZR2CAuhScZtAiRxLlFhQtyYt+K4pBpSTbK8DDMZl3TlMjMzaPrgl/NocOm2KD9GQxwX1PJavL84Lu6iJ2We3aqRYfAsyYsARkLTRHwvjynL/EkU+Bx1fIO1wgUeLFf8jesKt/DZybqfvbDMBR6arPuBpi5nuLXq+KfoxMBx7vhXEoiBW6qOfx0GDKxwbgbDbOZqI/PbA8AS52bgyKWRoY1ADjtwZS9bF5l5vcaml2FfXbGsFsBat/Q1WysHDncqW2qBblFhpT9CFg30rHRLFH60jbHertDKQiS6ReUjwyaIdraSOenlvlndzQ2Kttr+5Ui7S3cjYI7xf/1pFf/D03djYk/ht2+vhguEZqNueYMbx7W5vKTGw+Yz2d6EvDZy9RaJvEUU7S9eeSm9YcqR1lumHgvty9C+nlGrm/0W1KAhSvt/QjquAxjmdTS258zgUBdTXObj9gpJnUCyLvZuTeGax9+PhKYS8OcQ4iJuKiNN8YqU8TnFdYCvi6fGJdXk2lyH99xCaDPjc3J+Q/ENaaphdlyMdV2alnFxD05cXCbUlLdkXEJa1sUFnE9bqIvjNtK8qhi3L0g0ulimGqan2W8ftI1dXrMaS1Sz40JpXstFXDKR94aoEk2yvXFtxyxNMk7xoKiJS5WWl0hDoinpv8V91DQt85rx9UwHO+K06wPHGuK+jaxj6nFh3/8LZT6cM8P0w+O4JG2uPUicdnnNYX4W12NVrR8Qa3LXaLG8FravmsoLOImLzFtSk+wLFb5ursMAxmPG80+db/hWUZS9QD2VDhgvPG0qYNcBdK9sVGSaH+d/YjpGoXmpbNo92XKNjXuX3KWNB03mb3kJ9qkQGXNKk6788QnBY8V0dMItSmW/d+9tG7PW8P49ohuMWMPYaWD2+weF/cWNIGC8jIwZLFtN5DtOpT2ngqwm6x8wtntx3ztN7t33KjoGIcwKcufgXqEoEWmKvndPaGqabBy85igurkF2GjLfaeRgOu0bbK7FZWzP2mlqjosZDMvA3pjapd2MAaeh9Ncg0hTFxR0/1hBvH5vyAsZAMydzc1y68yH4NMA+P8u4uHQ8m8vEJfOG0cb8O41DS5zTiMok7Z4OllTPW2TjEAbC2HvpuOuaJ5rMpxPbe3Pn7I4xQRXFOI2L8/rKYWZWJHnPDny48uNeu5IakjoA0+OSizqgSDTZ62vLp9dUqwPSOLm4uPLjyrg75zVkOIwcX0UX72GCinP0ucCfTdZxPhuAmNBHgUcmh3E+G6BlvXm+ODmEi9kQsN5vt1YdbFJpzH2R4faqh2s0sd5UGU5WHWyhxIAqdGCe7BZs6kkiwlKVo2NNl1swRtJtNgbxfRgfmxzGRHQEsyJcwcaovGU9yHKbXuIcBQh9u/2yNdY+3C8xGJurXmTAsV6FrQmh15kgy4Dl/gijSY7hKEeGDOu9CYYTwqgk5BlwpF1hUBrD3SKHNQ5nlBOTW1oZ+7puuT82RuV+UGmMGGYC2TIGMP640cKf3j2CFy8s4V8+fBFPn11Ptm8y6k72Z/9tqot93orq4pbz2UFob1x5cnW/81SR5aciVxfDfm9ujPMor7r2ZXo9FhY0kOUn1MX1Mm/qSbZ1iNHgyqwxVw71GoPhJt25Gy+pydWlbsDClZkKla1TslQDwk2bO7dEg62LXdqVeVP+XMstyrw9Z1cvxmmycXHX1cQlaILTxC5e4fbaaQrtidmfjJPzHEw0INRzrv1y/kk7ikukoS00OePhKErex8nFpRIaXBvp6rEMzXkt9H3SunhEso2cXRd743k0abDYa+b2U7kRD6eBXPlojovzG5twlfSNYk3xOZgV+UJe9G2k/b4SmnIbl1hTLS7RMcc2Lhydr0vHA1exhhxhIChLykvon8WaQl/IahDtfujbpHFx5Uf259qJJlsnUby/ymjgoMLkPXOs8Ep6es6VNRNv6rO68gLbTx5TWuZl3pPlRcbFeUOGfnjoB/hrRnGcXZzSWMVxMcbwZsjfzXSSGkM8A3H6+Z+fx5f+c52tpCg3AzqodMCoqrR6ZvHfVS3NSZp9Y9O8/azKH1Tfpr49203DMfw27vcc0pLG7eeco9dIkWZOfyM1TD0m3NOeVBNHJzvv9ztLp3Fx3aGm7905mdNvaKSnaErT9VlbqeYFNFCzBjcY1rS9O0Yks/b9fA11TX6HdnArnQ6+eFzml58p59SkoSEuTXkrjkvZ8L3c3/Xktca4oK55qiZ3I7ODvBYPOYftzc66yHAKbVwGsA2ghQy3V32z3DKZzvxtVd+/Kpcjw8mq54c2MhBWuEAXZpUiAmGFW1j1p0xYQoHlKqQLmCfbbmDJrYDnKJBhOXKoyO1NzADmabSfsRR937cDSu6cOgDci2cZAf02o7J3HhkByy1G17rIEwGdlpnRtD1sgwjothjtnDEuMxABvYKRZ5XfngBwHn6fU+qvNA8S+fOtj7r4X357R5K/F2UndURcFy+U9yz176MKpGGfTfWYZ0r5aSrzcXmZeo3iem0G89rIusdN/fe1updEuvb76XWxT8flWZzkrLjO0tT0+7ka4NrYVENT3wULaLqe9kS2kTvWNPWcZreR9byX/h5RGuL7aeeUptP2Y2bfqCG9UL9ApinSNOOYzXGWGqhx+/Cb6f2znWgA0gG/+XFNv5dxk+fo6hSXx2Rs5/VZIdILxWGWhqhunpoXG/ZnPpsfl1np8MXUbxRF+YTR198OGA8+djxJt0TvIhctTsO4Ta2jkzQGtLhR905NDx3SSFWeY918fDYM1AYTmswoY02LGmrKjs6OjbrjuERpeTTZmWrqVMeeFe4p0SwN8rUVGZfrNurm5u/RoCGOS9VwzDTrzdckkR1/GRf5/TSj7p3GRZpaS02EulG31NR0jESD+EQaQsv97cTcXGqYpUmeVJOmeXGRcf4IqaV6R/xc7o/9v+a/KpF2PlLxk+1Z9Roh9XRqQrw4NveJjYzToBRxFhrHE2vFbX9W5PasOd4+pMuKED9DqBl1c4at7VZynJpRtygPD62lM5lkFOcZ4M6OejSw6zSIvCZfydqJUXfTMWLqRt3pOctFGRYtj/41Yv96dlpedmLUPa8Nq2nA7Lp4npmyRL6OOBGaZPmRcQHqmiTzzMblogpSQz0uabpW17shensY6RGYox6XeUbdkkWNundqoO6I1uwCUI9L9BWAulE3kObfJkX18pJeSalxvlG3jIuMs90/N2uSBuq7YdQtNclzlub8O18sw2mwQ7VioZXkeDKv1Y4xe9BSaqj1Xeb0u+XxptaTVkOwR3D7TzVcj1H3vLg08eC3j8/dRtldeB/+T9kddFDpgPHwEyfQ7oZhngIZsuiBQWy2Z/6pd2iTTgE1DJiIdBHmkAOwnXTZ+MxgEt1kANbkWphix+RCU6KBmzuDXoP9nWzc/PFiDRHe8HzKOcn9jThtLOU18x3aOC5CU/0BVBqXSmiaQGioxWVex2l2nIcsbyDTuBXIappmakD0cx+XSnyRblgfJJ0dlwlXtbwVUx/sSzuw+Q7ikkBNg7BpXNoiLvMHfRpuKKOPhkKjNBuXnfK5cWl4Ci4HLOPyBtTrgHkdWhmXCzxJHkh2IG/MxfLx4GRwmxFMeN3xJ3amksvXiUko1c2UK6rC96ibxg9EHKTRvRwgGSLNC5sT8l5FgOm7j6N0WWYYTzI/CJRljHFFwSSegGEVv65GKO1AlXvFLcsqnwaAze3UqHtkjbp9dUdIrvtf3HkVRRZOShbDeUbdElleOHxhBv0a6rFwzUxc/Cp7U+oAmddqDynEjYupA8I2HSZRfubfAMa4a0hEjZrcK3lxuiU0ZXMGr0uhYSiGYGRd3NQGz9Tg/s+dpv250yR/LDUkA/5TNLBo55uMu+Pv26Jul/XaPLxdWKTJXzV/zmm6HpfZgz5Sw1jERS6SsGjfqCK3A/Ia4ryW0KBB5j2gIW+JmSD1wYv0exkXqVEiv/L+mBQ0VQiaMpGXmsrP/IcWDXkrQpbxdkOZn0VlX/F0W1YEVGKhFb+PhvLhXjt0afebGNknlQOWpjzF9VhDXGZQjwvX4hKfVVNcZHreMGy9bp5doItWhi/+85NzlCiK8kmhg0oHjJd+cQGTQejYlGBkUQeEYX1gZtxkFkDSIBaia9VpaNLjG+8KxkcmkHYCcpFuWa8Sd44dStNyhop//UBqQjiHpBPNYsCDTccoLhxyQISRFh4WmrJpGtw1oixp1FtxBxZABTL740iT6CjmIi650NRioYmlBk7iwkg7ybJzViBLrnNbaOpSJioUQhFdE+ftFMdlngb/VNJryMXAFJrjEu10XlzivNKlXGiWcUn3V4GRU728xBSiA9mKt2DT2Ys1lLW4ULJPqUHGpYM81eTmU/m8RCiiU2S3PxGXmKQDyia/xhra0S9MeUvLPESaxHWq5608Oad1LrBdhT7yVTA2jRMFAGAbjMs0Dl4XBFyjMlkhZxuVT0/A+BBjjBAGlq6gxNCnzaDPCME4dQMTbGHilW9RhS0qfbqy5+EGUa7SBFdp4tMDKnElShPMK3wunYHw4SD3q6sNK8LFQRYNNDGubbcxsQNFownh0rUcI1udlxVwaUAYlGHWEmA9MOzN5nCSoar8fQF63VHiqVTkFaoyDFRxmYGZ/HW//7aP8D9+70203Kt1SJFG3S1kiA2j580mJI5u6Mik26IeC+XJmr9a76SkXovSzl8unFNaxrsi3aO0XhsjvTGugKRek/UkIR0IJo5mIjRock9KXfvk0o3lxcVpWnnxmtJ5Cc5XxmkoIW+cKfmF1JBxuj2xeSgRxyW+xi4ucZsr62bnL+eQdXEHeVLvdDhL6rGJaE8quEU8guZiRlzmaXIlOYmL0ERI+wGFyAudxrwWQ0l7MoGctbJDDU2afFxQz2tRGmiKS6CN3Mz+S+KS1t3x9hPbJjoYVCsvyTnLNFMyuEZsH0pE51wxahpmxyVL8lrbtZGWnohLBTOz01Eibffn5a2cpab6QJXv+zgNQhMJTZnQ1EKWzMqU9ZgvX1PKi2/33TkKTblMN8QlvmYyDk5DWhenGup5TcZp9rBtNa7wT/9RjboV5WZBPZUOGC/98gLMUxDTBLin94VtK8aoQGQ6oIxgDOrSpsPu3u426cLujWGexrQQli41qz24GR3mv81NgDMbNZ/FaXcTYNLmBtanGWhX5Bsr93CTyNz8ew2wabYaI02V0AC4ldHY7I+DASbBGCHmbms25zQhZ7ocVsmJNZjfhnQuNXFmr6s5h5bdurD7c9OCXVycyWxIp3HBHE2INDE7M9g0LqXX1BwXp6Flj+86ak5Tm50ttcsb4Wlv1RCXsYiLzFtSg7vhjOOQRekSHGkI13FWXGINzCYusSZ3k+ziUhIHDSIucdzIxwWJJgJ8XnLpQmioMmPm7Mwuqx3GJbNxiTWwG7RyceFYA9u4RJqiuDiNMi7ZDE3uusHmTWIzg6jM3AxCt9qX6aSHVXjMPt2Mo1act5ixwjkqELYqRkHAJtuBIy7RAmGTJiiJ8QFG6CJDi40B+xVM0IZ9Ok/AJlcoQMZUNAMu8xgdGLNtEHCVSwxQmX1QhgGzNf41K9iNUGLAFbqcYQJjCj2CSfeRYwxzA9ICY5OMz9NljNDlHCOYlTZdegkFSgDX7PY9AJOKcGErR7/FGFXAhAnvb2dYKhgrLUaWEa5sdtBulRhOTKm/tEnoFgzKGBUyXBwyujmw1iqxRITKTvCoGKgqM3+qKoEiq9DvTlBVGYgYRIxWawJwhmpi91eZ4Xdm832nN8Tjh67hwaNb+A8vHcH/+eIRXI1emZtm1O3qgyyqE1xdHKediS7ZvJqzqzfZD2zFRsElACayN2jWfJbM65ZuCWwGkvKT1sUir4HRtoMXLi9PqPLnUHFaB1QNGkhoDOb8powXTKEOYPvaZGb2T1ITB0PduLxkcM/92WpINblV9+K6eKoGNvVYRsZ4PiyykWqI64hCxMXtP8ziA5D0I0xcciYQhVmGaVwyX4+ZfkQ4husHxPXYmKI2kAEmcw5tew3juFQNea8Qea3FSOIytnFx17Bs0OQGFF0cQlzq7YuLS6ypTOpy0a7buLi6uGrIW3H7ZNLZ1LjEeS3s37XBQQPZGGReA/nPKo41hPKU9CmT/l1YYKLVUF7SNtacb9wXivOaKz9DMCgj3/8rbbreZ43jgqAhiotLt0VeC7EM7X5TnJryViU1AFEdYzS5mVfunJO+UBKXUE+6vpBrE/115+Z6zNVh7jolcYnKfGizU01JmQe8YbqLi6mbQ6kfiXuHuN8dFq8hX0e6OIR+A9sH1HFcwhFcPQZfDsw1f/EXF/Bnf3EbFEXZe3RQ6YDiOj5ZLW1uTV0aSFecgf9/8pV6+vv0aU4eNVmusyS/d/MJQkcAyfbxMfLoGK5hcS8ruHPIxTmZJaOr6JzT7ePjxZqA+lPucE6IzrmuKR7AyBFfPamhfh1dIyw1TGbERcZhlibXaM/WNDsuRbSPaZrMAMH0780xpuetet4MaSA8JZPpWZrqcZHXabqmkObonELaHa9K4jJdwyxNwLS8R6iS8pR+L+My7xya8xolGmRc6uUrpGH352YEyVmOzXVCXUNaHkKaQRhzeE2Fycwmcl5YTMA2KkzA6CAH7PcVzGpuINPZ9a87kFkC26zUZrYfg1FyiXW7fYloGr7tnF+j0p9nScAmVeiVQdkQoQNcEbBFYXaoS7fLDAVy2yE3Rt0tq3FzTJj4QxKuTYxhd6cwt5ajcYHBOER2MCGU7oAws5WADIf8WjyI/JXcKkFpZJhFumr63nx268oI/+1X3scLF/v43Xsr2CnhpqC5Lp6Vt9K8HH7riG9HXDoD+dd1mtuXWWnUykdTGphd5uvlQ2qE+L6uaWJzvCwv4QGMLC/pOYRB7GYNJUKZl+UxbtenxSXePtYQrkkalzh20+OQ1r2z6urQxoUb49IOCEyv5zKRnh4XqdFpGom8Vo/LbE2TWlzS9iXWJNu35rjMPucsav+cBvdKXhyX0B7V25+4PdhpG1olGpo07yyvAU15z+St+PjulfJpbaiMS6qprkGmKwTT7Kbv55eXkDebvzdxkddkEU2yrpTnOBF5qxLf1+Myu7xkIg650EBI+6w70RSn4/wcI70HlRuLG+Tcb+w/RXuDvv52wHjwu6mpnZ/yHj0Fjh8JUPSdQ5pazzfqTmv9eR4xsnDXDaHTtGxTpCY/ZT7+Gaf/Gft+uKdd8QFcB2Kahnnv8Nf8iIQZ7HUZdUeaGLPjYp4c3Wij7jQt49po1C3iEvtqSFPeG2PULeIi0vNNSBu8TmbERRqoNxt1I8nUCxsD0+y45NMMbuO4iB3PMk/esVF3fA4LxuWaKC8d8fuWMFKNX3trSreQ1eM0My6omY3L6y4N0ds8u3mV24/F9/LXA++PZI7czp0Abtx+WKYeTTWj7irDpjTqHs826h5sdpP0I7dcS9J1Y+LUQ2Zqx82XeZu3bFp6NMnylAHIRV6Tr13KnDbfqFuW+fTKSrN+v39O/qmXl0jTxzXqnlsXi7Ssy+sLDkwpj/PiIusIi3/9NdYQxaXpFnGeSa9cREGWL1mvyWNEb5H6/ccarsuoe3q1B2C+cf3UNtKfw+x6shSZriku8X/nDecsNUkR8+IirZRleZEa63FJNUzVZD+QRt0yLvFvpyQXNuqW7deOy+OUvCb7CTIuTZqYoz4o1a+7zFvynOaZwM+vJ1M/y1CvhbjEP4lfVZ12UhWn/ep5Zv1NPPRdNepWlJuFm3JQiYh+QETPfsx9nCainxLRXxPRT+x/r3/cbT/tPPid4+gkRt1kOuW2XvfvVdtHVskTg6abTqp3qmUnQZpatzlPOzrCCJWixtbvL0qPmWd2jHKYafZxBzafpUlqoOgGk8M+4rTs0PqbVEsmNUgT0popKQsNqBmoz9Lktok1JHc5VO8kSEPotjByLERcpJFqKeIyEubKsmMk4yLzmtvGpwkgTjXJuEhD6IXjIjWgEt9LDenN0ry85nTGGjxT4tIVZrCNN0/ypiHJWw1G3fHvhSbpfyTzmtO507g01Rl18/E0LrLMy7x1hYMXEQCkQxt1k143IOmfC1OYTeI1Ck1JFCgdiCJQzdieo+8BMyMqRpYnyUCYWI+Q3phLRnY1N2f2mmfO98OkiWT2IoyEUXeep6sQbQ8KvzUAbG91kmOSCMzWtW4i6Vt3bCTfy0GgsX+Zqhk52MCE4BPiy0cKR/9BqBt1t+WDEnEzxbK8iDI/EjHoIC0vBcSACWOmf5iREzRxXDfDaQh5i0A1DfJBiSwvciBBmvXL7VtCUyYHG7iuIY6Lv6RT6rnmuORJWsYFQsNEpKVhtDRPrt2Yc/3GvBYXoSnevDEuLOMi+kbieJWIw1hokvVWW2iYGheXJKSegq4OSOISfis1ECgs0DFFk6QUmmTek3GpDQJJDZxqqKKyn2jy/0/mGLGGOabwmai7ZVxkXpOG6TUDda7HJU77fkOkKfYf87O2onRLaqo9HJ0dF9mXEdVMY1xkP4Ka4uL235TXGKZhYffq6XQNjXERadlWyLwmabUyPHz6xPQNFEX5RLlpBpXsQM6TRPRTAD8BsP4x9vUDAD9h5h8x879h5h8D+CmAZ+Vg0SLb7gdeOnMe2XblG4sKbAwwo4q7gzzpQHaQhZvMhnSPc3PDZduHPmfJbIvcdc6ihqQbDSwVyNBDSLdFuoMc3SjdowxdZF5DDqAbdVwYjC6kpujmhYEesjDzwGpI06mGDlOi0XfO/DlQco5t5HUNkeYecvQiDR1QogGgYOBs6bq4IMQhjlMPeRKXvtDUR4ZWlBcypJoyoalVi0uObjQY0BMal5ChF2lwnb8QF3fO4RzMOcMOVABdZGGQ06enx6UF44UxTcO8uPS4QC/StIQc3aiz1RZxYREXBqeaONLoNHEm4pLV4hLPDyERlxwZOlUal06St7JEY9/mLa+JsmQQhkBJ+QHImOuLuDhNJPIW2fJT1xTi1kI6sydD5n2NANOh7UTn2EaWpHucJ+k1SuzOsY2UMZDe1Fud3jyUg7cI4LypONy8sHhyy+Hmyu3HLzUf1QHxv3Lwb0RVOsoj6CUvKZjBiyw2g6W0gW5nFfJodKD0xuUmLcZ8QWB07DQeZ9Q9nmRhdSgA62vbyPPSi5pMCmxudqNFg9z5mA/6q9uJpF++tY5YpDTqbguNGerGwn0UPq9lNm/F5acQcfGDB2TKX4Y0r+Uir7WQJysfdTlNL6FI8tqyKC+lyKsAoceFLy8ZyBhjew2EntDUZ0o09REWamAYfxSnwfnzxXVAG5k5Z9ceIU9W2epxWjcvITez+XwbS8n3bOvFuK7uRekMrr2x15Qp1AnkNGVJm9oFfN0tNblzaCcaMhGXItHUF3VAD2lc2H6GREMalzids4lbqokSTUsIs8KchjyKi9TURp7ktTbypP3pcZGsHriMLIkL2fYljksaB0I/1oA0bxVxXOz173Ha12nvIC5xXuu48kJOQ1peelwkgywdTjU5DanGoKkQmgqY/iBFmvpRm2rqhDQuBVOkybSJcZvaEnVAx8XFaaqKpE8qy4trI+MyH/ff8gYNMh3HMY81+bwSBjkZnGoAEi9AoyFL4tTjNK/1OU8Gjtqc1lssNJm8Fc6xhSzR0EKGPsu8FvoNGZt+d6Ih7uvALkAzIy7dWlxytKugoS/iEkMMFCPG8/+fGnUrys3CTeOpxMw/cv9tZymtX89+7EDQkwC+L/b/HBE9B+B/A/DDRbfdL7z+m0u2swVM2JoeEqHLGUpmjIgBMg1iyWxNFjN0QSjZeJMYQ01j+FlxhcLeFBfMmHCFNjLb8BtjyDGAFmXIwZgwYwg2aSY7Zdesb5WDMObKrpSWYQlk9seZbcRzTJjRrTKrIcOEzZPxjIymks3S3pRocJqcBmM87NIls9fUYqC0GuA1sTdTLpgwBmNEYUW3CVeYwKw84zQYb5uQbjkNbDR0ONXQ9WkTl22naU5cnAZnpuzixMw+Lk5jx2rKYcyHRzA3K4U1I55EcTGvMJobtByEEVdogZAjQx+EMbOPyxJyjJnR5TzR4K57x8Zl6ONkroExcjQ3lRNr6JxqQJLX2OYNAMjt9kWUHqNK4jLmypgmz4hLGxkKm9fGNg4mrxkNbWsSGuJS+bhMbFyITKe5jDT0ojhkyNBhY/gOBE0FGwNk93SvsHGpyAxQFD5OjDblKDizq5WFFRLj8tL35SW3cckwZkbPa2JMYPx+4rwXx8WVl4zMzfakobzAlpcu2KbNwHDuyzzbfAObt4wpttFkynzl8prVkE+JS27jsiwHbEQvU75OOsuHAwjGqK63SkgHnVzawTBPajP739G9gactPnFGwvHT1zgtXxNpi30aM1fTeWcAvcKUF9iBpHFJydLhbmjIHa2TM/LoEKa+NkdgNkbdy32z+lueVyjtSm/DQQfjUYFOd4RWa+IHpABGtz9IDvIP55YTDfVXneuvwpgn1mYXmf3M5TUz+BfntXpcnJkyOBhCd5hMXqMqKj8mr2UAcuTIkfnykoGQ2XrObZv5upiS8jKyN+J9UV6WuMCYGZU18u45DQgDHCWbVdyMJkbJ5gbf5HfjqzICMCFjMF3YNnFCdkU3W9cTmRvjgjOMUfnBO9f+tGx56dvy07WacgBjG7ss0rBlTXtDXWyMtF0b62Llvs+Y4AYHSmZv0tu1mlwd0bF19QjGPNltP0KJkijRkINsG5XGxWnqII1LByEu4ygurp4bkdNYYMIV3IIGrn3JbF7qs0kb35igoWA3QMjeF41s+1XZuJQEdDg3/QIyr/mbNjTDpCEuro3MbL3a8XnNtCelbSP7Nk4lKuQU2tTStpHLMHmNhKackcSlEHFx7VFbxMWcs3k9lX1c2Mcls5rGSOMS6ma7MIQ1VI81jalK+gVj12aKvOU0ubj0OPf7c4M6rry4uJRRXNz3Y1SYZGZgt+TKanDtTxyXoMkZQOc+LrEGxhDGGL9v89YQZkU7139jm9eMhsruPdRjhS0vrk1t+fKDEBcKcRrZ9sgMHNmZhrZP22bCCKE/5/rZwQzcxKVj28vcanB9HVd+xsRJ/62yeW/J/t7VrS4uziDdlZeWr9fMdXdx63gNsGXe9FlNeQl5bZLExfSjnVF3buPkFhjIG8sL+1mruW1DCITXfn0RX/ov1aj7k2Q/eiopu8NNM6i0i/yl/feZhu/+Hcwg0vVsuy+gLNxcmVW8KFr9iQCuMKSQzhDMlAvbpXG/zwEUCK/SmQYtpM102ODv4KbHjuyLJRkIHc5tx8Y1UPL3eTJjoIWw9LFLy9VqWqCwqh3MbVxYeSyaCWDTrSjdrCl+0k7ogLBtq1V3jmWsCW5Nt5DOhIZ8ZtqYKMZxYa7MAMaUuLgzlGmnwel2TyozmIGrWNMw1sS5vdFwHbpwTdwMpPicZbpljzaJ4lJG52xW9qm8xpaIg9RkbgCa48JwN2kZtiPT0Q5ybO8wLu4aSA2FSI+juLRgllofUshbWZIXpQYKs3+8phApFxeIuMRmsG4VMUTlJX6lK15afFpcSjug6DSUCD5o5pyrJE5x3KUReLNhezDSdnHZ4jI5520zHNBY5mNNToP0f9gtwnHS9NQpvKYf3ng207pZJLaWx5S/p+hfRjie/5ym/OvOb9q5C+JhuCxjZFmJ0cjYzlZVju2tHorVa3ZluHD28T+xR9MiuPlMcd5pzclb0WF9Oqwt51ayzDCmtA4oRZl3+3D1XBano7zmyksuyvwE7MtHG4SSya+m1hJlvgD5TlZon0I6hxlMHCI2/c0wQGlmZZEpP2M2Zb65jZX1WNreuNXQXL1k2lAWZZx9mynLvGyfimgbpwlR2mgKdbGbLbopNDmcpiQuQpOMSxvAAJTEoUrakxylecmpMW/5GRRz4rIl4jKMNJm8xiAm5ITGuKR5jYQmE3d3jqavFEyt27ADWVFaxiVun5riEscth3ngsm3Nk12bOog0OQ3uexkXWX6y6LoGTamGSuStMEBsZzJHmoo5cXGD0dtROkPm/X7cCoLudbac6uWlXgeQPwuX18Yo/SIjJh1WxmuBUHLlX2ttI+0b7SQuxtI6Lj8ZRlFcYhP4HBl67gA71RRdV5ceRBpMP7yK0nktLrLP2mKZt+pxcfWYG1xN81oWDQrFvbkp9RrXNTTh7mkURdl7bprX33aRHwLYYOaNhu/OAnCvvC267b7ggcdTU7v4PW7A3uRySFP0nWO+UXdqvhc3HibdfJM1jZoh4TSjbjdNt6YJiab4u/BVqumGG3XPScu4TDVQ50jDLKNuEZfQmQnMM4SW1DTsglH3rLg0GXXHM0bkoGHTOUgWNuoWVeaODNSFBmnUHR+TMN+oe55JqIyDNO2dapwfx0XueI6B+qwnV01xWdSoe1ukd2rU7f6RZsnSI2NeXsvczU58WCF5vKBR93COUbe8QoPSDjna40qj7niABQBGTUbd0bunVZXhyrVOYtQtjbkn47T2lkbdX751MaNu6bcnc43PW1PymqzXCKk/CyH1CGxCtic1o+5amU+ZWk9KTT7vpZrGQsNUo24/fjevhZzfnsjf142HpxzBx2G2gbrZNNW0qFG3LPMyDlPbSMs8o+56XKSmVEOTUbfURHPy2jwD9alt5JTvPZGGOC1NrSVSExrS8qeyvEhNpfi+vpjFvL5R+h/SbDzExXxQoB6XRrPx6LDSqm5eXGQc6mV+tiYZF2kCL/vV80zh/b6iJw7z6jH587pR92zq/kapJlk3S38wWa81nVTdqDtlJ0bdDz6uRt2KcrOwHweVvgzgwynfbdh/v3Id2+4L7vnmEXS76VPC1PvEPlUxDy/9UwoA4YYsNqukqKPlb6zThkAaBMYeA0DdEFoabFZITazHzLWMG99I5O6pSqShHWkCxKANRZ1sm5Ya5MBYV5jwtoQGaQgtOwnSmLsEkCUNdD0ubUhN2UxNcsAj/If5tyuuYkdoWjgu4ERDhnRlppxTTT5vLRCXfM4NX1d0nNpCQ83kWmgwA2+xxjQuudQU57UmTU0a4jBQfCNv/u0hi5OJzwjQHJc4XXE9LpTkLRkXJANZJMoPYAfTIk250JRFGtxT95heLS6ZiEuqoZOX1j/IsG27sPH+4hu8eOYBYOMWaWJ3zlaDmX2X1mM1TaIT3WNhNCxvAEUgVoQnWsHpTemEqiQ/j8CJZgKjFf1gXAET81aEOX4G5AQvkgjoR5mLQRiMw0AUEdDOK/89AFzd7PjvAaDdSYe2yjJPNL3y7hoGk6D7G3dcSb6vD9CkRt2Vu0RRXBIINaNuEt+nSQoDjPYwHWGmXKubo++AhoUgkNb/3o/P4v1c3P64PuAY+4sx2ZvSSFOoeU156UUaCOb12liDHKCUdQCEhpLS8pIhvXRtoSkT5QmMxBuFXT0WaZJtcCv6MYFqCw40xiXCPzjxexGa4h/DxGWegXo80MRI+wmyTkhD2ByXeZrmxWUi6jE5QNLmVFMmNJi4SA1INLi5Ru7/4zZS5i2CmS2eaJD1WvRdsmGSDp9Js/FiWt5Cus2svJZqsj5UkYZuXHcD/lX/aZpIyKhEXFpCg4yLNBv3cQnJepyS41MtLl0Rl3mm8LJPKgeBZPmU5SUXmiA0eQ2Wiuqa5Mx/GZeO1CQ0TH0A7M9BDp2ltNsZ7v+eDiopys3CfhxUWl9gm0W23Re8+h/PozOoksAvIUsaj6XI4JkYWI6NuNls34nSyxylAaxQNF0XpjFbijqMLWRYjkwPu8ixyi2f7nOOtcgIdYkzrHMwo1wmwgpC5i1AWCEKjSwDK5z7jr3RUHgNxMAKF8Eg0G7fjdKrSE1B+/b9dkTH7Ec3xm2hqcM5lrlINK4gmCIuIcMKwk1nn4AVSpeOXo3iQqhrWuXcDJpE6Tgua5yZzpaNy3pG6EU3oW0Q+lEnuIMMK0lcCqxEGvqcYzWKyzLnWIsMNleIsBppKGDSYZq0OcfCaWJghVsNcQnpRAMDa0jz1hKQpNvIsBSZWneRJ5p6VkPQVGAl0rCMDCsIz856ZPJb/OrEMvIkLstc+AGNzJaXuPysIE80LiPzGgFglQjdKC4FKBmEacN4ncSa4rzV4zzJe0vIsYw0LitZOpV8JbqpzEBY48LHJbNxcRoym7fSOAUNBGANxnvEaeghXaGtI+LSqWlI89oDyxW+cWSEwopYJ0Iv6nFOkJqMEgjr3PI3K21kWOHCpwt73eNO8bIoPytxXLxGsz3bc+5Xuf/9EueJppM54UQeznEJGW7jlj/HQ1zgDm776348y3BrEQZKD7UYx5bGfmCpmzOOdksU9gctAqqKUNl+dlkBYPIDIATG0W6Ffu5erDC+MWVJ3hcpA+z+jIiV/ghVGfJaf3kbK6vXvIZ2Z2xnN5n0//3mCv71z+7B1siUiKf/tB6VFlO3x7dv8atYAMKLjVEdEH+fcTTgYeMSv7oEhn1NNdB2N5UUjtmvwhY9zrEUlw82dbFLr7Ap8y69lgEreTywRFhBJspLy9cBhc17hc9rUXmyN2JrnPkFBTJ7jHZU5rv2z+W9rmtfrKYeCixVQgPHGnKsRO3RKmVYoxCZNgjL/mgmd6xEbWoOwgq3kvRyUn4o1N1W0yriV/uAZSCpAzqgpD3qi/LT5wJLVSjzy1WqaVXEZSVL6zHYujg2tV6OjIVbsg4AYQVFiJtt570mAKsZ0IpGPXtCQw+ZGZRxdYCLC1xciqQuXkGB5eihwBplWImmBrZs3yWum+M2toUMq9zyC3S0RD3XEnEp2NTF4ZUxYAVIBvl7cXnxmuJ6Lc1rK1UuNNm4OM223U81pMbca1He6lhNoa525SXSJONCLi6GPtI+Zz+Oi+3vLUV5bYVzLEd19QrnSVxWKcOyiMtq1D/L7TlSpCHW1Lbpuia7PwbWRXlZsp8DLg718uLjYjXF5WelKpL2ZwW56We7OJMp8w6jIcSljQzrUXnpIMda1D6ZOIXy0o7jAjMguoZ00LLPlLShS8iSfvUyF+hHeW3VtaFojospL2gkB7A0rvDK//Ne8wbKDYHBfqGT/fQ3a5VaZefsR08lIMwykrhZSYevc9upWHPxJh7cye8/Kd767QfICFhl80R2AMB0mp2pIgNEWOZg4JkhwwqTMfuzZntLnKHDxsPArOgAdKxZZsfeabas4SFgZsW0wBiy8dlxK1kMuLIeC4TD3MaAS7SRoYUMh7mFIVfosXl95jDnGDBjiQg5EdbYeMMwbEcGRtMQ5in9mjVSNQaepiMzbtBkjBwzLLOZgTQiYxjYBtCGNRYHoSBj5D2E+XManBdRjgzrTBha8/LcdqZG3nQ0wzrM931r4LmGDCNm9Mj4MqzBGB4OGKhAWEeOkY1LRoR1LjByZsq2I+M05VZTz35fIMMygC4zRqjQzkxc2gwMKnOtejAmngM2JphdmNVsBii9SWqLMwy49BoOcwsDrsxKbCAc4hxDZvTJzJxYt9enZNORWbeahrazvmY1jK3ZZT0uLR8Xo8lomFCFFpkOc4cZAwAFmY5ahxnbNv7dKC4E45FlNDhTa8Jhq6nLJq+5uPXJaFr3MTaaVq2GbTbPsGV5WbV5zcVllYMZZoYMyzB5rYoM1DvWiLWd244oA4My0mDLSwVGlzK04PKWeSGmZePQhvEZW2NjqO7isoY0LmsZMGJn3GvjwiEu6yIuJm9V3ux1LdJk6gBGhwGmCgURlgnossm7uTWfbds4lQg3AtsyLii9carLa8fbExzpMP75LQO8uVlgstlGXgFLmTHsHNi85eIwAgMEHLHXxBl/r3BuZzaamQdLyOwCBcZE1MWtdJpgNJXRAgRta9Q6JGMq364yDOGMUk35GKLCKgitHOhlwJWKUVXG6+JezrDBJVZgVri7lzv4iEsczoFuBtzdMtuvtiq0cuDkyhjb4wwVA0UGnOyV2J4QShu3SWUGWyYlrJG3Gf4ockaWAcd6FYZlhUFJyIgwKQllxWZGHBHaBaOoTByXemMwZ+CSQRmjKCZotSZod0bY3u6i1RojywAiBjPhlasF3trs4of/7mH8F/d/gN++vWqHiUyHLAcl6UIMMmXx9xy2jweiY2NhgO1vQpfPmdHmYO+g1vN5zRrccoY2Qj3W8nEqvaFtC6b96cGUrXUAQwb6GaPIgHUChhVjs7IDR8gwZLavKRIO2fbJGLiHtNPpyhO5OgFkzZYZeU5YYlO/DCtT1y/DmBFvg1EhM99zhgFV1pupQJuNB04rLi8obZl3bSqjT4QWAYdsPca2TK7ZNnmAcJM5YsbEekKt2jLv2tQVWz7MTKeoPBGQEWHZtuclgDwLmrbZ+AMtcY4OM4bWzHwJOTpVGpe21dDxmtK4HLJx6RJQkBn4GTGwxfD13MjXAaZMj9jcJLjBgFFkpryKYBBtHhKYOiEnNhrIvHI1KM3g9QoIXWYMbL9imTN0ucLAG1IXJk6orJdN0OQWfjB5zbTzraiNrOygqmv3hza/H+LC1P1kNLi8RYD/fmTj4gZxxszIbVxWbFwmSNMDWE2cG00U9+eMBmP6Tj6vteO4wMTFeVEOYAZDY01Ddudo2p+JbU9cv8F47JjBsSFXXoMrL7m9BqvIMGYzYzTLCcts41KZvLWMDF1bl5s+qykvQ0RxqTJs27q6beOyjcqsDhzVAX0Rl4mtmw6JMu/6pCDT3zvEba8h93ELC4K4vk5hF/RYtfsyccmwDLd4hinzKzZvDYlrcXGm9q79SfNahZ69ri2roQ1T5tdtmR/Z6+z60Wb2VIiLM2N3mowZf9DQcnnNxoXAyLKgaZthNTAmDAxsmfeafD/bDDRt+7zGXkPHXjdfNxOhIPi8NnEDXGTqGSLgrf90CQ//yzugKMres18HleaxfoO2venJCtPFJzKNTsXB9NCY87E323OGg7HZZewpYzqxYd857AwLApjZ31huR097+iBcszcIGcJqM0wuHSbUZjCrZ8RGjT2Qnz3gV2YB7G1xeO1mEGnKmTGmkHYruzlN8asFZnnd3GswgxZhLkBOQB+wnVZ7jpxjgMpr6CH3k3adyXVsathFaj7eic6bbGPJ9rq573OYTrNLtxCMHps1hbiYDqB1XGEzwNDPgI+qEJelKC457MpG9ka9KS595P5VtczFJdLQhRkccWaXHfvdMNJczIlLJ4qLSYcnXIV8CkeEJWY/QuxW2htYDW41mjgufRS+AnRx8zPBYFZq8U8WbVzKKC6mUxfiYgZ3OMqL4emt0xTPRCuQmk/mBPRzYLOMNIBwDVWUzhPj+z5So2GT10Le6oJSDQSggu0UTo/LxMelbtAem423AORJXMwT2InTaONyJYrLMufYiuPCoRlyccnscHE7A+5bmeDcuMDWIAeRuYEp2NxYunNiBJPeeIltXwckcTBH2kKF5jgh0e0Mo4d2IKQg07n3cbN5ze2jRcCRHLhcmfxSgHA0ampzEA6jQM/GNSNgPYedrWbSS+0KZUWo2Mwy6rcYVeVWbzMG8W4lN2fk7WfTEdAtgG4RKgFmQlWFvJZl8DOizKtxBI6+z4sKyytbKMfGNpbIDCy532wMWvjf//Gk99kIXm2Yknb/yu2n/5uLdKwRcANUIa+5Fdq2bAnMYWZduHM0cSqS8tJHagjdQ2RAS0A3twOvHMoTwPYVubDqVkUhHV+DDiia1ejqiLD/lo3Fpq2YChCWAFxFlGZTGuLy4o7h0rGGfpTfMzKzBo2PE+yqWbArsoVzJK5mlvmahqgNNuVFaAKw4Wc0EHLOMCBXfswNfzxIWNMk6rU4LhmZsjKqQh3Q8XVASMcLeHSi/dXiYMu8N1O2GigHrtq6uGWvqXMQK5BhiQkTOz5aUJasUCk1TYvLEO4VaxOXCojylnkQUUZ5K45LU95qibj4vpNNZ1FdbF4ZzrAda4jaYFd+0rxm87fvF6CmqbQPLF2/YBjlrbhv5DTFdXVHxKWNaLEMGxdk5lVg3/74Mm81IffePAXMjPA4LstRXV3La1bDFoe49GCGtCcI/YRZZb6LPIlLR8TFaAp9I1deNn1czIq8Q9emIsTFpYtaXkvj0gMiTSZdcdDQB2EUaWiMS5R2fc7muJBfufQax/2CDNvk4mLaTFfm07iYmDfFxZcf2+/2H0RkxX584UZRPp3s19K4PuVzN+to4zq3nQozP9r0B+Clnfz+k+Le0yeStPSk8W+YzJgJyOK/awab7JbrjvYZIUcyZTshD10375v9e7n/eZrMV5ykS6FBHqfxGDOQh64Zq4oN5mloaFtnxoXtMeIVo+Qx5Dv6UlM9LjLus/e3aFyaDKFL6bgZ4TrOs86h6RgxMm/J76fuf0pcZN5qNOqOJPmOc9MxLPPiUve1EfsTJ7mTuMRJGZcSsLNomiGqm8LPi8sHg/QXvU5aC3SEBulvxP5fTs7ZpaWpaFMdkJopzzeA3hTXoDWnUhhV6c4mIi1Ns0N1ZAdJ/Gtp7H8/o3gkvwUA5gzXttqJUfd4mOY+eQ5fODRKvxd7rxvgVo3fh7ik6dJHyX0+u/xICKkhdBN14+EUWY+1RRyn1v0c/onLizPqdjomsN5S0e/j05WDZ25AbRbzNEz3PzLMN85PNZRAbWEIFppqGqK4NB1tXl0s6xjp21ZfAKR5/4mGOC6cxiXHDuIyJ6/V4iLSi/aNHHFdbNIhbzFzEht5PLnPeRrmlRf5fTGnbl40LiavRftHPS7S5Foyr08p4yI1LNpnbY5L0CF/PzUu06D55UX+fF6fdZqmWEOcdnFxmpqu0bzFQWXWm9fXb+KeJ07M30hRlE+EjzWoRETPEhFfx9+NXFFtYwfbuFfbFtl2X3DXN4/irm8e9elc3MRm7kmRfXrV1KHl+F8KK2e4xmYotpeNzdSBrIZjAPUbiQlmDy5k4ibWPXVzmmpQvcF0GlznTDbgXZEuQMm+mzpOLDTUNUX7E4M+mdBAU45hNJgvRyIu25XTZP7tiNIvO+nz4iI1jIUGeY55Q1yySFMNCp09p2Hg0lPi3xHpyOLGn1OMX5kp0lBF+66Q3mgUaIiL6xlNKS9JB3MHcenX4pLmraZBpZqGKD3kNC652Id7ncgxLS4+2VBeBu6Gms3ghxw0knlLDupI3r5WYBwVupXeGHkWPuhSatqeQ5iMkjWSt9FghCfDbiVHaRoq4zQUceqJ7eOBAwD4sExvfnrSrV8g42JeUwtpU37CBmZGUshsGcX+SObfoTXRbioeROaJbyziwqXVZJvtrV7yW8pTA9v/7LZtdPNwkjKvT8CiTqj8ct/uqGUtLuzjwgQ/4yy+eTHbcq29IdTzmlwVTJYXWeZH0Q0sYF6vict8hwBp1j9vcCGOiqvHYk1xmfczCN3+iGr1mGxDZc6Sq0u5V6scTYNK6awvYTwsj0dp+WHU20gfJ6upJzKHjMu8ungk0mNO87WJS0AadTdRIc1rE6HJzap2GqI1TRDPhHY018WBWlyEhqa+UXxdMtRvzOOsZuLCiYYRTB5qaiPdTLVYk++PTbl2clW8EdL21w2YODpCQ9OKc+lJ1etqGZeRjEtcXhrq8nkPXj5uXKhhp3GyKS5jwHvb1QYoKc1bvs/adPKWeXGReVFqkH0jCaMel7HQNIk1ERryVojLrD5r0CTqYhEXya2PHMIpHVRSlJuGjzWoZGfj0HX8/fvdEtDAMwBOTfnOff7sdWy7LyAi/NdPfgO3PnLIf9ZH2oj66e7RU8WmgSX32QTwrwABpvHcip6WyYGrHPWOjWzgkgaR6jfKmwgDS7KBBpBMlweiDueUJ3Il3Mpf5DUNRGsW316ZKfwBvzob+1NuuOGKOgEEbIkbsE1xk7kkbs5jA1ug/nSL4V6JC8erxSVqxVui4389cRkIDdciDe4Vy/gcZVzMlHxMjcsEoSMDOF+j+iyyoMlMyXdkrtM8LS42b7HIW/HAkhloCppWRFw6Ii5NHadKaBhG6SGbV96cpE4GLEcZOodd4cproNqNdDJoSbC+LEHDlSqNSzdLy0xTeYlvlF3cQ97ipLwMYF8LdHlT3PC1xM1M7m7QpnQYR1WG5y72MLJ3qlkGnDyy7QeWiMwrZm5gyUzZz5KbyvoARzqg0UW6cl8lvnf+bC7dBtVWsYvLwxDAe2XIKzkBq3m68l4K4Yr3SjLprWHuB5aI4tlI4TrEkegWbLcx6e1xhuGEMKV4+NfY3PZXrvXw7rl133GfjFvYvLIUnqgTkEUDS8e6FX78uY+wVNg4IH2l09QJZbjuBFzDCKW7fSDYVByXKrnuA6owtq8mAnYmnIhLXK/JWTHGDyYtL7KejOtiFnUxg/DRJC0va0UYWDKvi8iB2fTGuUJaF49EedlmM3jl4tQiZ9xtaIuBpQz2lbMpdTGT8xJk/901TuutZLUp+/qwfCVs1s3/CJzEYRvmNXBXF5uZpFE9hnQRBb/S7JS62A3yxBq2kNbN21WqaTVLNfSQvp7bNKAY18VDEZfNKo1LRwz4xa/6ASYucux4VlwqAFdFXOI4k+1XuEO6QR+asn+gXq9tIY2LpIP0mOaV/8ZNvYa4jaxgYh8PYJgBjaBpmVIN3ShvNfWNXFwcxvspLS+jKC5dEZcC8K+YAfU6geEGLYOmkYjLtWgAIxN9I4LpV8Samme7BmR52YJ97XxK/60N2U/GzNmxsrw0xSXus2ZU1xC3wU19o3lxGXI6A75LafkokK4sC4gyjzQuVUNcNqcMLJ34/Br+m//wLWTZlAuk3DD22lT7Rvwpu8N+9FR6EsDpKd+5gaIz17HtvmHlZA//3d+dxsv/7/t44T+8i9F2iVu+sIbVe5bxws/OY3B1gpMPreDk59bwxzPnsLkxwol7VnD3lw/h+Z+fx0cXBjh25xLu++ZRvPzLi7j83hbWb+nhs985gTf/9gNc+tMmlo918PATJ3Du7y/j0itX0Vtv457TJ3DupSt4/49X0FkucN/pE7jw9ibeeu4yWt0cDz1xAlc+GOL1332AvJXhoW8fw2RY4dXfXgIA3P/NoyjyDK/9+iKqCePUnx/B6lobrz99HpNhhdsfPYSVW3t45cx5jLZK3PL5NRy6bwUvnDmH7Y/GOPHACm77whqe//kFXP1giBOnlnHqq4fx4tMXsHF+gCO39/HgY8fw2q8v4fLbW1i7pYsHv3sc7/7uQ3xw9hqWjnRw3+kTeP8PG7j48lV0V1u45/RxvPfKVbzzTx+hs1TgodMncPGdTbzx95dRdHJ89nvHsbkxxmt/dwl5keGhx46BS8YrvzGa7vvGUfQ6OV775UVU4wp3fe0I1o608aefX8BkUOKWP1vH0h1LePHMeQyvTXDL51Zx7KEVvPCz89j6aITj967gzkcO4YWnzuPKpSGO3b2E+75+FC//4gI2zm3j0G19PPjtY3jjNx/g8lubWDnRxYOPH8f5Zy7jw7PX0Dvcxt3fO463/+kjXHjpKrqrJi7vv34Nb/9hw2o6jo33Bzj7zIcoOhke+u5xDK9O8NrfXgJlhAceO46cgdd/fRFcAfd84wj6/RxvWE23feUwesc6ePWpCxgPStz6hXWs3t3HC0+ZvHbLZ1dxy8Mmr127PMLJe5dx95cP44WnLuDKxQGO3bWE+79xFK/98iI23t3G+m09PPid43jnt5dw+c1NLB/r4p7Hj+Pd5y7j0qtX0T/UxmdOn8A7z3+E91+4gs5KgQefOIELb27irT9soO3y2sUBzv7+Q5PXvnMc5VaJ1357CVlGuO+xo2gT4azVdNfXj6C/WuBPT1/AZGg0dU92TVw2S9z+hTUcvm8Zf/zZOWxfHeOWB1Zxx+fX8cenzuHqh0OcvGcFp758BC89fR5XLgxw5I4+HvzWMZz91SVsvLOF1Vt6eOC7x3Dudx9i441r6B/t4K7vHsef/n4DF169ht56C/efPoF3X/4I7/zxI3SXWvjs6RO49LbJa61OjocfP4HNyyO8/ne2/Dx2DBgxzv6NyWv3fusoeq0Mb/76IqpJhdu/dgTFWhuv/jyUn6Xbe3jhZ+cx2pzgts+v4dj9K3j+zHlsXRnh5P0ruOuLJq9d+2CI46eWcc9Xj+DVX1zElfe3ceiOPu7/1lG88zeX8NHbW1g52cXd3z2Ot6Pyc+qJE3jzD5dx/uWr6K0ZTe+/dhVv/+MGOv0CD58+gcvvbuON5y6j6GR4+IkTWB1v4YO/v4AsJzz2lVtw7VqON39zEQBw+58fxaRT4OVfXkA5rnD3V4+ge7SF5586j/GwxN1fOoRjdy7hhTPnMbg2wW2fW8VtD67h5TPnsX15hGP3r+DWR9bxx6fO4+qlAY7dvYx7v34Er/zyIjbe38ahW3t48NvH8dZvP8CHb5ryc+rxY3j9mcs4//pVLK238Tmb19578Qq6yy188fsnMHpjE+f/8TJa/QJ3fe8kPnh/gLef+RB5O8O93zPl582//QCUAfc8dgxtYrzzNxfBFeO2rx9FfzXHe785h3Jc4difHUHvWB9v/+IcJtsTHP3cOlbuXsFbPz+H0dUJDj+0ivUH1nH2qfPY/nCEw/eu4M6vrOPdX53H1sUBVu5cwq1fO4p3/+YCrr23jaVberjtWyfw3t9dwkdvXkP/WBf3nj6C8RtvY/utyyhWuzj6tTswOf8+Bm+dQ97rYOWL92Fw7iNsv/4evtNu4fHP34ufv1LiH35/HkUrw9e+fRu2t0s8+7dmJZ6vfvM2dPIcz/z6PVQl44tfP4HDKz089/T7GI9KPPDIUZy4dRl//9R7GGxOcOoLh3DHPWv4h6fex9aVMW5/YBX3fv4wnj9z3pefe758GC89fcGXn/u/eQxv/MbU1au39HDvd47iT7+7jEtnr2HpaAcPPHEcf/rDZZx75Sr6q208/P0TeO+VK3j7nz5Cd6nA506fxMY7W3jzuctodTI89PgJjD8c482/+wBZkeG+7xxFMWG8/Vub175xFGWR49VfmvJz19eOoH24jRd/fh7jQYk7HzmEQ7f38ccz5zDcmuD2z63h1gdW8cLPzmP7yggn7lvBZ750GK88dR6bl4Y4cmoZ9379MN765UVcO7eN1dv7uP2bx/D6by5h4+1NrBzv4jOPH8fZ33+IC69dw/KRNh48fQJv/dMG3nvpCnorLXzu+ydx4fVreOsPl035eeIENt8f4M1nTPl54PETqK6M8c7ffgDKCXc9dgxlyfjT35h67e5vHAF3c1t+GHd/5TD6x9v44xlTfu764iEcvXsJfzxzDoNrE9z+2VXc8dAaXjxzAVuXRzh+3zLuefQQzv78Iq5dHODw3cu4+8+P4I1fXsCV97axelsPdzx2DK+68nO8i/ufOIazz1zG+deuYulQG589fQLvvnAF777wEbrLLXzu9Al8+MYW3v6Hy2j3cnz2iZPYvjDA27auvvd7x1FtTfD2fzLl585vHcMIwKu/Mpo+8+eHka8UeOHpCyhHFT7z5cNYO9k1cdkucdcX1nHinhU8/7NzGFwb49YHV3Hn59bxypnz2Lo8xrF7l3Hqy4fw1i8uYPPCAGt3LuG2Pz+KV3910dTVt/bwme8cw2u2r7NyrIMHnziBN/7+Q7z/SqgT3n/5iq+rHz59Alfe3sbbtq/z4BPHMf5ghHdsX+eux45hNKrwhu3r3PXNo6hywiu+r3MY3fU2nrd19d2PHsLhW3t4/sx5DLcmuOPz67jlvhVTr300xvEHVvCZL67j7FMXsPmByWu3f/UIzj59HlfPD7B+ex93PHYUL9u+zurJLu7/3jG89rsPcf7sNawc6eCzT5zA2/+4gfdfvmLKz+njuPTKNd/Xefj7J3DtnW28Y+vq+753HKOPxnj7b035ufuxo9ieMF63fZ1T3zwKdDK8/CtTV5/66hEsHWnjhafOYzyscNeX1nH0TtPXcXX1HQ+t4ZWfncf2xhhH71vG3Y8cwhtPn8fWxSHW717GLV87jJdt+7N+ex+f+fZRvPI3l/DBW5tYPW76Omd/fxkXzl7F0iHTJ33vjxt4/6Ur6K608PDpk/jw9Wt49w8fobOU48HTJzA4N8C7v/8QeSfDZ757AptXx3jD5rVT3z6GMQOv/NrU1fd84wha/QIv2vbn1JePYPV4By8+dR6jQYk7v7CO43cv42Xf11nBHQ+v4+yZc9i6PMKRe5dx65cP47WnLuDaxQEO3bWEO79xBC9FfZ37vnMMr/z2Ei6+uYnVY1189vETeOO5D3HuVZPXPv/9kzj3/Ed474Ur6K4U+OwTJ3DlzS2894cNtLo57nviBDYvhvJz6jvHsbk1weu2r3PPY0dREfCy1XTv14+gs9LGi78wee0zXz6Mw7f08MKZ8xhuTnDHF9Zx673LeOXMeQyuTHD8wRXc8YU1nH3qArY+GOLIvSs48eghvPT0BVw9P8ChO5fwmW8dxUu/uoDL725h7WQPD373GF7/uw9x4U/XsHq0g4cfP4G3/uEyzr96Ff21Nh4+fQIXX7qK9+y9wkOnT2DznS28/9xlFN0cD/7FrXjgX9yKXP2UFOWmgqa9RrKX2JXU1pn5njnbnWLms+KzdQCXAfxQzogiop8BADN/f9FtP46WRx555JFnn91XE54URVEURVEURVEOPI8++iiee+6556yf7r6DiJ7t4PZH7mr993t9KrvOm+P/GUO8s29j90lxsw7zriMYZTdiB55eJ6JH4s+ZeQPAjwD8RGz/CMzsox9ez7aKoiiKoiiKoiiKoihK4KZ5/Y2I/hrAV2AGc07Zz14H8ByAs8z8Y/GTMzCDTxtyX8z8b4noLBE9CeD3AI7YbR+1A0nXta2iKIqiKIqiKIqiHCjIeF/tOwgzjeuVnXHTDCox879ZcPsfA5ADTfH3Z7BDP6RFtlUURVEURVEURVEURVFu3tffFEVRFEVRFEVRFEVRlJsYHVRSFEVRFEVRFEVRFEVRFuamef1NURRFURRFURRFUZSbCwZQ7UPzof2naG/QmUqKoiiKoiiKoiiKoijKwuigkqIoiqIoiqIoiqIoirIwOqikKIqiKIqiKIqiKIqiLIx6KimKoiiKoiiKoiiKMpX96Kmk7A46U0lRFEVRFEVRFEVRFEVZGB1UUhRFURRFURRFURRFURZGB5UURVEURVEURVEURVGUhdFBJUVRFEVRFEVRFEVRFGVh1KhbURRFURRFURRFUZRGGEC5D42695+ivUFnKimKoiiKoiiKoiiKoigLo4NKiqIoiqIoiqIoiqIoysLooJKiKIqiKIqiKIqiKIqyMOqppCiKoiiKoiiKoijKVCp1IFKmoDOVFEVRFEVRFEVRFEVRlIXRQSVFURRFURRFURRFURRlYXRQSVEURVEURVEURVEURVkY9VRSFEVRFEVRFEVRFKURBu9LTyXeh5r2Ap2ppCiKoiiKoiiKoiiKoiyMDiopiqIoiqIoiqIoiqIoC6ODSoqiKIqiKIqiKIqiKMrCqKeSoiiKoiiKoiiKoihTKana61NQblJ0ppKiKIqiKIqiKIqiKIqyMDqopCiKoiiKoiiKoiiKoiyMDiopiqIoiqIoiqIoiqIoC6ODSoqiKIqiKIqiKIqiKMrCqFG3oiiKoiiKoiiKoiiNMIASvNensevsP0V7g85UUhRFURRFURRFURRFURZGB5UURVEURVEURVEURVGUhdFBJUVRFEVRFEVRFEVRFGVh1FNJURRFURRFURRFUZSp7EdPJWV30JlKiqIoiqIoiqIoiqIoysLooJKiKIqiKIqiKIqiKIqyMDqopCiKoiiKoiiKoiiKoiyMeiopiqIoiqIoiqIoitIIg1HS/vNUYvWJ2hV0ppKiKIqiKIqiKIqiKIqyMDqopCiKoiiKoiiKoiiKoiyMvv5247n7xRdfxKOPPrrX56EoiqIoiqIoiqLsIi+++CIA3L3Hp3FDqfgiNof/616fxq5T8cW9PoV9gQ4q3XiubG9v47nnnntjr09kCg/af1/a07NQJBqXmw+Nyc2JxuXmQ2Ny86ExuTnRuNx8aExuTm72uNwN4Mpen8QN5CVgjIrf2+vzuFHcrPnqUwMxqznVQYaIngUAZtapVDcRGpebD43JzYnG5eZDY3LzoTG5OdG43HxoTG5ONC6KcnOjnkqKoiiKoiiKoiiKoijKwuigkqIoiqIoiqIoiqIoirIwOqikKIqiKIqiKIqiKIqiLIwOKimKoiiKoiiKoiiKoigLo4NKiqIoiqIoiqIoiqIoysLo6m+KoiiKoiiKoiiKoijKwuhMJUVRFEVRFEVRFEVRFGVhdFBJURRFURRFURRFURRFWRgdVFIURVEURVEURVEURVEWRgeVFEVRFEVRFEVRFEVRlIXRQSVFURRFURRFURRFURRlYXRQSVEURVEURVEURVEURVkYHVRSFEVRFEVRFEVRFEVRFqbY6xNQPhmI6AcA/jUzP/ox9nEawA8BvA7gCIB1AD9m5o2Ps+1BZLeuDxE9C+BfMfNzO9j2J/Y4TwJ4hpk37Hn8CMDPmPnfLnLs/cYuxmSh66xlZTq7eW1sHfh9AKcAHAbwTNO+Dno52eVrvtC+tCxMZy/Kgt32QJeHWexVm7Gbx96P7EX/ym6vZWUKn/Q9yPVsryjKx4SZ9W+f/gH4KUzj9lOYSvX1j7GvHwB4Vnz2iN3v+vVuexD/duv62N/wDv5OR/mh6fuf7PU12eu/3cyzi1xnLSufWEx+AuAHUXodwLMALgM4db3x229/u3zNF9qXloVPLC47Lgv2+wNbHj7BmCx0jbWs3Pi4YMH+1fXEcb//YY/uQXYzH+if/unfzv+ImaHsf+wTl3Vmvuc6frsO0+H8PjOfEd89CQDM/MNFtz2I7Ob1sU9+fgLg7JRNDgM4G8Xmp/bzU/bf5wD8lJmn/f5AsNt5dqfXWcvKdHa5nDwC4L9i5h9POcbZuF48qOVkl6/5QvvSsjCdvSwL9rsDWR5msVdtxo049n5iL/tX9jdaVqbwSd2DXM/2iqLsDvr6m7IT/tL++0zDd/8O5knE9Wx7ENnN6/MVAI/y9Km/T8qGk5l/tMD+Dwq7nmd3eJ21rExnN6/Nj2CelCaweTXhDIDTRPQIR684HNByspvXfNF9aVmYzp6WBfv9QSwPs9irNuOGHHsfsaf9K0DLyg1C2xNF+RSgRt3KTvghgI0pjetZwD/VWXTbg8huXp8PZnR4fgLgf7qeEzyA7FWe1bIynd28Nl8G8KydpSF5LtrmoLOb13zRfWlZmI6WhZuPvcyvWlamo/2r/Ym2J4ryKUAHlZSd8GUAH075bsP++5Xr2PYgsmvXh5n/TdPn1pzwA/m0Ofp+nYh+YP/Wd3Ksfc4NybM7uM5aVqazm9fmjP3NxuzNUg5gOdnNa77ovrQsTGfPywJwIMvDLPaqzbhhx94n7Hn/ym6jZWV30fZEUT4F6KCSshPWF9hmkW0PIuu7tE0jtgPzoxkdop8A+CuYp9JnADxJRH99vcfbJ6zv0jaeHV7nXT/uPmJ9l7YBM/+YmQ9N8bVwMzaSafIHtJys79I217Ov3Tz2fmN9l7a5rrIAHNjyMIv1XdrGs8A13vVj7yPWd2mbRub1r+w2WlZ2n/UFt1l0e0VRdgH1VFJ2ysaUz93TgMPXue1BZGPK57txfWZNy96AWdbWGxcS0Q8B/ImINvgAL3eL3Y3JBnZ+nXfzuPuNjSmf78q1IaJTAE4D+PfiqfMGDm452Zjy+fWWg0X2tZvH3m9sTPn8RpcFd+yDWh5msTHl8xvdZuz2sfcbG1M+v9H9K3dsLSs3ho0pn2t7oig3CTpTSdkt1m/QtgeR9ev5kbsxmDYt2z6lPiM+24B5mvaT6znmAWJ9pxvu8nXe8XEPIOsf8/dPwvgr/Kv4Qy0nM1nfw33t5rH3G+sf8/eNZQHQ8vAxWN/phjfgGu/42AeQ9ev50bz+FaBlZY9Zv8HbK4oyBx1UUnbK+pTP3Wj/xnVuexBZn/L5x70+P4bpvCzK7wGsW6+Ag8r6lM93M882XedP4rifVtanfP6xr419RWEdM1b3aeAglJP1KZ9fzzVfdF+7eez9xvqUz/eqLAAHozzMYn3K5ze6zfikjv1pZX3K53vVvwK0rOwG61M+1/ZEUW4SdFDpJoOIniUivo6/G7mSwcYOtnFTShfZ9lPDLsZlYweHu97r85cAnr3O3wLAqY/x20+cT0lMmnDX+ZM+7g3n0xATe6zTWPwm2vGpKicLsLGDbXZ6zRfd124ee7+xsYNt9qosAPu3PMxiYwfb3Ig2Yy+O/WliYwfb7FX/CjiYZWU32NjBNtqeKMoeo4NKNxnM/Cgz03X8/fsbeFrPYHpj6D5/9jq2/dSwi3G5IdfHPgFbh10uteH7n9qb9/VF932zcjPGZMHrvO/Kys0YkxhbTn5kz3Oj4ft9V04WYDev+aL72ndlYRfZk7JgtznI5WEWe9Vm7Oqx9yF70r+y22hZuXFoe6IonwJ0UEnZCU/O+M5V0G5a8CLbHkRu1PX5vv132tOXU5j+9OaI/be26s8BYTdjssh11rIynV2/NkT0CMxN9PfF5+tE9FfRvjem7GK/l5PdvOaL7kvLwnT2qiy4/W9M2c1+Lw+z2Ks2Y7ePvd/Yq/6V2//GlO8OclnZDbQ9UZRPATqopCRYM0LJ/2G/a3rF7ocAzkRLFC+y7UHkuq7PlLjEzPv+Z5j+isMPADw3y4Byn7ObMVnkOmtZmc6ulhP7+Y+Y+YcNX59GeAJ9kMvJbl7zRfelZWE6e1UWgINdHmaxV23GdR/7gLBX/StAy8quoO2JonyKYWb9OwB/AF4HcHnONs8CYACPNHz3VwBeF589Yve7fr3bHsS/Ra/PrLg0bHNqxjZPyu9hViS5POt3B+FvN2OyyHXWsnLjYwLz2sLrMJ3+J6O/n9m/JC4HuZzscjlYdF9aFm5wXBYtC/Y3B7Y8fBIxuZ5rrGXlk4lLwzYz87uWlZnX5hO7B7me7fVP//Tv4/8VUPYtRPTXAL4C85TllP3sdQDPATjLzD8WPzkD0+nckPti5n9LRGeJ6EmYlSyOYMqKMYtsexC5juszNS4Rz8B0WqY+fWHmHxLRT+w7/4ftPp9j5kOLq9hf7GZMFrnOWlams4sxeQpRHTjlWGej/z6w5WSXy8FC+9KyMJ29Kgs2fWDLwyz2qs24zmMfGPaqf2WPrWUlYq/uQa5ne0VRPj7EzHt9DoqiKIqiKIqiKIqiKMqnDPVUUhRFURRFURRFURRFURZGB5UURVEURVEURVEURVGUhdFBJUVRFEVRFEVRFEVRFGVhdFBJURRFURRFURRFURRFWRgdVFIURVEURVEURVEURVEWRgeVFEVRFEVRFEVRFEVRlIXRQSVFURRFURRFURRFURRlYXRQSVEURVEURVEURVEURVkYHVRSFEVRFEVRFEVRFEVRFkYHlRRFURRFURRFURRFUZSF0UElRVEURVEURVEURVEUZWF0UElRFEVRFEVRFEVRFEVZGB1UUhRFURRFURRFURRFURZGB5UURVEURVEURVEURVGUhdFBJUVRFEVRFEVRFEVRFGVhdFBJURRFURRFURRFURRFWRgdVFIURVEURVEURVEURVEWRgeVFEVRFEVRFEVRFEVRlIX5/wE946mviH2RGgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 575, + "width": 586 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,10))\n", + "plt.scatter(full_grid[:, plot_dims[0]], full_grid[:, plot_dims[1]], c=tb, s=14)\n", + "plt.colorbar()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/mt/cmys2v_143q1kpcrdt5wcdyr0000gn/T/ipykernel_42087/1795720621.py:12: UserWarning: No contour levels were found within the data range.\n", + " plt.contour(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAANwCAYAAABXjTmMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABYlAAAWJQFJUiTwAADEZ0lEQVR4nOz9f5Ae13nY+T5nMIBESaAGJMWBZS4oYui7uBEtO4Rox/LeimWByt5VEsc2IHk3yWY3tgi5UpvszTqCpI2dxI4jk3Zt3arNxiYl37t1795aU6Diu5uo/IOQ5VSt5VgkIa9MJ9hIA4q4lIyhKWJESKEIDObcP963hz09/eN099Pdzznv91M1Bcw73U8/3W+/3ed5T/dp570XAAAAAIBdS1MnAAAAAACoR+EGAAAAAMZRuAEAAACAcRRuAAAAAGAchRsAAAAAGEfhBgAAAADGUbgBAAAAgHEUbgAAAABgHIUbAAAAABhH4QYAAAAAxlG4AQAAAIBxFG4AAAAAYByFGwAAAAAYR+EGAAAAAMYtT52ANc65kyLyYe/98R4xTojIKRFZF5FbRWRFRM547zc1cgQAAACwWCjcRMQ597CI3CIiL4rIiZ6x9hR+zrl7ReQp59xxijcAAAAAbTnv/dQ5mOKce0pEVrz3ax3mXRGRKyJyv/f+XOFvZ0VEvPenNPIEAAAAsDi4x03Xe+f/Plnyt0dF5OSIuQAAAABIBIWbrlMisllxOeRFkZ1LKQEAAAAgGIWbrrfL7D65Mpvzf+8bJxUAAAAAqWBwEl0rUl245adpNL/Xrsw9IvINEflyaFIAAADY8RYRecl7f9fUiYzNOXfTT//soX//cz9z5S967z81dT5oh8JN32bF61lBd0vP+PsOyP5bvm3/t90iInLt+r5WMx/Yf6P09bZxrMaKKSfNWOQ0TCyLOWnG0orzJ/JM7d/vvffe4FgAMLR/+2//rbz88stTpzGVv/NzP3NFbn7j0r90zt3mvf/a1AkhHIXb+FZCJqp6jpxz7qlv2/9t9/7s7T8t65cPirStR7ZF1g5f3fVSpzglsdYvH5z9RyFW57xK4uzKrYW12yviaG1zkdaxhsypa6yynHZiWcypTayKnHZitWFw/bTi/OyNH6v9+1NPVV1AAADjO378uJw/f/7LU+cxNufcm26+2X30da9fkst/ckNE5KdF5L+eNiu0wT1u+lYqXs962jY1FtKlECmbt0+cbP7sp698LK31K/t97DhNcdvOa3079YmlFads3frEGnJbacXpEnvI9w4AYM5Pv/SSl4f/n2+SE+++Sfbvl7/jnGv9+CtMhx43XZsB0zTdAzeK1Btn65cPytrhq2bW00oeRVleVb1KbeL0jVGMo/GlgibNoktrHTVYywcAoM85d/fysvxXP3jiJvnz77xJbnvTPvm/3PcV+eGTr/+SiLip80MYetx0PSkiRyv+lr3e+5qhLvdrLSLtXsCUaa6fVi8u6g3Rcw4ASNMP/cjrvri9LfIP/8nsArC33nNA/rP//A3y6499U5xz3ztxeghEj5uusyJyouJvWeF2bsgELmxv7fr92FL3t1grlsWcirHIqX9OIQ3/mNdPM6embaWVk2YszW0OABiPc+77RET++n/5Bvkzbz2w8/pHfuaQfPLRb8p333vgXzvnlrz3frIkEYQet46cc2U9a5+Y/63sIdunROSc9/7iUDkVG1ZVr4XE0YylEUczVtn6TZ1T2Xxd44TE7jpf1b4REodt3m2+um3e1FM25DYHANjnnHPf+32v+ezrXufkIz9zaNff3vzty/K3/s7N8vu/94qIyA9NkiBaoXDba0UahuyfP2Nt3Tm3a4xr7/2miJwWkQcL098rsx63U5qJ5tU1rKZqdGnmNMb6TZlT1fRaxbJmTpqmzCn1bT50ThRzABCFH/6D339F/tZ//Ub5tjfvvVLib/83K3Lbm5bk7u/Y/+vOuf0T5IcWKNxExDn3Qefc2XlBdlREVpxz6/PXHiyZ5ZyIXJSSwUi894+IyOn5vB+cz39aRI7PCzt1IQ2o0EZW03RT9EiMucwpGqOaOY2Vf+o5pb5+WijeAMAu59z+tbuXP/mm25fkb//dN5ZOc/PNS/Khv39IvvTF6yIi7x81QbTGTQoi4r1/qOX0Z0TkTM3fz8nA97LBvgvbW+buAwrNacwGucXtlDrNbU7xBgBmPbD+pS357/77W+Xgweq+mr/x4wflV/7pS7K5eeN/cM79v733/YeJxiDocUNrmj18WlJfXgiLOWmyuN+FmKJnGQCw2JxzN9/2pqV/+h3/p/3y1//L+gGx9u938g9+/pC88KfbIiIfHCVBdELhhh2pNxxTX7+xsT3T3waprx8AJOzMC3+6Lf/w5w/J/v3Nj2n7i3/5dfLn3vEauekm9/edc98+Qn7ogMINQCdc3ggAgD3OuTte+1r3ke/7j14j/8lfel3oPPJzv3CLvPyyFxH52UETRGcUbtiRekM89fXD+FLfp1JfPwBI1M9961te/vEv3CrONfe2Ze773tfKX/nR14tz8jedc985YH7oiMINrVlszFnMaWypb4OQ9bO4DSzmBABIk3Puu5yT/+JHTr1ejt/3mtbz/4OfOyTLyyIn3n3TFwZIDz1RuCXAYoM29caqxW0eIjSnMXO3uJ2mEOs25/0DADvedf9Nf7i8LPIzP3uoeeISd63tl7/5wM1y7rdfFufcCeX00BOFG3ZpaoRN0eDTzGms9Zsqp7Ea0annNNX61cWKPScAwLCcc/d/+vGX5Sc+cLO85Wj3Z2l/8CMrcvPNTt723Qced85RKxjCm5EIzcZV1fRd4mjG0pJyTpqxLK6fxe2kHUsrztDrR9EGAHY45/bd87YDv33zG5fk7314pVesW2/bJ3/3zIp84Q+viYj8VY38oIPCLSFlhVLXxpVWHM1YZXGmXj+2+TQ5DVUQacbVWr+6OGuHr8ra4ernpA65TwEATPlrT3/hmvzUmTfKLbfu6x3s9N+6We74D/bJHf/Bvv+Xc+4mhfyggDNxgqb8ln/oWFPktHb4qqxfrn94ZczrpxUnKyDqtlXK27xNHM1t1cTiPgUA0OOcu+nb79j3P7olkQf+1s0qMW+6aUn+/j86JB/4my+IiPxtEXlQJTB6occtQgf235g6hSjU9US0jaEZy5qmXpsu8TTmt7jNNbaVVk75OBo5Wd0/AQCN/s5XnrshP/2PbpHXvlavaf/e//QN8p3fdUBuvtn9gnPuNrXA6IzCbUFZbqhZK7iKMfvMq9Xwz//0jVX2/z5x+ijG0dzmfWMNUUha+AwW9wELOQEAwjjn3nTzze6j3/VnD8ipH3u9auylJSc/99Fb5KWXvIjI31cNjk4o3CKl1cjWaMxqNow1Ci6txvFQxUif2EPH0oozdcE89PI1c9KKNXVOAIBJ/PRLL3n52Y/eIktL4Q/bDvUD77pJTrz7Jtm/X/6Oc25NfQFohcINkzeyNQ29/KnXT4vFBvsYy267jFTebwBAepxz37G8LP/Vu//jm+TPv3O48UP+0UdvkRs3RP7Kj77+S4MtBEEo3NA4CESb+brG0jL08rvEn3qblKnKacpcx8ipbawplz0GizkBAML85R9+3b/b3hb5h//klkGX89Z7Dsh/9p+/Qf6/n/ymOOf+3KALQy0KtwWn1XBbv3ywV6zi/DSYw+fTjDVlHE0WC/gxYmmxmBMA4FXOuXf8r7/+7+Wv/o03yJ9564HBl/eRnzkkN93k5M+94zW/75zTvyYTQSjcItW3SNLMw1q8oQoSK4VOto20t5WFYmTIbd4nJyvvfV0cazkCAIbhnHPf+32v+b3Xvc7JR37m0CjLfPO3L8vf+js3y7/+7CsiIj80ykKxBw/lWVCpN87WLx8MehbYWKzkMZRse1uivc2HeA8t7Bf5985CPgCARj/8B7//ivy9j6zIt715vKb83/5vVuR//NWrsrKy79edcwe899dHWzhEhB63KF27vm/qFKKg0QjNYqTcoB2i19RSHGuG2D5avbgAANucc/vX7l7+5JtuX5K//XffOOqyb755ST709w/Jl754XUTk/VpxnXMnnXMPO+ced849Nf//Soc4D87nPZHNP///WefcA1r5TonCLUEXtrfkwvaWqVhZHM1YGkLihDRoF2E7NcUKbfiHxEl9m4eso9Z7pxlLc58CAHRyev1LW/Lhnz4kBw+O34z/Gz9+UO7+jv1y25uW/gfn3M194znnHhQR8d6f9t7fLyLvEpG3i8gzzrmjLcOtiMgDIvK4iFxxzvn5/y967x/pm6sFzns/dQ5owTn31LfJXfe+f99H9/ytqkF1bKl9N3pZrC5xNGPFkpNmLIvrN3VOZbHIafxY+Tg/e+PHauflPAPAkuPHj8v58+fPe++PT51LG865N95629LmLbfsk8+e/3bZv3+aMUL+xf/yTfnr731eROTnvfedH8ztnLtXRN7nvT9TeH1FRK7IrOAKfnacc+7h+X+zgu+8iDzsvb/YNUdr6HFLRN234G2/Ia+avksczVhtl9EllkacLrRy0oxlNaeyeabMqWqeKffNMWLR8wYAozvztRe25R/+/KHJijYRkb/4l18nf+4dr5GbbnL/rXPu23uEOi0ijxZf9N5visg5ETk6L+6CZT13858zKRVtIhRuKGhqjMXeWBsr/6kuc4tx/bSkvs2novmlEACgG+fcHa99rfvw9/1Hr5H/5C+9bupc5Od+4RZ5+WUvIvKzPUK9XUSeqijOzuemwRyFWwJCGk8WG1ihOY2Z+xTbyeJ7o8nilwExbnOKSQBYaD/3rW95+ce/cKtYeIzafd/7WvkrP/p6cU7+pnPuOzuGOScim/MfNc65lfmAJye7DHJiGYUbWrNYKFpcnsXGs8ViWZPFvC1uc4sDnwAAyjnn3uac/Bc/cur1cvy+10ydzo5/8HOHZHlZ5OBB94X5aJB7furmn1/KeKjicsasF+7JNjnNBzt5QGY9dudE5Kxz7oNtYljGc9ywI/UGGOunv7yuA110XZ41FnPSlPr6AUAk3uW9yP/tb9wir/lTO033Yzcvy1/+j98gn/wX31CNOx9N8oSIPOa9P980fc6miDzuvT+Xi3VKZiNUbqYwsqSddx9AVMYs2gAAWHRveL29C+Xe8LolEZFt5RE6z4rIRWn5rLji6JTz1zadc+dE5EERib5ws7cHYDI0xAEAADCV+aWOKyJyfD66pIYnRGTFOXdCKd5kKNywMChMoS31fSr19QMA2OGcOymzSyQ1i7a8tg/0NofCLQEhjSvNBtjYywthcXkx5zRm7po5WSw0Yt7mY8cCACymeW/Yae99p6LNOfewc86nNopkEYUbdmlqhE3R4BtzmVM0QjVzGiv/1HNKff20ULQBAPqaP8fttPf+/sLrK865BwLDHJXqxwrcOv+31QiVFlG4JaKuATVV40ozpzHWb8qcqqafsmdkjP1mypzY5sNMDwBAqPkIkqe996dK/nxCZoOUlM1T9LhUX2J5UkTOtxyh0iQKt4SUNbC6NLqOLS2rxtKIoxnLYk595guJM/X6le1TU+dUNp/VnKpirR2+WhvH4voBACAy61GTWcF11Dl3NvfzuHPucRH5mBQKt/mz4dbnvXQ7vPcPiciDxaJuPtjJLSJSVhhGhzNvYizeuxJ7TmuHr8r65YMqsZrEvM2zIkJjW6W+zZu2lcX9k0INAKDs0zK7xLFy0JCSh3Ofk9mok5sl055yzj04LwhvmU933nt/SCfd6XEmjtCB/TdEtqfOwr6mBm1oDK1YVoUUXG3j9YmV+jav6yXrGkdrm6e4vQEANnV59tv8WW17ntdW+HuyKNwWVOoNNWuN/3wj20I+Ga3G/xDFiHYsjcJGI1Yx7tT7g2YBCAAAhsM9bpHq08AtNtT65pH99JWPpbV+ffMZI27bea1tpyFjD1nI9ZlPM5ZWHIvbHAAA6KFwAwAAAADjKNwWnNZlURpx8jG4XKuc5nZhG3fHtgMAAGOjcItUn4ajduPfWjFhqRhdVCltO4vrUpaTxTwBAIAeBieBOVYboFYKQqvbZwjWvhTQyMH6PWQWthMAANiLHrcFRgNtPFa3tbXLU4fKgWK5WsrrBgBASuhxi9C16/tE9vWLkXpjTbN3TGuIdKvbXGvdtB8xYa3Y0t6ntGNaigMAAPRRuAENaMyOa1G2t0ZhqnXZ5aJscwAAYkbhlpAL21ulrx9bav82l8XqEqcsllYcq7G6xtGMNcU2b2r8s81fVbetFmGbAwCA9rjHDXtUFYBVr7eNdWF7q1Os0Phd59Fcvy5xNGNpxGkTf4h52sTqGp9t3j2WZnwAANCMwi0RdY2oqRqQYy13qgZk6jmNsQ6aOaW+flos5gQAAJpRuCUgpGEV2vgas5E2RU5NsaZopFrMqclUBbwWzW0+1vrFnhMAAOiHwg2taRaKWiwuz2KjNuYCfuxYWtjmAABAA4UbdqTeAGP94mZx/SzmpCn19QMAICYUbgAAAABgHIUbAAAAABhH4YYdqT+XifWLm8X1s5iTptTXDwCAmFC4obWQxtzYDT6Ly7PY6A3NaczcNZfFNg+T+jYHACBFFG4J0CwiLDYex2xkTtEItZhTkzY5xZi/xfWLPScAANAPhVsi6hpQU327PtZyp2o8pp7TGOugmVPq66fFYk4AAKAZhVtCyhpYXRpdx5aWVWOFxu8aSyOOZiyr27yLodeviyHXb+p9s22stcNXa+OUrR8AAIgTZ/HEWLx3hZzGjzVFTlkRsX75YO9YWjmNGatNnKZt1TbWkNu87lluF7a3KAYBABgJPW4ROrD/xtQpRKGuN6JNjOwnZZrr1zfWImxvDfltNNT2CnkANw/pBgBgHBRuCyr1xnG2blbW0XIBqFXgatMqALVy04o3RsGlgYIMAABbKNxgjuXGrAX5AiK1IqKYg2bRNeX8MbmwvUXRBgCAQRRukbLSkNTuRbKyXiJ2i4gYWFzHrjlpr0v+frS6e9PGipNHwQYAgF0UbgtoiF4W7cvt+sSzWDRoSbVIjk3fbbd++aBKsaUVR4SiDQAA6xgODGqaRrebisW8NHOaev0sFoAWcwpVVUB1Gb2xLBajQAIAECd63ADAiKah99vEaTs9AACwjcItUlbujcku1dK4ZCsfQ2v9+sTSilMWt09Oxfm11q+rsjhDxu46n4VYdbSG3m+ahiINAIA4cc3MgrJ26WCe1r0/U19CmDdEHprbqW+8fBytfDRiacliTfm8tPy0VZc7UpQBAJAuetwidO36vqlTiIJWYaMVyyrNAS6yeBrzW9zm2ttKhGILAACEocctMcVGYJ+BCLRixZ5TU0M99vVrE6vPdtKMNcX6tYnTN1bIsorxKQABAEgbPW4JKWu4dW3MacWymFNo7K7zacbSopVTn4czl8XSiKMZS/M90LpnbQj55VLwAQAQBwq3RGiNRtdl+i5xNHPSijXVdqqLpVUsd4llcf0s5qQdq4uuOVO0AQAQDwo37DLmiHShscZc5hQ9eJo5WSwUYszJ4vpZWS4AAJgGhVsCxr4ky+IlYBaXZ7FhPUWxPOayYtrmFnMFAAB2UbgBiUi9EEh9/QAAAOpQuGFH6g3j1NcP42OfAgAAY6FwAyJgsUCwmBMAAECqKNywY8jnTlkQ8/qF5D72+qW+vBAWcwIAAGmicENrFBE2t0GI0JzGzF1zWTFtc4u5AgAAuyjcEkARoWeK7WTxvdFkcf2acrKYMwAAWGwUbthFs0E7VuN3qpzqYk3VixTj+rURW04pLhcAAEyDwi0Rx5aW1S7J0ry0q2yeulzr4lTF0shJM1bXOEOuX5dtXhdLI45mrCm3uYVBWijiAABIH2f7xGg14Kzed8T6jRunTay1w1dFRGT98kEzOY0dq8yF7S0KKwAA0Bs9bkCDrCDBONYOX41mm5f1tpX15FX1ylHQAQCAUBRuETqw/0bvGLE0jLvSavxnMTRjWaOxrfLza62nRk5DbvOqoq3s/1XTAwAAhKJwW2CWC4nUYuULQK2CxGrB1UcxBws5FV3Y3qoswvKvl01TfI1iDgAAhOI6nUitHb5aeS9RyLwacYqxRKrvb2obR2v9+sQasmjQzGnq9dPMSUvIujX1mHXVVIxpFWsUfQAALBZ63CLWpeFd1cjWWv7UPVxD99Bo5jRlb9Ii51TXYxYyLwAAwBQo3DA5i5fDxZZTbPlOIaRgq/s7RRsAAJgShVvEulyKNuXla1Wqcpoy1zGW3XYZddPH9L4CAACgPQo3dG5g5+dbv3xw56drLI2GflkMzQJCq1jW2OZ9c9KMpUGzgO+TU3GAkT6XVgIAAGhhcJJI9WmYrl8+qDZ4hHavilZOGpfpFeOkuM3z6zh1gVvMp0+cvijUAACANRRuEbp2fZ/Ivn4xUr+MTbMXyGLBpUm7WB66B67L/BRiAAAgdlwqmSDNS7u0YlnMKYvVJKSAsLh+Y+cUWmiFxBl7mwMAAFhHj1tCqh7u2+XZVGWxuj7jquyhxKnkVBZLI45mrDFzqiu4LG5zEZGnl6/s/P+erUOd4wAAAAyJHrdEaA5jXjV9l94NrVgWc6qax2pOUz742eI2F9ldtJX9DgAAYAWFG3bp85yrIWNpxdG8tE6rWB5zm7cx1vq1ofkFRVWRRvEGAAAs4lLJBIQ0WPteTjalMe9jink7hQhdP7Y5AAC2HFjfL6+5/pqp09hlaZM+oDGxtdFaaKE4JovLY+CM8Q2xzY8tLVNYAgCAyVG4YUfqhQbrFzfN9Wu6HJLLJQEAgDUUbgAAAABgHIUbdqR+ORjrFzfN9WPYfwAAEBsKN7QW0oAeu4iwuLzUCymLtLZ5vrDjQd8AAMACCrcEUCAgVOi+MuY+xf4LAADQjMJtQWg12Ns0srViWcypaVqLObU11vq1oZWTSPXlklxGCQAALKJwS4Rmg7Zq+i4NcK1YFnOqmsdqTloFlNX166JYpFG0AQAAq7hGKSFZ4zW7H6dPQz0fq2+D/9jSsnpOmrG01k8jTpZT/ve+sTTihFo7fFXWLx8cNKcsltaDuynWAABADCjcEjTWpWlTxJkiVl0x0iZOKKuxmqwdvho0XVNOWZwxtzkAAIB1XCoZoQP7b/SOEdrIjtXa4as7P33j5P/VyMkaze1U/L9WzK7zZzEo8gAAQOxozUQqpBeobt78v13j5GP0jVOM1SfeUIWDxjbXjJPRitUnr7LYXWINmRMAAEDM6HGLWJcCpWyeroVOWSO7a05aeWmuX2j8LvNo9r5p5aQdSyvOFDllg7nkfwAAAKZE4QYRad/QrZt+qssBNXPSijVW0aiZk1YsizmFoEgDAAAWUbgBmByXQwIAANTjq+UFs375oMp9UlVxtGNZzKlNrNhy6hJLROdex/x8fe5tK5sve8RCCK3HDAAAAGiidRIxrV6KPg1krcFJyoqJLvG04tTF7zJPDDl1jdU0X1PRVFYkVcXrEqtN0dZnHgAAgCFRuEVKq0jqW0BMXYBUxRmiB8/CNh9ie2vtC5m2RU9x+uKDyIdcNgAAQCwo3CJ07fo+kX39YqR+T5F2EagRz+o218xLo3Ci+AIAANiLwUmABlYLLmsouAAAAIZDj1tiqi47mzJWDDlpxrK4fhZyAgAAQHe0wBJSVox0GSGvqudEK1b2mlYsi+uXQk7asZ5evrLntXu2DrWOUxaraxztWAAAAEPhUslE1F2m1nYo9D5/7zptn1ix59RnOW2m7TtoSJ9YZUVbV2WxusbXzAsAAGBIFG4JCGlEW7z/KDSnMXOfYjtZfG/G0rZwGroA1F4GAACAFgo3tBZroagp1m1gsVjWMmTBxX19AABgahRu2BFjYz0TayGlacr1q1u2xR6sppzyf6doAwAAFlC4AQAAAIBxFG7YkXrPQurrh3BtRo68sL2VfG8tAACwj8INSaAom3Yb1C07xuH1Y8wZAACkjcItAWM32EOWl3ohFes2CM3JYu4i9QUVxRYAAEgZhduC0Gqwazbopygixlq/NnE0cxqr4Gq7nKqiqkuxVTaPVpyusQAAAIZG4ZaIuoZ020Z21fRd4mjG6vK3NtNr5tSWVk6asbSLwGJB1KdA0iquNHMCAAAYks3rodBJ1tDOD6TQtfF9bGlZJY5mLKs5ibDNQ2kWRkMVbwAAABZRuCVoisv9xoo1RU5rh6/K+uWDKrGaxLzNi0UeAAAA9HCpZIQO7L8xdQpRWDt8VS2GZixr1g5fNZsbAAAAZijcItWnoZ011LWKEc1Gv0a8fIy+26nu9y6xNNdPK1bZ/xdd3f2ZAAAAU6BwW3B9Gv/FRn/fWBpFRNl82oWlxjxTr1/Ve0XxtvvSUAo4AABgBYVbxLSKiKlV5WQxV02pr19KKN4AAMDUKNwi1jRghtY8Q6vKyWKumqyt3/rlg+ZymkLZACsMugIAAKbG18jo3Fhfv3xwT6+RZqwp49TF7zKPtd610PUoK1iqep9SLG5SXCcAABAnCrcFp9XDohEnX+Bo9vxY7EWyUCyXCSlUFqGYWYR1BAAAcaFwi1SfxrpmD5B2UaRdAGrGsVLkDlGIUqgAAADYxj1uCyr1+5mydbOyjtbyAQAAQFwo3CJ07fq+qVOIglbvnXYsAAAAoC0ulUxQ/rK3PsOYa8WJPaeQgivm9eMySQAAAPso3BJSNYx52wKgbjh0rVhdipJiLO2cNGNZXL+uheDTy1d2/X7P1qFOcYqxtOJYyQkAAGBIXCqZiLpek6l6VDRzWuT109JlGcUCqeq1LrG04ljICQAAYGgUbtilqXGvWWBMUXBZvCxQc5tbXD+R6oJoykLJYk4AAABVKNwSYPHZW7EWeKHLsrjNQ7TJqa6Amaq4sZgTAADAGCjcsEOzaBlbrIWUJqvrZ7GgasrJYs4AAGCxUbgBAAAAgHEUbgAAAABgHIUbdvR9bph1qa8fwjHsPwAAiA2FG1oLKYDGLpIsLi/lnNoUPmMVSZrLobADAADWULglQLPB3jSdZjGilZPmMqfoldPMSTP/MQqhtsuwmBMAAMAYKNwSUddgn+oSQc2cxli/KXOqmn6KQjmvWMTcs3Woc2FTFksjjmYsijYAAGAVN/0k5NjS8p4h4bs01rN5tGJpxNGMZTGnqlhT5yRi8xJEizkBAAAMicItMVP30AwZRzNWmzhrh6/K+uWDKrGaTLF+WgUjAAAAhsOlkhE6sP/G1ClEYe3wVbUYmrEAAACAtijcFtTa4atmCwlrBVcxZp95tdYt/wN9x5aWd34AAAAsoHCLlEYR0TdONr9WAZGPo7V+fWINVRT12V4UasMrFmsUbwAAwAIKNwAAAAAwjq+SoaZpEA/o09jeDEwCAACm4pw7KSL3i8hREblFRJ4UkTPe+80OsU6IyCkRWReRW0VkpWssiyjcgEgVi7bQAix/6R9FG0Kx3wAAtDnnHhSRJ7z3p+e/r4jIp0XkGefcce/9xRaxTorIh733x3Ov3SsiT81jbaomPwEKNyBybRvRNLpRJ+Q5gFXPegQAINS8qBLv/WPZa977Tefcu0Tkiog8LiJrgbFWROSszHrudnjvzzvnzovIx2TWExc17nGDivXLB3tftjfUZZYWL9/smlM2X/YvDWd9i75NF339AQCjOS0ijxZfnPeMnRORo1lxF+C983+fLPnboyJyskuC1lC4RapPMZJv/GsUW5qFURZPY/00ctGKm5/XaoGLvS5sb1HIyN5iju0CAFDwdpldxlhWnJ3PTRPilIhsVlwOeVFk51LKqHGpZISuXd8nsq9fjNQb/5rFm9agK6lv85RQlJRjuwAAFJ2T2YAkmwqx3i4iL1b8LYt/n4g8VjFNFCjcEpQ1rjSeP6UVy2JOWaymOCEFl9X1A7RQtAEAKiw5554q+0N+oJCSv50RkTMVf8564coufSyzItWFW36aqNEyTEjZ5Uwi3QqAslhdC4l8LO2cNGJZzCn7vS5OU0P66eUrIiJyz9ah1rkMFctyThqxAAAYyvVnD8m1V14/dRq7bL/0gnpM59xRETkhIo957883TZ+zWfF6VtDd0icvC7jHLRF1jXitUQe7fOOuFUvz237N9dOinVO+GMn/v0sczVhVcfvG0ojTN1bqji0t0wsMACiz7b0/XvbTMd5Zmd2X9n7FHEUS6HGjcMMuTYVCm0JirEJoqpw0i+WuyylTVnxoFiRdYg29fAqu8VC8AQCGMn+u24qIdHnu2krF61lPW9t45lC4JSCkYT92b5JmTmPmrpnTFOtXV8C0LW7GKIY0c9KKRRG4V9Vz3AAA0DIf9fGEdCvaQqZvugfOPAo3tGZxkAKLxWvK2hQ3MRZCMeY8Noo3AIAW59wJETk9v8Rys0OIJ2U2QmWZ7PXSAVRiQuGGHRQ2WBQUZtW4lw0AMKb5c9xOe+/vL7y+4px7IDDM2Zq/ZYXbuS75WULhBgCoVFfEUeABAPqYjyB52nt/quTPJ2T+8OySeYo+Mf9b2UO2T4nIOe/9nlixoXDDjtQbYamvn1UWh9i3mBMAAIvEObciIo+LyFHn3Nncz+POucdF5GNSKNzmz4tbn/fS7ZhfXnlaRB4sTH+vzHrcygrD6NCSRWshBdCxpeVRL70cuygLWb8pCsV7tg6NchmgxcJHMyeL6zem4nMOq/ZlLq8GAPTwaZkVVVX3pklJL9k5mY0euVky7SPOuYvOubMi8oSI3CrdR6g0iR63BIQWUlqxtEyRU1OsKYqtsXJqW4yMUbxMmVNVLIq2vcVY2cPhKdoAAH3MByJxdT8l85zx3q9VXfbovT/nvT/lvX9oPu3pVIo2EQo3tNSmiBirCJrqEkir9/6UFR5T90YNvfxFL7bGQsEGAMB0uFSyYD4c6SkRWZdXu1jPtK3Wcw8QPCsiT3rvN7OhTkXkce/9I4pp7xQKZY2qtkVEVawuxUjZJYVd4wyZk2asqddPRK+QmbrgGzoWBV84CjYAAKZF4ZYzH4nmw97747nX7hWRp5xzba+PXRGRB+Y/4txOb+9D2kVb3piXFY4dRzOWxZzaxhr7PkIAAABMh8Jtbj6yzVkR2fUMCe/9eefceZmNbNN2RJpH5NUbLs+LyMMaQ5Ee2H9DZLtvlPStHb4q65cP9o6R6RsLiFldrz4AABgehdur3jv/98mSvz0q9Q/2K+W9P90rowFlBUmqxUi2fhrFmwYKQKSCnl4AAKbB4CSvOiUimxWXQ14UqXyo3yTyhcCY85bFshZPK59iHM31BGJSvISXZyICADA+CrdXvV1EXqz42+b83/vaBnXOrTjnTs5/VjrmNhjNIqdvMZmfX7sYTBG9HhiCxUeHAAAALpXMW5Hqwi0/TbD5yJJfE5HH5rHPOuce994/FDDvUxV/OtYmhxBdLycsK4imvjRx6CKty/qF5GTxYd6LrLi9F61Izl8O2fTYi0XbNgAATIXW4G6bFa9nBd0tLWM97r0/l73gnDslIs845zY1RpYcqogYW1VOUxaBY2ynNg3eYiOaxvJwygqVRSxQWvW83Rg4GQAAQOHW0krohN77MyWvbTrnzonIgzIbcbJu/uNlr8974u4NzQM2dS0CFq14AAAAwAz3uO22UvF61tO2qbCMJ0RkZf4w7l669EaVzdO1V0srVtU8mrG04vTNiREl7SsWxxe2txayYM7Wu27dF3XbAAAwBXrcXrUZME3TPXBtHG2epFqfAmD98kG1xwEMXSh1jaUx/L5WHMRnkYuR0HVf5G0EAMAU6HF71ZNSXUxlr1cNGLKLc+5h55y3OIpkZv3ywaQLkWzdrKxj6tsbacuKtJBeOAAAMAx63F51VkSqLl/MCrdzFX8vm36z4m+3zv8te9B3kGvX94ns6zr34ggplC5sb9UOwkCxBcxQrAEAMC0Kt1d9QkQeds6d9N4/VvjbKRE5572/WJzJOXe05PXHReR0xcO8T4rIee/9eY2ki4qNqz7DyGvFsp5TyLDnY+QEAAAAVKGFOTcf8fG0zEZ83CncnHP3yqwHbc8oj9kIj8654/lCzHv/kHPurHPuTL6omz/X7RYRuX+IdSj7RrypRyk0jmasLnE0Y029fnU9F08vX9n1+z1bh1rlox3HaqyhcuoTJ3WL+EgEAAAsoXDL8d4/4py76Jw7K7PRH2+V2UiTxyt6z87N/77nb977U865B+f3ud0yn+68936QlmHTyG+hBUlTw0wrVtsiSTOWFu2cisVI9lrbYkIrztA5dTXk+nWNsyh4jiAAANOhcCuYPzA76F62+bPa9jyvrfD3wYU0oqYqbuqE5qTZSNQsTDVpFjZ1y2hTlKSeU1Usire9ip+J/O8UcQAAjINRJdFaaKGYsjG3QZtiZYxia8zltGExpxgdW1reVZg1fZFh7QshAABSReGGJMRcTKZecFhcv6ac8n8vFjKLYlHXGwAAqyjcsMNqYQNgHBRqAADYReGGHak32qyuX+r3U1lcP4s5AQAA1KFwQ2shBdDYRZLF5Wnl1KbIGKsgsVj4aOaUj3Vhe2theqOLzzdclPUGACAGFG4JsFhIhQjNaczcLW4nLW0LmzGKsylzslh8WlAs2CjeAACwgcINu2iOIDdWERR7TiLVRUSX4mLogmTqnMpiUdANi+INAIDppdu9sGCOLS1XNq7aFhFVsboUPVqxrOYksrdR27U4zAoGjeeIacUaoiDSWj/t7ZT/HXtZfBYkAACLhLNwQjQbVRZjWcypS6y6Ilsk/d4jrZxS304AAAB5XCoJNFg7fHXqFIDJ0dsGAMC0KNwidGD/jd4xUi9G1g5f3fnpGyf/LwAAADAFvkKN1Nrhq7J++WDnefP/do2Tj9E3TjFWn3haRRbFGgAAAKygcItYl+KtrBjpWgQWY3UtBKsKpKnXL0SXAWEYoc++svdv0d83BicBAGBaXCoJEWnfu1Q3fZtYTdNqxdJcv+w5V3UN+ZBpYBPFCQAAsIjCLXJTFUkxCl0/7e2QL+BSL+QoegAAAIZB4Ra5NpcANk071OWEfZapmVNorLrp+hReqRdtIouxjgAAAFOgcItYl6Kmap62seqm14plMSekr6z4pCCdYTsAADAdrmuKVJ/CYv3yQZURJbM4GkVOFqNvXsU4fWNpbCfEhwIFAABYQ+EWoWvX94ns6xdDqxDRLmg08xpyNEkAAABgTFwqiWRp9gQCAAAAU6LHLUH5y7z6jPKnFSf2nCjeAAAAMDUKt4RUDarQpcApxsp+bxsr9ZwyTy9f2fn/PVuHTMWxkpPVWJo5AQAADIVLJRPR9DDoKWJZzKnrMqr+/vTylT1FUvH3UEPF0c6pSyzt7WRtmwMAAAyNwi0BIYVLaHEz5mh6U+TUpTirotnIr4o1xjK0pu9iykJpjG0OAACghcINg1j04dSnavynXnTUrd9Q635sabn3/ZSpYDsAADAdCje0ZrEo0+x1HFtTwWGxGGuTU4z5W8wZAAAsNgo37LBa2AAAAACLjsINO1K/DMrq+qU+kqHF9bOYEwAAQB0KN7RmsQCymJMWi0WGxZw05dfvwvYWvdFzbAcAAKZD4YZBpFxIhZiqsEm9oKqzyOsOAADSR+GWgJAiKbSQappOsyDTyklzmW2WpVkoVMXqsgytWFZzKptnypwAAADGQOGWiLqCo23hUzV9lziasdouo0ustvMVC4mqwiJEcb4+BYRmTsVYfXLK5u+TUzEPrTh9YwEAAAxpsa9nS0xWWGT3ofTpqdKOZTGnLJZGj55Wg3+MXrxUYlmLAwAAMCQKtwRNcTnjWHGmiLV2+KqsXz6otkwAAACgLS6VjNCB/Td6x1g7fFUhE7vWDl/d+ekbBwAAAJgaPW6R6tMLlBUj2b99epPyhU3fXqlikdR3/fqiaAMAAIAV9LhFrEthUTZP1wKlOF/XHq6q+aZcv7J1w+LIBr3J/4DHfAAAMCUKN4hI+8KkbvqpihyLOSE+FCcAAMAiCjcACEBBBwAApkThBhFpfz9Z3fRTjcBoMSfEJ3vcRBmKNwAAMBUKt4h1KUbK5tEsarRy0o41VRzEqWvxlvo9cXXbBQAADIvCbQHli5I+BUo27/rlgzs/fWJp59U3llY+iFOb4q2sWCu+lmoxBwAAxkFLIlIahYSVGDHFA8pkRV6+OCsWfvRWAQCAPijcInTt+j6Rff1ipF7QaF4yyYiUi+vC9lZtMVY2PQAAQ/jGc7fJSy/fPHUau1y/+uzUKSwULpVM0IXtLbUGpGYczUbtmOuXepGLetm+S1EGAACmRI9bQqouzepyb00+Vp84mrGsrp+IyNPLV0RE5J6tQ51j5ONoxuobRzPWEDn1jae5zRcRBS0AAOOgcEtEXeOpeLlX11hacazGaopTNl++0Z//vUsBUBarayGRj6Wdk0asvgVcMa+uhtrmmXysbN9KrdA5trQscmPqLAAASB+XSmKX1O/hsZp/VSHSpUDRKmo0aeZUFmvo+EPMAwAA0AaFWwJCihGLBUtoTmPm3mZZdY11iw35tjmNsQ5T5mRx/QAAAKpQuKE1i4WixZxCNTXu2zT+xyoUUs/J4vpZwLPoAACYDoUbdlgtbAAAAIBFR+GGHXybjkXB6JHd8OUOAADToXDDwrBamKZeRKS+fgAAAGOgcENrIQXQ2EWStaJMs1hpE2usIsliMZb6NgcAAIuNwi0BmoVU03SaBZJWTprLbLOsMQqFLsvQimVx/SzmpB0LAACgDIVbIuoKjraFj1ahNFZOWrG6FHX3bB3a0zjv2ljXihMSu+t8ZevbJ1bXOFNt82NLy8H7W1ks7hEDAABd2bq+DL0cW1re0zDsWoRpxRoypz4FpmYsEb0iy1qcRYgVGqdpH2mKQ9EGAAD6oHBLzBSXMo4VZ6pYa4evyvrlg2rLRfzKvpBYVGwHAADGwaWSETqw/8bUKURh7fBVEzEQv2KRT7HyKmsDAwEAkCoKt0j1KSjWDl/d+dHIQ7O40cwr/2+fGFhsFCYAAMACCrcF16dQys/XtxgszqsVp08s7RgAAABAVxRuEetSTMRUgMSUK9JU1tvGZZIAAGAKFG4R6zJgRkyDbHRdv+wn/3vf5ce03aCDog0AAFjCzRtQLUosFTh1uZQ1wMsa6vkYNNoXB0UbAACwhsINna1fPhjN5Ywhje66583RaF8cDEZS78L2FtsIAIAJcPaFmj69bUMVgX0KLoo1ZNgXyrFdAAAYD4VbpLSKpL6XNlq+zJJGJboo9iixH+3FNgEAYHwUbhG6dn2fyL5+MSzdiwZYQ2ECAACsYVRJAAAAADCOHreEVPUSdBlIIHTUxTFjtYkT2mPy9PIVuWfrUOtcyuKIiKlYFnPKYlnKKYujEQsAAGAo9Lhhj6qip8vlY5qxNOM8vXxlp8Ge/3/XWGX/nzKW1ZwsbvOquAAAAJZQuCWiroDRvF+nTayxltt2OVWN8y6N9rJ5ujb+tYqGoXPS2k5dWdzmAAAAQ6NwS0CXZ5T1nU6DxZzaqGv0ty0INIvJtsvQmr6LKXMaY5un6tjSMs9yAwBgZBRu2KFZSI1dbLW5p63P34egmdNY+aeeE8UbAACwhsINAAAAAIyjcAMAAAAA4yjcsIN7VgAAAACbKNzQWkiBN3YRGLq8pud0aT3Hq00czZzGeg5Z6jnxPDcAAGANhVsCNAupMQsuazm1baxrNu6rYo2xDK3pu0h9m6fqwvaW2dFeAQBIFYVbIuqKG83Cp02ssZbbdjlDN/67xh+yt08zpy6xYtnmFG0AAMAqbmpKyLGlZZVvwavidCnEymJ1Leg0Y2UN9KeXr/RurE/ZKzZ0HM1Y2jlpvHdZLAAAAOso3BKj1cs1VS+dVqzQIpZGe7x47wAAwCLhUkkAAAAAMI7CLUIH9t/oHWPt8FVZO3xVIRt9VvPC4ji2tLzzAwAAYAGFW6T6FDf5efsWSVkBqFFs5eNQvGEqxWKN4m0vtgkAAOOjcIMarWISgG08CgAAgPFRuKFz0USxBQAAAIyDwg2qLBVzXM4FAACAVFC4RaxLkWSpsMpU5WQxVwAAAGAKFG4RW798cJR5ho5fNU/fXLkPBwAAAKngWrIFtH754E5vVp/iKIujUQxmMTTyAvq4sL21c5ktxT8AALCCwi1SfQsbrcJIu8CiYIMFFGwAAMAaLpWM0LXr+6ZOAQAAAMCI6HFLTLGnoM/IilqxpsiJHhMAAACkhMItIWXFSv5+nT5xNGN1iaMdS0Tk6eUrO/+/Z+tQpxjFOJqxUsvJaizNnAAAAIbCpZKJqOth0ux9ahNLMyft9SsWNsXfu8bRjNU1TkjsrvM9vXxl8vUry2HqnAAAAIZG4ZaAkMIltLgZ8xLDqXKqapy3bbTXTa8Vq0shMcb6tZVyTgAAAGOgcENrmoWiltDlxdgob5PzWOtncTta6KEEAADpc87d7Jz7CefczWMul8INmFjqRULq6wcAABbOx0XkYRF5cMyFUrhhByMxUmQsijbv87Gl5V4joQIAgCT9oog8NOYCKdywg8YpowouCt5nAADQw4ve+w95759pmtA594TWQinc0FpIgTd2ERi6PIsN9qac2uQ81vrFnlObWBe2t+iNBgAAeWecc486594y5kLpYknAsaXlxoalxd600JxC1m8K92wdqrzkLsYCsWz6oS8dnTKnqlgW3zsAAGDKu0TknIicdc6JiDwpIpsi8rXCdGsicq/WQu215jGppiIp5gIwY7HBrpnT0AXX1DmVxaLYAgAAI/q4iLxRRNz89+M103qthdprhaOTuoKrbWFTFatLHJHyQU+myimTNfSfXr7Sq9GvFacYK//7lHkNtX4asTRzAgAAaOFFEfmEzEaWrHOriDyqtVAKt4Ro9oZZjNUmTujllVoN96Hur7ISK/WcAAAAWtgUkV/w3n+5aULnXOMAJqEo3CJ0YP8Nke2pswBsyxf6Fu+RBAAA0ToVUrTNvV9roRRuC2rt8FUREVm/fHDiTAB9xd7ZsiKurgeXQg8AgPE4506KyIe993X3itXN/6CIrIjIWRF50nu/6Zw7ISKnReRx7/0jasmKSNljAJxz3z3/2x8Wpv281nJ5HECkssKr77x94mTz940BWGNxEB4AAFLinHvYOXfWOfewiGSFV1crIvKAiDwuIlecc37+/4vaRVuec+5m59xvOeduiMhTIvKUc+6Gc+5zzrk7tZdH6wSydvhqp563sgKwaw9e1xyq0GOyuKqKruI+wT4CAMB0vPens/87556SfoWbiMgjInJ0/v/zIvKw9/5iz5iVnHPvkllxuCkin5fZgCUiIreIyNtF5KJz7qT3/te1lknhFrEuxU5V75hW4aSZU16Mz6nD+EKLNgAAkJZ8ITg059wbZTai5Cnv/Scr/v4+Efm4c+6c917l8jQulYxcm8sUNS9prIvVNafifBe2t3Z+muSnpZG+mCjaAADASD4kIqfLijYREe/91+eXaN4vIg9pLZRuCphEYxsa2I8AAFgczrkVETkx//Wc935zoEUd8t5/umki7/1555xrmi4UhVvk2lyWuH75YGVvWNvLG7Vi5eMwwiUAAEB0lub3qO3RdZTILuYjS35NRB6T2f1mZ51zj3vv1Xq8cjZbTOu1FkrhFrEuhU5ZwdW1YCrG6hMnj14SdHFhe4t7HQEAybry1VvkhW/cMnUau3zrGzdNnUJmU2bD/p/LXnDOnRKRZ5xzmwOMLKlWjLVBKydSfXqnsoJLo4eLXjJYxRcAAACMYnvMnrUy3vszJa9tOufOyexRA9qFm3PO/XDTiJHOuR8Rka9rLZTCLULXru8T2dcvBgUXAAAAEveEiJx0zp3I98b15b3/kHPuS865oyLyMe/9S/m/zx/G/T6ZPVvuLq3lUrglKOtp0LhsTCtWvveDy9kwFHrZAABAiaPNk7T2XhE5JyIPOec2ZXZf3S3y6vPoNkXkvcWirg8eB5CQ4lD4fYbGL4vVJ6+630P/JiLy9PKVnZ++tOJoxlqU9dOgGQsAAMTJOfewc87PR5Qcjff+vPf+FhH5uIg4EVkTkUMyuzTykyJyNGTkyTbo+khEUzHUpperKpZWnC6xRGRPIz37/Z6tQ63iFGNpxRkiVpc4xVgW18/KdgIAANE7KtWjPN46//fJoRY+f/D36flDt8V7r3ZPWxE9bgkIfUC1RizNS9HaxNLsWamK1XYZFnPSjGVx/TS3EwAAiMv8nrKix0XkeMUz206KyHnv/XnlPG52zv2Ec+7m7LX5Q7cHK9pEKNwwkDHvNbLYaJ8qJ4vbYiyLvO4AAERuRWb3h1WaPytu3Tl3b/71+XPaHiwWdfPnut0iIqd0UxWR2eWRD8tsxMrRcKkkWov5eVkxNu4tXgpoMScAABAP59wHReQ+mV3qeHT+2rqInBeRiyVD/J+TWYG3WYzlvT/lnHtwfp9bNkDIee/9kI2VX5RZ8TaaOFvfGITVEfnGLLamKEhiLCbbSH39AABAe/OesjbTnxGRPc9rK/x9LC967z8UMqFz7gnv/X0aC+VSSeyw2os2ZiFFLxIAAAAanHHOPeqce8uYC7XZUodpIQXesaVlkz1492wdMtcD1JSTxWKyTU4WtzkAAEAP75LZpZtnnXMis1ErN0Xka4Xp1kTkXlFC4ZaAkCLJam+ahqkKm7qCxGJOU8bSYnGbAwCAhfNxEXmjzJ7fJiJyvGZar7VQLpXELk0FnmYB2CaWZqO8KtaUDX/NnFJfPwAAgIm9KCIfk1nBVvfzbql+xlxr6XbDLJi6Xre2xVZVrC5xRMoHPelSABZ7W/o0+vOx+sYR6fdA6bKcNGNZXD8rOQEAAHSwKSK/4L3/ctOEzrlntBZK4ZaQYqHUp3dMO1ZonKbLPsfoeZsylsWcNGNZzAkAAKClUyFF29z7tRZK4ZagqS5nHCMOUKeulxcAAEDJ15xzPyEin/Dev1Q3off+81oL5R63CB3Yf6N3jLXDVxUyAWziiwIAADCgj8vs4dsPjrlQCrdI9Sm8snnXDl/tXcBlMSgEYQ3FGwAAGNAvikirh4j3ReEWsS7FUtk8XYuu4nxdC7jifDS40QX7DQAAGMmL3vsPee8bBx5xzj2htVAKt8i1KZTqpm1bdDXF6hKHXrv4UTwBAIAFcMY596hz7i1jLpRWFloLKbDWDl+V9csHR8gGVmgPiqMxwIhWHAAAgJx3icg5ETnrnBMReVJmjwj4WmG6NRG5V2uhFG7YEVporV8+2Fi8UbQtHs0CqUusC9tbpcUjxRsAAFD2cRF5o4i4+e/Ha6b1WgulcItcmwKpruBqW2hpxcrHodjDUCjeAACAohdF5BMyG1myzq0i8qjWQincItal0CkruLoWTMVYfeLk0cBGV1W9biLtL+Ucaz8sy6u47OI0fEYAAJjUpoj8QshDuJ1zjQOYhGJwkkj16Z3Kz9u3l2v98sGdH8ACraLG8kArlnMDAGABnAop2uber7VQzv4RunZ9n8i+fjEotJCysp63WHqpyvKs60kEAADjKnsMgHPuZu/9SyXTfl5rubQEACQpK3ZiKdgAAIBNzrmbReTo/Od8RW/bR5xzR2U2aMlFEVkXkfMicrFF71wtLpVMyIXtrdIfrViaedVNG+Lp5Sud87Ecx3IsLWNu89iKNo3PBgAA6M8591vOuS86526IyKdF5ITMRpF8sWz6+QO53+u9/wsye1TAj4nI4yLyJa2c6HFLRFODr81lVlWxtOJ0iSWyt6Ge/X7P1qFWcYqxtONMnZNmrLLiaOqc8vP3jVPMq0+cLvKfgZDCjEsmAQAYzX0y6z17e9vLHb33nxSRTzrn1kXkLVoJ0eOGXZoajyl861/VUzNl75RmTkOvx9Q5lcXqGr/sy4Ax94Ouz6tL4XMIAEAETve8R+2UWiZC4ZaE0G/qrWmTU11jeqqCy2JOddrmNMY6TJlTm1hD9nJRiAEAYJL33n+8Z4DzIvJ1pXwo3NBerIWiiM2CqkmbnMdaP4vbcaiijksTAQBYSHsaFs65P+uc+8T8/rfizy9XxLmolRCFG3ZQbE1TkFgsgjRZXD+LOQEAAFM2iy947z/vvX+viLxXRF6S2YAlj3vv/4L3/icr4nithCjcsMNqz8KYA0aMPTgFpsH7DAAAGlQWXN77r4vIGRH5uvf+l8ZKiMINmFjqRUSM65fP2do9aFa/YAEAYJF47y+K4mWQISjc0FpIw9Fq4zL2IkJz2j4sbkeLOQ3F6ucLAIAFo3YZZAgKtwRoFlJjNgjbLKuuUa7VYG8bRzOnqum7rJtWLM1CKOWcAABAklaMxeEB3Kk4trRceTlX22JMK5ZmTiKzBrXGw5Kz+SzGGuph0BZysvr+TfkAbgAAYNatzrmviciLNdMcdc59sebvtwiFG8pkxVC+WOrag1ZWdHWJ1TanumJPxEYxM2Qsa3EWIdbUxVrZZwQAAJhwaP5TZ63h72qXU1K4JUjrckfNyya5JwcAAACROSP9BiC5VUSqnu/WGq1pmNPU6wab6DkCAAAJedF7/4t9gzjnPqiRjAiFG4zK99C1KQTqevasxWkT01qcunhd3rumvLTidIlpTax5AwAQGa2h/tUeGcCokjBPa0RMa3FCp7UWpw1rcUJjHlta3vUzJGvPiQMAACLe+3dbiiNC4YZIxFaU9RnIpW+c0NjaMdcOX5W1w1d7x+k63ZDbins0AQDA1CjcAKhYv3xw6hQAAACSReGG6KXSG5LC5XJDF29TvdcpvDcAACBuFG6IgtaDvJsa4KENdK04fZcDAACAxUDhBiyAlArAVHpYAQAA2qBwA9DJVL2KVdMPFSelohcAAMSLwg3m1TWc2zSqx74MUis3a3HaTDfEthozDkUbAACwgsINpoU0nLWmCZleK07s04QYougZMzeKNgAAYAk3iySm2Njscz+QVizNnOqWEeO9T9aKpC5xyra9VpwuMbXiAAAAWBJfSxeVyhqkXQqaut4mjVjZa02xyuZ9evnKrt/v2TrUKp+qOJqxinHabLe6WFPEaYpV5djS8p73r882b4oVus2H3KcAAEA6nHM/4b3/uJU4IlwqmYyx7m0a4j6pUGUN/7LXxqSZk9a6DJ1T8TWtns6uRWnVa11jAQAAiMhpY3Eo3BbF2JeHad9DFNLArovXtrioml7zcsx8vlXr13e928QK6SFrw/qlq322OQAASN6KsThcKpmCse9varrUsW2vXOglbTF5evlKr8sTq2I1xQktOsa+J3CMYqi4za3EAgAAUbrVOfc1EXmxR4xbhMINXdQVXEMMJjF2HMzuz0q5x6hu3Si0AACAskPznz68RiIiFG5R69orlS+U+vZsjdXbF1qQVBWnXYbx71PgVhURGttLe5tXFc1ttvlQvaZ9YsTeawsAACZ3RkQu9ph/TUQ+qpQLhVuMviXeTMFl1dRFwxjxqrTtdbOyrfrEoLcNAAAoW/fe/2LfIM6592okI0LhhogUC5Kmxvp73vzyntfWLx8UEZGnFXMSkVZ5acXJ93KtHb4qIiKf+upNO/PWDXMf+iiGpjhV+bSJE3KZbF2cIVAIAgCw8NzUCRRRuCEqoQ3qn/xzX5bVOzb2vH7f/N+1z75NHnz+W63j9s1LM87a4aty5MjudXyPrNYWb3Xz7vK5uyuLpWNLy7J2+KqsXz64q5csKx53yU2Tj3PP1qGdOEEq4mS/d1G1fSjaAACA9/7tluKIjFi4Oed+UETul9nIKk96738197e7ZPaMgy/N//aHY+WF9LznzS/LW7//j+S2d//xnr9d++JtO/8/+c+/Xx5b+tMoG+rvefPLct87viC33fn8rtdX79iQ9X/+/XuKnPw65ud94dnbS+O/U6S0eDu5/SZ55/d8aVYUf/ZtcmFeJL7nzS/LkSMbe4vlz76ttOg6trQs7/yeL7Vb6ZI4GgW3RhEIAAAwtFEKN+fcoyJyKvfSaefcaRF5l/f+qvf+GRH5kHPuEyLyK2PlVcY5d0Jmua6LyK0yKzTPeO83p4yFMMeWlmdFybv/WF7689/cO8H8tWPf8YL8mIhceOx7x01QQbaOR3/gj+TAd7yw6283f3FD3vnc6p6iKz/vkSMbcvQH/mg2/V2zQuulZ1b3LGft0upOYSYiO0XbW79/Nu998gWRz75N1i8flCNHNnZez8umyce5Z+uQrL35ammPaJNiHA0UawAAIAaDF0jOub8ns5620yJybv7ycRH5sIicd87d673Prpe6KBNeT+qcOykiH/beH8+9dq+IPOWcO96m4NKMhXBrh6/KbXc+L6/8mVdqp8v+fmxp2fxALcV7wLKeqgPf8cKe9XRfnPW6yefuLp1/p7dsPn/WA5kVcJkXnr1djhzZkGOXXy0A1w6/WmzdfNfGzjSh65AfxTKbr9hjWJT1CGbLzefTldaIqgAAAGMao2frfhG5y3v/9dxrz4jIY865B0Xkd+TVW4++NkI+pZxzKyJyVmb57vDen3fOnReRj8nuXsNRYkHfa/50Wdz/8u2y8dxqFI33svvRNp5bldt++61y8xd3v/7SM6vyxGfftqtIKt5HtvHcqtz2zPMiJb1s+WkuXVotLbay5YiIXLq0ujPgS1kP2sZzq3vuhQtVvIxz9Y4NWbu0uuuSyS5ieM8BAACKxijcLhaKth3e+zPOuZPOuUe99+8bIZc62VCdT5b87VGZFWJTxNrjinxZPuH/Wp8QyfrEV0Tkl+Y/tb4oIr87dDoqPvEVEflKyR9+v2qOR1/9743CvNn/K+ctiTGP87N183xFwvfqplhIjnPmBuYCACA6SyMsY7Puj977x0TkEefcL8vsPrCpnBKRzYpLGC+K7Fz+OHYsAAAAAAtujMLtUefcR0Vmg5Q45/5ZcQLv/adF5BERmbKYebuIvFjxt835v/dV/H3IWAAAAAAW3OCXSnrvP++ck/mIkSdF5Kma6d4t5ZcXjmFFqout/DSjxHLOlW4nETkWmAMAAACARIwy7L73/vPy6n1fddNdFJFbhs+o0mbF61kR1iY3zVgAAABYYF+7fKu84aXy569O5eVvvnbqFBZKr8LNOXeziDwgs9ETj8qsGLkos+LkvIg87r3/nb5JGrIyVqz8YwTy5j1x9yrmAQAAAMC4zve4OefeJSJfFpEfk9mz154RkSsye0bb/SJyRkQed87dcM79M+fcW3pnO7yVitez3rHNiWIBAAAAMMQ594POud9yzn3ROfcTudffn43xoanP4CQnZfZ8trd77989/7nbe78ks+LtQzIr6JyIfEBE1p1zn3PO/XD/tAexGTBN031rQ8QCAAAAYIhz7lEROSezAQe/LiJr2d+89x+T2aj5j1bM3kmfSyU3a57P9nkR+bxz7r3e+7c75+4VkfeJyPtl9uDtx0XklPf+atn8E3lSRE5U/O3o/N+qAUOGjLXHIXmL/PPv+4nSBx4/8dm3yae+epMcW1qWd37Pl0qnKZu+6D1vflnue8cXZOO5VfnM5+4Ofmhx1XLzceqmyWuz3GzZ+YdVr96xIbfd+fzO31949vadPERkJ4eqdczHyx40XTdNlTbzZtskn3eZF569vfK9K8Yu286XLq1WztuUY9N69YkZKluntvvnkI4tzQ6nxQeer18+uOu17IHldTlnsdoq28fq/h46TTZd1d+anivpva/9OwCM6fjx43L+/Pmp00DEnHPvl1lH1fF53SPFHjbv/TPOuQ85537Ke9/4hOEQfQq3Q8657/Le/+8103gREe/9eZnd83Zm/vyyB0Xky865e733z/bIQdNZaS62zk0Qa4+b92/L6h0bcvQH/mjX6y89sypHntuQY5fvlrXDV0unqZo+3yDLirbb7nz+1QIisHGcLbes8HjnPE7VNMUia+3SqkiLwuDC9pbI5YM7DeO1S6tyn3xhJ+5tdz6/UxwWcyhb1trhqzvbYfWODZHPvk0uFIqdbJqg/ErmLSusEO7SpdXmiSaU7YtZ8RZStHVVFjP7oqRumSHTNP0NAIAFc6/3/u6miebFm9pC+xRuHxKRi865v+e9/9XQmeYP3H7MOfdBETnvnHuLkZ63T4jIw865k/Mc806JyLn5qJe7OOeOlrzeKVaoAwfKG1A337Uhq/OC58iR8uKpaPWOjZ2iJVPsCSmbpkpdL0oWJzS3nVgBy63zwrO37ywvn0PTssqmOXb57j2vhegzb5uYIuEN7LoelFBrh6+2Kq5Tli+Ayqz33I9j9r6l/8/UKSStbL9r2h8t6tLbi3E09cz32de0YrWJ8yc3rnRaBpBTetVhhbXmScJ0/qR57zedcydE5Jxz7rSInPHef6bF/A85586JyEMi8pNd89AyX5/TMusN3Cm25pd5HpVZd+gu2QiPzrnj817FzrHa2L//eunrLz0z633Ieomq/l503zu+IPLZt+38nu8BeuHZ20unKRPSe3TkyIa89furewHz+vZEFQujbF3K8ixbVvZaNt9OAdsxx3yPS/FyuqJsmWXvY3bJZzFmJrsUMUTTCVIrTpeYIY4c2TBTEJVtg+z9KbtUcojl1zVc+jZ+aTzbVPXZi61oq5KtB/vftJp65rt+UaAVqyqOSDqfBZjT5h4AtUeA9dqbvffnnXNvF5GHZVbAXRSRXxGRx0IugZzPv9knB03e+0eccxedc2dF5AkRuVVmo0Me995vlsxybv73PX/rEKu1qkIsdJqsOBCRXfeFVWnqIQopYtoWY32Kt6p5ywrT0GVl9/11kd9+ob1t+fyaYlYp5ptdXqhVQHWNc6mk5zNFZdvHUiO0TXFnKe9FEHr/4aLLbye20XCatm3bgqvp0mwKLhhXdsvYnmsinXM/JbOR91X0/lTML/m73zn3gIh8UER+UUQeygoy59yPi8invfdfLs47fw6cWvehBu/9OQm8/8x7f0Zmjz3oHauN5ddsVfbEiDQPbFGmrGgpxrvtzucbC4mqGKF5lcXXuAcsNO9ssJK6ZfbJp6xQqSoEQ5dTNXBI9q9GcZSPo3lfWVksjS8IUC6k8GrquYO+0G2+aIVzcRt03X/zsRZp+00htODSfB+0C0og0EMi8qRz7udF5GPe+5ck1wvnnPtuEfmwzO6F+w6thartyd77R2Q27OW9Mkv0R+d/ekREZH5j3kWZ9U69KLNuw6Myu+cLHRSLkZCRCMfUp8ibSlZENRVvITG0culLq9BqihNa2GWjdNYtp02xmd1nJ9J8gg5pHIcWLWWNhZDex+zyyaYG5hBotNrUagCmhHUpTClw0xVScLX57FC8QZP3/uK80+oTMuuwEhHZnL+2Mp/s6yLyLs3lqu/F83u9Tjnn3iizkRXvF5G3y2wlbp3/XJHZij5S9UgBtBPSm1WcpqxQKpsmP7hH2fRVBVfxb3VxYqJVUGWyXj5Ndb1wVdOF9H6FFIF1hVkWL2SaKsWiOn+fW9OJOeTEHXpyL07X5pLRfPE2JK1RJWkEj48GaTmt4g4A+vLeP+acu1tmt4y9S0QOzf+0KSKf8N5/QHuZgx3N5gXZJ+c/MCjk0sdsmrrevWKcuuKsqniz1NvWd5o2xrzsr6kgKhZTZdNXFVwhPWRa04jsfR/aFE0hA8S0mabt8vPzjDGwSkgjl8IsbvlBGOpGZiybZ4xppkCvG4AxZLeMiYg45+4SkReH7JSa/uiKToYodEJ61WLuMcs39q3dJ9Wl1y3/EGotWWFWV0D1KfDaTpPX5hLKup7C0MsZNaYJjaFRwI3ZSGUwCJv6PodviGm6FnF181GUAbDIe682CEmVpaEXgLRY6BmrsvHcamUR01TclP29+Jp2b1tfQ+TT5X64oR+CfenS6q7BVkLnKfs/gHFd2N7a8wNo6XppO6DJOfcW59yPOOc+Ov/5kfkAjOoo3CK09creA1B2OWPZT1/axVoxnlb8Nr1oVoqw/GAofeYP1abwqZo2JMaQ0xRfi70ws/Icui5ohKOLkHsp66YJna5pGkxH835jYErz4f7XReSszEaaPzP//5X5yPqqKNwWQFUB17WAaioOQ+JY6rmrK376FlZ9l68p32tVVpj1KZKGKNSaRp4MmcZCURdzYVaFnhNoq3uAct00ZfNUxWKf7efY0rLKAFDaLOaExeCce1RmjwV4RkQ+Jq8Wbh8TkS/LbLT9f6K5TPbmBWLxcQBD5BQ6lH9owWSld65Jl2e2tSmmQmP3LeJC16NrUTbm4CTZNFXxUizqgBBtnvfVdE8bBdm4tB5l0mYwnbFyAkI5535UZoOSnPLelw7E6Jw7KSKfcM49WnhQd2fs0dhFq5Cy1OsWS+Fl3Zi9VxZ6ygCMg8LLvrKHoQ8RVyPWoj0iA5N5QETe5b3/fNUE88cFvFtEPiIi79NYKHt2hK5f39+pGCnrhcriWBtlsahpREjrA4nELvTh2rEtq0rIUP3ZNHW9ciHTAItOs+cFYJ/BSL5eV7RlvPfn5j1vKti7F0jIvVwhmoahzxdWfaapknpRVixYig/JrrqMsO1lkl0erh0aV/tRAJoxQouoMR4bMNaz3IDYhRZ39N7ps1QIaR0zD+y/IXJdISEssq+1mPaK1kLtfBrRWtODkOsKgOI0bRr9XYbW7zJNqtoWG2UDhLQt0kR2Fzpd5h9bXWEWQ/4Aqk01iAWF3fi0nleZxelbvK0dvioS7yNpYYfrM61z7qe897/UdqGMKhmha9eWa0f3qxpNL/+34jTcUzSevkWH9aJljMcFjDFiZEjDoO80sfa2hYwuB9TRLKCyWE0xKdrGtXb46q4rDvpcMl6cl8vPYcCD81Ela80fF/BrJX/qdM8bZ96E1PWo1U3btQcH3WlcKqipKZepn92mqWnEyHwxVTVyZJ9puso3OotF01QNUnow0Efo8P5asdBeal/QUPBB0Y+KyIpz7rdE5HzFNCfm/97qnMsXaisicm+Xhab1iVwgoYVW2UAPxXlTLNr63EM3lmLxVvU+hEyTTdflvRyqUGozXH6b6bpOU1xWftCQMXrX6rQtyhg1DcDQ+hxjqo7TXS5zpNiCUR8RkTfK7DLI+xumPV7ymu+yUM78ETpwoP03i1mRkGKRVlQcdTKWIk5jmrbGKNryv1f1SOVfayqmQqfpkueYqnoIrPcwlA4LfmOSVAAMJIYvhtoWgRSAUPaiiDwiIo2XS5a4teN8FG4xunat/duWNdAXoXgbqzgL2ZZtHibdJ1bI+xt6T2Pbh0+3MXXPVhshvVpdpon9kq7U1gfAbjEUbSLtzwM8mgXKNkXkn3jvX+oys3PumS7zxfHpxB5NI0rWTVfWuA+9HA97C6Cm7d60vcumqxt8pk1+bZ+JVrwva1FPcvnBDqoaMcUBEcqmCx00IVaprhewaLSLtaovALt86RZ6xUZorEU9r0Hdqa5F29z7u8xE4ZaQ4lDvTaPy1f0tpuKt7X1iVdN1mSZkWdlrfd+XLvrGKzvJxToSYoiq+8lEmp8VtUg9USmvGwA9mueL7HyU8jkIUblLRDr1momIhDy8uwyFW4I0Gv+xFW+ZYhFX13NV98y7/GtNI0CGbm9Lo0iW6XNP2SIIHQEvlsuMAEAknksjRXTOQeuXD/IwLGg4K7N71UbFrouo9Smo8veFAQCwiLr2oF/Y3lLrfdeO1eTa9X0qy8JCO+Sc+2djLzSer1kwuZB7tbQuQaxaToy9gAAAWNb2aoF8cVR3n2+bOF3yGCInoIW75w/hftx7//ExFsgenaC2A1KECO2dCrnPrs9DmEMv4QzZBtk0dZdChkwT8vdULPr9BVkjoOobXRoJAGIVWuzUPcqka/HXJY8hcgJaOOe9f7eIiHPuzzrnfkVErojIR3sOWlKLSyUX1JEjG7t+yv6e6VKQXLq0Okoh05T7GD10+eIuZDoAAKyqu9Sw6TLEKZ5DqZUT0EZWtM3//3nv/QdE5BdE5CPOuV92zn33EMulcEtMSNFSVexUFSBtC466grBP3Kp5morQkDhNBWDVNCH55V+vy7FN/lNZ5N42keb7MBalgXBsaZlvsYGEWTiWWcgBaMN7/3Xv/YdE5EMi8jHn3Oeccz+iuQzOvAmpKj7aPKOtrqjoco9b2SWEZcVlU459eu+GvIyx6za3dGmllQdep2KRGhvHlpYXan2BRWbxs96mh48vmzA059zNIvJhEXlARA7J7CHd3+Oce7eIfElEHul7GSV78QLQKhJCeqVC52s7Td+eqPw2aCpOm6YRab7XrqrQDYnV5f3KF1ZVDxel+KpnsVFiUbHxc2xpWeTGRMkAADAB59xvee//wvz/3y2zgu2kiDgRuSgiH/Lefyw3/V0yu4zyBe/9L3VdLoVbxNoUM5Z6eKaiVWROEatKWTFGgQYAADCo+5xzPyUi7xORe2VWsJ0TkQe9958uTuy9f0ZEPuScu8s598vz6b7cdqEUbhELGWa/bLpFFHK5aJftOfQ0mfxDsPOvxSDkEpWpL2Ohtw0A6lm8NDo0Jy6TxABWRORBmRVsj8isEHumaab5ND85L95+su1C2ZMTEnIPWtPle3V/1yx+QqdtEy90OaGPFOgaq2maqkcklN3vly/O8sXbkEVb/iRYdbJrO03IsqqKt2IcrZw4kXeTf5+sNeIA6LBwfLSQA9DgEZldEvn1kImdcz8oIt57/xmZFXyt8alITFUB0GaargVgyDPb2lyy2We6psKsbTFVl082XV2+fZ5dlzd0L1vIw1CHmiYkn7JYfaZBN2w7AGVCi60xe+8oADGQ8977tj1mj4nIG51z50XkTJeF8jiABIU8Q61pmvzf6gqWpmnq5mnzt6pp6nILXce+04T8vYuxL4Vsehhq6DRt47ddVv5vTdM0Dd8PAAhXVwS1LZC0YlGYYSIPd5jnhIh8QEROeO9/p8tC2dsjdODAuA3RkF6y0GlE+g/tD3CiBoBhNB1fyy6V7npMLva89YmTz4lzBDTMBx+5T2b3s4nMhvd/UUQezo8YGcp7f15EzvfJiT0bpTQLpDFGV0R6LN4IDwCY0SqONIssCjYo+4DMnsf2fu/9P586GREulUzSVAUQBRoAAPFalMLnwH4ePolgZ6wUbSIUbgDmqk7Y+ddDpqmablEaBKk7trS86wdAGob8PBcfZ9M1RvYzdS5YGN57//G+QZxzb1HIRUS4VDJK167Vv20aA2WEjE4Zuqy2A5fU3S/XZyj/rrkN/Rw8S89oC7nfoMs9CW0aBNmIkCGDk0Bf23tFji0ti/DlNWBK06i6ddPn9XkETfG8tnb4audzm1Ysija01GnI/hJnZXavXG8UbgnIDl51B6SQaYqmenD3UCM4lhVIXaerm6bsZJKftuzv+fdn6gdraxVifb69pTCbRkjvKoC41D13MfRz3vbcVHV+1IqjHQuosKkUR6sApHCLXdUDmsv+XjXNIsi2Q10B27QtQ6apOomEnlymLtqwuCjUgDSEXtLepGsvV1MbQyuOdiyghFeK80alOBRuMavquWm6tGHRirem7dR3GhEbPWUAAABQc8g591sicrFHjKPzHxUUbgkKKSCqep76XibYZpohhW6DpoKLnjIAQEyy+4TLXi+q64UL+fIyZL6yv4fGEQm7DaRvTkCNE/N/u1zu6OfzafXcUbgtupCeprJpQ+7xCr0sMXSaNtOFGqrgChm8I3SAD61YxZO2Vqy+6wcbqhp71rQddAFYZE2fkZBBiLqcJ0PaEWPHonhDR5+Wfj1uayLyg0q5ULjFaugentBLLkNjtZmmrhes6zeAYyqeKIsN4rITafHkWXWyDWmolhVMVcssnqybcteahgY32goZ4bRsOvY1LKK2+33VFzdWvhgtfhHcNTbFG9ry3r+7bwzn3Jc0chGhcEONqYqipuVaLNaahJ5EtRuZbb5trSsWQwrKpt6aWHp0YBP7DzCsGD5jGuf/9csH5dqNfQrZYAFcMRaHwg0AEIfQHmfrjU/AKj4/wC4rSnF4HAAAAAB0hV5Bkaf53M6usfo8pw4Y2CmtQEtagYAxxXiNutUTSJu8rK4DkMd9bcBwqu6Z7nJfXd09331z6hoLyHHOuR/vG8R7/4xGMiL0uKFC6IOl294o3DT8ftPAI/m/W312Wt2ACXX3ioUOqhAyXZehoKvucwsp1orTNA0aUXdPHaCBS74AfSH3TYd87rTiaMcCSjzknLvovf/M1ImIULhFa8iipaw3q6xAKxZRmappqmJV9Z4V17EqlsXiLa9qNDyR+qGYQ6YpTld3csoXS3WxmobxD5mmKkdgTHw5AADo4TGZPTz7F51zXxORTRF5UUQe9t7/4RQJ0ZpaYF0uNwyZJzSuVqw+D+cMKfy6FIehhYpm0aMVa8xpYAfvF4BMyGNepsihbBqtWECR9/5DU+dQxD1uCVo7fLWx4InxHrEu6tYz+1vfaUL+DgAAAPTB1w8LahEeQqnxPDjNh4wDAAAAXVG4RaquUNAoNkIHJ5mK5Xvbmgb4qLu0o+lB1201xesy0InGNNx7BABxsTioVGhOXCaJVLAnR+ja9X0i+4ZdhtWiKKOdX0hh0zRN3cmjzXX4mkJG2+obQ3MaxCOG99NiQxOIgYVCx0IOgDV8KtBKyGiCWtMMtbw2KEiwKDSH37Yg/wiOGPIFUtBmMC0+l8hzzp0UkQ9774/3iHFCZg+7XheRW0VkRUTOeO83NXK0gMINQbo+JFOz8CkWaHU5cVkeABE+/4CmuoKrbQ+ZVqymIpCeO7uccw+LyC0yG2L/RM9Yewo/59y9IvKUc+54KsUbezOiFPrATRptwOKhoQZ01/T5Kbs9oOtnrstzQUPi9ImF8XjvT2f/d849JbMestaccysiclZE7i/EP++cOy8iH5NZT1z02KsBAFEIuZ+UxhowDq3PmrU4iNJ75/8+WfK3R2VW1CWB57ghSqHfCHIgB9LAQ9+B4S3KZ+jA/htTpwBdp0Rks+JyyIsiO5dSRo/CDUGqDubHlpZ3fkJihBRcddPl/1Y3Td3vAPaq+5ysHb46+XMfGSgIGNaQ50qN40d2HOoba+pjGQbxdpndJ1dmc/7vfeOkMixatAjWdC166HXvxenqCrCQWBrXxwOYyRo12SM38o2cqZ+fSPEGhGk7QFfVubN4PGijWCD1OX5oxaJoG8zS/B61PfqMEtnCilQXbvlpBuWcu1lmReTR+UsXReRJ7/1LWsuglYtWNC9X0orVdRoaeEC1ugYOA/8A8ai7NzT0fN22UKo6fnQpuLRipVC0/cmf3CZu/+rUaezyzW/eNHUKmc2K17OC7pYhF+6c+wUReaOIPC4iWRF7VEQ+4px7o8weS9C7gKNwQ6Wpv10HAAA62l6R0rXQaZqvTdsihWJrQWyP1LPWx0qbiZ1zb/Hefzlw2l+W8sLs8yLyyXnh9qBzrnfxxj1u2CN/DXkqB80L21t7fgC0lx0T2tzfCiA+Xb+4bZqvTVy+PEYLKxWvZz1tmy3jPeac+03nXO1O6Jz7QRF5pK4g895/XUQekldHv+yMwg27lBVqMRdvFGlAs7G+iQcQp7YFVNX0XQoxrVgUgUnbDJim6R64ohMi8iYR+bJz7odrpnMiciggnp9P2wuFG3bQGAMQysJIkwiT7x2lp3QxaH1huX754GA9b31iWcgJpjwprw4IUpS9Xjp4SpX5owV+cD7ff+uc+62y3jfv/adF5CHn3DurYs175c7K7JlyvXDkXgDFA3iXE3aM97vR0wb0s375IMVZxNoc6xlwBkPQLt44HqHCWZn1kJXJCrdzbYN677/unHtcRB4RkdMy6337oPf+VwuTvldEfts5d5eInJfdA6LcK7MewRMag5PQ45a4shNx1cm57nIEijYAiEvZvb1V9/lyzEQMNNojsbVnsJtzrqxn7RPzv5U9ZPuUiJzz3l/suMjHROSU9/4hmT0L7ieLvW/e+4ve+7tF5H0i8oyI3Dr/eUZEPuC9v9V7//mOy9+FHjfswgENgAjHAiB2F7a3uCS2wrXr+6ZOAXutSMOQ/fNnxd3rnDvuvT+fve6933TOnRaRB2VWaGXT3yuzHrfOI156759xzt09//9FEXm7c+6DUtL75r1/LL/8IfCJRnL45hjQU3d5EsUdYFuxeNO4dUIzjtWcMI55AXSfzIqro/PX1mV2ueFF7/2ZwiznZFbgbRZjee8fcc5ddM6dFZEnZNbjtSIix+f3q/XxtcKyHnLOPSYin3DOvVdETnrvR7mOl70apaqKn7YHQq04dbEA6Mvua627pyTGe18X2dPLV+SerZDBz5CSunNnl165ulsw2sSqymvKnDCu+eWHbaY/IyLFYi7/93PS4V62Os657xaRPZdZNvW+DYV73BJXdsBqOog1HeRDacXpMj2AMHXHg5CBABgswL6nl6/I08tX9vw/j8bt4tI6r2vSzIn2A3p6n/f+k1V/LLn37c4hk6FwWzCWTs6hB9M2B11L6wdYV/y8UISlp6xIq3sdaZjqkQ9DnNeBqTjn3iIia865n3LO/Ypz7pfnPz+Rn24+OMnbReTTInLeOffjQ+VEK3cBaB+8Qy5jmOKgnOXEsNZAOb7YQB2OnYvL4nndYk5YOI+JyK+JyMe891/PXnTO/Vnn3K+IyG977/959nrh3rcPyOzet2c1E6LHDQCABNGrBsxQ4KEt59xHZfYYgF/KF20iIt77z3vvPyCz3ri3FP6W9b6dlQF63yjcFkDds3vKpo1VlnvM6wCMIeRYEIrBSexiIBIA6GzFe/9MwzSPiEjZs+OK9749oXXvG9fNLKCqkZYoeIC0aX7GKdjSwzkAAHa4gGneJbOHbJfKjTz5gMx6305573+nT1L0uCVOc2THjOX7ZGh4AOG6fl7WLx8M7sUHML4hPpsWz/2hOVnMHeadnfeU/Xjxckjn3HfPL6X8cN2Ikxnv/SMye07dU32TonBbcEM1vkIOkhxwAVtCetGyog1x4HJJhNA6z2qe1zn3Y0re+0+LyIfnP+vOuRvZj8wKsHtF5ESLeF8v3ivXBYUbWmlzINU86HIAB4ZRV4RxOWSa7tk6REGHHRbP65o50X5AV977c977u0Xk3SLyARH5xfm/d3vv/4JGIdYWezN2yQ5wZY25Lge/suGlux5Em2LRCwAAe4UUaRw/0xXzeb1PnD55AXnz3rdPT52HCIVb0tqeiPMHuPyBvu+Bb8xv6Gh8ADqy3rb1ywd5MDcQqbLzulZcjfZBFkukf3tDs90CWMWlkgnTuNSAgx+wmLJijaINiNPQ52/t+GPfZwfEiMINSeGADbRT95mhaFscHDsRg7XDV3sfl9YOX5UD+28oZQSMiyM1eikeQLsOZlB2IGZgBGBYxcZ6aIOIy5Jtq7unCYuhTyFu8bzOl0jADD1u6HyALzuQdjm4Vs3DgRrQdWxpmZ6VhBXf37ZDs7NvQOu83iZ+l3m65kS7ArGjcItQUxd/mwMTJ2oAANLBeR1IF4VbpMqu886/lv0bwwG86tIJLpUEdF3Y3uLyuUSVHeu7vNcxnDNQzfr71+W8TlsAeJXtTzga9en2H+IAzwEWiAfDZqdBq2jLx2uav2ka7rPTNeX25LwO2EGP24LSaKxpHsw5MQDxGKPxmN2v1XRfXsg0YwvJRyvvoda7aZuHLrvve6f53mrvK23e5z45hd63mPJ5vRira2zaGoidnTMdRjHUSV7jYJh/0C8HV2BxtTlOWezRaZuT9iidQ2+TkN44jTjFmH17ETXjhdJYx6n2ca3zusjs6iDO60B/FG4ROnDg1YN404Ewf8CP4dLIvvEsNuKAWOS/PCn7HTrKjsVdCgmtSyS5ZDZ+mu/fEAWW5pe7fWOtXz7I9WaIFrtuwrITuLXLiADYYe3LDs1j1aId96y9l9b12T+6PHYB/WkVldeu71OJA4yNo02iNE7gmr11WrHq4tBoAfRkDSQrvW489HtYFnvdNO9Fw0xs5/UpYwEWsVdHrPjNk1ajpu4a+7YHwqpYXQ6oxVj5nGjQoaunl6/s/P+erUMTZmJLdknSEEVbl21e9hnPx6mKNeTxoSq21j4Vsn6ZpnUMySnk2BySU+gxvilWm3NF3fppxWmjzXs3RqwYz+saOXWJBVjGpZIRunZtuVXRNlVRo5mTxfVD/IoNouLvi6CuUTN00Vb2e5/Ps4X3L2Sf0hqAIpunTdFWlVNIPmXzNcWqyq3te1W3jl0/x8WYbeLk5w1576piNcUJ3eZjnQc5rwPTonDDLk0HyylGPuMAjiFUNaQsNP6nMvQlkaHbPHtQeP4nNNaU2uTUZf26NNjb7udaD2mvi9Mmp6Z8NPepNvHrcptym7d5PfTvGjlMuUzaEEgJhVuEijfVhhyUxj4wT3Wg5JIIoFpxoKKun5epP2cWirY226BtvnXTT7XuY+XUJtZYy41pm3c991o8r1vMCZgahRt2cAAEZiwUBprKCraxi6+mbZraNrdg0bf5FOtnYZtzLt+LbYJUULgBQMKm7h0DAAA6KNwAIFFtirah729jxE4AAPqhcMOO0Eae5W/wuRwCGlIoMix/Tsu02eYW3p8YjjVN28nCdizSzGmK9Ytxm4uEHS8sHlNSaLcAbVC4JcDiAVczJw64GILVBpSWtoVF8REjmrEzqW/zKm3Xu256zVhacaZ6X8faTrGvn8VzqMV2CxADCjfs0nSgbHMg5aCLGC1qcTGl4jbPBk/J/zTNU/XamIbuLZq6N2roInDKnKpiaeY01v7Z9tyreV6f4rxvMSdgKBRuiag7MGkdxDUPfponFg7K6KrYkJq64a+tT6/b+uWDrXrhQjVt8zaf5/y8U7x3Zdt3qH2qTxzNnIrbvGusoXLqG0srjlZOxW3cdZsv6nmd9gFSwx6dkOwAlTUm+hywtGIV42jGKg5vHsM9J7AntWIt1IXtraDP4vrlg70HLil+Prs2PEMKpaIpjgsWCocYYpHTuLGsnteHbh8AKWHPTtCU36ANHacuFsUbsFufb7TXDl9VKdpEwounIRpbQx4XOOYgRtbO6xbbLIBVXCoZoQP7b/SOMfTQ3wDiUzwujHmcoMEF9Jf650jrmKTRjgKmkPYnPGHZt+Fd583/2+c+Fo0YZfG6xuQbcCAeqTcygRj1PQ8PFS/fdukd5/nOswOToscNKtYOX+39TRi9gICetkVRm8+fRsE1dNEWe3wsjqqRU7vE0WblvE77AJjhzIPONA+kmrHodQOQx31uiEGx8GrarywWakPFKovdpdeNAhCxo8cN0Ryo2+DbcEDXkSMbU6dgBscXaGkaQKjuZyxWzusA6HGLWpdvnGI6APe9jh2AjnzRFuvnUqtnjKINWrJ9qXhe1jqvW/ycxnr8AKygxw3JGvtbyVixnRAq9l63vvs6nxMAwJQo3CLW5Vursnm6fvtVnG/98kG1WH3yKkqtMNG6XKY4/xSX4CAOly6t7vyr9bm8sL218zOEurht93E+FxgL5/XwvLRyAmLCmShSfQ4++Yfq9j2IaR4Ehz6gZg2vmAcSsPjAU9h0YXtL9X3OirchZJ/JGPfLmI8nSMcinNezdVRZP7otEKn4zpKQa9f3iezrF2ORv3UqFnBVjcVYGmSMaocqbYq3fMMvJG4M6tY/9HNTt/1i2Q6wqbh/Wiq4rNJax2vXezaigIlQuCVI69vrfKPESizNnKCDwhFatHsJh4qZxQU0hBQjnNfHjwVYRGdxQor3i/S5f6Q4X59GilasoXLK32sz5D03IZ5evrLzU6Yst6p828ap+1tdrKlYzAn9Ve2bXfbztsspi9PleKC5b2rFsphTFksrjkZeWnHy8frgvD5NLMAqvo5IRFNDvM03T3UNp7bfYGnFGiOnzFTf0hVP8E8vX5F7tg7tmS7kZJSPpRWnLtaQynr0QtYP7fblNo8K0eplzd7H4vtX/Na8rmjL/79qP2jKtRinmFObdW2K1YbWfj5kTl1jDZVT9rvGMcHKNtcQ23ldpN3xS3P9AMvoccMuTQ2UNg0YzVhacdpMO+bBvupb2S7f1pbNY+kb5DbK3oOq9cM4tJ4FWdawLRNStIXEaUvrs6e5fM2cplw/izlVxZpym7e9MqKrKc7rY+ZPzxtSQuGWgJCD0tgH+ZiXZ02bk/3UDdcpxZZvbI4c2dh5jtva4au9Hh+hcTmbVuwx9hvNnKbaz8fKSet4F/s21zzvacUa+zw79jYAYkD/MYBexjwhUpyF0+wxzj94u/Qh3F8JjxXTe9jmUrmY1gvDadoPuLQbQB/0uGFH6t9IWVo/rrmHtrEfEp31wJUWchWs9WqkLqSISFnq6wdg8dB6BNAa3xrb1bd4ywqxqgdur94RXqgBAAA99LhhR2iDz2JvUUhOFvMOQYH0KrZFGEu9y6HavLdj7QcWc2qjKacYc54qltYyQ3OyeL6KOSeLuQNdULglwGLREvNBMmv0Dtn4HSr2WI2e1Bt8MdJ6DuGlS6t7etvyv288t/v/+d+bjPEetV1GbDlNtZ/HlpNmLKvHFs3zrMVztsWcgKlRuGGXMQ+UU3xTZvVEUNUwiP3bZ0xnyC8e2hZs+c9d2X5YfG3s+/XKdPm8WPyMjXFsaUszp5jWbypNn6UpzrFjLnPqYwmgicItEXUHpqkKH82cxlq/IeKF0jrZhzSM28Qq+xlLWQ/S1DnFpE3xtn75YO3fq+55C1F89lvde5f//NV9FrX3cy3FWJo5acWymJMmC+tXFqdtrDHPe6FiPa8DqeCTkZDsQJdvrHU5+JXF0YzV9YB8bGlZLY5WTtqGLN6AqRw5siHHLt/dWEiWfQ6Ln/s8qz3SFj/H5DRuLK04xfOVhfMe53VgOuzVCdI6WFm8RNFiTrGqaxADmlbv2JC1S6silw9W7nNN376zryJVWY90Xa93yudQizkBVrGHR+jA/hsi21NnYd/a4auNl38tquzklj/J0TBOj6VGzM7z3grFm6UcgZiFFICYObD/hsj1qbNo79ILr5eXna3396Xt/VOnsFA4Yy6o1A/w2fr1Kd5S/Za/qqHc5lKTMbdL6KU0Kb5XYyreh1bU5kHbZbLnv2Wfxy73w/AeIyXFz4DWl40pf2mp0XZZO3xV5HmtjIBxUbhFqs+BOd9A63uAz8fqe6IoNhw11i/73dpJbKpGaFNjuZjThe2tPfOMnXfI8mjQ70VPFrA4mr546RNLq42gHQtYRIwqic4Hw7ICSStWV9oH9iEavxZHAxOpLn7yzwezUCAV87GQU+r69rbddidfbwMhupzDyubRPBdPfV4vi2UhJ2AKFG4R0zrAd4k15AG56zLqprd4sLbUI0LxE7/s2Wd9n4F25MjGrkKtb9EGYBpTnkO1zuuasSy2A4C2KNygLrWDo6UCq6u6daBoi1/ffbTsM5tawZbC5xiLoc05NLXzbVHq6we0ReGGTuquU5/qfrIhlztEo2/MgqnuMkjEr+/7WPbZqXvgdp+HcU+FfR2xaHMuG+t8a/G83jYna/e6A11QuEWsy0GobJ71ywfVDmhaOVmIVdT1ErTi5WtT3ZdFwzVtWvf9Xbq0uqswKxZpMRZtQCymPO9ZPRdrFlwUb4gd145Eqs/BZ/3yQZUhda0eTPPrpx1bpN2zz4qF3tRDmlO8LY6yEUG7GqNY08wXWDSLcF4XSf9RRkATzpIRunZ9n8i+fjFSP+ilvn5AiDbFUPELjzFlXyhQvGGRFPf3vuetRTjvaazj+uWDcu1Gz0YUMBHOkEAHXXuu6PECZuruuywr3vjsIFWLUHAB0EHhlpiyxk3Xb7CLsaaOM2RObWK1aUDS2ATao+cNeFUM51CLOfWJBVjFHp0QrSKh7TfhbWNlr2nF0ogTGqts3qeXr+z6/Z6tQ63yGSKWZk7AFEKOZ6l/9lLOSTNWDDl1jWXhvBeak0ic53UgJowqmYi6Ro5mD5HFWGP1gIUUbVWvNXl6+YpqLI04iF+bBssY97dlg5xk+3uf/VJzP7f42Rs6pynXz+rxbsicusTSOu/1WU7baUNjNY1+O1VbA7COwi0BIQelmA9cFp53VqbuJGyxULKYE4aj+S3zkSMbOz+Z4mMD6rzw7O2y8dxs2uJnrG8BV9Q21hifC82cLH6OU8gptm0u0q5IilGseQNDov8YrXW9pHBIKV8O8fTyleBLbNo0MKZ+NAHqNT12Yqj9PSvOsqIsX6xlv9c9563ME599m4iIfOqrN6k0gq02pFM21jYf6ngXG4vnUIvnizbFa6ptBCwWetyww+JBWZPV9Zuy8cGJzKay5/8VfzSVXSZZ7GHrY/3yQVm/fDC6Xo02OcWYv8WcNU2xfou+zQEMi8INWEAUbOgjX9CFDGXedD8LAABoRuGGHTE35kNyt7p+U4z4mH/gMVBVfFVdBpm9vn75oNo+1OZzMNZnxmJObTTlFGPOU8XSWqbFbR7K6jk0RMy5A3kUbmgt5iIpRrE3HqEj67VqGomtb+9WNuhIVpwVi7fQAUnKsH/2N9U2tPjeWcxJy9jnWYvnbNoawF4UbgmI9eAWmtOYubdZVl2jwWKDopgTvW12Fd+bpt9Dp+mqWMz1MfRno238MT6rU+Zkcf3GoLnNLa5fGzGf/wHsRuGWiLqDYJsDZNO0mrHaGGv92s5bdkLvcpK/Z+uQaiyNOLChz+M+2hRvIfeqdfWeN7+86/OT7e/5n7Y093OLn70hP8dTb3Orx7shc+oSS+u812c5bafVijVVToB17M0JKRvevcsBK5tHK5ZGHM1YVcPgd83L4rfjFGqwZGcwk5b3xFUdizKpf/ZSzkkzVso5cV7vHqdPXoBV7NGJsXjNe+o5Aai3eseGrN6xIfLZt8mFr97UOH3Z4xC4tBeLKvVzqMWcAKu4VBJoUPaMKwDhbrvzebntzuflyJENec+bXxaRV59NV1TV+KJRhlStHb7KeQZAEAq3CB3Yf6N3jNRPFNn69V3HlLcR4tBn8KE2xc5U+3q+gKM4wyIp7u8a56vUz1la53WNdhQwBc6SkVo7fLXzYAL5g55WnIzFWF3XUWs7WVJsKHD5mU1NlwpW9VQ1TdNV/oHbGiNLlqFoA7ornq9Eup1DUz+vA7Gjxy1iXb51KptH81s6rZymjpXit5Y0jOOW9Uw1jcTWNE2TI0c2dhVq+f+X/Q5Aj8XzntXzehcpntuxWCjcItfmINQ0rVYsizm1iVU3XazFD/cNoU7ZPl8s4Ip/y/QZ4a5rbl2wr4+Pbd7NVOdQrThW2xoUbUgBR1VgYPnGC5cmIjXs01hUHNvjsX75IIUbkkCPW+TaXONdN+365YOqsTTiTBWrabrQS9HKppvqG2iNBzRjsVy6tFp5P1vb+9xeePZ2eeHZ2+XSpVX51FdvmuTB4Ozr41ukbR56mXLIdBbPobHn1GV6wCJ63CLW5SBU9q1T14OZVqyqb8KmjBXy7VxslwENNXAFxhHy/mm8x8Wi7NKl1d6Dk2w8NysCZ5/DxWnMI11N95p2NfU5tCp+l3mGPq93Qc8bYkfrLVJ9Dsj5A1ffA/uUJ4a6WPkDs2ZhqsHCw4SnXr6mFEfKvLC9VXsZVvHvodN0VVesHVtaFmkYWfszn7t7J6cy2et8oQB0o3ne0zJELK22CxArLpWM0LXr+3rHaHtpZGyydUt5HTGTNfovbG8lUbQV9VmnobdHnwF/svcrn2OK7x8QSuN8tQjndo0vnDXaUcAUKNyQLK2ToFYsDGfRG/xTrn9I8XbkyIa883u+FNSjxv2YQDecp4D0cV1KYoqNmz6XHmnFGiqnvpdVhcZqOhlqrh8QmyNHNkS+Uj/NW7//j+SFZ2+XtUurcuGrNzXGLH42KdoQmzbnhTHPMdbP61ZyAqxir05IWeOmy30udd94a8Tqeu9N2T08Iu0PzlU5acaqi1PXCH16+cqu3+/ZOtQqH+04VuXXL7V1i0WbB3HffNds2iPPbcixy3e3KsTG+LwMGctCTjFspz6xrOU09TkmNI5mLK3zunZOIhRwSAuXSiairnGj1UjSjNX2G/Sx1q8NzfUT2dtgqHptrDgWlA2bXVyXp5evRLt+IUIfPdF13jFGWHvpmVcHN7mwvbXznvV57zT3c83PXtn+OWVOVbGnPrZYPN5ZO3Zqn2M0YsV4XqfHHimhcEtAyEHJ4oErNKcxc59qO43ROEi5uElN0/P/ygqyLs8MDC3ajhzZ2Pnp4oVnb5c//r3vlM987u7BG8dtY6X+2bP4ube4zeumbxPLYhFh8RxqsU0CxIDCDa3FWihqGnMbtGk0tJk2tctHLDZQNYU8uLdpmrXDV3d+qhQLtGKx1qV4y57j9tjSn7aedxFpFRGaYsspdmOfZy2es2lrAHtRuGFHzAfAmA/wKTc+tLGt9DT1tnXtXStz6dKqfKphUJKhvqDow2JObTTlFGPOU8UKYfUcoyXm9Ys5dyCPwg0A0FrdQ7mLmoo2IAWpXcUAwB4KN+xI/aRjdf0YFTHcIm+rsgdWd5lGpP4htpcure78NAmdLlP3/ll8by3m1EZT/rGvX5PU1w/A4qFwQ2sWCyCLOWkZqvHBpSOLp1iwhTywt01hFkJjf7bYILeYU4zYjjNjn9P6jF47pdCcLOYOdEHhlgCLB1zN5Vk84Frc5iLpNXraFJcprXvVMwurfg+dZgghxV/ToCqa2u4HY+w3mjlNtZ+nnpPF9Wti8dyoKfX1A7qgcMMuTQfKNgdSzVhaccZav7brVtUw6NJgKJvnnq1DZhsfTYoFSNX6oZu2vW75/69fPhhUIBZHsizuj5r7uRatnDSXr5nTlOtnMaeqWG3jWzzHWDyvj/nlLgUgUkLhluOcO+Gce9g590Hn3IPz/690iJPNeyKbf/7/s865B7TzFtEtIvo8zHeoWBZzqpqn60lCozFbNm+KRU3q65fXp+fMyuWw973jC3LkyIa8580v73q96guF/GMN6nrr8vP3/bzk42h+9ix8ji2u31A5lf3eNVbXOJrnGC0Wz6F1caZsIwCWsUfPOedOisiHvffHc6/dKyJPOeeOe+83W4RbEZEH5j/inMtef8h7/4hKwiWyA1TWWOtzwNKOZTGnLFbfA3vb9ctPX2bob7VTUdXgF7FTsIxljPXtc6/bbXc+L7fd+byIiBy7fHdtvl0+j9Y+M1P3/A0di5yaaZ1jYjiv94mlFacYi4INqWLPFpF5r9hZEbk//7r3/rxz7ryIfExETrUM+4iIHJ3//7yIPOy9v9gz1SAW7y+zmFNorLXDVxsvJ+MkYUtTcZwa6+t7810b8tIzs8Jv7fBVudDh8QDW1xEoE3qOEam/bNniOdRaHO1YgEVcKjnz3vm/T5b87VEROdk2oPf+tPf+/vnPGc2i7cD+G71jND18N3bZPTV91zObX2N7pb7Nh9BnUItUTuAa37DXsbRfpvKeYTFonmM0aORjndb6abSjgClQuM2cEpHNisshL4rsXEppRp+DV74Y0TjpaJ0s8rE01k8jH624Fk6mIfcMwYbi+9P0e+g0XR05srHzMxT2ScSiuK8Odc7pOq+l87pmPK0vUi2cj4GuKNxm3i4iL1b8bXP+731tgzrnVpxzJ+c/Kx1zU1V2wOp6ECsrbLRidc1Lc/1C4w8xzxhSayintj5dNG2D4me0bN9sKs40ize+SMAis3je0z6va30BOlQcIDYUbjMrStPscM49KLPBSc6LyDkROeuc+2CL+Z8q+xGRY9k0qRyALK7HUDllca08V89yg9lyblMILXJCpmlqjOWLM81CbfWOV2Px/iIlbc8ZY5z3pjy3Tv2FKZAqCrdXbVa8nvXE3dIy1uPe+4e89xfnl2CeEpEPaz4OIOT5SzGwuB5j5NS2p6FP70TsgzrQyJ+9h9lPFyGNnyEvhbz5ruFiA210vWy8bvq254wxzjFTnlurlt0lJ4ttBGAqtIbCrYRO6L0/U/LapnPunIg8KLMRJ5tiHC97fd7rdm9oLkXrlw/uacBpHhSnjlW2fpqGOIHkGwKhwyJ3GWGvalhqi6P1UaiNr6pou3RpddCCDhhT0/2hWkPTjynG8x6Abuhxe9VKxetZT9umwjKeEJEV59wJhViTyx/M1y8f7HVwH/LEMPVJp83y23wLrNnzFnr5XdMDU/tOE5JLFWvFp6a+69bUqBu6MDvwHS8MGh/QEnoM1iiUys4NWuerrnGK8/U9rw+1PlrrB8Qm6sJtft+X7/BTHCFyM2BxVYOXdHG0eZJ6WkVS34OY9oE5i2WhCNQ8gcXAwn1wmsuKuZBryt3Kuq0dvhpNrwQwFAvnBu0chji3W9hOQOyiPuNWXU7YwZMiUtULlhVZT4UEcs49LLNBSQ5VPF7ABMsHUI3csktHrKynpXyqLpmsm15ruWPNa6WwidGlS6ut/r52+KrIV+pjvvDbbxURkY3nVuefga0oL0kDMlqXJ+bjTN3bpjX/UFS3T9TdFlhknC1nzkpz4XYuMNZRqe7Bu3X+b9mDvoNdu75PZF+fCIvBWgFo6WTYtniLBQVbuaZGZlOxVufIkY3mwu3Z22XjuVX5zOfuLn2PstdS3CeRLkvHdBF7+Vh27TqNKMSJs+TMJ0TkYefcSe/9Y4W/nRKRc977i8WZnHNHS15/XEROV/S2nRSR89778xpJV9H6JlvzG/GYcwo5GU6xfn2LlFiKt0Uvxiysf9kAJdnv+SH+q2w8tyqXLq2aWBegjvVzjJVzsWYsizkBVrFXy86Ij6dlNuLjTuHmnLtXZj1oey7JzEZ3dM4dzxdi3vuHnHNnnXNn8kXd/Llut4jI/UOtR9U32W0PXprfiGvlVBZLOyfNWFOun4jI08tXdv1+z9ah1jHK4vWNk8UKjVPV0NdeP8ssjPpZNXhJSNEmMiv8PvXVm3Z+z79/+feu7WdHcz8YKhY5jR+ra5wYzjEWc8peS+W8DljGVb5z3vtHROT0vOj64LzQOi0ixyt6z86JyEUpuSzSe39qHuvhebzH568fKuu501DXsJuq0aeZ0yKvn4ZiAyl0uU8vX9k1b/H30DjFeUPihBZtVa/hVSGjShZ/6qZtK9+jUHyvir9Xve+h+1gXmvtP0/p1jdPHkDmlsn6pn2O0pH5eB6yjcMvx3p/z3p+aPzj7jPe+6pJHmf99raoQy81/ynt/f9mz3SwaczS70FhjLnOKk4V2TlWNlqbiTePSy6o4bXLihL33G+Km3/uoKsSy18d4hltZ8dZUxA9drHeJH1NOU37ZoZmTtfVbhHOMRqzUz+vAUCjcEhByUBr7wJX6gdLiNhfp3lhp2zDu2oPXJ5+uOaE77aKt7XtULOCGWMYY+41mTlPt57HlVKXukrrYTFFwjcliTsDUKNywY4pvyrRYLaRAQZWyjee6j0ZZ1GY/GWufsphTG005xZjzVLHGPsdYPF/FnJPF3LGbc+7E/BajDzrnHpz/f6VDnGzeE9n88/+fdc49oJ332LhjEwDQWptHCGSNpnu2DpksFgANFgYSAmLknDspIh/OP595PkDgU/NBADdbhFuR2fOUH5jHyV5/aD6eRdQo3LCDkw6Atvo8Aw7DaiqUUx6NVST99QNSMO8VOyuFUde99+edc+dF5GMyezRXG4/Iq89hPi8iDw81OODYuFQSC4MhgadB46m/Ib9Q6Vt4hTyDKv/Zq9ofLO4nFnMCgMS8d/7vkyV/e1Rmz0BuZT444P3Z4ICpFG0iFG5JCClINIuWsZcXwuLypigUNRuadbGmatBazGkI1kdJywYtWb98MCiXtcNX5T1vfnnn977vlcX9QDOn1Nev63I0llt2XLZ4POe8rpsTX9yadkpENisuh7wosnMpJYTCDQVNB7exTxRjL1NrWW3iaOdksUdDM6eyeVIq2lJ03zu+IPe94wuVPW9V79+xpeXK/V/rPR963+xKaz9fxONB11gaNI/nY52POK9jYm8XkRcr/rY5//e+tkGdcyvOuZPzn5WOuZlD4ZaIugPTVActzZzGWD/NnLSWrbWMro2Y4nz3bB1SjdUVhVo7TZczVl0uWXcZ5ZEjG7J2+GrQPnr0B/5Ijv7AH8k7v+dLe6Yvey+LBVvIMqzum0MXmF3m1dpOmrGmXr+xzldapsoptvM6RrPknHuq7Cdg3hWlaXY45x6U2eAk50XknIicdc59sE0Mq/hkJKRscJEuB79sHq1YGnE0Y5Wt39Q5lcXqc+Ka6tKlWGNZVnUp4oXtLdXGzaVLq7ue25YVbcXXu/A/9BV5zb95jbz1+/9ILl1alQtfvUlEqou2MmWfNav7k4VibahYFnPSiqV5PC+L3XU+i+fQlHOy7JntLfmaszWI3Ne91wizWfF61hN3S8tYj3vvz2UvOOdOicgzzrnN2EeWTG+vXnBTXPIwVpypYq0dvlrbYzHV+jEK6GKoep+1GyXF4uzIkQ2Voq2NFBtaiMsU5721w1dFpLpn3OI5NPWc0Np2fij/AayETui9P1Py2qZz7pyIPCizESejxaWSETqw/8bUKUQhOxlqxNCMBYytad+rKs7GLNqA2KwdvmrquG4tH8toR5mzUvF61tO2qbCMJ0RkxTl3QiHWZCjcFpTlA7y1gqsYs8+8Gtvd6vtmQXZvVOrfvE6xfqt3DFfELcJ7hunl9zErx+F8HI1zTN842fwWzzNZXlbeO6jZDJimavCSLo42T2IXhVukrB3gtQ6mGgVXcd6usYY8uFvMKXbFhn/MhcCY69KmV02zeFuUIhv2aDf8Uz2ea57X+8ayvq3Qy5NSXUxlr4cMciLOuYedcz6lUSSLKNyACGUnsa4NXxrMi2PIBk82smST1/yb18i1L94mLzx7+2C5YDH0GQRDhAIAMOhszd+ywu1czTTF6Tcr/nbr/N+yB31Hg5YbEKn8oCnFxkzoYBYpDXCiPcoidtt4rvzRAEeObIh8pX7eF377rSIi8sRn3yafmo8oCbSVfb67Hu8Qr/XLBym60/UJEXnYOXfSe/9Y4W+nROSc9/5icSbn3NGS1x8XkdMVD/M+KSLnvffnNZKeCkc2qGl6VhT0VY14yeiUEBm+dyH00sk//r3vFBGhaENnGs/8ouEP2DMf8fG0zEZ83CncnHP3yqwHbc9olfPnw93rnDueL8S89w855846587ki7r5c91uEZH7B1yVUVC4AQB2hD4CICvabrvz+aC4n/nc3SLCFwRoT6P3jKINsMt7/4hz7qJz7qzMRn+8VWYjTR6v6D07N//7nr9570855x6c3+d2y3y68977JB7+SuG24LR6yTTiDHUphMWewK45cblIuJh7EYuXfQ65LvlCre1Dt0OLtkuXVvesQ/Y7l7RhUcVwPO97/syvo8VzMeyYPzA76F62+bPa9jyvrfD3JHHGjFSfA2B2INUqtjRZKgCLcVLd5imJuVhrY+j7+cZ8fhsFHJpo7O+ax80slnZBonGO0cjH4nk9i6NxHl2/fJCh+RAtzpQRunZ9n8i+fjFSb/xbO1FksYAxhX6JkfW0hRrimW4MLoPYWPqiMYuVOq11vHa9ZyMKmAhnyQRpfYOd772wGEujkRfSWAw5UVje5k1xFqWXKlZV70+KhU6K64RxaB07pzgGj3mO0YwV8zYHYsWenRDNe0jKYmnE0YyltX7a20kzVteTj9b6iYg8vXxl5//3bPW7t9dqLMuqRv2MqWEya5i+ug5d3ruqAjaLpbEPaMXS2jetfl6sbaehzlcWjsEWzzGpn9cBy7jKNxF1vSZte1TqvuHXopWT5rKn7HnSzEkzVr5hVfa7lVgoF3oJ1pEjG63ua6t6pluVun2v+F622U/z8/bdnzRj1f2uFbfPvFqxitttipyGPp5PfQzWEtt53WK7BbCAwg27NB3k2hwExzpgTpWT5kmn63KGXG6VLg0szUKrLBaFnK6297z1VVa8FX+a5ql6TSunoeZpEyuV9auKUxe/qpdHi9bxfKxzqNVzTGisMfOneENKKNwSEHJQGvsgr5nTmAddzZxiXj+R+kbUVL0IY+RkQdPlPSGX/7TpbevqhWdv7zzvUDT3KS1T7udjfFatfvYsHoNDjX2OiXUbAIuGwg1JiPXEpMnq+llt1MUktFDL/8SmzX4y1j5lMSdNFnO2mJOI3ePrmCxug5iLc6ALCjfs4MAGxGnKQs1irxtmrBZBAIBuGG4HABJVvAxy7HvXgEXCl58AhkaPG3akPmwu6zeNlIfqT1Wf+966srifWMypjab8Y18/a6wegwGkg8INrYWcnMY+gVlcnsWTuFZOFht8FnPCMCy+15o51cWaat3HymmK9bN4PB87p9S3gcXzMdAFhVsCYj24TZGTxmh92izmJDJOA6rtMiw22IdQ9VDaqt+r5C+NrLpM0sLlk8X39djS8p6frrG0p+9iyv22atkWc6rT5TjI8Xz8Zcbc1gBiQOGWiLoD09jfyo293KkOyouaU5dG19DfyC9KQVdl/fLBXvNfurRaW8Ct3rGx8zO00P1Ucz/QimUxJ03W1k/zeLeox/O2scbaFhZzAixgb0/IsaVllZujs4NgMVbXbzw14mjGqtpOU66f1W1u9RKoqRuwY6r6TF/Y3gp6X7V71Fbv2JCN5/rF7NrjUtwWWZynl6/03ie09imL+7nFnLJYfd+7WM4xFnISsXWOGTqnrrEAy9ijEzPVt3BjxNGMZTEnzVhtv61kNLT4hL7H2UAjfQq4jedWd3rbsqKtb/FWxsIXDBiXxnsX+zE4xlip5wRYxaWSETqw/8bUKURB49lWMT/QGGkIffh2H0eObDSOJLnx3OogxVqGRhcWldY5hvMUkD4KtwWVejGSrZuVdaQADNdlQApMp09PHu81YqZxTM/PT/HWTGv9+AIcsaJwi5SVg7N2HpaLG628NE702oWg1YZzVV6L3thve5lk8f9tp6ly6dJq54FRFvn9Qzitz3rxuKlZcFmgWQAOcR7WLEpTe++ANjhzLqDiAb7viHRZPK04ffOyUmANYcicio2jpvve8tMPdY9c3cAcKSu+F9yHiJj1ObZYVDwOdz1fWTzH5Gm2D7TiAYvO9tERpmmdvMpiaZr6ZFG2bpo5aTQayuYfc4CT/OhiFCjDOXJko/HSxra9bkCdsuNIl8Ks6XjVRZdj59DFlta5QauY7PPFrOa2WpRiGWjCpZIR63IAqioitEwda4yTqsVYfZetcfmQxrfk1r9pt6DLZZJ9pmlCoY0qfT/PqV7WqC2m9bN4XgdiQuGGyXFQBuJ05MiGvOfNL0+dBgAAC4HCLWJdLhMom6frZRnF+dYvH+yck1ZeQ18SqbnNtXLV3E7cf2BfaA9X2SWRxdc0Hs7dtdcuuyyWHju0MfXxLqZzjNbyp45Vdr7UzAmICdclRarPwWf98kG1AUU0D4KahYzG/RBaccriTjFvVSytfQF6Lmxv1Q7+Uvx7CI0ibSjZ+nGpbFq67Kd5msdgi8fO4vr1zSnl83oWS+MewPXLB+m2QLQ4S0bo2vV9Ivv6xUi9ka5dBFo6EWqznBvCVDUAL11abewRC5mmzOodDGKC4Vk+PmnkZrXgskprHa9d79mIAibCdw4J0rz8SCuWxZyyWE1CThQW12/s7aSVM3br+0iES5dWTfe25fH+Lx5rx80hYjUJuXR+7JxC41iNBaSKwi0hxQNfnwNhWaw+eVnMKZu/7wljiJw0YmnnpHVifXr5Su1yEKbN6JIxDfHfpVAt26e60Iqj6enlKybXr28si8dgzVha6zfUeV17m6d2XgesonDDHpoPPR76AcpT51Q2Tyo5tYkfIt8A1WyMpi6kQOtzn8yURV3VPlAcuKRqnyvuUxq59N03s/k19vH8/Bo59Y3TJVab49HUxzuLx3MtFs/rFnMCrKNwS0TdwanNgatpWs1YbYy1fm1o5dRnOW2m1TqpdolFkYai0EKprmgLea1NLn1jWcypKvbU61clheOdltjOMW1jacUZKyfAAgq3BIQclMY+cGnmNGbumjmlvn4aKOjKFXvZmn6vku9N0+xZ6zswyZDve9vYY+yDmjlNtX5aOaV+vBuziLB2PG/DYrsFiAGFG1qzeDC1mNPYLF6GAz3HlpZ3fvJivUyyD4sFv8WcoMfil59jL8/icT7m4hXogsINC4MD9zRo0E6jrCizXKhZ3E8s5qQp9fUDgNRQuGEHhQ3aYH8ZRtajtnb4amNvWpfetr7FG89vi0eshVnqvT8A0BWFG3aE3jcTq9TXb2yh2/OerUMDZ4I2+j7TbeO5YZ4JZ3E/sZhTG035W12/kGOLxeO5xZwApIXCDa1ZPKlaXF7MObXNnQaLnuxb+5CH8tb9vaxAK74Wy4O5iywWHGPlNNW6ay031mNFzMdzi8sLMeU5DbCKwi0BFg+4ISwecKfYThbfm7FYbIAvGqs9cF213afG2Act5qTJar4WzzFTsLh+FnMCYkDhhl2aDqYWD7Ztchor/7G/CR1iuZrLaWrYlY2WiDChvW5D9K5tPLcqn/nc3a3nu2fr0J6fLjGGNHVOZbE0c4q92Go7bR+aOcW+fmPG0lom5xakhMItEXUHJq3L3rrE0YylEUczlmaxMfT6dclVMycR2dVAr2qsc4IdxlBF29SXWobsU2PGyeYvi6sRq08c7e0UGqvqeBQ6bZOhj+dT5tRlGW2nt3pen/p8BVjFHp2Q7ACV3SPT54CVj9X3wHdsaVk9J81YWuunEUczJ41YQ5z0rH7TDzvK9ru6Efu09ilrcazG0ohj8RyjGcviMdjiNrd6XgesYs9OkMXLHizmFBpr7fDVxkEiYl4/zWUxHLZNR45sVPaOWXu2Gw2uxcI55tXHejSdZ7SwzYF4calkhA7svzF1ClHo8oyrqhiasawJeV4Y7Br7vcue47Z6x0avoi+7HIoBJNKl8Z5ZPj5Zy81aPpbRjkKsOBNGKqQXqGl+kf7f8PXNoyyeiE5e2b9a+fWJVSwANd67jFYsjW1VbKg19cDRGB9WvrAq63VrW3gVH769eseGrF1aFflK9xxF9C43XmRtP3t18xZpxuqq77GzrKDRPA5rxNE4x/SNk4+lfW7XOq+LKLx3z/dKBZgMZ8kFpH2i0DiYFk+CWiewPrGGODHnX9PKyUKsKl1v7OeSy/7KirK6SyabFIu2zH3v+ILI2U4hd6Fo05XCpWdDH6O6xIrlGKyRU99ze8rndWAqXCoZsS4HoKoTRdtYVdNr5TR1LM2c2i6jy/SasdrGqfpBN1kjOWQ75v8e2nvW5fLGqqINNrTZZ6pofo41Ylk93mktY4xzSQo5dZ0HSBWFG9RNdZAda7ltlmPxhNOmGBhyOdB35MjGzk/IdCGairbb7uSaoynli7ZM22OUVkGiGUvLWMc7TRbPMRbP61MWpsBUKNwgIu0vg6ibfqyRsaZabpvlTLUt6jTlZCFnLptr79Kl1V0/IdOG2HiufroXnr09OEfYo/l5t3hs0cwp9XNMbOd1zXYLEAsKt4h1OQiVzdP1YKYVq2qeKWPFlJNmLEsFvOYDzmOS3d+3fvlgr0ZnVWHW5R63uuKtqbDDsMruB+XYMkxOmrEs5tQ2fpd5LLZbgJgsXqsoEX0OPuuXD6qNGjXliaEulsaAKVpxyuJOMW9ZLI1LR8riaA9wkm+c1hVzDGpSr1i0Xbq0GnzJZFag5S+d3HguvOeuCaNK9pN9DrWOd9lrGiwcg2M4x2jlZGk7acfickcsOs6SEbp2fZ/Ivn4xUv/WSbPBoTHKl9Xtrb2dNGPmtX3W1yIVcHWNv3xhplVg5XvYLl1aVXm/s/eL4q0fjeOUVuNfsyCxyOKx0+q20qSxjuuXD8q1Gz0bUcBEOEMCDRbhZBgTGvftaRVtmqqK66r3d5GK8SlZ+9JrEbCNAISi9ZOYYuOmTwNXK1YMOWnGsrh+Y+QU0vgIveSxaf6qRjwFXRoozvX1/eyVxWmK1XRMiPl4F2NOmrFiyKlPLMAqBidJSNlBq8u31Be2t1RjacTRjFX3Tf9UOWnGsppTcT56UOI1xnPdsn2m6ngkIvL08pVdP30MFctCTmWfvZSOLbHkNOX6cV4H0kDhloi6g1ObA1fTtFqx2h5Mx1q/NmJbv6ly6roMhAm5l6jLQ7erZEXb6h2zZ8F1uZdJoxgpm7drPK1YZes0Rk5Tf1Y53g1jrJw0t/kU759muwWwjsItASEHJYsHrtCcxsx9iu1k8b3RxEl1OvmCrax4a1vQFXvasuKtjbLCpm/PVF187em7mCqnRf/sTXGOsbjNLb7PFnMCYkDhhtZiLRQ1xboNLBbLKBfSk1U3jUahllm9Y6Py8sgxLpvEq8YoNLvg2KJr7HOMxfcl1vMsMCTu2sSOmA+AF7abBzOIef1CsH5pbIP8ftxmVL7QoqxvL1vebXc+3ypWXdHx9PIVuWfrUO84mizmNIUUPld9hZxjUhfzfsD7h1TQ4wagk5hP4hjXe978Mo0mBIv12BJr3gDiwZkUO44tLSd94kl9/cZGQ9yW4rPaqnrW8tOF9L5tPLda2ev2wrO3B+V23zu+IEeeW5UL//otlT1ToT1bY7KY0xTGPnbGemzhHANgaPS4oTWLJ9Wxc2IbjC9k/Y4tLUexHUJyXL98sPEyybq/lz10u+uDuDee6/cA72Pv/4x83187J+9588u94mQsFlQWcxpTDJ+7PlI/x4QeX60Jzcli7kAXFG4YBAdJm9vA4knO4nYaQyrr/cRn39Y4zUt//pvif+gr8n/9T8/JmdtfO0JWcasrAmMvEC3u9xZzChFr3qFSXz+gCz4VCQi5PKNNg70uluaBVCuntssca/1CaeY01qU6seeUkvXLBytHl7x0aXXncsiqHrjQwUqyXrf8ZZNteuJeedOr+4BG8XHP1qHSyy7bxtaKox2rKn6Zqn1/0Y8tsR/PtXBeT+fc8MXll+Q17nVTp7HLla1XRPzUWSwOetwSUXdganvQqmsEWMtJM1YKOWnGGuNkPlROKZ2oNXS9RLLJ6h0bct87vjBIbJHmS1/zhcw9W4c6F0jF+foUWlqxtOJoHlvaLqPt9FaPd5xjxs2pSyxgUVC4JaTsQNf14Kd10CxreGnl1Od+Js2chly/rtjmaGOsZ7HdfFfYcorvcVPxptWDZy2WVpyhPnsWjgeasVI/3qV8Xq9q/3BuQGrYoxMz5beoY8SymJNmrJhzyi7Xqxswo02spoE5OCGHGaq3TaT9c9xE5iNZfvUtO+9f8RKnrpf9oV6bz0vT5y8klubxIETKx2DNWCnnxDkBi4Aetwgd2H9j6hSiUHXfT9sY2U+qtNevb6xs/pS3eWaMhsaRIxuV97HlX6/rdVu9Y2PnR1v+W3EaXtPT/vxpHYdTpnUMTv1cpYl2FGJF4bagLB/gNU/0VgoSzQIwH0urSCr+v0+cPopx+sRdlCKgbhvlC7PQQUjymoq1F569PfhZbk0W5f0aUt9jgsXPseaxXPvYafUYrLVu1gyxzYHYULhFysIBvngS1CxsNBsfXWMN2YjRzMna+mnG1o5lQd29IW2Ll9Cire41pGGIxmyXmEN+9rWPnV3jDHmOmbqns9g+sNRGqPu9axwgNhRuEdM6qU7dyK6aZ8pGg2ZObZfRZXqtWFbXL3VlN9EP9a23ZvG28dxq0HPcMJyyYt/iZ4/j3fjLnrIItHheB1LAtSlAApoG8lhU1ga0SO1ywEuXVlvve0MOlhKLsv2gy36a2v60SOqevwgAVehxi1iXxnrZPJqNfq2ctGNpxZlyW42x7FTWL89K47YujwvbW6MVmFMUTjf/q9fLaz9+p/z+/3RCPvXVm0Zf/hCyXtLQIcebpu0Sq4qVz16fZdRNn8L6jbHsoc+HXeaZ8rwOpIDCLVJTHpDL5l2/fLB3rGI8LVMf9DWL5aFjTRlnyPhTF29NRVvZ/5uM8W39xnM6Rd4Lv/1Wufi73ymf+dzdKvEsKhZybQu7vrH6fk60ji1DH7unPjf0Pdc1LX/q43JxPo3zehZDq73RJ9bU7QGgLxtfRWNUmpdoaB8ENeJprV8xTt+TThZriAZWn1haeRXj9s2nT5wydZdN5hvDZdMUG8shcbLp+haNa4ebn2mnoapIy7/e9XEAv/E/n5D1ywdNXbbax9RfBNSx2DCduhjRzCEfb4hjZ1dWzzGaMbN1VFk/ui0QKXbdCF27vq93DM1vDS3S+IZPm9VtrnVC1TZEzKoGd3apYkjRlr3W1HgPKVKGLGTaXBJZVbRpPbftU1+9ac+6plLEWaLZYLdSJFk8lmc0junaV5pY3E6atNZPox0FTIHCDcnSPAlyMhwv1tDbuk1vSdO0ZT1s2veraW6PYjEXUtwN+fDtNtuLQm8cVq+iQDO2E5A+u9d7oJNi46bPJT1DxbIQp02skJOhtfWb4r3T3E5Db/OQ0SYtXw4nMv2odFr3v2XqLiuNrWizdjxoG6vp85fFsnLc1Iw1xTE4dHuPnVebWNbi9I0FWMVenZCyxk2Xe2yqGklasbre91N1qZVWTpqxLK5fqjn1iVWlba9cbIVFiCF62JqUvY912/bp5Su7fr9n61DnZbeJVbW/WfzsVcWymFOXWFa3eVXsqdaP8zqQBi6VTERd40azUdkmlmZOY61fG2Otn1Yci9vcYk5jCmlQdH2QbdmDtouvaT6Mu42nl6/s+qnSpmirei00H61YZabcz+sa7NZyasvq8c7i+nVdTptpp9rmTdPGeG4AqlC4LYjQA9eYB7gpcrJ4gLeYkyaL+Wtu8ynWT+MSyamKtjL5IinbnmNtV60CLfX9fCxTFSRjLdNiTlMsy+K+B8SAwi0BFg+AFnPSFLJ+FreBxZOqxe00prJet2JhFlKoHTmyseunaTrL+uwTmj1lmhZ9P89Y3A4WcwoRa96hUl8/oAsKN+yw2KgPFWshpYn1G38baC6vy4OaM9YLsRBtCq6xirMpisBY9/PYe8qaWNzmYy8v5vfFYu5AFxRuAGBAbA2LKQYvASyL7TMMID4UbtjByEvAtLKGX9vnMbV52LZVfUaERFpiPRfFmjeAeFC4YWGkflJl/canOUx4nTaF3KVLq5WFXN3fsJfVYnLsz4LFzx4ALCIKN7QWchJPvWFhcRuECM3JYu4hYs27rbJCrliUFQu0ur+V0X7AtiarBVUdPnvtprMm9XOMxXOaZk6x7ndAEYVbAmI9uE2RU1OsKQ7uFnNq0vYB1VqxtOJo5tQn/6Hviakq0EIGMxnyHrZi4aVZiLWNpbXsGD+nY+3nbYxdjIy9TIvnmCmWZTEnIAYUbomoOzBNcSJsmrZtTmOtXxtjrZ9WnKly0lzGGPvyVJ+XKm3vd4tFVjCVFU7ZCJv5n6r5m15rk4tGrDJTHu9S/hxzjhl+OW2mnWqbU5hhkVC4YQ/NBm3ZPFM3jK2un1asmLa51vI1t7lWnKEbE20LOouPDKgq2trMX1cAdsklH7NKm2PI1MeDqthTH1ssHu+GzEk7llacqbd5aPyu81DUITXs0QmZ+sA5dCyLOVmNNUWc7CHRVQWFxe2kGctiA2HoYu3IkY3RegSPLS1XXlqq1TumESf1fbPtMaFu/4h9/caIoxmLnID40eMGNFg7fHWnKEGzvttqkbZ3SEOjaltY2Eard2zIO7/nS2rxaHhNT+vzl8WwsJ9at0jHPAD9cJaM0IH9N0S2+8Vo6h2JXf4k2GcdtU6mWvkMQWNfGKLR0fRtfcj8GY1tbvk9LDPWpZFag5gsWtGmuT8Ncbzr8/nTPB5Y/txpHzu1jnnWtpOmvtsoc2D/DZHrCgkBI1usM2VCtE6qlhrHxZP91I2GYhytE4Z2g0grltb69Yk15DYX6batyra55raquwSwanllOTUVahaf37ZoxVpGcz/XijXkfm7heBDLsbMrq+d1zXj5XtzecZ7vPDswKS6VhBqrl3pYzGuob6SnMPXyy1jMqY1Y8r/tzufltju7tYDGHg6864AcZXGG0OU9j2U/0ZTSOsewLhqXvlvIA0gFhRvUTP2NYxWLeWnmNPX6Tb38FMWwTbsWbH20HSK8rNDqUsQNWbBlurznMewn2lJa5xjWpW+OWusYw7YCxkDhtuAsHVTzMThIl0up4BvS0OumGT/kIdxtl9d0WaTFyyZDVT3frem5b02xQpaRsrJ9bOpjxNTLr2I1L6uy7cV2A/qjcItUnwOgduPfWjFhqRhdVBa3XdecYluXrCiLuThrI6S4ykbtq7vcKqRQC4kDm4b8HFs8Rmiwdm4HwOAkMMjqAd5KQWh1+wxhkda1r7EKtSkukezD4iBDRX2/iLM88qIIx84x5PeDVLdTcV8HFhE9bgtKu6fMGmuXZljLJ6N1eaqVhlkxVv5HI1YqujwqoM9AJGVCLhHVUHzfLOyr+eOB1lUGWvu5hiE+K9Y+f5rvXdn/Uc7Sfg5MgcItQteu75s6hShonlQtXcKpzeLlrppxNGlvq7GKF5F+z3UbqpdtzPXXsCjHg/y/WvH6zG91W4nYeh+tbytLaEchVlwqmaB8Y6jPjfVacWLPKeREGPP6tYk1xnYKbXhY3uaaA1pUbY+Qy4YuXVrdU7CFFHD5h2oPfWnkhe0tlfevad8MubRxzP08lNY+1SansbZTaKw2cfrGsn6OsbKdNGNZzAmwir06IWXfXndpFFXFEWl/INTKqSyWxZw0Y1nNSYRtHhJHZPqGQ59eNuvabvO6xnEM+3mffcrifr6I27xLrKG3k2YsS9upTyzAMi6VTETdJUdTXY6kmdMY6zdlTlXTa753muunZcqcLG7zMlW9al1v0g8ZxGTjuVeneeHZ2zstpw32837Td4nFNg+ffqr147wOoIjCDbs0HSytNWpjWGYTzW0+1vrFnpNmrD7LHfKbYM3etrribYzCrsjiPmUxpxiXa3GbtzHmOVTLFMfOMZdpcZsDXVG4JSDkoDT2gSvWAk/zpGPxZDHFSdXSsqZcpqay3rYjRzZ2fsr0fVxAWYH2wrO3yxOffVuvuJnY35MmFvdzizlNsaxY9z3WD1g8FG7YEfNJINZCShPrF/cXFGPqWsS98OztOwXcFD1tIrr7gcX3L9b9PNYv60Klvg0s7nchYv6sA11QuAEAOrvvHV+YOgUAABYChRsAoJWpetsAyxi9EMDQKNywg5MOEL/sMsi+97Q1ue3O53d+xsRxKn28xwBQjsINrYWcVMc+8Y6dU+rbwGLDKdZtPoTQhxtXSfn5biLs59os5jQ2i9t87OXFnFPq+ycWB4VbAiwecENYPOBOsZ0svjeamtbP4jaP8T25dGm1tpfNerHWZpuP9f5o5sR+HrbMsb9gG3uZsa+f1rJiPMYCFlC4YRfNk06MjSut5U5xch5zuVOddGPLqckUI52FFHCrd+yeZqrLIruw2CBsm1Ns+7nFnDRjWVy/FM4xWix+QQEMhcItEZoH+KrppzpRjLXsKQ/umjmlvn5aYtnmVZdF9r1cMlSxWBuieNPc5lpxpsxJMz6fvX4s5tRFbOf1Kd8/wDL26IRkB6jsW/w+ByytWMU4mrG01s/Cdsrm1dhOxVhjrt/a4auVBQXbXFfZQ7jH9MKzt6sUcWN9jsfYN7NYlo7BxVipHQ+yWFrnGM3jgYi9451GLO3zurX2AWAZe3aCpvwGbeg4U8Sqa3y0iaOVj9VYoYVESGNPpLlHKfVtngnZ/9q4dGm11f1u2dD/WZGWfxSAlccChO5TTduyzX7eN06oqT7HWttJI6cY47SJF+s+ZS2OdizAIi6VjNCB/TemTiEKGj0S+QafVixr1g5fVc1NK1bfONrrNURMq42Mjef2DnLywrO3lxZqZdOGsrr+VbQ/J0Psn9ZiWfwca7GWm7V8LKMdhVhRuC2o1A/wmgWXBmv5ZPL59MnNSiOvKmbKjcdQQzzXbeO5+pEs64xVtBXfNwv7qtbnLh/D0pdLQ32OLRliW1ne/lZoHc+BWFG4wRyrB1UreWUnrhSKiSapr5+mI0c2gi+B1CriLl1aHW2QlJRpfmli8TNjJaeUj53We4M1WMwJGBuFW6SsHMCsXmZnGes4ja45xbYuWfFm/bltsbG4HywaC1cFoBu2P6CDwm0BDXFphjYLJ2ir20ZL6us3pLG3XdvlaRdtMT3HDemweoyKoZdTg/a5NNXtBIyJwg0qLN1fkTK2UXqmGKCjT2FH8faqlD6PZeuS0voBQAoo3BZQ/p4UjftT1i8fVItT9v8+cfqweO+OZk5Drp/FbadJc/3yzzDSWt4QA5FoC1lv61Laz8vWZer1m3r5VYp5Wc2zL+1zaarbCRhTXGMxY0ffA6DV4kYzL+3nX/UtJrXy0V6n0OemjSGfT/a7Rkyt+a30QBS3k0hzsXbkyIZKQWfl2W2htPYpzX1T83OXza8Rr2y/0ohj7XOsYYhtZW2f0mRhH9gVh24LRIrCLULXru8T2Td1FvZpnSgsFlyaNLeTVjyNOFYbH3lD9jq1fdD2FC5sb0X1LDetxnoWS5PVeBY/x1qs5WYtH8uuXacRhTjFc8ZEsKwx2LdBlG9UWow1VpyQk6Hlba7RMA6JFdpoaGqst4nTlFObOJqxNIuRqu2hWUQUrd5hu+DLC903Q76A0drPx/7stYnTFEtr/WL9HE9xPEh9nxorjnYswCI6ixNyYXtr10Gr+HvbWHW/TxFrqPXrG8f6Nre0ftm82jl1ZXGba+p6aeTGc7vnG/LyyLG2eV3jeKh9qu9+YG0/H+p40Censnk5BofH6mrIbW7h/cP4nHMnnHMPO+c+6Jx7cP7/laljWUPhloi6A1Tbg1fV9F0OglqxNA/AmuunxeI21zR0TlNvpyG3bVWvWtvetr73t73w7O2DFXDWtnnX+EMfp6bez7XEdLyzmFMXFre51XYLxuecOykiD3rvT3vvH/LenxGRh0XkqbYFl2YsiyjcsEvTQa7NQXCsA+ZUOWmedLouZ6rlTnUyjG2bN8WJ8VKe/PPcprqHbowGX1tj5cRnb/zlss3Dp51iW1nMCeHmxdRZETmTf917f15EzovIx6aIZRWFWwJCDkpjH7g0cxozd82cUl8/rWVaPNGnYozCSus+O4vvyVSN47GWaTGnKZYV6/HO4jkmlMV2Cybz3vm/T5b87VEROTlRLJMo3NCaxYMpJwHWL3QaTW2Wt3b4ammRc2xpeddPNm1TrKIjRzZ2FWrFom2IIm71jg2TI1fSoB2fxZw0WT62jLU8i+9xzJ917DglIpve+82Sv10U2bn8cexYJlG4YQcHNmB4XXqo2sxTLOBC/1Ynuzzytjuf33Of29gjUHKcGp/FIgJAMt4uIi9W/G1z/u99E8QyKb4bLACYcGE7rmdwTalYeGk/HH4o2b1sxdfyxVvZNMAiouDE8PzUCVRZcs49VfYH7/3xhnlXpLrYyk8TQjOWSbS6sOPY0jInHgSjaLNjissVpyrYOE6lL9ZjC/smBnRJROT/J0/Ja/b9wMSpvMr7a/JN/29EZJ+I3OgTarPi9awIu2WiWOZwqSRaCzmpjn3iHTunWLdBzNjm1doO9X/p0qra4wGGfMZbV6Hvi5X3Ly/W/dzittRkcZuPvTyL73HMn/WWfn3JvVmubf2ubPtvTJ3Ljms3fk+8vCQiN/6q9/542Y/SolaU4mjHGh2FWwJiPeCGijl3ayye5Hh/mxUvqyy7zDIrxpqKsr4F21BS3w+mWL+mZVrMaYplxbrvxZp3qNTXrw3v/fa2/+q7RF6Ra1u/M3U6IiKy7b8h17b+lSy5bxcR+bWe4VYqXs96xzYnimUOhRt2sXhSHXOZsec0Vv6p56S9fiGFV5u/hygr0IqvaRRxT3z2bb1jtBXjPhU7tnmY1M8xfZc1xDItLWtI3vvf2bf0H8r1G38g29svTJ2OXNv6tIi8Itv+Kz/ovd/uEWozYJqm+9aGiGUShVsi6g5MUxyUm6Ztm9MY6zdlTlXTT/XeaS9baxljbA+NZRSH9++jqoizMLjJxnOrKnmksp9r7VMcW/qzuM3bGuu83obF83oqhVmIG9v/x3eKeHll67cmzWN7+0/l+o3PiYh8ynv/mZ7hnhSRoxV/y14vHfhk4FgmUbglpOzg1eWAVtXg1IrV9SBbFsdCTkOun0Yc7ZzY5rsVByNoimGh4Mqr63Uru38t/9qUl1223TfrHqmgtZ9XxdKKYyGn/LzaOVk4tmjkVBW76/qFvNZ1+als86p1S62o894/LeJ/dWv7abmx/exkecwKRy8i8kGFcGdr/pYVW+cmiGWS897s0KIo4Zx76tvkrnvfv++jU6eyMGIZun1qWcNYY1vFss3bFG1tt0/T9CHPdisbbbJYbBWnuXRpVY4c2Qh6PtsTn32brF8+KD9748dqp3uv+58q/zZGwyq/rfruV7Hsm31orKPm8SB1bKvxfezGh+VP5JnzioNnjMY592aR/V9Zcm+W1x04Lc65UZe/tf1lefnawyIiH/PeP9A3nnNuRUSuiMgp7/1jhb89LiLivb+/ZL6j3vuLGrFiQo9bhA7s7zXk6sLo8qDjMWKlru+2imVbd+lp69Iwi2V7dBHbt+HZe5Hye6K9bilvK2vY1ovBe/9Vkes/t+2fla3tPx572fLK9d8QkQMiIv9AKeamiJwWkQfzrzvn7pVZL9mp4jzzZ8atz6fpFSs2cZ01oSb1b43zDaw+6zlE8Wdtu2vkNUSDQfO9097mMTyrqcuz3dpe+njfO74g8tm3iXyl9aImK9q0jn1a+6fWvqn9ObZyjhjyc9yXxWOnlfdtKFrrd2D/DZHrCglN5xedvOGnX9n6TVle+j+Lc/tGWejW9tOy7S+JiPwj7/2faMX13j/inLvonDsrIk+IyK0yGx3y+LwYKzo3//uev3WIFRV63BaY1W/nUsyr2CDqm0f+p28srbw0FHPQyklz3cYu2sZshHUp9u57xxcGyESPhf26qPi563ts4XMcPv8Qx04t1s4x1mj1eFtct7a891e9fOMnvf+aXL/xByMtc0te2fpNcfIGEZFf0o/vz3nvT3nvH/Len/Hen64qtOZ/XyteKtklVmwo3CJl7QCvcSDMx9Favz6xhjy4a+Y09fpp5qRlqJzqiraUCzoRkdvufF5uu/P5UZdpSSz7uWas1NdPK9bUx+ChaBW4mu0E7PKrS+5Ncm3rd8T7bw2+sOs3/kC8f1G8fOMD3ht6CviCoXCD2kmnz4HZyjeyQ8S3eLKqymnKXMfIqU+sGC6PHEq+YMv+nxVyR3/gj6ZKqxH7+fiGXj/NY7DF47lWTil9OVgWy0JOU/PeX9/2f/pXvHxTrm39q4GX9S25tvU7suRuFxH51UEXhloUbgBglIV7VRa5lw0AjPtf97m3yLUb/5ts+68PtpBrW78rXv69bPvn/7L3fnG/xTSAwg2dG4f5+bIR8/rE0miklsXQbPx2iRVLTtqxtOJMvX4i4b1txekubG/t+mkjJNe6acoGGmkafGTK57INYeiHl0+9bw4da+qctOJYPN5VxZr6HFOcz8J5PYtV93vXOLHz3vsb/svfK7Ilr2w9Psgytv2mXLvxe7LP3SUi8i8HWQiCMapkpPocfNYvH1QbmUn7IKiVk8blEMU4GttcI46WLNYQo132OakOMYpcaidrTdlz28Z2YXsrqscBaB1XirH67ptDfo61WDgexHDstHCO0Zh/qHhabZf1yweT6rbw3n/OOffo1o3z77ux7/tl39K3qcZ/5fpvi8iW3PDPfI/n4c+Ti+esiR3Xru8T6Tnyq8WTuyZrJ4oslkXaxbKFRoxmHl2NdU9cXUGRL8rqetNS62nLs/gFjMb8Q8TT/ILJ6nbSZOmLxixW6rTW8dr1cYbPH9FHRJbe98rWb8jrDvxNtaA3tr8qW9t/KCLya977J9QCo7OEvnNApstlWUPHsphTFqtJyInC4vqNnVPoCTUkzpjbvOlSxtgHJbl0adVsYTbW5zjbn5r2q9DjQUgca8eDLFaTNp+/pjhaOYXGsRqryRT7lFYcjby04uTjLZrZsPg3/u83tr8oWzf+nVrcV7Z+Q+alwkfUgqIXCreEFA98fQ6EZbH65GUxp2z+vieMIXLSiDVFTnWND6vbvO73FIRcBlk3zQvP3r7nNc0BSzQ/x3Wm2jet7Oea62d9m/dhbZsPdV7X3OZlv48dJ5tXa/0i9Y9FXiuvbP2meL/dO9jWjX8nN7a/JCI3/jvv/TP904MGCjfsodnzMHQvxtQ5lc2TSk5t4g8xT5tYQ8VP5cTft3ircvNdOvfGsZ+HxbK4fikd7yyunxbO6+nz3n9N5Fsf3PZ/Ilvbn+8Za3ve2/ZaEZGf18gPOijcElF3cGpz4GqaVjNWG2OtXxtaOfVZTptp2+Y0xvpNmdMindC72HjO5uWVIvHtByns52Md79qI7XjXVmznGM1YU+WUgP/eyYq8cv1x8f565yBbN87Ltr8sIt/6Ke/9i3rpoS8KtwSEHJTGPnBp5jRm7lOcDC2u35jbYYqTakhO2TTHlpZ3/dTJ/704/VAjKNYNbJDvRavqUQvpaSu7XFJE5KVn9Io7i42r2BuPi55T6sc7i+eYUBbbLSnw3n/Ly+Zf8/J1uXbj9zrGuCavbD0uzh0SEfmnqgmiNwo3tGbxYGqxMMX4tN+XsmKrWMQ1FXUhBZ8VXS6X1Czexmbxc2wxpxCx5h0q9XNMrIVUzMXrgP7nJfdmubb1u7Ltv9F65ms3fk+8vCTeX/mr3vtXBsgPPVC4YWGkfuBm/XRlxdba4as7P1XTDCFkiPDQ3raq1zSe31bVGzclPgtxLw9Ad9777W3/1XeJvCLXtn6n1bzb/htybetfyZL7dhGRXxskQfRC4YYdnJztsvjeWMxpaFrPWxpieaFFmObDtl949nZ54rNvU4sXYhH3u0WTeu8PMDTv/e/sW/oP5fqNP5Dt7ReC57u29WkReUW2/Vfe6TWGpoQ6CjfsiOVyrkVk8b2xmNMiC31Wm9Yz3bKeNs1CMAT7XfpC3mOL+4HFnLC4bmz/H/eIeHll67eCpt/e/lO5fuNzIiL/0nv/u0Pmhu4o3NCaxZNTrCd6Tazf8Nsg9KHCWstqWl7d30MKNI0ibvWOcQu3EDF/Fizs512WF/M2D2Fxm4+9PIvvcWhOFnMfmvf+j0X8x7e2n5Yb2882Tj8r8LyIyJmhc0N3FG4YROoHSU5yeixup1Rp9bZlbrvzedWHcY+N/Xx8bAc9qW/L1NdvJP9AZL986/pviPe+cqKt7S/L1vYfi4h/xHv/b8ZLD21RuCWAIkLPFNvJ4nujyeL6tRnW37rQXrchirab79pQewh3m20+1vtjMac2YtzPNXOa4hxjcZtbPIda3PdS5L3/qsj1n9v2z84Ls9Jp5JXrvyEiB0RE/uGI6aEDCrdE1B0ENRsfUzVkxlq/NrRy6rOcNtO2zWmM9Zsyp7rh+8uMeZmkpkuXVmuLtrbF3RCjSE71edFettYyxvoca8VJPaepiozYzjGay52q3ZKoX3TyBnll6zfF+xt7/ri1/bRs+0sicu0fee//ZPz00AaFWwnn3Enn3FM9Y5xwzj3snPugc+7B+f9XlFIsNfTJsEv8uudgacXSiKMZq2ucIdev674x9DbvYuj1S43W4CEvPHu7qaItlv186pyqYqeyfrHkpB1LKw7n9fR57696+cZPev81uX7jDwp/25JXtn5TnBwUEfmlSRJEK+zRc865h0XkFhF5UURO9Ix1UkQ+7L0/nnvtXhF5yjl33Hu/2Sd+He2D/IXtrd4xjy0t7wyTrBFLI68h1k9j22vF0l6/UGuHr1b2TFnf5vkcMc6gI2Pu53X7ZhZr7M9LSCyNfXOq3pkxt7nm8UDE3jlGg+XzuuZ+rrUvJObjS+5Nv3xt63dk/757xbnXiojI9RufE+9fFBE57X2Hp3VjdPS4zXnvT3vvT3nvT4vIZtc48161s1IYlcd7f15EzovIx3qkObqpv+GtizdWnJBnaVlcN+1YTUKfORbSwJ5im5fFy+cx9jPcQlnNq8mY+3m2jZq2VejxYMxtrn3sbKK1flrHg1Da22jsc8zY+5RWHKuxsJv3fmvb/+kPefmmXNv6V/PXviXXtj4tS+52EZH/x6QJIhiFm773zv99suRvj4rIyRFzqRRrYy9UdiLsu56hDb6x8hmC5nYq/l8rZtf5u66bhfcqJIcpc3zh2dvlpWdW5aVndAc9GVqfbaa5n2vvY3yOx2dtm1vdTpq01u/A/r33ei2Af7HP3SXXbvxvsu2/Lte2fle8/HvZ9s//Je89T4+PBF9L6DslIpsVl0NeFJldSum9f6zrAg7svyHS43n2xWKkz6AL+YNo38EbigfkrvGKcZou1xk6TlVcjZy6ximLpbV+fWIN+d6JhG0rCw2fYmOuLO/QPDVHkywO/T/EPW/ahixANPbPvsfhoT4zfVg8Bls8dg61zfsey7XOxUPFUlm/eJ9i0pn33jvnvldE/uBb139dbmyvyz53l9zwz3xq6twQztU912FRzQcmWfHer3WY94qIvFg2r3PuqIisi8hD3vvaBxzWDI7yXQdk/75v2/9tcu36vrbpiUj5N01dYlV9Y9U2llacMXKaMpbFnOpiWcwpJNaB/TfkwIFXv3y8dm3391tdP3dtdPk2OMu5mG+XeQ8c2JL9+6/vmmb5Nbu/kN16ZTbt9ev75Yvf/Gpt/EPylj2vvVZc6zzbGuOzpxmLY4vtnMaKxTl0mJzysf7k+p/INbn+ovf+1tZBIuec+zURed/81/u892VXiMEoetz0rchsgJOmabpauibXbzx7/dL/3jnC9eZJooyjGWuxcjo2//eCQqzurGzz6z3n19Bl+X3XWStWyf50Rb7cK2Bnqe2bQ8Wyn5ONY5TVWOTUJdZ3icgbFCPH5CNL7vD7tv3lf0rRFh8Kt2FsVryeFXS3NAXIj0iZl/XEVf0daIt9CprYn6CNfQra+j7yKWbe+4siI1zygEEwOMk0VqZOAAAAAEA8KNyGsVLxetbTtjlOGgAAAABSEHXh5px7yjnnO/wMOST/ZsA0TffAAQAAAMCOqO9xM3q9+5MicqLib0fn/y7stdUAAAAA2ou6x82oszV/ywq3c2MkAgAAACANPMetROhz3JxzR+ej8+RfWxGRKyJyqviQbefc4yIi3vv7dTMGAAAAkDJ63MqtSMOQ/fPibt05d2/+de/9poicFpEHC9PfK7Met1OaiQIAAABIX9T3uGlyzn1QRO6TWXF1dP7auoicF5GL3vszhVnOyazA2yzG8t4/4py76Jw7KyJPiMit82mPzws7AAAAAAjGpZIAAAAAYByXSgIAAACAcRRuAAAAAGAchRsAAAAAGEfhBgAAAADGUbgBAAAAgHE8DiAyzrmTIvJh7/3xHjFOyOx5cuvy6qMKzvCogsWhtQ845x6cz3tWRJ703m/OY58Wkce9948opo2JaB4zOP5AhGMQ9NE+wiKgcIuAc+5hmT0Q/EUROdEz1p4D2/zh4E8553jO3AJQ3gdWROSB+Y8457LXH6LBlAbN/YXjD0Q4BkEP7SMsGp7jFhnn3FMisuK9X+sw74qIXBGR+7335wp/Oysi4r0/pZEnbNLeB+YnTZH5Q+tl9sD6h733F/tni6lp7i8cfyDCMQjDoX2ERUCP22J57/zfJ0v+9qjMLjVB2tT3Ae/96V4ZwTLN/YXjD0Q4BsEmjk+IAoOTLJZTIrJZ0d1/UWTnUgGki30AbWjuL+x7EGE/gE3sl4gChdtiebvMrgMvszn/975xUsFEBtkHnHMrzrmT85+VjrnBHs39heMPRDgGwSaOT4gChdtiWVGaBvFaUZpmx3xUtwdkdm/JORE565z7YOvMYNGK0jTasRCvFaVpdnAMgoIVpWmAQXGP2+LZrHg9+6bplpHywHQ2K17vsg9symzI7Z2buZ1zp0TkGefcJqO6JWGz4vWu+4tWLMRrs+J1jkGY0mbF6xyfYAY9bihamToBTG4ldELv/ZniCFzzewTOiciDumnBqBWjsRCvldAJOQZhRCtTJwBQuC2elYrXs2+SNsdJAxNaqXhdcx94QkRW5g8zRdxWKl7vsr9oxkK8Vipe5xiEKa1UvM7xCWZQuA3EOfeUc853+Bly1KLNgGmqbs7FhBT3p82AxWnuA0ebJ4FhmwHThO4vmrEQr82AaTgGYWybAdNwfMLkKNwG4r0/7r13HX4eGzCtJ6X6JJa9/tSAy0dHivuT2j7gnHt4XhyudFwt2Kd5zOD4AxGOQbCJ4xOiQOG2WOoeIJkdmM7VTIP4ae4DR6X6W8pb5/+WPcwU8dDcXzj+QIRjEGzi+IQoULglyjlX9s3RJ+Z/K7sc85SInPPeXxw0MUyt0z5QsT89LiLHKx5YelJEznvvz/fIFdPT3F84/kCEYxAmxvEJMaNwi8+KNAxJ65x7SkTWnXP35l+fn9xOS2Gkrfl0R2V2cELCuuwDNfvTQyLyYPEkOH+m0i1lsRAX5f2ldSykh2MQBrQitI+QOJ7jFoH5g0Tvk9nB4+j8tXWZPWz0ovf+TGGWczI7gG0WY3nvH3HOXXTOnZXZqFu3zqet+tYSiemwD9TtT6eccw/O7zG5ZT7dee/9oSFyx/iU9xeOP+AYBDW0j7BonPd+6hwAAAAAADW4VBIAAAAAjKNwAwAAAADjKNwAAAAAwDgKNwAAAAAwjsINAAAAAIyjcAMAAAAA4yjcAAAAAMA4CjcAAAAAMI7CDQAAAACMo3ADAAAAAOMo3AAAAADAuOWpEwAAxMk5tyIiD4rIpoisiMhZ7/25CVMCACBZzns/dQ4AgMg45+4VkU+LyLu89+fnRdwzInKX935zytwAAEgRl0oCAFpxzh2VWdF2xnt/XkRkXqxdFJEHJkwNAIBk0eMGAGjFOfe4iNzivT9e8rp47++fJDEAABLGPW4AgGDOuQdE5ISIVBVnR0dMBwCAhUGPGwAgmHNuXUTEe79W8bdbvPeHRk8MAIDEcY8bACDIfECSoyLycMUkR2V2nxsAAFBG4QYACPXh+b+PFf8wL+pERF4cLx0AABYHhRsAoNF8uP+TIrLpvS/rVTsx//f8aEkBALBAGJwEABAiK8zEOfdUyd+zHrfHx0kHAIDFQuEGAAiRjSJ5xnv/SPGPzjkvIuK9P1fytxMicq/3/qFhUwQAIF1cKgkACPH2+b9lhVnW2/ZI7rWjzrmHnXMPishZqX58AAAACECPGwAgxIqI/P/bu4ObBmIgCqAzLaQDKAFaIaID6ABEBSglAKVACYgSqCEdmEMcJIg2WdAmGSnvXVY78mGuXx7bMXC+7bp/F+tCX3cb8SPYAQD/ZMcNgDFmMXzV/01EfAyEOgBgAoIbAGMtfxcy8ypWu3GPh24GAE6JUUkAxngfqC8i4q21tvG2GwAwHTtuAIzxGqtxyW+Zeddr86N0BAAnRHADYIzniDjvD3GvLxx5iIjL1tryiH0BwEkwKgnATq21ZWbOI+IlMz9jda7tTGgDgMMQ3AAYpT+uvfGOGwCwf0YlAQAAihPcANi32e4lAMA2RiUBmFy/xGTRfy967an/3zsbBwB/k621Y/cAAADAFkYlAQAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAihPcAAAAivsCGFTgAUwyW4kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 440, + "width": 439 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "x = full_grid[:, plot_dims[0]].reshape((nx, ny))\n", + "y = full_grid[:, plot_dims[1]].reshape((nx, ny))\n", + "z = lamstar.reshape((nx, ny))\n", + "levels = np.linspace(0, 0.2, 11)\n", + "\n", + "z = tb.reshape((nx, ny)) * 100\n", + "levels = np.linspace(0, 2.5, 11)\n", + "\n", + "cmap = None\n", + "plt.figure(figsize=(6,6), constrained_layout=True)\n", + "cbar_target = plt.contourf(x, y, z, levels=levels, extend=\"both\", cmap=cmap)\n", + "plt.contour(\n", + " x,\n", + " y,\n", + " z * 100,\n", + " levels=levels,\n", + " colors=\"k\",\n", + " linestyles=\"-\",\n", + " linewidths=0.5,\n", + " extend=\"both\",\n", + ")\n", + "cbar = plt.colorbar(cbar_target)\n", + "cbar.set_label('\\% Type I Error')\n", + "plt.axvline(x=0, color=\"k\", linestyle=\"-\", linewidth=4)\n", + "plt.axhline(y=0, color=\"k\", linestyle=\"-\", linewidth=4)\n", + "plt.xlabel(r\"$\\theta_1$\")\n", + "plt.xticks(np.linspace(-1, 1, 5))\n", + "plt.ylabel(r\"$\\theta_2$\")\n", + "plt.yticks(np.linspace(-1, 1, 5))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAASHCAYAAABbKkxOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOzddZxc5b348c8j40sUd4JDsA1uQRPc3d3dXRJCPLhbKS69t/fe9lchUC+aUEfaUm+RltJSsjO7c87z+2OeTc7MHtnNJoRkv5/Xixf38oy8ObMhPd88c45yziFJkiRJkiRJkiRJkiRJfUkvaoAkSZIkSZIkSZIkSZK0+CVDJUmSJEmSJEmSJEmSJKnPyVBJkiRJkiRJkiRJkiRJ6nMyVJIkSZIkSZIkSZIkSZL6nAyVJEmSJEmSJEmSJEmSpD4nQyVJkiRJkiRJkiRJkiSpz8lQSZIkSZIkSZIkSZIkSepzMlSSJEmSJEmSJEmSJEmS+pwMlSRJkiRJkiRJkiRJkqQ+J0MlSZIkSZIkSZIkSZIkqc/JUEmSJEmSJEmSJEmSJEnqczJUkiRJkiRJkiRJkiRJkvqcDJUkSZIkSZIkSZIkSZKkPidDJUmSJEmSJEmSJEmSJKnP2UUNkCRJkiRJkiRJkiRJWhxTSu0GHAr8FhgODAEud859Mh+vdQiwOzACGAa8kfZafX3vBWntToZKkiRJkiRJkiRJkiRJfcwPga50zo2K/LN2YJZSalRfhjVKqcnA68650/3/PwR4Efidf633+vPeC9La9LrOufl5niRJkiRJkiRJkiRJ0oDMD33+CezunJvZsvYcgHPu0F6+VjtwuHPu8oT3eM85t+b8vveCtLYm11SSJEmSJEmSJEmSJEnqW4f5v78Rs/YMcEgfXut0/5ym/O6hmcAIP3ia3/dekNamZKgkSZIkSZIkSZIkSZLUtw4FPkn42th7MPcrZ71pcxpfQ2uPWZsdecz8vveCtDYlQyVJkiRJkiRJkiRJkqS+tTnwccLaJ/7vW/TytWb653yS/rD5fu8FaW1KLtS9kFNK/Q4YBPx+EVMkSZIkSZIkSZKkBdvqwL+dc2ssasjCSCn1BLDeonYsxFYn4Vw9ekHrhIaQPKiJPiYzfy2lyxOWu3cvRb+61tf37uvje50MlRZ+g0ql0rD1119/2KKGSJIkSZIkSZIkSQuut956i46OjkXNWJitVyqp9nXWyy1qxwLv3be76Ohwc/r5Mp8k/PPuAU6/5gBKqRHAbsDzzrnZLct9fe++Pr5XyVBp4ff79ddff9isWbMWtUOSJEmSJEmSJElagI0aNYrZs2f/flE7FmbrrJfje6+stKgZC7zRW/+Fn77Z+XYvdiT1pyH9fP5zNK55dOrn8N59fTwg11SSJEmSJEmSJEmSJEman4Yk/PPuXT+fzO8LK6Um+9cflXCB7b6+d18f36tkqCRJkiRJkiRJkiRJktS3PunFY7KuYxSbvxPbbiQPlPr63n19fK+Tr79JkiRJkiRJkiRJkpSQgtAsasRCSPX3Bd6gMfiJa4T/e5+vg6OU2g04PeNreX1974ViBdmpJEmSJEmSJEmSJEmS1NeeS1nrHtTM7MsLKqXaaQyUdm/550OUUqf1470XuLU7GSpJkiRJkiRJkiRJkiT1rWdh7lfVWjsUmOmce691wd/RrUf+n5/unDs0Znk3Ghfsnt/3ni9rb5Kvv0mSJEmSJEmSJEmSJPUh59wnSqnTgcnA893/3O82GgH0+PqaUmoW0K6UGuWcmx3550OAF4D3lFLRXUVD/N83j75eX997fqy9TYZKkiRJkiRJkiRJkiRJfcw5d79SqnsQ9DownPQ7ts30661rL9IY7sTuYvLv9V7L/9+n954Pa6+SoZIkSZIkSZIkSZIkSfE5UGG/L2r9xcstoJdxbia9vB6Rc+5y4PKYfz5fO4X68t7z8/jeJNdUkiRJkiRJkiRJkiRJkvqcDJUkSZIkSZIkSZIkSZKkPidDJUmSJEmSJEmSJEmSJKnPyTWVJEmSJEmSJEmSJElKzi2B11SSFkiyU0mSJEmSJEmSJEmSJEnqczJUkiRJkiRJkiRJkiRJkvqcDJUkSZIkSZIkSZIkSZKkPifXVJIkSZIkSZIkSZIkKTYFqHDJu6bSkvdvtGiSnUqSJEmSJEmSJEmSJElSn5OhkiRJkiRJkiRJkiRJktTnZKgkSZIkSZIkSZIkSZIk9Tm5ppIkSZIkSZIkSZIkSfE5UOGiRiyE3KIGLBnJTiVJkiRJkiRJkiRJkiSpz8lQSZIkSZIkSZIkSZIkSepzMlSSJEmSJEmSJEmSJEmS+pwMlSRJkiRJkiRJkiRJkqQ+JxfqliRJkiRJkiRJkiQpuSXxQt3SAkl2KkmSJEmSJEmSJEmSJEl9ToZKkiRJkiRJkiRJkiRJUp+ToZIkSZIkSZIkSZIkSZLU5+SaSpIkSZIkSZIkSZIkJabcohZIX9Rkp5IkSZIkSZIkSZIkSZLU52SoJEmSJEmSJEmSJEmSJPU5GSpJkiRJkiRJkiRJkiRJfU6uqSRJkiRJkiRJkiRJUnwOVLioEQshuU7UAkl2KkmSJEmSJEmSJEmSJEl9ToZKkiRJkiRJkiRJkiRJUp+ToZIkSZIkSZIkSZIkSZLU5+SaSpIkSZIkSZIkSZIkJRfKBYik+GSnkiRJkiRJkiRJkiRJktTnZKgkSZIkSZIkSZIkSZIk9TkZKkmSJEmSJEmSJEmSJEl97gt3TSWl1CHAlc65Uf14jd2AQ4HfAsOBIcDlzrlPFsTjJUmSJEmSJEmSJEmSBnpfiKGSUuo+YBjwMbBbP1+rx1BKKdUOzFJKjWodFPX18ZIkSZIkSZIkSZI0kFJynW4poS/EUMk5d3r3/62UmkVjp1CfU0oNAZ4Ddm95/dlKqdnAAzR2JM3X45e0nHM4/oqjA83KKFXs8ZjQfYTjEzTLodSgmNf4NyEfoBiCVsvErFcJ+TOKEooVUUq1rNcJ+RMAmlVRyqQYV0GpQj+MQ9Fq6YVk/AuOmj+Oi8r4R0D747QwjP8i5MMUYwchf/mcjMuj1FIpxmFoNTzFWEaxwnwa/4yjM8X4IY5/LRCjVivGrEeNq6KUbln/Ihi7/K+ZBWFcAaXaYtY/wfFRinGON7ah1QopRuM/6/kxfoDj370wDkerYQvZuApK5T93oyRJkiRJkjSw+0IMlRZgh/m/vxGz9gyNAVJ/Hr/E1BV+k2pwB6F7y/+TpcjrQymai1CqTD38KbVgGnX3I79uyek9KZrL0WpFQvcXqsEUusJvAPXGI9R2FMwlWL0Jzn1GNbiFzvBZ4D8AaLU+RXMuOb0HzoV0hg9TCx7B8TcAFCtQMCeR1yeilKYr/H9UgzsJ3dsR42EUzYXe+BOqwTQC9+OIcW+K5jK0WsEbJ9MVfjNi3N4bN8a5/3jjcxHjBhTNeeT0GG98yBvf98YVvfGEiPEOQveONwyKGEvUwze98WW/niOn9/LHcXlC92d/HKPGHSiaSzB6I2+c4Y2feeOG3rg7zgXe+KWIcSUK5mTy+niUUnQGX6cW3kHo3o0YD6doLvDG2VSD6S3G7uPYbZxMV/itiHFHbxyJc5964/MR40iK5nxyeldvfIBa8CiODyLGU8jr47zxa9TCOyPGwRFjkXo4yxtf8ev5iHE5Qvcnb/x2xDiaorkUozfwxul0hl+ZazRqJIWIsRbeT2fwKI4PvXFlbzzWG/+XWngXofv1XGNBH0HBnO+Nb3jjqxHjPt64LKH7Ix31ydTdt4EAUP44XobR6+Pcv73xvyLGjbxxF2+8j87gyxHjKv6z7jb+D7XgLkJ+49eHkJ9rLFAPX/fG1yLGfb1xGQL3B6r1ydTdCynGad44xxs39sadca4eMX4UMZ5KXh/tjV+lFtzdYjySgjnPG1/zxte9sRA5jssQuN9TrU9pMY72xvW8cSqd4X9HjJt4407eeC+dwWNzjZpVyZtTyeujvPG/vfG33jjUG8/1xlepBjNajN3HcWkC9ztvnBkx7ux/HtfFuX9541dbjBeQ06O98R5v/Ls3ruaNR3rjf3njexHjURTMOd74ije+ETHuR9Fc6o3veeOLLcbLMHodQvcJtbnGDm/clIK5kJzeAUmSJEmSJEkCUM59sfaxde9Ucs6tOR/PfQHY3Dk3NGatHZgFHOqce35+Hj8/KaVmtbe3t8+aNWt+X2KBVwuepBpcE7tm1CgK+gLmBKcAtR7riuUp27uZUz9z7oCguQJl8yC18BYCNzv2PYr6JgJ+Rlf4bOx6Xh+FVutRDa5LMG5OQZ/njZ3zYSx643QC92aC8WYC3qQrjJ8r5vUxaLUW1eCGBOMWFPQ5zAlOTTCuQNnexZz6GXMHBD2ND1ELpxC4nyYYJxLwBl3hVxKMx6HVGlSDGxOMW1HQZ3pjV4xxJcr2DubUT5978t1cyRsnErifJxgnE/AqXeF/JRhPQKtVqAbjE4xbU9CnMyc4LcG4MmV7O3Pqp809+e5pfJhaOIHA/SLBOJWAH9EVfjXBeCJarUg1mJBg3IaCPtUb6zHGVSjbW73xH4nGajiBMNaoKOppBHyPrvB/E4wno9VyVIObY9et2o68PpE5wRmxRs2qlOwtzKmfiuPjmFcoUzEP0RHeROh+mWL8Dl3h1xKMp6LVcKrBpATjDuT1ccwJzkwwrkbJzmBO/RQc/4x5hYo33hgZlrcaZxAwk67w6wnG01BqMLVgaoJxR3L6GDqCszKMJ+P4JMH4CB3hdZFheavxFuruW9TdN2INBX0GqAq1YHqCcTQ5fZQ3BjHGNSjaqXTUT0kwtlExD9MRXhsZlje/QtneTk7vFfv+kiRJkjTQGjVqFLNnz57dn2sCf5FTSs3adONC+4+/vdqipizwth3zB37ys9oS+9l9Xi1pQ6V/Ah/HPVcpNYLGhbinOOcun5/Hz09ftKGSc//i313bANXExyiWSRgidK+viuOPKevLJgxKussTN2hpLkfcEGHeeyydMERYkozLJQzFuisQN/hrzhJ38jvvPYYnDDoaaVb1X7WaX2ORtJ+1Roa4k98FZ1x+7i6uhWccljCM6V5fBee/Qhm/vsLcHXvxlejeLTL/xqEJw5jP06iBMOU9hiQMOhaUsUz3zqBFZ1wRx19T3r9C9061+TXCYOBfKYaVcfw5ZX0lHH9JWR/GUrkfxX4lUJIkSZIGWgNiqLRRof3H31oCh0pj/8BPfi5Dpf6msx+yWDWkj4/p6+MX+zrD/yPrBDptoNRYTz6Bb6ynDWsge1gDacOaxnskD2sa60uCMW1YA9kDJUgbKDXeI3lYA6QOaxrPzzJmDWsgbRDSeI/+GtMGSrBgjMkDpcZ68pChsZ42CIHsYQ1kG5MHSo31z8OYNgghdVjTWO+vMWugBAvfmDZQguyBEmQZ0wZKDUPyQKmxnjxQaqx/7L82J0mSJEmSJA30lrRrKgGJ/4u/+6yv9UqkfX18bH6HVVzr9eb5n1fOZZ3QSJIkSVJ6ofxeIkmSJEmSJLHk7VTqTUMW8uO/0KmYuyRJkiRJUl9S9LwDpCRJkiRJkjTwWhKHSkMS/nn3jqNP+vn42Jxzo+L+AuKuxrrIyul9yN6g1vN28tEUy/br+b37sct6TP+MisH9fP/Gq6TX81btzc/OOo5ZRpOx3niX9HreYrz52VnGIRnrvdkMKUboca+AlhbEptJK6qpimYznZxlzfdLEV05dzTZmbSxdHIz5PmniK6WuZhkVWX/4UCGnd+ujSZIkSZKkxTUFqNAteX8t6gO7hLSkDZU+6cVjohc/6evjF/u0Wq5x96CkddagZK4n+SS6jaIZR/IJqqJkrkOzeuJ75NVZWDU6cd2qXcjr01OMIyiZaxPXoY2iHZ9qLJrr0SRfbC6vz8GqHVOMu2UY18wwLuWNSSeompK5sRfG7VOMY8jrU5ONau0M4yBvTDpB1ZTM9ShWSTGei1XbpRjHktcnpxjXoWTi71TYaDBFOy7DeCOKlVOM52HUNinGPcnrkzKMVyeuK4ZkGA0lcwOKlRJfo6AvSDXm9N7k9YkpxvUoZhnNeBoXLU8yjkOxYorxQozaKsW4D3l9fIpx/QzjUEpmHI0L1Mcby+ZGFCukGC/CqC1SjPuR08emGDekaK5KMQ7LMFr/87h8ivFijNo8xXgAeX10inFkL41JwytLMcNYNBejVPogVZIkSZIkSRoYLWlDpTeAEQlr3f88eu2jvj5+iahgLqRorkI1/Ym5xqoxVHJPkzcHUrb39BhoGNVOm32avBlDm30ao9qb1jWrU7b3kjcHUck9jVVjiP6IKYZRNFdTtBdStveQ18fSfBJbJK+Pp2zvomguoWiuTDA+Rd4cnGAcRZt9hrzenTb7JEZt1mJcg7K9j7w5wBt3JzpAUwynaK6haM5v/LvoY2g+QSyR1ydQtndQNJdSNFegmnZwaKzag0ruSfLmEMr2rgTj0+T17lTskxi1aYJxPyq5p7BqtxjjdRTNeY3H6aNjjCdStrdRNJdTNJfFGPekYp8gbw6lbO9Es2qLcfMW4yYtxhGU7f3kzf605Z7Gql1bjEtTNNdTNOc0HqePajGWyeuTvPEKCuZSVNOOIkNO7+WNh1G2d/YYXhm1hTeO8caNW4xrUrYPkjf70pZ7Bqt2iTHeQNGcTcU+QF4fSfOJdpm8PpmyvYWiuZKCuTjGuDcV+yR5czglc3uMcUsqc41PYNRGLca1Wow7txiXoWhupGDOpGIfIKePiDGeSslMp2iuTjDuQ8U+QcEcQcnc1mPAZtRWVHLPkDfdxpExxofIm729caemdcWyFM14CuZ0KvZBcvrwFmOFvD7NG6+lYC6ieRee9cbHKZgjKZlbegzYjNqaSu4ZcmYsFfs4utWo1qZsHyZn9qYt92yPobViOYrmJor2dCr2YXL6MJp3LXUbp1Iy11MwF9C8G9KS0/tSsY9RMEdRMjMyjI+h1YYtxnWo2If9cYw3lswEivZUbzy0h7GgT6dkplA0N1Aw58cY96PNPkbBHE3JTO8xBDRqGyq5ZyPGDWKMj5A3e/nPunmw3jBOpGBOQJIkSZIkSZIAlHNuURua8he8HuKcW3M+nnsacJ9zrsc2m+41YE3n3Hvz8/j5SSk1q729vX3WrC/ebCoMq3S5b4H7N1Zvj9FrNK07F1IPv0vo/oTWG5HT7T1eoyucTRj+HK1WweqdUKp5ThmEv6Ue/hjUIHJqLFo374QIw7/T5WYCkFNj0HpYy3pvjN8hdH9OMb5BGP4y06jUIOx8G78J7j/euHqi0ehNsHrTFOOq3tj8IznPONgbm3dChOFH3mjIqd3RemjLepUu9w1wn6UYXyR0f00xvk4Y/gqtVsPq0THG31APX+6HscMfx8+wekeMbh50NRs3xermQVfD+Bph+BZarY7VO8YYf009fAWlhmLV7j2MQfihv6uV8Z/1kBjjN8DNSTAG1MOXCN3fvLF50NVsXAOrd8gwjkHrfMv6B9TdSynGOf44zsHq0RjdPOhqGF/0xnasbh50NRn1GlgVZ3yXevhqL4zWf9bzY5xJ6N6PNTrnqLtXCcN3UoxvUw9fQ6lhycbwRVA5fxybv24ahp/5//bMweqdMLp5GNc34wis2j7FONz/PLYa36cevtRP4wuE7oMU4yuE4bu9NI5B6wXxFUJJkiRJWnIaNWoUs2fPXmJvS6+UmrXZRoX2H39j1ewHL2Ztu+cfefPntSX2s/u8Wmzv/qaUGhEz7HkWuE8pdYhz7vmWtUOBmS3P6evjl5g6g69RC+8kdO82/kFYIa8Pmfu1hno4m2owjcC94tctOT2GorkCrVYmdH+mGkyiK/w23betN+HWFM2lWL0Zzn1KNZhOZ/gVum+R3anWoeDOJW/2xrmAzvABasGXcHwIQI3bKJgTyetTUErTGfyfN/46YjzUGyvUw1ne+GrEONYbVyJ0f6KjPom6+zbdt1s34TbeuKk3TvPGxq3GtVqHIueR03vhXEAtvI/O4FEcH3nj7d54sjf+L7XgTkJ+k2B8wxtfixj3oGgu98Y/euMLLcbLsHoTnPu3N/5XxLiuN+7pjffSGXw5YryVgjmJvD7JG79KLbiLkN96Q1vEWKYevkY1mE7gXm8xXoFWKxK4P1CtT6LuZkaM2/rj2G2cSmf43xHjet64B87VI8fx7y2fdZrxMIrmoohxGoF7I2Lc0xtXIHC/98YX5xptuB0FcylWb+yNU7yxwxvXp8j55PQYb7zXG/8RMZ5MXp/gjf/tjf4/CeFSEWOJeviqN86KGPfyxuUJ3O+o1if74xh64/YUzaUYvRHO/csbvxoxbuCNu3vj3XQGj0WMt0eMis7gK9SCuwn5XcR4BEVzIUoVqYev+M+625iLGJcjcO9544sNYwhWbU/RXIbRIxOMG3rjbjjXFTF+HDmOp5DXx3vj8974e28YRF4fHjG+7I2zI8a9vXFZb5zkh1bdxh28cUNC9wnVYApd4VeBasR4ATm9a8MY3EVn+HjEeLs3HgdAV/g8teCeFmP3cSxQD3/sjW9GjPv4X9fLErjf+uMYNe5I0VyO0esTun964/9EjCP9cew23kln+ESL8VS/wxO6wmepBfcS8gdvGExBH0HBXOCNP6Qa3BIx5iPGZQjcbyJG542j/XFcn9B9HDHWGr/u1UgKXEhO74wkSZIkSQMoR/f/fF2y+mLtr1ls+yLuVPotMMw5l3hVWL+bqR0Y5Vz3mcfctdOAy6M7nZRS7cBz/vGf9Ofx8/Hv84XbqVQLvkw1uCF2zahNKegLmBOcCnT1WFcsS9nexZz62XOHQc3lKZsHqIUzCNxPY9+joG8k5Gd0hV+JXc/pwzFqParBjQnGzSjo81OMy1G2dzKnftbcQUu8cTqB+1mCcTwhb9IV/lfsel4fiVZrUQ3GJxhHUdBnMyc4je6hW7Nxecr2DubUz5w7aGkReOMUAveL2Pco6gkEvO5PnuOMR6HVGlSDCSnGs5gTnJ5hPGPuEKNFQNncTzWcTOh+mWC8mYBX6Ar/N8F4DFqtSjW4OcG4BQV9OnOCMxKMK1C2tzGnfjqOfyYYH6Qa3kzofpVgnEjAj+gKv5ZgPA6tVqQaTEowbkVBn8Kc4MwE40qU7S0pxpI33kTo3kowTibg+3SFX08wnoBWy1INpiQYtyavT6QjODvBuLI3noqLvdRct3EcoXsnwTiVunuJuvtGgvFElBpOLZiWYNyGvD6BjuAsugeDzcZVKNvpzKmflmG8cd6wvIdxGnX3AnX3rQTjKSg1iFowI3bdqu3I6WPoCM6JNWpWpWinMad+KvCvmFcoUzEP0hHekGBU3vgtPwyPM56GUmVqwa0Jxu3J6aO8sef/+tOsRtFO8cZ/JxgfoiO8bt5Av8VYMreSN/vGvr8kSZIkDbQGxE6lkYX2H/+/JXCn0l5/5M1fyE6l/vaFGCoppS4DtqBxHaPu7y+9B8wG3nPOXd7y+MnAIcDucTuJlFK7AacDrwPDadz+6fKkAVFfH9+XvmhDpdB9wqdd29D9J89xKZZOGHR0r6+C408p68skDHO6ywOdGdIccQOjee8xPGHQ8XkaLXEn6AvOuGzC4K67AmmfY++Mw+buhFg4xiLdOzGSM8SdoC8443I4Pkh5/94cxyzj0ISBUff6yjj+3A/jgjiOQxKGMb01Lo/j/ZT3L9G9eyk5Tdofc/XfuAKOvy1UY+N6UHEDowVlrNC9u3P+jYOIHxh1G1bC8ZeU9RVx/DVlfShL5X6MUkkXJJckSZKkgZMMlRbfZKi0YPpCfP3NORf/x+vJj78cuDxlfSYwsw+v16fHL851hf9H1gl02kCpsZ58At9YTxvWQPawBtIGSo33SB7WNNY/D2PysKbxHv01pg1rIHsQAtnG9Jsb9t+YNQiBtEFI4z36a0wb1kDvjmOWMXmg1FhPHjI01rOMC+I4fpKxnmVMGyhB9rAGsvZN99+YNqyBBWFMGyg1DP01Zg2UINuYPFBqGJIHSo315IFSY/2f1N2L5NReGQ5JkiRJkiRpSW9Ju/ublJFzWSc0kiRJkpRe6NIHT5IkSZIkSdLA6AuxU0n6/FJq6UVNkCRJkhbzFPJ7iSRJkiQNpNSiv2qO9AVNdioNsHJ6H7JniYNSVxXLZawPTl3v3Y9d1mMGgnFIxuubjPXGq6S3VMaz041kGnszt17YxsRr/vsWhLEt49nLZjx/WMZ6b27jnmWsZDz78zBmVU5d7b8x3ydNfP01Ds9YXxDXKSqlriqWyVjPMlbI6d36aJIkSZIkSZKWxGSoNMDSalkK5uzkddakZG4k+QR1KUp2Askn+pqiuRHNmgnrkNfnYdUuietWjSGvU4xqbUrmhhTjIEr2ZpJP9DVFMw7NGinGC7Aq+bbZVo0lr89MMa6TYRxM0d5E8ol+t3H1DOPoFOMe5PUZGcbrE42KId6YdBJtKJnxaFZLfI+CvgCrdkxcz+m9yOvTU4zrUjLXJa4vGONFWLV9inEf8vrUFOP6Gcah/tdM0om+pWTGoUm++GFBX4xV26UY9yWvT04xbphhHJZpLJvxKFZOMV6CUdukGA/IMI6kuECMK6UYL80wHkRen5C4btRGFM21KcbhlMxNNC6snmS8CcWKGcatUowHk9fHpxg3zjAu7Y1JwytL0dyEYoXE1yiay1AqfZAqSZIkSZIkDYxkqDQAK+jzKJrrWr6+YMjpvajkniJv9qds7+8xGDJqC9rs0+T0LrTZpzFqi6Z1zZqU7f3kzX5Uck9i1Z5Ed9MolqForqdozqVs7/Inb9FhQJm8PomyvZ2iuYCiuSbeaJ8kbw7wxhEtxi1ps8+Q0zt74+YtxrUo2wfIm32p5J7Gqj2I/jJoGG+gaM6mbO/2xuhJbIW8PoWyvY2iuYiiubrlT/UNOb0PFfuEN97bY3hl1Fa02WfI6129sflmA1qtTdk+SN7s441jW4zLUjQ3UjRnUbb3+hPMVuOplO2tFM0lFM1VqKYdHNYbnyRvDqJs7+4xvDJqayq5NOM6lO1D5M3eVHLPYNWYFuNyFM04CuZMbzyO5hPtCnl9GiVzC0VzKUVzZYxxX2882BubB0NGbUMl96w3PoVR7U3rDePD5M1e/jjGGW+iaM9o/NzqY3oYC/p0SmY6RXM5RXN5jHE//1kfQtnelWjM6V2p2KcwarMW47pUmoy7Ex3yKZanZCZQtKd549E0DwPaKOgzKJlpFM2VjZP9Hsb9qdjHyJtDKds7Y4zbRoxPYtSmMcZHyJk9acs9g1W7tRhXoGQmUrSnUrEPkNdHxRjPpGSmUDRXUjCXopp2j1ly+gDa7GMUzGGUzB09jFZt12LcpMW4HhX7pYhx1wTjyd54ZIzxLEpmEkVzDQVzSYzxQCr2MQrmcErm9h5DQKu2bxjNblTsExi1cYtxfSr2UXJmrDfuEmOcRNGeRMU+6I3RnVVLUdBnN/49zLUUzMUtuxktOX0QFftlCuYISuZWFKskGHf3xo1ijI+RN2Npyz3rB+utxikUzLFIkiRJkiRJEoByTr4cuTBTSs1qb29vnzVr1qKm9CgMa9TdN3Hu31i9PUY3Dz+cc9TddwjDP2H0Rljd3uM16uEsgvAXaL0KVu2MUs27XoLwPerhj1BqEFbtgdbNfzoehv+gK3wBgJweg9bDWtar1N23cO5TrN4uw7gxVjeftPfO+Fvq4Y9RarA3Nn9Fptk4Fq2HtqxX/XH8D1bvgNHNJ8QN40uE4Z9TjG8QhL9E61WxaqcY42+ohy+nGD+iK5wJaH8cW40d3vhZgjGkHr5E6P6K0ZtgdfNJO0BX+Dph+KtFbHyR0P0tw/gWWq+GVTvGGH9NPXwFpYZg1dgM41i0HpJi3BGjmwcLDeNMQveBNzYPFhrG17xx9V4Y90Dr5q+VheGHdIUv0hhgjkkwfgPnOryxebAwz/g+Rm+aYVwDq3aIMb5LPXwVpYb645hktN44uGW9N8YX/HHcDKubhx8N46uE4dv9MH7gjTn/WQ9qWZ/jP+sOrN4Jo5t3QPXNOAKrto8xvkM9fK0fxs/8fx/jjWEYELjun8dRWL1hjPEVwvAdtF4Tq7bLMO6B1nIpRkmSJEmKNmrUKGbPnr3E3pZeKTVrs5GF9pf/L3lX/eLaNvv+kTd/UVtiP7vPK/lfhwO0zuCr1II7CPld4x+EJfL6wMZuDLUU9fB1qsEUAueHYaHGqt0o2avQalVC90c66jdTdzOBEEIwahRFcxlWb4Fz/6YaTKEz/G+6b+OtuYOCOZe82R/n6tTCe+kMHsXxDwBq4XTy5gQK+gyUMjHGsjde5o2vUQ2mRowmYlyFwP2ean0idfdixLg5RXM5Vo/yxsneWPXGNb1xP2+8xxs/9sYZ3ni6N/4XteBOQn4fMR409+sh9fBVb5zdYrwarVYmcL/zxpcixi28sR3n/kVHMJmu8KstxvPJm3288W46gy83GQvmRPL6NJTSdAZf8cY/RIwHUzSXeuMr3vhmxLi7N67kjTd7o/PGLb1xM2+cRFf4PxHjWt64d8MY3Eln+HjEeIs3nuqNz1ML7ooYK+T1IRTNJShVoR6+7I0/iRjH+M96JQL3njd+J2Lcyhs3JXSfUJ1rrDWMam2KnE9O74VzXRHjPyPGk8jrU7zxWWrB3YT8MWI81BvL1MMfe+NP/XpjoFI0V6HVigTut9743Yhxa2/chND90xv/N2Jcxxv3zDCeDCi6wmepBfekGH9INZhG4H4WMY71xhW8cQJ1970U40Rv7IwYLyCn98C5TmrBHXSGT+D4JPLzeDJ5fdJcYzW4G8efWoyXolSJrvAH1IJpBO7nEeMe3rg8gfu1P47fjxi3oWSuwOiNCN3H3vh/EeO63jg2wXhLxAhd4dNUg3sjxjby+jCK5uJ+Gq/E6JGE7h/+s241XkRO7+6Nt1ELnwT+FTGeQl6fCEBn+BS14F4cf44YD/fGIl3h973xFxHjnt64HEH4LtVgov+s8cZtvXFDQvf3iLHLG9fzRrmekiRJkiRJktRIdiot5L6IO5VqwZeoBuNi14zaiIK+gDnB6UC9x7piacr2LubUz8bx95hXyFE291ELb5l3wtVSQV9HyM/8oCTmFfTBaNanFt6UYNyEgj6XOcEZCcZlKNs7mVM/a+7AKs5YDWcQdp9w9TDeQMhsf/IcZzwUzdrUwpsTjJtS0OekGJelbG/3xo9jXiFP2dxPNZxC6H6VYLyRkNfpCr+WYDwco0ZQDSYmGDejoM9iTnBmgnE5bzxj7hAj3jiZ0L2VYBxPyCt0hV+PXc/rI9FqVarB5ATjKAr6dOYEZyUYl6dsb2NO/fS5A4IWgTdOJHRvx75HUU8g4Ed0hf8vwXgUSq1ELZiaYNycvD6FjuBsIIgxrkDZ3uKPY5LxAarhTYTu3URj3f2AuvtmgvEYlFqOWjA9wbgleX0iHcE5CcYVKdkZzKmfTvcQo0Xgj2OacSJ19x3q7tsJxuNQaji14JYE41bk9fHeGMYYV6JkpzOnfhrw75hXKPnjeCOh+3WCcTJ1N5O6eyHBeAJKDaYW3JZg3Ia8PoaO4NwE48qU7FR/HFOMwQ2E/CbBOJW6+6YfhscZT0JRoRbekWI8mo7gvATjKpTsFH8cP401VsyDdATXEvJe7HuUzAzy5oDYNUmSJEkaaMlOpcU32am0YJKh0kLuizZUCt3HfNq1Ld1/Oh6XYnjCMKZ7feV5fzo+H89v3CWqK0NqiRsizHuPYQnDmN4al04Yii1Oxjxpn2MjQ9wQYd57DE0YGPXWuAyOj1Lev0D3rptFZ1wWx4cL2TgkYWDUvb4Sjr8sZKMmboiw4IzL4fgg5f2LdO9US04Bab/nDCJ+GLOgjCW6d04uOuPyON5Pef0yMGchG1fE8df5NiqGsFTuxyiVdEFySZIkSRo4yVBp8U2GSgsm+frbAKuxqyV9EJE+ECL1BL43z88e1kDasKbxHsnDmsZ6ljFtWAOLhzFroARpg5DGeyQPaxrrWca0gRJkD0Jg4RvThjWwYIyfZKwnDxka6wvCmDxQarzHJxnrWca0YQ1kD5Qar5Je8iCk8ez+GrMGSo1XSa+/xrSBEmQPlBqvkl6WMXmg1FhPNzo+oSt8kbzZO8MhSZIkSdISkQOV/j81F89kf80CSe7+NsByLuuERpIkSZLSc/xtURMkSZIkSZKkL0AyVBpgKbXMoiZIkiRJi3kK+b1EkiRJkiRJkqHSgCun9yHrW4+KwRnry2esD8lQ9ObHzmS8R3+NQ1PXs96/Uda/x6DU1f4be/Pt1YVrZIEYVcb6UhnPzjIOy1jPZaw33iW9LONyGc//PIxtGc/OMg7PWM9nrDfeJb1KxrOzjEtnrBcy1ntT/4zqczGWMwzLZqxnDYza5A5wkiRJkiRJEiBDpQGXVstQMOelrK9D0Ywn+UdjMCU7keRhhKZoxqPV2onvkdcXYNXuietW7UFBn5thHJdhnJBiNBTNODRrpRgvxKrkk6ac3ou8PifFuC4lM46kk2jFEEr2ZpKHEYaiuQnNiMT3KOiLsGqXFOM+5PVZKcb1M41FezPJwwhLyUxAs0aK8RKs2inDeGaKcYMM41B/HJNO9C1lcxOa1VOMF2PV6BTjfuT1GSnGkZTMjSnGYZTsJJJP9C1lMwHNainGS7FqxxTjAeT1aYnrZq4xPsVw/+s6y5h8gcaCvgyrtk8xHkxen5pi3JiSuSHFuLT/rEupRsUqqUajtk0xHkJen5xi3ISSuT7FuEyGMUfJ3Ixi5RTjFRi1TYrxMPL6xBTjphTNdSnGZSmZLOMEFCslvkbRXIFS6cM1SZIkSZKWsJxb8v6SFkgyVBqAFfTZFM2NLX+ibsnpfanYJ8mbfSjbB9FqnabnGbUNbfYZcno0bfaZHic+Wq1D2T5E3uxNxT7ZY1eUYjmKZhxFczZlezt5fQrNw4AKeX0aZXsrBXMuRXNDinFfyvaBeGPuWXJ6Z9rs0xi1dYtx3XnGXJxxeYpmPEVzJmV7hz/BjBrbKOjTKZlbKJrzKZrrW/7U35LT+3vjft7YPGAzalsquWfJ6Z28casW43qU7cPkzZ5Uck+R03sT3TmlWIGSmUDRnkHZ3kVenxRjPIOSmU7RXEjRXNuy88CS0wdQsU944/09BmxWbUcl9xx5vZP/rLfsYazYh8mbPajknian94ox3kzRnkbZ3uNPgqMDi6Uo6DO98WKK5poY44G02SfIm/0p2/vQrNli3J5K7rnIcdyixbgBFfsIObMHldwzWLVnjHGiN95LXp8QYzyLkplG0VxC0VzdssskR04fRJt9jLw5gLK9p8cQ0Kod/Gc92hs3jzE+Ss6M9cY9iP5nWbEiJTOJoj3FG49vMQ6ioM+hZKZQNJdRNFehmnYU5cjpg6nYx8mbAxOMO0Z+Hp/CqOabX2i1IRX7ZXJmjDeObTGuRMlMpmhPomzvJ6+Po3lgMYiCPrdxrM3lFM2VCcYvkzcHU7Z39xhUWjXaG3emEmscScU+Rs7sTlvuGawaE2OcStGeSMU+QF4f22IcHDFe1RiaNO0ey5PTh1Cxj5I3h1C2d7YMKlWL8UmMam8ymrnG3RKMKzd+1uzxVOyD5PUxNO6oFzWe1/i1b66maC6LMR5KxT5KwRzmjdFBZcPYlnuWnNnFGzeLMT4eMe7eYlyFkplBwRyFJEmSJEmSJAEoJxO6hZpSalZ7e3v7rFmzFjWlR2FYo+6+iXOfYvV2GN18Iueco8t9Bxf+BaM3wupNe7xGPXyTIPwFWq+MVTuhVPNujSD8HfXwRyi1FFbtidbNX5EJw4+pu2/TOOHZHa2HtazXqLtv4Nx/sHp7jF49xvgSLvxrinE2QfjLXhgHYdUeKUaNVbv107gxVm8SY3yDIHwLrVfBqtExxveohz/upXEMWg9pWa/6z/o/WL0DRjfvimkYX8SFf+uH8bfUw5dRarA3Nn9lKwz/Qd29kGLs8MbPYo1hGFLnRVz4fi+Mq2LVjjHG31APX/HGPdG6+et5Yfh36m5mL42jMXqVlvWQOjNx4QcpxtcJwrfRejWs2mE+jB95o/XGwS3rHf7nsQOrd8wwborVG8UYXyMI30Hr1bFq+x7GevhrgvBVlBriP+v+GEdj9Mot6yF1XsCFH6YYXyUI30XrNbBquxTjUKwaG2P8kLp70RvHovWglvU53ljF6p0weqWW9cAfxw8xuh2rN0w15nTPXVz18B2C8PUU4wfU3UtAzq8v1bI+z5jTO6P1ivNhfIUg/HUvjMP8Zyk3jZUkSZKkaKNGjWL27NlL7G3plVKzNtuw0P7K/yTvBl9c23r/P/HmL2tL7Gf3eSX/63CA1hl8hVpwJyF/aPyDsEhO70/JXIlSg6iHr1INJhO4n/h1hVW7ULRXY9TqBO53VOsTqLvvAA7C7q9dXIHVW+Lcv+kIJtIVfpXu26FrGjuQ8uYgnKtTC+6kM3xs7i3jFVPJm+Mo6LNRytAZPO+Nf4wYD6BkrvDGV7zxp35dR4yrEbj3vPG7EeNmFM3l3vgvb/yfiHE1CuZ88uYAb7yDzvDxiHEYeXM8BX2WNz5HLbiryZjXB1I0l3vjj6kGUwjcz5qMJXsNWq3qjTdRd9+LGNu9cQtC9wnV4Ga6wv8FOr1xdQrmPG/sihzHT7xxCnlzIgV9hjc+QzW4G8efvKFEXh/gv8KyFPXwR97484hxV29chcD91hu/HzGO8sbNCd0/vfH/IsY1/HHczxtvpxY+Dvwr8lmfQEGfAWi6wmepBnfh+HPEeJA/jm3Uwx964y8ixt28cWUC9xv/WX/Pr3cbr8Tq9gTjbd64L851euMTLcYTvVHRFT7tj+NfIsaDGztGVBtd4Q+oBlMJ5xqNP47XotVKBO7X3vj9iHFzb9yM0H0cMXZ54+3euI833kYtfDLGeDqg6AyfohbcEzGWI8YKXeH3vfGXEWP3cVyJIHyXanBzjPEqrN6U0P2DajCxxbgmRXshOb2XN95CLXyK7tvaK6ZRMCf5r74pOsMnvfGvEeMh3limK/we1WBai3F3b1yRIHzHG38QMW7hjZt44wS6wq9HjGtRtBd4Y41acKs/jp9GjCf73ZOKzvBxasF9EWPFGy/1xu96468ixjHeuAJB+LY3/jBi3Mr/93ETQvf3iLHeMKq1KXIBOb0nztWoBrfQGT4VYzzZGx/zxsZd2Kphhbw+1BtLdIUvUQ2mE7q3vMGS02Momqu98S1v/FGL8Uqs3pjQfeSN/6/FeBE5PRZJkiRJkiRJAtmptND7Iu5UqgUPUg1ujl3TaiRFfR5zgrPoPpGIphhG2d7JnPo5OD6OeQVL2dxDNbx13klhSwV9NSE/8yemPcvpA9GsSy2cFLtu1EgKqcbh3njW3GFQT+O9VMMZ804KexivJeRNusKvJRgPRrMmtXBKgnFjCvos5gTnJBiXpmxv98ZP4t7BG6cSurcTjNcT8ro/6UsyjqAWTk0wbkJen0lHcDYQxBiXoWxvZU797BTjfVTDyYTunQTjDQTuFerumwnGw9BqFWrB9ATjpuT16XQE5yQYl6Vsb+Wz+pl0D1qay/vjOInQvZtgvJHA/cjv9IozHoFWK1ILZiQY28nrU7wxjDEuR8nOYE79TLoHLT2N91MNJxC6X8e+R1GPp+5+kGjM6yNRajlqwa0JxlHk9Yl0BOclGJenZKenGAuNzzq4iZDfJBgbQ+bGDqU449EohlMLb08wbk5eH09HcH6CcQVKdhpz6mfQPWjpabyfajCOkN8mGG+m7mb63T9xxuNQDKIW3plg3JK8PpqO4AKg5++dihUp2Sne+J84gT+ONxDyuwTjJOrum34YHmc8AUWZWnh3gnEr8vqoFONKlOxk5tRPBz6LeYVS49dMcD0hv499j5KZRt4cFLsmSZIkSQMt2am0+CY7lRZMMlRayH3Rhkqh+5hPu7ale7dGXIphCQOj7vUV5/0Jfuz6cBz/SFFY4gYtzRnihgjz3mNowsBoQRlzdO9yWHjGlebtKIldXxrH3xeycUjCwKh7Pes4ZhnzpP2sNdLEDRHmNQQWqrFA90615LKMg4kfavXWuAyOj/ppVMQNEeatDsZ9wY2Ni+vHDbW6n73C3J058evL4vgw5fWLQLWfxqWIH2r11rgcjg8WsrGN+KFWb43L43g/5fUHMSj3MkolXexbkiRJkgZOA2Wo9Op/L3lDpa0OlKHSgkgu1D3Aauy8ST/JTxsoNdaTTzwb62nDGsgeKEHaIKTxHsnDmsZ6f41ZwxrovzF5oNRYTxuEwIIxfpKxnnUcs4xZAyVIH9ZA2kCpYeivMWsQAtnG5GFNw5BlTBvWQO+M6X9AkDZQaqwvemPaQKnx7ORBSGM9baAE2cOaxquklzxQajw7y5g2UIIFY0weKDWenWVMGygB/Juu8MWMx0iSJEmSJEkDIRkqDbCcyzpZkCRJkqT0sgdPkiRJkiRJ0kBIhkoDLKWWXdQESZIkaTFPIb+XSJIkSZIkSTJUGnDl9N5k3fRPMSRjfYWM9aEZCpOxnv2YbOPyGetZxt7cGDHLODhjPes4Dst4/94Ys36J99c4POP1F4RxUOpqlpFMYy5jvfEu6WUZ038es435jPXGu6S3VOpqtnHpjPUFYWzLeHZ/jYWM9ca7pJdlXC5jfZmM1y9mrPemSoYhy5g1MFqKnN6tjyZJkiRJkhbbHI2rQSxpf8nlpRdIMlQaYGm1DAVzYcr6uhTNBJIGJoohlOzElKGOoWgmoNU6ie9R0BdhVfItqXN6bwr6ghTjet4Y/+PbME4ieWBiKJqbM4yXYNWYFOM+FPR5KcYNMoxDvTFpGGEbx5G1UoyXYtXuKcb9MowbUjLjU4zDvDFpGGEpmQlo1kwxXo5Vu6YYDyCvz0kxjqRkbiLpRF8x3BuTTvQtZTMRzYgU4xVYtXOK8SDy+uzEdaM28scxybg0JTu5F8Y1Mow7pRgPpqDPSjFukmFchpKdSPIwIkfZTEKzWorxSqwanWI8lII+PcW4KSUzLsW4rDeWU4wTM4xXYdUOKcYjyOtTU4ztlMwNieuNO/1NSjHmKZmJaFZNfI2ivhqrtktcz+sjM4yjMozL+5/HpIts5ymZm1EkX4yzZK5CqaR/R0mSJEmSJGkgJUOlAVhBn0HJTGjZ4WHJ6QOo2CfJmz0p24fRav2m51m1PZXcs+T0jlRyz2LV9k3rWm1A2T5M3uxBxT5JTh9AdKeKYgVK5maK9kzK9jZ/ghkdWCxFQZ9JycygYM6iaMa3GHPk9IEtxvVajDtQyT1HTu9Im30Go7btYazYL5E3Y71x/xbjipTMRIr2NMr2dvL6NJqHAYMo6LO98RyKZlyM8WDa7BPkzV6U7UNotW6LcUdv3CHBuOE8Y+4pcnq/FuNKlMwkivZUyvaOGONgCvocSmYaBXMuRXNjyw6PbuPj5M0+lO0DPQZsVo32n3W3cZsW40gq9lFyZow37ttiXJmSmUzRnkzZ3ulPgqMDi8EU9LmUzBSK5nyK5oaW3RN5cvqQFKPKNBo1kop9jJzZzRv3iTFOpWhPpGzvJq9PbjIqhlDQ5zX+PcyFFM11McZDqdjHyJt9Kdv7Y4w7tRi3bjFuTMU+7o1PxxhXoWSmUbQnULb3kNcn9TSa8ymZSRTMRRTNtS27TPLk9GFU7KPkzX7euHaLcWfacs+R06O9casY42PkzC7+32VvokNnzaqUzHSK9njK9l7y+sQW41AK5gJK5mYK5lKK5poWY4GcPtwbD6Bs720Zpiqs2qXFuGWLcRN/HHelknuGnN6rxbgaJTODoj2Wsr2PvD6B6OCnYbyQkhlP0VxO0VzdsqOoQE4f4X9dHpRifNYbn8aoLVqMm3rjLlRyz2DVHjHGWyjYoynbB2KMw/xnPJ6iuYKiuQrVtDOrQF4f6Y0HU7b3tAx8FVbt6o07euPmMcYnyZldaEs03kreHI4kSZIkSZIkASjnZM/XwkwpNau9vb191qxZi5rSozCsUXffwvFvrNoeo1dvWQ8J+B6h+xNGbYTVm/V4jXr4JoH7OVqtglU7oZRqWf8dgfsRikFYtQdaN39FJgw/psu9AEBOjUHroS3rNerumzg+xaodMHq1lvWQOt/FuT9j1MZYvWmMcTaB+8UCMo5F6yExxm/g+E+K8Ts495cU4ywC98sU43sE7sfeuCdaN39lKwz/TpebCaheGHfE6FVb1kPqvIRzf8WoTbF64xjjGwTuV2i1KlaNjjH+lsC9jGKwP45pxj3QenDLeof/rD8jp0aj9Sot6yF1XsS5v6UYXydwb6HVauR0z10zvTdqfxwXpnF1cnrHmPXfELhXvHFPtG7+CmEYfuSNJsM4xxtXjjHOxLn3Maodq0fOh/HXBO5VFEP8cUwz7oHWg1rWF6RxDXK65+6jeviuNw7DqrExxg/pci8C1h/HOOM3cHSQUzuh9Uoxxhdw7gOMGoXVG8YYXiNwb6PVCHJ6+5j1dwjca964B1o37xANww/oci8BOW9cqmX9M//f8BSj+zaOD1OMrxK4dzBqTazuuUOqHr5N4F5PNEqSJEnSQG/UqFHMnj17ib0tvVJq1mYbFNpf/a/kXcyLa1sd9Cfe/FVtif3sPq96c8ETaQmsM3iGanAXjj/7f5Inp/elZK5BqcHUwx9RDSYTuF/4dYVVO1K012LUCAL3HtX6eOrue3Nf06iRFM0VWL0tofuEajCBrvB/gS7/CitTNOeQN4fhXBe14HZq4eN03469yiQK+jgK5lyUst54J46/RIz7UTJXe+MP6QimEDYZR3vjGgTut974/YhxI4rmSqzemtD9k2pwc4txFYrmXPLmEG+8zRsbtzqvMZm8PpaCORcwdIXdxr9GjPt74yC6wh9QDaYQul+2GK/DqNUJ3G+88QcR48beuBWh+9gfx6/NNWpmUDDnkjcH41ynNz4RMU4hb46joM8GDJ3hU9SCuyPGgjdeFTFOJnS/ihh38sdxdQL3a2/8YcS4iTdu6Y03eWPdG1ejYM4jbw70xluohU/SfTv2hvF4b9R0hk9649/8z0KBnD6QkrnCG7/nj+NbEePOlOx1aLUqQfgu1WA8dfejiHFT//O4JaH7hzd+vcV4PnlzAM51Ug1m0Bk+FWM8yxsfpxbcGzEWyesDKZorUGopusLveuPbEeMu3rgKQfgOHcF4AvfjiHEzfxw3J3R/98b/FzHOiBhrVINb6AyfpPuW8Q3jCRT0md74mDe+32K8EqXa6Aq/QzWYGjHqiHFlgvBtb3y5xXgVVo8idB/5n8eocXUK5gLyZj9vnO6P42cR44neqBKMB/nj2EZX+JI3vhMx7uqNKxGEb9ER3NRibPfGdm8cT1f4zYhxDW/cN8E4mbw5iYI+wxsfpRbch+MDbyxFjBW6whe98d2IcTdK9lpv/BUdwYQW4yhv3CzFeCF5s483TqUzfCbGeLo3folacH+L8WCK5nJvnEk1mJZi/KU3vtJivBqrNyV0H3rjtyLGERTtRX4nmCRJkiRJAykle1GkhGSn0kLui7hTqRbcTzWYFLum1foU9fnMCc6h+0QiWuNaQHfQUT8Hxycxr2ApmbuohbdETlybK+grCPmZPzHtWU7vi2Z9auGUBOMGFPS5dATnAEGMcRhleztzUo13euM7MeuNa68EbjZ1980E4/5o1qYWTkswjqSgz6QjOC/FeBtz6ucmGsvmbqph9KSw1XgNgXuNuvt2gvFANGtQC2fErhs1krw+k47gXBpXqms1Dqdkb2VO/Ry6B389jfdQDacQul8nGK8jcK+kGA9Gswq18NYE48bk9Wn+OMYZl6ZkZ3jjv+PeoXEcg8mE/CbF+GPqbmaC8RC0WolacFuCcRPy+hQ6gvMTjMtSstOYUz+b7oFVT+M9VIOJhPw2wXg9gfsBdfdSgvEwNMtRC+9IMG5GXp9AR3ABcVckbFwLaBpz6mfSPbBqLu+P4wRCfpdgvJHAfZe6+06C8Qg0w6mFdyUYR5HXx9IRXJhgXJ6Sncqc+hl0D1p6Gu+lGowj5Pex71HU46m7mU3D8KZX0EehGEwtvCfFeDQdwcUpxin+OMYZC/6zvpGQPyQYJ1B332oahjcbj0FRoRbel2DcnLw+KsW4AiU72R/HOQnGe6kGNyQaS2YyeXNo7JokSZIkDbQGyk6l176y5O1U2vJg2am0IJKh0kLuizZUCt3f+bRrO7p3vcSlGIrjnynrK8zdrTE/z29co6PnoKUvj+m/cRiOj1Pe3xI3VOubcUjCwKi3xuE4/pHy/jnSPsfeGBsXM48bGH2eRk3cMGbBGZfG8feU188DnRlGRfrtIQYRP9TqnbFx17LF3VgAamlAso1LET9463728nN3OMWvL4Pjo4VsbCN+8LagjEWgmmHMqr/GZXF8mPL6SzEo97JcrFuSJEmSkKHS4pwMlRZMcqHuAVbj6z/pJ/npAyEyTjyzn589UMp+TP+NaQMlyB4oQbbxk4z1LGPasAayhzWQfayThzUNw+dhTBsoQf+NaYMQyB7WNF4lveRhTePZ6cb0YQ0sHsasYU3jXdJLHig1np08CGmspw1rYMEYk4c1jWf319jfgRL035g2UAL4lK4wfmefJEmSJEmSNLCSayoNsJz7YFETJEmSpMW87MGTJEmSJElLVFl/DiwN2GSn0gBLqeWyHyRJkiRJKSnk9xJJkiRJkiRJhkoDrpzeh8Z1bpJTDM1YXzFjfViGojcb5NJvW91/4/CM918QxiEZ61nGpTPeP/1zbLSwjVnHsTfGrP8MDc4w9Pc45jPWof/GFTKevyCMKmN9UMazs4zLZKwXMtYb75LeUhnPTjeqTGMxY73xKun117hsxuv3xphVW4Zh+Yz1rIHRIHJ6tz6aJEmSJEmSpCUxGSoNsLQaTtFcnLK+PiUzkaShSuPub1NShhGWopmIVusnvkdBX0pO7524ntP7UtBpxg0pmptJGpg07qyWbiyZm9Fq3RTjZVi1Z4pxfwr6whTjSIpmYopxeC+N66QYL8eqsSnGAyno8xPXjRpJ0Uwg6T8DiqUp26kkD0wsJTMZrdZOMV6JVWNSjAdT0OelGDemlGpchpKdTPLAJEfJTEKzVorxCqxKPkHO6UMomHNTjJtSMjelGJelZKeQPIzIUTaT0ayZYrwKq3ZNMR5GQZ+TYtyMkhlP0sCkcfe3KSQPI/KUzSQ0I1KMV2PVzonreX0kBX12inFUhnH5TGPJTEazRuJ7FPU1WDU6xXgUBX1GhnFcL4yVhFcoeONqKcZrsWrHFOMxFPTpKcYtMowreGPSRbYL/tdMsrFkrkapUuK6JEmSJEmSNHCSodIArGBOo2QmoYhewT9PTh9Cm32SnBlDxX4JozaKrCus2olK7jlyelsqueexaieiJy5GbUzFPkre7E7FPkFOH0J0h4ViFUpmMkV7KiUzg4I+p2moohhCQZ9LyUynaM+gZCaiWDkqJ6cPpc0+Qd6M9caRLcadqeSew+ptG39Xo1uMm1CxXyZndqdinyKnD24yalalZKZStKdQtrf6k+DBkXcYSkGfR8lMpWDO9MaVWoyH02Yf98ZH0D2Mu0SMz/Y4yTVqUyr2MXJmt4hx3o4fzWqUzDSK9iTK9jYK+qwW4zAK5gJKZgoFczYlMyHGeAQV+zh5sydl+whabdhi3NUbt6Et92yPk1yjNqNiHydndvHGg2KMMyjaEyjb2/2J+qDIOwyjYC6kZCZRMOdSNDe17DgqktdHUrGPkTd7UbYPo9UGkXWNVbvRlnuOnN6ONvssVu3QYmyfZ8w9RU4fmGK805+ozxv8NIwXUTITKejzKJpxLbtQuo2Pkjd7U7YPxRh3bzFu32Ic1fi1YnamknuanD6A6EBXszolcwtFexxleyd5fVqM8WJKZgIFcwFFc2OLsUReH+WN+1K2D7YMfDVWjWkxbpdh3L/FuAYlcxtFewxle3eMcTgFcwlFM56CuZCiuSHGeDQV+yXyZj/K9gG0Wi/F+AxGbRtjfJKc2ckb92sxjqBkbqdgj6Js7yWvTyU6nFIsTcFcStGM89brY4zHeOP+lO39LUPpnsfRqG1ajJs3fq2Y0VRyz5LT+8YY76Bgj6Rs7yOvT+lhLJrLKJobKJjLKJrrWnYclcnrY6nYR8ibA7wxOpQ2WDXWG7dPMG5BxT7tjc/4na1R45qNn0NzKJIkSZIkSZIEoJzLutON1J+UUrPa29vbZ82atagpPQrDTrrcN4BPsWp7jF69ad05Rz38DiF/waiNsHrTHq9RD39C4H6OZmWs3gmlmv90PAh/T939EFiKnNoTrZu/xhOGH9PlXgAgp8ai9ZCW9Rpd7pvAf7yx+U/Pm40bY/UmMcY3Cdwv0GoVrBodY3yPuvsxikFYtSdaN39lq3fGbwCfYdUOGL1qy3pI4L5DyF9TjLMJ3C97YRyMVXvEGP/hjZqcGrOQjLMI3K/QalWs2jHG+Fvq7uUU49/pcjO9cQ+0HtSyXvWf9WdYtSNGr9KyHhK4lwj5G0ZtgtUbpxhXw6odYoy/oe5eQTEEq8YuJOOLhLyfYnyDwL2FVquT0zv0WM82fkSXezHF2OGNc1KMMwn5AKM2w+qRtFYPXydwbyca6+GvCdyrKIb6z7p5R14YfkiXewkw3rhUy/o8Y07thNYrtayHBO4FQj5MNHaFrxG6d9BqDXJ6+x7rDeMrKIYlGD/wxzHvf123GufQ5b7VS+MorN6A1npvHO4/6/4Yd0HrFVrWe2N8ldC9i1YjyOnteqzXw3f9Zx1vlCRJkqSB3qhRo5g9e/YSe1t6pdSszdYvtL/27CrZD17M2vKwP/HmW7Ul9rP7vJK7vw3AnHN0hk9RC+6K3EbcktP7UDTXotVQusIfUA0mEbq35j7Pqu0o2usxai0C92uq9XHU3Y/mrutwfYrmCnJ6B0L3MdXgJrrCrwF1AGpMoWjOIW+OxLlOasEt1MIn6L79dZWbKehjKJgLAEtn+CS14O4W477eOISu8Pve+HbEuANFex1GrUkQvktHMI7A/XieUW1AyVyB1dsTun9449fnGhVTKJpzyZvDca6TajCDzvDJiHGiN57vjY9TC+6J3KI7543XeOP3vPGdFuP1GDWCIHzHG1+OGDekZK7E6m0J3d+pBuPpCr8RMa4YMdaoBrfQGT4BfBY5jsd6o6EzfIxacG+LcT9K5hqUGkxX+B2qwWRC927EuKM/jiMIwrfpCMa3GEd64zbeOI6u8JsR40oUzXnkzaHeOJ3O8KmIcSIFfZz/Wlm38R4c3XcnzEeMg+gKX6IaTGkxjvbGNQjCt7zxlbnrja/3XYXVWxO6j/xxjBpX9sZDvHEaneHTKcZH/XH8MGLc338VaBBd4Yve+Gu/rvxxvB6jVvfGcQTu1YhxI4rmaqze0hu7j2PgX2EViuZ88uYgb5xKZ/jMXGONSeTnGjWd4ZeoBfe1GA+gZK7yxplUg6ktxtHeuBpB+CtvfC3FeCNd4bdajBeQNwd642Q6w2eBOd44kbw5we/603SGj3jjR/44dxuvRqml6ApfoFqfSshvIsadKNnr0WpVgvCX3vh6xLixN25B6D6ko34jdfftuUbNqhTMBeTNAThXpRpMSTCe5Y0PUQseiBgL5PSB/ji20RV+2xt/GzHu7I2rEIS/8D+PUeMm3rg5ofvAG1+IGFfzxv29cTKd4XMtxhO9UXnj/Tj+7o03kdcHUTRXeuM3qdanEfJexLiLN65MEP7cG9+IGDf1xlGE7v2IMYwYLyRv9kOSJEmSJEmSQHYqLfS+iDuVqsHd1IJpsWtarUNBn09HcB7dJzvRFEMo2VuZUz8f+FfMKxhK5nZq4W1NA4BoBX0pgfsZdfet2PWc3gvNetTCGQnG9Sjoc7yx570te2e8g1p4S+TkutV4OYF705+Yxhn3QbMWtfDWBOP6FPSZdAQXZBjPA/4d8wq2YQymRU5cW41XErjXqbuZCcZ90YygFt6WYNyAgj4jxTiUkr2FOfVzgU9jjWVzR2NIMffEtdV4FYF7hbp7KcG4P4pV6QzvSDBuSEGf5o09/1ulGEbJzmBO/Ry6B389jXc1Bnv8LsF4DYH7EXX3nQTjgShWpDO8K3bdqJHk9Sl0BBcmGJemZKcxp3423cOgeONEQn6fYLyWwH2fuvtegvFgNMtRC+9OMG5MXp9AR3BxinGqN86JewdvnEDIHxKM1xG471J3308wHoJmOLXwvgTjJuT1cd7Ys8b1s6b003gDgXuRuvtBgvFwFIPpDO9PMG5GXh9NR3BJgnFZSnYyc+pnAR0JxrupBuMJ+WOC8UYC9+2mgX20vD4SqNAZPphgbCevj6AjuCzBuBwlOynFmKds7qYjuAHHn2Nfo2RuJm+OiF2TJEmSpIGW7FRafJOdSgsmGSot5L5oQ6XQfcSnXdvRvVsjLsUQHJ+krK8Q2T0Utz4Uxz9TFIa4gVVfHpNtXD6yM2d+jJa0Y9Q742Bc7FCrez3rOA7D8XE/jZq4gdG8BhE/1Po8jYq4QceCMsIwSDXmgK40INnGpYgfvHU/O/3nEYYD/0hZzwOdaUAWvnFp8Lti4lsQxjbih4Pdz+6vsQDU0oBkGyvEDwe7n71cZMdd3Poyc3dAzb8xq/4al43sdotrKQblXkappIt9S5IkSdLASYZKi28yVFowydffBljRr3ollTasaaynncCTMayB7IFS9mOyjWknnr0xZg1CINuYPFBqrGcdx7RBCPTOmDZQgrRhTcPweRizBtv9M6YPlCB7oNR4l/SShzWNZ6f/PKYPlCB7WNN4l/T6a0wb1sCCMSYPlBrP7q+xN8OaLGPysKbx7ORhTWM9baAE/R8oQf+NaQMlgE/pCmfK1+AkSZIkaYCkAOXi7yy7OLfk/RstmuTubwMs57JOFiRJkiQpvezBkyRJkiRJkjQQkqHSAEup5bMfJEmSJEkpKeT3EkmSJEmSJEmGSgOunN6HxrVPklMMy1hfKWN9eIaiN9+6TH/MwjfmMtahcU2ltPcYmrGeZVw64/0XhHFIxnp/jek/a40WtnGZjPcvZKxD9n8qB2cYVsxYXzbj9ftvVF8IY9Ym40EZz+6vsZix3niV9JbKeHaWcbmM1y9lrDdeJb0s4woZ61kDo8Hk9K4Zj5EkSZIkSZIGQjJUGmBpNYyiuTRx3aiRlMxkkoY6iuGU7bSUoY6lZCah1cjE9yjoK8jpfRPXc/pACjrNuBElMynFuHQvjJPRaoMU45V+AJdkPJiCjr8DVMO4ccZxXMYbkwZPOW9cP8V4FTm9d4rxEAo6/k5aDeOmFM0kkoY6imUp26kpQ508JTMFrdZNMV6NVXumGA+jYC5MMW5G0UxMMS7XS+M6KcZrsGpsivGIDOMoSqnG5SnZaSQPngqZxqK+BqvGJK7n9ZEUzPkpxs0pmgkk/Se/YZxO8lCn27h2ivE6rNotxXgMBXNeinELSubmFOMK/jgmDUyKlMxUNGtmGJOHIXl9HAV9TopxK0qpx3HFXhpHpBivx6qdU4wnUNBnpRi3pmRuImnwpFjJG9sSXqHU+KxZI/E9SuY6lOrN8EuSJEmSpCWmcAn8S1ogyVBpAFYwJ1My09GsFvmnRfL6SCr2cXJmVyr2MYxqj6xrrNqNSu55rN6q8Xe1G9EfIaPa5z6/zT5OTh9BdGeAZnVKZjpFexIlM52COb9p8KMYRsFcSMlMoWhP9SdfccbHyJndqNgvY9RmLcbdaZtrfM6fQM47uTJqlDfuQpt9gpw+nOgOi4ZxBkV7AiUzg4I+r2nwoxhOwVxMyUyiaE/3J19RY4m8PipifBSjNm0xjqEt91zEuEuM8QlyZmfa7JPk9GEtxjUomVso2uO98dwE40SK9ozGkI9VW4xHU7FfJm/GeOMmCcat/We9c4txc2/ciYp9ipw+tMU4gpK5jaI9lrK91RuHRIxLUzCXUDI3UzRnUTITUUTvKFEmr4+hYh8lb8ZSsV/CqI0j6warxkaMz2HVTi3GLajYJ8mZ0d54CNGdU5o1KZnbKdqjKdvbKeizY4yXUjI3UdDdxpVbjMdSsV8ib/agbB/GNA1TDVbtQVvuOXJ664ZVjW4xbumNOzb+rg9uMa5FydxBYa7xLKLDKcUyFM3lFM14CvocSmZCjPE4b9yLsn0kxrinN24VMUYeobZsHD+zoz+OBxPdJafV2pTtnRTskY2/6zNbjMtSNFdQNDdQ0OdRNDe17C6rkNfHU7GPeOPDLUNpS07vNe842uewascW41beuAOV3NPk9EExxrso2CMaf9dnEB2gNYxXUjTXUTAXUDTjY4wnULEPkzf7ULYPodWGLca9I8ZnsWqHFuPWVOzT5Mz23nhgi3EdyvZuCvawxt/16S3G5SiaqyiaaymYiyiaG1t2RXUbHyJv9qVsH2wZnEeN23jj9j2MbU3GA2KM95I3ByJJkiRJkiRJAMq5rDvdSP1JKTWrvb29fdasWYua0qMwrFF338Txb6zaHqOb/2TaOUc9/A4hf0KrjcnpzXq8Rlc4m9D9HM2qWL0TSjX/6XgQ/o66+yGKQVi1B1o3f0UmDD+my30bgJwag9bDWta7jZ9i1XYL2TgYq8bGGP9Bl3sBUOTUWLQe0rJe9cb/+OO4eqLRqE2wetMY4xuE7pcpxt9Sdz/2xj3Ruvmrb2H4d7rcTED74xhn/AaOz7BqB4xerWm9YXyRkL9i1MYZxtWwenQ/jWPRenDLem+MMwn5G0ZtitUb01pX+Bqhe9sbd4wx/oa6exnFUP9Ztxo/osu9mGKcQ919yxt3xOhVm9adC73xA/9ZJxnfQrN6gvHX1N0rKcYPvdGkGL+Jo8MbV2lZDwjci4S8j1HtWN1zV+E84xpYvUOM8V3q7lVv3AOtm3fkzTNabxzUsh41jsbolVvWAwLXfRz7axzmj2OccSaQWwDGUVi9Ia11ha/6n8cRWL19jPEd6u61FOMH/jj2xrgzRq/Yst4X45pYvV2fjZIkSZI00Bs1ahSzZ89eYm9Lr5Sa1b5+of21p1bNfvBi1pZH/pHZb9WW2M/u80r+1+EAzDlHZ/gYteDuyB18LDm9B0VzPVoNpyv8DtVgEqH79dznNb76cQNGr0sQvkNHcAOBe3Xuug7XpmiuJKd3InR/pxqMoyv8BhAAoJhIwZxFXh8LdFINptEZPk337a+rTCCvj6JoLgZydIZf9saPWow3oNUwusKXqNYnEfKbiHEbSuZ6jF6HIHyLjuBGAvdaxLiON44mdB954zcjxuUomLPJ66O9cao3zvHGm8jroymai7zxUWrBPS3GPf1xHEZX+KI3/rbZaG/AqLW98QYC93qL8WpyegdC9xEd9Ruou29HjJMomHPI6yO9cQqd4TMR43gK+hgK5iLA0hk+Qi24Fzf3duuNnR8N41C6wpne+F6L8UaMWosg/JU3vhExrkvRXBUxXk/dvdBkLJpzyZsjca5GNZjsjR1zj2PDeKE3PuyN/4gY96ForkOrIXSFL1CtT24xbkvJjsOoEQThL71xVsS4HiVzNVZvR+g+jBhDb1zBG4/Auao3PttiPJaCucAbH6IW3Ndi3Nd/FWgwXeG3vfF3cw1WbUfR3uiNv/A/j1Hj+t64LaH7wBtnthjPI28O98ZJdIbPRYwTIkZDZ/igN34cMe7njYPoCr9JtT6FkN9HjNt74xoE4c+9cXaL8Rqs3obQve9/HqPGFb3xMJzroBpMpDN8HqhGjuPx/qtvhs7wAWrB/SnGb1CtT20x7uCNq1MPf0o1GEfg3owYN/DGrQnd37zxxRbjBeTNIQnGCRGjojO8n1rwYMSY88ZrvfH/eeMfIsYdvXG1BOOGlMy1WL0loftrxOi8cSVvPBjn5lANbqYz/ApQizXWwvvoDB5qMe5PyVyDUoPoDL5OLZjWYhxNyd6IVqtSD3/ijT+JGEf649htvJ66e6nFeJHsVJIkSZIkSZLmJjuVFnJfxJ1K1eBOasGM2DWt1qagz6EjuJD4L5oOomxvZU79AuDfca9AydxKLbi9adgTLa8vInQ/9yf4PbNqLEatTy28NcG4DgV9dopxMGU7wxs/TTDeRi24tWnY02y8hNC96U/64ox7otXadIa3JxjXpaDP9Maev8YUQyjZ6cypnw/8J+YVDCVzuz8p/F3MOhT0ZQTuderuO7HrOb03ijXoDO9MMK5HQZ9OR3BRorFoZ9BRP5fuwV9P4x3UguYhRbPxCgL3MnX3vQTjPihWpTO8O8G4PgV9Kh3BxQnGof44Jhmt/6ynNJ1c9824H4qV6AzvSTBuSEGf5I09UwyjZKd645xYY9ncTjWYnGK8ksD9kLr7QYLxABTL0Rnel2AcSUGfQEcQfx0wxXBKdgpz6ufQPbDqabyDajCRkD8mGK8mcN+l7n6UYDwIxXA6wwdi143aiLw+lo7gsgTj0pTsJH8ck4x30hFMwPGnBOO11N2LBO7HCcZDUAymM3wowbgxOX001eDyfhpvwvHnBON11N0LBO7lBONhKCp0ho8kGDclpw+nGlyZYFyGkpnInOAcuodqLe9A2dxBRzAOx19jX6NoxlMwR8euSZIkSdJAa0DsVFqv0P7ak0vgTqWj/sjst2WnUn+TodJC7os2VArdR3zatR1QT3yMYjCOf6WsL4/j/ZT1ITg+SVFosq+MZuje9bJojOnv3yjr32MQ8YO3bsNyOD5IWR+K458pr29J+xy7XyVuGNN7Y/pxhKGw0I1LET8c7H52lnEYzN3NEdfnYUz/rLONOaArDUi2sY34AWb3s7OMw2HuLq248kBnGpBsY4X44WD3s/trLNC982f+669xaZi7azCuBWEsEz/AbKRYNrJLNW59mcjuy7jaGJR7GaUq80+UJEmSpCUkGSotvslQacEkF+oeYHWFXyPrBDptWNNYTzuBJ2NYA7271H76QGfhG7MGSpD975E8rGkY0k48yRgoQfYgpPEq6WUZ049j+kAJFowxeVjTeHaWMW1YA5+PMf2zzjZmDZQa75Je8kCp8ewsY9qwBrIHSo13SS95WNN4dn+N/R3WQP+NaQMlWDDG5IESkDpQaqynDZQA/kNXOLOPJkmSJEmSJGlJTIZKAyznsk4WJEmSJCm97MGTJEmSJEmSNBCSodIAS6nlFzVBkiRJWsxTrLCoCZIkSZIkSdIXIBkqDbByel8a1+xITjE8Y33ljPWlsxQZ65B1Y0LFsIz1JcG4TMb75zPWoXFtqLT3GJqxnmVcNuP903/WGi0JxiEZ6ytlrC8IY/p/zvtvXC7j/YsZ641XSV8dnLHeX2MpY73xKukNynh2ljFrsF/OWG+8SnpZxhUz1tONiiHk9K4ZBkmSJEmSlqjcEviXtECSodIAS6uhFM0VietGbUzJTCVpqKJYhrKdkTKUyVEyUzFqo8T3KOiryOnkW1Ln9CEUdJpxU2+MH+oolqVsp6cMx7qNI1OMV5PT+6cYD6No4u8A1TBulmFczhuTBk95SmYqWm2YYrzGDwmTjEdkGNszjMt7Y9JQp0DJTEOrDRLfo6ivJaf3SVzP6yMpmktTjKMomcm9MA7JMK6fYryenN47xXg0RRN/Z7eGcQuKZhJJgyfFCv7XTJKxSMlMR6t1U4w3YNWeKcZjKZiLUoxbUTQTU4wr9sI4Da3WyTCOTTEeT8FcmGLcOsO4EiU7AxIHTyV/HLOMY1KMJ1Iw56cYt6FkJpL0W6diZUp2GslDnVLjOLJWinEcVu2WYjyZgj43xbgtJXNzinEVSnY6jYvLxxvLZjqaNZON5nqU6s0QUZIkSZIkSVrSk6HSAKxgjqdkbmk5aSiT18dQsY+RMztRsU9g1BaRdYNVY2nLPY/Vmzf+rsYSPQE0agsq9glyZjQV+xh5fTTRP3XXrEnJ3ErRHk/JTKFgLm4aTimWoWAuoWQmUrQnUTIz0IyIMX6ZnNmZin0cozZvMe7hjVtQyT3vTyDn/ZgbtSUV+6Q3Pk5eH0V094JmLUrmNor2OEpmGgVzUdNwSrEMRXMZJXMzBXOyN64RMVTI6+Oo2EcjxujNBAxW7Zlh3IqKfYqc2ZE2+wR5fWSzUa1NydxB0R5DyUynYC5sMS5L0VxOydxEwZziT2JXbzEe7427ULGPtRgtOb0XbbnnIsbdW4xbe+P2tNknvXHeSaZW61C2d1KwR1EyMyiYC5oGaIrlKJor/K3JT2sM0HoYT/DG3ajYL2NUe4tx7xbjbi3GbajYp+cac/qIGONdFOwRlMwtFPR5McarKJobKZgzKJnJaFaLMT5C3oyhYh/FqM1ajPu0GHclusukYXyKnNmu8Xd9ONFdSVqtS9neTcEeTtneSkGf22Jc3huvp2jOomQmtRjbyOsTqdiHyZuxVOyXMGrTFONzWLVLjPHpiPGwGOM9FOxhlO3t3jhvEKlYgaK5mqK5joI+m5KZGGM8iYp9iLzZg4p9JMa4L22558jpLRpWtXOLcVva7NPkzLbeeGiLcT3K9j4K9lBvPCfGeA1Fcw0Ffa43Ru9wshR5fbI37knZPoJRm7QY9/PGrbxxpyajVdvRZp9tGHNPk9OHEN1tqNX6lO39FOxBjV87+uymIV/DeC1FcxUFcz4lMwHFKi3GU6jYB8mbvbxx42SjfQ6rRscYn8Oabbzx4BbjBpTtA+RN8sBdkiRJkiRJGlgp52Tf18JMKTWrvb29fdasWYua0qMwrFF338DxH6zaDqPXaFp3ztEVvoTjLxg1Eqvbe7xGPZxN4H6BZmWs3hmlmr+WEYS/pe5eRtGGVXuidfPXeMLwH9TdCwBYtTtaD29Zr1J330wxhnSF3/HGjbB6M1qrh7MI3C97YVwKq/ZIMSpvHNayHjVuj9Gr99nYFb5B6H6VYvwNdfdKP4wd1N23vHEHjF6tab1hfBHH+964aYzxdUL3FppVsXp0inGQNzZ/PS8M/07dzfTGMWg9tGW9wx/Hz7BqR4xuvm1p741ve+OOMcZfe+MQrBobY/yIunsR0N44pB/GjbF6E1rrCl/zxtWxeof5NL4A5PxnHWf8Bo4Ob1ylab3ZuAlWb0xr2cZ3qLvXI8Zcy/qHBG6mN45B6+bdRb0zzsTxAUZtitU9dz52Ba8S8k6G8TUUQxOMHxC4F1OMc/xn3YFVozG6+WuWzgXe+GGK8WVCfo1mBFZvNx/G9wncS944Fq2bd0D1xWhVO0Zv2LLuqIevZBjf9p/1MH+cevPVYEmSJEkaOI0aNYrZs2cvsbelV0rNal+v0P7aE6tmP3gxa8uj/8jst2tL7Gf3eZV+URhpicw5R2f4CLXgHtzcW3A3TqJL9ka0Woau8EWq9ZsJ+d3c5zW+ijQOo9cnCN+iI7iOwM0blulgBEV7JTm9K6H7iI769dTdt4EQAMXNFMyZ5PUJQCfVYDKd4TNAh3+Fm8jrwymay4A8neHD1IJ7I0YTMS5NV/gC1fqkFuMWlMyNGL0eQfhLOoIbWoxreuMu3nidP0HvNk6gYM4mr4/zxkneWPWvMJ68PsIbc3SGD3njx3ONOT2WorkRrYbTFX7bG3/fYhyH0esShL/wxtkR41reuDOh+8Afx5ktx/Fs8vpYoOaNz7YYj6JoLvHGB6kF97UY96BobvDGb3njHyLGLb1xHYLw5974ZovxanJ6tDde54cx3cZlvfEYb7yZzvD5iPEmb7zYGx+gFtzfYtzTG4fRFX6Dan1Ki3ErSnYcRq1NPfwZ1eAGAveTecZwbYrmanJ6R0L3fsToIsZz/I66asTYfUv38ZGvvlk6w/uoBQ/g+KdftxHjULrC/0e1PrXFuLU3rkU9/Kk3/jRiXMcbdyB0f/PGlyLG5SiYcymYo3Cug2owgc7wKxHjuIjRUAvvozN4sMW4lzcOoTP4OrVgKiF/jBi38cY1E40lcw1Wb0/o/uqN34kYl6doziVvjsS5ORFj51xjQR/rv/pmqIX3euMnEePeFM313vg1qsFUHH9qMY7HqBHUw59QDa4ncD9vMV6L1dsRur9443dbjOeTN4cnGMdHjJpaeA+dwUMtxn0ometRajCdwf9RDaa1GLf1x3EE9XA21eDGFuN6/jhu643XUnffixhXoGjO88bP6Ahuoiv87xbjcRTMBd54N7XgIeBfEeO+3jiIzuB/qAbTcfx5rsGq7SjacRi1BvVwljf+ImJc3x/HrQndnyNGIsYLyJtDkSRJkiRpYKXCrGs6SgM12am0kPsi7lSq1m+lFt4eu6ZZk4I5m47gYuKvXrYUZTuDOfULgf/ErCtKZga14A5C3ot9j7w+n9D9zJ+Y9syq3dFqXTrDOxOMa1EwZ6UaS3YGHYlGTcncQi24tWkg1Wy8kNC96U9M44xj0GotOsO7441qbQr6DDqCSxKMgyjZ6XTULwA+SzDOoBbc0jSkaDZeROhmNZ30NRv3QKs16AzvSTCuQ0Gf5o1xDaZkp3rjnJh144/j9BTjxYTuNeruBwnGPdFqVTrD+xKM61LQp9ARxF93STGEop1KR/085g0nW423UQumNA1SohX0pQTuZeruh7HrOb03ihXpDB9IMK5HQZ9ER3BZinEKHfXzU43VYHLTkKLZeDl19wMC9+ME4z4olqMzfCjBuAEFfTwdQfw1thRDKdkpzEk8jpayuZWOYFLTkKLZeAV19z0C93KCcX8Uw+kMH04wbkheH0M1uDLBOIySmcSc4DzmDSfjjBNx/CXBeBV19xKBeyXBeCCKwXSGX4pdN2okOX0U1eCqBONwSmZihvF2OoKbcPw1wXgNdfdtAvdagvFgFBU6wy8nGDcip4+gGlydYFyakrmJOcH5zBtONhtL5g6qwY043o99jaK5gYI5LnZNkiRJkgZaA2Wn0uuPrZb94MWsLY79g+xUWgDJUGkh90UbKoXuQz7t2h6opzxqEPDvxFXFcjg+SFkfjJv7p+dxabp3tMz/Y74IRkX6bQP6axwS2SkRlwGCdGKmcSng05RnpxthCKQaLek/a413STe2ET8c7H52lnEozN25E9fnYVwWx4cpzx8Gc3dpxbUgjBXiB5jdz+6vMQd0pQF7UZn4AWaj/hvzzNv5M78tbGOB+GFPXyoRPxxspFgGx0cp68MjO0TjqjAo9zJKtc0/UZIkSZKWkGSotPgmQ6UFk1yoe4DVFX6N7JPT5EEIkHECT8awBrKHNb15zBfBmDWQ7a/xk4zXzxooNV4lveSBUuPZ6cb0gRJk/6w13iW95GFN49lZxrSBEnw+xrQhA6QPGWDBGJMHSo1n99fY34ESpA1rYEEY+ztQgoVv7O9ACdIGSkDqQKmxnjZQAviMrnBmH02SJEmSJEnSkphcU2mA5dzfFzVBkiRJWsxzyO8lkiRJkjSgki84SQnJTqUBllIrLGqCJEmStJin1YqLmiBJkiRJkiR9AZKh0gArp/elcc2O5BTLZKyvkrGe/vzGdU2ySr9ttWLpjPUs47IZ798bY/pGP8XwjPX+GtM/x0YL27hcxvsXM9ahcW2otPcYlrHeX2NvjmOWcWjGepZx+Yz3XxDHMcu4csZ61kC6lLEOWb/lKIZkrPfXWM5Yh2zj4Iz1/horGeuQ/Vv3oAxDljF9YKQYilW7ZhgkSZIkSZKkgZAMlQZYWg2haOLvXARg1GaUzDSShiqK5SjbW1IGHnlKZjpGbZr4HgV9NTl9cOJ6Th9O0cTfuahhbKdkppM0eFIs741Jw608JTMNozZOfI+ivo6cPihxPa+PzDiOo/xxTDPemjIcK3jjRhnGA1OMR1E0V6QYN6dkppI0eFKs4I9j0uCpSMlMR6uRGcb9U4zHUDTxdyRrGLekZKakGFf0xqTBU5GSmYFWG6YYb/TD1iTjcRRN/J3dGsatMowreWPSUKfkjRukGMeR0/ukGE+gaJLu4gdGbUPRTE4xruyNQzKM66UYx5PTe6UYT6JgLk4xbuuN8cMxxSqZxrKZgVbrphjHYdUeKcZTKJgLE9et2p6imZJo1KxKKdVY9sZ1EtYVRT0eq8akGE+jYM5PMe5AKeU4alajZG+BxOFYhbKZjlZrJxvNjSjVm2GsJEmSJEmStKQnQ6UBWMEcS8nc0XJiUyGvj6div0zO7EDFPolR20TWLTm9N22557G6nbbc8+T03kRPUo3ahop9ipzZnor9Mnl9PNE/dddqHcr2Tor2WEpmEkVzWdNwSrEcRXMFJTOBgjmOkrm95cSmQl6fQMU+GjFu3WLch7bccxHjXkRPrhrGp73xMfL6uBbjupTtnRTsUZTMZArm0hbj8hTNVRTNeArmBErm1hZjG3l9ojeOpmKfwKitYozPY/Vmjb+rPVuM27YYj40x3k3BHknJTKFgLmkaoClW8MZxFMxJlMwtaNZqMZ5ExX6JnNnJG7dsMe4bOY5f8Sfi84xWbeeN29JmHyevjyG6C0Sr9SjbeyjYIyiZaRTMxU0DtIbxan9r8lMaAwvWjBiWIq9PpmIfIWd2oWIfx6gtWoz7zf15rOSex6qxLcbtabPPkDPb0GafIK+PbjGuT9neS8EeRslMp2AuijFeQ9FcT8Gc2higMaLFeAoV+zA5s6s3bh5Zz5HT+889jpXcV/ywYN5/dq3awRu3ps0+SV4fRXTHj1YbULb3UbCHUDIzKJgLm4Z8ihUpmusommspmNMpmWlo1ogYBpHXp1KxD5E3u1GxX8ao6M0tcuT0Ad44KsX4LDmzFW32KfL6yBbjhpTtAxTsQZTMrRTMBS3GlSia6/3nfSYlMzXGeBoV+yB5s3uC8cCI8Xms2r3FuCNt9jms2YpKrHHkXGPZ3kbBnN80iGwYb6BorqRozqZkJqNZPWIYTF6fRtk+4I2PYlR7D2Ml9xy5ucbdWoyjm4w5fTjRHWjzjAdQtndQ0Oe1GFf2xssp6HMomUloondhGUxBn07Z3k/ejKViv9RizJPTB1HJPUtOj/L/7dk1YlTe+Kw3Pt3DaNRIyvZB8iZ5wClJkiRJ0hKYA0K15P0l14laICnn5EguzJRSs9rb29tnzZq1qCk9CsMqdfctHP/Gqu0wekTTunMhXeF3cPwZw0is6XmnxXowi4BfoFiZnN4ZpZrnlEH4G+ruZRSDsGosWhdb1j+i7l4EIKd2R+vmXTEN4zdxfJptVCOxOs74BgG/RLEKOb1TP41j0Lp5V0zD+A0c/8Gq7TF6jab1hvFFHH/FqI2xerMY4+sE/KqfxpmA9sex1djhj+N/sGpHjG6+JahzAV3hSxnG1wh4C8Wq5PToGOOvqbtXUAz2xkLL+of+OKYZv4HjsxTjizj+hlGbYPWmLeuOIHyNgLe9cSeUUi2Gd6m7V1EMwaoxKUbjjc27i8Jwjj+OvTFuitWbxBhfJeAdFKv549hX4wfeaDOMc7BqhwTjTBzvY9RmWL1xy3pvjO9Qd6/5r0HtnmEcg9ZDWoyf+f/2zMGq0Rjd/PXAhvEFHB9kGjVrYPUOCcZXUQzzxzHfsv6+N+ZSjN/E0dEP4ysEvItmBFZvH2N82x/HLGPeG5t3F4Xhf/xx7MCqnTC6+WttztW98UOMasfqjVrWs4318C0C9zqK4eT0GJRK/2qyJEmSJA20Ro0axezZs5fY29IrpWa1r1tof/3R1Rc1ZYG3xfG/Z/Y7tSX2s/u8kru/DcCcc3SGD1EL7sXNvb21wqrdKNmb0GoZusJvUa1PIuQPc59nws0omXEYvSFB+As6gusI3E/mrteC1SjaK8npMYTuQzrq1/pBh/PvMIyCOYO8PhmoUQ1upjN8ju5baFcZR14fRtFcCeTpDB+gFtyHm3tLeO2N473xm974x3lG1e6NGxCEP/fGn7YYryandyN0H3jjiy3GM8nrk7xxAp3h8y3Gw/3XyvJ0hvdTC+5PMX6Dan1yjHE8Rq9PPfwZ1eA6AveziHF1b9yV0L1PR/0a6u47LcazyesTgGrE2NlivBzIUwvvpTN4AMcnEePu3rg0XeH/o6M+GcefIsZR/jiuTz38qTf+PGJcwxt3IXR/88bvRozDvfF4b7yJzvArLcYjvNFSC++lFjwA/CtiHEvJjkOr4XQGX6caTMbx5xbjTRi9LvXwJ974i4hxhDfuTOj+GjESMZ7jd6t10BHcRFf4XxHjjf5rjpd54z3UggcjRkNOj6VobvTG/6MaTMHxl4hxc29ch3r4JtXg+hbjmt64E6H7izd+L2Jc2huP9cbx3tgVOY5HUjSXeuPd3vjviHEPbxxGZ/C/VIOpLcYtKNmbMGpt6uFsOoIbCHsYryWnd0wwLuONxwBz6AjG0RV+tcV4tP96nqEW3kUteKjFuKc3DqUz+B9v/GvEuKU3rkU9nOWNv5y7roO1vHEHQvdnb/x+i/E8CuZonPuPP45R43hvvNgb76AWPAx82mIch1ZD6Ay+SjWY1mLcyhvXpB6+4Y2/mmcM16ZorvHGP3njDyLGZb3xKG+8ka7wf4B6y3G8GNDUgjuohY9EjJac3pOSGYdSg+kM/tsb/xYxbu2NI6iHr3vjWxHjOpTMtVi9HaH7ozf+cO56NViWormAvDkCSZIkSZIkSQLZqbTQ+yLuVKrWZ1AL74xd06xOwZxLR3AJ8fsBK5TMdDqCi4HPYtYVJTOVWnAnIb+PfY+8OoeQnzedmEazahe0WpfO8J4E4wgK5kw6gktj16GNkp1GR/0iYE6CcRq14PamoVmTUZ9H6H7SdGLabNwNrdaiM7w3wbgmBXMaHUHS9YKW8sYLU4zTqQW3Ng2kmo3nE7pZTSd9zcYxaLU6neH9Cca1KJhT6AiSrrs0iJKd4o0dsa9QMtOpBjOaBlLNxgsJ3KsE7scpxlXpDB+MN6q1KeiTU4yDKdlJ/rNOMs7wJ9d/jlmHvL6IwL1M4F5OMO6BVivRGT6UYFyHvD6BahB/jS3FEIp2Eh31C4BqzCOMNzYPpKIV9CXU3Q8J3Cux6zm9F4rl6AwfSTCuR14fSzWIv1aZYghFM5GO4MIM4+SmQUqz8TLq7nsE7tUE4z4ohtMZPppgXJ+8PppqcE2isWQmMie4gO4hb0/jLVSDiU2DlGbj5dTdSwTu9QTjfsBgusLHEowbkNdHUg2uTTAOpWRuTjFab5yA4/0E4xXU3QsELv73jJw+AEWFzvCJBONI8vowqsF1CcZhlMxN3tg5X8aiuY6COSF2TZIkSZIGWrJTafFNdiotmGSotJD7og2VQvcBn3ZtDwQpj1qKeX/63TPFMjg+Snn+IObtQohLA2EaE1Ckf8m1f0bFYNzcHScLy9gG/Cfl2cvi+DDl+YNhkRuzPussoyH9Z63xLgvXOATm7tKKy9K9GyS5LGOF+CFr97M/D2NW/TUOhbk78uLK0b3zZ/4rEz9kbfTFMJaIH2A2UiyN4+8pzx8Gc3eIxpUnftjTl/prHA78I2W9wqDcyyjVNp8+SZIkSVpykqHS4psMlRZM8vW3AVZX+DWyT/KThzVAxkkdpA+UIHsQ0niX9PpnTB8owYIxJg9CGs9OGyhB+rAGPh9j1medZcz6WWu8S3r9NX6Ssd6bYU2WMXlY03j252HMqr/GtGEN9H9YA2kDJfiiGJOHNUDGsAbSB0rQ/4ES9N+YNlAC+IyucCZ5c0BfUJIkSZIkLc715tRDGpDJ3d8GWM5lnSxIkiRJUnrZgylJkiRJkqSBkVJqN6XUfUqpy5RSk/3/PaSfr3mIUir1605KqVlKNd3uN+s1u227dfv8//2cUuq0+bXKTqUBllIrLmqCJEmStJin5fcSSZIkSZIklFKHAFdGv0LnBz2zlFKjnHOf9OG17mPetRJ2y3hsO9D9PmkP3d05N9P/30OA0/xf0bv+TnHOxV+ItxfJTqUBVl7vCxRTH6NYJmN91Yz1ZbMUGevQuPZJ2nv017hcxvsXMtYh27h0xnqWcfmM9++NMX1unGXU/T6O6T9rjbKMw1PXs41Zx3HhG7M/6xUy3r+UsQ6N61elvcewjPX+GssZ65BtHJqxvkrGetago5KxDlm/LSqGZKwvCcaVMtaHYdWuqY+RJEmSJEla0vO7fZ4Dmu7O5JybDcwGHujL6znnTnfOHeqcO53s62OMAN4DZib8NRt4PjJQ6u7+yGOmAGs655LuLtWrZKg0wFJqMEUTf3cl6L5N+y0kDSwUy1O2t6acqBcomRkYlXyts6K+npw+PHE9r4+iaOLvrtQwbk7JTCdpOKVYwRuTBh5FSmY6Rm2WYTw0xXgMRRN/J62GccsM44remDSAK/rjuEmK8UZy+uAU43EZxq0omWkkDccUK1Gyt6YM8EqUzG0YtXGG8aAU4wkUTfxd0xrGrTOMK1Oyt6UMx0qUzC0YtVGKcTw5fUCK8USKJunuc2DUNt4YP3hSrOI/66TBU4mSmYFWIxPWFUV9k78zWZLxZIom+fcCq7ajZKYmGjWrUra3pAyeypTNrWi1YYZxnxTjqRRN0h0bwaodMoyr+eOYNHiqUDa3oNUGKcYJqcaCPp2iuSTFOJqimZJiXN0bh6QYb0Wr9VKME7FqzxTjmRTMRRnGySnGNTKMbf44rpuwrinZcSjVm6G2JEmSJElLTG4J/Kv/Heb//kbM2jPAIQvkXeLbAhjlnNs97i/gPedcjxNaP7jqftzlzrn3+guRodIArGCOomzvbjn5Woq8PpmKfZSc2ZaKfRqrto+s58jp/WnLPY/Vm9KWe56c3p/oyb5VO1CxT/vnf4m8PpnGXdoaabUhZXsPBXskJTOBormqafeDYkWK5hqKZhwFcwxlexdarR8xDCKvT6Fiv0TObE/FPhNjPKDFuB/RkyurdowYv0xenxRjvJeCPYKSmRhjXImiuZaiuZGCOY6yvbPlBHEweX0qFfsIObODP47btRgPbDHu22IcTZt9hpzZmop9jLw+kcYd0LqNIynb+ynYwyiZSRTNlS3GlSma6yia6ymY4ymZO1pOEAeT16dRsQ+TMztSsU9h1LaR9Tw5fVDE+BV/Im7nvsM845beeEKT0aiRlO0DFOyhlMxkiubypkFkw3gDRXMtBXMCJXN7k1ExhII+3RtHU7FPYtQ2LcaDacs9h9WbJBh3os0+R85sRcU+7o3zdoEYtbE3HkzJTKVoLmsaRCpW8cZrKJiTKJnb0GqdFuMZVOxDCcZCxNh9HPduMe5Mm32enNmKNvs4eX1ci3ETbzyQkplOwVzaZNSsStHcSNFcRcGcQsnc0mIcSkGfSdk+SM7sTMU+EWM8hEruOazejEruK+T0XjHG57BmC9rsE+T1sS3GTSnbhyjYAyiZGRTMJU3DUs1qFM14iuYKCuY0P0Bbu8V4FmV7PzmzCxX7OEZt3WI8lEru2bnGxtDFzH0Fq3aJGJ+MMW5G2T5Mwe7njRfHGG+iYC6jYM6IMQ6joM+mbO8lb3bzxq0yjHtEjBqrdqXNPo81m9NmnyKvjyG6u6thfISC3YeyvY2CuahpoKtZjZKZQMFcQtGcRclMR7NWi/Ecb9ydiv0yRm0ZMRbJ6cOo5J7xxuexamyLcbe5xop9irw+usXYTtk+4n9GJEmSJEmSBnyHAp8kfMXtPZj79biF0T+SvlqnlJoMTFxI79vz/ZxbMCM6KT6l1Kz29vb2WbNSr7G1SArDDrrct4BPsWpbjF6zad25gHr4HUL+gmFDrNm8Zd0RhLMI+CWalbB6Z5Rq/npLEP6GunsZWIqcGovWpZb1j6j7HXlW7Y7RzTtOwnAOXe7bvTSOxJpRLeuOIHyDgF+hWQWrR/fTOAajm3eczDP+xxtHxBhfJORvGDbCmvaW9VbjTijVPO8Nwl9Td6+gGIRVY9G62LL+oTcarNotwfgt4DOs2g6j15gP42sEvN0rY07v0WMnQxB+QN296I27Y3Tzrpgw/MwfxyRjnXr4UobxVQLeSTTWw3cJ3KsohpDTY2KM71N3LwGGnBqD1s27YhrGbwFzsGp7jF49wfi+N27Wsh41robVO8YY3yZwr/fD+B9v7Eg0doUv4ngfwyZYs2mM8RUC3u2H8W/U3XcA641DUow7YnTzV++ajGpTrN6kZT1qXB2rd4gxvuWNQ1OMLwG5fhhn4vgAozbD6o1b1h318GVCfo1mDW9s/r57PfwVgXsDxTBvbN7ZmG381P+a6cCq0Rjd/LU257q88UOMasfqjVrWo8YRWL19jPGXBG5WolGSJEmSBnqjRo1i9uzZS+xt6ZVSs9rXLbS//vDqi5qywNvipN8z+53afH92Sql/Ah8759aMWRsB/JbG9Yr6/PUyf5HuIXGvnfG83YB259yUmLX7nHOn+6/tdV+zaWZfrvsUl1yoewDmnKMW3kstuJ95t4Rv7Owo2QlotTxd4f+joz4Jx5/nPs+EG1E047F6Y+rhT6kG1xK4X8xdV8HKlOyV5PSehO5vdNSvpu6+O3e9ymCK5nTy+nSgSjW4ic7weebd5vtG8voQ//W8vDc+0GLc2RuXozP4OtVgEo6/RIwbUzLjMXoj6uFP6QiuJWwyruKNe8QaawyhYM4gr08FOugIbqIr/EqL8VD/tbI8tfAeb/x3xLiLNy5LZ/A1b/xri/EmjB5JPfyJN/5y7roOVqVoryKnxxC6v9BRv4a6+968fweGeuMp3jiOrvC/I8YbIsYctfBuasGDLcZdvXEZOoP/pRpMaTFu4o0bUg/f9MZftRivJqd398arqbvvz/usg3EUzJl+t9qciLEeMR5O0VzpjXd546cR4+6U7Hhv/B9v/FvEuCklMwGj16cezqIjuI7QvRUxruaNu3njVdTdDyLGYd54kjfeSFf41bnGKjd64xXeeAe14CHgPwnGr1INprYYN/PHcX3q4Rt0BNfHGK8hp3cldH/2xh+2GM/2u6w+88b/aTEe4b/6ZqkFd1ALH44YdcS4NJ3Bf1MNprUY271xPerh6974dovxWnJ6F0L3J2/8UYvxHPL6eOA/3vi/EeMN5PWR3mioBbdTCx+JMd6EVsPpDL5CNZiO4/15RjXKG9elHr7mje9EjKt7486E7o/MqV9F4H4cMQ73xuO88Qa6wv9rOY5HUjSXeeNt3vhZxDjWH8dhdAbPe+MHLcYJGL0O9fBVb3w3YlyDor2OnB5N4P5AR/0qAvdyi/Fcv8vqU2/8WovxKP8VQu2NX2oy5vQeFM14tBpKZ/Ac1WBGi3FzSnYCRq1NPXyFjuCGFuMIb9yRwP2ejvrVMcbzyeujewyfJEmSJEmSFtPWS7rLWi+GTUNoXFQ76zGfS35YdHrc194ij5kM/AN4nob9OaXUC3FDqF6/r+xUWrh9EXcqVetTqIX3xq5pViNvzqIaJA1Ty5TMVDqCS4E5sY8omcnUgrsJ+UPsel6dScjPm06eo1k1Gq3WpTOMvwC9ZjUK5kw6gqTr3FQomSl0BJcAHYnGanAnjj8lGM8i5KdNJ8/Nxp3Qai06wwcTjKtTMKfTEVyZYpzsj2OcUVEyU6kGtzYN9pqNZxMwu+mkr9m4C1qtQWf4UIJxBAVzMh1B0nWX2ijZyXTULwaqCcZp/sT1LzHrkNfnErjXCdwrCcbd0GoVOsNHEoxrkjcnUg2SrgO2FCUz0X/WacbpTUOzZuP5BO4VAvdqgnEMWq1AZ/hognEt8uZ4qkHSdcAGUTI30xFcDNRiX6HxWTcPe5qNFxK4HxK41xOMY1FqWbrCx+KNah3y+hiqwXUJxsGUzIQM4zQ/2Hs/Zr3b+AMCF/eVcrBqT5QaTlf4eIrxaKrB9bHriiEUzU10BBcBnQnG6VSDyYnGgr6YuvsugYv/73Hj64mD6AqfSjCuR14fQTW4IcU43hu7Yh5hKJrp1IKJTcOeZuNl1N0LBO7NBOM+4Cp0uWcSjOuTV4dRDW+cb2PjON6M48PY1+j+uqUkSZIkSQNkp9I6hfbXH1oj+8GLWVuc/Dtmv1ubA7wdt571mSqlHBD72fsBzz9pXCw7+WK9ya/d551K/u5x9/kLhcetTwZeiF682zt/B1w+v3eAk6HSQu6LNlQK3d/4tGtHIEh51FLM2zHSM8UyOD6a7+c3LuUVpjEBRfrV09qYt9Mh7tlZxkHM27kT1xfBOJh5u7TiWhyMhvSftca7pBsrzNuNEffsz8OYVZmkISs07rLn+HvK84eQfoOHxcFombcTbX4rkTQIht4Yh9L4vTupHPGDlL60OBiLxA9ZG2Ubu+9km1SZQbmXUWqplMdIkiRJ0sBIhkqLb36o1J+vv/VmqDTTXzi7r6/dp6GS/7rdC339upx/7nPAbs659FsxJyQX6h5gdYVfJ/vkNG0gRMYJfPbzswchjXdJL3kQ0nh2ljFtoARfDGPaIAQWD2NvBiFZxuSBUuPZn4cxq+RhDZBxAg/ZdwxdHIz9HShB2rAGemNMG9ZA/4c1sHgYkwdK0Btj1i7uOXSFrXenlSRJkiRJGpANSfjn3ReQ/eTzYXA5ML//A+11YIi/HlOfk6HSAMu5rJMFSZIkSUrP8Y9FTZAkSZIkSVrUfdKLx3xeJ+CHAf39etSI7If0TIZKAyylVlrUBEmSJGkxT8vvJZIkSZI0gFLglsC/6PeNR94geRDT/c8X+nVw/A6jIcB7KY+5Tynl/NfyFmgyVBpg5fW+NK4Jkpxi2Yz11TLWl8tQFDLWAdJvW91/4/IZ798bYy7jPZZJXdf9NhYz1iHbuHTqerZxhYz3740x/SaUC9+Y/uuhUZZxeMZ6lnHFjPcvZ6zD4mE0Ge8xLGN91Yz1rEFHW8Y6ZBvTv2r++RjTf+tWGTcZyTaunLE+DKt2SX2MJEmSJEnSAOi5lLXuodLncc2A7ms2pe2KGkHyzqruE4X4O+5kJEOlAZZSgyiZpDtAgVFbUjK3kjQMUKxI2d6ecqJeomRuwagtEt+jZBq3xk4qr4+jZG5IMW5FydySYlyJsr0jZShTomRuxajk67EV9Tjy+sgU4wkUTfxdqhrGbbwxfjilWJlSr4ztKcbx5PThKcYTKZqkO5L1xrgKJXt7ypCw7I2bJawrinoCOZ18s4O8PpmiSbqzG1i1HSUzg6Qho2ZVb0waMpYpm9swatMM48EpxlMpmqQ75IFVO1Ay01OMq1G2t6UMGSveuHGG8aAU42kUTdKdBht3VGwY44eMmtW9MWmA10bZ3I5RGyWsa4p6Ijl9QKKhoM+gaJLu2Ni4o2LDGD8c06zh/9uTNBxro2xuQ6uRicaSmUhO75diPJuiSbrzJVi1MyUzLcU4whuThmNLeeOGKcZJjTu8JRrPpWguSzHumnEc18wwDvLGDRLWDSU7AaV6M3iXJEmSJElaonsWQCl1SMzaoTQu0t1j95C/qPaCrDev9wIwyjn3SczaITQuOB5717isZKg0AMubwynb+5tOEBVDyOvTqNhHyJmtabPPYtVOzNsSmCenD6Yt9zxWb0Rb7iv+RDw/9xWs2ok2+yw5szUV+yXy+rSmPzE3amPK9gHy5jCKZhxFc13Tn4grVqFobqBoridvjqBs78NEThAVQyjo071xG9rsM1g1OmIsRIwjvfGgFuPOtNnnyJktqdhHyevTaNwdrNu4CWX7AAV7KEUznqK5tmlngWZViuZGiuZaCuYoyvbeppNYxVAK+kwq9iFyZlsqc43dFcjpQyLG58npA5l3sq+wahfa7PMR46k07lbXbdyUsn2Igj2YkplA0VzTYlzNH99rKJhjKNt7mk5iFcMo6LOo2IfJme2o2KexascW46GRz/p5PyyIGnf1x3ELKvbL5PUpLcbNvPFASmYiRXN1006XhnG8vzX5cZTtXU0nsQ3j2ZTtg+TM9t64Q8RYJKcPo5J7LvLzuH/EqLFqN9rs81izuTeeTOPOhN3Gdsr2YQr2AEpmMkVzVdOwtGG8iaK5goI5nrK9E63WbzGeQ9neT87sSMU+hVXbtxgPp5J7Fqs3pi33X36gYee+g1W7e+MoKvZx8vqkFuMoyvYRCnZ/b7yyxbg6JXMzRXM5BXOiN67XYjyXsr03YtwuYiyR00e0GPdNMLZ744lEd9PMM+5LyUylaK5oMa5ByUykYC6lYE6mZO5oMQ6PGEdTsU9h1LZNxrw+ssW4T4txDG25r2BNO232CfL6hBbj5o3/Jpm9KZnpFM3/Z+++g+QozgaMP909G08SIoNASCSRk4giBwkwJpmcg8k555wROUhIItrY8BkTnAMZjMkgkk0Ggw0GTE66292Z7u+PfSXNjnZmDu5kS7p+qihX0Xu3P2YVPO/1zJyQYjyaktmXirkSrZaIGeeipA+nGoyjYDagI7h1Ohl/StFsRsVcTtkc3zJ01ixCxVxIyRxJyexPxVyBVsNajeYIqsFYMd6CUSNixqoYbyPQy9NRuJOC/mHMaGLGlegX3EpR70nz6YuTjavSEfyUgt4En8/n8/l8vr6eDGgOAEbH/71SajjNQc80P12Xp7q9Ja/JaiDkbOOf2uSh0hcZ1ouA0cmBllJqtLxP+k6AnJRzeU9e8vUkpdSzw4cPH/7ss9P9UsrvnHOTqNu7ga8wak0CvXhiPSS0D2J5H8PSGL0qSqnYuiO0T2F5Bc0CBHoDlGr96XhoXyNyTwADKOpNUKr1EpnIfkToHgCaP2E3unXHiXPfivEbMS7WxvgAln93wziYQK+XalTMRkFvnGMcidGtO06s/YaGuwf4FqNG5BiXwehV2hifxPKqGNdHqdZLcEL7KpF7UoyboFTrJVuR/VCMWo5j0vg1DXcv8C2BWhOjW5806VxDjB9gWBajV+6BcaAcxzSjEWPrrpim8R5gUjeMy2H08AzjQvJZpxlnF2PrbrfIfkDoHswwfiXHcRKBWhujWx+tOtX4oRhXamN8AstrGcZXiNxTGcZ/E7qHxDgSo1t37jSN9wCdGcb7sHyEYQUCs1Ji3RHax7G83kvGURjd+vdhq3EdjB6aMNQJ7f05xsewvCHG9VGq9WckoX2ZyD2NYg4xtu6siez78lkXUoxfymfdSaDWxejWywObxvuw/KcbxqEEet02xr8TuWe6YSyKsfXSu6bxHqCrG8YVCcyKbYx/xfIWmoUJ9DptjH8jcs+imJOCHuV3KPl8Pp/Pl2jllVdm4sSJ3/ux9DN6Sqlnhw8rD3/6+oXzXzyTteq+/2Di6109/uzknkYH0HyK2pw0B0IntNsVJEOc7YBRyV1MSqnjgVVpDokmD53eBiYCbzvn2m6pV0pNAHZwzmXfp2Hq+w+kOUgaSHOHUvpW/W7kh0rTuRlxqOScpWavoRZdB3w95d8Hal0qwfloNYh69Du6ogtxfDBlXaulqZhzCfSKhPY5OqNTse6VKeuK+SmbkyiazbHufTrDkwndI7F37k/J7E9JHwR00RmdScP+mqmPIg8o6G3l8rwSNTuGWnQ98cfeB2o9Mc5PPfoNXdFFCeMyYlyB0E4U46sx4yAx/lCMJxG6v7YxHgxMEuNvYsaCGE8T49XUohvaGC9Aq/moR78W44cx47JUzDlifFaMr7UYK8HJFPRmWPeeGB+NGQdQMgdQ0gcC39IZnTWNsai3k0vfitSiq6jZG4BvY8b1xTgv9ehXYvwoYTyXQC9PaJ+mMzoN616PGRcQ4w+w7l9MCk8ico/FjLNRNgdQ1AeI8Uwa9rcpxoIYb0wYN5DPel7q0V10RRe3GI1aloo5H6OXJbRP0RmdnjAuSCU4hYLeBOv+KcbHE8aDZCfYN2L8XcxYpKi3l8vzAmrRldTsTQnjhmKch3p0B13RJTj+EzMuJ8ZlUoyDxbgxkXuXzvDkNsaDZSfYN3RGp9OwvweimHEHuTwvoBZdTs3+NGZUMePc1KPb6YouTRiXF+PShPZJMb6RMJ5KQY8S40kyKJ68PpCSOVh2gn0txj8kjDtSNieL8TIxTooZN6ISnCfG2+iKLsPxccy4ghiXIrSP0xmegeXNKeuahSgHp1HQGxG5d8T4ZMw4uxh/LMbTaNg/xowlMZ4EGDHenDCOohKci1ZzifFSHJ/EjCtSMeeJ8TExvhUzDqEcnCrGt+WzfiphPER2gn1NZ3QqDfunhHFnuYRQ0xVdQt3+vI3xPLSak3r0f3RFlyeMK4lxSUL7qBin/n+ZpvE0CnpDMZ5E5J6OGeegZA6lqPdsGZb6fD6fz9eX6ytDpWeunfWGSqvs3ztDpb6eHypN52bEoVJneCF1e23bNcVgSuYguqKTU766QsWMpjM6Aehs+4qyvoCaHYvjvbbrBbUvlr8nTp6nFqh10GoYdXtD23XNQhTNAXRFafe56a5xDI73264X1QFEvJhhXBetFqVub0oxDqFo9qMrSrtfUJWKuZDO6Higq/1/hbmQrugqHP9OMR5ExMSWk+dW43potTB1+5MM4750RWn3XeqgYi6gMzoOqLVZV2K8omWw12o8hIinWk5MW40boNVg6vbmFONQimZvuqK0+1d1xzhahhQftlmfbHySyLW/L12gNkSpBWjYn6UYF6Fo9qArOjPF2I+KOU+M9RTjRTKkSDHqw4jcY0Su/Z8jgRqJUvPSsLekGBelaHajKzorxdhfjMcAjQzjJS2DvVbjEUTuEaKUS7EDtTFKzUHD/qK9US1OUe9MV3R2inEAFXO2HMd2Rk3ZXEQtuqhlaNZqPJLIPUTknk8xbopiAA33yxTjMIpqR7rsOSnG2aiYs+iMjmXqcDJpvJhadGHL0KzVeBSRu5/Ivdh2vaA3A9dBw7W/L2TTuANd9ty264qBlM2Z3TBe0DKQite8JHT/tms+n8/n8/W1/FBp5s0PlXonP1Sazs1oQyXr/s3XjXUBm/GqfsR33iRTzJV6stGdr2/eyivr/ZvvAlm/NjuI7xiZ9qvzjP2J79KathnBOAD4KmN9VjHmVWXqboxp67nRMHU3yPctzzgnjk8zvn424MuM9d4wVkgbssKsYhxIxqXkNO8f1G6Q8l0qkzYIht4wFmg/NPsulWg/ZG2mmAOX+XCQgWQbKwwoPI5SAzJe4/P5fD5f38gPlWbe/FCpd/I36u5jNS/5yDvJzxoIkXMCn//13Rsy5A070wchza/OM2YNlGDGMGYNQmDWMeaVPqyB3jD2dBAC+casIQNkD2ugd4zpwxqYVYxf5Kz3dKAEWQMl6A1jTwdKkDVQAnIGSpBv7KRh/xtPx/X5fD6fz+fzzei1f+awb5bNubyTCZ/P5/P5sssfTPl8Pp/P55tlcoCdBe+n6C/a6pX8TqU+llaD/9cEn8/n883k+b9LfD6fz+fz+Xzgh0p9roL+Ic37v6SnmC9nfWiPvr55v4+8sl+jmDdnfWjO+vw571/OWQco5rzHPJnrOtc4KOf9KznrMHMYCznvMXfmer5xgZz3z/790Cx7U+f0N3bkrEO+ca6c9aE56wvmvH9vGOfIWR+as55n7JezDs17Q2W9R55xSM563jCmO8bsv7oV2U+TzTPqHKNiLgK1QeZrfD6fz+fz+Xx9Iz9U6mMpNYCKOTN13agRVMyVpA0DFAtSDcZknLxVqJirMGqNNAEVcx5FvUeqoaj3pmLSnlIFRq1JxVyRYRwsxrSBR5WKuRKjVsswnk9R75Zh3CfTGKi15Di2H05pFqISXJ0x3KpSNVdi1CqpxrI+l6LeJcO4X+ZnHah1qJjLM4xDqARjMoaEHVTNVRiVdl87RVmfT1HvnGHcn7JJe7Jb8yl7zc+6/ZBRM1SOY5qxX45RU9YXUNA7phpK+kDK5vQM43pyHNOMC4sxbRA62bhSqrFiLqSgt88wHkzZpD1psPmUvYq5jLQho2YRqsHVGUPG/vLrccUc47YZxkMpm7QnNkKgNpLPuv2QUbOYGNMGeAOomqsxavmUdUPFjKagt8kwHk7ZpD35EgI1So5jilEtTkcwJmOAN5t81stlGC+moLdON5ojKZuTMowb5xiHiXHOVGMluBqjlk03BuejVPbA2ufz+Xw+n8/XN/JDpT5Y0WxHNbgBo4ZP+XeKOSjpQ+gIbqBgVqVfcAeBGsnUXyJlCnoH+hXuINBL069wBwW9A1MHEppAjaRfcAcFswodwY2U9MEtP9U3ajjV4AaKZhvK5gzK5ix07CfmmqGUzTmUzakUzQ5Ug+tbTrRbjavTL7idQG1E8wlnk407xox3yol4aco7BGoU/YLbxXgTJX1Qy0/1jVqZanAjRbM1ZXMWZXNmwrgwFXMeZXMyRbMj1eC6lhNtxZyU9GFUg+tjxg1jxgoFvRMdhdsJ9DJi3C5h3Lh5/M3KdAQ/paQPbGO8iVLwI8rmbDEulDCeT9mcSNHsRDW4FqNWaGO8loIZQb/gNtl1MNVY1DuLcfJx3DbFOFyMB6AYGDOuQjX4CaVgK/lMz2jZoaFZhIq5gLI5gZLZhWowoWUYoJiLkj6cajCBghlBR3AbgVo/ZqzGjMvIr8dtmTo0MQRqE/oV7iQwK9ER/JSi3j9hXFWO4xbymZ6WMC5KxVxAyRxHyexGNRjfcqKtmIuSOUKMa9IR/IJArZcw7kJH4Zexz3qbhHHTmPFminp/mk9Zm2xcrWk3P5TjdWrLQFezGBUzmpI5hpLZg2pwDbrFODclcyTVYBwFs7Ycx/WYWgdFvWvC+KMM488o6v0SxtWbdvNDKmY0ZXNKy84rrRanYi6iZI6iZPakGoxNGOehZI6iGozNMO5GR+E2Md4lQ5fJQ5OAQP1AjCvQEfycot6X5lP/JhvXEOMPxHhyG+PFlIMjKZm9qQZj0GqZmHFeSuZoqsEYCmZd+azXTRh3pyP4BWaKcasWY0FvljDu08b4M4pmk6bFnNwyGNdqGBVzCWVzOCWzjxiXThiPoRpcTcGsR0fwfwRqnRzjlu2Nenk6glso6h/TfFLmZOMIOoKfU9Aj8fl8Pp/P18dys+A/vl5JOeeP5vRMKfXs8OHDhz/77LP/a8o0OfcNDXsP1n1NoNcg0Esk1hs07P1Y9wFGLUWgV0cpFVt3hPZJIvcKRg0i0BuiVOtPx0P7GqF9Aq36U9Abo1TrpR2R/YDQPQBAoEZidOtuDue+pmHvxbpvxDgsw7g0gV6tjfEJIvcqRi1AoDdoY3yV0D6JVrNR0CMzjEqMrbs5msZ7sO7bFGOdhn3gOxg3RKnWy4RC+wqhfUqMo1Cq9VKjyP6b0D1Ic+CzURvjV3IcvyXQIwj04inGD8W4ahvjY0TudYxaUI5j0vgyoX06w/g+oXuom8Y1CfRibYz3Y91HOcY3xLj+tMbo74TuabQaKL8eWy99++8YHxXj4BTj3wjdMxnG9wjdwzQHPhthdOvOHWu/JHT3YF2XGBdNGGvyWX+EUcsQ6FUSRhs7jguJsfWSsKbxWfmsN0Gp1l2DrcaRGN26c6fVuBaBXqSN8X6s+w+BWg6jh7cxPkrk3swwviTG2eU4Jo3/EmOQYvyC0N2bY7wP6z7OMP6VyL2FUUMJ9LptjC8Suom9YizotTG69VG/rcblMXqlHhjnEGN3Lg32+Xw+n6/vtPLKKzNx4sRZ9rH0Sqlnhy9eHv7M+EXyXzyTtcqBbzPxja5Z9rP7b+Wf/tYHc85Si66iZm9g8iPla7b5U+hqcBFaLUA9+jVd0YU4/jPl67QdRsWcR6BXJrTP0BmdinWvT1lX0TyyO2ZrrHuPSeEJRO7xKeudUQclvQ8lczgwic7oDBr2t0x9FPlZFPRWcslWhVp0JTV7Y8K4JtVgtBjvoisajePjhPF8Aj2c0D4txjdixnnFuBXW/YtJ4YnTGs1+lPShYjydhv1dzHimGM8CSjHjpCnGQK1FJRiNVoOoR3fSFV2UMC4hxpUI7VN0hqdieTNmnI+yOYmi2QLr/inH8cmEcX9K+hDgWzH+PmY8g4L+ERVzhhgvp2Z/kjCuLcb5qUe30xVdjOOTmHFJMa5IaJ8U41sJ48kUzeZE7l06wxOI3FMxYz9K5gBK+mDgazqj02jYPyaM24ixSC26TIydMeO6VIIL0Wo+6tEvxTj1ce3aLiXGFQjtE2J8O2acn0pwCgW9GZF7R4xPZxhPFaONGbelYk4X4yXU7M0J43pUggvEeBtd0SUJ49JiXJ7QPk5neFqG8R9ifCZm7E/JHEhJH5hiDCjo7cQY0BVdQt3+rI3xQrSal3r0C7qiSxPGZaia8zF6OUL7KJ3h6Vj+kTCeRkFvSuTeFuPUIXlnNICyOZCiPgD4is7oFBr2zy3Hsai3o2xOixlvBrpixvXFOA+16FZq0WVTni5Wm2K8EKOXIbR/FeM7MeMgMW6SYTxYdlmlGbcXo6Yrupi6/XnCuIEY56YW3UItujxhXFaMS9Owj9AVno7l3ZhxATFuTOTeEuPEhPEQinpfHF/SGZ5M6O5m6o/RzqCod5DLHDVd0UXU7S0J44by63FuatHPqEVXthiNXZaKGY3RS6UYF6QSnE5BjyRyb4rxuZhxNjHu0zKc8vl8Pp/P5/P13fxOpencjLhTqTM8j7q9oe2aYgFK5kC6otNSvrpMxVxAZ3QSk09mpnmFPoeaHYfj323XC+rHWP7eMiiJZ9SaGDWMuv1JinFBSmZ/uqK0+9xUxHgCzVOpdsbzqNkxOD5IMe6L5cWWQUm8QK2FVotRtz9NMQ6mZPalK0q7X1CFijmfzujEHOPVOD5su15U+xMxsWUI0WpcB6WG0rA/a7uuWYii+TFd0ZkpxioVc64Y6+3/K8z5dEVXZRgPIOKZlhP8VuN6KLUgDXtLinEIRbMXXVHa/auqVMx58lmnGS+gK7oCx0cpxoOIeLLlBL/VuD5KDaJhb00xDqVodqcrOifF2EHFnCPGRpt1RdmcL0OK/7RZh6I6mIjHW07wW40boNS8NOwvUowLU9S70mXPTTH2o2LOpjM6HghTjBdQiy5tGZC2GPWhRO4RIvdCinEkijlouF+mGBehqHeiy57fA+OF1BID0lbjYUTuYSL3YopxYxQDaLg7UoyLUdQ7ZBj7UzFnymedZhxNLRrdMthrNR5B5O4ncn9LMW6CooOGu6u9US1OUW1Ll70wxTiAsjmDrlSjluN44ZSBVLKSOY6yOSjl+/t8Pp/P17fyO5Vm3vxOpd7JD5WmczPaUMm69/m6sR5Tf0Lfrg4m7w5ql2LO1BOiZv2AbzLWFfkXsea9ZnobNdnHqPku09fYH/g6Y707xryqTN7B1K4Zw1hh8s6bduUbBwBfZaz/N4xzpJ6gN8szGqbu8vq+lUkbBMOsYpwN+DJjPaD9IOW7VCJtEAyzinEg8EXGepkBhSdQakDGa3w+n8/n6xv1maHSNYvmv3gma5WD3/JDpV7I36i7j9V66Uxa6YMQIOcEHrKHNc3vkF/ea6a3sTtDhultzBrWQM8HIZA1UIIZxZg+rIHuGLMGIfDfMWadwEO+safDGsga1sCsYswa1kDPhzWQNayBWcX4Rc56Fw1773cB+Xw+n8/n8/lm0fxQqY/l3Of/a4LP5/P5ZvIc/u8Sn8/n8/l8Pp8fKvW5tFoo/0U+n8/n82Xk/y7x+Xw+n8/n84EfKvW5CvqHNO+jk55i/pz17Ju05X19874peWW/RjFf5rpm4cx1xaCc96/krEPzviVZ75FnzDuOC+S8f3eMxZz3mDdzPd+4YM77Z/9aa5ZnnCdzvefGjpx1gELOe+QZ83499oYx+2Geirkz1/ONg3Pev1/OOuQb58pZzzPmDTr656xDvnHOnPWhOet5xu7cp8jkvEe2UecYNUNyvv/cBGr9zNf4fD6fz+fz+fpGfqjUx1KqPxVzDs2bTE9boNaiaq4ibRigWYhqMAademJUpWKuwqg10wRUzPkU9V6pxqLeL8e4DlVzNWlDFc0QKsHYjJPgDqrmKowakWG8gKLeM8O4vxjbF6h1qZgrM4xDxZg2OOpH1VyNUaunrGsq5kKKevdUQ0kfSMWcnWFcj4q5KsO4MJVgTMYArr8YV8swjqaod80wHkzFpD3ZTR41b64kbcioWUSMaYPMycZVMowXUtS7ZBgPpWLOzDBumGNcTD7rtCHjADGm3R/QyHHcOcN4GGWT9qTB5pPXKuYK0gahWi1ONdM4G1UzBqOGZxgvoqB3TDeaIyibtKdKNp+8lm0cRkcwJnUQqhhINbgao1bKMF5MQW+fYTyasjk1w7iJGNsPQpvGsalDxqnGFdPegYq5hILeNsN4DGVzSoZxUyrm8gzjkvJZtx8yKgZSCa7GqOXTjcEFKJU9DPb5fD6fzzcL5QCnZsF//tcHdtbID5X6YEXzI6rBTRi16pR/p5iLkj6ManA9gVmZfsEdBGoTpv5EvEpR70xH4XYCvSQdhdvlJHfy8MkQqE3oF9xJwaxMR3ADJX1Yy84Do1alGvyEotmasjmNijmvZZeJZlEq5gLK5kSKZluqwY0twwDF3JT04VSDa2PGjZn6y7hKUe8yxdivcIcYJw9NDIHalH7BnQRmeMw49af6Rq0mxi0pm9Mpm3NbdnBoFqNiLqRsTqBothPj1GGAYm5K5kiqwQQKZtU2xg6KelcxLkG/wp0U9E4J4w/oV7iTwKxIR3ATJX1owrg6HcFPKZotKJszKZtzWnYeaLU4FTOakjmOotmBanBDwjgPJXNUzHg7gRqVMO5GR+GXchzvlGHB5KFJQEFvJsYV6Ah+QkkfgmKOmHENOoKbKZofUjZnUzZnJ4zDqJiLKJljKJodqQbXtwwsFPNSMkdTDcZTMKuLcWTCuHvMeBcFvUPC+EP6Fe4S408p6YMTxhF0BD8T4zmUzZktOzSaxksomaMomp2pBte1DCyaxmOoBuPE+EsCtRFTh6EdFPUedBRuixm3Txg3TxgPSjFulmG8lHJwFCWzK9Xg2paBhWI+MY6lYEa0MfajqPekI7gNM+Wz3o6pg53JxjsJzHJ0BDdT0geimD1mXJOO4OcUzaZUzHmUzRkJ4xJUzGWUzRGUzO5UgwltjMdSDa6mYNakI7iNQG2YMO5Fv+A2jF5KjNvGjAUKenM6CncS6MnGA9oYb6FoNpY/Y05vGYxrtaQYD6Vk9qAajMeoFWLG+SmZ48S4lhg3+I7GLego3DXFWNT7oxg45T0CtZYcx5FUzGjK5rSWwXjTeDllcwglsxfVYFzL4EcxP2VzPNXgKgpmbTGuHzP2F+MvxHgXBb0NU4dPk42/ItDLNi3TGNemI7iFgt4Qn8/n8/l8Pp8PQDnnx3PTM6XUs8OHDx/+7LPP/q8p0+TcVzTsvTj3NUatTmCWSqzXadgHcO4DtBpGoNdEKRVbd4T2Max7HaXmp6A3nOan12H0MpF7CqX6U9CjpnkEdWTfJ7QPARDoDTC6dVdMvrEmxg/RagkCPSJhtGJ8A6UGUdAbtDH+ncg9jVIDKOiROcYNMbp1V0zTeA/OfYPRaxDoJdsY78e5j9BqSQK9Rg+No1Cq9TKeyL4nRi3G1h0nzn0pxm8xegSBXiLDuBSBXj3DuIAYWy8JC6O/Ebln/kvGpQn0am2Mj2Ldm90wzibG1ku2phqNGFt3xVj3BaG9B+cmYfSaBHpYG+N9OPefbhgHU9DrfQ/jv8QY5Bg75Ti2M96Lcx+j1TIEetUc4/oo1XpJWBi9SOQmotRAMbZentdq3AijW3fuWPc5ob1XjGsR6MUyjMsS6FXaGP+KdW9lGF8gcs9lGN8ltA8DRTmO39XYJZ/1x2i1HIFeOWGMxPh2hvF5Ivc8Ss0uf/Ykje8Q2r9kGD8jtPeJcW0C3fqo3+9i1GohAr1ei9E5R2RfiBlHoVR3Lmn1+Xw+n6/vtPLKKzNx4sRZ9rH0Sqlnhy9WHv7MNYvlv3gma5WD32Tim12z7Gf33yr75hG+WTLnImrRFdTsjcQfhW7salSDi9FqMPXoDrqi0S2Pa9fRolSC8wj0aoT2KTrDk7G8PWW9K5pLdvBsi3X/ZFJ4PJF7asp6Z1SlpPemZI4EJtEZnUrD/oEpj3S3hoLeXC4rq1CLLqNmf5Iwri7GBalHt9MVXZQwLibGVQntk2L8R8J4IkWzDZF7l87weCL3dMK4DyVzBPCNGP8YM55JQW8hxjK16FIxyqPQbXOXTtO4APXoNrqii1se4d00nk+gVyG0T4jxnZhxbsrmJIpmayL3Dp3hcURu6lAy32go6K3ksrISXdEl1O3NCeMIqsFFYvwFXdElrUa7OBVzAYEeTmgfozM8NWGcR4xbEbl/yHGMGzsomX0p6cPEeDIN++eEcWsxFlOMa4pxEPXo/+iKLk0Yh4lxJUL7qBjfTRhPpmi2JHJvi3FiwrgfJX0o8DWTwpMJ3Z+Zsg/WBrHjWKQruoi6/RlTHtdum7tLKsFotBpELbqFWnRZy1OxmsYLCfSKhPavdIanJYzzUjanUDSbi/E4IvdcwngAJX2wGE8idHcnjJOPYyDGnyeMa4txfmrRz6lFlyeMS4hxBRr2EbrC07D8M2E8laL5IZF7S45j0nggJX0wji/pDE8kdPfGjGdQ0NtQMWeIcTR1e0vCuI4Y56MW3UwtugIXe6y9tkuKcXka9i90hacnjPNRCU6loDcjcm/KcXwhZuwnxoNwfEFneFLCGFDQ24rR0BVdQN3eCtRjxnWpBKNRzEPd/qyNcSmq5kKMXo6GfZjO8HQc/4oZ5xfjD4jcG2J8MWE8iJI+EMfnYrwvYdxOjIqu6MI2xvXEODd1+1O6oiuBLxPG0Ri9LA37IJ3hGTjem7KuovmpBKdR0JsS2dfpjI4jci/FjP0pm4ObO5hiwymfz+fz+Xw+X99thtuppJQaCWwPvAXMCQwETnDOffEdv8+zwH7Oxc4is18/Wt7rduAZ59wXYjkAuNc5d+13ef+4Y0bbqdQZnk3d/qTtWvMyjwPois5M+eoSFXMendEpTDkpTFTWZ1Kz43F82Ha9oPbE8nLLMCeeUWug1eI07M9SjIMomf3oitLuxVMW40lMOeGaxngWNTsuw7g3lhdbBiWtxhFotQgNe0uKcQFKZh+6orR7GlWomHNzjGdTs2NxfJRi3AfL8xnGNdFqKA17a4pxQYpmb2pR2r2hKlTMOWJspBjPoWavxvGfFOO+WJ5tGULEC9TaKLUgDfuLFONgSmZPuqJzv7/RnEstuhLHx23Xi2o/Ip4mcs+nGNdFMR8N98u265ohFPVudNnzUoxVKuYsMYYpxvNk2PNJivEAIh5vGUK0GtdDMQ8Nd3uGcRe67AU9MJ5PLbq0ZYjbajyIiL+2DCFajRugmIOGuzPFOJSi3pEuOzrF2CHGE1OMSo5j64C01XgwIX/Bur+lGDdCMYCG+1WKcREKejtq9qIUYz/K5gy6Uo+jkuN4Uctgr8WoDyV0D2Ld31OMo1BUabjfpBgXpaC3oWYvTjH2p2xOpys6EYgyjKNbhmbxmveeOjTl+/t8Pp/P17fqMzuVxsyCO5UO9TuVeqMZaqiklNoOOCn+oSqlhtMc9Kzc3cGSfE13pjijnHP3yddMAPZv85qLnHMndOd9Uywz1FDJuvf4urEe2Xcl6wC+TV1VzJF60tadr2/e4yPv113ea6rApIyv/m8Y8+qpsR/wTcZ6bxgrxHeCTfsOPTVqpuxO+t711Ngf+Dpj/b9hnD11iNDsv2EsM2UnWJt6bjS0H1J8l3pqHAB8lbHeG8YSaQN16I5xNuK7h6YtIG2w1/2KpA2roTeMZQYUHkep2b6nz+fz+Xy+WSc/VJp580Ol3mmGufxNKTWQ5vBoVPzfO+cmKqUmAtfR3MHUnRYB3pZ/2jUH8PbkgVKsa+VrASYCE5xzad9jpqx5mVTeICJr2ELOCXz+13dvEJL3mvRhTfOr/xvGvHpqzBrWNL9Dz0sfhDTfoafGng5CoOfGrEEI/HeMWSfw8N8xpg9roDeMPR3WQM+NWQMl6B1j+kAJumPMGtZAzwdKkDVQgt4wdtGw91I0230nlc/n8/l8Pp9v1muGGSoBO8j/PtNm7TaaA6futioZO5uUUrc756YZUDnnDvgO7zFT9h2vIvT5fD6fb5rSLo3z+Xw+n8/n8/WtZqSh0vbAFymDoLeheXmcc+6ObnyvTzMGSqOBtBuLzPJpNST/RT6fz+fzZeT/LvH5fD6fr4/l/EM6fO3T/2tArFUg9TqWL+R/V+3ON3LOtb2Lqtx4+9Osm3crpQYqpbaTfwZ25/1mpgp6M5r3E0pPsUDmumbRzHXFoBxFJWcdmvdW+f7vkW9cMOf9u/PY7Dzj/Jnr+cbBOe/fHWMp5z3my1zvuTH711qzYs57TG9jv5x1yDfOm7meb1wo5/3756wDFHLeY57M9Xxj3hChN4xzZ67rKVcnp319nnFAzjrk/axFMVfmep5R5xq7c5+i6W0cmvP95yVQ62e+xufz+Xw+n8/XN5qRhkoDe+k1bZMB0QFpAyd5zWiaN+ueCNwH3K6UOr6b3//Zdv8AS35f8/RIqf5UzLk0b/I8bYFal2pwFWnDAM0QKsHYjBOjflTNGAK1Tsq6pmIupKj3TTWW9AFUzPkZxvWomizjwt0wXk2g1sowjqaof5xhPIiKOS/DuD5VczVpgx/NImJMGyb0p2quxqgRqcZqcBFFvVeG8ZCcz3pDKuZq0oZ8mkWpBGMzBnADqJoxGUYjxj0zjIdRMWlPn2s+jatirko3qsWpBNdkDEJnE+PqGcaLKerdM4yHUzFpT/FrPo0r2ziManBN6iBUMVCMq6UaK+YiinrXdKM5Mse4CRVzJWmD0KnG9oNQxUCqwViMWiXtHaiYSyjqnTOMx1AxZ2YYN5XjmGZcQozth4xTjWn3WWwaC3qnDOOxlM3pqesFvZkcx/bDWq2WohqMzTDOTiUYi1HDM4yXUtA7pKxD2RxP2ZyaYdycirkiw7i0GNsPQhVzUAnGYNRK6cbgQpTKHhD6fD6fz+fz+fpGM9JQCUi9ScPkHUxz9OB751329gVwr3PuIufc23L53PbASUqpdk+Fm2krmq3oCG5uGQYo5qVkjqYaTCDQK9GvcBcF/UOm/kS8g6Leg47CHQR6GB2FO+REfPJgJ6CgN6df4S4CsyLV4FpK5qiWExejRtAR3EzRbEHZnETFjEarYVPWtRpGxVxMyRxP0WxNR/BTjFojZpyPkjmmaTTD6RfcKTuvJhv7UdR70lG4XYy3U9S7tTH+isCsQDW4npI5smUHR9P4M4rmh5TNKVTMhWi1eMy4BBVzCSVzLEXzI6rBT1oGFlON46cYA/UDmk+dmmzcK2HcNWYsxIzL0xHc2Ma4Jh3BzynozSib06iYC9BMfRqDVktSMZdSMkdTNNuKcerAQjE/JXMc1WAcBbOyGDdtY/wlgR5Gv8KdFPUuTB2QFSjoLeSzXk6MR7TsMgnUWmL8AWVzOhVzfhvjZZSDoyia7cU4dSPiVOM1FMwq9AvuIFCbxIz9m8bgNgK9eIpxy5jxJkr68JYdHIFam47gFgp6E8rmTCrmvJbdOlotTcVcTjk4kqLZgWpwY8tQRTE/ZXM81WAMBbNqinFv+gW3YfTi9CvcJUOXuHErOgp3Ephl6Qh+QkkfljCuQ0dwC0WzCWVzNmVzbssuk6bxCsrmcIpmR6rBDS1DFcUgyuZEqsHVFMzqYtyYqX/0D6Cof9zGOHlAVqCgt6ajcBeBXpqO4KeU9KEo5owZ16UjuJWiGUXZnEvZnI1m4ZhxGSrmSsrmEIpmZ6rB9QnjApTNSVSDq8R4exvjPmIcJn827ZQw/oiOwq9ixkNQsb8uArWeGEdSMedSNme17MbRalkq5mrK5mBKZjeqwXVtjCdTMVdQMCPEOCpmnI2i3pd+wf9h9BL0K9xJQe/I1AFZkYLepvn7Wi9NR3AzJX1wG+MvKJoNqZjzKZszWwbjRi1LNRhDyRxIyewhxqnDKcWCYrycglmTfsEvCdTIKUbFQIp6P/oFt4rxLhleZRkPihmVGG+joNfD5/P5fD6fz+cDUM71xhOkep5SygFtH+cnu4w+B+5zzo1Krnfjey9Cc2CUfX1H+6+9HRjpnJv9u36tfP2zw4cPH/7ss89+ny+frjn3JfXoXuBrjFqNwCyTWK/RsA/g3AdoNYxAr4lSOrZuCe1jWPc6Ss1PQW+IUq0/HQ+jvxG5p4H+FM2oaR5BHdl/Edq/ABDo9TC6dVeMdV/QiO4DvsGoVXOMSxDoEW2Mj2LdGxnGl4jcMz0wfi7GSRi1SorxPpz7qAfGF4ncsyg1GwU9EqVaL+OJ7D8J7cOAJtDrY3Trzp1W46oEZumEsYuGvV+MSxLoNRLGSIxvotQgCnqDNsYXiNzEDOO7chzTjJ/RiO7/DsYRKKVi6xGh/SvWvSXGDVGqGFt3RPYFIvdct4wFsyFate7caRrvAzrl98xSCWOn/HrsjnFBCnr9aYyhfR7rnk81hvYdIvtIhvFTOY6dGLU6gWndLNk03o9z/0GrpeSzThofwbq3u2EcKMbWS99C+w8i+1cxboRWrTt3Wox6DQK9RBvjfTj3MVotQ6BXyzAOFmMhtu4I7XNinD3D+AhQkOPYunPHuk9oRA+IcQSBHtay3mpclkCvOo2xYR/GuXd6YHxbjmN3jGsS6MVb1p2bJMZPUowhDfsXMS5EQa+XYxyFUt25XNTn8/l8vr7TyiuvzMSJE2fZx9IrpZ4dvmhl+NNXLZ7/4pmsVQ9/g4lvdc6yn91/qxnpRt2Qfnnb5B+VfvE9v+8JNC9n+z49DWynlBrpnPu+32OGyrmIWnQJNfsT4o/HNnZlKsElGDWEenQbXdHFLY9r19EQKsEFBHoNQvs4neHJWN6dst4VzUHZHEfR7Ejk3qEzPJYodvuqLlumpPekZI4FvqUzOpmG/RMgg02r5fKS84AKXdEl1O1PM4y/EOPUx2PraKgYVye0j9EZntLGeAJFsz2R+wed4XFtjHtTMkcD3zIpPInQ/TnDeDF1e3PCuArV4FK0GkwtupVadGnCuLAYVyO0j4rxnwnjiRTNdkTubTmOz09Z74zKlPSPKZmjgG/EeHfCuLlc+lamKxpN3f6M+GPGjV1VjAtSi24R4xcx4yJiXJWGfYTO8FQc/4oZ56RsTqJothHjMUTuhZixQknvQ8kcieMrOsMTCd29CeMWculbSYw/TxhXpxpcLMaf0RVdRvxR503jhQR6lQzjKRTN1kTuLTmOSeO+lMwRMeM9sV8LZ8aMRbqiC6jbWxPGNcS4ALXoZrqiyxPGRakEown0cBr2YTrD03C8FzPORdmcLMY3xPhSzFgV4+E4vowdx7hxSzEWxHgL0IgZR1ANLkIxiLq9ma7oioRxMTGuRMM+JMb3E8ZTKZot041mP0r6MBxf0BmeQOjuTxi3pmLOAoLYcRSjbe4QrAYXo5ifuv0JXdGVwFdTjXZxKmY0gV6Rhn1QjP+OGecW4xZE9nU6o2OJ3N8SxgMo6UPEeDyheyBmNGI8GzB0RedRt79IGNekGlyCYl7q9iYxfh0zDhPjCjTs/XSGZySM81A2p1E0PySyrzIpOg7r/h4zdsSMn4nxwYTxR3IcdcwYTjEGai0qwcVivIGu6Oo2xosI9PJiPB3HBzHjvFSC0yjozYjsK2J8OWE8sLnLSrW/rNbn8/l8Pp/P17eakXYqfQ581m43kew0egu41jl3wPf83ic45679Hl97PM1L5w74nl8/w+1U6gzPkCHDtDUv39qPrijtPjdFyuYcuqLTiJ9cxyvr06jZa3F81Ha9oHbH8jKRa39MjFoVrRanYW9NNRbNPtSi81KMJcrmbLqiU4mfXLcaT6dmx+P4T4pxDywvEbnnUoyro9XCNOwvUozzUzR7U4vOTzVWzNl0ZhrPpGbH4vg4xbgXludbBk6txjXQDKHhbksxDqKo96Rm064KLVMxZ9EZncKUE9dpjGeI8ZMU495YniVyL6YYR6BZkIa7PcW4AEW9R4axQsWcmWM8i5q9CsenKcZ9sDzVMihpNa6JZhCNlAdPKgZT0rvSZS/MMJ4hn3V7Y0mfTd1e0TLEjVdU+xLyBDY2KIkXqLVRzEPD3dV2XbMQBb0TNZt2S7kKZX0GXTbdWDZnU4uyjPsT8mjLoKTVuB6K2Wm4X6cYh1DQ21Ozl6QYq5T16XTZU4AoxXgOteiyliFuq/EAQh5pGZS0GtcHBhC632YYt6NmL00xdlA2p9EVZRnPpRZd0jLEbTUeRMiDWPdqinEDoIPQ/T7FOJSC3oaavSzDeKr8+djOqMR4caqxZI6gbI5I+f4+n8/n8/Wt/E6lmTe/U6l3mpGGSvfSvMxsmh9/ylPb7uV7DHZiXzsqbaeRUmoCzRt0zy73UoqvzVJDJev+xdeN9ZmyY6RtVWBS6qpi9tSTtmYdwLcZ6yrn/bvzmhnBmFcF6Mx4h1nB2A/4JmO9N4xloCtjfXbokVED9nu44vXU2J/4jpJpm/7G/M/6v2EsEd/1l0wxMHXQ0SzPaEgb9nS/nhoHEN+FNW29YSySNvSH3jCW6F94HD3rPSDV5/P5fL7vnB8qzbz5oVLvNCPdqLv9VoVmk+9M+30uP5t8D6b2P16f+v2/SFmbfEfaZ77He89wNewfyT/JTx/WADknnpA9CKEb79+d18wIxrzShzXNd5gVjFnDmuZ36HlZwxrIHtZAvrGngxDouTFrEAL/DWP+Z/3fMKYPa4CcQQjkG3s6rIGeG7OGNdA7xvSBEvSGsUZo7815jc/n8/l8Pp+vLzQjDZV+CaCU2q7N2vY0b9L9dnJBLo3LKm8dmjuZVk7uUpK2o3kD8Ylt1ma6nPsy/0U+n8/n82Xk8H+X+Hw+n8/Xp3Jq1vvH1yvNMEMlGegcQPNSsykppYbTHAxtn/wapdSzwFvymrQmD5W+yHjvi4DRyQGVUmo0zZuET/PeM2taDcl/kc/n8/l8GWk19H9N8Pl8Pp/P5/PNAM0wQyUAuWfRAUqp25VSx8tQ5wDSdxHdB7xN9lPhngG+aLfLKfHe28t7T5D3v1f+/ex5XzszVdA/pHmPmfQUC2SuaxbL+foFcxTVnHVo3usn6z16ahyc8/4dOevQvEdN1nsMylzXZF+XrFgo5/17wzh/5nr+ccwzdufx46Wc95gvc73nxv456zD9jXnD3u4YiznvMW/mes+NA3LWAQqZq4p5Mtc10zzHIbE+NOf9Z8tZh7yHok5/48CcdUW+ce4cQ55x4ZzvPx+BWi/zNT6fz+fz+Xy+vtEMNVQCcM7d55zb3jl3kXPuBOfcASkDJWR90ayhj3z97N1878nvt71zbpRz7oTv+Z8xw6ZUPyrmAtI++kCtTzUYS9pJrGYRKsG4jJOO/lTN2IwTDkM1uIiSTn+IX0kfQsVcmGHcUIztBxaaRakE4zNO3gZQNWNyjUW9f4bxsJzjOJJqMIa0wY9mMTmOaSfqs4lxnQzjJRT1vhnGw6mY82mehLYzjqJqxqYb1TCqwfhUo2KgfNZrpQgCMf443WiOzDFuLMb2g8im8ZrUIaFiINVgLEaNyDBeSlHvlWE8moo5N8O4KRVzdYZxSTG2H7Z2z3gZRb1nhvEYKibtiY1Q0JuJsf2wVqulxNh+WKuYnWowDqNWTzVWzKUU9e6phrI5noo5O8O4ORUzJsO4NNVgXOqwVjEHleAajFotw3gZRb1rhvHEHOMWVMxVpA1rtVpWjO2HtYo5xbhK2jtQMZdT1DtnGE+ibM7MMG6ZaTRTjO0HoYq5xJh2v8oClWA0SmUPCH0+n8/n8/l8faMZ5ulvs2oz2tPfJhfaJ6lF1xC6RwB5vLzZlZLeB6WKRO5tatHVcmPvBjCAot6WkjkUrWbHus+pRWOo2ztp3tS1QEFvRskchlGL4Fydmr2BevRzHB8AEKh1KJmDCfTqOOdo2F9TszdMeby3VstQ0vtQ0FuhlCK0T4jxr1OMJbMbRb0PShWI3Fti/FPMuJ0YB2LdZzHj12L8ISVzaMx4PfXolphxXTGuJsZfifEVMS5LSe9D0Wwlx/ExatE4QveoGBegZHanqPcW45ti/LMYZxPjIWL8lFo0lrq9g+YNpYsx48I4VxPjrWJUMeOqYrxLjM1HkBu1LEW9H0WzhRgfpSsaR+QeE+OCYtxLjG+I8e6YcXvK5hCUmg3rPhHjnTHj5mIcGjPeguPDmPEQAr2KGO+gZm/Eutdixv0pms3F+FcxPi7GwTFjQGRfp2bHyHEMUQykMMU4QIxjqNu7YsYtxDhEjNfJcZxsXE+MK4vxdjG+LsblxPhDABr2EWrR+Azja2K8O2bcgbI5WIwfx4zfAiUKenPK5jC0WkiM14rxIzGuL8bhYvwlNXtTzLg8JbM/Bb1ZzDiOyD3R/PXKQhTN7hT1nmJ8lZodGzPOLscxbryauv1Vwng4Wg3GuS4x/l/MuIEYV0oxriDGH4jxL3Ic48Y9xGiI7CtivEeMc1DU21MyB6NUf6z7jxh/HTNuIcYFxThBjP8BtBzHQwn0imK8TYxvxIwHUNCbivFhMT4pxiFi3GOKsSsaQ+juAaIU41XU7W/EWI4ZF8C5TmrRBOr2/3B8LMYNxLiCGH9BLboJy5tiXFGMm4jxITE+FTPuSVHvLsaXxXhvzLiDGPth3Ucx46QU43jq9hcx44byWa+Az+fz+Xy+Zn3m6W+XD/tfU3q9VY963T/9rRfyQ6Xp3Iw6VAKw7jMa0f3A1xi1CoFZvmXduS4a9j6c+witFiPQa6OUia1HhPavWPcmSs1LQY9EqXJs3RHaF7HuWaA/BTMSrVo3jUXuXcLoLwAUzHpo1XqpUtN4H/CtGJdLGDtp2PvFuLgYdWw9omEfwbm3UGp+CnrDNsbnse65bhrXR6vWXTHWfSrGSRnG+3DuP2g1jECvlWPcCKVKsfW4cYAYByaM74jRyHFs3RVj3SfyWU/CqFUJzLIZxiUI9JoZxkFyHL+r8R+E0SPdNK5GYJZJGCeJ8WO0WpJAj0gYQzG+nWF8DuueB2ajaEaiVOvlUK3G9dGqdeeOdR/TiB4Q4+oEZukU4ydyHLOMC1DQG7QxTsS6F1KNoX2LyD7aQ+O9YlyKQK/RQ+MolGq99K3nxm9jx3FpAr16G+PDOPcOSi1IQa/fxvgs1r2YYXyTyP4VKIqxdQdUq3ENArNUjnENlFKx9ZCGfQjn3hXjBihVjK07QvsM1r0EDJTP+rsa/0MjejDD+I38+fgJWi0jxzFubMhx/P5Gn8/n8/n6en6oNPPmh0q9U/aNGXyzZM6FdEWjqdufEX/0tLErUAkuxahFqEW30BVdArEn/KhoMNXgPAK9NqH9K5PCk3G8N2W9KxpIyRxLyexC5N6mMzyayL04dd0WKeo9KJvjgW+ZFJ4gP+mfvK4I1CZUgwuBKl3RBdTtLQnjimJcmFr0M7qiy1qMOlqISnA+gV6Thn2EzvCUaYxlcxxFszORe0uMLyWMe1I2x+H4hs7wBPlJf9y4KdXgAqASMzZixpXEOJRadLMYpz6iW0dDxDiChv2LGN+PGWenbI6naHYkcm/SGR6TMJZixq/EeF+LsaB/IJeVpRmHi3EIteindEWXtzFeQKDXoGEfojM8Fce/U4xviPFvLcaS3ouSORbHl2K8P2HcTIwluqLzqdtbgTBmXJlqcCmKwdTtT+iKriD+yPimcTSBXo2GfZDO8LSEcQ7K5gSKZnsi+zqTomOxLcYyJb03JXO0GI8ndA/E1rUYzxPjedTt/7UxXoZiQer2JrqiKxPGoVSCC8V4P53h6VN2xU01nkTRbEtkXxXjywnjj8X4OZ3hcYTuoYTxh2Is0hWdQ93eljCuIsYFqNsb6Iquormba7JxYTmOq2QYT6Zotskw7kvJHInjMzE+nDBuLsZAjL9MGFeTz3pQhvEiAr0yDXufGD9MGE+laLYmsq+I8ZWYoSLGI3B8Kp910rilXEIY0BWdTd3enjCuTjW4RIzX0RVdTXMX0mTjImIcTsPeQ2d4ZsI4J2VzihhfFuOrGcbjCN1fEsatxGjojM6iYe9IGNcQ4/zU7QS6orEJ46JiXImGvVuMH8WMc8lx3JLI/l2Mr8UMVUpmP0r6sJYhn8/n8/l8Pp+v7+Z3Kk3nZsSdSp3hqXICP22KeSiafalF56d8dYGyOYuu6AziQ4p4ZX0yNXudXDLR5juoXbC8TOSeb7tu1MpotRgNe1uKcV6KZm9q0YUpxqIYTyN+wtVqPIWanYDjkxTjblheInIvpBhXQbMIDffLFON8FPWe1OzotutN4xlyHNOMp1Kz43B8mmLcHcvzLQOnVuOqaIbQcHdkGPegZi9KMZaomDPojE7PMJ5GzY7F8VmKcQ8sE1sGTq3G1dEsQMPdlWKcn6LejZq9+HsbS/o06nYMjs9TjHsR8TTW/T3FOALNfDTcr1KMgyjqXajZS1KMZcr6dLrsaUCUYjyDur0qw7g3EU+2DHOmNc5Dw/0mxbggRb0jNXtpirFCWZ9Klz09x3glLuW5CAX1YyIeaxmUxAvU2sDshO53KcbBFPV21OzlOcbTANv2FWVzJrXoilRjUe1LyCMtg5JW47pAf0L3h7brmoUo6G2o2SsyjKfIcUw3Noe4X7ZdL6r9CXloyuWD0xrXAzoI3R9TjEMo6K2p2StTjFXK5mS6oizjWXRFlxIfNMcr6cMoB0elfH+fz+fz+fpWfqfSzJvfqdQ7+aHSdG5GGypZ90++bmwAZH3uFaAzdVUxMPWkrVmV5j06pmfT26jIPkbdqQx0ZbxDnrGD+C6Ddt9hehubT6L6ImPdG5uVgFrG+kCyjf2I78yZNk3aAKD7zQzGIvGdicnyf8/kGQ1pQ7Pul2ecDZcyMGr2vzc2n4KXZexPfMddu+/fv/D4NJcK+3w+n8/XF+szQ6XLlvhfU3q9VY9+zQ+VeiG/f72P1bzxdt4JdPqwBsg5qYPpP1CC6W/sjWFr1iCkO8asQUjzO/S8bGP2kAG8cXJZwxrIN2YNGaDnwxqYOYxZg5Du/J7JM/Z0WAP5xqxhDcwIxuyBEmQPlJrfP7T35rzG5/P5fD6fz9cX8kOlPpZz7S9n8Pl8Pp+vu7mUS+N8Pp/P5/P5fH0rP1TqY2m18P+a4PP5fL6ZPP93ic/n8/l8Pp8P/FCpz1XQm9G8X0Z6isGZ65rsm7QpFspRdOSsQ/OeR1nvsWDmes+N/XLWoXlfp6z3WCBzPd84JOf9ZwZj9q+1ZuWc9xiUuZ5vHJrz/t0xljJXFfNnrmsWz/n6oTnv353HuOcZ58tczzNq8oYIs+WsK5r3+sl6xbw5hp4aB+asK6CQ84p5cgx5xkVyDHn3KeoN42I569lGxfxyw3Cfz+fz+Xx9IgdYNev9428v3Sv5oVIfS6kOqsGFNG8GO22BGkk1GEvaCaJWi1MNxmWclMxG1YwlUBulrBuqwcWU9CGpxpI5gmpwUYZxY6rBNaSdaGs1jEowDs2ibdcVA6maawjUBimCgGpwCSV9UIbxKCrmItJ+C001th9YaDVMjmP7kzfFQKrBNRknbgHV4DJK+oAM4zFUzIUZxk3ls24/nNJqCarBeHTKwEMxO9VgnDwxK91Y1PvnGC9INRb0ZnIc04xLyXFsP9xSzCHGdTKMl1PU+2YYjxOjSjFuTtWMJW1YqtUychzzjGulCApUgyso6h+nGsvmBCrm/AzjFmJsP6zValk5ju2HrYo5qQTXYNSaOca9MownUTHnZRi3omLGpBqNGNOG3oq5qATjMGpEhvFKinrPDOPJVMy5GcYfUTFjSRvWGrWcGNsPvRVzi3GNFEGRqrmCot49w3gqFXN26npBbyPHMc24ghjbD5QV81ANxmHUainvUKIaXIxSQarB5/P5fD6fz9d38k9/m87NaE9/m1xon6YWjSN0DwMOxWBKZjeKei+UKhC5f1CLrqFhfw/UUAykoLenbA5Gqdmw7gtq0Tga9na5eW6Jgt6ckjkEo4biXIO6/Qm16Oc4/gUoArUeJXMwgV4F5xwN+zvq9gYi9xIARi1PUe9L0WwuxqfE+BfAoVmI4hRjIMaxYqyjmF2MB8WM19CwdySMh2LUEDHeJMb3AB0zrizG34rxb2JcgZLZT3Z8tTMOEeOeYnxbjH8Q4xwU9HZyHAdg3efUomuo2zto3jy3TEFvTtkcilYL4Vw9ZnxfjOuLcbgYf0PN3oidYlyRktk3ZnxSjI/EjLtT1HvEjGPkJu5NY1FvT8kcJMbPxHhnzLiFGAeL8UZq0S0x4wZiXClmvAHr/h4z7kdB/0CMT4jxrzHjHmI0RO6tmLEhxh0omQPF+GnM+JUYtxTjgjhXo2ZvpB7dguPfYtxQjCuK8VdyHF8W40pi3FSMj1GLxosRNEPFuLsY3xTjn8Q4Z8zYX4xjqdu7xFgR4yEx4w1i/ECMG4lxBTHeRc3eFDMOF+MmMeM4QveoGBcW425ifEN+PcaNO4qxH9Z9EjuOX8eMh6LVAmK8nnp0qxiNGA+KGe8U4ytiXJmS2Z+CHiXGv1KLJiSMe1LUuzaN9nVqdiwN+2cxziXGA8T4sRjvihm3kuOYZTyYQC8vxjvE+GrMeAAFPRKAhn2EWjSByD0mxkVix1ET2dfEeHfCeCBKdYhx8mf9DVClqLeiZA5Bq0E41xUzfjjFWDaHYPRyYrxdjK/FjAdS0BvFjOOJ3ONiXFSMu4rxVWr2moRxJzmOk41jqNtfJYyHotX8YryOevR/MeNIMS6Lz+fz+Xy+Zn3i6W+LVIY/femS/2tKr7fqMa8y8W3/9Lee5odK07kZdagEYN3HNKIHcHyDUSsR6JVQaupP6J2bRD26D8eHaLUYBb1uy0+nnQtp2L9g3ZtoNT8FvRFKVWPrjtBOJHLPo+hHwWyIVnO3GCL3NmHUPEkPzNoY1bpzp2m8H8e3KcZvqUf3i3FxMZrYekjDPox1b2UYnyVyL6DoL8a5Esa3xKjF2HqJTdN4H45JGDWcQK/YQ+NIlKrE1pPGjdBqzgzjOhg1NGH8jxzHSRi1MoFeIWH8Roz/EeM6CWNDjG9nGJ8hci9mGN8kjB7tofE+HB+j1TAKeu0U4z9in3XS+LQYZxPjHAnjG4TRY2JcF6NadxdZ95H8nkkzfi3H8RM5ju2MD4lxkBzHcmzdEdqniNxLOcZHAUPBrIdWrbuLrPtQjF0YtTIFs0LL+lRj1nGcbFxAjmM7499QDKBgRk7zaPnIvk5oH+uWMVCrEJjl2xjvw/EJRi1BoNdGKR1br8c+6wXkOJZi6/HjOFCOY9L4GqF9XIzro1XrDijrPqARPSjGVQnMcgnjV2L8NMP4ENa9g1YLynFMGp+U4zhQjuPAhPFVQvuEGDdAq9YdUK3G1QhM67Cn1bgkgV6r140+n8/n8/X1/FBp5s0PlXonv3+9D+Zcg67oAur250A45d9ruyzV4HKMWpRadDNd0SXEH3/dFc1PJbiAgl6Xhv0LneFJshOgWWfUn7I5hpLZg8i9yaTwqCk7UwC6bEBR70bZnITjGzrD4wjdA1Nhtnn5XSW4CEUHXdF51O2tGcaf0BVdljAOEuM6NOxDdIantDEeS8nsTuTeEOPLCePuYvxKjA8mjKPk8ryKGP+vxWjsslSCK9AsTN1ONk59rH1XtADV4AICvTYN+6AYP4wZB1A2x1EyuxLZ15gUHT1l10fTWBDjiWI8ltA9lDBuLMYyXdE51O1tCePyVILL0Qylbm+kK7qijfFCAr0WDXs/neFpbYzHUzK7ENlXxfhqwrgnZXM8ji/F+HDCuAnVYLQYz6Zuf5kwriDGIdTtDXRFVyaMC1INRhPoETTsfWL8KGacjYo5gaLZici+IsbXYsZizPi5GP+SMG4ql4uWYsapj3w3dkUqwWVivJ6u6KqEcbAY16Bh7xXjfxLGEymaHcV4FNa9njDuRdkch+MzMT4SW1cxY5HO6Cwa9vaEcSWqweUoBlO319IVjWkx1qKFqAQXEejVaNh76AxPbzF2RQMpmxMpmh2I7MtyHFuNJb03JXOsGI+esgtpsrGgN5PL84p0RmfSsHdMMdYAY4eLcUFqdjy1aCwwacr30C3GP9MZnoHj44TxZIpmOyL7dzG+ETOUKOkfUzLH4Pg0xfhDMRbojE6nYe9KGFcW4wLU7Dhq0TUJ4xAxrkrD/kmMn8SMs4txWyL7EpPCY7C8mTDuQ8kcjeMTJoVHTdmF1Fw/U4wXAEaMv2pjvALFIGr2GjF2JowXE+hVaNg/0hmemTDOQdmcQtH8iNC+SGd4DJa3Esb9KJkjW4ZTPp/P5/P5fL6+m9+pNJ2bEXcqTQpPpmF/0XateYnEPtTs6JSvDiibM+iKziI+AIhX1idQsze0nKzEK6gdsbxC5F5su27USmgWpeHuSDHOTVHvTc1elGIsiPHMDOOJ1Ox1OD5NMe6E5W9TLnub1jgczcI03J0pxnko6j2o2UsyjKfnHMeTqNnxOD5PMe5CxItTLnub1rgymoVouF+lGOelqHejZi9NMRYp69PosmcSH1LEK+mTqdtxGcbdiJjYMrhrNa6CZkEa7tcpxvko6l2o2ct6aLxGLoFMMz7bMrhrNa6GZj4a7rcpxvkp6p2o2ctTjCXK+tQc46nU7ZgM4x5EPNkyFGs1roFibkL3uxTjIIp6e2r2yhRjmbI+hS57BmBTjTV7Nc1LINsZ9yLisZaBU6txBIo5CN0fUowLUNDbUrdXZRhPluOYZjxN/hvbP+6+oH5MxF9Tjc37Wg0gdH9KMS5IUf9IjkO7KpT1iWJs/3drSZ9OzV6RaiyqfQjdwy0Dp1bjOkCV0N2dYhxMUW9FzY753sbmn02X07y8sN1/w8GUg2NTvr/P5/P5fH2rPrNT6ZKl/teUXm/VY1/xO5V6IT9Ums7NaEOlyL3DN40Nc15VIf7T7WSK2XApJ5bd+freqQx0pa7mG6vEdxlMn7KNzZuh98So6PkjC0o09zik5Y3dq6fGDuK7h6atN4xFoJ6x3lOjJm3Y0/16auxHfOfitPWGsQA0MtYHkDYwajYrGAv0Lzw+zaWZPp/P5/P1xfxQaebND5V6J79/vY8V2j9341XZA6HsYU3+1/dOWcOa7hin90AJ8ozZJ8eQb+yNgXDWIAS8sbv11Jg1rIHeMWYNa6Dnxp4OQqDnxqxBCPSOMWtYA9nDGpg1jA1Ce+938Ph8Pp/P5/P5ZtX8UKmP5VzeyYTP5/P5fNm5lEvjfD6fz+fz+Xx9K3+j7j6WTjxdzefz+Xy+75r/u8Tn8/l8vr6UAqvyXzbTNSv+N/338zuV+lgFvRnN+2mkp1goc12zRM7XD8lcb96vI6+OnPcYnLn+3zFWc96jp8ahOe/fP2cdmve3ynqPBTPX840L57x/9q+1ZnnGBTLX/zvGcs575BmH5aznnaDPlrOuaN7XKesVg3IMPTUOzFnvjnH+HEOecdEcQ949gDTN+zqlp5gv5zv8N4yFzFco5s35DnnGxXK+/yACtW7ma3w+n8/n8/l8fSM/VOpjKVWVR82336TWfBT9OFTKCaJWw+gIJqBV+5MSxUCq5hoCtXGKIKAaXEpJH55qLJmjqQYXZxg3zTEuQUdwLVotnmKcnWowjkCNzDBeTkkflmE8Roym7XpBb0Y1uIa0YYBWS1ENJqSevCnmoBqMJ1BpN1WfbDwkw3hcjvGHVINxpA1VtFqaajA+9SS4aRxHoDZIERTEeFCqsWxOoGJGZxg3l+PYfoCm1bJibD84Uswpx3G9DOOVlPQBGcaTxNj+j8uC3pJqMDbVaNSy8lkPTTHORSUYn3GSXqQaXElR759jvDDDuDVVM5a0YalRy4ux/bBVMbcY18kx7pthPIWKuYC0nwgV9DZUzTWkDZSNWiHHOI981mulCEp0BFdQ1D/OMJ5GxZyfYdyWihlL2kDZqBXF2H4wr5iXajAeo9bMMF5FUe+VYTydijkvw7h9jnE41WB86tBbMZ8YR6QJqAaXoJTf6Ozz+Xw+n8/n809/m+7NaE9/m1xoJ1KLxhO6B4EIzVCKZjeKeg+UCrDun3RF19CwvwM6UcxJUW9PyRyIUgNw7itq0Xjq9nYcnwIVCnoLyuZgtFoI50Lq9mbq0c+xvAMYArUBJXMQgV4JgIb9I7XoBiL3HNA82SmZfSjoH4jx2ZjRollYjLujVEDk3qU2xdglxh0omQPE+GXM+JkYtxTjYJxrxIzvinFDMa4IQD36A3V7A5F7Xowri3FTMT4jxodixj0o6t1QyhC5d8T4ezHOFTP2x7ovqEXjadg7xFiNGRcU40+pR7fEjBuJcQUx/l6ML8SM+1HQG4vxaTE+LMZFxLirGP8hxj/EjDtSMvsnjLfj+ByoUtRbUTIHo9UCMePPsfxzGqNzjoadbHwxZtyfgh4lxqfE+BcxLkrR7B4zvk0tGifHsYZi7pixH9Z9HjuOnwMdFPWWMWM9dhz/CQQx4/Ji/C11eyORe0mMq4hxZMw4jtA9IsbFxLhLzDj5OE427kTJ7BczjhPjF2KcfBwHifEn1KJbcPxLjCMpm4Mwejkx/oa6vSlmXFWMG4nxydhxdGi1OEU92ajbGOeJHccOrPtMjHeKsV/sOA7CuVrM+J4YR4lx2ZjxRiL3NzGuJr8eJxufoBZNSBj3oKh3FuNbMWMdxbxi3E+Mn8aMX4px8nGcX4w3UYtuTRgPxuhlxPhravYmbItxfwp6QzE+LsZHxDhMjDuJ8U0x/jFh3B+lqmK8hoa9K2bcWozz4VyNmr2RenQrjveBAgU9ipI+GKOXFuOvxPh3Ma4uxg3E+JgY/zrFWNJ7UtA7ivENMfxJjPNRNDtS0vuJ8RNq0TXU7V00b9w92XgIWs0rxhvE+G8xbizGWe/pLz6fz+fzfd/6xtPfqsOfvmjW+/t/1eNfYeLbk2bZz+6/lR8qTedm1KESgHUf0YjuxzEJo5Yn0Kui1NSffjv3DfXoXhwfo9UiFPR6KFWIrTdo2Iex7u3myakZiVL9YuuO0D5F5F5CUaVgRqLVPC2GyL1BI3oUgIJZG6Nad+60Glcg0KskjF9Tj+7LMT6Edf/ohrGDgtloWqN9nYZ9FNBibN25Y92HNKIHvoNx/Zaf8jtXl+M42TgKpTpi60njSLSaO2F8jYZ9LMP4AY3oQRyTCPRKGDU8YfxKjJ/GjmPS+BDWvdM8gTYj2xifJHJ/yzC+SsM+LsZ1MIl7srQah2PUShnGRSnodVOM78aM1di6I7RPELm/o+gnn/V3Nf6bRvRQD40PYN0/5SS/nfFxIveyGEei1VwJ4ytiDOSzThrfF2OXGFfMMC4mRhNbr9GwD4pxfjFWYutWjmN3jetgVOtOslbjyhi1QhvjvTg+Q6vFKeh12hgfwLp/ZRgfJ3KvoOgvxjkTxpdp2CfEuC5GDc0wroJRyyeMX8px/AythlHQa7cx3o9172UYHyNyr/bQ+CCOWo+NWg2ioEeiVDm2njSOQqu8y/N8Pp/P5+tb9Ymh0sKz8FDpH36o1NP8/vU+mHN1uqJzqdtfAOGUf6/tklTNFWi1OHV7E13R5cQfI94VzUslOJ+C3oCGfYDO8BQcH01dtx2UzdGUzN5E9jUmRUdi3Wux9TMp6p0om9NwfE1neIzsnmlWsxCo9akEl6LooCs6m7q9DYhixqWoBlegWYy6vYGu6MqEcT4xrk/D3i/G/ySMx1AyexHZV8X4emz9DIp6F8rmFBxfifEvCeMGYqzSFZ1F3f4yYVxajIuK8Qrij7XviuanElxAQa9Lw94nxo8TxuMomT2I7CtMio5qY9yVsjkZx5difCRh3IhKcDGKCp3RWTTs7VOMNQtaLSPGRajb6+iKrmpjvJCCXoeGvZfO8NSEsZ8YdxfjkVj3RsK4mxg/pzM8mtA9mjCOlMvzynRGZ9KwdySMy4pxYep2Al3R1UBni7EajCbQa9Owd9MZnobjk5ihvxh3I7Ivy3GMGwOKenfK5iQcnzMpPIrIPZYwjhJjic7odBr2TiY/8r1mm5e2VcRYs+OpRWMSxkFiXIuG/bMYP00YT6BkdiGyf2NSeBSWt2Lrp1PUe1I2J4jxSCL3eMK4sVzSWqIzOo2GvSthXI5KcCWaIdTsNdSia9oYLybQI2jYP9IZnjGNsWJOomh2IrIvMSk8OmE8I2b8VIxPJIybUA1GA0Ux/iphXF6MC1GzY8XYFTMuIMY1xHi67OybbBggxh0J7Yt0hkdjeTtxHPembI7D8YkYn0wYNxVjgc7oVBr21wnjClSDK1EMpmbHUIvGJYwLinF16tHv6YrOTBhnE+MOhPYFMf4jxfixGJ9KGH8gRhMzuphxRTEuSM1eRS2akDAOFuNq1KPf0RWd1WLsjGajYk6maLYX41Gy03TqZ13SP6ZkjkUpf/W8z+fz+Xw+n8/vVJruzYg7lSaFJ8iQYdqal5DtTc1ekvLVAWVzKl3RucQHUvFK+ljq9saWk5WW76C2w/LqlEtPkhm1PJrFaLi7UoxzUdR7UrOX9sB4HHV7vVwqNW0FtQMRf59y6cm0xhXRDKXhfp1inJui3p2avSzdqE+ly55DfCDVajyBup0glyG1M+5IxItY90qKcSU0g2m436YY56God6Fmr0gxFsR4dg+MOxPxHNa9mmJcGcUgQve7FOO8FPVO1OyVGcZTxGhTjCdSs+OAL1OMuxLxTMsAtNW4Cop5Cd0fUozzUdQ7ULNXpRiLlPRJ1Ow5GcaTqNlrMoy7EfFUy3Cx1bgqirkJ3R9TjQW9HXU7JsVYoqxPyjmOJ1GzY2leKtXOuDsRT7QM7lqNq6MYSOjuTjHOT0FvQ92OzTCeKMb2f281jWMg5XH3BbUnkXsUy5spxhEo+hO6e1KMgyjoranba1KMZcr6hBzjKfLr+ZsU495E7uGWoVg8zQi06iB096UYF6Cot5Rf8+2qUNbHyZ89acZTqdnWHyq0rh9AOTgh5fv7fD6fz9e38juVZt78TqXeyQ+VpnMz2lApcv/gm8ZGOa8qE//p9rQNIO3Esntf3xv11Fghvltj+lQCahnrs5E2RGg2IxjzjmOV+A6naVOknbh2v5nBWATqGeve2L0KQCNjPc/YQdogpJkmbWjW/fKM/UkbajXrR9pAqVlvGAPSBurNemos0L/w2DSX6/l8Pp/P1xfzQ6WZNz9U6p385W99rIb9czdelTcQyjqp687X90Y9NU7vYQ1kD0Ige6AEM4Yx7zhmDRmg50MGmDmMWcMa8MbuljWsgXxj1kAJej6sgXxj1rAGsoc10DvGrIES9NzYILT3UTQ7fgeTz+fz+Xy+mTln2z951ufzN0Xoa7m8kwmfz+fz+bJzuYMpn8/n8/l8Pl9fyA+V+lg68VQwn8/n8/m+a/7vEp/P5/P5fD4f+KFSn6ugN6N5L5/0NENz1rOvp1U5X9+8n0de/XLeY0jmer5x4cz17hk7ct5jocz1fOMimevN+8vkVc1cnf7G7F9rzfKMgzPX84yavJPfPKOieX+rrFcsmGNYMmd9sRzD7DnriuZ9xrJesUCOYXobNfnGQTnfIc+4eI4h7x5AmuY9vNJTzJ/9HdT0Nhqa98dKr+fGYTnffwECtW7ma3w+n8/n8/l8fSM/VOpjKVWhGlxC2u20CnozKsE4VMoJolZL0RFMSD0pUcxBNRhHoDZNEQRUg8somaNTjSVzHNXg0gzjD6kG41AMTDEuLcYlcoybpAgKVIMrKJkjU41lc0KOcXOqwfgM4zJibH/ypphTjKOyjfrwDONJOZ/1lpnH0ahlqQbj0ar9SbBiLqrBeAI1MkVQpBpcSUkflmE8mWpwEc0T5XbGrakG40gb/Bi1XNOYMvBQzE0lmECgNswwXkVJH5JhPIVqcHGGcRsxth/yNR9FPwGdMoBTzCPHcYMUQYmO4EpK+qAM46lUTNZx3JZqcA1pw9Lmo+gnoFOGrYp5qQYTCNR6GcarKekDMoynUzEXkvbXTkFvn2McLsahKcb55DimDTvKdARXUdT7ZxjPoGIuyDDuSNVcQ9rQ26iVqZoJ6JShd9M4gUCtk2EcQ1Hvm2E8M9NY1DtTNWNJG3obtQpVMz7DOL/82bNWiqBCNbgUpdr/WvP5fD6fzzeL5tSs94+vV/JPf5vOzWhPf5tcaF+gFo0ndPcDIZrFKJrdKOpdUcpg3XvUonHU7W+Bb+Xx8ztQMvuhVH+c+5padB11exuOj4EOinpLSuZgtFoA50Lq9lbq0c+wvAUEBGojSuZAAr0CAA17N7XoBiL3DNB8LHrJ7EtBjxLj82J8oGlUi1PUu8aM/6IWjU8Yd6Rk9hXjV2L8pRj7ifGgmPEW6tHPxViIGZcX45/F+KwYVxPjSDE+Ry2akDDuTlHvPMXYFY2jYX8LTEIxb+w49hPjtWL8RIxbUTIHxow/F+PbYhxJ2RyI0cuJ8U/UohvFqGLGjcQ4UYwPinFYzKiJ3LvUovE07O9ixsnHcbJxghg/FePWYhyEc42Y8R9AgYIeRUkfiNHLivGPYpwYM+5HQW8oxmdjxkiMe1DUO8WM48TYiWI+imZHSnpflOrAuS/FeHvM+CMxzi/Gn4nxHTFuLMZlAKhHf6BubyRyz4lxdTFuIMZnxPiQGJegpPegoHcU4zti/L0Y548Zq1j3BfVoAnV7hxj7x4zzifFm6tEtYizGjEvjnKNh/0Dd3hQzriHG9cX4tBgfFuOSYtxBjP+Qzzpu3ImS3meKsbl+Z4qxHjO+GzMehNFLifH3Ynw+Ztyfgl5PjE9Ri65NGPekoLcX49sxY5cYdxZjBes+pxZNoGHvwPEZMCBmnLebxt+J8YWY8QAKet2YcQKh+4sYl4odRyXGcTTsH8Q4KHYcK1j3mRjvjBm3EeM8OFcT460x4yZiXFKMvxXji2IcIcZ1xPhkzGjRamkxbi/Gt+Q4xo2Tj2NZjJM/689jxoPQam4x/lSM/xTjpmJsP7D3+Xw+n68v1lee/vbUBcv8rym93mon/d0//a0X8kOl6dyMOlQCsO4D6tH9wCQCvTxGrY5SUye2zn1FPboXx8doNZSC3hClirH1Og37ANa9g2JuimYUSg2IrTsi9wShfQmoUjQboVXrZRmRfYWGfQKAgh6B0a07oKz7N/XogW4aF6agN0gYa2J8tzl0MiMTRivGv3XTuOY0J1TWvS/GLjGu1sZ4D45PumkchVL9Y+tTjYoOCmYjtJovYXxZjIqCXgujW3dAtRpXwKhVE8Yv5Th+gtGLEqj1UaqQMN6Pdf9sDp3MyDbGxwnt38U4Eq3mbWN8HNAUzNqYxA6o7hnvwfEpRi9GoNZrY7wP6/4lxlEo1S+2boncY4T2ZRT9xDhPwvh3OY5pxvfEWGtrtO4LGtG9PTKG7lEi+0qG8W807JNiXAejWndpWfcv6tGDYlwRo1ZpY7wHx2cYvbgYp+5mm9a4MUp1xNaTxlFoNXfC+BIN+5QY18Uk7r/TalwJo1ZOGD+X49gd43xyHNsZX0bRv60xtC8S2qcAk2L8J/XoITEOx6jhGcZhBGrdhLGLenQfjvdSjFHMOJt81mnGQIytu90i9y6N6GExroxRKyWMn4nx824Y5xdjNbaeb/T5fD6fr6/nh0ozb36o1Dv5odJ0bkYcKjlXpys6i7q9jfjjq7VanKq5Eq2WoG6vpyu6gvhj7RVzUQkuoKA3omHvozM8WXbXTK5K2RxJUe+Dda8yKTwCy5uxdUNR70DZnIHjKzrDowjdoy22QK1DJbgMRT86ozNp2NsTxmFiHEbdXktXdFXCODeV4Hwx3kNneIrsuPguxh0pm9NxfMmk8Cgi91jCuK4YO+iMzqBh72hjvAqtFqduJ4ixK2acR47jBjTs3XSGp7YxHk3J/JjI/p1J4ZGykypu3EmMXzApPJLIPZ4wrifGKp3RaTTsXQnjElSDq9AsRs2OoxaNaWO8kIJen4b9sxg/i71DB2VzDCWzF5H9mxjfThh3oWxOxfG5GJ9IGNenElwqxlNp2F8ljEuKcVFq9hpq0diEcV4qwWgKel0a9o90hqe3MR5HyexBZF8S4z/iAjGeIsYjiNyTCeMGYizHjFP/zNRqKTEuQs2OFWMtZpxPjOtQj/5AV3RGqjG0L9IZHim7lOLG3Sibk3F8KsanEsYN5VLMEp3RKTTsrxPGpcW4MDV7NbVo3DTGanARgV6bevR7MX6eMJ5AyexGaF8Q47spxk+YFB4+ZffhVONIuRSzQGd0suzcixuXoRpc2TRGV1KzExLG+cW4FvXot3RFZyWM/cS4a4ZxD8rmRBwfi7H1z+RAjZLLHAt0RifJrri4cVk5jkOoRVeIsZ4wXkyg16Qe/UaMX7QYK+YkimZnQvscneFRsgMobtxTjB/JZ500biyXiwZi/H2L0ahlqQRXoxksxmsTxkFUg0sI9BrUo1/TFZ2dMPYX406EdiKd4dFtjHtTNsf7y998Pp/P55P8UGnmzQ+Veic/VJrOzYhDpUnhcTTsnW3XFLNT1HtSs1ekfHVA2ZxMV3QeELV9RUkfRd3elDhZiX0H9SMsr2LdK23XtVoWwyI03G9TjHNQ1LtTs1emG/VJdNnze2DcFsvfse7VtutGLYdiCKH7fYpxTop6V2r2qhzjecQHKa3GY6jZ64EvU4zbY3kR615LMS6PYjCh+0OKcS6Kemdq9uoM48l02XMzjMfKietXbdcLagcinse611OMK6KYn9D9KcU4NwW9I3U7JtVY0idRyzyOx8kAIM24IxETse6NFONKKOYldH9OMc5DQW9P3Y5NMRYo6RPE2P7P25I+npodBymPaS+onYnc04kBaNy4Moo5Cd09KcZ5KehtqdtrUoxFMeQZrwG+STHuSuQeTwwX48ZVUMxO6O5NMc5HQW9N3Y5PNZb18fJ7Js14AjU7Bvg2w/hYYrgYN66Gor9cFpxm3Iq6nZBiLFHWx4ox5RX6RPk9l2bcncg9khguTk2zOlpV5VLRdsb5KejNqdvrMozHye/rLONVwKS260W9H5XgpNSv9/l8Pp+vL+WHSjNvfqjUO/mh0nRuRhsqRe5tvmmk3Vh5ciXiuwSmbQBpJ+jNysR3lEyf+oKxQnwX1vSpSHwnw7TNDMb+pA1jmuUZFWlDiu7XU2OVtBP4Zr1hLACNjPW+YNSkDR+7XwCEGev9SBu8NesgbaDUbGYwBvQvPOovhfP5fD6fjz4yVBpaHf7U+cv+rym93mon/42J7/ihUk/zT3/rYzVs+90WrWUNQiB7yADTf1gDfcM4vYc1kD0IgZnDmDVkgHxjbwzWe2rMGoRA7xizhjXQN4w9HdZA9rAGsoc1kD2sgZnDGBLaB76Dx+fz+Xw+n883q+aHSn0tl3cy4fP5fD5fdi53wOfz+Xw+n8/n6wv5oVIfSyeeZuXz+Xw+33fN/13i8/l8Pp/P5wM/VOpzFfQPUMye+RrNwjnrS2euKxbJXG/epyevfpmrPTcumrneG0bF0Mz1nhtny1mH5r1RsgxDctazjZrFMtdhYM66onkfnKz3WChnPc+Yd/Kb/fuhO0Y13Y1z5KxrmveOSk8xOOc75BmH5RjmzFnXNO9llp5igezvoJbKeYc841w564bpb1wix9AdYynzFYpB2YYeGhWDCdTama/x+Xw+n883i+XUrPePr1fyQ6U+llJlKvJo73YV9OZUggmolBNErZalI5iAVu3v/q+Yi2ownoLePEVQoBpcQckcl2osm5OoBpdnGLekEoxDpZxomynG9idOTeM4CnqzFEGRanAVJXNMhvFkqsFlNG+I2864NdVgXOoAz6jl6AiuRaslU4xzUw3GE6hNc4xHZxhPyTH+SI7jwBTj8mJsf4KpmIdKMJ5AbZwiKNERXEXJHJlhPJVqcGmGcVsqwfgM44pibD9MUMxLNRiXYSw3jfrwDOPpVINLMozbyWedZhxONbg2dWeHYj75rNNuoF+mI7iakj4sx3gxzYFDO+OOVINxpA0ijVq5aUwZEjaNEwjUhimCihgPyTCeScVkGXcSY/uBrlGrUDXXolOGrYr5xbhBhnEMJX1QhvEsKmZ0qrGod6EaXJNhXFWM7YfeikFiXC/HeECqsWLOoWIuJO2v76LeVYz9U4yrUzUT0ClDb8UCYlw31VgNLkWp9sfI5/P5fD6fz9e38k9/m87NaE9/m1xk/0bNXkvD3gPU0WpJino3inpHlDJY929q0bXU7a+Br1AMomh2oKT3QakOnPuGmr2RenQbjg9QzEZBb0XJ7I9Wg3Auom5vo25/Jo+8L1HQoyjpAzC6OZBq2PupRTcSuSeB5slOyexLQW8gxpfEeK8Yl6Kkd6Ogd0QpjXXvi/E3MeOOlPSPxfi1GH8ZM24txvnF+Avq9uc5xhuI3FOAihnXByC0L1K319Kw98WMe1DQ28eME6jb34pxgZix2jRGN1C3t4txYMw4nxj/T4yvi3FjSvpAjF5KjPeJ8WlAEag1KJp9Kej1xPgCtehaeUx6Ha2WpqR3jxnfixm/FuNOlPTeYvwqZvwwZjwArebFuVCMt4ixLMYDYsZ75LN+Jmbcj4JeN2acQOgeEOMyYtwuZhxP3f5OjAvGjmOljXH2mHEeMd4qxjfEuAklvX/MeLcYnxXjCDGuI8bnxfigGJcV47Zi/FfM+A2KwWLcO2a8XowfifFH8lmnGTcV45Ji/DO16KaYcU35rCcbnxPjQ0Ado5alqPcQo8K6f8pn3TRqFqIwxVgW43XU7R1inCN2HOfGuUbTGN2C5U2gEjMuIcY/xYyGQK1JyexLoNcW40T59Rg37klBb4NSisi9Sz26tsVYNDtR1HuJ8cuY8T9inHwcJxtvoR7dmjAegNHDcM4RusnGiTHjfgR6LTE+Sy26Tj7rBkYtJ8YfifEdatG1NOzvxTiEotmRot4bpUpY9wX16Drq9k4xzinG/cRYjxnfEuMPKJkDMGrxFONaYlxTjM+I8SEgjBm3jhkn0LB/iBknH8fJxmvF+HHMuD9azSXGn4vxbaAaM+btUPT5fD6fr+/UZ57+dt5y/2tKr7faKS/5p7/1Qn6oNJ2bUYdKANa9Tz26D+gk0Mti1JooNfWn3859ScPejXWfYvQQArURSpVi6zVCdz+RfRet5qSgN0Gp2WLrltA9SmT/DlQompFo1XrpSGT/RsM+AUBBj5gyzJlqfI96dH+q0bovCO09mcaGvQ/r/olWc1HQG38P40s07JNiXBOjWy8Tsu5f1KMHgC4xjkgYPxfjZ900boJSA2LrcWOVotkoxfgEoMXYukvLun9Sjx4U43JiVLH1uHGoGIsxQ5cY/4VWc8txjBsjMb4sxpFo1XoJTmhfJLRPdtO4PEatkTB+RmjvFePCBGrDNsZ7se69DONfiewrQIcY54+tOyL3IqF9SoxrTRnmTDnO7l0a0YNArReM81DQo9oYHyGyr3bTuPaUYc5U4zs0oofEuAJGrT6NsRHdjeMLjF6EQG2QMHbKZz3ZuDFK9Y+tJ42j0Gq+hPEFQvt0N40rYtRqCeOnNKJ7xLioGAux9+iU4/g+Ws0rxzFp/IsY+6UYnye0zwBGjK273SL3DxrRw2JcCaNWTRg/oRHdm2O8B+v+jVbzibFfbD0idA8T2deA/mKcN91o1sEkdrtF7m0a0V9yjPfg+BKjFyNQ6yeMk+Q4phlDOY6TjRuj1Tz4fD6fz+ebmh8qzbz5oVLv5IdK07kZcajkXI3O6DQa9k7ijwHXLEI1uAqtlqJmx1GLrgZqU9YVc1AJzqOgN6Fh/0xneCqOz2LfuUzJHEZJH4h1LzMpPBzLP2Lrunk5kzkbx1dMCo8gck+02IwaQTW4AsUAOqNTadi7EsZFxbgkNXsNtWhMG+MFFPQoGvZPdIanTWMsmyMo6v2x7u9ifCdh3I6KOQvHl2J8MmFcU4z9U4yLUQ2uFONYatHYhHFOMY6kYf8oxs9j71ChbI6kqPclci/RGR6B5d2EcQcq5kwcn4vxqRZjoNaiElyBooPO6BQa9tetRrU4VXMlWi1BzV5NLboGqMeMc4lxI+rRH+iKTm9jPIqS2ZfQvkBneOQ0xqLekbI5A8dnTAoPl11KceM6VILLUVTE+JuEcZgYh1GzV1GLxrUxXkhBb0g9+h1d0Rk4vkgYj6Zk9kkxmpjxEzG2/j4N1LpUgsvEeBIN+9uW9abxKrRanFp0BTU7IWGcW4wbUI9+Q2d0JvBl7DtUKZtjKJm9Ce3zYvxnwrgTZXM6jo/ls04a1xNjSYy/m9YYjEGzSMzYiBnnoRKMpqDXox79ms7orDbGYymZvQjtc0wKj8Txr4RxF8rmVBz/EePEhHF9MRbpjE6UHT5x4xJiXJhadDk1e20b40UU9LrUo1+J8auE8XhKZg9C+yyTwqNwvJcw7irGj+Szfi5h3GDK5aJN4x8SxqWoBlejGUotupSavT5hnFeM61CP7qIzOjth7BDj7oT2GTG+HxdQ1LtRNieL8VAi90LCuOGUy0U7oxNo2D8mjEs3/3xkKLXoEjGGMeN8VIOLCPTa1KM76IzOgZanuHVQNidQMrsR2qeZFB6dalSq/eWgPp/P5/P1tfrGUKlj+FPnzIJDpdNeYuI7386yn91/Kz9Ums7NiEOlSeHRMmSYNsVAinp3avbqlK82lPUJdNkLAdv2FSV9OHV7c+IEf2qB2hLLa3LJ2bRptTSahQndH9quN427UbNjMown0mUvyDAeQc3+hNaT57hxaywvy+Vc7YzLoBlC6P7Ydl0xO0W9CzU7NsUYUNbHZx7Hoj6Cur2J1hPTuHEbLC/JpVLTZtSyKBYkdH9OMc5BQe9E3V6Taizp46nZC4gPe1qNR1G310PK48UDtS3WvSCXIbUzLodiEKG7O8U4JwW9A3U77nsbS/poGVJ803a9oLYnchPlMqR2xhVQzEPo7k0xzkVBb0fdju+B8RgZ9qQZdyByTyeGtHHjSijmJHT3pRjnpqC3oW4npBgLlPSxYmxf8zhOAL5NMe5E5J5IDGnjxpVRzCaXOLYzzkNBb0XdXtcD47HU7DXApBTjzkTuscRwcWqa4Wg1m1z21s44LwW9hfyab1dRjtOFOcaxQGeKcVci90hiuBg3roJSVSL3lxTjfBT0D6nbG1KNZX20/NmTZjxe/g5obyzqH1MJTk39ep/P5/P5+lJ+qDTz5odKvZMfKk3nZrShUuTe4pvGqJxXlYjvrJm2/qQNEbr39b1RT41loKtXRdNWJL5rZdq8sXv11Fgh7eS49yoQ37Uybf1IGxg1yzMq0gZS3W9mMAbEd9ZMW56xStpAqdnMYNSkDZq7nwGijPU8Ywdpw8NmAf0Lj6LV3N8H5/P5fD7fLJUfKs28+aFS7+Sf/tbHatj2u1ZayxsIZZ3Ad+fre6OeGqf3IASyByHgjd2tp8bpPVCC7GENZJ/AQ76xN4b/M4Mxa1gD+casYQ3MHMaeDpQge6AE+casgRJASGjv/w4en8/n8/l8Pt+smr8pQl/L5Z0s+Hw+n8+XncsdTPl8Pp/P55tVcsCseIHTLPif9D/J71TqY2k1LP9FPp/P5/Nl5P8u8fl8Pp/P5/OBHyr1uQp6UxSzZ75Gs2jO+jKZ64rFchSz5axD8z45WYZFctaXzVzvuVGRb1w4c93kGDWLZ67DwJx1RfPeKVnvMTRnvafG7F9rTWNHznsMzVnPM+ad/M6Rs67JNw7JWc/+PZNvnDNnXdO8V096ioVyvkOecYkcQ57R0LwvU3qKwdkG1VNj3j2ADM37hKWnWDDbkGtcMscwT856d4wLZBvU0tnrOUbNQgRqrczX+Hw+n8/n8/n6Rn6o1MdSqkwluJzmzY+nraC3phJMQKWcfBm1PB3BdRjV/kZtinmoBuMp6K1SBCWqwVWUzUmpxrI5lWpwZYZxGzHOlWJcgY7gWrRqP2xQzEs1mEBBb5Fq7AiupmxOyDCeRjW4gubNj9sZt6USXItKOdE2akWqwbWpJ6DNR3+Pp6A3TxPQEVxNyRyXYTyDanB5hnF7OY7thypGDZfj2P4EtGmcQEFvlmEcQ8kck2O8grQrcQt6RyrB+AzjynQEE9Cq/UmwYn6qwQQCtWmKoCLGozOMZ0551Hy7inpnMbYfoBm1ihzH9gMPxSAxbpJhHEvJHJVhPDvHuAvVYDwqZRBp1GpUg+tSd58oFqAajCdQG2cb9eEp64qKOYdqcGmGcbcc4+pUTZZxQarBtQRqZIqhKsbDMoznUg0uoTm4aWfcg2ownrShs1EjmsaUobVisBg3yjEekmE8n4q5OMO4F9VgXDeM7X94oFlIjBukGDqoBJejVPv39/l8Pp/P5/P1rfzT36ZzM9rT3yYX2Veo2Wtp2HuBLrRampLelYLeHqU01n1ILbqOhv0tjs/QDKZgtqek90apKs5NomZvoh79Esd78nj6LSmZ/dBqPpyzNOzt1OzPse4VoExBj6Kk98fopQBo2IepRzcQuicBCNQaFM0+FPS6YnxZjPcBXRi1NEW9GwW9nRg/iBk/F+MOlPReYvyWmv1JwriVGOfFuYiGvSNmrIhxv5jxITE+BaiYcR0x/j1mrIlxDwp6mxTjQjFjBee+iRnfF+PWYpxHjJOP46ti3FiMS4rxQWrRDUTuaTGOoGT2IdBri/FvYrxfjMvEjArr/h0zfoFmIYpmR4p6z5jxpphxTgr6R2KcW4y/FONrYtxEjEuI8X5q0Y1E7pmYcV8CvZYYX6Jmr4sZlxXjj8T4vhh/FzPuJMYyzn0txtvFOJcY951irNvbqNufY93rQDVmHJYwPg1oMe5HoNcEILQvUrfX0bAPiHE5MW4dM14rxi/RDBHjHjHjjWL8txi3oWT2EWMoxltajWZ/jFpcjPdRi26KGdcU4wgxvhAz1jFqeTFuJcb3YsfxSzRDY8YSzn1FLbqRur1DjHPHjuNcYvxFzNhBQW8qxsXEeK8YnxHjWmJco42xETuOcePk4/iVGHemqHePGW8Q4wcpxv+jbm9NGA/AqEXFeI8Yn40Z9yfQq4vxeWrRdYTuQTFOPo5bivFfYvy9GBeW49jO+CGKuSnqH1E0+6LVnDjXiBnfEOMPxLiIGO8W40Qxri3G1cT4nBgfEuMKYtxCjP8U4x9SjF+K8U45jvOIcT+0miPFuJl81tk7RX0+n8/n60v1hae/rTS0Y/hTZ8+CT387/SWe809/63F+qDSdm1GHSgCRe5fQ3o91nQR6GQK1TstPn637jIb9M9Z9hlGDKehNUGrqZRfOddKw9xC5f2HUnAR6E7SaI7YeEbq/ENqX0apCoDfCqCGxdUfkXiC0TwAQ6BEEeoWE8R1C+0CG8VMa9m4xLkRBb9zGeDeRe0+Mm6LV7LH1iNA9TGhfQasqBb0RWi0UW3dE7nlC+ySgxLh8wvgPMXYR6GUJ1NoJ4yc07D29aByJVoNj647IPUdon8owvk1oHxTjcmKculGxabwb6z7HqCFiLMXeY5J81u9h1FxiHBhbD8X4aoZxIqFtDr4Kek2Mbv2LqdW4PIFaK2H8WIxfYNRQCnpUhnFu+fXYzvgKWvUT44Kx9aRxLYxu3e3Wc+O3Ynwfo+ZuXo6qZouth4TuITmO/SjoUWi1QGzdEblnxWjE2LrbLXJvibEun3WWcWEKeuT3NL6GVh0pxmcI7TNiXBujW3e7xY0FvTxGrdnG+Ges+5JAL0KgNmpjvJvI/VuMP0CpAQnjg2LsL5910vg0oX02w/gmoX1IjCtg1IiE8T9yHNOM34jxA4yaR45j3NgQ4+vdNK4zZdg91fgGjeghHA0xrolSKmb8SP7smWwciVLF2Ht8V+MotBqEz+fz+Xy+qfWJodKQjuFPnb18/otnslY7/UWee9cPlXqaHypN52bEoZJzXXRGp9Cwv2r595ohVIOr0GpZanYMtWgMrY8hn41qcB4FvRkN+0cmhacAX8bWi5TMoZT0IUTuJTrDw7H8M7aumpfXmfNxfMGk8FDZKTA1o1alGoxB0Z/O6CQa9jdtjFej1TLU7FXUomtajIqBVILzKOgfUI9+T2d0WhvjYZT0wUTuRSaFh+P4V8K4DRVzLo7PmRQe1sa4GtXgahT9xPjbNsYxaLU0tehKanZcwji7GDelHv2Wzuh04KuE8XBK+iAi94IY30sxfibGiQnjGlSDK8V4Ag37+4RxYTEuSS26Qoxh7B1mpxJcQEFvTD36DZ3RGQljibI5gqI+gMg9z6TwiDbG7aiYs3F8Kp/18wnjCDFW6YxOzDFeRs1OSBjnEOMo6tGvxfh1wngURb0fkXtOjO8njNuL8WMxvtDGeBWKCp3R8TTsHxPGRcQ4TIzXtjGOpqA3oh7dRWd0VsJYpmyOomT2I7TPivHfCeOOVMyZYjyEyL2YMK4px7HMpPB4QvenhHFRMS5OLbqEmr2+jfEiCnpD6tGdYow/2atM2RxNyexLaJ8R4wct71DUO1I2Z+L4SIwvtRgCtTaV4AoUJSaFxxG6PyeMi4lxMbqii6jbGxPGOcW4AfXodjqjs2l97H2ZsjmWkvkxoX2KSeFRbYw7UTZniPFgIve3hHEdMRaYFB5L6O5pNarFqQZj0SySYbyYgl6fevRLOqNzEsaKGPfOMO5M2ZyO4wO+DQ/FTmNcV4xGjmPSOEyMQ+mKRlO3P0kY56ISXEJBr0s9uo3O6Nw2xuMpmT0J7RNMCo/G8WHCuCtlcxpK+YfH+nw+n88Hfqg0M+eHSr2THypN52bEodKk8Aga9ncpq7NR0rtSs9ekrGvK+ji67MWAbfuKkj6Emv0ZrUOIqQXqh1jekEtT2ryDWhLNwtOcHE9OMZCC3om6HZ9qLOnjqNmLSHtQZFEfQt3eTOsJfty4Jda9jOXNFONSaBYidHd/T6MR4+gM42HU7U2Q8ujuQG2NdS9heSvFuDSaBac58Ww17kjdTsgwHptzHLtjfBHL2ynGZdHMR+juSzHOTkFvT91em2IMKOlj5Di2r6iPoG6vp/XkOW7cBusmYnmn7bpRy6KYl9Ddn2Kcg4Lelrq9rgfGI+W/cVKKcTusexrLuynG5VHMKZdrtTM2L1lsHoc049HyWbevpI+UoVl7Y0FtR5Rh1KyAVgMJ3cMpxrkp6C1kWPN9jUdRs+OBzhTjDkTuicSwO25cCaX6E7m/ZBg3l1/zbd9BDD0x7kjoHk0MaePG4ShVJXJ/TTHOQ0FvJgOlNOOR1OzFGcZjqNmxQFfb9aLei0pweurX+3w+n8/Xl/JDpZk3P1TqnfxQaTo3ow2VIvcG3zTSbgg8uSJQz1jvR9oQoVkJqH1X2nfMG3unAq270ZLlGcuknXj2Xn3BWCFtyNB7BcR3rUxbB2mDt2Z5RkXa8LH75Rl7ehx7w2iAKGN9RjiOPTVWSRseNgvoX/grWuU9qc7n8/l8vlk/P1SaefNDpd7J71/vYzVs+10rrWUNQiD7pA6m/yAEvLG3yhqEQL5xeg9roG8Yp/dACbKHNZA9ZIB8Y2/8gCLP2NPj2BvGrGENzBjHsafGrIESQEho76dodv4OJp/P5/P5fDN1VuW/xtcn0/kv8c1SubyTBZ/P5/P5snO5gymfz+fz+Xw+X1/ID5X6WFoN+18TfD6fzzeTp9US/2uCz+fz+Xw+n28GyA+V+lgFvSmKOTJfo1ksZ325zHXF4jmK2WjeNyT9OzRfk2XomVHnGgeSb+yf8x6LZq6bXGPeADD7c+yecZHM9Xxj3ollnlHTvE9O1isWzlnvqXGunHVN8x40Wa/oqXHJHEOe0ZBvHJq9rpbN+freMFYzX6FYKNuQa1wqx5B3DyBD855H6SkGZxt6aFTMm7nevGo9z7hgtiHPqJbOXmcIgVor8zU+n8/n8/l8vr6RHyr1sZQqUQ2uoHkT6Gkr6G2pBtemntgYtSIdwXUYtUL77898dAQTKOhtUwRlOoIxlM0pqcayOYNqcFWGcXuqwQRUygmiUcPpCK7HqPY3k1PMRzW4loL+UYZxLGVzUo7xapo3425n3JFKMAHF3CnGlakG12FU+2GDYn4xbpkiqMhxzDKeRTW4MsO4kxjbDwOMWoVqcF3qCahikBg3zzBeQ9mckGE8W4yFtutFvXOOcVU6guvQapkU4wLdMI6hZI5LWVdUzLnyeybNuCuVYDyKOVOMq4ux/TBBsaAYN0sxVOkIrqFkjumGsf1t8op6DyrBuNSBslEj6DDXo1X7wZFiMNXgOgK1aYZxHCVzdIbxfKrB5RnGvagG41HMnmG8LnWHjGYhqsG1BCrtQQQdchyPTFnXVMyFVIPLMox7y589A9uuB2otquba1B2hmiFi3DjF0I9q40AkugABAABJREFUMI6SPjzDOJpqcEmGcZ8c49r5RnMtgRqZYuhPJbgCpfz/ffD5fD6fry/lnJrl/vH1Tv7pb9O5Ge3pb5OL7GvU7PU07L1AF0YtRVHvRkH/CKU01v2HWnQDDfsbHJ+jWZCi2YGi3gOlKjjXSd3eTD26Dcv78uj3rSiZfdBqHpyzNOyvqNufEblXgTIFPYqS3hejmyeFDfsI9ehGQvckoAjU6pTMPgR6LTG+GjPWMGrpmFFh3Ucx4xdi3FGMZZybJMZfxoxbi3FuMd5F3f48YdwPo4elGNcQ45pifEWM98WMe1DQW8WM19OwvxXjYDHuPsVYsz+lEf0Sy7/l8fRbJYx3ivE1MW5MyeyHUYuL8S9ifEqMI8Q4Ima8joa9X4zLUNS7x4wfxoxfollIjLuJ8Vsx3j7FWNRbUzT7oNVcYrxDjK+jqBBMMS4mxofF+HTMuC+BXkOML8eMdYxaVoxbivEDMf4uYdwdpUpi/AmN6A4xzinGH4sxomHvoGZvwU4xbiLGRcX4kBifAXTMuLoY/y7GB8S4nBi3EOO/Y8av0AyJHccSzn0TO44fiPFHYpwzxbipGBcR44PUo5vkOBoCtaYYVxPj38T4YMy4BwW9eXujGkpR70hR7xozTj6OH6CYK/ZZzyHG28X4BoqqGPeNGR8Q4zNiXEt+PU42viS/Z+LGPSnoH4rxffl9HTfuRFHvIsavqdmfUI/uwPGhGCcfxzlwLhTjrRnG+6lFNxG5Z2PGfQn0qgCE9kXq9noa9iExLi/GzWLG62nY34tx4dhxLIrxJurRnTHjNmKcHedC6vaX1O2tWPcmiioF/QOKZl+MWjhmvJHITQSCmHGVFOMKlMyeBOoHYnxPjH+IGScfxyLOfRUzfhQz7oNWA8V4mxjfQtFBQW9K0eyHUUO/x986Pp/P5/PNmvWVp789ecaK/2tKr7f6Wc/7p7/1Qn6oNJ2bUYdKAJF7m9Dej6MLo5YmUOuh1NSfflv3MQ37JxkqDW5eOqemXr7i3CQa9s9Y/iXDkE3Rau7YekjoHiJyr6AoE+iNppzUNdcdkXtWBjYQqDUwajhKTZ0afzfjQhT0Jgnjt2J8T4w/QKu5YushoXuQyL0qJ/EbtjE+ExvYrIFRKyWMb4mxJsb1UcpkGDdFqUrsPZLGzdBqzth60rjRlBPPqcanWwY2Rq2YML5JaB8Q4zJyHOPG/9Cwf5bB1+TjGDd+I8b3UcwpxzFubIjxNTGObDnxnNa4JkatkDC+QWgfFOOyBGrdNsY/TRkqpRv/HTPOEVtvELoHxFgl0KMwakiGcS2MWr7VaF8ndA9lGD+S4/hl7LMux97j65hxrhTj/TKcSzM+FRt8rUmgW3cNRvY1MTbEuE7C+CENe7cYh8hxTDPOLcbZY+t1OY5voKhQ0Buj1UKxdUfkniR0z4pxLQLdumuw1bicGKfufGka/yzDuaFiLMXe42sa9k8y+Eoz3i/GDjEOjq07IvcEoZuYYXyV0D0sxuUJ1NoJ4wdyHNOMX4nxQzFuhlYDE8b7iNyb3TIW1NoY3bqzMbKvELq/dNO4MAW9capRMw+B/kGOcRO0yr60zufz+Xy+vpYfKs28+aFS7+SHStO5GXGo5FwnndGJNOzvWv598zKcqzFqeWrRFdTsOFof8d2fijmXotmCevRbOqPTgK9j6wElfTAlcwSRe5FJ4aE43m95j4LegooZjeNzJoWHELnnW9aNGk41GItiAJ3RCTTs79sYx2DUctSiy6nZ8QnjADFuTj36NZ3R6bQ+hjygZA6hpA8ncs8zKTwMx78Txq2omAtwfCbGFxLGlcXYT4x/SBgH0xGMQatlqUWXUbMTpjFWg/Mp6M1SjAVK5lBK+lAi95wYP0gYtxbjJ2J8MWFchWowBkU/JoXHEbo/taw3LxUag1ZLU4supWavSxhnoxqcJ8a76IzOoPUx5AVK5nBK+mAiN5FJ4eFtjNtQMeeJ8WAi91LCuKoYq2L8c8I4RIxLUYsupmZvaDEqBlIJzqegN6Ue3UFndFbCWBTjQUTuGSaFR7YxbkvFnIvjYzH+LWFcjWpwtRiPIXT3tDGORasl6Youom5vIP4496bxQgp6Y+rR7XRGZ7cxHkFJH0jknhbjh7F1JcZzcPyHb8NDsNMYVxdjmUnhsW2MQ8W4BF3RaOr2xoRxdjGOoh7dRmd07jTGsjmKot5fjEfg+Chh3E6MH/JteDDWvZwwjqAaXIWiKMZ7E8aFxbg4XdGF1O1P2hgvoqA3EuM5tD72vkjZHEPJ7Edon2BSeFQb4w5UzFlYPmBSeDDWvdLGeDWKApPCownd/QnjImJcjK7oAur2pwnjHFSC0WL8Pzqj8xLGkhj3JbSPi/E/CeOOYnxfjK8mjGvKcQzE+EDCuKgYF6UrOo+6vRmwCePFFPQG1KJb6YrOAzoTxmMpmX0I7WNi/LjFWNQ7UTZnolT7y0F9Pp/P5+tr+aHSzJsfKvVOfqg0nZsRh0qTwsOmGYRMbQBFvQt1Oz5lXVPSR1OzlwLtf+0U9YHU7S20DpymFqgfYN0bWN5s/w5qGJqFCd3dGcadqdsJPTAeRN3+jNZhTtz4Q6x7BcvbKcYl0Cw0zcnx1GajqHegbq/rgfFgOXFt/+juQG2OdX/H8o8U45JoFiR097VdVwykoLejbq9PMRpK+ihq9pKUdSjqQ6jbm2g9eY4bt8S6F7G8k2JcGs1805wc967xUBmkpBm3wrrnsbybYlwGzTyE7sEU4+wU9I/kPXpivIHWE/y48UdY9yyWf7Y3sgxazUXoHk4xNi+rbH5Wbd+Bkj5Cfj2mGQ+TzyHNuA2RexrHv1KMy6HUQCL3SIpxTgp6CxkofT9jSR8uA9L2xoLajtA9geO9FOPyKNWfyD2aYpyrOWi1N/fAeIQMmrtSjNsTusemGchPNa6IUlUi91iKce7moNX+rIfG8UCt7XpR704lOCv1630+n8/n60v1iaHSQh3Dnzx9pf81pddb/ezneO6ffqjU0/xQaTo3ow2VIvs634RpN9udXBGoZ6x3kDbo6N7X90Y9NZZIO2HqvQpAI2O9H2lDrWYzgnFmOI4zgjGgdadXsjxjmbQhQ+81MxgN8d0/09ZToyJtiNv98oxV0gaYzSqkDb2azQxGQ//CX9Eq70l1Pp/P5/PN+vmh0sybHyr1Tv7xLX2sRurOmnh5A6Gsk7rufH1v1FPj9B4yQPYgBLIHSjBjGGeG4zgjGLOGNZBvnN7DGpg5jFmDEOi5sTd+iJJnzBrWQPawBmYOYyQ31ff5fD6fz+fz9fX8UKmv5fJOJnw+n8/ny8v/XeLz+Xw+n8/n80OlPpdWS/TCd1H5L/mf5429kzf2TjOD0dc79Y3P2qgl/9cEn8/n8/l8Pt8MkB8q9bEKehMUc2W+RjMsZ325nPXsr4fZyT7xUsDA7PdQi2euG5bPXNfkDdfmINuogdly3mOxzPV8Y95J25zkGwfkvMf0Nmb/Wmve+yXPuGjOd8gzLpVj6I6xX857LJK9rvJ+z+QZ585Z745x4ex1lXccl84xzJOzHtC8J1LWewzNXu+hUZF3D6CA5v2Gsr7HkGxD7me9TM73ny9zvXmPsUrOeyyUuW7yjGrZnO+/MEatmfkan8/n8/l8s1IK3Cz4Tx/5YeD0zg+V+lhKlagGV5J2UlLQO1INrk09sTFqZTqC6zFqePvvz/xUg+so6O1TBBU6grGUzempxrI5i47gapo33W1n3ImqyTKuQjW4DqPa30xOMUiM22YYr6FsTs0wni3GUtv1ot5FjmP7k1ijVhXjiinGBagGEyjobTKMYymbU1LWFRVzLtVM465UgwmolGFA81H112NSTuQVC8px3DrFUBXjyTnGqzKMu1MJJqBShipGrSHG9ifBisFUg2sp6C1TDB10BOMom5MyjOeJsZhi3FOM7YdTRo2gw1yfeqKuWUiO4xY5xhNS1jUVc4H8vm7/mPei3luMc7ZdD9RadJjr0Kr9wEMzRI7j5imGfnQE4ymZ4zKMF1INrsgw7kMlGJ9hXFuM7QdHTeN1FPRmKYb+VIPxlMwxGcaLxBikGPejI5iAYo4U47pibD9s1QylGlxHoNIeljDZeHTKuhHj5RnG/eX39ewpxvWomutSd61qFqZqJhCoTVIMA6gGV6CU/78PPp/P5/P5fD7/9Lfp3oz29LfJRe5NatH1hP/P3n2HuVGdDRu/n3NG0kpyb4CNK9XGNsY0m15N7x1MrykkpJJeSYFUqhsEQktCSUJJpaYntCTvl4QWSKGngCHxFmlmzveHnt2d1c6MDF4T23vu6+LK+/poNT8frQ3z7EgT342jAyszKJoTKJhDEBFi909q0dXU4ttwvIKRiRTNURTNQkTacK6TWnw9tegmYp5FGEnRHELRnoqRsTjnqMe3UYuvJ3KPIpQJzF6U7BlYaVwdE8a/oiv6GqH7DQCBzKNkTycw26vxyYSxU40LKZiDE8avUYtvTxiPVmMJ5zqoxTc0GQ9V4xici6nHtzcZ91bjRmr8pRofUON8NW7XMMZP0BVfSRjfkzCeRMEc2GPsiq6iHt+hxklqPCFh7N7H5xBGJYyj1di9j4+pcYEap6nxF2p8UI07ULKnJYyPq/FeNW6hxgPU+A+6oq9Rj2/HsVyNx1A0x6uxPWF8Xo2HUbSnJIzfVePjCBUKZgFFe3rC+HM1PpQwnk5gtlXjY3TFV+k+dmFlphr3V+NLarwjYTyWojkuYbyOWnSzGkcnjKPU+B01PpFqrMc/oxZ9jdA9DIi+1mcQmG3U+Kga71XjLEr2JALZT40vJoyvYmSyGo9NGK9V4wtqPFyNI9X4bWrxDQnjPmqc2mR8CDC6j2cQmK0TxisJ4/tw1NR4Yo5xSsJYxLkVdMXXUo9uUeOYxD6OxLkoYXxSjfuqcYoaf0otujph3FGNc9X4J93HpPEkAtlXjS+o8c4M438TxhcTxlMxMkKNt1KLb2wynoGVyWr8iRofzjF272MdK7PVuI8an08YX8PIVP0zkzR+nXp0qxrHUjSHUbKnIjJcjbeo8c9q3I+SPQMjk9R4H7XoGkL3CGATxq3U+Ec13q/GLdW4IGG8inr8vYSxex8LCeMtxLyUYgx1H28gck8hVNV4eo/R5/P5fD7fYLn725C5v/noOnj3t0//lt/+/b/r7Gv3ZpX+o07fOp+VjfXkYDK4TqyZQSB7INK4BNDIWIr2ZETG4twrGNlQT/AbVw+JtDVOThhG7J5FZCQFcwBGxuq66NCijSh+FKSNgtmrZ6DUMMyjZA3WNd6KEcg8rGybWN+EkjkdI1NyjKcgMk6NEymY/RApqaFM0RyDMJTYPYfIKApmf4yM0XWjxhJR/Jga9+4ZKDUM89U4O91oNqVEt7ELa7boZyzZUzAyDueWq3H/JmP3PnYbD8DI6CZjG1H8GCKNwVf3IKRh3CFhNGrcJmHcTI1T1TiTQHZPGMdRsicnjJOa9rGixuFqHK37mDQeqMbH1bigybijGrdU43ysbJ0wbt5knEUguyWM6yX2sTGw6W88To3PJ4yjEsaDECmrsdJvHwPZCbEW6+bQPbBJXpFnzfSEsZZiXF+N6+UYj0cYocYxahyZMB4MlIndEwnj1CajSRh37HNFXsN4BkamqXF2irH7tX4NI1PUWFRDlZI5AcPIDKNVYyVhXNAzUEo37tTnijxrZug+Zhk3SOxjYxhSMPsmjEMomYVqfEGNB2BkRMJ4SMJYVePkhHFnsAYbzwEJdB/TjBupcUsC2TVhHE/JnoqR9dU4rfHW4iajMBLnXuwxigxPGA9V45OIDCEwC/oMawLZFWyAjR9W405Y2TJh3EKNG6txDoHs0mQ8DSMbJIz7IlLIMI5tMgYpxn38QMnn8/l8Pp/P1yd/pdJqbk28Usm5djqi91OPv9/n1xtvXbsMK3Poir5EV7yUvrchr1K2n6ZoD6UWfZeO6KP0vcV3QMmcTcm+m8j9lvbwXBwv9DlGwexP2X4Bx8u0h28lcv+vz7qV2VSCRQjDaQ/fS+h+mGK8HCuz6Yq+SFe8jL63zx6ixkOoRd+mI/oYfe9SFFAy51Cy7yJyD9MevgPHi03GAynbC3G8zIrwLcTuD03GOVSCKxCGqvFHTcbxapxFV/QFuuIrU4wXULQHU4tuoSP6RIrxLZTseUTuIdrDd2YYL8LxLzX+scm4lRqH0B6+h9D9uMk4QV/rWXRGF1GLr2oyDqVsP0PRHkgtupmO6JP9jfZtlMw7iNyDanypyXgwZft5HP9U45+ajHOpBJcjVNV4V5NxQ6rB5RjZgs7o89Tiq/sZK8HnKJj9qUXfoiP6dIrxXErm7UTuATX+o8l4iBpfUuOjTcat1VimPXw3oet7G3VhohqnJ4xx4hHDqASfVeM31Zi8XXtAyb6DknkbkfuNGv/ZZDyMsv0sMS/SHr6F2D3WZNxGjW20h+8idPf2WW+8ve5yjGxOZ/RZavHXU4yfp2D2pRZ9g47ogiZjQY1vJXK/pj08L8V4OGX7GWJeUOPjTcZtqQSXIZRoD88jdPc3GSdTCa7AyKZ0Rp+hFl/bZBxOJbiQgllAV3QDndFngM4m43mUzDlE7ldq/FeT8QjK9gJinlfjE03G7dRYpD18J6H7SY7xAmrxdX2MwgjKwYUUzN50RdfRGX2un7HNvouiOZvI/YL28F04/t1kPFKNz9IevjXFuL0aCznGRRjZmM7o09Ti64Hef8c3jBdRMHvRFV1LZ/T5JmORNvtuSvYs6vHP6AjfhePlJuPRlO2negZoPp/P5/MN9gbLlUq//kj6x5+szc274BF/pdIA5IdKq7k1cai0ov7WfsOa3oZQNMdRi5dlrAsl8y664q+QPFlJVjRnUou/Afw3dT2QfYjdE8T8JXXdsDFGphC6uzMMQymaY6jFV7YwfjljvfG5I7X4BvoOxZLG/Yjdo8T8Nd0om2KY2G/I0NswiuYoHdakPgMl807dxyzjOXpynX7r7obxT8T8Lcc4gdDdl2M8klr8tVU0fp2+Q4ik8QBi94cc42YY1u93ctzbcIrmcB3WvFHjW6jF1+QYDyJyv8PxTOq6sDlWxhG6n2asj6BgDtF9SMuqMe/78a36e8wyHkzkHsHxbIZhOkbGELmf5RgP1u+nLOO5dMVfbWH8Gn2HEEnjIUTuIRzPZRi2wMgIIveLjPWRFMyBOqx5o8a36Z+5LOOhRO4BHM+nrhtmIjKUyP0qwziKwOxPPb4+QxBQMm9vYXy7/v3albpekCMI3S/7DeR7jbMQqRDp24b7G0cTmH2oxze+YWNjn5cAtYzfw/GUgwsyv97n8/l8vsGUHyqtvfmh0sDkh0qruTVtqBTFj/HfMOuDbLsrAPWc9SpZw5hGRbJORgYubxyYAvpejdZcK2OJrJPjgWtdMFbIGg42WhuMbWQNawYuS9+r0ZpbVaOQNQxf+dYGo6HvlV7NtTKWyRpwNrIMLfwUIxu8EZzP5/P5fOtUfqi09uaHSgOTv33LIKueefVPn0e1WM87gYfVPwgBbxyo8oYM0Nq4ugchsG4Y807gYe0wru6BEuQPa2DVjQPxQ5S1wZg3UILWxryBEkBEPc66AtLn8/l8Pp/PN5jyH9Q92HKtThZ8Pp/P52tVq8GUz+fz+Xy+dapWP7PyDdr8lUqDLCObD8CzyAA8x+rOGwcmbxyYvHFg8saBadWNVqYPgMPn8/l8Pp/Pt7bnh0qDrIJZgDA29zGtBk+WOflfT6vB1Sjyv/UMMDL/GLJZ7nprY6sTotG0Mgoj8o8hm+autzbOyF2HMeSfHFpgeItjtDAmbrOe/vVvhnGT3PXWxi1y12Fci3ULDGtxjI3z1xO3gk//+lU1BsCQFsfYKH+9pXFm7rqwfu76yhmn5a7bFkYrs3LXWxsLND6jKzvD1BaGVTWOz11vfNZaJfcRhiktDC1e6xZGw0ZYmZ/7GJ/P5/P5fD7f4MgPlQZZIiUqwSU0Poi1f0VzHBW7NPPEpnFr8GVY2Sb9+ZlAJVhK0RyXIahQDa6gzX4iS0jZXkA1uDzHeIIa0z8ktnHb7WVYSf+8NWFDKsFSCuaYFsaP5Rg/QyW4LMd4IhW7JPMk1so8KsFSrKR/4J0wUY1HZRiqK2WsBpfR+GDgNOPJVILFOcb5VOwyrGyVut64Vf1SCuaIDMMQqsFi2uxHMtYNZfs5/X7MMp6ixvUyjDuoMf0kuXGL9aUUzOE5xkW02Q/nGC+kElxK48O004ynUQ4WIxmDn0B2omqXYWV2jnEZBXNohmEo1WAJbfZDq2A8U43pA+VAdlFj+jDBMFWNB2caK8Ei2uwHM9YtZXsRleBiGkORNONZVApLcoy7UrHLMJI+3DJMo2yXUDAHZRiGUQkW02bPzzF+QY2F1EeUzDlqHJNh3I2KXYqR9CGhYSPKdikFc2CGYTjVYDEl+74c4xdbGN+qxtEZxj3UmD4QNmxMxS6lYNJv6CCMoBJ8FRH/nw8+n8/n8/l8Pn/3t9Xemnb3t+4i9zS16GvU47twdGBlC4pmIQWzPyJC7P5NLbqWenwbMS9jZCJFczRFcywiJZzrohZ/k1r8LWL3LIZRFMwhFO3JGBmFc456/H1q8XVE7k8IZQpmb4r2NKw0rkYI4wfoiq7uuTW2lXmU7GkEZpuE8Srq8d04OrGyBSW7kED2Sxi/Ti2+DccrajyGojkmYfwGtfimHOP3qMXXq7GSME5NGL9G5B5Q43w1bq3Gp3Qfs4z/UuPtapyk+9ht7EwYn8MwOmEcqcY71fioGheocYoaf5PYR0Ng5lM0pxGYuWr8M13R1wjju3F0YWUmJXsigeyjxn8mjMvV2L2PRTXeqMbnG0Z7KEVzkhrjhPExNe6jxslq/LUaH0gYTycwW6nxSTXekzCeRCALEsZrqMV3qHGyGo9WY4cab04YD1PjCDXeocbHEapqPDVh/JUaH1TjDmqc0zDGT9AVf40wvleNs9S4d8J4tRpfxcgUNR6VMN5ALb4lYTyckjkJkeFqvJ1afEPCuC8leypGJqnxl3RF1ySMO6pxy4TxKjXWCGQ2RXsSgeylxn8k9vFVrEyhYI5VYwHn2nUfu41jKNjDcoxDEsaJavyFGh8CbGIfu42PJ/ax23gygeyZMHbv42tYmULRHEfBHJkwdu/jC2rs3sdharyNWnxjk/E0jGyoxp/TFV1D6B5CCFKMj6nxPjVuSdGeTMHsCUDsXqIrupp6fKcap1I0xzYZr6cW36rGsWo8UY1RwvhEqrEe/4xadA2he1iN3a/1bDU+qsb71TiHoj0pYXyRruiaJmP3PgY4t6JhjG4l5sUM43fV+KQa91PjhDf87x6fz+fz+da1BsXd3yYOmfvrD617v715n32Y3z7j7/62qvkP6h6kWZlG0ZyAyPrgOrBmi54TTwAjoynaYxEZinONoVLBHIBI40oIkRJFcxhCkdg9g8goCuYAjIzSdaFg9gYgdn8CKVOQvXoGSg3DtpRsnTBuvAUrMNv3ubqoYVyIyAYtjMPUOCnFeDhQxLln1XhghvFRNe7dM1BqGLahZGuE8WZqnNfn6iIrGyX2sQtrZjQZxySMr6QY2yiaI4BSk3FkwrgAEDVWdB+n9NnHoq0RxZsCQmDm97m6yMrGlMzCxu2/XZfu454J41iK9jgdGryCkck6XCymGJ9DZHST0VAw+6jxMTXu3TOsaRi2o2jrRPFmatyhz9vWrGyixvFqnEkgezQZj1fjcjUekDCWKZoj1fi8Gg/CyIiEcV81Pt4wmgVNxu0p2pAo3lyNO/a5AsqaTSnRbaypcfcU44hMY8EcCbSpcQwFcyAiwxPG/dT4hBr36RkoNYzzUoyzU4wT1DiryTgusY+NwVfDWFBDJcV4UAvjvj0DpYZxvhqnq3GnJuNmTcbZBLJbinGEGqfq92Oa8QVExuo+DksY908Yq2rcMGHcgaINsfF0GoOv5n3cnCILG1/jalizJYHs2rNuZD1K9ngdqmYZj1LjiylGq0ajxiH9jIHsADbCxjPUuFOfK8msma7GiRnG9Sna43So+hpGpqkxUENVjWU1jtPvhaTxAMA2Gf1Ayefz+Xw+n8/Xm79SaTW3Jl6p5NwK2sP3ELof9/l1YT0qwaVYmUtndBG1+Er6fsx/hbL9JEV7BLXoFjqiT9D3DkCWojmdNvt+Ivcw7eG5OP7R5xiBLKASfBnHy6wIz2kMnBIZmUk1WIQwXI13NRnXV+NWdEYXUouvSjF+iqI9nFp0Ex3RJ+l7e2xLyZxJyb6PyD1Ie/iOFOM+VIIv4fi3Gh/ts25lpr4laxjt4bsJ3d0pxsuwMofO6HPU4qtTjBdQtIdSi75FR/SpFOPZlOx7iNwDavxnk3E/KsEXcfxTjY81GWepcQjt4bsI3b1Nxg2oBJdjZTad0WeoxV9vMlYp20+r8Zt0RJ9OMZ5Dyb6byP1Gjf/qc4yCOYCyvYiYf9AentMY5vQxzqYSLFLjeYSu7y3KG8YrsDJTjdemGD9D0R5MV3QjndEF9L1de0DJvIWSPY/I/Yr28LwU44FqfFGNTzQZ51AJrkCo0B6+k9D9pMk4XvdxJp3RBWpM/p06hLL9LEV7IF3R9XRGn00xvpWSfSeR+6Ua/51hfEGNTzYZt1JjOcM4gWpwBUZm0Bl9ilp8fYrxcxTtAXRF16mxq6/Rvp2SOZfI/UKNLzcZD6ZsLyTmOdrr5xDz5ybjXDW20R6+g9D9tMm4oRo3V+MNTcahVILPUTD70xVdS2f0uRTjuZTM2wndz+kIz8PxSpPxEMr282o8m5inmoxbq7FIe3guoft5k3GiGjejM/oEtfgbKcbPUzD70RVdQ2f0eaDWZHwnJfNWQvczOsJ3pRgPo2w/S8yzanw61QgFOsJzCd0vUoyLMLIpndHHqcXfbDIOoxJcSMHsQ1d0NZ3RhSnG8yiZtxC6n9ARvifFeDhl+9meYanP5/P5fIM9f6XS2ttAXakkInsBRwFP0fhw3hHA+c655avwnEcCH8yziciFeqybgYecc8vVcjZwl3Nu6Zti9UOl1duaOFRaUT+n30CptypFcwy1+GuZX18y76ArviRzvWhO05OZ9FtOW/bC8SQxf0tdN0zDyJR+g5DehlA0R+mwJi2haN5BLb4401gwZ1CPb6DvoCRpXIDj8RzjRhiZSOjuzzEeSS2+5g0bi+YMPblONwayD7F7lJi/pxtlEwwb9DuB720oRXO4DpTSjY3XOs94pg4psoz7Erk/4Hg24wibYGR9IvezjCMMo2gO1WFNWoaSeXuL78czqcXX0XeYkzTuT+R+j+O5HOM4oqYT+N6GUzQH6zHeqPEs/T1mGQ8gcr/F8XyGcTOMjCZyv8xYH0HBHKDfT2lZSuZtLYxn6/dzV+p6IAcRuYdwvJBhmI6R4UTu15nGwOxPPb4xx/hWuuJLc4zn6N8LWcaDidwDOF7MMMzAyNCet+T2Xx9JYPalHn8jx/gWuuLLWhi/Rt9hTtJ4KJH7dabRsAUiZX17YZZxH+rxNzMEgRrz9vGt1OJlQD11vWCOpRJ8NvPrfT6fz+cbTPmh0trbQAyV0oY/IjKXxqBn69czrBGRJTTuavUysBeAcy7zbjv6+LNSli5yzvX7INGBtPZ5Xj9UWr2taUOlKH6U/4YHtHhUgayTiUYVsgZGK/f1A9GqGotkndQNXAEQ5qyvC8YSWSfwA9fasI8WiHLW14R99MaBydD3irnmymQNWRu1kTU8bCT0vbrojbS6jYahhZ813lLr8/l8Pt8gzw+V1t5WdagkIiOAV4C9nev79hURuRnAOZd156VWz/0wMGIlhkpAzy2UHwGWOOeeTnnsarP6z1QaZNXdPSvzqBbreSd1K/P1A9GqGlf3kAHyByGwbhhX9wk8rB37mDcIgTVjH71xYMob1kD+sAbyhzWw6gMlWP3GmHp8LyV7wusw+Xw+n8/nW5tzsfyvCWtiR+v/pl1C/i0aVwCt1pxzZ6/kQ1eb1d8TeLDlWp1M+Hw+n8/XKv/vEp/P5/P5fIO+o4DlGW8bexp63nK2JrTarH6oNMgyMmMAnmVtmFJ748DkjQOTNw5M3jgwrbrRyhYD4PD5fD6fz+dbq9sGmu5g09ty/d9tVzdCREaIyJH6z4iMh602qx8qDbIKZm+EcbmPMTI9d92yVe66odXgagyNz07JfgZhVP4xZPPc9VU3jiX/j4dFGJl/jFU2tjppWxnjiPxjyGa561ZaGWfmrsM48k9gLTC8xTE2zV1fdeN65BsDVt04p8XX5xuF9WltHNbiGBvnr7c0zspdF1p9vk4BGNriGJlvGQda76OV2bnrwvjc9cbnbw3JfYTpect6lmFOi/VWxg1z1xufG1XNfYRhagvDlqu0btgYK/NyH+Pz+Xw+n8+3lrS5iDyc9s9KfO2IAXrMG07vAHcWjc9Tuhu4WUTe/wYdK/OYfvmh0iBLpEgluJSsk5KiOYmKXYowMXXdynwqwZWZJxSGSVSCpRTNiRmCKtVgEWX7adJPkg1l+zm9bXYlw3gKFbss8+Sr17hdhnEylWAZRXN8hnEI1WARbfZTK2EsZxhP1X2ckLoeyI5qTB8G9xqPyzAOpRosoc1+ImPdULYXtjCersb0E+1AdqJil2El/XPrDFOoBMsomGNWwfgFqrnGM6kESzMHFoHs0sI4lUpwJQWT9Zlzw6gGi2mzH89Yt5TtRVSDy3KMZ1EpLNHBT5pxVyr2yszhl2Ga7uMRGYbhVILFtNmP5hi/qMa21EeUzFuoFJbmGHenapdlDkQMG7U0Nl7rj+QYv0QluIzGUCTN+DY1rpdh3EP3MX3gYWQTynYZBXNY6rowQo0fyjAGVIIv69+PWcZz1Zg+mA9kL/1+TB/AGdlUjYe0MH6whfESGgOwPOPYDOMCKvYqrKQPMhvGpRTMQRnGkVSCixFZG67I8vl8Pp/PN2A5Wff+GZiWZ/x691VB+VdLrPqx73LOXeSce1rf2nYU8EERSbsr3PKM51klq7/722puTbv7W3eR+xu16Grq8V1AB0ZmULILCWQfRITYvUItvo56dBuOlzEykYI5mqI5GpEiznVRi2+mFt+Ec88gjKJgD6FoTsLICJxzhO5HdEXXEbtHgTIFszdFeypWJgMQxo9Qi68mjBu3GA/MfIrmVAKzlRr/qsa7gU6szKBoFxLIgoTxWjW+osZjKJqjEsabqMU3J4yHUjQnJow/pCu6PmFcQMmeipFJanxYjb9JGE8jMHPU+Bc13pMwnkQge6nxZWrRtdTj29U4SY1HJozfUuOzCKMp2EMpmRMRGa7GH9AV3ZAw7qPGiWp8iK7oaiL3ACAJ45ZqfDph7MLKFmrcU43/ThiXY2QSRXMsBXMkIoWE8Sace06Nh1EyC5uM1xO7xzKMD6rxwRzj16jH96pxphr3yDBOVuMRCeM3dR+fQxiT2MdhOOeox9+nFl9P7B4HKgnjhmp8QI0PqXEHNc5W41NqvE+NsyjaEymYPQGI3b/UeAeOVxPGw9XYmTA+r8bufew2fo9afEPCuK8aJ2QYd6RkTsOaWU3Ge4EaVmarcQ81/pNadJ0al2NkKkVzjO5joMZvUItvUeNY3cduY5wwPgFU1XhKwvgbNT4MmIRxphr/rN+PSeNJFMzuCWNyH6cm9jHAuY6E8QU1du/jUDXeSS2+Mcf4a7qia3QfrRpPx5ot1PgkXdHVhPF9CePJFMxuCePXqcd3qnGa7mPSeCO1+NaGUcZRNIdRNCckjHeo8Uk17qfG8Wr8lRofVuNOamxcZRnFT9AVX00Y36/GLdW4qxr/ocbvJYzHUjCHJYw3qPHFhHEhIkPUeLsa/6zG/dXo7/rm8/l8Pl93g+Xub786f7W/i+tNb/6FD67q3d8ckPr1ibut3e2c2/sNPHfLu7/lfO3NwF7OuZGJX1ttVn/3t0GalcmNwQYjcHRiZTqB7N7z02cjIymawxGKxO4VjGxI0RyESOOn4yIlCuZAICZ2z2FkJAVzEEbfwikiBOyOM51E7jGENgpmr56BUsMwh4I5EkNjgGPNvD5XIViZkjB2YWUGgezWzwhFnFuuxgObjAcBTo2jKJgDm4x74ExXwrh3z0CpYdiKgvkvhskJ4+zE+tTG8IWRCeMuCeMoivYIkJIaJ2YY6WMUGZ4w7okztYRxQc+wpmGYS9H+lyieTPfAJnmlhJVpahylxi2ajKMTxld18HUAIoWUfXxejQc1Gbv38XFEyhQkyziFxqCheR+nUTBHIYxW40wC2bmPsWAPbzLun2JEjaN1H4f1GBvDn1qTccOEYWs1TlVj3300dBvHqHEWgezcuy5jKNgjQNrUOJmC2S9hbKNgDgYkYTwow/gEIhU1Tmgy/idh3AGTuOKkYTyyybhTwjg2sY+vYWWK7mOQYnyh8XvqYzQUzF5qfFKN+zQZt9F9nEb3UMkkPn/HsFEfY2BmZxjbEsb9EsayXukjxO7FhHFowrh3wlilIPs2GbdNvNZWjTMSxo0pmiMxjE0Yd2wyHgFSVuPUDKNR49gMY73JOL7JuEL3MVDj9IRhk4SxRmC2JJAdEuvj1FhR47Qc40tqPBiRIQnjAjX+GZEhFMy+fqDk8/l8Pp/P17cRGb/efdXP8jeH0acHgSNFZC/n3N2JXx+R8fhVsvorlVZza+KVSs79l/bwPEJ3b59fF8ZQCS7DyjZ0Rp+lFl9N39tbt1G2H6doj6EWfYuO6JP0vfW0oWhOpc1+kMg9SHt4Lo5/9TlGIHtSCb6C42VWhGfplQSJZ5DNqQZLEYbTHr6T0N3fZBxLJbhUjRdQi7/eZCyr8Whq0TfoiD6dYjyNNvsBIvcb2sN34Ph3k3EvKsFXiPkX7eHZKcbpahyqxp+kGC/Dylw6o89kGD9J0R5JV3QDndEF9L0VuqFozqDNvp/I/Yr28J24ps9UC2QBleDLxPxDjU82GWdQDZbkGMepcSs6o09Ti69rMlbUeARd0XV0Rp/tZyyZMynZ9xO5X9AenpdjfIn2+tnE/LnJuAXVYLEazyV0P2syrkcluBwrW9IZfZJafEOK8dMU7WF0RdeqsZZYt5TMWZTsewndz+kIz8PxSpNxXyrBl4h5QY1P9Vm3MpNKsBihqsafNxnXV+OshDFZhbK9gKI9lK7o63RGn0sxnk3JvofQ/YyO8F0pxv2oBF9U41nEjZszJIyz1FhhRfg2IvfLJuMGVIIrsLIFndHHqcXfSDF+lqI9mK7oajqjC1OMb6Fk30XofqrG5X2eoWAOoGy/QMyzuo9/aTLOphIsBtpoD99G5H71Oo1VNR5EV3QVndFFQL3J+FZK9jxC9xM6wnenGA+kbC8i5hk1/rXJuKUai7SHb88wLsLKdDqij1GPv5Vi/DxFewBd0ZV0Rl9oMgZqfCehu4/28D3AqynGLxC7vzX+XPO3JuMcNQa6j79pMo6nGizCyOZ0RB+hHjffGXYIleDzFMz+dEXL1Bj2Ndq3UzLnErp7aQ/fm2I8mLK9EJH0twj6fD6fzzfY8lcqrb0NwJVKrwAvp11NJCLTgKeApc65s9/Ac6/KlUrvBy4EznbOLV3tVj9UWr2tiUOlFfUzCd09GasViuYoHYSkVzRvoxZfnrleMCdTj28i65bTlj1w/JmYv6euG6ZgZHK/QUjSWDBHUo+vXQXjKXpSmG2MeRLHMxnGqRjZsN8gpLcqRXO4DmuyjG+nFl+WYzyVevwN+g7Fksa9iHkUx3Op68JUjEwgahqE9DUeRi2+PmNddB+zjUVzGrX4xkxjIAuI3B9wPJ9xhGkYWb/fIKS3IRTNISnDmqTxrbmvddGcrr/HrtT1QPYhcv+H44WMI2yMkbH9hgy9DaVoDtJ9SH+GknkLXfEVOcYzqMXX0neYkzTuS+R+h+PFjCNsgpFR/YYMvQ2jYPanHn8zY91QMuesonF/IvdIjnFTjIzQt2mmNZyC2TdlWPN6jGdSi6+h7zAnaTyAyD2E46UM4+YYGaJvi0tbH0FgFujfb+nGojmHWq7xLB3YZxkPInK/wfGPDMN0jJSJ3CM5xr1TBkrdWYrm7JUwfo2+A6feCuYoKsGFmV/v8/l8Pt9ganAMlYbO/eX7172h0g4XPchvn/nPqgyV7qLxNrN+H9AkInsBd5EY7LzO584dKonIEhof0D1SP0spuZY2VFp9Vj9UWr2taUOlKP4T/w0PbPGogKyTiUYVoD1nvUDWCdPA1cpYJmtg1MgbG62qsUjWkGHgskCUs97q+3FNMK4N+7gmGA0Q56y3MpbIGh4OXOuCsY2sQfDKrRuGFn7S5y2FPp/P5/MN1vxQae1tAIZKZwFLMgY1ZwFLgI2cc0/3++LWz91qqHQXsA0wNWWodCHwfmBr5xo/iVydVn/3t0FWPfMKpWR5QwbIP4GH1T8IgdbGvJM68MbuVtW4uocMkD8Igdbfj2uCcW3YxzXBmDcIgdbG1T2sgXXDmDcwWpn1mHp8/8pzfD6fz+fz+dbNbgIQkSNT1o6i8cHX/YY0+nazVe0uGkOj5SlrR9L4UO7kpe1vyLoy+aHSYMu9GSc0Pp/P51u3azV48vl8Pp/P51u304HO2TTeataTiMwFptEY1tC09jDwlD4mrxH0foB22rEvAi5sHlDpVUqjmo/9Rqwrm7/72yDLmhmtf4jdMqHvByaviXnjwOSNA5M3DkzeODCtutEm7ujn8/l8Pp9vHc8Bcb93Ta39DcB/sjnnlorI0yJyM427ro2mMRDKuorobl3vt6afhbQtjSHPNP21p4BHgKedc+c3HfsoEblQREbQGCSNoHGF0sgBsq5U/kqlQVYgeyGsn/sY0+JkwZL/llNDq5ONsTQ+3yX7CMLo/GMkbv+d/gytjDNz12EcrY2Zg+PGMRK3/059BmllnJ273jDm/RF+M4yzctdhffKNAZJ5Z0s9hmyeu76q+yhsQL6xQPbdN7uPsVnuum3xgwgrW+auN4x5/yIvAMNzn8OwaQtDK+Oc3HVhPPnGIjAs9zkMm7QwrKpxw9z1xucdDc19hGHjFoZVNU7MXW983tGQ3EcY8m8S0tq4Vf7zy6ZY2T73MT6fz+fz+XyDJefc3c65o5xzFznnznfOnZ01pNH11M8u0q8/yjm3tXNO9J+N9NfOz3m+s/Uxe2c97o1YVzY/VBpkiRSpBJeRdVJSNKdSsUsxTE5dD2RHKsGVWNkhdd0wmUqwjKI5JUMwlGqwmLL9DOnffoayvVBvm13NMJ6uxkkZxp2pBMuwMj/DOIVKsJSiOSnHuISyvYD0k2RL2X6BSrAox3gmFbs08wQxkF2o2GVYmZdhnKrGhRnGYStpvILGB1mnGc+iGizNPNEOZFc1bpdhnKav9fEZxuFUg8W02U/lGL+o+5huLJlzqAbLENI/EDiQ3anYpVhJ/+BAw8ZqPC51XRhBNVhCm/1Exu8hoGy/RDW4gsYHMKcZ30q1sFSHKmnGPajYKzOHX0Y2oWyXUjDH5BiXtjB+uYXxXDVukGHcS1/rLOOmaky/KrbX+PFMYyX4MtXg8hzjO6gUlmYOvQNZoMb0gUev8YgM40h9rT+WY/yK/v3Ylm60562kcU6GcTPKdlmOcZQaP5Jj/KoaSxnGd6txvQzjvmpMH2Qa2VyNh2UYR1OxFyOyDv600ufz+Xw+n8/3uvN3f1vNrWl3f+suds/QFV1DPb4L6MDKFhTtQgLZExHBuVfpiq+nHt+Ocy9jZCJFczQFcwQiBZyrUY+/TS3+FrF7FpFRFMzBlMxCRIbjnCN091CLriNyfwLKFMzelOypGGkMMcL499Tiqwnjxm3QAzOPojmVwMxW49/VeDfQmTDugYgQu+XU4huoR7fheEWNx1AwhyeMt1KLb0oYD1HjMDXeTS26Xo0VNZ6SMP5OjQ+ocT4lcyrWzMoxnkgguyeM11OPblfjJN3HXmMtvoV6fBOxew6R0Wo8IWG8S42PqnGBGieo8bcJo1HjKT3GyP2NWo+xS40nUTC76+/hlYRxuRqPoWAOU2NXwvg8IqMpmkMpmuMTxh+r8TE17kPJnpwwPkItvqbJeCrWzFTjX9V4jxpnqnG3hPE66tEdapycMAZqvJl6fHPCeJgah6rxR3RF1xO7xxGqBD3G8Wp8WI0PqnEHNW6hxr+o8V41zlLjrmp8OWF8FSNT1HhowniTGl9Q4+EUzXEJ4w/pim5IGPelZE/KMe6oxhkJ49VqrGFlthp3UeO/9bVOGo+lYA5JGL9FPb5FjWMS+zhEjT9Q4xMIQxL7uIEaH6QWf50wfgiwuo+nYc10NT6d2Mdu48kUzM69xug66vEdOF5T43FqtD3GWnwLrsfYvY95xlMwsn6PsSu6hsg9BAQZxqupx/epcUvdx27jv9R4pxqnJvbR4lynGm9V49iEsYpzMfX4B9TiG3uMBbMvRXtywviAGh9W445q3FyNT6nxfjXOoWRPIjA75RiPo2AOThi/qcYXM4zfV+OTatxPjekDK5/P5/P5BmOD4u5vGw6d+8v3pf+geW1uhy88wG+ffeN3f/M18p+pNEgTNmycXFDG0YmVGQSyU89Pn0WGUzAHAq5nqBSYBYgUdL1IYBbg6CB2z+gw5EBEhuu6ELAjzryKcZsgtBGYvXuGNQBWZlIwB/X8RD0w2/f5nA5hohorCeOOPUYjIyiYAxLGSTnGZ/Uk/kBEhiWMOyWMZQKzV5NxlhrWB4TAbN/nrXcN40G6j42BTSA7pBjJNBbMAqAzx7gzzryGcZuqce8+t/K2MluNG6hxXp+3MBomqbGixpkEiSvNjIxMGJenGEsUzD5q7B58HZBh3AyhTMEsSDEelDDO77OPhsm6Xk0Y5zcZD1TjqxiZTGD2RiRoMnb1DJUaxqEJ4y448xqRDmwaxvEJ45a6j+PVuEOftwcapqhxSMI4L2EcRcEcBEiPsdDPuG/COCbHuFmOsXsfG0Ol5NsD+xrratw+YRyt+5g07tVk3A+oqXGsGockjLvizH+I3JMIFQpm356BUsO4FQXzsu5jt3GzhHFq4++KHuMsgsTVcEZGU7AHgQjONYZKDaPNMe6fYewe2OzTM6zpNhbtvwnjCTnGgxCGqnF2k3GMGk2GsS1hfEGN+yFS1XWjw8jufRyi+9hsfJkw3hAwFMxOTcZp+v06rMdo+xkPTBinUjB7phjrxO4FjIzTfUwadwP+22T0AyWfz+fz+Xw+X2/+SqXV3Jp4pZJzr9EevpPQ/aTPrwsjqQSXYWU7OqMLqMVfb/rKIm32Y5Ts8XRFN9AZfZq+txkXiuZk2uxHiNyvaQ/PxfFKn2cIZFcqwSXE/Jv2+lnE/LnPupFN9O1OI2gPzyV0P2syjlLjtnRGn6IWX9dkLFG2H6doj6Uruo7O6DM5xl/SHr4zxbibGv+pxqeajJuqcTjt4dsJ3c9TjJdjZRs6o09Si69PMX6Coj2GruhaNdabjKfSZj9E6H5BR/hOXNPnuAWyO5XgYmL+oca+b8ltGK9EGMaK8K1E7pdNxtFqnEtn9Alq8Y0pxk9StEfTFX2dzuizKcbTabMfIHQ/pyM8L8W4J5Xgq8S8SHv9TGL+2mTcTPdxqBp/1WQco8at6Iw+Ti3+RpOxjbL9FEV7JF3R1XRGnwPCJuOZtNnzCd1PaQ/PA15tMu6lxufV+Lcm43SqwVKgSnv4ViL36ybjWDXOoSP6GPX4mynGT1O0R9AVXUVndGGO8X7aw3cBrzUZF1AJvkzMc/paNxtnUA2WABU1/qbJOI5KcAVWZtERfZR6fFOTsUzZXkDRHkZXdCWd0UVNRkPJnEXJvo/Q3Ud7+O4M41eI3TO0h2cR8/cm4xZqbFPjAynGRViZSUf0YerxLSnGz1C0h9IVLaUz+mKK8RxK9j2E7l41/qfJuC+V4EvE7u+sCM/C8UyTcaa+1gU1PthkXI9KsBgr09V4a5OxosZD6IqW0Bl9KcX4Fkr23YTuHtrD96QY91PjX1kRnt3PaGUmlR7jOXoVU9K4vu7jdDqiD1GPv51i/BxFexCd0SK6oq+kGN9GyZ5H6O6iPXwv8N8+z1AwB1C2X0Qk/e13Pp/P5/MNtgbNlUrvXfc+T3GHL/7GX6k0APmh0mpuTRwqraifRujuz1gtUzBHUO83COmtaN5CLV6UuV6QE6m7W4CO1HXLrsQ8hePZ1HXDZEQmEjUNa/oaD6ce3/DGjeYkPblOvy22ZTdinsTxXOq6MAkjE4ncLzKOUKFgDqXeb1iTNJ5DLV6cYzxZhxRdGcY9iHkMx/MZxskYGd9vWNPXeAj1fsOagTTuScyfcLyQYZyCkfX7DWt6q1IwB6UMa16v8Rv0HS4mjXsR8wccL2YYp2FkTL9BSG9DKJgDc4xC0ZydayyaU3X4WE9dD2QBkfs9jpcyjrARRkbq27nSGkrB7Es9vjnTWDJn0RUvWUXj73D8I+MIm2BkWL9BSG/DKJgFKQOl7gxFcya1XONpOmjOMu5H5B7C8c8M46YYqRK53+YY904ZKL1e47X0HeYkjfsTuQdw/CvDuBlGykTudxlHGE7B7JkyUEoaz6AWL80xnkEtvibTWDBHUAm+kPn1Pp/P5/MNpvxQae3ND5UGJj9UWs2taUOlKP4D/w0PbvGogKyTiUZlsgZGK/f1A9GqGgtknXgOXBaIcta9ceVaF4xtZA0wGxXJGnoNXGuD0QBxzvq6YCyRNYQduIT8e+SuqlEYWvhJn7cK+3w+n883WPNDpbU3P1QamPzd3wZZdXfvSjyq1UAo7wR+Zb5+IFpV4+oeMkD+CTx448q2LhjzTuBh9Q9CYO0w5g1rYN0wru6BEuQPlGDVjU4/INzn8/l8Pp/PN9jzH9Q92HJvxkmXz+fz+dbt3ozhmM/n8/l8vjUhB6yLb3BaB39L/5PWuKGSiOwFHAU8BYwGRgDnO+eWv87nuVC/9mbgIefccn3us4G7nHP9PlBioI69JmfNFq1/0N6yVm+tWBPyxoHJGwcmbxyYvHFgWnWjlVkDQ/H5fD6fz+fzrdWtUW9/E5EjgQudc2c75y5yzp0PLAEeFpERr/PpRgBnAXcBr4iI0//76YyB0kAee40tkL30duTZmRYnC5Zt87+eVicb42h8vkv2EYSx+ceQmbnrVloZZ+euw3rkGwOE0fnHkC1y11sbt8xdh/VZ042N77U8YwFhVP4xZEbueiujlTm568J48v8qLCKMzH0OI9NbGLZpsb5V7vrKGBt/5WVn2LyFYVWNG9IYVmRVAobnPodhsxaGVTVOJN/YBgzLfQ7DJi0MrYxzc9eFyeQby6y6Mf9jA1qtG9ms5Z87n8/n8/l8Pt/gaI0ZKung5mbg/OSvO+ceAR4Blr2Bp10K3K3/XARspMOiN+PYa2QiBSrB5WSdlBTNmVTsEgxTUtcD2YVKsIxAdk5dN0ylEiylaE7PEAyjGiyhbC8k/dvPUrZfoBIsBoZmGM+iGizFMDnDuCsVu4xAdsowTlPjqRnG4Wr8XI7xi1SCJcCQ1GcomXOoBstyjLtRscuwskOGcWMqwRKK5pTUdWEEQ4KllO1nMowBZftlKsEioJphfKvu46QM4x5qnJ9ulE10H0/KNFaDpZTtBaSfJK+M8e1Ug6U6DEgz7kXFLsVK+gcHGtmUsl1K0Sx8w8ZK0G2sZBjPVWP6hxYHsoCKvRIr27UwHp9hHEk1WEab/VSO8StU84z2PKqFpQgTcozLMgcFRjajbJdRNMdlGEdRDZbSZj+Zut4wflWN5Qzju9U4PsO4rxrTBx5GplO2V1Iwx2QYR6vxExnGApXgYqrBFTnG91AtLMsczBfM/i2MM6jYKymYo3KMS2izH88xXkI1uCzH+F4qhaUI62cYD1Bj+nDLyBZU7FIK5sgM41gqwaWI5A2+fD6fz+fz+XyDpTXm7m8ichaNK4NGNr/dTK8iutk5t9L/FSsiS5xzZ/8vjt309WvU3d+6i91zdEXXEsZ34ejEynSKdiGB7IaI4Nxr1OJvUItvw7lXMLIhRXM0BXMoIgWcq1OPv0stvonYPYvISIrmEIrmOESG4ZwjdPdTi64jco8htBGYvSnZkzDSOLGN4v9HV/x1wvjXgBCYeZTMKY236PUYv67GLqzMoGgXUjC7AajxRjUuV+MxagzU+B1q8c0J46FqHKrG+6hF1yeMC9Q4PmG8hjD+TcJ4KtbMUOOzarw7YTyJgtmlx9gV30A9vl2NE9V4SML4bTU+h8goNR6bMN6rxsdTjWH8f9TiawjjB9Q4X43T1fiMGu9R4xZq3FmNryaMr2JkkhoPVmNN9/EmYve8Gg9T45AUY5mCWUDRnoSRDdT4ezU+mGO8hjC+V40zKdoTe4yxW04tvoF6fEfCeKwarRq79/F5REYn9rHbeI8an1DjPmpcP2G8mjB+CDBqPCVh/Lsa71PjLEr2RAKzU4ZxshoPUmNXwviCGrv3sarGu6lFNySM+1K0JyaMv0vsoyUwO6ixcRVS5P5GLfq6GmsJ445qfIVafGPCOEVf615jLb6VenyLGsck9rHbeJcan0SoJIzrqfG3anxIjTuqcTM1/pVadG2T8SQCs0PCeAP1+M6E8VgK5sCE8RY1vqjG7n2sqPHH1KIbm4wnYWScGh9R48MJ46lYs2nC2L2PdTWeTGDmq/HlhPE1jExN7KNR483U41vVOFaNxySMP1Ljn9W4n+5jt/FhavHX1Rg0jPZUrGyixr+o8X41zlbjPDX+W43fSxi797HbeJMaX0oYj0WkrMYfqvEphGrCmH8lqc/n8/l8g6nBcPe3ORsOnfvLd837X1MGvB2+8mt+5+/+tsqtSZ+pdBSwPOPzi56GxoDHOXfLOnbs/0nCeApmAY0rHzqxMoNAtu/56bPIMAKzN8514OQVjEwkMLsjUtD1AoHZDcerxO4ZhJEEZm9Ehum6ELA9zvwD4yYBbRTM3n2uQjAynYJZgOhbYgIzDyObpRhNwth7tUfDuADnOhPG3RAJEsbd1fgsIqMIzF6IDG0y/jNhXNDnKoRe4wg1zm8yTlCjBR0qBYmrPUSGNdZdJ06WZxj3wPFajnEezvwL4yYjlAmajFZmJIxGjZsmjBuqMVDjFgSJt+iIDFdjlxonEZhdE8ZiYh+fQ2S0Goek7GO3cZ8+V0r0GkfmGPcBCmqc2cdoZIQaa2qcrEabMO6hxufVuHeTcZ4apyBU1Lhek3EffTueITA7NBknJow1rMzs81YnIyMoyN4gSeMuCWMp8Vo/j8iYxp8JqfYxxn2MC3oGSg3jFrqP3cYdMdL7VifDJH2tu42z+lw1Y2QkBdkLpAsnjYFN330sUTB7Av/JMc4nNv/CuKkJ43pNxn30rZeGwOzUZJxMweydMM7uc9VMw9i9j69iZGq/few1voDIWDVWEsYd1DgFoarGcQnjTALZBzFj6B4qGdm4ybiAxtsKa1jZssk4So11NU7TfTR9jI7/4HSoVDB7ZRinIgyh0M84q8m4E4aNEsYpaiwljFsljKMTxtfUuEuTcS8c/1XjON3HcsK4I7H5N8Y9mTD6gZLP5/P5fD6fr7c16UqlV4CXnXMbpaxNo/Hh2RelvX0t4/mWOOfO1re27aW/fHfa4Gigj9309WvclUrOvUZ7+DZC94s+vy6MoBJcgpX5dEafoBbf0PSVBdrshynZk+iKrqUzugAI+zyiaBbSZj9O6H5Je/gO4NU+64HsSCW4nJh/0V4/g5i/9lk3TKNSWIZhFCvCtxK5XzUZR6pxHp3Rx6jF30gxfpSSXUhXdA2d0WdTjCfSZj9G6H5Be/jOFOPOVILLiPmHGv/WZNyISuFKDCNyjJdhZVs6o49nGD9GyZ5AV3Q1ndHnUown02Y/Suh+Snt4HvBak3EXKsGlxLxEe/3MFOPGVAtXAsNoD99K5H6dYrwcK9vQEX2UevytJmORsv04RXscXdFVdEYXphhPoc1+hND9hPbwXSnGXdX4ghr/3tcom1ANlgFDaQ/fQuQeaDKOUuNcOqKPUI9vTjF+kqI9hq7oSjqji1KMp9FmP0To7lfjf5qMu1EJLiF2z9MenpVi3FSNQ2gPzyFyD6YYr8DKVnREH6YeN8+dS2o8mq5oKZ3RF5uMosYPErr71PjfJuMeVIKLid2zrAjPwvFMk3EzNVZoD88mcn3/rhFGq3EOHdGHqMe3phg/TdEeSVe0mM7oyynGM2izHyB099AevjvFuKca/67GZ5uMm6uxTfex2TiGSrAIK7PoiD5IPf5Ok7FNjUfQGS2iK/oyEDUZz6TNnk/o7qI9fA+wosm4N5XgK8Tub2p8rsk4XY1FNT7SZByrxpl0RB+gHn83xfgZCuZQuuIr6Iq+2s9YMmdRsu8ndD+mPXxvinGBGv+ixuebjDPUGKjxtynGxViZQUd0PvX49hTjZymYQ+iKL6crujjFeA4l+15C90Paw/cB7U3GfagEX0GkDZ/P5/P5fP5KpbU5f6XSwLQmDZUcjQ/RzhvsLH0db2lbAiwH/g3cArxM43OT7nLOXTTQxxaRrKnR5nPnzq2sSUOlFfVTCd1PMlbbKJjDqPcbhPRWNGdRi/t91nlPBTmeuvs20Jm6btmJmKf7nTB1J0zEyEQi98uMI5QpmEOox99cBeMJ1N0tZN0W27ILMU/ieCHHOKHfsKav8eCUYc3rMJqF1OObgFqGcTdiHsPxYoZxEkY2IHK/yTEepMd4o8YT9feYZdydmEdbGNfrN6zprULBHDgAxm8C9QzjHsT8EcdLGcYpGBndbxDSW5WC2T9l6JU0nkktzv5otoI5Sf/MZRn3Iub/cPwjwzgVI6NaGPdLGXr1PkPRnJFrLJqTddAcpq4HsjeR+x2Of2YcYSOMDOs3COmtcSVMPf52jvF0avGVOcZTqMXX5xgXELlHcPwr4wgbY2QIkftdxhGGUjB7pgyUBtK4L5F7EMe/M46wCSJlYvd/GUcYRsHsTj2+LWPdUDSntTCeSi2+lr4Dp94K5jAqwZcyv97n8/l8vsGUHyqtvfmh0sC0pg2VUl9QvdroFeAW51z6J5z2/5oLaQyQ7m56nr8A5yfvADcQx15bhkph/H+sCA9t8aiArBOeRm1kDYxW7usHorXBaMk6KWu0LhgLZA1CBq61wWiAOGe9lbHxNqvVmzcOTGuDUYC8f7e3MpbIGrh3P//Qwk8wkv7h9D6fz+fzDaYGxVBpwtC5v3hX+s171uZ2/Mqv+N1zfqi0qq1Jn6m0Mo1Y2QemvVXNObdcRO4GLqRxZ7gBO3bWN6IOm/LvIf0mFrr7V+ZRLdbzTkZW5usHorXBmDcIgXXDuLqHNbB2GPOGDNDauLqHDOCNA9XaYGz1w6JWxryBUuP56/H9lGz6XRV9Pp/P5/P5fIOntHuR/y8bkfHro/R/lw/AMR4ERojIXk2//mYc+3+fezNOaHw+n8+3btdq8OTz+Xw+n8/nGwytSUOl5SvxmJcH8HjT/ofH/p9lzcwBeBYZgOdY3XnjwOSNA5M3DkzrgnFN+D2sutHK7IGh+Hw+n8/n8/nW6takodJD9B30JOv+9ZX6YCIRWSIiTj8P6U099ppeIHsijM99jJUtW6xvn7tumNNCsT7577wMEMblrINpcUKz6sYNyDcWEPJvrb3qxq1y1xuvo815RAFhTP4xZFbueitj8hbmabU2FlfCmD8IbW3Mf/epsCGtjaNy1sHIFi0MA2HM++u6hDAy9zmMzGhh2K7Fev5bzYVJ5BvbWhuZ3sLQyrhN7rowmfyBSRkYnvschs1bGFZ1H6ew6sbNWhi2bbGev49Gprd8jM/n8/l8Pp9vcLQmDZWyb53UO9i5O+cxzY9fnrE2Wv/3odV07DU6kQKV4AqyTkpK5hwqwVIM/W6EB+gt2O1SAtk1dd2wMZVgMUVzVvrxGcGQYAllexHpJ/IBZfslKsESYFiG8a1Ug6WYjDlgIHvkG2UTKsESiubMHONSyvbCHOOXWxjfTjVYgmFqhnEvKnYZgeycYdxUjadnGEdS7TGm/TEOqARfUePQDOO5apycYdxb93HHTGPZLqVoTskxLqNsP9fCuBgYkm6072xhXEDFLsXKDhnGzVsYR1ENllC2n8kwFqgEF7cwvkuNkzKM+6ox/cMNjUxX40kZxtH6Wn+G9GFD0ljNML6HarAEYWLqesHsr8b0u3oYmaHG9M/QEcao8YIc4yVUgkVAJcP4XqqFpTpASzMeSMUuyxzaGNmCil1K0RyfYRxLtbCUNvvpDGORSnAJ1Rxjm32/GifkGJdmDm2szKRil1E0x7UwfjLDWKISXEY1uILGcCnN+AE1pv/woGAOVmP6UMjKLCp2KQVzTIZxHJXgUkTWhCuufD6fz+fzvTkJuHXwnzXiCvK1vzXp7m8jaNxl7Sjn3C1Na3cBOOf2Tvm6ac65p5t+7f007tb2dMrjnwKWJz9Y+40eeyV/Xw/PnTt37ppy97fuYvcCteg66vHdODqwMoOiXUjBNIYczv2HWvwtavHtOPcyRiZSNMdQMAciEuBcSD2+g1p8E7F7BpFRFM0hFM0xiDROvuvxz6hF1xO5PyGUKZi9KNqTMLI+AFH8KF3xNUTxAwBYsz0lcwrWbJ4wXks9vgdHJ1ZmULILCcxOGcZJFM3RTcbb1fgsRkZRSBidc4Su2/ioGvemaE9sMl5NFD+oxnmUzMkJ4/N0RdcSxvcmjCcSmB3V+FrC+Ioau/fR4lw9YXxOjYeqsZowXkfkHkOkQkG6jeup8U8Jo2DNfDVupsbn6IquI4zvwdGFlS3UuEPC+E1q8R1qnJzYx27jbdTim9U4Wo1HJ4w/1X3sNi5Q4zg1/lFf66TxFKzZNGHs3sdu40kEZn7C+A01LlfjMRTMAU3Gm4jd82o8TI0VNf5EjY8jUlXjwoTxD3TFX+8xBmYHivYUrGySMH5djTWszFTjvBTjq/paH0vB7J8wflf38XmMjFHjUQnjfdSiG4jcE2rcR41j1fj/1PhQwngqVjZW47NqvE+Ns9S4vRpfbTJOSRgNztUSxhfUeLgay2q8l1p0Y6YxjP+PWvx1ovhhNe6o+9htfEZf64YxMLMpmpMIzHY9xq74RurxnTj3KlamUjDHUjD7JYzfoRbfosaxiX1MGm8gck+qcV+K9oSE8ffU4q8Txg8j2IRxo4Tx64Tx/WrckqI5sccYu+XU4hupx9/rMRbtcQSyb46xex/b1HiPGv+cMC7EyJiE8RrC+BE17qTGaWr4uxp/kjCeRGC2TRhvUONrWJlG0R6bMHap8VY1jkvsY7fxbn2t1Wj2o2hO6DH6fD6fz+cbLHd/Gzb3F+etg3d/++qv+N1zr62zr92b1Rpz9ze9M9vZNO7M1jPYEZG5NK4W6vdCd99ZTUS2ds49kniui0TkZhE5PzlYEpELaXzwdp8B0Rs59tqesD6B2Q1HHejAyhYEibcyiQwlMLvi3Ks4aQyVArMDIoGuBwRmBxwvNYZKjCIwu/QMlAAC2YrYPINxY4EygdkNYb2edSMbUzC7IvoT98Bsj5HeK6R6jWGP0cqcvkbZBSfdxkkpxh2JeQnnnkUYTWB27TGKCAHdxnFq3DXFuBuiVy4EZh5GT44bxg0omN1o3KmtK8U4LGF8JWG0ul5Q4z+ajNUU43pARY29bw80sjGB7IaYCmDUmNzH8RTMrgnjzD5vcew1vqbGyTnG5xDGrKRxbMK4CYHsmjDOx8i0FGOUY9xVjcsxMoXAzE8xvoRzz6txF0QqCeNcNa4PVFOMmzYZd+hzpVlfY02Ns5uMu6yE8R8J485Nxm2IzbMYt0HCOCZh3EyNVTXu2GScoMZYjbOajMMT+/gqRqYSmHmIGF0vEpidiPlnk7GcMG5LbJ5LGHfrY7Q9xiFq3KmFcTY28TZMkeEUZFeQ/7Qw/kuNY/W1zjIO6bePVjZPGAPdxyl9jIHZlcZd1GpY2bKP0cgICrIbyH97jFa2z9jHF9S4MyJtKcbxwFDdx9E9x2gYd0PM0ISx94o9YUMCs5v+f1nGXdX4GkamYSW5jyUCs7Pu4wuIjNN9TBq3IzbP9xplNz9Q8vl8Pp/P5/P1aY25Uqk7vSvb2TTu0jaaxl3ZznfOLU957IXAkcDeGVclXahfP0r/9xHn3PkDcezX8ftZ465Ucu5VVoRvIXK/bloZRiW4hEB2oCP6GPX4m03rAW32g5TsqXRFV9MZfY7m294XzXG02U8Rup/THr4D+E+fdSvzqQZXEPNP2utnEvO3PuuGyVQKVyGMoj18C5H7TYrxUgKZT0f0EerxTSnGD1OyJ9MVXUlndFGO8ae0h+dlGBcR85Ia/95knEKlcCXCSNrDc4jcg02G4VSDS7Eyj47ow9Tj5ndXBrTZj1CyJ6nxQhqDiqTxBNrsJwjd/bSH7wL+2/cZZEcqweXE7kVWhGfieKbJOFX3cTjt4dlE7qE+68IIKsGlWNmOjuhD1ONbU4wfpWRPpCtaSmf0hRTjibTZjxO6+zKMO6nxeTU+22Scpvs4TI19/4w0jJdjZRs6og9Sj7/dZCzQZj9GyZ5AV7SYzuhLKcaTabMfJXT3qnFFk3FnKsFlxO45NT7XZNxIjUPU+EifdWGkGueq8Tv9jGX7CYr2ODqjK+iKvpJiPIU2+xFCdzft4buB9ibjrlSCS4ndM2p8vsm4MdXClUBFjb9NMS7Cyhw6ovOpx7c1GYuU7Scp2mPojC5XY9xkPJU2+2FCdxft4XsyjJcRu7+zIjwDxwt9jbIJ1eBKoE2Nv8swbklH9H7q8R0pxk9RMEfRFV9OV/TVFOPptNkPErof0R6+L8W4O5XgEmL3V93HF5uMm1INrgKKtIdnErn/azKOUuNsOqL3UY/vTDF+moI5kq74UrqiS1KMZ6jxB7SH708x7qHGp1kRnpVi3Ez3saDG/9dkHE0lWIyVmXRE76Uef6/JWKJsL6BgDqcrupiu+LImo1A0Z9Jmz6cef5+O6P1AR5NxLyrBxT1DPJ/P5/P5Bnv+SqW1N3+l0sC0xg2V1rXWxKHSivpJhO7nGaslCuaQlGFNb0VzGrX4a5nrBTmGuvsuWbectuxAzNP9Tph6G4+ViSkDpe7aKJiDV9F4LHX3baCWYdyRmKdyjBOwMj5loJQ0HpQyUEoaT6cWX5VjPI66uwWoZxh3JuYJHC9lPMOGWNkgx1imYPZPGSi9DqM5Xn+PWcZdiHkMxz9S14WJGBnXb6DU17hfykApaWzxWpsTqMffonm42GvcjZg/4vhnhnESRsb0Gyi9PuOp1OKrc4wLdYibZdydmP+H418ZxskYGdlvWNNbhYLZJ2XoNZDGPYj5PY5/ZxinYGQ4kft9xhGqFMxeKUOvlTcWzYnU4m9kGgPZi8g9gsu4macwDZEqcdOwprchFMwe1OPbM9aFojllJYw30jxc7DXuTeQewvFKxhE2QqSN2P0x2yi7U3fNg7mk8WRq8TU5xpOoxTdkGgvmYCrBVzO/3ufz+Xy+wdRgGSr9/B3pn2G6NrfTJb/0Q6UByA+VVnNr2lApjH/PivCwFo8KyDopa9QGdK7C1w9ElqwTnkbeuHKtDUZD8xUffWtlLJA19Bq4WhlLZA1ZG3ljo7XBKDTeFpdVK2ORrGH2wLW6jcLQwn0YSf9wep/P5/P5BlN+qLT25odKA9OadPc335tQ6H6yMo9qsZ53Ar8yXz8Q5Q1CwBtXtrXBmDdkgNbG1T1kgNbGvBN48Mbu1gZjqx/EtDKu7oESrH6jox6vzL9LfD6fz+fz+Xzren6oNNhyb8YJjc/n8/nW7fy/S3w+n8/n8/l8a9Dd33xvTtbMbn0xQMtavUVlTcgbByZvHJhavR1pTWhdMK4Jv4fBYUzendHn8/l8Pt8gyMn/WuBbQ/NXKg2yAtkDYcPcx1jZqsX6vNx1Q/7XwwY0PvskqwLCei0Mc1qsb5+7bpibuy5MIH/m2tpoWpx0tdpHK/lv7RXGk28sIoxtcYzZLdZX1bgh+cbSGmCcSOOzpbIq9bkdfVomcSv3dEMr4za568Ik8o1tCKNyn8PIFi0MrYzb5q4LU8g3ltcQY96/9soII3OfwzCjhSH/757WxqnkGysIw3OfwzC9haGVcbv855ctWv658vl8Pp/P5/MNjvxQaZAlElANFiGMSF0vmbdTCZZgZNPU9UD2omKXEMieqetGNqVaWErJvC39+IxkSLCMsv0S6cOGgErwFarB0hzjuWrcJMO4gIpdSiC7Zxg3o1pYQsm8JcM4imqwlLL9YoaxQCW4mEqwJNto30k1WIphoxbG3TKMm1O2iymaszKMo6kGyyjbi0g/ke82LoWME9CSfReVYCmGaRnGfdW4a4ZxOmW7lKI5cxWMl1AJlgDDMozvabzWTE1dL5j99ftx5wzjFmo8PcM4Ro0XZhiLVIJL1Tg0w/heqsESDFMyjAdSscsIZKcM40wqdilFc2qGcSzVwjLK9nOk/5XdbVyaaWyz5+v34+QM40FU7FKspH8Ao+0xnpJhHEe1sJSy/WyGsaTGxcCQDOMHdB+zjIeoMf12tlZmUbFLKJqTMozr6T5+Jsd4BZVgEVDNMH6IamEJhvQPqC6YQ6nYZZnDLytbqnFhhnF9NV5A42qhfgI1LskxfphqYakOS9OMh6sxfbBkZY4aj880VoJLEPE/rfT5fD6fz+fz+bu/rfbWtLu/dRe7f1CLbqDufgyuEyMzKNmFBKZxwubcCmrxLdTj23DuZYxMpGCOpmD2R8TiXEQ9/j61+Fs49ywioyiYQyiaIxFpnOyE8a/oiq4jdo+CtFGQBRTtCRgZB0AUP0Et/jph/BsAAjOPoj0Zq8Oi2L2kxrvAdWLNFhTNQgIzL2G8WY2vqPEYCma/hPF71OKbEsZD1VhR4y/piq5XY5mC7E3RLsTIWDU+Ti2+NmGcr8aNE8brqbu7E8YTCcz2avyvGm9X46SE0eBcmDA+h8joxD52G3+hxsfU2L2P3cbH6IqvJYp/A5iEcSM1vpgwdmHNTDVulzDepMblGJlE0R5LIPsmjHdSi29OGLv3sazGn6vx8YbR7EPRHJ8wPqrGBzKML6jxHjXO0te62/gfNd6hxskU7TE5xjFqPAKRMs45QvdzatENaqwkjGMSxq8TxQ+qcQc1TlPj82q8N2E8kcBsmzB+S42vJYz7JIx3qPF5NR6mxrYM474UzXE5xh0p2pOajNdRd/epcbYat1Hja4l9fBUjU9W4QI11Nd6ixrGJfew2/kyNT4BUE8bRavyTGh8CbMI4VY3P6T4mjScRmK2bjLfrPk7V78e9E8bb1fiCGg+jaA5PGH9KLbqxyXg8Rkap8Y8JY5Bq7IquI3T3q3FLNc5NGJOvdbdxASKixtuoxbf2GIvmcArmcERKavyJGp9U4366j93GP6jxYTXupMYpGcY5atwqYfwm9fjOhPE43UfBuVrC+GKG8X41/jlhPB4j+Vdz+Xw+n883mBo0d387d8f/NWXA2+nSX/i7vw1A/jOVBmnCWAKzPS7+D046sDIDm3jriUiVQLbDyYvE0hjYBGYbRKyuWwKzDTF/J3bPYBhJINv3DJQArGxBYOYRueEIZQKzfZ+3OhmZ0viJvhF9/Lw+VykI49T434Sx960nDeP2OHlpJYzPYhilxkrCOLPJOK/PW50axu2bjL1XKfTu439x0pViHEIg2xPLSzhZrsatETG6HqjxmRzjLAIzn8iNyDBObXyNERqDhmbjOKzZHhevUOMWWJneZJxHLP9Q4ySsNBu3VeNzGEarsZxiHNkwSrNxmhpNhnE9rJmHi9vVOLNpH4eq8Z9qnIyVbVKMfyd2zzeMptcoIgTMJjZPqbGixtFNxnmIsQnjxIRx/YSxpsbpKcZ/JYxZ+/g8hjFqbOsxWmYRmO0Txu1XwjgpxdiBkxqBzGoyDtPvx3/i5FWsTGkyFgjMdsQ8mzDOazLOJjBPEblRCeOohHEjNQYZ+7iBfj92G2djZfMc41SszM0wvoDRP4PpxpEIVTWOTBg3VmOBxuCrvzEw8yDuVOOW/YxWttfXOmmUvkb3LLG8iGEs1myPSClh3DKxj0MyjPMRU0wYN0wY128Mr/sYN8swvoaVaVjZKmEsYs12BO45NY7LMD5N5EarcV7m1Zk+n8/n8/nW4Ry4dfEzlfz1NQOSv1JpNbcmXqkUu1doD88mcg81rQyhEnyVQHahI/og9fjWpnVLmz2fkj2DrmgZndFFNN+SvmCOpGw/S+h+Qnt4HrCi7zPINlSCpTj3D1aEp+N4rs+6MJFq4SqEUWps3rchVIJLCGRHNX47x7iEzuiLKcajKNvPELr7aQ/flWLcjmqwhNi9wIrwDBzP91k3TKJSuAphJO3hWUTukSbDUDXuQEf0Aerxd5rWA9rsByjZ0+iMFtEVfYnmD5oumGMo208TuvvU2N5k3J5qsJjYPc+K8MwU42Q1Dlfjb1OMlxLIPDqi86nHt6UYP0TJnkJndDld0Vf6GYvmONrspwjd3bSH70kxzqcaLCJ2z+k+vpBhHKbG3zUZhqlxezqi91GP70gxfoSSPYnO6DK6oq+mGI+nzX6S0N1Fe/jeHOOzanyxyThFjUNoD88kcv/XZBhONbgUK9uq8c4U40cpmoV0xZfSFV2SYjxBjT+kPXwf0NFk3IFqcAWxe0Zf62bjVDVWaQ/PIHL/L8V4OVa2piN6L/X4eynGj1M0x9MVXUxXfCnN/4YtmhNpsx/PNAayE5XgcmL3NzW+1GScpsayGv/QZ10YQSW4HCtz6YjeQz3+forxExTNcXRFX6UrvizFeDJt9qPU4+/TEb0f6Gwy7kwluJzIPU17eBaOfzQZN6JauAoosSI8k7ifcSSV4AqszKE9fBeh+2GTsUDZfpKCOYau6Ct0xZenGE+hzX6EenwnHdEHUoy7UgkuJXJPqfGfTcaN1VhgRXgGsftTinERVmbTHp5H6H6cYvwUBXM0XdGX6IoXpRhPpc1+mHp8hxq7UoyX9fkBgs/n8/l8g7lBcaXS+GFzf3Zu+kc5rM3tfOnP+d3z/kqlVc0PlVZza9pQyTnHinAhkftVxiOKFORg6u6WzOcoyCnU3TU560dRd98F6qnrlu2J+Wu/E8/e1sfKRCL3YMZ6iYI5MGXo1VvRnEItzjMeTd19J8c4n5in+p149rYBViakDOaSxgNShl5J48nU4q+3MH4bCDOMOxLzRL8Tz97GY2X9lKFXd20UzP4tjK328Rjq7tYWxsdx/CvjGSZgZWzKQClp3C9lMPd6jMfq93OWcWdi/oTj3xnPsCFWRhO532eslymYBSmDuaSxxWttjqUe5xl3IeYPOF5OXRcmYWREytAradybenz7KhiPox7fRPOQtte4GzG/x/FKplFkOHG/oVd3FQpmz5ThYdJ4ErX42lUw7kHMIziWZxinIFIldn/MNsoe1F3z8DBpOIl6rvF46vG3Mo2B7EnkHs4xTkUoE/On1HWoUpDdqLvm4eHKG4tmIbX4RrLuqlgwB1IJLsn8ep/P5/P5BlN+qLT25odKA5MfKq3m1rShUhj/jhXh4S0eZck64WlUovmn16/v6weiVTUGZJ3AD1xrg9GQdeLYyBtXrlU1FsgacA5ca4Ox1a3s1wZjEajlrK8bxiGFe3s+38nn8/l8vsGcHyqtvfmh0sDk7/42yArdT1biUa0GQnkndSvz9QPRqhpX95AB1g5j3pABvHFlW1Xj6h4ywNphbPVDjrXBmDesgXXFGMY/XWmNz+fz+Xw+n2/dzX9Q92DLvRknND6fz+dbt3szhrU+n8/n8/nWmOJ18IO6fQOSv1JpkGXNnAF4lrXh28YbB6ZWxjXhXy7rgnFNaF3YR29cuVbdaGXOgEh8Pp/P5/P5fGt3a8OZjm8AC2S3PrcgT8tK/ltKrczPXTfkf70wgcZnemRVRNighWFui/V8o5VtcteFDWl8rkhWJYT1Wxxjq9z1QHZo8fXb5q43jHkXG5YQ1mtxjDkt1lsZW+3jJPKNbQjjWhxjTov1VX2tJ5NvLCOMbXGMLVustzJul7suTKG1cUzucxiZ3cKwqsapND5HLKsKwujc5zAys4VhXov1VsaNaG0clfscq27cPndd2Jj8fzVXEUbmPodhRgtDK2Or9Vkt/37z+Xw+n8/n8w2O/FBpkCUSUAkWZZ44lex5VILFGNksdT2QfajYpQSyIHXdyOZUC0somXekH5/RVIOlVIIvk36SXKASXEw1WJZ54lSy76YSLMHIphnG/dS4d4ZxOpVgCSVzbo5xGWWbZ7xEjSMyjO/JNRbM/pTtYgLZM8O4hRrfmmEcSzW4MsdYpBJcRjVYmmN8rxo3yTAeSMUuIZA9MowzqQZLKZlzso2FZZTtF3OMl1LJMbbZ9zeMbJxhPEiNu6WuW5lFxS6laM7KMI5T4xdIHzaUqASXUQmWAsMzjB9Q40YZxkPUuGuGcTYVu4SiOTPDuJ4aL8oxXk4lWAYMyzB+iGqwBMPUDONh+mdmlwzjllTsYormjAzj+mq8MMPYRiW4Qvcxy/hhqsFSDFMyjIdTscsIJP1DIq3M0X08Lce4lLL9POn/6itTCRZRCZYAQzOMH9V9nJxhPEL3cccM41w1npJh3ECNn8s0VnuMQzKMH6daWJpjPIqKXZo5RLSytb7WJ2cYx1MOLkFkTbjiyufz+Xw+n8/3v87f/W01t6bd/a272P2TWvwN6vFd4DqwZgZFs5DANH7S71wHtfhW6vFtOPcyRiZRtEcRyL6IGJyLCd0PqUU3EbtnEBlFwRxC0RyBSBmAMH6AWnw9UfwnkMYtzYvmOIw0rvqI3FPUomsJ3W8ACGQeRXsSVqYljDdSj+8G15kwbqvGdjXenjAeTSD7qDEidD9qMh5K0RyeYawkjGPU+Gc1PqDG+RTtiX2N0Q3U3T0J44kEZpuE8Rbq8R0J4zEEsqDHWI9/SD2+idg9i8johLFNjb9R46NqXKDG0Wp8MmEUAtmBol2YMP4jYezCmi3UuLUaVyT28RU1HksgeyeMP1Djc4iMpmgOo2AOSxh/rcbH1LgPRXNsrzF+glp8LaF7MGE8EStTM4wz1Tg3Yezex1cwMlmNeyWM36ce36zGMQljSY2/oiu6ntg9jkiFwOyj+zhKjY+r8aGE8aSeO1zF7iU13qvGWWrcSo3/TRhfbTIKzoUJ4/NqPJyCOTRh/CVd0Q0J4766j1nGHdU4WY0vJow1rJmtxjkpxuUYmarGPRPG71GPb1HjWN3HhtE5R+S6jU8gUk0YR6rxMWrxdWo0BLIjJXsSRiblGE8iMFuq8T9N+ziVoj2OQPZIGO+kFt+Ccy9kGH9BV3Rjk/E4jIxQ46N0xdcRxQ+B2BTjC2q8T41b6j4mjTdTj+9U4zTdxyzjODUe0mMM3c+pRTcSuycRqVIw+1EwxzYZryWKH1bjTmqcqMbn1Xi/Gufo34/dxtfU+L0MYz1hfDFhPBSRYsJ4A7H7sxr3p2iORSR9wOrz+Xw+32BssNz97adv3fl/TRnwdrniZ/7ubwOQ/6DuQZowGitzcPJPnHRiZQY2cXWSSJlAtiSWv+HkFQwbYmU2IkbXDZbZWHkCkTEIowhkTs+wBsDIpo23LpkSQhtW5vR5+0vjOefg9I5OVuZgmJBi/FfC2Hvlj0iFQOYQy98bRpnYZLRYZmHl8RzjJo23LpkSQlmNvVdxGSaqsQYIVrbsbzRzcPG/cNKFlS2wiSt/RCpYmUMszySMs/oYAzNLT37HJoxtKfvYpsYt+1zF1WustzD+W40zm4xVrGyp+/iqGmc2GWfrye+4ntcl3VhGaHzv9DHKJDWGapyDYXyTccuEcRZWklcnde/j33Hymj5fX6M1s/Xkdz01btkzrGkYNiMwWxG5CkLje6e/cSsckRq3ajKOUePLCWPy6qRq4rVOGkWNQZNxjH6/NhvntDB276NVY+9bRYWx+lq/jJO6vtbTmoxbJoyTsbJFk3FLYvdUwti7jyKCYXPdx2rCOCJhnIyVLfsYk28V7W+c1WQcktjH/2BkSqoxcE8Ry/pqnJNinKPGqhqHJ4xTCGRLMFHCmNzHcWp8RY2zM4zP5hhnE7g/Zxot09U4BNHvnb7GyQQyB0wMWALTvI/dxuUZxqFqfC5hTH4/FhL7+CKGsWosJozdr/XQHmPWlWY+n8/n8/l8vsGZv1JpNbcmXqkUu5dpD88kcr9tWqlQCb5KILvSEZ1PPf5u07qhzb6Xkj2HzmgRXdGXaL5NecEcRtl+ntDdT3v4LqC9z7qVuVSCpTj3EivCM3C80GddGE81uAqRMWr8XYrxYgLZmY7o/dTj21OM76dkz6Izupyu6Ms03167YA6nbD9H6O6lPXxPinFrNb7IivB0HC82GSdQLXwNYSTt4RlE7v9SjJcQyE50RO+jHt+RYjyfkj2TzugyuqKvpBiPUONdtIfvBTqajNuo8Xndx2bjhmocrsb/12SoqnFHOqL3Uo/vbFq3tNnzKZrT6YovpSu6OMV4FGX7GUL3Y9rD96UYt6UaLCV2z6rxpSbjRDUOoz08ncj9ockwhEpwKYHMoyN6D/X4+ynGD1I0p9IVXUxXfGmK8RjK9gLq8Q/piN4HdDYZt6MaLCF2f2dFeCaOf/RZN0yiUvgawhBWhGcQpxovI5DtaQ/fTeh+kGL8MEVzMl3RV+mKL0sxHkvZfpp6/AM6ovenGLenGiwhcn+lPTwTxz+bjJOpFK5S42nE7k9NhqFq3I728DxC96Om9YA2+xGK5kS6oi/TFV9Oc0VzHG32U9Tj79ERnQ86CO41zqcaLCJyf1Hjv1KMX0MosyI8ndg92nSEYVSDy7GytRp/nGL8KEWzkK7oS3TFV6QYT6DNfpJ6fAcd0QdaGM/A8e8m4xQ1ltT4WIrxCqzMpT18J6G7K8X4MYrmBLqiL9AVL04xLqTNfoJ6fLsaa32fQXakElxB5P5Me3hWinGqGgtqfLzpCMPVOIf28B2E7p4U4ycomuPojC6kFi9NMZ5Em/0Y9fi7dEQfSjHuRCW4ApH0t9/5fD6fzzfY8lcqrb35K5UGJj9UWs2taUMl5xwrwuOJ9C1n/StQkAOpu+9kPkdBTqTurstcD+RwQncHUE9dN2yL46/9To57G4eVDYncIznGA6i7766C8QhCdxtZt8U2bIfj6X4nx72th5XxKYO57ooUzP4pg7nEI8yJ1OJsY0GO1N9jutEyj5gn+5149rY+VtYjcr/PWC9RMPtSj29bjcb5xDyO4+WMZ9gAK+NaGPdJGR6+HuNR1N23gSjDuAMxj+J4JeMZxmNkNHG/wVx3bQRmb8J+w8OBNO5IzB9xLM94hg0xMiJl6NVdmcDsSdhveJgwmIXU4+tz1o+mHt+aY9yZmP+XaRQmIgwlpnno1WssyO7UXfPwMGk4gXp8Q876MdTjm2kedvcadyXm9znGSQhVYpqHXr3GQHZLGR6+HuOx1OObcoy7EfFb4NUM42SENmKaB0rdVQhkF0L3w1UwHkc9/lamMZD9qBb6Dx99Pp/P5xuM+aHS2psfKg1Mfqi0mlvThkph/AgrwiNbPMqSdeLYqETzVQCv7+sHIkPWCU8jb1y5VtUYkDVQGri8cWBqZSzSfFVK394Mo9B8JVffWhkLZA2zBy5vBBhSuKfnM9F8Pp/P5xvMDYah0pbjh8/96VvWwaHSop/x++dfXWdfuzcrf/e3QVYY/3QlHtVqkJF3crwyXz8Q5Z0cgzeubKtqXN1DBvDGgaqVMW/IAG+OsdUPOVoZV/ewBryxURj/bKU1Pp/P5/P5fL51Nz9UGnS9GYMKn8/n863bvRlDRp/P5/P5fD7fmp4fKg2yrN5afNVaG75t1gWjvCmK/LxxYPLGgckbB6ZVN1rZamAoPp/P5/P5fL61urXhzNs3gAWyG4bJuY+xsk2L59ipxddvm7subEjjM2ayKiFMaHGMVTVul7suTKLxuSNZtfW5BXn6MfLfmjswxkLOI1bGODd3fdWNU8g3lhHWa3GM/JNX29K4fe56wxjkPKKMMK7FMVoZd2yx3so4lXxjZSWMc1qstzLOy10XNiLfWEUYk/scRma3MLQyzs9dFzYh3zgEYXTucxiZlbserKLRsAmNz1PLaijCqJx1wcjM3GOsqtHKli2/n3w+n8/n861DOSCWde8f//HSA5IfKg2yRCyVYFHmyV3JvodKsAQjM1LXC2Z/ynYxgeyXum5kCyrBEkr23enHZwzVYBmV4KukDxuKVILLqAZLM0/uSva9VILFGJmeYTyQsl1CIPtkGGdSDZZQsudlGMdSLeQZS1SCS6kGV2ae3LXZ96tx8wzjQbqPC1LXrcyiGiymZN6RYRxHtXAlleArpJ8kl6gEl1MNluUYP6Cv9aYZxoPVuHeGcXZjH825Gcb1dB+zjG1qvBJhZIbxQy2Mh1KxiwlkzwzjlrqPb8swrk+1cCVl++Uc4yLdxxEZxg/ra71JhvFwKnYJgeyRYdxK9/EtOcZllO0XM4xlKsEiKsHSHONHG0Y2zjAeofu4W4ZxLhW7mJI5O8O4gRq/kGO8gkqwDBieYfw41WAJho0yjEepcdcM49ZU7CKK5qwM43iqhaWU7UWkD23KVIPFOUahzX6CarAUw7QM4zH6d88uGcZtqNjFFM0ZGcYJuo8XZhgrCeOwDOMn1Zj+IdpFc5wa0z9s08q2VOwSiua0DOOGVIJLEFkTrrjy+Xw+n8/n8/2v83d/W82taXd/6y52/6YWf5MwvhtHB1ZmUDQLCUzjyhXnOqnH36UW34bjFQwbUrRHE8heiBiciwnd3dSibxHzHMJIiuYQCuZQRNoACOOHqcXXE7lHEcoEZi+K5jiMNIYckfsLteg6QvcbQAhke4r2RKxMaTLehaMTK1uocauE8TtqXK7GYwhkz4TxLmrRTQnjoWosqfEhavENCePeFM2xCePT1KLrE8Z5apysxn8l9rHbeCKBvs3QuQ5q8Xeox7ercWLCKGr8sRqfRxiV2Mek8Xoi95gaF6hxZMJ4HaF7QI3zKdqFCeM/1XiPGmeqccuE8dtqfBXDJDXuocYoYXxBjYdSMIckjA+q8XGECgWzgII5JmF8So0P9hhL9kSMTEoYv6HGLqzM0te629iuxjtyjD+iFt2sxtFqPDhhfECNT6hxHzWOUOOf1fgQYBLGiQnjjYTxvQnjiQRmdsJ4qxpfwzBZjbvnGA+jYA5KGH+j34/dxn0pmKNTjA8ClkB2UOOGvcboBkJ3H44aVmZRMidizSw1rkjs42sYpqhxtx5jPf4h9fiWlTRWKZh9KZqjERmuxicT+2gJZEdKdmHC+A9q0Y0tjLdSj+9MGI8lkF0Txh+o8UU1Hq7Gohp/TS2+scl4DCKNQUwUP0Etvo7QPZwwnoiRCWp8KWGsY2W2Gmc2Ge/A8Z8UY6jGW9U4Ro0HJoy/UuOTatxP97Hb+LgaHwGCxGudZdxSjVuo8b+Jfew2HkcguySM31fjSwnjQYgUcM4RuW7jnxGGJF7rtIGWz+fz+XyDs0Fx97cNhs/96TnpPzRbm9tl8U/5/Qv+7m+rWt77AHzrcMIIrEwnlueATqzMwOgwp1EJI5tj5QkcL2OYiJHNEGlc3CZiMGyGlRmIvh3DyPSegRKAkalYmUHj8znasDIdSVwBYFgfK9Nx/AcAK9MxrN9k3DxhnI6R5Fv3uo1PqnESNtU4PWHcvOfkuNc4HRCEcopxA6xs3mTsfbuWMDKxj10pxjZd/3OTUVL2cVhiH5PGKbqPpoXxvxn7OEoNz6+EcbkaN00YbcI4HGF0w9BvH2cAFqHc+D30M07HsUKNM/q87a13H1/IMJYTxldT9tFi2Fyfd8RKGCtq7D05NozHygwc7Qlj71vKeo0v9hhtqvGpFsbpuo9jsP2+H6fpFXhZxuQ+Gn2usX2NZjpx/CJQ132clDBW9M9Ut3Fyv9fams2JXbdxbMo+dhsDfa03B4Y27eN03cc046jGMXqMM3KMr+n3/yYZxhEJY+/bVY1spC6LUNX/e0hifTxGpmPpSBh7r94URus+vvQGjQHWTCdym6+EMUCoYpv3USZgZAaWTjXOyNjHbuP0ngFoo6oan1bj1AzjdISRCOPUWNB1wbCRvtYFNU7vY/T5fD6fz+fz+fyVSqu5NfFKpdj9i/bwDCL3f00rZSrBlwlkdzqi91KP72xaF0r23bTZt9EZXUZX9BWa34jaeFvXFwjdvbSH7wY6+6xbmU0luArnXmJFeDqOl5qOsD7V4CpExqjx/6UYv0Igu9ERvYd6/L0U43tos2+lM7qErujiFOPBaryL9vC9KcY5VIIrce4FNf4jxfg1REazIjyd2P2hyVChEnyVQHZW4/dTjO+lZM6hK7qYrvgSmiuYQynbC6nHP6Yjei/Nt6S3spUan2VFeAaOfzYdYQOqwdWIjGRFeBqx+2OK8WIC2Yn28F2E7odN64Y2+z6K5iy6oq/SFV+aYjycsv089fiHdETvSzFuTSVYSuyeoT08A8e/mozjqRauRhiuxj+lGC8hkB1pD99J6H6cYjyfojmDrujLdMWXpxiPoGw/Rz3+Ph3R+RnGZcTub7SHZ6YYJ6hxqBofTTFeSiDzaQ/PyzB+gKI5na7oi3TFi1KMR6rxTjX2vd27lW2oBsuI3F91H//dZNxQjVVWhKcSu8ebjlClElxGINvTHr6D0N3dtG5psx+kaE6lK7qIrnhJivFoyvYz1OM76Ig+kGLcVo1P6T6+3GScqMayGp9oOsIQKsHlBLKNGu9JMX6YojmZzuhCavHSFOOxlO2nqce3q7HeZNyearCEyP1Zja/0WTdMolL4GkKbvtZ5xrcTuvtSjB+laE6kM/o8tXhZP2PRHEeb/RT1+Lt0RB9KMc6jGiwmck/SHp6VYpysxqIan2w6wlCqwRVY2UqN9+cYP0stvirFeLwab6Uj+jDNd3mzMp9qsBgRP1zy+Xw+nw/8lUprc/5KpYHJD5VWc2vaUMk5x4rwWCL3YMYjAgpyAHV3W+ZzFOR46u7GzPVADiF03yPrltOGrXH8rd8JfG9jsTKByP0uS0BB9qPubl8F46GE7s4c47Y4nu53At/bOKxsQOR+n2Pcl7q7YxWMhxG6O1oYn+p3At/belhZL2V42F2RwCwg7Dc8TDzCHE8tzjYW5HD9XolS1y3bE/NEv5PjpNHI2JTBXNK4N2G/4eHrMR5B3X03xzifmEdxLM94hg0wMiplMNddiUD2JHTNw8OEwRxHPf5GjvFI6u7bQPwGjeMxjCCmeTDXXRuB7E7ofrAajTsS8Qfg1YxnmIBhGDHNg7mkcVdC96M3bjRHUo/zjDsR8X/Aa6nrwkSECjHNg7nuygSyc8rwMGk4lnr8zZz1o6jHt5D1yZCWXYl4BPTqyP7GSQglYpoHSknjToTurlUwHk09vjnTGMg+VAv9B6Q+n8/n8w3GBstQ6Sdnp3+u5drcrkt+4odKA5AfKq3m1rShUhg/zIrwqBaPMmSdlDUq0nylwuv7+oFoVY2WrCHDwOWNA5OQf2uGVsaArMHcwLWq+/hmGNeGffTGgamVsUDzVVKvbx2GFO7GSvoHlvt8Pp/PN5jyQ6W1Nz9UGpj83d8GWWH8s5V4VKuBUN4J08p8/UC0qsbVPQgBbxyoWg2+WxlX9wk8rPo+vhnGtWEfvXFgamXMHxi1Xocw/vlKa3w+n8/n8/l8625+qDToejOGAD6fz+dbt3szhmM+n8/n8/l8vjU9f/e3QZY1Ww3AhURvxtvbVrVWxlZvD3kzWhuMrd7etiYY14Z99MaByRsHplbG1n/HW/FXift8Pp/PN6hy8r8W+NbQ/JVKg6xAdsUwNfcxVrZv8Rz5n/zf6uuFSUBbziPaEDZscYztctdX3TgFKOU8oowwocUxVtU4L3e9YSzmPKKMML7FMbbNXQ9k5xZfPz93XZhKa+MGLY6xTe56631sZZxG4zNksqogrN/iGPkn2LblPu6Quy5sTP7PAKorYZzbYn11G4cgjMt9Bitb5R6j1fdjIDvmrhs2Jd84FGFszrpgZU4Lw6oaNyPfOAxhTM66YGXLFoZWr3W+0cpWWJmd+xifz+fz+Xw+3+DID5UGWSKWSmFx5sldm30/lWARVmamrhfMQZTtIgrmwNR1K7OoBosp2felH59xVAtXUgkuIX3YUKISXEY1WJZ5ctdmP0AlWIzJNB6ixgMyjLPV+J4M43pUC8tyjG1UgsvVmH5y12Y/RCVYhJEtMoyHUraLCGS/DOOWVINFlOy7Mozr6z5eTPpApI1KcIUaR2cYP6zG6RnGw9W4T4ZxKzWel2NcRiX4aoaxTCVYTDW4Msf4UTVunmE8Qo0LMoxzG0bzjgzjBmr8Cukn8mUqwSI1jsowfkyNm2UYj6JiFxHI3hnGrdV4boZxPNXCUt3HdGM1WEw1WIowMvUZ2uwn1LhphvEYNe6ZYdym8WfGvC3DOIFqYRll++UMY0WNyxBGZBg/qX+uN0k9RtEcR9kuJpA9MozbUrZXUDJvyTBuSLWwlLL9Yo5xCZVgaY7x0w0jG2cYj9fvx90yjNtTtosombMzjBN1Hy/KMFapBkupBMuA4anPULYXqHGjDONCNaZ/2KaVeVTsFRTNWanrhklUgksQ8T+t9Pl8Pp/P5/P5u7+t9ta0u791F7tXqMc3UY/vxtGBlekUzUIC0/gJt3Nd1OPbqcW34XgFw0SK9igC2QMRwTlH6O6lFt1EzLMIIymaQyiYgxFpXOETxr+nFl9P5B5FKFMwe1Ewx2BkhBr+Tld0PZH7NY2frs+jZBdiZGLC+C01dmJlBkVzQpPxNjUuV+PRBLK7GmNCd1+T8VAK5qCE8XfU4hsSxr0pmKN7jJH7G7XoeiL3GzXOp2RPSBhfphZ/izC+J2FcSGBmJ4zfpRbfnjAeQyC7JYzd+/gchlEUzKEUzIEJ42/V+JgaF1A0RyMyXI1/VeMDCeNCjGyYMH6TML5XjVtQMguxZpYaO3Ufu42T1LhrwniPGp9X42FqLKrxETU+rsZ9KJqjEsa/qPHBhPFEjExQ478Txi6szFTjzITxu9TiOxLGYwlkl4TxbmrRzWocrcYDEsaH1fhEwng0IsPU+LQaHwIMgcynaBcmjP/S17rbOEuNW6ixI2F8FcNkNe6cMN6lxhfUeDgFs3/C+BC1+MaEcV/dx77G0D2EYAhkB4r2hCbjNwnj+3DUEsYZGcYpatwpYfwxtegWNY5J7GMhYbyByD2JUFHjkTnGHdU4Xo3/1H1MGk/Emuk9xlr8HerxnRnGKGF8McP4oO5jlvEpNT6cY+zexzqBzKZoFiaM7Qnja1iZSsEc02T8EbXoVjWOVeP+CeMDavyzGvdT49CE8TpC9wiCTRg3SBi/QRjfn2P8NvX4ez3GojkWKzs2GW8h5qWE8QBEgoTxBiL3FEJVjUf0GH0+n8/n8w2iu7+dtdv/mjLg7br0fn/3twHIf6bSIE0YipFpGJkKdGJlo54T00ZFjEzDyjQdKm2Ikak9P50WEQxTsTINoYgwEiPTSF7ZY2S8/loX0IaRaQhDE4Yx+vz/BNDnGp1Y7zZOU+O0DONGPYOvvkaDYWrj1ygijEoxTtA9SDeaHuO/1Di1z9VJwjCsTCOWp4GuFvu4XI1TUozTEEoZxg3112pAWf/vIQnjWEyP0aTsY7fxLz1GkeTb4koYmZowTsowboTQhjBaDb1XH/Ua62qcmmH8txo36nPlT6/xrznGaViZ2jOwyd7HLONEjGxE4wOGK7peTRjHYWQjHC8DRn+/yX0cjpWpxPo9bWUaIsm37rUlXuuG0TYbXfc+lhHG6Pdr8rWeqK4sY2Mfba5xGrH8rYVxKo7XMEzByuQm47Qm47SeQUjffYwSxubXemqOcUSKMfnWvTZd7zZObdpHmzBWEMbq90uzsXsfqynGcQljkLqPhmkY+TvQpXuQ3MeyGqe1ME5LGNP2cZru45Cc1/qVhDH5Z6bb+MxKGqc1/Zmxie/HamIfe/+zoPe1jlONPp/P5/P5Bk/Of6aSLyN/pdJqbk28Uil2/2RFeDqx+0PTSolK8CUC2ZP28N2E7gf9vrZk30nJvIOu6GK64kv6rRfM/pTtlwnd3bSH76ExrOnNyEyqwVU49yIrwjN6BkrdCeOoBl9DZCwrwlOJ3Z+ajtCmxj1oD88jdD9qWhdK9jxK5u10RV+lK740xXgAZfsl6vGP6YjeS/MtwK3MohJcReyepz08o2eg1HuE9dQ4Wo2Pphi/QiC70R6+k9D9OMX4bkrmrXRFX6YrvjzFeCBl+0Xq8Q/piN6fYpytxmfV+O8M4yg1PtZ0hLIad6U9fAehuyvH+EW64kUpxoMp2y9Qj79HR/SBFOOWanyG9vB0HdYkj7C+Gkeo8fEU48UEshPt4bmE7p4U43spmXPoii6iK16SYjyUsr1QjefTfKt0K1tRCa4kdn+lPTwzxbiBGoep8YmmI1TUuIMa7+1nbLPvp2jOojO6kFq8NMV4mBpvpyP6YIpxLpVgGbH7ixpfaTrCeKqFqxGqanwyxXgJgcynPXwbobu/ad3QZs+naM6gM/octfjKFOMRlO3nqMe3qbHvnb+sbK3Gp9S4vMk4QY1lVtRPJebPKcbLCGQ7Nf4kxfgBiuZ0OqPPUouvSjEeqcZv0xF9ONVYDa4kck/QHp6dYtxQjW2sqJ9CzFNNR6iqcVvaw7cSup+mGD9E0ZxKZ3QBtfjqFONRlO1nqce30BF9NMW4LdVgGZF7jPbwnBTjRDUW1fh0ivEKApmrxp+lGD9C0ZxMZ/RpavE1KcZjKNsLqMc30xF9LMW4XeOtlnrVl8/n8/l8g73BcqXS/Wfu/r+mDHi7LbvPX6k0APmh0mpuTRsqOedYER5N5LI8AQXZl7q7M/M5CnIMdfetzPVADtKBVPotpw1zcPy93wl8b6OxMoHI/d8qGI+l7r7Zwvh9su5sZpiL4y/9TuB7G4OR9VMGc73GQBboMbKMrfbxEEJ3Z45xaxxP9Tvx7G0sRsYRuz9mCQhk71U0HkrobifrTlGGbXD8Occ4DiNjUoaHSeNeqQPOnkeYY6jH2caCHELd3ZFptGxHxOPAqxnPsB6GUcQ0Dw+7KxLI7ikDztdjPJR6zj5atifiUeC1jGdYH8NwYpoHc6/HeDT1+KYc42HU3XfJunOZZT4Rf8wxboBhKDHNg7nuSgSyS8qA8/UYD6fuvtPC+AfgPxnPMAFDhZjmwVx3bQSyE6G7ezUadyLid8B/M55hQwyllKFX0rhjyhA2aTyKenxzzvoR1ONbM9cD2Ztqof8Q1+fz+Xy+wZgfKq29+aHSwOSHSqu5NW2oFMYPsiI8psWjWt1OukjzVSmv7+sHolbHKNB8xUffLFnDmoFrVffxzTC2ur352mBcE17rwWAMyBoUD1ze+Oa06sYhhbuwkv5h4D6fz+fzDab8UGntzQ+VBib/mUqDrDD+xUo8qtVAKG/IsDJfPxC1OkbeCROs/hN4WPV9fDOMrYbKa4NxTXitB4PxzRiEeOOb06obw/gXWOuHSj6fz+fzDYqcQLwOfqaS/5yoAcn8rwG+N7s34+TV5/P5fOt2a8JwzOfz+Xw+n8/3v84PlQZZ1sxdiUe1mtjagaCs5loZ14SptDcOTGuDsdVftd64cnnjwNTK2Po/Daz4q8R9Pp/P5/P5fH6oNOgKZBcM+W9ZsDKvxXPs2uLr5+euC1OAcs4jyggTWxxjdRunAm05j1gZ4/a5662NO+SuN4ylnEdUECa0OMZ2ueurbtyI1W/cpcXX75i7LmxM47OjsqoijM99Bivb5h6j9T7ulLsubErjc3CyGoKwfu4ztBoCtDIGLYympXHYGmDcnPx3fQ9DGJf7DFa2amFoZdw5d90wnXzjcISxuc+wuo1WtiYwW+Y+xufz+Xw+n883OPJDpUGWiKVSWJx5ctdmP0Q1WISV9BOGxu3Pr6BgDk1dtzKHarCINvvB9OOzPtXClVSCy0gf2pSpBIuoFq5CWC/D+GE1zs4wHkHZLqJgDs4wbkU1uII2e36GcQOqhWVUgktJH4iUqQSLqRauzDF+lEqwCCuzMoxHqvHADOPWVIMrKNn3ZRjHJ/Yx3VgNFlMNrso4SRba7MepBIsxMjPDeJS+1nnGRZTsezKME9R4CelDmwrVYAnVYFnGSbLQZj9BJViEkS0yjMfoPu6fYdxWje/OMG7IkJU2jmlhnJF6jKI5jrJdRCD7Zhi309f6vAzjRIYUllEJLiZ9aFOlGizV13p0hvHT+lpvnmE8QY0LMozbUwkWUTLvSF03TNLX+is5xiVUgysRRqU+Q9l+RvdxswzjQsr2ihzjfCrBYkrm3AzjZP1z/VXShzZDdB+vRBiZY1yMkU0zjCepca8c4yJK5m05xqWU7ZczjENXwvjZFsZT1Lhn6nogO1K2V1Ayb8kwTtHvRZ/P5/P5fD6fz9/9bbW3pt39rTvnXqMW30w9vgvowMgWlMwJWLOFrteox9+nHt+G498YmUTBHE0gOyMiOOcI3c+oRd/C8QzCaArmEApmf0QaJ+dR/Ee64uv1dvFlCmZviuYoRIYBELvnqEU3ELrfABDIPIr2eIxMUMOrarwb6MTKFhTNCVgzQ9e7EsaX1XgMgeyUMP6UWnRTjvEPdMU3qLGixiMTxmfV+IAa56txfI5xIdZMTxi/Rz2+XY2TdR+Txp+o8Vk1HqrGghr/nxofVeMCiuaIPsau6Hoi9wBg1HhcjzF2y6n3GLsyjHeq8RWMTKZojsHKjgnj/Wp8To2HUTD79RjD+P+oxTcQu8fUuI8ah6rhGbqiG5qMx2Nkg4TxJurxPWqcqcbNE8Y7qMd3qHGKGndIGO+jFt2sxjFq3Ddh/L0aHweqajw8Yfy7Gh9U4w5qXF/XX1HjvWqcpd+PSePtanxV9/FYrMxXY5wwPq/GwymYfXKM+6pxSIZxRzWulzB+S401rMxW42YpxuUYmarGeRnGsYl9DNT4OzU+AQxJ7GPDGLm/UYtuIHIPATaxj93GlxP72G1ciDWbqrGzaR+nUjTHYWX7hPFeatEtCWP3PuYZj0Ckqsa/JoyBGk/AyLgeYy3+FmF8nxq3pGgXYmWThPE26vGdapxG0RxLYObpekzo7qEW3arGcRTt4QSyIGH8LbX4xoSx+7XuNv5FjQ+rsfu17jb+W433q3EORXtCwtih+5g0Hkdgtk8Y71bjCwnjPohYNT6ixifVuB9Fc1iP0efz+Xw+3yC5+9v6I+bed/q6d/e33a+6j9+/uHydfe3erPzd3wZtZYyMx8gEnOvAyAREkleLFHR9PLFrQxiPkQ0QaXweiIhg2AAjE4hdjJFROsTovUpBZIw+/6uIlHW9921vwnBExmP07U8i4xGGJwyVPkaR8YgkrxYp9qzHrowwob/RbaC/hyzjWIyMbzJW3oBxPM51ZRpFxoMr6z6OTzFOIHYuYez9o9kwTsC51xCppBqNjMcxAZDG8yeMQkWPO0GNEzKME8A13o4mmUYwMrqf0cg4ff7/JIx9X+u+xgkrYUxedZPcx8Zjpd9r3f392sr4X0SqKcYRjXWeTxiHJdarPa+fc7Wc13oCuKoa108YjRonEDvByJgU41gM43HkGZtf6zTjBJyrqSdrH6uYlTb2fm6VkXEYJuBYocYJfYyGkSmvdZ4x67WeAG4IhgkZxvFqHJtiTO7jEDX2XhlpGJUwWjUO7WM0zcY+V1gV9fXvNjb2sefrU4yNt1A272PSOD7FOAHHiwljch+HNBnHN12pVlLj+D772Nc4QV9rg5Fx+mc/aVwv8Vr3N/p8Pp/P5/P5fP5KpdXcmnilUuxeYkV4ql5VkqxI2X6BgllAe/hOQvfjfl9bMm+jaN5FLf4yXfEV/dYDWUAluJh6/CM6ovfTfEt6I9OpBlcTuxdoD8/A8e8+68KYxtt4ZKwaH08xfpGC2Zv28FxCd3eK8VyK5p3U4i/SFS9OMe5DJfgq9fgHdETn03x7bSMz1PicGl9uMo5V4xhWhKfolQZ9BFSCLxHIHmq8J8X4Dkr2nXRGF1KLl6YY96MSfIV6/D06og+kGGdSDa4ids+q8ZUm4zg1jtJ9TDN+mUB2pz18G6G7r7/RnkfJnEtn9Hlq8bJ+6wVzAGX7JerxnWrsezcoKzOpBF8jdn9X4/Im43pqHKHGJ5uO0KbGXWkP30roftK0LpTsuyiZt9EZfZZafFWK8UA13kZH9KEU4yw1/oX28KwM49cQGcaK+qnE/DnF+FUC2Un3Mc34bkrmrXRGn6EWfy3FeBBl+0Xq8XfoiD6SYpytxqdoD89OMa6vxqGsqJ9CzFNNRyhTCS4mkB1oD99C6H6WYnwvJXMOndGnqcXXpBgPoWwvoh5/m47ooynGOVSCK4ndn1kRng28mmK8GpGqGp9OMV5CIPPU+PN+xjb7formLDqjT1GLv55iPFSNt9ARfSzFuJUan1Dja01H2IBq4RqEkhr/2nSEihq3U+MvUowfoGhOpzP6JLX4uhTj4ZTt56nFN9EZfZzmu3FamavGx1gRnpNiHE+1cA1QoL1+aobxUgLZlhXh2UTuV03rRo2n0Rl9glp8fYrxCDV+g87okynGrRtvv5Ph/b7W5/P5fL7BmL9Sae3NX6k0MPmh0mpuTRsqOedYER5J5H6b8QhLQRZQdz/IfI6CHEnd3ZK5Hsj+hO5HNJ+MdGeYjePv/U6OexupP+H/Y9YRCGRvwlUyHkjovg/EGcYtifkbZBpHYWR9fdtclnEvQvfDHONR1N3Nq2CcQ8xfaD6B720MhrHEPJpj3FNfqyzjqu7jXB1yZBnHYhhNTPOAM2ncI3XAufLGgwjdnUD633WGbYh5guYT+N7GYRhJTPOAs0dAILsRurtWs/Fx4D8Zz7AehmHENA/mksZdU4ewPY8wR1CPb81el4OpuzsyjZbtiPgT8N8c49CUwVx3RQLZOXUIu/LGQ6i72zLXLfOI+H/AioxHbIChnDL06q5EIDukDmFX3ngodffdHON8In4PtGc8YjyGtv+pMZA9qBauzFz3+Xw+n28w5YdKa29+qDQw+aHSam5NGyqF8QOsCI9t8ShD1pCgUYHmK2de39cPRGuDUcg6AW/UymjJGswNXN44MHnjwLQ2GFvVyhjQfBXVm18rQ2vjkMKPsbLxQKJ8Pp/P51srGyxDpXtP2+N/TRnw9vjavX6oNAD5u78NssK4+S0babUatuSdMK3M1w9Ea4Ox1cC2lfHNODn2xoHJGwemtcHYqlbG//VACVobWhtX7t8lPp/P5/P5fL51PT9UGnT5K9N8Pp/Pt6q9GYN5n8/n8/l8Pt+anh8qDbKsWZkr+6TVs6zi1w9Ea4OxVd44MHnjwLQuGNeEf6WtDcZWhtbGQLYZGIrP5/P5fD6fb61uTfivW9+bWCA7Y8j/HAwrO7R4jvwPaWv19cI0krcg718Zw+QWx5ifu97auGPuurAR+cYKwqQWx3gzjHm3964iTGxxjHm5662NO+WuC5sApZxHDEHYMPcZVt24c+66sCn5xqEIE3Kfwcr2uccIZLcW67vkrhs2A4o5jximt6zPSrCyXQvDbi3WWxk3J984HGGD3GewLQYVrY35r7VhBo3PPMpqOML6uc9gJX8wv+r7uAWNzzTKagTCuNxnsDK3hSH/z0wgu+auW9kGa2blPsbn8/l8Pt86lpN17x/fgOSHSoMsEUOlsDjjBFRosx+lGlyeeVJSMEdStldQMEekrjduN30FbfYj6cdnPNXCMirBItKHNmWqwRIqhasyTkCFNvtxqsEVWNkqw3g0ZXs5BXN4jvFy2uyHMowT1Hh5hrFCNVhCtXBVxgmo0GY/QTVYhJU5GcZj1XhohnFb3ccPZhg3pFq4Uo1pg6UK1WBpC+On1Dg79RhFc5y+1odkGLdX4/kZxokMKSyjElxG+tCmmjCul7JuaLOfohJcgZX0E9iiOUH38cAM4zyqwRWU7PtS1w2TGVK4Msc4pGEMrso4kTeU7QVqnJlhPFH3Mcs4n0pwOSX7nkxj47W+lPShTbfxSoSxGcbPUgmuwMgWGcaTdR/3zzDuQCW4gpJ9d45xGZXgkgzj0IRxTI5xEUZmZBhPoWwvJ5D9UtcD2ZFKsIiSPS/DOIVqYQmV4GLSB0vDqAZXqnF0yrqlbD+vxukZxtPUuE+GcefGPpp3ZBinUS0spRJ8tYXxKoRRGcaLqASLMbJ5hvF0yvYyAlmQYdxFjedmGDfS19nn8/l8Pp/P5/N3f1vtrWl3f+vOuf9Qi79NPf4x0ImVGRTN8VgzXdfr1OMfUo9vw/EyRiZSNEdjZQdEBOcckfsltfhbxO5ZhFEUzCEUzL6INE6GovhRavENRO5RoI2CWUDRHI7IUABi9wK16BuE7tcABDKfoj0OI+ur4TU13gV0JYyb63otYXxFjcdgZX7C+Atq8U0J46EUzD4ZxrIaD0sYn1fjb3KMt1KP704YT8CazRLGH1CPb1fjJDXO6zGG7ufU45vVOFqNCxLGP6nxsYTxcESGqPG5hNEkjOsljLdQj+9R4xZq3DRh/L4al6vxWKxs32S8idg9hzCaoj2MQBYgEmQY99F9TBpvJHQPJIzHY2Rcwngz9fheNc6kaE/Ayia63pXYx+UYmazG7RLGn+k+PocwhqI9tMn4R7riG4jd4wgVgh5jNWG8gdA92DCaHSia4xLGV9V4nxpnqXHjhLF7H1/rMQZmO113hO6nanxejYcRyN4J4x/oim9MGPelaA5NGJ/Vffz/7N13mBvF/cfx95TVnaRzL3Rs04tppprebEzvEFKA5JdAem+QAiGh9947CUmAJJRUWhJIoSZAEkzv2ClgU65JuzO/PzQ670mzq4M7w9k3n+fxg/Gsdl/3Xens/d7sTt24lTNOajDeBVRQYn0K6oMZxjeQYhoFeXCD8Q9UzY3OOClVR+WMjznjkwjKKWMpZfwhsX0QUM74gT6jsQupmhsbjB9CiVVTxl9SNbemjB9Ay01Txt9TSW7EMs8Z63WsGWPzKBVzfY7xJXqTH5LYh3KM9XNdN34YJVZJGW+jam5zxlVcHetG44w3OeNkZ9w5ZXzEGZ9CUCaSuxLJvVPGF+lNfpQybu2ME934Amf8vTNu4OqYNt5K1fwyZfwAWm6SMt7tjPNzjD/C2KedcTdnzJvFGRISEhISMrIyYlZ/++hO7zdlyLPjlXeG1d+GIHlz7EOW6rQhGI8UE7C2F8EEhBiTGtdIMR4hxoMVtXHGI0RtmqAQAmHHI5iIoBshxiPFeNJvKSHGuNdNRIg295P1RbNBBGWEGI+wE9z24xGUUob2BuP4BmPkjBPAygzjBPfnWcbRKWO7x9iRMgqEmNBgbKijmIAQo/vVUfQzjm8yypbGMa7OdeOEDONEZ2ys40CME5xRO8u4BuN49+c9rgbjST87pv+5bkeKVsYJiH6zwNoQTOhvJG2MUnVsZay/fkKTUTIBywSEKLk6p2fVlGuvqxtpPNftDcbxGcaJYCN3nseljp8+13nG8TnG9PtRuX2l65j+zFQHaFw04yXbKFPbjHV1nIgQxZw6po2L6igoNhgnIBiVca4j972pv1HY2nkwtpJ6Py4ySjE2Vceyt46112cZG+vYythYR+mM451xvMc4rp9RtDDKhnPdXMfxDUbdoo4SYSe6Y1SRued6QcqYd/tgSEhISEhISEjISEuYqbSYMxxnKhk7n874cIx9smFEU1SnEMk5dMWfIbZ3N722TR5JQX6NXnMKFXNJ07gWO1LS51M1v6I7+QaNS1NLsQZlfRXGzqMr/j8sC/uNC8ZT0pcjxWRnfKrhCJEz7kJX/Gli+3uP8VMU5FfoNSdTMZd6jDtT0udSNbfRnRzlMa5JWV+NsS/RFX8iw3gFUkyks3o4hqc9xtOI5M7O+AeP8dMU5JfpNSdSMZd7jLMp6bOpmlvoTr7lMa7l6vgiXfERHuMEyvoKhBjvjM80HKHgjDvRFX+K2P7RY/wsBflFes3xVMyVOcab6U6+7TGuQ1lfibHP0xkfAbzRYJzojOPorB6G4dkmY0mfgRbb0xV/ktje6zF+njb1BXqS71MxV3mMcyjps6ian9OdfMdjXJeyvgJjn3PGNxuMk5xxDJ3VQzE83yigpE9Hi+2csXmZ9Tb1Rdrk5+hJvkfFXNM0HsndKKozqJqb6E6+CyQNxunO+Ayd8ZEe42RnHOWML3iMZ6LF1nTGR5LYv3iMX6ZNfpqe5Fgq5jqPcXeK6gwq5gZ6kmOajEpMp6SvxNinnPEtj/FKhCi7c91obKekz0KLLXOMX6FNfoqe5Bgq5oce4x4U1elUzE/oSb7nMa7njHPpjD8JvN1gXIayvhJEO13VwzG86DGegxabO+NfG8aFM36SnuQ7VMz1HuOeFNVpVMz19CTH0biCmhIbUNJXYOy/nLGz4QjLOmOBzurhWF5qOELRGTelMz6CxN7fZGxXX6Mgj6A7+TZV82OPcW+K6lQq5of0JN/3GDd03//GNr02JCQkJCRkJGYkzFRaf5mxM+46fOf3mzLk2fGqO3j032Gm0mATmkqLOcOtqWStpTPel8Q+mrGFQoudie1vM/cRiX2p2p9njmsxh9j+jqwlpyXTMbwMDY2QRRmLFMth7OM5xp3cMRaXcX134fuGdxzGIVkGw9wc447E9vZBGHcjtr8G/J/RmvF5GpsMizIeySQMT2QdAS22J7Z35Bj3o2p/Ngjjhq6h9ZZ3HCYgmYChscH5Toyt6rg7sf1VjnEjDE/R2GRYlIlIxnqah2njdsT2zkEY9yC2t2WOSzZ25zHLOAnJmBbGbYntXTmGfYkHZdwEw+M0NkIWZTKSDk/zsJ4ILbbyNor7tpD7UDW/yB4Xe1K1t2aOKzYl4Z9AV8YWyyApYXgux7ilt1E8dMYtSHgE6M7YYlkk7Z4GZz0FlNiCxNMoHrhxL6r2lsxxLbanHF2ROR4SEhISEjKSEppKS25CU2loEppKiznDrakUm/vojA9psZUkq9lSSwRUB/H6oYggq0lQSzAOLCPBqGictTL0WRKMraJpnMnVP8E4sCwNxlbj0KF/0/dctpCQkJCQkJGc0FRachOaSkOTsPrbCEts/jyArVo1CfIujgfy+qFIq2ZoMA4sI8H4XlzALwnGVslvIgTjQLM0GFuNQ+y5RTEkJCQkJCQkJGTkJTSVRlzCzLSQkJCQkMHmvWgoh4SEhISEhISEDPeE1d9GWJTcZADXAq1u5Wl1+0ar1w9FgvG9STAOTZYG43txq2OrBOPQZPBGLTYbSlBISEhISEjIMI+14v0mhAzThJlKIyxabI0U+c/B0GLrFuP599MqsU3uuGBV6LdUe2PKSKa1OMZWueODN64G/ZZqb0wZydTcPbQ27pQ7rsS2ueOCNcg3diCYkruHwddxu9xxwZrkG0chWDl3D0psmXuMVkbdwihZE2jP2WI0gpVy96DEzBaG/HOtxfa545K1gbacLcYgWDF3D0ps0cIwWOM65BvHIlg+dw9KbN7CMFjjdKCQs8W4FkaFatFMaW3cIXdcsh75xvEIls0ZVyixaQvDjoMaV2JzlFw3d5uQkJCQkJCQkJCRkdBUGmERQlLSF2VcgAra1bGU9HmZFyWR/ABFdS6RPNg7rsSmlPV5tKtjqc2+aDzCipSjyyjri/A3lsqU9SWUossQrJBhPI6yPh8l/M9TK8hDnPHADOPmlPX5tKvvZhhXoiO6jJK+CH9DpExZX+qMvgtQ6Yzn5Rg/RFGdTyT3zzBu4er4Le+4ZAod0aWU9IUZxg7K+lLK0eUIlvPuoah+4Oq4UYbxI66O+2UYZzrj0S2M52cYR6WMvotkSVGdQFlfgBIbZhgPc8Z9MoxbUtLn066OyjBOpRxd5oy+xlIro0oZN8gwHk5RnUck9/aOa7E1JX0e7eobGcZplKNLKOnzMoyjU8ZlMownUdIXoMR6GcaPuTrumWHchpI+jzb1tQzjKimjr7E0hrK+jLK+HMHkDOMpzjg9w/hxZ9wjw7gdJX0+beorGcZVKUcXU9Lneo2CsZT15ZT1ZQgm+Y5AUZ1KSV+AzDQeQVGdQyR3zzGeR5v6coZxNWc8B19jaZHxcgQTWxj9TZ82eSRFdS5a7Jph3IGSPpc29UW/UaxOSZ/tHQsJCQkJCQkJCRl5Cau/LeYMt9Xf6rH2bSrmF8TmDizdKLEOBfVBlFjdjcfE9ndUkluwvI4UK1GQB6HEZgghsNaS2PupmJ9g7MsIxlNQe6HFbISo3VWZmCepmB+R2McRFNFyZwpyX4QoA2Dsv6mYHxOb+wCBlptTkB9Aiskp48+dsQcl1nXG1dx4ldjeTiW5GcsCZzwYJTZNGe+jYn6aMu6NFrNyjLMoyH36G5Prie39zriFM05yhrec8c5MY9X8jqq5xRlXpiAPQsvN3LglsX91xleccR+02DllfMIZ5zrjbApy75RxvjM+4IwzKciDWxg/hBKrpoy/dcaFSDHFGTdNGf/ijK86477OqJxxrjM+gaBEJGcTyb0RouSM86gkP84xvpky9qLEdGdcJWX8DVVza8p4MFpukjL+mYq5wRknOONOKePjzvikM+5CJPdqMF5PbB90xi2dcWLK+DNic5czrufOdd1YSRnfcMYPoOXGKeOfnHGeM+6HFjvmGOc4Y9EZX03VUWYYbyI2d2OppIzTMoxTnXFGnzG291I1NzrjRFfHRuMPSexTOcZ6HSVabuWME96B8ddUzW0p4yFouVGD8QaMne+M+6HFDinjv1wd08a9EaLdGV9xxodyjDc6YxUl1nfGqW68N2V8EymmuTqmjfe4Os5HMClllM74T2d82hl3dXVMG39EbB8GVMo43h3jDWf8vTNu4IxTcoyHoOWGKeMfqZqbcoz/oGKud8ayM+7ZZwwJCQkJCQkZOau/3XnYrPebMuTZ6erbw+pvQ5DwTKURmwhBB1BGoBB0IPrNJpFAR61xYXsRlGu/RG1mjxACYcvudWWE6AA6SE9+E6LkxjuAdvff9Fuuze23o7Y9ZUS/GQR1YwcC7cbTRlXziw6wlZSl0VjOMRb7DPXfNxlFB8J2AMJtm55BUEjVUXvqqBAibVz09daNNNWx7L625joO3NhYx3LKOCrHGA/AOMrtz3+ua82FRmN77Rh9xo4GY8HtswPhzrvoNytHOmPZGTvc9mljR8rQ0WSkz+j207KOHZ5znTY2vx8X1TFxr180G69mHNXvXDcbi+48pY0qdYx0HZU7lz5j7X1aM6br2NooBmSs17kEvs91P2NjHaP+RuH7zNS/92QZO9zX/lYLY/pz37+ODMjYgaDqjpGuo3bGDrCm73tMOou+d9XOZW08NTOywVhzpo1t0Pd+zDLWj1F1x2g0llPG/nVsNta/V6eNpQZj4/sxJCQkJCQkZGREwFL5TKWl8Wt67xNmKi3mDMeZSsa+Smf1MAzPNIxoiupEIrkbXfGnie0fml5bkB+nTX6TXnMiFXN503jt9o4LqZrb6E6OpnFp6trtHVdj7Ct0xp8A3ug3LhhLSV+OFJOd8VmP8WQiOYeu+FPE9o8e4xG0ya/Ta46nYq70GLenpC+gam6hO/l2s1GsTllfjbEv0RkfkWG8Aikm0Vk9FMNzHuMpRHI2XfEnie29OcYfUDFXeYw7UtLnUzW/cMb+D9WVYg1nfMEZ32wwjnPGCc74vMd4KpGcRWd8BIn9c5OhTX6SgvwqveY4KuYaj3FnSvpcquZndCff9RjXdMbnnPGtBuN4ZxznjC80HCGiqE4jkjs6Y/MS5m3yMxTkF+k136NirvMYZ1HS51AxN9GTHOMxruWMz9AZH+kxTqCsr0CIMe796DOeTiS3pzM+MsP4OdrUF+hJvkvF/MhjnO2MP6UnOZbGByRLsTZlfRXGPkVn/EngbY/xShCj6KoehuHFhiMUKOkz0GIbV8f7PMbP06Y+T0/yHSrmeo9xDiV9FhXzY3qS4zzGdSjrKzH2SWfsbDBOdMYyndXDsLzkMZ6JFlvTGX+CxN7fbFRfpE1+lu7k21TNjz3GXSnpM3OM6zrjXGfsajBOoqyvAtFGZ/VwLC83Cijps9BiJp3xx0nsgx7jl2mTn6I7+RZV89Om8UjuTlGdQcX8kJ7k+zQ+nF2J6ZT0lST2X3TFn/IYJ7s6trk6vuIxno0WW9AZ/x+Jbf57p019hTb5SbqTo6iaGz3GPSiq06mYa+lJjvcY16Okr+ybMRUSEhISEjLSMzJmKo2bceehS+FMpWtu59F/L1hqz917ldBUWswZbk0lay2d8d4k9h8ZW0i02InY3p65j0jsTdXenDmuxSxieydZqwdJ1sHwMo2NkEUZg2Q5DHNzjDsS2zsGYZztvkb/+18y3V2c5xmXwfBkxrhCi+1dHd6tcRdi+7sWxhdobIQsylgkk1sYtyO2dw3COIfY/jbHuL5rDL7tHYdxSCZgeDrrCGix7RAYf5M5XjM+Q2MjZFHGIxnnacKmjdsQ27tzDHsR21tyxncltr/OMW7ozmNXxhYTkIzxNGHTxq2J7e8HYdyN2P4qxzjDfWazjJOQdHiasGnjlt5G8dAZN8bwL6A7Y4vJSIqe5mE9EUpsQWLvyTxGJPeiarKNkdiNao5RsQkJ/8wxLoOkzdM8TBs3J/E0sxcZ96Rqbs0x7kHV3pY5rsW2lKOrMsdDQkJCQkJGUkJTaclNaCoNTUJTaTFnuDWVYvMXOuMPtdiq1fLmmsbZPe/s9UORwRrfi2W9g3FosiQYW2VpMLZahv69SDAOTQZv7NC/Rsk1hxIVEhISEhKyRCY0lZbchKbS0CQ8U2mEJTZ/HcBWrRpCeRcjA3n9UGSwxvfiAj4YhyZLgrFVlgbj+90IgWAcqgzeGNu/oAhNpZCQkJCQkJESu1Q+UylkKCJbbxKydCXMTAsJCQkJCQkJCQkJCQkJCRl8QlNphEW5ZeLz06oL3WqC23vRxW51jFYrFAXjwI7R6lwPh28hS4Kx1bkOxoElGIcmrYytV3jTYrOhoYSEhISEhISEhCzRGQ7/ug15D6PFVkixVs4WAi22bbGP/Ptpldgud1ywBjQsv90/HUhWzd2DFtvkHkOL2bnjSmyfOy5Yk3zjKCSr5O5BDdKoxY6545I1oWGJ8P4ZjWRa7h6U2LqFoZVx+9xxydrQb7n4xoxBMjV3D7qlMf/9qMUOueOSdWhtnJK7By22amEY7LmeTr5xLJKVc8YVSmzZwtDKuFPuuGQ96LekfWPGIVgpZ1yhxMwWhsEa1wfacrYYj2CFvCOgxBYtDK3ej62MG5JvnIBg+bwjoMTmLQyDMyoxEyXXyd0mJCQkJCQkJCRkZCQ0lUZYhJCU9UUZF6CSdvV9Svq8zAungvwQRXUOBflB77gSW1DW59KujsP39pJMoSO6lLK+BH/TpoOyvpRSdFnGBaikqH7gjP6flBfkR5zxkAzjTGc8Ft9MnUXGi/A3bUaljCv6jkBRnUBZn4sS/plhBXkYRXUOkTw4w7glJX0O7eqYDONUytFlOcbRKaPvIrluPA8l/M+lK8jDKaqzieSB3nEttqakz6VdfTfDOI1ydAmlARl9F8mKojrJness48eccf8M47bO+O0M4yrOeCH+ps0YyvpyStHlCJbzHYGiOpmSPh8lZmQYP+6M+2UYt3Pn+mjvuGRVytHFlPT5XqNgbMq4bIbxFMr6fJTYMMN4hDPum2Hc3hmPyjCuljI2N5bqxnKu8VRXxw28x2iTR1JUZxHJvTOMOzjjN/xGsYYznpdv1JcjWCbDeBolfQFKrJ9h/JSr454Zxp0o6XNoU1/LMV7kjM2NJcG4lHFyhvF0Z1wvw/gZZ9wjw7izM34lw7gmJX2WdywkJCQkJCRkKY0Fa5a+X+HJMEOTsPrbYs5wW/2tHmu7qJpbqJrbsfSgxNoU1AdRYhU3nhDbO6kkN2NZgBQrUpAHoeUmffuIzYNUzE8w9hUE4yiovdFiJ4So3TqR2GepJD8ksXMRtBPJWURyL4SoNRiM/S8V81MS81dAoOTmFOTBSDExZbzZGXtRYh0K6pCUMU4ZFzrjwWi5sRu3JPZBKuanKeM+aLFjyvgMleRHKeNsZyymjD8hMfc54xYU5EEpYycVczOxuSNl/CBKTEsZ76CS3OKMKznjjJTxASrmBox9BSnGE8l90GKHlPFpZ3wix/hjEnO/M850xgkp4y+IzZ3OuK6rY9p4uzO+gRQrO+NGDcafYuyrzrgvWmyfMj5FJbneGYvOuGfK+B9nfCDD+HbKWEGJ6c44NWX8HZXk1pTxA2i5Ycp4v6vjq0gxIVVHmTL+iMQ+6Yy7OGO7M/7bGR8EJFrOJJIHIcX4lPHnxOYuZ1zPGae48Wqqjm8ixRRn3CBlvM8Z5zljvY7OaJ6kYq5PGecQyT2ajLF5AIFCyy2dcVzK+DNic3efsU19EClWzjBOdec6bfwrFXOjM050dUwbn3DGpxCUUsY2Z5xPJfkxsX3QGbcikgemjG+5OmYbq+Z3VM2tKeMH0HL9lPEvzjjfGfdFi+1Sxrm1c5lrvJ7YPjQgoxbrU1AfRIqVUsbfUjW3YXkTJaYRyYMbjH+mYm5KGfdDi21Txsed8Wln3JVI7p4yznN1fAiBThnHumO86Yy/d8YNnHFFN15xxl/2GQvyAyi5Xsr4J2f8d47xehL7DIKyM+7WZwwJCQkJCQkZIau/TR434/YP588YXxIz67rf8eh/wupvg01Y/W3ERlI7/RGCGEFE/+doCEAjhAar3XjUsI8IQQFR3w5N/9kgym2j3Ws1/WcvqdQYHkPdWECQ1I7T7y1bN0Yp46JxIQTYqM8gRH38nRhlS6Poq6NB9O0rbYxSdazXyW8EXx3rNag7oibjotfJARrT57JujPqMoslYf326To3G9NfwTo3K/VkBgc2p46Jz7TfqBkM6jec6wvdeWPQeiBBNdayfK+t5P9a+RiEK3jrWkj7Xns+USH8Nvjq7Y/TVt5Ux63OdPtfNn+vmc5kyCN/7NR0FIkLYLKNqMBaajELohnOdZ/TUyX3Wa8fN+N7UZ6y/L3zfe2pGWhjJrOOicylyjRmfqSZj/++f/Y3Nn7maUfd9fpvPVSFlK7ivIW2s7z+rjiEhISEhISEhISM9YabSYs5wnKlk7Ct0Vg/F8FzDiKKojieSe9AVf5LY3tv02oI8nDb5bXrND6iYq5rGa7dEXUzV3EJ38m0al6au3RJ1Tc0QfwJ4q2EPYyjrS5FiWWd8vvEIzrg7nfERJPbPHuPHaJNH02uOo2Ku8Ri3paQvpGp+QXfyXY9xFWd8ic74iAzjZUgx2Rlf8BhPJJJznPEvHuP/0SaPotccS8Vc5zFuR0lfSMXcRE9yDI1LztduN7oaY19wxrf7jQvGUtKXI8UEOquHZRhPJpKznPGvHuMnaJNfp9ccQ8X8yGPc3hlvoCc5ttkoVqesr8bYZ+mMjwQ6PcYrEGIcXdXDMLzoMZ5CJHemM/4Eib2vydAmj6Qgv0qv+S4Vc73HuCMlfT4V8xN6kuM8xjWc8Wk64096jOOccQyd1UOxvOwxnkokd6Qz/jiJfcBj/BQF+WV6zLepmp94jDtR0udRMT92xv7fk2vGazD2SWfs8hivRIhRzvhKwxEiiuo0IrmdMz7oMX6GgvwiPeZoquYGj3EWJX0OFXM9Pcn3PcY1KetrSOxcuuJPeYzjKesrQZTprB6WYTyDSG5DZ/x/JLb5+2Wb/Bxt6vN0J0dRNTd6jLOd8Tp6kuM9xrUo66tJ7OPO2N1gnEBZXwWi3RlfbThCgZI+Ay22pjP+GIl92GP8PG3qc3Qn36RqbvIYd6Gkz6ZirqEnOdFjXIeyvorE/oOu+DMe40RnLDjjPI/xTLTY0hn/1mxUX6BNfpbu5OtUzc89xl0p6TOpmKvpSU7yGNelrK/qm2UYEhISEhIy0hNmKi25CTOVhiahqbSYM9yaStZa3o73wth/Zmwh0GIHYntX5j602IPY3pY5rsROJPYusm5SFazlLiobmzX1jEayLIYnM8YlWmyfa4zEHlRzjFrsTGzvzDRK1sbwEo3NmkUZg2QShqdzjNsS298PwjiL2N6eOS5ZxzWLOjO2GINkIoZnFqNxNrH9XY5xumteZhnHIhmP4dmMcYUWWxPbP+QY8t+PrY3ruRp1ZWwxDslYTxM2bdyK2P5xMRrXx/AUjU2GRRmPZLSnCdt3BLSYSWzvyTHsTmx/mTO+C7H9bY5xQwxP5BgnIOnwNDgXGZXYnMT+aRDGOcT2NznGjTDMzTFORFDE8tJiNO5KbH+dY5yB4V9AT8YWkxG0tTBu6m1m1xPJ3amad2/UYmvKUXPDPiQkJCQkZCQmNJWW3ISm0tAkNJUWc4ZbUyk2f6Iz/kiLrQT5Ty3TQDyI1w9FRoJR0jizZuizJBhbJRiHJkuDUdE48/C9z5JQx1Z1al3HDv1LlFx7KFEhISEhISFLZEZMU+lDu7zflCHPrB/+NjSVhiBh9bcRltjcP4CtWjVb8i6YBvL6ochIML4XF55LgrFVgnFosjQY3++GEiwZdWxVp9Z1jD23o4aEhISEhISEhIy8hKZSSEhISEhISEhISEhISEhISMg7TmgqjbBoudkAtmq1uk+rRQPfi9WBgnFoMljjcPgWEoxDk2AcmiwJRjXIcdBi86GhhISEhISEhISELNEZDv+6DXkPo8SWSLFOzhYCLbbP3YcW+ffTKrEDec0KwZpAR84eRiFZPWd8KIw7kmeUrEW+cTSS1XLGJVpsl2uIWhi12Cl3XLI2UM7ZYgySVXP3oMS2ucdobdwxd1yyLlDK2WIMklVy96BbGFud69Z1nA4Uc7YYi2RqzrhCi21aGFoZd84dl6xHvnEckik547UHnucbBmtcn3zjBCQr5x0BJbZsYch/QKQWs3LHJRsC7TlbTESwUt4RhsCYPy7ZiHzjJAQr5h0BJWa2MLQ61/l11GKr8DylkJCQkJCQERZrxVL3K2RoEppKIyxCCMr6ooyLZEVRnUBJn5t54VSQh1FUZ1OQh3rHtdiKsj6Hojoe30+7JVPpiC6jrC8FRnn2MJqyvoxydFnGRbKiqE6kpM/JvHAqyMOd8cMZxq0p63NoV9/H9xGQTKMcXUpZX4K/sTSmhVGnjFtkGD9GuzqLgvxghnFbSvoc2tVxGcZVnfFifI0lwVjK+nJK0WUZF/KaojqZsj4XlTHjoCA/7oyHZBi3c8ZjM4yrUY4uaWG8glJ0WcaFvKaoTnXvx00zjEdQVGcRyYMzjNs74zH4mohSrJ4yNje/Fhkvz7iQTxs38Rra5JHOeGCGcUdK+mza1XczjGtQji6hpC/KMI5LGVfIMJ5OSZ+HEv5nELbJT1FUZxLJAzKMOznjt1sYL8wwjnfvxysQLO85QkRRnU5ZX4ASMzKMn3F13D/DOIuSPot2dXSGcU3K0cWU9AX4ml+C8XToyylHlyNYLsN4JmV9PkpslGH8HCV9NpHcN8M42xmPyjCuTTm6iJI+P8M4gQ59hTMu6zWW9FmU9PkosWGO8SwiuXeGcRdn/IZ3XIp1KOozvWMhISEhISEhISEjL2H1t8Wc4bb6Wz3W9lA1t1E1twPdSLEOBXUISkxx4wmx/QNVczPWvo4UKxPJg9Byg759xObvVMxPsfYlhBhPJPdGi+0RotZgSOwLVJLrMfZfQJFIziKSeyBE7afwxr5O1dxAbP4KgJYzieQBSDE+ZbyVqrkD6EE5oxQrp4y/d8YFGca/UTE3pIz7oMV2KePzVJIfO2PJGXdPGV9zxvuccUtnHOcM3c545zswHoyW6zcYf4q1LyPEBGfcNmV8zhkfd8bZztjWZ6yYn5KY+wGRMo5NGW9xxl6UWNcZV0oZ76ZqbukzFuQHUHK9lPFhZ3zFGfdFi21Sxmedca4z7kIkd0sZ/+eMD2QYu1J17EWJ6c64Ysp4F1VzqzNOoSAPbjA+5M71Kwgx0Rm3bjBej7FPOOMcIrlryvhfZ3ywz1iQByLEmJTxFqrmLmdczxlXcONxyvhGyjjdjVsSWze+6oz7ocVWgzBuRUEe0GC82RkrKLE+BfWBDONCpJjmjOumjA9SMTc64yRXx7TxGWd8Eig745wMo0wZR7tjdKbqmGW8M1XHae79uE7K+IAzzksZt0YI4YxPu/dj2rgrQhRSxp84o/IaK+ZmYnO3M25AQR3cYLyDqrnNGVdxxrUzjJMpyH1RYqsG4/UY+5Qz7urqWDf+xxkfcsatKcj9U8a3nfH3zrihMy7vxqvO+Msc4/3OOD/D+JQzPu2MuxHJXfqMISEhISEhISNn9bfffXDO+00Z8sz+0W/C6m9DkDBTacTGUlvhJ8GSUFuRqHHFn/q4wRLTvKrRovH67/uvJpbev2+8vl+T+n3/8UX7iLF9+2o0GGesH6NxPHbG+v4ajxG719a/xkZjvT5pbz31OtZ9xh0rPR5jbeI11pq6cYs6moY6Ztep/vX0Ny467sCMpl+dm431Y9CwjzzjovfbIm9/g+07xqJfzcY4ZVz0+pqx8f3YaEzXsf41NBrTtuY61T8H1r0nm99v9Tr6voa6weQYW30mG+vYaDT96tj8XuhfR1oaPZ97W//MpT/Xja+PSTv9dUy/X5o/U/X3Y/YxDJmfGdv4mfF8pmzd6K8jTcb+7xVr08ZW3x/r32PSRt+5bjQ2fmb8n6lF57r/D4lqxjinjunzkzTUgIZz7TOEhISEhISEhISM9ISZSos5w3GmkrEv0Vk9FMMLDSOSovo+kdyLzvgIEvuXptcW5Edok8fQa46hYn7YNK7ETMr6UirmF/Qk36Vx+WzJFMrRtTVDfCTwdsMeRlHWlyLFss74YuMRnHEPZ/yrx3gobfI79JrvUjHXe4xbUtaXUDE/oyc51mOc6owvOGNnwx5GU9aXIMQydFYPxfKSx/gDIrk7nfHHSez9HuPhtMlvZRq12JqSvpiKuYGe5Hs0XsjVbtG7BmOfd8Yuj/EyhJjojC97jCcQyTnO+IDH+FHa5NH0mG9TNT/xGLdxxp/QkxznMa5CObqGxD5DV/wpj3GMM453xlcaj0BRnUgkZ9EZ/x+Jbf4MFeT/0Sa/SY85mqq5wWPcjpK+kIq5np7kBx7jqs74NF3xJ4HufuOCsZT05Qgxxhlf9RhPIpI75xg/QZv8Gj3mKKrmJo9xe2e8jp7kBI9xNWd8gq740xnGKxBiNJ3Vj2CZ5zGeQiR3pDP+KIn9m8d4BG3yq/SYb1I1P/MYd6CkL6BirqUnObHZKFanrK8hsY/TFX8mw3glQpRdHed7jKcSye2d8e9Nhjb5SQryy/SYr1M1v/AYd6Kkz6NirnHG/pFiDWf8B13xZ4GeBuM4ZyzSWT0sw3g6Wm5DV/xREvuIx/hpCvILznizx7gzJX0uFXMVPcnJHuOazvgoXfHnPMbxlPWVQBud8WFY/t2wh8gZt3LGRz3Gz9KmPk938hWq5laPcTYlfQ695nJ6k1M9xrUo66uRYlLTWEhISEhIyEjMSJiptN7kcTN+d8iu7zdlyDP7+l/zWJipNOiEptJiznBrKllreDvew92m5ItAi+2I7e8z96HFrsT215njSuxAYu/OHBes4S7OGxtK9XQgWQbDM4Mw7kZsf5Vj3JHE3pVjXMs1ixobSvWMQjI516jEtiT2D5nHiMRuVHOMWuxEbO/MHJes5Zpujc2aekYjmYDhucw9KLE1if1jjiG/jq2Na2N4nsYmw6KMQTLObePfgxZbEdt7cgz578fWxnVcjfKMYz1N2HoUWswktvcOwrgzsb0jxzjdvdeyjGORjPY0YRcZldiCxP5pEMZZxPb2HON6GJ6isRGyKOMRlD1N2LRxM28ze+iMG2CYC/RmbDEBQbunwdl3BJTYdDEbN8TweI5xIoKCp8GZNm5MYu/LMcwhtr/JGd+F2P42c1yJmXREzT9UCAkJCQkJGYkJTaUlN6GpNDQJTaXFnOHWVIrNvXTG/odsL4og/xYHTfOtHu/k9UORVsdQNN/q8U5ePxRZEurYKq2MksaZXu99lgRjq/djMA4swTg0aWVsNQ4d+ra+51yFhISEhISM5ISm0pKb0FQamoRnKo2wxKb5NqfmtGpk5F3AD+T1Q5FWx8i/IBoexuFQx1ZpZXy/L45hyTC2ej8G48ASjEOTVsZW4xB7busNCQkJCQkJCQkZedHvNyAkJCQkJCQkJCQkJCQkJGSYxorar6UtS+PX9D4kzFQaYdFy8wFs1erD1aoX+V58OEeC8b34eAbje5OlwajeE0V+gnFoMnijFlsMDSUkJCQkJCQkJGSJznC4kgl5D6PETKSYnrOFRIudcvehxW4txncmrxEgWRsYnbOHMUjWzBmXaLFjriEatHFdYFTOHsYgWT1nXKLFDrmGwRunAx05exjbwqjQYvtcQ2vjrNxxyXpAOWeLcUhWzRl/L4zrk28cj2SVvCO0NLb+zMzOHZdsAJRytpiAZFreEdBiuxaG/PvkWxs3BIo5W0xEMjXvCGixTQvDYI0zyDdOQrJy3hFQYusWhsEZFZuQb5yMYKWc8Qgltso9RiTn5I5rsUuL8W1Qcq3cbUJCQkJCQkJCRkqEEDsLIS4WQnxdCHGy+/3YQe7zACFEywczu+0uFkLcLoR4KO/YKdvO9W3c728QQhzxbq2hqTTCIoSgrC/MuJCvLY9e0mejxbbe1xfk/1FUZ1CQH/OO15ZwP5uiOgnfT8Nry6NfSllfCoxp9jGWsr6ccnRZxoV8bXn0mtF/AVqQn6BdnUFBHt7CeAK+n8hLsTrl6BJnbG5+1YxXUI4uz7iQ1xTVaZT0OeiMi7uCPMIZD8sw7uCMx2cY13DGyzKM4yjrK10dp2YYT6Wkz0GJLb2GNvlJZ/xIhnEnSvqsARgvxdegqxnrdZziOUJtefSacWaG8dO0q9MpyA9lGGdR0mfRrr6P79udFGs64yX4GnS1JdyvoDQgo3/mRpv8LEV1OgV5SIZxNiV9Ju3qexnGtVoYJ9DRZ/Q1RAqU9FnOuFmG8XOU9JlE8gMZxl2c8dgM4zqUo4sp64vxNegEE+nQV1KKLkewYo7xXJTY1G9UX3DGgzOMc5zxuxnGdSlHF1HSF+Fr0AkmOeMVGcY2Svocyvo8lNgkw/hFSvoMInmgdzySu7n347fxNYylmE4pupCSvjDDOJkOfSXl6EoEK+QYz0cJ//Mm29SXKaozieT+GcbdXR2/5TUqMZ2iPtP72pCQkJCQkJCQkRYhxAHAydbaI621p1hrvwFcDDz0ThtLruFzgxDiYuBkIPf1QoiTAdyxZwE7AZsAzwkhfBfTY4EjgNuBBUII637/rLX2kndi7ecIq78t3gy31d/qsbaXqvk1VfM7oBsl1qWgPoAUK7pxQ2zvpWpuxtrXkWIlCvJAlFyvbx+JeYyK+SnGvowQ44nk3mixNULULuiMfZlKcj2J/RdQJJKzieSuCNHmxhdSNTcSm9rS11puQUEegBBjUsZfUTW3Az0p4wop4z3OuMAZD0bJdfuMsXmUqrkhZdwHLbZKGV+ikvzYGUtEclaDcQFVc1PKOJOC3L/B+Euq5o4c4x+pmluccWUK8qAG4yPO+ApCTHB1TBtfdMbHnXE2kZzTYKzXUaaMo52hJ2XsRYnpFNTBDcY/OONCZzy438pONeNPMfZVhJhAQe6DElshhEgZryexc51xFyK5S8r4ujPen2O8jaq50xnXc8bl3XjijLc64xRnXDvDONEZt+wzJvYFKsn1GPsEQpTRom4spIw3uIfZS7TckoLcr8F4K1VzV47x9874BlJMdec6bfy7O9d1474oMTNlfJ5K8uOUcQ6RnJ0yvubqWDduRUHumzJ2p4wVlFjfGZfLME5zxrVSxr9RNTcO0NjhjLMajDcQmwcBlTKOeofGW7D2TWc8GCXXTBkfpmJuxNp5zrgfSmyRMj5HJflJg3E2QkTO+D8q5gYS8yCgM4y3UDV314xyAwryYKRYNmW829Wx2WitJbEPUzE3OeMkZ9w8ZXzWGZ9EiA4iuStazGow/pTEPJRh7HJ1rBs3dMZl3HjsjLeljB9AyTVSxoeccX6O8ccY+5TXGBISEhISEjJCVn+bNH7pXf3tv6+/63PnmkYLgFnW2jsaxm4AsNb6f9rYet8PAWOttd7bOoQQM4CDXRPLZ3q28bWuWQX0zd54GLjYWvvsuzHWEx7UPWITY3kb6MbSjaULS09q3ABvY22nG+uqbWctQgistanXdYFtAzrd62rNkEXj3Qhwx4uBNneMCpba/mvbd2GppH42XjfWbLVtG42dWNuVMnb1jdYapmljO/B2g7GnwdhJ/5WPqi2M1ZSx123b289o7Ts1dpJe+c3aVsaKO0/dKWNvQx073XF8xmQAxq6+84ltd/sz1GcoWdv/XC96L/iMIqOOne449fdF/3Pd39jpMXam6tjZZMR2U3+/YwHhq2NXytiJpZpj7PKc665ULRadk3dmdAYrMoydAzB2Z9Sx8VxnGV19bf29YOmbtWK73TZ1Y/0zVU/vOzQ21jHB2rdz61h7fZ6xB3jbjafrWG+GVFz9uwHZ2mizjOnPTLrOOFPNKNzX0Wzs7DNa+zaItLHXfW3dCBS190Wc8f2xirVdtdf0pfEz092vjgMzdrPIKLG2E8RwWL0uJCQkJCQk5L2ONeGh1p4c5P77oGfsJ8ANi/HYR1KbEdUv1tqFQog7gJ2FEDOstQ83jB851JAwU2kxZzjOVErsC3RWP4Ll5YYRQbs6loLcl874/0jsA02vLchDaJPfo8d8l6r5cdO4EptR1pdRMT+jJ/ke6eZI7Qgr0RFdi7Ev0hl/ElKNgVrKlPUlCLGcM77SMC6dcW9nbP78FuQHaZPH0mO+TdX81GPc3BlvoCf5fpNRsjLl6FoS+zxd8ac8xg7K+lKEmOyMr3qMx1GQezhj87kvyA/TJo+hxxxF1dzoMc6krC+lYn5MT3K8xzjFGZ91xu6GPXRQ1pchxEQ6q4d6jUX1AyK5G53xx0j6f69xxo/QJr/jjDd5jFtS1pdQMdc7Y+MRplCOriOxT9MVf9pjHOXqOMEZ5zUewRl3pTP+KIn9m8d4OG3yaHrMN6ianzeNa7EVJX0JFfNDepITPMapro5P0RV/xmMc7eo41hnne4zHE8ldnPHvHuNHaZNH0WO+RtXc7DFuQ0lfTMVcQ09yksc4zRnn0hV/FhqaFzXj5Qgx2hn/7TGehJY70RUfTmIf9Rj/jzb5dWe8xWPclpK+iIq5ip7kFI9xFWf8lzP2Nmwxpmakg874MI9RO+MOzviYx/gJ2uRX6TFfoWpu8xi3o6QvotdcTm9ymse4qjP+g674c01GwVhK+goE7XTGh2P5j8d4Clpu64z/8BiPoE1+hR7zZarmlx7j9pT0hfSay+hNTm82itUp62tI7CN0xZ8HKh7jlQgKzvhfj/FUtNyGzvgwjP1n0zHa5JEU5Jec8Vce446U9Pn0mkvoTZpvc5NiDcr6GqSY3DQWEhISEhIyEjNSZir99uD8Z4QuidnlJ78a7Eyl24FNrLXjPGMzgIeAA621zRd8rffdaqbSQ8AMYOPGxpG7Le7rwJHp29qEEBeHptISmOHWVLLW8Ha8G8Y+mbmNFtsQ23tyxnchtr/NHFdiOxL7h8xxwWquydHYrKmnjGQyhudyjrENyWI1ru4aWlnGDiSTcowCJbYisfcOwrg9if19jnENLC/R3AipZxSS8RheyDFuSWL/lGOcQ2x/kzO+A7G9O3NcsiaGF3OMo5GMddtkGWeS2D8vRuNaGJ6nuVmTNo7B8FLmHpTYnMT+JceQf6612JHY3pVjXAfDsznGMQhGeRrFQ2ncidjemWNcF8PTNDeU6hmLoOxpFNejUGITEntfjmE2sf3dIIzTMTxJY7NmUcYhKHqasGnjxiT2/sVoXB/D3BzjeARtniZs2jjD+0OBgRt3Ju4/g7v/EcQWdEQ/yhwPCQkJCQkZSQlNpSU3Q9BUWgC87mv8uGcaPQOc0niL2gD33aqpdDK15yNt3Hj7WqumkrtFbmf3x3dYaxe+U1+/44Wm0uLNcGsqVc09dMX+h0MvSu0mq+wo+t+S805fPxRZEoytEoxDk2AcmrQySvrf5vZ+JBiHJoM3duhb+z0bLiQkJCQkZKQmNJWW3LimUhcw1zfe6py6B103PbvIjdWbSpe8m9lBrZpKLV57O7WmUb9ZTO6ZSguB14Abgdep3aJ3u7W2+XaEASY8U2mEJTHZP71elFYXt3kXIwN5/VBkSTC2SjAOTYJxaNLK+H43QiAYhyqDN8b2fhShqRQSEhISEjJSYm14plJGFmb8+evuv+PfIwfQ18zaGbix8bY4atbb0w8VF0IcSG21uIXvdgW40FQacQnfDEJCQkJCBhv5fgNCQkJCQkJCQoYicxfzLLOxi3HfvtwAPAt8onHAdxte6sHeJwPvqqkU/lU4wqLlzAFs1ept0Wo56ffibdWqORaMA8tIMKqhguRkSTC2SqufMQTjwLI0GFv/vEmLgfxdEhISEhISEhKy1Gdsxp/XZygtfG8Yfc9SGkvttrd3ctwHgLFCiJ1bbulJaCqNsCixOUqsn7OFRLd4L0Vij9zx2uuz31qSdYExOXsYg2TtnHGFFrNyDa2Ns8k3rke+cSyStXLG1RDUcRfymhWS9YHROXsYh2SNvCOgxU65hsEbNwBG5exhPJLV846AFjvmGiKxe+54a+OGQEfOHiYiWS3vCENgnJM7LpkBlHO2mIQk73ZrjRY7tDC0Ote75o5LNgZKOVtMRrJKzniEFtvnHiOS+caoRR0Vm5JvXAbJtLwjoMV2+YaWxvznESg2A4o5WyyLZErOeAElts03DNKoxXYomfe9JSQkJCQkJCRkRGThALZ5vfUmg48Q4gAWPUdp4bvcTd4/1jMTmkojLEIISvpCpPBdEGiK6jRK+qzMC9CCPIJ2dSoFeYR3XIsdKOmzKapT8f20W4o1KEeXuuXFxzb7GEdZX0U5uhQpfM2GiKI6lZI+M/Pirk1+0hk/nmHciZI+k6I6Ocd4SW0pea9xPGV9Zc3ovZCPKKrTXR2zjJ92xo9lGGdR0mdQVCdlGNfqM/qaX4IJznh5xoV8RFGd4YzbZBg/64yHZxhnO+MJGca1nfFSfM0vwQQ6+oy+C/kCRXUmJX02WmydYfwcRX06Bel/+LwWuzjj8fhmiEixDuXoYldHn3FiyjjVayzpsyjps1BiS79RfYGiPo2C/EiGcVdK+vQc47qUo4ucsblBJ5iUMvqaDW2U9DmU9NmojNklbepLlPRpFOSHvOOR3I2SPp129X2vUYnplKML3blubtAJJtOhr6Q0IOMWGcavUFSnUZAfzDDuQVGfQbv6Hr6/2pRYj1J0AWV9SYZxmZRxZc8R2inp8yjpc1Bi8xbGQzKMe1LUp9Gujs0wru+MF+NrIgqWdcYrEKyUaSzrc1BiU8+4oE19jaI6jUgenGHcyxm/m2HcgKI+w/vakJCQkJCQkKU4din8Nfg8SHYjpv7ni33FLjfD6EhrbWZDSQhxsRDCupXfhvb4w231N1eQA6k9KX0Ctelb33g33TbXrZtF7YSOp3bSvftKTRW7AXjQ3Vu4M3AktYdZvav7C4fb6m/1WFuhan5LbG/H2m6UWIeCOhgplnfjlsT+mYq5GWtfR4qVKcgDUXLRDKLEPE7F/BRjX0KI8RTk3iixJULUZoUY+yqV5Cck9l8IUUSLWURyF4QouGO8ScX8jNj8FajdmleQ+yLEaDfe64x3YG2PMx6UMpqUcUGG8V9UzA0p4z4oMTNlfIVK8tOUcTaRnN1gvInY3OeMW1KQ+zQYf0Ns70wZD0aK5fqMsf0TVXNLyngQSq6VMv7TGV9GiAnOuEWD8Sck9nFn3IVIzkoZ33DG+wGRquOolPHXztiLkutSkAcjxbI5xoNRcs2U8R/O+Ioz7osSmzcYf0xi5yJEkUjOQYtZCBG58YVUzU3E5oEBGqc74zIp471Uza3OOMUZ10gZH6NibnTGic64Wcr4sjM+gRAlIrmLx3gjsXnQGbd0xo6U8VfE9i5nXI+CPKjBeI8zvlEzqoNRqeZozXgDxr7qjPuhxKYp40vuXNeNc9Bi5xzjVu79mDb+0hkrKLm+M072GBcixTQK6qB+xtg8StXc6IyTXB0bjT8msU8iRNkZd0oZF7hz/SAgU8ayM/Sk6phl/GOqjtNcHVdLGR9xxnkZxhddHdPGnRFCp4z1OqoM4y+J7d3OuIEzTnLjiTPe5oyrOOOqGcbJzrhJnzGxL1BNfkJin3LGXV0d68bXnfEhZ9yagty7wXgbsf19jvEPVM0vc4x/d8b5GcbnnfFpZ9wNLXbsM4aEhISEhISMnNXffnNg/sz7JTFzbvglj/339Xd97oQQRwAXW89TzOtjwKrW2mffxb4HtPqbEGIGcJS19sCGPx8LHFTvY7gV4TYBpjX2Q1wv5Os0rBY30Ayrfxm6JtBR6ZPqivSQEOIdTeNyhXmgvnyfK+qd1J5svrHnxI4FjnC/+v5RDZzybhtKwzu9WF7H2Nfd7xdg7ZvgGjYQY+zrWPt6bYwyltex1iKEwFpb+39q41iBsa+jREz9+THWvunGF2JtN1bUjgWuGUJn3/5r27+OpQvRN2Ok0mB8HWvfSt3JlDjjAmfscMdqNL7WwvgaloVge5yxkmEUWPsalu6UsV7H15x3gTMu11dH22Rc0M9ovHVMqH8803WsGV9rYazXcVSDsfa11SxvAcumjK+5172BZZTHWPcvACuxvE5tBam68Y1+RmNfA1Fh0bOEGowscHVMG19rML4JLNNQx9ewvIlldI5xIViF5TWPsf419NaO1WRc4DHWZ7X0NBhfd3WsG6vO+LozjsLaBX3v1+Y61o2G+uwfa99w74c84+uu/irD+DrGLmgwTs4wvt5ktP2MOsNYr3PdWG0wvtZg7EL0zbzpfQfGt9x5bmV8PaeOlVQd63/lvY2x7vuCx2gz6zip4f1YN/rqWPvMDdRo++pYN3Yuen2/c/1ujQuwdmHKaPpev8i4IONcZxlDQkJCQkJCQkZ0fgpcLIQ4wFp7Y8PYgcAdvoaSEGKVd9No8u2H2gylAz3DO1N7YHc9t7ttF3q2PQB4+N00lGAYzVRyTZ8FwKz0Endu7AaAjGL59jUDOLjx6eapYzzb2PETQlzsflufpvYwta7joE72cJyplNjn6Kx+BMurDSOCdvUdCnJ/OuOPkdhmcyQPpF0eT485mqpp/NyAEhtT1ldQMTfSk3y/aVywAuXoWox9ka74U0B3wxYlyvoihFjeGed5jMdQkPs4Y/P7PpIH0y6Pc8abPMZNnPEn9CTHe4wrOuPzdMWfzjBeghDL0ln9MJb5HuOxFOTedMYfJbF/azpGQR5CmzyWHvNNqubnHuNmlPVlVMyP6UlO8BhXoiO6lsQ+64w9DVuUnXESndVDM4zHUZB70BkfTmIfyTB+jx7zNarmZo9xc2f8IT3JSU3jkpUpR9eS2Kfoij+bYbwMIcY747+b9lAz7k5nfBiJfdRj/DBt8jv0mK9SNbd6jDMp60upmGvoSU7xGKc44xPO2NuwRUffbZCd8aFY/tO0h6L6AVrOoSs+jMQ+5jEeSpv8Fj3mK1TNbRnGy+g1V9KbnJZhvI7EPk5X/DmPcRRlfSmCMc74X4/xeLScTWd8GMb+w2M8nDZ5FD3my1TNL5vGtdiKkr6EXnMFvcnpHuNUV8d/OWPFY7wcQZnO+DAs/2usAkV1Alru5Iz/9Bg/Spv8Bt3Jl4jtrz3GrZ3xMnqT5tuzJNOc8TG64i94jKMp6ysQFHOMJ6Hl9s74L4/x/2iTX6M7+SKx/Y3HuC0lfRG95mJ6k7M9xlWc8e90xV8Eqg1bjHHGNmd8zWM8GS23dcbHPcaP0ya/SnfyeWL7O49xu5oxuZBec47HuCrl6Nq+mY4hISEhISEjPWGm0pKbwc5Ugr4ZSd9I9xdcP+IGPM83cjOQZtBiVpAQ4hlgvLV2XMb4WGq31j1L/2c7jXX/3cQd49nUa25w1vSfnUxtYo1v4s2AMpyaSvXpYeM8hT8AuME3rSxjXxdTawg1nSQ37av+AKuH06+pz2oaygy3ppK1hrfjXTH2qcxtlNiaxN6bOa7FLGJ7e87rtyGx92SOC1ZxzaLGZk09JSSTMTyfc4ytSOyfFqNxVdd0yzKWkUzE8ELOMbYksX9ejMbVsLySaxRMwPJi5h6U2ILE/mUQxm1J7B9zjGu44zc2lOrpQDAOy0s5xs1J7F8HYdyOxP4hc1yyhjuPjc2aekYhGIPl5UEYdybu3ytvGN+OONe4FobncoyjEYxy7wf/HpTYlMTeNwjj9sT29znGtTE8Q3Ozpp4xCEqeRnHauDGJfWAxGtfF8CTNzZp3YpxBYh8chHEHYnt3jnE6hidyjGMRtHmasPUolNjQ+0OBgRt3JLZ3ZY4rsSkd0U8yx0NCQkJCQkZSRkRTaeL4Gb8+MH+hjyUxu95wG4/9b3BNJVj0TCNqq6jlPsLHNXEOoDaZ5tmGsa8Dm1Kb6DLD/fGz1Ca8PJueNJNqTmUm47a8+mN/xrv/Ptw4GeedZjg1lW4HNvF14uq3wAEHeqaV+faV2f1L3S94ZPq2tpHSVKqaP9AVf7TFVoL8J5cparcVvdvXD0WWBGOrBOPQJBiHJq2MktqtUe9ngnFoMnhjh74FJacPJSokJCQkJGSJTGgqLbkZqqbSSM9wWv1tE7KX21vo/utbzsaXO9xrFuZv1hwhxFghxAHu19h3+vrhnsQMpLnV6uI272JkIK8fiiwJxlYJxqFJMA5NWhnf70YIBONQZfDGOGdGWUhISEhISEhIyMjJcHra5liym0rpbVrGTd/KmsJVnyLWdP+Cm8X0GnCjs9wghLjdWtv8MJbm12Z1a9bK+PP3KQO6gzAkJCQkJCQnw+lnUiEhISEhISEhIe9Xhtu/Chdm/Hm92TR+MDt3T0ffGbjR87ylhcDt1tpTrLXPuvsfDwSOcs97Wiqi5VYD2KrV2yJqMf5evK2WBGOrBl4wDiyDNaqhguQkGIcmS4KxVZYEY6ufJ7X+eZOWWw4NJSQkJCQkJCQkZInOcGsqtcrYQb7+BmoPuvpE44C19huNq865xtIdwMmtdmyt3dj3C5g7SPOQRolNUWLDvC3QYpfcfURir9xxLeaQd+EkWR+ReyrHIcW6eUdAi9m5hoEZs9/+kg3If7uNR4p18o4wAOPeueMDM47J2cMEZO5EOY0Ws3INreu4K/nGjYDROXuYOADjzrmGgRmzmxWSGcConD1MQrJGngAtdso1tDbuRr5xY/KNk5GsnidobZT5xqiFUbEp0JGzh2WQrJYzXkCLHfINcs/8cZG/Kolic6Ccs8WyyL4FQH15L4xbAKWcLZZDMi1nvA0tts83tDzX+UYtdkCJvPdbSEhISEhIyNIWa8VS9ytkaDLcmkpjM/68PkNp4bvdceop503L+rXIA8BY90T3JT5CCEr6QqRY0zMaUVSnU9JnZF7It8lP065Opk1+yjuuxSxK+nSK6jR8P7GXYi3K0SWU9JUIz8QzwQTK+krK+lKk8F3IFyiqMyjpMzMvktvkZ53R/9x1LWa3MK5NObrELd3dvIKjYCId+qoWxjOd0X8B2iY/R7s6iYL0T4LTYhdnPAXfrAEp1nXGy70NOsGkmjG6DOm9+GujpM9yxu39RvUFivoUCvLjGcZdnfHkDON0ytHFOcbJznhpRrOhjZI+m5I+Cy22yzB+yRk/5h2P5O7OeJLXqMR0ytFFOcZlnPFyJKs2jUM7JX2OM26bYfyKMx6eYdyDkj6Nojohw7ieM16Kr4lYM17pjL6GSDslfZ4711t7xgVt6qsUVZ5xT4q5xg0oRRdS1pfhayIKlk0ZfQ2RojOejRa+2ZSCdvV1Zzw0w7i3Mx6Pr6mtxIaUogtaGK+iHF2BZEqG8XxK+myUmJlh/IYzfjjDuA9FfRrt6vsZxo2c8VJ8TUTBcnREV1HKNJYo6QtaGI9yxg9mGPejqE+lXX0vw7gxJX2G97UhISEhISEhISEjL8Np9bcFwOvW2qYrN3fb2jPAJe9mhTYhxAHAUcBO77ChVF/W72QaVot7B68fVqu/1WNtldjeTtXcgbXdKLkOBXkQUizjxi2JvZ+KuRlrX0eKlSjIA1FyURMlMU9SMT/F2JcRYjwFuTdKbIYQta6vsfOpmJ+SmMcRokgkd0aLWQgRuWO8RcX8wi1zXluWvSD3QYiOBuPtWNuDkutSkAc2GO9zxgU1ozqo30/QE/MEFXNDyrgPSmyaY5yFFjs3GH9OYu93xi0oyL1TxgpVczuxvSNlPAgpJqeMf6VibnHGlZ1xtZRxrjO+ghQTiOTeDcZ5zjjXGWejxU4p45uujnXjTGcsp4y/I7Z3OuN0Z5yUMv7FGRcixRQK6sAG4+PO+Koz7oMSm/Q3Jj8hsU8gRCll1Cnjz91y8VnG3zpjb4bxz1TMrSnjQSixao5xX5TYOGV81RmfdMZd0GLHBuPP3HLxEi1mEsm9EaLkxnud8S5nXM+9H+tGkzK+gRRTnXGVHON+KDEjZXyFSvLTlHEOWuzQZIzNAwih0GJLIrlXg/E3xPZurK044wHv0PgvKuZGZ5zo6phlLDvj9injG874oDNuRST3bGE8ECkm9hlj+yeq5raU8WCUmJYy/tMZ5znjfiixUQvjDgihUsabiM1DKeNeCFFMGX/tjFW0XJ9IHuAx3oq1b6LENCJ1UIPxH1TMTc44yRk3TBlfdsannHFXV0flxhdSNTcRm4cHaNzAGSekjPe6OtaNB6PE1JTxMWecn2P8CYl9GiE6Uud6ONzCFxISEhISMjwyUlZ/+9UB+bOxl8TsduOtYfW3Ichwmqn0IGTed1D/83fcmXEzjI50t6MtzNjmYiGEXRpXe8tON8bOw9h5WOZh7XysfS01Xq2N1ceZh2E+9Saktbb2/8x3r6/tC6p9e7D2NYytjZu+8e5F47zpXjc/daw3G4yv9u3D2nkZRjfO/Nq2DcZFX+M8jH21wfi/vvF3a6y/1jLfY6w019HO8xjrdXrVGeIGY318vtdYf13t6x+I8X8e4/w+o/XWsfFcNhjJO9dv9P15zTi/n9HS1ff11YyN78fmOjYb53nO5SKj6Wf01fGNvj/vc3qN6Tqm1xZofD++2mA0Dca6YdFKXDVj43hPyrCw7/iLPr9vZRjrn5kFHmO6jv/OMc5rYax/phYZjdf4dsrY2WCc31RH288432Oc36KO/8XwKpZXWxjnZdSx09Vh0fvFkq5jBWtf7TvXhnlY+59Fr28y1v7bbJyXaayd69RnivkNdXwbw6v9tmk2Lqpj7fu3z5j+GueRXvnN2P+4476a+t7US0hISEhISEhISEg9w2mm0hHAxdZzc2N9DFjVWvvsO9jnDOAoa+2BDX8+FjioPvNICHE7sAkwrbHx5G6b+zq12+YaH+49EMOwm6mU2GfprH4Yy/ymsXb1LQryQDrjw0ns35vGI7kf7fIEesxRVM3Pm8aV2IiyvpKK+Sk9yQlN44JlKUfXYeyLdMWfJn0RVUuRkr4IKZajs3pohvHbFOQBdMaHkdhHPMb9nfHrVM3NHuMMyvoKKubH9CQneYzLOeNzdMWfofkiqm5c1hn/7TF+l4Lc1xkf9RgPpF3+gB7zNarmFo9xY2f8IT1J8+KDguWd8Rm64s96jWV9MYLJdMaHYvlP0x7a1TFEci+64kNJ7D88xoNpl9+jx3yVqrnNY9yEsr6CXnMNvclpHuMKzviUM1YatihR1pcgmOCM//UYjyWSe9AZH4bxGAvyENrkMfSYr1A1v/QYN6OsL6fXXEVvcrrHuBId0bUk9gm64s9lGC9FMM4Z/9e0h3b1PSK5mzP+02P8IG3yu3QnXyK2v/YYN6esL6PXXEFvcmaG8ToS+y+64s+TborWUqasL0Mw2hlfa9pDUf0ALWfTGR+KsY97jB+mTX6b7uQLxPa3HuNMyvpSes2l9CZnN41LVqYcXUdiH6Mr/qLH2OGMHc7YuNCndMadnbH5UXQFeSht8mi6k88T299lGC+jN7mYXnOOxzjFGR9xxrhhiw53G2SJzviwDOPxaLmjMz7hMR5Om/yGM97uMW5Zq2NyIb3mvExjbP5Od/Ilj3GUM7bRGR/e0EQCUBTVCWi5PZ3xRzD2yRzj54j7P0YQAC22pqQvoTc5j15zgcc4jXJ0HVIs1zQWEhISEhIyEjMSZipNnzhhxq/2WwpnKv3sVv7xv9eW2nP3XmU4NZXGAguAA621NzaM3Q5grW16qrAQYhVfo8ndMvcN3+1y7na4hfUHc7tb3G7M2M8zbtt39UYbbk0laxPers7B8EzmNkpsSWL/nDmuxU7E9s53/XrBNNcs6s7YoohgEpYXc44xk8T+ZRDGrUjsn1oY+88SaTZOxPJSzjG2ILF/HYRxaxJ7b45xFSz9Zzf0TwnBeCwv5xxjc3f74eIyruZqlDW7oYxgLJZXBmHckdjelfP6bUjsPS2ML9LcUKqnA8FoV2v/HpTY1N1++G6N25LYP+YY18DyfI5xFIIO957NMm7sbu17d0YttiXOMUrWxPAszQ2lekYjKHkbxYuMM0hs9vfKwRvXxvB0jnEMgnZvo7i+ByU2JMn5+UJr43bE9g85xnUwPElzQyltLHiasENp3J7Y/j5zXImN6YhuyBwPCQkJCQkZSQlNpSU3oak0NBk2TSXom5H0jfRzldxsoxvwPGBbCPEQMIOGWUSuQfUQtZXe0q8Z6/67iXvNs6nX3OCOnf6zk4EjGrd9h1/TsGoqVc3v6Yr9DzVeFAHkvS8U6ds4hmdaGVt9je9FgnFoEoxDE0n61qfmLAnGVuPvRUaGsax/gZbrDyUqJCQkJCRkiUxoKi25CU2loUnzMj7vY6y1lwghnnUNngeACeSv2HaHG28cu5Pac5gy14ZubBJZaw8UQpzsGlLj3X4fttY2L/+1BCcxA2lutbpwHO4NJWhtfL8vjiEYhyrBODRp1ehYEozvd7MGRooxsQ+hCU2lkJCQkJCQkJCRnmHVVAJwt6Q1P+jBv+03gG94/vxddRrd/pbyDKdns4eEhISELJkJK8CFhISEhISMqDQ/+jgkBAgdhhEXLbcawFat3haFQb5+KNLqGNEgXz8UGazxvbhoa/WXQzAOLME4NBkJxuHws5zBGwf2d0lISEhISEhISMjSntBUGmFRYlOUmJGzhSYSu+XuIxL75I5rsTt5FyWSDRDk3VU4ASXWyzsCkdg11xCJfQdgzL4AlWzUwjgRKdbNNWoxp4Vxv0EaZyD6HhPmy6T3yJj9bUSySQvjZCRr5wnQYpdcw8DOdb4RxuTsYRkka+WMF9Bidq4hkvvkj4s9yGtWKDYDRufsYRkka+aMF9Bi53xDS+Oe5Bu3AEbl7GE5JGvkjLehxU75hpbGvcg3zgQ6cvawPJLVcsbb0GLHfMOg67gVUM7ZwwpIVs0Zbx+8Ue6dO67FziiRZwgJCQkJCQkJCRkpCU2lERYhBCV9YUazoY2iOpOiPjXzQr5Nfo52dQJt8nPecS3mUNKnUFRn4JvRJMW6lKNLKOkrEUxs9jGJDn0VJX0pUviaDW2U9FkU9WmZF/Jt6gsU9Ym0yc9kGHelpE+lqE7PME6nHF1ESV+BYILHOJkOfRVlfRlS+JoN7ZT02ZT06WjRtGAhIGhTX6KoT6BNfsprjOTuro6neo1KrOeMVyIY7znCMs54KVL4mg3tlPS5zui7kBe0qa84Y9MCis64h6vjafhmPiixPuXoQkr68gzjsnToKylHlyGFr9lQpKTPo6TPyLhIFrSpr1LUJ1KQR2QY93LGUzKMG1COLnLLtDc3Ed+ZcXuvsV19naI6iYL8eIZxb4p9xuZmrBIbUooudMaxniMsR4e+umb0NkRKlPT5lPSZaLFdhvGbzvh/GcZ9KepTKKqTMowzKEXn5xiXpyO6inJ0eUZDpG48Cy229YxL2tVRzvjRDOP+FPXJFNUJGcaNnfGyDOMKzngF0vs4vhIlfaEzbpNhPNoZD88wHuDqeHymsRydR1lfjq/RKVgxZZzmOULZGc9GC99MIkm7+jZFdSIFeWiG8UCK6qQc46aU9Gne14aEhISEhISEhIy8DKvV35bGDLfV3+qxNia2d1E1twM9SLE2BXkgUkxy45bEPkTV3IxlAYIVKaiDUGLRxVZin6GS3IDlZQTjiOQ+KDEDIWo/hTf2v1TMDRj7ONBOJGehxY4Iod0xOqmaW4jdcvFabEEk90KIUsp4J1VzB9CbMk5MGR+kam7BsgDJSkTqwBzjeCK5t8f4U4yd64yznVH1GSvm5r7l4rWYSST3bDDeQdXcCfSixDpE8oAG4wPOuNAZD0KJaSnj0874ijPugxIbpYz/cXWcCxSdcYcG4y+cUabqWHTjVWe8yxnXdcYJGcaVXR3TxqeoJDc64wRn3DDHuAtabJ8yvu2MDzhjvY5p4+1Uzd3OOJ1I7t9gvN8Z33DGg1BiaoPxBiyvOuO+KLFByvhvZ3wCKLk65hm3dMb2BuNdQMUZD0CK8SnjfVTNrVjeTBmnLDKaJ6mYG51xIpHcFy036Bs3dr4zPumMu6DFdinjW874YKaxan5HbO92xvVcHX3GN5BMdec6bXzCGecN0DjHGWXK+HMS+5AzbkUk90gZK1TN7Snj+s44LmX8K1VzmzNOo6AORIqVU8a5VMxNzjiJSO7TYJznjE8BZWfcNmV8M1VHnTK2pYy/I7a/zzH+har5Zcp4EFKslDI+7ozzEUyiIPdDyfUajD/F2KdzjPU6arTYmkju3mD8LbH9Q8p4AFKMTRn/TMX8EngTySrOuGKGcTIFuW+D8VUqyU8xPOOMu6LFNn3GkJCQkJCQkBGy+tuECTN+uW/+TOYlMbv//Gb+8VpY/W2wGQ4Pdwh5H2J5G2Ofx9jnsfQAJYyd19dUgkrfuGEBkhhjn0cyDSEE1lqMfcGNv4zkDYx9DiWmA7WLHmPnYezzJPZ5BO0Y+zyITuo/gbe8TuKOAZCwLJrXEZQyjEWsnQdiotdoSVD2xQbj8ynjmxj7fIPxVY/x7ZTxtb59LDIuSBnfShl7gRLazm8yJvZ5LAud8QUkU53RuDq+4DEWPHUspupYux3K8L+UUWJYFsvrCFboq2PSz1h2xgkp43Mpo3F1bDQ+j+EVpPualVg3ZXy1wfgciE1zjMs1GN9qMHag7b9Txt5UHd/AYp1xSspYP9evpozrZBhLA6jj8s64vDO+SWKfc8ZKyjg+w1iv48qLjLyQMr6Nsc9h7ToIEeUYN8kxrtBkNDzfZxSMwuYYEWC8xhdyjK9kGEc5438bjCu6xvRyOcb5IOozxXoajAJjX0SwkqeO85B01vblNT6HoOzejxunjOk6alfHBQiWzTCOdnVcZEy8xhWdMUkZ5yPpJLHPIe3afU11Y19OGTtSdexIGV9IGVdsML6RYRzrjN2pz9SbIKQzrpAyPt9gfL7ZyAsNxo3Jv4UwJCQkJCQkJCRkJCXMVFrMGY4zlRL7FJ3VQ7H8u2msXX2TgjyYzvhQEvtY03gk96JdnkKP+TpVc0vTuBLrU9ZXUzHX05Oc0jQuWIZydC3GvkBX/Fmgt1FASV+AZHk640Ox/MdjPIpIHkhXfCiJ/YfHuA/t8kR6zNeomts8xg0o66vpNdfRmzTfxiFYlnJ0HcY+64wVj/FCJMs64389xqOJ5P50xodhvMb9aJfH02O+StX80mPciLK+kl5zLb3J6TnGp+mKP+8xFinpi5BMcsb/eYzfJpL70BkfirH/8hj3p10eT3fyJWL7a49xhjNeRW9ypse4nDM+6YzVDONEZ3zNY/wukdyLzvgjbsZbo/FA2uVxdCdfJLa/9Rg3dsbL6U3O9hiXd8bH6Yq/6DWW9cUIJtAZfwTL6017aFfHEMndnXGux3gw7fJYupMvENvfeYybUNZX0JtcSq8512NcwRn/6YxxwxYlyvoSBGNcHRd4jMcSyV2d8YmmYxTkIbTJ79KdfJ7Y3u4xbuqMF9NrzvMYV6Qjuo7YPEZ38qUM46UIRtEZH5ZhPI5IznbGJz3GD9Imv0N38llie6fHuDllfTm9yYX0mvM9xpWc8RG6ky97jGXK+jKgSFd8OJaFTXsoqh+g5c50xh92s6AajR+iTX7LGe/yGLegpC6lYs6n11zUNC5ZmXJ0HbF5mO7kqx5jhzO20RV/1GOUzrgjndUPY3jaY/wIbfIoupNPu5lYjcaZlNSl9JpzqJhLPMYplKPrkGKFprGQkJCQkJCRmDBTaclNmKk0NAlNpcWc4dZUsjbh7epsDM9lbqPE5iTuljRftNjB3bqS9fotSOxfM8cFK7tmUU/GFu0IJmJ5OecYm/XdkuY3bu+9YBq4cSqWeTQ3veopIpiwmI1bktg/5xinYXmF5oZS2jgOy6s5x9jU3e6VZWx1rt8L4ybuNqUs42DruAqWl2huKNVTqs0CYX7OMTZ2tylljW9PkmvcisT+Kce4GpYXcozl2oyfxWrcmsTem2NcHctzNDdC6hmFoORtZtf3oMSGJPZvmcdoda612Jo4xyhZA8OzLYzt3kbxIuMGJPbvOYbt3C1pWePbENt7coxruWZQlnE0goK3UbzIuD6JfeRdG5XYhiTHWGt639h3a2lISEhISMhITmgqLbkJTaWhSWgqLeYMt6ZS1dxFV+x/YPDAIwEzFJzFmFZGAbzf7/0lwaiAJGd8OBiXhDoG49AkGIcmrYytv8eX9c/7PccqJCQkJCRkpCY0lZbchKbS0CQ8U2mEJTHZswAGnuHeUILWxvf7og6WDGNeQwmGh3FJqGMwDk2CcWjSytj6e3xiH0ITmkohISEhISEjJdaGGcoh/oQlXEZc1PsNCAkJCQlZ4hN+JhUSEhISEhISEhKaSiMuWm49gK1avS0Kg3z9UGSwxveiuRaMQ5NWPxUJxoFlsMb3oomwNBijFuNLgrHV+ED/LgkJCQkJCQkJCVnaE5pKIyxKbIwSm+RsoYnE7rn7iMT+ueNa7EHehZNkBoIJmeMwESU2zDsCkdgt1zB44yYIxmeOwySUWD9PQCR2HaRxL/KaDTXjuMxxmIwU6+UadQtjQR6QOx61MCo2QzA2Zw/LIMW6eQK0bGXcL3e8tXGLFsZlkayTM96GFnPyDS2N+5D37VgxExiTs4flkKydM96GFrvkG1oa9ybfuCUwOmcPKyBZM2e8HS1m5RsGZMxuqCi2It+4IpI1csbb0WLnfEMro9yHfOO2wKjMccFKSFbLOUIRLXZarEYtZqPEKrn7CAkJCQkJCQkJGRkJTaURFiEEJX0ByttsaKekz6GoTyWSe/heTZv6MqXoeNrUl/BddERyD0r6FEr6bKC9aVyJ9SlHF1HWVyFYxnOEZenQV1PSF6PEdI+hSEmf54y+xpKgTX2Fov4BbeoLnnGI5J7OeFaGcQPK0YXOODnHeCky13haRtNG0Ka+WjPKz2UY96akT6KozgLaPMaNUnWc5DnCcnToqynrSzOaNiVK+gJK+rSMZoOkXX2ddvV92uRnM4z7UtQnU1RnZBhnUIoupKSvQjDRY1zeGS9DCl9DpERJn09JnY4WszOM36RdHU+b/HSGcX9nPB3fLBclNqYUXUBJX+ltdApWoCO6mnJ0GVKslWG8gJI+PaMhImlXR1NUx9MmP5ljPJGiOi3HeD7lTOOKKaOvaVOmpC+ipM/IaDZI2tW3KKrjKcgjMowHUtQnUVSn4pvFosSmlPuMzc1YwUp0RFdRji5HCl/Tpm48Ey129Iwr2tV3WhgPbmHczBmv8DZjJSu3MHZQ0hc74/YZxmMoqhMoSP9iCJH8AEV1IkV1Mr6mthKbU47OoawvzzBOoRxdRTm6MqOxNIqyvpiSPgsttsswHuuMH/MaC/IQZzwxwziTkj7V+9qQkJCQkJCQpTfWLn2/QoYmYfW3xZzhtvpbPdYmxPYPVM3tQDdKrEsk90eK8W7ckthHqJpbsLyGZGUidQBKTOnbR2Kfp5rciOElBBOI5N79VgMy9jWq5iYS+y+gSCRnocV2CKHcMbqpmtuI7X0AaLEFkdwDIdpTxt9TNXcAPc64n8d4M5bXM4zPUU1uGqCx5IzbNhhvJbb3O+NMIrl7C+P+SDEuZfy7q+PrSKZQUAcgxcoNxhsxvJxh/J8zPu6Ms51RumN0pYzSGXdLGeOUsTfD+DdnXOCMByLFSinjs874ijPug5brNxhvJLFznXEXtNimhXF3hGhLGe+mau50xunOODZlfJiqudUZpzrjihnGiRTkPii5Xsr4XyrmRox9AkEZLXdBi60bjLcQ2weccUtXx7TxLqrmLmdcz70f08aHnPGNVB3Txmec8VVn3Bclp+cY56DFViljpzM+6IxbEcldG4x3OmMFJdanIPdDiDEp44NUzW1YFiKZ5owrZBgnOeO6DcYbMPbJTGPF3ExiHxqgcQMKcl+PsV5Hn/FpKsmNWOY5434ouU7K+B9Xxyzj21TMLST2QUChxdZEck7KWHXGu1PG/RBidMr4gKvjG0ixCgV5QIPxKSrJTc442dWx0XgDxj6FoEwkd0WJrRBCpIz1OmYZ76Bqfu+MG7o65hkPRIrlFxnNk1TMz1LG/VBy7ZTx366OdeNuKLFlnzEkJCQkJCRk5Kz+duve+7zflCHPnjf/Iqz+NgQJT9ocobG8QWLnYuwTWLoBjbIv9DVsoBdjnyCxc7G8jqULZZ9EshJCSKw1GPsUiX3CNWzGo+yaWLtW30WPsS+S2CdI7BMIiiR2JZTYsG8mg+HfJHYuiX0CAMFYFJuimJJhVCj7YoOx9vqasRtln0KyMkKIlHFuX8NG2bkNxhf6DP2N45xxfoNxHJpNEazsjAudcS6WXlfHF/saNouMc7EswNJNYp9CsFLK+KSrY934hMdYr2MJY1fGig37btmqGZ9wRumMm3iMT2QYe/q+xpqxh8Q+iWBFj/GVlHHNlPH5BuMUrNigwTg3ZRzv6rhShjFyxrENxrlYFmLpdcYVnDHpe7/WmiH/I7FPIO0a/Yymz1hG2ikgNqB+W1lzHSc444rOuCB1ritAhLYvQZ+xO1XHha6OTzUY63V8FcFrKWPBGZ9z75cnnXEqiPUHYFyhwfiEMxYw9iWUGJMy1j/Xb7g6PoVg+YY6po1zkXb1BuMTKeM0V8fRzjivbx8gkUzE5hrbPMZ6Hd/AUiGxTzcYn8TYJzDMQ/K6M66WUceODGP9c68wTMSySX+jSRvbnbHeXOvqb7QVEvFMP2NiGo1PuDpGzvhsqo6jkHaau6W2uY414yRXx+VzjC+jxDoNxrlY3sTaqjMu54wxSb86LnDG1RAiwlrrMa7iZrnm3UIYEhISEhISEhIykhJmKi3mDMeZSol5gs74I1j+1zTWpr5CQX6QzvhQjP1n03gkd6ddnkqP+SpV86umcSmmU9bXUDE/pDc5vWlcMImyvhbD83TFnwOqDVsUKOnzkazgjK95jF+jIA92xn95jHvQLk+lO/kSsf1N07gS0ynra+k119CbnOkxTqYcXYuxz9AVf8FjbHPG5eiMD/Ua29U3iOSBdMYfwdjHPcY9aZcnO+NvPcb1KOtr6E2upNec4zEu44xPOWPsMV6AZBlnfN1jPIpI7kdn/GGMa5r1N+5NuzyR7uSLxPZ3HuMGlPXV9CaX02vO9RiXpRxdh7Fz6Yq/6DG2O+MkZ1zgMR5NJPdxxic9xn1pl8fTnXye2N7hMW5IWV9Fb3Ipveb8TGNiHqc7+VKG8SIk451xocf4LSK5lzvXPuP+tMvv0518ltje5TFu5IwX0WsuzDD+kMT8g+7kKx5jkZK+CMEYuuLDM4zfJZK701n9EIanPcYDaJffc8a7PcaNKakrqJgL6DUXe4zLOeMjdCdf8xrL+mJgFJ3x4cAbHuOxRHKOMz7jMR5EuzyG7uTTxPYPmcZecz4Vc4nHuLwz/s0ZE4/xUqBEZ/xRj1E442xnfNZj/ADt8js5xk2c8Rwq5jKPcQU6oh8Sm4foTr7uMZacsd0Z3/QYv0ckd3bG55qOUZCH0Ca/Q3dyJLG9x2PcjJK6jF5zFhVzhce4Ih3Rj/rNwAsJCQkJCRnJCTOVltyEmUpDk9BUWswZbk0laxPeru6M4YXMbZTYlMQ+kDmuxbbE9o85r9+MxN0u5otgRSz/BXoztmhDMBHLK++jcWUs84FKxhbtCMZjeTXnGJu422verXFzEndroN84xR2/selVTxHBWCzzco6xsbu95t0atyCxf80xTnXnMc84xtU66xgzSOzDOePbkgza+DLNjZC0cTSWf+ccYyMS+7fFaFwFy4s5xhKCDiz/GYRxGxJPk2HR+EwS+5cc46pYXsgxlhGU3GffHyk2wNhHBmHcksT+Oce4OpbncowdCNq9DfdFxvUx9tHMcS228TZrFhm3IrF/yt4/q7uGVWNDqZ5RCAreZnYtAiWmk9jHFpux1lD+WbgNLiQkJCQkhJHTVLplr33fb8qQZ69bfh6aSkOQ0FRazBluTaWquZOu+BOD3IsEzFBwFmOWBqMA3u/PZzAOTYJxaBKMQ5PBG8v6Z2i54RCaQkJCQkJClsyEptKSm9BUGpqE1d9GWBLz9yHYy3Bv1sDSYXy/LzwhGIcqwTg0CcahyeCNebMHQ0JCQkJCQkJCRk5CU2nERb3fgJCQkJCQJT5hnY+QkJCQkJCQkJDQVBpx0XLbAWzVqvHUNsjXD0VavXWDcWBZGoyFFuPvxcXvkmBs9fybpcEYDRUkJ8EIoOU2A9aEhISEhISELOGxAsxS+MuG50MORUJTaYRFiY1QYvOcLSIisWfuPiJxYO64FnuRdwEq2RTBpJw9TEaJjRazce8Wxs0QTMzZwzItjAUisUeuoSDzjZHYhzyjYgsEE3L2sCxKbJAnIJKDNe7bwjgTwficPSznllHPShta7t7CeNAAjNnNL8WWCMbl7GF5pJieM96Olru1MA6kjnnGrRCMzdnDCsi+5e59aUeLfGPUyij3I9+4Ta5RsBKSdTLHoYgWc4bAmP3XmmJbYEyOcWUka7cw7tLCcMAgjdsDo1sY12xhnD0Exux/ZGmxK0pMy91HSEhISEhISEjIyEhoKo2wCCEo6fNQYkPPaImSPp+iPplI7u0Zl7Spr1GKjqNNfRXf2yeS+1DSJ1HS5wGlpnElNqIcXUhZX4Vg2WYfy9Ohr6akL85oiJQo6Quc0ddYkrSrbzjjV/BdGEVyX0r6REr6XKDoMc5wxqszjCukjL6GSL2Op2Q0bSTt6psU9XG0qS9lGPenqE+kpM/OMG5MKbrA1XEZvzG6mpK+BCXW8xjKlPSFFNXJRN6mjaJdHU27+h5t6gsZxgMo6hMo6bOAdo9xE0rR+c442WNc0RkvRXmbNjVjSZ2CFrtmGL9VM8rPZRgPoqhPoKiyjJtRzjWuREd0NWV9WUbTpoOSvoiSOjWjIaJoV9+hXR1Hm/ysZxwiebAznoFvZpgSm1OOzqekr/I2YyUrp4y+ps0oSvpiSvq0jGaDol0dQ1EdR5v8tNdYkIdQVMdTVKdnGLegHJ1LSV/pbcZKplCOrqIcXYYUvqbNKMr6Ykr6dLSY5RnXtKtjnfFTGcYPOuNp+GbiKDGTcnQOZX2ltxnb37iW5wijKetLKekz0GLnDOP3KKrv0yaPzDB+yBlPzTBuSTk62xmbm7GSqZSjqylHlyPFGp4jjKGsL3PGHTOM36eovk9BHpFh/EjK2DxjSYutKOmTva8NCQkJCQkJCQkZeQmrvy3mDLfV3+qx1hDbe4nN77D0oMQ6RHI/pBjbt01iHqNibsHyOpKVKKgDkGLFvnFjX6KS3IjhZQTjKci9UXJ6anwhVXMTiX0cQTtazkaLrRFCOkMvVfMrYreUuhYzieSuCNGWMt5DbG7H0osS61CQ+yHEopkGsXmUqrkFywJnPBApVngHxgVUzc+cseiMW6WMPc54X47xj8TmjhzjI1TNrTWjWJmCPKDB+CKV5CZnnOCM6zYYbyKxc3OMv3RG6YxzUsYkZaygxLrOOLrBeAuWhV5jYl+gmtyE4RVn3Acl10kZX3d1rBkjuQtKbNlgvI3Y3p9j/AOxudMZp1OQ+/YZrbUk9tGUcYozLp9hnOiMazcYbyKxTyAopYzCHaPbGR9wxi2dsZAy/p7Y3OWM61GQ+zQY63V80xn3bzA+74yvZhhfc3WsG+egxMwG463E9kFn3IpI7vIujW8gxTRnXC5lfI5q8jNnnOSMazUYbyKxTyIoO+MWGUbljLNzjOs746iU8e/uM1M3HoAUyzYYb8Iwzxn3Rck1U8b/uTpmGbtSRo0WWztj5MZjZ7w7x/g3quY2Z1zF1TFtfNbVMcv4X2d8yhl3RYnN36HxbmLze2fcgILcu8H4MFXzy5TxAKRYpsF4E4b5zrgfSq7RYLyJxD7tjLuhxGZ9xpCQkJCQkJARsvrb+IkzbtlzKVz97daf84/X/7fUnrv3KuFJmyM0ltdJ7N+J7aNge0BWUXY9pNi0Nm67ie0jJPbvWLsAK14nsWsgWB4hJNYaEvsYiX0UY19CiPHEdgrSrooQtZk1xj5JYh8hMXNBtCPsZJRYp28mg+FlEvt3EvsIAIIiivVRrOKMrzUYKyR2PbTYpM+Y2EdI7CMp41oIlnPGxBkfwdiXnXEq0q6GEO3O+FSfUfQZ184wCgSlZqP5O7F9BGwvyCqJXR8tNnbGrmajWLOfMTY+46op45Mk9tGUcRlXxwkNxkcbjNMWnWtTr2MvyNgZZzQYH8XahVixgEQ01LHP+ApCTCCx05B2lQbjIyTmCWdcFinW6ZttYXjJY9wAxdRUHR9JGRNnrN9i2NV3Hqx9AysWOuOyKeOjzvhqg7HNGZ9IGUsIuwxSrL3IaF/qq0PNWHbGKc74vwzjhg3GR50xXUfRUMdXEWIiiV2lyRibv2Psk864rDOOc+MvpowSQYc712mjez9SBQyJ3QDdN+uvs8H4RqqOAmvjBuMkV8dpDcZHMPYphCg641op4wtNRs36CFZ2xv82GK2rY6PxEax9EyveJBFrI1gmZayf63kp41SEaMNai7FzXR2fQohyqo5j++pY+/72WINxpYw60mB822Ncq8kY279j7XxnXKWfMekzPo0QZaRdztVxbF8d+xtHNRgb61g3rp9hfMvVcbIzVp3xEWecTGJXdcZCyvhIyrg8SqxF3i2EISEhISEhISEhIythptJiznCcqZSYx+mMP4Ll9aaxNvVFCvLDdMYfxti5TeNazKGoTqc7+TKx/W3TuBRrU9bXUjHX0puc3TQumEBZX4vhObriLwBxwxYRJX0ukhXpjA/NMH6ZgjzEGZ/wGHelqE6jO/kSsf2dx7hOzZhcRa8512Oc6IzP0BV/0WMsUNLnIVnOGRd4jF+hIA92xiebxiO5O+3yFLqTLxDbOzzG6ZT1NVSSy+k153uMkyjra0nsU3QnX8owno9kGWdc6DF+jYI8gM74IxnGPWiXJ9OdfI7Y3tU0rsR0yvpaepNL6DUXeoyTKUfXkZjH6U6+kmG8AMkkOuPDvMZ29Q0iuR+d1Q9heNpj3It2eYIz3u0xrkdJXUPFXESvudhjXMYZ/0F38jWPsY2SvgDBeDrjw4E3PMajiOTezviMx7gP7fIHdCefIbZ/8Bg3oKSuotdcSMVckmH8IYl51BmTRgElfSGCsTnGo4nkns74rMe4rzN+OsO4ISV1Jb3mAirmUo9xWVfHR+hOvp5hvAjBaGd802P8NpHczRmf8xj3p10eR3fySWJ7j8e4kdHWdpIAAQAASURBVDOeS8VcnmH8IYl5mO7kG4Bp2KLojGU6448Cb3mM3yWSuzjj8x7jAbTLY53xXo9xhjOeScVc5TEu54wP0J0c5TWW9SVAG53xx4C3PcZjieTOzviCx3gQ7fK7dCVHkNg/e4wbO+MZGcbl6Yh+hBQrN42FhISEhISMxIyEmUrrjp8445Y99nu/KUOevW77Gf8MM5UGndBUWswZbk0la2Peru6M4cXMbZTYhMQ+mDO+NYnngqkeySYYsl8vWAHLf4FKxhYFBBOxvJpj2JjEZtdUi629F3WLXr8piX0gx7giln9TnwHQnDYE47DMzznGDBL7cI5xG+/F8cCNK7njZxnbEYxtYdyIxP4tZzz/XCuxGYm9P8c4BcsrNDdr0sbRWP4zjI1FBKNaGDcksX8fhHFzEneLpd84FcvLLYwd7nOVdYwN+mYFLh7jKlheoLmhVE8JQRHLa5n7kGI9jH0sx7AVif1TzvgWJO52Wr9xVSzP5xjLCNpbGKdj7D8GYZxJYv+SY1wNy3M5xg4EkbeZ3WdkXQz/zBzXYiviQRiVWI+y/kW4DS4kJCQkJITQVFqSE5pKQ5PQVFrMGW5Npaq5g67Y/4DWgUfS/BP04ZZgHJq0Mgrg/f4esjQYh0OWhjoG48AyeGNZ34iWM4YSFRISEhISskQmNJWW3ISm0tAkrP42wpKY7JkKA89wvziGYByqtDK+3xfHsHQYh0OWhjoG48AyeGPezLyQkJCQkJCQkJCRk/Cg7pEWEU55SEhISMhgE/4uCQkJCQkJGUmxNtz2HuJPmKk0wqLFdgPYSrUYbxvk64cigzW+FxdES0IdW30LGA51DMahyZJgbPWPlUKL8WioIDkJRgAttx2wJiQkJCQkJCQkZOlNaCqNsCixAUrMzNmiQCT2yd1HJD6QO67FvuRdlEg2Q7BMzh6WQYlNcsYLRGLvXENB5htrX2O2UbEFgsk5e1gWJfKeJ9JGJPfKNbQ27k/ehbxiSwSTcvawHEpstJiN+w3AODFnDyugxIY54+1Ecs9cQ0EenDve2rg1ggk5e1gR1beUvC/FwRtlq3O9LYLxmeOClZB9S8n7jVruPkjjAeQ1OhXbIRiXY1wZKabnGiORb4xavR9bGrdHMDbHOAXJOjlHKBGJ3RazcccWxmlI1s45Qhktdm1hyD/XBXkQef88iOTuKDE1dx8hISEhISEhISEjI6GpNMIihKCkz0MJ37PIypT0BRT1Ce4itzGKdnUUpegY2tU38b19Irk/JX0CJX0BUGreg9iYcnQhZX0VghWafaxIR3QNJX1RRtOmTElfSFGfSCT3zTAeTVEfQ7v6eobxAIr6BEr6/AzjppSiC5xxeY9xJWe8OKNp00FJX0RRnUQk98kwfouiPoY29dUM40EU9Q8o6fMyjJtRjs53xuWaxiUr0xFd64wbegyjKOmLndHXWNK0q+8441cyjB+gqI+npM/NMG5BObqAsr4awbIe4xQ6oqsp6UsymjZ148lEco8M4zG0q2NoU1/CNzujIA9xxrOBosc4k3J03gCN63kMoyn31THLeKwzfiHD+EGK6geU9Fk5xnPcuW5uxkqmUo6upqwvRXmbNqMp60spqVOIpK8homlXx9WM8vMZxg9TVD+gqM4C2pv3ILZKGZubsZJpznhZRmNpDGV9GUV9KlrMyTB+n6I6hjb5uQzjoRTV9ymqMzKMW1OOzqakr/I2YyWr0BFdTTm6HCnWbRoXjKWsL6eoT0OLXbzGojreGT+TYTzMGU/HNzNMi20pR2dR0ld6m7GSVemIrnLG5saSYBxlfTklfRpazPYYI4rqRIrqWNrkpzzjUJCH066+R1GdlmHcjqI6yfvakJCQkJCQkJCQkZew+ttiznBb/a0eay2J/TNVcweWbpRYh4LcByFG922TmMepmJuxLECKlSjI/ZBiUZPF2FeomJ9h7MsIxlGQe6Pk2qljvEnF/JzEPo6gSCR3Rokt+5ahtraXqvlt3zLlSmxBJHdBiIIbNyljT4bxX1TMLSnj/kix3DswvkHF/CJlnIUSMxuMv+lbkl6JmURydj9jbP9EbO7MMf6TirnVGVd2dWw03oSxryAZTyT3Rsm1Gow/J7FznXE2SmzRYPw1iX3AGbckkrNyjOs646iU8R/OuNAZ90eKZVPGl53xVWfcByXXTI0vpGp+TmKfQFByxs1bGGcjRJQy3uuMvSgxnYLcu8H4GBVz2wCNE5xxjQbjz0jsk864C0ps1mD8FYl9EBBouSVazGow3kNs7nLG9Zyxo+8YsXmUqrkNyxtIMcUZl0kZXqKS3IRhXoZxgatj3TgHJTZNGXuoml8R2wcRyAzjH4nN3VgqzrhXg/ERquaXzjjVGSdnGCcSqX1QYvUG489I7FM5xl8S24eccSu02DllTJzx94MwvuiM851xX5RYLTX+uqtjnvE2YvtwyjgL4Z45t8h4N5YqWqxPJPdCiHKD8TYsb6LENCK5P1IsalYl9gWqyc+ccZIzrtpg/BmJfdoZd0WJTTKMKlXHtPEPro5VtNiASO7ZZ6x9j6/XMcv4PNXk5znG11wdn0ZQdsaN+4whISEhISEhI2f1t1/sdsD7TRny7POrG8Pqb0OQ8KTNERrLf4nN/cT2PrA9IN8msWugxRa1cdtJbO8nsfdj7QKseJWYKURyGYRQtQsa8zCJub/WsBHjie1ySDsFIWqzVhL7T2JzP8Y+DqIdYUYj1Rp9swSMfYHE3kdsag0bpECxForVnfF/znh/yrgmWmyeYZxHzDQiOSdlfIjY3Ie1rzjj8h7jfRg7F0TRGVdPGZ8nsfc7owApnXG1vjomfXXsBdlJYtdCi81yjFOJ5K4IIZ3xQWJzP9a+ghHjEX11LDrjP1wd68YxSLVaP2Ns7ycxDzijcsZVnfE/JOa+lLHL1bFufDtlXIgV80nENARznDFOGV/FiAkIuzzSrtxnNH3GJ2pGOwYpVuubbWHsc8T2PhLzoDNqFGujWKXBeH+DcdMG431Y+wZW/LuFcWLK2O4usB9LGcsIOxYpVk0Zn3V1dEY0Uq2VMv47w7iJM75F0lfHtHGXlPEhYvtAyrhCg/EfDcZxzjghVUdnFApMhFRro5jmjPNT57qaMm6cMj6QMv7HGWc7Y7VWx7TRLI+UKzUYH8DYJ0GUEHZ8g7Fex4ecseDqOC1Vx/tTxm73mZnhjG86431Y+6YzruKMosE4zxlXcMa2hnP9JIgOZ1yt7xZCY59xxodTxrVRTO2rY9x3rqsge5B2LbSbmVgz1s91zSjFKghm9RkT8yCxvR9r52PERKRZASlXTBkfdcannHGCM45zxqcbjPVzPSVlvN9j3NB9l3+rwfhfd552zjBOQpoVWxjr5zr7NseQkJCQkJCQkJCRlTBTaTFnOM5USsw/6YwPxbKgaaxNfo6C+gid8YdrF2QN0WIWRXUm3ckXie0dTeNSrEFZ/5BKcjW95rym8drtGdeS2GfpTr4MxI1HoKTPRrKSMy70GD9PQX3IGZ/yGGdTVKfTnXyB2N7lMa5FWV9HJbmCXnOBxzjeGZ+mO/mKxxhR0ucgWZ7O+DC/UX2RgjyEzuqHMDztMc6hqE6jO/kcsb3bY1ybkrqWqrmUXnOxxzjBGZ+gO/kqkHiM5yJYhs74cOANj/HLFOTBdFY/iOEZj3FXiupUupPPENs/eIzrUFLXUjEXUzGXeIwTnfFxupOveYwFSvo8BJNyjF+hIA90xmebxiO5O+3yZLqTTxPbP3qM0ymra+g1F1Axl3mMk5zxn3QnX88wno9ggjO+6TF+jYLc153r5zzGPWiXJ9GdfIrY3tM0rsR0Suoaes15VMwVfmP0QxLzCN3JN2heDr5ASV+AYCyd8UeBt5r20a6+SST3dMbnPca9aJcn0J0cSWz/5DGu54xnUzFXeYyTnfFhupOjPMY2ZxztjG97jEcTyd2c8QWPcR/a5ffpSo4ksX/2GNenpK7OMS7jjA/SnRztMbZT0hciKNEZ/1+OcVc6qx/OMO5LuzyOruQIEvsXj3FDSupKes0ZVMy1HuOylKPrSMwDztj493M7JX0xgjZn7PQYv00kd3F1fNFj3J92eSxdySdI7F89xo2c8TQq5roM44/CM5VCQkJCQkJcwkylJTdhptLQJDSVFnOGW1PJ2pi3qjtieTlzGyU2IrF/yxnf0ntRV49kIwzZrxcsj+W/QDVjiwjBBCzzcwwbkti/D8K4MYbscyJYAcu/aW4o1VNAMM5tk2XYgMQ+8q6NSmzibsUajHEslv/kHGN9EvvoIIwbk9i8Oq7ozmOWsQ3BaPd+WFzGVnVcCcu8HGM7gg4s/8vchxTrYexjgzBu2ndroN84xX1mG5te9RQRlLC8lmOcjrH/yDHM9DZCFo1v1ncbqN84FctLLYxFLK/nGNfF2H8uRuM0LC/Q3FCqp4Sgzdtw7zOyDoZ/LUbjKlieb2EseJvZi4xrY3h8EMbN+25L9u5fTKdD3xxugwsJCQkJCSE0lZbkhKbS0CQ0lRZzhltTqWp+R1f8yUHuRZJ9wTNcEoxDk2AcmiwJRkHzzJjhllbG4fA1jAxjWd+AluHfXyEhISEhISOlqfTzXQ98vylDnn1/fUNoKg1BwupvIyyJyZ7xMfAM94tjCMahSjAOTZYE4/vd6BhIWhmHw9cwMox5M0VDQkJCQkJCQkJGTkJTaaTFrcAUEhISEhLy7lN4vwEhISEhISEhISHDIKGpNMKixfYD2Eq1GG9vdZQBWQaXVsa2FuPBWMuScK5bfZsaDnUcrPG9aPYuCcZWz+gJxoFlsMZWDSOBltu+A09ISEhISEhISMjSmtBUGmHRcgO02CpnizYiuV/uPgryg7njkdiPvIsSxUwEy+bsYTmUW+4+27jvII37k3dxp9gKwTI5e1ge5Za796d9AMYPtTAe2MK4NYLJOXtYAeWWu8827t3C2KqOB5LXtFFsg2BSzh5WRLml5P0pEsl9cg0tjfIg8o3bIZiYOS5YGeWWks82DrKOLY07IJjQwrhBzhFKRHKvFsZDhsA4Psc4FSnWzzlCmUjuOUjjwS2MOyEYl2OchhTT841ij5xxQdTCWJAHk9fM1WIWgrE5R1gVybo5R+ggErvlGgvyA4MyRnIPlJiSu4+QkJCQkJCQkJCRkdBUGoEp6nMzmjajKOmLKKrj3QVkYzTt6tsU9bdpV9/Cd/EWyYMp6h9Q0hcBHU3jSmxOObqAcnQ1gpWaxiVT6IiuoaQvzGjajKKkL6aoTiCSvhUINO3qOxT1d2hXR+O7MIrkB5zxwgzjFpSj8ynrqxGsmGO8KKNpM9oZjyeS+2cYj3F1/KbXWJCHUNTHUdIXAGWPcSbl6DxnXMFjnJoy+p47N4ayvoSiOjGjiahpV8c649czjB9qYdyScnSuMy7vMU5zxoszGkt14wkZjSVNuzqOov4Obeqr+L6dFeRHKKrjKOnzgFLzHsTWlKNzcoyrUI6udsbmxpJgLGV9qaujr7EU0a6+74xfyTAeSlF9j5I+N8O4DeXoLMr6GgTLeYyrujpe6m0sCcZR1pc5o69pE1FUx9OuvkOb+lKG8XBnPDvDuB3l6GxXx+aGsWQ1OqKrKetLUZ7GUs14OUV1MpH0NW0iiupEZ/xihvGjFNWxlPRZOcazso1idWe8HCXWyzbqU4jk7h5jgaI6kaL6Dm3y8/hmCxXkx2hX36OozgKKHuP2lPQZztjc1JZiDTqiqyhHl6M8zS/BeGc8DS12zTCeRLv6Lm3ycxnGj9c+++qMDOOOFNWJnn2HhISEhISELLWxYun9FTLohNXfFnOG2+pv9VhrSez9VM3tQDdSrENB7o0Qi5osiXmCqrkVywKEWJGC3A8pFl3oGDufivkZ1r6CYByR3Asl10gd4y0q5maMfZzabI5ZKLFZ3zLU1laJ7e3E5q/UbqfYvPZTevfcp5rxPmfsQYp1Kci9PMZbsCwcmFHtjRKr5xhno8SmKWOFqrndLa8t0HILtNi5wfhXquaOHONcV8eFSLESkdwPKSanjPOc8VUE451xtZTxTWecm2P8nVumXKDlTLTYqcH4F6rmTqAHJaYTyb0QopwyPu6MbyDFys44KWV8lYr5eQvjLzD2CWqzYmajxCYNxt+S2AdSxp0RQqeMf3bGXpRYj0juOQjjBGdcNce4C0psnDL2OuODgEzVsW40zniXM67vjKWU8V/O+CZSTCGS+zYYX3HGec64D0qskmOcgxIzGoy/cUaFlluixY79jLH9E7G5G6ik6phlnEok98kxTnR1TBvfcMYnqc0umoMSGzUYf01iH3LGrdBihxzj+kRyjwbjP6ma21LGfZFiYoPxZ1g73xn3QYlpgzBu7Ywqx7gnQhRTxn9QMbcBbyHFNFfHtPFlV0e/0diFVM0vMPYpZ9wVJTbMMOpUHdPGe4nN751xA1fHtPExKuaXKeO+SDEhZXjJGf/tjPuixNQG488x9mmgwxk36DOGhISEhISEjJDV38ZNWnpXf1vw36X23L1XeS8eNhIyDGP5N7H5I7G9B2u7UeI1lJiCFlvXxu3btQsW+0eMXYAUKyFZzl20aKyNic1fic29GPsSUoxD2HFIu3xfQyWxjxCbe0nsvxCiiDBtSDWlb5aAsU9TNX8kMfc5UwUpV0GJtdz/z3fGexuMW6WM9xDbe5xxZSTLO6Nyxr8Qm3sw9mWkGI8w45Fy+b5mRWz/TmzuIbGPO2O7My7jjM8Q2z+SmPudqeqMa/Y3mnuw9KLE6ygxFS22dMa3iO29VO09WGcUfXVMG+9tMC6HEGWstc54rzOWEKaIVFP7bn0z9mlnrDVsIHbGNZxxHtWU0YgFSDEVLWY645vOeG+DcXdnrKbq+ApSTECYCa6OJWf8mzPOTRmnpIxPOeODi4xqVRSrO+OrVM09xOZeZ1zojFukjPe4Oi5EiikIlieSu6WMfyY2f8TYV1PG5VLGh925fsIZS844KWW8x2NcLVXHe1wdKynj5g3Gez1G2VDHV5FiIsJMdMaiMz5EbP5IYp9MGVduMN6bMibOuGqfMU4ZrVyItNPQbmZi/zq+gRIvOuOuKeOfG4wTGoz1OqaNK6WMTzrjQ85okGqVlPHVBuMbSDs1ZXyjwfgSUqyAYI4zVojNn5xxHlJMShnbnfHBVB3LqTpOdN+bnnDnutZUWmRcJWX8Y8r4pqvjpn3Gqr3HfW+qG5f3GP+IsfOdcWI/Y9J3rp9CiA6ELSPFSinj3BbGVzKMm7jzsNAZ78HaN1HiZVfHXVLG+rmejxSTEWYSUi6bMj7oznWjMftWzJCQkJCQkJCQkJGVMFNpMWc4zlRKzGN0xodhWdg01iY/RUEdTmf1Qxiebhqv3fpwFt3JF4jt3U3jUqxOWV9HJbmSXnNR03jtdqFrSOwzdCdfBZLGI1BUZyLFinTGhwNveIyfoaAOpbP6QQzPeIw7OeNnie0fPMY1KKlrqZjLqZhLMozXktin6E6+5jWW9FkIVqAzPgx402P8HAX1IWd81mOcRVGdQXfyGWL7xwzjdVTMJVTMZR7jOMr6OhI7l+7k6xnGsxEs54xveYyfp6AOccbnPMbZFNVpzniPx7iWq+OFVMwVHuN4V8d/0Z18AzAe4zkIlnHn2mNUX6QgD6KzegiGFzzGORTVqXQnnyS2f/IY13bG86iYqzzGCc74GN3JUR5jREmfi2ACnfFHgbc9xi9TkPu7OvqMu1JUJ9OVfJLE/tljXMcZz6Firs4wXkdiH6E7OTrDeD6Csc7Y6TF+lYLc232uX2waj+TutMsT6UqOJLF/8RjXpayupdecScVc6zFOpBz9kMQ87IyNf68UnHEUnfH/eY3t6utEck/ern4Qy0se4x60yxPoSo4gsX9tGldiOiV1Db3mDCrmOo9xkjM+QHfy7QzjBQjKztjlMX6TSO7mjC97jHvRLr9PV/IJN3Ow0bieM55CxVzvMU6mHP2Q2PyVnuS7HmMbJX0hgnZn7PYYjyKSc5zxFY9xb9rlcXQlH3czBxuN61NSV+cYl6Ec/bDf7LWQkJCQkJCRnDBTaclNmKk0NAlNpcWc4dZUsjbmreoO3ouNepTYgMQ+kjO+hfeirh7Jhhj+nqNYFvgfEGeMawTjsfwn+xhifYx9dDEalwP+m2OMEIzF8t/FaNwIw98yxwXLuxrlGcdg+V+OcT2MfexdG5XYiMS2Mv6b5qZXPQUEo1sYp2PsPwZhnEFiH84xrohlXo6xDUEHltdyjOti7D8Xo3El95ltbCiljSUsCwZh3Nzd5pk1vrG7FSvLuLJrtGQZiwja842sjeHxQRg3cbcGZhmnuIZVtrG2MtrCHONaGOYuRuNULC/Q3FBKGwv4Gu6LjGtieCLHsJm36bVofFNvw6lv/2IdOvSt4Ta4kJCQkJAQRk5T6We7LH1Npf1+G5pKQ5HQVFrMGW5Npar5LV3xpwa5F0H2Bc9wSTAOTYJxaBKMQ5OlwTgcvobBG8v6J2iZtwJmSEhISEjIyEhoKi25CU2loUlY/W2EJTHZs1IGnvf7gmggCcahSTAOTYJxaLI0GIfD1zB4Y5IzCzMkJCQkJCQkJGTkJDSVRlpE4f0WhISEhIQs8Ql/l4SEhISEhISEhISm0oiLFtsPZKsW4+2DfP1QRLUYD8aBZbDGaKggOVkSjK2+lS4NxveiidDK2NZi/L0wtnqO0EgwCiK5/cA5ISEhISEhIUt0LGCtWPp+vd+FXUoSmkojLFqujxbb5mzRTiQPyN1HQX4kdzwSB5J30aLYGsFyOXtYAeWWkl98xoNaGLdBsGzOHlZEuaXk/SkSyf0HZ5QHk3dxp9gu1yhYCeWWac827tfC+OEBGLMbIortESyTY1wZ5ZZA96dEJPdtYWxVxw+0MO6AYHKOcQpK5N1mXRqCOn6AvCaiYicEk3KMU1FiRs4RygOoY76x0MKoxc4IJuYYV0GJDXOO0EEk984ZFwMwHtLCOBvBhJwjrIoSG+QcYdQQGD/YwrgLgvE5R1gdKdZrYdxrCIzZzdxI7o0UK+XuIyQkJCQkJCQkZGQkNJVGYEr6HJTY0jMyhpK+mKL6vrs4a4ymXR1LUR9FuzoG34VRQX6Qoj6Okr4EGNO8B7EV5eg8ytG1SKY2jUtWoSO6hrK+ECVmNo0LxlLWl+QYI9rV95zxOxnGD1PU36OkLwJGe4xbU47OdcYpmcaSvtDb/BKMo6wvpah+4JouPuNxzvitDOOhFFWecVvK0TmUo2syjKtRjq6hpC/yNr9qxssoquOJpO+hewXa1Q8o6qNpV0dnGA+jqI6lpC8ERnmM21GOznbGlZuNYnVXx4tRovmBvzXj5c7oayIWKKoTXB2/mWE8nKI6hpK+IN+or0bQfJEsxRopY3PzSzCesr7CGX1NxAJFdaKr4zc8RkFBfixl7PAYd6AcneWMK7YwNje/+ht9za82iuokivpo2tTXaG4mCAry47SrYyjp84Gyx7gjJX2mM67gMa5JR3Q1JX2Jt/klmOCMJxLJfTKMJ1PU36JNfSXD+Ana1Xcp6XMzjDtT0mdQ1tcgWN5jXIuO6Cpn3MhjnJgy+hpL7RTVqbSro3OMR9CuvkNJnwOUPMZZKWNz412KtemIrqSsL/M26ASTKOurKKqTiOSeGcbTnPFLNP8TQNAmP+mMZ2cYZ1NUx3v2HRISEhISEhISMhITVn9bzBluq7/VY60lsQ9TNbcD3SixDpHcEyEWXUQk9lmqyS1YXkeKld1PpxfNljD2v1TNLzD2JQTjidReKLFK6hidVM1tJPZf1GbFzEKJGX3LUFsbE9u7iE1tqXUtZ6LFDgihU8aHqJo7gB5n3KPB+IwzLnDGfZBi4iCMs1FiowbjncTmPmfc0hlVyvggVXNnjvFpqsmtLYw/x9iXEWICkdwLJaY1GG8lsY874y4osWHKWHXG+wHhjNs3GB9wxl6UWNcZiynjU1ST21LGfZFiQsr4H2d8xRn3RompKePbzjjXGeegxAYNxjuIzQMDNE4nkrvnGKe4OqaN/3bn+v/Zu+/wOIrDjePfmdm9Kkuy3HvB3cZgm96bTYfQMb1DSCCd9IQ0OoSEJL+EEHpJqAk99N5tOm6ADbhX2Va92535/XFj63S3u2diGWy87/Pw5Inn7vaj2TtJ+2p2dx5CdLXz2N6Y0/ejzQwEGRy5H0qMLTE+jqffiDC+Rl4/ZY1bWmPbaWO+nkleP4hhZZGxrsR4H9rMt8ZDUWJAkXE1Of1AO6MjtyoaLzXujCN2LzG+ao05lBiLKw8oMc4grx/CUI8Ug6yxc5FxoZ3H+QjRjYQ8FCn6FxlW23mciSCLI/ctMebI68fxzRRAFhllkfEV8vppa9wKV+4fYFwzj8HGnL4PYxaEGFfZeVxj3A9Hjg0wvgEoHLkLjtitgvEAhGhb3ejr6XYeVyLFYPv9sdi4gJz+tzV2t8Z+RYZVdh5nIcjiyv1Rcsui8Rx5/ZidxzDjy+T1M9a4tZ3HYuM08vrhIuPXkKK2yDjfGhda49eQom+RYRU5/R+0+TDQGCdOnDhx4sTZPO7+Nqpzt/H3Tjr6y6Z0eA5/7E4+iO/+tt75Ii7aEmcjjGEBef04nn4cQwtazEeInrhi98K4WYWnnyBvHseYFUjRF0EtrvwaQjiFskU/S14/bsuQzgidQcrJCNEJYwyeecMeuE1D2Ou1SNVr7SoBbWZYw6vWtBop+6DEKPv/59vxJ6xxnjXuVmJ8whr7FYojeYg15vH0M+T1Y7ZoqEPoLFJ2KzK+bg/cppcYe1njdGt4zZoarHFkgLHVzmMvXLFrwDzWhxiftvNojWSR8liEqLLGV+08TkeQRiCssWeAUVpj7wDjk9a4wM5jmzHfztgfQRdrVEXGJ9aWSuHGGdYokarnWqNvplnD69bYaOdxhDXOI68fw9NPWeNCpOiJI3axxpXk9ePkzWMYUyhsCsaDrTFn9/XjtgwpNmbXGj39OL6ZiSADa409rPED8vqJImMTUvZFieHWOLfImCsy7txmNI/beVxjrAswPrG2VBJUIeUxEUaFFD2Roti4plSSGJqtcZg1fmaNT5cYd7LvlXry5gk7j6uQYqA1HhRhzJKQxyJEpsj4RImxF1J0X2ssFF+FUgma7b4uNj5eZFxkjTuWGB+3xkF2Xx+EEBJjWvH003j6CbRZgLTzmJDHFBlfKZrHbJGxW5HxMTw9BYFTMKo+KIYWDHxaYlyMFL1w7MpEbVaEGA9ca8zrp/H042izsMSYtsaXrXEWgirAQYieRcb3185jm7EviiHW+Ik1PlNi3N4alwcYu9pyrNj4hDV2Q9CJhDy6yPiS3ddrjG47Y5w4ceLEiRNn84kxla7ZGGdzTbxSaQNnY1yp5Om3afROBlaVjSXkWSTkqTR5x6GZXTbuiN1Jqz/S7J+HZ54rG5cMJuPcTk5fR05fF7D1GrLOjWjzMc3+BYBfMq5IqyuQYoA1ri57haQ8m4Q6hcb8ZDRzAox7WOM38MzzAcYtyDi3kdPXktPXl40XTrG7Cd/MpNn/IaBLt0BaXYkUfWj0Tg0xfp2EOtEaPwkw7klaXU2zfy6eebHcKIaSUbeQ038lp28MMd6Mb6bR7P84xHgVUvSyxoYA4zdIqONozB8XYtybtLqKJv8cfPNygHEYGXUrOf1ncvqmEOMt+OZ9mv2fBBozztUIultjY4DxPBLqGGv8NMA4kbS6Yh2M15DTtwQYO5N1bsU371hj6fdDh4zzBwRdaPRODzGeT0IdRUP+OAyfBRgnkVaX0+SfhW9eDTAOt8aryenbAox1dh7fotn/WYjxjwjqaPROA5rKjeo7JORh1jg3wLgfaXWJNb4WYBxhjVeS03eEGG/FM1No8X8RYHTJONcgqLbz2Bxg/B4JeYg1zgsw7k9aXUyTf4ZdYVRqHEVG3UKrvpy8/meAsYs1vkaL/8uy8YLxzwgyNHpnhhi/T0IeZI3zy19BHkhK/o4m/3S7wqjUOJqsuoUWfQl5fWeAsStZ9zY8/TIt/oUBxoQ1pmj0zgox/gBXHkBj/jgMCwKMB5GSv40wjiGrbqZFX0Re3x1g7EbWvQ0lhgT44sSJEydOnM0vm8tKpXsmBl3WY9POEY//K16p1AGJS6UNnI2tVDImz+r8HoEHG2sixZZo827ouGI7fMoPPNc+n7Fo3olQdAeWUV4otW1BUIdhSYRxDNq8F24U2wUeHLcZt0LzdoSxJ7AkwuggqMWwdD2M2weWDB1rrMGwLMI4Gm3ejzBWmset0bwVOi7ojWFRhNFF0AnD8gjjKLT54H82KrE1vqlkXEh56bUmCQRZDCs2oHEcvnkzwtjHfmbXw8hINNM2oLGfLazCfqYkgTRQH2EcjmZGhGFbfPN6xPh4fDM1wtjfFn9hxhSFi+OXF+5txmFoZm5A4wAMn0YY0xQuPB9lHIpm1noYJwQWTmtfX4ygynlo7amjceLEiRMnzuacuFTadBOXSh2TuFTawNnYSqW8foQm7xvr+SqC8AOejSWxsWMSGzsmsbFjEhs7JutvzDr/xJFRd5eMEydOnDhxNo/EpdKmm7hU6pjEd3/bzOLr8FUp656N/YAJYmNHJTZ2TGJjxyQ2dkzW3+hHrGaNEydOnDhx4sSJs/kkvlD35haR+LIFceLEiRNnk0+y8kPixIkTJ06cOF+NmK/ohbo3hb8FbgKJVyptZnHFXuvwqEpdY7rC+BfRVa6v0e0oSERUhfHYuG75KhhTFca/iLJ3UzBW+pH0VTB+EWVMpV/61tcocOWen8MTJ06cOHHixIkT56uauFTazKLkGByxe8Qj0rgy+nzZhDwpctwVxxB10KLYDUGf0HFJf5S9TXu48ej1M8pjKxh3R9A7dFzQH2Vv0/6/G09eB2P4wZ1iTwS9Khh3iNhCBlcetZ7GyUQdyCv2QtAzwjgQZW+BHpzsOhgr7evjKhj3rmAchBLbRmyhClceETEuKs5jQk4mqvxyxEQEPSK2MBgltqlgPHw9jcdVME5C0D1iC0NQYnzEFjqtgzF6Xyfk8UQVzo7YD0G3iC0MRYlxEVuoxpVfixiX62A8roLxAARdIozDUGKriC3UdIDxhEijKw9DivDv4XHixIkTJ06cOHE2n8Sl0maYjPMHHLFb2b8Xbq/+d9LqwpCDjgQp9RvSzg9JqV9TfqBeODBNO78i6/wdQeeyV3DE7mTda8i6NyPZomxciqFk3JvIOn/GEbuEGP9BWv3KHviUG9Pqd9Z4IeUHwYKEPIW0+iVZ51oEtRWMgwOMw6hybybr/AUnoPwq3F79etLq1/YgtzRJ0uoi0s4FEcZTSatfkgk17knW/QNZ9xYkg0KMt5B1/i+w/CrcXn2NcXKI8WJr/EWI8XTS6hdknGuBmgDjXkXGgQHG4VS5N5Nx/g8ldgwwdl1rLBRspUmRVpfaff0zyg+CBQl5pjX+NcS4D1n3aruvBwQYR1jj3wILujbjb0LK2BRpdZk1/iTEeBaptcbqAONEMs7vI4wjqXJvssbyCycLupF1biStfhtS0KVIq8ut8ceBxqQ8m5T6ORnnL0CnAOMkMs5VZJ2bkfQPMI6iyr2RjHNtYEEn6G6Nvwsp6NKk1ZWknR+RUj8KMEqS8uuk1M/IOP8XYtyXjHMlWedmBP0CjKOLjOUFnaCHNV4UYbzCGi8IMZ5rjX8GqgKM+5NxrrDGvmXjSoyxxr+jRPn1JNuMF+PKwwKMGdLqKtLOj0iq74cYv0lK/YSM86dAoysPIK1+G/DaceLEiRMnTpw4cTbHxHd/28DZ2O7+tibGGHzzDp5+DEMzSozGlQciRNvqHd/MIa8fxJjlSNEPVx6KFHVrx7VZRl7/B23mIkQdrjwYJQYUbaOZvH4I33yAII0jJ+HIrYrGfTzzDJ5+FQBH7oAjdkcIVWR8G08/jqHFGg8oMc62xhUdYMzgyIkVjDviiN1KjG/h6SfW0djfGtsKN22WWuM8hOhCQh6MFP2LDE3WOC3C+LQ1yiKjLDK+aY2tKDHGGpNFxo+tsT7C+G+0mW+NhyBFvxLjg/hmujVOwpFji8Y9a3wtwjgVTz9pjVviyv0jjAOssbbIuMTO4xrjoUjRt8jQRF4/gG9mIMjiykkouWWJ8Sk8/bo17oQjdi0xTsHTT0UYP7LGlUgxEFce8jmNjXYe1xj3RckxJcYn8fQb1rgzjtilxPiGNeZQYiyu3C/SmJCHIkRNiLGrNfYJMVZZ4+gS4xN4egqgrHHnCONWuHLfEuOH5P0HMawKMS62xgUhxgb7mVlj3A8lRxWN54vm0Qkxvo6nn44wziLvP2SNg6yxOsTYzRp7lxgfxDczI4xr5tHBlbugxM4IIUKMW+PKSe2NeiZ5/XCEcZE1LowwPoBvZlnj/ig5kjhx4sSJEydOWzaLu7/Vdht/1z5Bf4jetHPUE3fwQX1897f1TXyh7s00hnnk9f3k9RNAC1rMRohaHPZCCIExK8nrh8jrB9aWSoI0rjwCIdzCAY9+nLx+EG0+Q4gugEDKExGiGmMMnnnJHjRNA1IYWpCiy9qDaN+8R14/YIsGMCxByK44Yqz9/3Ot8Ulr/BghakqMDxcVX/0RZHDl4daYw9OPkdcP2FKpCyCR8oQi44v2oGk6grQ1dl17gFow3m+LBoFhKVJ2RYktrfEz8voBO4+t1liLw54IIdCm3s5jsTHdzpjXj9l5bDMm5fFFxheKCps0htYS47vW+EaJsVBGaD61xietcTZCdMYVexTG1xj9BzHUl8yjgzGt5PV/rbFQfAkUCXlckfH5oqIhjSFn93Wx8YEi4zKk7IYSo0uMT1njHGvc3RpXkNcPkvcfwLASKQZY42EBxvnW6FhjJ2t8rl1hY8iRFF3WHkT75h3y+sEi43JrHGWNn1jj00XGOly76k+b5db4YInxayXGB9YWNgKXhJzczpjTD6DNTGvMW2Mva3y7yCiLjCOtcU6RMY8Wn1jjrhHGrDUqa3y0yNitaB6rSoyzEGTsPNYVGd+yxilFxq5Fxtklxk/tvl5jXEbef7DwmbGlUqHQODTAuMAa18xjsfF+a8wWGXuuNeb8B/DN1ArGZ6zxM6SoW7t6ss34UInxEGtsIa8fJacfwJQZsxijyetni+YxC+QRogtS9LDGN8n5DxYZV5CUXVFiRJHxfvL62RLjzta41H7vaSu+BJ1w5cElxgetsXuA8Rly+sEio4cQdWuNceLEiRMnTpw4ceLEK5U2cDbGlUqenkqjdwrQUDaWkKeRkKfT5B2H5pOycUfsQlr9iWb/G3jmxbJxyQAyzh3k9LXk9I0BW+9E1rkJbWbR7P8Y0GWvkFaXI0V/Gr1TQ4xnkJCn0OQdH2LclbT6I03+ufjm5QDjQGv8Kzl9U4jxZrSZTrP/E8pvC6Cssa81NgYYzyIhT7TGTwOMu5NWV0cYB5Nxbien/0xO3xJgrLbGaRHGK5CiF43eaUBT2Ssk5dkk1Ak05CdjmBthPAffvBpg3IKMcxs5fQ05fVuAsYYq52Z88x7N/s9CjFchRY8I49dJqONoyB+LYV6AcU/S6kqa/LPxzesBxiHWeDU5fUfZuKCWrHMznnmbFv8XAUbHGrtZY3OA8Rsk1DHWOD/AuDdpdQVN/pn45o1yoxhKRt1Gq76KvP5niPFWPDOFFv+XZePgkHGuRtCZRu+MEON5JNQRdl8vCDBOJK0utcby71VSDLPGy8nrO0OMt+GZ12nxLwwx/gFBNY3eWSHG83HVYTTmJ2NYGGCcZI2n26Kl1DicjLqFVn0ZeX13gLGzncfXaPF/FWK8BkHWGlvKjerbuPIQGvPHhRj3Ja0utsY3A4wjrPES8vqeAGOdNb5Mi/+bAKNLxrkGSNPknR1i/C6uPJDG/PEhxv1Jq9/R5J+Kb94OMI60xovI63sDjF3IOreh5LAAX5w4ceLEibP5JV6ptOkmXqnUMYlLpQ2cja1UMibH6vyegQeWayLFGLR5L3RcsS0+5Qfwa5/PGDThz4duwHLAD92CoDOGpRHG0WjzfoRxG3zKD+DbjFuieTfC2B1YVsFYg2F5hHEU2nwQbhTbBhYhbcaxaN6JMPYAllBezK2Jg6C6gnEk2kzbgMaewOIKxk4YVqyHcZvAsmZdjYLe9uA7zOja1S71EdsYgWb6/2xUYqvAA/w2Yy9rDPt+nQAyEGkcjmbGehi3xjdvRRj72FItypgCVkUYh6GZuQGNfW05GWZM2v+ijEPRzIowTAgs5tbd2B8TUES3JUXhGmerI4xD0Hy4HsbxgcXd2tcXw6hyHll7Kl6cOHHixImzOSculTbdxKVSxyQulTZwNrZSKa8fpsn75nq+iiD8oGxjSWzsmMTGjkls7JjExo7J+huzzh04MurOjXHixIkTJ87mkc2jVOo+/q69v4Kl0pN38EH94q/svvuiEt/9bTOLr8NXzqx7NvYDJoiNHZXY2DGJjR2T2NgxWX+jH7GaNU6cOHHixIkTJ87mk7hU2txSdGegOHHixIkT539L/LMkTpw4ceLEiRMnTlwqbXZxxd7r8KhKNwXMrOfzOyLra3Q7ChKRSsZ0hfGNwVhpHhMdBYmIqjC+KRgr7evYWMj6Gr+IoqPSj81NwZhaz3GJK/f8HJ44ceLEiRMnTpw4X9XEpdJmFiVH4Yi9Ih6RxpXHRb5GQp4aOe7K44k6sFLsiaR/6LhkAI69TXtwMrgy+pze9TfuhaBvhHEgyt4CPThZXHlsBeNp62AMP7hT7I2gT+i4YBDK3l48zJiQx0SMi3WcxyjjRAS9I7YwGCV2jNhC1ToYT4k0JuQJRB3IO2ISgl4RW9gCJXaI2EInXHl0pDFZYR4T8kSiShtH7IugZ8QWhqLEdhFbqMaVR0WMyw4w7l/BOAwlto3YQg2uPKIDjOFlrCMORNAjwjgcJcJPqRfUVjRW+swk5EkVjAcj6BZhGIkS4ysYD48QqHX4zJxIVOHsysORIvx7T5w4ceLEiRPnqxdjxFfuvzgdk7hU2gyTca7GEeV/ZS7cKvp60uoX9sCo9IOWJK0uJu18j7S6iPIDdUFCnkZa/Zys8w8EdWXbcMReZN0/kHFvQoryW1JLMZysezMZ5xocsXuAsWuR8ZQAY2qtMaV+G2I8nbT6GVnnuhDj3mTdP5B1b0aKoQHGEWTdm8lWNP6ShDw5xHipNf6a8gN1SUKeaY1/R9A5wDiRrHt1wciQAONIqtybyTp/DizoBN3IOjeQUhfaA8hSY7rI+KsQ41nWeG2IcRJZ9/fWuEWAcRRV7k1knf/DEbsEGLtb469IyOPLxgvGy0k73yelLgw0JuU5pNRPyYQa9yXj/J6sewuSwQHG0UXG8oJO0IOscwNp9SsSgWVshrS6kpTzfVLqF5SXCZKk/Dop9RNrrA0w7kfGucoaB5WNKzGGKvdGss7fAgs6QU+yzo2k1a9JBJaxxcafBRgVSfkNa/xroNGVB5BxrrT7emCAcUuq3BvJVDT+BjewRMyQVldZ408pLzwUSXkeKfVjMs5fgZoA44FknMutcUCAcaw1XhtYIgp6kXFuJK1+G1IiZkmrq+378ScRxh+Rcf4CVAcYDyLjXEbWuSXEuBVV7g3WWF4iCnqRdW4irX6HK4+MMF5ASv0o2Ki+ZY3/F2I8mLT6TcBrx4kTJ06cOHHixNkcE9/9bQNnY7v7W3F8/S55/QSGFpQYiSv3RxRdc0mbz8jpBzFmBVL0xZWHIEVt0Xg9eX0/2sxFiM4k5MFI0ba6x5hW8voRfDMNQQpX7oOSWxaNazzzPL5+BRAouQOO2AUh2rpOT7+Dp5+0xlG4cr8A4wMYU48UfUnIQxGipmh8BXn9QISxhbx+tMg4ESXHlBifw9evWuOOOGLnEuPbePqpCOOndh7rkaIfCXlIgPF+tJmHFHW48uB2qwAKxkfwzXRrnISSo4vGfWt8bR2No3Hlvu2MvvmEvH4QY1YiRX9rbDug1Ga5Nc6PMD6Mb2YgSFvjqBLjs/j69UCjMQbfrNnXrSgxBldOKjHOIa8fijAus/t6PlJ0scbeRYZma5xpjfui5MgS4zP4+g1A4sgdUWLntbdNLxjXzGMrSmxpjYkQ4wAS8uAA4/1os2C9jJ5+HYHCkTuhxE4lxrfw9NMYctY4scQ4m7x+2BoHkpAHRRi7WmOvEuND+GYWQmRwxb4oOaLE+DSefsMad0aJHUuMb+LpZz6H8WCE6FRkXGqNC63xEKToWWRosvMYZvSscUoF49MY8jhyLI6YiBBukfFja1yFEoNw5UElxiX2/bgQKbrZeSw1PoRvPrTG/VByeIjRscYdSoxT7Tyuj/F+tFlkjYcgRY8iQ6M1foQQWWss/2NAnDhx4sSJszlnc7n72517RZ/Nsinm6Kduj+/+1gH5Ii5+E2cjjG8+IafvIa8fB1rRYiRCpHGYhBACberJ6fvI+//BsMIWMZKEPBohEhiTI68fJK/vLhQ21AF5EvIkpKjFGINnniGn70ab6UASw0qSogYp+lvDW+T13Xj6VQAc5iJkNY7Y2o7PIa/vIa+fsMYPrHGiNa4gp+8l799vjf0Ah4Q80hpbyesHyem7MWuNHkl5EkLUFBnvQpsZQArDKpKiusj4pjUWCps241Z2fLY1PmmN0xAig8M+1ricnH8vef1AkVGVGB8gp+9ZazR4JOWJRcan7DyuMa62xn5r5zHn341vXrfGeQHGu8nrp6xxujXuvdaYX2tciRT9EChceSRCuEXzeA/GzEPQBYNvjdVFxntK5vG0tQWeb6Za4xvWOB8ha3DEWAA0s8nru8jrp61xhjXuZY3LyPv3kdf3Y1iFFP0ROLjyiADjfGv02hnzutiYsfN42tpyzDdTyPn3rDVq5pOUNSixZYnxmXZG155Oqs3SonksNh5ujS0lxq52Hk8oMj5p9/VMa2wgKU4tMa6ZR4VmgTWOscaP7b5+GsgXGfcsMt5XZBxg9/URCOFY4wNtRtHNzuMao7bGe9BmFpDGyAaS4pQA4xRrXGiNo4uM95QYs7hiD2tcYufxQWscWDSPpcYF1rhmHjtZ4xN2HmcBWWs8dW2B17avw4wfkdN34+lnCkYzE1QW165MbDM+hGEVvhgIOLjyMGtstsa7MWYhQnQDfBLyBISossbHrfFDa2y087jG+EaIcZQ1fmiNzxYZq3DtysSC8Z5CqcQqfDEIcK1RWeP9dh4XIkR3QJOQx5cY7wkwhp8uGidOnDhx4sSJE2fzSrxSaQNnY1yp5Ok3aPROBRrLxhLyZBLyTBq9yRg+KxtXYkcy6i80+efim5fLxiX9yTi3k9N/I6dvCdh6FVnnBrT5kGb/J5Tf2lqSVpcgxQBrbAownkJCnm6NcwOMO5FRf6bJPwffvBpgHGCNfyGnbwsx3oQ202n2fxZivBQp+tHonRZiPI2EPMUa55WNO2IX0uqP1vhagHGgNV5DTt8RYOxE1rkJ37xPi//zgHFJWl2OFL2tsTnAeAYJeaI1zg8w7kpaXU2Tf7YtMUq3MIiMcwet+mry+p8hxpvxzbu0+L8IGFfW2ING74wQ41kk1fE05I/FsCDAuDtp9Xua/DPtwXepcTAZ53Za9VXk9Z0BhmprfIsW/8IQ4xVI0Y1G78xAY1KeTUJNpiE/OcS4B2l1pTVODTBuQca5jVZ9BXl9d4ChhirnZjwzlRb/VyHGq5CizhpbAozn4qqjaMxPxrAwwLgnaXUFTf4Z+ObNAOMQMs6ttOrLyet7ysYFtWSdW/DMa7T4QadGOaTV7xGimibv7BDjN3HV4da4KMC4N2l1GU3+afjm7XKjGEpG3UqrvpS8vjfEeCueeZkW/3eBxoxzNVBlja0BxvNw1aE05o/DsDjAOJG0uoQm/1R8806AcZg1XkRe/zvEeBueeZEW/6IQ4x+BFE3eOUAuwHg+rjokwjiJtLqYJv8UfPNuiPE2WvVvyOv7A4ydyTq3tVv5FSdOnDhx4mzOiVcqbbqJVyp1TOJSaQNnYyuVjMmxOr974EHbmkgxCm0+CB1XTMAn/OuRjEIT/nzoCqwA/NAtCGowLI8wjkSbaethHI3m/QhjN2AZoDecUUwILELajGPQvLeexmoMKyKMI+xKsg1l7A4sobyYazNCFbAyYhvD0cxYD+OWaMoPntvSE1gUYXSAbAXjMDQzI4zjAwuldTUKetrPbJjRpXDh+VUR2xiKZtb/bFRibGBR0mbsFViqtSVB4RpnqyOMQ9B8uB7GrQILpzZj78AC9fMZt0Dz0QY09g0sy9uSpPCeLP+jQJtxMJqPIwzjAsvDtvGt8c1b4a8vhlLlPLr2VLw4ceLEiRNnc87mUCqNrO0+/s49g65xumnn6KdvY1pcKq134gt1b2bJ68cjCyUgslAC8Ak/YAIqFEoASwkvlApbiCprgMiypvAKlYxRhRIUipCwsqawhfU2Rhx4AhXKGlg3Y3ihBEQWStARxsWEFyFQeB+ElzWFbYQXSrAuxqhCCWAh0UaPysbwQgmIPIAvPD/aaCoa80QVSoVthBdKUNkYVSgBFQolKKyqCS9rgMhCqWCoZAwva4AKhRKsmzG8UCoY1tcYVShBYQVVeKEERBZKBcNb6zWuzSx880rkY+LEiRMnTpw4ceJsHolLpc0slQqjdcumsLotNnZMYmPHJDZ2TGJjx2T9jb6pVMzHiRMnTpw4ceLE2RwSl0qbW0T6yxbEiRMnTpxNPvHPkjhx4sSJEydOnDhxqbTZxRV7r8ujKoxn1vP5HZH1NSYqjHdEKt1cMTauWzYFo6owXukAPNlRkIjExo5JpR+b62vsiOsUra8xVfH1Xbnn5/DEiRMnTpw4cTbpGDD6q/ffJrHAfBNIXCptZlFyJI6YGPGIDAl5QuRrJOXpkeOuPJGoA33F3kgGhI5LBuGIqAOWLAkZdaE4QaKi8QSiDqwU+yDpH2EcjGNvLx6cqnUwnhFpTMgTI42OmISgX4RxCI7YNWILnUjIqLs4VJ7HhDypgnE/BH0jtjAEJXapYJwcaUxWnMeTiTpIdsT+CPpEbGEoSuwUsYXqCka5DsaTiCobHHEAgt4RxmEosWPEFmpw5TEVjJX29ckVjAch6BlhHIESO0SM1+LKoyMEah3m8RSiSkRHHFzBOAoltltPY6V5rGQ8BEGPCMNolNgmYrwzrjwq0lj5c30qUcW9K49CivD3Y5w4ceLEiRMnTpzNJ3GptBkm41wVWCwJupN1biClfkpCnkn52yNNWl1KyvkOaXUJ5WWCJCHPIq1+Qta5HkG3sm04YhJZ92qy7s1IUX5LailGkXVvJuP8ASdgVVWb8Wf2wKjUmCGtLiPtfIe0upjyMmGN8adknRsQdK1gHB5gHE3WvYmM80ccsVeAsYc1/pyEPC3EeDlp59uk1UUBRkVSnkNK/YSs848Q435knKuscVjZuBJjyLo3knH+FFjQCXqSdW60xlMoXx2RJa2uJO18h5T6bYjxXFLqx2Sd6xB0CTDuT8a5MsK4JVXuTWSdPwUWdIJeZJ2bSKlf2EIjyHgVKefbpNSvKS88FEn5TVLqR2SdvyOoK9uGKw8sMg4NMI61xr9UMP7SFkNhxu+QUr8KMDok5XkVjAeRca4oGBkSYNzKGv8vsERcY0yrC21hHGS8mpTzXVLqQsoLD4ekPJ+U+iEZ59oQ48FknMvJurci2SLAuDVV7o3WWF4iCnpb469s0VlqrCLj/MHO4y+CjerbpNQF1tg5wHgIGecysu4tSAYHGMdT5d5AxvlrYIko6EPWuZm0+rUtEcOM3yWlfh5i/I41/jXEeCgZ5xJrHBRgnECVez0Z52+BJaKg71qjK48tG4dOZJxrSDvfJaV+Snlx5JBU3yOlvm+NtQHGw0irCwNeO06cOHHixIkTJ87mGGFMvOZrQ0YIMWX8+PHjp0wJv+X5lxVfTyNvngDTjBSjcOVEhGg76NVmHnn9MMYsR4h+JORBCFG9dtyYVeT0AxgzFyHqcOWB7f56bUwref1Y4S5oIo0r9kHJkUXjGt+8hKdfBQSO3B4ldmp3m2pff2CNLUgx2hrbDtYKxocwZkWIcSU5/WCR8SCk6PW5jJ55EV+/Zo07oMSOJcb3yZsn18koRX9ceWCA8QGMmYcQXew8lhr/W7hTm0jjiokoOaJovNS4I0rsUGJ8j7x5CkwLSo7BEfuUGOdaYz1SDLDGTkXj9eT1Axgz3xoPQoqeRYZW8vpRtJkBImONw4vGNZ55AV+/HmF81xpbrXEiQrhFho4wPoI2M61xEkoOKxrXeOZ5fP0GIK1x+3ZGT7+DZ562xi3tPBYbP7PGlUgx0BqrisZXWOMCazwYKXoUGVrsPEYZn7NGhSN3QontSoxv45lnwOSsce8S46f2c70uxq7W2D3EmMWVk1BFhZwxvjVOscadUWLbCONYHLHX5zQuJ68f/BzGfVFiSNH4Ohr100DeGvdGiLZTMX3zCXn9MJhVSDHIGrMhxm7W2K3I0GLfj7OscT+U2KJo3Mczz+LrqYFGYwy+eafIuJWdx2LjHPL6kQjjMmtcGGJstsYPA41x4sSJEydOHJgwYQJTp079yt6WXggxZWRN9/H/2iPqLIxNM8c8cxvTVi7+yu67LyqVLlYS5ysa38wmp28jr5/A0IwSoxFC4rA/Qgi0WU7Ov5O8/g+a5UjRD8iTkMciRBJjWsnp+8jpO9HmMyR1GNNAQp2MFHUYY/DMk+T07fjmAwRpjFxEQpyOEoOsYQqt/m345jX7/z8kqVI4YoL9/x9b45NFRlFkXEbO/xd5fb819gc8EvKYAONcJF2s8RSk6Iwxhrx+gpy+Dd9Ms8bF1jjQGt4g59+Gb163//8jaxxfZLzdzmNr0TzuV2T8Jzl9P4ZCqWTWzmPCGu8lp+8qMZ5cZHzMzuM0BBmMXGKNA0qMrwESzcckZApHjFtrbtW34+knC0YzGpTEYV9rXGqND1jjAGs8xhpbyK81zisYaSQhT0aKWmv8rzVOLzKeVmR8vWgeJZrZJcYPrfEpaxwDysFhojUuIeffYY31SDEQg0dCHl1kvMca51tjE0l5MkLUYIwmrx+1xhkIshi5lKQ4zb5vwDevkfNvLzGmccRWdnwWubXGXJFxnxLjgwFG1x6g31tk7IqhmaQ8qcR4G76ZaY3LrLGfNbxqjW+UzGOp8WkMORyzpTXuXWRcs69XosRADD4JeVSR8R5y+u4i45p5rA42mmUk1WlI0bfEOMUa55CQyTajnllifBeUs/Z6b9osLprHlfb7hcaVR1pjk53HNcZuRfO4xvhI0b6ussbTkaKPNb5i349TAMcaUzhirDXOIKdvw9PPWON7gca8fijA6FjjmnlcUGQ8scj4sDXORNApwPhy0Tw6aD4hKdMosaU1zCCnb8XTz5YY97Lji8j5/yyURqxCicGAwZVHlBjvscbuRfPYCWN8a7yjyLjc7uvw00XjxIkTJ06cOF/NGNMR132M81VMvFJpA2djXKnk6ddo9E4FmsvGEvJ4EvIcGr1jMcwrG1diezLqLzT5X19bBhWncPrF7eT0X8np2wO2niHr3IBvZtLi/zxgXJBWFyHFQBq900KMJ5KQZ1rj/ADjDmTUn2jyz7EH36Vb6EfWuZ1W/Wfy+p8Bhqw1TqfF/0WI8WKk6E+jd3qI8WQS8jRrXBBg3NEaz7IHje0j6U/GuZ1W/Ufy+s4Q40345j1a/AsDxiVpdQlS9KbROzPEeAoJeTKN3mQMCwOMO5FRf7TGqQFbGEDGuYNWfRV5fXeAocoa36HF/1WI8VKk6GmNLQHG00jIE2j0jgs0OmIX0upqmvwz8M1bAVsYaOfxSvL6ngBDJ2t8kxb/NyHGyxGiK03eWUBrgPEMEnKyNS4KMO5GWl1Fk386vnk7YAuDrPFy8vreEOPN+OYNWvzfBYwra+wSYTyLhDqGxvxkDIsDjLuTVlfS5J+Gb94JMA4m49xGq76UvP53gKHaGl+jxb8oxHglQtTQ5J0N5MoekZTn4KojrXFJgHEP0upya3w3wLgFGedWWvXF5PX9AYYaqpyb8czLtPiXhBh/jxBZmryvhxjPxVWH0Zg/LsS4F2l1KY3+qWjzXoBxCBnnFlr178jrB8vGBbVknVvwzPO0+JcFGB1rTNHknQvkA4zfxFWHWOPSAOPepNUlNPqnoM375UYxlIy6hVb92wjjbe1WdMaJEydOnDibczaXlUr/3D36urubYo599tZ4pVIHJC6VNnA2tlLJmFZW53cLPCBaEylGFE61ColiHD5vhj+fEWjCnw91QD2gQ19BUINhRYRxeOFUq//ZOBLNtAhjV2B5BWM1hvoNaByF5oMKxmWE37ZAAVXAyohtDEMzM9woxuGbKONoNOUHpm3pBixdT+NQNLM2oLE7sKSCMQus+hKNPSCgsGqLQ+EaZ6sjtrEFmo/Cx8XW6IBiru35Y9CUFyVrIugZWPy1xaVwTamGiG0MRvNx6LgSWweWh23jWwYWTh1rHIRm9gY09g4sy9uSoLC/myKMA9HM+Z+NUoxFB5SLba+/BVXufxEivixjnDhx4sSJE5dKm27iUqljEv9GuJklrx+PLJSAyEIJwOet6OdHFkoQXdYUXiGqUAIiyxpYF2NUoQSFIqSSsT56G+ttjCqUILqsKWwhqqwpbCO8UAIiDzwLz48qQiC6rIF1M4aXNdARxsVUNoYXSoVtbGhjVKEE4BFVKBW2EV4oAeiAVVTtnx9eKAEVyhoorKoJL2sK2wgvlIDAlV7tx8PLGugoY3ihVDCsrzGqUILCCqrwQgmILJQKhgr7OqJQKrz+R/jmlcjHxIkTJ06cOHHixNk8El9TaTOLNpXKlHXJprC6LTZ2TGJjxyQ2dkxiY8dk/Y2++QCH8rvkxYkTJ06cOHG+momvqRQnLPFKpc0tIv1lC+LEiRMnziafzJcNiBMnTpw4ceLEibMRJC6VNrO4Yp91eVSF8WyF8USF8Y5IbOyYVFqsWMmY7ChIRL4KxkoH4LGxEFVhvJIxVWG8I/7CtikYK/1or2Ss9McHhSv3/ByeOHHixIkTJ06cOF/VxKXSZhYlR+CIfSMeUUVCnhwxLkjKs4g68EnIk4g60FdMQjIodFyyBY69dXdwOtltRBnPjBjHfo3hB1aO2A/JgHCjGIpjb90dbjyxgvGsCsZTiDq4q2wchiP2iNhCdQWjXAfjyRWMByDpX8G4e8QWakjIqIsCynXY16dWMB6IoF/ouGA4SuwaMV5LQh4XIVDrMI+nVTAejKBvhGEESuxSwTi5A4zhhYgjDkHQO8IwCiXCT5cSdF4HY6V9fRpR5ZcjDkXQK3RcMholdogw1uHKYyMEzjoYT69gPAxBzwjjliixXYSxyzoYz4g0JuVpRJXaCXk0UoTPY5w4ceLEiRMnTpzNJ3GptBkm41yJI/Yr+3dBL7LOjaTUj0nKcyj/i3yWtLqClHMeaXU55cWRQ1J+nZT6MVnnxsADI0fsT9a9iqx7M1KMKRtXYkuy7k1knKsDy69iY0KeFWK8kpRzPml1GeXFkUNSnktK/YiscwOCHmXbcOUBZJwrybq3IMXoAONYss6NZJw/4IhJIcabSKmfhBirSKur7DxeGmL8Jin1wwjjQWScNfM4KsC4tTX+EUdMDDD2tsafkpBnVDBeHGI8r8jYPcB4MBnnCmssv/24EuPIOjeRca7BCVhBJ+hjjT+zZUHpt6tOpNXVdl9fRHkp45BU3yKlfkDW+QeCbgHGQ8g4V1Dl3oIUIwKM46lybyLr/CmwRBT0tcaf2/Kq3Jhx/mCNvwsxfoeU+j5Z5zoEXQOMh5JxLrPvx+EBxglUuTdaY/nqEUE/ss7NpNQvbFFZaqwm4/yRlHM+KfWbEON3rfHvIcbDyDiXknVvRYphAcZtqHJvIOv8JbBElPQn69xCSv3SFpVBxmtIOd8ipX5FebnlklTfI6W+Z41dAoyHk3EutvMYZNyWrHs9WeevIcYBZJ1bSKtf2jK21FhTZLwwxPgDUuq7ZJxrEdQFGI8g4/zOzuPQAON2ZN1/kHX+hiN2CzHeTFpdaMvY0vK/hozzZ1LOt0mpX1Jebrmk1AWknO9FGI+0z40TJ06cOHHixIkTB4Qxm8JFRTfdCCGmjB8/fvyUKVO+bEpZfD2TvHkCTAtKjsIReyNE2ylb2iwirx/GmOVI0Q9XHoAQVWvHjWkgrx9Cm7kIUYcrD0CKHkXjeTzzBL6eBiKFKyeiig6UjDH45jU8exchR+yIEtsiRNuBUJux1Rr3KjEutMYVIcbV5PXDRcYDkaJ70XixMW2NQ0qMr+KZVyOMM8ibJ9fR2N8as0XbKDZ2scZuReM5a5weYXwFT78KQlrjNiXG6daYQ8nR1th2OpQ2C6yxPsS4yhrnraNxEkpsUWJ8GU+/FmGcRt48ZY1jcMSeJcb55PUj1jjAGjNF2yg2drXvx/bGvH4cbWYgRAZHTkKJwSXGl/D069a4E0pMiDBuiSP2CDA+jDGrrHH/AONDaDM/xNhKXj8RYdTW+IY17owS40uMH5A3T1vjWByxe4lxnp3HlUgxCFfuF2HsZo1di8Zb7TzORIisNQ4qGtd45kV8PQWEssZxFYx7IERbsVlu3B9RdD04Y1aS0w9hzIL1NL4BwsERu6DE1iXG98mbZ9bRONjOY5TxQKToUjTeSl4/hjazrHFflBj4OY3vkTfPWuNWdl8XG+eS14+GGrWpJ68fwpiF1ngQUtQVGVrJ6/+izYfWuB9KhK+OjBMnTpw4cTbHTJgwgalTp35lb0svhJgysqbH+Nt3jTrDYdPMcc/fwrSVi76y++6LSnz3t800vvmIVn0Dnn4CQzPKjMLIHK48GCEE2iwl599MTv8HQ6GwMawmIU9AiCTGtJDT/yKn70KbzxB0xpilJNSpSNEVYwx5/Qg5fQu+mYYgjTafkVRnrC0bfPMqrf71awsbX3xAUoFjT+3wzYe06uvx9JMlxoOscYk13l9kbCQhjwswzkVQhzHLrLGLNT5MTt8aYBxsDa9Y42vWOK3EOKvI2GqNeVx5YJHxJmust8aGImNzhLEOY7Q13rbWaMxcEur0IuPLRUZZNI/bFsb1TGt8yhpHW+MBa42t/k3k9QPW2N/O4+T2Rv8uNPMQdMGY5STUKUXGh6xxepHxjLUH8r55yRpft8ZpJJXAEdtY4wxrfNoax4DK47C/NS6m1b+5yDjAGo+1xiZy+p/WOL/E2NkaH7TGGQgy6LXGgdb4Iq3+DUXG6dY4wRqnF81jrsi4nzUusvP4YIAxEWDsao2nIkVtiXGmNc6z+7pg9MyL5Pwb8Mwb1jjDGseXGJ+2xi2tcd8i45p5XIkUA+37sdh4Bzn/7iLjsnU0DigyXo9npgASLWeQkKfjiHHWOK3EOLbEuLBoHgulUts8uhjTWGRcgKQbxiwnqU5FiBqM8cnr+8np260xizbzSKozkKK/Nb5g53EKAmWNZ+CIrUuMzxQZfRwmWuMCWv0bC4VMO+Mxa42t+nby/t1oFhaMrCApTyky/scaZyGoQpv51tjPGp8n599YZJxpjVtZ4wfW+Gw7o2tXJrY3rkKKwRiaSMijrbGBnL6dvH+PNXbHUG+N1db4b3L6jiLjAmsMPxUzTpw4ceLEiRMnzuaVeKXSBs7GuFLJ0y/T6J0BNJeNufJYkvLrNHrHYlhQNq7EBDLq/2jyv45vyr+mwqlf/6RV/5m8vjNg62myzvX4ZgYt/oWBvpT6DUoMssaWsvGEnExCnm2NCwOM25JRf6bJPwffTA0w9rbGP5LXd4cYb8A302jxfxUwLkir3yJFfxq9M0OMx5OQp9PoHRdi3M4az8I3bwZsoS9Z53Za9R/I63sCDBlrfI8W/zchxosQojdN3llAa4DxBBLyVGtcFGDcgYy6hib/DHzzdsAW+lnjVeT1fSHGG/HN27T4vwsxXowQvSKMJ+HKk2jyjsOwOMC4Ixn1R5r80/DNu2Xjkv5knNtp1ZeT1/8JMGTJOjfhm6m0+BeFGC9BiO40eWcDuQDjKbjyBJq8yRiWBBh3IqOutsb3AowDrPFS8vr+AEOVNb5Oi39JwLgkrS5FiC40eeeEGE/DlcfaeVxaNu6IXUirq2j0T0NHGi8mrx8MMd6Mb16hxb8sxHg5QtTQ5H0dyAcYz8CVR1njsgDjrqTVFTT6p6LNBwFbGGiNvyOvHwowdCLr3IxnXqTVvyLEeAVCdKLJOzfEeBYJdQSN+ckYlgcYdyetLqPRPwVtpgVsYRAZ5zZa/N/gmUcCDNXW+Dyt/pUB44q0uhIh0jR53wC8skck5dm48jD7uQ4y7kFaXWKN0wOMg8k4t1jjo4HGKudWlCw/fTlOnDhx4sTZHBOvVNp0E69U6pjEpdIGzsZWKhnTyur8roEHlmsixTC0mRk6rtgKn/KSYe3zGY5mRoSiM7AS0CHjAqgB6iOMQ9Fm1noYR6ApP6BqSx2wAgj7fEigE4WvI+wRQ9FsSGMXYHkFYxWwKmIbQ9B8uB7GkWjKD57b0hUi3muFazllKxi3QPNR+CuIrQJLr3U3doOAMqi9MQOsjtjGYDQfh4+LrdCRxlFoyouSz2dMAw1forE7BBR/bXEoXGcoyjgQzZwI41i0eSfi+aPRvB86LugZWPK2NyaApv/ZqMRY/CijGI02UcZegYV+W1zrLP+jQJtxAJpP1sM4JrBcbHv9QVS5jyNEfFnGOHHixIkTJy6VNt3EpVLHJD79bTNLXv83slACIgslAJ/wgxGgQqEEhbImKoaoQgmILJRgXYxRZQ0Q8Bf+0leIKpQKj9jQxvLVHKWvEFXWFB4RXijBuhijyhqILpQKW6hsDC+UgMiD48LzKxmjyhooGMMLpcI2wssaILIIKTw/qqyBdTOGlzWFbVQyhhdKhedXMkYVSlBYVVPJOCd6vOI8hpc1QIVCCQrG8tU/7bcxJ3I8aMVcu+dHFEpAhUIJCiuoyldRtdtGRKEE6/CZiSiUCq8/G9+8hBNxx8E4ceLEiRMnzlcnxoAx4Xf/3lQTr6/pmMR/ZtzMok2lwmddsil8+mJjxyQ2dkw2BWOcjsnmsa/9gFPn4sSJEydOnDhx4mx+iUulzS2i9NbwceLEiRMnzudN/LMkTpw4ceLEiRMnTlwqbXZZc2eg6CQqjGcrjFd6fkfErTBeyZjsKEhEYmPHZFMwVjqTuJIx1VGQiMTGwvXa1jeqwnilsiVdYXxTMCpcuffn8MSJEydOnDhx4sT5qiYulTazKDkMVx4Q8YhOJOSpEeOCpPw6UQc+hed3Ch13xP5Itggdl2IYjpgUYaiuYJQk5TnrYKyKMB6AZHAF4z4RhhoS8pQKxkrzeBpRB9GOOBDJwAjjcBwRfuAnqCUhT14HY3gS8nSiDlAdcTCSARHGkThizwrGkyIEyu7rKOMZRB0kO+LQCsZROGKPCGNnEjLqwoWKpDy7gvH0CsavIekfYRiNI3aLGK8jIU+IEDgdMI+HIQi/1bxkDCriGjyCLiTk8RWMlebxTKKKJUccjqBPhHFLlNhpPY3R85isYHTFEQh6Rxi3QokdI4xdceXkDjCGl7EJORkpekS+Rpw4ceLEiRPnqxVjxFfuvzgdk7hU2gyTVpfjyoPK/l3Qh6xzMyl1AUl5HuWrBjqRVr8n5ZxLWl1FeSnjkJTnkVIXkHVuCjwwcuXBZJwrybo3o8RWZeNKjCPr3EjG+T2uPDDA2JescxMp9UOS8hsBxmrS6mpSzjdIqytDjOeTUj+IMB5CxrnCGscGGCeQdW4i41wdWNC1GX9EUp4bYvyDnccrKC+OXJLq26TU98k6NyLoFWD8mjXeghJbRhj/gCP2LxuX9Lf7+kf2ALPUWEPG+aM1Xh5i/C4p9b0I42FknMvIureiRPntx5XYxu7rP+KIfUOMt5BSPyYhz4owfoO0uizE+D1S6rvW2DPAeAQZ5xKy7i3IQOO2ZJ0brLG86JQMsMafWmP7FSKCWjLOn0g53yStLgkwJkiq71vjDQhKD9SFNV5sjaMDjNtT5d5AxvkTTsBKxDbjz2wxFGT8s53HiykvCROk1AWk1HfIOteHGI8i41xMlXsrUowMMO5A1r2erPPnwDJWMrDIeFqAsTMZ5y92Hi8KMf6ItLPG2D3AeDQZ53dk3VuRYkSAcUdr/EtgGSsZRNa5lZT6uS2lg4z/R8r5Jin1W8oLuCQp9WNSzrfJOtch6BZgPJa081trHB5g3Ims+w+yzv8FlrGSwWSdW0mrX9pSu/2PeEEdGeev1vibEONPIo0JOZmU+nnZtuPEiRMnTpw4ceJsnhEmvuT5Bo0QYsr48ePHT5ky5cumlMU3H+PpJzA0o8RoHLEHQrQduGuzhLx+BGOWI0V/XLkfouiaTMY0ktePos1nCFGHK/dHim5F4x6eeRrffIAgjSP3QYnBReMG30zBM68C4IgdUGI8QrS1xr75CE8/iaHFGndfT+MBSNE1xJjBkXsHGN/AM69Z444oMa7E+CGefqrIuAdCtB1wtjcOsMZ00TYayetH0GYuQnSx81hszFvjNGvcByUGlRhft0aBI3ZCia1LjLOssTXEuNgaV4QYG6xxnjUegBRdSoxP4Zvp1jgRJQauh3GM3dfFxkXk9aPWOBBX7hth7GrnsdT4JL6ZgSBr57HU+Bqeed0ad0aJrdob9Uw887Q1bokjdgswPoJhJZI185gq2sZqa5xvjQcgRV2EcSJKDCgaN/jmVTzzhjXugiPbl7O+nmGNOZQYiyN2LTEutPNYjxSD7DyGGbtZY+ei8Zw1zkSQxZWTkKJ/0bjBN6/gmSmAxBE7VzBuZY1tBUjB+AjGrAwxrrLGBetpfANQdh7bF8i+no5nnokwLrDzuBIpBltjsmgbxcbu1lhbYnwC38yyxn2Rol+J8WU7j2HGaXjmWWvcGkfsUmKcX7jjZ4cZ90OK8NVoceLEiRMnzuaYCRMmMHXq1K/sbemFEFNGVPcYf9suUWc4bJo5/oWbmL5q0Vd2331RqXQBizhf0fh6Bq36uqJSaRRGrsKVX0MIiTZLaPWvI6/vx7ACSV8MS0jIkxAijTHN5PSt5Pw70cxD0Blt5pFUZyBFN4zR5PX95PQttgxJ45tZJOWZKDmsYDAv0ur/wx7Egy+mkFRn4NjTTwrGv5PXTwAtJUaBNouLjPXWuIyEPBEhUhjTRE7fQs6/yxrr0GY+SXV6kfE/5PStRcaZJNVZKDEUAM+8QM6/vsg41Rp3tMbp1vgk0GqNq3Hloda4yBofsMZ+GJa2M7bqm8n7d6GZb43z2oza8OGds5l+cwsrptWi0ooB+85lzLmdqR1aW2T8x9oyxBdvWuMO1jjNGp+yxtElxoVFxpXWuGYekxjTWGRcgKAOY+aTUKcjRVc7j/eR07fZMiSDbz6087iFNT5fNI8SX7xljdsXGa+1xhxKjMHIBlx5MEIImhY2Mu3aj/jkAUluZRVV/XNscewshp0wCpVyrPEm8v7d1tilyNgFY3zy+l5rnFlkPLPI+Jw1vmGNb1vjdtb4gTU+XWI8yM7jAlr9v5PXDxXmUQyw83gCQiTxGluZe9e7LHhwOS2LciQ619Nz/3fod+x2JDpnAoxZfPORNQ62xmetcYo1vgOcjiMLxoaZC5j3z/dY/ko9JudTNfxjeh3ela57jUYIQevilcy/802WPrUEr6GZVJ+59DjwTXoesi0y4WBMg93XQfNYZ4330apvQ681fkxSnVFkfJqcfwOemVpi3NbO43v2/fiMncct7TweYOdxHq3+P8jrBzGsQoqBGJaTkMfZ9+PqIuNCa1xgjZ2t8R5a9e1oW4YUjGeuLWM98xSt/g34ZiqgrPEMHLmNNb5rjc9a41hQjTjsX2S8zhpXlxgT1ngTef8ea+xqjadZo0dO301O37HWqM1sEurMtUVne6NjjWfiyMLvPJ5+h5y+zs5jvrDyUzWUGNe8H9cYV5CQk61xFa36RnL+PRgWWeNCa6y1xrus8UMEVdZ4VruiM06cOHHixIkTJ87mnXil0gbOxrhSydMv0OidBbSUjbnySJLyXBq94zAsLBtXYhwZ9Vea/LPxzVtl44KeZJ3badV/Jq/vCdh6iqxzHb6ZQYv/m0BfSl2IFINo8s4CWgOMR5OUZ1vjogDjBDLqLzT5Z+Gbt0OMd9Cq/0he3xcgSJN1/oFv3qfF/12I8VdIMcAacwHGY0jIM2nyjsOwOMT4Z5r8M/HNuwHGXmTVP3nhWx/z8b0flT8/7TDp1ol03u4hWvyLQoy/QYq+NHlnBxoTcjKuPJ0mbzKGJQHGbcioP9Hkn4Fv3gsw9rbzeAV5/UCAIE3WuQHfvEWLf0nAuCCtfosQPWnyvh5iPI7cnO/x5LEP0rK0uWy8+3a92P3mnWlRJ6PN+wFb6EvWuY1WfTl5/WCAIWONU2jxLwsxXoQQ3awxH2A8AVeeaPf1srJxJXYg0fwX3vrmvTTMLH+/pnrXMu6vx2LqfkFePxRivBHPvEarf0WocfUrWzP953dhPL/sEb2O2I6eh4zn/e/eiFffVDZePW4QIy85iCZxMtpMKxuX9Cfj3EaLfxGeeSTAkCXr3IRnXqbVvzLEeAlC1NLkfQPwyh6RkKfgymPsPK4oG1diJzLqShr9U9EBt7OXDCDj3EqL/1s8898Q48145gVa/d8HjEvS6jKEyNLknRdiPA1XHkmTd3yg0RE7k1KX0+SfgjYzQ4y30eL/Gs88FmCoIuvcgmeeodX/Q4jxcoRI0+SdH2I8A1ceZo31AcZdSalLI4wDrfFCPPN4gKETWefmstVnceLEiRMnzuaazWWl0q07n/JlUzo8J7x4Y7xSqQMSl0obOBtbqWRMK6vzuwQe/K6JZCiaWRHjY9G8EzouGIah/GClLbXASiDsvSeAavuYMMMQNB+GjivG4kcYJcPQkcbOQH0FYydgVcQ2tkBTXgitq3HefUfy6nfKr/2yJt12XMWud/wxdLxwPZWqDWqUDEczI8LQBSLeawVjFlgd+ohXjv0ly6aWl4trsuvdb1E99tGILYxAU15CtKUrsDRiXFG49kxDxDYGoZkdOj73919n0X3lBcCaDPzWcrocEVTCrkk3CCj+1sRvSjFj8gn4jeWlVyGGzIA6WuaG74uhf/6MxJBnQsclI9GUF07raizMYxIoL7XWRDAAwyfhBrElOqCEXXdjdwgoedviULjbYHmB2Wbsj+HT9TCOQvNBxOv3DCz0P49R0g/NZ6HjSmwZWGavfb4YHVjStr3+QKrcJ9qdahcnTpw4ceJsrolLpU03canUMdnoTn8TQuwDHAV8ROGItBb4oTGmfkO/Vkdue2NNXj8aWSgBkYVSYTz8YASoUCgBAX89L32FqEKpYAgvlIDIIqTw/ErG8lUI7WOIKmsK2wgva6Cycdat0bdP773vS5HjoNnQxuhCCaILpcIrRBVKq6Z1jyyUZCpPZshTFbYQVShBdKEE4BNVKBW2EV4o+c0OSx5pIerbbWr0sxUMUWUNrHyqX0ShVEhUoSTTeZx+L0Q+P7qsgUrGwjyGF0pAZKEERJY1sC7GqEIJCit/wss/ILJQgnUxhhdKhdePKpRgXYxRhRIQWSgBkYVS4fXn4JkXccWukY+LEydOnDhx4sTZHLIhegQhxJHAjysVXhtD57FRlUpBEyeEGA9MEUJM+Dxf6Od9rY7c9sacoNMdPn/i1W1fRFbNKL2DVftUj6h0gLzpZ9XM0rtPtU+mz0qcTPlpcxtTcgs7oVuiv9WmBy9fr220zO4c/YAKd0x1ezYgk9FFRZw4xdFmBhCXSnHixIkTJ06czTsd3GH8DagDlgPlt0xez21vqM5joymVhBC1wF1Au3tiG2OmCiGmAn+n0Kh1+Gt15LY3+ojSW3HH2VjjZHJ4DcnQca8x8QVqvpxUKozWzoGhYnHyZUWmo1cQAehmF5kIX5FVeRsVCqEKPbBudtoet5HOY5yNK4LolZRx4sSJEydOnK9YdPxLYmk6ukcwxpxd9NpTKKwi6pBtb8jOY2O6IMLR9n/fCBj7F3DkBnytjtz2Rh1XTlqHR1UqK6rW8/kdkfU1hpc1HZf1M/beb07k+PxHw6+3tO5xK4xXmsdUhfH1S9cdP8HJhjciLQuraZzdv0IRsmGNhYTPY6JHA5mh5RfFL86q14au19ard4k+bQxAOOHf7vMLq8gv6FlhHtOVtlDRUDmV/s5R6f24MRgrlS1fhFFVGK9krPTHBwdH7v05PHHixIkTJ06cOF/JfJk9wkbTeWxMpdJRQH3IkquPYe1yrQ3xWh257Y06SgzFlQdFPKKGpDwjYlySkt8g6q2TkGdQuNB2cBxxIFKEH0RLMRxH7Bc6LqglIU+LNCblN4g6OCsYO0UYD0YyJMI4AkfsW8F4aoRRVTSOPnMsbqfwssJ1DkEyOMI4CkeEl4gdYUzIM4k6QHXEoUgGRRhH44jwlZ1uVZaRZ48MHReOIGHOCx0vGM+qYDwMycDQcSXG4IjwA2hBHQl5cvi4cBh0xvaRxqRzJlEH8o44HEn4bdw7jexN5x3D369u5yp6HhZuEI4iYb4ZbZRnE1WIuOIIJP1DxyVjccTu4Qa6kpAnRggckvLcCsZzKhiPRNAvwrg1KuI6QYJuJOQJEQLXfmbWx3g0gr4RxvEosXOEsfs6GL++DsbwMjYhj0eK6NNz48SJEydOnDhxNoN8mT3CRtN5bEyl0jYUzh0MSr3932030Gt15LY3+qTVZbjya2X/LulPlXMzSfU9kurblK++qCHj/JGkczZp9QegpmTcJam+Q0p9j6xzc+DBmysPI+NcQda5GSXKrzmmxDZknZvIOFfhykMCjAPIOjeTUj8gKc8vMwpqyTh/JOWcTVpdTXm5lSCpvktKfdcaSw/eBK48nIxzGVn3ZpQYH2Dcrsh4cIjxFlLqApLyvArG34cYv0eXwaew7x37UtWvZHWGgCFHD2Wni/Yk696CEuMCjNuTdW4g4/w+sESUDCTr3EpK/ZCk/Calqy8Enck4f7LGKykv4JIk1Q9IqW/beexTMi5w5ZFknEuscesA4w7WeDWuPDDAOIiscytjvrkro7+xNdJt/+0q0TnJrn+ZSNcRR1hj6SqWJCn1Q1LqW2SdmxD0DjAeTca52BrLb5GuxI5knOvJOH/AlQeEGG8hpX5kD9RL57GOjPMXeux+ACN/cRAq2371mkw4bPHNPek16SCyzo0IegUYjyHjXETWvRUltgww7kTGuZ4RvzyKLruXF3Dp/l0Y8/uTGHjOJPpM3gWh2s+jU5th+K+PpXrgcaTVZZTPY4qU+gkp5/wQoyQhJ5N2fmuNY8oMjtiZrHs9GeeawDJWsoV9P/7UloBB8/hXUs45pNUllJeEKVLqp6Sc88g6N0Qaq9xbkYHGXci6/yDr/DmwjJUMIeveSkr9zJappcYuZJy/WePFIcafWeP1CHoGGI8j7fzaGkcHGHcl615H1vkLjphYNi7F0CLj6QHGrmSca0k555JWFwUY06TUL0g537TGHgHGE0ipn5ZtO06cOHHixIkTZzPMl9kjbDSdhzBm47joshDCAB8bY7YIGBtM4erk1xafZ9hRr9UR27bnPAZlxPjx4zNTpoQNf3nxzRw8/SSGFpQYhSN2Q4i20ya0WUZe/xfDciT9cOW+CNH212tjmsnr/6KZi6AOV+6HFHVF4z6eeRbfTEOQwpH7oMSAonGDb97GN68AhQN4JcYiRNvKGN/MxtNPWeNoHLFrgPFRDCs6wJjGkXsHGN/CN6+uNTqyfflQ2bjUzuMKJP1x5aQSYxN5/RiauUi64Mj9kKLtwsva08x7ei7LP1iOk3HpP6kfnQZUFz3f4Js38cyrCCRK7BBg/NgaW+3Km13b3Q5cmyXWWB9h/C+aeYFGYzw7j9MRpHHlRKToVzRu8M1UPPOaNe6II8dGGLfEEbu0MzYvaWLuo3NorW+hakA1/SYNRKWcom0UG7taY22J8Rl8MwNBxhr7Fo0bfDMFz7yOQOKInVCyfYnjm4/w9NPWOBZH7Bwwj49iWIVkAK6ciBBtp1p6TTmWPDODloWrSNRl6b7ncNyadJFhXYxv4Jk3rHFnlGxfkDTNWcLyV2Zh8j5VI3pTO2EwQrZ9pnLLV7PsuWl4q5tJ9+1C3c4jkInieWy08zgfSTdcuR9C1BSNe3jmaXwzE0HWGvsUjRt88zqemYJAWWP7gsQ3H+LpZyLmcXHRPA7Clfu0m0djGqxxQYgxb+exkvENBE6IcRaefhZDK47YCiV2CjUqMRhH7F3BuD9CFH9u83YeZ62jcReUHNXeqGfimeescWtrbNvX2iyyn+so46NoFkYYn8I3H1rjJKQoLWfjxIkTJ06czTsTJkxg6tSpX9nb0gshpoyo7jH+1h2jznDYNHPCyzcwfdWiJgi+XfQ63HmtwzqMgOdPAWqDXvt/2faGtG40F+q2qQ/59zWNWl3IeEe8Vkdue6OPr6fRqq8lr58AWlBiJEYuwZVHIoSkaWEj7/9tJrP/7dO6PElVv2aGHDuNEaeNwc24eE15ZtwwjY/vbKbhM5dkncfAQ6cz4qytyPTIYrThk/tmMPv2xaycYVDJPL32nsHQ07PUDO8KgGeeI+f/A8+8BoAjXiahzlh7m+qC8W/k9ZMlxiMQQqLNQlr9a8nrB2zx1R/NfJLyFIRI4zflmHvXFBY+OJeWBfW4tXm6T5pCv+N2INm1E8Zo8vpuWvWtaDMdSOOa90jKs1CycL2iFa9+yPw732Pl20tBQM3W79LnmCo6b7uFNX5QZGxFiVEYuRRXHm6NC2j1/15inLfWmG/M8+7fZjHzDo/Vn1WR7iIYcuSHjD13NJkeGbSvmfWvWUy/aTorpi3HSTsse3cpW547ls4jOtt5fIZW/x/45g07jzsCp+PIXazxfWt8yhpHFxkF2swvMtYj6YdhPgl5cmEem1tY/uDz1D/9LvklK1A1i6jZNUPXQ/bE6VyN8TXLHpvCkoffo3nOQmTSpXanl+hxxO6kB/S0xqetcYo1vgKcgSMLp/G0zvmU+oeeovGtdzH5PMmBq6mZmKBqp+0RQtA4r4Fp177NJ/d/SG5ljqoB1TTNb2DYKWNwUg7GNNCqryfn341hPoIuuGY2SXUGUnTDGJ+cvpOcvs3etSqDbz4gqc5C2VMxPfMUrf71RcZXSXImjtzRzuO79jPztJ3HMRi5DFceaudxnn0/PohhJZL+dh5PQogUXmMrn/3zdRY88A4ti1aSqMvS/Nly+h+/PYm6LMZ45PS/rHFmkfFslBhSYnwDkDjiNWvcAYDV0+cz744XWf6yLZWG9yK/opFuE7dECEHLwnrm/+tFlj71Hl5DM6k+dbQuXkmvw7ZDJlxyq3J8cN0MPvxXnsZ5adLdNYMPn8Hoc7Yk3TVdYpwFpIuMW1jjk0XzWGwsnH7n6bfJ6b/becyjxJYl8zi3aB5XIRmIYQEJeSJCJDFmFa3+9eT03RgWIOiGb2aTVGciRRdr/Cc5fbs1ZsuMK16axsJ73qHhg0UgBTXjp9LrqAzVWxVO1WyYPpcFd75B/WvzMHmf7PD36fG1TnTZc6w1fmaND601JtT8tUavoZnF/36ZpY/PJL90FW7nldTt/SI9D98NpyaL8XyWPPIGSx5+n5bPFqPSSWp3fpmeR+5Oqm/hjof1L7/P4v+8SeO0eSAF1eNep8fhKTptWTjltWHaZ8y/cworX19jfI+eh3Wibg+7r+cvZ8Gdr7L82c/wGltI9fXpfkANPQ7ZHplw8BqaWXj3Kyz572xyS1fh1jXSdeIr9DpqZ9yaLMbkyek77Dx+aOdxuv3MhJ92GydOnDhx4sT5CsYIjPkKXqi7Y76m+pB//yJ6hM+77c/7+HXKxrZSKbDhtVcqXwE8YYwpX/O/nq/VkdsOeP6U8ePHj9+YVirl9fM0eWcC5XfWcuVheJ/9nMeOeojmxU1l41226sYe103k+bP+y/J3lpSNp7pn2PuOg5n519f47IEZZeMyqdjxzwdRs8NjtPgXBfpS6udIMZgm7+wQ4xEk5Dk0ecdhKDcosTXJ1ut45/z7aJixoGw80bWKrf58AvT8LXl9f4AgSda5joX/gjn/90SgcfC39qPbYc3WWH53L1ceSUKeTZM3GcPSAOM43KZ/8PCRz7P0nWVl45leGQ66Zz/evGIKs/8zu/z5KcU+N0+ky4730+JfFmhMqQuRoi9N3tdDjEeRkGdaY7lBifGkWv/GpxdeT8uceWXjTpdaBvzqG8y78THqn3+nbFwmXba48FTc0f+l1b8ixPgrvHe2YuE1fwPPLxvvtPvOJHY7kCePeZDW5eUXu+62TQ/2uGUXWpyT0GZa2bigF1nnDlr8S/HMIwGCNFnnejzzBq3+lSHG3yBFD5q8c4Hyu6wl5GRceZJ9P64oG1diWxJNf+XNc++h8aPy92uyZzXj/zoZ3eVneObREOMNeOZVWv3fBxrT6nesfmkc039xF8bXZeM9v7YNvb42gfe/cyPequay8eqxAxj8k6N5/LjHqJ9e/jVk+1ax3737Irr/CM88FmK8Ec+8RKv/h4BxQVpdhBC1NHnnETyPJ+LKyXYe68vGldiBtLqKJv8UW7qVbqEvWec2Wvzf4pnHAwwZss6NLLxlJfNueTqIyKDvHobKJvnwd3dCwDz2+NoO9D13ME3eCSHGHUk2XsPMH91Iy6eLy7/GnnUMu/hMPvvr/ax8tfz9KtNJhv72NFa+PoOF/3wq0Djg20ciEik+/N2/QJf//O55+I50mTiO6T+4Ab8hYF+PG8zgC45g+g9vpOXTgPdjr86M/P0peDU/xDMBBrJknVtw5NYBY3HixIkTJ87ml81ipVKnnuNv+QquVDrx5RuYvnrh/7zvNnSPQOWVShtH57GRlUqVlmPdbYypeJu7z/taHbntgOdvVKWSMS2szu8cePC7Ji8f9wuWvBZ+G/SuY+uof7+8KFmTzsOqaf40fLxmXAMTbrgORNR7rxOwOnRUMhhduJ5YYBb8+XQW3R3++n3Oqqfb5HtDx1tnD2TmmREXFU77jPnP/SBX/c/Gt3/5fWZcH35x5roRNayaFb6fuu+0kl1uvyZ0vHCB7SzQEGEchKa8tFqT1TdOZtVjjaHjqncfGj8K39eZrXL0uvA/oeOmxWX5D/bDNLeGPmbG/F2p/zDcsOvdU6geG1QiFCIZhqa8hGhLHeGnFxdeoXBh5XCDZACa8Duwzb3iHBbdX16arcmAby+l6+H3RRi6QkA5uSZ+Y4oZk0/Abwr73BrS/TrTOj/862yoHs2CN8I/c+N+M5sBJ9weYewCAeVkWxSFOyKWFx1rIuiH4bPQcSlGo8374eOMQAevXgagZfpI5ny3/BpkbUSBdBx0a/g8Dr/nFUQ6/DOz9JpTqH+yvJBfk/SgnjTPXhg67tR1wlsevh9QCq1ddGt5MbcmiR615BbVh45nhvSi6cPywn1N+nxnJZ0mPhQ6LhlAlftku9MB48SJEydOnM01cam06aaDSqUN1iOw/qe/fSGdx8b0G2H9Ojwm6shvfV6rI7e9UWfN9YfCsvrDLpGFEpjIQgmgcU7UgSV03+eNCoUSRBVKQGRZo3OKJQ+Xr3AqTnrLFyLHlz0YfWejml1nRxZKEG30mh0+ujP67NOVM8P3E0Cv/V6KHAdDVKEERBZKulWx+rmVkc9v+rh8NUZxMju8Gzne+lr3yEKpsSEdWSipdI7MkGcitxFdKEHlj7YmqlAqPCK8UPKbHJY8Fv41AmTGPFfBEP2Zq3+qf0ShVEhUoaS1YOHU6Pdz7fjgVXttif7cg09UoQREFkpAZKEERBZKACseDr8rJQC+iSiUID1yaWSh5De4rHwu+jMXVSgB0YUSoHM6slACIgslILJQAkgMfz7awCd45sXIx8SJEydOnDhx4mwGqV+Hx2yoHuHzbvvzPn6dszGVSm9A6P3R1/z7ui73+byv1ZHb3qgTdNpIcVbP6rre2xAVCqPskOgD5PVNfkkG3VR657r2SQ+MLmxaPqmNHE8NrP+cqvZpXlCN15Co/MCIVA8rP3WlI+MvTWNaoouvSudWJ/pFFxXe/NI7jbVPU2P4rdcB0r1X4WSiy5QvO7mFndAV5jFV4f1YKS1zOkc/oMLp4vm8g9HRD+o0dMN+br+ItFb4XFdKon90yZpflMXkN+yP1Q1+PQOpSfaP/twC9tpkceLEiRMnTpzNJcZeV+mr9F8H5MvsETaazmNjKpXuihhb80VW+lP5//paHbntjTui9BbS7eNko1f4dET8pvUrUypFpiuXDH5zdOlU6TUqlVaV0hHz7DUkKz9oPSLT0ash1iW6ObpMEanobSgVfsoYgNdo30sbx1m8gZHrUHqt7/tJVXrPV5gfKcuvH1SatXO9CWddvjdEpdL7uSM+M196tKj4dQIIogvhOHHixIkTJ06czSBfZo+w0XQeG1OpdCeAEOLIgLGjKFw0qux8Inv+3/q+1v+07U0xrtw3crzLdp+RqI06wBQ4VRUOLt3o8cVPDI1+/jolvFBx61rIjgm/pgnA6leHRI7X7Ppp5PjKF/tHjhcSPg/pHg10nVAf+WyVij6wm//f4etgqJTwMkPVtZAYEn2Q7GRU5Hjjq30jx5Pjo0+fq+m8GpUM/ytCy8JqGmcPqLASJxW5jY5J+DwmejSQGVZ+kfHirHq90mci+i8p1buGn3639hWc8G/3juOTqYvexuLnxlTaQkVD5VQqMyoVGdEr2zrtXH7B+c+Txqm9MV74vnZ7NZAcEF2EylSFAlFEz+O6FICo6B/tMhNVSAsa3ww8db8oDo7cu7IjTpw4ceLEiRPnq52O7DA29LY3WOex0ZRKxph64Gzg0uJ/F0KMp9CclV0wyl686iP7mP/5tf6XbW+qUWIIrjw0dNxJVTHmm6NCx4USjDl/AsjwA5+hp43DrQk/aEkmDkSKYaHjUozEEQeEG6glKU8PHQfFwNN3jjQmE2cANaHjXffamsygbqHjjjMShyhjZxLyjEjj+O+PRUQYt/zGlridwg9Ak4lDkSK8jJBiDI4ILxEFdRWMDt2Onhh5kNvjyD2QmfDSJuEehiT8ADU5YCCZbbYKf37nLCPPDC8zhCNIcD5RhUZCfp2oMsIRRyJDV4KCEmNxxD7hBrqSkKeFjwuHQWfuFNm5JN1zKFxUPTiuOBLJoNDxTiP6Ubdz+GfKretEryN2DB2XrmKrb28dDgTSybMrGI9CMjB8G4zDEXuGjgu6k5CnRAhckvKbkcakPBcIv/h910nbkuwdfqfU7Kh+1GwX/plSyS64JvwilUIk6HX8HpHGnsfshUyFF85d99+ORM9wY9WYAdRsE16Ku12r6XHoDuFGV9Hn+PCbEACk3HOIKugS8kSkCP/+GCdOnDhx4sSJszmkIzuMgNRSuKNQh2x7Q3Yelde4f4ExxlwrhPhYCHEX8DqF2wnVAhPsJJTmCTteNvZ5X+t/2PYmm7S6BHDI63spPi9GMpCMcw2jzhyFzlXx7h/exG9t+6t7snOSHS7Zlf77D6KqbxWv/fQ5civaLkCskorR509g1Ne3pt+kgbz23Udp/LToGiQC+h82kq1/uSfC2ZYm73x881o7mxI7kHH+gKCaZj9FXt9XYhxExrkGKUaCSNHq/wnIFW2ijrTzO9zt9mXUrwYx8/JH2t1CXSYcBpy2K70P3AltBtDknV9ykWWBK48knf41Y67MMf3Cu1n1TvtVSzXjBzH8l0fguopmP0le/7vEONgaRyBEklb/zwHGi6nZay/2/OtsXvzhK7QWz2NKMeEHWzP2G2PoP7Efz3z9aVbPabt4r5CCoccOZYff7YhwxtDknYdv3iiZx53sPGZp9n9CXv+nxLiFNQ5HiASt/v8FGC/BHb8PfKsfC/5+F7qxbR5FwqXbMfvT5ZA9qRo3itmX3k5uYdF13YSgy6Rt6Xf2oeDsaY3tT9F1xM6knavJnN2JJe4tNLz8ertxt3dPenzzTAb06Q3S5YP/ewudb1ulkeqaZvtLd6Pr8AHkfEWz/0ug+Jo3aVLqOyTVGbh6V5q8b5VcCFqSkMeQUr/EsMwap5YYdyHtXI0gTbP/I/L6gXbjUgwlo65BiqEIErTqvwJtp1gJupJ2LqFm170wv+zDzCsfw1vdtq9lymXw2bvRe9J2eLqXNc4tMR5rjUus8c0S426knd8z/BdZZl16P0ufan8x68ygboz41VGk+3dBuop5/3oRk2/7XLudqxjyw6/RefuhqNpqXvv5y+RWtr0XVNph/I8mMPjgMXj6JmssXvGjSMjJpNTPMSy2xrdKjLuTdn6PIEGz/0Pyuv2dxaQYRsb5E5LBCFxa9XUl89iNtHMZrtwd6Xel2f8V7S/mnyGlfkBSnYyjt6fJ+06A8ThSVT9j5OUNzPrNv2icXjzPULPdMIb86EiEq/j48vtY/tx77cbTg3ow9BfHksp0odWX1ti2kk/QnbRzOe4uu8J3e/LZ3x7Ab2xboSZTCfqcuh/dD96JTmMGMfuyf5JbUl80CZJuB25Pv7MOIrd0JR9ffDtNM9sbq7cdzqDvH4NQio8uv5cVz5fs68E9GfLzY0j1Kezrhfe8iPHaPjNul05sccER1EwYgluT5ZO/PIzfVPR+TCfof8a+dN15e/t+/A6G4ot6KxLyRFLqx8SJEydOnDhxNp8YYCO5aXyHpiO+pI7sMIQQFwDbUih5Btt/+wiYSuHObT9cn21vqM5DmK/iu2MjihBiyvjx48dPmbLxXedbm8/I+09haEbJ0Thi53a3iG6tb+HTR+fQuqyZqv7V9Js4oN0pWX6rx9zH59D46SqSXTL03Xcgydq2VStGGxa/9Ckrpy1FpR167jmIbJ/2d1/y9Dt4+hUKZc6OKNl+VUrB+CSGlkCjNivw9GNovRwp++PKfRCibZWU35pn2fMzaZlfj9s5Q9fdR+BWt/0F3hiNZ17A1x8gSOOqvZGi/Slbq6fNY+Vbc0AIascNomp4rxLjp3YeKxuVGoAj9m5n9Jo9Pnn0U1Z/1kC6a5qBB/QnWds2rn3N/Ofms/z9ZTgZh/6TBlDVt/3KG0+/jadfBaSdx9Htxn3zCZ7/NIYWHDkGJXYqMS63xhWBRt2aY/Xr75JbvBynphPVO4xFZdtWhBhfs+rNmTR9vACVTlK7/UgS3dsuHm2MwTfvFBl3Qsn2K+LyixbT+Na7mHye5KCBpEcOQ8g2Y8uyZuY+NofWFS10GlhDn70HoJKqaBvN5PXjaD0PKbviyn0Rorpo3Mczz+HrGQgyuGofpOhdYnwbT78GKGscWTKPc8j7TwOtOHIsSuyIKFrJpc0yO4/1KDXQzmPbqhS/Jc+SZ2fSsnAliS5VdN9jGE5V0WdmjdGfgRBhxrfw9OuhxubPlrH8lVnovEenEX2oGTewnTG3ooHlL0zDW9VMul9XOu84DOm2fa69Zo9PH/2EhrmryXTP0H//gSSq276GgvFZO49V1tiraNzgmzfx9BsR8zibvP8MkMORW6HE9iXzuJS8fgxj6lFyMI7Yq908GtNEXj+GNvORojuunFSyr72ifR1sbJj2GavfnYNQiprxW5AZ3LP9PM5dSv2rMzF5j6oRfem01aAS4xLy/mMYVqLkFjhiz5J9naP+5ffJLa4n0aWa2p1Go4pW9RnfZ+UbM2n+ZBEqnaB2x9EkuratnjTG0DjtUxo+mINQkupxQ0kPLDF+toT612YVjCP70Wls+32dX9HA8hc+wFvdTLp/N2p3GI502j4zfnMrK16cRuvilSS6dqLzzqNwssXvR8/u65kIOuGqiUjRg9IYowHRbtvtxw1g2n3PKR/XCBF+Oq0xfsVxkBGG2BgbY2Ns3HyN0eMdYQwf/yKMX3YmTJjA1KlT/+fb0m/sEUJMGd6p5/ibtw9fmb+p5qRXr2fG6oVf2X33RWWjWqkU54vLymmL+eiGd1j0TD261ad6+BwGHF1Dv8O3REhB88JVzL7pNRY8Mo38qhZSPavxFmzJwBO2wckk8Bpb+fT2N5h//zu0LFyFU50i/+koBp60Pake1Rhfs/ChN1lw7xs0frQImXDIzRpOv+N3ompY4eBu+cszmf+vqax8p/CX8JqtptD7mAR1OxRO41k9YwGf3vo6y55fhM55ZIdOp8/hVfQ6eGuEFOSW1LPo7mdZ8ewH+A3NJLrX02VSim6H7oJKJ/GbWlj87+dZ9vjr5JfUozpl8Od/Svcj9iDRtQbjaxY9NJUF971H08eLkUmHup1foc9xO1M1tGCsf2Uai+59gYb35gDQ9NYgehy5KzXbFK5n1DhrLovuep761z7E5DzSg1vpflCSLpO2QUhJbnE9C+96luXPTsNvaCHRfSVd903S/bBdUakEurmZlY88iXruJaqWrUBWZVnlb0fnAyfh1NVitGblky+Sf/wFEp/ORyRcVjWMxTlkH1IDC+VX49S3WfHIk7TM/AgEpEc0UnuAIDu2UNo0f/Qpy//zBA1T38PkPZIDV9J5X0XNHtsjpKRp3ipmXvcOcx9eRX6VR6bPEgYe+Q5bnLQ1TsYl39DKxzdO5dP73qdlUQNubYq+B7Uw5LRtSHWvQnuaj/75AR/d9j4rZy5HpRz6TGpi5NnjqB3RBYCWt99k9ROP0frhTBCS5PB6qidpUqMKJWLrnI9Z/d9HaH7nLfB9Wvv1R9fvTXbHnRFS0rpwBQv/9Rwrn34Hv7EFr2dnnPpt6HH4TqhUAq+xhYV3vciS/04jv3QVTvVyuuyTodfRu5LoUo3xfZY89BpLHnqblk8WIZMutTsl6Xn07qQHFQ7UV77yAYv//QoNH8wBIei0laHH4YrqcYX3Y+OMz1h09/OsfP1DjOeTHpyj+8EJ6vaZgBCC1oXLC+/H56bjN7aQ6LGKrvul6H7IzshUAq+hmcX3Pc/Sx94gv2wVTnUWf/44eh65O25dp4Lx4VdZ+vBUWj5dbI0Jehy5x9oyYeXL77P436/SMK1grN4Kuh/uUD2ucMpWbs6HtDz5IOqDt1G+hzd/IC3eRFLb7ooQAn/5IvLP/ZvkOy+SaGlCLuhBq9mH1E4HINwkuZWtvP+39/jwXzNpWthEsi7FimnLGXPuWNLdMxiTJ6fvIKdvQ5tZQBqft0jKs1GyME+e+S+t/vV21ZfENzuT5AwcuXNhXL9Jq/83PPMMkMczY0jIk3HlYQgh0OZTWv2/kdMPAA1IPYCEmkNCnoIQKYxZSat/HTl9N4ZFCLrgmxkk1VlI0c0abyPn347mQyBTMKpzUPZ00RXPf8CCe16kYdpnCCFYOX4Leh29CzXjCqdqrv7gUxb863nqX5uJ8TTZYb3p8bUd6LrP1oV5NJ/Q6v+NvH4wwJjEW93EonufZ9njb5BfvhqnJkvznIX0OHJ33NoqjOez+MGXWfrIq7R8tgSZStA4cy49j9qddP8eGGOof+FdFv3nRRqnf1rY1+M+pOcRu9FpK2t83xpfbzP2PGxHuuy9FUIIWuYtY/4/n2PZs++hm1pJ9ulCy7xl9DxsB2TCxVvVxIK7XmDJY2+SX7YapzZL8+zF9Dp6F9zOVRiTI6dvJeffgeYjO49vk1Rno8QQjDHk9cPk9I129ZzCETuTVGfhyB3svn6DVv9aPPMckEeJsXZfH2rncbadx4cL88hAEmoyCXkSQiTRZgU5/+/k9D0YliDogiuPIKnORIou1niLNX4MZHHlfnZfb2GNDxUZHRyxizVub42vFxk9lNjKGg+xxo+t8ZEi43Ek5IlFxmvJ6XutsSuuPNy+H+us8WZrnG2N+1vjYGt80BrfssZdrXE7a3zNGp+3xq1JyFNw5UFFxr9aYyOSQXYe1xiX0+pfS17fi2GpPWX3CBLqTGtsLZrH2UCVNZ5dZHzAGt+2xt1IqjNLjH/DMy9Y4zhrPLDI+H/k9aPWOLjImECbZbT6fy8ydisydrbGNfM4xxoPsMZB1ng/OX2TNbpFxm2t8RU7jy8Cvp3HU3HlAdb4UdE8NlnjcSTkCSXGezAss6fsrjHWFhlvtyugq3DlgdY40Br/Y43vWOPu1rhNiHEcSXUqjtjfGj8sej82IdmiyOiizdKieQwz3mTnsdh4DkoMsMZ/W+O7RcazcOQEa3yJVv/v1qjXGl1ZuCSAb2ZZ46PWOMQaj7fGJdZ4nzX2IGE/10LUYEyLNf6zyHiQncc1xvus8T1r3MMax1vji7T61xUZx1vj/gWjnkmrXmNstsbjScjjiozXktf/LjIeaY3V1nijNX4KVJGQB5NUZyNFf2u81xrfLzKejSPHWeML1viSNU6wxv2scYY1/rdgFENJyDVGxxr/Zo3LEfS0xjOssZlWfSN5/1/W2ImEPIikOgcp+lnjPeT0zUXGPa1xawDy+nly/nV45uUi4+m4cpI1TrfGx6xxGAl5XJFxcZFxhTUeRVKdXmS8gZz/L7uSvJOdx3OQoi/GaPL6Hlr1Lei1xr2sMfzSCXHixPniE69U2sDZGFcqLX5hNm98+z+YfPkFX3vvP5yhZ+/Aa2f+k9zy8otdV4/swfgrv8bbP7iX1dMXlY0n6rKM/+tk5t70DEuefL9sXLiKURcfQ9NHC/nkb8EXlx947iRSfbvx3k/uaXeazpp0nzSGQaftwIc//hveyoay8czQvgz66Ul8/Osbaf54ftm407kTQy46i0/+8RzLng42jrx4Mi0fzWX+jf8NNPY960CSfbrw8W9vwfjl81i31zh6HLU7s370d7yVjeXGYX3Z4mfHs/D3fyH36dyycVVbQ5+ffIcldzzI6lffCjA69L3gbFpnz2b53fcHGruecBSqSzfmXfUP8MvnsXr37cjusz8vnHIfuRXlF5LuPLYH21+9H699435WzSy/nXyye5adrj+Sty97lbn/nV02LpOK3f5+AKn6qay6/75AY+0xx+PU1bH0b38GXT6P2Z12IbXbgUz//j/wVpW/H7Mj+zHkZ5OZ+dObaJ5T/n50u1Yz8vLTmXf9o9S/FLCvEy5Df3MyDe/PZsFtjwca+339UNy6aj6+5DYI2NddJm1Lt0N2ZtaPr8VfHWQcwMAfHseHv7iBlk+CjDUMu+RM5v3jIVa+8kGgccivTmX1ux+z8Pbgz0y/r3+NTn0V9Tf9KXAe0zvuSWb3vWm47kJMc/lnxhkwAvfQH/DfyU+wcmZ92Ximd5b97tsX2eMCPPNkgCBN1rm+cLChrwk0ptRvkaKWJu9bQPn7MSEn48rjaPROoP1pjIUosS1pdTVN3sm2LGofQW+yzm20+L/BM0+FGG9gwY0rmX/7s4HGQd85FJVJ8eHFd4Iu/9nY/eDt6HfeYGtcFWDcjkTjn5l5wY20zl1S/jV2r2XYxWfy6V/vZ9XrM8rGZSrB0N+cxsrXprPwrmfKgQIGnH8EIpHkw4vvCjT2OHR7uu47nuk/uB6/sbVsvNNWg9jih0cw/YIbaZkb8LnuWcuI35+CX/sDPBM0Txmyzk3k9ePk9LUB44K0uhhI0ux/Dyh/P64pERu9E2l/GmMhSuxIWl1Gk3eiLRBKt9DP7uuf2TKoNFmyzs3k9aPk9N9DjJcCDs3+90OMp+CKQ2n0TwTKPzNK7ERaXWKN5RfKlwwg49xCi/8TW7QEGW+xpdc/QoyXA4Jm/wchxtNw5cH2/Vj+c8YRu5BSv7PG8ptPFIy30uz/EN+8FGCoIqNuxjMPkNM3BIxL0uoKwKfZv4CgkwgS8gxcuT+N3kkhxl1Jqd/S6J1Qcnrymi0MJOPcbI0vBxg6WeN/yOkbI4x5mv0fhRjPwpWTrLH8e7gjdielfk2jd3zJ6clrtjCIjHMTzf4F+OaVQGNW3ULe3EtO3xxivApoptn/SaAxKc/BkXvR6J0MNJeNO2IPUupXNHrHlZz6u2YLg8k4N9Ls/wDfvBpgqCarbiVv7iSnbw0YV6TV74EGayxPUp6LI3en0TslxLgnKfVLayz/3axwWv6NNPvfxTevl41DjTXeQU7fHmjMOH9Am3pa/J+FGL+JI3eh0Ts1xLg3KfUza1xQNi4ZYo3fLrvsABSu+ZlRt5Izt5LX/wwx/hFtltHi/yLEeB6O3Mkay383c8Q+pNRPafQmY1hYbhRDyagbaPa/VXbZgTbjbeTMTeT1nQECxxoX0+JfGGxU38IR29HonR5inERK/cjOY5BxmDV+s+yU/jbj7eTM9eT13SHGP60ttzaGxCuVNt3EK5U6JnGptIGzsZVKfkueJ/f9O/n68LtRdRpcQ9Mny0PHa0Z2o3Fm+cHxmlQNriU/P3xcVSUxTeU/zNfEACZRFXhAtCbdRifJLQi/c1h6i940f1T+S8taQ89erJ5VfuC6Jk51EidfftC4NsIgM0l0c7gx2bsrrfPLD9rWpG5sHf688jJmraFnL1o+LT8wXRPVKY1oLT8gWxODwMgMuiXcOK9hAqs+Dn+NutFdWDU9fJ5TA7qxfHr4PHXu7zNyWPR7XySTmNZgozGwMj+K5rn1oc/PDOlF04flv/ytHR/YjdbPwt+PTk0Gv6H8oLE4MpVAt+RCxxM969pfU6okqcG9af4o3Jga0J3WTyM+MzVZ/IByck2EMvQavgxyYfvakOxTi6kP38Z7sw9m9nPhd/sb95uPGXDCHaHjhVOyl0WMKwp3yQv/3iPoG3jQtiZSjEKb8uJt7TjD0MwMHW+eNoJPvhdxTUQpEI7C5MLmwTD8npcR6TmhL7H0j6dQ/1T43SdTA3vSMqf8l+w1cTp3wlsR/plEKXzfjTBConsNucXh398yW/Sk6aNwQ+/v1FM98eFwA92BqDs3Kvtf+GdG0CvwoG1NpBiJNtPCxxmBZnrE6/fAEP5+LyzUlhvWKEagzfoYXQpX+I8y9gw8aOs4Y/Trt935Mh/6iEpfZ6V9WelrqLSfCndi1RRfA638NbpjIt7T62/sHViktCVJoWyPMnbDEP47gWQ4mvKyus0Y/f1T0CewkGpLisJ+Dr/DpaArhvDfe9bfGP0zYt2MXTARP6sq/RyRjEITZewXWJB+scbRaMr/kNb2+v0xAUVzW9IUvu9EGeswhP/eIxmKZlbEePQ8SvoHluFtqaLafQkhKt0V9ovJ5lIq3bRd1I2SNs2c/No/4lKpA7LR3P0tzheTBY/PiiyUwEQWSmAiCyWA1rnRt4kvvuBz4Ba0iCyUpPIjCyUgslACaPwo6msEAlZztIshslACIgslMHhz50Q+v+Wz6K/RNEUbjU9kodTSnIwslMBEFkoA9TPqI8c7Z6J+IbBbCSmUALycG1koAZGFEkBLRFkD4K2qsK8hslACIgslY4gslIDAFUzFiSqUANLZxohCCYQ0kYVSPufwyYvRX2PthKAVSsWJKpSg8Mtp1PceKhwsEHmwAUT+kg2w4pHayHG0iSxr0qOWRhZKfoPLyuej309RhRIQXSgBOqcjjUBkoQREFkoAyRFBK2uKE/19obCvo99P0SUAkQfoQOQBfuH1oz9ThYP3DWyMKGsKr1/JmKeyMXpfrr8x+vULxvBCqfAa0V9npX1Z6WuotJ8Kcxj9mYkqlKAjjNG/k0ArlY3hhRIQWdZA5e+f0YUSFL5/h5cMhdeI+r2nI4zRPyPWzRj9s6rSz5GoIqTw+lGFEnwxxvBCqfD6lX43a6ayMfr36KhCqTBe6ed5JWND2c1T4sSJ8+UlLpU2szR8XOnAb/0jxPqtfjMm+iJ8SkX/oFuXaB391q/4NazndQKl1JW3UYlQ4fmV5rG1Jfy25usaXWEb6Wx0iVAp+dwXcNm3jfOaj58rbiL6YETI8lNnitPckEb70Z+JTkOiDxY2heQ+qan8oIgk+kWXNflFWUx+w/5YrfS5Xu9ITbJfxCrNOHHixIkTZyOIb8pPhY8TJ86Xk7hU2sziVCUrP2gjT0ccVFUuvipsYz3PGu2Ir8GsZxsiVXTR0BGpVFRUipTx6bnrEq2j3wuV3m+OG11KAXiN619CftmRmegVFZWim6NLTpmuPI8bfbSo+HXGiRMnTpw4X3YEG8epb3HixIlLpc0uPfceUvExMhl1QCFQlYopN3q80gGurLCqwss74LqRj5FFt8UOipuNfuv761mGQOFi2mExRmKS0T8MVTr6azQVVltVmsdsVRMqGbUvBE6n6H2ZrIo2LFtcFzleKYl0KzIRvQ1VYV+LZKUypANKyqLbtJeNicpGmVq/wqalMR05bnwJKvz9mK5qprZPdOGy+LktKyg6YgVN9HseOlUYz0Q/e5dKp3dEp3FKb4wXvq/cXg0kB0avpJTpCvu6wu2SK32uAYSq8JnJRH2uBY1TK/2c6IhfHSoVV5UOFrIVxjvCGP65LqSSsdJ4pddfl3wVjJX25RdhrPR+WV9jRxS1m4Kx0s+B6O/Rlb/HV/oZsS6JjV+MMfr3EqiuMF7ZuOZOeXHixPnyE5dKm1mqBtbR5+BRoeOJ2gyDTtkudFxIweAzdwEZ/sOk7/E741SH/zDpNmks2SE9wo3De9F94ujQcbc2S48j9ggdR0l6TZ4Yaexz/K44ncKNXSaOX3sb96Bkhval825jQ8edmiw9jtw90lh32IGRB5B1h05EZsN/cei02w4k+vYOHU8NGUCnHcaFjru1WYadET4uHMmwr+8QOY8jz52AWx1+kFy16844vcKNiYGDSY/fJnTcqe1Er6N2jTT2OXGvyN9tek3eM7LU6TJpW1L9uoeOZ0f0p3anMeHGzp3ofvhuEUZFr+P3iTT2PHYvZMSBfpf9tiPZt1voeGLQEJJbhl9fUNbUkdrl4Aijw9bfHRdpzKTOIeqgxBXHIhkcOq7EBByxT7iBniRk1F1FEiTl+RHjhbvmRB1YdZu4A6k+XULHq8b0p3aH4aHjTqYrrgm/SKUQCXqfuFeksdexe0WWiF0P3J5k7wjj2IHUbDc0dDzRrYaeh+8Ybkw49Dlxz0hjKnkuUQctrjgBSf/QcckOKBHxmaA3CXlKlIBUxX19PlEHLa44CUG/CsaI7y30ISFPrmA8r4LxvEhjQpyIoG/ouGInlNglwtiXhDwpQpC2hvCk1HkULhwcZjwZQZ8I4y4osVOEsR8JeeJ6Gs+vYDwFQfjPGcVuKLFD6LikPwl5QrRRrYsx/Ht4QpyKoFeEcXeU2D7COICEPD5CkCGpvlnB+C0KFy2PMob/3qPYEyXCfz+UDCQhj4sQZNffKE+rYNwHJSJ+FjIIV06OEFSRVN+IGBck1flEFR4JeTqC8N9xFRMrGAfjymPW0/itCsYzEIT/TqHYFyXCfz+UDMGVR0cYOq3jPIYXmUl5VqTRlQeg5MiIbcTZEDFGfOX+i9Mxide4b4bZ8hf7IF3JZ/9+v90tqasG1zHu0gPpNLQrKunw4bUvoVvaTudI1GUY/bNJ9NhjKOk+NUy76FHyy9vuciRTDoPP2oUBJ2xH9z2GMP3Ce2n+pOg6LFLQ88BxbPHt/fAaWpj523tYOaX93c9qtxnMsJ8fgcokkSmHhQ+9086YGdSVUb8+jOzgbsikw6J/PoFubVth4dRW0f+8I6nZfhSJ7p357M/34BVd5FimEvQ8biLdD9uN6m1HMfPXd9P8adF1pqSgx4HjGfyt/fFXNzP7sn+x+q2P2hmrxw9l4AVHF4xJl2VPTC1cjdkmNaAHg384mdSAHsiEw4I7nsLkioydOzHg/MOp3X4kye7VLL7hDvTqtov7imSCuiMOpna/vclutSXzr7mR3Pyii4hKSe3eO9HjlCPwGxpZ9JfraZ7W/qKNmS1H0ePrpyKSSWQywcrnXmtnTPbrRe9vnUqib0+Ek2DG397AL9rXqW5Zxv16T3ruMYh0zyre/c1T5Fa0XWBdZVxGnLcjg08cT7edBvLKdx5n9ey2680IJdhi8ijG/WxnTNMEll33V1pntr9AZ2r0ltSddhYikWBFMknTKy+1M7p9+tLljHMKpZTjMP+OZ9tdoNit68Sg7x1G7XbDcbtW88k19+OtLHo/phP0PXUiPQ/biZoJQ5h96T9pndd+X3c7cHv6nX0Q+ZWNzLnsdhrea/9+rN5mBAO/fwwy4fLpn+5l+dNT2536mB7Ui4EXTCbVrzvSdVh419PtjV2q6X/+kdRsMxy3cyc+/b//4K9qb+xz8r50P2RnqrcewpzL76B1fpFRSbrtvwN9zzyIfH0Dcy67g4b3S4zbjmDg945BJRUr/3U9LVPaz6PTpz+1J38T1b0XKIeW5/4NXtv7UVTXUXXEudQN3ZpdU1157Wcv07qi7aLfbpXL+B9vw6CDRuHpm2n2vlNyC3WHhDyBlPoJhiU0eeeX3cbYEXuRca4EEjT7P7YX12wzSjGKjPNHJIMQJGjVf6P4AsWCnqSdS3Hlrki/Ky3+rzDUF20hS0r9kKQ6AUdvZ43FF/m0xuxPGHF5Ax/+7k4a3m9/EdDaHUewxQ+PQCjF7Kv+zbJn3mm3rzNDejH0Z8eQzNTR6ita9bUlxl5knMtwdtwZ8/2efPbX+/Eb2j4zMpOk76n70+3AHagaM4jZl/+r3QXehaPodtCO9D19f/LLVvPxpbfTOK29sWaHUQz63tEgRcH49LvtxjNDexeMvTojXIcFd72AybetnEp0q2HwBYdTM24LnNosn/zlYfzVxZ/rJP3P2o+uO22Lp3vS5H2v5KKzDgl5Min1Iwxn2n3d/nbQjphExrkMUHZfP9huXIkxpJ1rkPRD4NKqr6P4Qs+C3mScy3Hkjgi/M83+b4Diazx1Iq1+TEIdi6O3tsbii/c6JOSppNQFGE6zxrdKjPtao6DZ/xF53f5Od0psSca5BkFf+378R4DxShy5PcKvpdn/XYDxJyTUMTh6K2ssXiXnWuMPSHIqTd55+OadEuN+ZJxLAUGT90M880iJcaw19gFccvqGEmMfa9wO6ddYY/FF4KtJq5+SUEehxFiavO+XGZPyNJLqByQ5yRrbv99ceQBpdQlgaPIuwDP/LTFuZY29ioxt3x8Ffa1xW2u8KMD4cxLqCJQYY43FF7x2ScrTSarvk+AEmr3z8M17JcYDrdG3xsdKjOPIOH+0RUWCnL6xxNjPGrdBUm2NxRfjr7HGw1FitDUWXzg8QVKeQVJ9lwSTafLOR5cZDyKtLrbGH+CZx0uM48k4fygy3hRgvApHTkDQiRb/kgDjL0mor6HECJq8CwKMZ5JU3yHBsdZYfKFnUTSPHk3e9/HMEyXGCdbY3RpvaWeU9Cft/B5HjkNQRYt/KdBYtIVaUuoX1jiMJu+HAcazSapvkVBHWWPxhZ4FrjzYzmPOGtvfXKJg/COCbggS5PStJcYB1ri1NV4WYLyQhDoEJYbR7P2w5EL2ySLjkTR555VcwF3gykNIq4us8Xt45qkS4zbW2BVBkpy+LcB4NY7cCkGWFv/yEmNnazwYJYZYY/GF8pMk1Tkk5fkk1OHWWHwReoErv0Za/Q5DC83ed/HMMyXG7cg4VyPoUmRs+zkjGWjncSsEGVr8K0uMdaTUr0ioA1FiMM3ej0oulJ8kqc4lKb+Jqw61xuLfHwWuPIy0+i1x4sTZeCKMia9ZsiEjhJgyfvz48VOmRN9W/ctI88LVLHr2I/zmPDUje9Blu36IopUz+dUtLHp6FrnlTWT6dab7blsg3bZl5jrnsfSFj2j6bAWJuizd9xzW7ppNRhtWvjmHhhkLkGmXLjsNI9mj/YVyG2YtYNVbcwCoGT+I7Bbt/wLVsnAly16ahW7JUzW8F7XjB7Qzeg3NrHzlfbz61SR7d6N62xHIotPOdN5j1WvTaF2wFKdzJ2p3GI3Ktv3l2GjNyjfn0DizYKzbaTjJ7u2NTR/NZ/U7HwPQaastyAxu/9fG1kUrWPn6dHRrnuzQPlRtObi9cXUT9S9/gLeygWSfrtSUGE0+T+Ob75JfvARVU012wtaoTHtj03szaZkzF5lKUjVhDG6Xzu0Ncz6jadoMhJSkRw0n2a/9X5Zzi5fR8Ob7mFye9Bb9SY8c0s6YW9nC/Cc/JreiiaoBnem520Bkom1f+60eC5/5mOZ5K0l2zdJzry1wS/b1opfnUf/BYpxMgt57DyTTs/2qltync2iZUTAmR4wk0af9X+i9pUtpfvdtTD5HYuBgkkOHtZ/HVU0sf+kD/FWNpPp0o2b74Uin+P2YZ8XL02ldsAK3SxV1O41qt0LJaM3qtz6i6aMFqEySmh1GkujSfvl106y5rH5vNkhB9dZDSA9o/35sXbi8sK9zebLD+1E1elCJsZH6Vz7AW9lEqm9hX4sSY/0r02hduAK3Syc67zi63alIBeOHNH28AJVNUrPdqDJj46y5NLw3GyEFncYNJd2//V9EvaWLaf1gzTxugTt4eDujblpN7v3X0I2rcXr0wR02DlF0apzX7PHZ45/QOLeBdPcM/fcbgFvV9pdjYzSeeRHfn46QWVy5D1K0X+nl6bfx/DcQKBxnZ5Rov7JGm0/J+89gTA5HbYUS27Q3mhXk9eMYvQKlhuCI3RCi7a+uxrSQ10+g9Tyk7IErJyJEtmjcLzJ2ssb2f/FsmD6X1e/OQTiSmvFDSA9o/zW0zF9G/WuzMPk8VSP7UzW6f4lxOXn9RJFxd4Qo+t7TmmfFKx+QX7ICt66a2h1Ho9JF+9rXrHpzFs2fLEBl0tRuPwq3ru2UBWMMTTPn0vDBbFCSmnHDylbUtcxfRv3r1jii3Jivb2TFS9PwGhpJ9+9B7bZDEaroc92SY8XL08ktrsftWl34zKSL97WPZ57H92YiVPk8GmPwzZp97eA4u6FE+9VqvpmD5z+LIY8jx6HE+JJ5XFaYR1OPkkPtvi76/miayevH0WY+UvSy+zpTNO7jmefw9UyEqA436jcQuDhq1wDjbDz/OWscjxLjSoxLyesnKxgfQ5sF62CsscauJca38PSUCOPHeP7z1jgBJbYOMD6BMStRcpg1qqJtNNl5XGOchBBFP2eMZ42zIoxv4ump1rgbSgyKMG6DEluVGJfYeVwXY287j2HGWmvsUjRu8M1UPP1mBeNzGLwI4xMYswolh+OIXf8H47P4+kNrnIgUdUXja4xTESRw1O4oMbDE+JGdRw9HbosSYyOMI3DELiXGxsL3R7MAKfpYY9HPwrXGWQhRZ+ex1DjFzmPSGgeUGD/E819Ya3TkVu3G24yrrXHnAOPjaLMQKfriyn1KjPmifV1n57Fz0bjBN2/g6bcQJHHVHkjRfvWkb2bh+S9i8HHkNgHGxdbYUDSPsmgbDeT04xizKMK4Zl+HGV/H029XML6AQdt5bL8CXptF9jPTgJIj7TyGGftZY9HPGZPHM8/g64+L9nWUcU+kaL/C09cz8fSLGDSu3A4l258KX9m42hoXr6NxIlLUhhhT1hi+wvPLyoQJE5g6depX9rb0Qogpwzv1HH/jtmd82ZQOzymvX8eM1Qu/svvui0q8UmkzzaoPFjDn5ldY+twsjKfJDu5Ky5Hj6XPY1gglaVlYz2e3vsTix9/Db2wl0bUTLbO3pu/kHXGySbzGVube8TILH3yL3NLVqGySxhmf0e+EnUn1rMH4miWPvMqSB1+m5dPFCEfR/MFIeh61B9lhhR8Gq19/h+UPPkXzjEJhk39/C/TBe9FpQuEHVvOHn7DsP4/TMOU98H3yfXvBsl2p3WdnhJTkFi9j+X8eZ9WLU9DNLTh1teTn7UjdQXuh0in8pmaWP/AkK59+GW/FKmQ6RX72NnT52kTcrnUY32fJw68VjJ8VjE0fjKLnUbuTHVow/j979x3nRnE+fvwzMyutpOvNd+fee8c27jbYNGN6772GQBJKKgmQHhKSbzqk0JLQEiCU0DvYYLCxwb33Xq6q787vD+351Hbl/GwICfe8Xv7Dr0cnvTVb59HsTMOcJex44i1alqZGZhQP7UntqVMpPzw15LZ1xSa2P/Y6jfOWo5MWgR61dJo9gepjxyGUxNq7k/Ar/0R/OAcZi2CVVRJuPoLQ9BOQZgA7Eib8+tNE572O3bSPZCCE2DmZ0JEnoiqq0ZbFnufmsPf5OcQ270AYitJxa6k5bQbBPilj6/wPaXz+RWKrU+0YGdCPsmOPJjQydXMSXrmBXf94heb5yxxjPZWzJlF51HiElCR27abpmefgvXn4ojGSSypobJlM2bFHIQMBrNYwjc+9gPXWO6jGJuxgkMbGwyk//jiMygq0ZdHy+mvYr79OaPs2MAzCLaMwjjsOf/fUjWh00TxaX/8XiXWrQAgSywdRdMTxmINHprb9hpVEXv8n8WUfgm1h1XeHicdijj0CISV24zb0+w9RuvZ1SESguQbbOA4x+nSEL0isMcbi337MqkdWEdkZwV/mp8+pMYZdN5yi+iLshM2y+5ex4v7lNK5pRJmK7seEGXbdcKqGpjolG55dy/I/LWbX/B0IKagd38igK4fT5YjUDdbuBdtYcfeHbHtjIzppUzZwO30viNLrjEEIKWjZ0Mjy3y9g47OrsMJJgvXF9D4rQv9LR2CEfMQaYyy9+yPWPLqC6K4I/lI/vU6NMuTaEYRqi7ATFmv+spg1Dy2mZV0D0q/oclQTA64aTfmgVOdu83OrWXnvIvZ+uB2koNP4PfS/fBR1U7qnGRew/c02YzN9L7TpeVrKGN2yh60Pv8me1z7Gjsbxd1pFp1kt1J0+CRXwk2wKs/XRt9n3wgIS+1qIlgRR20fQ+eyp+KtL0UmLnc/MZdez7xHbshvhMyifKKg7czqhXvVordn31sfsfPIdWpdvBCkoGZ6k7nRN6ej+qf112Tp2/uNVmhcsB8sm0KuR6uNtKmaMTR3X23ey76kXaX53PjoWx6jeTNkRCcqPOxJp+rFaWtn3zEs0vfEuVlMzsihE6eQEFSccjVFRhk4maX71FVreeIPkzh1gGIRGN1N63Cz8XbuitSax+G1492lCW1aCkNjNw0hMPBlf39Rw/+SGpVjvPE5wdWp/ZE9vEonj8Y08EiEEumkTLLkfY/0rYEWhqA7dbxMMPBthBNCxRljyF8p3PguxfbC7BLHkOPSQCxHBKrSVQK94jOItT1Ac2QxxP2LpdPTQCxHlfVI30dFnUVUPUDp+ESAR/glYsctRZupRI93wAeaeP1Fb/jZgQWwQ7DgfXXtyyhhej7H9HmpKXoCiCIgusOUMdJcLESqA3dJM+NWnsee9hWxpwg4V09o0maKZJ6JKyrDjSXY8+S47nv2Q2JY9CL9B5RSDzudMJdSzFq01e179iO1PvEvr8s0gBWWjoP4sTdnoPql2tOcRs35PUr8FWCT0UEx5ET55KkIILL2WmPU7Z6RQBGF3w6/OxpSXIoSJrfcSs+4mYf8DzV4E5Vj6Y0x1FVLUoHWMuH0/ceshZ/SciaXfx1TXoES/1La2/0ncvs8ZCaQw9CRMdSWGnOgY3yVm3U1Sp9oxqYfilxfjk6c4xjVpxijC7oapzsEvL3GMexzj446xAksvdozVjvE+x7gRCKQZ+6YZ73VGAikMPdkxTnCMc4lZ96QZh+GXl+CTJznG1Y7xOSCKtLvjV+fglxc7xt1pxn0IKrH0EsdY5RjvJW49nGb8wDH2cYxPOsbFacarMOR4xzjHMb7jGIc77dhmXOUYn3eMPRzjRWnG35Own8hjrETrGDH7z8Sth53Rc0HHeHWa8QlnW7cZpzjGwx3jO2lG2zFegk+emDLaK4nZbcaYYzwXv7zQMe5Ka8cGBFVYeimmutIxRonZ9xK3HnJGzwXT2rG3Y3ycmH2/M1pJYeg3HeM4x/g2MesPacYRjvEEx7iCmP37LON5jtHvGNvasc3Y1o4VjrGtHduM72cZ/07MfsAZraQw9BsZxoT9FnHrDyT1HMc4Er++BJ+c7RiXO8YXHGPPtHb0Y+udacZGx7gYU12NFOVoHUkzbgFCae3YyzE+5hiXAgbJ/e04Ns14D0k91zGOcozHO8Zlaca4Y2xrR19eo62X4FdXZRkfckbPhbD0fMfYE63tNOMyx/iWYxzjGN8kZt2Dpd91jKPx60vwq+MBHOPvSNgvOsZejvECx7iDmPV74vYTQBOCamxnWwtRhtbhtHbMNvZwMb7tGA9zjG84xvf2G00uxSdnuRh7O8bzHeN2x/hkmjF1zLQb/+QYtwFFWHqBc1y3GR91jMuzjKPpiI7oiM9OdIxU+oTjszhSafdbq/noq4+jk7kTvnaaOZDel03koxseJNEQzskX9atlyA/OZMnXH6V19Y6cvK88xPBfXcCOh15i39sf5+SFoejzrQtIbN7A7keeyckD1Jx7Ev4utWy5609g5U56WzJxNFWnHMOmO36J1dyakzd7dqXLTZez5Sf3ENu4NSevSovp9p3r2XL/KzS8szgnLwxFn1svJLx6M1sffCknD9Dl0uMIdKlmzQ/+ClZuO1ZMG0G3CybR8Ls70OGWnLzRtRelF32Zxj//FGvbxpy8KC6j/Jpb2XrfSzS9m6cdfQY9vnEpyY2raXjiqbzGyrNOh4o6Nt75QF5j+bTRdDptGtt/fBd2a247+nv1oNMXrmbHz39FYkuediwrpe6rN9L4xN+JLFyYCzAMaq77IsmNK2h94fG8xpKTz8eoqqT5r/+X6rxnhTl6CqEjjyXx+C0Qa87Ji9oB2NO/y/Nnv0bDyoacfLA2yLGPHccH332fTS9tyskrUzHz/pnsen8bH//yw5w8wJjvTKC4Psi7X3oRbeWeL3ucOoB+Fw/njQueItEYy8lXjqhl/P8dzasXPU/j6nzGEDMfPp7FP3qHba+tz8lLUzHpnuPZ9e4Wlv8u/3lk5K1TMKuDzPvKS3mNPU8byMDLBrL85nuxWqI5+eJB3ejzzTNZ8fX7iW7anZP3VZcy6M5L2PzHZ2h6f0VOXvh99Lv9Ypo+XMX2R1/Pa+x2zUn4ywJsvOuvGY/ntUXFzHFUHz+BrT/8JXY4kpMP9OtN7bUXsfUnvyGxbWdO3qgsp8s3rqfh0YeILs53zPioueFLsHEesXfy74+B469CmCEiT/wir9E3+igCE49Ev3I9JHKPa2qGIyZ9B/3Kl6A5d38jVIuY+Uv0+3fBtvdy8yqAPPIuksEXSbb+Oa/RV3o7qiUEy78B5Jm0u/5MqDsVProcrDzGssOwevyUfb/5Mdbu3HO4rKii4ppvsvpn/6Jp/prcvOlj4I8uYu87y9j+93fyGnt9+STKj91MxLqJfEtl+uV5+MRptFoXkP5YRFsoMY6gupNw8sKsRy1TIehCkfEXota3nM53dgQJqftI6uedR65y3yH1CIpBxLrFxXgBhjiZsHWhi3E8QfVjwskLsh61bPuErhQZDxKxvoGl5+YxhBzjv5xHrvIZf0jbI3r5jRdhiNmErYuA3Ou1EhMIqh/Smjw/6xHBtk/o5hi/5nRss6OIkLqfpH6KuP2Ai/HHgEXE+oaL8WIMMcsx5h7XSkwkqL7vGHMn0pf0IGTcT8T6qtOxzWd8gKR+wnmcKZ/xTiBBxPp6nnxqnh6fPIbW5MV5jYaYTEDd4Rhzr4Up4wNErJuw9Pt5PqHYMf6duP23PHlJUP0UiBCxvulivAKfnEFr8hIX4xQC6nZak+dlPTbW9gk9nXa8EUt/4GJ8kKR+lLj9kIvxZ2haiFq3uhivxCePcIy51xlDTCOgvu0Yt+fkJb0IGfcRsb6S8wh1KkooUg8S1w+RsB9xMf4czT6i1m15jaa8GkNOoTV52f+nsTch414i1pex9II8n1BKkfoLcf0ACfvvefLKMe71MF6LISc6xtx7CkMcQUB909kf8xn7EDL+TMS6IefR31SUUaT+SlzfS8L+R15jyPg/bL2TqHWHi/E6DDmO1uQVLsYZBNTXaU2em/VoW5uxLyHjT0Ss67H0IhfjXxxjvuu1ImT8Ep88Lq/vPxGfi5FKxXWj7x17xX+acsjjkvf/wIqWjpFKBxsdRaVPOD5rRSUrmuDt2b8h2ZR7MW2Lkt4lRDfvdc0X9a3NW1Bqi+LepejduTc1bWGU+DHZ5+mUQRM7knuhagtfbTWJHbmd37Ywe3QhtsF9pSdR05mWtY2ueVUUwGp1b6OU0Y8dibvmu02IQYNHO3TuQXJrboepLeKBvuxbkttR2P/3pSYBucc1rxFEohXYUTejpqxvCGv3Ltf38HfrSnxTbmdkf75LJ6yd7t9RFgcwdINrHgFGkYK427bWFA8IQkvujXxbvP/B2ax+xX2ivbK+ZTSudt/WgUp/xrwyOSEhVKyxIu7LxRd1K6F1U27Ra3++Xyf2LnXf5ysGlBBZ574t/RUm8X3uxwMClGlkzIuVGZreY+Mkdrof18HedUTW5t6gtkWoVzXxLe55VRrKmC8qJyT4g2TML5ZtLO5RhLXH3ejv1oX4JvfjOtCjBr0rTzHHCV91kJDpvj+ndkgjY86pbGPRUImIurcD5X2hYbV7vqwXNK5zTdt1JSSHuJ8XsBTmOj/Cdj/3YNZBzN3YuOxoosvdj/uwbwi7PnTflr7KYhJ78xSsnDCq4vR94CkQ7kZBXd4OUVtIMSBrHo2sPP2xWemahxrA/TumVgyTpM9DlGuszZqP5N81DsDGPS/olLfD1R4GqdnzvYze71HIUOg7HJgR0ud9+fSN3tspNWGxLmCsQXvsL4X2t8JG7/09NTm1RfrcNLnvUY3G/b5H0g+bVR7GgVnz52S/f33eglR7mKTa0MtYhcb9WlbQyEBsvIyd8xb2/j1jJRr364ykLzbu5/DCxi55C6TtESA1H5/7Sp4HbxyEzTLXvKBr3kLzv2esQHvcy0v6YJP7w8SBG7tlzemXHUWU+uYgRKGV7j6d6Cgq/fdGR1Hp0ETH6m+fs9j5ynLPghJCexaUAM+CEkByu3dext07323hVVACPAtKgGdBCSC83vs7FiooAZ4FJZ/pXVACPAtKAM15RrWkh0q4F0oAkjHlUVACqWzPghLgWVACSO7w/o6iwLYWwvYoKIH0WZ4FpUTcYN0b3kusexWUABKNBYqHWJ4FJcCzoKQ1ngUlgNY13vujZ0EJQONRUAK/P+FZUAI8C0oAsU3eec+CEql2dC8ogZTas6AEeBaUAKwd3vurYXl1jgG0R0EJZCDhXVAC74ISeBaUAOxK72NKNdneBSXwLCjZcUV0hXc77FtS4JjxKCgBlE5b41lQAgp0sPHsoAMFCkrgXVCCVKfTfVsDBQoVB2L0znsXayDVOS5k9H6PQoZC3+HAjN7nx0/e6L2dUm1YyOi9vxTa3wobC5w3iONVCEm9h/d9j1exBvAsKKXe3/vckxqRUsjoXlCCAzB6FGtS7+9VUIIDM3pfZ7yKNal8IaP3dSo1Qsr7vuXgje7FmtT7e18rD8zofV/jVVBK5QsZvQpKAK3E7acLvKYjOqIjPq3oKCp9zqJ1vfcFX+QZvv7vhlTeFyIpvfOfRtj2J7vr+0zvjsCBhBX3nvKsUDsX+o6fxnYQBT5DCO/9TRreN4fhphBWUnm+pnB4Gw52sdEDOaIKtcPBhs/n3aE6oPiEV10ttK8UDn3Q+1OhkP5D0I4FQhd5GwvUagqG1WqCxxK6WkMy7r4U9YGEv1tT4Rd1REd0REd0REccRNi6wI84HdERHfGpRcdE3Z+zMIrMwi86yNBaeHbutEeH5tMKIfQn6rCtgy9aCanRHv3LQv5CHexPZTtowYGVVVz+vIDxUBTvPun4z+/tYNufBYV3HPz+eAB/b0sK/Ypd+O8/4UgW+B4HSRAHUFgT0kYfxHe1wx23Fh3RER3RER3xyYbgs/Ho2+cnxGeiD3fo43/xO3360TFS6XMWnY4c4JnXWiBN7w6BURLwzGsV9Mwnkwff4RB+71/SZZG3wVd0sKNbvCMWDqCVdwFPBIs888FK72JMMuHdBsrn3Xm0kgqMAu0YCnnmhc97X7At73YuNJrKivnQ0u+aD5VEqO7t/fiaEfLe33SB0+CBjGqTfvfvKQSYZQXaOVig2HuQ17to1EzNFeQRqth7WwrTO4/wRhZqR9uSoLz3FxnyPq61z3t/TcQOrqieDPvRosAoHl+xd97wNspd3u1sFR9AkVa4b2tVHMOodM8LAUWdCowak97buumt7p75VBS6DhTqLBRoZw7FOf6/wVjoPQoZCn2H/wbjoShi/jcYC12LvO8pChsPboRiKg7WWFogfyiMhS6o/w1G7+tIYaP7fdWBx3/e+FmaqLsjOuLzHh1Fpc9ZhLpXUn/CMNe8r6KIbhdOcc0LJelx2TSEct916s+ejlHmflEumz4Os2dX13ygd3dKp4x1zavSYqpOPto1j1JUnzkbpLux7uwjMUrdL3hVR48h2LveNR/q343KI0a6E8pKCR15sqex6NgzPI3Vpx+NKnE3lkybhL+bezuG+vWgbOoo17xRXkrZ8R4XZENRfuqJnsbS2bORRe7bOjhxOkZ9N9e8r0d//CMmuuZFcSXGmLPdjdJg1E2jER6d3JFfHom/zP3mpO85AykfUOGarx5TR9dZfVzzwdoiBlzp3s7Srxh+4xjPjvigL47BV+pu7H32EEr7uhurxtTT5Vh3Y6C2hPozPY5rv0HXi2Z43iPWnzcDVeRe8KiZdTiBbp1c88VDe1M6fqhr3lddQcXxR7kbfQaVpx3vWbwqO/FERNC98GSOOxZZ7X7MqJ5DMQaMczeU1CIGneuaR5mI4Vfg2ZDDLwOf+zGjSs9DqJ7uhtLDoeoI9/c3O0PXi93/XpkUzzrNsx07nz8DGXTfH2tPnkCgS5Vr3h86HEMc6W6gK355mWseggTklzzyEFBfwqvT4hcXIenhmldMwhDTPYzd8MtLCxhvOACj+/7oF5cgcS/AKaagxFTXvKQ7fnmJt1F96SCNlyJwP4crpqKE+7lF0gO/vNhDEDpERo/jmukoMcnD2BO/vNBDUISpCm3rL5Oa3NjFKC9D0MXDeCRKuF8LJb0KGIsLGIXTjl7GyxF09jAehRITPIy98csLChivPwCje/HfL69A4H5vpjgaJdzP4ZK++OX5HoYSTPXFAsYvFzBeiaDOw3gsSrjf40rRD788z8NQSsCzHSWm+jJeRRlTXuVpNMQslHCfs1iK/vjkOR6GsgMwfgmvApwpr0ZQ65r3ydkoOdDjMzqiIzri04yOMeqfwxj4tWORfoOtTy5Cpy01X9y3hiHfPZGi3tWogMGGP76BlTYZtb+qmH5fnU3VxH4EOlew6sfPEN/TPmGrCvrpccV0up55ONVT+rP2xw8R3ZA2gaaS1Bw7jm5XnYAVDrPt1w/Suihzor6ikYPpfN2FyKCJNP00vDoX7Haj2b0znW+4GH+XOoTfx+6/P4eOtk9ibFSUUXfVORSPGoKvpoLt9zyM1dA+v4cMmlSfOZvKWdMpHjWMtT/JYzzucLpdOZtkS4T1P32EpgWZE0uWjR1IzxvPSBkDfna/8D7Y7aMHgr3r6XXLOQS61aBMg5YX/54xGbUsq6TkzCsxB45ElVfT/Pc/Yjc37M8LM0DRcWcTmnIsvfqPYtNdfyG2KdNYdexE6i85CTvcys67/0R0SWY7BkcMp+aKSxCmiTRN9r0yL6MdA7260O3G8zG7dEKaBg3/fBYdazeqygqqL7mQ0LAhGBUV7Ln/r1hN7e0oggEqTzuF0plHEBo2hD1//AOJbWkTaCpF8fTpVJxxFna4hcYHf0t85eIMozlkNGXnXY3w+2nxm8Q+eD1jGXfVuScl596AqqlHGD6S8/4CybQJq4tr8M28ka49DmO6v465X5tDdHf7qCVfiY8x3xjDwIsG0XlqF9647g0aV7W3s/RJBl48iLG3jiW2N8o7N7zG9jmZk4B2PaoHE342DSOgMEI+1j++ImNblw+pYfwvjqK4ZxnKVCz77fyMSb2D9cWM/dER1E7qRrCmiHm3vp1l9DPqa2Ppf/5g6id1Yd5XXqJ5bfvkl8KQ9L1gGMNumUhsb4R5N77ErnczJwHtfFQvxvxoBspULAj52PBkprFiaA3jfn40xT1Sxq1/ewM71v7YoL9TGb1vPpWyUX3wVZWw/pdPk2xoX0JdFQXofsUxdJo9lrKRvVh35yPENrdPaisMRacTJ9LlkuNINLSw7s6HaflobYaxfOIQen75DISh2PL7v7PvtfkZ2zrYtxvdbzoff10Vwm+w76kXMib1NqoqqL3qQkJD+mOUl7Lzvkexm9vPPTIUpPqcUyg7chKhQf3Y88d7SO5IO2YMg5IjZ1B+2unollmE//EzrA1LMozGoPGETroepCLy7O9JfPR61v7Yj9DpNyIqatGGD73kQbDS9seiOuSEWxF1o7GDlej3fwaxhva8vwQx+jpk3xPRnUZgv3M7NKdNRCp9iIFnIkZeg6nPI95wI3Y8c3lyGTgGf9kPoELByttg5zNkPF5aMgwG/RQCXUH6YdOfwE4zBrrAgB8SKB9Dmaim6fH70a3t7SiCRZScdC6h8dMZ1GMgq3/0d2Jb2ufhE4ai7rSJdLvsKOKnT2TNDx+j+ePMBQcqpw6l902nII2ziVjfJGE/lWFUYiQh4/8QdEHgJ2bfQ/qS1IJuhIw7MeQ4hFVB1Ppu1oSwZQTVN/Gr01FiFJHkV7BJN/gx5aWY6iY0lxJO3pC1PLnAJ2cRVD8EJBHr6yTszHZUYjQh4xcIOjvGP2QYJd0JGndiyLEIq5KodQeahrRPKCegvoVfnYoSI4gkb8pjvBxTfQXNRYSTX8pjPN4x4hifzTIe5hjrEZiOsf16nTL+DEMehqCcqPW9PMZb8atTUGKYY9yYZjAx5RWY6kuYXOi0Y/oS6gKfnO0Y9QEY/cTsP2UZezjG0QjKiFjfAxrTPqHCMZ6MEkMJJ2/KmrzXxJRXYqobMDnfMX6YZTyBoPoBYBOxvkbC/hfpocQYx1jnGO/NY7wLQ45CUkrE+kEe47fxq5NQYrBjTJ8E2cSUV6WM6lzHuDDLeBJB9X3AIpz8Kkn9XJZxrGPsBPiJ2/eSPoG7pCdB4+cYcgSSEiLWD4G06zWVBNR38KsT0ozp15EAproKU16Pqc4inLweS3+UlpeO8XtA0jE+n2Uc5xhrADOPsZfTjiOcdsxnvA2/mo0SAwknb85jvAZTXodfnUEkeT2W/jjLeLJjjBNO3kJSv5hlHE/I+DmCasd4f5axt2Mc7rTjj4D2RTgElQSNO/DJWSjRj3DylqyJwwOY6lpM+QX86jTHmH7fI/HJUwiq73oYJzjGyjRjMu0d+hAy7kLJYUAxUevHWcYqgsbt+OQsDNHXMaZPwB50jNfiUycRTn4JO8d4qmOMEU7eTFK/lMf4CwQVCEzi9oN5jL9AySFAiKj1EyDtOkMVQeO7+OSxKNGHSPJreYxfwJTX4FMnEk7egK3Tr9cSnzydoLqdjuiIjvjshND6k50g9vMeQoj5o0ePHj1//vzCL/6UI7armd1vr8YKxykZVE/5qG6ItF+vk+EYe95aSWx3C6EelVSO74s02oeI20mLvXNXE964F7O6mKop/TFC7b/eaK1pXryO1pVbUEE/5YcPwl+VOdw1tmkbLR+nVlUpHt4fs2vmL1CJvQ20LFiMjsYI9O1JcEDvDKMVjtDywcckG5rwd+5E8cghiDSjTlq0fLiE+LadGBWlFI8Zjgq2/1LXZgyv2owKmpQfPghfZaYxsn47zR+lVrEoGdmPYPfM0Rjx3Y00zluGHU1QNKAbRYN7ZBjtaJjY4g+wmxtRnTpjDhyJUOnGJLFlH5LcuQNVXo45dAzSzDS2Ll5DePVmVMikdNwQfBWZxvimzUSWrQAhCA4ZhL9zVjvubqDx/aXoWILQgO6EBvbMNIbDtH64iGRDM/7OtYSGD80xti76mMT2XRgVZRSNHoEMZBqjK5YT37ARGQgQGjkSVVaWadi6kdjKpSAEgYHDMGozfxG1GnYTX/YhOh7H16MvRo/+GUYda8VaMwe7tQFZ1Q3VcyxCthutuMWmVzbRsr6JYF2I7sf0wBdq/xVMa822d7axb/FufCUm3Y7uTrAm89fvfcv2sGPuFoSS1E3uSlmf8ox8eGsz297YgB1NUDminspRtRnGeFOMrS+vI74vTHHvSuqmdEca7SO9rJjFllc30rKpkWBtEd2O6omRbrQ1O9/bQtOynRjFJvVH9iJQnTkao2HZbnbP2wxSUDu5ByW98hhfX48dS1A5sjOVIzONyZYI++YsI9nYQqB7LeVj+mZsazueZN97K4hv34OvuoyK8YNQaaNWtG3T/NFaIuu2oEJByg4fjK8889GQ8JqttCxZA1JROrIfga41Gfn4rn00z1+KHY9TNKA3wf7dM4/r1jAt8xdhtzTj69yZouGDEWkj5uxEgtYPF5PcvQtVUUHx6BFIM9MYXbGcxKYNiFARoeEjUaWZx4y1bS3JjR+DNDB6j0JVZe6PdsNOEqs/gGQc1XUwqku/rP2xCb35TYg3QGkfRP24jP1RW3H05ncgvAWCtYiuUxBG+jFjo7fPh4aV4CtJ5QOZo9HsxFKs2DwQBsqcgjQyR97o6BbY+2aqcFQ6GkqGZRoTDbDnNUjuhWA/qJyEEGnGRJzokg+x9+1EllUTGDoa4U87h9s2jR+uJbxmG0ZxkIpJg/BljUJtXbWVpo/WIQxF+dh+BDpnjmCy9SYS1utAAiUPQ4nhmece3UDCfgmtG1CiP4acnGnUMRL2K9h6M1J0wSdnIERmOybtd7D0coQowydnIkVlhsGyPyZpvw/4MNRUlMhsx0zjGAw5PCu/j4T9smMcgCGz2lFHSdiv/hvGo5Aic1sn7Y+w7A8AHz41DSkyRzDZeiMJ640CxpfQutExTkaI9mMmZXwFW29Biq745JFZRssxrkCIcqcdvYzTkSJzBJOlN5C03gQSGHKs0/FNN+512rERJQY67ehlnIEQ6fcUFkn7bSy90jEehRTlaXmNpT/CsucfoHEcSmaOnsw0DsKQEz2M3Zx2zDa+haVXIUSF0475jB8AfnzqCKTIHGVl6fWOMYkhD3c65+nGPY6xycUYcYxbkaI7PnmEi3ElQlTil0chRFlaXmPpRal2FCY+eQRSZI6ysvQ6ktZbB2l8GVtvczUm7Dex9apDZByPkoOzjLtJ2K84xsEYckKWMey0o5sxScJ+yzFWOcbStLzG0gux7AUexrWO0cKQE1ByUJZxl2NsRokhjjHtHK/DTjtu9zC+ia3XpLVjtvFDLPtDEAHHmHVvdkiNPRxj2vU6w1iFX87MY1yAZS90NX4W4rDDDmPBggX/s8vSCyHm9y+uH/3n0Vf+pymHPC5dcA8rW7b9z267Tys6Rip9TqN1+Qa2P/Y6jfOWg23T3LWGxPETqDl+PEIpWjY2sfg3C1n/1BqS4SSBmiB9zmxiyNUj8Jf6iTfGWHL3R6x5ZAXR3RGMkEHPE/cx9AsjKe5eip20WfnAUlY8uJTmtY0IJegyo5Gh146kelSqKLPxX+tY+oeP2L0gtdxwzWGNDLpyGN2P7QVAYv1KWl95isSyD8G2iSzuDJOOIjjxKIRSJHbuYt/Tz9My9310PI4qKyW+biLlxx+DCgWxWsM0PPsCzW/OwWpqRpgmsVUrqTjhWHw11eikRePLr9P0yhskduwEJbFWDqN89rEE+qQMLfPm0/Dcy8TWpJYBTyzqQ/msoyg6bCQA0VVr2PfMC4QXLQbbJlZfhzVzGqUzpiGkxNq9nfCrTxJdOBcSMWRJOda4IwhOPwEZCBFriLH4t4tY88hKonuiGEV76HUyDPviCIq7lmAnLDY8vJANjy0ivHEfQkk6TdtJn0sPp3xoaujythdWsO4v82n4OPVLT8WonfS+cAy1R/QFYO+HW1h77zx2vbMObWmKe6+l+5kj6XHGCISStG7cx5o/v8f2F5ZjRZOY1UV0PbmZXheNxVdsEm+MsPa+eWz552Li+yKokI/OxzXR57LDCdaXYicttv59Htv+OZ/o5r0IJamcvINu50+mZGBntNbseX0x2x6bQ8vy1C+PJcM20/nMSVROSg1dbvp4A1seeouGeavA1gR7rKXu5EZqZ49BKElk8x62/PVN9ry+GDuWwFe1nk6zWuly1mRUyCTZHGbn31+l+eUPsJpaaQ2abN82itozZuCvKcdOJNn9zDs0PDeXxLY9JJRk+8Yh1J5xJKG+XdFa0/LufJqfexW1JjWioHljX9TxMykeneoYxVatpPX5Z/Ev+Ri0Jr6hM63NMyiaMh0hJYkd22l+7hmMD95HJeKwspzm5qmUHH0cMhDAammh+YV/oea8RUlLCyIQoKl1AqXHHo9RWYVOJom89Rxq7kuU7dkJShGLjEHNOBlf115orYl9OAf7zX9RuilV5Ew2DyI2fTbm4NR1ML5mGfFX/0nJikWpUTa7uxKNHkvg8CMRUmLv24T9/kOUrHozNeqrsYqknoUx+gyEP4iONGJ98AhFS1+gKNoEu0PYegZy7DmIkhq0lcD66B+YS57GbNoK0gAmYY8+D1nTD6019qqXMRb9g7JdqSW2RXIklnUWqsd4APSeDzDW3UuFNReUDTv6QuBsdPdTEUKiGzagF/2F0LpXwYpDYw22fQJy2NkIXxAdbUAv+iuBVc9BrBF2F6H10egRFyCKatBWHFY/hLn+cczwFmgxYOl09MBLEOUD0FqTsP9JvPrPWFWpX2iVGI9pX4lPTk+1q/0usaK7SQ5/C7CRYgCmfRE+eSZCSCy9hpj6LYlu/wJiCOrw67Mx9eUIEcLWe4jp35Oo/4czOqQYP6dg6muRohatY8Tte4lV/Q1dtRnw4ZNHY9rXouQgx/gkce7F8jtGPcExTnOMc4mpu0lWv51mvBifPMMxriYmfkui8l9AHEE9fvtsTHk5QgTR8T2w8Y8EWp8E2QjhEthwArr7lQizE3Y8wfZ/zGHns+8T296A8CkaF6yhy7nTCPWuQ2vN7pcWsv2JuYRXbQUh2DeyF/VnTqF8bD/HOIeYdTdJ/TagkXogpmxrR4GlVxGzfkvCfq7dyDmY8jKECGLrXcSs35OwH0fTCJRg6VMx1TVI0QmtY8TsPxG3HnJGNfiw9NuY8lqUHOi04+PE7PucX7pFqh3VVfjkFMf4jmN8xzEOwtQXOe0osOyVxOzfkrCfTzOe6xgDjvF3xO3HSY28KMXS8x1jDVpH04xbHeM7jrFtf/w7Mft+bL0UECT1RPzqyv3GhP0WceseknqOYxzsGE93jCvSjAkEndPa0c14qofRn2bs7xgfc4zLHOMkTHUlhpy83xiz7sbScx3jEMd4mmNc7hhfcIxd0owmtt6ZZmxGUOa049WOMZJm3OYY52DKa9KMjxKzH0gzTnaMkxzjm47x3TTjJfjkKY5xGTH7d1nGczHlpY5xBzHr91nG0xxjtbtRXYMS/dDaTmvH5YAkqV/BVFdhyAmO8Q1i1j1pxqGY+mIPY1dMzsUvL0kz/o64/YRjLE/b1lVoHXaMDztG0zFeixJ9HeOjjnFFymi/nGV8nZj1B2dbg9JD8etL8cmTHONSx/iiY+zmGC92jNvTjC2Osa0d24x/dIzbHeNcx9jHMT7iGFc6xlcw1dUY8nDH+JpjfNcxDsOvL0kzLnGML6UZz3OMfmy9zTE+6Rgr0oyVaN2aZtyRZeyN1jZx+2Hi9gNZxmsw5DjH+KpjfM8xDneMJzrGxUSt35HULwOJ1OOunIdfXpRm/C1x+59pxtMdY0XKaP2BuP2IYwxg6Xed/bHN+BBx+8E87dhmfMUxzkszXopPnuAYP3aMrzjGHo7xQse41TE+5RgrHeNVjrElzbjTMba1Yy+0ttKMqxzjq47R/RHCjuiIjvj0o2Ok0iccn8WRSg1zl7D2h3+BtEff2qJ84lAqTp3Fy+c8S2xfLDc/sJJpfzyKNy57kYYV+3LyZoXJzIdm89HP57PphfU5eWFIpv5+JvuW7Oajny/IyQOMuGkM/aclaXzg/8DOnWzaHHE4gSNOZ+sPf47d2pqT93frQu0NV7P9578jsWVrTl6WFNP5q19m7+NPEV6wKBegFHXXX0Vs3Qb2PflsXmPlGSfjq+vEjt/8MeOxsrYoGjeaqlOOpvHu76IjuUZV34Pg2V/jxfNfoXFlQ+53rApwzKOzWP3bN9j5xtqcvDAkh911Eg0fb2P1H97NaxxwwxRCXctZ+NVn0HbucV5/zAB6XzKWeVc+SrI5d1uXDuzEyJ+cyPwbHqd13d6cvL8yxOH3nMGGu19m79xVOXlhKAb/8Exalmxgy1/fzGvsfuXRmHXlrPreYxmPbLVF1ZHD6HzmRJbedD9WS+6E3EX96ul/25msu/1PxLbsyskb5cX0/cFVbP3zszR9sDyvsde3Lia+agX7nn4xJw9Qfe4pmJ1K2POnuzMeh2qL0LjxFM84ml2/uBMdieTkfT16UnXFNez+1c9J7tiek5elZdR85RbCz9xPfHme/dEwKLv0ZhKrFhN+7em8xuITL0CWlNP0t1/nNQYOm0LRjJkkHr8F4uGcvKgdgO/Yb5B48uvoxtxjhqJKfKfciTXnV+hNH+TmlQ/frB9ib3ofa+EjeY1q0hdQ1UH0wluBPBNBdz0B6s/Bev7LkMhjrBmEnP5trOdvguYtuX8fqkYd9wv4+Cew873cvPQjJv2CaOVLxO0/5TUG1HcQlBCxbibfqoU+eTp+cS6t1gVAnuNajCKo7iKcvCjrUSLnO1BLkfEXItZ3sPScPAKTIuPPJOyXncdH8hlvQ1BExLrFxXgmPnEWYesCILcdlRhNkXUXLLocoptz8vhrsYfez8o7Xqbpw9xzj/Qb9P/Bhex7eyk7nsx/7ul5/QlUHL+RiPU1F+NZ+MTphK2LXIyHEVR30pq8MOtRolQI6px2/Nb+TmNmBAmpP5PU/3IezciNgPoeAkXE+nrevF+egyFOcYy5x7USYwiqn9CavCDrMZ02Y2eKjAeJWF/f3yHLNd5LUj9N3P5rXkPqsS2IWN9wMZ6LIU4ibF3sYhxHUP3QMeYe14IujvGrWPr9nHzKeB9J/SRx+yEX4w9JPVr2TRfj+RhiNmHrEhfjeILq+7Qmz896BKbN2JUi4wEi1s1ZjwimG+8noR8nYT+cJy8Iqh+iSRC1bnUxXoQhjiFsXQrkXmeUmEBQfdcx5p7DBd0c400uxhAh9QAJ/SgJ+1EX44/RRIha33ExXoxPHkVr8lLSH8VsN04kqO5wNUq6EzLuJ2J9JesRwbYocowPk7AfczHeiaaFqHWbi/FSfPJIWpOX5TUaYhIBdTutyfOcIke2sYdj/FLWI4LpxgdJ6L+SsP+RJy8Jqp+i2UfU+q6L8XJ8ciqtyctJf8yx3TiFgPq2Y9zpYrzPMea5XlPsGB8gYT/hYvwZmt1Ere+7GFOF0HDyChfjVALqm862zr3vkfQkZNxLxMp+RLAtSihSDxLX95Kw/+li/DmaHUStH+Q1mvIqlJzgGHNX4TXENEz1DcLJ89DszvMJvQkZfyJsfTHr8bu2KHWMf3Ieoc4ORVD9HL+andf3n4iOkUr/vdExUunQREdR6ROOz1pRyYrGWXzRD7Bacm/u2mJrZAQNa3I7TG1RPrCShuW5RYa2KOlZSvP6Jte8Uewj2eK+FLxSSWac+T7E3Y1R1ZvEjj2ueX+3LsQ35el4thnqOpHcnnvD0BYiGEBHvFcVE6aZMQ9RdpQNNNH7cm+c2mL55qNZ95b7Kks1gwLoXe5/bxSbJFvcPx9ABX1YEbe21oS6lhHZ0uiSh5J+1TSvyr0haIuyviVY2z2MJSZE3fclAGn6Mub4yQ6zrpzY9gZ3w6BK4hvdt7XZpSZvwaktfKUmfnILpPtDQLA8iU7k3ty1haqqwtrjvj8aXbqS3JKnA99m7FoDDblFiP2EUDE63OKaB8DnB1ejpnSQD1rdt5Wo6oXes84j3xWa1rt/vlkKMffjHgW+7q1g5zdqDXZrb2hx31ZU9IZ9uYWO/cZOXZDx1a75ZF0xkbHu7Zxau8Ig3438/s+gPm/nt/0dBmCzwiPfFxt3I1QC7ufXlFGR70a+3ViXt2PZFkWrh6J2uRu2fXQsm/7pPgm2UV6UMe9WTr4yTt8HnwLh1Y61eTuWbSFFf+fXc5c8/bDJLWa3RzXk6cy0hyLVll7t2Clvx/LQGWsgT6cw0yhIn68k11iTt2PZbuiPjZfRO1+oDdoHvHsZq/N2LA/YWKCdD8yoAfcVUQsbvbdlYaP3/p6asNgib8F9/3tUoXG/zhQ6txTe1t7njdTEz8kCxkq0x/mrsNH7/CnonLdA+u8ZK7Lmacs29MFmzSdoNEmdd7yM5RlzoH36xgCpwqBXH7EcPI29sXG/XksGYpP7Y1+7sUvegn17hCj1zcl4VO4/GR1Fpf/e6CgqHZroWP3tcxYNb33kWVCKRv2eBSXAs6AEeBaUAM+CEkBt152eBSUrKT0LSoBnQQnwLCgBBQtKgGdBSRpJz4KSlZRsnOvdDvGtXh0iChaUAI+CUiq8CkqAZ0EJIL7Fux3tcO4ohJzXeBSUAM+CEmhiHgUlwLOgBCDi3vurUgnPghLgWVACPAtKAPaeTZ75ggUl8CgogfInPQtKgGdBCUA3rvf+fK+CEiBDUdeCEgAJ5V1QAs+CEoCIuN9kAyTqvTpMkLrJ997WXgWl1Du438in8l4FJfAuKKXewasQAnh2DEUC5G5vw06PYjfgWVACKD1itWdBCSjQwcazgw4UKNaAd0EJUh34Qu1Y4Px20MYC+zsWXsUawLOglDIUMnrnC7VBylfI6L0tChoLtPOBGd0LSqn3KGT03paFjd77e6EiQ+o9vK8zhc4thbd1ofNjnMJG7/NXYaP3+dO7EAIHZvT4EQk8izWp/MEaYxQ2NhQwfNLGKN4FJfAqKKUM3tdrr4ISUKCgBBB2HqvriI7oiM9CdMyp9DmLaIEOdjzmvrznpxVFJd6FCNtSnvnPQkjD+4YhGg5gJb2/h1LeN8GfhZDS+6ZDFLwpObgQQnst3n5AUfA7FMgfivikP0P6PgP7kq/ATXTyYH/j0FCgHe3iz0A7/IdDxATCo5m0DbG9xe4vOIDwd20u/KKO6IiO6IiO6IiDCFt7F6464tCH1gd7190R/6vRMVLpcxYqFPDMS+Xd8fs0IpnwrnUKrx7RZyVs75Ou4fP+ZRf+O07chYwHX/Ip8PmH4P0/E08Af8IGXWB//FSigOHgC2uiYDuKxGegHf7TUagmL0D6vUfwFAq79T//40RHdERHdERH/G+HoOQ/TeiIjugIJzqKSp+zKJ88zDMfCkXwFXnvFv5y0zOvggc3AG7Hlk7e7+9LIkzvTosscp8PBECkLT/+SUQyboDh/hlmME5VT++Om214f4dDUa+Rpve28pV6FyHxBz3T+hCcYoTfw6gFIlTkngdk0HtbW5b3vmQlD2B/NgoUQgsYteGdRxzcxk5G/WhZYJ83vUeniELGAjtkwUKDPwmq0Gu8byA13nMrGNu899cDi0IFk0LzOxQaBXQoLsvuRjugsYvcDUJA1XDvx2KR3tu66a3u3n8PHHw7FupMHIoRrYWO/f8GYyFDofyhGNBe6HsWMhRq5/8G46EotBY6NxQ6t3QYU3GwxrIC+UNxf1nIWOh6/L9g9O5rAPjk8QVf0xEd0RGfTnQUlT5nEehcTdUx7stw+iuLGX7DKNe8NCQjbx6DMNx3nWE3jCJQ7d5563P2ACqHV7vmQ/16Yo6d5ppXpeVUnDTLNY9SVJ5+Ekh3Y8VJx6NK3W8SS6ZPxuzp3jEy+/amePJ4d0J5OcEZp3oYDacd3Ttn/a4Zj6/cvR27nTqM0oHuBbiKEZ3pcvwg17xZU0yfy92/g/Qr+l03GeHRgexx2VSMUndj7ewxhPrWueZLhnWnesZw17y/upSu5011zQufov6CYz07uXXnHo0qcS/QlR01GX/3Lq55s18/gmMPd82rigpKZ3msQOLzUXbyqZ6FoaJjz0CE3G9kA5OOQtW774++PoMwR05wzcuyGowxZ7sbDT/GhEs9jWrcJWC6HzNy2CmIyl6uedFpLNQf5Z4vqkcOP8/dqEzkYVeAcD+u5ZCrwOdu9JkXIEU/948QEzHEse5GumLKq9yNBAnIG/EqsJnyy3h1UP3iYiR9XfOGmIwhjvYwdsOUHhNpiiD0vN7TWH/uMagi9xv6utMmEujmfg43S8ZjiJmueUl3THmFu/EA2jGgvoJX588vLkXivj8qpmKIGR7GHgWMIcfgZbwRr46VX1yOpKeHcRqGOMLT6JeXFTDe6JFva0f386NfXIakh4fxCAzhfr2W9CxgLHYMbiGcvPt1xi+vQOJ+flTMQIkpHsbe+OWlBYxfLmC8saBR0M3DeBSGp7EPfnmJh6EEs2A7FjJeiaCrh/EYDDHJ3Sj64ZcXeRhKMT3bUTpG9x+z/PIqBO7Xa0MchxIe10LRH7+80MNQVmBbFzaa8hoEnT2Mx6OEx72X6I9fXnAIjO7ncFNei6DewzgbJcZ5GAfil+7Xa0E5AfUlD6NyjB4/vsprELjfP/rkSSjZ3+MzOqIjOuLTjI45lT6H0f3aU5B+H7ufew+dbJ9jJNinMz1vOptg91qE38+in35AIm1S7VB9EeN/NIXO07tR3LWEd7/2FuFt7RO2+op9jLx5LAMuHkLXGT1454bX2Le0fWJJ6ZP0O38Qh31zPImWOHO+8jpbXs2coLjLzO5M/Nk0/CUGLX6TyNxXwG43Gl17UXreFzBquyB8fvY+/nTGpNpGZQU1l11AaNhgjOpKdv35r1j7GtoNwSCVZ5xE2czpFI0cxo7f/5n4xrRJlJWibMY0qs45DTscYec99xFelLncaWj0CDpdcSHSNJGmSdPrb4HV/tig2bM7na65FF9dLdL0E37hUXSs3SjLqyk540r8/YdzRHEtc295m8iO9nmkfKV+Rn9tDAMuHEy3I7uy8Bv/onll+1xYwifpcdYoBn5pKommKB/d+jy73smcZLn2iL4Mv/0YVNCHCvnZ9PjH6DRj2eBaRvxwFkXdK1Cmwaq752C1tk+sG6wvZei3j6F6fA8CnUpY8v2XiO1qnyzaKDEZcP1Uup8+gpoJPVh+xxOE17ZPlip8is6njqXX1TNJtkRY/aN/0DAvc4LOysmD6HPLyUh/yrjzXwsyjEUDutDvm6cT6FKJ9BtseuB17Ei70awtp8/NJ1M2ujdmTQmbfvs4yb3tk0Wr4iD1F82i+tjxlIzox4afPUR0Q/tEpMJQVJ8wmc4XzcJqaWXH7+4n/PGyDGPR2JHUXnk+0mewLxCg9Z23wG43+nv2pvKyKzFqOiEMP03P/jNjAndVVU3lRZcSGDAIVVbOvr8+gN3UPgpEhEKUn3YmxZOnERg0iKa//gpre9r+aPgITT6WouPPQbc20fi335BYmbZEsBCYw8ZRctZVCMNHsxkk+v7rGUaje19Kz7sOVVWL8PlIzvsrJNr3R1Fah++om5BdRyCKKki89isIp022ahZjTL4SY+hxyK7DSb78ffS+De155UMNPx11+GUQbSTx8g/Qm9NXuxTIPlMxjrgZlIE2imHzU6DT5jcqH44Y9QNEsAsoP/bCByCZNll+SWfUlK8j60ciQpVYc+6CSLqxFDXuWmT/49H1I9Dv3wrNaceE9EO/c5FDrqGICwknv4Kl52QYfXKWszy6j4hVQsJ+nPTJfZUYTcj4RapDI0xi1u+A9uNW0p2g8RMMOQ5pVxFJ3pYx+W/qJvsb+NXp+OwxhJNfyZps1cSUl2KqG9FcSTj5ZSw9N8t4vGNURKxbnSWr27e1EocRMn6eZWxf9EDSg6BxJ6p6DHpwNaz6PiTSJv81yqHPVwnWncTAn4xjzY//TnRj2rnHb1B/+iS6XjyD+tMmseZHj9G0MK2dBVRNH06vr5yENM72MP4i1ekSJjHr93mMP8WQhyGsCqLWbRmT/woqCKhb8auTUWIkkeSNWRPCmpjyCkz1JTSXOO34XlY7nkBQ/QAQRKxvOctqpxvHEjLucox+YtbdpC81L+npGEcjKCdq3ZFlrCSgvuUYhzvG9HN0wDHegOZCxzgvLS/xyRMJqu85xm86y2qnG8c5xjoEJjH7nixjL4LGzzDkSARlRK3v5jF+G786Mc24PtOorsKU16O5wDG+n2U8yTHqNGP7M6hKHO4Ya9OMsbR36EXQuAtDjnCM38tjvA2/mo0SQ4gkb8Im7dxD0DF+Ea3OdYwfZBlPJqi+C9hErG+QsJ/JMo53jJ0Q+InZf8wy9nbaMd3YPtGzoMoxHo8Sg4gkb85jvAZTfgFTnUM4+SUsnX5+lPjkKY7RImJ9nYT9bJZxgmOscdrxT1nGPo5xOJISotb3MyZ6FlQRNG7HJ2ehxEAiyVuyjCHHeC2mOssxLsgynuoYE0475jP+HEE1goBjjKe9Q19Cxl0oOdQx/iDLWO0Yj0OJAY4xfaXOEKa6FlNeg6nOcIwfpuWVY7wDiDvt+FyG0RCTCBp3Iah02vHeTKPoR0jdhZJDEBQRtX6UZaxxjMeiRD/CyVvQpN/DhjDVFzDl1fjVKY5xYZbxdILqNiBOOPk1kvr5LONkgsbPEFQCJnH7vixjf8c4GEEREetHQNo9BTUEje/ik0ejRF/HmL5QSBEBdR1+eSU+dRKR5Jew9KIs4xkE1XeAWJqxPQwxxTFWAAHH2N5XSBl/jpKD0ozt92aCTo7xKJToTTj51axJuYsIqC/il1fgUyc6xo/SBfjlGQTUt+mITzn0f8fUHP92fBamwfgfCKE/ExOK/O+GEGL+6NGjR8+fP7/wiz/lSOxrpnHeEuxojFC/HhQN6oFIG6mQaE2w+eUNhLeHKetXTuepXZFpI5TspM3WNzbTuLqBUF2Ibkf1wAi1D03WWrNr/g52f7gTX7GfrjO7E6zJ/EW0cXUD295OXUzqp3ShrE95Rt5qaiC+dD46HsHo3h9fj34ZRjsapfXDRViNDfjqOhMaNhih2oexa8si/PESEtu3ocorKBo1Amm2/3qjtSa6ag2xdeuQgQChUSMwSjOHX8e3bCOyLFVsCA4Zgr++NiOfbGgkvOgjdDSKv3dvAn17Zxh1LEps6QfYzXtRnbrh7z8CkTaKyk7YbHl9E01rGgnVF9H1qO74stpx38ItNCzejlHkp3Z6X8zKzHZsWbuH3e9uACmomdCToh4VGfnorhZ2vrkGK5KkfHg95cPqM4zJ1jg7Xl9NbE8rxb2rqJnQE6HSjRa73llH64Z9BGpLqJ3WBxXMNDZ+tJGW5VsxigJUTuqPvyLzF/rw+p00LlgDUlI+ti/BLlWZ7by7iX3vrsSKxikZ0o3igV0zjFY4xt53lhPf10yoRyfKx/TNMOqkRdP85cS27sZXXUbZ2MHIQPuvYFprWpasI7JqE6ooSNnhgzHKMkc6xDZvJbx4BUJJQsMG4a/LHAmW3LeP6MeLsOMxzD798Pfslbk/RiJEFi3Aam7GV9+ZwOChGdtaW0kiH39EcucOVEUlwRGjkP5MY3ztcpKb1iCDRZhDDkMWZ+6Pye2biK9cDEriHzACozrzlzyrcS+xJfPRiQS+Xv3xd88c9aJjrVhr50J4H6K6J7LbaIRMP2YSWOvnQcNWKOmE6j0eYWQeM/bWRehdK8EsQfWaiAhkDmO396zD3rIApEJ1G4coy/zVVkd3oHe8CVYMKkYiK4Zm5uMt2Bvehug+qOiN7DIWIdLbMYG9aS40b4GiWmT3STlGvXsB7FsG/lJE/VSEWZ7ZTvZykvZcED58cipSZI50sPU2EvZroKMoOQZDZo6o07qJhP0yWu9BioEYclKmUcdJ2K+j9XqE6IpPzkCITGPSfhdbLwFRhk/ORIrM49ayl5G033WM05Aic6SDrbeSsF93jGMxZObjzQWNdhz2vAHRTRDoAlXTETLT2LRoHa2rtmKUBKmcOAijNPPcE167ncaFa5GGonxcf8y6zO9g6y2OMe4Ys7a1biJhv4TW+xzjxKx2jJGwX0PrjQjRDZ88Mqsdbacdl4Iod9qx3KUd/U47Zo7GSDcachxKDvEwDsKQEw7K6JdHIUTmMWPZS0na7znG6UiRORoj03g4Sg7OMjYSt18C3eBhfBWtNyFEd3zyiDzGudh6GUJU4JNH5SzV/e8Zx6PkoKx8Awn7Zcc4GEOO//8wzsHWy12NSXsxlv2+h3EzCfuNAzQOcYxp13MdI2G/gtabEaKHY0w/h6cbK/HJmXmMHztGE588Aikyz4+23uQYEx7Gl0A3IsVQDHm4h7EnPjk9j/Edx1jlYvwIy/4ARMAxZo5qsfVGEvabjnECSg7Myu9z2tHNGHW2tZfxbWy9wt1oLUoV6Aoak45xgIdxGIYcl8f4ClpvcTFaTjuuQIhqx5g5CjXTeCRSZF2v9QaS9pugLQw5MWfkja33OsYmpBiOIcfmMb6M1lsd4xEIkX5vZjntuCqtHUvS8hrL/ihVjBUhx5h5j2vp9STttzyMe0jYr3gYI047bkOIXvjktDzGt7D16rR2LE7Layy7rR3zGz8Lcdhhh7FgwYL/2WXphRDz+xfVj/7jqKv/05RDHpd/+HtWtm77n912n1Z0jFT6nIa1ZQn2vIcoWv8BaBuxu55k+ASMUScjlEHz+kY+/tWHbHh6LVbMwqww6X3GAIZeNxKzzCTWGGPxrxey9rEVxPbFUKZi2wm9GXb9aEp6lGInbJbfu5iVDyylZVMzQgo2vdCVoV8YSaexqYvq+qfWsPQPH7H3o9Sv+VUjahh85TB6zO4DgN6xCBY/gG/Lu4CGPV3Q4VNh4BkIaaAbN2EvfIDA2tfAisOuMuz4LOSI8xFmCTrSTOK9hxGLX8QfbQbDJLFvKr4J5yDLO6OtJMkFT8LCZ/A3bgchSe4Zgzj8bFSXwakL2fLXsT94HN+O1HLC9vYBJMeehjFgqvP/RbDwLwQ3z0sZG7tgR09BDjk1ZWzaiP74XnwbXk0tp76jHB2eDUMvRPhLiO6LsvhXC1n9yErijXFUQNHzpD4Mv36k044W6/4yn42PLSKytQmkYOfra+hz+eFUDO+M1pqtzy1n3YMf0LQsNVKofFg9vS4aQ/3M1IV/7/zNrP7Te+yeux40hLqV0+OskfQ4exTSkLSs38uaP77L9pdWYMct/BVBup40jN6XHo6vxCTeEGHNH99ly9NLSDRFkabBnmMH0ueK8YS6lGMnLLY8+i7bnvyA2PZGkILKt/vR7YLJlA7pitaa3S9/xLbH5tC6OrUce/HgrnQ+czJVU1Mdo8aF69jytzdpnL8GNAS6VlF38uHUnTQOoSSRjbvY/Jc32PPGEnTCwigvotNxo+ly7hSMogDJxlZ2PPoKe1/5AKs1gjR9NE8dRe1ZMzBrK7ETSXY9+Sa7n3+XxM59IAWN8wZRe+YMivp3R2tN89vzaHj+NWLrU788Bvr1ouL4mRSPHQlAdMUymp57ltjypaA1Rm0dxdNnUDz9SISUJLZtpelfTxNe8AEkk8iSUoomTaH02OORwSBWcxNNzz1L69y30eEwwu8nNm48pbNOwKiqRicThN94lsjcl7H37QYpiS2ZT9HMU/B175MqgM5/i8gb/yK5dT0Avp79CU0/AXNY6pHW+KrFtL7yTxKrF4PWqJp6gpOPITjxaISU2Hs3kJz3N+xVb4GdgGA5auhxGGPORvhD6HADyff/hrXsJYi1gC+A7n8ExrjzEaWd0FYca+FjWEuegpadICR6/UTUYecjOw1IFZxWvIC16O/oPalROHbdUNSos1C9JqeO693vodf8GXY7o0eKeqJ7ng09zkAIhd63DmvhA+j1bzjGSug/GzniPIQvhI7sw174APbq5yHeAkYQ3WcmauRFiOJatBWDVX+BtY9DZAcIha5/EwZehqgYhNaahP13Yva92Dq1pHHCPgxTXYVPph7ZStpvE7V+v380k7T74FcX4pfnIYTEslcSs39Nwn4BSCCoxq/PxlRXIUQRtt5FzPotcftxoBkIYemTMNUXkKIzWseI2X8gbj2EZhugSNqvEFDXoeRQx/gYMfu+NOMYxzjD+f9bxKzf7x/NlDJehF+e6xhXELN/k2asSTOG0PFdsOFu2PEUWC2gQtBpNrrH1QizDjuWYNtjb7PjmfdJ7G5CKEnDuyvoct50ivqlzj27np/P9sfnElmXWi69ZFgP6s+aSsX4AS7Gvo7xHMe43DG+6Bg74ddn7Tfaeicx6zfE7SeAFqDIacfrkKIOraPE7HuIWw87y6EbJO1XCagvoOQQpx0fdbb1Ssc0zmnHI5z/v+kY300ZdT/8+iL88mzHuCzNmHSMbe0YdIy/Jm4/6RiL04y1aB1JM+5wjK8527ptf3zE2dZtxsMd43Tn/284xvccY39MfTE+eRZCCCx7GVHr1yT1S46xFj9nY8orHeMOx/jPNOPJzv7oGK27idsPo9mZMurXMOUXHKOdZlzlmMY7xmnO/18jZt29f8RVyngJPnmmY1zqGF92jHVpxgC23p5mbHWMpzjGTmgddoyPOEYfSf26YxyI1jZx+2Hi9v1pxgmY6mp8corz/1cd4/suxiWO8ZU04zmY8grHuM3ZH9ONpzrGmjTjw2h2ZRkHOMaHiFv3Y7PaxfgKMeueNOMAx3iGY1xM1PqN044Wgvo0o+kYf+0stZ7P2ErMuieP8TqU7O8Y/0rcemD/SMqEPYGAugZDTk4z3r1/VJjUAx3j6Y7xY8f4SprxXEx5uWPcmtaOYaAkzVjtGNvacbeL8S+Oca1jmugYJzn/f9kxzneMgxzjaQghSNofEbN+62HcQtT6jTP6rs14Gqa61jG2pBn3OMZjMdV1KNEPrS2nHe/fP0oxaU/CVNdgyImO8SVnW7cZBzvGUx3jIsf4qmPs7BgvSzP+2jFGgNK0dqxC6+a0Y6bNeJxj7OsY29pxHSDSjBMc4wvErD/sH7mWMl6GT56cZvwNSf1amvE8THmpY9zsGJ9OM57mGCsd4++J24+mGWc5xj6O8UHHuN4xTnaM7o8QdkRHdMSnHx0jlT7h+CyOVLJWvU38me+l1o7OCtlnAq39ruPls/9FvDGeky/rV860Px7NG5e/SOOqhpy8v9xkxt9m8fHPF7D5pQ05eWEIpvxmBnsX72Hxrz7MyQMM/8phDD25AfvNb+c1im5TEcMuxfrXl1Kdyuyo6IU68gfEnrgNvXdTbj5Qgnnmj0i8/QD22vdy81LhP/Fb2NtWkHzv4bxG36QLUbV1WK/dkd/Ycypy1Pnol78IiTzG8j7ED/s5L5z9Ok1rcifFNStMjnpkFmt++wa73l6XkxdKMvquE9m3aCtr/zwvJw/Q/wuTCHUvZ+HX/wV27nFeN7M/fS4Zy7yrHyPZEsvJl/SrYdTPTmT+Fx+ndcO+nLyvPMjh95zBhrtfYt97a3LywpAM+t6ZtCxZz9aH385r7H75TMzaclb98B95jVXThtD57EksvfF+rHCuMdS3jgHfPpO1d/yJ+LbdOXmjrIg+37uKrfc+Q/OClblGpej1rYuIrVxGw7Ov5DVWnX0SZqcS9t77h7xLxQXHjKNk5jHs+sWd6Gg0J+/r1p2qK65h969+TnLXzpy8LCml5is30/r0/ZmPtrWFMii75EbiqxYTeePZvMai2eehSstp+ttvyTeO1xw1ieIjZ5B48muQiOTkRad++I77Joknv45u3Jb7AaEKfKf8GGvOr9GbF+TmpYFv1vexN76P9dHf8xrVxGtQ1QH0ou/kNdJ5FnQ+F+v5r0Ayj7F6IHLat7FevBGa8xiDlahZv4CPfgK73s/NSz9i4l1Eq150huvnRkB9C0EJEetreY0+eQo+cR5h6wLSH9na/x3FcILq57QmL8p65MD5DnQiZDxI1PrO/iJGZvgJqT+Q1K8Qtx9wMX4bQZCI9fW8eZ88DZ84i7B1kYtxJEXWXbDwcohtzUOowR58Hytuf4Xmj9bnfge/Qf/vnc++t5ex86k850+gx3WzqTxhg4fxdHziDMLWxS7GUQTVnbQmL0STaxTUUmT8hYj1jaxHstrCJKT+TFI/S9z+W15DQN2GwEfE+qaL8Ux84lTC1iUuxtEE1U9oTV7gFAazjXWO8atZjzvtFzjGp4nbD7kY7wAEUetWF+PZ+MRJjjH33KPEYQTVjxzj9py8oJ4i4wEi1tdcjEFC6s8k9JMk7EdcjN8DLKLWd/Lm/fIcDDGbsHUp6Y9stRvHElQ/8DB2psi4n4h1S9bjTunGe0nof5CwH8trCKofoIkTtW5zMZ6HIY4lbF3uYhxHUH2f1uT5TmEw29jFMd6U9bhTuvE+EvpREvY/XIw/RBMlat3uYrwQQ8x0jLn3ZkqMJ6jucIy51xlBV4qM+4hYN2Y97pRufICEfsh59Df3HYLqR2iaiVrfczFejCGPIJy8wsU4gaC6zTHuyskLulFk3EvE+jKWznMtJOQY/0LCftLF+BM0+4haP3AxXoIhpxNOXk76I1vtxokE1bcdY+49haQ7IeNeItYNWHpxTh6KHOP9TrEnn/GnaHYTtX7oYrwMQ04mnLwyr9EQkzDVrYST5zmFmGxjD0LGnwlb16dGwuY1PkhC/9l5HDT3HVLGHUStH7sYr8CQ4wknr3YxTsFUXyecPD/jkdZc4xdTIzhzopgi9SBx/UfnUct8xp/hVyfl9f0nomOk0n9vdIxUOjTRUVT6hOOzVlTS8QjRe86FeKvra15//jz2rMi9IWiLsgEVNK7ILTK0RXH3Elo2NrvmjSKDZGvSPe9PcNptjyOssOtrtNktf8fSCcscgL0jT0HJCVFej25w/3v8QYjndiTSBPiqdea8L1l5WVUDre6f8d6rF7L6RfeVTGoGBdC7cm9g20IV+7Fa3LcTgAwY2FG3ttYEO5cS3dbkkofivtW0rM69sWqLst7FWDtzb2Dbwij2Q8x9O0JqBTo75r4/+GvLiO9wX42qbEAF8c15Osdtf9+5mvhW9+/gK/XjT5s3IScEBMoTkHBfrU9VVmLtzb1xagujcxeSW7e45s2u1dDgvr8SDEHEux0xfJB0M2pKBxoQdt9Woqones96j3xnaNromscsgZj7cY8CX/fW1Ii9fEINdksvaHXfVpT3gobcIut+Y6fOyHhugbMtknVFRMZ6tDOC1ABe920tqM3bsWwLST9sVnnke2fNAZQdFYD7+TW1voYqYOyUt2PZFkWrBqN2uxu2LTyWTU+7T95slBWRbHS/hqjKKP0efBqEl7Emb8eyLaTot3/ESd48ffeP9sgflZCnM5OmJLW93c89BY0Ft3UhYzXk6bhmGiF9bq9cY3Xezu+BGv4XjIW2U+qYtkmfkyr3ParydtDbDX2y5kDLznvvC4fGWJExn9OhN3qfN1Irr1kFjOUZ8xDlGrzPf4WNdXmLj+3hJ3VMf5LG/tjk/kjV/v71eQvNmcYE3hO5lJE+V1KuoVfWPG2H2miSKgx6GUtJnyvp0Bs75/1RoT1ClPrm5DwW+Z+Kz0tR6Q8jr/lPUw55XLHwdx1FpUMQHau/fc7CWvmmZ0GpcVeZZ0EJ8CwoAZ4FJcCzoATQfeg674KSjWdBSWs8C0qAd0EJChSUQPgtj4ISqb6KR0EpGTdY95r3ZHdehRCgYEEJ8CgopcKroAR4FpQA4tu8bpJTcwwVCq+CEuBZUAJNzKOgBIXbUcS991dleBeUAM+CEuBZUAKw9+SOasmIQgUl8CgogfInPQtKgGdBCUA3ehSUwLugBMhQ1LWgBEBCeReUwLOgBCAiXsUaSNS7F4NSofEq1qRe4f0eXh2iVN7b6F1QSr1DYaNH8TABco+3Yec77h0ywLOgBFB25FrPghJQoIONZ0EJKFAIAe+CEqQ6x97nnoLGgtu6kLHA/o6FV7EG8CzWHIjhf8FYaDsVKjKk3sO9oJQyuBdrUnnvfeHQGL3PDQdv9L5GpM47hYwNBQze557CRq+CEqQKIZ+00b0Qknr/AveXBYs14FVQShm8r4UHb4xR2Oh9/3jwRu97Owg7j1B2REd0xGchOopKn7PQ+7w7r80N7ks0f1pRUu19MaXQygP2J78ygZDeNy0I74txuDGElfCe0kwp7xv1z0JI6f09xSe8pIIQ2mNB7wOLgt+hwLY8FCEKGA42pO8zsC/5CtzoJw/2cqShQDvaxZ+BdvgPh4gJz9OTtiG29+CuA/4u3gXGjuiIjuiIjuiIgw1bexeuOqIjOuLTi46i0uctTO/Ogs/0/nX504h41PR+QaEqwqdQBChY2CoQ/mDhUUb/Dct2FjIefMmnwOcfgvf/TDwB/Akb9KdQaC0YBQwHX1gTBdtRJD4D7fCfDlUgL0Ad5HXAanF/rLcjOqIjOqIjOuJQhOCz8ehbR3RER3QUlT53ofpPwasqU9NlF2aBc7S/3Lvoo4IHt6jgpsU9vF8gNBjuBiFBFBW55gHwBf4/ZO1hJwr0zGwByv0zAsVRagd5P0JiG+5zmgCFi2sHENL03la+sgLtZAY90/oQnGKE38OoRcFtLYN+z7xleXeAreQB7M8+7/eQIW+jNgqMDBEHt7GTUT9aercDZolnWhgFjqkCO6TdWqDQ4E+CKvQab6MucINpbPXeXw8svI2CMs88FBoFVKjqcyDhbrQDGrvIvR2FgMphBUaLSu9t3fxWd++/Bwq1IwU7C977wqFZ3LbQexQyFsp3GFNRaFsWMh6KImah466QsdBx/583Fj43fRpG7/NfYWOB69gBRaH7kkLn6P8GY3mBfIEfbw8oChkL3TOUF8gXNvrU8QVf0xGHMgRa/+/9OyQdqo7oKCp93kKWd0YNn+WeL61g5I2j3fM+yaivjkX63Hed4V8+jECNe+et37kDqRpZ45oP9OwHfU5wzYtQNXL0pa55pIFvyqUg3W9kfRMvgFCFa16NOB5Z19/9I+qHIvq7tyOhTohhl3kYfYy85XCk4d6O/a+bgL/SvbDU/YwRlA6udc1XjO5ClxOHuOYDtSX0vXKCO9Gv6P/FKQjlbux5+TR85e7GupPGUdSv3jVfMrwH1UeNcM37O5XR9cLprnnhN6i/8DjwMNadfyyq1P3mpvyYqZg9u7nmAwMGEDrcvZ1UZRWls050N/p8lJ1yOkh3Y9GsMxAh95vEwORjMDq7F1t9fYdgjprkmpflNRhjz3XNY5gYky5LVWRdQh1+mWfhSQ4/DVHV2zUvag+H+mPd80WdkSMv8DAGkGOv8jTKodeCz70D6gtejBQD3D9CTMEQHudHumPKa92NBDHlzXhdWgPqJrw6JX5xKVK4n3sMMQ1DHOdh7IEpPSbSFCHo+WVPY/15s1DF7gXlujMmE+jufg43yydgiGMKGL1WkAkRUDfjdaOXakf3/dEvLkPSxzWvmI4hjvIw9sSUV3kYiwioWzyMwvkO7se1X16BxP2YURyJIWZ6GHthyis9jMUF2lE47eh+fvTLq5D08jDOxBBHehh745dXeBhLHKNbHKjR/fyoOApDTPcw9i1gLHUMhYzu10K/vLqA8RgMMc3dKPrjlx73FJQSUDd65CWmuhlwvzcz5TVI3AvChpiFIaYUMF7iYSgr0I4HYrwWgfv12hDHYwiPa6EY4GkUlBdoR0WwoPELCLp6GE9ACY97LzEIv7z4oIypY8r9HJ4ydvYwnlTAOBi/vNDDWEFAfeUAjO6FI1N+EYH7/aNPnooS/Tw+oyM6oiM+zTgUP0F1xH9Z+I68DgwTa+FTYLdPVCpq++Of9TX6VXRFqyALf/I+8ab2x7SKuhYz/sdTqZ/cheJuJbz7tbdo3dyyP+8vMxl58xj6XzCYrjO7886XXmPvR+0TdEqfZMBFQxj19XEkWuLMvflNNr+4IcPW7ZieTLhzKqrkeGx/EL3iCbDTHsWoGoSa8h1EaXcwTOwP/gjxdgPFdagpX0V2OQxRVEv8xV+im9MmnwwU45tyCb4Rx6N6jyP+r59g70ibGFL5MEadiG/qpRALE3/+Z1hr0pf+Fqh+k/Af8yXwB7B9QexlT2UYRc0g1PRvIcq6YftM9MJ7IJFu7Iwc/3Vq68ZwxL1dmPvVtwlvbR+15C83Gf31sfQ/byBdp3dl0bf+RdOy9u8g/Yqe54xiwPVTSDTH+Og7z7PzjbSJJQXUzejPsO8cjQoYGEV+Nj62CJ1sn9OmfHg9I74/i6Ju5aiAj1W/e4dkS/tSysGuZQz79jFUje1OsLaExd9/iej29nlSfGUBBlw/lW6nDqd6Qg9WfPdJWle1T6Ap/QadTx9HzyuPJNkSYc2Pn2Dfu2mTMgqomjqE3jedhPQbqJDJzmc/yDAWD+5Gv2+chllfgfIbbLrvNaxwu9HsXEmfm0+ibEQvzJpSNv/2HyR2t4+wUCUhOl9yPFVHjaNkRD823vUQkbXtEz8Kv0HNiVOoP/9Y7PBMtv/+AcIL05bfFYLicaPodPm5SL8PGQjS8vYbYLXPy+Pv05eqS65AVdcg/T4an/4nOto+OblR04mKCy8l0H8AqrycfX99AKuhfbJVWVRM+elnUTRxMsGBg2j6229Ibk07JgwfoWmzKDr2LHS4haaHfkt8+cIMozliAiVnXIEwfLQEgkTeew3sdqOv5wBKz/sCsqIG4feTfO8vEG+f+FuUdcZ31M3ILkMRRRUkXvsVtKRNrBsowzflStTgo5Fdh5N85Qfo9ImeDRM14gzUuEsg0kji1R+hN85LM0pk3+kY024EZaB9xbDpCdBp8xtVjEKM/D4iWA/SxF54PyTSJicv7Yqa+nVk7XBEsBJrzl0QzjSqcdch+x2Lrh+Ofv/b0JQ2ua8yod/5yMFXUcT5RJI3k9RvtueR+ORsgur7gEHUKiNuP0b6RM5KjCVk3IWgM0IEiFq/BlrT3qEXQeMnGPIwpF1NJPntjIlvBZUE1Lfwq5MxxGGErRuxdfpEpQFMeQWmugHN5USSN5HUb2UZT3CMiohV6ixPnm4c5xjrQZjErN/mMd6Jqh6NHlwFq78H8bQJhH1V0OerBGtnM+jOMaz58d+JrE8795g+6s+cTJcLjqD+1Ims+cnfaZqfNjmwFFQfOYKeN5yINM4mYn3HMbZvayUOJ2T8LM34uyxjH4LGnRhyJFJUEEnenjHJsaCKgLoVvzoRQ4wkbN2UNal3EFNdiSmvR3Mx4eSNWHpOVjueTFB9FxBErG+TsJ/IMk4gZPwUQR2IgGMMp71DH4LGTzHkCKQoJ5K8LWMyakE1AfVt/Go2Sgwjkrwpa7LpEKa6ClNeh1YXEk5+BUvPTcsrx3iHY7zVWUI92/gzBLWO8fdZxr5OO45AUEbUuiOP8Tv41fGO8eY8xmsw5bVodZ7TjtnGUxyjTmvH9nO4EhMdYyeEMIlZdwPt50cp+hFSP0XJYWnG9gmzBTUEje/gk7NQYqjTjumTKBdhqqsd4zmOMf16rfDJUwmq2x3jt0jY/8wwGmISQeNnCKoR+InZf8gy9neMQxGUErW+l8d4Gz55HEoMdtox23gtprwarc5yjO+l5Q188jSC6jbAcoxPZRknO8YqBCYx+495jD9DySFpxvaJ6gWdCBq345PHoMRAx5g+F00RAfUF/PIq/OoMZ398P8t4OkH1HSDpGJ/OMk4haPzUMQaddmxfzESKAY5xMIISotb3s4y1jvFolBjgGNdnGb+IX16BX52W1+iXZxBQ33aM33CWok83TiNo3ImgEkGAmP2nLONAxzjIMf4gy1hH0LgDn5yJFP2IJG/BJv0etoiAuh6/vBy/OoVw8stYOn3lZwO/PJOAuhVIpBnbn9vOb2y/75FikLM/DkJQRNT6YcYE7injd/HJGSjRh0jyq1nGYsd4GX51ktOO2cazHGPcxTjdMZY7xnuzjIOddhyAoJio9aMsY71jPBIlehNJfi2P8Qb88lL8arZjXJBlPIeA+iYd0REd8dkJoT8TE4r874YQYv7o0aNHz58/v/CLP+XQ4QYSq+ehYxGMrgOQdQMQaY/bjCqQAAEAAElEQVTZJCNJtryygciOFkr7VFI3pQsybUSIbdlsf2szTWv2EawtpsuMHhhpj75prdm9cCd7Fu7AV+Sny8yeBCozfzlpXt/Itjc3gRDUT+1GSY/MUQY6ug9rwxx0LILqPBhRNSjDqJNR7PVzsJv3Iqu6I7sehpDtw6+1bWGt+xBr12ZkWSVG38MRvvZfRrTW2NtWkNy8AhEI4es7DhHKHEVg79tCYs1CEODrMxpZnvnLiY7sw1o3Fx1PGWWnQZn5ZAR74xzslj2oqh6I+jEZRjtps+2NzTStbSBYX0zXGd1z2rHh4200LtmCURSg09S++MszfyVr2bCXve+tByGontCLUNfyjHxsTyu73lpDMhKjfHg3yofUZeSTkTi73lhNfG8rRb1rqBrXA5H2iIudtNk9dx2RTXswa0qpmdIHFWgfKq+1pmnJJsIrNyNDQSonDMBXlvmrbWTTbpo+XAVSUHbYAAL1mSPF4ntbaHhvGXYsRvGgXhQP6JKRtyJx9s1dRrKxiUC3OspG90Gkjf7RlkXTh8tJbN+JUVFJ6djBSH+msXX5eqJr1iNDIUrHDsMoyTTGt+4gsnwpSEFoyDB8NVWZhsZGIksWoBMx/D0HYvbomZG3o1EiH3+I3boPo7Y7gQGDc4yRpR9h7d2GKq0mOHQUwpdpTKxfQXLrKkSgGHPQWGTWCKbEjs0k1n6EkAp/v1Goyk6ZxqYG4is/QCdiGN0G4e+aORJCxyNY6+egY3uRZX2Q3UYi0kb/aNvC2jAP3bIZEaxF9RyPMNqH82utsbcvRu9dDr4SVPdJiEDmiBF773rs7fNBGKiuhyNKMvc3Hd2F3v0m2DEoG40sG5hlDGNvfhsd24so64usH51lTGJvfhfdugkRrEd2m4hQmUa9ZyE0LQWjDFE3FeHPPLck7VVOscHAJ6cjReb+ZuudJOxXgBhKjMOQgzONuoWE/TI2e1AMwpDjM406QcJ+A5sNSLrgk0cgROa5J2l/gMXHSMrxyZk5SyMn7ZVOR96HT07LY9xBwn7VMR6OIbPOPYWMdgL2vgWxjWB2gcppCJnZjs0fr6d11VaM0hAVEwZiFGeee1rXbad50TqEoSgf1x+zU3mWcTsJ+zUPYzMJ+xVs9qYZ087xOkHCfh2bjUi6Ou2YaUza87BYjKTCpR1XOMUGn7OtM3+hzzSOx5BZ+6NudtpxL4ohGPLwLGPcMW46CONyx+jHJ49AiszrjK23Oca4i7HJMe7zML6GzWYk3fDJ6XmM72GxBEmlY8w8rtuNpmPMPK5tvZWE/TqQcIyZowIzjUMx5DgPY3fHmHl+TNrvYrH0UzA2OMax/6bRdozLkFQ5xsxzeNJe5hSWTHzySKTIHHFs6y0k7Dcc4wQMmTlyMdM4DEOOyTLGHOOWgzAuxdLzChhfB5IoMRFDZo4Y0brROa4PxNgDn5yWxzgXi+UexiVOYcnEJ2cgRea18MCML2PTiGI4hjwsj/FVbLY6xukIkX5vlm6sdoyZI+rajQHHmDnC09abnW2dRIlJGLJvVr6BpP0yNk0HYOzptGO2cQ4WKzyMix1jsIDRwpCTUaJ3Vv5AjK9gsw1FLww5NY/xHSxWIqlxjJn3Zkn7Yyz9ARBy9kf3kbL/qTjssMNYsGDB/+yy9EKI+f2LOo++Z4THSOj/0rhy0e9Y2br1f3bbfVrRMVLpcxqNCzew8YG3aHg/9YuaWbue+lP20OWs8UhDEd64h433vcnu15eiExZ7iwNEPhpB94un4isNkmgMs/H+t9jx3CKslijCp4gsGEz3i6cS6l6FnbDY8ui7bHviA2LOkvDhd3vT/cIplI3sgdaaXS9+zOZH3t0/wqXltTq6njOBTkcNA6Dhw/VsevDtdmPdFupP3pdm3O0Yl6ETFkbJWmpnNdDtwikpY0OYjQ+8xY7nFmK1xBA+Rc0Re+h+8VSC3RzjI3NTxp1NIKBi7E66XTiZshEp484XPmbLI3NpXZ1aRry4/1a6nDOBTjOHpowL1qWMH6R+9TPrt9D55H10PvPwlHHD7vZ2TNoYJeupndVIt4um4CsJEt/XyqYH3mLH84v2G2MLh6SMXSvRiQSNL7xI8+tvovfuJSEEe1cPofyE4wn064vWmpY5c2l64SWszamV/fYt7YF93DEUjxsLQGTZMhqeeY7EsmUANH9YhTjyCEqPmolQivjWbTQ89TTR+QvAsmgtKkJsmET57FmooiKspmYann6G8Jw56EiUiGGwd8NYyk+cja9TJ3QyTvKDf+Bf9Cy+5t2AwGodgxx/DqrLYLTWWEtegvmPU7Lb+XW0oT/JsadjDEgN97c2fIg972GKNy4EQOyuI9F8IsbokxFSYe/ZgPXeXyha/XZqdN2OEpKRYzHGnosIFKMje7E/vpeitc9BohWa/Ghmoodfiijpgrbi6CV/JbDqCQLhXbBPIJiAHnYxomYYWmvY/TjG7vspKXJGj+wYhpaXIapSj2zppndg590Eg++mRr63dMPeeT6i5gKEMNCRVbD91wSMl6AsCYly9LbToe4ahCpB27tJRH4Hnf+Jqm8BTOLRWfjkF5CqK9qOoXf+EdX6MCq0AxDobdPQddciikamCiV7/4Hcex9mwDHuGo4WlyMqUkYr/g4JfTe6Z2qkkCW7k4ichxE4HyEUlr2CmPw1iZ4vAEkElfis0wmoaxGiFFvvImb/mniXx0mNHjHxMZuAvgEpuqJ1jJh9D/Gqv6GrdgASQ0zHtK/DkCljwn6UWMm92MUpoxIjMe0r8cmUMWG/RUz9DqtTakSBpAd+6wL88iLHuDxl7PrifqPfOgNTXYsQJY7xV8TrnnCMAXx6NgF9vWOMErPvJl76MLo03fhFDDnCMT5CzL53/wiXhD0SU12FTx7j/P9NYtbv9o8okPTAry7CLy9wjMuIWr8mqV9qN+ozHWMxtt5JzPoVcfvJ/cakPoGAuh4puqB1hJh1N3H7YWc0kyRhH4GprkszPkzMvi/NOMoxHu38/3Vi1u+djl/qca12o3SMv3KMFoIqx3gNQhSjrZ0kWn6DlXwKZBgSAVTTbIySLyBVZ+xonO1/f4Ndz80jua8ZpKBx7kDqz55BUf+uqR8NnpvHzn++Q3RTajTTvte6U3f6NMonDHGMrznG99OMF+OX5zvGpY7x5TTjWY6xCFtvd9rxn6RG4QRJ6hMJqC8iRWe0Dqe14y6nHWcQUNeh5DC0tonbDxG37tu/3HrCPsxpx5nO/191jB84xl5OO7YZlzjGV9KMZ2Oqqz2MJznGesf4e8e4G1BpxqGO8W+OcW2a8Wp8cobz/1cc43zH2Ntpx3Md42Jnf2wzVqcZQ9h6G1HrV84onQgQwtInYarrHGNrmnFPmvGLKDnEMf7VMa5zTGMc45Euxj6O8RzH+HGa0XaM52CqqxzjVsf4VJbxi0hR5xh/R9x+JM040zEOdox/IW7dn2Yc6xiPcP7/EjHr7v2jHiR9HePZCCFJ2h8Rs35NUr/qGGvS2jGIrbcQtX6dZixKM9aidYvTjunGoxzjoDTjfftH4STscY5xuvP/F4lZ92QYTXUJPnk2QgiS9iJi1m/SjJ3SjAHH2NaO0TTj9UjRyTG2teNewEhrx0FobRG3H3TacUOa8Rp8cprz/xcc44cpo+iHqS/BJ89KM/6apH6t3cg5mPKqNOMvndFObcaTHWMNWjc7xkfTjG3tONAxPkDceiDN+JRjnOr8/3nHuNAx9neMZzrGhY7xdcdYm2Y0sfVmx/hMmvEUZ1vXoHWTY3xsvzGpj8aUX0TJAY7xfuLWg2nG8Y5xivP/5xzjIhfjh2lG7RjPxZRXOsZNacaYYzzVOa5Txqj1WxL2Y85IIYOkPgZTXucYk2nGjY5pAgF1DYac7Pz/X47xo5TR7o8pL8MnT3eMCxzjG46xzjFe4Rg3Ovtjm7EY/35jdZrxUTQNgC/N2N8x3kfMehDNpjTjtRjS/THHjuiIjvj0o2Ok0iccn8WRSrteW8ry2/4Bdu62r5zQj+6XTufjLz2A1RrLyQd7VDP4+2ey9BuPENm4JyevigMM+8X5bPjj6+x7d3VOHikYeNtptK7cxqa/vJPX1+2iKRT16sTyOx7Pb5zUn+4XTeXjLz/obvzBmSz92iNENuUajZIAw35+Pus9jIPuOJ3mZVvY/Nc5uXmg+yVTCXavZsV3n8hrrJo8gG4XTubjL/8lrzHUs4ZB3z+DpV99mMjmvTl5ozTIsF+cT8tTDxNZsjSPUdLp2quJrV5D4/Mv5DWWn3wivk6d2PWHP+Vd4iw0aiRlx89i+0/vQkejOXlfl850uvYadvzfL0nu3JWTl0VF1N38FfR7v8fesCAnj1T4T/wW9uaPSc7/R16jb9JFiNJa4s/dSb6lu1S/SRhjTyf++NcgEcnJi+pe+Gd/C/u1r0DLltwPMMuQR/0a/cH/obd/kJsXCjnth2C/Ddvvz2sUXb+EDtSiN34tr5HyYxE1l6LXXAx2ODcfGIDo+0tizVeg7c15PqACs+Re2PADaHk3T95A9voNunkOepeLsf5G7PIa4i3fzGtU/uOQRecTti4k/bGJtkgNV/8FrclL0eQaBZWEjL8Qte7IerykLQxCxt0k7TeJ2/mNAfVVBBVErK/lzfvkbHziQsLWRS7GIYTUz2lNXoImd1sLqggZDxK1bs96vGT/JxBUd2Pp14jbD7oYv46glIj1dRfjifjEeYSti12MQwmpu2hNXoxma05eUO20461Zj26kG/+ApV8kbv/NxfgNBEVErPxD/33yZHziHFejEsMIiZ8R23M52Nty30BW4yt+kDW3vUjLkvW538Fn0Oc7F9LwzmJ2Pzcv9++BrlfOpvyEDUStW12Mp+ATZxK2LiH98ZN243CC6qe0Ji9Esz0nL6ihyHiQiPXNrEc32sJPSP2RhH6WhP1IXkPqMRmDqPVtF+Np+MRpjjH3HK7ECILqTg9jLUXGA0Ssr+3vfGeGSUj9iYT+Jwn7MRfjbQBErdtcjKfjEycTti5zMY4iqH5Ma/ICNDvyGOsoMu4nYn11f+c71/hnEvpx5zHGfMbbAZuodbuL8Ux84gTHmLvqqRKHEVTfd9pxZ06+3XjL/s53loCQupeEfoyE/biL8btAnKj1XRfj2fjELMLW5QWMF2Q8itlurHeMN2Lpjz2MjziPMeYzfg+IELW+nzfvl+diiKMJW1cAuaszKjGWoLrDMe7OyQs6U2TcR8T6CpZenOcTgs62ftgpPuZ5hfohmmai1g9cjOdjiCMJW1e5GMcRULcTTp6f8Qhhu7ELRcZ9hK0vY7sa7yOhH3SKFPmMqUetotaPXYwXYsjphJNXkv7ocLtxPAH1bceYe28m6OoYr8fWee7NCBJSD5DQ9zmPjeW+Q1D9GJtdxKw7XYwXY8jJhJNXuxgnEFC3Ek6el/FYWfsndKPIuJew9UVsvSzPJ4Qc459J2P9yMf4Emx3ErJ+6GC/BkBMJJ69xMU4koL7htGNDTl7SnZDxZ8LWF7D1Cldj3P4jSf28i/Gn+NUpeX3/ifg8jFTqV9R59D3DveaV/O+MKz/6Las6RioddHQUlT7h+KwVlaxwnPdO/XneQkdbmPXlxLY1uOZDPWsIr8+9sTrQv5cBH3bUe8nqQq8x68qIbXdfoaigsXM5sa0exqAfO5J7c5nxGtOHHfMw1pbtH6WV19irhvA6d2PVIB/B5FrXvDBNdMx9O0JqkmidcDeqykqsvbk3Tm3h69yZxNbcznFblAwIElIrXfP4g5lz4+RF+MFya2uNKKuGFvd2MrrXIlrXuOYp6QrNeYo5bVEaQNbl6VzvF2gwfaA99gdfHSRyO5ZtkejcD1u5G41wd9Se9e7vr0rAanZNaymIdzHJ1yGC1HewSqrQwt0o6Zs1p0pmCHqiM+a4yI5SoMkjD6nVhdz3R0Ft3s7vgRolPbPm4ciOMsBrZTNBagCvl7FT3s7vgRt7Zc1nkh0VkKej8O8Za/J2ftvC3zIAYu7nlj0vHsOOR9wnHVYlIaxm9+NaVUXp9cd/gcjtbLQbq/N2fttC0mf/6KL8+d5Zc9dkRyXk6RSmv0OqLS3XVwiq8nZ+D9zonS9sbHtM2stYmbfze+iMVeDRBimjJn3umn/f6L0tBX3QnsZq8NiXPgvGQsdk6pi2Cxgr8hYR2o3e55bC5/hDYSzPW0Q4dEbv82/qGpMk7w9A+9+jDO1xHSh0HSlsrMtbaP53jIWup4WN/bBZ5ZoX1KNxv+9JrWDnfQ+cWijB/b5E0iNrrqR/11ioHYOU+uYgRKHV+D6d6Cgq/fdGR1Hp0ETH6m+fs9j12hLPghLgWRACPIs1B/L3hQpKB/Iar4ISHIDRo6AEFCwoAZ4FJcCzoAR4FpQAVMsmz3yhghLgWVACPAtKgGdBCcCX8OockzEhtDuiQFt7FJRAQ4tXZwPvghIggl4dJlJnSa+CEngWlLQAW3obReN67/f3KCgBWCGN1w2gVtqzoAR43iQDBQpKULigBF6FkNRnuBeUoLDRu6AE3gWllKCw0atDcyDGAseMZ0EpJShs9DhmbNAeBSWAva96/9jkVVACKJm2zrOgBHgWlIAChQ4KFJTAu1iTegevYg3gWVBKvUMhY4FzU0GjRWGj93scvLHA+RELryIDHIjRe1t6F5TAu6AEnwWjd7EGUkWGQkbvc0Ohc0vhc/yhMDYUMBys0fv8mzo3ep+/vApKKcP6AvlCRu9r7YEYC11PCxvdizVAgYISFC4ogVdBKWVwLyil8oWMhdox4jx23BEd0RGfhegoKn3OIrKp0E1sR3xWwvB7d8o+C/GJG91XFE+F0ohCrykUfu9OG+LgRnNqg4Lfo0D/+wA+o8AHyI4RqR2RCmELz91R25DY5b58+4GEr76l8Is6oiM6oiM6oiMOImy9/j9N6IiO6AgnOibq/pyFURIo/KKO+EyEbUmkLFDw+A+HbUnUJ2ksVAvx/tH0wMKSFBoNcDAhDsQoOajvUvAz9MFW3jrifyV0oSKpABlMYEd83q/zCLv1//9vO6IjOqIjOqIjDiQ+K4++fZ5Cd9xPdoRLdIxU+pxFzRGDC46akEHvDoFRFvTMy6DfM38oQgY+YeMhOGcerDFul3t/wEEP0QHh924HWVzsmY/HKwt8wCFoSMN0z2mJVhUF/t571IVu8Xh/AOsAvoNwfw9hgUiWe/65XeTdzoVO1TLiXSgQSQHa+3sKygsYSgrkD8XlxHt/PHijKpA/kPgvN0rQRqlrWggoO7zAo4zKe1u3vNXd+++B1LwiXlGos+D+HVJxKH4zO1hjofyhMBZ6j4M1HooCYSFjoW352TeKgsZDcV90sMbyAn9/KIyFzl/e57/CxgLX6wOK/wZjoetpoXuGAvdF/xXGwj+C++Tsgq/piI7oiE8nOopKn7MIdK6g/uQxrnl/dQk9Lj/CNS98il7XzET43C/KPS6fjr/a/aJcd/IYSoZ2dc2XDu9G3Ymj3Y01pfS4fHpho+Fu7HnFEfir3C949aeMoWRwF3fjiO7UnTDKNW92KqXHpe5G6Tcco/shWHn6iagy95vEkiOPwOzVyzUfGNCf4imTXfOqqpLyk050zQufj4ozTgPl3o7m9Ash5H5joEaejKzt75qX3Uaghhztbiitwxh/oWsew4887Asg3I1i1FUQcDeKLudD0RAPw0So9FhhxN8VUfdF97wM4Cu+Ca8bWVl3IxgeBbqaiyHobpSBiSjzJPe87Iaprnd/f4KY8quexoC6GeFxE+gXlyLFYNe8IabiEye7G+mOKT3akdABGss9jJchxSAP4zQMcYKHsQemvM7bqAoZbylgvBIpBngYp2OI4z2MPTHlF9yJoghfyc14Xf7rzjwBVexe9K47bSqBHrWu+UDVRAwxy8PYy9tIMQH1VQ+jcPLu50e/vAop+rnmFTMwxLEext6Y0mtC0gMx3oJXB9Uvr0HS18N4FIZwPz9K+mDKazyMJY7BrTB+IMarkfTxMB6NIWa6G0U/THm1h7G0gFE67ex+vfbLa5G4XwsVx2KIGR7G/pjyKg9jWUGjqb4GuP+AYcprkfR0zRtiFoZwv/eSYgB+eYVrXlBOQN3smk8Zbylg/AKSHh7G2RhimodxIH55eQHjLR5G5Wxr90UCChtPxBBTPYyD8MvLPIwVBdqxzeh+fjTl9UjcC+uGOBlDuN+bSTEEv7z0IIwGwYLGGxC434cb4lSUmOhhHIpfXuxhrCSgbvI0ptrRvXBkyusRuN+H++TpKOF+buqIjuiITzc6Hn/7HEaf649FBXxs/cf72PH2yVxKhnZlwDdPJti1EhXws/6eV0g2ti9JHehSQb9bZlM+uheBunJW/eQZolvbJ440yoL0vHIG9SeOpmpCP1Z8/0mal7Qv/S39Bp1PH0fPK4/ECsdZ+eOn2fPmsvZHnARUTx9Mv1tmowJ+VMjPtsc/yDV+62SCXdqMr5JsSjN2rUwZR/XErC1j9U+eIZo2cbhRFqLX1TOomz2KisP7svL7T9K8NMt4xjh6XnEkyXCMVT9+mj1vLs80HjEkZTR9qJDJ1sffRyfaH58qHdaN/t86mWDnClTQx/o/vOZu7FTK6jufzTVeM5O640cSH9+b3X/8M7F17ZNbCp+P0qNnUnHKydiRCLvvvZ/whwuhbSVHISgaO4bqiy5A+P3IYICmV1+HZHs7mv36UnP5pfhqapCmn32PP4kdbp9816jtRPXFFxEc0B+jooI9DzxIcnf7hK2ypITKM06jePIk7KEDiT93J/b2tFXgDD/GYafim3QBxFqJv/hzrNVz2vNCogZMxX/UDaD8JMwQyUXPgNVulF2G4j/uZmRZHcLwk5h7P8Ta52oRFV3xzbwR1WUodnEl9ns/gda0iR3NCuRh1yH7zELXj8V65w7Yk7a8rgogBp+NHHEFJC9Cr/0mNLzankdC1SxEr9sR0o9WJejdD4FOmyS5eCyy+48RZldsFUBv+yVYaaM8zF7I7j9AFB+G8Hci3nIb2k6b/FxU4S+6BSNwErrv4dgbbobIkjRCENHp0lTRymrA3vANaMo0iorZiG6345c+EqKYZPRR0idylsZY/CU/Rsh6hAgQtf6P9ElAJb0JGj/BkKORdiciyVvRtBsFVQTUN/GrkzHEWMLWzVnLPYcw5eWY6no0DUSSt5DU6UaFT55IUH0XMBBWCXH74QyjEuMJGT9F0Gb8JemTgEr6OMZRSLuaSPLbGRONCqod40kYYoxjTGtHQpjqCkz5RTRXOMbXsownEVR3AIqoVeYY2/dHJSY4xjrH+KssY1/HOBIp8hlrCKhv4VcnYIjRjjF9SeoQprrSMV7iGF/PMp7sGKVjfPQAjO3HjBT9CKqfYMgRyIoqEo13oO20Y0bW4Cv9BkZwFv1/NIb1dz1GZG37d5BBP3WnT6Pu7CPpdNIk1v/87zR9kLYctJRUzRhF92tPRhjnOMbHsowTHWOtY/x1lrE/QfXjlFFUEkneljFhq6ATQePb+OQsDDGCsHUTtl6e1k5FmOpqTHktmguJJG8mqd9Myxv45CkE1e2AIGKVk7D/nmE0xGSCxp0IOiGESdT6DdCaYQypO1FyGFKUE0nenjHJfKZxmLOt05fNLsJU12DKa9DqPMf4VpbxNILqO47xNhL2P7KMUxxjDYgAMeu3WcYBjnGoY7wjy1hL0PgOPnkshhjqGNNX8iwioL6AX17lGG8iqd/OMp7uGLVjfDzLONUxVoMwiVm/zzIOdIxD0oztEzEL6hzjMSgxmIh1S5ax2DFeiVZnO8Z3Mox+eQYB9W3H+G0S9hOkP+5siGkEjZ+kGe/OMg5yjIMRlBG17siY0DplvB2fPAolBjrG9AmIiwmoL+KXl+NXZxJO3oSl066FGPjlmQTUrYDtGJ/MY7wTQRVCBIhZ9+Qx/hQlByEoJWp9L8tY7xhnosQgIsmbsyabLnGMl+FXpzvGuVnGswiobwEWEes7eYzTHWMFQgQdY/s9hRSDHeNABCWOsX2C9ZTxDnxyBlL0J5L8ah7j9fjlpfjVqYSTN+cxnu0Yk0SsW0nYT2UZjyRo/DhlJEDM/mOWcYhjHICgmKj1gyxjZ8d4JFL0c4zpE7SXEFA34JeX4FcnOu34Xlreh1+eQ0B9A0ikGdufXzfEDMdYjiDoGNvvH5UYSlD9FCX7O+34/YwFBVLG7+KTRyBFH8eYPsl8KQH1JfzyIvzqBMLJG7H0vCzjuY4xTsT6Fgn76SzjTMdYhiBEzP5TrtH4GUr0c9rxh1nGLgSN7+GT01CiF5Hk17ImcC8joL6EqS7Cr2c7xvezjOcRUF+nIzqiIz47IbTumMD1kwwhxPzRo0ePnj9//n+akhOJpgh75yzHao1SMqQHJQM7Z+TtWJK9c1cQ391IsGcnykf3Qcj2X+q0rWlYsIbI+p34q8uonDAAaWbWKZuXb6F5yUZUUYDKiQPxlWb+chLZspeGD1I3DuVj+xHsnDkSItEYZu/cFditUYqH9qBkQKbRiiXYO3clid2NBHvWUj66d65x/hoiG3birymjcnx+Y8uSDciiIJWTBuIryTU2Osaycf0I1uca9727HDsSpWhwT0r65xr3zV1BYm8jge51uUbLpmH+GqKbd+KrLk8Z/ZnG6Lp1xDesRAZCBIeNRhVl/toY37mT2IqPQEgCA0fgq67KNDQ3E178IToexew1ALN75i99djxOZPFCrJa9+Dp1I9B/EEK2/wKvbZvIssUk92xFlVYTGjIC4Wt/5EBrjb19BfbOpeArxug9ERHI/GXZ2rcFe+sHgER1OxxZ2ikjr8MNJDfMRVsRVKcRqE6Zv0DpRBRrw1x0dDeyrA+y60iESDda6O3voVvXIwL1iM6TEKp9OL/WGr1nKbrhY4RRiug8BeHP/IXejqyHlncAhSidhjDrswx70c2voO0IIjQOGRqYmbcj6MZX0dYuhDkQUXw4Iu0RQK0trPg72PZapOyC8k9DiCxjeBE6shChyhGlMxAqyxhdj259B4FElExH+LOM9h6S8dfQOowyDkf5Mke9aB0hYb+MZieSwRhyfI4xab+JzVoEXfHJI3KMlv0hFosQlOGTMxEic8RI0l6LpVPtmLq5zTTaejdJ+xU0EZQYjyGz2lGHSdivOMYhGDK7HZMk7bccYzd8crqLcSGCcg/j2wh8GHJ6HuMukvarjnEChsxuxwMxvonNOsd4BEJkHjNJewE2ixBUOMbMbZ1pPAIp6v5NY6tj3IVkKIYcl2O0Im+j4xsQ/q6o4NQcY+vSDbSu2oxRWkT5+EGoUOYvy5FNO2n+cDXCpygbNwh/VWY7p4yvoIk5xsyRi+3G3U475hqT9hvYrEfQ3dnW2e04H5uPEFQ67Zh57knaq7H0HAR+px0zR1nZeqfTjnHHmDnCKWV8Gc0eJMMw5JgsY8IxbkDSA0NO8zBW4ZMzChiPRIrM82OmcSKGzBzhpHWL0457kAzHkIf9fxg/wOZjxzgTITKvM0l7FZae62HcQdJ+7aCMCft1NBuR9HSMRlpek7TnYbPEw7gSS7/rGGcgRU0e46toEigxCUNmXWd0s2PcewiM1Y4xc+RNyjgHQcDFuN1pxwMxjsCQoz2MvTDk1DzG9xxjJ2d/zDaucLZ10NnW2cZtJO3XHeNkDNk7j/FlNPtQjETJUVnGuGPchKQ3hpzy/2Fc7mzroNOO1S7GpNOO2cYmx9iIYoSL8TU0mx3jVETaqOiU8V1sljrGmQiRef/Ybgw57Zht3ErCfh2wMMRklMwccZdpHImSI/8/jcvS2tHLOAMpMu8fD94Yc4xbkPRxtnW60Xa2tZdxKZae52r8LMRhhx3GggUL/meXpRdCzO8X6jz698O8Rmv/d8bVH/+aVeGt/7Pb7tOKjpFKn9OILl9K8/NPk1iRGrnR8kEFeuoRlBw1C2EYJLZtpenZJ4l+OB9si3AgCGsmUnr8yajiEqzmJpr+9U/C785BRyNElWLf6sMonX0yvrrO6ESC5pefo/XN17Ab9mEDDcsHUXLciQQGDEp1Vua8Q/NLL5LYkhop1PBhV6yjj6FowgSEEESXLaXpX88QX5H6Fbp5XgV62hGUHH1syrh1C43PPEV0wXywbVoDQVg9idLZJ6KKi7GaHON776CjUcc4htLjT8ZXV49OJmh99Rmic15GNqZGXLWsHULR0afg7/v/2LvLMDuKrIHj/6pquTKZmUzcDYiQhJDglgBJsODuFoImIbjrLu7uwW133xXWcHZZWCzBF1jcPcRm5lp3vR9uzUxf6e7ZTcgi9zxPPsC58pvq291Vp6q7R6G1JvPc32h+4s+IL4qPpW/590CYtBWJNTZACIH30Xz083dT/8nLxYb9tgeFRVujxu+EUDb+tx/gPXsHde8+Bb4HX6YpNE/BWmtvRLIe3fIdhWfvIPnGoyTzLfCpRaF5Q6x19kF27Y/2s+gvb8Reei92g5nB/Xw9dK/DEF3WKhYhFvwa9e1cUnVmVu+bEfhyOqLr1ggh0Iufgi+vJZV4rrjSeHEf/C/2QPQ6ACFs/MK/yWeuRgx8FIsCWnQh37I9duowhGxE+9+Qb7kaev0eq1cLYJPLbIYtD0eqIUXjNzegF92LUF+BD/7n6yN7HoZIF415/36ydbfgr1ycwZViFK53EI4qXrKV958ka1+NN6w4Yyboi+vtjSOLRs9/kwxXUBj4MMWZx3ocb0cSahZCNODrr8n6l5Pr/nvo3gzY2HpLXD0bJQajdYasdx25+nvQ9cUZXEtsiOsfjiXbjPeRVbfgN7xjjKsa4zbG+DeyXINX93zAuI8xWnj+G2S8KyikHwkYdyKhZhrjV2S9K8iJ34EqtqPtbYWrZgWM15Kz70HbxdlRy98IVxyOJdc0xnvJylvwu7xrjKONcWtjfIKsdw2efKFo1P2Mcf9So24zNuDoNmO9MV5uHtPbAjgU9Ja4ajZKDOow+veYGVxB3t8IVx2BJSegtSbn30POu6V9djTvj8aRB+Oorcx/P07WuxZPGyP9cFXQ+C9jfDRg3JmEOsIYvyy2o/87irOjDgW9FQk1GykGonWrMd5bZpyJJccb493kvLntRuWPxlWHYMstjfExY5xnjP0DRoXnv07Gu9K0o18sXOmdSajDjfELMt4V5P3fB4zTjHEAWrcEjN8GjLOw5Opo7ZPz7yLn3do+g6v8Mbjq4IDxUbLedQHjAGPczxhfM8ZHA8ZdjLELuvkr9Ks3I95/COFlQDnoQZNh7HREXR+8TI4v7nucb/76HIVFzSAE9WusQt/dNyU9YiDa9/n6T8/y1e+fIvtZ8feaWuV5eu80ka4bjAkYr8XT84u/VwbiqH1w5L7G+KoxPmaMXQPt2AVff2ba8Q9ABnBNOx6JFP3Qupmsdw05/z7zSHhB3p9k2nE10453mm39oWnH1cy23swYHzbt+KIxDjLGfRBCUfBfIetdaVa2FY2O3gVXHY4QdcZ4uZnNLxptvbXZ1m3Gq8n59weMG5vfY5vxDrOt24zjjHGqMT5kjC8FjPvhyL0RQlLwXw4YNYKmgDGNrz8NGLNAwhhnGePSgPE7QAaMY9HaM8bbAsbVjXGKMT5ojC8HjPvjyL0CxivM6rs246646rCA8TLy/h8Dxm2MsS9aLyXjXUXe/1XAuAkJNRMlxxjj7cb4kTGON8bJxvhXY3zFGAebdmwzvmSMfwsYdzPGFL7+xLRjmzEZMPZB6yVkvKvLjJsa42hjvI2cd3vAOMEYNzXGv5D1ri8z7o8j9zTGF822bjN2M8ZDjfFjs888QPGx8G3G2UjRG60Xk/GuIe/fj2ZhwDgLJVc1xrlkvTvQfBwwHootNzHGPxvjq8Y4xBj3MMb5xvj3gHF3Y0zi64+M8Y8B47bG2MsY29qxzTjZGEehdYGcfytZ73Y0nwSMh2HL4iWEOe9P5Pzr8cyqWsnQgFFQ8OeR9a4KGLsb4yEB4+Xk/T8ZYwpHb4urZgWMV5mVmIsAZdpxNkqONMa5xvipMa5hjJOM8Y9k/RvaV/5Khhnj7sb4QsBIwHgoQiTw9Idk2435gHE2UvRE60UB42JjbGvHNuMtZlu3Gdc0xonG+Aey/o3tK38lK+GqA7Dlrsb4vDE+aYw9Au2YwNMfGOOfA8btjLGHMV5Jzv91wDjFGEegdT5g/MwY1zLG8Msca1GLWqz4qK1U+p7jh7hSqeX5Z1gw9/qOy6UC4Y4aQ/3W2/HN5RehM60VeatnL5oOmcWC666g8NWXFXmRSNJ99rEsfuD/yP7rtYo8QtB0wCFkP/iIJQ/+taqvfostsfv1Y8EtN1Y1JkaPpX7a1nx92cXoTKbS2Ks33Q49vGj8uooxmaT7rGNo+cv95P79alVjwz4zyX/4Li1P/KmqMT1lO5JDm8g/eAHVHlEmB6+NWmsP8r89AfKV7Si6DsDe6jTyD5yOXvRZRR63DnuH82DRObD0n5V5FHLwpejm+eivb61qFL0PB2cg+qMTqhqp3wQGHEx28YEEl4C3v18Nw+1yOdnFh6D9T6p8QT1ul1vg0wvQzSHGAZeTTT9Lzq9udOUspOhPq3d8VaMlpuDIGbR4+xBcXt0Wxct5rqKlcGB757KESCMpdTsZ/xw8/UxVY8q6moL/T3L+bdWN6kgkfYyxMiwxFUdOp8XbN8S4Cil1Jc2FA9o7bhVG6w4y3i/Klsq3fwNJdRWefoqcf0eI8SgkPWj1qi8Ht8TmOHI/Wrz9Q4zDSakraC7sX3LpW6nxTjLemWXL0IPGa/D038j5d4UYj0bSjVbvpKp5W26JLfahxduP4uC83DiClLrMGD+vyAu6mnY8o71gVWm8Fk8/Rs6/p6qh7f4yGe/UEONW2GJPWrwDQoyjSKmLjfGLirygyRhPay8GVRqvp6AfIu/fF2I8HkiT8U4LMU7DFrsbY7aKcVXSmUvRDx0FrV9XfkCiK0y8irfP+yvNb3xU+TdYiqGn7cPCf7zKtw9Va2fod+CWdN3uAzLeGSHGbbDFzrR400OMo0mpC2ku7FdyyVa7ge6krNvIeCe3F1rKvoGkupGCfsBcNlblz1QnATYZ78wQ43bYYkdavAMpDipLQ4kxJNUFNBf2Lblkq8PYwxhPbC+0lIZDSt1IXv/eXDZWzXgKIMh4Z4cYt8cW25t2rGYcS1KdZ4yV21rQk7R1K63e8e0FgkrjTeT1/5nLnaoZTwM8Mt4vQ4w7YottjDFfkVdiHEl1Ds2FfUouNeow9jLGY9sLBKXhklI3k9e/MkXcasYzgBwZ75wQ487YYktavBkhxtVJqF/SUti75DKeUuNttHhHl112W268zxR7qhnPBFrJeOeFGHfFElNp9Q4meIlhh3ECCXWWMS6oYuxN2rqVFu+osstu2wWk1C3k9d2m2FPNeDawhIx3QdW8I3dHiU1p9Q6JMe5lim5hxjn4+o2KfIfxTlOkqIyk+iU+35H1Lgox7oESG9PqHRpiXJOEOt0YF1Yx9iVt3UKLd2TZZbftAlJqLjn/Vgq6eh83qc7F52uy3iUhxr1QYkNavcNDjGuRUKeabR1mnEuLN7PsctGg8VZy/s0U9EMhxvPw+YKsd1mIcR8suT4thcOo9vRcJdYhoU6ipbBPiLE/aesmWrxZEcbbyPk3UtAPV8kLkup8HLVTVd//ImorlX68UVuptHyiVlT6nuOHVlTyM618fuKcqsWYtlBN3fAWVHac2sLq3YfCF5WDus6+H9vFb608UXaERroOOlfZSe74jia8BZUdp3Zj3954X1Yp1rQRenaFxZWDlfZwXMhVDnbaQ/o0DFkKXsRr6nrA0iqDNhOiaSB6QeWgrf0rRqRRPat1/tpekAK/shhU+iUu6OpGDeQH9K06+G1/uxqG9t4NzatMP9TC8L/BS6XI9F8Smi+GQ7UBUbuB3pFGybCy+xqUv39A+4xr9agjeE+X/87Yq+rgt/PGgWjC27F4I924drSpNiBafsZBaLNK4fsz9qg6+O0wDi27P8R/aqwneD+p6mFRrSPf8R3dqw5+O2uUDMbng4jvb6A48x0uKN4I/L83pp4ej/ykssDZFl9+vD6fPxm+kFl1SeEtCT/2qKYMQ27+E4jKwUaHsVvVAXpbxLfjkLL7cJRHV6gycA0KijfZ/iEb2y7v9UNfIWiqWkTorFEwBB1pbIKIz++csWvVIkLHJ0S3k2AoOuJvgG4QsZ2K+4uOMTZWHfx25AejI/bbn4Ix7rhRPDZ6VJ2kav+MBnTE8UsyqH21W/V83Hko+hzRGWPceSDeGLdP9axaaO6I6PNgMaLPp5KB7avdqufj2jG6P9A5Y3TfKa5fE2+M7vtBgi7200jRGONcMVErKv14o1ZUWj5Ru/ztZxat856LLCgB0QUhiCwodeb9fiZH3IMHowpKxe+I6uTqyIISgF74FSKKEFVQApx0NrqgBJEFJSCyoAQgU29H5mMLShBaUALQDjEnbCILSgBiafTfUOgSV6yBqGINxBujOiXF90cVlCC+oATxxqjOWWeM0e0YX6yBuA7gshujijWwfIzR+0xUR774/jhjXEEJooo1xe+IGnTFG6MLShBdUCoKlsmYEYhPP6FYVKke387PE9U9iCooAdRv/H5kQalojDlPxLZjVCEEoos1RUFUQan4iv+1MbzA0BZRBaXiJ8TtM3HG6M/vnDH674xrp+hiDUQXayBuOxe/Y2FM/oOY/I/fGHdsizvuFD8j+vgVVawp5uPOQ9HniM4Y484D8ca4dowqKEF8sQbizqdRBaViPq4do/sDnTNG953i+jXxxui+H2TI+7/HVfvGvK4WyzO0H953qMXPO6JH9rX4yUXh67iT3YqIH8ABSSzbCj1pxXcAlzkSnekc/fehl0NJOWbciG/XVkLWohY/pJAtCqHDj8Hah1xz+KOoOxNW784UamtRi1rUoha1+O/D13ETSbWoRS1WVNSKSj+zkKl0/Iu+9/gBFBqWkbBCKvWF73n3jJ9gjo+YZhDL4ztqUYtaLLfQTvTBT0iQ9rIVtP2lTvyLalGLWtSiFrVYhhA/kEvfalGLWtSKSj+7SE5YE0R0JUC4bmRe1nWJzAs3EZ1fDr+6aKNApKONODHFtZg2yjdH/40A2DGvSTZEpv1FPSLzy7riS2YAHbMiQTRFpv1kdDtbS5bHFbbRRkG0sXjdf1Qsj8NgzG+erjHvj/m9/iiMKibfmYg+9sQb62PyPwbj8thnwos6us7Db4reJ7quHH2JNCq6HZc+OTD6/UCUEYr3j4mO6OPn8mlHOybfuIz5uM/vTPz4jSJmW8b/FpZHEfPHYIz7TUcfW+KPTT8GY/Txt3MRdx5YVmMn+oexEWeM6YfH9ouWhzGuXxLXZ4gzxq+YteW02NfUoha1WDFRKyr9zMLq1oO6SZND86prE/XbRjxNwbZp2HFXsMM7YPXb7oRqDD/p1k3aBHellUPz7iojSE/cONzY1I2G7XYIzQvbpnHHXcEK79ykp+2KbAg3Jjecij14lXDD4DHIMREnsy69sNbdPzxvOVgbzAAV3o5q0Bywe4Z/Ro99Ib16eL5uHei2a2haOP2xU7PD308CJ30cUZ1t1fNYsMKLX5a7H0qMC8+L9bFFhJEBuHJOhDFJQp1IVEc2IY9HEG50xAEosVqEcUNssXNoXjKQRKzxpGijOg5B9wjjdJQYE2GciC3C91vJIBLyyAhjqhPG4xF0izAehBKjI4yTsEX4fisZjCujfo9p3LhtrU6I7Ew7YgZSrBph3ARbbBdhHIIrZ0UY63DVCYQPCIQxhh97HHkwUoyKME7GEttEGIfGGuXqMyOq+4Lee22N6pIK/YQ+O08kOaR3aD7Za30sEX58lAzDlTMjjF3Mto5rx8bQT3DkYUgxPDRvialYYstwo1gZV0bdkLTeHHvC2lGSUCcQVfxy5KFIEXGeYTMssUWEcRVceXiEsaETxhOJGkS78nCkCD9fW2ILLLFZjPGw0Lyg0RjCJkmU+S1EGY9AslKEcSssMTXCOAJXHhpjPCHSWPwbwgfRrpyJZFiEcWssMSXCOBJXHhJh7EqyU8bwgrIrZyEZGmHcFktsEmFcFUfOiDQWn14ZZrSMMXzSz5VHIhkcYdweS0yKMI7GkQdFGJuMMfQbjDH8+Fg0Doow7oAlJobmlRiDI6dHGLutAONOWGKjCONYHHlghLF7rLH4ew0vHLlyDoIBoXlb7ooS4b/XWtSiFis2ajfq/hlGw067I1yXpY89VHJDbGfl4TTtfSBWj55IN8Gi3/0Kf0nHDQ2tXr3puuf+uCsPx2rqznd33Urhq44b6cku9TRsvzPpdTckOXosC26/idw7HY8KFY5D3SabUb/19uhMhgV33kHLC89D2xMIhSC15lo07b03wnGRySRLH3ukxOiuvApN+x+I1b0Hwk2w6Le/xl/ScUNDq3cfmvbeF3flVVDdurHwrlspfNVxQ0JZX0/DdruQXncDkquOYfHd15F//62A0SU1cQvSm++EzmZY/KubyL70bIdRShKrr0uXnQ5AOA4FJ4338u+g0HFDbNl/NawpxyDre4OdoPD0LdDacfNK0TQQe9M5yL6jEV16UnjsMvTCwJOYUk3YG0xHjZyCzqyO/9EJ0Dy/Iy+TiJ4HIHrPBG8p+uNT0QsfpON6NoXoOg0x4AyQLlp1QX99J+jA6oO6dZCDzkU5/RAqSa75MtAdN1MVahhO3dkoezxC9iK39Ay0H7h2XfTASR+LldgGPWQdvE9PgJagMYXodiCy5xGkWUqrdxJ5/y90XHeosOW2JNWZgIvw6sn5txN8vLgS65KyLkCKfggvRda7pOSmtFKsTFKdiyXHI0UvWgunltxgU9CThDoRR22LpdeltXAcng4YSeOq6WZwu4SWwokU9IMBoxUwOsZ4Z5lxPWPsC16SrHdpyU1ppVjFGFdHiJ5kCqeW3GBT0IuEOglHbY0l1zHGF8uMM3Dl4WgW01o40TwCOGjcjqQ6A7CN8a4SoyXWJ2ldgBR9jPGyKsbzseRqCNGDTOG0KsaTcdQ0LLmWMb5UZjzYGA8yxofLjNsbo4XwGoyxY7+2xAYkrQsQ9EKIlDEuDBiHk1TnYcnVkKIHrYXTSm7AXjSegqO2wpITjDH4GPc6YzwMzfQQ4w7GKBFeIzn/7jLjhsbY0xgvLzOOMMaxAeMnAWNvktYp2HJLLDGeVu84PP1KmfEQXHkomv2N8ZEy444k1emAJON1JeffU2bcyBh7IESSjHcFwRt/SzGClDof1WcMemI3/OcvgubAzVBTPZFrHEli4MYMP381Prj017S83fE3yJRLn103ptdOE+mx7Xp8ePlvWPRMx6O/haXoNmUCAw7eGmHtRsZrMsaOm75aYiJJ63xjTJDxriR441wpRpFS56HkaKRoorVwBpqO46OgD0nrNGy5GZZYzbRj8FHzXUiow3DkDDR70Vo4gYJ+LJC3cOTOJNRpAMZ4X5lxkjF2N+14VZlx1WI7ylFI0dUYOx4OUTSeji2nYokxtHjH41cYj8CR09HsaYyPB/I2jtyFhDolYLy/zLgxSeu8MmPHuVCK0cY4EikajbHjIRuCviStM7DlZCyxqjG+HjDUG+OBOOxOa+F4CvqJMuOuJNTJxni2MXZcOmmJTYyxmzFeHWoUooHWwllVjGdiy02xxChjDD4RtZ6EmokjD8BRu9JaOI6C/luZcTdTMIeMdxY5/1dlxk2Nscn8Hq8tMSoxmqS6ACVHGOPZZcZ+xrgJSow0xo59oljYm4kj98dRO5t2DBodHLm7KQL4tHpnkfd/HTCKgLEriCRZ71qCN0lWYowxDkeIeloLvyi5ybGgvzFujBLDjfHNQL4RV83CkfviqB2N8e9lxj1MYc2n1TuTvP+bMuNkkta5CLoiRJKsd32ZcSxJ60KUWBkpGqoYBxjjJKRYhVbveHwd6JvRiKtm48h9cNS2xvhkFeOJQIFW7wzy/m/LjFOMsREh0mS964DmgHE1Y1wJQT0Z7xclN7SWDCRhnYUtN0KKlY0x0MelEVcdiav2wdFbm9/jUwGjiyP3NMWWAq3e6eT935UZpxpjvTnP3FBmXJ2kdQFKDEPQhYx3ThXj2dhyQ6QYRqt3QpmxK66ag6v2wtHTaCkch6efLjPuRUIdB+SN8fdlxs1IWucYY5qsd2MV44UoMRRBmox3bsnNyyWDSFpnY8kNjPHEMmOTMe6Jo7cwxn+WGfc2xlqs2BDoiHsy/njjp/g3rfgQWv8A7m/zEw4hxLzx48ePnzdv3v+aUhF+awutL83Hb23BXWUETv/SSxZ0oUDrqy/jffctdt/+uMNHIgKXhWmtyb71L/KffYrq2o3kmNUQZauDch9/RPbtN5GpFMnVxiOTpTMn+W+/JfPqqwAkxo7BbipdCeG3tND60ov4mVbclYfjDCidtdD5PK2vvEzhu+9w+vXHHTGi1Oj7ZP/9RqQx/8kH5N57E5lM446eUGEsLPia3BvFAaozahxW19IVJTqzBO+9f0KuBdFvDKpH6WykLuTw3n8Wln6N6DEU2W+1snb08T9+Cf3tB4j6nsjBayPKVjD5Lf+Cpc+DakA0Tkao0tlGP/spLP4boKB+ItItXUWgC4vQix4Fvxnq1kImS2fwtc7h5R5De18irBEoe60Ko5d/Bl14G6H6opxJCFFmbH0N3TwPoRoQ9ZsiVOmsred/YgYlCktsjJKlRl8vJO8/AjSjxNpYckSZMUvefwzNF0hGYsm1K4wF/yl83kHSH0tWGgv+K3h6PoJGbDkZIUrb0fM/Nh3+zhjXxZKlqwyKxkfRfIlkFJasbMfla9wEJXuVGb8zxhaUWA9Llq4yKBofQfMVklWx5JoRxgFYcmKMcQpClM4se/5HZlDy3xozxvh1hPEf+LxrjJMQonS/LvgvG2PXEOOHxmgbY+mqwFLj+liydCVEqXEMlpxQZvRMO76LZKBpx+VtXGCMrSixAZYsO/bEGX0P/flzsPhD6NIf0XcdhLQC79e0/Ptjlr75EVZDmsZ1VkUlSi+RyXz2DYvnvY2wFQ1rjcBpKl1R4utvjTFr2rHc2GqM36AYi5Ljq7Tj3/H5AMkgLLlRSTtqrfH8F/F4GUE3s8+UHsM9/wMzAHWw5aZIUXoM7zDmjLF09vs/N05ECBXId8b4nhmAhhm/Ie8/CuSwxPqoCmOLMX4bYfwbPh8iGWzasdw4H49XEHQ3xtJVBAX/Pbx242SkKDtflxg3QMkhEcbVUHL1MmPBtOP3Z/T8r02RMYclNkTJweFGMQ4lxkUYh2DJDSuMBX8ePq8i6GGMpZcaFfx38fQ/gAS2nIIsu8zc878yxjyW2AglS1eUaN1M3n8YzXcoMR5LrlaWL5ht/RGSYVhy/f/C+I5px5T5PX7fxg0QgdWTRePz+LzeSeNkpChdAer5X5pibcEYy/q4eqnZ1guNcWxZPm+MH3fC2NMYSy/PK/hvm6JNlPExwMMSE1GyrI/bKeMT+HyCZCWzrcuNz+HzLwS9sOWmVYz/NkWbtDE2lhm/MO34fRqfxecNBL2x5SZVjG/h6WdCjT+EmDBhAvPnz//JPpZeCDFv5VS/8deMilpl/OOMw/51JW+3fPqT3XYrKmorlX6mkXnjNRb/5QFybxdngmR9A3UbbkyXzbZC2Db5Tz9h8Z9+R+vL88H3Ea5Laq31qJ+2Paq+Hm/xYhb/8be0PPs0OpcFKUmuNp76adtj9+2HzudY8uCfWfrk4/iLizPlzSsPp36LbUiMXBWtNc3/eJLFDz1E4YvirJ/1WB/qp25Gev0NEEKQef01Fv/5j2TfLs5gyIYG6iZuTP1mWyBsm9wnn7D4gd/T+vKL7cb0uutRv/W2qC71eIsXGeM/O4zjjLFP0dj86B9offpR/CVFoz1sJOmp2+OuMhqtNa3PPE7LE3/G+6o4C6169SO98VYk1pqIEALvg+cpPH83+jMzC51uQo/ZGrXGrghl43/zPoVnbsN/75/FxyrZSdTIyVhr74NINaKbF1B45na8Nx8prnaSCjlsfax19kE2DUL7GfSX16O/uRcKxUcS6wVrI3sfhuiyLlpr9Lf3ob+aC1nzWObEyvg9D0Q0bY8QAr3ob/hfXtux2snuid99D0TP6Qjp4BfeJN9yFV7uMcAHkcZyt8VOzUTIrmj/K3LNV+Jl/wi0AhbKmYKdmom0hqL9DP7X16IX3Afet2hALFwH0eNwZN06aK3J+XeT825pf3S0FKvg6hnYsmjM+4+T9a7B08Xiq6A3jtoTVx6EEA6e/y8y3uUU9KNFI2kcvSOumo0UXfH1l2S8y8j7f2g32npzXHUkSgxF61ay3jXk/HvaVzvl/HVJqJlYss14lzF+YIzDjXE7Y3zMGOcHjHsZo43nv26Mph2pCxgbA8bfAxnAxtablRmvJuffGzCuZ4xro7VvjHMDxhG4egaO2g6AvP+oMb5ojH2McboxvkbGu6LMuBOummWMXwTaMWicgxJD0LrFtGOHMe+vj6tmYsm1jPFOY/zQGEca47adNL4aMGqgC47ekYSajRAN+PpzY3wgYNzcGAcb41Xk/PsjjHeQ824tMx6Mo7Yxr3+YrHdt+4osQZ/i7LM8ECEsCv4rZL0rTEe7zbiTMdbj688CxqwxbmGMg9C6OWD8znznBsa4pjHebowfGeMoY9zavP4hY3zZGPsa4wHG+LIxPmGM9cY4CyHq0c1foF++Cf3hw+DlQNowcBNY7SBEl354rVk+v+cxvnnoebzFLQDUj1+ZPntMpm7UILTv89UfnuarPzxN7otiOyeH9aX3zpNo2misMT5ojK8YYz9j3D9gvNwUSduMO5NQM007fhpox5xpx61IqCORYiBaLyXjXUXev7991Vje3whXzcKS49HaI+ffRta7rX1lW84fTUIdgi23NK//qzG+GjDua4yKgv+SMf7dGBsCxi74+hNj/KMxOgHjALReQsZs67ZVY3l/ojGuboy3GuMnJj8at8T4Z7Lede0rsgT9A+2oKPgvmm3dtgKmAUfvQkIdETBeSt7/U8A4zRj7G+OVZhXPIkCYdpyNJccZ41xj/NSY7jbGLdqNGe+69hVZggGmHfc1xvnG+HeTb8RuN9bh648Dxrwxbm2M/dB6ccC42BgnGuNqaF0ItGOb8R5cdSi2LF6el/P+RNa/rn1FVtG4nzFKCv48Y3yywyiDxo/Mtm4zuoF2DDNOMtu6zdjWjp8Z473GONUY/0jWv77dKBmIo/bDkfsY4wtkvSsDxq44chdcdQRCpPH0h2S9y8j7fy4zzkGKvsZ4BTn/12XG2VhyrDHeTNa7vX1FVt5fDVcdhi2nGOMfyPo3tK8akwwyxr2N8Xlj/EfAuKsxpvD0B8b4l4Bxa2Psg9aLAsYlxrgxCTUbJccY401kvTsCxnHGONkYf2+MbwSM++PIvYzxOWN8yhibjPFwY3zfGP9qjInA77EPvl5Itt24FJAB42i0zpP1byLn3Rkwrm6Mmxrj74zxzVBjxruifSVR0bibMSbx9HvG+GDAuI0x9g4xbmKMqxrjjcb4hTGON8ZN0FqT99uMZqzA4IBRUPCfIeNd2b6SqGjcHVcdVmb8K8XVTglsva0x9sLX3wWMzca4qTGOQuucMd4VME4wxvDbZNSiFrVY8VFbqfQ9xw9xpVLzs0/z3W03dlzSFQh3xKrUb70931xxITqbrcirHj3pdvBMvr3uCrxvvq7ICzdB91nHsPiB35J98/WKPELQtN9BZN//iCWPPFzV12WzzXH69WXBrbdUNSZGrUr9tG34+vJLqhqtnj3pdugRfHvt5XjfhhhnH0PLX+4j93Z1Y/1eh5P/4G1an3ywqjG1ydYkhzVRePiiqnk5aE3UmnuQ/92JUKi86a1o7Ie91enkHzgNvfiLyg9wUtg7nAeLz4Glz1b7BsTgi2HpPPQ3d1Y1iF4HgzsY/dGJVfPUbwQDDiW7+ECKg/Oy96vBuF2uILv4ELT/WeX7RRfcLjejPzkPWp6vapQDLiOb/qe5bKwyivfr6E+rV91oiY1x5MG0ePtTLBaVf8MwktaVtBQOLLkkIfBHkla3kfHPwdPVjIqkuhxPP20ud6pmnIkUfWj1TgoxboojpxtjZTtKViJpXUFL4YCS5f6Vxl+0F9UqjVfg6X+YS4mqGWcVL6/zTgkxTsGR+9HiHUDw0rh2o1iZlLqc5lBjA2l1Oxn/rAjjVRT0E+T9+6ob1ZEImsh4p4UYp+LIfWjxDgwxrkJKXWqMX1bkBY2krNvIeGeWXebY/g3G+Bh5//4Q49HmkoIzQoyb4ci9TTvmKvJSDCelLqG5sH/Jcv9S4+1kvNPKLiEMGq+hoB80l5dUMx5jLik4M8S4BY7cw7RjNeMI0pnL0A8dBa3fVvmCBvRGV/L2uQ/R8u+PK/NKMuzUvfnuyVdZ8Gi1doZ++21O1x3fJ+OdXTVvy62wxS60eNMJXtLVYRxJSl1Ec2E/NFWO4XQ17XhSezGoNCyS6noK+gFzeUllFC9Bsch4vwwxTsMWO9HiHRRiHEVKXWCM31QxdiNl3Wou7XitIl803khB/9YUcasZi/caynjnhBi3xhY70OLNCDGOJqXOo7mwT8mlw6XG28xlPFXOhdgk1Q0U9G9M0aya8STAJ+OdF2LcFltsa4yVTxVUYgwJdQ4thX1DjN1JW7fR4h1bdulbhzGlbiSvfx1hPAXIkfEuCDHugCW2pNU7JMQ4loT6JS2FfUouHe4w9iBt3UqLd0zZpW9t4RjjfabYU814GpoWsl71PoUtd8QSm9PqHRpiHEdCnWWMC6sYexrjnJLLykqNN5Pz76Kg/xpiPAPNErLexSHGnbHEZFq9w0OMq5NQZ0YYe5G25tLiHVlyOVRHuMZ4u7kMvJrxLDQLyHqXhRh3xRIbG6NXxTiehDqd5sI+BC8d7jD2Jm3dEmFMkFK3kPPnmkusqxnPRuuvyfpXVM07cneU2JBWb2aIcQIJdVq8sTALn3dCjHPJ+TeZibrKSKpf4usvyPpXhhj3QIn1afVmhRjXIKFOpbmwN8FLhzuMfUhbN9NSmInPu9UEph1vLLt8OWg8F0eF35NzRUdtpdKPN2orlZZP1IpK33P80IpKfmsrn594ZNViTFuork1431V27trC6tWHwpfVBvDFkF2b8CPej+3gt1aehDpCIx0bna/sJHcYu+J9V9m5azf27YUXYbR7doXFlQPT9nBcyIW3EdKnYciS4gx/WNR1h6WVg422EF0HoL+rMmhr+4oRKVTPah3Utg9IgW4JzwMIB3R1owbyA/pUHaC3v10ORfvvheZVa1/UovC/wUulyPRfEpovhkO1wW+7gV6RRslQfMKNgv4l97apjDTB+wFUD5tqg7aO7+hZtYjQeeOAknsEVUYdwftT/HfGHlUH6J03DkQH7rVUGV0I3oukelhUG2z8uIzdqxYROoxD2lfkVc8PKrn3V2XUU60TXhqKah35DmM3NFUKRiZST6+O/KRKodjEFx+uxxdPhd+gX9Yl8ZdWFnnbdd1aGHLTX0BEGZuqFhHavyO2HQe3r9irHo1QZeAaFBT/+RGv6Fq1iPDjMkYbBIPRkcauEPH5HTcBjzI2Vi0idN44BB3RzivCKBiEjthv441NEPF7L+7TPh33UKsWDVQrIiwvY9yxrXPG6OOXZGDJPfsq83HH+Dhj9PG7GNHngWU3Rp/HOmeMPufH9RmW3Rjdn1gxxuh+Fbh0sZ+uuKTwfxU/h6LSSql+468Z+RMsKr1xJe/UikrLHLWnv/3MomXes5EFJSCyoAREFpSA6IIS4GfiTlREFpSAyIIS6MiCEoBeGHWiIrqgBDjpbHRBCSILSkBkQQlApqrNMAU/IKagBKEFJQDtEFmsASILSgCiOfpvKHSJK4RAVEEJ4o1RnZLi+6MKShBfUIK4zlV0x6czxuh2jC8oQbwxqgPZGWNUsQbiizUQ15H+cRij9+uoIkMxH1VQgviCEkQVlIDIgpLICMQnn4bmARa8FN0GUQUlgPqNP4gsKAGRBSXoTDt+EJmPLtYUBVFFhuIros4zPxZjtCG6oATRxZriN8QbF8Z8QrQhulgDK8IYVawp5uOM0b/34j4dN8kbXlAqGpbNGHds65wx+vgVVawp5uOO8XHGuGINxJ0Hlt0YfR7rnDH6nB/XZ1h2Y3w//fs3xvTTyZrbCdSiFrX4IUStqPQzi2qXrK34+AHcZV8s2wo9aUUPmJZLJDrT8fjvQy+HO6rFjBvx7dpKyFrU4ocUokUhIo7B2odcc/hjnjsTVq/OFGprUYta1KIWtfjvw9dxE0m1qEUtVlTUiko/s5DpuvgXfe/xAyg0LCNB+ytg1yl8v98hoiduO/khK+A7alGLWiy30E70wU9IUHZnZqnDw1/qxL+oFrWoRS1qUYtlCPEDfApcLWrxc41aUelnFsnxa4KIrgQINxGZl3VdIvMiEf1+sRx+dcJ1o7KIuvqIPOCko/MxbZRrjvp+E3Z0O5BsjEz7C3tG5pd19xUZQMesSCh7jHB5+MnodrYWL48HTEYbBdHG4j0eomJ5HAaX1Ri9TxXvZbGsEbNfLnM7rghj3L0TGmLyy+P3GL3v/9CNus7Db4qeXGhcJfryX1T0tl7y94GR+WJEF57i27ExJh9+T6jOR1xx7IdgjPuMOENcfnkUCKONIsYQ/1tYEcbo/XbFGKOPDctu7ES/Jjbijl9xxrjzUEy/qlMRd66KPtf9NIzLthq1GMtmZDkYbbl17GtqsRxDg6/FT+7fD2Gtw08hakWln1lY3bpTt8nU0Lxq6kb99ruE5oVt07DT7gg7vAPWsP3OqKZuofm6TafgrjI8NO+OGEndxpuGG7t1p2GHncONjkPjTrtBhLFum92RjeHG5EZbYA8dEZq3h4xFjt0m3FDfG2u9A0PzWC7WhgeDCu9oqqFHg90r/DN67A/p8eH5LutD9z3Cjc4A7NRR4e8niZM+gajOsOp5PFjhxS8rMR0lwu97Z4mNsGW4UTKIhDomwpgyT/YJ39ZJdQKCcKMjZqDE6hHGidhytxjj0RHGNAl1cqQxoU5C0CPCeDBKjIswTsIW4futZAgJGWc8hfABgSChTowxHoISYyOMm2KL8P1WMpSEnBNhrOuE8SQE4fu1Iw9BiTERxinYYscI47AYY5dOtmOU8TCkGB1hnIottoswroQrj4ww1iNXnwUibEAg6b33dlgN4YX3PrtvTHJon9B8qu+G2GLbcKNYBVfOjjS66mTCBy2ShDo5cpDsyiOQYmRo3pZbYonwAUnROCvC2GD26yjjKZEFE1fOQoqI84ychi2nRRiHRxoFjSTVKYR39ZTZZ6KMs5FildC8JaZhyy0jjCNwZfiNXQWNph2jjCcTVYyIN26DJbaIMI7ClUdEGLvGGC2z34cPol05BylWjjBuhyU2izCOxpWHRxibzJP4wibE2ozhExiunINkpQjjDlhiSmheidG48pAIYzeS5omGy2YcGmHcCUtE9B/FWJxIY/dOtOPJFG9SHWY8CsmQCOMuWGLjCONqOPLgCGOP9idDVg/btGP4MdyVRyMZHJq3xW5YYmKEcXUceVCEsacxhn6DOTalQl+RkMcgGRSaLz6BLryda1GLWqzYWB5TorX4kUXDDrsi3ARLH/1ryU273eEj6br3gVjduiMTLot++yv8RQvb81afvnTdc3/cYStjde/Bd3fNpfB5xxOEZEMjDdvvQnrt9UisOpbvbr+F7L87nl4mXJe6yZtTv+W26FyWBXfdSctzz4FvrpGSkvTa69B1jz0RjoNMJVnyyMOlxhEjadp3/3bjwt/8Gn9xx80rrb79aNp7X9xhK2E1deO7u2+j8EWpsXGHXUittR7JUaNZdO8N5N/5V8CYIDVpK9JTt0fnMiz59VwyL/4zYFQk1lif+h32A9um4NbhvfR/kO94lLwcMB578tGI+p7gJCk8dTO0dNxIVHQbjL3pHGSfUcj6nuQfvaz0pt3pbtgbzkAN3wSdHYf/0Umw9LmOvEwjek1H9DoU/Bb0x6ejv/szHTfvtRBN2yL6nwrSRat69Ne3gR+4uW6X9ZEDz0E5fRAqRa75UtAdN8AUahWcurNR9moI1Zvc0tPRXsdNPoXshZ0+DsvdCj1kbbxPT4SW5wPGOmT36Ygeh5JmKa3eqeT9P9Fxs1QLW25PUp0BOEjqyfq3AR1GS2xI0joPKfogSJHxLiq5AbEUI0iqc7HkakjRi9bCKSU3zhX0IaFOwlFboeQ6tBaOx9MBI3W46mBceRiwhFbvFPO456BxB5LqdMBG0kDWv73MuJEx9g4YO27IKsVIkuqcgPHUCmPSOrk4wJVrGeMLAWMXYzwUmEGrdzJ5/y9lxp1IqtOK291rJOffDnT8Hi0x0Rh7IbwUGe/iMuMoUupclByDFD2M8YMy4ynYcgssuaYxBp9m2YWEOtR0gqcb418DRhtH7kRCnRow3lHFeD5S9AQvRda7tMy4qjGORojuZAqnldzwWtDXGDfHkhOqGOuNcQZwIC2Fk8xjs9ump9qMpwES4XUl599ZZpxkjD2M8bIy42hjXDXCeBq2nIolxxvji2XGw3DkQWj2o7VwEgX9YJlxZ9OOEuE1kfPvAjqOj5bY2GzrHggvSda7vORGzm2PmFd9RqE37oH/3EWwNHDT7nRv5BpzSAzYiFXOH8OHl/2G5jc77lmh6pL02W1jem6/IT2nrcuHV/wfC//5ejtRWIrum61J/xnTENauxnh3mXETktZ5CLohRLrCqMQYkuo8lByJFE1kCmeU3DhX0N+042QsMYZW7wQ8/VKgHRtIqMNx5IE47Gna8eFAOzo4ctf2gWPG60bOvydgFFhiU5LWOcaYIutdUXIj51JjV1oLZ5TclLZoPB1bboolVjXGlwP5Rlx1BI7cH4fdjPGRMuPu7YMyQZsx1/4JlphsjE3GeGWZcTVjHI4QDbQWzix5aIFggDFugiVGG+MrZcZZOHJfHHahtXCiefx4m9E1xhMAjaA7Of/eMuMUY+yKEEky3lUEbzatxDhjXAUhGiuMkoEkrDOw5SSUGGmMrwaMXY1xHxx2DhjbotRY3Nb30XET4jbjuQgajfHqMuPqJK3zUGLlgLFjnykaz8SWE1FiBK3e8Xj6tTLjbBy5Nw47GGPwEekujtyThDoe8Ml4vyDn319mnGrasREhUsbYcUNsJcYb40pmW5+FJtDvYZAxboQSw2nxTsAvMTbhqtm4am8cvT2theMp6CfKjHuRUMcZ49nk/F+VGTczxgaEqCPjXVNmnGCMw4zx7CrGs7DlhiixsjG+Xmacg6v2xNHb0lo4ocyYCBgLxvjrgFFiy81Jql8C9UiRJuNdS/Cm3UXj+SgxFCm60Fr4BZqOh75IBpO0zsKSG6DESrR4J+LrQP+RJlx1FK7aA0dvbYx/KzPuYybKCrR6Z5H3f03HjbslttzCGLuY4+N1McZflhmHGOP6SDGUVu9EfB3oh9NEQh2Do3bD0Vsa498DxiSO3DtgPJO8/5sy45Yk1S8CxusJ3rRbiTWMcQiCOjLeOVWMv8CS6yLFEGN8M2DsZoy7YustzO/xyRKjK/fFjZzMq0UtarGiQ2hdW/P1fYYQYt748ePHz5s3L/7FKzj8TCuZN55HZ5uxB66K07f0kgXtFci8+SL+kq+wegzBGToSEbgsTGtN9t038L55H9mlJ4kRqyNUaZ0y99lH5D96HeGmSYxcE5koXc5a+O47sm8XB9HuymtgdS2defZbi0Y/14IzaFWcPgNKjYWi0VvyNVbPIbhDR1Qa3/sXhW8+QHXpSWJ4pTH/+QfkP3sN4dThrrx2FeM35D94ARDYQ9fEaihdsquzzXgfP4n2mpE9JqCaBpe1Yx7/43/iZ75ENqyC7D22wuh//iL+4neRyT7I/utUGP2WN9CZ50HWI7tMQajSGSg/+xm6+QkQEpHeBOmUrszR3hL8xQ+BbkEk10EmS2dMtc7h5R5H6y+RciTSXqPC6OWfQfv/Roh+KGcSQpQZW/+Fzr4Aoh5ZV2n0/E9NJ1BiiU1RssyoF5PzHwKaUWI9LFlpLPiP4fMFilEouWaFseA/jc/bSPpjyUpjwX8dT7+AoAFbTkWI0lkyz//EdAIllpiMkqUrc0qN62PJlcryWWP8CsWqKDmhzOgHjANCjK/i6fkxxicAy7RjqdH3F5HXDwGtph3DjF+iGIOS4yOMA7HkxAhjI7ac8l8YF5LXDwOtWGIDlCydedY6S95/BM3XEcan8HnHGCchylbelBqnIkTpfu35HxujvexGMRYlVo8wDjLtWG58BU+/2EnjZJTsXmb8jrx+ZJmM+vPnYNGH0KU/ou86CFlqbH73I1o/eheV6kLDamORidKVi5kvvqX5rdcQStFl9DjsxtIZ/KLxYSBrjKUzy0Xjw2i+RYkxIe34d3zeRzIYS25UpR1fwtMvI2gyv8fSy088/0MzcHLNtu5Wll9gijphxoxpx29RYiyWXL0sHzQOwZIbVjG+iKdfiTB+YAZOrtnWTWX5oHFDlBxcxfgwmgUhRo+C/2TAuBGi7Fr0DmM3bDn5vzB+a4o6WSyxEUqWrjIoNa6GJcf9R0atNZ5+EU+/aoxTEKL0ki3Pf5+C/gfgYospSNm1LP+NMeZCjK1mW0cZ/4bPh0iGYckNIozdTTuWG98zxkSE8REgjyUmoWRZv0e3kvcfQrMQJVbHkmPL8kHjSlhy/RDjKwh6xBiTxthYlv/atGNnjOOx5JiyfCeM/nw8Xl0OxoIx9i8ztJjfY5ixYIwfxRolvbDkJhXGgv8Onn7aGKciZemKu+VjfAKfj5GsjCXXq2Kch8frSHpGGJ8C0jhyKkKUrrgrGh8BvAjjQ2gWocQELDm6LN9m/CRgLOtf+i/g8a9AO5aeZwr+26Ydqxt/CDFhwgTmz5//k30svRBi3krJfuOvGhm1gvfHGUe8cQXvtH76k912KypqK5V+puG1/g1v0dWobi8BoP0mCgt3RTUchhAufu4NvEVXILs8juzig0hQWDANq3EOQvVAe19RWHgZwv0jVt8MICks2BjVMBvpjED7GbzF16L9e7H6FmehCwtXRzUchkpOLJ5Emu/By85F9SvO5nvZwdB8ACq1K0IIvNwT5LPXwsCXkUBBNEHzrtipQ4rGwhvkW65A934C2VvjkyS3dBpOejZCdsfXX5IpXEa+3wPQL4uHxPc2ISGORMnhaJ0h611Frtu96G7FFQeemIDrz8SWG6G1JuffSS59C/6qRWOBIbjedGy5G0II8v6jZOXVeAOL7SjohlPYA1cV29HzXyfjX0qh7+MUZ3iT2N62JNQcpOhRNHoXk+/+AHTPAhLLn0xCzDHGVrLeleSs+9B1xXZU/gRcMQtbbmiMd5ATt+DXFWfzJUNxvYOw5S4dRv8qvPTLIcbXyHiXUhBPmKfiJXG87XDVHKTojq+/KBr5I8gsoLAKm5JQR6HkKmjdUjSq+9GpNuMauGKmMfpFoze3fcWB5BZcNT1gfISsd1X7TLmgO47aE1ceYoyvFo36b6YdUzh6W1x1FFJ0w9efk/EuIe8/QHGmXBXb0ToKJVZG6xYy3hXk/fvbZ/Nz/pok1EwsuYEx3k7Wm9u+4qBoPAhb7myMD5H1rm6fKRf0CBgdCv4rZL1LzeC1zbidMTbh68+M8Y8B4xRjXAmtm8l4V5qZ9EXGuJYxrm+MtxnjJ8a4kjHuZIwPGuNrAeNeuPJgY3yZrHdZYPY0bYxzjPFTY/xTmfFolBhmjFeYmfQ249ok1Cwsua4xziXr3do+my/Fyrh6BrbcwRj/Ssa7pn2mXNAz0I62MV4amD1N4+jtjbFrwPhHirPQVsA4FK2XGuOvAsZ1jHGdCOPBOGoHAPL+X4zx9YBxb1w5wxhfMu0YMModjLHRGC827Vg02noqrjoqYLzcGBcHjLOx5Npo7QWMnxnjrca4vTH+mYx3bcDYy2zrNuOLxvhkwLgjrjoSKRrRSz9Hv3Q9+qPHwM8XL4cbOAlWOxhRPwCtl5DxLqcw4FfYA4oz5S1iXRL+bCy5ljHeQq7pNqx1i8aMWAXtHYKjtiv+Td6fyPrXts/mC3oHjBYFf74x/iNg3ImEOhIhGvD1x6Yd/xJox81NOw5G68WmHX9N22x+zl/XtGOb8Way3m3tM+VSDMfVh+CobY3xj8b4RsC4N648yBjnGeNTxlgXMNbj64+M8a/GaGPrzXDV0SgxyBgvM8alxrieMa6J1gVjvD1gHGGM2xjjA8b4pjH2wVX74MgDjfF5Mt7lZtBVafT0h2S9i8n7DwaMbe1Y3Zj318dVs7HkGsZ4kzF+YYwjcfWhOGqaMf6erH8dvn4rYNzXGBUF/zlj/KcxdjHG2cb4AVnvEtOOBWPcgoQ6GikGoPWigLHZGDcwxgloXSDr30DOu7PdmBO3G+NWxvg7Y/y3MfY1xgMijDsbYxc8/b4xPhgwbklCHRUwXkrO/03AuKExjkfrPFn/RnLeHWi+NMY7SHBo+yWE1Y374cj9jfFZY3zGGOsDxjo8/Z4xPlRmPBop+uPrhWS9y8qMG+GqI7HkOGNsa8c24+3tRq01ef+3ZP0bAsZ+ph3bjM+Q8a4oM+5CQs2KME4z7dgPX39njP8XYbzeGL8KtONh2HJzY/w/Y3w7YGxrR0nB/6cxPmuMDQFjGk+/S6ZwCQX9EMVV4A623qrMeCk5/7ftRsufaIyroXUuYCw+dTkv7sDlcGy5mTH+hqx3Az7vGGN/Y9zPGJ82xucCxl1JqJnG+I4xPhwwtrVjX3y9IGBsAQSWvxGumoMlxxrjdeS8uzqM/h246nBsOdUYf0XWuxGfd41xAK7aH0fuY4xPGePzJt+I3d6OKTz9tjE+EjBubYx98PW3xvi7gHEiCTUHJcegdTZg/MYY7zTG8Esxa/H9hdY/gCd41+IHGbWVSt9z/BBXKnlL/4/CghOq5oS7DqphFoWvDwTdWvkC1R+7x9Xkvz4cvE+qfEASq8fNeIuuQGefqcwjsJrOwy+8htd8R1WDSu+HSAwnt/Tkqnlpr4udPIzs4oMIXp7S/g1yAE7DFTTnDy1Zpt4RKVL2XLL+hYEORakxqS7G0y+ay3Qqw5HTUWIYrV71a8YtsQGOPIIWb3+Cl0u1/w0MImldTUthRskS8I5Ik1a3kvEvKLtkK2i8BE+/YC6BqWacgRKDafVOCjFuiCMPpcU7gGrt2GE8qGTpcqnxdjL+OWWXGnUYE/JSfJ41l25UhisPRoqBtHrVt7UlJuLIgyOMg0laV9FSmN4+kCiNOtLqtgijJCEvw+Np8v69IcZDEaIvGe/UEOMkHHmQMVbe4FgylKR1BS2FA9s76aXRxRh/gafnVzUm1eUU9JPk/ftDjIcjRE8y3ukhxk1w5P60eAfScXlK8BuGkbQup6VwQHsnvTTqze/xrLJLjYLGKyjoJ8xy/mrGmQjRjYx3RohxUxy5Ly3e9BDjSiSty2KMt5Hxzyi51KgjFEl1JQX9qFnOX8WoZiOoJ+OdHWKcgiP3MsbKJ6RJsTIpdQnNhQPaO+ml0WCMp5ZcxlNqvJqCfpC8/9sQ4xxzqeUvQ4xTceQetHgHhRhXId16GfqhoyGzoPIDnHrE1EtpSZ9QchlPqfFaCvqP5P0/hBiPRuCS8c4JMW6GI3czxkJFXorhpNSFNBf2L7nktS0EjaSs22j1Tiq5RCbwDSTVNRT0A6bQXM14DAKLjHdeiHELHLkTLd7BIcYRJNX5tBT2L7kMssPYlZR1q7m0418V+aLxWgr696ZAWhnFS3kEGe/8qnlbboUldqA11DiKpDqXlsJ+JZcYdhibjPG4kstPSo3XU9C/MZcGVzOegMYj610YYpyGJbaj1TskxLgqSXUOLYV9Sy7f6zB2I2XNpdU7tr1gVWm8gbx/v7mktZrxJDRZst7FIcZtsMQ0Wr1D6biMPGgcTVL9MsZ4K63e0e2FlrJvMMZ7TJGimvFkNK1kvUtCjNthic1p9Q6valRiDAl1Ns2FfQlevtdh7E7amktLhDGlbiTn3x1hPBXNYrLe5SHGHbDEZFq9mSHGsSTUWRHGHkVj4cj2QktpOKTUTeT8202RoprxdLReQNa/MsS4I5bYlFbvCDou0Q4ax5FQpxvj4oq8oCdp6xZaCrPbCy2VxlvI+beUXeYYNJ6B1t+Q9a8KMe6MJSbS6s0KMa5OQp1qjEsq8oJepK2baSnMwue9Kt/gGuONZZcQBo1nofUXZP1rQoy7Yon1afWODDGOJ6FOobmwD8FL4zqMvUlZN9FaOKLkcvtK4w1llxAGjb/AVeH35FzR8XNZqXTliKj7If44Y+abl9dWKi2HqBWVvuf4oRWVtL+E3KcbVC8YtYXqDV61AboJazAUPgjPy97gh79fC9eseAnJA9pNUm2A3hZC9kL71QboxfBTA/Hk+6F5IXqjRbWCU1skqFbEKA2HaoPf9u+gV0gRoRiSISX316l8f9+QglNbJKlWsPrPjD1DBuidNfYLKdz9J0abaoPf5WfsX3KfjspIUZwhWxZjj5AiQptxcEjHqbPGNG2zoeFhUW3QtuKMdVTrPP5nxm5Viwgd+cHoSOOAknvbVEYXqnXC/zNjU9Uiwoo1KqoN2jprTD21GvLT8GN0bq1GcoOrDeDbop5qA67SkFQbbHQYu1YtdHS8e1DJPan+03zxxs6VA9cVaRQMQi+TUZh/UcbGqoWO5WdshIjP75yxAR3xd8YZlt0oMT2LiNdEbwvBQHTg3l6V+ej9vvikwPDfUnGf9mOM0fvdshubIOK4EXfcKUb08Svu+Bd//Iw+R3TOGH2uijvXxZ8r44zR55hiRJ/z441x/aLu7St/frjG6D4LOHSxn0bGPKV4RUWtqPTjjVpRaflE7elvP7PwW/4UXVCC6IISRBeUILKgVIyYx1XL+NdEFZQ0Gk+En6iKr4kqhEB8QQmiijXF7wg3ApEn0+L7owpKEF+sgXhjeLEGOmOMa8fOGMOLNcXvWFZjVCEE4gtKEG+M6vgQ2QEtvj/OGFdQgrgO4PdvjCsoQbwxqiNOzICImGINxBdrIN4YNehaUcboQVNk0SsjEZ9WW3nYEfkeb8d8f1xBCaKKDEBksab47qgiQnw+vqBU/JSoWFZjdCEE4o2aeOPCyPyyG6M/v3PG6L8zzrDsxrhiDcRti6hiTTH/QcznR/+Wivt0nDF6v1t2Y/SxLb5YA3HHr7jjX/zxM/oc0Tlj9Lkq7lwXf66MM8YVayDunB9vjOsXRRWU4IdhjO6zQI68//uY19SiFrVYUVErKv3MQhfiBoYrIGIux9Ui5gWd+fzaJb+1qEUtalERokUiIg6QWmh0OrpIUIta1KIWtajF/zp8HTdJU4ta1GJFRe1G3T+3KHvKyP8kNJFFH4FGL0tVqG2Ve62wVIta1KIWJaGd6IKR0AKyAtzapfG1qEUtalGLH24I8QMY0/zMonaj7lqERW2l0s8sVGpLYje7SEfnyx7HXPn+uui8jvl+D2IrQhFGgUDq7qH5YsQ9jrQzu0bcgTW6HQUx7UiXmPzyMKYis/HG5dGOcfFjMCYjs8tuVDH5zsSyGhti8svDmIjMLrtxecyjxBnj7u/QGJO3/xNMSLihGV3n43eLPrbYX/aK+fzv1widace4wYQTk+9MRH/Gj8MYbYjL/zCMce0c/VvqXET/pkXMflsztkXcMTb6GB1vjD7+di6W1Rh3Hoo+13Yu4s6nPwZjdL8m3hjd9wOw5daxr6lFLWqxYqJWVPqZhbD6oLrsH/4C1R/VeHzEBySwup4MIvzErhqPA9U/PF+3P9JdJzzvro+V2CecIAdgp44NN5IkYZ9CVOcjoU5C0C8074jpKBFuLD45bd/QvGQQCVX9CXvFSJFQp0Uak+okBH0ijDNQYq0I40QcGd6OnTeGdzSLxt4RxkNQYs0I4yRsuXeEcbB5AlJYpI0xbNAiSKqTO2EMvzefJTbBlntFGIfGGOs6YTwFQfhA3pGHxhgnY8vwp6BIhpFQUftMF2MMG7QIEuoUBD0jjIejxOoRxqnYcrcI40okZJSxnoQ6NcIojbFHhPEIlBgXYdwMW+wSbhSrkJDHdMIYNmhpM4YXvYvGsRHGLbDFTstgbECuPgdkuNGtOymyw+/KWSgxOjRvy62wxQ4RxuEk5FGheUEjbmQ7KhLq1MgBqCtnIyON07Dl9hHGEbgxxuhtrUiqUyMLJkXjqAjjNthy2wjjKFw5J8LY1ezXYYM/y7RjY4RxDlKMjDBuFzmwk2JVXHlkhLHJtOOyGI9CihGheUtsjy2nheaVGI0rw28+K+hmjGFdZouEOi3GeDRSrBJh3AFbbhlhHIMrZ0YYu5NQp8Qao4oR8cadscTmEcbVcOUREcYeJGPb8VSiihGuPAYpVo4w7oolpkYYx+HKwyOMPUmqUwifkLONMbwwn5DHIhkWmrfFblhicoRxPK48LMLYi6Q6OcZ4GsUbkocZj0MyNMK4B5bYNMI4AUceGmHsbX6PYUbHGMMnX4vGIaF5R+6NEoND87WoRS1WbNSKSj/DUI3HohpmV6woEokNcHrdhdVlN6xulxSfAhfM28Oxe96OSk/D7nk7wh5e9sG9sbpdgtVlN5xedyIS65fmRR2q4UisrsdiN12LSu1AaYfcQqV2wm66Gjt9PHbqiAqjtDfAbbgdO7kbTt2FCFk6EBdqBG7Drdj2VqSd2yo6SII+JO3LcK1dqLPvxRJlRrrgqqNJWMeTtm7EljtWGG25KynrOhLqFFw5i/KToiUmkrbvxlV7klSXVBQLpBhF2roLR21N2rq9ulFdiaN2pc6+DyXWq2I8hoR1LGnrJmxZ3o42ttyNlHUNCXWq6YhWM96Dq/YiqS6qYlyVtHV3hLEvKesqHLWLMa5bZqzHVceSsI4mbd1sBm+lRkfuTsq6hqQ6zXREy42TjHEfkurCioKGFKOpKzGWdjQF/UhZV+Oonamz761ibCChjjfGW8zgLTiwaTNeRVKdbjqi5caNzbbel6Q6v6KgoUqMtyFZqczYn5R1DY7aibR9b5VCZgMJdQIJNce04zZlRgdH7knKupKkOhNXHkrp7J7AEpsY434k1XlVjGOos+4JGEs7w0XjtbhqR2NcuyzfSEKdRELNJm3NNQPMcuNepKzLSaqzcOUhVYybkrbvwrX2J6nOrSi6KDHWGLchbd1axTiAlHVdwLhWWb7NOJO0dasZYJYb9yZlXUbS+gWuPLiKcTJp605c6wCS6pwqxtWMcVvS1tyKDnvReD2u2sEY1yzLN5JQJ5NQR5C2bjPG4CnaxZH7kLIuIWmdgyNnUDrbLLDEVGM8kIT6RUVhSIlx1Fn3oHpvgdz4YugysCRPXT/kpPNRvaeRtu9DiTXKjF2LxxR1GCnrdmy5VRXjfiTVxSStc3HkQRHGg0ios6sYVydt3YOrtiVl3YxkcEleMoiUdQOu2s4YS4utxSLFabjqENLW7VhiixDjRSTVeTjyQEqL+wJLbEbaupOENYOEOrOieKXEeNLWvThqW1LWTUgGVTHeiKO2M9u6mvEMY7zDDNSDxgSOPICkupCkugBHHlBmlFhic9LWHbhqBgl1RhXjBNJ2J43WvSgxvorxTFw1wxg3o3SAmMCRB5JU55NUF+LI/SmdgJBYYgvS1u246mAS6vQI43akrBuqGAeTsm42+9Q9FUXrYrHnLBLWQaStO00xIWhM4sjppKzzSKqLcOR+FUZbbknKuh1XHWqKV6VFQCXWMMbtjbF0n5EMMcZtSFt3VxSti8ZfkLCmk7buCjHOMMaLzWRVuXEr046Hm6J0uXFNY9yBlHU9ggFlxqGkrbk4ahvqrLtRYrUyY3eS6pfGeCeWmFJmTBnjL0lZl5rJKqfkG2w5jbR1G66aSUKdXFFgU2KtgPG6KsZhpK1bcdS2xWNUWWG9aDyHhHWAMU6uMLryYFLW2aSsy3HkXmVGhS23Jm3diqtmmYnFcuPaxrijMZZOjnYYtzHGMWXGHiTVubjWfqTtu7HEJlWMh5K0ziZlXYkj96xi3Ia0dQuuOpKEOpHyImCHcSdS1rUVk6OSlUhbt+GorY2xtLBeNJ6Pa+1rjBtTGmlceRhJ68xiH0/uQelEjsKW25K2biGh5pBQx1cxrkOdfS+u2omUdXWlUaxM2rrdGO+uKP4XC3sX4Fr7kLbvwRKTqhiPMEWpWtSiFj+UEFrX7pvwfYYQYt748ePHz5s3739NqQjtN+NlHgG9BGmvjXRKB+VaF/AyT6D9z5DWCKSzJiJwE22tNX72eXzvTYTsi0pMQojSWVs/92/8/HMguqASUxCydDmrX/gSP/M4IJCJjZFWaeFA62a87CNovRRpr42yVirLF/ByT6D9z5HWSKQ1ocLo+c/h6bcQoi+2rDQW/Lfw9LMI6rHlVIQoNXr+lxT0Y0BxRYiSpYNy319KQT+EZimWWBcly9sxT95/HM1nKLEqSqxRxfgsHm8iGYAlJyFE6axtwX8TTz8XYfyCgn48wriEgn7YGNdHydJBedH4GJovjLGyHQv+P/H5d4TxDTz9PIIGYyxdXu35n1PQT8QYH0LTvIzGt5H0/y+Nn1HQf6OtiKBkaeHA9xebdmzGEhugZGnhoGh8FM2XKDEGJVavYnzaGAdiyYlVjP/C0y8Y42aIslWBRePjgGWMpYPyDmMrllivijFnjF+hxBgsOb4sHzQOwpIbRRgbTTuWGz812/r7ND6FzzvGOBEhSudICv7reHoegq7YckoV4ydmW1tYYgpKlg54i8aH0GTM77F0xrRofATN1ygxFkuuXpYPGgebdiw3voan5xvjVIQoXRXYZhTYKDE5xrgBSg6OMK6GJcdVGPWnL6AXfoRo6Ifov1aFMZ/7F7nFr6GcBtwukyqNhU/ILnoWhEWicSNk2X37fH+RMWaxxIYoWVo40DprtvU3xrhaWd437fgukiFYcsMq7fiqacemkHb8mIL+OwIbS0ypYlxofo9ZLLERSpYWDorGR4xxdSw5tizvU/CfxOf9COMrePpFBN3M77Hc+JExOlhiKlI2VjE+hCYXYXwYzbfLwdgdW06OMLqmHcOMeWMsLRwUjQ+hWYAS47HkmLJ80DgMS65fxfgynn4pwvghBf2kMU5FytIBr+9/Z7Z1nPE7047VjH/H5wNj3KDkGF80voSnX0bQwxhLV6nGGT1/AZ5+xBgnomRpcaPUOB5Lji7LB40rmXYsN76Ip1+JML5PQT+FIGGM9WX5BRT0w0AhxJgxv8fvUGICllz1vzDOx9OvRhjfo6CfjjB+S0E/YoyTULK0uFE0PoRmYYjRM8YPkayMJdeLMPbElptGGJNmn4kyboySfasYH0SzCCXWwJKjyvIeBf9v+HxU1ai1xtMvBoyTEaJ0tW/R+BSCVITxYcA37VhubDXtuAgl1sSSI8vyHgX/CXw+McZ1qxjn4enXEfTGlptUMb5rjGmzreNuD7HiY8KECcyfP/8n+1h6IcS8Ycl+469YJXx17I81Zv37Ut5t/fQnu+1WVNRu1P0zjbz/KFnvSjzrFaA4A+0UdsFVsxEigee/Tsa7mIL6GygNuNjeNBLqGKToha+/JONdRF4+ADIHCKzCRBLqaJRcFa1byXpXkOM+tL0QAOWNxWUmtty0eBJpvgNv6a1or/hEOrF0AKpuf1R6T4QQFLKPUWi9Br/wWhEtGrESO2OnDkeIBH7hdXLNl+Pnn6R4Z24X5W6Fkz4SIXvi68/J5C8l7/8JKBrzciIJaw5KjkLrFjLeFeT8+2h7nHDOXw1XzcSWm6C1T86/nax3S/ujUSU34KgDcOReCCHI+w8X21G/1tGOcjdcNdO046tkvEvM4JViO8qtSahjkaJH0ehdVGK0/I1NO440xsvJ+fcHjONw1SxsOckYbzPGTwPG6ThyD2N8kIx3NX67sSlgdCn4L5P1LqWg/26MCWM8xhg/CxjzgDTGo4yxOWBcbIyrG+NEY5xL1ru1zHgQjtzdGP9qjK8HjHvgqsMDxkso6CcDxm1IqKON8VNj/HPAuIlpx+HGeBk5/1cB43hj3MgYbzHGz9qNrjoIW+5mjH8xxn8FjHviqsOM8SVj/EfAuK0xdjfGC8n7fwkYNzXGVdB6acC4xBgnGOOGEcYZ2HIXY/wzGe+agLGbacc244tmW7cZkwFjN3z9iWnHMqN1DEqs3AmjFzB+bow3mnYsGnPen8j61+DrNwLGtnZ0KPjzjfGpdqMjt8NVRyNFE77+2Bj/aowqYFwJrZeQ8S4l5/+atkdH5/w1SKhZWHIDY7yJrHd7mXEGttzZGP9ojG8aY3cctSeuPNQY55HxLsXTTxtjCkduGzB+ZIwPBoyTjXEYWi827VhunI0l1zfGG43xC2McZow7GeMDxvhWwLiXMdoU/BeM8Z8BY1s7dsVf8AWZR+8k/8Y/wfdASKwRa5HYZC9Uj/4Ulrbyya2P8vVDL+K3ZAHoMuYj+u27KQ3jhqI9j8/v/wdf/P5Z8t8U96nEwA/ou9uG9JhaLALmvD8Y47+NsYcxHmKMz5PxLgsY0wFjI57+gKx3sWnHgmnHKaYdh5p2vISc/xvaHm+d89cioY7EkuugdYGsfwM57w40XxbbUdyMqw/GUTsY4+/I+tcFjD2N8WBjfM4YnwkYt8dVRxnj+8b4UMA4lYR1tDEuMsb/CxjXNsa1jfF6Y/wqYDwER20fMF6Lr98OGPc2RouC/6wxPhsw7kBCHYUQDXj6fTKFiyjohyjetNDC1lNx1dEoMQRfLyTrXULO/23AuI4xroXW+UA7lhu3M8bfmnZsM/YyxhnG+IwxPhcw7miM9Xj6PWN8OGDczBgHG+PF5PzfBYzrmn2mzXgdOe/O9keRF42H4qht0VqT9/+PrHc9Pu8YY29jPMgY/2mMzweMO5FQcyKMmxvjIHz9XaAdWwLGOVhyjRDjLca4jTH+xhjfbTe6ah8ceRBCKAr+02S8ywPGOmM80hjfNcZHSozF8/lAY2xrxzbjesY4Aa1zZP1ryXl3tT92vmg8DEdNM8ZfkfVuwOc9Y+xjjNON8SljfKHMOAchuuDpd4zxUWO0A8YB+HpBwNgaMB6FJccXjd415Py70HwbMB6Oo7YyxvvJejeWGffFkQca4z+MsW3Ct0ugHbvg6bfJFC427egb4xbG2B9ff2u2dYcx76+Pq47CkqujddYY7w4YR5LgcGy5ZcB4Az7vB4z74cgDEEKR958k611RZtzZGOvw/H8X++n60TLjsUjRD19/Q8a7hLz/OyBjjBsY47iA8S40C4xxlDFuYYz3mnb8wBj7BoySvP93Y5xvjPUBYxrPf8sYHwsYtzTt2A9ff22Mvw8YNzTG1YzxatOObcZbjTH8Usxa1KIWKz5qK5W+5/ghrlTKeffT6lW/l44Sa+PK2bR4B9J2ogxG8bKn62gpHNI+sC2NJCk1l6x/SaDzWPYKdT5iyet4zXdXN6T3RiRGkFt6atW8tNfCSh5BbvEM2k5CJUbZD6fhCprzh7YPGiuM9k1k/YsCnZ5y44V4ej45/56qeUfuhxIr0+qdXP1vEOviyiNo8Q4AspVGBpCyrqalMKN90FhhVHPJ+hcGOhSln5CQF+LxAnn/3hDjAUgxhIxXvR2VWA9XHma2daVRMpCkdaUxflnlE1Kk1a1k/PMCHYpy40V4PEvevz/EOB0pBpDxTq+at8QGOPJgY8xVMQ4iaV1BS+Gg9sFOaaSN8Zd4+qUQ4yV4PEXe/3WIcQZS9CXjnRFi3AhHTqfFm76Mxl/g6ZdDjJfi8SR5/zdVDcXBZW8y3pkhxok4cn9avIMoFjnKjUNIWpfRUpjePtgpjTrS6jYy/pl4+pUqeUlCXobH4+T934YYD0OIJjLeL0KMk3DkvrR4M0KMQ0lal9JSOLB9sFMaXUiruWT8M9qLvOWfkFSXU9CPmk52NeMRCFFPxjsnxLgJjtzLGAtVvmEYSesSWgoHtA8kSqOetJpLq396e5G30nglBf1X8v4DIcaZCFFHxjs3xDgZR+4RYVyJ1JKraL75F+iWxZUfkEiT3O0M3jr3IVrerXL8lIKVTtuNBU+8xoInXq1q6LfPJvTY820y3vkhxinYcldavUOqG8XKJNWFtBT2R/NdlU9oIG3NpdU7ub04WRqKpLqagv6DKTRXhqvmABZZ78IQ41RsuUuEcRWS6gJaCvuhWViRFzSSsubS6p3QXvirNF5D3v8dBf2XEOPRAGS9i0OMm2PLHWj1DgsxDiepzjPtGGa8lVbvuPaiWtk3GONvKOgHQ4zHAD5Z75KqeVtuiSW2odU7HPMUjjLjSJLqlzQX9qdt4qTU2NW0Y5TxWvL+r0zRrDIS6jg0ObLeZSHGaVhiK1q9I0KMo0iqX0QYm0hZt9DqHdteVKs0Xk/ev8cUKaoZT0DrFrL+FSHGrbHEFsZY+QRHKVYlqc4yxsr9ut1YOLq9YFVpvJG8f6cpUlQznoTWS8j6V4YYt8USU2j1ZlU1KjGahDrDGJdUMXYjZd1Ma+Go9mJQ2TeYdryjfWV2pfEUtF5A1r8mxLg9ltiEVm92iHEMCXU6zYX9aCv4lxq7k7JuorUwp70YVG5MqRvJ+XMDk4nlxtPQ+iuy/nUhxh2xxEa0ekdSnDAtN44loU6LMPYw7TirvRhUGg4pdRM5/6bAZGK58Qx8/Rk5/4YI4wa0ekeFGMeRUCcbY3MVY0/TjjPx+TDEeDM5/4bAZGK58UxcFX5PzhUdtZVKP96orVRaPlErKn3P8UMrKmm9mMX5dalWMGoLQa+QIkJbfjC66omqk+/PJ3AWVnaA242AdhNUG6B3fEgP0NUGv8XwUgPwZYRR9EKLakWxtkhQrWBVGjbVBr/t30HPkCJCMSSDQ074be/vE1IUW57GHiFFhB+SsXtIEaGzxr4hBdC2SBK1PxTDotqgrfPGQSEdp7b392tfxVU9UrTNKv/3xm4hhY62/CD0925UVBu0dXxHU/ts5H9n7N++qrB61FGtE/6fGbuGFDpWpFFSbUDUaeOvJqLfDs9/u3gMX78S3jeQaRe/ubIQ3RZWj2ZWuvUBEFHGxqqFjvbvYCA+H0W8fwCaj0PzxRvpVg5cy78luh0b0FWKCJ03DkRH5Is3JK5S2Cv7lGqDts4a4wzx7dhAtUJKqY9IY9zfGWeIb8dGiPgtdc4Y/XuJ22+X3Rj9WyzGshqjj03xxuhjYzGij1/LbmyCiHNE54xpqhU6OgzR57r4Y3z0ubZzxujzaZwxvl+0IozRfa/4flF0vwpsuthPI0XcU+RWTNSKSj/eqBWVlk/ULn/7mUXO/yNxA+ioglAx/8EyvV9lckTeI15CZEEJIgtKGo0vPoh+e2SRAeILIRBVCCl+R3hBCYg84RffH1WsgeVjDG9H+KEYozoVnTHGbeu4ghJEFWuK3xFnjOokE1OsgfhiDcQbozqQxHTkl5cxupMaVVAq5uOMUcUaiC/WQLwxvBhTzK8IY/TgM9K41EK/vYDSG8iWxndvZYl6DHxUQQmgYfJ7kQWlonFhZD6qWFN8f1QhBOILSsVvif6OqGJKZ4zR+fiCUvFTorPRxjhDfDtGf36crxjRf2ecIb4dF8bkO2OM/r3E7bfLbowrKMGyG6OPTfHGuCIDxB2/lt0YfY7onDG8oFQ0RJ/r4o/x0efazhmjz6dxxvh+0YowRve94vtF0f0qyJP3f4+rDoh5XS2WXwi0Du87/Hjjp/g3rfioPf3tZxZaxw1ovv8QMecqLZZx5xbUjg+1qEUtalEtFttEHSC1hkI2vKDUmbB7Rg/aalGLWtSiFrVY1vB/AGOaWtSiFsWoFZV+ZiFEU/yLvufQMb860alZxagvoHMTk7WoRS1q8XOLVPSKNiFAWtGviQtvUSL+RbWoRS1qUYtaLEP8EMY0tahFLYpRKyr9zMKWW1G8Vjoqoh/VKegemY97v+/GLCPyit8SjagLTyGQukdovhgNMfnO7Bpxy6HCjcV3x7VjfUx+eRjTMe+Oa8cfgjGuHeO2ddz+0JlIRWZ/GsbGmPzyuJo6GZlddqMdk+9MRBdMBHH3d+gak/+ejY15RP/ov6FxcHRVXtjRv8fFTwyKzBdjWdsxbjCxbKutiuFGZuOM4gdhjDbEG6M/v3MR/XfGG+N+CyvCGL3fxhuXR6E1+tjw4zA2xuTjjNHniM5F3LmqMTIbfx6KPtd2LuKM0X2GFWOMPg+I790osOXWMa+pRS1qsaKiVlT6mYUUfXDl9PA8g0io6k80K0aKhDqDqBN7Up2CZGBo3k4chHTXC80rd0OsxP6heSEHYaeOjzbap8YYT0YwIDTviINRItxYfJpW+HXcksEk1UkRxnRMOwqS6lQE/SKMh6LEuhHGjXFkeDtKhpCINNaRsE4nvKMpSKrTEPSNMB6GEmtHGDfFkftGGIeSUCdGGLuYdgwbVLQZ+4Qb5eEosVaEcQqO3CfCuFKMsT7GKI2xd4TxCJRYI8I4FVuGPwVFipVJqKh9ps0YNrDqrDH8HofFJ1XtGWFcJcbYQEKdHmM8HUGvCONMlBgfmrfllthytwjj8EijoNG0Y9jASpFQpyHoGfoZrjwSJcZFGKdhi10ijCNIyOOijVMOBhUyaBGSvtO3w24KL4r333dT0iP6h+brhkzEljtHGEeSkMdEGLuabR02sFJmW4cPSlw5ByXGhOZtuS223DHCuOoyGi0S6vTIQbIrj0aJ0RHG7bHlDhHG0bjy6AhjUyeN4UUdVx6NFKtGGHfEltuF5pUYjSuPijB2J6FO64QxvGDiymOQYlSEcSdsuU2EcSyuDL/5rKCHacewQXSbsTHGODI0b4mdseW0COM4XHlkhLGnaccwo90J43FIMSI0b4vdzMRkmHF1XDkrwtjLGMOGHrZp5/BiREIejxSrRBh3xxLhj5pXYkKMsTfJSKPTCeNxMcY9scTUGOMRy2g8g6hJv4Q8AclKEca9Y4xrxhj7kFCnEj5p6Jp2DJ+ETsiTkAwLzTtyX5TozARGLZZbaNC++Mn9q13dsnyiVlT6GYarjjOPAS494VhiImn7Hly1C0l1ZUVBQ4rRpK27cNSWpK27Kzqagn6krKtw1M6k7XuwxMSyb27AVcfiWsdiN12DSu1M6eDLRqV2xe52NXb6GOzUkSBKjdKeiNtwO3ZyZ5wulyBkaUFDWqviNtyGbW9B2rm9ohMnRH9S9pU41k7UhRgT6jgS1jGkrRuw5S5lRgdH7kHKupaEOhFXHUXpSVFgiU1I2/fgqN1IqssqChpKjKHOutu0452VRgaQsq7GUTtSZ9+LJTYqyzeSUCeQsI4yxp0p7ZA7OHJPUtY1JNRJuOrIKsZNzbbenaS6tIpxbNEoo4zX4KgdqLPvwxIbVjGeSMKaQ9q6CVvuVGZ0ceRepKyrSKhTcNVsSld2CSwx2Rj3IKkuqWJcjTrrHtOOd1R0hiUDSVnX4ajtjXGDMmNXEuokEmq2Me5Yxbg3KesKEuo00xEtN04hbd+Fq/YkqS6uKLooMS5gvB0phpcZB5UZ169iPJmEmkXausUMMMuN+5KyLiepTsOVMyld2SWwxFTS1l24am+S6sIqxtXLjKWd4aLxehy1HXX2vRXF1uLA9VQSaqYxbl9mTODI/UhZl5JUZ5iOaLrkGzqM+5BUF1QUhpQYb4xbkbZuCzHegKO2JW3fW1FsLRpPI6EON8btqhqT6hKS6mxceXgV42bGuC9JdX5VY7rEuHKZcTAp6wbcSOPpuOoQ0tat2HLbKsb9SaqLSFq/wJWHVjFuTtq6E9faj6Q6t6J4pcQE0ta9OIM2Jr3X6cjupYUh2a0vqT1OIb3Guoy6ZDpdVhtSkrca0wyaOY0+u27IiPP2pdsmY0F2DBqka9N7p/UZevyOJNUvceUhVYxbGOMBxli6GlKJNUjb9+KoaaStuRUDH8kQUtbNOGpr046lRWtBNxLqTBLWwaSt281APTjQTuLI6STVBSTVuThyBqUz4hJbbkXaugPXOpCk+mVF8UqJNUnb9xnjLRUDH8nQgPG+iqJ1sZByNgnrINLWHVWMKRw5g6Q6L8SosOU06qw7SFjTSaizqxjXIm3fj6O2JmXdjGRomXEYaeuWgHHNCmNS/ZKENd0Yt6K0y9hmPJekOh9HHkTpJEnRmLbuIGHNIKHOqiiwKbG22dbbGGPp761onFtsZ/u+isK6oAdJdQ4J60Bj3LLMmMaVB5NU55BUF+LIA6sYtyZt3Y6rZpBQZ1QxrhMw3lTFuBJp67aAsbSwLuhJUp1LwjqAtHUHltiiivFQUtYvSaqLzGRV0Ghhy21IW7fiqkOMsbQIqMS6xrgtKetGJINLjWLlDqN1bxVjL5LqPBLWfqStO01Rptx4GEnrbJLqYjNZFZxssrDltqStubjqMFM4DzNuR8q6AUlpMUCKVUhbt+OoadRZ91YU/4vG83GtfUhbd2GJzaoYDydpnUXKuhRH7lfFuD1p6xZcdTgJdWpVY1278foI41bUWXejxOpVjBca452mKBMsqqRx5UyS1hmkrMvNhFpwssnCljuYdpxJQp1SUUy1xPrU2ffhqO1DjMNJW3fgqC2ps+6pmKAoFqQuxrX2Im3fhSWmlBnrjPF0Y9yninFH0tbNuGoWCXVShHEHUtZ1FZPMUowwxq2McbUyYx+S6hJcaw/S9t1YYnKlUc0moU6hFrWoxQ8nhNa18tz3GUKIeePHjx8/b968/zWlIny/hYJ+CM0SLLEuSpZ23rX2yPuPo/kUJUahxBqIwE20tdZ4+nk8/QaCfthyY4QonSXz/Hco6H8i6IIlpiJl6XJWL/8NLZ89AwhSfddB2aUdOt9vofWLp/DyLaR6jsNKlp5AtfZo/fafFJq/wW0citswtiyvyS59heyi97DTPUg2rlthzGfeo2XBy0g7TbrbhkhZunqoUPialm+Msfs6WFZp5933m2n59kn8QivJptWx3cFlhgKti54m3/I1ifqVcesqjZ5+Dk+/iWAAtpxYpR3fpqCfMe24WYXR87+ioB9BIFFiCkqWt2MzBf0gmmYssT5Klg4wtC6Q9x9D8zlKjMaSE8ryGk8/i6ffMsZJCFFak/b8tyjo5xDUY8vNECJRlv+Cgn5sGY2PovkCJcZgyfFl+XhjwX8TTz+PoMEYS1cPdRgVlpiClKWdTt9favaZKOMjaL4MN/rP4PHvZTB+boxWJ4wbouTgCONYLLl6Wb7DKBmEJTeKMDZiy6kxxqlIWdrp9P0lFPTDEca82dZfosRqWHJcFeM/8Xg7wviGMXYNMX5GQT+OwDbtWM34EJoWLLERSpYfe/KmHb/qhHEwltywivFfePqFThgdY2xcBuM4LLlaWV7jvfcK3jefIJv6YA0bh5ClxqVvf8bS1z/CbkjTdf2RSKd0RUnmy+9Y9Ny/EZai6/ojsetLL1f1/cXG2IolJqFk6QrRDuPXKLE6lhxTltd4/tN4vINkiGnH0tnvgv+6acduph1LV7N5/icU9N9MO26GlKWTFR3GjDGWFtu0zgWM46saC/5T+LwbYXwVT89H0B1bTgkxPoHAjTA+iCYbYXwYzTcRxifxeR/JUCy5QYSxB7acHGFMmP06zJjDEhNDjA+h+TbWqFgJJdeLMU5BiNJVgZ7/sdnWYcaF5tgTZsyadlyAEhOw5Kpl+c4YX8bTLyHoadqx3PiRMSY7YdwYVTZ5VmpcA0uOKsv7xvgBipVRct3/wvghBf13BCljLF1R4vvfGWM+wvgQmu+WwfgSnn45wvgBBf1kJ42boGTpxFSHcSFKrIklR5TlfQr+3/H5EMUqKLlOFeOLePoVBL2MsfT42GFMG2PpClDfX2CMhQjjg2gWhRrz/hNoPo4wzsfTr0YY36eg/9EJo2eMpRNT/5FRDEeJtSOMvbHlplWM71HQTxnjZkgZfVuE/0VMmDCB+fPn/2QfSy+EmDcs0X/8ZSuFrzz9scaR71zCu5lPfrLbbkXF8rgJRi1+hJH3HyLjXYmvXzf/px5H7kJCHYkQKQr+K2S9iynoJ03expZbkVDHIkUffP0ZGe9C8v6faXskfN7fEFcdjSXHonULGe8ycv59tD0GV4pVSTATW05F+5p/3fQ6b9z0Gs2fFp8UlO7/CKMOWpWRB6yKkIIP//wBr1z2IgteLz5C1mn4OyvvPpxxx4zHSlp889LXzD//BT7/e/GxpdL5jsFbf8f4E9cg3SdN86dLefH85/joz+/j533gG/pMXMK4Y9ek25ju5JvzvHLJPN657y3yS3LANzSNbmbMkeMZMGUQ2te8cfOrvHnLa7R81mZ8mJHTxzB8v1URQvDJX9/lX1e/wKI3io9ntRsWMHSXkYyatSZW0mbBy1/y6iXP8tVTnxjjNwzY8ivGHLsuyV5pfP0pGe8C8v5faHskfN6fSEIdg5KrovVSMt6l5Pxf0faoXiVG4zIbW26K1j45/xay3lw0nwMguAZXTceReyOEIO//mYx3Fb5+02zLBhy5q9nWCQr+i2S8i/H00ybvYMtpZlv3Msbzyft/NUZB3t+IhDoWJUcZ4yXk/F+3G3P+GFw1yxg9cv7NZL1b0XxhjNfiqgPbjTnvT2T9q/D1WybfiCN3w1WzjHG+Mf4zYNzaGHvi609MOwaNE41xJFovCbRjszGONcZNjPEmst5t7UbJtTjqQBy5lzH+0Rj/bYxdA0aXgj+PjHdJwOiadjwOKXrg64+N8cGAcZLZ1m3GtnZsM66Gq2Zjy0nGeKMxfhkwTseRexrjA2T9q8uMu+Oqmcb4gjE+EzC2tWMPfP2R2a87jJY/ybTjCLRebNoxaBxnjBPR2iPrX0/Oux3NV8Z4HY46CEfubox/IOtfEzA2GeMRxvg8Ge/SgDERMHbH0x+S9S4k7z8UMG5sjMON8WJy/v8FjKsb40ZoXSDr31BmvBZXzcCWuxnj78j61+LrtwPGPXDV4cb4nDE+GzBuY4zd8PQHZAoXUtAPUbxJnMTyNzHbehVjvIic/9sy45HYckNjbGvHr43xGlx1MLbctcPoXYPPOwHjnsboGOMlePq5gHFbEuqYovHbz8g8cgeFN58F7YMQWKusSWLTvVE9B1BY0srHtzzMNw+/hJ/JAVA3agD9992UhgkroT2Pz+75O1/+4VnyC4r7/ef3Pkmf3Takx+YTjPG3xvhuiPFZY3zeGJMBYxOefs+04yOBdtyUhHUsSqyErxeS9S4i5/+Otsdb5/wJJNSRWHJ9tM6T9a8j593R/nhqyXWmHXc2xt+Q9a4LGLsZ42HG+E+zrV9oNzpyO1x1DFJ0NcYLKOhHA8bJxjjMGC80xtaAcQ6WXM8YrzXGb43xemPcCYC832Z8r8Oo9saVhyKETcF/2hjnlRmPRYpGPP1uoB19QJl2PA4lhuLr7wLt2GZcwxjXNcZryHl3lhkPwVE7orUm7/+KrHc9Pu8bY3djPMQYnyLjXRYwpgLt2Iin3zHGRwPGtnYciq8XkPEuIu//PmBc0xjXQescWe9qcv5daPPY+aLxUBy1gzHeb4wfGGOPgNGi4P/DGOcHjNuTUMcgRAOeftsYHwsYpxjjEHz9LRnvYvL+74CMMa5ljGuHGG8wxu0jjPvgyoMRwiLvP0nWuwxPv2iM6YCxHs//NxnvoirG41BisDG2tWObcW1jXAuts8Z4d4dR3ICrD8VR2xnjvWS9G9ofCS/oadqxzfh3st7lZcYdSKijjfGtgFEDFraeiquORYlB+PobY/xDmfEoLLmmMV5Fzr+nzHgYjtoWrTU5/x5y3o0B45WBdlTk/b8Z40sB444k1FHG+KYxPl5iLJ7PB+LrrwPGrDGuY4xrGOOVxvidMa5ijNsY493G+JExXmWMM4zxCWN8OWDciYSaY4xvGOMTAeNmxjjAGC8k7z8QMK5rjBOM8Qpy/r1lxiNw1DRjvJOcd3PA2BtX7Ysjpxvj48b4SsC4szF2McYLKei/dRjl5sbYH19/FTDmAsajseR4tM4EjAuN8UZjDL8Usxa1qMWKj9pKpe85fogrlXLePbR61e+bpMQauPJIWrwDaTsJBUPQm5R1LS2FQ9sH36WRIKVuIusHO7hlr5DnMO+k/rx911tV88P3GUHXkU08c+LTVfM91+7FuDnjeXTfh/CyXkU+1TfNpBs34e8HP0zrFy2Vf2NCsfHczXnpwuf5Zv5XVb9j7fM35Jv5X/HufdWNq+wziqbhDbx4xt+r5nus1ZcRh03gqRl/xs9VM9ax8a/Xo9C4d3uBoDSSpNTNZP0LAp2e0kjI8/F4nrz/66p5R+6LFEPIeGdUzSuxDq48lBbvINpO5sEQ9CdlXUVLYUb74LvSOJesf26g01NuvBCPZ8j7vwkx7ocUg8h4Z4YY18WVBxtjvopxACnrCmP8OsR4C1n/HDz9apW8MManyPu/DTEegBT9yHhnhxjXw5UzQo2SgSSty2kpHNQ+sC2NFGl1Cxn/F3j6tRDjRXg8aQYr1YzTkaIXGe+XVfOW2ABHHkCLN4O24mWpcRBJ61Jj/LbKJ6RJq1to9c/GDzVegsfjppNdzTgDKbqT8c4JMW6EI/elxTs4xji9fSBRaZxLq38Gvv5XiPEyPB4m7/+xqqE4uGwg450fYpyILfei1Ts0xDiEpHUxLYUD2zvppVFnjKfh6zeq5CVJdTkF/Vfy/p9CjIeBSJP1LgwxTsKWe0YYh5JcdAUtt5yLbl1S5QtSJHc9g7fOe4iW96oc44VgpVN25dsnXuW7J1+vzAN995xEj33eIutdHGLcBFvuSqt3GObJDGXGYSSsC2gtHNg+kCiNLqYdT2ovTpZ/QlJdSd7/AwX9YFWDK2eCsMl6l4QYJ2PLnWj1Dg8xrkTSOt9s62rGBtLq5gijMsbfmeJjFaOaDQiy3mUhxinYcgdavSOqG8UqJNW5NBf2BxZXN1o30+qd2F5ArTReTd7/tSlIVTPOAe2R9a8IMU7FltsZox9iPIfmwgFVjYJGUtbNtBaOay/8VRqvIe/fbwpS1YxHg86R9a8MMW6OLafR6s0KMQ4nqX5hjJX7TIfx2PbCX9k3GOM9pkhRzXgM6Fay/tVV87bcEktsQas3O8Q4kqQ60xiXVjF2JWXdRGvhmPbCX6XxWvL+naYAUBkJdTxaLybrXxtinIYlptDqHUm1m5RIMYqkOiPC2GSMR7UX1SqN15H3b6egq/e9EupEfP0tOf+GEOPWWGJTWr05IcZVSarTzT7THGGc016wqjReT96fS0H/I8R4Er7+mpx/Y4hxWywxiVbvqKpGJUaTUKeYdqzs4wq6GePs9mJQ2TeQUteT82+moJ8KMZ6Crz8n598cYtweJTYg4x0TYhxDQp5Msxdm7E7KupGWwiw0H4cYbyTrXx+YqCs3noar9qua+19EbaXSjzdqK5WWT9SKSt9z/NCKSlovYnF+Xdpmf6qFoEfIAL0tPxBd9UTVlu8ZUoQoxrcvDOPJncNvhgsgHYmfq+w4tUWyZ5LWr1pD8/VD62j+qFon2ry/V4rWLytPdG2hXFW1YNURmkTKR+fDjW73JNlvwo3r3Psk9WOfDc0LeocU7toiQdR2LIZNtUJHx3d0Dyl0FEMyMKRTsjyNFtUGvx3f0S2k0NFZY5/2VVz/K2P8PhNnTNI2Ox8eimoDy47vaAopxnTW2BfNZxHfn6Ja5/E/M3YNKca05QeEdEA7a0xTbaBQGpJqg7aO72gMKSJ01tgPzaf/W+P9G6LfWRSa/3bRaL6uVoNt+/a0i99cOenQFlbPZlaa+wCIcGPxRrfhhvh27I/mk4jPr6PawLX8U6Lu0CmoR1ctxiwvYxeqFSn+E2Px3ohRxmhD3N8Q9/mdM0b/nfHGuHaM/i3F+zpjjN5v49txeRijf9PLbmyEiONG3HGnGNHHr7hjdNx5qPj0zPBzRNw5phjR56plNzZBxLm2c8boc35cnyH+fB7dH1gRxvi+W5zRpov9FFLEPUVuxcTPpah06bDwh0P8WGPOuxfXikrLIWo36v6ZRc7/I3ED6KiCUjEfdTIlsqAE8OGvwp8u0hZRBSUgsqAEOrKgBEQWlICYghJIGV1QAiILSiqdpW7k85F9yOhiDcQXQiCqoFT8jvCCEhB5wi++f3kYw4s1xe8IL9ZAZ4xRxRpYEcb4fSbOGFdQgrgOYHTnrDPGqGINxBeUIN4YNVggZkDUGWNcsQbiBk1RxZpiPs4YVVCC79241EK/E5EHvnsr+rgRVVACaNj0vZiCEkQPsDvTjlFFBogvKBU/JTobfR5ZdmNcQan4KdERZ4w2xP0N8QWl4qdER/TfGW+Ma8fo31LnHu0TZ4zeb+PbcXkYo3/Ty25cGJOP26ch7vgVd4yOOw9FF5QgvhACceeqZTdGn2s7Z4w+58f1GeLP5/97Y3zfLc6YD129XYta1GLFR+2eSj+z0DpuQPP9R+un4Y9i/bFE2ENSOxtu92ak3ZkOWi1qUYtaLMdYbBN1BNMaCjk7NN+ZsHt2pjBWi1rUoha1qMV/H76Om0iqRS1qsaKitlLpZxZCNMW/6HsOt9v3P+D4oV/VmV+YRPt0bnKyFrWoRS2WV6SjV90JAcqKfk1ceIsS8S+qRS1qUYta1GIZQohu8S+qRS1qsUKiVlT6mYUtp1G8VjoqukRmBT1i3l8fme2/XbUb1JaFjF4LZNc7EVlBsmcq8v1OQ9T7Qajo7/d8GbtcyaoL/478oiRL3xwd8xlxK7o6s/vGramqi8zGb+s4Y9xvrfgt0RH96Nh4Y2NMvjMLNn8MxrhYVmPXmPyyrW4pRvR++8MwJiOzgrj7O8QV9qOPTZ2LCGNDHjEg+m9oGBJd7RZ29H696PHBkfliRBee4tpREDeYWB7t+H0b3f/Q859/Rpwh/vf6YzAujyJmTJ8gZr/9aRijjwudi+hjrIg5Rscf46PPEZ2Ln4KxMSYfZ4zuD3Quovsl379R4MhtYl5Ti+UdWouf3L9aLJ+oFZV+ZiFFb1x5SHiewSTVqRGfkCahziL8pClIqtOQDAr9hIEbT6XvpH6h+f6bDmD0oWNC8/VDG1jrjLVD83adzZpnr4eVCjnhCZhw+rrUDQovfq16+Dj6bBhu7LfpIFaZPi4032VoI+NOWT80b9U5dOl6EuGduGI7CgaEfoYjD8cSEd8hJuPIA0PzkmEk1SmheehCwjorwihJqtMR9I8wHoES60YYp+LIAyKMK8UY640xrMPeZgzflo6cGWPcDEfuF24Uq5BQ1Z+mWIwGEurMGOMZCPpGGGehRPhv3hJb4Mh9I4zDSagTQ/OCRmMMG/wpY+wT+hmunI0Sa4bmbbkVttw7wjiiE8YzOmHsHWGcgxJrRBinYcu9IowjY41JdSbhg7/OGsPvFWnLbXDk7hHGVUmo4yOMXUlOORRUyKBFKvodtD12t/DJhf77T6FuZPixqcvKE7Fl+MMYpBhNQkYZm8zvMWxgZZFQZyDoGfoZrjwGJcaF5m25A7bcJTSvxGgS8rgIYzfze4wynhk5cHLlsSgxNsK4I7bcKcI4loQ8NsLY3bRj2OCvrR3Diw1FY/j52JY7Y8sdI4yrkZDHRBh7xBhtYwwvPLnyOKQYHWHcFVtuH2FcHTfS2LMTxjMjizoJeQJSrBqad+Tu2HLbCOMEXBn+1CVBL/N7DDM6xhheMCkaR4XmbbEHttw6xjgnwtjbtGNYUbrN2BhjDL8vpy32MpOnYcY1ceXsGOMZEUa3E8aTkGJ4hHEfbLllhHEtXDkrwtjHGMOGcAnTTw+f9EvIk5FilQjjvlhi8wjjOsUnaIYa+5FQp0cai+fK8H540bhyaN6R+yNF+HmoFrWoxYqNWlHpZxiuOoqEOqGscyGwxGTS9r04aidS1jUVhSElxlFn3YOjNqPOuqeiwy4ZRMq6BkftQNq+F0tMJrjCozhQOJGEPYeNb5rM8H1GoNyOE7dyFcP3G8mkGzZh/IlrMOHkNXG7BgaQAgZsNpDNf7MlK+26CpNu2IS6QaUDnx7je7DZb7Zk0BZDmHLfNLqNK+3Qdxlcz8TrpzBsx1WYev80+k0eWLIIxW1KMP7ktVntqAlMvHEqK+81stSYUAzfdxQbXbMpY49blzHHrIPTGDBKQd8pQ5h013YM2Wkk61wxlfSA0pNmt9V7sfHd29EwaB3S1t0VgwrJYFLW9Thqe+rse7HEJlXa8WQS6khS1g1mgBkcxCZw5L6krCtJqBNw1TFlHSCJJTYjbd+No3Yhqa6oKAwpMYE6614cuRlp6y5UWYe9w7idMW5cxXgqCTWLtHWjGWAGjUkcuR8p63IS6sTiI59LOkASS2xujLuSVJeHGO+JMA4pto/a1hgnleSLg8LTSKgjjHFXSgeISRy5vzGejKuOqmLcgrR1F67ajaS6rKJ4pcQaZp/ZnLR1Z8XARzKUlHUjjtqGOvs+LDGxzNidhDqDhDqctHWTGQQHjSkceQAp61IS6tTi471LOmkKW25J2roTV+1BUl1SxbgmaevegLF04NNh3NoYN6pqdNWhpK2bzSC43DidpLqYpDrdPCa93LiVMe5pjKUFNiXWIm3fh6O2IG3dUTHwkQwjZd0cYexBQp2Fqw4mbd1iBsHlxoM6jHIWpSs2FbacZox7kVQXVxTYisb7sdUWpK3bkWJkmXElUtYtOGqa+T1uWMV4NgkraAwOENM4cgZJdWHxb5EzQ4x34Kp9SKoLqxjXLhoHbkR67zOQvQaXGnsMILXnqaTGr8OoS6dTP2FYSd7u1oXBR25D3102YPi5+9J9yjiE1dGNkEmHPrtuyLBjdyCpzjbG4GpIC1tuTZ11B661L0l1QRXjuqTt+822vr1icCbFKqStuThqK3OeKS2sC3qRVOeQsKaTtm41xYTSdnTlISTVeSTVL3Hl4VWM2xTb0dqPpDqvoghYNN6Ho7Ykbd1aMTgrGm8t5u17UWK9KsZzSVgHkLZux5bbVTEeSlKdS1KdgysPo3TW3sKW25G2bse1DiCpzkXQ678w3hYwlhbWBb1JqvOM8Q5T8Aga63Dl4STVOSTVuWayqty4PWnrNlzrQJLqnCrG9QLGuVWMw0lbtxvjfVWMfUiq80lY+1Fn3YEtt6liPIKk+gVJdR6uPLiKcQfS1lwS1nSS6pcVhUpLbGCMW5G2bqkY5EoxgrR1R/H3at+HEutUMV6Ia+1j2rF8tXgXXDmThDqLpLoAR86oYtyRtHULCWsGCXV2VWOdfR+OmkbKuhnJSmXGkaYd24ylExRF40W41t4RxlkkrTNJqotw5EGUTiy2GefiqoNJqLMqiqmW2DDGOMq04+bGuFaZsS9JdQmutRdp605suVWlUc0maZ1hjNPLjDa23Im0dQuuOrRqMdUSG1Fn34+jtiZl3YSk9PgnxaqkrTvNufLeikmUDuMepK27TOEoaKzHVUeStE4jqS4xk37lxp1JWzfjqsNCjBONcRtS1o1IhpYZRxvjZtRZ91ZMogj6kVSX4lq7kbbuwhJbUDoUbMBVR5G0TiVlXYYj96d0YtHGlruStm7CVUeQUKdXFHyLxntx1LakrBuQDKlivAtbbW6MpZMogv4k1eUB4+ZVjEeTUCdRi1rU4ocTQv/Qbz7zIw8hxLzx48ePnzdv3v+aUhG+n6GgH0TrxVhyfZQsPTlp7VPwn8DXH6PkGCw5vuIzCv48PP81pBiAJSchRGmd0vPfpeA/jRD1WGIzpCxdrdH6TSsfP/ghAAM2H0SyW+mqmEJrng//8iH5JTn6bNCPhmGlMy/a13zyyMcs/WQJ3cd2p8capZ1WgK+e/4LvXv+G9IB6+m08AFF2ad2idxbyxdOf4tQ7DNh8CFaidKav9ZtWPnnYGKcOIlHF+OmD71FoztNzvf50GdJYYfz88Q9o/mwJXcf0pPu4ylUKBf8FPP91pBiIJSdGtGMDlpha0Y6e/zUF/QggscVUpCydjfT9Vgr6r2iascQGKDm41Kg9Cv5j+PozlByLJVevMOb95/D9NyKMb1Pwn4kwfkVBP9pJ44YoWVrULDWuhiXHleU1Bf28MQ4yxtJt3WHsiiWmIKVblv+Sgn7MGDdDysYyYwt5/VegBUtshJIDK4x5/1G0/sK0439j/DcF/9kVYPwcJcdhydWqGJ/D999EiiFYcsMqxrco+M91wqjMto4yTkTJ0tnGovER047jseSYsrymoJ/F99+KML5pjE3YcjOEsMvyXxijjS2mVDE2k9cPRhgLxvjl92j8nIJ+3BinImXp8c/3l+K1PoLWLajERiirtPCqdYFC62No70ukuzqWM7osr8m/+xreV5+gevTFXmlshbH1009o+fAtVKqe+tHjkVbpDH5uwXcs+ffLCKWoH7UGVrr0+Oj7S0w7Zk07Vhrz/sNo/TVKrh7Sjv/E999GymFYYv0q7fgvCv4LCNENW06t0o6fUdBPmHbcDClLC/0dxpzZZ6KME7DkqmX5/8TYHVtO+S+NfwXyWGISSpYWXrXOG+M3Ecan8P13kXIlLLFehbHgv47nz0OIHsZYei70/E8o6L8DjjGWTur4/mLTjvFGS66BkqPK8kHjylhi3SrG1/D8+cvJuDFKlhY1i8aH0PpbLLkmSo4sy3fG+Cqe/yJC9MSWk6sYP6ag/wYksMXmSFl6GbrvLyKvH4oxPojWC7DkWig5oiyvKfhP4uv3kXI4llg7xDgfIXrFGFOmHUsvRfL9heT1wyvI2NsYS489pcbNkbJ0BX2HsYAlNkHJXmX5LAX9MFp/Z4ylBexS4wgssVYV48t4/ksI0QdbbvpfGh8E/E4Y10bJ0sJr0fg3fP1hjPFl047VjB+ZfWZFGEdiiTWrGF/C819Bij5YcpNQoyCNJTZHyuVxqebyjQkTJjB//vyf7GPphRDzhiX6j79kaPiqzh9rHPXeRbyb+eQnu+1WVNSKSt9z/FCLSnn/z2S8K/H1W+b/1OHInUiooxEiTcF/iYx3IZ7+p8lb2HJzEup4pOiHrz8l451P3v8rbY9bV2JdEuo4LLkaWi8l411Czv8VbY+YLV6CMwtbboH2Na9f/yr/uul1Wr8oPt411TvFqINGM2rGaIQUfPDA+7x82YssfLP4CFm7i81Ku67C6sdPwE7ZfD3vK+af9wJfPF18bKm0JYO2GsyEk9Yk3a+OpR8v4cXznuOjv76PLhR/573X78u449ei+2o9yC/N8dJFL/Dur/5NYWnxEdqNI5sYO3s8A7cYgu/5vHHjq7x5y2u0fmmMfdKMOHA0Iw8cg5CCj//0Nv+6ah6L315gjA6DdxrJ6DlrYaVsvp3/Ba9e/AxfP1t8QoWwJP23GMbY49Yl1acOX39s2vGh9na0xPq46lgsORatl5DxLibn/ybQjiNNO26G1h45/0ay3q1ovip+B31w1YE4cj+EkOS8B8j6V+Hrt8227IIjdyGhjkKIJAX/BTLexXj62cC23tJs6z74+iNaC+dT0A/R9phZS2xAQh2LkmPQerEx/l/AOIqEmo0tp6C1R9a/npx3e8DYN2AU5Lw/kPWuwucdY6jHkbuSUEca4/PG+JzJ2wFjbzz9IZnC+RT0wwHjhsY42hgvMsYWY1zVGCejdSFg/DpgnI4j9zXG35H1rsbn3YBxN2NMUPCfM8bnA8atjLGXMZ5nin9txo2McVVjvJCc/9uAcbQxbhow3obmG2PsZ4z7hBgbAu3YZrwIT79g8k7A2BNPf2CMj5YZj0PJUcZ4ATn/d+1GJUbjlhivNe34rTH2N8a9jfH/yHrX4PNemXEOQrgU/GeNcV7AOM0Ye+Dp9822foTiI65FwDgSrRcFjK3GOAZXHYktN0brvDHeUWY8CEfuZYy/Mcb3Tb4RR+6Gq2Yb4zNmWweNW5NQxxnje2QKF4Qafb2QrHdhFeMcbDnJGK8h590ZMA4wxj0RQqA/eAD91lxYah7L7NTDkB0RIw9CKAf91fPof10L375SzEsHBmyGGH0EItGN/BdfsPA3v6L15ZeLTzYQgsTo0TTusBNO//74+jsy3oXmkc0ZYxxrjBOLRu9qcv6d7Y9+lgzEUTPaL8/L+78i612Hzwfmb+iKI3fHVTNNOz5FxrsUT8837egG2rE7nn7HtONjgXacZNpxuDFeQN7/fcC4mjFuhNY5Y7wrYByEq2a0X56X9+83xg8Dxj2M0aHg/8MYXwwYtzHGbsZ4vjFqY9zYGFfB1wuM8Q8B4zhj3DDCeLBZPVnN2IQj98RVhyOEQ95/kqx3KZ5+yRgTAWMTnn7bGB8PGDchYR2HEivj628Dxqwxrk5CzcGSGxjjVcb4XcB4SPslhHn/XrLeDRHGvxvjywHjtiTUsUWj/28y3vmmsKYprgTdhIR1PEoMw9ffGOMDAeN4Y1wfrbNkvSvJ+fcEjIONcWcAcv495Lwb2h9lXjTuZYw2ef9vxvhKwLidMXbF898yxr8FjJsa41BjPN8Yc8Y4wRjXCxjvRrPQGIfgqkNw1M5orcn5d5P1bkDzsTF2w1F74crDjPEJY3zVGJM4cjtcdSxSNOL5bxrj30OMXwfaMWg8Ckuua4yXk/PvLTMehqN2NMY7yXo3lRn3xpWHGuPjZL3LKowJdRxCNOD5b5DxLigzTja/xyjj0VhyHWO8jKx/L7DIGIca4w7GeIcxfmKM3QNGi7z/mDG+ZowpYzy2zPg3k1eBdhyCr78KGPPGuIYxro3WGTL/z959R8lRXA0f/lXo6Z6ZVc4SkkBkEEkCkZEQCkSTwWBMRiLnKDICCUlI5JxMTvZrf6/92mCSDcYRMMY2joBtjLHJBrQ7uzNd9f0xtVJPb4eFFSDB3HN07MOd6Xm2eqa76nZ1V3gFHeaBiHFVZ9w9YrwZy+sR44H48khnfJxKeCWmwbi7M/YmNC9F2rHTOMUZV8bY/zjj9yLGTZxxQsR4P/CBM67mjLs54x2uHV0flkHOONMZH3PG30eMexCoU53xd1TCBdTs0xHjVGccjbH/dsb/ixgnOOMmWNsWaceo8RgKKv120c8jvgxFpTHBSuMWrZJ+y/WKGie/uoBXmkWlHkezqPQpx/JYVGoP76YSnpeYU2IcvjyR1vBwOk/m0RAMoaSvpbV2DJb/JGyhQEndQruJdsIbw5cX8dwZo/nr/X9OzK/xtTXpt05/fnH2zxLzgzYezAYnbcQTBz+KqZou+dLQEpNu2o6njnyUtjdbu/6NvmLSbdN4YcGzvPPCW4mfMWHuVrz9/Ju88lCycfUD1qb/mr154aKfJOYHbjyMtY8ezzMzv59oLA4tM/l/NqPW98AlRYzGCFw7zot0zGKvkHMIeZaq+Z/EfEEegBSrUAlnJ+brzxY4itZwBp0FrWgIhlHS19Bam7mkiNHVeCvtZm6kYxY3ziXkF25gmmQ8EClGUgkvSTFuii9nZhiHU9JXOeM7CVsoUlK3UDFzIx2zuHEeIc+4AVWS8WCkGE4lnJNi3AxfHk5reGSKcSVK+gpaazOWDBq7Gm+lYi7G2JdSjAsI+bHrHCYZD0GKIVTCS1OMm+PLQ2kNj0oxjqSkFznjeynG26iYizA2+UH7gVxIyBOuc5hkPAwpBlAJ5yfmtdgSTx5EW3h0olEyiqJeSGvtiCWDncYoUVa30mYuxNg/JuQFgbyMmn2Mmv1BinEGQvSiPVyYYtwKT37dGcME42iK+rIc4220mfMwNunYIgjkImr2YWr2kUSDL2fi/2UA9qUbEvMM2RxW2QN+cQb1JSZjUR5Jbe1LeXPRNZjWrsdHEQQMPv0YOoaenGG8gpr9P1doTjIeBcKnPbwiMa/FRDy5L23hcSS348oEegGttcPpHJA1Rovb1+dEiuWNxqK6kqr5X1fYSzIeAyjazVUpxkl4ch/awmOpF7TixjEEeh6ttcPoHOw0Ri/K6hbawlmRIm/jFurG77gibpKx/sySdnN1inEyntyDtvD4FOOqFPWlLK4dCnyYYryVtvDMSJE3bryaqvmmK0glGY8HQtrNtSnGKXhyV9rCE1KMq1HUl7C4dhjwUcIWelPWt9JWO31Jkber8Vqq5v5IASBmVCeCbafdXJ9inIYnd6ItPJGkJVmlWIOiusgZk1av7UNZ30Jb7bQlBdTGUBTVNTnGk8Eupt3cmGKcjid3oC086RMZBX0p6Ztpq526pPDX1XgtVXNPpAAQN56CtR/SYW5KMe6AJ6fSFp6SYlyTorrQfR8Tjj30pahvppJq1M54JzX7TIrxNKx9jw5zS2LekzuixHZUwlMS81KsRVGd74xtCcZ+FPVNtNVOXlJU62q8ng5zW+SibGME6gyMfZMOc3uKcWeUmEQlTJ4RIsU6FOU5LA4PyzDeTFvtxCVFta7GG+kwt2QYz8LYN+gw30gx7oISW1MJk587J8W6FOXZGcb+rh1PWFJUSzbeFLngGTfOwleHJ+Y+j2gWlVbcaBaVlk00i0qfcixvRSVj3+fD6hZ0XjFNCsGglEJHZ34U1l3p+yTvf+dXq/L0PukPcYX6rKOkYkxnBIOKVN7qeqLqjN6rlFn8WlIn2r1/cIlKQsFpyecXFKaj62BnaViCksFmGP0BRdrfSTdufv/T9Fo/+WQJ9QJecuFuySfQecU2PTRJA/SlnzEgpRjTmc/b13nGgKzvWj0USQPLpZ/RP6UYUw/JSExi5+6zNPZLKcZ05kemdEA780Ox/Hs5Nw7D8kbG5xdJ6jw2hiRpYLn0M/qmFGOWlbFE0mDm4xn7YBMLHZ35lVI68t01lkkeuLr3t0rKj/dDJAzaloTXG6pJhY56vP2HLan8PWkA7wQHfoDeNOuclW10UpIGlkujN8nFmM5357XjiJTBSGe0kFyk+KIZe5FcMOqeId+Yvf3uRfbfmW/Mbue8/dS9yDMOXzJbIznfU2PefobcY0OPjX1ILuJ+HGP2MTbv+Jdv7AsZ54i843c9emrMPg/lG7PP1fXIPp/23NgPMvoD3TNm90vy+jX55/Psvh9oennPIEXeKnKfTTSLSituNItKyyaaD+r+kkV9pkP24DSrIFTPpxcZuvP+vz+0dmYeyCwoAZkFJbCZBSUgs6AE5BSUQMnsghKQWVBS5XbKa/8qs3+WXQiB/IISZBWU6p+RXlCq5/P2dZ4xrxACeR2X7E4FmQWl+vs/C2NW54yczh05BSVYPoxZhRDILyhBXmc/q6BUz/fUmFdQgnxj1qCLnAFRd4zZxRrvn4XsghJkFpTCiqby9+zjo1wjeVbf0sgrKEH+4DO7CJDfjlmFEMgv1tS3kh0rgjF7X+YZ8o09LShB3t+Zb8xu554XlCDfmF6sqed7auzOBd7s313PjdnHtu4Zs4+xece/fOP7Ofm8ghL03Jh9Hso35hVrIO982nNjdn+ge8a8sUR2vyb/fJ7d94Oau/W5Gc1oxvIQaWuPNuMLGtZmdzo+i2j7V/oSol+W8AcuRnrd6fw0oxnNaMbSEG09uxYUtnuASH+BsMh+3SlYN6MZzWhGM5rx+YVZDsY0X6qwYGxG/2FFjeZNW8skmjOVvmQhxID8F33K4Q/szlXunsXyfldnx/vF+uNOlnNnM5rRjOUrrN+zg4YsZM9exArMh172a5rRjGY0oxnN+JxjeRjTNKMZzajHclVUEkJMEULcKIQ4XQgxz/3/vp9wW3u59z8qhHgubVuRz5nSmXf//yEhxIwe/UHLYXhyF/InqGXPJBIMzsn3ycyP3C35Qb8N25DZlfBC70KmoDi4lJGHQl8/My9U9ueHRmZe7If6SnBpUftvkY/+uF7ONrLbsX7Pe17kXVHolZnN29f1ZwdkRXcmQ+YZWzKz+cZ+Ofkvi7GcmRXkPZcgz7gsChHZv9t8Y/+cfNZxo7vx+RprI7oxi0gFqSldrFIYlp4HMH9aPecDso+f3YvsJaEFA3PyeYOJZWHMbqd8Y3Y+b/vdi6Yx77vUvcjpE+R83/J/95+FMfvYkm/MPrZ1L7KPX8uHMftcJXLOdfnG7HNt96Knxrw+x4pgzO5XgaAgl68V4JrRjC9zLDdFJSHEXsA8a+1Ma+18a+0ZwI3Acx+3sCSEmAfgtjUV2A7YGHhVCDEm9vK+wAzgUeA9IYR1//8Va23yEhcrcEgxuL4yT1qeMRTVBaQPUFsI9GzSD/aCQF2AJN7MS2PktjswYvJK6flpoxh73Pqp+T6r9WHC7M1TiV4vjwlztkKXU054UrDxhVvQa5X04tnY4zdi+KSR6cbpK7PWkeNS871X68eG526dbuxdoHf/s0k/sUuK6kIko1M/oyBPQIttUvNaTKcgZ6bm66vFJK8CWI8+BPpi0jtxncZRGcbj0WKrDOP2FOQRn9go6OuMaR12RVFdiCB9X/ryRLTYMjXvyR0pyMMyjGtRVOfmGGd3w5j+m/DlySixeYZxZwry0Azj2gTqnAxjP4q57XgRghEZxlNQYrMM41coyEMyjOvmGPtTVLNJH6BqSuoiBMNzjJtmGHejIA/KMI4lUGd3w5g2+NOuHYdlGE9DiU1S86rPbjBm79Q8fdeG9U9Mz/v96LvvQeClHB+VojR4FoKhGcbTUSL9eZae3JOC/FpqXon1CdRZqXnBQNeOaQNUTaBm99C4NwW5X4ZxgxzjIIrq4gyj54xDMoxnoMRGGcZ98WT6ohZKbEggz8wwDiZQs0kf/BWcMX1wF8izUGLD1HxB7ocn98kwjiOQZ2QYhxKoi7phTB/I143pfYaC3B9P7pVhHE8g0x8+u9SYVtz3nTG9+FU3rpdhPABP7plh3ARfJq8GVjcOc/s6z5heHAvkLJQYm2E8CE/unmGcgC+TV1WrG4fnGAMCdXFm4SmQZyPFuql5TxyEJ7+SYdwsxziiG8bZmQWTQJ6LFOtkGA/BkztnGDfHlydnGFdy38e0C4tFimo2IuOiX924VobxMDy5U4ZxC3x5YoZx5DIwnocUa6bmC/IIpEjvNzWjGc34bGO5KCq5otFDQEPPw1r7PPA8cPPH2NY4995vRrbzPvXCUl/qBaN43AQ85v7NB1Z1Ra0vZPjqRAJ1TqxzIdFie8refRTUbpT0jUhWaXifEuNp0Q9QkFNp0fd36bBLVqGkb6KgdqXs3YcW04l+xQQDCNS5BPp4tr15O9Y6dB1UcemJWxU1ax+2LhNvmMxGp41n4/MmEAxYOoAUUjB6x5WZ/q2dWHWv1dj21in0jhWGBk8Ywvb/szOjpo1m2oM7M3BcY2e596p9mHTLVMbsthpTH9iFkdNXbpgVFQwqsvEFm7P+CeOYeOMU1jxoHVSw9KSoS5q1DhvLVldvx9iTN2X9M7fA7x8xKsFKO6zKxHt2ZeU91mSLa7enZXTjjKOBmwxj2/t2p/eoCbTo+1CisTglWZWSvpmC+gpl7360mBZrx4EE6gICdQwlfQMF+XUaB9olCvIwSvpKAnUagToz1klTeHInyvoeCmpPSvq6LsUrJSbQou+nIKc4Y+PAR7IaJX0LBbULZe8BtJhKtIImGBQx3kRBHkDjQLtMQR5OSV9BoM4gUGckGHemrO+loPaipK9JMG5K2RnL+t4uAx8pVqekb6WgdqbFewAtpsSMgwnURfjqKGfcP8F4BEV1OYE6C1+dFutIame8h4La2xkbC2xKbEbZq/9m6sYNYsY1KOnbIsbtYsYhBGo2gT6Ssr7FDYLjxhkU1UJnPDXWSdN4chfK+h58tS9FdXWCcXPK3oN4ciplfU+XwdlS407OODnBeDGBnhExRgfaZXw5k6JaQKDOxlenJBi/Qlnfha++SlFd2aUIuMSopjlj4+BMijUo69vw1I7OuG3MOJSimkOgj6Csb3ED9bjxSIpqPoE6N8W4Ky36Lny1H0V1RZcioBJbxIyNgzMp1qSsv0FB7UiL9yBaTGzI141zCfRh9b9F7hsztuDLoyiqSxEbnoZY58j6Km9LNqBh1A6Ira9DjtkLsclsKMWKV4MmICbeSrDuBIacfCreqMbflDdiJQafeDLF1bZIMQ6jqC4l0IdQ1re7YkK0GNCCL4+p/x3qgvpS7g0zXzWe3J2yvhNfHUBRLepSqNRiK9eO0ynru7oMIKVYi7K+k4La3u3rJOM8Z7zNFROixl748tj690FdhC+PTzDuSVnfga++TlEt7FKo1GLryL6+s8sAUoq1nXG6MzYW/+vGBQT6IMr6G66YEDceR1FdTFHNxpfH0Tir1Ftq1AdSVAu6FCq12IYW70EKS9qxcYEMKdZZYqwfw7eOGYdTVJfh669HjNGBdm98eTyBuoiiuiTFuBdlfTu+Poiimp9gnEiL9wAFtb1rx8ZBrhTrUtZ3RYyNFygEIyiqRfj6AMr6Tjy5R1ejOoFAXUhRzcGXx9B4QczDk3s746H131ai8UEKagfK+o4E41hnnOaMjRcoGo13uaJM1NgHX51EoC6gqObiy6NjxgKe3Ieyvo1AH0ZRzY0ZBVpMihi/0WUgrsRYyvruJUYltogZV6KorsDX+zvjrgnGkwnUuRTVPHdhMm7cl7K+lUAfQVHNiRV8BVps6/b1DpT17UixRsy4njuXTqXsPdjlIopgJEV1Jb7ejxZ9dxejoC++OoWiPpeiWoAvZ9J40a5AQe5HWd9CoGdQVJfECr5R446U9K0JxvVdn2RahvEqfL0PZX13lzsD6sZTKeqzKaqFFOSMmNF3xpsJ9ExXYIsbJzvjTpT0bUjROKtUiQ0o63vxlrRj44UeyShK+hpnvMcVt6LGfvjqNIp6FkW1KMW4P2V9M746kkBdFCtKC7TYjhbvfme8Ncf4QJcLPZLRzrhXxKgin9B/Sb+xGc1oxvITwi4HD59xt5ndCPRzBaBobi/gIWu792QwIcSNwI2uIBXPPQpMAcZ35oUQN1pr06dz9DCEEM+NGzdu3HPPZS3P/PmEMe3U7MNY+wFabomSjbOLrLXUzJMY+0+kHIsnu87MqZrnMeZ3SLESWm6LEI27KTSvUDPPIERvtNgeKRuv4Le//xFv//olAAaOWxe/T+PMnVqlxlvPvUjY1k6/dVanPLzxSqA1lrde+CPtb79Hr1VWou/qXWfNvPeXv/HRa68TDOjPwPXX6mJc/K+3ePdPf0GXAgZtuD7ab7xC1f7+R7z94u/rxg3GJhrf+c0LhJUKfddci9LQrsZ3fvsS7e++S8uoUfRZtevso6p5FmNeQsqRaDEpoR3/Ss38LLUdjXmLqnkMkHhyGlL2i+Xb3L5ejJZbo2SjwVpDzTyOsW+g5PpouWGC8VcY8wekHIUWEzOMfZyx8Qr+EqNQeGIaUvbtgXEDtGws0DQaR6PFNhnGvmgxvYfGbVCy8ftWNz6Gsf9xxq5Xz6vmFxjzJ6RcGS22TjD+mZr5BUL0Q4tpCcb/UDVPZBhbqdqHwbbmGP+Nkht+ykaNJ6bmGCeiZGMRKWrUciOU7HqFP9/4J2rml844HSm9WP7f1MwTIDzXjo3F30bjJJRsLCJZGy7Z11qOQ8muV/ir5ucY82ekHIMWWyYY/0DNPNtN43SkbCyim1orvPYk1CowfEtkuXHmjrUh9p9PQdvbMHA9ZP+1YnlL5U9/ovrPf+ENG0qwztoZxv5uX2cZt0fKxltqjVns2rHi2rGxiFRvx0cx9i20HI+S68Tylpr9Gcb8FSlXRYstUo1SDECJqRnGgmvHuPEjqvYRsO3OODyWrxHaRzH27WVgHOiMOpZ/g5p5MsP4oTN2oOW2KDkslq8S2seccWOUbCwi1Y0/xZiXkXI1tNg8wfgSNfNcN4y+MzbOWG40TkbJobF81bXjO8vAOAgtpyKEiuVfp2Z+/Ckbn8GYV5BydbTYLMH4O2rm10gxGC2npBifBFF0v5nGPoUxHzhjNdVYsz/E2ne7YVwDT3adQVo3Po8UQ1KM/6RmfgSi5IyNM5aN+S9V+8Mc4yNY+x5aTkDJxkJX3fgTjHkVKdfEk11nkIbmt64dh6LldgnG19y+TjO+T9U+CraGJycj5ZBYvsO1Y5bxaYz5W6qxZl4kNC844xSEaLxWH5p/UDNP5Rh/CDbshnFTlGwsdNWNT2HM33OMv4ns62SjEGXXd2ucsdxo3A4pB8fyHW5fv4+Wm6Pkaj0wdu7ruPHv1MzTqcblIcaPH8/zzz//hV2WXgjx3Bh/5LgFK5/+eVOWeZz2t/m80v7aF3bffVaxvBSVHgU2ttZ2mU/qZh49B+wdnX2Usa3ngHFECkeR3DzgdGBm561tX9aiUkf4v7SHV2N42f2XEgW5B4E6DSF6UTPPUgkXENpfubxCiykU9SykGImxr9FWm0PNPkbn0qNKbEKgTkfL8Vj7IZVwAR3mf+hcvlWyGr46joLapT6QWHwztcV3gXm7/hFyELp8ILp8OEJIam3fpfbhtdjw1XpelFDF3fF6nYyQLYQdz1L7YBGm+twSowym4PU6HalXIrR/p1Kb64zGGSc44zis/SBibIsYj6egdsbakHZzAx3hN7C8UycwGF8dTEHOQAhJR/gd2sNrMLziDGUKck/XjmVq5peuHZcatZjm2nFEinFTZ9zIGefRYb6z1ChWJ1An4MkdsbbmjHfEjIdSkIc747ed8dWIcS8Cdaoz/oJKeFnEqPHkNAJ1ljP+zRkfjxg3c8YNI8Zv07nErBRrEKjjI8br6AjvXLJErGCIMx7mjP/jjH+LGPd2xhI183NnfD5inO6Mwwntq874RMS4uTNugLX/pS2cR9V8J2Y8AU/u4IzX0hHeFTEOdcZDnfGbtIfXYvh7xLgPgTrFGX/mjL+OGLd3xmGE9hVnfDJmPAMt18fY96mE89wSuZ3GNQnUiXhyOtZWaQ+vpcPcnWF8iPbwuoixJWIsUjM/dcYXYsZZSDHUGec4o11iLKozUXI9Z7zUGdudcS1nnOaM1zjje844DF8dtuTWt6p5iPbw+gzjM874m4hxB2ccQmhfjrRjp3ELZxyLse854/9GjGs741Ss7XDGe2LGwynIg53xQWf8hzP0oiD3JVAnI0RAzfyESrgwZtzR7eshhPavzvijJUYttiRQZ6Lkuhj7rjN+N2Y8CU9OccarnfH9iPGIJbfn2T99l/DFu+FDt7R0oQW55s7IcYcjtI/55y8xz92Cfds9w05qxCrboiYcjSgNpP2fb/D2fd+m9TcvLVnZoDR2LQbutxv+yiMx9p2IscMZ13HG7ZzxKjrMvRHjcHw1w82ehA5zH+3hjZGlo3tTkF8lUCchhE/VPEV7uJDQ/tblPTy5k2vHQYTmT1TCS6nZpyLtuLVrx7VTjOs642Ssbac9vIp2cy+dy6ULRrh27DTe64z/TDH+2Bl/FzHuTKDOdMY/UgnnUbM/pjO02IZAneGMbzvj9yLGsQTqZDw5yRmvpN3cFzPOcDM8ocPc44yvu0/ogy/3w1cnOOOTVMLLMUuMhYhxoDN2tmOncaIzroWxb0WMVaA+u8VXp+DJic54hTN+4Iwr4auZboYndJi7aA9vjhn3x1fHO+MTzvj7iHEXAnWGM/7BGZ92eeHa8SyUXMMZ51I1/xcxrueM22BtO5XwcjrM/RHjSGfcL2K8Ccu/XL4vhSXGAlXzuDO+FDOeiRQDCM1LzviTiHEigT4LJVbH2Dcjxpozru+MW0eM9wEfLjEG6sgltzl2mDud8Y2I8Wv46rgUox8x9ic0v3fGZ2LGWSixWopxA3x1sjNWqISL6DAPLDFKRuGro5bc5thhvkF7eEvE2M8Zj3XGx5zxDxHjV5yxH6H5nfvNRI3bunZcFWP/44zfbzAG6hS03Apr2yLGj5xxNL46MmK8nfbw1pjxAGf0qJofUgmvwNg/Roy7OmNfQvNb2sJ5hPanMeMslBiDsf92xh9EjBsSqFPRcgtnXEiHeTBmPIqC2gdrLR3mNmf8t/uE/pF29KiaR5zxT84QOOMZSNGXmnmRSjiP0P7M5WWkHcdg7BvO+HDEuJEzbo61rRHj4ojxGApqL6w1znhbo1F9HV8egxCaqnnYGf8cMe5GUZ2BEH2omd9QCefHjJMJ9JnO+C937IkaxznjZs54GR3moYhxZWdMv13084hmUWnFjWZRadnE8lJUeg9411q7akJuDPAyML87t6S5wtEM6kWlVxJyiUUldwveFPfSx+Izpj5pLI9FpfbwDirhhYk5JTbAlyfSGs6gs+MWDcEgSvpaWmvHYHkrYQseJXUT7eZyQvti4mf48nzkRy8Rtn0n2VDcE6HXpPbhnMS88DZAtxxD9b2j6TwJNYQchDfgClrN0VjeTthCwRkviwwU4sYLMfzaFSG6hif3RYnVqISXJP8NYhy+PIbWcGaiUTCEkr6K1trRS4pBScaKWRDphMeNszH8yg2eE7Yg90OKVaiEye2oxHh8eRSt4ZEpxqHOeOSSIkZMQEndTMVcGungNkYgLyHkZ26wkmTcHylGUwnnZhiPpDU8Ksc4c0mBICZwxjmRDm7cOIeQZ1wnO8l4AFKMoBLOSzFuQkEeQVuY/H0UDKekr6C1NmPJ4DvZeEmkgxs3XkrN/pia/UGK8UCEGEJ7uCDFuCkFeQht4TF0FoEbjSMo6cszjEVK6hYq5sJI5zHJ+CNq9uEU48EIMYD2cGGKcTMK8iDawmNTjCtR1Atprc2gc/Dd1XgzFXNRhnE+NfsYNfvDFOOhCNGH9vDyFOPmFOTXndEkGEdS1Auc8YMM44UY+5cU42XU7CPUbNKd2lCQh1N4cRjm17cl5sXwjRFr7Yp58nzqS0zGotdwwnEX8vq8WzCtbV3fH/iMOPcwasNPwvDXpE8gkAup2f9zheYk4wwEPu3m6sS8FlvhyX1pC08gqR0lown0pa4dP0zYQomyuo22cFakoB83LqJm/9cVH7tG/fYYj3ZzTYpxGzy5d45xHq21w+kcNDZGmbK6xRlfTcgLAnkFNfs/DQWpRuNRgKDdXJdinIgn93TGrn05ycoEeq4zJq262kJZ3URbeFakyNtoLKorqJosY/2Y0m5uSDFOwpO70RaelGIcQ6AvobV2GJ0XoBqjF2V1M23hGSlGSVFdSdU8GClIxY3HYWmnwyQ/JlOLyXhyF9rCk1OMq1LUs1lcOzzHeHqkEB03XkXV3BcppMSNx2Npo8MkP+1Biyl4cgfawuTnAUlWo6gvYnHtMDovQDVGb0r6Ztpqp0aKvHFj/YLA0kJKzKhOxNoP6DDJxx4tpqHlVCph8vOppFiDojyfxeHhKcY+lPRNtNVOiRR5o6Gc8c5IkSJuPAVr36HDfCPFOB0tt6MSJg+M68ZzWRzOSDQK+lLUN9FWOylSQI0br6XD3E5of5FiPBVr36LD3JFi3AEtJ1EJk4c8UqxJIM+hNTyCzgtQXY03OuO/kj6BorqODnMLof1l4mcE6nSMfYMOc1di3pM7osQ2VMLkZ7pJsRaBPLsbxhOWFKySjTcR2mdTjGfiq+VnPaVmUWnFjWZRadnE8lJUstQfjJ1VVLqppzOK0m5/A94H3gG+CbxL/flOj1pr53+MbadVjdYaN25caXkpKhn7Hh9Wt6Dz6nhSCAamFGM68yulnPC7+f5qAe+DvO+dJrFg1BlyAJikYkw9wj5DCXVSx6nTOCilKNYZHklFtY9jFPRPKcZ05vPaMc9YoPPKd3ookgboy844GMubGZ/vk/Vd656xX0rB6ItkHILlPz00SpIGv0s/o29KwWhZGQOSOo8fz9gHm1gw6syPSOnId+aHpnRQO6NI8mCmcStJA8ul0YfkolZ3jcOWXD1PjhLJA1f3/o8UxW8PyzYWWqAjqdBRj//8dXPa/pFUZKhHn8Pfwt8yuSPfHaOTZhvpRXLBqPPdee04PGXA1BktJBd7lidjmeRiz8eJ7L8zz7Bs2jEvVgRj9r7I+93mfRfqz+1KKjR/nMg5NnzqxrzfS3eM2cfofGP28bd7xuzzQM+NfSHjXJt3HqxHnjH7fJx3Ps83Zvd56pHdL+m5sR9k9KtA08t7BinyVuP7bKJZVFpxo1lUWjbRnXWqP6t4P+W/d45489ZhzgxXnJoCfDN2W9z71AtIj0Veuzf1leLe/6KtABe93SItsgpC9XzWSSD//bI9JP8Z8RkFJcgsKFlhCVV6QQnIKdZAfkEJ8oxZxZp6Pq8d84x5BSXI6xT03JhVrIH8QgjkG7M6FV8UY1axBrpnzO6kZhWU6vmeGvMKSpBvzBoskNORJ6egBPkFpfpWsqOnxqyCEuQVa9QrJXKNGQWlWrvOLCgB6HV+m5nPLyhBfjumF2vq785rx6wiA3SvyPB5G3taUIK8vzPPsGzaMS9WBGP2vsj73eZ9F3peUIK8392nb+zOReg8Y/YxOt+YffztnjH7PNBz4/s5+byCEuQbs8/HeefzfGNeQQnyxxI9NWb3q6BG1XwHX6WvINyMZR/dfMRxM76EsTwVlfKibw/f/xDwCtBw9Em6pc5a+74Q4jFgHvWV4XIjrboZecbTchHW5g26Pv0Q3Tmf9ugD3L9mNKMZzfiChVyctkRz9yJsT1u63YWwqH7dKWI2oxnNaEYzmvH5hbF5F2ma0YxmfFaRN13ks4y+Kf+9c4bS+590w+5ZSn2p3/bW3e38CugrhJiS+8oVKIQYmP+iTzk+9SK3pXsXq5rRjGY0YwULW+zOFeT0UIWcWaBWYD4oZL+mGc1oRjOa0YzPOZaHMU0zmtGMevSoqCSEeE4IYT/Bv71im3q/Gx+XfZ9OunEvlj5HqTufE48xn+Rzl9fw5C7kT1Drk5kVDMnJ983MG787VaWcr6bonZ6yAhkOTc1DvrF+P3le5P180o11Q147dlkMMRbdmWiY19a9MrN5RlYIY96ds8vC2JKZ7bkxZ3aJ+5TsyDMOzsznG5dFIaKcmc03DsjJLwtjKTObb8zrBPuZ2doq3biFT6cvt6yDKsHwIPPt1d+vlfMB2cbuRfaS0ILs52Tk5VcMY/Z+6F5kb6PnxmWxdPeKYMz+voic323+7z77uNG9WBGM2cdYkXOMzjdmnyO6F5+2Mftc273IPueLnPNxfp/ji2CUFOSuOa9pRjOa8VlFj4pK1trx1lrxCf59M7apZ0kv3nT+94/9pGs3y2imc76fkL/RFbn6ftxtr6ghxSB8dVxGfnWK6iLSvxq9Keo5pBdMJIG6EMlqqZ/hBcch/cnpBn8quuXo1LzQq+P1Pp/UQbToTeBdQnoxQhKoi5B0eS78kijIE9Ei3ajF9hTkMal5KdagqC5MNQr6Eug5pJ80lTOukvoZvjwJLSal5j25IwWZ3o5SrNlNY1onTlFUs5GsnGE8BS0mZhh3piCPzDCunWusfx/TOsPaGUdnGE9Fi20yjLtQkOlrBEixDkV1QWpe0D/XWOqWcasM464UZPpzBaQYS1Gd1w1j2uBMU1KXIBiZYTwNLbbMMO5OQR6Wmle5xgHdMF6MYKUM4xkosXmGcU8K8tAM4/oEmcaB3TSOyDCejhKbpeZ1v92R6+6dbhi0NnKz9GM8xf4MPOhriELKgEArWoafjWB4hvFMlJiQmvfkvhTkQan5+tLb56bmBYMpqjmkD6I9AnUJgmEZxlkosUlqviD3oyC/nmEcR6DOzjAOoaguyTAWnDH9AkcgZ6FE+nNBC3J/CvJrGcbxOcahrh3TBtE+gZqTObjLNx5AQe6XYdyYQM3KMA4jUJeQPkDtjvEclNgow3ggnvxqhnECgTwrwzicQF2cYQzcvk4vNtSNG2YYD8aT+2QYNyOQyStt1Y0jnDHtIkmnMb1AF8jzUGL9DOMheDJ9GXclNieQ6Q/xFayUYyxSVJdkFscCeS5KrJea98RheHKPDOMW+JnGkd0wzsksPAXyPKQYm2E8Ak/ulprXYkt8mbyCHoBkVDfbMb2oE8gLkGLd1HxBzMCTX8kwbo0vT80wjs4xlpwx/cJkUV2IFGun5n05EynSz6XNWPZhqS8q+4X793k37Bcklpfb3x7KyHUWlR7LeE2XEEKMo15Qmhr7732FEJ1rUI4hfZZU5xkjawmcFTJ8eSyBuiDWAdJ4cmfK+l4KahdK+iakWL3hfUpsSot+AE9uS4u+HyU2bchLsTolfTMFtQtl7148uRPRGT+CwQTqAgJ1LIV+V6LKB4OIDLRFCV0+lEK/ReiWY/F6nw0y2gHSqGBH/AF3oks7U+h3PUI3FoZkYQL+gHvxvE5j48BHijUo6VspqJ2dcceYcQiBupBAHU1JX0tBHkJjMaBMQc6gpK8gUCcSqHNjHSCNJ3dx7bhrvR1jxSslNqfsPUBBbkuLfqDLwGepcSfK3v1osUOCcTa+OpKSvp6CPDjRWFSXE6iTCdTZCcavOONulPQNyFhNt258MGLcOGZck5K+jYLakbL3AFpsT/RwIhhKoC4m0DMp6RucMTrQbsGXMymqhQTqVAI1K9ZJ03hyV8r6Hme8vkuBTYktKHsPRb6PjQMfKdairG+joHZwxukx4zCKag6BnuGMByYYj6SoLiNQp6UYd6NF30NB7eGMKzcYtNiSsvegM96XYrwdT+3g9vW0BONcAn0EJX2TGwRHr/r3wpdHU1QLCNQZBOrMWEdS48ndadF3UVB7UdLXJhi3csbJlPV9KNH4CDgp1qasv4GnptPiPZBivJRAH+aMByQYj6Go5hGoWQTqjJjRw5N7UNZ3U1B7U9LXdCmwabF1xHhvlwGkFOtQ1ndEjFNjxuH1z9eHUNa3uIF63Hhsva3VLAJ1eoJxT8r6Tny1T4pxm5hxw5hxXcr6Ljw1zRmnEC2W1o3zI8b9aSxY9MaXx1FUc5CbHovceAb4kVml0kOsvgNq+0WoNXdBbXsB9GrscIsRE9A7X0dx7DhWOvsE/FUb/wZ/5ZGsdOZxlFbfxBm3ixlH1H8P+iDK+lZXTIga++DL4ymqiwnUufjqlNigwcOTe1HWd+Crr1JUVyIZFWvHibR4D+Kp7Sjre7oMcqUYS1nfRUFNocV70BX/o8aV6scV/XXK+jZXTIgZ1QkE6iICdT6+Ojk2c7WAJ/ehrL+Br/anqK6IFVMFWkxyximU9d1dBrlKjHXf507jtjHjSIpqEb4+oP77l/sSLfwI+uKrk5zxQnx1UoJxX8r6dnz1NYpqUayYKtBi20g73o2KDXKVWM8Zt3PGSQnGy/H115xxnwTjye6cfhG+OpHGWc4+nvyqMx6QYpxMi/cgBdeO8YG4Euu7c8B27vvYeIFCMoqiugJf71c/Rsm9iRZ+BP3w1SkE6jyKaja+PL6LsSD3o6xvw9cHUlSXxQq+Ai3qn11Q0yjruxKMGywxlhONoymqq/D1V51xrwTjqQTqHIrqEnx5HI0X7TqNt+DrgyiqBQnGKTFjY7FAiQ3d+b7T2HgRpW68Gl/vQ1nf6QpHUWN/fHUagTqbopqbYtzfGQ+lqObFitISLaY643TK+k6kWCdm3Iiyvrf+ffUeQIutuxhL+hpnvCvRGKjTKepZFNWl+PIYGi8sBhTkAZT1zQT6UIrq0lhROm68o0tBQ4lxlPV9eGqyMzZe6JGsTElfi6/3okXfhSd3J1pUqRvPpKjPpKjm48ujE4xfp6RvJtCHU1RzE4zT6v1HtT1lfTtSNM4qVWI8Lfp+Z3ywy4WeuvE6fL0HLfpuV9yKGgcQqLMI9BkU1QJ8eRSNFz+LFOSBlPSNBPoIV2BLMt7vjLchxZqZRiW2iBlXqffJ1O6U9T14ctcE4yx8lV7UakYzmvHZh7D286/PuZlC7wF7x2cxCSEeBYgXh1xujLX2laT/Dpxhre0yvcDdDve+tfYxIcTp1FeDS9rGy+51PVpeUAjx3Lhx48Y999zHnmj1qYcx7YSLHwXzIbK4OaqwckPeWkvY+hS2+jrSXwdV3LDLNsK2FzDtLyG8EajSNgjROKMk7Pgbpu1nIHuhylORsvGqrgnfxVQeAyGQ/hSkarxqYUw7pvII2I+QhS2RXuMgyFpLWHkSwn8hvLEov6uxZp4jNL9HypFoMamr0bxMzfwMIXqjxfZI2XhV15h3qJpHEUKixRSk7B/LV6jZh7H2I7TcGiW7Gmv2CYx5HSXXR8ss4yi0mNhD41SkjLdjd4yPY8wbzrhBhnE0WiTsa/NXaubnCNHHGRuv6hrzNlXzWI7xB1i7ONVYtY9hzb8zjM8Smj+4dkwz/gwh+uYYFVpMQ8o+sXwrNfuIM05EycaZO9YaZ/xPhvFXzpjWjn9x7ZhmfMsZdYbxYaxtQ8ttcowboGXXK9M180tC80ekXBkttk4x/sIZpycY36RqHv/ERmNCajzujBuhZdervlXzC4z5U4bxz87Y3xkbr5ga8x+q5glnnI6UvWP5Vvd9rKDlJJQcEcuH1OxjWPtmN4xj0GLLHhq3R8rG2ZemoxX+9hQ2rCBW2gzZa2js/SH84yfY1ncQg8ciB67Rxdj60p/p+OcbeMOGUBq7ZhdjzfyR0PwKIQa4ffkxjQ3tuC1KDo/lQ2r2Uax9CyXHo2XjYLPejj/DmL+ktmO+8Q2q5kcI4TljSyz/kftdV9ByMkoOi+VDavaHWPt2hvGnGPNXpFwVT3adsVczfyA0z+YYn0AIP8P4MNa248nJyC7GmjO+g5Ibo2XXK/xV8wzGvIyUq+HJLbrka+YlQvOcM05HysbbwEPzBjXzBEIELp9m7MCT2+YYN0HLxgFx/Tz0U2dcHU92nVW41DjQtWPc+C9q5kln3AEpG2eIGvOhM9acMf6b6Y7xGYx5BSnXwJNdZxUuNQ5y57qeGCcj5ZBYfqlRy01RsvF33WhcE082XgCsG39HaH6NEINdvyZufJ2a+VGG8QP3m8kyPoK1736KxteomacyjP917VTDk9sh5eBYvury76LlZijZeCG1bnwaY/6WYXyR0PwGIYfgiSkI0Xitfqmx6H7XWcYpSDkolq+678L7GcanMObvKLk2Wnadndl9Y8n9rtOMoTMOjOWjxs1RsvFOhaXGf6DkWinG3xCaFxFyqDPGz5V/p2aeRoiy29fL4tbhZRvjx4/n+eef/8IuSy+EeG4Vf+S4+SO7rG+1wsfpr83j1fbXerzv3B1SewMvU5+c0pd6PeL9T3NbblGwI2Kr22dtu/NZ0w8Bz7oFyqYAM4FH7Sdc+X65KCoBuNlDZ1hrV438t3HU/+Aut69FVlUbH21EV6B6jvpKb9H39HX/u7F7zyvu9Q+5z30lso15wIzo63rwdy2XRSXz6vexv78NPnyt/h+Uj1h5B8SGxyEKLdg3f4154Rp453fuHRJGbInc6EREr5WwH76G+fWV8PozLFkedeB6yA2OQQzeCNvxIfaFa7B/+wGEbiWhXiMR6x6GXGUHrK1R++gGaovvBuuWDZX90aWvo1tmIoSi1vodah9dhw3/Xs+LIqr4FbxepyNkC2H7L6l+uBBbfWGJUfqT8XqfidQjCe2rVGpzqNkn6JzcWL9d4HS03ARrP6AtvJSq+Q6dy6FLVsFXx1NQu2JtjXZzLR3hXVj3SC/BAArqYHx5JEIoOsJv0R5eg8EZKVKQu9dnY4he1MzPqYTzCe1SoxZTKOqzkWIkoX3FGZ+MGc9Ay42x9r+0hXOpmv9H5/KtkjHO+JW6MbyGDnPXkmXt68ZD8OVMZ3yI9vBaDP9whlLE2ELN/JRKuIDQ/sblFVpsR1GfgxQrOeMl1OyPIsaNCdSZaDkOY9+nEs6lav43YlzVGXfB2qoz3h0xDowYJR3hg7SH18WMexKo05zxGWd8MWKc4owjCO3LzvjjiHETZ9wIY9+LGDsixhMpqJ2c8WpnfN8ZB+GrQyjIGYCgah6kEl6H5bWIcS9nLFMzP3HG30aMU92+HkFo/+qMT0WME5xxQ2ecQ9V8N2JcjUCfiCd3dMaraDd307mssmCwMx7hjA9QCa+PGMsRY4mqeZr28LKYcZozDie0f3Hfx7jxLLTcAGPfde0YMYrVCdQJztjhjPfEjIe5W98EVXO/M/4zYtybQJ0aMS4gtJ3HHo0npxGos5FiGKH5M5Ww0+j+CrGpa8cNMPadiLHqjGsQqBPx5PbOeCXt5t6IcYgzHgoIOsy9tIc3RJaO7jSehhBFqubHVMKFmAbjdAI1yxn/RCWcGzNu7n7X62Ps2874vZjxJDw5HWvbaQ+voN3cR+cy30uN9VsIzR+/g/nNPbDYLdvslZBr7ITceAZCB5jXfk743E3wzl/qeaEQK09EbXosojyI9n+8ztv3fpvW3/5hibG4zhoM3H93glVGOeMcqub/YsaT8eQ0rG2nEl5Oh7k/YhyKrw53Mzyhw9xFe3hTZEn4MgW5r9vXAVXzpGvHlyLtuL3b10MIzR9cO/6koR2L6iyUHIuxb0WMNWdck0CdgienRIz3AR9GjEe42ZOdxhsjy7G3OOMpzviEM/4hYtzBGQc74xxq9pmIcQuKahZKruOMl1A1348Y13LG7ZxxkTN+5IzDnPEgZ7zTtWOnsRcF+VUCdTJC+FTN4874x4hxR2ccRGheoi2cQ2h/usSoxZYEahZKro2xbzrjDyLGtd2+3g5rK854f8w4c8kthB3mG7SHN0eWY+9FQe5HoE5yxsec8U8R407uNzOI0PzeGX8WMW5FoM5yxv8448MR4zrOONkZL6PDPAAsdsbh+GpGxHg77eEtEWNv146dxkephIsiRs8Zz3LG39EWzo0Zt3bGtVKM67p9PQlr25zxwZhxppvhCR3mNmf8zxKjL/fDVyc64yNUwssx9s8R487OOJDQ/NYZfx4zzkLJNTH23+43EzWOdcaJzriADvNQxDgCXx3pZk9aZ7w1ZtzfGQtUzcNUwitixl2ccQA18yKV8NKYcaJrxzUw9g1nfCRmPBVPboO1ra4d48aj3OxJS4e51RnfdJ/QxxlPcMYfOKM7PlKIGPtTM79xxl+4vECLbQj0LJRYHWP/FTHWF09QYiy+Og1Pbu2MC+gw34wYVyJQR7nZk5YOcwvt4W0x49fw1fHO+H0qtSsw/DXF+IIz/jJmPBslVsPY12mrzaFmfxgxrkegTkPLrbB2ccTY6rYwkkAd7WYmWjrMTbSHt2N5y+X7UpAH4KvjEMKjI/w/2sMrMLwcMX7FGftRM792xl9FjBOdcVVnvISafTRiXN8Zt8Taj5zxW0uMklH1fa32ZXmKZlFpxY1lUVRyk1bOim4jq46xrLbl/nt3igxTrbWPuffcSL3OEY/51tpPvIOXm6ISLH0GEvWV1/KqcvOAvag3UrQg1FlsSg1rG9cfi1Ts+rv/fb4njRrb9nJXVDJ/vA/76yuSk/3XQoydgX36dLAJqwT5/RBbzcX+5Cxof69rXmjE1vOxv70R3vtT1zzAuJMIB/+KsPK9xLQq7obQa1L7cF5iXnjroVuOpvresXSehBpCDsTrfzmt9uglxaDG8CipG6iYRRj7+8TP8OX5GJ5zg76ELcg9kaxOu7k0+W8QG+DLY2kNj6KzU9TwNzCIkr6K1trRSwotXY03UjELIoOZuPECDM9mGPdGiTFUwuR2VGJDfHkUreExKcbBlPSVtNaOWlJoaYyCM86LDGbixosw/NwNqJKM+yLFKNrDBSnGcRTkDNrCY0ja14IhlPQV3TDOjXRwGyOQF1OzP6FmH07MF+R+CDGc9nBhinE8BXkYbeFxKcahFPUiWmtH0VnEaAzfGefkGJ9yncMk4/4IMZT2cFGKcWMK8hBnNAnGYc44k84CQVfjTVTMxZFOeNxYLzzWO4dJxq8jxADawytSjBMoyIMyjMMp6oUZxoCSuplKeGGkEx43zqVmH6dmk++mLsiDEPSm3VydYtyUgjyAtvCEFOMIivoyWmsz6CxiNEax3o7hBZFOeNw4j5p9xBXDk4wHU/jNcMwLdyTmxbBxiLW+gnnyQhKfFNAyjHDcBbw+71ZMW6Xr+wsFRpx3KLURJ2J4NcV4GTX7PVdoTjIeiiCg3VyXmFdicwpyX9rCkxKNgpEU9aWuHRcnbKFIWd1EW3guhr9lGL/rCs1JxsMRaNrNDYl5LbbEk3unGiWjCPTcDGPJGc+OXHRo/Cvrxu9Qs0+nGOt9vg6TfNFQi63x5O60haekGEcT6EucsTXFeDNt4VmRgn7cuIia/VZDYS8avpyJxdBhbk4xboMnd3XGriFZmUBfTGvtCCDpIfRlSuom2sIzI8XyRmNRXUGHeaChaNZoPApLBx3m1hTjRLTchUqYfDuNZBUCNZvWMM3YQkndSFt4RqRYnmS8v6Eg1Wg8BksrHeb2FOO2aLkDlTD5eUCSMRTVRSxONfaipG6gLTw9Uixv3EJRXUmHuaeh2NNoPA7Lh3SYb6QYt0PLaVTC5O6zZFUCdT6t4Qw6L+QlG0+LFKLjxqvoMHdGCikxozoBa9+lw9yVYpyKlpOphMnP0JKsRqDOyzD2pqRvpK12cqTIGzdeQ4e5jdAmPz3DVydh7Zt0mHtSjNPQciKVMPl5aVKsQSBn0RrOpPNCXmP0oaRvoK12UqSAGg1FUV1Nh7mV0CaPTXx1Ctb+yxW7k4zT0XJrKuE5n8hYfx7m9bTVTowUJ+PGa+kwNxGmTL6o3zaa/tzQzzq+FEWlwshx80amP9ttRY0zXruUVzs+eVEpcsfVksJNJPcQgLU2/WGYPdiWK0DNoz6ZJin6A6/E3nOj+7+dzz55HrixxxNplqei0hcxlreikm1/H/OdXcB0pL/I75dcMOqM0lBoTTpRde/9ph/UNng/R6pJKnQsCdkPTPpnhH2GEOqkzl09BAOxvJ3x+R6dV+fTQ5FY1FryGf1SCkad+REpnbsvkrFA54yWT27sm1Iw6q5x0JKrbMnhk9wxi4YkqYiwNPqQXDDqrnFw5Grlp2MU9MFmGoendOSXpVGQ/UjE3iQXjLprHJLSQe2MgOSBwscx9iK5YLSsjEWSB4Xu/R8qit8Zlm0slKEjqdBRj//8ZTPaXksqMtSjzxH/wd8iaxZ1ieQiRYM020gLnbNekt89LGXQ1pkfmjJg+jjGvOipMTtfXwQhfT91L7K38eUwZu+n7kX29yXv+/bZGHOODTnHlrxjU96xrXvxaRuzzxH5xx3IOw/knevyjdn9ge4Zs8+n+cbsPke+Ma/PszwYNb28p5EibxW5zyaaRaUVN5ZBUWkGcCPQL+HOqr2Ah+ITWpbVttzEmLlpM6GEEA/FC1pCiBuTHhHU01heHtTdjM8o7N8fzS4oQXZBCbILSt14vxnSnQ5qRkEJMgtKVlhClV5QAnIKIZBfrIGsQkj9M7LbIftk+kUx5hWUIN/4fk4+z5hVUIL8Qgjkd66yOj7dMWYVa2BZGLMKSvV8Vid5WRnzOtJZg4XuGLOKNZBfUKpvJTuyB109N6YPyADUKyVyjRkFpVq7ziwoAei1k2dwLo3uFGvy2jF7gJ09QCenoAQ9LyhBz43Z+Z4Xa/K38eUw9rRYA3nfl7zv22djzD425B1b8o5NPS8owadvzD5HdG8dp+zzQN65Lt+Yfa7tnjH7fJpvzO5z5Bvz+jzw+Rtr7tEQzWjG5x57U38O8/sJuc7H7ez1KW3rnYyC0jxgbjc/t8fRLCp92aI1b2D46Yf1P+XZccL9a0YzmtGML1jIVpX/oowI29OWRXchLKpfdwqEzWhGM5rRjGZ8fmFs3sWFZjTjM4mNIfF5K7D0+c5dn1C/DLZlrZ2f9EL3SKF3sh7eLYToK4TYy/3r201fauj8lzTjCxXFAfmv+ZRDtItuXaf5xGHdv2ZhqRnNaMYXLGwxe2ZfXqhCzixQKzD/LSD7dGeWYTOa0YxmNKMZn08IMSj/Rc1oRvdiLfdc5i7Rjdvi+pJeCIq+pjvR4225AtHMrOc4uVlM7wDfdJ/3kBDi0bQiVXeiOVPpSxZi1FQQObXEQu/sfHFwdj7n/fLNUmbevSo7Lfqkp6xAhsNS81B/llB2dGc2QN7PJ91YNwzNyffP2X53asJ5xux99dkY86p/PTOSa8yZueE+JTt6ZWYFeff85xV7Czn5+qdkx4pgbMnM5hsH5uT9nHx3opyZzTOKHhprY7JvLwHASz/G6qBKMCJ7OebqS12Xo2+MZdGO2ecBQfZ5RpA3mFgWS0731JhzrlwmxmKPDPnG7pyv82JFMGbvi7zvW/6xKfu40b3I/t2tGMbs499nY8w+V/XcmH0e617kGbPPx/n9ouz+QPeuymb3nXpuzBmLICnIXXNe04xlHcaKL9y/ZRTvp/z3zgJR3mBkWW4r77a394FHrbXzrbWvuNvn9gbOcs90+kTRLCp9yUIUByDWOyL9BX1WRWxyJqlfjUIvxIRZUEg5IQlZf3+fMcl5QI48GulPTc8H09Etx6XmhV4Dr88F6UbRh8CbS/oJSRGoi5Fi9dTP8OUpaJFu9ORO+PL41LwUa1FUs1ON9ZUvLiX9xO6MrJphPBUttssw7kxBHpthXMcZkw+ogn7OmNZB0hTVJUjS97UvT0OLbTOMX6Egj8kwrktRXZRh7E9Rz800ltQcJKtkGE9Hi0kZxt0oyKNS80qMpaguzDAOoKjnkd4Z7jSunGOcmGHcg4I8MsO4HkV1QWpeMNDt67TBWadxdIbxTLTYOsO4F75MP1cpsUGOcVCO0XPGUTnGrTKM+1CQ6cdHJTbMMQ52xrRBtEdRzUEwMsN4FkpskZrXffdCjk1fSlkMHovc7ITUPKWBDDz4QEQhedAitKZl+NkIVkrdRCDPQYnNU/MFuR8FeUhqXonxBOq81LxgKEWV1Y4FimoughE5xk0zjF+jIA/OMG5MoM7thjGtGOETqDkI0i9wBPJclJiQYfw6BXlghnGTHOMwimou6QP9gEDNzRzc1dtx4wzjQRTkARnGTQlU8ipWdeMIimpOD43noUT6heSCPJiC3D/DuHmOcSXXjmkD/aL7PqYXGwJ5PkqkL0xckIdSkPtlG2WWcSSBmkP6QL/TmF6gqxs3yjAe4ZaaTw4ttiSQyauqgVsxUc3NMV6aWRwL5AUosUGGcQaeTH90iRZb5xhHu3ZMuyBW6obxQpRYP90oZuLJPTOM2xDI9AWo841lt6/TijqCoroQJcZmGI/Ek7tnGCfiZxpXJlCXdMOYNjauG2WG0ZdHI8Xw1HwzmvEx44/W2vFJ/5bR9vsuo+1kbksIMQaYknXbm7X2jPjKcq6w9Bj1gtQnimZR6UsYYp2DEBufAaVI50JoxOjpyO2uQ47aDjnpcuizWuMbh2yCnHITcvjmyCk3wZDY7aF9V0NOvLz+/u2uR4yeDiIy46c0GLHJGci1D6LQbxG6fBiISDFAtKDLR1DouxDdchRe7/NARjtpGhXsgj/gTnRxRwr9bkDoNRoIsrAF/oD78LxtaNEPdBn4SLE2JX0bBbUDZX0vntyF6Emv3gm/hEAfSUlf5QaY0WJAL3x5FEW1CF8dR6AuiHUkNZ7cnbK+l4LamZK+GSkajVpsRdl7CE+mGdehrG+noLan7N2HJ3dOMM4l0DMo6WsoyMMTjEdTVAsJ1AkE6vyY0cOTe9Ci76Ggdkkxbh0zbpZo9NT0FONwZzyCkr6OgjwsZuyNL4+hqC4jUCcRqPNinV0PT+5Ji76bgvoKJX1TlyKgFttQ9h7EkxOdsXEAKcW6lPUdeGoaZe9+PLkT0Rlo9cHMpQT6MEr6ejcIjhr74MtjKar5BOoUAnVOrCNZN5b13RTUbpT0jUgafzNaTHTGznZsHEBKMZayvhNPTaXsPYAnd0wwzifQh1LSN7hBcLSo0gdfHlf/O9SpBOrsmLGAJ/eirO+ioHZPMIqIsbMdG3/XSoylrO9aYtRih5hxJYpqAYE+mJK+sYtR0BdfHk9RzcVXpxOoWbErwQU8uTdlfQcFtQclfX2smCrQYlLEeH+XQa4S6znjFGfcPmYcWf896IMo6ZsoyIO6GtUJ9d++OpNAnZVg3McZ96Skr4sVU+vGFmcs6/u6DHKVWJ+yvhtPTaHFewAtphM9BdeNiwj0gZT1za6YUIzk++KrEymq2cgJxyA3OQqCyIxLVUCssTNq+kLUGjuiJs+GPtHilUCM3By987UU19mAlc45kWD1xoKwv+poRsw6ntLqGzvjtAajZFT92Ke/RlnfQkF+PWbsh69OJlCzCdTZBOqM2KDBx5Nfpaxvx1f7UNLXxIqpAi22q7ejmkRZ39tlIK7EBpT1PXhqcopxNEV1Bb7en7K+lYL8GtHCj6A/vjqFQF1IoM7BV6d1MRbkfs64L0V1dayYKtBiCi3eQxFj40BciQ0p63soqMm0eA+6CxRx45X4ej9n3D/BeCqBOp9AnYevTo0ZAwpyf8r6Nnz1VYrqqphRosVU147bOuOGMeNGzrgtLd5DaDGFaGG8brwaX9f3V73gsbTwUzeeRqDOJVAX4KtTEoxfo6xvxVf7U1RXJBin0eI9gKcmU9Z3JxjHUdb3OeOD7iJK1LgyJX0Nvt4n1Rio0wnUOQTqInx1cmyWcpGCPICyvgVffY2iurwbxsaChhLj630JNckZJ8eMqzjjXpT1N/DkV2PGAe6Yc7YznpRg/HrdqA+gqBbFCucSLabT4j1AQW3njI0Fjbrxvohx25hxDCV9XcS4L9ECmmAggTqLQJ1JUV2Cr05ENIxpihTkgZT0zfj6QIpqYaxwXjeWlxjvQon1YsaNadH346mJ7vs4KcF4Pb7es35el/skGGcRqDPq5xp5fMxYoiDr5yhfH0RRXRYrnCu02J6ydz8FNcW1Y2NBQ4lNlhjr55mJMeOqlPQN+Hr3+nld7hUzDqrvZ326Mx5H44z2qPEQimp+rHCu0GIH145TKes7uxRdlJgQMT7Y5WKUZLX6eVrtVj8fyT2JFvnqxnMI9KkU1TxnjF6gLVOQh1DSNxDoQymqeV2MntzRGadR1ncgxboJxgcjxm0ajWL1+nla7UqLvivBONgdF0+iGc1YjqJvyn/vPDG+/xlt6wzqxaFPEr8C+rrnMX3sENZ+yg9N/pKHEOK5cePGjXvuucTbND/XMGEHvPYEdHwEwzZF9mq8em6txf7rGVj8BvRfGzmw6xUD89Zv4b0/QnkYYviWCNE4W8N88Hf496+g0AIjJyNV45U+E76HqTwKCGQwBakab0szph1TeQTsR0h/S6RunClhrSVs/xE2fB3pjUUVNuxirJnnCc3vEHIknpjUxRiaV6nZZxD0QosdkDJmNO9QtXWjJ6YhZdxYoWYfxrIYLbZCydGxvKHGE1jzL5RcHy2TjM8Rmt9nGF+hZn+KoLczNl7pqxt/iEChxTSk7NsD4wZo2fVKYM08S2heQshReGJiF2PNvExof9ZD4w+wtKLF1ig5KpaPGjdEy65XAmvmV4TmD0g5Gi22yTD2QYvtE4xvU7WPdtO4DUqOjOUNNR7HmjdQciO0bOw4NxpXRoutE4x/JbQ/zzC+RdU+5ozbI2XvWL6Vmn0kx/gY1vw7w/hLQvNHpFwFT3adfVQzfyG0v0DQ1xkar0Z+HKMnJiLlSrF81DgOLbsee/KNf3bG/s7QeEurMW9StY8j0GgxPcX4MJY2PDEJKUfE8oYaj2LNfzKMPyc0f0bKMXiy6wypfON/qNonEHjO2Diz0VTb6sfwsB2Gb4EsD42938A/f4ytvI0YuAGyf2PxGGDxS3+h/R9v4A8fQnn9NROMfyK0v+ymcXukbInlW91vpoIntkXK4bF8WN/X9k2UGIeWjQOQuuFnhOYvKLkaWnadxVUzfyQ0v0SIAZ/QuNjt63ZnHBbLh25fv4mSm6Bl19sD841/IDS/QsiBaKYnGN+gap9EUHDHz3Isv9i1Y0eG8RGseTvD+FNC81eUXB0tu840W2ochGZahtF37Rg3fuTasep+M1nGCWi51icw/p7QPIeQg9FMTTD+i6r9kTPugJSlWD5qnIyUQ2L50OXfRYkJaNn1N1E1z2DMyyi5Blpu1iW/1DjEGRuv39aNTyIIUowfuuNjd4ybomXX33XV/ARjXskw/o7QPJ9hfN21Y9Ht67jxA2es4YntkHJwLN8d49MY8ypKroWWXWfsLTUORTMlwfhPqvbH3TROQcpBsXzNGd93xq6z1/ONvyU0v+6GseSO4UnGh7GEKcaqy/830WitpWafxpi/oeTaaNn1WcBLjcPQbNfFGJrXqNmnnHEHpGycfWnM+9TsD51xKlIOjOWjxs3QsvHiWt34FMb8vRvG4WgmJxj/Qc0+nWpcHmL8+PE8//zzn3hZ+uU9hBDPrVIYOW7uSukz/VbUOOufc3m147VPvO+EEO8B71pru9xe4mYOvQzcZK2d+Wlvy73/DGvtTR/zz0AIcTr1mUozP9H7m0WlTzeW16KSeeV72N/dCovd0qiqgBg9HbHRCYhCL+x/nsW8cC28+5J7h6gPWsadiOg1CvvBPzC/vhz+9TOWLI/afx3khscihozHdnyA/fVV2L89AsY98LVlBGLdQ5FjdsbaGrWPrqW2+B6wbtlQ0RddPgDdchRCaGqt36T20fXY8J/O4KOKu+D1PgMhexO2/4zqh5dhq79bYpT+JLzeZyH1aEL7CpXabGr2qSVGJTYgUGei5aYY+z6VcA5V879A3SgZja+Oo6D2wNoq7eHVtJu76FzaVNCPgjoQXx6LEIqO8AEq4bVYlho9uRtFdRZC9KZmnqESziO0S41abEugz0WJ0YT2ZSq1i6nZHy/ZN0ps6IwTMPY9Z/xuzHg8BbW7M15Fu7k7YuxPQR2EL48GJFXTaexcvjVwxjMRojdV8zSVcAFmiVGixbYU9blIMYrQ/tUZn4oYNyJQZ0SMlzhjNWI8gYLaDWs7aA+vpN3cQ+dywHXjwfjyKGe8n0p4XYOxIHcnUGciRC9nnI+xv48YJzvjSEL7F2d8OmIc59pxY4x91xm/FzGu7Iy7OuMVtJt7Y8ZD8OWRgKTD3Et7eH1kOeGAgtzDGVuomqec8aWIcTtnXInQ/JlKeDE1+5OIcbwzjsfYdyLGmtvCKs74FWe83Bk/dMYBkXYUdJh7nLFzeeuiM57hjD92+zpqnOKMIwjNn6iElyQYz0LLcRj7tvs+Ro1j8NWJFNTOWNtOJbycDnNfzHgovpzpjHfTHt4QM+7pjGWq5kkq4WUY+4dOQaQdRxCaPzrjMzHjLLTcyBkvpmq+HzOeREHt5IyLnPEjZxyIrw6lIGc44120hzdGjKWIsUTVPOGMf4wYO9txOKH5A23hJYT2pxHjJs64Aca+5Yw/iBhXJdAn4ckdnXEhHeb+mPEwN3tSwN/ux75yO1Tcip6qCCvtiljrBIQuYv/zFPZPV8OHf6nnhYIh2yLWORVRHErbq//ijdv+Hx+9+NclxvI6Yxh26C6UVh/ljLOpmocjxtWccQdnvMwZFzvjIHx1uJuZKOgwd9Ae3hRZjr1EQe5NoE5HiCJV87j7Pv450o7TKOpzkGIYofk9beEcQvuzSDtOcO24Psa+6doxbjwZT26PtRVnfCBiHBwxQoe5nfbw5shS52VnPM0ZH6USLmwwenI6gToHKYYSmt85488jxk0pqlkouR7G/scZH1lqFKsTqFPw5DRnXECHeTDDeJszvhkx7uOMAVXzQ2d0+xodMQ4hNL91xl9EjJs541iM/XfEGDrjGs44FWvbnPGhiHEIvjpiyW2OHeZW2sNbYsZ9CdSpzvgwldoiDH+NGLd3xsHUzItUwjmE9pcR4+bOuC7GvkFb7WJq9ocx46l4coozznfGVmcc6owHAzZifCti/Koz+lTND6jULk8wnosUg6iZ3zjjr2LGs1FynRTjms64Hda2RtoxapzhZk9aOswttIe3RowtzniKM37fGV+OGHdw7ZhlPAcl18bYfznjoxHjWs442Rnn0WG+FTEOw1cz3cxES4e5ifbwNixvR4z7EaiTI8ZFmPrq1864ozMOpGZecMZnlxi12JJAnY2Sa2Hs6874WMx4Gp7cFmsXR4xticZ2cyMd4W1Y3nGf0MsZT0IIn47we7SHV8SMOxGos53x1874XMx4Dkqu6YyzndE449rOOAlrP3LG/4kZj3S3i1razQ10hLcnGE9GiAId4Xed8dWIcWdnHEDNPE8lnBszbuWMa2DsPyPt2GlcxxknOuOlzlhxxuH46ig3e9JEjJ2PcumNL/evz1YTBTrC/3XGv7m8FzH2p2aepRJeShi5E0eLrQn0OSixOsa+5oyPR4zrEqjT8eTWWPuhM347YhzhjPt1uSj3ecaXpag0Z8Ssz5uyzGPW63N6WlR6lPotZ12+kG7Wz6N0s1DTk21F8lPjt7dFXnMjMAPo5255i+aaRaXlOZbHopL5wz3YF65KTvZbEzH2cOxPzgSbsMqQ3xex5RzsM7Og/f2ueaEQW16K/d3N8P6fu+YBNjqecMizhJXvJ6ZVsAvCW4vahwsS80Kvi245mur7x9PZ4WgI2R+v/yJa7THYxBmCmpK6jopZFBkUNoYvz8HwvBuYdg1P7o5kddpN8kPylRhLQR5LW3hMolEwgJK+itZalvF6KuYyjP1TivE8QvtLavbhFOOeSFah3VyWYlyfgjyKtvDYFONASvpKFteOprNgFfsEZ5wfGXAlGX9BzT6SYtwLySjazaIU4wYU5ExnNAnGQRT15bTWjqazGNTVeCMVMzcy4Iobzye0P3MDgSTjPkgxgvbw8hTjRhTk4bSFx6UYh1DUCzOMhXo7hnMjg5m48UJC+7TrHCYZv4oUQ2gPr0wxjqMgD6EtPCHHeBSdxaCuxhuohJdEBjONEcjZ1OyT1OwTifmC3A/BQNrN1SnG8RTkgbSFJ7KkUN1gHEpRX0Zr7Ug6Cy2N4TvjRZFOeNx4CTX7GDX7ZIrxAAR9aDfXphg3oSC/Rlt4UopxGEW9gNbaTDoH312NN1IJL4h0wuPGOdTsIw2F5kbjgfh/7Q8v35aYp/94GLUnvHB2opFgKJURC3nlgnswbe1d/4aCx5g5+2NGn4Dh7ynGedTs/zUUmhuNByPwaTc3JuaV2JSC/Cpt4cmJRsEIivpS146tCVsoun19Xo7xuw0F0kbjIYBHh0nuNymxOQW5F23hKYl5wUoU9VxaazPoHDTGjWV1I63h2VheSzEuoGq/3VB8bDR2FuduSTFuQUHuQVt4aopxJEV9iWvHZGNJ3UhbOCtyYSRuvIyq/VZDYa/ReAQQ0mGSv49abImWu1IJT0/M15+zM5vW8MgUY4mSuoG28KzIRYdoCAK5kKp9sKGw12icAXTQYb6RYtwaLXemEiY/I6b+DJuLaA1n0jmw7Wq8kbbwjMhFh7hxEVV7f0NhLxq+PBJLGx3mjhTjRLTcnkqYPEug/gybC1w7JhnLrh1PjxTLG41FdTkd5p6GglSj8WgsH9Bh7k4xTkLLaVTC5EGnZBUCdZ4zdj32QAsldT1t4WmRQnSS8a6GQkqj8Tgs79Bh7k0xTkbLyVTCc1KMYwjUuRnGXs54aopRUlRX0GHuyDAej+Utd2EjybgdWkyiYpKflyZZlUCd476PSat09qKkr6etdkqkWB43XkWHuZXQ/jrZqE7E2DeomgdSjFPRYisq5vxko1idQJ7ljNWEV/R2xpMihei48Wo6zM2E9oUU48kEKv25oZ91NItKK24sg6LSDODGlELQDOBGYFVr7Std3rwMt+VWdDsdGJ/2TCVXtNoYWCWhqJT7/kx7s6j06cbyVlSylfcw/28XMEkHeRd+3+SCUWeUhkBr0omqe+83/aG2fsb2gfrzUDKWzhZ9ofG30BBhn8GEOqkD6t7OgMjVoaTwSD4Rdt8o6JtSMOrMD0/pgHbmB0auBH6RjZKkQsfS6ENyUWtZGQskd8yWpXFYSke+MwZCj42CxCLCkuhNclGr8915xkGw5Op5Uvgkd8IbPyXb2Ivkolbnu7ONgkGRK/xJEZA84PosjYNTOtHdM4pWQfmZ3ogsoy5DLamoVY9XH9+exS+n/y4HHfcapW2eTc3Xn6PUjVXoMqNMcuGtHoKhKYO2zvyQ7H7bOQABAABJREFUlAFTZ6wIxhLJRbOPE9nbyDdm5/PaoHuRZ8xup8/GmP19WTGM2ceW/GN8C8kF+48TOcevHhuzj7/dizxj9nkk35h9rs0/x0De+XTFMGb3vfL6bnn9KlD08p5GirxV5D6baBaVVtxYBkWlvsB7wN7W2m/Gco8CWGu7rP4khBgTLw590m25/EPAXmQXlU4HvplSlHoZeP+TtkPzQd1fsrD/eDS7oATZBSXILih14/1mcHc6VhkFJcgsKFlhCVV6QQnIKShBfiEE8oxZxZp6PutkSk4hBL44xqxiDWR3KpaFMa9YAz03ZnXuILugBN0z5nUAszqQ3TFmFWsgv6BU/5TsyB4s5BmzC0qQX1CqbyU7emrMKihBntF7o5BdUILMglL1Iz+zoARQWO+32dvvcbEG8gbY2QN0coo1sGIYe1pQyt9GvjE73/NCCOQbs9vpszFmf19WDGP2sSX/GN/TghLkHb96buxpQQnyjdnnkXxj9rk2/xwDeefTFcOY3a/J67vl9asgpGr+X85rmtGMTz/cjJ+ZxFZOE0KMA8YAe8ffI4R4DnjZvaZH24pE5+or72dY5wPz3POZotufR/1B4Fnbz4y0tR6b8UWN1rxB16cf1v+UZ8cJ968ZzWhGM75gIdp7dnCrtqYti+5CWnS/7hQIm9GMZjSjGc34/MLYvMJ9M5ZlWAQJd2Wt8GGXwaDRWnuTEOIVN1voV8AA6qu4jY/fZubiMZfvkvsE2+qMZ4Eus58Str+3EGKemxXV3237eWttv6z35UWzqPRli+LA/Nd8yiHac6+z9yys+/fFO+41oxnN+JJHT4vyXiln1psRhO/7qL7NwlIzmtGMZjRj+Q0pBue/qBnN+IzCPRw7+eGnXV97BpD8IL+Pua3Ie2ZSn+XU3c9fptG8/e1LFmL0VIgtUd4lCn2y86Uh2flC38y0fLOUma+Hyk6L9M8QViDD4al5qK/slR3dqbdmGwV9c/LDcvIDcj4/Zz8Cue1I9r7+bIx5h6GeGvMKqTkzN9xWsqN3ZjbPyBfC6Ofk65+SHb1y3p397ATBoMz8sjG2ZGZ7bsxeKrk6rBu3Qupyaspraae8avbvsv3FsTkfsCyWc043QnfaMec8RPFjepIi+1yVZ8g3dudcmBcrgjF7X+Qb856Zkv1d6l7kGbMHr/ntuDwY89ox+9jWvcg+xuYd//KN2eeI7kVPjXnnyjxjd6545hmzz8f5xuz+QPeM2f2ST9+o8OSuOa9pRjOa8VlFs6j0JQsR9EesNyP9BX1XQ0yYBSLlq1Hog5hwTnrhSUjEhLOg72qpHyFHHYsMpqfmVbATuuX41LzQa+P1uYjUgonoR9Gbl1HU0QRqDlKskfoZvjwNLdKNnvwKvjwhNV9fEvVi0n5igv6U9HzSCyaaopqDFKvnGKdlGHfDl8dlGMdSVJdkGAdQ1PNJP7FrimoukvR97csz0CLxeXLOuEemUYn1KGa240CKeh7pnbhO46oZxjPRYrsM454UZPoKI0qs74zJnbD6CnXzSO+we5TUXCRjUvKdxm0zjHvjy2MyjBtSVLMzjIMp6ktzjJciWSXDeBZaTMww7osvj8owbkRRXZRhHOLaMW1wVnD7enSG8exMY0Huhy/Tj49KjKeoLswwDnXGtIF4gaKal2kM5DlosXVq3mvZD8YclJqn34awbsaDNIMhDDvia0g/eUAgPE2vUecgGZVhPBcttkzNF+QBFOThqXklNqGoLkjN11fRu5T0QbRPUV2KYGSmUYnNM4wHUpCHZhgnEGQah7t9nWYMnHFEhvG8HOPBFOTBGcbNCFTy6kt14wiKah7pRcAigboUQfpFmEBegBKbZhgPoSDTv49KbJ5jHElRXZppLKp5mQPQQJ6PEptkGA9zS82nGbcgUMkrbUF9hbq6MW2gX6So5mcWRAJ5IUpsnGGcQUF+LTXfuVR8unE0RTU3w1hy7ZhnTH8+qy9nUpD7ZRi3yTUG6lLSixFlZ0wr0AlnHJeSB18ehSf3zTBOJJDpx8f6KnqXkn5BrNOYVsATFNVslNgww3g0nkx/bIkWkwhk8ip/deMq7vuYZmxxx5604lincYPUzyiIY/DknhnGyQTyzAzjGPd9TLtA24uinpdReJIU1cUosV7qZ/jyGKTIK0w1oxnN+KyiWVT6EoZc58B64agcORhLD7HKTsjJ1yFHTkJOuhL6rdn4xmGbI6fejBw2ATn1JhgW6wz3Xws56ar6+ydfh1hlp8ZZUeVhiAlno9Y+kELfhejykSAiBQvRB91yFF7f+eiWmXh9ZiNUtENeQBX3wB9wB7o4nUL/mxF6nUheIP1t8Afeh/a2pOw9iBbbNBCVWI+y/gYFNY2yvg9P7kH0xNzZwQ30EZT0lW4Q3DuS74svj6OoLsNXxxCoi2Md8gKe3IsWfTcFtSMlfTtSNBq1mETZewgtt6TFe7DLAFKJ9SnrO/HUVGfcPcE4n0AfTklfhS+PJFpUWWqcj6+OI1CzYx1yH0/uEzHeihRrx4zbUvYexJNb0qIfRIutYsYNKOu78NQUyt59eHI3op2Heid8AYE+lJK+2i3pHDX2w1cnUFTz8NXxBOqiBOO+lPVdFNROlPQtSLFWzDiZsvcQntzKGRsHuUpsSFnfjae2c8ZdY8bRFNVCAn0wJX2NM7ZEPqE/vjqx/n1QJxKoCxKMX6Ws76Sgdk4xbkdLxKjEFjHjRq4dO427JBgXOeN1bvnuuPEkimoOvjrJGaODhoCC3I+yvoOC2oWSvgkpor9riRZTnHFrWvQDXQa5dePdeGoyZe9+PLlzgvFyAn0gJX2DWwZ9aeGnbjyForoYX51CoM7LMO7qjNGCr0SLqTnGcZT1Pc74YIJxZYrqCgJ9QKYxULPx1ekE6tzYwCagIPd3x47dKekbU4wPRoybxYzjKet78dQkyt4DCcZVKKor8fX+lPSNbsn7qHEAvjq1/ltZ60TEOqeCHxk0qABG7Y2YcB1ypZ0Q4y+HlmihUsKQbRGb305p7fUYM/cYymMbi62ltVdmzCVH07LGBs64U4Lxany9HyV9syt4NBoDdTqBuoBAnUWgZsUGX0UK8gDK+nYKak9K+vpY4VyixXTXjtvQou9HiQkJ7XgfnppIi/cAntyR6AUGyRhK+hp8/VXK+hZnXFrkEwwkUGcQqPMI1NnOGB18lSjIr1PWt+GrvSjp62KFc4UW2y8xlvV9XQoaSmwcMT6IFjvEjKs64z7OeFCC8UwCdY77d1Zs8FWiIA+irG/FV3tT0tfGCucRo+o0NhY0lNiEsr6XwhLj9jHjapT0dfh6L8r6VgrywJhxEIGa5XznEqgzEowHU9a34Kt9KOlrYoVzhRY71PehmphinECLvh9Pbe2M04l2W6VYnZK+3hlvd4WjpUU+wWBnnEWgzidQp8dm15Yjxq9SVFfHjBpP7lT/LahJlPW9XYouSmxKi37AGR9yF3qixjUo6Rvw9R7O+LWYcYj7Hp5BoC7EV6clGA+hpG/CV/tRVFfFivtR47aU9T2f0HgTvt69foyT+ycYz3XHxtn46pTYbO8yBXkoJX0jvvoaRXUFkpVjxp0pew9SWGJsLAwpsXnMODXFuJsz7ke0EFk3noevTl1yrulqPMzti69TVJfHivudxgdyjA/iqa2ccUrMuCYlfRMF9ZX6+ayLcSiBOh9fnezO2SfHjC0U5OHuO30gRbUowbhL/TysJlPWd6PERjHjFrF23I7oRRAp1qofu9UulPUdePKrRAuRgmH147c+iaK6FF+diCD6mJUWCnIGJX0tvj6YolqYYPyKM27njBsmG+VW9b6wmJxgvIWC2rneP5L7JhgvxFfpF3ab8emFteIL968ZyyaEtZ/yQ5O/5CGEeG7cuHHjnnvuuc+b0iVM2IF9/1Fs7UNEny1QQeOVaWMM9sOfYCuvI1rWRZXX77KN8KMXsYt/jwhGIHtvjRCNP86w8g/sf3+K0L0QfaciVeMVKmPeo1Z9FADtTUXKfrF8B2H1Yaz9EOVthVKjY3mDCX+MCf+J0uujdNcrLzXzPKH9HVKMQouJXY3mFWr2GQR90GJ7pIwb36Vq60ZPTEfKvrF8OzX7MJaP0GJrlOzajiFPYuzrKLEhWnZtx6XG0WixTYaxrzM2XqEy5h1nVHhiGlL2ieUrzrgYT2yDlCNj+Y9jXBlPbpOQf4Uw0/g2VfuYM05Hyt6xfNQ4ESlX6mq0T2D4Vw+MLxPanyLo54yNV9G6Y6zaHwCtGcbHMfzbGbteZauZZwntSz0wvkXVPu6M2yNlr1i+zRnbMoyPOeM4tOx6q9NS4yp4suusmZr5C6H9OYL+aDG9h8ZJSDkiljfU7GNY/o0S49Fy3QTDLwntH5FiDJ7cKiHfHeOjQMHt67ixlap9eBkZV8WTXWf21MyfCO0vEQxAi2kJxjfd9zHFWK3AP5+EWisM3wpZHhJ7v4HXn4K2t2Dghsj+XWc+fvjbl6n8/d/4IwfTe4Ou+UbjdKRsnCFqzH/cvk5rx8WuHdtdOw6P5Q01+0Msb6HExmi5NvGomV8Q2j9ltOMfCe2vEAx07Zhm9J2xJZaPGrdFymGxfNS4CVquRTyq5mcY+xekWB1Pdp191GicjpSN1/SM+TdV+0SG8SOq9hFnnIyUQ2N5Q80+guXtT9H4BlX7pDNuj5TlWD7PGLp2zDL+FGP/ihJromXXGVI18wdC+yyCQW5fx43/omp/lGH8kKr9oTNuh5Tx30zUOAEtYxfXgKp5BmNf7oZxMFpMTTE+CQR4YgekLMXyH7p27MATU5BycCwfun39TjeMa6HlhC75mnnJGYeixZQE4+uuHYuuHT+useba8R2U2Awtux5bquYnGPtKhvH3hPa5bhp3QMpiLN9prLl9PSiWr7l2fLcbxnXQsutMs5r5LaH9NZKhqETjP6naH+cYHwbCDOPDWN5Dic3RsuvM8Kp5CmP/lmN8wRm3yzCWnDGI5T9w7Ri6fT0wlo8at0DLrjPDu28chhKTU42CsusXLYtbsJdtjB8/nueff/4TL0u/vIcQ4rmVC6PGXTLs7M+bsszj7Dcu4W8d//jC7rvPKppFpU85lteiUkf4AJXw6siSnh6e3IVAnYMUfamZn9AWzsPY3y95jxZbE+jzUGJVQvsyldpF1OzTS/JSrEtRnYmWW2Lse1TCS6ia79K5rLxgBIE6loLaF2urtIdX0G7uZukSsb3x5dfx1fGApmrupxJeGzN+haI6ByH6UDVPUwnnYexLEeNEAn0uSowhtH91xp9EjGOdcQuMfTdirEWMx1FQ+2BthzPeEzH2iRgVHeY+2sNrI8u3FvDkLjHjpRj7hxTjX5zxmSV5JcYSqLPQcnOMfYdKeDFV838R40oE6ngKai9nvNwZP4oYD8RXxznjPbSH18eMne3Ym6r5sWvHP7q8qE9j1+ehxCqE5s+0hRcR2p9GjOsRqFlouakzzqZqvh8xjnTGPbG2g0q4iA5z7xKjoC8FeSC+OtYZ73bGf0eMu1FUs5zxR874p4hxIoE+HyVGE5o/0hbOJrQ/ixjXd8YJGPu2M/5giVEyCl8dT0HtgbXtEeNi9wn9KKgD8eWxgKTD3EV7eEPE6DvjWc74pDP+OWKc5NpxNKH5A23hxTHjBm5fT8DYt5zx4ZjxRApqN2dcSIe5L2Y8yN36JukwdzrjfyLG3Z2xF1XzOJVwQcy4LUV9PlKMdMbZhPbnMeMstNwkxTgaX50QMS6gwzwQMfanoA52s/4kHeYO2sMbE4yzEKIlxTjZGVciNC+5dowaN3TGjZ3xIqrmkZjxRApq1wzjIc4o6DC30x7eFFn+OqAgd6/PGBEtVM1jzvgXl5fOeJ4z/t4ZfxExbkSgzkbLcRj7ZsQYRownU1C7YG2FSjifDvMgncuxx43hi98k/PX90Ppu/QO0j1xzOnqLIxFekfCVnxD+4hbse393zSiRK2+O3upYRK+htP71dV676Xt89LtXlxjLa49ipSN2pmWtURj7H9pqF1GzP4wYV3bGnTOMh+HLma4db6U9vDmy/HWRgtyDQJ2JEGWq5hEqtcswvBxpxykU9blIMYLQ/Na1468i7TjeteOGGPtvZ3w0YlzFGXfC2jZnfChiHICvDnMzEwUd5hZnfDti3NMZS1TNw1RqCxOM5yHFcGrmRSrhxYT22ZjxHLTcAGPfcMbHIsYxBPpkPLmjM85zxraI8XA3M5GI8Z2Ice/67CBRpGq+T6W2CEPngi8qYhxGzfzGGZ+LGDd27bgBxv4rYjTOuKoz7oC1rc74zYhxIL46wt3maOkwN9Ee3hoxlpzx9IhxIYZXI8apzjiUmnmBSnhJzLgJRXUOSq6Hsa/TVpudYDwVT053xrl0mP+JGAc542GApd3cSEd4K5Z3I8Z9nDGgI/we7eEiDH+LGKc54xBq5tfO+HzEOMEZxzrjRdTs4xHjas44DWsXUwkvpcN8i85l7bsab6AjvC3D+F3aw8sbjJ6cTqDOQ4rB1MzzzvjrmPFclFw32ShWJ1Cn4smpWPuRa8dvR4yD8dUMN3vS0m6upyO8PWIsR4w+HeH/OqM79qAjxkHUzHNUwjkx42auHdfB2H9GjDZiPA1PTokY/4fOZe3rxpluZqJxxm/EjPsSqNOc8Tu0h1fGjNsTqHOd8VlnfCFmPBcl18bY15zxiYhxDWfcDms/pC2cS9V8O2Ic4owHOeN1zvhexPhVAnVqxHgFhn+kGH/ljL+JGDd37bg2xv7DGZ+MGU/Hk5Ox9gNn/E7EOBRfHelm/RnazTV0hHfGjPsTqJOd8duuHaPGHZxxIDXzS2d8MWY8FyXXIrR/d33gH0WMazrjts44xxk7uhjjF2A/z2gWlVbcaBaVlk00i0qfciyPRaX28AYq4fzEnBRr4cvjaQuPo7MDHA1BX4r6Ktpqx2O7roIIKIrqatrNlZECQGP48gxC+yI1+4PEvCd3RrIW7eayFOPa+PJY2sLjU4z9KOorM4yaorqGdrMoMnCNG88itM9Ts4+kGHdBsjrtZlGKcV18eZQzmgRjf0r6ChbXjgP+m2gsqWuomIWRgWvcOIvQPusGfUnGXZGsQru5IsU4Fl/OpC08IcU4gKK+nNbascAHKcZr64Nr/ppiPIfQ/twNBJKMuyMZRbu5MjGvxFgKmcaBFPUiWmvHsLTwFzdeVy/2LBkUxo3nEdqfuM5hknFPBMPpMFenGNenIA93xq7H0/ozlS5zxo+65OvPK7qOSjg3MihMMj7tOodJxr2QDKXdXJNi3JCCPIS28MQU42CKegGttaPpLLR0NV5PJbw4MpiJGy8gtE9Ssz9OMe6LZADt5roU40YU5IG0hSenGIdQ1PMzjAXXjrMjA4W48SJC+xg1+1RiviD3Q9CbdnNjinE8Bbk/beGpKcahFPWlztj6iYyBvJiafbihGN5o3B/vlysRvvBAYl4MHYtcdxfCx+cm5ikPojb+fP583gOYSteHfouCZvV5e8MqJ0QGCl2NVfv9hkJzo/EAIKDD3JKYV2JjCnJf2sLTkv8GhlHUc2mtHUVngaAxfErqetrC87G8lmKcQ9V+t6GI22g8ENB0mNtSjBPw5F5UwtNTjMMpqjm0hmnGwBnPwfJ6ivFSqvY7DQXSRuPBAHSYb6QYN8OTu1MJkxdxqT9T6WJnrCS8okhRXUclPDty8SZunE/VfquhQNpoPAQwdJg7Uoyb48ldqYTJz18RrERRXURreHSqsaSuoy2cFbkwkmR8qKH42Gg8DOigw9yVYtwCT+5MJUx+1k79lvMLnDFpVcRO41mRiw5x4wKq9oGG4mOj8QiglQ5zT2Jei63QcnsqYfIzi+rPKzrP7eukh/mXnPHMDONCqvbehsJeNHw5E8sH7sJGknEbtJhCxZyXavTVubSFR2cYr6ctPD1y0SEawhnvbijsNRqPwvAuVZN8fNRiIlpMpmKSn/NVL5yfQ1t4FJ0XRBujTEld64xvJuQFRbWIDnNHQ0Gq0XgMhjepmodSjJPQYhIVc0GKcRUCNct9H5OMLc54aqSgHzdeToe5raHYE42COBYr3qBqvpVinIwWW1ExF6UYxxCos9z3sZbwil6U1DW0hadECvqNWyiqK+gwNxPa3yZ+hi+PJ9AnJuY+j2gWlVbcaBaVlk00i0qfcixvRSVj3+bD6pYkn4jqIeibUozpzA9L7dzV8/0iVzWSQpFUDPo4r/n0jZrkE+HHMfbBJhaMumvsH7nK9kmNkqRizNLoQ3JRq7vGAZEr00nhkfVd656xN8lFre4ZYQD02ChIKiIsjTzj0NSOfD3yjAWSO+GNn5Jt7EVy4a3z3XnGgZDY+euMZWFsIbnw1vnunhp9kgeFjZ/yaRoFg1I6+p0RkDy4du//r8Z/KP3hzwB4RagmFTrq8bffbs1Hf0/fV0NPepWWickD9O4YuxdlkouD9RAMSRlYdi9ffyZMeht0L0okFwe7Z/hiGLO3373I/jsFg1MG6J35PGP2d6l7kfO7WyGM2ceW/OPnsjBmH2N7bsw+/nYv8owDUwodnfk8Y/a5tnvRU2Nevyi7z5J/HoS8c35e/7DnRkkv7+nl5mHdzaLSihvNotKyie6sm96ML1BUzffIG0BnFWvq+ayTADnFGsgvKOW/5tM35hVrIN+YXqyp5/OMWQUl6J4xq1gDWQWluiHPmFUIgfxiDeQbszoV+cbsYg10z5jXucozZnVAId/YjWXkc43Zndx8Y1axBpaNMXuw0HNjXkGp/inZ0TNjdkEJ8oo16q/dWJo8o6BUbStkFpQAgvWTrwwvjZ4WlCBv8Jo9QM/P97xYA3nFlC+HsacFJcj7O7OKNfV8nrGnhRDI+06vGMbsY0v+8XNZGLOPsT039rSgBPnG7PNIvrGnBSXouTGvX5TdZ8k/D0LeOT+vf9hzo6Fq/h++OjLndc1YZmHBfBEfbN2cX7NMorn625csrM3uGDWjGc1oRjOW42hV+a/JiGp72jLULqRB91sWRaNmNKMZzWhGMz69MM0xTTOasdxEs6j0JQshhuS/qBnNaEYzmrF8Rqk7Mz3Tw/NzZpQZSe3d5W9lnWY0oxnNaEYzoiGbY5pmNGO5iWZR6UsWntyZ+jNk0kPQPyc/PCef/f7u3XWZfTVe0C8nn2cckPP5OVfzgZ4bs5+LIhiYmV82xr45+bx2zDMWcvKQfxjqm2PoqdHPyUO+sU+OIc84KDPfPWP2lGSxAhjrz1DIenf2sxMEgzPz9WeS5EWesVfOu/OMeZ3gbGO4+mJyjYX0W+S8YpWWlbP3VeXFDbK3TzEn351oyczmt+PQzHz9WUA9jexbDXtu7MatjLmRZ8w2fDbG7H2xYhizf7d534W873v3Ivt313Nj9rGte5F9/Mo7Ruedh/LOEfnHb+i5Ma8ds8+13TNmH6Pzzsc9b8fuDA8/bWNeOyo8uWvOa5rRjGZ8VtEsKn3JQooBBCp5xZ16fl2K6lLSCj/1VcsWZBSONEV1KVKsk/oZvjzdFbeSw5O74ctTU/NKjM0xDnDGtKJOp3HtDOMZeHKnDOPu+PKUDON6BGouaUUdwUBKen5GUafTuGaG8Sy02CHDuCe+PCnDuH6OcZBrxzSjR1HNQ4o1cozTM4x74ass44YU1ZwMY33VsvTOR4Gimt8N47QM4z746oQM40bOmHw4ra9atoD0TlzBtePqGcaz0WJqar4g98NXx2cYxxOoizOMQ50xbVDh19uRVVM/I5DnosV2Gcb98eWxGcaNKarZy8A4Jse4bYbxAHx5dIZxE2dMHhTUVy1bQPoAMqjva1bJMJ6PFhNT817f/VHj9kvNi+EboLc5KdVIy2BWOnY/ZDF5QCAKHn1WORvJyhnGC9Bim9R8QR6ML2em5utLc2e14wiKej7pA/2i29ejc4xbZRgPoSBnZBg3p6iSVzaqG1fKNZbUfCSjcoxbZhgPoyAPzzBuQVFdmJqXjHLfx7RiRL0dBSMzjBeixOYZxiMoyENT81psRZBpHE1Rzc8wliiqBQhWSskLAjk7xzhjyUp6ycZtCNQFPTCWXTumXSjqNG6a+hm+PMotNZ9mnEigkldVqxtXdsa0gkmLM6YN5AVFNRslJmQYj3FLzacZJ+UYxzhjWjGi05hWtOk0bpxhPJaC3D/DOJlAJa+gVzeuSlHNyzD2ct/HtEKnpKguRon05/368jgKMv0YrsUUAnVuhnE1145pF+16U9TzM4qMkqKaixLj0o3qeDy5b4ZxGoFMf2CzFKu7dkwz9qGoF2QU8JQzbphhPAEp8grOzVjWYe0X718zlk00i0pfwvDV4RTVgliH3MeT+9Ci78FTUyjrO2MHc4EWkyl730TLzSl7D6HFZKKDAiU2pKzvwlNT6tuR+xA9Mdc7ZgsI9OEU1SJ8eVxD4UfQH1+d4F4z0w2+oh1yH0/uS1nfjaemUtZ3oET0irpAi+1ixm1jxo3c+7ejRd+LJ/cmetKrGxcS6EMjxr4x40kU1XwCfSRFdWmsQx5QkPtR1ndRUNOccf1IXqLFlLpNbl63ikkx4zhnnExZ34cn90owLiLQB1PSV+DLYxOMJ1NUlxLooymqubEOedQ4nbK+HSXGxoxTaVlifMgNcqPG8c64rTPuGTOuTFFdTqAPoqSvwpfHEC381I2nUFRz8eXRFNWcmLFIQe5PWd9JQW1PSd+G7GKcRov3EJ7cvG6NDcTrxnvw1CTK+l5n9CJbWIWiuoJAH+iMR8WMA/DVqRTVHHx5LIG6ODZoKFKQX6Os76CgdqCkb0eKdXOMjQNxJTau29Qk1457xIxjKKorCfQBlPTV+PJIosUpwUB8dRqBml1fXlfNjg0aShTkAZT1NyionSjpW2NGhRbTlxr1Q2ixdYpxImXvfjy5e8y4KkV1Nb7en5K+xhUTlhZ+BAMJ1OkE6iJ8dSKBuijB+HXK+nYKahdK+pZYUVqhxfbOuAUt+sEuxQIlNqm3n9rGGXeLGVer2/R+lPR1rpgQNQ4iUGcQqAvw1ckE6sLYwKZEQR7ojF9xxmhROsnYWCxQYkLMuCvRwvhS476U9A0pxjMJ1HmoTQ9Hb308lCNXgr0iar3d8Xa6FLXGdugdL0EMiBTYhESuOpHCHtdQXmct1rzsSHptuFqDsWXsKqw5fyYtq4+l7D2AJ7/SaBSrU9LX4eu9Kekb3TLoSwtogsEEahaBOhdfnU6gzo+1Y5mCPJiyvpWC2pWSvilWONd4cifXjlvSoh/sUixQYlNa9P14aitn3CVmXIOSvh5f70VJ3+yWk48ahzjjOW6fnxsbIJYpyEOccfcU484R4wMJxs1o0Q+g1VaUvQfdRZS48UZ8vaczHkp0tk3deI5znkWgzokNEMsU5KGU9S0U1B6U9I2xwnndWG+fTuNmMePmtOgH8dRWtCQa16Skb8LXe9TbQh4SMw4lUOe67+TZBOrsmLGFgjyMkr4ZX+1JSV+fYNylblRb0aLvzzBu6Yw7pRh3q7eFPDhmHEagzluynwM1KzaIbaEgD6/vC7UXJX1drLiv8eRX6vtQbU1Z39elMKTEFjHjjkQvgkixljPuSlnflmK8AF+d6oxnJRiPoKRvwFf7UtLXIon+bjWe3NW1Y6exsTCkRf070GmsX4yKGtempG+hoL7ijAcSLZYuNZ5MoM4nUGfGZqH0oiBn1H936quU9DUpxvvrxz99f4JxK9eOWzjj9jHjOpT0rRTULvXjcKLxwiXnmECdHpul3Atfzqwfv9T+FNXVsYskHp7czRknUtb3osQmMePWEeND7oJZknGn+jlXHhAzDq+fq9UJ7n9Pixl748sj6+cBtT9FdVXsIomHJ3en7N0XMTYW2LTYpm6UncZpRId6UqxLSd9GQe3gjF8jWiwVjCBQF+PL4yiqS/DVqbGZ/X3w5VH1PpM+gKK6MnaRxMOTe7hz3STK+p4uBTYttnG/lc1TjGOdcft6H1DuHzOu5Pplx9CMZjRj+QlhmyW6TzWEEM+NGzdu3HPPPfd5U7qEMR3U7MNYPkCLrVBy5Ya8tZaaeRLDP1FifbTcsMs2auYFQvsikpFoOQkhGq88h+ZVavYZBL3RYnukbLxqYcy7VO2jAHhiGlL2i+Wjxq1RsvHKdPeMvya0v11GxulI2TeWb3fGj5yx8cp03fgEhtdRYgO07HprSc08T2h/h2QUWk5MML5Mzf4sx/gIoJyxTyxfccbFGcbHMfwLJTZEy/WJR808R2h/j2Q0Wm6TY9wBKRtvzzPmbdeOn8xojCG0T2Qaq+ZZjH0pw/hXavbnCPq6dmyc7ZZvbHPGVrTYBiVHxvKdxjeccb10o1gFLbb6BMa3qNrHnHF7pOwdy7dRtQ8DrWgxESVXiuUNoX3cGTdKMf4KY//QDWM/tJieYHyTqn0c0K4ds4yTUHJELG8I7WMY/o0S49FyXeKx1DgGT3adkRKav1CzP0fSH5Vp9NyxJ25sdb+pnhh/gbF/QopV8WTXGSmNxu2RsnFGnjH/oWqfcMbtkbJxBpSptmFffhpba0OO3hzZa3Ds/SH2bz/FLn4bOXQ95KDGIhLAh799hba//Ztg5GB6b9g1XzN/IrS//ORGs9jt63Y8sS1SDovlQ0L7KIa3XDt2neVaNT/D2L8gxWp4cosM4wC3rz+pscMZh8byUePGaNl1lutS4+p4suusmZr5I6H9FZKBKDHtExg/csYqnpiMlENi+ZDQ/hDD2yixCVqu9QmMfyC0zyIZhBJTE4z/pmqfBArOWI7lP45xAlp2nYmbb3yJ0D6XYXyDqv1RD42PYHgnw/hTjP0rUqyBJzfrkl9qHIwSU1KMTwBBD4wPY3gXLTZDya6zXKvmGYx9GSnWxJNdZ0jVzO+dcagzNl5jDs3r1OyPgJI7hjfOyDPmA6r2hxnGmmvHLONPMPYVpFgbT27SJf/xjNsjZeNMskbjdkgZPz7WqNlHsLyHFpt2MVprqdmfYOyrGcbfEtpfIxmGEtslGP9Jzf44x/gwEOKJKUg5KJavuT7H+64dG4/R3Te+4IyTE4yvUbNPISi5Pkfc+F93LgzxxFSkHBjLd8NonsLwd6RYB092nWnWfWPZGZe/5/6NHz+e559//gu7LL0Q4rmVvVHjLhqaPtNvRY3z/n0xf6v+4wu77z6raBaVPuVYHotK1lo6zD20h9dFlkbVeHJHAnUeUvSnan5MJbwUY/+05H312wHOR8k1CM2faQsvJLQ/W5KXYk0CdRae3AZj36ESXkTV/ACoAfUrSb462l11qFIJF9Fh7mHpMrYt+PJr7nYojw5zF+3hDTHjTs7Yj6r5kTP+eYlBiy0J9HkosTqh+SNt4eyYcS1n3Bpj33bGh2PGY9zU5A4q4UI6zH0RY6+IUTvj9ZHlhOtXiAN1rjM+SSWcl2A8HyVWIzR/cMafR4xrU1RnoeVWGPsWlXB2F2OgjqOgvoq17VTCy+gw98eMB+CrE53xTmd8M2LcxRn7UjWPUwnnY+xfIsatnHFVZ7yI0P4iYlzHGbd0xs52DJ1xuDPu64wL6DAPRIy9nfEEZ/wG7eGNEaOHJ3ehqM5FiD51Y20ehr9GjFs74xhC85Iz/jJiXNcZt3DGC6maR2LG4ymofZxxvjO2RowHutvKFB3mNtrDmyJLInt48isU1TnO+CiV2oKYcRtnXIXQ/N4ZfxUxjnXGzTH2TdpqF1KzP4wYRzjj3lhbccYHI8Y+znicM97qjJ3LDRci7dibqvmhM74cMU50xpUJze/c9zFuPBstN8XY/zjjoxHjSgTqBApqT2ecR4d56GMad6WoznbGR5zxFZcXrh0vQInRhOa3rh2XHlOVGEugzkHLCRj774jRuC2MdMY9sLYtYmxz+b4U1EHu9jxJh7nFGd+JGHdzxl5UzQ+o1BbGjBMp6guQYhQ18yKVcHbMuD6BmuWMbzjjYzHjiRTU7s54KR3mmzHjwe7qrCB84QHCFx6CtvfcB3jINaahtzwKUSgTvvxjwl/cin3/tSVGOXpT9NbHI3oPY/GfX+O1G7/H4j/8fYmxtMZKjDxiZ1rWXRlj/0Vb7aIGo2QUvjqRgtoNa1sjxor7hH7OeDQg6DA30R7eguVd9wk+ntydopqFEC1Uzfep1C7D8LdIO27r2nElauYFKuHFhPb5SDtuQKDORsuNnfFCavbxiHG0M+7qjHPpMN+KGQ91MxOh3dxAR3hbg7Eg96jPGBEtdITfoz1ciOHvEeNkivp8Z/y1M/46YtzQfR/HYezrzvhEzHgyBbUL1i6mEs6hw3w7YuxPQR0SMV5PR3h7xBhQkLvXZ96IMh3hd2kPF0WMMmIcQc0874wvRIwbOeNGzniBM9qI8RQKaueI8X/oXOq8bjzUzZ7sNN6G5b2IsbMdy3SE/0t7eHnMuB1FfZ4zPueMv4kYxznjhhj7T2d8MmJc2Rl3wtqPaAvnUDXfbjD66nA368/Sbq6jI/xGzLinM5boCL9De3gFhn9EjFOccTg18yyV8JKYcbwzboCxrznjjyLGVQj0KXhyR6z9MGLscMYBzniEM17rjO+7TyhSkHvVZweJIh3hd6iEl2N5LWY8HymGUTO/dMbfphj/4Yw/jhjHOOMOzngJVfOdmPEIZzS0m2voCO/IMP4PlfDKmHGqMw5NMW5MUZ2LkusR2r9TqV2YYDwVT26PtR844/+LGAc64+FASHt4De3mDuC/7hNKFOTeBOoMhAjoCL/ljP/sFESMQ6iZXzjj7yLGTZxxLKH9W8TY+VeuSqBPw5PTnPFiquZ/Y8YZbvZkSHt4Ne3mzphxn/osKxHQEX7TGV+PGKc542Bq5ue0hXMwXYznoeS6hPZVKrWLYsbVnHEq1v43Yqw64yBnPNQZr3LGD2LGMxDCpyN8kEp4FZZ/LTF6cjqBOh8pBlEzP6UtnIuxv48YJzjjOoT2FWd8KmY8HU9OSTEOxlczKciDu1zw+jyjWVRacaNZVFo20SwqfcqxPBaVKuG1tIcLE3NSrIEvj6UtPJHODnBj9KGkr6C1diJLT4QNW6CorqTdXNVQpIhGQZ6Csb91g+euocUOKLEm7eaKT2QU9KWoL6e1dgJLT4TRUHVjeEVDASAavjyN0P7aDai6hid3QrIa7ebKFONa+PIo2sKTMoyLnPHDFONVbjDzSkK+/tyn0P7KDQSSjDsjWIUOc3WKcW18OdMZux4HlrbjccBHCVvQzrgAw6spxrMI7c/dQCDJuAuCUXSYa1OM6+DLI2gLT04x9qeoF9JaO5alBatGY0ldXS/sLRm4xo2zCO0zDR2vRuOuCIbTYa5PMY7Fl4fSFp6SYhxAUV9Ga+0YlhZa4sZrqIRzIwOuuPFsQvt0Q8er0bg7giF0mBsS80qsR0Ee7IxdQzCQol6QY7yWSjgnw3guof0RNft0inFPBAPoMDelGNenIA+kLUx+nlrdOM/t67YM4yWRQWGS8Qlq9pkU494I+tBhbkkxbkBBHkBbmPxcOsEgivrSDKNHSV1LWzg7MuCKGy+gZh9pKIY3Gvel8IuVCH/zzWTDkHWQ6+xM+OT8xDylAdTGXcCfz38A017t+n6tWH3+Xtgxx0cGM40RyIuo2u83FMOjUS/K+3SYbyTmlRiHJ/emEp6V/DcwhKK6hNbwWDoLLbFPcO14fmQwEzdeTNV+t6EY3mjcn/rFiztSjOPx5J5UwlkpxqEU1cUZRp+iupZKeC6WN1KMl1C132ko4jYaD6BenLsrxbgxntydSpj8bBPBMIpqNq3hMXQWWpKN50Qu3iQZv01on00xHgiE7gJRknECnvwKlTB5ICIYTlFd6IxJKxMGznh2hnEuVfvNhiJuo/FgoN1dIEoyboYnd6QSJj8PqF7cv4C2VGORorqGSjgrcoEpbpxH1d7fUHxsNB6CpY2quT/FuDme2J6KOT/FuBKBOs8Zu/6u68/4uoa28KzIxZsk430NxcdG4+FYPqBqHkwxboEnplIxyc/QqhfOz80xXktbeEbk4k3cuICqvYvQvphinIHlHarmW4l5LbZCi8lUTPLz0uqF81m0hcfSeSGvMUquHU+PXBiJGy+jau9oKJo1GMUMrHibqvmfFOM2KLEN7ebiFONofHVWN4ynRS6MRENQVAtpN7c1FKQajUdixb9dcTHJOBEltqTdzEkxroyvzqAtPC7FWKakrqYtPDVSLI8bF9FubmkoSEXDl8cQ6PRnm37W8WUoKo32Ro27aHD6875W1Djvzdn8vVlU6nE0i0qfcixvRSVj3+LD6pYkH+TrIegbuQKVlB+a2rnrzvvr904nFayioeicCZH8GX2wiUWt7hr7Ra5WfvzPr0fe39GH5MJbd439U062naHJ2o/dM/YmufD2WRoFScWYZWWE/pBp9Eju4DZ+SraxF8nFwc53D0kdbNRjACR2/jqjQPJgpvFTVnxjC8kFzM535xkHQkpHvx4+yYPrjxNlkguY9cgzCgamDkbqkW0U/9X4D2WvHIlXhGpSUaser764FYv/kf6dH3rSK7RMTC4idMfYvSiRXMCsh2Bw6uC3nh+UOvCsR0BysefjRE+N2fllYyySXMDsniHfmN0G3YsVwZi9L/K+b/nHpuzjRvci59jQY+OyaMc8Y/bx77Npx+xzVc+N2eex7kWecUBKwagzn9cvyu4P5J+rIa/v1HNjdt8PJL28p5AibxW5zyaaRaUVN5pFpWUTzQd1f8miar5H3iA/uyBEzkkg//35BSXIK+hkFZTq+TxjVkEp//Prkfd39NSYVQiB/GIN5BuzTtiflTGv49IzY3ZBCfILSvVPyY6szhk5HVDILtZAfrGm/inZsSIYszvi+casYg30vBACeQOaPGN2QQnyjOqv3Vg+PaOg1NFWyCwoAQQbJF9hXxrLoh2zB6/ZRQRyCkrQ82IN9NyYnV82xvR93R1DvrGnRQZYMYzZ+yLv+5Z/bOppIQTyfnc9Ny6LdswzZh//Ppt2zD5X9dzY04IS5Buzz8f5/aLs/kD+uRry+k49N2b3/cDQYf5fzmua0YxmfFbRLCp9ycLavI54M5rRjGY0Y7mNVpX/moyotXvZL5AG3XdZFI2a0YxmNKMZzfj0ojmmaUYzlp/Q+S9pxhcphBia/6JmNKMZzWjGchm23J1ZlOnh+Tkzyoyk9m6A7r8sZtE0oxnNaEYzmvHphGyOaT7zsHb5eTh6M5avaM5U+pKFJ3emfq92egj65+Szn+chGJCnyMlDXr2z58aBmfnuGbNnDKwYxn45+TzjoMx83netHnnGvjn5POPgzHz9GRB5kXeo7Jtj+PyNgj45+eznEiwbY15npHfOu/OMQzLz9eem5MXnbSxmZs3qi8k1FtJvkfOKVVpWyd5XlRc3yN4+pZw85Ldjr5x3D8vJ5w0mumPMi5YcQ54xO19/PkxPI3sbXw5j9n7qXmR/X/K+b/nG7O979yLPmH1syTs2LRtj9vGr58bs42/+cQfyzgN557p8Y/a5tntDr54ac567t0yM2eeRnhv75uQ1ntw15zXNaEYzPqtoFpW+ZCFFfwJ1RmpeifUoqgWkFXUEAynphRmFI01RzUeJsamf4cuzMk8EntwTX2YZ16eo5mcYB1HSizKKOh5FNR+ZaZyFJ3fJMO6FL0/PMG5IUc3LMA527ZhmLFBUlyHFOhnGc1yRMM24D4FKXqWqbtwopx2HOGPfDOMCpFgrx7hThvGrBCp99Y76ktLzSCs85Rt9t6/XTP2MQJ6LFjuk5gtyP3x1coZxPEU1N8M4tBvGBUixRobxPLSYnmH8Gr46KcO4CUGmcRhFvYj0jmbgvo9ZxvPRYlqG8UB8dWKGcVPXjsmnJcFwZ0wbVDgjq2UYL0CLqRnGg/HlcRnGzXKMIyjqhaQPzorOuGqG8UK02C417/X5OmrjA1LzYsRG6ImngEg5vfcaysjj9keVkwctMijQZ8y5SMZkGC9Ci0mp+YI8DF8enZpXYguK6mLSBoCCka4d04oFRUpqIZJVMoyz0WJihvEIfHlUal6LrTKNklHOmFYwKTnj6JS8cMZtMowz8OXMDOPWOcbRFPVlpBcjyt0wXoIWW6UafHkkBTkjwziRopqdYVyZol5AejGixRlHpRqL6hK02DLDeLRbaj7NOImiSl4NrG5cxbVjurGoFiIYmWlUYvMM47FuGfc042QClbyqWt24KiW1MMPYyxlXSt1CUc3NMR7vVtJLM07JMa5GSWW1Y2+KemFGsaHTuGm6UZ3gViRMM04lUBekG8XqFNVC0os6fZwxrbCkKKpLUWKTDOOJbmXHNOM0ApW8EmHduIbrp6cVdTqNaYXQTuPGGcaT3AqZacbtc4xrZhrrqwt3x5j+3GRfnYQUeRdpmtGMZnxW0SwqfQnDV4dQVItiHfIiBbk/ZX0XntqWsr47djCXaDGNFu+baDmBsvdNN4Bc+hVSYjxlfc+S99eXlS5GtrAKRbWIQB9MUS3AVyc1FFUEA/DVKRTVpQT6MIpqIZKVU4yTc4ybOOPUmHFjZ5xEyxJjENnCGIrqCgJ9EEW1EF+dGDMOxFenUlRzCfQRboAY7ZCXKMgDKOs78dR2lPVdKDEukldoMZ0W7yHXjg+hxZSYcRNn3IYWfQ+e/GrMuCpFdSWB/jpFtQhfnRAzDsJXp1FUc/DVjHpRpYvx65T1Hc54B0psFDNuHzF+0w1ylw4KlJhAWd/rjPfhyX2Jdh4kq1FUVxHoA+pGeXwXY6BOp6guxldHUlTzYsYyBXkgZX0HBTXVGTeMGXeIfR8nx4ybUtb34alt6v8r92k0itUp6Wvw9f6U9BX48riGmVuCwQTqDAI1m0AdTVHNjQ1syhTkQZT1Nyio6ZT1N1AiOsND48kdY/t625hxM8r6fjy1tTPuHTOu4Yz7Ufr/7N11mBxF+sDxb1X12O5GIXhIIAlBgiV4CEGS4C6HHu7uGg8QJEKAAw49jjv8/HeHc7i7uzscgchYV9Xvj6nd7e5Mdy8shADzPg/PPc+9OzOfVM90V71V3eXNICePCBWnBIuSV6eSV+PJyZoxPLBpJiv3odm7mqzajGbvapRYJWLckpbMzWTkWjWr2LCO8Xoyav3aMZc7EVyBVjNeTM7b1RkPr2M8jbwaQ04eQUGdFWO8iqzanCbvapRYOWLcKmIcHjGu69pxKM2ZG8jIHesYLyHn7UKTdyE5eViMcTQ5dTR5NSky+GohK/el2bvSGa+KFM6DxrVp8eobWxKNA2nyLiXn7VRrT3kowSKfYDHy6nTy6gzUmvvibXAsdAl0qLNNqFV3IrPl2agBG5HZ8mxErwHteekh+29MdocLaVp+IAPPO4SuQ8JFwi6r9mPguQfT0n9FZ9yB4IpIKZanybuMnLdDrT3lIQSLfILFyavR5NVp5NRx5NWEyACxhazcn2bvCrJqa5q8K5FipUg7buPacR1avJvwxLCQUYn1av+/WtcZt69j/D05b3uavEtdwSNqHENenUJOnUBejYsMELuQlQfS5F1OVm1Dk3dFpLhfmx1vztwUMIaLLp4Y6ozruL/bLmJc0Rm3o8m7zBnbC5E14zjy6mRy6iRnDK6E6UJWHkST93uyaluavN8jxQqBfIaM3M599rru+xguunhi/YhxW4ITDDXj5eS8bWptIQ+MGJcgr8aRUye68+TYiLGrM15KVm3njMEJiAwZuT3NmRvJyPVijMMixm0ixpVoavsuXe4KR+2FSMGStXOjOt6dJ0fPY8zJg2nyLiGrdogx7hAw3ogS60WMG9Di3UxGrUNL5iY3GRU0DqLJu4qs2qp2/pD71zFOJKeObft9h43dyMlDaPJ+R07tSJN3aWSSJEtG7khz5gY8tR4t3g2RwpDAE8OdcW1n3CpkVG3GLWq/TblfxLgUeTXJnRtHk1enR4oB3cjJQ2vXKrUTTd4lkQmIoHEozd719Y2t58+6xpVp8q4mqzavXSvkvgQLuoLeFNSZ5OSR7vd9WmhVlKA7OXl47fyvdqHJ+119o3d97Rxd17hhxLhlxLiKa8dNa9dcuU8d49nk5OHu931qHeMRzrgrTd5FEWOOjNzJGYfR7N2AEutEjBvRkrml7VqZkVtEjKsG+ixXk5V7h4ySpWv9W3U4eTWBvDoltOJI0IOcPJIm7wJyajdnDFxnyJGROweM10eKgDVjc8BYm9Rrn/BSYjXX9xtVs8rfRox9KKhzyKv4SYFGNKIR8z+EtR15wn8jvm8IIZ4aPHjw4KeeeuqnpswTxpTx7X+wzMIT66NkeNbXWotv7kHzEUoMIiMHz/MeVfM02r6IYik8uRFChGcjtXkH3z6IoAue2AIpw7dDGfM/qvYOADJiFFL2jORL+PY2LLOdsW+CcWUycnWiUTVPoe1LKHrjyQ3rGN/Gtw8h6IYnNqtj/JKqvQsQztgjki+5dpyTavTEKnhytR/JeCcChSdG1jEWXTvOwRPDUDI8M22tccaP8cSqeHLe21+q5km0fRnF0nhyeB3jm/j2kQ4aRyFl9+9srJq7MXzSAWMfPLlBjPFhBD2cMXwL4XczboCS4dnzmvEuLJ+ixGp4chWiUTVPoO0rKPriyWF1jG+4dowzfkHV3pVi/DeWkjOGZ89bjYZP8WKNj6HtawnG1/HtY864aR3j51Tt3Qg8Z+wWyQeNw1EyPHteM96B4XMyYjBKzruqMN34mjMu5Az1jHchyLh/Q9dIfq77XXfG+Cjavo5iWTw5tI7xVXz7eKxRm0/x7T3xxkoR+9YDWL+E7LsOskv4dgNjNPbtR7BzvkQssRIqWGRy8c1zb1N891MKS/Wi6+D+8xhnffwxcz55FZXtSs8VVkd54dVupa+/YeY7zyCER8/l1yBTCM/wGzPH/WZKeGIjlFwikvfx7V1YPscTa6DkvKszq/oRNG90oB0Xdu3oRfKt7Zhz+fBKsu9mXBMlVwjla+f4R9C8iaIfnlyvjvEVfPtEgvETZ8y7Yx1epdUx4x1YvkwwPozmLRT98eS6CcZe7joSNX6Mb+91xs2QMrxKy5hZzlDCExuj5OKRfNC4FkqGV7mGjQPIqHlXzWjzMr59EsEieGLE9zTejqXijItF8r7Lf5VgfAjN2yixHBm5DtHQ5iV8+5QzjkRKFckHjZsjZXglWc14G5bqj2h8kap9GskiZOQoRGRlozYf4tv7EozfOkOVjBiBlNFzT9Ud66/wxNooGV4tXDM+iOYdlBhIRs67+qjzxm+cwScjNkkxroOS4SJ7zfgAmndjjb55Ht8+i2RRMnJkHeMH+PZ+Z9wCKcOrtGrG27Fo1469Ivmq+y583QHjCmTkvCukfPM82j6LYDEyckQd4/vO2Ox+M1HjTNdOmowYiZQLR/JB43ooGV4tXDPej+a9BONzaPtcgvE9fPtArHFBiCFDhvD000//YrelF0I81Sez9ODxveJXqP1cY+wXE3iv+v4v9tjNr2gUlX7kWBCLStZaKuZayvp3gS1oFRm5KXk1DikWpmruoeSfjeGtttcpsSYFNR4ll0ebVyjqcWj7RFte0p+8dyoZuRHGfkFJj6dqbgdqD5atraA5zM06VCjpc6mYG2nfxraZrNzV3bKVoWKuoawvCWzvqsjIzZxxIarmbmd8O2Bcm4Iah5IDnXEs2j7ZbhQDyKtTycgNMfYLiv44fHtHwLiIM+7ljOc4YzFg3I28OsEZr3bGrwLGzZ2xJ1VzFyV/ch3jeJRcDm1edsanIsbTyMjhzjgG394JmIDxCLJyjwTjHuTVcc54JWV9WcDoBdqxJ1VzByX/HAzvBIzrUPDGo8QAtHnJHeugcTny6nQychjGfu6MdwWMizrj7kCZkp5MxdxE+7bNrcbjAc8ZL8Xyv4BxC/JqLFL0oGpud8Z3A8Z1nbE/2rxAUY9H26djjJ9R9MdGjIuRV0eSVbthbYmSPpuKuTlkzMk93a1vHhVzOWX9+4hxS2fsTtXc5ozvRYwTUKIfvnmekh6Pts8EjAMpqNPx5PoY+6kz3h0xHkVW7Yq1RWe8JWBsccZjnfH3lPXlEeNWFNRYhOhG1fybkn9exLieMy6Lb56jpCfUMY7Gk+th7CcBo3XGxZ3xN854ljOWA8bWW9+kM14RMW5NQY2JNXpiKHlvAkos44zj0Pa5gHF5Z1zXGcfg23sixqPJql2wdq4z3howdnHGowFJ2VxKRV+J5euAcRtn7EpF/x9lfR6G9wPG9Z2xL7551h3roHFFCuoMPLkOxn7k2vHeiPEYsmpnZzyTivlLxLi3Mwr0EzfgP3MrlNy2y9JDDtyIzPDDEblm9Gv34j98Ffbb9m2b5dJD8DY6Etl9SWa9/AHvXfwv5rz2UVu+qf/i9Dl0C7quugyzP5rNY6c+zIf3fNC2u3Tzks2sdsIQ+u8ygOqcKk+Mf4y3bn4DU6l9X7Pdsqyw30qscuxqCAll8zsq+iosM90nZFw7jnbt+A9KegqWDwLtuAF5bzxK9ME3T7nv4wuBdlzJHeu1XDuOxrf3BdpxSfLqWLJqB6ydTVGfSdX8lfYturuSk/uQU0cCgrK5mLK+CvgmYNzWGbtQ0X93xg8DxuEUvPFIsTS+edIZXwwYBznjmhj7YcBIwHg8WbWdM06iav4WMHYjp/YhJ48AcMarA8YsGbkdBXUGQrRQ0X9zxvZjWTNORIql8M0TFPVETMCoxCDyagyeXANjP3C/maBxKfLqOGecFTC2biPejZzaj5w8HLCU9YWUzTW0bwOeJSO3p6BOd8a/UtJTA0bhjBOc8XGKelLEuLIzDsHY953x/oCxt2vHbZxxAlXzjzajoDtZtZ+7FdNS1jMomz9EjDs4YzMVfSslPQ3LxwHjhs64pDNOxNiXAsZVyKuxeHJ1tH2Pkj8G3z7Q/l1gaXLqeLJqa6z9lqKeSNX8HfDdJ/RwxkMDxmto3/I9R1buUFsdJJqo6Fso6ekR40bu+7gkvnnUtePLEeM4PLka2r5LyR9bx3gCWbWVM7a2Y9C4v1uZaCjrCyibaxOMN1HSF2D5JGDc2BmXwDePOOMrAeNqrh1XRdt3nPHBgLEPee9EMnILZxxP1fwzYjzA3S5qKOvpzjg7YNzRGQtU9I2U9IyIcRNnXBzfPOyMrwaMq7vv46po+7YzPhRj/MYZ/xUw9iSnDiArDwY0ZT2NsvljwJh3xtOc8QZn/LTtE9qNi+Gbh5zxtYhxLJ5cBW3fpuiPQduHI8aTyMjNMXam66f/X8R4kFuZ6FPWUymb64A5AePOtVVWIk9FX09JXxgxjnDGRamaByjpMzH29YBxMAU1FiVXRts3Kfpj0faRgLEvee9kMnJTjP3aGf8dMR5MVh4wT2H8p4xfRVHJ6zN47C+wqDT+iwm857/3iz128ysaRaUfORbEolJJz6Csp9fNSfqTU0dQ1MfROrANRxeavGnM9Y+lvUMRfoeCmkZZzwgVpIKRlcdg7AtuYDpveGIUUixPxcyobxQDyMnDnLHe97erMx5N+8W6nvGCULEnbDwOY59xg756xk2RYgAVc1GMcTly8hCK+vgYY+2e96J/TIJxOmU9NVRICRtPwNgnQgOBsHFzpFiGivldjHEgOXlwrFHQnbx3PkX/aNo7FMFQznh+qAAQjJw8EW0fjzVm5JYIlqZiLokxLk9OHkBRn1A33248ivbiZNQ4g7I+N8F4Mto+HOpkh41bIViSirksxrgCObkfRV3/+VWCHhS8c5nrH0V74S8YnmvHc0NFirDxFLR9INSBDRu3QbAoFXN5jHElcnJvirr+c8AEPSl45yQam9QFFPXkUAEgbDwN3/431IENG7dDsBAVc2WMcRA5uRdFXf95aoKFKHiTU4wXUtRnhgoAYeMZ+PbuUAc2bNwRQVcq5uq6+dpqyD0o6VNijAtTUGczVx9Je+GvnnFSqAAQNo7Gt3eg7WMxxp3IPNQH/ezf6hsWHYgatAX+3dPq5mnqSXXw6bw6+i+Yij/v6z1J31P34L4TnmHux/V+97DmxHV471/v8Pljn9XND9htOVaffDcVc23dvBKrkZE7U9Kn1/83sAgFNcm1Y7nOX2QoqIso6bGBwUw4cnIsvv2/0KRC6B3krgg8Kua6GOPqZOQOlPTo72nMUlAzKOlxsca8HE/V/iNUsA+9g9wNEFTMn2OMQ8jIbSnp+p18wWIU1HhnrLfrX5aCupCSHoOl/rHMy4lU7V9DBfuwcQ/AUDHXxxvF1pTMuFhjXo2jqI+kvWAVjJwznoHl8xjjJKr2FrR9Nsa4F5YKVXNjjHFNMmILSqb+84BqBd+xKcaLKOnTAhN1UeOZVO1NoUJz2Lg3lrlUzc0xxrXJiE0pmfrPfqrdjjjaGef9XdeeOTfDGb+sk4e8PJuqvR5tn48x7oNlFlVza4xxHTJiBCUzKca4JHl1OkV9VIyxQJOaQVGfEpgEixonU7XXhYq4wciI/UB87QrJ9Yzr4omNKZszY4xLkVendcB4cmBiJGo8h4q9NlR8DBsPAPGFKy7OG54YihLDKZuzYoy9yatTKOqjU4wnBSZGosZzqdhrQsXHsPFAEJ+6wl094/oosT5lM7luvlaoPNm1Y70dS5uc8YTApEPUeD4Ve2Wo+BiMnDyEvBf/bNP5HY2i0s83GkWlHyYaRaUfORa0opKxnzOruj71L0St0Y32GdF5Q7BobAe0lu8ee5GohaR+weq7/E1X2mcb6xk6a1TUvxAG4+dgFNQvarVGF+oXB1tfnWyEHhDTaamFR/J3rfYpP66xJ8R0/mrxQxhbqF8cbH11Z40Z6g9mwp/SOeMisYO2WqQZs9QfuH6XaKZ+AbMW6caFIGYwUosfwthE/QJmLTpvzFG/SOHe/+sM2RviHlrsIpOHar2iVi3eem4os9+P/87/r7I0n78Vvyujyil0Of7c09LvS0bcVb8I2x4F6hcHayHoFTtA70g+rR07Fj+2MU/94uN3ieT36LwxuQ06Fj8HY8rvjoVjizG1fNrvPvm80bFIMy4UW4yp5eeHMfkc23lj8jWiY/FjG5OvtR2L5Gu+oGdsUauWT+tz/BKMki6Z+5AibRe5+RONotLPNxpFpR8mGg/q/pVFcClufMQXlICUiwAphRBILyh15G/iizU1Q2eNacUa+HkY04rG8cWa2quTjckFJUj/rtU+JTk6a0wqhMAPY0zunHXemFZQqn1KcqQZkzrJkG7sbLEG0gYL6cakYg38MMbkQVfnjcmFEPlGB7ZPTygoVeZmEwtKAF+9m/z2SQUlgN7bv5CYr0VyESC5iJCe73xBCX58Y2cLSunv0XljZ4s18PMwJn9fkgpKtXza776zxRpINyafW+aPMfkc23ljZwtK8OMbO1usgbRrflKxppZP63P8EoyGSsxqr0Y0ohHzP+rvJd6IX2xYm9wxakQjGtGIRiy4IeZ27rLtVzKJeWtB6/hVSh2J/MI/xMCvEY1oRCMa0Yj4aIxp5n80bnBqRFw0Vir9ykKIxdP/qBGNaEQjGrFAhm3pyMq6+Mjkk2fphQDP69xnFD/pmv5HjWhEIxrRiEZ0ImRjTNOIRiww0Sgq/coiI7eidl9+fAgWTskvlZJPfn3tPuy0SP4bwUIp+TRjr8R8x4zJKwYEPVPyacZFEvO15wKkRfKKgx/fmPxdq0WasUdK/pdgXDTl8ztiTD6dC7qn5DtrzKfkId3YLSWf/OwEwWKJ+dqzV9Ii7bLYWWNaJ7gpMauXm0Xt+VkJkWuOTWXyVbr2S/4+9RqQ/H33mpLPfe/fugrWpu3K0yUxm96OS6S8fwduE0xrxx/dGH+cOh7J/840ww/TjmnxYxuTj1PHIvlYpP1u074LtWcsJr9DeiSfG34exuRzdLox+fzbMWPydaDzxu4p+Y4MvdKMydfjtOt5urEjq1WTr/mdNyb3q2q7sm6X8jeNaEQj5lc0ikq/spCiB3l1amxeiVUpqPOJK6oIFqHJm5ZQlMlQUOejxKqxn5GTp5ORO8bmM3IXcrL+7ko14+oU1HkJxkWdMa64lXXGlROMo8nI7ROMu5JXScbBrh3rD74EizljXHEsR0GdhxSDYj8jL8eQkdvG5rNyN/Kq/k5aNeMQCurcDhjjCk85Cup8pFgpwTiWjNw6wbgHeRW/e4cSa7hjHWdcnCZvakJRJ09BTUGKFROM41yxNc64F3lVf/e5mnGtlHZcwhm7JxinIsXyCcbxZOQWCca9yanjE4zrkFfnENdRFCzpjnWcseCMAxOME/DEZgnGfcipYxOM66YYl+qAcQpSLJdi3DTBuD85dUyCcT0K6uwEY28K3lTiBz4FmjpkHBVv7L4v3tp7xebl0oPxRpxQW3JUz9htcfocuxuqpf6AQBayrHnuSLoN6F7/AwSsc85QlhoZ/7DwZbcZRl4dEZv3xDDXjvW7IJI+rh3jigXNNKmpSPrF5AV5OQlPbBxryMlDyMnDE4zDKaizEox9U4wtzrhMrLGgzsYTGyYYDyMnD+uAsf6xlizjjHFFnVZj35i8dMbhCcYj3FbzccaNKKgzE4z9aPKmEl/U6eKMfRKMZ+GJDRKMR5KVByUYN0kx9nfGuIJJV5q8NOPZeGL9eKM6ym3jHmccSUHV31UNarviJhu7UfCmIon73SoKajKeGJpgPIas3D/BOIq8qr87Xc24HE1qCvEFk24UvGkIeicalVg3wXgcWblvgnGzFOPARKOguzPGFURajeskGI8nK/dOMG5OXo1LMC7v+pdJxikJxViPgjoXJdaK/Yy8OoGsjL/OZOSWKcYVnLH+daa2K+7UhEJoq3HNBOOJSJE2QdyIRjRifkWjqPQrjJz6LQV1AVIMCPy/zWTlb2n2/khGbUCz92eUWDuQ9/DE5rRkbsGTQ2r/KzYnOLhSYm2avevd6691F6T2jqIUAyioGeS931JQk8mpE0LFKcEi5NVJFNRZ5L19KajpSPrXMV5LRm1Is/enyEXRIyO3iBg3ixjXccZhNHvXkZV7EuyESbEcBXUheW9PCupccur4UHFKsCh5dQoFNYmc2o+CmhYZ2DSTlfvQ7P0hYAxeFD0ycktaMjfjySE0Z25xg9ygcd02Y4t3nduyOWxs8i4i5+1OQZ0fYzyVvJpITh1QKwawbIxxY5q961BijYhxq7Z2rBlHETxd1Iw3kFHr0+L9iazcnWAHR4qBNHkXk/N2paCmkFPHhQpotW2kTyOvxpNTB9aKAaHBVwtZuS/N3jXO+EeUCG7KEDSuEWNczxmH0uL92W3PHTQuT5P3O3LebyioqeTUMRHj4s44lpw6uFbkCw2+WsjK/Wj2riajNqHZu7aOcWt3rFuNI0NGTwylxbuRjFqXFu96Z2zvhNWMl5LzdqGgppNTR4eKfDXjGeTVGPLqUArq3IixC1m5P83elWTVSGccHDFuE/k+jog1NnvXk5G7Rowr0ORdRs7biSbvAnLyqDrG0e6/wymocyKDry5k5QHOOIpm7w8RY4aM3DbSjptEjOvT4t0UMP4mYlyRJu/35LwdafJmkJNHRoxLuDY8jZw8nIKaHDF2JSsPpNm7gqzajGbvGpRYPWLcjpbMzWTkmu7cszHBQaonhtHi3Yyn3DlI7kJwBZoUK9HkXU7O24Em70JnbC+W1oxjyatTUGvvibfJsYhugUFDrgU1ZBcyW0/E678+mW3PRiwWKFRKD7n8JmR3nk7T8v1Z6YKD6L72wNA4utsaA1hx+oH0GNyHzf6yJf13XQ6Vaz839Ry0EJtcM5J+O/Rnw99vzCpHr0auR/u/oXmpFtY+c10Gn7YmOXUMBXVWZBDbjaw8iCbv92TVFjR5V0cmIDJk5A40Z26qtaN3syu6BNtxA1q8m/DUWjRnbiAjd4q04yCavCvIedvUft/ysFAhsrZl+Hhy6kRy6ljyalJkENuNnDyEJu9SsmpLmryrUGKVQD5LRu5Ic+ZGZ7zJFV1E2yd4YnjAeKObRGlfWarEyjR5V5JVW9HkXUJOHhox9nbn7+PJqePJq4kho6A7OXmoM27ljMEJiKBxrQTjzQnGVWjyrnJtcKkrHHULGHqTV5PIqWPJqRPJqwmhgXbNeBhN3iVk1dY0eVdEJklyZORONGduwAsZ29/BExsGjDeRkTsQnExSYlWavKud8TJy8uCQUbI0BXUmOXUMeXUyeTUutMpE0IOcPJwm72KyahuavMvrGHd2xrXd9zFYvBJ4YiN3blrTGbePGFdzxs1p8i53xa32FUGSPhTU2eTkUeTVKTHGI2jyLiSrtnPG4EROjozchWav1XgTnhgWMW7cdm6qGbeLGFen2buarNos0ZhXR7ZdE4MFC0FPcvLI2nlL7eCMwYmcPBn5G5q96/HUunWMEk9sQkvmFjJyDVoyN7kJs6jxGrJq09q1Qh5IsKBbM04mrw5318TRoYJFzXhU7RqldqTJuwwpVkgw3hgpAko8MYLmkHEbgpNJSgyu9X3VKGfcP2LsS0GdS14d6q43Z8xrVEc74840eZdGJpvyZOSutHjXu37NDZEioMQTI51xTdeeW0eMQ5xxRO2Yy/0IFp0ly1BQ55FTB7vrzekR40Lu3D6NnNqFJu+SiLFAVu5Gi/dnMmoozd4NKLFejHENZ9yqjvGPZNUmzrhvHeMUciq+CNuIHycsYK345f33UzfsLySEbTxx60cNIcRTgwcPHvzUU0/91JR5wpgSvr0dyyw8MRQlwzOq1hqq5l4sH6HEIDw5eJ738M3TaPsigiXJyI0QIlyn1OYtfPsIgi54YlOkDM9aGPMVVXsHIMiIkUi5UCRfwre3YZndAePKeHJ1ouGbJ9H2ZQRLOWN4NlKbN/Htowi6OmP41hBjvqRq70S4i6GUPSP5Er79D5Y5PxPjMJQMz6jWjPdg+RglVsGTq81r1E+geQVBbzJywzrGN/DtY7FGbb7At3c54yikDK8u6pjxLiyfJhgfR/MqkqXx5PAY46MIun1P41z3m5mDJzZAyfCsr7Waqrk7xfgYmtc6aNwMKbOR/Of49m4Eyh3resbbsBRdOyYZV8OTqxCNqn4Mw2tI+uLJYQnHurUdo8bP8O09zjgKKbsnGDdAyfDMdM14F5bP6hqttfjmMQyvJxhfw7ePI+jhDFHjp/j2XmfcFCnDq4uMmeOMpQ4YV8eTK0fyFt88iuENJMvgyfU7YfScMXx7iqnMxbz5IPhlZJ+1kN3CtxtYozFvP4Kd8xVi8RVQi4RXSFlr+fa5dyi++xn5pXrRbUi/eYzF9z7k25feI9u9iW5rrYz0wivySp9/y+f3v4PISBbbpD+ZlvDsuV8qMefNxzCmQtNSg8n1DJ/ja+14J5YvUGIwnlwpkrf45hEMbyJZFk8OrdOOr+DbJxAs7H4TmUj+E3z7XwQZ147h1UXGzHbHuownNkTJ8O0t1voB45AUYz88uV4d48v49kkEC5ORoxDCi+Q/dsc6F2Oc5c49ScY7sHyJJ9ZAyRUjeYtvHsbwFpL+eHLd72H8yLVjzp2bwiug2o0VZ1wikq/i2zs7ZfTNS2j7FIJezhheNRg2bo6U4RVQxnzrjL4zLh7JV/HtHVj+54wrhPI140MY3k4wvoi2TyNYhIwcWcf4Ab69v4PGjVBysUg+aFwLJcMrSGvGBzG8g2QAnlwnwbgoGTkiwZh3xzpq/MYZdYyx4oxfJxgfwPAukuXw5Np1jM+j7bMdNG6OlOFVWmHjJii5SCQfNK6NkvOeH4PGjJp39VHHjQXXjlHjTGdIMt6G5Rs8sQ5KDgjla8b7MLyPYiCeWpto+OY5tH0OwWJk5CZ1jO87Y7M790SNXzujwRMjULJXJF927dwR4/J4at4VUr55Fm2fd8YRdcYSQePm84wlFoQYMmQITz/99C92W3ohxFNLe30Gj1lo7E9N+cFjwlfjed9/7xd77OZXNIpKP3IsiEUlay0VcyVlfWlgy8/aLEzBm4gUvaiaOyn5Z2N4t+11tdulxqPkimjzMkU9Bm2fbstL+pL3TiMjR2DsFxT90fj2LsAArbMwh7qZkQolfTYVcxPt2w0XyMrfuFu2sjHGkRS8Cc54hzO+FzFOQMkV0OZFinos2j4TMC7jjJtg7OcU/TH49k5at2OvzcIcRlbuA5Sd8eYE4xWU9WUR4yhnXJiquZ2SP7mOcSJKLo82LzjjswHjss64McZ+5trx7ojxcLd8ukxJn+WMrdsNN5GVu7rbyjJUzO8p699j+bpVEDAuRNX8h5J/Dob3A8Y1nHEgvnmekh6Lts8FjP2ccSOM/dQZ7wkYFyanjnCr1UqU9JlUzK0R427k1YnOeBllfXnImJGbkVfjnPHflPxzI8Y1nXE5fPOcMz4fMPYn751ORg7H2E+c8d6AsZdrx1bjJGesBIy7u1vfPMrmUir6CiwzA8bNnbEnFf1/lPS5WD4IGNei4E1EiQHOOAZtX4gYzyAjN8DYj53xvwHjIq4d9wCKgXZsNTYHjIqyuYSyvgL4JmIcjxQ9qOh/UdLnRYxrO2N/fPMMJT0ubBQDyKszyMhhGPuR+81EjUeSU3tg7RyKehJV89eIcQ/y6vgYoxcwdqei/0FJn4/lw4BxHWfsh2+edsYXA8blKKgz8OT6zngGvr2vLV9bvXcUWbVbwPgX2rdEbiYn9ySnjnPGiynrqyLGLSio8QjRjYr+uzN+FDCu64zL4punKOrxmHmMo/HkUIz90B3rqPFosmpXrJ1NUU+kav4WMe7ljBL9+J/wn/kLlN22y1IhB2xIZsPDEfku6FfvpvrwVTCrfftrudRqeBsfjeyxFLNefI93L/oXc9/8pC1fWGZR+hy2Bd1W74f+32fM/fvlVN94tt3YtSdNI35Dbo1N0HPLvHPhf/ji7uexVV1rg6Yci22/FkvvuxEg+OCP9/HJrY+iZ9fOn0JJFt54EMsctQVeS4GK/islPQXLx4F2XM+14zL45nGKegLGvhxox4EU1Bg8uS7Gvu/a8YFAOy5GXh1DVu2CtbMo6glUzd+B1oePt5CTe5NTRwOCsp5B2VwDzAoc660pqLEI0ZWK/osztreTJ4aS9yaiRF9nHI+xrwSMy1NQY/Hk2mj7HiV/NL59MGBcnLw6lqzaCWu/dcc6aOwSMBJj3JaCGu2Mt1DS0yLG9Z2xD755zBlfDRhXcMa10PZdZ3woYjyOrNrRGSdQNf+IGPchp44CLGV9AWXzB9q3AW81jkGILlT0zc74acA4zPU5lsY3j7pjHTSu6I71Wmj7DkV/NNo+HDAuQV4dT1Zt74zjqJp/BYxdnfFIZ5zujK27E2YCxhYq+kZK+oKIcQNn7I1vHqaoJ2LsawHjSq4d10Dbtyn6Y+oYTyCrtsPabyjq8fMa1b7k5JGAoaynUTbXRozbuWPdapwe2o7dE8OdcSl885Azvh4wDnLGIc44Gm0fCRiXdMZtnXEsVfPvgLEbObWfu11UU9ZTKZvrIsbtnbGZir6ekp5RxzgJKZbENw9S1JNCRiUGkVfj8ORgtH3LtWPUeCJZtQ3GzqSkx1I1/4kY93e3i2pKegoV86eAMeuMZyBEM2X9Z8p6BpbP2z6hvR2XpGoeoKQnYewbAePKzrg62r7pjI8GjEs549YY+3XAqAPGA8jJQxOMO1BQZwAFKuZPlPVFEeOGzrgEVXM/JX8ShjcjxvF4cjW0fcMZHwsYe5NXJ5FVW2Ls/yjpcSGjoDtZdYBbmehT0udTMX8G5rYZs3JH8uoMIE/FXOeMXwSMGznj4lTNfc74VsC4ijOuijavu7HE4215ydLkvZPIyC2ccSxVc1vA2KPNGC1E/pTRKCr9fKNRVPpholFU+pFjQSwqlfxplM2FdXOSZcmpIyjq42kdNIajhYI3haJ/PO2dx2AICmoKZX0hhnfqfkZWHInhBTcwnTc8sQlSDKRifhdj7EdOHUpRnxhj7ELBO5+ifxztF+uocSplfUGoaBYyymMw9pnQoC9sHIkU/amYS2KM/cmpQyjquGfxdHXGY2i/WIffoWacFipIhY3HYuxT+Pb+GOMopFiGirmsvlEMICcPcu0YZzzPGYsxxmmU9ZRQsSdsPA5jHw8NqMLGzZCiNxVzeYxxOXLyAIo67rlL3Sh45yYYFQU11RUAPqiTh5w8Ad8+HBoIBCMjt0CwOBVzZYxxIDm5L0Vd/xlbgu7kvXNSjNNcQerDOnnIyZPw7QOhTnbYuBWCRaiYq2KMK5CVv6Wk6z9PrfYMhnOY6x9NewE1apxOSU8OFVLCxlPw7X9DneywcWsEC1Ex18QYVyQr96SkT4sx9qCgzmauPibG6NGkplHUZ4eKFPMa7wl1YMPG7RB0pWKujTGuRFbuRkmfEWPsSUGdxVx9NO0F1LCx1o5nhgoAYeNp+PZOtH0ixrgDmQeWRj//z/qGRQagVtoc/94ZdfMUulNd/QxeGftXbGXeXd6EJ1lu7A7Y+y/BfvNV3bfIb7YPb938GbNerP+777XZasisx2f/eLJuvnngEgyc0YUyce24MAU10bVjvd3qPArqAkp6QmjgGoycPAPf/js08RGMjNwZgUfFXF83r8SqZOQOlHT9DrSgF3k1nqI+mvbCX+gTnHFcYFAYNY7Bt/8MTXyEjb8BoGpujDGuRkZsS8mMjzEu4oxHJRhnUNJjAoPCqHEcvv1raFIhGFm5Gxafqrk5xrg6GbE1JVP/OTa1YupYZ6y362DWteNoLPW3D8/L8VTtraFJhbBxdyxlqubWGOMQMmJzSqb+M4tqhcrR7ljHGWdQ0qdjifnNyAlU7U2hYnjYuCeWua7YXc+4Bp7YlLI583sac64dTwtMgkWNk6jYG0LF8GBkxF4gZrlidz3jWnhiE8rm7Bjj4uTV6RT1MSnGUwMTTFHjmVTsn0KF5rBxbxBfuwJoPePaeGJDyuacGOMS5NWpzqjr/EXencOTjGdRsX8MFZrDxn1BfOGKi/WM6+KJYZTNuTHGJcmrUxKMBXctPCUwCRY1nk3FXhMqkIaN+4P4lKr5vwTjUMrm/BjjUuTVSRT1sQnG6czVJ9E+eRM1nkPFXhkqPgYjKw+i4MU/23R+R6Oo9PONRlHph4lGUelHjgWtqGTsZ8yqDqP+Bb01ugLfxmYFi8R2kjvy+tqzUEwSswN/04X2Wdt5I80o6IaNuZB13CioX9T6YYy1Z0MkGRX1L9bhT0k2tlC/ONj66jRjd4jptNTi52D0SP491D7lxzX2gJgOai06YkyLZuoXWWsh6BU7sKxFmjFD/YHrd4km6hdZa5Fu7AkxA6Za/ByMWeoXUtz7f50he0P8Q7IB8PLg1yu81eKtZ4cy+4P479Piq8yhJV+/CAvwzdcL88mrabsBxofI+axw6z8QmaTv48KxRYRafqHYAXwtktuxY5GnfgGz1ZBmTM7XngVVr/j4XSL5PX4dxgL1C/bfJdKMPWOLMbV82u/+hzCmnBs6bUw+t3Usfg7G5OuAoEdswaiW/zkY0/ocyf2BjkVyv0TQPbaoVcunGZP7VSDokrkPKdJ2kZs/8WspKp3Rc9xPTfnBY9L/xjWKSj9ANB7U/SuL8LLruEgqCJFyEUh/fXqxpiN/E1+sgXRjckGpI59fe5fk6JwxuaAE6cWa2qckR9IFuyPGmSn5n4OxI8WaH9uYVKyBzheUIK0DmdxJhnRjZ4s1kNYRTzcmFWvg52FMLoTI1zuwfXpCQakyN5tYUALIq/orvVrj20+Stw1Pi5Y1P0osKAEpRQRSCkrQ+YISJBWUaoY0Y3K+88Wa9Pf4dRg7W6yBdGPy7zb9d/9DGJO/0503drYQAj8PY/J1IKlYU8v/HIxpfY7OFpQgrV+SVFCq5dOMyf0qsFTM31P+phGNaMT8ikZR6VcW1qZ1xBvRiEY0ohELaoiiSv+jhPArmZS/sHiZ5GKwX/US82nhdU8u1jSiEY1oRCMakRaNMU0jGrHgRKOo9CsLIZZI/6NGNKIRjWjEAhm2pXOr1jL5Cskr7wTVSnLRKJPr3Iqv6hfN6X/UiEY0ohGNaERCyMaYphGNWGCiUVT6lUVGbkXtORHxIeiVkk9+nkfa62v33KdF8my6YOGUfO+U/CKJ+fljTGvHtGeW5FLyULvnPekzFkrJd9bYkW1fk1depBll6rGeH8aeKfk042KJ+R/G2CMln2ZcPDFfe2ZIWiRfcgTdU/KdNXbktq3OGpOf75BuTC646IGzIG3Hm1z8LXKZfJWu/ZOPVVn2Scx3792BW6ISjLOfXAJbTvvNpLXjkimAlpR87V2So2vKqxcEY/LtkGmGdGMHbrdMjc4a056ZknycOhbJx0KQPHhNN3ZLyXdkF6vkc8OPb+zIkCH5HJt2/ks3dk/Jzw9j8nWIlGtt2rW6Fsnn6J+HMblfk349T75GtO4w2YhGNGLBiEZR6VcWUnQnr+rvrgSgxGAKagpxRRXBYjR50xIG6lkKagpKrB77GTk5mozcOTZf22q+/q5ANeOQDhinJxSOchTUVJRYLfYz8nIsGbljgnF38ur0BOMaFNT5xBWeBIu7dowrwOWdcZUU4w4Jxj1TjvVaKcYlXDvGFcdajYMSjOPIyO0SjL8lr+rvSFYzrk1BnUdccUywJAXvgoTCU4GCmoZMNE4gI7dJMO5DXp2cYFyXgjo3wbiUa8e4DlKBgpqKFCslGCeSkVsnGPclr+J2yHPbtCcaeztjXEezQJOaihQrJBgnuaJ1nPEA8ipup0G3TXuCUbI0Td7UhKJOE01qGlIsH5MXzrhFgvEgcuq4BOMw8uoc4jrckj7udx1nbKZJTUeKgYlGT2wWa8h12x9vnb1j87LPmngjjwdR//Iuui9Jn+N2R3WpPyCQhSw99zkYtWhcQVmwyL570HNY/Hdhyd2H0XufDWPz3dcYSFPhLOLbcRkK3nTiB7kt7vs4ICYvKaiz8MTIWENOHk5OHRWb98RGFNRk4rpJkmWdMa6g0aX2faR/gnEyntgkwXgkOXlEgnFjCursBGM/mrzpxBd1uta+jyybYtwowXhUinFEslEMoMmbRnxRpxtN3jQky8TkFQV1Dp7YMN6ojnFbzccZR1FQZxFX2JFiuQ4YL0DSN8U4PMF4rNvGPc64KQV1ZopxKnGFJ0F3Z4wrGLcaN0gwHkdWHpRg3DzFuLxrx/pFnZpxeoLRc8b1Yw15dQJZeUBsPiO3pKAmJRhXcMb650dBDwreNGTshJtHQZ2LEuslGE8kK/dLMG5FXk2MzUuxIk1qaoKxJwVvWkKBzqOgzkeJdROMJ5OV+yQYtyGv6u86WTMOSjEu5PoccQXlVuM6iUYp0iaxG/FDh7W/vP8a8cNEo6j0K4yc2pMm76LIwKaFrNyHZu8PZNT6NHs3RC6KHhm5FS2Zm/Hk6rRkbnEDyPYBoBLr0ezd6F5/rbsgtXfCah2Ki8l7e1BQZ5NXp4RmMmrbzZ5GXk0kp/ZyxuUixn2dcRjN3vWRi6JHRm5NS+aWWKMnhtLs3UBGrRcwtnfCasbfkfN2o6Amk1cnhwporVvi5tUEcuq3FNSMiLELWbk/zd41ZNQGMcZtIsYtI8b1nXFdmr0/kpV7R4wr0ORdSs7blYI6h7w6qY7xDPJqHDm1DwV1QR3jATR7V5NRw2n2/hS5cGfIyG3dsV6NlsytbiAeNA6jxbvRGf9EVv42YlyRJu8yct4uFNR55NSJoSJfbdve0eTVWHJqPwpqemSA2JWsPJBm7yoyakNnXDti3C5k9MTmBAepntjAGdehxbuOrNwrYlyJJu/35LydKKgp5NTxoSJfbdveMeTVaHLqgFrhJzRA7EpWHkSzdyUZtTHN3nUosVbEuH3bb6Y5c6srFgSNw2nxbnLGP5GVexLscEsxiCbvcnLejgnGceTVGeTUgc7YL2Do5oxXkFGbOOOagXyWjNwhYtw0YBTOeDOeWpsW73qyco+QUbUZt6egppJTx4UKkbWthceRV6eSUwdTUFPmMebkwTR5V5BVI2j2/ogSa0SMO9KcuRlPDnHGUbRfvoLGtZxx94hxZZq8K8h521FQ08mpYyPG3uTVePLqZPLqMArqvNBAW9CdnDyEJu/3ZNXIBONNznhLHeOGtHg34ak1afauJyt3I9jhVmIVmrwryXnb0uRdQE4dEyqW1owTyKmT8NbaA2/kCYjugUFDvgtqjV3JbDUOr99QMttPRiweKFSqLGqFUWR3mkbTcsuy0oyD6LHeCiBF6wfQfa3lWOmCg2hZcVm6HDie3JojIdO+IlIt1Z+WfU4jv9pQlhuzM7332RCve3s755bowbLHbsXSB2zCUnsNp99J25Ffqv3f4HUtsOQew1h+wq5kvVE0e9egRHCzlRwZuTPNmRvJyMG186QYEWnHjdyxXrN2npS7ElzJp8RqNHlXkVVb0eRdSE4eGSroSvpQUGeSU8eRk0dRUGeHBrGCnuTkETR5l5BVmznj4Ihxl4hxk4hx49r/r9agOXMDGfmbiHF1mryryaotaPIujjGeXSuGqGNijEfS5P3OvcfVkYmcPBn5G5ozN+LJIc64Me0DaYknNqn97tUQ92/ZheDqVyUG0+xdQ1ZtTpN3CTl5RIzxaHLqWArqrBjjRQHjahHjrjR7N+DJNWjx6hlHuGtlq3HniHGIM27qjIeHCuOSvhTU5FpxTh1PXk0KFQNqxqNo8i5035erUGLVgLFAVu5Gs3c9nlyz9r0TG0WMI2vXH7k6zZmbyMid6hj/QFaNql235WER4zIU1Lnk1RHk1Ink1cSIcSFy6miavBlk1TY0eVdGJptajTfgybWcccOIcVTtnNRm3JHgpJwSa9T6Q2pU7botDwkVxmvG88irw9w5ckJolUnNeAxN3gVk1bY0eVegxMrzGFu861OMt+LJwSnGkbXrzTzGZSmo88mpQ8irU8mrcaGiimBhcuo4CmoaWbUdTd7lkQmxJrJyd1q8PzvjLa4I2GpUeGJTmjO3kGkz7hAxrkmzdx1ZtQnN3hWuANdeGJf0c9fIg1w/clyoqCLoRU4d7/5mB5q8yyMTYk1k5R41o1rbtWOwUKnwxGZtxpbMzWTk9gQnDpVYyxk3otm70hnbC+OS/u7zD2jro9U3TiGndqLJ+31kQqyZrNyTFu86PLUOLd6NkUJlu7HWB77ZTTwGjWvT7P3J9f2uJCsPDBvFAApqGjm1P41oRCMWnBC2UaL7UUMI8dTgwYMHP/XUUz81ZZ4wpoRvb8MyC08MRcnwbKW1hqq5B8vHKFbEU2vM8x6+fhLNywiWICM3RkRmx7V5C98+jKALntgMKfOR/Bf49m6gNqOpZHhVjDFFfHs7ltl4Yr06Rk3V3OuMK+GpeXeD9PXjaF5FshSe3LCO8U18+0iHjBkxCinDK05qxtuwzEkw3oPlExSD8NTgSN6izRMdNHbDE6PqGD93RklGjKxjnOvacY471uFZ37BxZTy1eiQfNPbGk8PrGN/At4920DgKKcOrYjpmvBvLpyixCp5crY7xcTSvIVkaT25Qx/g6vn0MQXc8MbKO8TN8e0+isWr/AxTxxPoo2beO8S4sn3XC+Bq+fbwTxjlU7W0JRt8ZP0eJVfHkqpG8RZvH0LzujMMRkVuZgsaM3BQhspH8p/j23g4ah6Eit1uFjavhyVUi+aCxj2vHsNE3r6Lt4wh6JBjvBrJkxIgU43CUDC/V75jxETRvIumLJ4fVMb6Ctk8gWIiMHDmP0ehP0Pq/QAalRiFVeFWMLhXxX3kUWy3h9R+M1zO8gtRqTeWVx7Gz/4fqvTyZJfuF89by1RMfMOftLyks3ZNe6/aZx1j96D2q77yKaO5KfuU1EV54JVnps2/4+tHXkRlFz2ErkukS/r76s8t89cArmEqVHmv1J794uJ3D7TgYTw6K5C3aPIzmrYR2fBltn3TtOAohwqsvtfnYfR9z7vsYbkdjZlG1twNld6zDM/zWVp3xiw4Yl8WTQ+sYX0LbpxAs7I71dzV+S9Xe4YwboWT4Vqea8U4sX8YaffMQhrcTjC+i7dMJxo/w7X9/IOMaeHLFWKOiH0qul2BchIwcgRDh76M2H+Lb+5xxU6QMr9Iy5htnrMQYK874VYLxAQzvouiPkut+D+MHzpj/AYxr4skVIvmOGJ9H22c7YCw4Y3iVljEzqdo7nXETlAzf6hQ2roUnl4/kg8YBKLnO9zC+j2/vd8bNkDK8SsuYr6nauwDftWM94+1YZrp2rGe8H8N7KJZDybXrGJ9D2+cSjO/h2wdSjHcABk9sjJKLRvIlfHsnlpl4Yi2UDK9ytdY44/soBqLkWnWMz6Lt8wgWdcbwClFt3sW3Dzrj5kgZXkk2f42LkZGbxBoFzXhi03mMC0IMGTKEp59++he7Lb0Q4qmlvT6DT+8x7qem/OBx5tfjeN9/7xd77OZXNIpKP3IsiEUlay0VczllfWlgy8/a7GrBOxMpFqFqbqPon43lg7bXKbEqBTURJQehzQsU9Wi0fb4tL1mavHcqGbkpxn5G0T/DDX6t+4Qe5NTBbtahTElPomJuoX0L2hxZubO7rSxLxVxGWf8+YtzEGXtRNf+m6J8TMa7mjCvhm+co6TFo+0LA2McZR2Hsp854b8R4KFm5P1Byxlsjxl3cbWVZyuZSyvr3wDcB4wgK3qSAcTKWDyPGSSi5ojOORtsXI8bTyMiRGPsJRf9015Fv/YSezrhfjDFPVv6GvDoFyFA2l1DWVwSM0hknIkUvKvpflPQ5WD4KGFd3xhXwzbMU9RjMPMYzyMhNMPZjZ7wvYjyMrNwXKFLUE6mav9C+TW6erNzV3VbWarwc+DZgHOmMC1PR/3TG9q3Oa7dqTnTGZ5zxpYCxrzNujLEfuWMdNR7uVqsVKeoJVM1f6xhPATzK5mLK+sqIcZQzLkRF/52SPi9iHOKMy+ObpynqsRHjMs64kTOe7jrJrcaFyKkj3EqwuQFj68OaC4F29Cibi5xxVsC4KQVvgjP+zRk/iRjPRMnl8M1TzvhyxDiajNwQYz90xgcixiPdSrA5FPV4qubvEePu7tY3j7K5kLK+qo5xIlL0jDGuQcE7EyUG4JsnKOpxGPtKwLisMw7H2A+c8cGAcWFn3BOY7doxaGwKGCVlPYOyuZr2LY0VGbkZeTUBKXpQ0X+hpKdEjGs6Y39887gzvhow9iPvjSEjh2Hs+874UMR4FDm1J9bMpjJnIrr8f6F29Aq7kWk6Fqxizh23UHzgP9iS26pcSnKrrE2XHfdHNrVQfOI+5vznRsw37Vt4Z5ZdgS47HYC36JJ88fjHPDvhfr55rX33nC79erDaGcNYdP3e+F9+xrc3XkXl9cD3tWs3Wjbbgaahm+DPLvHWBf/hy7texGpTyxeyLL7dGvQ5cGOEELx/9X/5+JbH0HPduUkKFt5oJfoduwWZrgUq+mZKehqWTwPtuLZrx2XxzaOuHV9vN4gBFNRoPLk+2r5L0T8dbR8JtOMi5NXRZNVuWPstRT2OqvlXoB2byck9yanjASjr6ZTNH2jfYluRkVtQUBMQohsVfZMzfhYwrkPBm+SMj1DU4+sYx+DJoWj7DkX/jDrGY8mq3zjjWKomeKybycm92m7FLOtplM21AaPnbuMZjxBdqegbnbF9i24l1nXGZfDNwxT1hIhxOQpqLJ5cF23fdsZHA8ZFnXEXrP0mYGzdGbCZnNybnDrGGadQNtdFjFtRUOOc8QZKenod45ko0RffPOSMb0SM4/Hk2s54Oto+FjAu5ow7O+NoquY/EeM+zmgo6SlUzHW0b/leW91cUGMRoitl/WfK+oLQlvFKrOeMfaiaByj5EzG8GTAOdMa10PYtZ3w8YjyerNoRY2dS0mMixhZnPDrBuI0zdqGs/0RZzwgZPTHU9YuWdsYJGN4KGJenoMY545vuWAeNizvjDhj7tTPeFjHu624XNZT0eVTMnyPGbSmoMUALFXMdZX0hli8DxvWdsTdVc78zvh0wruCMa6LtG874RMR4Alm1Pcb+L2A07i+6BIx+wFiMGMcCzVTMH52x/fzniWHOuBRVc5871kHjis64Btq8TlGfgbZPRownklXbYexXFP0x+Pb2sFHtR04e6YznUjHXR4zbOWMTFXMtZX1RxLiBMy5J1dxLyZ+E4Z2IcQKeHIw2rzlj+/ijtkr8RLJqW2ccje8KRrXoSk7tT04e7oyTqZgbgNYdO2srsAtqtDP+wRnbrzOeGO76wEtSNXdT8s/E8G7AuJIzro42r1DUY+oYTyKrtsHYL53xzojxgNqqv5jbvH+KaBSVfr7RKCr9MNEoKv3IsSAWlUr++ZTN7+rmJH3IqcMp6rjnszRTUOdR1CfQ3qEIhqCgzqWsL8LwXt13yIrDMbwQGjwHwxMbIsVAKuayGOMy5NQhFHXcc246YjyPsp6B4f0E43OhgWnYuDFS9Kdifh9jXJacOoiiPiXG2ELBO5eifzztHYqo8XzXCf+gTh6y8ki0fQptH44xjkCKvlTMFTHGfuTUARR13DONujjjcTFG6YxTQ0WzsPFotH08NKAKG0cixdJUzJUxxv7k1H4UddyzobpS8CY7Y71tyiUFNYWSPj9UNAsbj0XbR0IDqrBxFFIsScVcXd8oliMr96ak456x1Y2COpuiTjOGC1Jh43Fo+1BoQBU2boYUi1Ixf0gw7kVJj66bF3Qnr850xnoPYVbOeE6okBKMnDwe394fGggEo3abZ0+q5o8xxuXJyt0p6TGdME6lpM8OFSnCxhPx7T2hDmzYuBXQjar5U4xxBbJyt0RjQZ3JXH0s7UXe72o8GWb/F+M/UzevcltRvn15So/cVTfvLdGX/NobMfuv9b+vorkLdqNjefCI+zEVPW9eCYZePBx536WYb76u+x7NW+/O27d+wqyX6v/ue41aBZnz+OyfT9d//YDFWOF3TZTF2PpGepJXEyjqY2kv8ob+lRTUNEp6QmhwHYycPA3f/h/aPlc3X7t1xaNqbqqbV2IQGbEDJTMhxrgQeTWeoj6G9mJQ1Didkh4XGlyHjafj23+GJmfCxh0BQdXcEmNcmYzYlpKZFGNcmLwa69oxyTg2NHANG8/At38PTc6EjTsDhqq5Nca4KhmxFSVzZoyxF3k12v2u6xkz7jczNjRwDRvHULV/CU18hI2/ASquIF/PuBqe2IKyOSvGuAh5dUaKcRolPSbWmJfjqNibQ5MKwcjK3bDMdcXuesbBeGIkZXNOjHFR8uo0Z5z3d1173uU0SvoMLPV/13k5noq9IVSwD0ZG7A5iFlXzzxjjEDyxCWVzboxxMfLq1A4YTw9MJkaNE6jYP4cK9mHjniC+dgXQesY18MSGlM3539OYc8bTEowTqdg/hoq4YeNvsXyBb/8TY1wLTwyjbKbEGBcnr06iqI+nvdASNU51/aZv6uQhL8+kYv+QYNwby6euKFbPuDaeWI+ymRZjXIK8OsH1w+sZ8zSpqczVp9A+URc1nkXFXh0qNAcjK/ej4MU/f3V+x6+iqKT6DD6tR/yztH6ucdbXY3lfN4pKnY1GUelHjgWtqGTsp8yqDqP+xbI1utC+imDeEPSK7cjXoitxF4laSOpfZMKfkrztdQvtqwjqvfqXYOxGXIegFj8HoyL5u1b7lGRjM+2z3/VenWbsDjGdv1p41B8ohD+lc8aFYweWtehO541p0UT9ImstFgxjgfoFzFqkG3tAzICpFhnqFym+S/y4RlHJ45Xif9f6izzFK+IeRu4ik4VqvaJWLZ5/dhgz69fTAVh+/U9ZuOs7sflZ3/bks7eSd2VMCpHzWelvf0Nkkn4zC8UWOmr5nrED+FpkqV/Y+y6Rp34huNWQZkzO156904Gd9BIj+T1+Hcbk49SxSP6+pH3f5o8x+fwl6BFbMKrl085Nyee2jsWPbUy+jnUskq9Vgu6xBaNa/qc3pl2P0/tFyX2WjkVn27GzRkGXzH+RIm2nu/kTjaLSzzcaRaUfJhacdYONmC9Ruw0gbZAfX1ACUi4CkFysgfRCSO1TkiO+EFJ79S/BmFSsgZ+HMe27VvuU5Eju+KQbZ6bkO1II6awxqQMKP4wxLZI7uQuGMXlAk25MKihB5wtK8GMbZTW5Hf2Xu6e8P4kFpdLcXGJBCaBbvv7qyNb49vN8Yj4tuqz1YWJBCUgZoJNSUILOF5QgrQiQbkzOd75Yk/4evw5jZ4s1kPZ9Sfu+zR9j8vkrqVhTy6edmzpbUIIf39jZYg2kXauSCiG1/E9vTLsep/eLOltQgs63Y2eNlor5R8rfNKIRjZhf0Sgq/crC2rSOeCMa0YhGNOKnCpFSv7RzMsl/kBLVctrrLZls8mBB+yoxnxZejx9igN2IRjSiEY34NYe1acXcRjSiEfMrvPQ/acQvKYRYMv2PGtGIRjSiET9JWAkiYRGi7Na5FTi5QpnayjsR8xeCcjFLrhD/OZmsT6UTixqqn7ak/1EjGtGIRjSiEQkhG2Oa+RoWMDau7/DzjcaDgH6YaKxU+pVFVm5F7b75+BAskpLvk5JPfn3t2QVpkTybLuiVkk8zLpqYrz0DIi1+bONiifnaMxrSIs24cGJezhdjcm1bkPzslnTj4imf/+MbBUun5NOMyb/ZWqQZe6bk04xLJOZrz5FIi+QVLoIeKfnOGptT8pB2Wey8MbkTbDPJ7eit/D8QyZ060RRftMnmq/RaMfm8MIt+ifmuS3bgNsIE46wnl8CW034zyc/JECyVAuiSkof0Y901JZ9mTHvWR/L7t75LZ97j12HslpLvyCAo+fuS9n1LN3ZPyXekO55cjE07t6Sdm34YY/I5tvPG5PNv2jWmFsnn2LTrSLox+Vo7f4xp/aK0Z+J1xJg2lkju16T33dKMGTJy25S/aUQjGjG/olFU+pWFEN3cVqD1Q4k1KKhpxBVVBIvT5F2QUEzIU1DTUCL+WWcFNZ6s3C02n5V7klf1dwWqGdeioKYmGJfogHFqojEvx7sdY+KMvyWf2I5rU1BTiCugCZZ0xrjiVsG14+opxp0TjPuQV3E7krntnNXUBONSFLwLEoqEBQpqOkqsmmCc6HYwijPu2wHjFOKKY4LeFLzpCQW81nZcJSYvyMsz3U5Qccb9yau43efcds4JRkkfd6zjCnhNNKkLUGLlFON2CcYDyau4nQbdVsnqfOIKT+3GuE5cM01qOlIMSjFuk2A8iLyK27HRbUOspiQY+zpjXIe91bhSgvEsMnLrWENOHkpexe182Wo8L8G4jDPGDXxanHHFmLwklz8Tld081pBddH+at9g1Pr/C6nTZ9VCQ9QcFqtcSrHb2VmS71y+mZrpkWerIffCWiBk4CcESB+3GQhvG/Rug994b0OfAjWLzPddZnqbCZOLbsZ9rx+4x79CVJnUBUgyMyUsKajKe2DTWkJNHkVPHxuY9MYK8Ope4wZUUA1KM3WjypiPFcjF5RUGdgydGxRvVMeTUMQnGURQSjcvR5E0nvujSahyQYDwXT4xMMB7ntnGPM25KQZ2TYBxIkzeNuMKToDtN3gVI+qcYN0k2yiMTjJtTUJOJ6xJLsbxrx/qFp3ZjXDHWo6DOwxMbJxiPJyePiM1n5JYpxhWcsX7hSdCjdqxZJsW4Yawhr04iJw9NMG5FQZ1NXBFPihVTjD1dO/ZNMJ6PJ4YnGE8mJw9OMG5DQZ2VYBxEk3cBccUxwULOGFcQaTUOSzCeQlYelGDcloI6M9aoxCD3m6lfeBIs7I51nDHjjEMTjKeRlQckGLdPMa7sjnWcsZfrX8YVYzMU1BSUWC/RKEXyxGgjGtGI+ReN3d9+5FjQdn9rjaq5g5K+KLAFbzeychfy6hiEKOCb5ynrafj2PpfPkJFbkVcnIMXiGPsJJX2+e/B3bdbaE8PJq+NQcmWsnUtJX0DF3EjrQ7GlGEReHUlGjsRaQ8VcQ1lf3bbVu2Apcmo/snJvhBBUze3O+FLA+Bvy6mhnfM4Z73f5bMC4GMZ+7Iz/54wCT2xAXh2PkoOwdo4z3tRmVGIQOXUUGTnCGa92xo+dsbcz/tYZb3PGl12+O1n5G3LqaITIO+NUfPtAwLi1My6KsR85478DxuHOuJIzTnfGWc64Cjl1JBm5iTNe5YyfBIz7k5V7OeN/nPGVgHFXcuooZ3zWGR90xpxrxxORYhFnPM8ZfWfc0BlXxNrZznhzwLiqM26MtdoZr2kzSpYmq/YnK/d0xn8746vO2CNgzOGbZ5zxoYBxa2fshbEfOuN/AsaNnHEFZ5zmjLOdcTVn3MgZr6Ss/xAw9nHGPRBCUNH/R9lchLGvBYy7kVNHOuPTlPRUtH04YNzGHeteGPuBM94WMG7sfjMrYO0sZ7wlYFzdGTd0xiuc8dOA8UCycjdn/Bdlc3HA2NMZj3DGp5zxEWfMO+Pxzvi++z62GmWgHZfH2m8Dx3qOMw52v5kNnPFyZ/yszZhTB5GRuzrjP53x9YBxd3LqcGd8kpKeFjFu64wLO+N5VM3tAePGzjjQGVvbMWg8mowchrU+ZXM5FX1twNjXGX/jjH+nbC6JGPcgpw5zxico6el1jCcgxUJo+x5lfR5Vc0fAuIkzLueMU6mYWwPGIa4da0a/eCV+6TqsqT3MVMg+ZJoOQOV2QghB6akHmXP339CffVjLt3SlsO5Imkdsj/A8Km+9wpzbb6b6Vu3cRCZHfshQWjbfFdnSldnvzeSF8x/l47vexvoWpGCJjfsy6Ph16Nq/J2buHGb/+xaKjz+ALdeegZRZZjlaNt+B3MBBWN/w4Z8f5JO/PkHlq9r3tdB7IZbcfSiLbrEaQgg+v+N5PrzuQea+W/s3ZHo0s9i2a9B7r2HIjMI3j7l2fMy1Y4Gs3I6cOh4peqLtO5T88/DtndQe+i9rxR7vBJToj7XfUNJTqJi/0PpwXCXWIK+OxpNDsbZK2VxGRf+x7aGwkmXJqYPJyJ3csf4LZX0phjfdsV6YrNqTnDwUITL45lFnfNwZmwLGHmj7tjPe5Yyqdqy9E1GiH8bOpKynUDF/DRjXJK+OwZPrOuOlzvilM/Yjpw4hq2oF+Yq+1RnfChj3IicPccZHnPGJgHF7Z+zujOfi27sDxhHOuCzGfu2MfwsY13LGdZzxEir6uoCxvzPugLWWqmk1vu2MvZzxYGd82BmfDBh3IKeOc8a3Au1onHGkMy6Dsf8LGIvOuLYzro21lYCx9pwVKQaQk4eQVds7482U9WUY3nHGRQJGD988SElfgLat/bVmsnIH8uo4hOiGtm9S8s8PGD1nPCHBuI4zrlUz6t9RMX+KGA8lq7Zzxpso69/HGqvmAcp6RsS4ozN2Rds3nPHuNmNGjiKnTkCJvhj7FSU9har5e8C4rvvNrIW15YDxf864nDNuGzBehuFdZ1zUGQ8KGC9A26frG83rlPSUiHFTZ+yDsV8GjKWA8Rg8uWaC8TCyahtnvMG143ttxpzam6w8ECEUVXO/a8egcSfy6lhnfM0Z7wkYN3Pn+KUx9gtn/EfEeCyeXMMZL6Jirg8YBzrj1lhrqZjrqejLA8bFnPEAZ7zPGZ9xxpaAsQvavBow2oDxRKTo7YznO2PZGddzxiHOeKEzfu2My5OTh5NVWzrjn6noKwLGxZ1xf2f8rzM+G2N8xRnvjRhPQoqlnPE8quafbUZPDCWnjsOTqzvjDCrmhpAxr44gI7dgQYpfw+5vvVWfwad2n/BTU37wOHvmGD5o7P7W6WgUlX7kWFCLSgDGzKVq7wC+xRProWR4JtBajW/uxfARihVRcg1E4JYGay3aPInmZSRL4smNECI8G6nNm/j2YaArGTEKKZsi+c/dBRE8sQlKhlectBtnOWN4JjBsXAklh9QxPoHmlVijb95wg8NuZOWmCBGewdfmM3dBrM1eKxmeGTFmjjPOjjH6zvgxikF4akgk3xHj62j7aIrxbmqDrpEoGV5xUjPeDszBE+ujZHi2smPGx9G8iqQ3nhz+PYyfumMdZ5zt2jHJeDeGT1GsjKcGz2P0zaMYXnfGDREiPKvrm9fcALa7M4ZXu4WNo1AyvCombByGkn0TjKvgqdUj+aBxadeOUeOrbgAbZ/zEfR/jjLOccW6C8S4Mn3XA2AdPblDH+IobwKYZlfvdh1fupBurrh0/Q7Eanlo1krf45hEMb6QYH0ewEBk5so7xY2fMkBEjU4zDUTK8cue7GfviyWHf2WgqH2Pn3Acig2gegcx0D/8binOovPgktlImO3BVvIXDKx+t9im/+CT625lk+wwgs3T03GT5/JEPmfXm/2hZpgeLDu2NkOGZ5+LbHzL39bfxurTQZa1VkJnw6iJd/YS5nzyBUB5Niw9FyvCqGGO+Ze6nD2H9CoXF18DLhG9/sbbi2vFzlBiMJ1eO5C2+eRjDm0iWce0YNvrmJbR90rXjKIQIr77U5iN8+18g676P8xpr58eKO9bhW52srVA1d2H5IsH4EIa3kCyLJ9evY3wRbZ9CsLA71lHjh24SJ874jfs+JhnvxPIlSgzBk4MieYtvHsTwdoLxBbR9uoPGTZEyvLoobNwQJec91h039seT68UaJYvgyU3qGD9wE03f11h2xq9QYg08uVIkb5zxHSQD8OS68xr182ieccYRCBFexarN+64d8zHGmc5YxRMboWT4VqewcS08uUId4wMY3u2AcVHXjnHGJvd9DK/SMuZrqvbOThrvx/BegvE5NM8mGN91E3ZpRt8Zw7dj1Yx3YPkaJdb8nsZn0Dz/vY3a/A/f3gGYWGPF3A7MdO24fB3jfRjeR7IcnlwnwbiYM0bO4W3GZmdsieSDxo1RMnwXQNi4Np4cGMkbfPNfDB8kGJ9G88L3Ni4I8WspKp3S9ZdXVJr8baOo9ENEo6j0I8eCWFSy1lA2l1DWl9O6QgfcrR3eWUixOBX9L0p6ctsKHaitNCqoiXhyVXzzHEV9RmAVUe2WroJ3Khm5BcZ+TNE/PbDSCaArOXWQWz5dpKgnUjV/oX0L2oyb4TgDyFE2v6Osr4gYN3TGxajof1LS54SMSgwirybhyVXwzTMU9ei2VUTzGj9yxvtpj27OeIgzjqdq/kr71qlZN+M2GshSNhc746yAcSNnXJSK/oczfhIwrkxBTULJlfHN0874SsC4lDNu7oynBVY61Yx5dYhbPj3XGf8WMba2Y5ayucgZZ7d9QrtxESr6b5T0eXWMZ6LkIHzzFEU9JmLsTcE7jYzcFGM/dMYHA/nutVlseSAwxxn/HjHu7IwZynoGZXNVxLixM/ZyxnPbVujUjKs440r45gmKemzbSieorYbKe6eRkaMw9gNnfKgtL+hBTh1KVu4fY8y51XunAV7AOKftHTyxCQXvTGf8CyV9fsS4qjOuiG8ed8bXIsYzyMgRGPs+c/3TAiudosbZFPU4N6MXNP6GvDrVGS+gbK6OGEdS8CY6463O+FnAuJozruCMY9pW6NSMfZxxE2c8NbBCp7aKJ6cOIyv3BWY5478CxrwznuKM0ymba+oYJyHFwlT0zZT01IhxdWdcHt885tqxvlHb9yj6p9UxHk5W7uOMY90KxqBxV2eUzviHgFEGjAtR0Tc54+cB42BnHIhvHnXGNwLGvuS90WTkRmj7DkX/dFeEDRqPICv3Bj0L++F47Nf/prayBBB5xMK7IpY4Aaxizm03UXzwdmzF7aQmBLmV16TLjgcgW7pSfPQe5tx2E2bWzLbPyPRdji47H4i3WG8+f+RDnhl/P7Peat/iu2WZ7qx6+vosPrwPpY++4P0L/8LsF95uy3vdmllstxH02mpd4FuKeoxbweiMFMjK3dwthJKynkLZ/JH2LbZl7XYobyJS9KSib6Ckp4W2llZiCAXvLJQYgG8eouiPb1tFVHuHZch7Y8jI4Wj7tjvWj7flBQuRU0eRlXs642i3gjFo3IO8OhEQlPT5VMx1IWNtJn0iUvSgrP9MWU8PbSOuxBrO2J+qeYCSP6FtFVHtHZYl740lI4eh7VvO+ERbvmY8hpzaA2NnUtKj3erAoHFP8uoEgICx9enoKmDsTln/yRnbd0JSYk1n7OeM49tWEdWM/Vw7DkPbN53xyba8YGFn3B1jvw4YW58i3+SMxzvjeVTMnyLGzSmoiUBXKuY6ynpGxLiWMy5L1dzvjO+EjAVvHJ4cirZvOGN7X0rQi7w6hqzaDWO/puifgW9vDxlzci9y6njAUNLnUjHXR4xbOGMXKuaPlPWFEePaFLwznfG/lPyJEWN/Z1wPbV6nqE+PGBchr44lq36Dsf9zxjsixt+SU8c54znO2LpDonK3vk1wxmudsX0nXyXWccZlqJp7nfHddqMYQEGNw5Pros1rzvh0Wz5s/MoZ7wwYmwNGTUlPpmJuCBg9ZxzvjH+grC+KGNd1xr5UzT3O+F7AuJwzroM2r1LUZ9QxHk9W7YyxXwaMrWOYZnJyb3dLq+/aMWrcioIa54xXU9a/q2M8CyX6UDV3U/In1TFOwJNroc0rzvhMW16wqDPuhLFfUPRH1zHuS04d7Yyt7VgOGLd2xha3wvt3bSt0asb1aPLOQoqlqZq7nPH9gHEgBTU+YDw9sIqothoqr04gq3ZwxjPcyrugcT93S6tPSZ/lVsoHjds4Y7Nb4X1JyOiJoa7v1puquZOSf2Yd4wQ8uSbavOTa8bmI8USyantnPN1NmrYaW9qM0YmanzIaRaWfbzSKSj9MNIpKP3IsiEWlkn8OZXNZ3VzttqRDKelTY15doKDOpahPor1jFo68nEzZXIzlg7r5rDgIw0uhAX4wPLEBUixHxVwRY+xDTh1MUcc956aJgjon0VhQkynpi7B8GGM8BM1zoYFp2DgcKfpRMVclGA+iqOOeF9RMQU2mqE+kvdMTNZ5DSc9ouz1wXuNhaJ4ODUzDxg2Roi8Vc02MsS9ZdSClJKN3DkX/hBijcMbpocJe2Hg4micDt7dEjRsjRW8q5g8xxmXIqv0o6bjnV7VQUGdT1CfQ3umJGs+jpKeEimYhozwSbR8NDfrCxhEIsThV88cYYz+yam9KekyMsQsFdRZFfTxQb0etVmO4IBU2HoW2D4cGfWHjKIRYhKq5rr5RDCAr96Ckx8UYu1JQk1w71jNKCupcV3z8rE4esvIYtH0gNKAKGzdFiIWomj/HGJcjK3ejpMfHGLtRUBNdO9Z7ULQkr86jrM8JFXvCxuPQ9r+hwUrYuDlCdKNqbog3il0pmbhOVUeM51PWk2ONeXEC3tv3wtzn6uZF982Z/fiKlB6/t25eLb40hTU3ZPY/rq3/+qYWzIbH8OARD2D9ebeZE0qwzpQN+erPt+LPnF3nHWDJA0bSvNVFaPt83XxGbgXkqZpb6ualWIGs2IGSObO+ke7k1QSK+jjaC3/BUBTU+ZT0pFABIBg5eRK+/Te67RbvqHEbIEPV3BpjXJGs2I6SOSvG2IO8GueOdT2j54wTQgPXsPEUqvZfgdvQo8btAOEmNuoZVyIjtqFszo4x9iSvxqYYp1DS40KDwrDxVKr2H6EJpLBxB0C7gvy8ocQgPLElZXNOjHEh8mq0M+o6f9FqHItlZozxNKr2r6GJj7BxR6DiCvL1jKvgic0om3NjjAuTV6e78+P3NZ5O1d4amvgIvYPYGSGKriBfz7gqnhhF2ZwXY+xFXp3q+hT1jBn3fUwyjqZqbwpNfISNv0GIWa6QXM+4Op7YiLKZGmNchLw6xbVjvS0ua8/RKerRwDd13yMvx1CxN4QmFULvIHbFMhPf3hZjHIwnhlM202KMi5JXJycYs854OsEJz7BxHBX7p9CkQti4O5YvXXGxnnEInlifsrkgxlgrutSM9cZwrcbTCE54ho0TqJg/hIrhYeOeWD5zRbF6xjXwxHqUzYwE4wnu+1jPmKOgzqeoT6V9MjFqnEjFXB0qhgcjK/em4MU/f3V+R6Oo9PONRlHph4lGUelHjgWtqGTsJ8yqbkD9TkdrdCHuQgS1DlZw1va7vr72oMmEPbPdpyRv8thC3IWo9uo0Y1fiOgS1+LUYm2lfjVHv1b1CqwjmjQXB2Nl2VCT/HjoSTbSvdJg30o3diOtE12JBMHaHmMFILTzqD1y/SxSIKwTDD2HMUL/Y810iT1whGGqD5LhCRy16QMwAHsCbmSP/Ufyx9mfm+eZf8Q/JBiCThWq94mAtnn92GDPfj02zxMAieRv/u+866kN6HVq/4N7x6Gw79oSYYk0tstQvkH6XyFG/WF2LNKOgZ2xBqRbzw5hsSDcmv3/HIvnfmW5M+y7MD2OP2MJbLZ9mTP6+dyySz18LhjH5OiDoHlvUquXTjMnXiI5F2rWqO0nXkfTrUPK1tmORZkzuM8wfY3K/RNAN+6MaBS2Ze1AieRe5+RWNotLPNxpFpR8mFpx1g42YL1G75SNtcJpUECLlIpD++vQiQ+1TkiO+WFN7dZoxqcgAvx5jfLGm9uqkghIsGMbOtmNnizWQ1jlLNyYVlGDBMM5MyXe2oARpg4XOGztbUIK0QVfygAiSCkoA3jfJxso7adtVk1hQKs7JJRaUADJ+8r+hed36M8ffLTrbjkmFEOh8sQbSChVpxuRiDcwfY7Ih3djZYg2k/TvTjWnfhflhTP7dphs7W6yBtPPXgmFMvg4kFZRq+TRjZwtKkH6tmpmYTb8OdbZYA+nG5D7D/DEm90uSCkq1fGeNNnb1YSMa0Yj5H/X3823ELzasTetANqIRjWhEI36qEH79LZpbw5Q7d9n2K5mUv7AolVwMVl1/iEF8IxrRiEY0ohHfPxpjmvkdAmuT+yg/z/gl/pvmfzRWKv3KQoil0v+oEY1oRCMa8ZOEzSSv3JPNnVvdkiuUSV4dKPCrKiEP1c+bEvONaEQjGtGIRvzYIRtjmkY0YoGJRlHpVxZZuRW1+5TjQ7BoSr5vSn6xxHzt+QdpkU3MChZJyfdNyS+emK89WyAtOmeUC4SxV2J+/hiTV0503rhEYr72jIa0SF4dIlg4MS9JvudfsGRiPu03W4s040Ip+c4am1PykG5MvrUr3ZjWwezINsTJBRVBj5R854x+j+R2zC37FYjkWTXR3CU2l81X6bVS8m9Od0v+zcx9NOWZTkBa90LQPeXVS6e8vnfK58e3QfBTkj+je8qr04zJ+dpzUdIizZj8HmmG9HZMMwrSZ3m7dsqQ3o7dU/IdMSZ/X9J+t503dqQ73llj2rNnks9taefGWiSfYztvTLv9tyPG5HNs2rUu/RyffK2dH8b0flGasSMrYtPGEsnXkfR+UXK/CjJk5LYpf9OIRjRifkWjqPQrCyG6UlBxu1S57XPVNOIG2oIlafIuTLhYFCio6SixVuxnFNREt91z/cjKfdzWtHHGdSmo6cQVLARL0eTNSCh4tBrXTDBOIit3TzDu67ZUTTJOSzD2puDNSCjANVFQ01Ai7plxgrw8k6zcLcG4P/mEY+2Joa4d6xf5JEtT8C5MNDapC1BicKIxI3+TYDyQvIrb2Q08Mcy1Y5yxj2vHuEJoszOunmA8i4zcOcF4EHl1RoJxA2esX8CT9HXGuCJjizOuFpOX5OXZbgej+pGTh5BXcbv41XYrLKipxBXwJMu430xcAa+FJjUDJVZJMe6QYDyMvIrbVRI8sREFNSXBuKwzxnU0u9CkpqPEyrHGgjrb7agVZzySvDo5wbhJSjv2d8a4DntXmtQMpBgUk1dku09G9Ng63tDvYFq22iM2n11pCF13OwxU/YGLWnQpVp+8Nbme9c9Nma45lh+zA4V+Med4Keg17Ci3w1v9yKljyKuT4v8NYpQ71vUHLlIs5849cQPIbjR5M5AirrilKKjzyMgtE4zHkVcnJBg3Ja/O74Cx/kBc0N0Zl4/7BArqXDyxeYLxeLeNe5xxM/LqvATj8jR5F8QWx2rGC5FiYILxPDyxaYLxhERjRm5BQZ1H3EBaihXcbybO2MO143IJxvPxxKhYQ16dRE4dk2DcKsW4Ek3eDOIKbIKezjggwTgFT4xMMJ7stpqPM25NQZ2TYBzkjPULeIKFakb6Jxin4olNko3yyATjts5Yf2ihxCCavAuIK44JFqbZuxBJv7hPoElNxRMbJRhPJScPTzBuT0FNTjCu4toxztjLGZeNNdbaccME4+nk5KEJxh0pqLMTjKu6dqxfwBMsQsGbkVBYylJQ0/DE8ATjGeTkwQnGnSios4gr1iqxmmvH+sUxwaIUvAsTCkutxmGJRinSimONaEQj5lc0dn/7kWNB2/2tNarmbsr6YrR9Fqh13LJyV3LqSITIo81LlPQ0fHsvtVslcmTk1uTVCUixCMZ+RklPcQ/JKwMCT2xEXh2HkitibZGyvpCKubHt4ZFKrEZOHUFGboy1lor5IxV9FYbaU2Mlfciq/cjKPRFCOONFaPucM/YkK38TML7ojP8NGLchr453xk8DxoozbuyMKzjjDGec6YyrO+NGWGuomD9S1ldh+SBgPICs3N0Z73LG5wPG3cipIxAihzYvOON9zpgPGHth7CeU9NSAUTrjsc44l5KeQdXcFDAOJqeOJCOHO+O1zvihM/Z1xt2c8Q5nfDFg3J2cOhwhcvjmecp6Gr69P2Dclrw6zhk/dsZ/BYybOOPybcaKuZHWh0cqMcQZN3DGP1DWV4eMOXUgGbmrM95OSV/ctrV2zbgHOXWYMz5HWU937QhQCBgXxtiPAsaqM45wxoFYO8cZb4oYjyIjhznj1ZT1NVg+csZlyKmDyMhdnPE2Z3zJGRdy7Rg0trZjzZiV25FTxwaMU9zD8oPG41ByOWe8wBm/dcY1XDu2Gq9yxo+dcVnXjq3Gf1PSv8PYl51x4YAxi2+edcYHnLGJrNyWnDoOKRZyxvPdltFVQNWOtXc8SgzA2tnOeHPAuCZ5dSSeXB9rtWvHq7F84oz9nHHneKPag5w81Bmfccc6aNzOGXti7IfO+J+AcYQz9sfaWQHjLGdcyxmHOmNrOwaNB5GROyGEoKL/j7L5XdsW5YJeAWMG3zztjA9GjMcjRQ+M/cAZbwsYRzpjP6z91hlviRiPwpPrYa3Gfn419otrofpp7SPy/RCLHIjouT1CCErPPMzcu/+G/4k7f3bpTmHoSJo23hahPKrvvMbs22+h+sYLtX9DNk9+jWE0b7YLsrkLs9//hpemPsaHt7+F9Q1CCZYYsSyDjlubLsv2QM8p8vGf7uSrO5/EzK09Q6ll5WVZfLcRdFm1n2vHKyjra9vbUQwgJw8mq2rFxYr+p2vH11w7LkJW7UlOHuza8UlKejraPuzasZms3MH9Zrqj7XuU9RTXjj7gBdpxWdeO0107znbtuA55dTSeXBtrfcrmcir6j1g+dcblnHF7Z/w7ZXNpwLhowOjhm8cp6QvQ9pGAcUfy6liE6Ia27zrj7W3GjBxFTh2PEss44zRnnOOM6zrjWs74e2f8LGA8hKzazhn/5oyvB4x7kZMHJRh3Iq+OccZ3nPGOgHFTZ+yLtd84460Jxsuo6OsCxoHOuG2McTFnPNAZH3PGR52xJWDsirZvU9ZTI8bNnLEPxs6krKdRMX8JGNdzxjWxthpox88DxkPJqm2c8S+UzWVtW70LFien9iIrD3DGR53xsVhjyZ/itoLXbcZav2hpZ5xKxfy1zeiJoeTU0XhyDWdsbcdW4/Lk5GFk1VZYa6mav1DWl2F4M2D8rTMqfPOIMz7ujF0Cxi5o+5Yz3umMmYCxN8Z+7Yx/CxjXd8YhWFsJGL9wxhWccUtnvJWy/n3EuDdZub8zPkxJz4gYdyavjnbGNyn5UyPGzZ1xKYz9X8A4N2A8Bk8OdsZLnfFLZ1yRvDqMjNzCGW+mrC/H8JYzLkFO7UNW7uuMD1LSF6LtExHjMQjR4oxT8O1dAeMWzrgkxn7ljH8PGIc54+o1o/4dFfPnBONNzvh2xLgfQkiq5gHK+kK0fdIZuwbasQVt3wgYjTNu6fqXS2Lsl+438zdaH3DuiQ2ccTWsLQeMXznjSuTV4WTkZgHj7zG844xLBtqx1TgDbVvHON0Cxma0ec31geONtb7b3wPG4c64asD4p7YH+ksxyBnji90/Rfwadn9bSvYdfFKXiT815QePc2eN5kPz7i/22M2vaBSVfuRYUItKANbOoWpuxzIbJdbGkwMjeR/f3IO2H6HEinhyLUTgtgtrLb55HG1fRoml8ORGCBGeMfXNa2j7GIIWMnJThAjPWmjzGb69G6itAlAyvOLE2tlUzR3OuC6eHBDJV/HNvSnGx9D2lQ4Yu5CRo+oYP8W399BalPp+xnvQ9uME46No+2qC8VW0fdwZN0WI8LLjmvFuWgsVSoZXnFg7yxnnoMR6eLJ/JF/FN3ej7acosRKeXKOO8RG0fQ0leuPJDb+H8RPXjvWNxnyLb+9MMFaomrsx9jM8MQglh8QYXw8Yw7O6vnkZ3zyBFN3dsQ6vyNPmY1dIlXhiJEqGV8UY8w2+vcsZh+LJ8Ixqu/FzPLFSjPFhZ1w6xvgSvnkywfiRM3quHec1Vu2dwFw8sT5KhmdUw+24MkoOTjD2xZMb1DVq+xSCbjHGD12xN+OM4dnE72ZcBSVXr2N8CG3fiDfqF/HtU0jRwxnDK3O+m3EYSi4TMZapmnuccVU8tXokb5zxTZRYBk8Oq2N8Ad8+HWs05Q/h2/tBeNBtBDITXrmj586m8uKT2EqZ7PKr4C0cXp1p/Sqll57EfjsTr3d/sn0j5yZj+ezhD5j11te09OnOYhssjZDhmec5b3zInFffw+vaTPd1VkLmwqu0tPnAFXsz7jcTNhozk6q9Ayi7duxbpx3vwtgvXTuuVqcdH0Dbt107boAQ4Rl8Xz+Pb59Bip6uHcMrG7V53xV7s84YXl0UNm6AkuHZ87BxNTy16vcwPodvn0WKhcjIkTHG+4BcXaM2X7tBeBlPDEfJ8O1WNeOdGPtVgvF+tH0HJZZ138fvanzPtWOOjBiFlN2/h/EOjP0fnlgdT60SyXfE+Cy+fQ4pFiYjR9QxvusK0nHG/zlj1R3rqLHkjF93wNgfTw6tY3wG3z6fYrwfyJMRmyJlt0g+aByOkuHbA8PGwXhq5Uheu+9jmvE5pFiUjNy4jvEd145NZMTIOsavXKGgiic2RMnwbW1h4xA8NSiS164d30WJAc4YPsdr09qOi5KRmyBEeDWwNm+7wv73NRbdb6Yzxqfx7QudMH7pjD6e2Aglw7e11Yx3YOxMPLkGnlypjvG/aPs+SiyHJ9eLMb6IFIvUNfrmLbR9CEEznhgRY6wVAGt94PAq1rBxTTy5YiTfavzAtWM941P49qUOGkciZfIttT9FNIpKP99oFJV+mGgUlX7kWBCLStYayuYiyvpygtu1e2IoBW8yUixJRf+dkp7cNisJtVm/gjoTTw7GN09T1Ke1zUpCbWYyr04hq7bB2I8o+qfg24cCn9xCTh1ATh4BFCnqcW52onXrVI+M3M7dVpanrGdQNldGjOs74xJU9N8o6XMixuUpqLPw5Gr45kmK+oyIcXFn3BpjP2Suf0pglrzVeBA5eRgw1xn/ETFu74w5yvoCyuaqiHGYMy5ORf/VGT8PGFdwxlXxzRMU9eg6xtPIqi0x9gNnfIT26BIwzqGoxzpj6/aunls+PQbIOuPVEeMGzrgYFX0rJX1exLiiO9ar4pvHnfGNkLHgnU5GboGx7zvjo7RHF3LqYLfEezZFPcatIgoad6KgRjvjdGds30LWE8MpeGc74y3O+EXAuJIzroJvHqPoj26bOa0Zl3DGzdH2PYr+KYEZaICuzniIM452q4hajRk3AzwayFDWUymbP0SMGzrjolT0TZT0+aFtcqUYRJM6EyVXxjePOuNbEeMZZORmaPuuMz5Oe3Qlrw4lKw8CZjnjv+sYxwAeZT2Fsrk2YtzIGRehom+kpKfUMZ6Nkivhm0co+mMixiWdcVO0fccZn6A9ujnjgc54hjO27iCWdTOXZwAqYGzfGtoTGztjLyr6Bmds31paiUEU1GSUXBHfPOyM7dva14xjyMiRaPu2Mz5Je3Qjrw4nK/dPMO7ibiFUlPT5VMwfA0bhjGc54/WU9NSIcWVnXAHfPEjRH9s2u1t7h94UvNFk5AhnPDkwu1u7FSmnDqsZ9bfYD8ZgZ97ebhRZxEI7I5Y8Faxkzr9vYO5Dd0DVPbhbCLIrDqbrzgchu3Sj+PCdzL7tZuycb9vbuXc/uu5yEN4SffjswQ94Zvx9zH63fdvn5qW6suoZ67PEJstQ+uBz3rvgFua88l77v7FLE4vvujG9tl0fyzcU/dPxbcBIlqzcjbw6BZCU9HlUzHW0b1Uu8MQI144LUdbXUdbTQ1vKK7EaBXUWSi5P1dxPyR+Lod0gWZq8N4aM3Bht33TH+ulAO/Ygp44gK/fBMtMZ7wgYcwGjoKTPoWL+HDGOpOCdiaCnW606o47xbJQcSNXcR8kfFzH2ccaN0PYNZ3wmYjyKrPwtlq8Dxtb+WNBIwFhuewdPjHLGHm616ozQlvJKrE7Bm4wSA6ia/1Lyx9cxjiMjh6PN6xT1KW0rl2uf0NMZ93LG09zAstWYJyt3d7eLWkp6MhVzfcAoA8bubrXqhRHjYGfsT9XcQ8mf0LZyud04nozcAG1ec8bnIsajyam9MPYrZ7wrYtzD3YppKemznbHS9gme2NQZu7lVlheFtr1XYogz9qNq7qbkT4wY+zrjMLR51RmfjxiPJaf2wNgvnfHuiHFP8upEwDjjDSFjbaXRJGe8irK+uI7xHJRYlqq5m6I/oW11de0dlqHgjceT66PNKxT1qRHjQs64O8Z+4Yz3BIwFsnIvd7uopqTPdCtqg8bNKahJQFcq5kpK+mKC294rsYZrx2Wpmjsp+hPbVi7X3mFZZxyKNi874wshY14dR1bt5oynOmNrRI2T3GrVoHELZ+xCxVxBSf8uYlzTGZehau5wxo8ixgl4cj20eckZXwwYFyavjierfoOxnzvjvQFjEzm5Fzl1vDNOdMZqqyDQjl2omN9T0pfQuiq4ZlzLGftSNbc748cBYz8K3kQ8uQ7avMhcfVrbCvB24wlk1S7OeIqbXAka93a3tFad8ZaIcUsKaoIzXkZJXxoxru2Mfaia/1D0z4wY+zvj2mjzgjO+FDD2csadMfYzZ7yP9mgiJ/chp46dZ6Lmp4xGUennG42i0g8TjaLSjxwLYlGp6J9FxVxRNydYipw6hJKOe4ZMgYKaTFGfQnBQGIy8nETZXBK6GAcjIw7A8FKkUNIenhiKFMtRMVfHGHuTUwdR0nHP4mk1nkz7QCFqPJOyuTh0oQtGVhyI5vlIESJoHIYU/aiYa+rmJUuTVQcmGJsoqLOcsf723AV1NiU9o+3WknmNB6N5JlKECBo3QIq+VMy1Mcba7YYlPbaTxgvabi2Z13gomiciA/ygcThC9KZqrksw7ktJj4sxNjvjibR3HoMhnHF6gvEwNI+FBvhh40YIsQRV86cY4zJk1W8p6bjngLVQUJOcsVonLyioc1wh5bM6eciKw9E8Eho8h42bIMQiVM31McZlyao9KOm4zkC6Ma/OpRwpPoaM8ki0fSA0MA0bRyLoSdXeGGPsR1buRslMijF2oaAmOKNfJy/Iq3Oc8Ys6ecjKo9H2v6GBadg4CkE3qvbm+kYxgKzYhZI5M8bYlYIan2CUznhOqLAXjJw4hszb/4W5L9bN031TZj+6IuUn76ubVostRWHNDZn9z/q/KVFoRm9wDA8d9QBW17n+S8G6Uzbgqz//Ff+b2XXfY4n9RtC8zYWhwUowMnILsDmq9q9181IsR0bsQNlMrm+kOzk1llJiO55PWU8KFXuCkZMnULX/CQ1WwsatAI+q+VuMcXkyYlvK5pxYY16NoahPijEqCupcSnpSqJASNp5I1f5f262g8xq3BoSbNKhnXIGM2JqyOTfFeCLtheh6xomhIkXYeBJV+w+MfTXGuC2g3aRBPeOKZMSWlM15Mcae5NXprh3rGWvPdSrp8QnGU6jav7bdwjjPO4jtEKLqJg3qGQeREZtSNlMSjKc5o6nzF7XnYxX1eIJFirDxVKr21tAEUti4A1DEt/+pm1diZTwxgrKZFmNciLw6xV2v44znUdRjCRYA5jXeEppACht3Ama5QnI94yp4YiPK5oIY48Lk1cmdNJ5O1dwYmkAKG3cBZroibT3janhiA8pmRoyxF3l1ojPWGx9lnHE0rbcuRyMvx1AxfwpNzoTeQeyKpXWFUj3j6nhiKGVzUYxxEfLqhA4Yz6D1tuB5jWOpmGtDEx9h425YPosU7oLGISixDhVzcYxxUXLqOEr6lBhj1hlPIzjhGTaOo2KuwfBu3XxW7knBm1A391NEo6j0841GUemHiUZR6UeOBa2oZOxHzKoOp/4FvTVaiLsQQa3zEpyh/66vrz18MOnza5+SvO11M3EXotqr04xdiOsQ1OLXYmwiuKpl3lenGbsS1/mrRUeMafFzMBaIK7LCD2FU1B9wfZforLEbcQOmWvwQxjxxhWD4IYwe9QsA3yXSjD1jCx216A4xg2MAb2aW/Efx30f/6wLf/N8KyUQvA3694mAtnntmGN98EJtmieXmko8pegF0HfU+vQ6tX3DveOSIK1ZDR9qxB8QUa2qRpX6h+btE8nv8PIw9YotaHckvGMa0dk7+LnUsMtQvqLcauscWtWr5hrEWaefY5HN0ujH5/Nux6Kwx7TqUfK3tWKRdT5P7DL8MY3LfD6Alcw9K9E38m/kVv5ai0oktv7yi0nmzG0WlHyIau7/9yiJ8y0dcJBWESLkIpL++YwP4tGJnfLGm9uo0Y1KxBn49xuQLdroxqRACnS/WwM/DmNw567yxs8Ua6LwxqVgDP4wxebDQeWNnC0qQbkwaEEFSQQnAm5lsLL+btu03iQWl4pxcYkEJIKOT/w3N69af3f5ukTx4TW/HpEIIdL4Qkv4ePw9jsiEtv2AY09q5s4UQSCrW1AwzU/INYy3SzrHJ5+h0Y2cLStB5Y9p1qLPFGki/nib3GX4ZxuS+H+A2uWlEIxqxIESjqPQrC2vTOpCNaEQjGtGInyqErr9Fc2vYcv3t4zsafiWT8hcWpZILrarrD1FoaEQjGtGIRjTi+0djTNOIRiw40Sgq/cpCit7pf9SIRjSiEY34ScJmk1cXqpbOrSbIFcokr2AUVKvJDz+tftacmG9EIxrRiEY04seOxpimEY1YcKJRVPqVRUZuSe0+5fgQLJaSXyYlv3hivnZPfFrkErNpRjlfjNnErGDRxHy6cYnEfO2e+LRIMy6SmE83LpmYXzCMSyXm034PtUhe3SHolZiX9E15fZqxI4P45BUsP76xJSUP6caFUvJ9U/JpHcwuKXn4qY1+9+R2zC77NcjkS7dojv93ZvNVFhmU/Jsz3ZJ/13MeTXmmE5DWvRAk38Yn6dOpfO25KGnx4xpFp42CdGP3xHznjcnv3zFj8r8zzdB5o6TmTIo049Ip+b4p759226oi3Zi8jXrnjT1T8h3ZaSv5HJt2/ks/fyaffztmTD7Hpl3r0q+VacaOrDZNvuanG9P6RQunfP6CYEzus0DWbRTQiPkZxopf3H+N+GGiUVT6lYUQXd1WoPV/REqsS5OaQVwxQNCbJu/ihI5BEwV1AUqsGyegoM4kK/eJNWbl/hRU/IPgPDGUgrog1ihZmoJ3UcIFrYmCmoES6yQYzyIrf5tgPNC1Y5xxWIqxjzPGFY6aaVIzUGKtBOPZZOWeCcaDKKi4Hclqu8PVjPULaO3GuAJcC03qQpRYIyYvycvJZOXusYacPISCGpdgHE5BTU8wLkPBuzChyNjFtWPcs/dajbslGA8jr+J2yKvtDlcz1i+E1rYhvqhTxoKaTEb+JsF4BHk1JsG4CQU1jbgCXm2L34sSCqFd3bFePSavKKhzyMidE4xHkldxu0pS22peTY83igE0excnFBm7OeNqKcYd443qGPLqtATjqOR2FMvR7F2U0BnuRpN3EUqsEmvMdj8X0XO7eEO/w2jZOv53n1t5LbrufgSo+oMCtVhvVj93G3IL1z83ZbvlWGHcjjQNiDl/KskiGx6d2JnPqePJq1Pi/w1iM9eO9Yu1UgykybsodnAm6E7BuwgpBsV9AgV1vts9Lc54Inl1cmy+tv34FOIGV1Ks4Iz1B+KCHjR5FyLFSgnGqW4XuvqRVye5rebjjFuRTzSu6M6P9Qsagp7OGFck9CioKW4yKs54itvGPc64dYpxEE3ejNjimGAhZ1w+wTgNT2yeaKxt4x5n3JaCOj/WqMQgmrwLE4wL0+xdhBQD4z6BgpqKJzZNMR6XYNyegjqPuKKJEqukGHs543KxxiY1DU+MSjCeTk4dk2DckYI6N8G4Kk3ehcQV8ASL0OxdjBQDYj4h6471yATjaHLyqATjTinG1WjyLiKugCdYlCbvYiT9Yz4hR0FdgCc2STEemWDcxRnrD9GUGOzasX4BT7BY7TdDvxTjRgnGseTk4QnGXSmoyQnGITR5MxKNBe/ChMJS3hmHxxoKaixSpBVCG9GIRsyvaOz+9iPHgrb7W2tUzX2U9UVt26gLFiIrdyenDkOIHNq8Qklf4LY8NUCBjNyWvDoWKXph7BeU9DSq5u/UHvgn8cQI8uoYlFwea0uU9e+omD+3PXhRiSHk1BFk5HCstVTMn6noK9u2C5UsQ04dQEbuihCCqrmXsv5dinE6vr3bGZvIym3JqWOc8fOAsRQwHouSA53xYirm+oBxDWfcwBn/5IzvOeOy5NSBZOQuzniPMz7tjAs746HO+LIz3hMxHosUC2PsZ874D2dUAeNyWFt0xhsCxjWdcZgzXkdFXxUw9nPt2Gq82xmfccZeZNXu5OQhzvhSwGidcTtnXAhjPw0Yy844krx3LEoMcMaLqJgbA8a1yKsj8OT6WGuc8eqAsb8z7hwwXty2HX3NuIczZtHmRWe81xmbnfEYZ/zEGf8ZMI5yxv5YOzdg/NoZ13bGoc74R2d8v2YUA8jJA8jInZzxTteOzznjIs54sDO+4Iz/DRi3d8aezjjVbb1dBjwychQ5dSxK9HPGC51xpjOu44zrOeO1VPQ1AeNy5OSBZOQOzniHMz7vjIsGjBl88zxlPR3f3hcw7uCMPTD240A7VgLG41BiWaydQ0lfSNXcFDCu64zrOuMfKOtrsHwQMB5ERm7vjLc74wsB457k5EHO+BxlfUHEuKMzdsfYj5zxXwHjpq4dk4xH4sl1nPEaZ/wwYDyYrNrenR9vc8YXnXEx145B43R8e78ztjjj0QHjVLeFeatxM3LqGGecTUlfSMXcROtDYWvGo/Dk2lirsV9ci/3iWqh8VDtp5wciFj0A2bNWzCk9/xhz7/4b/oe1h2bLbj0pDB1F04ZbI5Si+t4bzLnjFiqvuu9rvkB+jeE0b7oTsqmFOR9+y0vTH+PDf7+JqRqEJ1ly02VZ6Zi16dK3O3puiU/+fBdf3fEEek7t4bhdVu3P4ruPoGXQMlirqZirKes/YPnItePyrh23de34b0r6Eox9ybXj4u5YH4gQHr55mrKe4doR1447kVfHIERXjP3AteO/qT2kOOOO9XEo0RdrZ1HSM6iYm2l9KKwnhpJTR+HJNZ3xKmf82BlXcMZtAKjo/6NsLsHYl9uMOfVbsnJ/Z3zKGR9wxi7OeLQzvu+M/wkYN3PGPlj7bcA4yxnXd8Y1nPFKZ/zEGVd0xq2d8V+UzaUR497OqPDNk874YMC4M3l1VMA4haq5LWDcnLw6DimWdsYLqJhbAsZhzjgEa31nvDZiPJSs2tIZ/+mMrzjjEs64nzM+4YwPOWPXgLEL2r5HWU+NGLdwxt7OON0ZZzvjBs442BmvoKz/GDCuRF4dSkZu4Yx/p2wuw9hXnXFJZ9zXGR+npGeg7cMB4y7k1ZHO+K4z3h4wbumMS2HtN4F2bDUOd8bVsdanbC6noq8LGAeRV4cEjH9zxtc6aOwWMLag7TuU9TTXjj611RytxiUxdiZlfQEVc6szCteOR+PJ1bC2GjB+CtSKajl1GBm5WcB4Kca+7oxLBYwS3zzmjI+4fHcychfy6ghnfJuynh4xbuX6l63G6c44J2A8Bk+u6oy/d8bPnHFlZ9wUay1V81fK5vcBY29yah+ycm9nfJSSvrCO8UiEaHbGae5Ytxq3dsYlMPZrZ/xLwDjcteOqWFtxxj8FjKs44yhn/Atlc3nEuC9Z+VtnfMQZH40Yj0KIJrR9yxnvcMZcoB2XwNj/OeNfA8YNnXEVZ7zMGT93xlWdcaQz3uqMb9S+ryxNVu1LVu7ljA9R0heh7WPO2IOs3IWcOtIZ36TkT8O3d1B7sHer8TikWBxjv3LGvwWMG5FXR6Pkys54qTN+4YyrOeMIFqT4tez+dnzzpJ+a8oPHlDlnNHZ/+wGiUVT6kWNBLSoBWDuLqrkTY2fhybXx5PKRfIWquRdjP0aJgXhyXYQQgbzFN4+g7WtIsSQZuRFChGeeffMqvnkMKbqQkSMRIjxroc0n+OZeADy5MUqGV3NY+y1Vc5czroMnB0byQePyeHKd727UL+PbJ5CiKxk5oo7xY3zzX4QQKLFRjPFOjJ2NJ9fFk8tF8kHjCnhy7e9hfAnfPumMIxEivHw7bNwYJcMrTmrGOzB2ToyxTNXcg7GfOeNaEaNxxtc7YfwQ39zfQeN6eHJAJF+mau7G2M9RYkU8uWYd48No+yZKLIknN0KI8Myzr190xu7OGF6+rc0H+OYBhJDOGF4VY+037lh3xviQMy4VY3wB3z6FFD3c97Ge8T6E8BKMd2BtCSXXSTGuhCfXSDAujSeHxxifDrRj+BbC72ZcF0/2j+TL7nf/BUoMwpNDvofxeWfs6doxybgJSoZXFxk7E9/c6Yzr4cnwrG/HjA+i7Vso0ccZw7Pjvn4O3z4Tb/Tfx5YeBOEh8xsjVfiWBX/WLEovPA3VKtmBK5FdLLyq0FarFJ97Gj1rJtmllyW7bP+w0Vg+uf9DZr09k5Y+XVl8w95IFZ55nvPaB8x59X1UtyZ6rLMSMh9epTX34/8x640XETJDt0GrkOsR/r5WvpnDzOdfwJoKLf1WpHmp8L/B2pJrxy/xxCoouXqkHTW+eQBt30lox2fx7bOuHUciRHgVljbvud91xh3rhSP5r9D2bqwt48lhKNm3jvFOjP2qA8a+eHKDkNFaizbP4tvnEozvOmMWJUag5EKR/FdoexfWVmKMRWf8H55YFSVXq2O8H23fRYll8OSwFOMohAivEG035lw7Ro1funas4MkNUDJ821rYuBqeWi2S74jxGXz7PFIs7H4zYaNv3kabh5xxBEqGVzLUjHdhre/a8fsY70Pb91BiWWeUgbzFN0+j7QvOOBIhwqtYffMW2jycYPzCtaPv2jF8W1vYuDqeWjWS9107JhmfQtsXkaKXa8c4Y94Zw6vd0o1z3e/6f3hiMJ5aJZL3XTu+jxL98eTQ72F8E20eQYg8nhyJFN0jxs/R9h5nHI6S4RX2YeMQPLXy9zA+ibYvJRjfQJtHESLvflPhVVrpxjnO+HWC8V60/bADxkXIyE1ijI8gRJP7vsYZtTvW9Yx3YuxMPLEGnhoUybcaP0KJfjHGJ9D25USjbx5GimbXjsm3gv4U0Sgq/XyjUVT6YaJz28g04mcZ1hrK+gLK5kpat+wsm9qqiCbvXKRYior+CyV9TtvMAIDU/Sl4Z+LJNfHNExT90zG82ZYv6V7k1Slk1fYY+wFz/ZPbZlgAirqZnNyPnDoamEtRj3arDdy2pEaRkdu428rylPV0yubqiHFdZ1ySir7VGb9sN5oBFNRZeHIIvnncGd8KGBdxxu0w9n1nfCxi3J+cOgqY44z/125EuaXy451xmjMWY4w3U9LnhrZOlWY5ZxyMbx5zxrcjxlPJqm3R9j2K/klo+0TYqA5wy6dnB4ytOzZ5AWOOsp5C2fwhYlzPGZegom+kpM+vYzwbT66Obx51xvZtxEt6UWfcBm3fdcYnI8aD3PLp2RT1GW61QdC4nbv1LRswltqMnlifgncOUizujOeFthuWZiAFNRlPropvHqbojw4ZhV6MvDqNrNoKbd9xxvbibs14sDPOoqhPd6sNgsbtnTFDSZ9PxVwbMQ6j4E12xusp6SkR4/KuHVfFNw8547shY8E7g4zcAm3fpuifHDG2OONhwLfOeFvEuAMFNdYZz6Ni/thmxLjbHL3JSLEYZf1nynpqxLiCM66Cbx50xvcCxsUpeKcHjCe1rcxrNx5CTh4KfMtc/1R8ezvtD4P23C0HYwAVMJYDxuHOuChlfR1lPT1iXJEmdTZKrkzVPEDJH1PHeAYZuTnavuWMzwSMXcirQ8nKg7F8Q9E/bR5jbdXEGEBS0udQMX+qYzwHKRahrP/ojO07z9SMk1FyEFVzvzO+HzAuQcEbTUZuirZvOuOzEeNhZOVBYGdSmT0GXbmr3VicgJffkUzzaWAUM2+9mdn33wvV9m3G84NWoedv90N27crs/97Nt//8G2bOnLZ8pvfS9Nx7f7K9l+bj/37A46MfYvb7s9ryzUu2sMbYdem9aV+K73/Gu1NvYe7rH7TlP2jOs9iuG7PoDsOoflPk1bP/w5f3v95GFJkHWGLrVRhwzAgQgjcvuoeP/voMttJ6/nyIhYb2Y4XTtiTTs4mKuZayvqBtRVkZUGYQBXUOSq5A1dxL0R/Xtuqt1o5LUvDGkJEj0eZ1ivqktpV5tXbsSl4dQVbuj+Vriv6pbsVt67HOkJW/Ia9OBwQlfTYVcz1t294b8MTGFLzJCBaiYq6hpGfQuqJsXuM9zvhhxDiOjNwEbV6lqE+JGLs5435Y/hcwtsZYZzzNGc+iYm6IGEdQ8M5G0JOKuYqSvihiXNkZl6dq7qboj48Yl6LgjXXGV5zxhYjxSLJyXyxfOePdAWOWrNyNvDoVsJT0mVTMjbRte2+EM57ljFc647cB4yrOOJCqucsZPwoYe7t23AhtXmGuPhnjVg8ClHR3cuoosnJvLF9S9E9xq1mDxt3drZiWkp7kVgcGjSOdsQcVcwUlfXHEuKozLkfV3OmMH0eM48nIDdHmZebqUyLGHuTU0WTlXs54slvN2ho5146txoluVVvUeDaC7lTM5c44K2BcjYJ3Lkr0p2pup+hPaFsJBSD10uS9CWTkBmjzkjO+NI8xp36LsV9Q9E9yK0WDxj3c7aKGkp7gjH7AOMoZu1Exl1HSl0SMqztjP6rmNor+xIixjzMOQ5sXnfHliPEYcmovjP3ctWPAqMeQlXuSVycBmqKeQNXcEjFu6o51N8rmUsr6ElpXlNWMg51xWarmPxT9SbFG3zxPUZ/atjKvZuxJTh1LTu2BsZ854/1t+aIeGzD6FPV4qubWgFHiiU1p8s4CulI2v6OsL4sYh1DwznHGfzvjpwFjXwreRDw5FN8854yvhox5dTxZtRvGfuqMD7TlizpPVv7W3dJapajHUTV/DRkzcnMK6kygizNeSm2VUdB4LkosQ0X/i5I+q45xEp5czxlPaVuZ1248gazaFWM/ccYH2/JFPabNGJ1MakQjGvHTRWOl0o8cC+JKpaI/kYq5um6utmT9YEo67hkyeQrqLIr6VNoGXNG/kBMom0tCF+NgZMS+GF5C28fr5pVYFyUGuAF8PeOS5NSBlPS4Thp/F7rQhY37Y3g+VMwJG9dDin5UzR9jjEuRU/tT0nHPNCpQUGdS1KfQNlCYxziRsrk4wXgAhmdCRYhgeGJ9hOhD1fwpxlhbal3Scc+GKlBQk1w71jcW1JmU9Iy25d3RyIoD0TwVKkKEjcMQojdV8+e6+dpS670p6bhnbDU548m0dcIjkVeTKOsZbcu75zUejObxUBEibByOEItTNTfEGPuQVXtR0nGzN00U1ERn9GOMZ1HW00JF3LDxUDQPt916N69xQwSLULU3xRj7kpW7UzJnxRibKajx7vtYzyiccUqoiBs2HobmwdDgOWzcGMFCVO3NMcZlyMpdKZmzY4wtzhjXjoK8OpuyPi9UIA0Z5eFoe39o8Bw2jkDQlar9S4yxH1m5MyUzOdaYV+MoJbbj2ZT1uaGiWdh4FMy6H6tfrptX2RHMvmUV5j72SP1/w+JL0LzOUL75a/12FoUCjDyM+456FOvXuf4LGDZtPWbeeCv+t3Prvsdie4zko9vfY/br9X/3vTYciMx5fHb7S3XzzcsszCpXWSoqrh27klejXTvqOnlJXk2mrM9qK0hFIyuPwbe3hwZ9wag9g8fDt/+sm5diOTJiG8rm/BhjN2c8+Xsbc/I4qvb/QgOqYNSeZSTc5Es940AyYivKZkrdvKA7eXW6+82YOn+hyKuzKekzaS1IzWs8nqr9Z9stOtHwxJYIYd2kQT3j8mTEFpTN1ATjae7cU99YUJMp6om0FnvmNZ5A1f4jwbg1UMW3t8UYVyQjRlE202OMPcirU1OM51DUExKMJ1E1fwlNxIWN/8/eXYbLUWQNHP9XVY/GE+IKwQLBgoYgIQksi7vD4q6Lu7sTh3eFFXaxRZZlYQnu7u5uAUKAjHbV+2HOvemeTHdfuJcQYM7z8GH3zJ355fRMd/Xp6q5NgYLcJtTIuDQpNZ6SvSzC2JOsOUqO143G9Z7U8VRamj3zGo+mYq8LXYgLG7cAvqHq7miYN2oknhpLyU6KMPYia45sg/EUWhop8xqPoWKvCV2ICxu3BGbVNUCDxmUwai3KdnKEcSEy5giKscZzKfgn0dJImdd4HBV7VegCUti4NTCzrgEaNC6HUWMo2ykxxsPF2PATxHgiLRdl5zWeQMX+NXRxJmzcFvikrrkYNC6PUatRttMijL3JmMMo+lHPKEzJto42ZvWJlO1fIo1pvT0578yI95//8WuZqfT7/C9vptJFc5ozlToimk2lHzkWtKaSdR/yTWVtGg+MWqITUQdLqA1eok6IatGZqAFByzvEL2ndltfkiToQ1f46yRj/b6w9fDCuRrVPaZ+xV+TJby2S6tgWY1K0t45diBqg1qIjjDlaZlk1iqaxrZGldQZTg2i/0dD45Pr7RJKxR2h20LzRlaiTulp0hDFDVLMa2mLsRtQJPIAqp/GiS0D1ozxfT14u+gUAXgqqjZusAM88vzpffxiZZsiI2XTSjRucAOVqlsLs+BU640Lnyix/yzWoVNxvJqmO3SGiWVOLFFGN5rZHmqiGetsMSfmOMCa9R5IhKZ9Ug7ZEvFHRPbLxVssnfRfmh7EbLu53O1+MHlEXJmqRsG9JNMbv29oWScb4fXTycSj+GNG2SDoO/BqM8WOWtkWSMWnM0BPaaeycmoFRi8S+Zn5Fs6n0841mU6ljorn6268swrcgRUVcs4WEAxXEN0Jq75AcSa+JboTU/jrJGP9vbNsJfHuNcQ0lSK5je5sM0P46xg0YoGOM8YOKprGtET/Ibb+xvc0aSDbGnRBBfEMJOsYYf9KVbIw+6QPQlfhtXXo+aSloYhtKhTmZ2IYSQNbF75vKc9qybHd0dBv9fmxDCdpSx1kJ+fY2ayC5CZBkSMp3hDHpPZIMSfn2NkIgyRjXUKrlk74L88MY/7udP8a4Zg0k7VuSje1tKEGyMX4fnXwcam+zBpKPA78GY3sbSpBsTBoztN8YNYuzGc1oxvyPZlPpVxbOJQ0qmtGMZjSjGT9VqIRetZvTvmdIVCqphFc4jIlvbDmnYvNJYbp0xMlrM5rRjGY049cczs36qQnNaEYzJJpPOPuVhVZDkl/UjGY0oxnN+EnCaYeK6emYnu27Cp7Nlmqdq8jGkKJc9kino2ccaG2x/g+frVT+qEvyi5rRjGY0oxnNiAmthia/qBkdGu29qNSMX240Zyr9yqL24M9Osa9R9I/Na4bH5hUDEhTZhHzya5KN8fdYKwYmfH4uIQ+15w/EfUa/2HyycVDC5+cT8lB7jkPcZyQZk7Z1kjH+u1aLJGPf2Hz769g5IQ/Jxj6x+WTj4Nh824zxM1AUvWPzycakhnRbGgXx1zF+Hsb42880Cyfk4wfBLh1vzKwwE3T8oVt3iV5uOZ2p0G+Z+O+z3z3+N5NfKKGhpECZ6IHn7CcH4opJv5mkOg6LN9A9Ia9IGgIpesbm22/skZDXJBvj3yPJoH4Wxvg6k7Cdas9+STJ2T8jH/247xph0stYtNtteY9K+rW3G+KXedcI+Onkfn2T0SDbG72Pbb4w/jiUdq2sRf8xPGjMkG+P3vwuGMX7sBxlSepOE1zSjGc2YX9FsKv3KQqku5MzpRB10PbUGeTORqGaAZig5b1LMiVEn8uYyPDUmSkDOnE1a7x5pTOu9ZbnSKONa5M1lRDVVasbJMQODzuTNRIxaPSKvyZlzSOtdI40ZvQ85c0aMcW1y5jKimlOahcl5U2IaHi3G0THGc0nr38UY95Nt3Tg8NTbBuAg5b3JMA64LeTMJo1aNNOa9c0nrnWOMB5AzUavPydLescbhYoxqZHYV4yoReSPbescY40HkTNQqfrK0t7mMqEaoVouJMaoR2k2MK8UYzyOtt482mkPImVNijOuRM5fGGBcn702ObDIqupP3JmFU1DMMDTlzPim9XYzxMLImalXJFuMlRDVr224cFfUJ5MwFpPQ2McbDyZoTY4zrJxiXEGPjwbCiOzlvEkatEGnMZM7DZLaINvY7gO7bRH8XciuuTM899gGvcXMsNWgwq1y0Abk+jfefmZ5Zlj5tC/KLNz4hUEaz6LFb0G+DZSINw/cby6IHj4/M9xm3NJ3yFxDVrNVqKfLepMiTM0VPqeOyEZ/gkTMXkdKbRxqy5miyJmplIkjpjciZi4k6udJqadnWjU9yFb3IeZMxamTUJ4hx0xjjMbLUfJRxk1ijUSPF2CvCuBB5bzI61ngxKb1xjPFYWWo+yrgZOXMhUc1ao5Yl502KbOApetPJm4RWS0d8Qpq8uYiU3ijGeBxZc2SMcQuyscblpI6Nm2OKPnTyJqPViBjjJXJRL8p4AhlzRIxxq4Q6Li+/me4Rxr5iXDLiEzLkzMWyKmKU8UQy5vcxxm3ImQtijKNkW0cZ+5H3JqHVEjHGS/HUb2KMJ5Exh8YYtyNnzo8xrthG4+JRAjGuF2M8mYw5JDKf1tuLsXHz3qiVyHuTiGoyKvrL73qxGONleGpCpCFnTiWjD4ox7kDOnBdjXFmMjZuMigE1Y+SFy5zUMfo4kjOnoFVS07sZzWjG/Irm6m8/cixoq7+1RMXeT8mfgu8eBWoDt7TZgYzeF6Uy+PY1iv6lsrytD3QirTcjYw5Bq4WwbiYl/1LK9kZqD702eGo9suYQjF4c50qU7DTK/lWty6QbtSpZcwCeXgPnHBV7DSX/D61L7Gq1GBm9Bym9NUopMU7Gd4+JsY8Y9xHjq2K8I2DcXIy9sO7zgHEO4JHS65Exh2DUYjWjP5Wyvap1mXSjVhPjGDFeLcY3xbg4Gb0nKb2lGO8T4+Ni7Eva7EhG741SaXz7ihhnBIxbiLGnGC+hbG8KGH8jxkVxrijGfwSMo8W4uhj/Kca3Asa9SOktxHivGJ8IGHcio/cS48sBoxXjlmTMwWL8LFDHghjXF+PwgPGq1oeP14wH4unROOco239Q9v+A5e2AcW9SenMx3i3fxyfF2C9QxxS+fYmif1nA2Dlg7IF1n1L0L6VibxJjSup4KEYtIsYpUscW4+piXE2Mf6fs/ylgXIKM3oe02Ux+M3dR8qcGjP3FuJcYXxTjnQHjVmLsLsZLqNibA8aWOi6Cc4WAsfYAS0+NIWMOxNOrivFvYnxHjEuS0XsHjHeK8amAcScyes8IYxfSekuy5hCU6oZ1nwSMxYDxUIxaGOfmiPGfAeMaYlwF52zA+K4YR4hx00hjxuxMWu+JUh6+fUGMdwWMW5E1B4vxYzH+O2D8rRiHiXEyZXt1nfEgPL1yjHEf0mYTMc4Q49MB4y6k9R5ifD5gdAHjISjVFes+ChhLYtxAjENx7ruA8SsxrinGlXDOUi3+nWrhrzj7Xs1gRpDK74mXqZ2YznnmKb657T+U36797k3PXnQeO54uE9ZDGUPpnbeYfcvNFF94DpxD5fJ0Wn0Num20KTqf57uPvuXZi57k3ZvfxC/56JRmyIaLsNzhK9JlSFf8QomP/3kXM29/HH927YH+XVdcnP7bj6fzUkNx1vHBtU/w/jVPUPxwFgCdF+/L0F1G03dC7eT683te5Z2/PMw3L30MQLZfNwZtvSKDt1sZZTRV+ywl/zKq7h6pYzfSemuy5kCp44dSx1sCddyQrDkMrQbj3LcU/UlU7DWtD3v21NpSx1E451O2V1Lyr8TxvmzrkWTNvqT0BrKtb5Nt/bxs60GyrXdDKUPVPiPGewPGbcTYRYwXi7EMpMV4qBi/oehPDhgVnlqLjDkYT68gxj9T8v/SajRqJJmQ8b9ifCFg/B1pvasYnxbjfYBD0Z2U3oasOUCMH4jxPwHjRmIcJMZJlO011B72rKSOB+Pp5cX4JzF+IMZlyJj9SOn1xXgrJX9awDhYjL8T41OU/ImtS5TPNR6IUp2x7v3Atq5Qm4XQYhyIc7PFeG3AOFaMywWMV+L4UIzLirHWhCj7/6Fkp2Hdi7XvAkNItxo1VfukGO8TYw/Sehsy5gAxvifG/8QYJ4pxthjXke/jcjhXDdSxxbicGNcT4y2U7PQ6466k9S5ifIKSP6nOuK0YO+G7dyn5l8iiLEHjYWg1QIyXUbbX1RkPxtPLivGPYvxIjMuLcV0x/luML4lxqBh3FuPjYrxfjD2ljgeiVB7fvUPJv7TOuInUsT/OfR0wfiPGcWTNwRi9jBj/IMaPxbiCGCeI8SZK9nKsezlg3I203kmMj4nxgYCxpY55fPe2GP8rxmzA2A/rZlHyL6NsrxejDhhH4lyFkv0/yv7fAsZRYhwvxhvF+IoYhwWMSowTqboHA8btxJjDd2+J8baAcVMx9g0Yr6O28IvGU+PFuLQYr6Ds/z1gXFGM42KMu5PWO4rxUYr+RHz3kBh7iXH/gPESKvZ2MeYCdeyLdV8F6thinCDGpcR4uRg/CRj3J6XXYUGKX8vqb4flzvypKR0eFxeOb67+1gHRbCr9yLGgNpUAnJtNxf4P577FqJXxzNJ1+RIVexfOfYxWS+Dp0SilA3lL1T6Mda+iVH9SehxKha/gV/0X8N0TKNWZlF4PpcJXLXz7AVV7D6Dw9FiMDs+Kce5rKvaO72FcHaVUIG+p2oew7jWUGiDG8NXx72dcB6PDs2LmGr8T41INjHfi3CdotaTU8Ycau5LSEyKMdwNG6hg2WjeLqp0hxlXxTPhqZc04A+c+RasReHq1BsYHse51lBpISq/TwPg8vnsyxvi+1NFIHcMzd76fcSk8vWoD4wNY90aM8Tl89xRKdRNjeBp8svErKv4MYA5Gr4anw1dUnSvKto4y+mJ8E6UGiTE8yyDZ+B5Ve68Yx2F0eOaOdV9S8e8U42g8Hb6iWjPOwLnPYoz3Y91bMcZn8d3TYlwXpcLT4H37LlV7X4JxBlBog3Eknl45xjiYlB4bMjrn8G2LsXtDY9W+g2/vBzwxhmcXhY2r4+nwVV/nCrKtP0OrZfD0Sg2M92Hd2yg1hJReex5j1T6Ddc+gVA/Z1mGjLb6L++5+UCl0l3GoVHjmjv/NbArPPoMrl8ksOYL0gPD+05ZLFJ55GvvN16SGLExm0cXCRt/y8f3v883bs+g8pCv91x6K9oL7eMd3r77Pd6+8R6pbnm6rLY3J1e3j7dsUv3gSZQy5HmugVdho3RcUZt2Pq1TI9hqFZ8JXpmt1nIFzM6WOKzao471Y9w5KDZU6eoG8o2qfwrpnUaqnbOvwTNuqfRvfPgCkSJnxDYwz5TdTkm29aJ1xjmzrz9Fq2QbGqmzrthh7iTE8U6xq38S3DwLpGOMMoIzRY/B0fR3nyHHoC7RaDk+PmsdYsffi3LttMC4k38d64xv49iEgI8bwLC3rPpc6VsQYvr3Fue9kWycbtRqGp9dGKRPIO6r2Sax7DqV6izE8i/X7GdfA0+FbwmrGO3DuKzGuEGNcGE+v1cD4BNY9n2B8EMiSMhPQKjyTLGxcE08PizEuj6eXb4exDyk9voHxdaljTuoYNvr2U6r2LqAaYfxWtvVXGLUCRi9XZ6xQsffg3PtotQieXrOB8XGse0GME1AqPNM2bJyAVuHZbkGjp9fC6PAM+5rxDpz7GqNWwDPL1eXbYnwU616KMb6Gbx8G8lLHeuMnYvTx9NoYHZ5h79w3Usc449049wFaDcfTa8QY+8q2rje+im8fEeOEeWb/fD/jKDyzbF2+LMYPxbhm3blEvXFCg3OJV/DdoyjVCU9PQKvuLGjxa2gqDVTDRh36C2wqXVI4ng9ds6nU3mg+qPtXGM75lPyLKNk/EVz61NiVyHsXoNUQyv41FP3zQsuSan9hct7ZeHoVqvZRCtVjW2dMABT9nmTN0aTN1vjuXQrVI1pndQAU/JPJ6F1l+vR3FPwT5EqVPJXWalJ6Q7mtLE/Jv4CSvbLOuLIYB1P2r6bon19nXIScd5YYH6ZQPa51NkLN2IusOYa02RLfvUOhemQD4+4yffo7Cv7xYnQB40ZizFL0L6Bs/1JnXEWMgyj7/6ToX1BnHC7GlanahyhUj29gPJa02QLfvS3GpwLGHBm9hxi/peAfJ1fTWoyGlN5Ybn3LUPTPF+PcFZeMXVWMAyn7/xDj3JUBa8az8fRKVO2DFKon1BkXImuOI202w3dvifHpgDEvxkOAb5hTPZaqu73OuInc+pah6J9H2f61zjiavHceWg2k5P+dkn9RnXFRct45eHoUFXs/xeqJWN4LGHuLcVMxHoHvnqkz7knGHCzGY2RmXtC4qRhTFP1zKdu/0bo0tK3NyJpr/JsYZ8012sXImXPw9ApU7P0Uqie0zkaoGfuIcRN896YYnw0bzd5k9IE4ZlOoHiMz84LGzeT2vBRF/xzK9u91xtXFOICS/xdK/iV1xsXFuDwVex+F6okNjMeTNhvjuzdkWweNncR4AI6vA0YJ6wWMHkX/bMr2qpDRU2PIeeeh6EfZ/oWifwnB5bFrxnPx9HJU7D0Uqie1zpiYazyRtNkQ370uxufqjPuS0fvj+EqMM+qMm8sthCZgrASMa4ixL2V7JUX/0jrjEmJcloq9W4wfBox9yXknktIb4NtXKfhHts7qqDfif4V99ziYfddcIqeiem2GGnQSWI9Z1/6Tbx+4F6pzH6idXWppev5uD3S37nx75x18fctNuMKc1nxq0GB67rI76aHD+Pjud3jqlPuZ8+HcZZ9zfTux/IlrMGj94RTe+Zh3LrqWwptz/w06l6HfNuvQd+uxOL6kUD26NltL7sL4puLJbTony7/5LMr2n9CpVsfvfPDsWlLH3pTtHyn6Ewkuj63tCPLmXIweScXeSaF6cuuMidp79pc6ro9vX2aOfzQ2VMfOZM3+pPU+OL4Q491z/956MhvqJHm/Myjbq2ldCt3K7cveeSgWomz/IMa5ddJ2KTEuTcXOEOPHdcaTSen1xHhU68yTmrELWXMAab0XjplivCfGeLrMIgoax5LzzhXjFRT9SdSu9AeN52P0CCr2fxSqpzYwnkJKr4tvXxLjS3XGA0nrPcV4VOsso7nGbcmaE+T9TpMZOkHjOuS8c8R4OUV/cp1xafLmPDHeTqF6Wsio/AHkvFNJ6fH49kUxvhwwdhXjHjg+F+N9AWNKjMfL60+lYq+rM44TYy9Kdholf2qdcaQYl6Ri/0uhenrrjIl5jc/L9/GVOuPBpPVuEcaTSOvtxGjFeH2dcbwYe1KyU8X4Xet7GDuSnDkfo5egYm8V46cB40AxjqNqn6PgH411rwaM3cS4K47PKFSPbJ3BM7eOO5A1xwI+Bf8UKvaGOuMEMfagZKdQ8qfVGZcR4+KU/f9Q9M+oMw4i551GSo+lap8V42t1xkNJ611wfCrGBwPGdMBYpeCfTMXeGDCqgLE7JTuZkj+9zrgsOe98jFqMsn+LGD8LGAeLce0Y42FkzC5Y9zFzqke2zuBpbDxJjH7AuK4Yu1Kykyj5l1Obxd5iXE6Mi1L2/y3Gz+uMp5PSa1G1T1Pwj8G61+ca/O5kzGFkzM5Y95EYH64z7iS3tFbEeFOdcT1y3tlinEjJv6LOuLwYh1P2b6LonxUyan8IWe90UnpNqvYpCtVjWu9YqBl7iHEnrPuQOdWjQkb8TKsx2BhvRjOa8dNGc6bSjxwL4kylQvVUyvbKhjlFPzJmb4p+1HNuMmTNaRT9E2k9KayLrD6Jkr08NPAKRkrtguXFUDMnGEatglaLU7F/izD2J2P2pOhHPS8oQ86cTsE/IcZ4MiU7LTSoCRt3xfJ8jHE1tFqEir0qwjiAtNmdkn9GhDFLzpxGwT+e1hPXeYynULJTQoOasHF3LE+Hmjlh42i0GkbF/iPCOJC02ZWSH3XVISfG42KMp1GyE0MDhrBxDyxPhpo5YePqaAZTcVdHGAeR1rtQsmfFGE8VY+PVqmrGy1pvH6yPtNoTn8dCTYhgeGoNFP2puGsb5jVDSOsdKdqzY4ynyLaOMJrTpdnzRYRxb3webr1FZ17jWij6UHHXRRiHktbbU7TnRBjz5MzJCcYzpGn2ZcN8Wu1LlQdCJ/hh49ooelJxN0QaU3pbSva8SGPWnEwx1ngmpboGadi4H1XuC53gh43roOhGxd0YYRxGSm9NyZ4fYexE1pxE0T+O1kF4KJRs6wtCjb1gZNif1Fv3QeGVhnm6juOru1eg8Pgjjf8NffuRHz2G2Tde3zCvslnUhH15+IiHcH6D47+CVc8Zw1fX3oj/zZx580D/Xdam8xYTQyemIYNaF8hQdbc0zGuGk9KbUrIXNcxDF7LmhIQ6nkXRP4dgYy8YaX0wVXdb6KQvbFwP8Ki6WyOMi5LSG1OyF8cYjxdjo+X6NFlzZruMht/UbtVx/21sVIuRUhtSspdEGLuSNcfKbybOeDbBxl4wMvpQKu4/oRPTYNSewWPlokEj4+Kk1G8p2UsjjN3ImWNkH95oPKrJmrMp+mcQbOyFjb+nYm9qvU19XuOGQEUuGjQyLkFKrUfJTmyYV3Qna46S/WMjo5E6nkGwIRU2Hk7F3tB6m/q8xo2AYrjZHTKOIKXGUbKTI40ZcyRF/4RIY86cSSHWeAQVe33rLeDzGjcBvpXbfhsZl8JTYynbKRHGHmTMEfJ9bBSGnDmLgn8awWZP2HgkFXtN6CJX2Lg58GWoARo2jsRTa1C20yKMPcmY30sdG36CGE8h2EgJG4+mYv8ZY9wCmBlqLgbDqJEYNYaynR5h7EXGHCrj8Cjj2RT8k6jdat/IeAwVe1XoQlzYuBXwaestjPMal8Go1SjbKyKMC5ExB1P0T4oxnkXBPznGeCxl+7fQRa5gpPS25L2ocdf8j+ZMpZ9vNGcqdUw0m0o/cixoTSXrPuCbyto0HnS0RJ6ogyXUBgZRJ2216ETUgKDlHeI/vy2vWRCMSZEj6mBZ+4SekSfotVgQjEl17EzUALXlHdpvzBKcCTZv9IB2GTWNT7i+T7TX2IWoE6Za/PjG5G09P4wZgrPV6kPRPbIZU4sko6Fxk+L7RHuNXYk6gQfwvkqR/Sj6N1P+vBMzr18+nuh5oRlM9fHiSyvzzceRaQYs9i053bjBCdB1/Xfovc/j8YbESBPV9K9FN6KaMW3Le0Q1H9seKaIa6rXoDrHbOsmY9P5tiaT3aG8dO8KYtC3aa0z6LrUlkozxv9vk3/2vxZi0j43fRycb4/e/bYv2GpOOlUnjgbZE+4zJY46OMCYd85PGXu03dk7dgVHxqxTPr2g2lX6+0WwqdUw0V3/7lUXoVq7IiG7WAAkHU4hvhNCGz2/LaxYEY1JEN2tqnxDXUIIFw5hUx7gBQ+0d2h9JA5/2GtvbCIH2G+MGhzA/jMnben4Y408W4k82INnY3oYStN8YfdIH4H0dbyy+mbSkNrENpeKcTGxDCSDt4vdNnUY3vgL//SLp5DWuidCWfHsbSpDcTJmVkE8ytrdZ05b3aG8dO8KYtC3aa2xvIwSSjfG/2+Tf/a/FmLSPjd9HJxvb21CC9huTjpXtbdZAe43JY46OMCYd85PGXu031h7s34z5Gc798v5rRsdEs6n0KwvnZv3UhGY0oxnNaEZEKF/F5m2pfc+QqFaT/t5hTPwoy3TuiJPPZjSjGc1oRjN+eDiX1HBuRjOaMb+i2VT6lYVWQ5Nf1IxmNKMZzfhJwqYTGjpd23eFOZMtgYr7DEWlHN94qnzSOTbfjGY0oxnNaMaPHVoN+6kJzWhGMySaTaVfWaT0htTuc44OxcDYvGbR2HzS39ee45MU2disYkBsPtk4OOHz8wl5+OmNnRLyUHv+QNxn9I/Nt9/YlpPPdMJn9IvNJxuHxOZrzyZIivYa4+/5VyQ1ezvC2Dc2P3+MqYTP6BObTzLqRGPXhDwkLYqq6B2bTzYOi81Xe3SLzeeXmAkm/tCtu0b/O1PpKn1Gxu+7XM9Bsfk5jywdm689S80kvCL+Nj7NIgn5hWPzted1xL9DsrFXbD7ZGJ9vmzF+Wyt6xuaTDCrRGP/+tRomGeP/ne03xm+njjCqhN9tkjHp+942Y/fYfNK+JXkfn2T0qP22494jfv/VfmP8MaJ2jIk3Jh0Hko4jycb4Y+38MSaNi+LHLEnH6lrEH/OTxl7tN2ZJ6U0SXtOMZjRjfkWzqfQrC6U6kzNnErXpPbU2eW8SUc0AzcLkvCkxA4PO5M0kPLVWRF6TM+eS1ntHGjN6P3LmbKIOup4aK8bGTRXNImKMOuh2EeOakca8dx5pvWeM8QBy5qwY4zjyZmKMcXiCsSt5MxFPjYnIGzHuHmM8KME4nry5jKgGmmZRct6UmMZRN/JmEkaNjjGeT1rvGmM8WL6PUcZ1yZmJRDUitVqcvDcFReOTYEX3BKMnxt9FG82h5EzUSoO1VaRy5rIE49TIZquiO3lvEkatGmO8kLTeOcb4e3Lm1Bjj+gl1XELq2LgRWjNOwahVIo05cyFpvWOM8YhYY0pvIHVs3PDQaoQYGzdCFT3IeVMwaqUE4/aRhqw5iqw5Jca4UYJxKTE2HgwrepLzJmNU1LMgPTLdLkD12ibS4C16CD22ja5zfuVV6bXHvpBqfFKQGjyEFS/ahFzfxvumTK8cI07fik5LNj4hUJ6hz7qHkNJbRxqy5liyJmplIkjpTciZS4lqehs1UurY+ORMsZBs6xWiPoGcuZiU3jLBGLXCE6T0ZuTMJUQ1a41aRoyNT3IVvcl7kzFquYhPSJM3l5DSW8QYj5el5qOMWyQYlyPvTY5shCr60MmbjFHLJBg3TzAeF2PcUoyNv49GLU/emxTZ0FD0pZM3BaNGRnxChry5lJTeNMZ4IllzTIxxa3LmohjjKDp5UyKbjIp+dPKmomOMOXMJKb1xjPEkWcY9yrgtWXMhUU1vo1aU43XjJqCiH3lvMlpFNYSz5MxlpPRGMcZTyJojI/NpvX2CcSVy3uTIBp6ivxhHxBgvIaU3iDTkzKlkzOExxh3IxRpXljp2jzAOIO9NQaslowTkzKV4av0Y42lkzO9jjDuR9+KMq0gdo4wDpY6LJxjXizGeTsYcFmPchbx3QYxxNdn3RBkHSR3jjJfFGBU5cxpaNX7/ZjSjGfM/mqu//cixoK3+1hJV+zAlfwpV9yBQO5inzQ5k9F4olcZ3b1DyJ1Kxt1F7UGcX0npLMuZAtOqJdV9Q8idTttdRexhfipRen4w5GKOG41yJkv0/yv5VOGpPhfXUGDJmfzw9GuccFfsvSvYPWFdbOlurEWT0nqT0ZiilqNqHKPpT8N1DAeOOZPSeYnxdjLfXGQ9Cqx5inETZXh8w/laMiwSMf8fxiRjXIGMOwNOrivF6Mb4qxqXEuKkYH6DoT8V3D4txQMCYwrevUbKTpI5VoGugjj2wbmbA+J0YNyBjDgoYrxDjp2JcU4yriPFaSvaPrctSa7U0Gb0HabMZABV7PyV/WsiYMTuT1ruL8VUx3h4wbiXG7lj3uRj/FTBuKMaFxXi5bOsW41qyrVuM11Cyf6oz7kXabBIwTsV3j4hxoBh3E+MrYvyfGLuR1luRNQeiVDcxTqRsbxBjOmAcJsbpYvxMjGuLceWA8Y+tS2drNVKMG4vxPjE+KsZBAaOHb1+h6E+UZat9MW5N1hwQMF5G2d4YMG4kxqE4V6TkT6Ns/ylGJXU8AE+vJMarpY41o1EjSeu9SZuNxHivGB8LGHchrXcV48sU/UmtRkV3Uq3Grlj3mRhvSjD+A8fnYlxbjCuK8Z+U/D9heUOMy4hxQzHeI9/HFuNgqWPQOJGquyNg3Ias2V+MnwaMc8S4MVlzEFoNwblCoI5B44F4ehTOOcr2Ksr+n1uXIDdqGTJmn9aTlYq9W4y1Fc40Q0i3Gg2+fUmMM8TYQ+rYYvxEvo8txgwpvRFZczBaDca5OZT86VLHmWIcK8YVcM7iZv4T9/mVUJLlvfPLoPvujer+GwAKzz3D7NtvpfyGfBcW6k2XdSbQedwElNaU33uX2f+5mcJzz4C16E6d6TRmTbpusDE6l6Pwybe8OPEJ3rv5NfxCFZ0xDNloMZY6aCU6DeqKXyzz6bV3M/O2x6jO+haUouvKS9J/23F0WnIIzlnK9u9Sx7eljstJHdeXOt4pdXxS6jiUtNmFtN5F6viCfB9nABZFT9J6GzJmP5TqgnUfU/Qvo2JvpraoQFbqeAhaDcS57wLb+gtA46l1pI7LifFvlP0rA8blxfgbMc4Q41MB4+9I653F+LwY7wwYtxVjZ6z7KGAsinFj2dYtxqli/FKM4+Q3EzT+Gcs7YlxBjOuJ8Q4xPi3GYaTNrqT1TiilqdpnKfmTZan3oHF/lOqEdR+K8d8B4yZiHIBz34rx6oBxvBiXxTk/YHxXjKPImH1J6Qli/B8lf3qCcRJVd3fAuJ3UsZExFzD2F+MUyvaagHECWXMARi8jxr/Ktm4xrijG8WK8TYzPinFhMe4oxmcCRoeiF2m9PRmzL0rlse6DgLEkxk1l39Mf574R47V1xgMxeqQY/0LZ/0uM8b+U/MsDxkXEuIMYn5Zt3WJcSOrYYnxfjLfUGQ9Gq344N5uiP4WKvVYeOG3w1Hiy5iCMXlqMf6bs/7V1uXmjVhLjODHeKsbnAsbdxKio2qfEeE/A2FLHXANjnrTelIw5GK36BozXyIO7jdTxIIxeCueqlO2fKfl/bV1u3qiVxbhOwDgd3z0vxuFi3F6MT4rxXjH2DtQxh3XvUfQnyrYui3EzMfYR42SpY4txXTGOCBj/guMDMa4ixrEAlP3/ULbT8d0LYlyUjNmNlN5OjE+I8b6AsaWOWXz3royBbxFjJzEeJMavKfqTKdtrqT3s3uCp9eT72GL8k9SxxbgqGbMfKb2WGP9N2V4x16gWI6N3J6W3EePjci7RYuxD2mxPRu8jxncCxkrAeDBa9RbjJDmX+BrwSOn1yOgDMXpJnKsEjB+KcTUxRl0Y/mni17L620GZs35qSofHxNJxzdXfOiCaTaUfORbUphKAdV9R8e8EZmPUyngmfLXSuRIVeyfOfYxWi+PpMSilA3lL1T6Ada+jVH9SejxKha88V/3n8N0TQFdSZsI8VxWse5+Kfy8AKTMWrQbV5VuM34gxfCXQuSIVe5cYl8DTq9cZfTG+gVIDSOlxDYzPyklPY6Nv36Vq7xfjOmgVnnFi3Zdi/A6jVoow3olzn/wgo3MO3z4nxm6kzQSUCk8xrxnvAwwps3aEcQYwB6NWwTNL1RkLUsdP0GpJPD26gfF+rHsTpQaS0uvMY6zaZ7HuqUhj1b6Db++PMX4hdYwzzsC5z9BqBJ5ebR5jxd6Hc2/FGJ/BuqeB7mIMTzGv2rfx7QNiHItW4Zk7NeMMoLAAG2dKHQsYtSqeCV/1rRnvwLnP0WopMapAvt44DqXSgXxbjG/h2wfFuA5ahWcXhY2r4ZnwVV/n5kgdo4xVKvZ+MQ6SOtYbn8K6Z1Cqp+yb6o1vSh3TUsd64+dU/LvEOBrPLBFjXBpPr9rAeB/OvY1Sg0npsQ2MT2Lds2KcgFLh2wls4S3cNw+CTqG7jkWlwzOg/NlfU3juGWypTHbJEaQH1u0/i0UKzz2D//XXpIcOJbPYEiGjrVo+ue89vn1nFp2GdKP/2kPQqbm3hDnn+O7ld/ju1Q/wunWi+2pLYfLhWVrhOo5Dq/Dsolod7wSKGL06ng5fmXbuO6njTLRaBk+v3KCO9+LcOyg1ROqYCuQdVfsE1j2HUr1kW4frWLVvyPcxyviZbOuSGBerM34r+/AoY0W29TsoNZSUXruB8XGse16ME1AqPBu4al/Htw8BGTGGZ0C1zTgD576IMd6Lc+/+iMZPxVjG6DF4Onx7i3PfSB2/QKtl8fRKMcZhYvQC+aBxITGGZ9xV7Wv49mExjker8CytsHENPB2+laltxntw7j2UWpiUXquB8TGseyHa6L8qF3myEcZPqPh3t9G4HJ5esc5YFuP7bTD2FmN4xvJcY062db3xYyr+PTHG2WL8Eq2Wx9OjGhjvxrkPUGoRUnrNBsZHsO6lGOMrciEqyViV72P4FkXnZlP2ZwCzxLhCgnEtlArvH5ONL8uFqJxs6/CMPOs+EqPfBuMKeHr5OmNJjB9GGC1V+6gY+4gxPGM5bJyAVuEZeWHjGng6fOtxxxgfwbqXY4wvyYWovNQx6ZbX+R/NptLPN5pNpY6J9i0j08GhlJoAbA28Se0m+e7A0e57LlmmlDpX/vZa4Ann3Cx5732AO5xzl/8Yn/tzCeeqFP3zKdu/EFye1dgVyHkXYNTClP1/UPTPDy3vqv0h5Lyz8PTqVO1DFKrHtV7JAij6PciaI0mb7fDdWxSqR7ZetQQo2gxp/TuZPv0tc6rHUnW3gyw7X7SKlP6t3LKVp+ifJ8a5Kw0ZO0qMwyj5V1HyL6gzDiXnnY2nV6NqH2BO9fjWK1lzjUeRNtuK8Qh890yM8RiZ1RE0biC3bOUp+udStn+tM64oxqGU/L9R9C8kuCRyzXgOnl6Vir2fQvWEOmNPMW6D794U47MBY5aM3pWMORzHNxRajS15HTBmKfrnULZ/n8eY9y5EqyGU/L9Q9C+uMw4T4ypU7H1i/KDOeAxpsxW+e0OMz9UZdydjDsMxW4x31Bk3FGOGon+2GOcuX23syuS9C9BqsBgvIrhksvYXFuPKVOy9YvywzngcabMFvntdjM/XGfcQ49cUqkfLjImgcSNy5gwxnkXZXlVnXIW8dwGKgZTtlRT9S+qMi4hxJSr2bgrVE3F8FDD2EuPm+PY15vhHYOWKYM2QE+OhOGaJ8c4648ZiTAWMc5eeNnZVMQ6gbP9E0b+U4HLENeO5eHpFKvYuCtWTGhiPJ202w7evMsc/soFxTzLmEBxfifGuQN7I7U6nifFMyvYfdcbVyHvni/GPFP3L6ozDyXnn4ekVqNg7xfhxwLiQGDfFt6+I8cXWfMHPi/FgHF9SqB4lV9GDxk3FaCj6Z1C2V9cZR4uxP2X7BzHOXTJZ+4uKcXkqdgaF6sl1xt5i3ATfvizGl8JGszcZfSBUv8K+dzTMvq81bzGonpugBp8CvsdX1/yD7x68D/za0tNfA5klRtBztz0x3XvwzR23Mfs//8YVC63v4fUfQM/f7UFm4UX48I63efrU+yh88l1rPts7z/InjGHwhosx582PePfiayi8Pfff8H42Td+t1qbfduNxzJQ63ltXx83lNkdN0T9NrpJXW/4RGLW6fB/7UraXU/QnUZsVJ3W0i5Mz5+Lp5ajY2ylUT22dSVqrYx+y5kTSZkN8+6LU8ZVAHTuRMfuS0fuL8Ui5ih40biFGRcE/lYq9LmT01Bhy3gUo+lC20yn6kxsYz8PTy1Kxt4nx05Ax551ESm+Ab18Q46t1xv3I6P1wfC7G+wNGT4ynyOtPpWKvrzOuIcbelOxUSv7UOuMS5M35GD2Sir2VQvX0OmNfMf4W3z4vxtfqjPuT0fvi+EyMD9QZtyJnTgYcBf9kKvZftC6FbmszVnPeeWKcQsmfVmdcUoxLi/G01pmkNWM/ct7JpPRvqNrnKPhHzWPMmgNJ671xfMqc6hGtM5tbjLXZoicBVow31BnXFuNClOxkMc4JGEeIcSnK/i0U/dNlBmTQeAopvR5V+6wYXw8YO4txLxyfiPHhGONJVOyNEcZeYpzewHgBRo+g7P+bon9GnbE/Oe9UUnoCVfsMhepRrTNJ5xoPJq33iDFuK7eL+mK8qc44Vow9KdmJlPwr6oxLSR1HUPZvFuPMOuNppPR4qvZpMb4ZMHYhaw4S48difKTOuJ0YqxT8E2X2YNC4jhh7UPIvpWT/j9oMyBbj0lLHJSj7N1L0z5QZkC3GAVLH8VTtUxSqRzcwHkJa74bjIzE+WmfcXm5prQSMNmAcJ8buDY3GjiRnzk8wnk5Kr0PVPkGhegyWtwLGrmLcFceHYnwsYDyJtN6BrDkWKFPwT5BZRkHjeHLeuWK8RIxzF5AwdiQ570KMWoyy/y+K/lkyc6/FOFCMY6nax8X4dp3xMDLmd1j3vhgfDxhTpPWOZM2xocZ4M5rRjJ82FpiZSkqprYBjg11CpdQoao2hFb9Pg0cpNR1o9NCe85xzR9e9tsM+N8KywM1UKlRPomz/1jCn6Eva7EnJPzPir9NkzakU/ZMInlwHI6tPoGSvCA1gg5FSO2J5ufV2g/owaiW0WoyK/UeEsR9pszslP6pb3lbj9NDAK2zcBctzoYZT2LgyWi1CxV4dbdS7UbJnRxgzYqwNgBobT6Jkp4QGXvManw01nMLGVdEMpeKuiTD2J61/R8meE2nMmVMpJBonhwY1YeOuWJ4MNXPCxtXQDKLiroswDiCtd6Zkz40wZsmZUxKMp1Cyl4UGNWHj7lgea53ePa9xNJoBVNz1EcZBpPUOlOx5EcYcWX0SRXtipDGjT6Eca9wDn0dCjZJgeGoMij5U3A0RxsGk9XaU7PkxxhPF6EcYT6VsL5FbJuaNtNqTKg+FGiVh45ooelJxNzXMa4aQ0ltTshf+YGPWnErJvzjUaA4b96bKfaEmRNi4NtCVqvt3hHEoKb0lJXtRhDFPVp+QYDyNkn9RpDHDvqTevB+KrzbM03VtvrprFIUnHmuY9vr0Ib/aGGbfHPFdyGZR6+zNQ0c9Arbx8X+Vc1Zn1rU34n9baJjvt/NadNlyYugEP2RQ44AsVXdrw7xmGCm9KSV7acM8dCJrjpf9o230ryBrTqfon0ewiRuMtD6Aqvtf6AQ/GIbxKJWi6m6LMC5CSm9EyV4WYexM1hwrxkZ1bDGeS7BBGjYeSNXeFjrBDxvXrd1iErhoEDYOJ6U3oGQnRhi7kDXHJBjPoOifTbBBGjYeRNX+J3RiGjauh1I21JAPGxclpdenZCdFGLuSNUdR9E+MMGqpY5zxEKr25tCJadi4PkpVQg350CeoxfHUBMp2SoSxG1lzhBgbvoPU8UyCTbNgZPShVOyNrbc41oenNgAKcltblHE8ZTu1YV7RnYw5vA3GMwg2e8LGw6jYf7XemjevcUPg21AjOWxcEk+tTdlOjzH+XsZmjcKQM6dTiDX+noq9LnRBM2zcBJgVaiSHjSPw1JqU7eUN820znkHBP41gsydsPFxu03y/Yd5TmwEzQ03asHFpPDWasv2/CGMPMuYQiv4pEUZPjKfGGI+ibK8KXSwMG7fA8UmoSRs2jsRTq1C2f4ww9iRjDo411r6PpxBsSM1r/HvoYmEwUnor8l7UuGv+R3Om0s83mjOVOiYWiKaSUqo78BWwrnPhkYlS6loA51z0U0Hnfb+WI1rLPNKngOnOubfqXtehnxthWaCaSta9zzeVsTQevLVEnqgDOtQOaFEnlm35+46JHFEHS2iLsRNRg7+Wd4ivUVuiaewYY5aoQUctekCssTNRJyO10DQ+cf0+kWTsDhFNhFrMD2OG4MzE+lB0j2x01KILUSfHtegIY5rgjLr6aL/RENXsaXv8uEbvqxTZj6J/M+XPOzHz+uXjiZ4H1cYNTOfgpZdW5ptPGqYBGLDYt+R040YxQNffvkPvvR+PzLctUkQ1/WvRjeDsyQYKohpKtfCIauK2PdprTMp3hDHpPdpbx6QatCWSjEmGpH/Dz8EYv99oWyQZ4/ctyfumjjAm7WPba4w/jrUtfg7GpONp0pghaVz0czAmjaugc+p/GBW/itz8il9DU2mAGjbqoPQvsKlUPo6Pmk2ldseCcvtby1I3TzTIXU1t1tD3CufcPj/F5y7oUbG3knySH98Qim8yJP99x0R0IwTaYoxrhNTeof3RNHaMMX5QET8ogfhBDbS/EQLJxlkJ+flhjB9Axg+SIb5ZAx1jjD+hab+xvQ0l+LGN3tc+cQuzFt5IWvabyIYSQKmQiW0ogSPtGs+Ya4nOo99JNiRGUhMg7gQd4k/wof3NGmi/MSnfEcak92hvHdvbrIFkY5Ih6d/wczC2t1kDycb4fUvyvqkjjEn72PYa29sIgZ+HMel4mjRmSBoX/RyMSeMqqNj/YMwhia9rRjOa8eNH9Mh1/sbWwKyIW83egtbb1H4pn/uThXNJA59mNKMZzWjGTxXKV7F5V27ftaBqNfnvjYlvButOHXES34xmNKMZzWjGD4/mOU0zmrHgxILSVFoJIh4mMvcS/8rf902VUt2VUlvJf93n1+cuyKHVsJ+a0IxmNKMZzYgIm45v6JiuyVdv4yKTLYGK+wxFJaFxVfm4c2y+Gc1oRjOa0YwfO5rnNM1oxoITC0pTqXsHvaY1ZAW4vak9T2kGcK1S6qgf63OVUk82+g9YMvGP52Ok9IbU7hePDsWg2Lxmsdi8YnCCIp+Qh9qzfuI+Y2BsPtk4JOHzOyXk4ac3tuXELhubVQyIzbffGP9dq0Um4TP6x+aTjUMTPr8jjP1i85r4e/4VwxI+vy3GdGz2xzd2S8hDsrFvbD7JqBON3RPyitrzWeJe0Sc2n2xcODZf7dE9Np9fYiYYE/sa3S16W6TSVfouG7/vcr3ijwHfPTIyNl8bWsQ3phTxt/FphifkF4nNQ8+EvKb2bJXoUMQvW51sjM8nGw0/vTFp6W5D0lBSJfw7k7alSjAmfZcWDGPv2Hzt95Jk7BGbT9q3JO/jk4wpko3dEwztNcbvf2vG+NmeKuFYlXQcSTbGH2vbYqw9wyvOMCwhnzQuih9X1Y7VScb4cYlOGHu135gjrTdNeE0zOjqc++X914yOiQWlqQTRDx1pmUmUNPqqf687nHPnOefektvbtgaOVUrVrwrXkZ+7wIdSnch7ZxM1UPXUOPLeZKIOaJpFyXlTYwaiXcmbyXhqnYi8Ie+dT0bvF2nM6IPImfOI+np6aoIYGx/QtFpMjFGDwG7kzSRZ6SnKeAEZHf1Yrow+mJw5J8a4nhgbN360WlyMjQdYiu7kzRQ8tVaEwCPvXUBaN1rkUIzmMHLm7HYZ897UyIGBojt5bwqeWjPGeCFpvWeM8fdibDx48dT65M1kopp8Wi2ZYOwhxjExxotI691jjIeTM2dFGlN6AzE2bpZqNUKMjRtwip7kvckYtXqM8WLSetcY45HkzJkxxo3ImYkxxqXIe1MjG8I14xSMGh0hSInxd5HGrDmGnDk9xrixGBs3PLQaSd6bEtn0VvQi503FqNUijTlzEWm9c4zxWHLmtMh8Sm8aazStxsYNZcVCYlwl0pjpdhFqoR0iDd5iv6fH9tH/hvyqo+m1136odOMGXmroMEZdsAn5AY1/99neeZY6fWs6Lx2xb0p59F3/UNJ6+0hD1hxP1pwSmU/pLciZSUQ1vY1aTr6PjU8qFH3Ie9MwKuqZmhny5hJSersY44lkzckxxi1lW0cZlxdj4xNIRV/y3lSMGhVjvIyU3iYi32KMWs0LUnprcuYyopreRo0SY+NmraKfGFeIEogx+ikAWXMSWRO1Uhak9LbkzKUxxhXF2LhZoOhHJ28qRi0XacyZiaT0ljHGU2Sp+caR1tuTM5cQ1fQ2aiUxNm66KPqLcdmIT8iRM5eR0ptHGnLmVLLmuBjjjuTMxUQ1vY1aRYyNG2yKAbIPXybGOJFUzEl6zpxG1hwTY9wpwbgqOW9KjHFg7VipoprWLcaNI/KKnDmdrDk6Ig9pvQs5L864mhgbN1MVg8h709Bq6YhPyItxoxjjmWTNkTHGXcl7FxPVmDdqtBgbn54oBksdl4oxTiKlN4gxnkXGHB5j3I28d1Gk0VNjyHlTIxuhmqFijLru3omcmYinfhtjPBOl2nIxqxnNaMb8iAVl9TcHNHzqemCFthnOuXXb+TnXAhOccz3m1+cuaKu/tUTVPkbJnyrLrjoUA8mYnUjr3VEqhe/eouRPpmL/Q+3hjd1I663ImAPQqjvWzaLkT6Zsr6P2gMo0Kb0hGXMgRi2McxXK9o+U/L/JcqAKT61FxuyHp1fBOUfF3kTJ/hErS7kbNZK03pO02USMj4rxfjEOEuNuAeMkMVZQdCeltyJrDkCpblj3VcA4W4wbiXEYzpUDxo8Cxv3x9MoB4x9al3I3ahnSei/SZiMxPhIw1g7mGbMzab0rSnn47k0x3howbk3W7C/GL8V4vRgzAeNQnCtTsn+g7P89YFxbjCuJ8UYxviTGZcW4oRgfFmNt+VrNENJmp4DxDTH+V4w9AsauWPdFwPhNA2MpYPxYjGPFuKIYbxDjy63GjNm7dVBTtQ+J8cGAcWfS+ndifF2Mt30P48ZkzUFoNViM/0fZv0qMOmAcJcbr5fv4ihiXI2P2ChgfpOhPbV1iVzM0YDRinEjF3i7GnqT11mTMfmKcGTB+C2TFeGCMcR0xriDG6yjZPwWMy0sd1xfjA2J8OGDchbTepWa0r1Gyk+qM24ixC9Z9LsZ/1RkPQqtBYrxCjJ+IcRwZcwCeXk6M14rxVTGuIMbfAFCx91Pyp9UZf0da7yzGVynZyXXGbcmYfQPGSWL8ToybiHEgzhXF+I8Y4zVifC1g3IeUXi/COEyMO4nxlYCxGjDuh1KdxTiRsr1BjDkxHhgwXi7GT8U4XrZ1zei+uBb3+ZVQfL220+60ArrPXqjuEwAovPA839x+K6XXat8Fr28/Oq8zns5rj0NpTfmD95l9678pPP0UWB/dpSud1liLrutviM5mKXz2HS9PeoJ3b3qN6ncVTM5jyMaLsdSBK5Ef0AVbLPPpv+5l5n8fpfLlN6A13VYdQf9tx5FfbJDU8Wqp4+tSxxWljhOkjvdIHR+TOi4i38edUErj25cp+pOoujukjguR1tuRMfugVCes+1TqeJPUMR+o4wCcK1Dyp1O2/8TxGWDw1Hiy5gCMXgbnLGX7T8r+n7G8ETDuS0qPF+PdYnxcjMNlW+8gxpcCRl+M24sxj3WfiPHmVmNab0rGHIhW/XFuTsD4uRgnkDUHYvTSYvwHZf/KgHElMY4T411ifCJg3JW03l6ML4pxhhh7B+oYNN5EbSGNFuNBaNUvYPwHjpliXFeMS4nxKjG+KcaVxbiOGO+k5E8PGBcV43ZifEGMdwaMLXXMYd3H8rtuMXYKGPvi3HeBOs4EvIBxhBj/Lsa3xLiKGMeKcYYYa+MxrRYjo3clpbdDKYVvn6foTw4Y+5A225PRe4vxI4r+JCr2JmqLXHQirTcTYx8xThPjF4BHSq9HRh8QMP6Nsv+XgHFVMa4dY9yNlN4WpRRV+xwlf4psa4uib8CYxboPxXhznfFgtOqNc9+K8eo644EYvSTO+YE6vi3G1cS4lhj/R8m/HN89JcbFxbiNGJ8V453fw7iF/GZajFPF+KUYfyN1bDH+TYzviHG0GNcU4+1ifDpg3J2U3jpgnEzV3SXGfgFjBus+CBiLQGcxHiDGb8R4jRhTAeMSYvyLbOt3I4y3ifEZMS4hxq3E+IwY7w4YdyCj9woYJ1Kx/w4YtxTjQjg3W4zX1hkPxOjFxXglZf+vAePqZM1+eHqMGP9Lyb8iYFxSjFuK8Wkx3sml0JIAAQAASURBVCPG/mLcU4zvB4wloEtgW/fCudkU/SlU7LWyMEyKlF5fxpeL4VxVjH9rNXpqjJxLRF2I+2ni17L624GpX97qb5MqzdXfOiIWpKbSW865eaa/KKUWAd4ErnPObd3OzzkKOBdY1zk3Y3587oLaVAKwbiYV/y7gW7QahaeXQ6m5swicK1CxM7DuU7RajJReA6VMIO9Tsfdj3Rto1ZeUnoBSuUDeUbXPYN3TQGdSZjxaha/++O5tqn6t2eGZNTF190cnG+eI8bMIY5WKfUCM/UnpcT/A+BZV/0ExroVR4Vkx1n1Oxb8b+A6tVviBxvux7k0xjkepbCDvqNqnse4ZMU5Aq/AVqprxfkDHGO8C5qDVKFImfNXXue+o2DsTjPdh3Vsxxqew7lmgi9QxymhImbXQKjxzp2a8Eyhg1Ip4JnzVN2g0anE8PSbGOEC2db3xSax7TowT0Cp8Fc13b8r30ZAya6NVeOaOdZ9JHQsYtRKeCV/1de5bKvYurPs8YNSBfIWKvRfr3hHjeJTKBPJBY1epY73xDfk+/nBj2Z+BYyZGLYmnV48xDpQ61hsfl2ZwV6lj9xjjWLQKzy6y7lP5zRQwamU8E74y3TbjPVj3bozxMXz3AopupM2681zR9N3rVP2HxLgOWoVnF4WNq+CZ8JVp574R4xcYNQJPj44xDiKl1/neRjfnddzsR0ClUN3XRGXCxuqXs/jumedx5QrZJRcjOyz8XfDnFPjuqeexs2eTGjKY/FKLofRco1/2+eie9/jm3W/oPKgzA8cNxWSCvynHt8+/zZw3P8B06UT3VUfgdQnPdqv6r+K7R4CUfB/r6/iJ1LEkdQxfPXduNmX/ThxfSh1Xq6tjWer4HloNJqXHNqjjo/juRRTdpY7hmbZV/xV896gYx6JV+LZf6z6m4t8DlOX7GGdcSozBfXy9cR2USgfyjqp9BN+9VGtAmvENjC9L8y3K+JEYK1LHET/AeDfWvY9WQ6SO39f4kjTf0mIMzyQLG1fFM+FZCDXjDBxfYdTSeHrVOmNJ6hhltGJ8uY3GddAqPJPMug+p+PfGGL8W46x2GB/Gd6+IcQJKhWdV14yPAtlEo6dHY/TiMcaReHqVBsa7se4DtBoqxlQg32J8GUWvCOOL8n2MM94DVPHM6hgVvpWpZrwDx9ftMD4kdewlv+vw7Mqq/4Js65wYwzPyrPtAjD6eGTPP0vPWzaLizwBmo9VIPL1yA+NdWPchWg0jpdeOMS4kdYwzjkOr8Iy8ZONXMi6ajVbL4ukVGxjvxLqPYowP4rvXxDi+gfF5aQZHGd+X76OPZ9bAqOF1+a+kjt9EGItSx4/QahFSei2U8gJ5X4yvo1VvGReFZ6dX/eek0ZqTcVHSrZrzP5pNpZ9vNJtKHRPtWkZGnhkUNbc7LrZ2zl0X+N+z2vA38Wscf79ouS9qfn/uAhHOVSn6Z1O2fyO4FK+xI8l5l2DUIpT8v1L0LyC4tGrRH0DOO5uUXpOKvZ9C9ViZPVOLgt+VrDmcjNkZ371JoXoYvsxCAijaFGm9E1lzLI5vKVSPkqttErbllqxzgXzAOHcZXWOXIeddLMa/UPQvrDMOIu+dhafXoGLvpVA9TmZ9BI1HkjE74rs3mFP9fetMqbnGXciao3F8I8Y7GxjPA3IU/bMo27/XGZcV48KU/CvFOHdp1ZrxbDw9hoq9h0L1+DpjN3LmKNJme3z7GnP8w1tnStWMaTEehWO2GO+qM65P3jsHyFL0z6Rs/1FnXJ6cdxGaoZTtnyn6F9cZB5P3zsHTo6nYuylUT2hgPJq02U6Mv2+dKTXXuCtZcySOrylUj5ArWS15JcazxXgGZfvPOuMKYhxC2f6Ron8JtZkAtdD+EHLeOXh6NSr2TgrVE2VmSsu/oTtZczRpsy2+fUXq+HKEcZYY7w0ZU/q3cntehqJ/GmV7TZ1xFHnvIhSDKds/UPQvbWA8D0+vEmHsQdYcQ9psjW9fFuMrAUOGjN6NjDkcx1cUqkc2MG4gt+elxXhtnXFFMQ6ibP+Pon9ZnXEoOe9cMd5BoXqSzJ4JGo8lbbYS4+9bZyHNNe4uxi/EeF+dcUMxpmKMF6MYSNleTtGf1MB4Hp5emYr9nxg/qzMeT9psgW9fEuNrAUOWjN6DjDlMjEe0zi6ca9xIjB4F/xQq9jqCS08bu5IYB1C20yn6k+uMw8h55+PpFanY2ylUT64z9hTj5vj2RdnW9cY9yZhDofIF7s2jYfZDrXmHxvXaALXwqTg/zedXXsPs+x4BO3dZ5+wSw+m3/654vXrw1c3/48ubbsOV5i4TnurXh7777kxusUV479a3eeykByl+XmjNZ3plWenE0Sy8+aLMeeND3rnwnxTfm/tveD+dou+Wa9F/hwk4NZM51d+3ztyr/Rs0Kb0JOXMGoCn4J1Ox/6qr4yryfexPyU6h5E+lNjOlpY6LSB1XoGJvpVA9RWamBOt4ImmzKVX7HIXqEa0zfGqGHBm9FxlzMI7PxfhwnXFTuRVTU/BPpGJvrDOuRt67EEU/SnayGOfWqWa8AE8vT9n/D0X/1DpjL7LmJNJmY6r2WQrVI+c1mn3I6INwfMqc6uENjJuJEQr+SVTsDQSX8DZ2tBj7UrITKfnT64zDxbgcZf/fFP3TZGZKi3EhMW4kxiNaZyHNNe5LRh+I4xMxPhLIm4DRUfBPkBk8UcbLKPmX1xkXFeOylP2bKfqnz2PMeaeQ0htQtc+I8a2AIU/G7EdG74/jY9nWj9UZN5dbWq0Yb64zri7G3pT8SynZKwguZa7tYuTNBRi9DGX/Ror+GTLro8XYm5x3shifkm39dp1xfzJ6PxwfifHxOuMW5MypYjxeZnWI0bbcSnQhioUijIuLcWSM8VRSen2q9kkxvhMwdBLjvmI8rHXG2VzjVuTMKUCVgn8cFXsL4ALGNcTYi5J/MSX7hwbGizB6Kcr+vyj6Z9UZ+4jxN1TtE2J8N2TMmgNJ671xfCjGJwN5T4wnAxUx/qfOuCY57wIxXiTGUsC4hBhHUPavF+PcZe+Lfl9y3mmk9LpU7WMUqkc3MB5EWu+F4wPZ1mFjWm8tt4tGGdcSYw9K/oWU7J/qjEuSNxeK8VqK/jl1xn5inBBjPIS03gPH+2J8qs64jdx2W6bgHyuz2IPGtcXYnZJ/gRjnHme0HSHGJSn714hxVp3xdFJ6PFX7qBjfa80X/LlGy3sUqr9vnXE217gtWXNiqKHbjPkQTmFd0rO2fobxS/w3/QSxoMxUuoPabWnzbFWl1ATgDmAf59zlbXiv6dQe0N1DnqUUzLXMVNrHOXd5R35ujGeBm6lUqB4vTYZ5Q9GbtNmDkn9OxF+nyJqTKfqnEDwpDEZWH0vJ/p9M9W/wDmo7LC/ju2cb5o0ahWY4FXdthLEPab0bJXtujPEUiv7JCcYrQicCYeMOWJ7Hd89HGFdEszCVUG80aOxLWv+Okj0vwpiWOsYZj6dkp4YGXmHjjlieDTXuwsaV0Ayh4v4VYexHWu9MyZ7/g40ZfQJlOzk0qAkbd8bnqVBTLGxcBc1AKu6GGONOlOwFEcYMWX0SRXsSwZPCsPFEynZSjHEXfJ4INcXCxlXR9KPiboow9ietd6BkL4wwZsnqEyjakxOME0MDr7Dxd/g8FmqKhY2jUfSm6m6OMA4krbelZC9KMJ5E8IQrbDyJsr0sxrgbPg+FGk5h4+ooelJ1t0QYB5HWW1Gyl0QYc2T18QnGk+XvGy8znFZ7UOX+UDMnGJ5aA+hK1d0aYRxMWm9ByV4aYzxOtnVjY+03dTG1210b/BvYi/QrD0LhjYZ5uq3BJ7etynePP9MwneqzEJ3HrMxXN/y38b8hk8b77e944MjHW88T6mPM2Svz9Q03YOc0Xmmu3w5j6LL1pFCjJBiGtVAqS9X9r2FeM5SU3piSndQYQJ6sOZaifxJRyKw5laJ/PsFmeDDSah+q7o5QEyJsHItSXvjCxjzGDSnZKTHGY2T/+EON+1J1t4eaEGHjOiilwxc2QsaFSen1KdmpEcZOZM3RUsdGocR4LsEGacio96dqbw01IcLG8Shl5RadRsZF8PR6lO20CENnsuZIqWOc8RyCzcew8QCq9pbQyXPYuC5KVUIXNsLG4Xh6AmU7PcLQhaw5XMY9P9R4IFX77xjjb1CqGLpoEDKqxfDUOpRt1HC0K1nz+xijFuNZBBt7YeNBVO1NoRP8YNSeb/NtqCEfNi6Op9aibP8vwtCNrDmUon/qDzZm9KGU7XU4PogwbgjMar2Vfl7jEnhqDGX7xxjjIRT9qGfrtcV4mNwW92GEcSMcX4QayWHjknhqNGX7p4Z5RXcy5iCK/ukRRiPGMwg29uY1Xh26MBw2boLjs1AjOWwcgadWoWyvbKfxdIJNs7DxcMq25XEA80ZKb07eixp3zf/4VcxUYuFR+/8CZypNqRzHR7z9i9128ysWlKbS3sD0iObO3sB0YLhzrvHoMPz6O4CVgIUbNJXOBY4CVnTOPdWRnxvjWaCaSr57l28r44g8mwBqD6FtfLCE2sEi6sSyLX/fMdFeY56owV/HRZaoAzp0hFERvx3bEvHG2mpZs2LynYg6GalFRxgzRA06atGdBd/YjahGRy2SjJqoJkXbo73GzkSdHNeiI4xpglc860PRDfeTG1MEZ3jOG+2rY2pmiuz70VfNip924cOrox70LeEZqDZuYDoHL72+PN9+1jANwJAlZ9HZa9xwB+i6wdv03uuJyHzbIqmOXYlqvNWiC8FZqvOGR1QzvO2R9B5JxqR801iLpG2ZZEz6LrUlDFFN/1r8EoxJ+6b5YYzf/yXv4+OPEW2LpONA0nEkqY4LgrE78eOipPFAWyLJmDSu6U57jZ1Tt89z6+VPFc2m0s83mk2ljokFZfW3awCUUo2WGNma2sOy52nsyHOP6uMOak2jWQ1yW1F7MHfLXM8f9Lk/56gGp7FGRnxDKL4Rkvz3HRPtNf7YDSWIb9Z0hLEjGsLxxuQ7ROMGDNAxxqSBz6yE/IJgjBuAQrKxvY0QaL8xbgALHWOMH4jHn2zA/DEmnXS1z+h9Ff99/O71xit5hSKioQRQKqZjG0rgyKkv4l5A59Uaz7b4fpFUx7gTdIg/eYb2N0La8h5JxqR801iLpG2ZZGxvIwTiGyHwyzAm7ZvmhzF+/5e8j29vswaSjwNJx5Gfg3FWQr69DSVINiaNa2Yl5JONFf8/ia9pRjOaMX9igWgqSQNoH2q3prWGUmoUtecfzfOgbHme05vymuB7nQecW99wkllKPYPv9UM+9+ceziUNfJrRjGY0oxk/VaiEczK/1K5HIVKtmsTXGBPf2NKdOuLksxnNaEYzmtGMHx4usZnbjGY0Y35F+0anHRjyjKO3lFLXAo8DvajNjYyadTSDiLmTzrmtlVLnKqW6U2skdac2Q6lHg9d+38/9WYduOLmrGc1oRjOasSCEzTpMzETMdI/2zbLMZMso5Whw17eEolRKkclEN47KH3Yhs8isdjma0YxmNKMZzWhPaLXwT0341cVP/9CcZiyosUDMVGoJ59wM59zWzrnznHNHO+f2iWrsSD7yeUeBv9/aObeuc+7ojvjcn3uk9AbU7v2PDsXg2Lxm8di8YkhsvnafdVLkY7PtNw5N+PzOCXmoPdcp7jMGxebbb+ySkIdk48DYfLJxWMLnx3/XapFN+Iz2GpMGHW0xZmKzigGx+fYbuyXkIdnYPzafZNSJxu4JeUXtWRNxr+gXm9fEPztBk9Q0n+e6wjyCZGP87WftNVZ7dY/Nd17yM5QXP9vIdI/+vqRSPv2Wi98v2F7x+/A5jy0Tm68NLVKxr1D0ic3rhOdkaBaNzdeuJ8WFIem6miJ+2erkbZ1kXCgh3xZj/HskGTrGGP99/LGNSdupVsP44a6iV4JheEI+/ruQ9H2v/V6SjPHf6fYbk26tbYsxfh+btP9LNsYfI2r77yRj9wRDkjHpeB5/rK0Z41ebUgnH/KTjcbIxfsxSG08krYj1UxvzpPWmCa9pRjOaMb9igWoqNePHD6XystR844Gqp9Yj702JPOhqtTh5b3rkgF/RnbyZgqfWjRB45L0LyeiDIo0Zcxh573yiBqotxqgDWqsxYiA61zg+xngRGX1AjPH3Ccb1xdi4YaHVkmJsPAhU9CDvTcVT6yQY94sxHk7OnBdpTOkNxNi4OaXVCPLetMiBgaKnGNdOMO4TYzySnDmXqF1RSm9I3pscY1xKjMMijL3EuFaEIEXeu5i03jvSmDVHkzPnxBg3kjo2bkRqNVKMjZuEc41rxhgvIa33jDEeS86cTdQgMKU3JW8mE9XQNYnGhch50/DUmAhBmrx3KWm9e4LxrBjjZuTNFKIaykYtK7+Zxg0PRW9y3lSMWj3GeAlpvWuM8QRy5owY45bkzOQY43LkvWmRTW9FH/LeNIwaHSHIkOl+MfTdKdKYGnE4vXfbDlRjY5e1VqPfIXugMo2bY9nhw1j1so3oNKjx9zXXN88yZ21F52Uan1iptEe/DQ4lraONWXOSLOMe8W/QW5MzE4lqehs1iryZGtlQVvSTOkY9sDxL3kwkrXdoh3FbcmZSjHFF8t7UyBOfucaVEozbxxhPIWtOicyn9fZSx8aNeaNWku9j4xNxRX8xRj2bNEfeTCSlt4s05MxpZE3Uym2Q1juQM5fFGFeROkYZB5D3pmPCTzoIGXNmEim9TYzxdFnGPcq4EzlzKVGNeaNWJe9Nj2y6KAZKHVdIMDZ6fGftHWrGE2OMu5Azl8QYR8u2bty8UgySOi4f8Ql5MW4ZYzyTrDk+xrgree9Sohrzc42Nm4CKwWJcNsY4mZTePMZ4FllzbIxxd3IxRk+NkTFwY6NmiGzrqMZ6J6ljVLNDkTPnJBj3FGPjxryn1iDnTY1s1mqGkvemotXIiE/oLMaNI/KanDmbrIm8Fk9a703euzjGuBY5b0pks1YzrDbmUEtFGvNmCim9UYzxLJRqy0XBZjSjGfMjFojV337JsaCt/tYSVfskJX+qLLFr0QwlbXYkrXdFKQ/fvUvJn0zF3gIUUfQkpbcia/ZHqa449zVFfyoVe50seZ8lpTciYw7AqKE4V6Fsr6Ts/12W0NV4aiwZsx+erg1gy/4tlO0f8N2zABi1PBmzp8ymgqp9Qoz3Bow7kda/E+M7AWMJRU/SemsyZj+U6op1syj506jYa2U5+SwpvTFZcwBaDQkY/yZL6Go8tY4YR4nx32J8TowriPG3YnxcjPeJcRhpszNpvbMY36bkTwkYe4lx34BxqhhnAbmAcbAY/0zJ/xuO98U4jozZH08vj3OOim0xPi/GUWJcX4yPBYxOjLuI0eC7twLGshi3IWP2EeNXYrwuYNxEjINwrhwwfgCYgHE5Md4sxhcCxr1I6d+I8VFK/rSAcWEx7hQwTqZi/xMwbivGLlj3JSV/KmV7HbWHaOYDxoFi/BMl/+8B43jZ1i3GmyjZP2JbjSuKcT0xPiLG+8W4iBh3FOObYrxVjAsFjJ3FOIWyvb7VmNabkjH7i7EUMH4YYbyRkv1TnXFvUnpdMT4sxgfEOFy+jy3GN2RbB43bkTF7i/ELMf4r0liyf6TsXxUwTiBr9sfoZcR4gxhfFONKZMw+pPR4MT5EyZ9eZ2ypo8Z3rweMFRS9A8ZOWDczYJwNdCKtNyFjDkCrAWL8gxg/Ajw8NZ6sOQCjR4rxX2J8KcL4oBgfFOOiYtwhYJxMxf73exg3FWN/Mf6fGD8WY0sda0Zm3oD75C8w55XaTrvLSqj+e6J6jAVgzguv8OW/76DwQi2fHtiPbuuNpdu4MSitKX3wEV/eeDvfPv4MVKuY7t3ots7q9NhoXXQ2Q+HzObww6Rneuv51Kt+U8TqlWHjzRVnmoBXI9+uELVX49Ib7mfnfR6jM/BqMpvtqS9Nv23XIDx8odbxO6viK1HEVqWOtGV6x91Pyp7Uuna3V4qT1LqT1drU62lcp2clU7O1Sx76kzXZk9F4olce6zyn5k6WO3wKdpY4HolVfnCtKHf/RWseUXo+M3h+jlxLjNZTsn7HuVTGuKsaxkcaM3pWU3halFL59hZKdUmfcXow5rPtMjDcEjJvJtm4xXiHGT4BUwDgiwriaGNcW431ifCRg3I2U3kaML4vxf2LsJ8Y9A8ZJlO2NAePmYuyDc4WA8VMx/oaM3i9gvFqMr4lxtBjXEuM9lPzLA8YlpI5B42QxVlH0DxizWPep1DFo3EKMvcV4OWX/n3XG/TF6SZyzYryyzrgvKb2mGO+m5E/Hd4+JcUkxbi3Glyj6k6m6OwLGHcjoPcT4iRhvEmMXMe4vxjmU/Msp23/i+EyM64txCZyzlO0/Kdsrse51Ma5O1uyLp9cQ411Sx6BxN1J6KzG+SNGf0sC4J0plsO7jgPG7CON0WU4+aDwAoxcX4z8o+1dieQOoNVoyZl88PUaMd4rxcTGOEOOWYnxBjDPEOCCwrTNY95HsH1uMXQPGhXDuu0AdPxfjb2V8uZgYr6Ls/0WMKmBcPWCcju+eEONSZPTupPTmYnw+YPTF2LKtW4wtdZwjxi3F2Avnvg0YZ4pxAzEuinM+Zft3yv5fsbwpxjXEOFqMM8T4pBiXFuNmKKWo2uco+VOoujvFOFCMu4vxw0Ad5wDdAsaeYmzZ1jOBdMA4PGD8C5a3xLimGFcT4/8o+VcEjCPFuKkYn5XxZYtxEBmzA2m9O0qlse5Div5kKvYmagvs1Bu/CRi/EOOGYlxEjH8T49tiXEuMq7Igxa9l9bf9foGrv01trv7WIdFsKv3IsaA2lQCs+5yKPwPHdxi1PJ5eERW4+u3cd5T9GTg+Q6uFSemxKOUF8lUq9h6se1sG2uNRqlMg76jaJ/Ddsyg6kTIT0Cp89cd3b1DxHwQgZdbAqPDMHes+o+LfGWP8Voyfo9UipPTadcaKGN+JMT6O755D0ZmUGR9pVCg8swam7rlU1n0qxjkYtQKeHtVO4wSUygfybTG+TsV/qI3GUXh6hTrjN2KciVbDSem1Yoz9pI71xsfw3fNinIBW4atovn2Nin0IhcYza2Lq7oW37hMq/l1iXBFPL9/AeAeOL9BqMVJ6TZQygXyZir0X695Bq/6k9HiUygXyLcbnUHQjZcY1ML5KxT4cY/yYin93jHG21DHOeA/WvRtjfFTq2E22dfhKX834EApPjMMaGO/CUZJtvVyMcXFSeo0faHwBRVfZ1uHbMnz7itTRwzNrYVR4BlTQ6OkVMWrZBsY7cHyJVkuQ0mMaGO/GuvfEOAGlsoG8o2ofEWN3qWO98WUq9pEY40eyrUt4eiU8Hb56nmwsifF9tBogdQwarRhfFOMEtArfOuK+fB33+ZOgPFT/0agu4Zk75c++YvaTr+AqFTottQj5RcO33Fa/LfD1Yy/iz/6W7JD+dFluMZSZO+POL/m8P+N9vnlvNp0HdWHwhMF4ucDv3lq+ee4t5rz5MV7nHN1Hj8DrGp7tFqxjyoxFq/AsLes+pOLfg6NESq+M0eEr/M59Ld/HLzFqSTw9BqV0IF+iYu/Cug+kjhNQKhPIW6r2YXz3EooeUsfudcaXqNhHUaRJmbXRKlynsHEVjA5f4f9+xoGyreuND+G7l2OML4oxE2H8gIp/rxhXxeil6/Kz5Hj+FUaNwNOrNzDeiXUfotUgUnpcrDFt1kWp8Gxg375AxT4mxrFoFf4+ho2rYfRSdfmgcSk8PfoHGB/Ed6/ULiKZCT/A+L5s66rUsd74lRhnxRhnYN1HaDWYlF6nzuhTsQ9i3atiXHee2RS+fZ6KfTzG+J7UsSp1HBFjXBpPr1ZnLEodf7ixap+jap9oh/FLGXPMwqiRYgzu44tSx4/RaogY04F8vNE5h++eo2qfFOM6aBWeNei7d6n694lxNEYv+T2NBaljnPEBrHst0li1z+K7p8Q4Dq3Ct8b57h2q/v1iXB2jl6gzfiHGrzFqGTy9aoxxqIzTo4y95DfTyPgkipzUsZHxPhx+hHGmHM+/xqhl8fQqP8B4P9a9LsZ1UapLIO+o2mfEmJc6Jt0GOf/j19BU6s/Co/b1fnlNpWnV4/i42VRqdywwD+puxvwL5yoU/TMp26sILvWr7VLkvYsxajFK/p8p+hcSXBK06Pcj551NSq9Nxd5DoXqcXHmVvO1M1hxOxvwO373OnOqhWPdyIH8yab0DWXM8jm8oVI+QmVK1KFnw1Dhy3gUo8hT9Myjbf9YZlybvXYxmOGX7J4r+xXXG/mJci4q9i0L1eLmqGTQeQcbsgm9fZY5/WOtV9lreI613ImuOFePhMlNKwoKnxpPzzhfj6ZTt1XXGkWJchLL9I0X/kgbGc0jpNanYOylUT6gzdhHjzvj2FTG+2sB4HI6vpY71xnXJe+cBOYr+qZTtNQSX+jV2JDnvEjQLU7Z/oOhfWmccQN47B0+vIcbj5apm0HgUGbMjvn1ZjK8F8ieR1ruQNcfgmCV1vL/OuJ4YMxT90xoYlxHjMMr2Cor+ZdSuxrUYB4pxDBV7h9Tx89Z8we8qxh0ijCkxHo3jKzE+EGks+KdQsdfVGZcl510sxssp+hMbGM/D06Op2NspVE+ax5gzx5A22+Hbl8T4ep1xV7LmKBxfUqj+XmbPBI2/Ie+dK8aTqdjr64zLSR2HULLTKPmT64yDxLgaFXubGGfWGY8lbbbFty8yp3pY6xXsmjEtxiNxfMmc6qGtsz7mGn8rt92mKfgnibG2HHHJ1mYp5r1LUAymZKdQ8qdQu6rZYhwsxlWp2P+Kce6y9wW/mxi3wbcviPHNkDGjdyNjjsDxBXOqh9UZFSn9W7nN0aPgn0jF3lBnXEGMg2KM5+PpVajYWylUTw4Zi353suY40mYrqvY5CtXfy9XhoHF3MuYIKHyBfeAU3KdPzTWiUEPHoUcfi7Np3p9yPV/d/RQELgzllxzK0CN2IN2nB59ePYNPr70bV577wO10v54MOXQ7Oi+9MG/f/BaPHP8IxS+KrflM9wwrn7IKi22zGN+9+j5vn38tpQ/mfl/fm+TRd8s1GLDLujj1mdTx0cC/QZHSG8qtmFrqeGNdHVeUOg6gZCdS8qcBcw3aH0rOOx9Pr0TZ/zdF/1SZDdtSxx5kzfGkzRZU7bNSx7cDhgwZvScZcxiOT8X4WJ1xI7kVU1Pwj5er6K6x0b+Ukr28gfECPL0iZf8miv7pDYwnkjabUbVPU6gejuWdOuPeZMwhOD4R4+N1xo3FiBhvrjOuTN67GEW/gHHuEtzaH0bOuxBPr0DZv5Gif0adsacYN6VqnxLjuwFDlozeS4wfi/GJQF6T0pvI7aJQ8I+V2a5B4yrkvYvEeAkle0WdcWExLk/Zv0GMX9UZTyZtNqZqn6RQPWJeo9mHjD4Yx0ey73kykNek9KZitGL8T51xValjH0r+RZTsHxoYL8LTy1H2/0XRP7OB8RTSZiOq9gkxvldn3I+MPhDHh2J8KpDXpPRm5MzpgE/BP66BcTWpYx9K/oVinLtsvfYXEeOylP3rKPpnyaziFmMvMW5I1T5GoXpUnTEnxgNwfCDGp+uMm4uxSsE/RmZpBo2jxbgQJf8CSvZPdcbh5L2LMHoZyv61FPyzqM2GnWvMeaeS0htQtY8xp3qkzM4OGvcno/fH8b4Yn6kzbiHGMnOqx1B1/23NzzVejKIXRf98yvZPwNz9o/YXFeNIyv7VFPxz6owLifG3VO0jzKkeJTOfWwx5Me6H5T0K1UNbZ+LX8qeI8TSgJMbb6oyri7EnRf88yvbPYaNdjLy5CKOXFuPZEFgBrej3JuedRkr/hqp9WIwfhoxZcyBpvQ+Wd8X4XCBvSOmtyJlTxHgUVfe/kLF2+92FYjyXsr2yzri4GJei7P+Dgn9uA+PppPR6VO1DzKke3cB4EGm9N5Z3xPh8nXFrcubkULO0Gc1oxk8bzZlKP3IsiDOV5lSPoWKvaZir3Va0OyV7fsRfe2TNSRT90wg2UoKR0UdRtn8InVCF3kFtg+Ol1luh6sOo5dAMp+L+FWHsTVr/jpK94Acbs/ooSvb/QoPsYKTUNvi81Hqb0bzGFdAMo+JuiDHuQsleGGFMkTUnJtTxaMr28tAANmzcDp/nWm/hmdc4Cs1gKu6mCGMf0npHSvbiaKM+kaI9lWCTImw8hrKdFhrAho074PN0qLkYNq6IZiAVd3OEsS9pvUOMMU1WH0/RnhZjPJaynRpj3AmfJ0LNxbBxZRR9qbpbIoz9SOvtKNlLIowZsvo4qaONMB5HyU4mOICd1/hYqCkWNq6CojdV958IY39SemvK9rJ2GI+nZCdCxBK+KbULPo/EGFdD0SM00A8bB5DSW1K2EyOMWbL62ATjCZTsZTHG3fB5INS4CxtHo+hK1d0eYRxIWm9OyU6KMR4jxsbH1prxUuCbhvm03Z3U7S/A7Hcb5um7Mu89PorZj7zY+O/79KD72ivw2bV3Nf43ZFJ03nxb7jvqychlXNY8Z3m+ufFm7JxSw3y/HVal63aTQk2xYBjWQKms3FrSwMBg0nojSnZqYwA5svoo+V03Rtb28eELH8FIqz2puhmhZk7YWJuNWXWN66QZgqd/S9lOjzDmyZojKfqnRuQha06m6J9PsIkbNu5N1d0eapTMa9Shiy9h41A8/RvK9vIY4xFynIkynkTRvyDGuA9Vd1uMcSxKufCFjZBxGJ5el7K9IkLQiaw5PMF4CkX/XIJN3JBR70vV3hpqlISN40BV8IMXNkLGhfH0eMr2/yIEncmawyj6p0fkldTxvBjjflTsLaFGSdi4LkoVwhc2QsbheHptyvaPEYYuZMwhlPwzYownJ9TxACr2plCjJGxcD9S3+O6hCOOieHpNadZEGQ+m5J+ZYDyHYBM3bDyQiv2X3NrcyLg+qK/DFw2CRrUYnlpdGiGNoitZczDFyDpqMZ5FsPkYjIw+mLK9Vm7JnTc8tQGOL0IN+bBxcTy1GmX7lwhDN7LmQIqRdWyL8RC55eyThnlPbYjjs1CzO2xcAk+tQtn+tWFe0Z2M2V8MccYzCTYfv48xpTch710S8f7zP5ozlX6+0Zyp1DHRbCr9yLGgNZV89zbfVqIeUN0SWaIO6FBblcJFnPzWIkfUoKXj4udgzBB1QK9FN6KaCLXIEzXQ77j4sY2K9i9A+nMwpokaGNXi52DsSlQzphadiDqBr4UmqtnT9kgRvOI5b/wSjJ2pPY+lcXhvdCLzZPTqk3O+6Mxbdy4fK1SewVUbN1mdg9ffW4rvZkZ/nxYe8SVdUo0vCgB02+hNeu/9RGS+beER1VCvRReiGm+1iK9jbYGCxjVoe7TXmJT/tRiT3iNpWyYZk2rQlvg5GJP2X0nGpH1T0r6tLZFkTNpH/xKMScfatkR7jUljjo4wJo1LksY17Td29v47z+14P1U0m0o/32g2lTommre//cqiYm9LflFMswZIaNbAj9+sgZ+HMa4RAvEHU/jxG0rw4xs7omn9czAmDc5+Dsa4QTLED2Ch/c0aSD5Z+CUY4076wHu/8Wo6re/+QdIS70Q2lABKpVRsQwkced14dmRLdFqt8YyQ7xdJJ9hxJ+iQVMf2N0Kg/cak/K/FmPQeSdsyydjeZg38PIxJ+68kY9K+qb3NGkg2Ju2jfwnG9jZroP3GpDFHRxiTxiVJ45r2Gyv21gWmqfRrCUfjlWeb0YxmU+nXFi5p4NOMZjSjGc34yaKiY9N+pX2Hbd83ia8xJv6ExnTuiBOSZjSjGc1oRjN+eLjEZm4zmjH/Qik1AdgaeBPoBXQHjnbOzfox30spda7krwWecM7Nkr/fB7jDOTfPPfIdaW2JZlPpVxa6bnW1ZjSjGc1oxoITrksVvoqerZTp0r5ZlplMBaUczkVdbVSUSikymegZAeUPupJZZFa7HM1oRjOa0YxmtCea5zTNWFBCKbUVcGzwFjql1CjgSaXUit+nWfMD3qs7sLf8F1x98byIhlKHWYMRf0m0Gb+4SOnfUruPOTo0QxPyS8bmVcLf1549kBSdYrOKIbH5ZOOwhM9vizGf8BmDY/PJxoVj87X7+pPixzYukvD5bTHmYrOKQbH59hvjfw+1yMZmFQNj85r46dk60dg9Ia+oPXsq7hUDYvPJxqTBW4+E/IJg7JmQ1yQb+8fmk42Lxuarw+N/s92HfY5Kxc82SvWK/k57nk+/5eM/w18ofh8+59HlYvO159PE38an6Bub12rx+DyLJRiSbhNsi7FPvKGdRkXv2HzNGH/tL+k9NEnG+HxSDWq+JGP8tkg0JtS5bcb430yyMX5bJhuTlkBPkWzsFW9I2Lckb+skY5qk0waVsI9NNsbvP5OOEW0zxh+rko4j7TdmSDZ2TzC01xg/ZqmNeZJOEbsnGOLHNcljt/ixH+RJ640TXtOMZvz4oZTqTm2W0NHB/9859xTwFBC1UkVHvtflwAz57zxguHPu6PoXdaS1PppNpV9ZKJWXJdIbDwI9tT45b2rkAU2rJejkTUerxgcsRQ/y3lQ89ZsIgUfeu4iMOTTSmDGHk/cujDSm9AbkY40jxNh4ADXXuF6M8WIy+uAY45HkvQtijBuS96bFGJci701Dq8YDVUUv8t40PDUhQpAS40GRxqw5WrZ144FqSm9E3ptKVFNFq6XJe9MjB4GKhaSO42KMl5LRB8QYjyXvnR9j3IS8N4Wo5pRRI2t1jBi81IzT8NQ6EYK0GPeLMR5HzsTVcTMxNm5EGrWs1LFxk1DRm5w3HU+tnWDcJ8Z4PDlzLlG79JTeQoyNHwBt1HJiHBZh7CN1XCtCkKGTdylpvXeM8cTWpeYbG7ckbybHGJcXY+OGh6IveW86nlozxngZab1njPEkWca98SyelN6avJlCVNPbqFEJxn5iHBMlIDvgItSI7SKN6TUPZvCBW0UR6bneKgw9Zmd0Nt0w32nEUNaY+lu6DG38fc33z7PceVvSZfnGJy0qnaLfxgeT1rtGGrPmFHLmTKKQab09OTOZqKa3USuSN9Mjm96K/uS9aRg1OkKQI28mkta7RBpz5jRZfjzOOImoprdRK4ux8YmPYgB5bzpGrRppzJmJpPVOMcbTxdg40nrHBOOq5L3pkSe5ioFSx5VjjJNI6x0i8kqM0Su3pfXOsq2jjKPlWNm4WasYRN5Mx6iVIj4hT85MJq23jzGeSdZEr9KX1ruS9yYRdfFgrrFx00UxWIxRz3jNkzOTSOmo37UiZ84ia06OMe5G3psYafTUmFijZgh573KMGhXxCZ3ImSmk9DYReU3OnE3WnBRj3IO8dxlRjXlPrSHGxg1lzVD5zawQ8QmdpY5bxRjPIWtOiDHulWBcS4yNG5WaYfKbiWqsdyFvppDSW8QYzyVrjosx7k3Ou5Rag6yRce0E48JSx2UTjJslGI+NNGb0vuRjjWPF2LjprVlE6jgy4hO6inHTiLwhZ85FqbZcuGxGR4Z1v7z/OiBadpyNVjC5GojaaXXYeznn9nHOrSv/He2ca7w8b8daQ9Fc/e1HjgVt9beWqNpnKPnTqLo7AR/NIqTNTqT1TijlYd37FP2pVOzNwBwUC5HW25Axe6NUV5ybTcm/nLK9BsdMIE9Kb0LW7IdWg3GuStn+jbL/VyxvAwZPjSdj9sXTywNQsf+l5P8R39VqY9SKZMyepPRvxPi0GO8S4/CA0WDde2L8d8C4rRi7iHG6GL+gdlVjUzJmP7QaJMa/Uvb/JkYPT40jY/bD08uJ8VYxPiXGlcS4nhifEuPdAePOpPWOKGXw3buUWo0FFL3FuJcYvxbjtWLsRFpvQsbsj1YDca4SML4jxpY6Bo1/wHdPi3FlMa4rxifFeI8YFxXjDmJ8R4y3iLFPwNhZjNMo2+sCxpY6thj/IsZ3xThBjLVBTdn/D2X7B3z3TMC4Nyk9XoxPBIwWrRYjrXcmrbcX49sBY3Eeo3WzKPnTqNjrcHwJdA4YB4jxSsr+3wPGdcmafTF6GZxzVOwtlO0f8d2zYlyFjNkrYHyMkj9dls62aLV4wKjFOIWK/Y8Y+waMnbDuK0r+9DrjZmLsj3NlqWOLMUVKr0tG74vRI8X4b8r2TwHjqmIcFzBOo+ruCxh3Ia23E+NbUscWYz/SZlsyei+UyouxpY5fRRhb6vieGNcT49JivFmMzwEqYFwn0pjRvyOlt60z3gKUxLgdGb2nGL8U4/UB4+Zi7IdzJTFeVWfcD6OXEuNNYnw+YNyblB4rxkdkW98vxiXEuI0Y3wzUsYSif6COOaz7ImCcBXQJGPuK8c+U/KtkifF0wDgC5xzu7duxL18NX74CKFTfUaild0QPrDVSvnnuDT67/h6+eeY1sI7ssP703mgMPddbBaUUxfc/5dNr72LWg8/hylVSC3Wj129Wpc9ma6OzaYpfFHhu4nO8ce0blL4qke6aZviWw1n24OXI981jy1U+u/FBPv/Po5Q//QrlGbqPWZp+244lv0h/qeMNlOyfse4FqeNqZMy+pPSaUseHpI4PAA6tRpDRu0gdFb57Xep4K1CWOu5ARu+BUlmsmyn5f8niC11I6y2kjn1wrkTJ/pGyfxWOD6WOv5E6LinGf4nxRTGOJmP2CRgfFOODYlxKtvVWNaN9jZKdSsX+V4wDSJvtA8bPxXiDGLsGjL3F+AfK/j8CxvXFuIQYr6dkr2w1emp1MmYfPL2GGB8Q40MB466k9JZifFWMtwWMLXXMtBrL9l/UHjJcbywGjB+J8bdiXFyM14nxJTGOEeMYOQ7dT9m/PGBcWoxbiPEVMd4uxoFi3L2hUdGNVKtxoYDxKlmqPU1Kb0DG7IdRi4nxWjG+LMY1xLh6q7HkT8N3j4hxpBg3F+PLYvyfGAeRMTuQ1ruJ8bOA8RsU3QPGXjhXCNSxxbihGBcV4zVifAXQAeNoMd5HyZ9eZ9yNlN4swjhYjLuK8VMx3hBj/D/K/j/FmJE67o9Rw3HOSh3/jHWvinFNMa4mxnsp+Ze3Go0aSVrvTkpvWme8Hag0MH4iY4p/Ad+KcSsyZl+06olzc8R4dcC4oRgXEWNLHYPGffH0qmK8m5J/Bb57VIzLiHETMb4UqGMFzRDSrca0GFvq+C2KHgFjDzFeIcZPxLiRbOuasWz/Sdn+BeteE+NaYlxFjHcFjLULUDXjxmJ8UYx3iHGoGH8nxo/FeKMYe4pxHzF+R8m/grK9GsenQDbwfWwx/oOy/WvAuLZs6xbjnZT8/wsYlxPjRmJ8gaI/laqbETDuKMYU1n0kxpvqjPuiVXec+zZg/EyMLXVcGOf8gPF1MY4VY1Qz/KeJX8vqb3uZs39qSofHFf6x7Vr9TSl1B7CSc26eaZAtt5UBWzvnrvsx3kspNd05F33l+UeyzvP3zabSjxsLalMJwLpPqPh34fgOTy+HUSsH78PEuW8o+3fg+BytFial10GpVCBfpmLvwbq3a80Ssy5KdQnkHb57jKp9DkUnUmYcWoWvovn2VSr2QQBSeg2MDs8usu5jKv7dMcbZlP0ZYlyElB7bwHg31r0TY3yUqn1ejOPRKnwVzbevULEP1YxmTUzd7KKa8U4cRTy9bITxDhwz22hcD6U6B/JBY2cxhq9Q+fZlKvZhQJMya2BUeHaRdR/Jti5KHVeKMQ4npdeuM5bE+G6toWPWrTNaMb7QDuOHsq2LeHp5jFqxgfF/OL4Q41iU8gL5EhV7F9a9J8b1UKpTIG/x3SNU7YtinIBW4atoYeOamLr79a37kLJ/F1CKMH4tdWyLsR9pM6GB8WGq9qUY40tU7CNiXAujwrO0wsYVMGpUA+P/cHyJVovKto4zrotS+UC+LcYXqdhHY4wfUPbvFuMojFohxrgYKb1WA+OdWPe+NCImzGOs2gfx3csoukQYXxCjJ9s6zrgiRi0fMlo3i4p/hxgXF+Pc2Ww14wys+yDSWLEPYN0rKLqKMXwLjvviVeynT4Hy0ANXQ3UNz9wpffIls598GVeu0mmphckvPjhkrM7+jlmPvog/ew7ZIX3pOmoJlJk7U6xarPL+He/x7fvfkR+QZ+h6Q/HygTpby9dPvUnhrY8xnXP0WH0pUt3Ds7R8+zwV+5jUcW2MGlZXx/eljmU8vRJGLVdXx6+kjrOkjmvW1bEo2/oDaZZMQKlcIO9TsQ9i3cu1RoRZF63CtwlV7XNU7eMxxvco+/cAFTEuW2f8koo/A8dXaLVEgnEgaTO+gbFlW3cXY89A3uG756jaJ8Q4FqPCs9189y4V/x6gGmNsqeOSpPQadcYCZf9OHB+KcQJKZQP572NMkTZj0Sp8G3rYuHLrRYW5xi+kjrPQagQpPSbSqNUgUnp8A+P9WPdq7STfrItWPQJ5h++epWqfjDG+Q8W/F6iS0qtg9DINjHfgmB2oow58RkHGHB+JcQJKZQJ5n4q9D+teSzA+AaRJm3XQKvy79t3bVPz7YowzpY4dZVwPrbrXGZ+ROmakjvXGt6j494txVYwOzzgJGo0agafH1BnniPFjtBos2zporIrx9VojwqzbwPg0VfuUGNdBq/CswblGX4xL1xk/F+O3GLXkDzTei3VvoOgpY45ugbzDd09RtU+LcRxahW87qxlrF1hSejWMXirS6OmlMGp0nfE7MX6CVkNI6XExxl5yPP++xjeljpaUHo3RI2KMS2PUag2Md+D4NMZ4D9a9Kcb1QjOQasYnqdpnUGRJmXXmMS4I0Wwq/XyjA5pKXwFfOufmmeKtlFqE2sOwz2t0O1pHvFdLU0lubWu5xWVGxEO9O8w6z983m0o/biyITSXnyhT90yjbqwkuo6vV4uTNpWi1OGX7B4r+JQSXBFX0IeedSUqPp2LvpFA9DsfngXfuRNYcSlrvjnWvMsc/VK5+tIQhrbcla07C8Q2F6u9lJsDc8NTa5LwLUXSm6J9K2V5TZ1xCjItRtv9H0b+0gfFsUnodKnaGGGfWGQ8jY3bHty+L8fU64/ZkzYk4vhbjAw2MF6HIU/BPpWKvrTMuSd67FM2ilO0VYpz7cF1FXzGOpWLvoFA9voHxcDJmV3z7EnOqh2J5IygQ4wk4ZonxwTrjOlLHHAX/ZCr2OoJL1Go1QozDKdvpFP2JdcZ+Ylybir2dQvUEmaUUNB5JxuwSY9yRrDkOxyzmVA/Fdw/XGceR8y4Q40lU7PV1xqXEuAglO5WSPwko1hnPJaXXpGL/S6F6UgPjUWTMzvj2BeZUD8PyZp1xJzF+FWEcL7c5Zin4J1CxN9QZlxbjwpTsFEr+5Dpjf/LeuXh6DSr2VjF+GfiEzmLcCd8+L8bgjFWPtN6ZrDkWx5difKTOOEGMaQr+iQ2MI8U4jJKdTMmf0sB4Hp4eE2M8hozZgap9jkL1MJnZFzTuQtYcg+ML5lQPwXeP1RnXk1sx04E6zj32GDWSnHcZmqGU7ERK/lSgFDAOEOPqlP1bKPqn1Bm7kDPHkDbbU7XPivGdOuOuZM3ROD4X4+MRxhQF/3gq9qY64zJiHELJXkbJn9bAeAGeXo2y/28xflVnPI602ZaqfUaM79YZdyNrjoI5X+A/cBJ89mzIqIaMRY8+AWdTvD/5Or669xkIHMPziw1m6FE7ku7bk0+u+h+f/eseXHnuUuapPj0Yeui2dF5mOG/+600ePfERSl/N/Teku6VZ+cRVWHyHxfn2pfd489xrKX00t87KM/TbYnUG7b4eTn8idQwf2zz1W/Je7VbMgn+czNIM1nE58t5lKAZS8i+lZKcTXDpaMUjquApl/0aK/mky26slupIzx5M2W1O1T1GoHl5XxxQZvTsZcySOj+U3Ezam9AbkzDliPEZmnAWNK5D3LkUxgJJ/MSV7RZ1xsBhXpuzfQNE/vc7YjZw5gbTZkqp9gkL1CJk111ppMnoPMuZwMR7SOht2rnFDMULBP1Zm7s2N2q2Wl6LoT8m/kJL9QwPjhXh6Jcr+9RT8Mwgv4d2NnDmRtNmCqn2cOdUjZNZc0LgnGfN7HB+J8elAXonxbMBJHW+tM65I3rtEjBeIce4D4DVDyHkX4ukVKfvXUfDPDBkV3cmak0ibzajax8T4QZ1xbzLmUBwfivGZOuNGYrTMqR5N1f23gfFSFH0p+udTtn+qMw4l512Ep1eg7F9DwT+L4JLyih5kzYkB4+EyI60lMmI8BMcHYgz+rhUpvbHcduuL8bY640pi7BNjvBhPL0/Zv1qM3wQ+oQdZczJpswlV+whzqkc2MO5DxhyC5T0K1YNlFmfQuKnc0lphTvUoqu5/dcaVZVv3oeifS9n+GZi779EME+NylP1/UvDPrjP2FOPGVO3DYvwobDT7kdEHYXlXjC/UGTcTYznCuIoYe1P0z6Fsr6wzLizbejlK/lUU/XOAb+uMp5I2G1K1DzKnepTMpGqJrBgPxPIOc6qHyCzOuZ9QM54hxiOpujvqjKuKsRdF/2zK9q91xkXEuCwl/+8U/XPnMea800jpDajaB5hTPbqB8QAyen8sb4vxxTrj5mIsMqd6hNzREDSOJu9djKInRf8syvZv8xjz3iUYPZKS/1eK/nnAdwFjLzH+loq9n0L1mATjwTJDMmjcgpw5PdSc+qmj2VT6+UYHNJUc8FZCo+bytswm+iHvpZSaDswCvgCuA76k9tykO5xz5/1Y1nn+vtlU+nFjQWwqzakeKSfw84aiJ2m9KyV7UcRfe2TN8RT9MwkeRIKR0b+nbP9Ud0IVeAe1JZZX6g5kc8OoZdAMp+JujDD2Iq13oWQvjjbq4yjaMwk2e8LGIyjb/6s7EQgat8bygkyjb2RcDs1QKu7mCONCpPVOlOwlMcbjKdozYoxHUrZXRBpTaht8npNp9I2My6MYTNX9O8LYm7TegZK9NMKYkjqeTrBJETYeJSeFXzfMp9R2+DwtU9QbGUeh6E/V/SfCWLvNrWQn/ojG7fF5sq4BGjSuiKIvVXdrw7yiLym9DeVIY5qMPoaSPSPGeDQlO5XgyUrYuCM+j9U1QIPGlVAsNM/JyFxjP1J6S8p2cqQxq4+ROjY+JtT+DZMhYgnflNoJ3z1S11wMGldB0YOquz3GuAVlOyXCmCGrj04wHivflW8b5lNqZ3z3YF3jLmhcDUVnmcrfyNiflN6Msp0aYzxKftc/zJj2dyX1vxdh9nsN8/RdkfceHcXsxxrvm1K9u9NjreX57Pp7Gv8b0ik6bboN9x/zVMM8wJgzl2f2Df/GFsoN8/13WJnuO15a18yZG5rRaJWV24IbGBhISm9I2c6zKIlEjqw+XOrYODL6eDkGzGmYT6vdqbo7I42GMSjlye2sjYyDSen1KduoZ1YmG2vHyosINuzDxj2puv/VNZyCxjVBgV938aUlNEPw9LqU7R+ijeZwin6c8QSK/oUxxr2ouNvqGk5B41qgXIxxKJ4eT9n+MUKQJ2MOo+SfGWM8kaJ/QYxxbyru1rqGU9A4FlQFv+7iS9g4Tpo1jaITGXMIJf+sBOP5BBv2IaPeh4q9pa6ZEzSOA1WY58LGXOPCeHotaYREGQ+m5Eed8CnZ1ucRbIaHjftRsTfVNXOCxgmgvp3nwsZc4yJ4eg3K9i8Rhs5kzEEJxhOlURJl3F9uh/0kwrgeqFnzXNiYaxyOp0dLI6RRdCFjDqDkn5NgPIdgE/f7GdcHNRPfNXqkCWi1GJ5ahbL9e4ShKxmzHyX/3Ii8JmNOlDo3Nmb0QfJoiE8b5j21AY5P52nIzzUujlErUbFXRRqzZj/ZllHGE8TYeKXRjD6Ysv2n3BY3b9SeC3pZxPvP/2g2lX6+IU2lOUDDE6qkbSqNmobbXmYPfQVc55zbOsnyQ95LKXUutQbSjLrXvg0cHVwBriOt8/x9s6n048aC1lTy3Vt8W4l6+HNLZIkaGNWiK1Env237+46IDFGDjlr8Eow5ogbRHRc/B2OaqIFRLZKMeaJOPGuhiGoAtD1+CcYuRDWMajE/jCmiBpi1SDJ2InhFdN7QRDX22h4eUQ31WrTP6L3eicxTjR9WDjDniy68dWfC6mtGg9/43+kcvP7uCL77omEagKFLfEVn78vIfI9NXqfPPo1PiNoe7a1jZ6Iac7WYH9s6yZCUN0RdVGh7JL3HL8GY9F1I2k5tiaTvS9K+pWmsxY9tTDpGtCWSjlVJx7qfgzFpzJE0HmhL/PTGzt6tGB2/itz8il9DU6nfL7ip9MmP31Sa4ZxbN8nSwe91LTAh+Pykjnz/+ohfB7YZv7ioPcgzKZKaLXEHgbb8fUdEXCMEfhnGH7tZAz8PY9LAJ8kYN6iB9jdC4JdhjBskw/wxJg3Ek4xxJyvQ/iYDJJ90tc/ofdB4NZ2W+Pr9+GXFgciGEkCplI5tKIEjpxrPMm2JzqMjZlF9r2hvHeOaEDB/tnWSISnf3mZNW97jl2BM+i60txECyd+XpH1L01iLH9vY3mYNJB+rko51Pwdj0pijvQ0lWBCMFfvfBaap1IyffbzSzoZg94j/v+XhhLN+gvd6HNhKKTUhOIupA98/FI3Xdm7GLzdc0uCtGc1oRjOa8ZNFpfES9y1hq+27FuT7yYd9Y+JPFnSnjjghaUYzmtGMZjTjh4dLbPA1oxnzJWa14TXR079/vPdqieBKND/G+wPNptKvLnTdilvNaEYzmtGMBSdc1/jZApkuSVd/4yOTKVOb/RwVilIpFZOH8nvdYvPNaEYzmtGMZvzY0TynacYCEk8QbtwEo+X/b+tzcL7XeymlpiulnNy61uHv/32i2VT6lUVK/xYVOeutFpqFE/IjYvMq4e9r91EnRfQzRWqGYQn5pWLzKvL31BJtMXaKzSqGxuaTjfM8mL8u2mLMx2YVQ2LzSUadaOyekFckGTWDE/JJxqRBR/eEvKL27Ki4VyQZ438zmsUSDD0S8orac8LiXjEoNt9+Y8+EvCbZGL9McPuNSbeOGWrPGYsOxYB4g0oyLh6brw6P3/d1X/gLVMrEvia1UPfInOdZ+o+K33e5vvH7ru8eWyE2X6tj/G18in6xea3ib2nQLJHw/n1i8zVjfPOs3caEfLLRI9nYt12GZGP8+9d88bPnkv6dSdsy2Ri/nTrGGP+7bb8xTe07GfceveMNicaksVv8vq22b0wyxu9jE42J48ukpeTbYow/ViUdR5KN8cfa2nEw/vQr2Rg/rkk2xo9Z2maMH5ckG5PGbknGTqT1xgmvaUZHh3W/vP86IK6NybWccDZeAab977UI0bOPWnbIwYdgdqQ1FM2m0q8slMqR884naoCV0huS86ZGHtC0WopO3vTIwYmiJ3lvKim9QYQgRd67iIw5PNKYNUeT9y6OMW4kxsYHNK2WppM3LXKQp+hF3puKp9aPMV5Cxvw+xngsee+iGOMm5L2pkQ08o0ZKHRsPphULiXG9CEGavHcZGXNojPE48t6FMcbNyHvTYozLiLHxIFDRm5w3DU9FPcstTd67lIw+OMZ4PHnvghjj5uRijcuR96ajVeNBoKKPGKMeTp+hk3cZGX1QjPEE8t75RA1UU3pL8t5UoPHsDaOWrxkjBliKvrKtxyUYD4gxniR1jDJuTd6bQlQjsrY8+XR0RLNV0Y+8Nx1PjY0S0MmbSEbvF2vMmfNijNuKsUuEcUUxNm5a14yX46m1E4zRq6RmzSmtS803irTePtlopkU2vRX9yXvT8NRaEYIc2f4XoZbaMdKYXvMQBh+8DajGt8n1+u1qDDt2Z3S+cXOs09ILs8bUDeiycOPvQqeBnVjhgi3oumLj76vOphi4+cGk9R6Rxpw5XZZxj6rjjuTNFKIa80atQt5MR0c05hUDpY5jogTkzETSereIvCJnzpBl3BvXMa13JmcmxxhXE2PjxrxiEHkzDaNGRxjy5Mxk0nrXGOOZskR6lPF35MwkohrzRo0mb6ZFnuQqBotxtQhDJzHukmA8I8a4a4JxdTkONW4WaIaSN9MxatUE404ReU3OnE3OnB6Rh7Teg7w3kaiLB55ag7w3PbLpMte4SsQndCZnppDWO8QYzyFnTosx7pVgXEvq2D/iE4bJtl4pxjiZtN4+1pg1p8QY9ybvTYoxri3Gxg02zcLkvekYFfVYky7kzRRSetuIvCFnziNrToo0ZvS+Ymx8gcNTYxOMi4hxVMQndBVj1MJJhpw5P8G4v6xq1ngf7ql1EozDyXuXY9TyEZ/QjbyZSkpvGWnMexeQNSfEGA9MMI4XY+NmrVaLSR2jFp3oRs5MJaW3iMh75L3zUKrxsbgZzZjPcQ2AUmqrBrmtqT34ep5lh5VSjQbd3/e97gBWdM7NavD6rag9lDu43O8PsrYlmqu//cixoK3+1hJV+xxlezkVOwMoo9XipPVOpPX2KGWw7kNK/nTK9ibgGxT9SeutyZg9Uaozzn1Dyf+DLEn6CdCFtN6UjNkHrQbinE/Z/oOy/Zss1Z4mpSeQ0ftg9DIAVOwMSv4fWpd+NWpVMmYPUnq8GJ+l5F9O1d0pxiXEuF3AOE2M39aMZhsyeg8xzhbjtQHjZmIcgHNVMf49YFxXjCPFeIcYHwdUwDguYJxO1d0VMO4sRo11H4jx5oBxWzF2ChhblnbtKsa9A8arxPi6GNcT49JivJ2S/0dZnrbFuCcpvY4YnwkYK2i1JBm9Cym9jRjfF+O/A8btyOjdA8b/E+NnYtxcjP3nGv2/yXLyLcZ9MXopMd4mxicDxr1I6bFifFqMd4txhBi3FuN78n1sMQ4IGPNivEK29WcoupFqNfbDuUrA+KYYfyPGEWL8rxifEuNqYlxbjE/J97HFuBQZvXOr0XfvUvKnU7H/Br5DMVCMu4nx64Dx84BxH7TqK8a/UfavEmNGjPsEjLdS8v/UavTUaNJmL1J6LTE+GTBW0WppMW4VYRwk38fdUSonxssp2+vE2J2U3oyM2Ret+gSMf8fylhjXF+OSOOeouv/WGVcX45pifIKSf0WdcRcxKnz3jhhvCRhb6pjDulmUW40zxdhSxz44Vw7UMWjcF6OXwDlHxf6Hsv2zGE2gji3Gx8V4jxhHinFLMb4dMM5BMThQxyzWfSXG68XYI2DsLca/ivFtIBuoY83o3pmBfeUamPkCKIPqtxJq6R3Q/Wsnrt+++Baf/eteZj/5CviW3KKD6L3RGHqMWxGlFMUPP+ez6+9m1v3PYotl0n170us3q9J7kzXRmRTFL4s8P+V53rjmdYozi2R6ZFh060VZ5oBlyfXOYctVPr35ET675TFKH36BzqTosebS9N92LfLD+kod/y11fEbqOIaM2RtPry51fEx+1/cDVYxahrT+HSm9udTxLUr+NCr2VmAOmiGkzfak9a4olcG6Lyn5l1Ox1+P4AkXPQB0XwrmS1PHvWN6VOm5AxuyDUYuJ8WYxPivGNcQ4WoyPivEBMS4rxs3E+GbAWEAzVIy/E+MXYvxXwLiF7HtajH+Rbf0ukAsYFxXjTZTtlXXGffD0amJ8JGD0xbgrKb2pGN+Q72OUcWbA+CWKXgFjLzFeSdn/R51xX4waHjD+Gd89B3gB46pifFj2PS3G5cS4iRhfDxiLYtyBtN4lxrilGHuK8c9ifE+MG4pxETHeKMbnxbimGFcR40NifFCMy4tx44BxGhX7XzEOE+POYvw8YPyqgbEoxn+KMS/GfQLGG8T4ghjXku9ji/FB2fcEjbuR0hvVjPY1SnZ6wLiwbOtdUCotxulU7A11xn3QqgfOFSnZP1H2/4nj/YBxX4xaWIzXU7J/wbYa1xbjymJ8QIwPiXEFMW4oxlcDxpIYW+oYNP4LxywUC5HWW5E2e6NVd5wrBIwfiHEjqWOL8TpK9q8B41gxriTHyvsp+1dQdQ+LcZQYNxDjK2K8TYyLBIwprPssUMcW49akzV4B4x8p+1eLsVPAOAznbMD4ohjXEeOKAePlYnQYNYqM2a31oqxvXxbj7WIcLsadxPhpwPg1it4yTt8Lpbrh3JxAHT8U48ZiHCrGa8X4EpAKGEeJ8V7K/v/VGXcnpX8bME4TY1mMO5LWO4rxE/nNtBj7kNZb1Rn/KMaPgM6kxajVkIDxL1j3csC4D55OmjE7f+PXsvrbHvqXt/rbH+yxfMLb7dp2Sqm9gaOdc8MD/98oajOD5mn6KKWeBEZJ7ql2vte18vq3Av/fucDe8vq36l7/vd6/rdFsKv3IsaA2lQCs+5CyfxdQwNMjMWo1lJp7Zdm52ZT923F8gdFD8dQ4lMoE8iWq7i58+y6KXqTNb1CqayBv8d3DVO2LQI60GYdW4auRvn2Jin0YgJRevfXkOdo4GhW4Qu/c15T9/4lxmBjTgXyJqrsT375XGxSY9RoYH6JqXxLjeLQKX4307YtU7CMJxjuBIp5eRupYb7wdx5cdYMyLMXw1smb8f/buM8yN6mrg+P/eO5JWWvduY2PAxjRTbHqzaTYGTOi919B7TSUJhN6rbWoghBIgEHrvPfTeqykGF2zvrqSZe98POusdaaf4za6JAZ3n4QtHK/18Rpq590y5zwBajNVXaVn3hRiLeHoFjFq9ymjdTMrB/WJcHE+tn2DsS9aMa2f03VME9u0E4xtSR01Gr43R1VdpWfe5bOsinl4Ro1aLMN6HYwZGL4Gn1mtnLNsHse5zMY6vOotVbWwUY/WZvsC+Ttk+J8Z1MLr6Kq2KsdLkjDbOkDq2GtdHqbbbV5xroWwfEmM/qWPYGIjxHTFuhFbVt5/49jV8+zxgpI61xs+kjiU8vRJGrRphvA/HTIweJnVMMo5HqS6hfBCqYxeyZhxaVZ+N9O2r+PaFitGsg6m5kixwn1IOHkkwTpc6zsTo4XhqbITxQaz7AkV/qWOt8Ukxdm1ndM4RuNY6ZsRYfWVOtXEURq2SYFxSjF7oM5rF+CVaDSCjx6FUYygf4LsnCOw7KLqRMRu1M7pv3sV++TpoDz10NLpX9ZU7zV9+z8zn38eWynRddlG6jly0ylieOZfvn3ybYHYT+aH96Ln6kijTdqWYK7dgP3qGYOY0TPfe6CXWQmXbrjJwgWXWf96n6eOvMY0N9FxrWbK9wt9Xx/evTOO7l75EGcOAdRal+/AeVcYfPp7FV49/ivUD+qw4kD4r96+p43eUgwdT6vgA1k1NqOPjBPZdqeM4tOobyjsC9wq+fVG29RhMzcnBwH1MOXgMKOPp0Rg1+v9pbJJtPRWtBoqxEMr7Ynyv0kw2G0UYX8a3/0kwfkQ5eFyMK2PUqBrjNDHOwugReGpMhPEBrPtqPo3j0KpPjfElfPuSGMdiVPVVg9XGVTBqpQTjUmIMfR/dXKnjV2g1SIyh76Pz8d1jBPb9SjPZbBRh/A++fTnB+CHl4IkU4wM4fkgwPoB1X6PVImT0RinGcWjVO5RvNb4EZMmY9TBqsQTjqhi1YoJxaTy1bgeN49GqVyjvCNyLUsc44weUgyfFuBpGrVBj/Fa29Q8YvQyeWqfGOIdS8ACOb9BqsBgbQvmyGD9IML6Ab18R4/oYVb1/DNz7lIOnAB9Pr4qnq6+Kse4bSsGDwByp439jfJTAfijGjdGqZyhfbayMgauvbKwYK41YT6+Gp1eIMc4NGcPj9Nli/BathpDRGyYYe0odk4wbolX1bWeBfY+yfRKwZPTq804Mtxm/lnHRXNnWa0cY78cxTYwb1cwlSmL8SIwbo0OPh6kYn8e3rwI5qWParXE/ftSbSj/d6IymEoBSaiPg11RWXetN5fkax0c1aaTpsy0wLuYqpvl+r9D79aDyLIoeVK5QOr4zrPMb9abSAo6FsankXJHm4CTK9mbCy79qhlPwzkerpSnZybQE5wMt8/KK3uS9v5LR4yjb+2n2f4sjvDZ1ngZzOFm9H9a9Q5N/mFxx0fYJGb0deXMSjh9o8o8gcM9U2Ty1NnnvXBRdaQ7+QNneEmss2ssoBhfWGPuQ904lozekbO8TY/gh9nkazBFk9b5Y9xZN/uFyNUPbJ2T1DjSYP+KYFWNcR4xdaA5+L8a235FWS1IwF6DVCIr2UorBRQnGe2j2f19jLIhxH6x7U4wfh/KGrN5ejDPF+GyNcQx57xwUjTQHv6Nsb60xjhDjkhTtJWIshox9xbgBZXs3zf4fIoxHkTN7E9jXxfhJjXFHGkzl75r8w+ddkdZmHCvGvBhva2/0LkQznKK9iGJwSY2xH3nvNDJ6PUrBXbQEf8ARXgq9QIM5hpzZE9++RrN/uJyFDxt3osH8XoyHyRVpccbfULa31xiXEuMwivZCMbatjFUxnk5Gj6UU3ElL8McaY6MY98C3r9LsHxFh3IUGU/mtVYzhW6Mrl+tXjDkx3lFjXFqMS1AMzqdoL6sx9ifvnUFGr0spuIOW4CRc1e3ZjTSYY8mZ3fHtKzT7R9YYvZBxmhir93ee2kBuxczSHJwoV0qFjcuIcXGKwXkU7aQa4wCp47qUgttpDk4CZtUYjyNndsO3L4sxvOy9R1bvSoP5DY5v5ftYa9xw3u2izcEJchVSW2i1rBiHinFyO2PBOxNPr00p+BfNwZ8ijCeQM7vg25do8o+UKwXCxt1oMCfiZk+ndPfJuK/frjYssSbZjY/HWo8Pz7qd7x95oyrfOHwgS/5hexoG9eTzqx5m6o1P4fy25dyzfbsx/Pit6T56CYK3H6D82CVQDK0Imi3grbM/3vKbMfuNT/nw9JspfR36vhrNgC3XZMh+E2j6ai5PHvIQ37/ybZVh8PjFWOOs9VBG8dxxj/HZXdVjpZ4j+7DOxRvRZdEuFIOzKdrLCS/BXblF8Cw8vSal4Baag79QvfR0F/LmN2TNjvj2BZr8o+QsfLiOe9JgjsfxFU3+oXIFUOgVarzc0qpo8o/Hd/dU5Y1anoJ3IYrBFIMzKdorCC+3rhhEwTsbT69OKbiZ5uBkqpcZ7yrGHfDt8zT5R0cY96bBHItjqhhfqzFuTME7Q4zH4bt7a4wriHERWoIzKNkrI4zn4OnVKAU30hz8NcL4W7Jme3z7nBinRhiPw/GFGF+vMW5CwTsdcDT5x+K7+2uMK1LwLkAxSIxX1RgXEeOqYjwFCK9Q2428+R1Zsy2+fVaMX4XyGXJ6H3LmGCyf0+wfKlcAhV6hNyVvTgcCqWOtcSWp4wBagtMo2WtqjIPFuAql4B80B6dGGP9A1myNb5+hyT8mwrgfOXMUls8q46J2xs3ktttA6vhAjXGU1HEALcGplOzfaoxDxLgyxeB6WoJTgbmhd+guxq3w7VM0+cfVGLNirOzbK8Y3a4wTxejT5B8tV5CHjaPF2I+W4K+U7HVVRs2i5L1z8fQoisF1tASnRxj/SNZsiW+fFOPXNcZfkzOVsUbF+FYor0LGkhgfrjGuTME7P8V4Hp5eiWJwLS3BGVVGRQ8azB/Jmi0o2ydo9o+TK8xrjUdg+UiM4X24IqM3l1uDSzT5R8kVu7XGC1D0pSU4mZL9O9C2D9cMFeOKFIO/ibEp9Ak9aTAnkTWbU7aPizG8j86SMweS05XxecX4To1xC/LmrzhaaPaPxHeP1RhXlTr2FuP1CcaraQnOijD+mazZjLJ9lGb/hBpjToyHYvlAjO/WGLckb06paqD9r+OX0lTa+2fYVLqyk5pKv/SoN5UWcCyMTaUm/2iZwLcPRQ+yeneK9oKYvzY06BNpsacSPoiEI6ePoGSvrpmYtoWntsTyTs2BrC20Wg7DEpTdv2OMPcnq3RKMHg36BFrsXwk3pP5/xq2wvFVzIGsLo0aiWAzf3RmZV/Qiq3ehaC9MMB4vdYw2ZvWRlOwVVE+owsZtsLwut+5FGZdHMQTf3R1j7E1W70TRXhRrzOkTKCbUMauPomQvTzBui+VVuXUvyrgiikHtJnVtxj5k9A6U7MUJxuPFGL0vy+mjpQEQvfRsRm1H4F6WW/eijCuh6I/v7osx9iWjt6VkL40xZsjp4+bDOInqyUrYuAOBe6GmARo2jkbRu91kpM3Yj4zeipKd1AHjsRTtJVRPBMLGHQncczUN0LBxZRQ98V308/8U/cnoLSjZyTHGLDl9jBijo/JvuDjBuAuBe6qmAdoWmlXQqmu7gX6bcQAZvTklOyXW2KCPkX1PkvEiwoPsqnfwd0fd9DFu5tTIvBq0PB+/PIqZz0X/prJ9u9F7vZF8dfPT0X+f9Vj+t6MwL8XtP8Ff8VDeOfslbEs5Mt9n4pq8ccts5nwW/Zvqu/oAvAaPrx77IjJfGNTIRg98QZCJ+z7maNBHp9TxBIr2fKA5Mp9Re+C7h2sad22hWQOlMgTuici8YhAZPUGaNVHRQIM+Uvbh/61xT3z3oNw+0z4Ma4FSBO6pGOMiZPR4adZERZ6cPoJigrHBnEhLcC7hEx/hyKq9KLv7a5piYeM6oCpX00Ybh5DRG0izJs54OEV7WorxHMInFaqNe1N299Y0xcLGdUGV2518aQ3Nonh6PWnWxBjNYRSD0xOMv6ElODvBuC9ld2dNoyRsHAuqhcA9F2MciqfXlUZIVBTImUMoBmckGH9LS3Am4Wb4/8+4Pqg57U6+tBkXqzTV7d9jBI3kzMGJxpz5DcXgrHij/jVl+6+aZk7YuCGome1OGrQZF8foNSnb6xOMB1EMzozJK3LmRMlH7x+z+gC5te/byLxhHKjv5fbrKOMSGL0aZXtDjKELOXNgivE3Uuc444GU5Tb3aON4UNMI3MsxxmEYvQple2OMoSs582vZlnHG31IMKo3KeOPNOL6LzHtqExozcWPDHz/qTaWfbtSbSp0T9abSAo6FrakUuI+YU457aHFr5IgbGFWiG3FNhEo0EDdA7bz4JRjzxE1GOi+yxA3eKvFTMHYlrmFUiTSjIq6RMv+RIW7wVok0Y4G4JkMlFgbjz6GOmrgG6fyHR9wguBJdiGsOVqKRuKYXgH69B94T8SsozZ3ehfefXD42D6CMxgVx/07HchPfJWtmxOTh87eWY8ZH8SvEzfqhG9O+SVuRMD4y3ZsZ98wlKC9pW3esjp2zrQ1xJ08q8VMwphnS/g1p7z8/8VMwpm2LjhrT9hvzEz8FY9pxIG0fnbaPTztGzE/UjT+OMW3MkDa+TDd28e5q90iK/1XUm0o/3ag3lTon6qu//cKi8lDCtEhqhEDyQQAWfLMGfhnGBd2sgeRmDfw0jEkDJ0g3dkZjPW1wlmZMGhzCwmH8OdSxoxN4SJ90JU3aIHnSB/rD6FWyWmPm1OQlu4GEhhLkurQkNpScg1mfJt9SMPuH6NWd5jf6jf0wpaEEHa1j52zrtEbFT8GYZkj7N3S0WTM/77EwGNO2RUeNHW3WwE/DmHYcSNtHp+3jO9oIgboRfhxj2pghbXyZbpy/OU096lGPHyOi1/Gux883XNqgoh71qEc96vE/i3LyuR4bmMR8WhgvfQKe9hnWdux8lGlMaxTXox71qEc96pEcLrVRWo/ODAfYn+ENTj/Df9L/JOpXKv3CQteswlSPetSjHvVYeML1TG645LqknaFOjuLcBqxVsXmlINcl+QxzNtuxptCcD/qkv6ge9ahHPepRj4SoXbW1HvWox/8u6k2lX1hk9CYokp+FoVkiJb9cYl4xLEXRLSUPlfvBkwyLp+TTjGkHovkxdknMahZLyXfU2CMlr6g8YyHJsFhKPtmoO8WYfLuPZmhKPs2Y1khNezaMJt24aEp+2ZR8mjHtlidN5fkF8aFIXoI33TgixZBmNFSeZRYfisHJBtVRY1ozY36MiyQbUo1LJebdcrnEfK+hM9DZ5IuMs/26x+aCskepYWTi3/cZnbxv67NE8tBBGYXOxl/tNP2FIdimlN+1Sn5OhmbpZAP9E/OVC7WzKe8xMNmQZkzJpxszpBsHdMigVVodk2tQMWZS3iPNmGxIr2OaMUu6sV+yIeX7lm4clJivPIMx+Xet6JtsSNm3pO2b0vZtlX1j8lWMKmUf23Fj8jGic4zJx5G0Y2XasXb+jMnH03Rj2vgyecxSGU+kGXulGJLHNeljtzRjFzJ685TX1KMe9fixot5U+oWFUg3kvXOIG6hm9BbkvUmxB12jRtLoTcao6EmJoi8F77KEHX2WgncBDeb4WGOD+Q0F7zziBoEZvaUYow+6Rq1AozcZraIPWIp+YpwYI8hR8C4kZ45NMP6OgndugnHrFOOKNHqTYgdQiv5i3DTW2OhdQM4cnWD8vdQxeqCa0duQ9y6LHRgYtZIYowfTlSXUJ+OpCXECGr2LyJmjEox/lDrGGbcTY3Tjx6jRsq2jB6oV4yQ8tXGK8YgE4x8oeOckGHcQY48Y48o0elPQKnoQWFlCfTKeGh8jyNPoXUjOHJ5gPImCd3asMat3opBoXIVConGQ1HFcgvFicvrQBOOfKHhnETdQzeqdKXiXAdENEaNWo2CmxDYyK8uTT8ZTGyYYLyKnD47JK/LmZPLmzATjrhS8SxOMq1Mwk9ExjfXK8uST8dT6MYYC+SFn4626Y7xxwsEMO24r0NFXGw3YcnWW+tOOmC7RzbFuKy1O151ORPWMnviobgMYcOjBdF8t+rug81mWP3Vrlj1gxTgiq506hjXOHBtrHLHn8nTtdj5xJw+MWlPqGH3yQLOo1HFstIFGCt4lZPX+MXlN3pwqy49HD4Oyei8K5pJYo6fWpmAmxTbmNUMpmEl4at0YQxcK3mVk9b4JxtNk+fE44z7yfYxuAnpqHQrmstjGfMU4BU+tHWvMm4vJ6r0TjKenGPej4F1C3AkOT42ROkZPIDWLUzCTMWqtGENX8uYSsnrPFOMpVE5iRBn3F2P0yQNPjaXgTYptFmiWEOOaMYZuFMylZPUeMXlD3pxB3pwca8zpAyl4FycY16fgTY5tumiGiXGNFONuCcYzU4wHizH6BIenNpA6RjevNMMpmEkYtVqMobsYd4k1FryzyJs/x+Qhpw+l4F2UYNxI6hjdBNRqSQreZIxaNTKv6CHGnWIEHgXvbBrMSQnGw1KM46SO0c1UrUZQ8CZhVPQzh1uNGb1DgvEcGswf4o3mCDFGH2c8NV6M0Q1lrZaSOo6OMfYkbyaR0dsnGM9GqeQTIPWoRz1+vKiv/raAY2Fb/a01AvsWRTuJsn0AKKLVMuT0rmT09iilse4risEUyvZ2HDNQDCZrtien90KpRpybS9FeRSm4EceXKHqS0VuQM/uh1UCcCyjbmynaa7HuHSBHRo8jp3+N0ZVGStk+QjG4gsA9D4CnVidr9iWjx4rxTTE+KMZlxbidGKeGjDPFuIMYCzg3R4w31Rj3R6sBYryJor1OjA0h4zJifDhkVHhqDTGOEeMbFO3kGuNuZPS2YvxSjHeIcUiojq3GK8U4FUWvkLE/zgWU7I2U7HVY964Yx5PT+4eMD1EMrgwZ1xTjumJ8PWQsodVyYtwmZJwsxllibK1jHudmh4xfiXFLMfYT4w1ifE+MG4txaTE+KMYXIo2+fY2SnUzZPgSUMGo5snp3MSoxTqJs/41jFppFyZgdyOk924zBFZTszWLsHTL2xTk/ZHwfyIeMS4nxATG+CGg8tSY5sy+eXkeMr1IMJuO7h8U4Uoxbi/ELisEkSvbfwA9ohpI1O5DVe6JUA879IMZ/hoxbyW+m1fgPSvbvIeMEMY4Q4/0Ug6tCxrXEuHbIOEmMZYxaXoxbifFzisHkGuOOZPUe/w/j9ZTs9bKtC2T0JuTM/hi5tbZs7xPjf0LG/fD0WmJ8JVTHVuMeZPSWYvwsZJwtxp3EmBPj5WL8Woxbi7EPzpWljq3Gxkodza/nXSpftveGjEaM++PpNcX4shgfEeMKYtwiZJxEyd4pxsVCdczh3Cwx3iLGPmLcN2RsreP7kcbg/SfwX74V+9VboDR60dF4K2+PGVJp5sx+8zOm3vgUM557HxcEdFlqEQZstTp9NlwBpRQtX07nyxuf5PtH3iCY20LD4N7032xlBmy1Bjrr4Vpm4790M8Fb98Pc76HQE7PMOLzR26EKPbB+wLf/fo5v73yels+mofNZeo0ZycDtx5BftC/OOT6/52PevfJ1vnvpW5SnGLDOYJbZfwX6r1GZkE37z9e8fdmrTH3sC5xv6bViX5bacyRDfzUMpRSB+0T2PXcCc9AsLtt6N5TKYd1MSsEUqeO3KPrK93F/tOqFcyVK9u+UguuxfEjlzPUmUsclcM5RtndTslfL0tgenlpHtvVqsq1flG39OOBj1EqyrSeK8WMx3iXGJcS4qxhniPHWecas3pqs2S9kvI5S8I+QcVP5zbQa76JkrwkZ15XfTKvxBTE+ETLuSUZvJsaPxHh3yLizGLNinCzGaSj6hYw9ca4YMn4kxs3EuLgY7xTjK2IcI3VcRYzPUwymhIyjxLhpyDiJsr1HjMPEuIsYp4fq2GrcRow9xHitGD8W40QxLibGf4vxVTGOFePKYnxO6vjUPGPO7IWnNgkZLxPjXDTDxbizGL+X4/ltYuwvxn1jjF3J6olkzf4YNVSMd4jxNTGuJ8bRicbWE0yB+zBUx7lotSRZ3WrMhIy34vhunjFn9kOp7mL8mxg/iTHeHjJmIozPhowBRo0W4yZi/ECM98YYv6MYXE7Z3oLjexQDyOptyZl9UaqbGK8R46fzjDnza7RaNMa4vhhHifEZMT4NWDHuTUZvLMb35TdzD9CEViNCRg/rponx1pBxO3JmHzG2iPEGMXYLGYeI8TZK9m8E7nUxbiDGlcT4tPxmWo0ri7Fygimw78nY7V6guaaOrcbW7+P3KAZKHcPGqykFN4aMm4txsBhvFeMbQDZkXFGMT1IMrggZVxHjODG+K8b7QsZdyOqdQsbJlO2/YozNFO3VlIMbsXyGojsZvbns41uNt4jxTSBLRm9IVu83z7iwxC9h9bf+LD56L/XzW/3tKnci39RXf+tw1JtKCzgW1qYSgHWfUwoeApoxeiSeWhuldCg/A9/eT+C+x6hFyehxKNV2a4ZzRcr2AQL3GUb1xtMbo1WPUN7iuycJ7JtAnqzZEK2qz/T59jV8+xwAGb0GRlcvlW3dZ5SCh+fTOJSM3qjG2CLGz2OMgRjfEuNGaFV9ps+3r+Lb58W4JkZXX6UVuE8pBw8DRYxeLsI4XYzT58uY0RNQqnsoHzYWxLhIKO8IXGsdFRm9FkZXX6UVNnp6JEatFWv09GJ4asMaY7MYv8CoPmT0xhHGJwjs2wnG1joqMnrtec3FNuMnlINHxLg8Rq1ZY/xejDMSjPcTuC/FOAGluoXyAb57nMC+g1KNZPSGKcZ12i1VG7iPxVjqBGNfqWOt8TEC+64YN0KrQaG8I3Cv4NsXEowfUQ4eFeMKYmw7s2zdd5Tt/Vg3E08vLsZs6DPSjL7UsdU4Dq0GhvKOwL2Mb1+cT+OKGLVGgnEJPLVBjbFJjFMxqh8ZPT7C+Bi+fRetusQYXxKjEWP1FXnVxpUwavUa4zTK9oH/h3FjlOoayoeNXcU4IJR32KlvEXz5JmiDt9jK6D6LVRmbP/uOGc+/hy37dF1mCN1WXKzKWJo+m+lPvoM/u4n8on3pucYIdKbtajZXbKH45gvYmd+hu/UiO3JVdEPblRAuCGh543VKU79A5wvkVxyF17PtqkHnHC3vf0jzux+iPE3j8suRHVx9hj9wH1bq6Hw8sxJGrRZRx/uxbhaeHo6n1kepTOgz5kodv8Ko/rKta+v4KL59T+o4Hq36h/KOwL2Ib1+qbGszdl4DtM34AeXgMcDH06MwatUa47eyreOMc2T/+BVGDRBjl1C+LMb30aqbGPuF8o7AvYBvX04wvi/GIMF4P9b9gKeXxFPrRRjvJ3Bfd4LRE2P1VYPVxtEYtUqN8Rup4w94eoQYQ99HN1vq+DVGDRRjYyhfxneP4NsP0Kq7GPuG8o7APY9vXxHjehhVfdVgYN+jbB9PMH4txtkJxvsJ3DcYNUjGRWFjSYwfphhfBjJkzPoYVf3IgcC+S9k+IcaVMWrlBONSeGpsinE8SoV+11XGHrLvqTU+J3XMSh1rje9Qtk+KcRWMGl1j/IqyfTDB+IMYv00wPoxvP0owPotvX50PoxXjqAjjAzg3F6NH/JfGh/Dtx2Icj1Z9QnlH4J7Bt68lGN8Wo8PTq2LUSjXGqZTtg2JsraMJfcYPlO19BG4aRi0ixnwoX5Q6foxRPfH0eLTqHcpbqWOrcX2Mqr5CNN34JWX7kBiXxlNjIoz3ErjvEowP4dtPEozP4NvXgZwYF2Nhi19KU2nPn2FT6ep6U6lTot5UWsCxMDaVnCvSHPyOsr2V8DPvNYtR8C5Aq+Uo2ksoBhcBxXl5RU/y3slk9CaU7d00+7/HEV6aOkfOHEJOH4R1b9LkHypnR9reIaO3Jm9OxjGLJv+weVcptYZRa1DwzkfRlebgt5Ttv2qMi4txWYr2IorBxYSXnFf0EuMEMf4Ox8wa46Hk9IEE7nWa/cMjjNuQN3/BMZMm/1C5KiRsXJOCd54Yf0PZ3l5jXIKCdyFaLU3RXkgxuCTC+Fcyejyl4E5agj/UGBtoMIeR1b8mcK/R7B9RY9Rk9LbkzZ9wzBBj9ferYjwfRWPIGH6HYVLHpSkG51O0l0UYTyWjx1EK/k1z8AdgVo3xCLJ6PzEejuWzGuN2YvxetnWtcS0xFmgOTqBs/11jHC7GpSgG54mxbYlZRW/y3mlk9IaUgttpDk6KMB5FzuyLb1+myT8Cx+dVn5DVO9Bg/ojjOzG+VGXw1DrkvXNR5MV4Z7VRLUnBXIBWS4pxUoTxdDJ6A0rBv8QYXkY3T4M5UowvifGLGOM0Mb5cY1xXjA00B8fLFRW1xgvRajjF4ByKdkqNsY8Y16cU3EZz8KcI49HkzN749j9i/DKUN2T1jjSYP+D4lib/ELlSIGwcI8asGO+uMY6o/GYYRjE4W4xty1sr+pL3ziCjx1IKbqE5+DPVSyYXaDDHkDN74tsXxTi1xrgTDeb3YjxYznCHjWPF6NHkH4/v7qkxLkXBuwjN4hSDMynaKyKMZ5LRYygF/6Q5+EuE8VhyZg98+zxN/lERxp0rxh++o/TvU7DfvFdtWHw1cpseh7VZPjj9NqY/8VZVvrBEf0b8YQcaBvfisykP8NUtz+D8tmXIM727Mvy4reix6nBaXniEuXdcgyuGHsqdbaBx053Jr7UxLe+9y/QrJxPMmB4CaLqM3YAe2+2I//10vrloCsVPwr97KKy4PP0O2BNdsDT5x+K7+2vquLTUcSgtwRmU7FU1dexPwTsTT69DKbiR5uAUqpdCb6TBHEfO7IZvn6XJPxrHVzV13I0G8xssX1aOQ+6NKkPlNpxzABVjXFa+j4vSEpxGyV5TYxwgxrUpBTeIMbyceyMN5gRyZhd8+wxN/jE1Ri9k/FyMb9YYN5LbRaHJPwbfPVhjXE6MQ2gJTqVk/xZhPBtPr0kxuJ6W4NR2xrz5DVmzE759Woxf1xj3oMGcgOUzMVZ/3yq34ZwpxqPx3UM1xpFiHExLcAoley3Qtvpg5dbfs/H0GhSD62gJTo8w/o6s2QHfPkmTfyyOb2qMe9JgjsfyqRjfrjGOF6OjyT9Srj5sC6NGUvAuQjFIjNdFGM/B06tTDK4VY/hh+V3Im9+SNTtQtk/Q7B+L49sa4940mOOwfEKTf4hcGR02bizGQIyP1hiXF+NAWoKTKdm/RxjPxdOrUQz+RktwRoTx92TNdvNh/FiM79YYJ1DwzsDh0+wfie8eqzGuIMb+Yry+xjhIjKtSDK6mJTirxtiVvPkDWbMNZfsYzf5xOKZVGXN6X3LmGCwfibF6/+ipTcRYotk/KsK4ohj70RL8mZL9B9C2f6zcQn0unl6FYnCVGMOLFnQT49aU7aNi/K7GuD85cxSWD+X7WG3M6M3Im9NxFKWOj9cYV6LgXSjGP1GyN9QYB4txZYrBFbQE50QYTyJrtqRsH6bZP6HGmGkzuvdoCg6Tq2XDxonkzWk4Wmj2j8B3T9YYR4mxjxhvrDEOoeCdh6dHUQwuF2NL6B26kzd/FONDYvy+xngAOXNExegfiuWDGuPm5M1pVc2p/3XUm0o/3ag3lTon6k2lBRwLY1OpyT+Csr0jMqfoQVbvQtFeHPPXmgZ9HC32DMIHkXDk9CEU7bVUT/DbwlObY3m33cF23ieoZdAsju/ujsxXjDtTtJfEGI0YT481ZvVhlOzVVE+ew8YtsLzV7mDbZlwWzdB2E8+wMaN3ppRgzOnjKNrTiFvMMqsPp2SvpHpiGjZuiXVvtDvYthlHolkE390XY+xJRu9AyV4WY/TI6WPnw3gFxCzr6qmtse5Vue2jfRg1EsWgdpO6NmMvMnr7FOMxFO3pCcYjKNnLE4zbYN3LcttHlHEFFP3aTerajL3J6G0p2UkpxtNi8pDTR1K0k6meULVFRm1H4F6Q2xWijCui6NNuUtdm7ENGb0XJTumA8Shp7EWvPlYxPl/TAG0LzUpo1bPdpK7N2JeM3kK2VeQnkNNHd9C4I4F7JsE4Gq26tpuMtBn7kdET5XcZZzxKvo9xxqNl3xW9wlrG3xV1/ae4WV9H5tWg5fj4lRWZ9UL0byrTuyu91xvJ17c8E/33GcMyR61G+aGrY40N43Zi5h334ErRq7w1rrs+s196F/+77yPzDUsNo/txrxG4p6INDCCjJ8g+OCqyNOgj5DgTHZV904VUT1baIqN2wXeP1jRA20KzGkp5BO7pBOPG0lCKFJDTh1NMNB5H0Z5P+ORMtXE3fPdQTXMxbFxDbsuK2ZYMrDT+7d8SjIdRtGd2wLgHvru/pikWNq6JUpbAPRdjXKTSVLfXxggayOlD58N4HuETH+HIqj0ou/tqmmJtYVgbVLndSaw24+BKw9r+PUaQJ6cPpmjPijU2mONoCZKMe1F29yQY1wXV3O4kVptxCBm9jjRCYozmYIpBvDFnjqcYnEP4pEK1cW/K7q6axl3YOAbUnHYnX1pDMxSj16Rsb4gRFMiZAykGZycYT5B8nHFfyu72moZT2LgeqFntTr5UG9egbG/soPEswk3cKqPeT25J+y4yb9gA1HS5lTTKuBhGr0rZ3hwjaCRn9qcYnNsB4/7zbj+MNm4Ialq7ky9txsUxamXK7p/xRr2f/G6jQonxzATjrynbm3FMj8x7ajyNmbix4Y8f9abSTzfqTaXOiXpTaQHHwtZUCtwHzCnHPRC4NXLEDTAr0ZW4Rsf8/X1nxE/BmCVugFmJNGMDcROmzosMcYO3StSN8xdpxi7ENbUqkSeuyVAJRVzTbP7DI27wVom6cf6io8YCcU0vAP1qL8zj8Sv/zJ3ehQ+eSV41B6MhiG6og2PxVb/Cc/G/mXLQDX9O/L8xCDyCUvzKQN6SM+hx/AvJRgzhKxnaRyNxTdb5y2viTirMf9SNnWNMe4+OGtNqMD+RZkz+3f48jGn7tvmJtH1s2j46bf9ZN1aio8a0MUtnRJoxbeyWbuzi/bvd4x7+V1FvKv10o95U6pxIXr+0Hj+7qDxMLy3Smi1JB4H5+fvOiJ+CMamhBOnGBd0IgfRBRd04f5FmTBrcQfLACzreCIH0QW7dOH/RUWPSpA/Uh8mX88/6OnkZZyChoQSZhlJiQ8k58OeUiVvhCcD68TmA3OjoKx2qI22CnTT5nZ98RxshUDdC5xjT3qOjxo42ayDdmPy7/XkYO9oIgfR9bNo+Om3/WTdWoqPGBd1QgnRj2tgt3Vi29y00TaVfSnTGEaEeP8+IXgO2Hj/fcGmDjnrUox71qMf/LMrJh+XAj79CaH5C6/lprCU3jdLmO6qhMybQ9ahHPepRj3rEh0ttlNajHvX4saLeVPqFha5ZUaYe9ahHPeqxEEWv5CscG7p27MRAuZjBufimkVKgdPK5SJXSmPKndknM16Me9ahHPerR0TBqxP+aUI961EOi3lT6hUVGb4Ii+fYJzbCU/MjEvGJ4Yh66k3omnG6J2Y4b05prPVLyisr94EmGJRLzJsWoU409U/LzY1w8Jb98Sj7tgJ5m1FTu/U96xYI2xj+/pvUdKs+iSHrFYin5tG29VIqhT0reUHmeRtJnDE3Oq/+9UTEk2ZBqXDrF0Dclb6g8ByI+0o3Jl+KnGd3yDYn5nkNmonPJd67nBvSIzdnAYHslb8vcYosk5jN9kvfPxecHg8slvkaR/BmpdVTLprz/gMR85XkdacZBKYaOGgcm5ivP5ct26D3SDOnG5BrMnzF5W6Qbk+uc9l2qbOdMynukGFkmOd9hYwPpxv7Jhg4bByfmK8bkfY+iX7IhZf+Xbkze/1aMyVdzqpTjQLoxbXyZfKytHGPSjMnH07TjcfqYI81YIN2YPHbquHGxxDx0JaMnprymHvWox48V9abSLyyUypH3ziVuMJ3RW1PwJsUODIxakUZvCkatEP3+9KfgTSKjt4oR5Gj0LqTBnBhrbDB/oOBdQNxANaO3Ie9Nih0YGLWSGKObDYoBNHqTyOgt4gTzYfwjBe/8BON25L3JsQMDo0ZT8C6PHZxUloOeTEZvnmC8iAZzfILxJAreecQNVDN6BzFGDwyMWplGb3LsIK+yjPHkhIN6nkbvYnLm2BTjuQnGHcl7lyUYVxFj9GC6sozxZDJ60xTj0QnGP0sdowfTWb2zGKObtUatRqM3Ba2iB6qVZYwn46lNEowXJRgVefMXqWOccVfy3qWomCafUavTaCajVfQgsLKM8WQ8tXGMoUCjdwk5c2SC8WQK3tkJxt1l39MjxrgmjWYKOubMZGUZ48l4Km4hglbj4QnGv8oy7nHGPSl4lyUaCwlGzaIUvCl4aqMYQyP5wefgrbFzrLEw8VCGn7ANykQfvgdusyYj/rwTpmt0c6r7ykvQ+4AjMP2iJ7m6d3967nckDSusFC1oaKDvQQfR41cx31el6LvjPuS9s4iblGT1PhS8S6mcYGgfnlqHgpkce/JAM5SCmYKn1o820IWCdyk5fWBMXpM3p5M3ZyQY96PRu4y4ExyeGiPG6JMHmsUomMl4amyMoasYf90B4/5ijD554KmxYlws5hOWkDqOiTF0o9G7lKzePyZvyJszyZvTiBtO5vQBsq3jjOuJMXqSqxkmxnVjDN0pmEvJ6n07YDxIjNEnODy1AQUvyThctvXaCcbLyOq9Y40F7yzy5lTiTrjl9KEUvEuIO8HhqY3EuGi0US1JwUzBqLUi84oeYtwzxuhR8M4mb05JMB6WYhxHwZsc2xjSaoQY10wx7p5gPJe8OTneaI6g4F1M3AkOT40XY3SDTaulxLhGjLGnfB937YDxKDFGn+Dw1AQK3pTYRqVWS8sYeLVYY96bRFbHHWc8Ct555M2fY/KQM0cnGjN6U6ljdFNaq2XEuEqMsZcYd4oRZCh456BU8gm/enR+uJ/hf/XonKiv/raAY2Fb/a01Avs2RXs5ZfsA0IxRy5LVu5LR26CUxrpvKAaXU7a345iOZggZsz05vQdKFXCuiaK9hnJwE5bPZen3LciZfdGqP85ZyvYWSvZaAvc2kCejx5HT+2F0ZXJdtk9QCq7Ad88C4Kk1yZq9yeh1Q8YplO2DQEvIuLUYvw4ZZ6AZQtbsQFbvgVJ5nJsrxptDxi3F2E+M/6RkrwsZx4txKTE+Rim4El+WS/bUmuTMPnh6nZBxMmX7UMi4Oxm9FUopMU6hbO8Q46Ji3D1kvFqMX8jy9K3GvjgXULb/pGj/jp1n3FiMI8T4qBifB1TIuLYY3woZixi1nBi3FONXYvx3yLijGBvmGUvBTTi+FONW5Mw+NcbrsO6dNqPZHyO3W5btI2J8IWTcF0+vJcY3xfiwGEeKcQsxTpVt3WocKsbdxDhHjDeLsY/UMWy8WYzvAoWQcbgYH6YYXClLOis8tRY5sx+eXkOMb4jxETEuT1bvFjJ+GTLOqjHmcG52yDgVRR+yeiuyZh+06iPGm2RbtxonkDP7hYwPUQyuChnXFuPqYnxdfjMPAyWMWkGMv4owzkSzuHwfw8arKAX/FGNfsnpLsmZftOqNcz4lexMl+3esew9oDBmHhYxXErj/ADpkrAxwffsaJXt5jXF3MnrzkHFKqI6LSx13FeMPIeNXYmytY6vxRkr2+hrj/hi1hBgfDNXRRBhfFeMjYlxRjBPF+IUY7xTjElLHkDG4kpK9RYz9QsZeYrxBjO+LcROpY8Xof/A0/ku3Yb98C7TBDB2Ft8q2mMGVZvnst7/gq5ueYsZz7+PKPl2WGcyArVan93ojUUrR8tUMpt70FN8/8gb+nGbyQ/rQf7OV6f+r1dBZD9s8l+Yn7qL44mPYWd+ju/UkN3oM+TET0Y1dcYHPnCceZ+7jj1D+aiqqoYHC6FXpOn4Cmf6VqzrmvPgys+5/mJb3P0IZTX7ksvTYdBz5EcOljq9QDCbju8cAX+q4Bxm9qdTxM6njXThmo9USZPVOZPXOKJXFuVlSx3/i+AZF/1Ade+JcmZL9h9TxQxRdyOhNyZp9MWpx2db3UgyuliXGPTy1rmzrlcX4shgfF+NK5MweeGqTkHEyZXu3GIeJcaeQ8QrZ1q3GrcXYI8G4P0YNxTmH7+6lGFxTY9wfT48W40tifCJk3BNPTUApReA+pTTPOEeMO4sxg3UzKQVXULK3hozbkDP7oFR3nCuJ8R9i7CrG/ULGe8T4ihjHiHGUGP9DMZgSMo4iZ/YkoydU9k3uE0rBlP+ncVtyZu+Q8XoxfiTGzciZ/dBq0ZDxagL3qhjHinElMb4oxifFOFqMG4vx40re3iPG4WLcUYwzxHibGAeE6thNjH+nZG8QY7eQcQjOOcr2bkq21ZjBU+uJcUUxvkAxuFzqGIhxLzJ6vBg/kn343cBctFoyZPSwbnrI+G2EsVgxBjdg+QhFdzHuj1aDxXgXJXuNGLNk9Hpk9X4h4/NifFKMK4txXMg4hbK9Zz6NA8mabcnpvULG68T4sRgnSh1bjXdSsn8LGdcnq/etMU7Bd08BNmTcSIwfivFeMY4Q4w5i/D5knCbG7cTYVYzXUgpuFGOPkHERMd4hY+DXxLiBGFcQ43MhoxPj3mT0hiHjZDE2odVSIaPBuu9Cxu9QDBLjnjXGG7B8KnXcXMaXrcbbxfg6kCOj15fx5fJifFa2datxFTFuIMYPxHjfPGNO70JGby/GaRSDKyjbf4lxkdC27oJzLSHjZ1LHVuOgkPFvBO4NMW4gxuQrnX7s+KWs/rbbz3D1t2vrq791StSbSgs4FtamElQGUL59CEcRo5bBU2NRqu2MqHXfUbb3zmvYZPTGKNV2VsK5Zsr2vlDDZgJa9Q7lA3z3KIF7B0UOT284b6BfyTsC93KoYbMGRq2EUm1nbwL3Eb59uAPGJjF+EWP08d1jYmwQ42I1xpfw3fMoFEatgVErJhiXxVNjaozTKNv7QsYJKNUQ+oxa4yZo1SuUrzVuhFFDQ3lH4P6D714Q45oYtUKCcTk8tW6E8V6ZILfWMWycK8bWptKECOOjBO5dFA1k9Di0WjSUdwTuRXz34jxj6+Cvzfghvn1EjCPx1DoRxntw/IBmUTJ6fIxxKpreeHoCWvUM5X1894gYC2T0RinGteYN/tqMH+DbR0PGdVGq7ey3dd9KHVuNG6NULvQZc0LGPhHGshjfE+M4tBoSyjsC94IYDZ5aa97gr834vhhLGLW81DHOOFTqGGfsK8YeEcb3UdKI1WpwKF9rXLvd4K/auAKeWrvG+I38Zn5AsxgZPS7CeC+Wr9D0rdzWq7qH8mV897AYG6WOtcbn8d1/4o32PXz3WAeMs8X4dYLxIQL3gRjHo9UiobzDfvE6dupboDRm6Gh0/+pbi5s+/oaZz7+P9QO6LLUI3UcvgdJtxuK0H5j+5NsEc5ppGNKHXmstjc62XYVlW5poefUF7Mzp6G49aFhxNXSh7cyv832aX3uF8ldT0Q0N5EetjNcrvP90BO45fPeS1HFdjK6+lSmw70ody3hqRYxaq6aOX1G29+OYjVFL4KkNa+r4g9TxGzT9pI7dQvmS1LG1YTOuXR0D9yy+exklDRujq69sDOw7+O5xMa4kxrb9Z3vjRiiVDX3G/BgfJHAfiXE8Wg0K5R2Be0aMmRjj2/juCTGOwqg1a4xTxTgnwXgPlm/R9JfjUJJxY7QaGMpbMb4ixjHzThBFG0dj1Bo1xi8p2wfEOEy29f/HWJRt3dpUGh9hfBrfvZpgfEuMgdQxyng/jrnzYRwgxq6hfJGyfVAaDV2ljgNC+Vrj2HknsdqMb+K7J8U4GqNWTzAOF2Mm9Bmz5Ps4P8ZuYuwfylt89xSBew1FVozVV19WG1fGqNUSjEviqQ0ijPdgmYZmoBi7hPJFyvYBLJ90wPgGvntKjKtg1Ko1xi/k+xhttG4mvr03xXi/NGy6ybioXyhv8d2TBO71ilGvN+9EW5vxdXz3dILxczE2YdQIPLV+jXGGGL9DM0jGHP+tMSfG6uOMb18jcE/jsDHGzyjbB8W4lBhDx5l5xu9DdQwdZ1yLGD8T4yZo1TeUD8T4hhjXn3cSa2GKelPppxv1plLnRL2ptIBjYWwqOddCc3AiZXt71f+v3D5yIUYtT9FeQDG4hOolPbuRN6eQNZtRCu6kOfgd8EMonyFnDianDyVwr9HkH4bj86rPyOgtyJtTccykyT+EwL1UlTdqZQrexSi60hycQNn+uypfuX3kQrQaSTE4j6K9lOrlW7tT8E4hozelFNxBc/B7qpctzZAzh5DTh4jxUBxf1Bi3Im/+imO6GF+uMa4ixi40B8dTtnfWGIeKcblIo6IHee8UMnoTSsHtNAd/qDFmyZlDyemDCNwrUscva4xbkzen4PhejK/UGFej4F2IolGMd0UYL0KrZSkG51C0kyKMfyWjJ1AK/iXG8BK1WXLmMHL6QAL3shinhvJKjCfj+I4m/2A5Wxc2rk7Bu0CMx8mZ17BxMQrexWi1FMXgbIp2So2xJ3nvVDJ6PKXgVpqDk9oZG8wRZPWvCdxLYvyqxrgNefMXMR4kZ+vCxjXEmKfJPxbf3VtjXFzquBTF4CyK9vII42lk9DhKwS1iDK9WkhPj/gTuRZr8IyKM25E3f8bxrRjfqDGuKcYGmvxj8N19EcaL0WoELcEZlOyVNcZe5L3TyegNKQU30xz8OcJ4FDmzH759nib/yAjj9uTNn3B8y1z/IGw741oUvPNR5MR4f41xCTEuSUtwOiV7VYLxJpqDv0QYjyZn9hXjETi+rjJm9Y40mJNwfC3GN6sMnlqbvHcBCk+MD9QYh1HIXIJmiZAxCH1CL/LemWT0+pSCG2kOTq4xNohxH3z7rNTxm6pPyOodKsZZ0yjecTJu2ofVhqGjyW12IoHN8sGptzLj6Xeq8vmhfRnxxx3ID+nDp5Pu46tbnwXbdozP9Ghk2PFb0XP1ETQ9/TCz/3UdrlRse4NMlq4Td6Bx7ARa3n2b76+YjJ01M1RGReOY9ei5w85Y/QVN/sFyBWW4jmPIe+eh0DT5R+O7h6r/DWpJCt4laBajJfgrJfu3mjr2Ie+dRUaPoRj8nZbgVKqXSs/TYI4jZ/bAt0/T5B+F49uaOu5Mg/kDls/FWF0nT42VW1oVTf6R+O6RGuMIMQ6lJTiFkr02wng2Gb0uxeA6WoLTIozHkzO749snafKPxjGtxrgrDeZ3WD4T47sJxiPw3aM1xqUqvxkWpSU4mZK9jvBiz4q+FLyz8fQ6FIO/0RKcTvUS33kazAnkzG6U7RM0+0fj+C6UN2L8rRgPkiv/wsb15bZbJ8bHIoyXoBlCS/AXSvbvNcZ+YlybYnANLcEZNcYCDeZEcmYXyvZxmv1jIoy7ifETqWOtcQMK3jk4LM3+EXJFWti4tBgXoSX4MyX7jwjjOXh6LYrB1WJsqTLmzW/Jmp0o28fE+H2NcQ8azIlYPhbj+zXGDSl4Z+MIxPhEjXFZ2daDaAn+RMneUGPsT8E7F0+vQTG4kpbgrBpjoxh3pGwfodk/Fsf0GuOeNJgTsHxEU/lgLB/UGMdR8M7CUabZP1yuXAkbl6PRuxjFQFqCk8TYtu+p3NJ/Lp5enWJwOS3B2UBo30MjefM7smYHyvZhmv3jaoweWb0XDeZ4rPugUkeq94+VW9fOwlGiyT+MwD1dYxwpxv40BydRtjdGGM/D06slGH9P1mxP2T5Es398hHFvGsxxWPceTf4hWD6KMRbF+ExV3qiRFLxLUPSjOfgDZXtzjXEgBe88jFqFkp1CS3BuhPGPZM22lO2DNPsntDPm9D7kzLFY964YP64xTqDgnYmjWYzP1hiXF2NfmoPfU7b/jDCej1ErU7KTaAnOA8ILUHQhb04ia7ambO+n2T8Rx4wa477kzDFiPBjLJzXGTSh4Z6JU8nMaf8yoN5V+ulFvKnVO1JtKCzgWxqZSk39Yu0ZIW3Qjp3eRRkhUaBr0MbTYswgPasKR1QfJAPeHyLynNsXyfruB1bxPUEuhWbzdBL4tupPVO1Gyl8Uac/oYivZM4u6WrRivpbqZEzZOxLq32w1a2oxLo1m03eS4NSqX8O5AyU6KMRpy+ugU48GU7DVUN0rCxs2x7s12g5Y24zJoBrebHFcbt6dkJycYj6FoT4/JQ1YfIpPr6GVdPbUF1r3WbtDSZlwOzYB2E882Y08yeltKdkqC8SipY5LxSqonfWHjllj3SrtBS5txJJp++O7hGGMvMnprSvbyGIFHTh+ZYjxM/j7OuBXWvYTl02gjI9GqT7uJZ5uxNxm9hdShI8YpVE/6wsZtsO4FLJ/FGFdAq57tJp5txj5k9ObyffrvjDl9OEU7OdaYUdvhu2fbNbvbjCuhVBcC92SMsS8ZvRkle3WC8QiK9qwE4xHSxI0xlndEXf8F7odvIvNqwDJ8/PJKzHop+nef6d2F3mOW4+vbnov+e8+w1GGrUnzw77HGwsbb8cNdd+PK5ch8l43WxmxxdU0juS00o1Eq127CNM9Afzw9nrK9NkaQIacPo2jPjjVWfvcXUz2hCr2D2gnfPVrTAA0bV0Epr92Eqc04AE9vRNleFyPIktOHphiPpmgvSjDujO8ermmAho2ropQmcDHbkgF4ekPKNm5b5sjpQ+ajjhdRPekLG3fBdw8lGFdHKUvgXogxDqw0Wu31CcaDKdpzEozHULTnU32SK2zcDd/dX9OkDRvXQKmy3JIbZRxERo+VhlJUNJDTB1K053bQeF9NA7QtDGuBaml3oq3NOBhPr0XZ3hQjyJPTv6Zoz4s3mmMoBvHGrNqDsru7pgEaNq4Dam67E21txiF4eg1phMQZ95c6JRnPo/pkYdi4F2X375rmYtg4BqdmYd2rkXnNohi9mjRCYoxmf6lTnPFYisG5Cca9Kbvba5qLtcYZ2JqTWG3GoRi1CmV3S4ygQE7vS9Fe0AHjPpTdbTUNp7BxPVDftTuJVW0cTdndlmDch6K9MMV4DuGGfZVR70vZ3lLTcGoLT21EYyZu/Prjxy+hqdSPxUfv+jNsKl3nTuTbelOpw1FvKi3gWNiaSoF9jzn+hJRXZYkbYFaiC3GNjvn7+86IjhpzxA30Oy8yxA3eKlE3zl901NhA9VnbBREecYO3SvwUjI3ENQcrkWZUdPyRhx015olr1lSiM4yGuEFwJTpm1K/0xDwRv/LPnOld+fCZ5NWy0KrqCqXqcCy60rcYG/99DGjENsf/5rIbfEnDVh/E5ucv0upYIK7JOn95TdyJj/mPn4Ix7T3qxvmLtPdI27ek/e7TvkvzE2n7r7px/iLNmHasSzOmHcc6I34OxrRxUdrYD7p4t7d7BMD/KupNpZ9u1JtKnRP11d9+YVGOuWqlOtIaQkkHgfn5+86IjhoXdCME0g6GdeP8RkeNC7pZA+mDs5+CMWkACunGzjhB0VFj0mQFOseYNqHpmFF9lHw5/6yvo1fwq4rYhhJkcuXEhpJzYJuT96/e8tFXMvz/Iq2OSU2E+cl3tMkAPw1j2nvUjfMXae+Rtm9J+913tBEC6fuvunH+Is2YdqxLMy7oZg38PIxp46K0sR+UbfTdAvWoRz1+/Kg3lX5p4dIGZ/WoRz3qUY//WZSTD8vWj15efn5D6fmZgEcvdT0vm+uMiV096lGPetSjHv99uNSGcz3qUY8fK+pNpV9YaDUi/UWpkTzhWDiibvzlRL2O9fgZRe/kq4QaunZsEO0XMzgX/5tRClDJZ/KDqY2J+XrUox71qMf/Mn4K46KOG02nzGnqUY96dEbUm0q/sMjoCSh6J75Gs2RKPvn+ZUXaTr4HyQcTBXRPyINmeGLepBh1qrEn6cZuCfnKalFJkW5cKjEPvVLymo4bV0j5+zRj8netYuya8oolUvJpdVw6MQ/xz6+phKFy73/SZyyenFdpxmUS89A3JW+oPEMh6TMWfqNiaLKhw8Z+KXmPyvNb4kOxaLIh1Zj8PCQ3Mp+Y7zlkJrohk/ia3MD4W+SsNbh+yfu/3GJDEvP2zeUS85VnYTQkvkIxODGv1ciUfLJBMTAxX3ku34I2JucVgxLzFWMu5T0W6ZAh3Zj8/hVfNuU9kv+dHTcmb6fKdk4zJn9f0r5v6cbk31TlWUMdNKbsW9L2TWn7tooxed+j6J9s6LAx+RhRMXqJr1Apx4G044hJ3ccvlpivHGPSjMnH044bk8cDlWN18lWx6cbksVf62C157AfdyOjNU15Tj84O535+/9Wjc6LeVPqFhVI5WaY4ejCd0dtR8CajGBCZN2o0jd7lGDUq+v0ZQKM3mYzeJkaQp9G7mAbzu1hjgzmJRu9C4gbTGb2DGKMHL0atTMGbglErxRgHUvAmk9Fbpxh/m2D8E4VE445ijB68GLUKBe9yjIpu2igGiXHLBOMlNJjfJBj/TMG7INaY1TuT9ybFDgyMWlWM0Qd+xSIUvClk9K8SjBfTYE6MySvy5mQK3vnEDaazehcxRjd+jFqdRm9K7IBeMViMcQOPgtTx+PkwRg+ms3q3FOOaNJrLYycliiEUvElk9MQYQyON3iXkzLEJxlPkdx1n3JO8d2lsQ7nNGD3g1ywqddw0wXgpOXN0TF6TN6fK8uPRg+ms3ouCdxkqplnqqbVpNFPQKnqgqhlKwZuCpzaJMXSh0buMnDkqwXgaBe+cBOM+Yoxu2nhqHRrNZLSKbrZWjJPx1MYxhq7kB59LZq3dotNKUdj8cIafuA3KRB++B26/Nkv9ZWe8btHNqe6rDqffwYfhDYyeiJu+A+j16yPIrzQ6mpDP03PCb8npw2L+DYa8OYOCdzbxddyfRm8Sih6ReU+NpWCmxF5Zq1mcgpmMpzaKMXSrbGt9aILxTAreWbHGnD6ARu+yBON6FWPMCQ7NMDFuEGPoTqM3iZw+OMF4FnlzFnGTu5w+iEbvMuJOwnhqAwpmcuzJA81wCmYKnlovMq/oIcYDYoweBe9s8ubMBOMhYow+weGpjcQYPYHUakkxjk00ZvX+CcazyJvTE4yHUfAuJe4Eh6fGiTF6Iq7VCArmcjw1JsF4GVm9X4LxbPLmNOKG5TlzBAXvkgTjeArelNiGhlZLSR3XjTH2pGAuI6v3STCeS96cmmA8SuoYfRKmslT9FHRMY0irpWk0l+OptWOMvcS4V4LxfPLmrwnGo8UYfYIjozcVY3SDTatlKJgpGLVWjLE3ee8ysnrPGGNGjKcQd+IyZ46VbR1n3EzGl9GNSq2WFeOaCcZJZPXuKcaTY40N5jgK3sXEnYTJ6IkUvCmxDV+tRtLoTcao1WOMfcS4a4wxS8E7D6WSTwLVox71+PGivvrbAo6FbfW31gjsexTt5fj2QRzNGLUsWb0rGb0lSimsm0YxuIKyvQPHdDRDyJrtyerdUKoB55op2esoBTdi+UKWVf8VObMPWvXFOUvZ3k7JXkvg3kaRx9MbkTP7YVTlSijfPkUxuBLfPQcoPLU6ObMPnl5TjO+GjC0YtZwYtxDjtxSDKynb23HMEOMOZPWuIeO1lIKb5hmzeguyZu+Q8V+U7HUh4zgxDhfjk2J8XoxriHENMb5D0V5RY9yNjP5VyNhaxxloFg3VMYdzTSHjlyh6h4x9xHibGN8R43gxViYKZfsEpeBKfPeCGNcU4+oh4+X49iExjhTj5mL8JmSciVZDyertpY6txr+JcaoYtyRr9goZbxXjuygKYtw3xbgvnl5NjG9TtJdTtg8BRTHuTkZPFOPXYvx3yLgDWb2LGOdStH+jHNwcMm4lxt5ivEWM74lxYzEuIcbHxfgioEN1DBunULYPi3F5MW4mxq9CxllotZgYdw4ZrxHjV2LcWoy9cC4Q49/nGTN6AlmzT8j4GKXgKqmjwVNriXFVMb4lxkeAUsi4aYJxR7J6JzHOEeM/xdhH6rg3WvUU4z/F+D6KRjJ6Y7JmX4xaXIyPivHFkHFfPL2KGN+Ubd1mzJk98NQmYpwqxjtDxp3EmI0xttYxybgfRi0mxkfE+J+QcT88vbIY3wgZyxi1Ajmze8j4Zcj4A1otHqpjFudmi/EWMfYNGXvgnE/Z/pOivR47zzhB6lgxBh89R/k/t2GnvgXaYIaOwltlW8ygSuNvzntTmXrTU8x87n2cH9Bl6UUYsNXq9Fp3WZRSFL+eydR/Ps33j7yBP6eF/JDe9NtsFfpPXBmd8bAtTTQ9dh/Nzz9OMGsGumt38quuS+N6m6ALjbggYO5TTzDn8Ufwv/4K1dBAfvQqdBs3Aa9vP6njQxSDq2SJcYOn1pE6jpL952uU7OWU7WNSx5WkjhuH6ng5ZXsXjtlSx53I6h1RKoNzP1C0V1MObsXyNYp+ZPVW5MzeKNUd53xK9iZK9nqs+wBFVzJ6E3JmX7RaVIwPivEVMa4rxpXE+KoYHxfjKHJmDzJ6PADWfVFjHCbGHULGqygFt+L4Roxbi7GbGG+kZP8RMm4qxiFifIBicLXU0SOjx5DV++HpFUPGKWL0xbgnGT1OjJ+L8e6QcWeyevs2Y3AlJXsrjm9R9Cdrtian9xJjOWT8UIybiXGwGO+nGFwjxowY9w0ZXwnVMZBtvRcZvZEYPxPjPWIcHjJ6ODeLYnDVPKNmABmzNTm9Z8h4gxg/EuNEGXMMxjmH71qNr4hxrBhXEOPLFIMp+O5JMY4S44Yh4xTK9l4cc9BqODm9Mxm9Xch4JSV7W8i4jRi7ivEflOwNYuwWMi4ixvvE+Oo8Y07vN28FK9++RDG4PNYYuE8pBZeHjEuKcVuU8rBuJqV5dZwWYSyF6vhxjPFeMb4mxvXEOFKM/xHjU0CAp0aTNXuR0RuI8ZOQcW7IuB1KGaybQSm4OmQcSMZsS07vgVJdxPgPMX4SMu6LVoPEeA/F4G8h4/rk9L4h44tifFqMK4txfTF+LMb7cMzFqCXJ6l2kjq3G1jp+F2Eshrb1Jyi6h+pYMZbt3ZTs3wjc60A2ZFxOjC9QDK4IGVcR43pi/IhScIXUsQmjRpCdt60N1k0PGb8X43ZibBTj9ZTsjSHj5mIcKMa7xPiGGDcQ47JifF7GwE8DNmQcO89YDC7Ht/eFjK111Fj3vRhvE+OgUB1bjX8X46coeoSMA8R4Z8iYI6M3FGPalck/bvxSVn/bhZ/f6m9/p776W2dEvam0gGNhbSoBBO7DUDNkWTy1Pkq1nbW1blplkOqmo9UQMnoTlGo7c+LcXMr2Hqz7HKV6k9GboFXfUN7Hdw9Lw6YBT280r8lQyTsC94I0bMBTq2PUKijVdmYkcB+EmiHL4an1aozfVgapbjpaLVq5va/KOEeMX8QYy2JsbdhsNG8C395YaSoZNbrG+L4Yi/Np3KTq7ErnGJ8PNWwijPY9fPewGEfiqbE1xm/EODNUx7Bxthi/FOOmaNUnlC/ju4ekqRRnfE4aDZWmklGjaozv4rtHQsb1UKrtzLJ1X4txFloNFWM+9BmtxqkhY+9QvlQx2ndRqlGMi4fytca1MGqlGuM7+O7RBONXlQFgrPGHkLFPjPFBAvueGMfNazK0GZ8NNb7WxqgV2xnLrrUZ0rqt44yLkdEbJxj7irFXKC9G9/68BqJRQ0N5R+CekYaNxlPrYNQKNca3KbtHxbg8nhoTYbwH534Q4wSUagh9xnwa7Xso1UXqWGt8Gt+9NM/YOjmONq6Ap9atMU6VOlaaSpU6hozBD7hZ9+DKX6O8Pqjum6K8tiucnC3iZj+Ea/kAZRpR3cahsm1nx52z2M9erTSVlEEPHYUZWH0F1Jz3v2bGcx9gywFdl12EnqsOQ+m2Ord8M4vvH3t7XlOp95ilMbm2q9lsUxNNL76AP2MGpnsPCqusgunSdpVBUAz48sGP+eGDGXiNGQZvvARdhrRdceKsZfarHzL3nU9RWtN19Agal6w+Mx3Yt6SOPkatKHVsu4rAui+ljrPRagmpY9vVlc7NomzvxrqvUaofGb0ZWvUI5YuU7QOVho3qQkZvPK9Z01pH3z01r6mUUeu2W4I6sG9Sdo+JcSU8tU4HjP3l+1hrvL/SsFFdyOgJ85o11UZpKqkx8ybHbcY3KLu2ppKn1q4xfiHGOWg1jIweX2W0bqYcz79BqwHSaG67wqm9cRO0WiSUt/juSamjR0aNnTc5bjO+Ttk9kWD8vDKJd5WGTUaP+y+M91UaNqqr1LHW+IQ0bDwyar15k+PW8O1r+O4JwMq2/v8aZ4jxW7QaKMbQb8IVKdt7Kw2b/9r4qjSVLJ4ahVFr1Rg/o2zvF+OSZPRG/09ji9TxY5TqJr+ZsDEQozRs1HrtJvDVxtFiDI+LPsW3D+DcHIwegac2Qqm2K5Ktmy7GaWg1SMZFtcZ7K80Q1U3qOCiUD/Dd49KwaW+s7ONfCxlXxqg1O9nYLHVsNW6CVgND+QDfPSbNkAwZtT5GLx3KOwL3qjTnKg0bo9aoMX4ixrkxxu/F+N18GLtLHaOMr6PI4an1MXqpUN4RuFeqmkrtjR9X5hJuLkYvhac2rDF+J8fz70Pfx66hz2iWbf2pGDdBqwGhfIDvHiVwb0QaF5aoN5V+ulFvKnVO1JtKCzgWxqaSc800B8dTtndW/f/KLVcXYdSKFINzKdrLqF52tAt58xeyZgtKwb9oDv5A9ZKgHjl9IDlzBIF7hSb/EBxfVX1GRk8kb07HMYMm/yAZtLSFUStR8C5B0Y3m4DjK9u4a4yJiXIFicDZFO7nG2JW8OZms2VyMv6d6adWw8WWa/EMjjJuL8Xsxvl5jHE3BuxhFV5r8Y/HdPTXGwRS8CzFqeTFOiTCeQtZMpBTcSnPwx/ZGczA5fRiB+w9N/uERxl+RN6eJ8UAZtISNK4uxkSb/GHx3X41xCI3eRWi1HMXgTIr2cqqX6u1GwfsrGb0ppeCfNAd/ijAeSk4fQuBeFOPXNcYtyZtTcUxjrn8QNtF4NL6rXhq2csvVRWi1LC3BGZTsFQnGm2kO/lxjzJAzh5HTBxG4F2jyj4gwbkXe/BXHt2J8s8a4ihjzYnwgwngxWi1DS3A6JXtljbE7Be9UMnoCpeBGmoO/UL08dtj4vBi/qTFuQ96cjOMbMb5VY1yNgnchigYxPlhjHErBuwStRtASnEbJXl1lVPQg751GRo+nFNxAc3ByhPEIcvoAAvecGL+NNFq+psk/EOveqTGuLsYcTf6R+O7hBONfKdlrCC/xXTGeTkaPoxT8Q4zhpamzNJgjyer9CdyzYgwve6/I6G3Jm79gmSrGd2uMa4gxI8ZHaoyLiXFJWoJTKNm/1Rh7kvfOIKM3xE6/HvvVaeBCRpVF9zsC3Xc/7JynsV8cDf53VUbVc1v0wJNws6ZRvP0vuO8+qTYMWZHc5r8hCHK88+dbmfHsB1X5/JDeLHPydhSG9uGjC+9n6m0vgG07xnvd84w4cQt6rz2C2Y8+wsybb8KV2h4MrjIZum+5Fd3Gb8zXT33Bc0c9SMt34X8DLLH9Mqz8p3UpfTudj065lpZPq7+vXVcczuLH74zpFtDkH47vHqup4xJSxyVoCU6mZK+rqWMvqeMGFIO/0RKcRvXS1DkazDHkzD6U7RM0+0fh+L6qjlm9Iw3mJCyfy7Z+v8rgqbXJexeg0GJ8vMY4jELmEjSL0xL8mZK9PsJ4Fhm9HsXgGlqC0yOMx5Eze1G2j9PsHx1h3IkG80csn9FUPhBL9bb01DrkvQsAaPYPl0ZI2DhcjIvREpxEyf6D8FLpFeM5ZPQYisFVtARnAMXQOzSIcU/K9lGa/WNwTK/6hDbjJ2L8sMY4hoJ3Pg5Ls3+YTI5D76CWrGxrFhXjDTXG3mJcl2JwBS3BWRHGE8iZ3SnbR2j2j40w7kKD+T2Wj8X4UY1xLAXvPByWJv9QAvd0jXGEGIfQHPyRsr2xxtiHvHe2GC+nJTg7wngiObMbZfswzf5xEcbdaDC/xbqPKt9HPo4wno/DF+MzEcZL0SwixpvaGQveuXh6bYrBFDGGH/ifF+OulO1DYpxRY9xdjO/T5B+E5ZMa4/oUvHNxlMX4bI1xKTEOojn4PWX7zxpjXwreuRi1JiU7mZbg3Ajjb8mZnSnbB8U4s8a4Bw3mN1j3nhg/rTFuIMaiGJ+rMS4txgEhY1so+lHwzsOo1SnZSbQE59UYC+TN78iaHSnb+2n2T6gxGjGemGDckIJ3Do4WMT5fY1yGRu9SFP1pDn5H2d5SY+wvxtUo2kspBucD5Rrj78maHSjb+2jyTwBm1Rj3osGcgHXv0OQfHGEcR8E7G0czTf4hBO6FGuOyYuxHc/BbyvbWCOP5GLUqRXsJxeCCGmOjGLenbO+hyf9NhHFvGszxWPe2GD+rMY6n4J2FUsnPu/wx45fSVNrpZ9hU+ke9qdQpUW8qLeBYGJtKc8sHt2uEtEVXsnonSnZyTF6R00dRtOcQHjCEI6t/Tcn+neqGU1t4agLWvddu8NcaWi2JZrF2E/i26EZW70DJTonJa3L6CIr23ATjAZTstVQ3IcLGTbDunXaDvzbjCDRD8N1DCcbtKdnLE4xHUrRnx+RbjX+DmCVTPbUp1r3VbvDXZlwKzSLtJvBt0Z2s3laaNf+t8UBpAMQZJ2Ld6+0GLW3GpdEMwHePRuYrl0JvLc2aqDCyrZOMB1GyV1HdhAgbf4V1r7QbtLQZlsGofu0mx9XGreQz4oyHy28mzniw/BvjjYF7GcfnMYZl0ao3Qc3Esy3fk4z+lWyrBWXcksC9iOOLyLxmOZTqSeCejDH2IqMnync+8hPI6cNSjIfIb64lMu+pbQjcszi+jDEuj1Jd200824yVK+Aq+45oY+Pcw+DL82ONqu/BuO+uABdtpHFbyvd/iZv9bWRaDVia958fxayXo39TmV6N9Bm7DF/d9mL033uapQ9dmaZ7/hmZB/DW24GnTvkEWwwi88N2GEHuy+cofzcrMt+49BAWOe2pdpO6eQb64ulxlO31cQJy+lDZh0dH5ft6KdWTvrbIqO3x3ePtGsmtoRmNUqbdhKnN2A9Pb0jZ/iNGkCGnD6Zoz0sxXkL1hCps3EGufPwmMq9ZGaUUgYvZlvTH0+tTtjd0wHgERXtxgnFHuco1+vuoWQWlHIGLHuMoBuDpsdKsiYosOX0gRRv/m0k37oTvHqxpJIeNq6FUWa4EizOOkWZNpICc/jVFe0GK8SKqTyCFjbvgu/twfBeZ16yBUi1yJViUcRCeXqtdI6TauD9Fe2GC8UjJxxl3xXf31DRAw8Y1Qc3F1pwMbDMugqdWp+xujcxDAzm9X7LRHCVNiGhjVu1O2d1Z07hrC8PaOPUDtuZkYJtxMJ5albK7LUaQJ6f3kW0ZZzxSjNH7x6zag7K7o6ZxFzaui2M6ljcj84oheGplyu5fscas3odSovEoaTjFGfek7P5V0xSrNX6P5a3IvGZRjFqJsrsjwbg3JXtxgvFoisF5Cca9KLvbYo2eWp/GTNz49cePelPppxv1plLnRL2ptIBjYWsqBfZd5vhxD7JtjSxxA/VKNBLXjJm/v++MyBA3wKxEmjFH9dnGBRF1Y+eER9wAsxI/B2MDcY2QzoufgtEQN8CsRIG4BmYl0oyKuEbz/EeC0UH+067oUoJRNcQ3lIDgkx4E78Svmjj7u26891TySlNoVXWFUi1y8HLfYYJ44wfvL820z+PPAPfs/QN9+kZP6gAaRn7LIn+JbsKGkISv/mkfads6T1yDc/7ef36io8a0fN1YibRt+WMY0/YNPwVj2v7v52BMO0Z0RvwcjGnH87TxQGdE2tir48ZG71/znpn2v456U+mnG/WmUudEffW3X1iUa26NiY60hlDSQWB+/r4zIqkRAunGBd1kgLqxsyJt4PNzMC7oZg38NIxpA/GkgTykGzvjJEq8UZVJbihBYkMJwH6TvJrNzK+iV8erfpP4f6eX9RMbSs7B919GrxzXGo2Nyd+VxtWjrwSrjrTJa9q2Tprgz8/7z0901JiWrxsrkbYtfwxj2r7hp2BM2//9HIwLulkDPw9j2vF8QTeUIH3s1XGjb+PuaKhHPerxY0f0Wrr1+PmGSzsY1qMe9ahHPf6bUJ0xJwuil3BuDRt07FyQ1ulIa6OXXm8NpZMnjjr3Y0yq6lGPetSjHr/kcKkNvnp0Zjg659TcwhY/x3/T/yLqVyr9wkKrpdNflBrJk56FI+rGzom6sXOibuycWLiNNgOug0TVNflKz3y3jg2iy6UMLgGpFOQbk6/KKBUzyflPuyfm61GPevwvYuHef1aibuyc+GUYTafMaepRj3p0RtSbSr+wyOjxKPokvkar5KU6DSsm5jVpS332JPmrp+U1Ca9QIxLz6ca0A1Fvkg94GkieOGmWTMynG5dJzEMf0o3dEvILg9GQbhyemDcqzbhsYh76puQN0DXxFZphyXmVfM+/ZrnEPPRLyRsgeRUUzRLJ+Q4b+6fkPdKNiyfnU43JzxpSDEjMV54x1pjyGYvFJw247inPd2hINuolkj+/19CZ6HxyU6dhkfj9p7MaNSj5d7/o2sm34JULgxLzc54eBi75PTSLJuZN2rZWyyfmFYsk5ivP+0i+zU+lGFO/jyl5xeDEfMXY0KH3WPDGBirO//490rZlujF5O1W2czbxFWnfl44bhybm5884MDGvVcq+JdW4WGJ+/ozJ+9i0fXTq7z7VWKCyH4+PdGPysS7dmHysrRxjkm8UUSnH044bk8cslWN1mjF5XJI29kofuyUbK4ukbJb4mnrUox4/XtSbSr+wUCpHwbuAuMF0Ru9IwUyOHbxUllifglHRzzJTDKLgTSGjd4gR5Gn0LqHB/CHW2GD+TKN3Yawxq3cSY/TAwKhVxTg6xrgIBW8yGb1djKBAo3dxglGRNyfT6F1E3IA/q3eh4CUZVxfjqJhPGEzBm0RGb5Ni/H2C8RQxRg/4s3o3Ct6k2MFLZYn1y2MP/IohUsetYwyNNHqX0mB+m2gseBcmGPcQY/Tgxag1KZgpsQMozaJi3DLF+JuYvCZvTk0x7kk+weiptWk0l2NiBvyaoWL8VYyhC43eZTSYExOMp8vvOnrAn9X7iDG6oeypdWg0U2InJRXjFDJ68xhDVzEen2A8g4J3HnED/qzej0JmEoroh1R7aowYowfTmsWkjhNjjQXvUnLm2Ji8mQ/j/inGsXgDLoOGmGZrdnH00MtQ3WIWS9DdyKxwLpl19ozOK01hiyNY+g9bo7zow/fgXdZm2VN3INMjuqnTc43hDDr6QDKDoyf63oCBjPzrjgyeED0xynTPsfI5WzBw13Ex/wbFkP13pZA5h7hJSU4fJL/r6OaXpzagYKbEnuDQDKdgJuOpjSPzih40epPImSOijXgUvLMpeGcnGA+h0bsMRY8Y44YUzOTYExxaLSnG6DrNM+rDOmA8lEZvUoJxnBijm4hajRDjRinGQxOM5yQbzeEpdRxf2dYxJw+0WoqCmYKnNogx9hTjQQnGc8mbs6k036OMR9LoXUrciSJPTRBj9CRXq6VpNJfjqfVijL3EeECC8Tzy5swE49E0epcRdxImozcVY/TvVqtlaDRT8NTYeGNmElm9f4wxQ8G7gLw5PcF4LIVE42YUvMmxJw+0WpaCuRxPjYkx9qaQmUxW7zcfxuj9Y4M5joJ3KXEnijJ6IgXv8tjmlVYj5fu4boyxD3lvElm9T4wxS8G7kLw5LcF4ghijT8Jk9K+kjtGNSjPPuHaMsS957zKyeq8U418TjL8RY/RJkIzekoI3JfbkgVErUDCTMWrNGGM/qeOeMcYcee98lEo+eVGPetTjx4v66m8LOBa21d9aI3AfUgyuwLcP4GjBqGXI6l3J6M1RSmHdd5SCqynZ23HMQKvBZPX2ZPUuKJXDuSIl+3dK9ias+wJFT7J6C7JmT7Tqg3OOsv03JXsdgXsbRQOeHkfO7INRlYGZb5+jGFyJL8tOe2oNcmZvPL2aGD8Q44M4iiHjRDFOE+MdYhwixp3F2CLGm8XYK2TsLcY7xPgOigYyejxZsw9GLSHGZ8X4fIzxfTE+JMZlyerdyOhNQ8arxDhTjDuQ1TuFjNeJ8UsxbinGXjhnxfh3MebJ6HE1xmfmGRUaM8+4asVo36Nor8C3D88z5szueGqTkPFKSvbfYlxUjDuKsTlUxy9R9BbjHjXG6wjcu2JsrePiYnyKYnAVvnshZNwHT68SMl6Obx8R43LkzG4h47cUgysp23/jmCXGHcnqHULG6ygFN2OZGjLuiVY9xXi71PFdFIWQcTExPinGF8W4phhXFuO7IWMJo0aKcUKE8YeaOmZxrkmM/8QyFU0fMvOMPcT4LzG+J8aNxTg0xriWGEeL8R3Z1q3G5cW4sRi/oRhcFarjYmLcIWS8VoxfxRhvo2SvDxknkDV7zzOW7ROUgqvw3X9QaDy9Nlm9D54eJca3Kdora4y746nxYvxajHeKcfGQMYNzc8V4ixj7kjFbktN7olR3nAtCxvfnGXNmH7RaVIyPh4wenl6LrN4XT68UMl6Bbx8NGffAU+PE+JUY74o2BnNx06/DzrgV/K/B64PusSWq9+4oUzG6mbdhp/8Dih+CbkR12xjdZy9UdkjF8PGLlP/zL+zUt0AbzNBReKtsgxlYabTMef9rvrzxWaY/+wGu7NN1mUUYtM1q9F63ki9++wNf3vQs0x5+E39OC4UhfRiw+Sj6TxyF9gy2pZnZDz/M3GeeJpgxA9O9O41rrEnXDTdCFwrYwPLJre/y4fVv8cOHM/AaMwyZMIyl9lmBxsGVSeOsF99h2u1PMeedT1HG0G3UcPptNYbGEfJvsG/Kb+ZxHGU8tSJZswcZXWliWDdVfjN345iNVouT0zuR0duhlIdzsynav1EObsXyjWzrrcnpPVCqm2zrf8q2/ghFIxm9KTmzN1oNlm39CKXganz3MoqMfB/3nbdiUGDfEOMTYlxJjBuK8Usx3oNjNkYtTlbvTEZvW2O8Bcu3aPqJcXcx+pTtLSFjFzJ6E/k+LiLGhykF14SM65DT+2L08mJ8XYxPhox7ktEbhIxXiHEORi0hxm3E+EOojq3GbcTYVYytdfxYjK11bDU+JMZXxLiuGEfKvuk1SvaKkHGUGNf/fxpvwTINTf9QHVuNN1O0/8C6j1F0DRkHhYxX47tXxThGjMuJ8dWQ0cdTo8W4nhi/CBnnYtSwkNGI8RqpY6uxtY5dcK5Myd5Myd4QMm4mxoFifFDq2GocK8ZlE4x7kdFjxfh56Ps4F6OGi3HrkPFqysFtYhwQqmOr8aaQsVuV0TmH7x6kGFxD4F5DkQ0ZlwkZL8e3T4lxZTGOEeNnYrw3xjhL6thmzJptyerdUKpRjDdSsjeKsXvIOECMD4jxdTGuR07vEzK+IsancQRSx73J6HVDxivE2IRRS4aMGutmUppn/A7NQDHuKsZSyPiJGCeKsb8Y76MYXBsyrk9O7x0yvkwxuJzAPY3Dhuq4rowvP6UUXEHZ3ifGEWLcqs0YXE3Z/itk3E6MBTHeIMbPZFtvTs7sFTLeK8Y3QsZ9MHppMb5EMbgiZFyFnNkLT68jxk/EeH/IuAsZvaUYZ8g4/V84vkczKLSt8zKXuDHCuDda9RPjPWJ8E0UuZEy7K+LHjV/C6m99WXz0Dj/D1d9u5ESm1Vd/63DUm0oLOBbWphJUJsll9yC4FoxeFk9thFJtZ+it+7oyaXKVhk2lUdJ2dse52ZTt3Vj3OUr1JKM3Q6sBoXwJ3z1IYN8G1UBGjcPoEaG8I3DP4ltpKuk1MWo1lGq7XSqw71B2DyUYv6pMSOYZN0OpLqHP+EGMX6BULzH2D+Xnx/gMvn0+wfg2ZfcwuKIYN4ww3oVzM+fTOBGt+oXyYWOlqWRCZ54rxqcrRqXx1JoYtWqCcTk8tUGNcarUsdJUqmzrWuNdlaaS6i11rDaW7QNY944Yx2PU8FDeivGF+TSOFGPb2W/rvqwMpN1MtBoqxsbQZ/xAyd6Jc1PFOBGt+obyRTG+C6ogxmGhfK1xLYxapcb4lhhL/6VxFiV7lxj7SB1rjfdj3Xti3Hhe87DV6LunCOyLYlwbo1auMb5J2T0ixuXx1PoRxrtxrtJUqhgLoc/obOM6GDW6xvgGZfeoGFfAU+slGBcnozeJMN6Jc1+hVF8x9gnli5TtfWJsjDE+SWD/A8pIHZOMK4qx7Qy9dV/Itp6FVkuIse3qSmdn4hfvwdmvUbovXm4TlO4dMhQJivdjgw9QqgsmNw5tFgv9vaX5rbcovv8hGE1+2WXJDVuiyjjrra+Z9tTH2FJA95ED6bfO4ijTdma56cuZfP3ge/izizQO7cWAjUZgQrfOBXPmMPf5F/Gnz8Dr0Z3G1VbFdGvbxwdFn68e/IDZH3xPpkuWARsNp8vQtquLnLXMffVdmt79GGU0jSsuTX7JoVVG376G7x4DV46p42eViZ37Aa2GkdETqupo3YxKg9F9g1L9ZFuH69hC2d6LdZU6enrCvEZxJR/guycI7Muyrcdg1Io1xlfx3ePgfDGOTTFuglINofx02ce3GieiVa+QIWzsKsahoXyA7x4nsK+IcSxGrTDPWNnHt9YxwOiV8NSYKmPgPsW39+LcbLQaLnWsNd6Jc9/OlzGjN5nXhG0zPkZgXwXl4akxeHrFUN4RuNY6Bhg9Ck+tW2P8BN/el2D8Xur4LUr1F2Po++aaxfghSnUjoydEGB8lsK+JcWzVcuMV4yv47omQcQxKtf1mAvexGOeIcROUartKtdo4QL6PtcZ7sO4jMW6CVkMijK+CypBR681rHkYbR0sd44xLSh3Dxu9k/9lqnIhWPWKM3cU4OJQPG7Nk1NgI48v47kkxroyn1qkxfoRv7xfjCDJ64wjjXTg3DaUGktUTUap76DOaxPhxjNEPbeus1HFkKO8I3Ev47ikxroKn1m5nLNv7wDVJHWuN06SOSca7K00l1Z2M3nReE7bN+AiBfV2M689rcLYZ/yNGOx/GEZVHWLQz3oVz36HUILJ6sxrjXKnjJyjVQ+qYZNxgXoOzzfgivns6wfghZXu/GJcio8dFGO/Eue/FOBGluoU+Y67U8dME48ME9g1QOTGmPXrhx496U+mnG/WmUudEvam0gGNhbCo510STfwy+u7fq/ysGUPAuxKhRFIOzKNopVC+NWiBv/kLWbEUpuJXm4A9UL61qyOn9yZljCNxLNPmH4vi66jM8NYGCdxaOGcz1D8S6N6ryRi1PwbsURXea/KPx3f01xoEUvIswakVagjMo2StqjI1i3JJS8E+ag5NqjJ4YjyZwL9LkH4bjm6rPyOhNyZszcXwvxjdrjCuIsVuC8WKMWiHBeDJZswWl4Caagz9HGA8gZ44kcC+I8dsa42bkzRk4vhPjWzXGFcXYhSb/KHz3YI1xkBiXpyU4jZK9kurlhLuI8VeUghvFGH54r0dOH0jOHEHgnqfJPzzCOFGM3zLXP6DScKoyriTGghgfqjEuItt6eVqCv1KyV0cY/0rWTKQU3EBz8Jf2RnMwOX0YgXtOjNNqjJuTN6dj+YYm/4BKw6nKOIqCd4kYj8B3j0QYL8ao5cR4TY2xKwXvVDJ6U4rB9bQEp0QYDyGnDyVwz4rxuxrjFuTNaVi+EuN7NcaVKXgXo2gQ46M1xsE0epeg1TK0BKdQsn9LMP5djOHlij1y5jBy+mAC9zRN/hE4vq8xbknenIplKk3+gTHGS1DkaPIPr0yOq4xDxLg0LcFfKNlrqV6PoxsF7zQyegLF4FpaglMjjIeT0wcRuKdo8o+MMG5N3pyC5Usxvl9jXEXqmBXj41X5yq2Ul6LVkmK8LsJ4Ohm9MeXm6yjPPZPqJZUzZAqH4OX3x5afojj7OHDTqw25Lcl2+TPlr6fz7UWXUP7qq6p8bsSS9D/oACxZXjnhTr575pOqfGFID0adtQVdlujN22c8xGf/fLWKmOnWwPInTaD/+sOZ9cDDzLjpFly5HCqjR8+tfkX3TTdm2tOf8vIJ91GaUf3Q7iFbLssKf9yQ8rff8fkZV1D6svp3X1h2GIOP3gvdzafZP6wy8ayq41Cp43BagpMo2X9U1VHRg7x3Bhm9EcXgKlqC04Hww8szNJijyZn9KdvHaPaPwjGj6jMyejvy5i9YPqOpfACWj6rrrNag4F0EKJr8Qwnc0zXGxcS4hBhviDCeSUZvSDG4gpbgzBpjlgZzDDmzL2X7CM3+MRHGHcibP2Pdx5XvIx/XGNeU224VTf4hBO6ZGuPiYlyc5uAPlO2NVXlFTzFuQDG4nJbgrATjQzT7x+KYWfUOFeOfxHgAlk9qjGuJ0Ukda41LUMhcimYxmoPfU7Y3RRjPJqPXoxhMpiU4Gwh9H8nSYI4jZ/aONWb1jjSYP2HdB1LHT6s+w1Nrk/cuBAKp43M1xmFiXJTm4HeU7T8jjOfgqTGU7GRagnNqjDkazPHkzJ6U7YM0+ccCs2qMO9Ng/oh179PkHxRhXIe8dwHgi/H5GuNwCpnL0CwixltqjL3Ie+fiqXUo2ssoBudFGE8kZ3anbO+nyT8+wrgLDeYPYjwQy2c1xjEUvPNxlMT4QrVRLVn5PrIIzcFvKdtbE4yXUAzOp3rJ+AYazAlivE+MP9QYd6PB/B7r3mWufyCOz2uMY8VYpMk/iMBVj7u1GiHGQTQHv6Fsb6sx9qbgnYdRayUYf0PO7ErZ3kOTfwIwO/wJYvwd1r3NXP/g/9J4GZqBNAcnULa31xj7iHFNivYiisGFEcbfkTM7U7Z30+SfGGHcnQbzW6x7S4xf1BjXp+Cdi6NFjC/VGJcS4wCag+Mp2ztqjH3FuAZFewHF4OIaY568+T1ZsyOl4E6ag98Ac2qMe9Bgfkvg3qDJPxjHlzXGDSh451ad6P5fR72p9NONelOpc6LeVFrAsTA2leaWD2jXCGmLRrJ6R2mERIUipw+naM+Lff+s3lcmCnMj84ZxON5vN0BtDc0wtFqsXZOhLbqQ1dtLI6QjxushZjlST22Mde+0G/y1GYej1ZB2TYa26EpWb0vJXhVrzOrDKNnzE4z7y+Q6eiUmT03AurfjjWpJNIPaTeDbohtZvbU0ayLfgZw+LKWOacZNCNwb7QZWbcYRaAa0m8BXG7eSZs1/a/y1NFLijJsSuNfaDaxaQzECrfoR1EyO2/I9yOhfyWfEGQ+lmLitfy3/xpbIvKcmEriX2w2s2gxLo1VvAvdUgnGiNEKiwpDTh6QYD5TfXDEy76lfEbgXcUyNMSyLVt3bTTzDRk9vRtn+vQPGA+Q3F2fcksA9h+OryLxiObTqSuCejcn3xNObULbXxwg8GoJDCOZeEmv0Gn6N33IV1RP80GcE2zDtjDLBjBmR+czQoXzx+XBm/Cf6+5rtmaf/Bkvy+S2vRb+/0Yw6Zlma7r01Mg+Q22hrXj7nfWwpiMwvuvUI8l89hz9jVmS+YfgQ+v35eQJeiMwreuPpcZTtDTECT75vF8Yb9SEU7SSqJ89tkVHb4Lsn2jW7W0OzIkp57SZ1bcY+eHrDds2azjVui+8ea9fsbjOOQikI3Msxxr54ej3K9uYYQUZ+E2nGy6ie9IWN2+O7h9s1u9uMo1HKErhXYoz98PSYds2asDGnf03RXpRgPJSivTTBuAO+e7BdI7nNuDIoH+tejTH2x9PrtGvWtEWWnN6Por041lg5nl+SYNwR392PY3pkXrMqqBasez3GOABPrUnZ3RaZrxj3pWjj9z0V48VUn+QKG3fCd/e2a4C2GdcANafdycBq4xqU3b9iBDlyem/Zlv+tcVd8d1eykdlY3ozMKwbhqVUouzsi85Ajq/emlGg8nJK9KNaYVbtSdnfWNEDbwrAmjplY3o4xLoKnRlN2/44RNJDVe1Kyl8Uac+ZwaTjZyHxW7UbJ3UF1czFsXBvH91jeicwrBuOplSi7O2MEebJ6d0p2UrxRH07RJhl3p+RujzV6aiyNmbgx9o8f9abSTzfqTaXOiXpTaQHHwtZUCuw7zPE3TXlVhrhBcCUaiWsYzd/fd0Z01JglblLXefFTMHrEDYIrkWbMETeB77z4ORgLxDUwK1E3VsIQN1CvRJqxgbjGXCUU1VcX/TeRYHTgze2OstENzEokG+c+Ppg5d8avgjd3dp7PP0hZ7UorsHH/TseSo77E2Pg6fvHF4sz8On5ltB69f6B33+jJMUB22Wn0/V108zCEJG4yUYk8cY3g+ct3xrZe0Ma095+f+CkY07bFT8GYtm/5KRjT9p+dYUyLjhrTjhGdEWnHup+DMW080BmRZkwbu6UbG73bqm7D/V9Gvan00416U6lzInm9yHr87KJccxtUzKtS8kkHgfn5+86IjhoXdLMGfhrGtEFFmnFBNxng52FMGtxB3dgaaQPxNGPSZAU63mSARKMlpaEEacbim70S83NmRa8IVO2I/3dmc6XEhpJzMOub5CXiC43Jv7n8Kl8n5iuRNnlNq2NavjO29YI2dsYE/qdgTNsWPwVj2r7lp2BM238u6IYSdNy4oJs1kH6s+zkYF3RDCdKNaWO3dKNvH1homkq/lPgx9hL1+GlG9FqR9fj5hksb+NSjHvWoRz3+u1DpL0kJV0o+LDvbscO21unNFueSPyPtPVT2x5hU1aMe9ahHPX7J4VKbufWoRz1+rKg3lX5hoVVnrJjQ8YnTgo+6sXOibuycqBs7JxZyo3Ydvj7GG5R89jaX79gVY6ViBuvi66gUNBRSrqZqySbmy591T8zPXyzk27oeP2LUvwudEz+FOtaNnRO/DKPplDlNPepRj86IelPpFxYZPR5Fv8TXaLV0Yt6wUvLfk7aT703yV0+j6JmQr6w+kRQdN/Yh2Wh+BOOyifmKMemgbFD0SPmMEYl5o1ZK+fvlEvPQlzQjJE9ANUsm5jtu7E+6sVtC/scyJoUHJK+CohmenFfJl5BrRibmFQMT85VnjCXfuqVZIjFvUoxGLZ+Y7xxj/POOUKCzK8TnAWWS69i4dvJAu3u/Jkwhk/iawqLx+yZrDXqR5H3TgNWSf5PlwqDEfPPzi4FrTHyNZrHEvFHJdUz7vioGJ+Yrz3YpJH8Gyc+uSv1dpxqHJOYrxvhnW83Pe6T+rlONKc/vIk/FmfQeHTWm/KYYmpivGJNv6Uz7vqQZdMp3QaV83yvfxTTjIon5tN9M2v4z7TdZeQZOmjF535C2j043Jh8jKvvv5KZ32nFA01HjsMR85VidvA9XDEj5jOTjSPqYI3k8UBnzJD8hRaWMSxa0UdGTjN4s8TX1qEc9fryoN5V+YaFUloJ3AXGD6azelYKZEjvAMmp1Ct7lGLVa9PszmII3mazeOUZQoNG7hAbzZ6In8oq8OYWCdwlxg+ms3l2M0QOsylLMl2PUqjHGIRS8KWT1TjHGRhq9S2kwJ8XktRgvTjDuQcFMjh1gtRmjnwlXWb58Chm9Q4yhC43eZTSYPyYYT5Vls+OMe1HwJscOXjy1NgUzJcE4VIzbdcB4Oo3eRcRNSrJ67xTjOmIcFfMJi4lxmxhDVzH+PsF4RopxPwreZQnGMWJcKeYTFqfgXU5Gbx1j6CbG38XkDXlzhmzr6AF/Vu9PITMpdhDoqbE0mstjJyWaJaSOW8UaC96lNJjfJBjPlOXHo405fQCFzOTYpren1pM6Rg/4NcPImylk9BYxhu40epNoMCcmGM+m4J1P3KQkpw+ikJmCom+McQNyjZehvegmoTLDyHW7FJOLGQir7nRZ9jR6bhfzfdWaAQfsxUqnTURnTeRLhu27BiufuyXZ3tH7+H5jhzHk+P3IDo2e6GcGDWSZv+zMoAnRDedMjwZWOGM7+u0c828wmkH77EUhcx5xE6ecPlS+j70j854aR8FcjlbRjXWtRlAwU8jo6EUnFD1p9CaRM0dHG/EoeOdQ8BKM5nDZ90Q/48pT4ymYybFX/2q1FAUzBU9NiDH2EuNRCcbzKHjnEje5y5kjaUw0TqDRTIk9waHV0mIcn2CcTM4cEWPMzIfxaBq9SbEnYTJ6U6lj9PdNq2VpNJcnGHvTmJlMTh+WYLyAgndOgvEYMfaIMU6kYKYkGJej0UzBUxvFGPuI8dAYY5aCdz4F7+xYY4M5nkbvskRj3kxGq+gTHFqNlG29YYyxL4XMFHL64ATjBeTNmVROtEQZT6TRu4y4E0UZ/Svy5vLYpotRy4tx/QTjZHL6gBhjjoJ3IXlzRoLxNynGLSl4U2KbV0atQMFcjqfGxhj7UchMJqv3TzBelGL8LQXvMuJOZmX01mKMPsFh1IpiHBNj7E/em0RW7xdjbAjVMXqa2GB+L8bok1kZvQ0Fb3Jso9KoUWJcN8Y4gLw3mazeJ8F4AUolN93r0bnhfsb/1aPjUV/9bQHHwrb6W2sE7mNKwVWU7QM4mjFqOXJmFzy1CUoprJtOKfgbZXs7lulotShZvR1ZvQNK5XCuSMneSMnehHWfo+lFRm9B1uyBVj1xzuG7eygG1xG4t1DkyehxZM3eGLUYAL59kWJwFYF7DgBPr0FW742nR4eMV1K2DwItaLUsObMrnpoQMl5D2d4RMm4vxmy00WxJVu8eYyyIca+Q8QUxPi/GNcU4SowfifGhkHF3PDVejN9LHVuNQ8W4fch4gxi/QNM7ZOyBc46yvZuSvY7AvS3G8WIcKsbnQ0YdMq4UMl4hxiJaLSfGcWL8LmScIcYdyOrtQsZ/iPFLMW5FVu8WMt4lxnfEuDE5sxdaLRoyXkngXogxfhiqYxGjRpI1u+OpjULGayjbf2OZgVFDyegdxZjBuRYx3izGPmTMVuT0bijVXYx3ivFdFI0h4xAxPid1DBv3mfcQyMB9QDG4Et8+LMblxbihGKdRCq6hZP+NYxZGDSWrdySjtw0ZrxfjVDFuLcZuOGfF+Pca495oNViMz1IMrg4Z1xLjCmJ8P2QsYdQKZM3uZHRlIlFtnIlRi4txGzE2i/GfYuwbqmOr8d9ifE+ME8S4iBifEeOLYlxbtvX/x3h1qI6Lk9U7idET49/F+FWM8Q5K9voE49Mho8HTa5PT+2B0pWEV2Pco2ivx7SNiXFGMG4jxWzHeKcYlQnX0cK4Jv/kG/OJtOPs1SvfFy22B17AzSnfFOUtQvBO/5QZs8AFKNWKy4/Hye6BNpRHd/Nbb/PDgQ7S8/wEYTX7ZZem+8ThyQyu/+9kfTOOT6/7DtKc+xpYCuo8cwNAdR9Nv3cpkqOXbOXz6j5f46v53KP9QpHGxngzZekUW2Xw5tKexxSKzH36M2U8+TTB9BqZHd7qsvSbdNlwPnc/jAssXd73Lpze9xpyPpmMKWQZtvCRL7DqK/MDKRGLOa+8y/a7HaX73YzCaLisuTa+J65FfYrDU8R2K9gp8+xjgSx33IKPXkzp+QzG4irK9C8dsqeNOZPRWUse5sq1vwbqv0fQPbesuOBdQtrfLtv4ARRcyelNyZk+0qtSxbJ+gFFxN4F4GPDy9rmzrZcX4tmzrVuNKZM2eZPQYMX5NMbg6ZBwWMhoxXkfJ3jrPmDVbk9W7hoz/omT/ETJuJsaBMcYxYlwmZLwC3z4eMu5FRq8rxq9Cxjli3JmM3lKMcyrG4FYs36DVALK61dgoxtvE+CGKriHjADE+LsZXxDiWnN47ZHxL6thqHCV1DBuvomzvFuNwMW6RYNyGrN4lZLxVjB/FGB8T46sh4z4YvbQY35Q6PinG0eTMnnh6HTFOFeM9YlxSjL8S42yK9jrKwW1iHBgyFnDOF+MNYuxGVm9G1uyJVv3F+Cil4BqpYwZPryfGpWqMTwBBhPFL2dZ345grxl3EqMV4rRi/jTHeEjJ2F+NeaNVPjI+I8VUgK8a9Q8Y3QnUMMGplMa4dMrbWMcr4Q6iOrcZtxZgPGf9B4D4W40Qx9hXjQ5SCa0PG9cU4Qoyvi/EpwIpxLzy9Zsh4JWV7rxhHhLZ1q7G1jtPEuB1ZvbMYy6E6foyihxj3rDH+jcC9JsYNyJm9MdL48+1rlOwV+PZpMa4ixjXE+IUY7xPjUmLcvMZ4K5bv0GpQyNggxn+K8VOp4+YyTu8rY+BW4+tALmQcLsZXKdkrQ8ZVxbi6GD+XbR027iJGhXOzQnX8Dq0WkW3dZizZmynbGwjcZ2h6kNGbkzW7h4wPivENIEdGbyhzibQrwn7c+CWs/taHxUdv9zNc/e1mTuS7+upvHY766m+/0GidTCrVB1wzWi03b3IMoFUvsmY7lCpg3XS0GkJWb45SlasMlMqR1VsCptKwUb3I6M3QqqfkFR4b4nSAdW+BypNR4+Y1ayqG0WRNM4GtTII8vXrVFSetk0ml+iYYt0epRjEuSlZPRKlsyLgFoCsNG9U7xuhj3dsxxpXJmhYCO0yMa1RdcdI6mawYi2JcP2TsLcYC1s2IMbbWsdU4Ea16zDNm9EZAIMaCGIeGDKuEjFqMK9YYd0KpfuCKGD0ST60XMvYJ1bG1YbNZlTEzz/glWvWROoaN48T4zjxja0OpzdhMYIfT2rCpNg6TOoaNY2OMMzFqMTFmxNAgV9GYSjNE9SGjJ6JU95BxvBjfBdUoxiEhw6pSx1bjWlVX7lQmQTui6QeUIox9yZodUKpLitELGTdHqW6S12K0IeP4eQ2laOPaVVfuVAbvO6LpL8blq85WVozbg2rEuUrDptqYlyumMgnGjQHXZtQbz2vWVAyriXFJMa6TYlyhnTFjtgfVpcbo1RizYuwbYZwAuEpzTnWJMK4eMnp4em20GhkyLElW74RmgBhXrDH2I2N2ANU1xljAa9gKVAZnv0HpPni5TVG66zyjyY2rbOvgA5TqgsmOm9dQAmhYeilcuUxmkUEobcgvtwzZRdt+U12G9WHINivSMKCrNJUG0mfNxdr+vl8XBm+1PF6XHOU5LTQO7cXA8UuhvcqZZ53L0WXtNcHzCGbMwHTvTuPqq6LzlTO/ymgGjhuOs/DDB9PJdMkyaPyweQ0lgMblh5Mb+QWBnSl1XAoTqrOWSZBmEFDG6JXw1DqhfH/5zXTDuR8wahgZvWmojo2hbf11pe56c5TqInlDRm8i2/p9lOpKRm8yr6EE4Km1wJQI7NK0NpXCVxdptbRs60GAL8a1QvkBsu+pNZqQcRsgJ8b+su+JMn4QMg4MGdcEUwwZx1Tdht5mXESMoyp/My8/MFTH2Rg1nIzeJGTsEjJ+I8bNUaoxZKxc9VVtbLv6slLHIoFdhtaGTbVxGfldtxpH19RxIFmzozT5Z2PUkinGAVLHKOOHKNUtwri2GJcV43pVV2lptazUccg8o6mq4yAx9ggZJ4SMXcnqbVHksK7SDKkYC5L35t2OE7iPxLjpvIZSxbiOfB+XodJUWr/qCqiKcccE4yI1xhFk9MYopUPG7VA0hIyb1xgnAkqM3cXYL2RcV4zL0tpUqjYuJ3VcVIwrY9QaEcaeYlxK6thq7Baq4zS0GiR1zEfU8eOQsW/IOAZMOWRcf15DqWIYKfueoUAgxtUijbi5aDUixtgQMm4eMmZCdawYs3qzCGOJwC7XZgxdSWbU8iGjxehVqq6w12qwjIt6iXGpmm0druN3IWNDjVETuI/RqoeM3fpKXuExVuo4ktbGV2tDqWJcQbZ1nHGInMitNSr5jO6hOrYaf1VlzOrNUWgC90mK8Q1QOTJqg4WuoVSPetSjfqXSAo+F8Uol5+bQ5B+F7x6s+v+KvhS8CzFqFVqC0yjZK6lePDJP3vyRrNmeUnAjzcGfqV5GV5PV+9BgjidwL9LkH4pjWtVneGocBe8cHNOZ6/+60oQIv4NaVi5D706TfwS+e7jG2E+MK9MS/JWSvbrGWCBvTiJrthXjn6hewlaT1fvSYI4jcC+I8bsa43gxfifGd2uMy8ll6N3E+EiNsT8F7yKMGkVLcIoYw7+zAnnzJ7JmG0rBP2gO/lJjNOT0vuTMcQTuWZr8w3B8X2PcmIJ3NpZpNPm/xrr3aowjafQuRdFVjI/WGAeIcUUxXhNh/AtZsxXF4O+0BKdEGPcnZ44hcM/Q5B8eYZwgxm9o8g9oZzRqpNw21oUm/3B891iNcaAYV6Al+Asle22E8WSyZkuKwbW0BH+leglbQ04fQM4cReCeosk/Asf0qs/I6E3JmzOxfC3G92uMy4uxkSb/MHz3eITxYoxanpbgz5TsdTXGRvLmFLLmVxSDv9ESnBphPJCcORLfPUmzfwSOGTXGzcQ4labyAVg+qDGuSMG7FEWeJv9QfPdkhPESjFqOluBPlOz1Eca/kjWbUwyuEWMplPfEeESCcSJ5c4YY98fyUY1xJTE20OQfgu+eqjEOEuOytAQnUbL/qDF2IW9OJWs2oxhcRUtwenujOZicrmyjZv+oCOPmYvycpvKvsXxcYxxFwbsUyNLkH0Lgnq4xLkKjdylaLU1L8EcxhqMLBe80MnpTys3XUJ57do3RkCkchJc/CFt+guLsY8HNqjbkNifb5WTKU7/n24suofzNN1X53LBh9DvkQKzL8vJxdzD9hc+r8vlB3Rh19hZ0HdaHN099kC9ue70q73XJsfwfN2bARiOYde8DTP/nbeCHlm02hh5bTKTH5pvyzWOf8OIJD1CeVf1g8CGbL8WokzcE78PKb4ZPauq4sty+bKSOz9bUcTCN3mVotSTNwe8p25tq6tiVgnc6GT2BYjCFluAsoBz+V5Azh5PTB+G7h2nyjwGq65jRW5E3f8W6T8T4aY1xFTFqmvyD510t2xqV248vRathNAe/o2z/WWPsRsE7g4weTzGYREtwToTxSBrMgZTtgzT5x0YYtyFvTsG6j2jyD4wwriq3WCua/IPk6sQ4428p21sijGfiqY0o2ssoBudSvUS3R4M5mpz5NWV7P03+ccAPNcZtyZuTse5DMX5WY1xNjE6ML9YYh4pxCZqD31C2t9YYu1PwzsJTG1C0l1IMzqsxZmgwx5Az+1G294lxdo1xOzG+z1z/QBzVvwmj1pBbgwMxVo/FKsZJaDWU5uBEyvZfVXlFD/LeWXhqfYr2EorB+RHGY8mZfSnbe2jyT4gw7kDe/Bnr3hPjFzXGNcXo0+QfSOBeqjEuRiEzCc2iNAcnULa3RxjPxlPrUbQXUQwujDAeR87sQ9neLcY5NcYdyZs/Yd27YvwywngxUBLjyzXGxcU4hObgeMr2jhpjT/LeOXhqDEV7IcXgohpjlgZzPDmzV4xRkdU70mD+hHVvi3Fq1Wd4am0K3kU4WsT4So1xCTEuQnNwHGV7Z4TxXDy1LsXgfIr2kgjjCeTMnpSCO2kOTgTmVr1DVu9Mg/kjgXuTJv8gHF/VGNeh4F2Io1mMr9YYh4lxUILxPDy1DsXgPDGGV9vM0WBOJGd2pxTcQXPw2wjjLmJ8I8a4rhibaPIPkCutwsbhFDKXoRlIc3AsZXt3jbEXBe88jFqbYnAORXtZhPE35MxulIJ/0Rz8DmiqMe5Gg/k9gXudJv/gCONYCt75804mLQxRv1Lppxv1K5U6J+pNpQUcC2NTaW55/3YNpbYokNXbSyMkOnL6UIr2wth8Ru9F2d4AMUt9GjbE8UG7QXRraBZHq6HtGiFt0UhGb0vZXhNryOpDKXXY+H67QXSbcQm0GtyuyRA2ZvU2lOzfYvKKrD4kxbg3ZfuPBOM4LG+3G6C2GYeh1CAC90TMJ3Qhq7eSZs1/Z8zqfSjZv1PdcGoLT21M4N5oN0Bt+4ThaNWfoKbJ0BZdyeotpFkT/Q45fTBFe1GCcV/5+yTj6+0GqG2fsCRa9W3XZGiLbmT15lKHqNDk9EHzYbyW6oZT2LgJgXul3cCq2ti73QS+LSpnesvtGiH/H+N+0nwsReY9tRmB+w+Or2OMS6FV93m3krbP98DTE+R3+d8a95d9V5xxcwL3QoJxGbTq0m4CX23cmLK9MUZgaAgOIpg7KdboNeyL33IN1U2I0GcEWzLt9IBg5szIfGbIonzx2TBmvBL9fc10b6D/+sP54l9vRL+/Vow6ehma7v9XrDGz3lb855yPsGUbmV98l6Escdwp7U4atIZmOZTKtZsczzPQE09vRNneHCPwZFteEmvM6gMp2SlUT/pC76C2InBPtDtp0GZcHqVMu4lnm7EXnt4goqE0/8acPpBigjGjtsJ3j7dryLcZV0Ap1W7i2WbsjafXi2godaZxG3z3SLuGfJtxJVAWWzPxbDP2wdPrUra3JRj3o2QvjTVm9UGU7OQE47b47uEE42hQZax7PTKv6Iun1qbs/hUjyJDT+8jkOMk4ierJc9i4Pb57oF2zu824MtCC5c0YY3+MWh3f3RGZh4wcj5OMB0s+yXg/jpkxxlWBuVjeijEOwFOrUnb/jhOQ1XtJnZKMl1J9sjBs3BHf3ZtgXB2YheWdyHzFuApld2dkvmLcU75v/61xJ8rubmobydXGmVjejcwrBuKpUfIeUZEjq3eX/V+c8RD53ccZd5Ya/BCZN6yJ4zss70fmFYMwakV8d0+CcTdK9vJYY2UucRFxT7TJql0ouTuobdK2RqVBd828q6L+1/FLaSpt8zNsKt1Sbyp1StSbSgs4FramUmDfZo6ftlpChrgJTyUKVJ9V+P/+fWdER41Z4iaenRcecYPgStSN8xc/BaMhbqBeiTxxzcFK5IhrKHVe1I2dE5q4gToOvLndUDa6gVmJZOPcxwYz5674Febmzi7w+Qcpq4ZpBTbu2O5YctSXGBv/m/n002HM+Dp+ZbRF93qR4UfENavnNxLqCKRv6wbiGsWVUHT88Zs/BWPae6QZ0v4NaTWYn6gbf5xtnbb/+zHqmBa/BGPacawzIs2YNi76MYxpY680Y9rYDxq9W+c9m/N/HfWm0k836k2lzon66m+/sCjHXqFU9aqUfNJBYH7+vjOio8YF3WSAtINh3Ti/8VMwpg3OkgagsOAbIVA3dlYkTGgsKQ0lSDMW34peyas15sxqTHl/EhpKkM2VEhtKzsHMb5KXiO8z9sN0Q2qkTQzTtnVanTvjhNlPwZj2HmmGtH9DZ0zg68YfZ1un7f9+jDqmxS/BuKCbNZBuTBsX/RjGtLFXmjFt7Ae+fWC+NfWoRz0WbNSbSr+0cGkDo3rUox71qMd/Fx2/DN+Vkg/LznbssK11+uTWueTPMA3pg/161KMe9ahHPRZkuNRmbz3qUY8fK+pNpV9YGL1cJ7zLwnH/cnLUjZ0TdWPnRN3YObGQG7Xr8PUImUXmJOZz+Y5djVUqZrAJTSP1f+zdd5wcxZXA8V9VdU9crXLOGUWUCBISQkJCIueMBJhosI0zNg5gGwfAEQNGK2yTc7CxTTLBAdtnG0w0OWcJlKXdndBd98e83e2Z7e4R3kVIMO8+ursPtTvz3Vcz3VWvq7sUpDLxA/UNz/SObe+c2Mr7Gqhu3Br+hm3BWC1qxs6JmrFzombsnOi40ajxneCoxfsJ+xH8n1p0TtSKSh+zcNQCFH1jf0ZXOUgbpsX/PtUO8r0o3c8d/Q6K+FtAgltCh79CNWO14lpv4r8enWBU1YwTY9uhD9WN3ePfI7AldOgrdNjYl+rGblXeY2xse3XjpNh26Ef84MYBulZ5jzGx7UZNrfL78UZFf+KNLhC/C4pmdGx7NaNRk2PbS8a4SABdYn9CMyq2vbpx+9h2xcDY9s0zxmxlrEAnqxic+L7O7BJ3bISufRtxsonYn8kOi/7e+75BD4r/Tg2cGf9ZWvO3ObHtpefPxN+mp4l+bhSUdgyM/f0q7Yoqz50iTemZHjHvwbDY9urGap/HobHtm2eMf42O53FYbHvJmK7yGvFGXe34WNUY/1kq5TD+lk7FkNj2anmsmueqxiyl5+RER7XPdLXjX3XjiNh2qKO6cVAVQzVjtXNl/DmidPyuZhxQxRB/rqtujD/Xls7V8cfwaudTzQdt7EppXBEd1Y3x57rqY7f4cZWiO66u9ozYWtSiFlsqakWlj1kolZCta8MH/Al9HBnTgI4YYBk1i4xzGUbNDG0vbc+7nIReGiGoI+tcStqcS/gkWZM235etvaOMx5MxDZEDrNK2spdh1M5VjMdEGLtshvE82ZI6fMCf0CeIMXyA5ag5ZMxyjNopwjhMjEfFGJeRMt+OMBrS5oIqxpPEGD7RdtSuYtwhwjicjHMZCX1khLGerHMpKXNORHvQGD4pSeiTybrLIweBjporxvBn62lGknGW4+rDIwxdN8P4Q7IxxqQ+lazbEDnActS8KsZRZJzLcPWhoe2KbtLXZ8cYf0TWuTjGeDoZtwFFvwjj7mTMZZEDUa1GkzbLcfXBMcYGUuabEUaHjPNjOfaET+6S+tNVjAskj1MijGNIm4YqxmWkzNdjjD8h4/ycqElJUn9GjOGFeUftQTKzDO2ED/iVGU2yy6WY5P7hBNWdunHn0+Pw8M8CxtDvkycw5bx90Ynw4tOoU2cx/acHkuwVfvzsO380g888mcTwYaHt7qCBjP/eUQzeN7zwlOiRZsKnPkHKfDXciEvG+SkZ50KiJk5J83nJY/iKJ0ctls9jeNFaq+3ImOW4et/QdkVPss5yUubMDhi/EGt09V5kzGXoSON4suYyXL1PhLEXWbeBpPlSjPFCMs7PiJrcJc0XxdgrwrgPGbM88kKRVhPEuFcV4xcijImqxpT5MllnGYqeEcZ9yZqGyIswRk0ka5bjqD0jjL3F+PkY48/JOD+ldIEgzPhVss6lkReKXL0fabM88iKMUZPImOU4alGEsQ8ZdzlJ89kIY5KMc1EV41liDC8Yu/pAMYZPxI2aTMZchqP2iDD2JeM2kNSfqWL8cYzx69LX3SKMB1UxTpE8Loww9hPjpyOMKTH+KMb4zSrGg8UYXnQxaqoYd69iPD3SmHUuJm1+GGM8u4rxUDLO8sgCm1HTpK/nRRj7k3WXk9SnRhjTAWP4eSZlziHrXErUBTdXH07GuSzyIoxR08U4N8I4gKy7nIQ+OdKYcS5GqfhicS1qUYstF7Xd3z7g2Np2f2sJ375Gzrucgn8P0IxR40mYY3DUQpRS+HYtef9qCt5vsaxGq8G4+jAS+hCUSmBtnrx/MwX/Bnz7BooeuGZ/knoJSnXFWkvR/pG8dxWefRpI4eo9SJrj0KpUsCr6j5L3f0XR/ycAjt6ZhP4Eji5dyfLsq+S9yyn4fwRyAeOCgPEqMa5Bq8Ek9OG4+mAx5sR4Y8B4AEl9TMB4D3nvajGmcfVCkuZ4tBosxkfI+78OGGeS0McHjK+I8d6AcSmOmi/GNWK8XYxDAkZXjDeJ8U0UPQN5rBfj3eS8q/HtM2LcQ4yDxPifgFEHjJMDxl+LMY9RE0iYJQHj6oBxrRiPwNUHBYw3kvdvwrYaW/LYYrxLjM+KcZEYB4rxYTH+q9WY1J/A6ElifFmM94lxIgmzBFfPl8/ravLelRT834lxqOQxaLyBvH9zyah64eoDSOqjA8Y7yXnXiDEjxuMCxofIeb+W7eQ1jp4lxolifEmM9weMS3H1PDGuChjXVxidgPEmrH0LpXqR0AeS0EfFGBeTNMcGjP8m510eMO4ixgkB468o+A+IcZIYdxPje+S9q8S4Dq2Gi/HAgPF6yeNbKNWbhD6AhD4apbpgraXg30HevwbfPgdkA8YBYvyXGB8CTMA4XowvSh6DxmNx9dwK4+2Sx+HyeTxAjM0B49tibMljF6z1xXhthfE4tOofMP5ajE6E8VcU/D+JcbIYdxXju4E8rkerEYE8Gqxtpth8I8Xm27D+2yjdGyd5AE7qcJSuw1ofL38nxabr8b0XUCqLSS7CSS1Bm1JRrenZZ1n/x/tofuEFlDakJ4yjfuFCkkNKx6aNL63ilWsf5t0HX8bPF+k6qT9Dj5hG75nDAMit2sSr1z/C23c/Q2FDjuzQ7gw+aDID9x6PMho/l2PDn/7Kxgf/TnHNGky3rtTNmkn9/LnoVArrW96483levv4JNry4GiebYOCiUYxcsj3pvnWSx/+Tvn5Y8jhb8jhO8vg8Oe9XFP0/AwWMmiKfxzmBPF5Bwf8Dlg3S10fh6v0kj03k/WvJ+7dg7QqU6kNCHyR9nZW+/p309Yso6nD1niTMsWjVT4z/EON/ADdgLBUIPP85cv6vKPp/EeNUkmYpjp4txpVivEOMI8S4rxgbxXhrwHgwCX1kwHg7ef+6gHEvMfYV49/JeVcEjHPEOFaMz4rxrwHjsTh6FzGuCBg3Boz7oZQOGG/B2pUo1TeQxwzWeoE8voSiS8DYR4wPkvOuxLOPiHFXMY4R4zPk/F8HjNPEOCtgvJyCf6cYRwbyqLF2E3n/ugrjwWJMi/F2Mb4sxr3F2DtgvALPPirGuSTNJzBSIPD8pyWPfxPjdDHOFOM75LzLKfp3iXGUGPcJGFv6eiVK9Qv0dYvxt9LXLcZ9SJilrcaC/1fy3hV49jEx7kbSHB9ifBAoivE4HL1zmbHg3wlsQqvRYtxbjBsDxncjjL8h718vfV0fYbwczz4OJHD1biTM8Rg1KsZ4PI7eSYxvk/OueB/G/iT0IST0ESiVwtpiwPiyGPcVYy8x/pm8d2WF8RMYNVKMTwX62gsYdxTjW2K8S4xjAkaFtRvEeFvAeCgJfXjAeBt5/wYxdhXjkoDxT2J8QozzxDhCjP8NGH2MmiF93WJ8M2BsRKuxYtwrYLxGjO+h1ICAMSnGW8X4akUee4rxATE+Kcb50tctxifle91i3EGMOwSMl1Pw7241Js3ROGpPMa4n519Dwf+NGAdKX7cYCwHjaxV5bDHeL3OJFuPuJMxxrcatJT4uu78dxPc+bEqnx62cVdv9rRMivExei498aDWkNEmjDitFJUfNRSkl7d1I6P0AhbVrpKi0J0qVruoqlcDVewIFfPs6SvUgofdFqa7SrnDYFas3oe3TKFI4ekFrQQlKV/dcfWDrKhRH74xRkwLtQ8XYJWDctczo6v0ALcYhOGXGZMD4RoRxrhjHoUjj6gWtBaWSYbIYBqBQmAqjZqj8DV2wUlRy1OyAsTuu3h8wAeNilHIDxr2AYsC4H0rVVxgb8ewzYlzYWlAqGbcX40Axziy7wt9mrBfjhApjDzE6WLtW+jrK+CZK9Qwx7ibGZ8W4R2shpGScIoZBYpyFVhMCxmHS3lWME3HULoHPa6loiXKwdp18fiuNewMevn0LrXrKZCVonBcwlopK5capJMw6iv7ggHF8wDhcjN0CxlkBY08xuhVGJySPb6FVrxDjbli9Cc8+txnGUuEreIW/3FgQ48yAsVeFcSiuXlRhDOaxtxi7tBpLRbRGPPu89PXi1oJSyThNjEPEuEuFcUSFcVKE0cHa9Wg1DFfvETCmAsa3xbhfwKilGNlizEoe+1cY11L0h1YxdhfjZJzAyketeuOaAySPQaNpNTrOnphCEfLvgNsbld0bpetajcbZDe01QtMLYLKo9CKUaVullRo1Cn9TI26fPqA16QnjSAxu+95nh/dgwN7jcbtm8Ase3Sb0o+eMtmNXsmeWAXuNQ7mGohSV+s4bjTKlBco6mSSz447kmx3UqnW43buQ3WkaOlW68qu0YuDuQ+mSXkXuDYVOp6jfaThJKSiV8jhD+nqY5HFO2WoOzSgS+kA0PbAUcfT2OIHVmW15TGDtBowagasXBPKYltVIFt++g1Z95POYDfT17kAznn0Bpepw1eLWglK5cTgKI8axAcNoEvogND1bjabM2EeMyYBx94AxI+chxNg3xLhAjC+Kcc/WglLJuEMgjw6O3rVsNUdpwnsQml5inIJROwba++LqFuNGjBopedQBY0seV6BVP/nOZKTdBPIoRr1Xa0GpZNyJhFkveXRw9Nyy1RylCe+BAePUslWubcaUGEdJHluMWVnVFTTui1LpgLEljy+hVBcx9g4YdxTjiDZjYDWHVttJHntj8SWPQWM/EvpAFCksmyKMLXlcGWm0NJcKDapU+AoaHbUTmA0U/ZFi3C3EeGDAOBWjZlQYD6gwzg8Y62hZwRdtXIglJ8b6UKPV69F2FEqKc8EVJ+2N08pW4mrVn4TeP2AcHWG0+PZdtOovxRw59igHV+8hxlcCxl4B40ys3hAw7lZ2+55W48TYR4zTy2630mqA5DFdYVRi6BLIY4txrwrjIjG+WsU4Wozzym6DbDP2FeOMCuPAgLERo8bg6nkRxvfQaoAYkwHjYix5MXaV70zPgHEWVm8UYzLEOB5XHyB5tBHGA1FkxDgWRwWN9aXxIgrfrgr0dYvRDRhfE+PeFcZdKozzN+N20lp8EGHZMvsvbumoLa/pnKitVPqAY2tcqWTtBhqLZ1C0fyr774oeZJyLMGpHmr1zyftXUP5VS5I2Z5MwR5D3rqPJ+zbl25oqEvo4UuZrePafNBY/jWV12Xs4ajcyzoX4rKKxeDK+fb6sXasxZJ3lKLqK8c8Vxp5inCHGKyuMKTEeTs67hmbvO5Rva6pI6ONJmbPw7P+JcU2FcT4Z56f4vEdj4WR8XqgwjhVjPY3Fz1C0f6kw9hLjdJq974gxGCnS5hwS5jBy3lU0e98NMZ5AynwFz/6dxuIZIcbdxbhSjOVbfGu1nRi70Fj8FEX7YIWxtxin0ex9i7x/dYjxWyTMoeS8K2n2vldh1CT0iaTMmRTtgzQVPxtiXEjG+Qk+74jxpQrjOLJOgxhPp2j/FmK8GKOm0OydQ96/tsKYJm2+TcIcTM67nGbv+0ChzJjUJ5E0X6Zo/yrGtRXGPcg4PxbjSfi8XGEcL8vQ69hUPA3P/qPC2IeMcwlGTabZO5u8f12I8VwS5kBy3q9p9n4QYjyZpPkSRfsXmoqfCzEuEuObksdXKowTZRl6hsbi6SHGvmKcRJP3TQr+9RXGjBgPIOf9kmbv/BDjqSTNFyjaP9NY/BywrsK4mIzzI3zeEOOrZe1GTSTjLANSYvy/CmM/Ms4vMGo8Td43KPg3hhi/S8LsT867TIzBHcg0SX0aSfM5ivYBGoufB9aXvYKr9yJtfohvX6OxeEqIcZIYEzQWT8Oz/6ow9pc8jqfJ+zoF/6YQ4/dJmH3xV/wS+/aPwAaNBtXvVFS/z8D6P+G/+iXwyo2q256ooedReGsVK35+McV33y1rTwwfRt9PnY5nE/zni7ez5j9vlrWn+tYx7cf7Uz+mN09854+8eft/y//GjMvksxfRf9FY3r31ft655g7wAkNErelz6AL6HLGIjQ8/ydsXX4XfWL59dpdZ0+j/yWOwzotsKp6C5fWKPG4veTQ0Fj8pq8HK85h1LkWrsTR5X6Pg31KRxywZ5zxcvRfN3i/IeT+hvK8NSfNpkvrTFO0faSx+CdhQ9gqu3pe0OR/fviTGNyqMU8SoxFh+flYMIOssQ6vRNHlfpeDfFmI8H0ctJudfQs77WYXRIWk+Q1KfTtHeI8byB7C7en/S5gf4tiWP5X1p1DS5DRwx/qfCOFCMI2nyvkLB/22FsU6Mi8j5F5PzLgwxnkFSn0bR3kVj8cvApgrjAaTN9/HtC2J8q8I4XYyWxuKpsoopaBwkxhE0eWdS8G8PMf4QRy0k518kxuBW5w5J8zlS5pMU/DtoLJ4ZYjyItPkevn2OTcVTY4y+GB+tMA6Wz+MImrwvUfB/X2HsIsYF5PwLyXkXtTOmzOdJmlPJe3+gyTuTyq3SS7dUfRffPivGtyuMO8ht4B6NxZNl9U1baIaQcZah1bAY449x1Hxy3k/J+ZeEGL9I0pxM3vs9Td5XQoyHkDbfxbNP0Vg8LcS4oxjzNBZPkdU3QeNQMQ6hyfsiBf+OCmO9GOeR834ixuD01CFlvkzSnEjeu50m76wQ42GkzXfE+Eks71QYdxJjsxifbG90G9AMorH4RYr2zgpjVzHuRs77MTn/FzHG39DkfT3EeLgYn5A8rqgw7izGJjYVT8FvZxwmxoE0Fj9P0d4dYvwJjppLzvshOX9ZhdElZc4kaT4hxq8B5cfwhD6SlPkWnn1cjCsrjDPJOBcDjWIsP49ohouxvxjvKWtXdCPt/BRHzSHnnU/OXx5i/CpJcxx571aavG/EGB+jsXh6iHEWWefi1ovEW0N8HFYq9WT4tAM/giuVbuMsVtVWKnU4akWlDzi2xqLSpsKJFO39Ea1pXH0IBf+qyN9P6NPJ+xdHtrt6qUy4mkLbDfPweaHdZKQlNEPRaghF+9eId8jg6oMotCuEBI2fJO//IsZ4rExco4zz8Xmu3WSkzTgMpQbhVRRryo0HUvCviTGeRt6/JMZ4nBQAwndiMuyOzzPtJiMtoRiGVgPw7N8j3iFLQu8fUqwJGqv19fEU/GspLy4GjQvweardQL/NOAKt+rQrMrRFHQm9b0ixpu0VSn0dnceE/gR5/5pIo6P2wLOPtxugtr3DSLTqHWMsXY1uX6xpe4WkPlUGqFHGE8j7V1FeuAsaF+HZx2KMo9CqR7tCSFvU4+o9Kfg3dNB4JeUFp6BxTzz7n3aD6LZ3GI1W3eTWvSjjopBiTUtoEvpk8v6lMcYTpRgeZdwLzz7UboDaZhyLVnXtigxt0RVXL6Tg3xxpzK4/FfV6Q6SR3ifAe1eCDTf66f15e5mPt259aLs7aBCvvTKatY+/Hd7eNUWfuSPbFZRaQmnFxE+NZ+3t94S2A/Q6cC7r7n4APC+0veuiyWSPWY7lvfD3YDxaJdpN4Nvau+Ho+RT8WyMERvpyWaSx9Fn4FeWFkrZw1H549m9YVkUYJqCUwa+YwLe1d8fRu4UUlN6P8RTy/i9jjAfg2b+0u/jSEpqJoBR+xQS+zdgDR+1Kwf4mQuDI97aa8TLKixBt4aoDKNo/t7to0GacDMpvNzluM/bEUbMp2MqiV2caD6Jo729XkG8zbg8U8HkqwtgLo2ZStL+LMR5P3l8eYzxV2qOMB1O098UYpwK5GGNvjNqJoq0sKAWNx0meooyflDyHrzVw1aEU7D1UXjRoM04DGvF5JsLYB6NmULSVBaXWdyChl8p3oiPGu6m8aNBmnA5swOe5CGNfjJoWUlDqTOPhFOwdVBa724w7AGvxeT60XdEPo6ZQtHdFCUjoY+T4F2U8TcbA4XM8Vx1Jwf4+xrgTsKrdRdVy4+R2BaW2SJLQR5H3f91B4++oLMi3RKmwdFXrqqgPO2pFpW03akWlzolaUekDjq2tqOT5/2VjMfzhpm3hEDUILkWaqGLM5v1+Z0RHjS5RE8/Oi23BaIgaBJeimjFBVCGk86Jm7JzYFoya+MXVKaKKrKX4kI0WMi/UofMxRpUEG17gBFj/8GDW/j36WRGb1md47YX4narQCvyoc7tl4MjVaC/a6GQUyovOY3bfF6k/LHxiufnR0b6u1q7o+KL2aq9RzZAkqpi9ea+/OdFR47aQx63BWK0vt4SxWnwcjNWOG50R1c4j1c6V24Kx2nigM+KDN2adm3F0/C5yWypqRaVtN2pFpc6J2u5vH7MoRK5QCka1glDcSWBzfr8zoqPGD7pYA9uGsdqgoprxg57AQ83YWbEtGKsNxOMmG/BhG1We+IISxBaUAJpeDt8lqyU2rKuLbQdiCkrguMXYghJYKMbnMTUlfDXa+4uO9nW19s6YHFd7jWqG+L7eOozbQh63BmO1vtwSxmrxcTBuiSe6VDuPVDtXbgvGD7qgBFvCWPTv22xNLWpRiw82ag/q/rhFlQlNLWpRi1rU4n8L1QlzCevFL+W3tmNL/ZWqPnGsdjeBcrfEhKQWtahFLWpRi+iwVYuQtejsqN3fVIuoqK1U+phFy5bZHYut4/7l+KgZOydqxs6JmrFzYus2+gmwHXy+Q6J3+PMjWiKV7tiFgWLBqVKYUlULV4VXtsTDUavlcWv4LNSMnRM145aJmrFzombsnOi4MbjTcS1qUYsPN2pFpY9ZOGoBiv6xP6OrHKQNM2LbNdUO8r0p3Ssd/Q6KXjHtlG1HH/oKqppxUmw79KG6Mf42leB29KGvUNU4ObYd+hJvdFD0iH+PD9zYj/jDjIOie/x7BLZ6D4vqxu1j2xUDiDe6KLpVeY/tYtuD2y2Ht0+JbS8Z4wZgCahqHBvb3nHjQOKNSSC+GKEZE9veceNgqhvrY19DMzq60YDtMTX298lMiW2umx6/gLhrvyacukTsz2RHRH/vrdUkRsX8DUByVPx2zYUnqz12IA3E36YX3KI8LILbVoe3x+dZMTS2vWTMxv5EcIvycEO8UVdpV1W3xc7w4RvjX7/ky8S/B8Ni26v3dZW/oaqxjlJ/x71G/Oel2rGlunFUbPvmGeOfpVbtO1Ht+Bl7bAOgC6VnHkVH6RgbZ+ioMf4cUTp+J2N/QjGoimFKlfZqxvhzbek8WM04sIphSpX2asb4MUvJGHeeUTIuiXuP+LFX9bFb/NhP0RNX7xn7M7WoRS22XNSKSh+zUCpBxrmI0uCgfST0CWRMQ+QAy1FzyDjLcdTs0HbNMDJOAwl9fISgnqyzjLT5PuEfP0PaXEDGuZSoSUlCn1TFuCsZsxyjZkUYh4vxuCrG71Yx/oKoAX9Cn0zWWR45CHTUXDHOjDCOEOPSCGNXMZ5L+CTZkDY/jDUm9alknYbIQaCjdhPjzhHGUWSc5ST0MaHtim7UOQ0xRoe0+bEYwyclSX2aGMMHgY6aL8Ydw41qtOTxqEhj1llGyny7A8ZPkXUbIgeBjlogxh0ijGNImwYS+sgYYwMp863QdnDIOD8m61xC1KQkqT8jxvBBoKP2IGMuixyIlozLcfXhEcbuYjwnxvgTss7F0UZzhhjDi94l4/IY41jS5jJcfWiEsYf09dkxxp+RdS6KMX6ejNuAol+EcTFmwLLowlF6O9SIS1E9Doog9CS10wX0OPKIiHZDv9NOZOoF+6KT4cWnMZ+azYyfHkCyT/jxs9/CMYz61lLSY8KPTanhAxnylZOonxv+nTL1dfQ9/EukzNfCjbhknAvlPBM+cUqaL0oe+4a/gt5b+jp8UqLVBDLmMlx9QGi7ohdZdzkpc1aEMUHG+XmsMWW+LMY+EcZ9xBh+gcKoiWTNcly9X4SxN1m3gZT5ahXjhTHGr5Bxl6HoHWHcT4zhF3qMmkTWNODq8M07FH3EeGaEMRkwhk9AU+YsyWOU8QAyZnnkhSKjJpMxy3H1PhHGvmTcBpLmSzHGi8ToRhi/JsbwC0WuPoiMuSzyIoxRU+TzuFeEsR8ZdxlJ84UIY4qMczEZ52cxxm+QcZbFGA+WPIZPxI2aSsY04KjwSXjJ2EDSfD7CmCbrXEzG+SlRT85ImbPJOssiL2a5+lDSZjlahRc0jJpGxizHUYsijP3Jug0kzWdjjJeQcX4SYzxHjOEXs1x9uBjDC0NGTSdjLsNRe0QYB5SM+jNVjD+KMX5bxj3dIoxHkDYNaBVeYDNqhuRxQYRxoBg/FWO8lIzz4wijImW+I3kMNyb0kWSc5WgVXqg0akcxzo8wDhLjaRHGDBnnYpSKL3LWoha12HJR2/3tA46tbfe3lvDtG+S8Kyj692JpwqhxJMwxOGo+SimsXU/Ov4aC/1usXYNWg0noQ3H1QSjlYm2Bgn8ref9GfPsGSnXH1fuT1EejVD3WWor2fvLe1Xj2aRRpHL2ApDkOrUqT76L/OHn/cor+PwFw9M4k9XEYPSlgvFyMzRg1XozzxLhOjLcHjIfh6gPFmKfg31ZmTOgDSOijYowLSZpjA8bHxPgvMc4U40Qxvi7G+wLGpbh6NwAxXk3B/50YhwSMjhhb8vgmSvUQ45EB431ifEaMe5A0SyuMv6bo/1uMs8Q4QYyvifF+MU4Q41xpX0u+NY9rxXg4rj4gYLxFjG+J8UAxdhHjvWJ8VoyLxDhAjI+K8aGA8fjW2zE9+yp57woK/n1ADqMminFXMa4R4+8CxiNw9f5izJH3b6Hg3yTGnmI8ImD8oxifCxiPRav+YnxEjA8DSvr6Exg9ToyviPF+MU4S45yA8WoK3u+wrEOroWLcL2C8WYxvi/EgMdaJ8R7y3jWtRlcvJmGWBoz/kc/jQ4AO5DFovJyC/wCQF+OSgHF1KY+txmEBoxHjTRT8m8XYK5DHFuPdYnweRSZg7CfGh8n7VwSMu4hxOzG+LHlsMybNUhw9O2C8moL3+4DxSFy9b8B4oxjfCRiPRKmsGO8i711bYTwWrfqK8SExPhxhfClgLGDUZDHuIsZVAeN6tBoueRSjn8Ouugm7+lbIrwC3F6rHAaieh6FMycjau/Hfuw6aXwSTQXVbhOp9DMotGZufe571995H84svorQhNX4cXRcuIDGo9L3f+OpqXrnmP7z74Mv4BZ9uE/sx9Mip9NqxVCzKrW7k1Rse5e17nqW4IUd2aHcGHzSZAYvHoozGz+VZfe8/WXv/vymsXofTrZ7u82bQY4+d0akk1vfZ8M/HWHvvg+TffAedStFl5yl0X7QrTveuksd/kfOuwLOPAAZHz5Y8jgnk8VcU/L9IHrcnaY7F0TMlj++R966i4N+BZYPk8UhcvQ9KaaxtJu/fQMG/Bd+uQKk+gc9jBmt9Cv6d5P1r8e0LKOpw9V7yeewdMF6OZx8V4xyS5niMTHY8+6IY/yrGKWLcWYzvkveupuD/QYwjxbi3GJvI+zeQ92/FthpbvtdpMd5B3r8uYNybhFkSMP4zkEcHV+9KwhyPUaPE+AJ579eSx6IYj8PROwWMV4lxoxiPwtV7BYzXi3ElSvUV4+EB4x/E+CKKLmI8JmD8PzE+Cri4eg4J8wmMGinG5+XY8xfACxh3DBivlL7eiFajxLhnqFGrvrj6YDGmxPh7Mb4UMC5Bq15i/IcYHxNjSx7F6D9Hzv81Rf9BMU6Vvm4xrhTjnVg2odVIkuZoHLVYjI1ivC1gPISEPixg/B15/3ox1gfy2GL8OznvyoBxrhhHxBiPw9E7RBhHkTRH4ag9ZVzUSN6/TozvBoyHo1QSa72A8eWAcQla9RTj38T4uBh3I2GOCxifDRh9HD2NhD4OR88Q44qAsTHEuCmQx3fRql8gj0Hjdfj2lZLR7ENCL0GrHmJ8kJx3VcA4T4zDxfiMGP8mxulinC7Gd8R4F5ZGjBpNwhwlfd1ibMnje2I8lIQ+NGC8XfL4CoquYjym1Vjw/0reuwrPPgEkxHhswPi0GP8uxhlinBYwXiHGJowaI8ZFYtwY+M6sQqv+YjxEjMWA8VUx7ivG7gHjlXj2STHOF+OwEKOVPB6Po6eK8W2ZS9wdMB6No/YQ44ZAX69CqwHS10Hjb8X4Gkp1w9X7ktBHB4x/CRiTuHp3MVZbjbpl4+Oy+9t+H8Hd326v7f7WKVF7UPfHNBQDSwNO3NZiiKNmoeR5IErV4+rFQEGKIYNw9AKUcqXdxdG7Y9koBZseuHoxStVLu8JhFlavRtvhKFI4emHZSgmjJoihNJBx9M5lVwLbjImAcWbA2FWMxdaikqN3DxgTYtzQWrBx2hlnYvUqMaZjjL0oFRp2KrsSqBgUMOYwagKO2qmtXXWV5blehdGpMG6MMbbkcURrUSnc2FuMO5ddCVQMlvakGCeWGbXqJsYi1q4T4/wK4wIsm8TYU/q6S4hxZKuxpaBUMk4UQx9aCjbBK4GaIaXJRatxEk5g9ZFW3UtGW8Sq9Wg1pMKYxNULgcbWopKrF1UYd8HqNWg7CkVGjP0DxkmliSJ9xTirwjhUjKkqRk8KDUNw9LwYYy8x1kUaXb0oxNiSRxNh3IvSLQqFEGPpe9pmHCpGEzDuATQFjIsrjLOxei3aPtdasGkpKJWMkyVPLcZdyq6oaobJ563NGFzFVTK25HEDWg3DjTS+HTBmA8Y5YnweRVby2Ddg3F6MfSOMwyWPaVqKSsGl+lr1xFV7gvbDjToJ3RaC3wSFd8Dpheq2B8q0GW39bJS3FppfAJ0tFZXcNmNyxHCyO+6A6dEdpTWp8eNxB7R9FrJDutN/4VicTAK/4NF1Qj+6T2n7ziV7ZOi/cAxYS3FDjszQ7vSZMxxlSqsvdTJBt1kTcdQmvNVrMd26UjdzIjqVlL9BUzdlO2zTRvJvvo1OJanbcUprQamUxykkzHsU/f60FJW0arvNp5THvSmtOi0VlYK3CWnVq/X2hZaikqt3QykteUoF+noFSvWW70xG2jWunoNlrRRD6nD1nq2FkBajq/dG2wGUCjazy26904wQYxdaikrlxt5yngka5waMaVy9CGhuLXyVjOmAcVcxvhRhnIqr30Xb/rQUbMqNI+Xz2GKcWnYbUcnYkseNaDUCV+/azmhpDhRDKo1zsawLGBdHGAfQUrAJ3nZWMu4ZME4ru0WnZNwLUK2FL1fPqTDuUWHco3UlQsm4mxhflqLSnq3FmpJxmhgH0lKwKTOqUXL8rKelYFNu7BMwlopKjgoaM4E8thRDooyvRBin4+r3Asbd0IHbICuNjq7MYx/Jc4txlBhVwLgYS67CKN9rZXD1PCzrA8a9WgtKJeMMMQ6KMI6Wc2XXgHH7QHtfMWosmzBqdIUxG8jje1IMqWJUe7YWa0rGHSqM88pus9RqjBi7iXE6Rk0OtPcTo4kxtuQx3Oi0Gl8N9HWb0VE7yvhysBjnVxjHirG7GGeUrXwsGfcSYyNGjcFRswPGOslji3EArl4YMDpi3CDGejF2DzUqkjh6XtldACXjXpJHP8TYX9odMY6tMHYRYz5Q+NqjwjhfjK9VMQ4R4/yqt4LWoha12PJRW6n0AcfWuFLJ2vU0Fj9N0f617L8rupNxLsSonWn2vk3ev6riN11S5hskzTHkvKto9s6lctv7hF5KynwDz/6DxuJnsKwtay/dPvdzfFbRWDgJn5fK2jWjyLjL0XSnsXg6Rfu3EONFGLUjzd455P1rKowJUuabJM1R5Lwrafa+G2I8lpT5BkX7N5qKZ4QY55JxLsTnXTG+XG5Uo8k6y1F0ZVPxdDz79xDjxRi1A83e2eT9a9sZ0+ZsEuZIct4VYixWGI8jZb5O0T5IY/EMYF2I8ef4rBDjKxXGMWKsZ1PxNDz7jwpjDzFOF+N1FcYkaXMOCXM4Oe/XNHvfrzAqEvp4UuYsivavNBY/G2KcR8b5GT7viPHVUCN0obF4Gp79vwpjTzFOo8n7BgX/hhDjt0iYw8h5v6TZOy/EeAIp8xWK9s80Fj8HrK8wzhfjWzQWTg4xjhVjVoz/rDD2EuMUMd4YYvwOCXMIOe8ymr3zQ4wnivEBMW6oMC4g4/wU375BY/FkfF6rMG4nxgyNxVPx7L9DjL/AqMk0eV+j4N9cYUyJ8WByXgPN3g9DjCeRMmdStPfTWPx8iHEhGecn+PZ1NhVPxvJ6hXEcWacBSIvxoQpjbzFOosk7i4J/S4jxuyTMgeS8ZTR7P2pnTOpTSJovUbT3ibH8gdeO2kOMr4rxjQrjeMljQozlx2xFHzFOEOOtFca0GA/Af2cZ9u2fUr4lskb1PQnV//Ow7l78V88Ev+Kh3F33QA+7gMKbq1hx4UUUV60qa04MHULfz3wKzyZ5+LO/Ye3jb5e1J3tnmf7j/anfrg+Pn3M3b/3h6bJ2k3KY+M09GLDndqz7/Z2sue128ANb1ilF1332pPtB+7Pp4cdYsewKbHP57jrZHabR99Rjsc4Lkse3yt9DTSTjNABG8vhIRR77knEuxajtaPK+QsH/bUUeM6TN93H1PuT8i8l5P2uXx6Q+naT5LEV7F43FLwObyl7B1XuRNj/Cty3G8jwZNUmMmsbiKbL6JmjsJ8axNHlfpuD/LsT4A1y9Nzn/5+S8n4cYP0XSnEHR3ilksogGAAEAAElEQVTGxgrjPqTNBfj2eTYVTwkxThYjYnyswtifrHMpWo2hyfsSBf/37YwZ53wctSc572fk/Iso3+rckDSfIqk/Q8G/gybvzBjjc2wqnhpinELGWQZYGosnyYqMSuMytBpNk/dFCv4fQowX4KjF5LyfkvMvDjGeQVKfTsH/PU3eV0OM+5E25+HZZ2gsfhLLOxXGqXI7vS/GJyuMA8g6DWg1gsbiFyjaOyuMWTEuIuf9hJx/SYjxsyT1aRT834mxfKt0Vx9A2vwAzz5NY/FULCsqjNPEWGRT8WT8dsaBYhxOY/HzFO1dIcYf4aiF5LwfkfMvDTF+jpQ5jbz3G5q8r4UYDyRtvo9nnxLjygrjdDHmxfjfCuMg6ethNBY/R9HeU2GsE+MCct4F5PzS56YtHFLm8yTNqWI8Cyp29nL1waTNd/Hsk9LX71YYZ4ixWYxPVRgHSx4HSx4rjV3IOD/GUfPJeeeT8xtCjF8gaU4h791Kk/f1COP38OzjNBZPCzHuILfTN4mx/BitGULGaUCrQTQWP0vR3htpbPbOI+8vDzF+iaQ5ibx3M03eN0OMh5I25+LZR2ksno7lvQrjjmJsZFPxRHz7bIVxKBm3Ac0AMd5XYawn4/wER82l2fsBef+XIcYvkzQnkvdupMk7GyjfgMLVh4nxP2IsPxcatTMZ5xK06sbWErWVSttu1FYqdU7UikofcGyNRaVNheMp2j9HtKZx9YEU2hVC2iKhTyHvL4tsd9XRFOwtVJ7IWsIwB5+XsLwZ2q4ZglKD2hVryo0HUGhXCHm/xpupPJG1Gefi83y7CVNLKIag1cB2xZpy4/4U/Ov/d6NeIkWKKOM8fJ5pN9AvNw5oV6xpiwyu3jekWPN+jEvlb8zHGJ9uN9BvMw5Fq37tijXlxn1CijWdadwdn//GGIejVa92xZq2yOLqvWOMpaJM3m+I+RuOleJjIbTdUQvx7GPtBvpt7zACrXq0K9a0RWl1RMG/KcZ4ogxQo4zHSRE3yrgHnn2k3SC67R1GoVU9nv1PxDt0wdULQ4o178d4vBTDi6HtjlqEZx9uN4hue4fRaFXXrhDSFvW4ekGMUZNddxLqjV9GGul9LLx7NeVFiLbwk/vw1jLwN2wIbXcGDuS1l0ez7snwz6vTJUnfXUfwZkVBqY2omHrGKJofqCxCtEWXPRay9u4/lRecgu27TyR91K+xrA5tV4xFqQR+RZGhLbri6t1CCkqtSBL6E+T9yyKNCX0Cef9yovLoqL3x7N+xrIkwjkMp024C39beDUftSsHeHiEw8nnriHFfPPvXdhc22gzjUSh8/hvR3g1HzaFgK4te78d4Inn/1zHG/fDsXyKNmgmAj0/4503RHaN2oWijPm9Gji3R35nS8fOXlBdK2sJV+1O0f44xTgKKMcYeGDWToq0serWEQ0IvJe//qgPGAyjYB6i8+NJmnAzk8Hk2tF3RE6N2DCl6BY1LpC//V+OBFOx9VF58aTNOBTbh81yEsRdGTado744xHiPfiSjjySGFkqDxYAr2HiovbJQbN+LzfISxN0ZNDSkodabxEAr2LiovbLQZpwHr8HkxwtgHo7anaP8YIXBJ6KPI+1fEGKuNgQ+lYO+gsiDfZpwBrG534bfN2BejJoUUvd6P8eTYcZGrDqNg/xBpNGpnss41rauiPuyoFZW23agVlTonakWlDzi2tqKS5z/BxuL+VX7KIWpSVooUUQWjzfv9zohtwWiIGqiXIk3l1cLycImawHdeVDNWy2PNWApN1EC9FNWMCaKKXp0XNWPnRIzRQuaFLDofXggGQCXARhvXPTSEdf+I3hVs4/oMr79QZem/UhB5breMmfo6xkYfe3yTwOajv3OZvV8ie1D4pG3zQxE1KStFkqiC+ua1V3v9zYma8eNjrBbVDNWOTVvCWO3491EwVjtHdEZsC8Zq45qPgrHa2A+yzo2tz/L6sOPjUVQaNm1f9dErKv3OnsUqXvnI9t2Witrubx+zKF0pqxbVii1xJ4HN+f3OiG3BGH8yjC8owQdfCIHqxmp5rBlLUW1wVs34QRdCoGbsrIg2qjzxBSWILSgBNL8SvnNSS2xcF76rW/l7RE8Mk6l8bEHJWrD5+ONjYnL4arT3F9Umr1XyWLW9MybHNePHx1gtqhmqHZu2hLHa8e+jYPygCyGwbRirjWs+CsZqYz8o+vdvtqYWtajFBxu1otLHLapMaGpRi1rUohb/W6hOGKdbL34pv7UdW+qvVCdMHJ0tMSGpRS1qUYta1CI6bNViby1qUYstFbWi0scsjJ7YCa+yddy/HB81Y+dEzdg5UTN2TmzdRj8JVlczxrcn+oQ/h6MlUplqV3fjI5dL4NvoU79SLf8rOoqv1nfIsHnRsTxumagZOydqxs6JmnHLRM3YOdFxY3AnulrUohYfbtSKSh+zcNTuZdvRh4UObLsaFiawRXno7xP/+8g23jHvINuRx7xHlRNJdeOU2HboR7zRQdErpv2DNypK23hHh4uiZ0w7aBVfZOy4cQAdN06Iba9mDG69HRaKgcQfChMo4m9J+uCNg4g3JmVb4ujQjKti2KFK+7TYdsVg4o0poFvsa2i2q2KoZoy/HV4xlPiBbAroGvsamrFxjdjuVW7Jz8b3dd30RGxRp1u/HE6XZPxrjIr+Tllfo4eOj/399JgRse3Fp6o9diBNaWv56NCMjm03Kv45GdX7Ovq5VKXIAPG3EmpGVTFU+zzG/w2KkbHtkJV/0aGrvEb1PMa3V3v9Ug6rGeM/T9X6sroxvp9Kn8VMldeI/7xUN8Z/FjRjYts3zzisiiH+GF3dGHNsA0rHxnSV1xga295xY/w5omRMxf6EqrIdfceN8efa0nkwzqjknB9nqGasNnaLPwdAd0rPEYsKJWOnOENH8xhvVPTC1XvG/kwtOjcspRsnP2r/ak+X7pyoFZU+ZqGUS8a5GAi/0pzQJ5MxyyIHgY6aS8Ysx1FzQ9s1I8g4DST0SRGCrmSdZaTN+YQXGwxp8yPZFjbcmNSnlraFjRgEOmo3Mc6JMI4i41xKQp8Q2q7oRp2zjLQ5j/CviCPGZURNnJL6tNL2uhGDQEfNJ2MacNTscKMaTcZZRkIfF2nMOg2kzfdjjD8WY/jEKak/JcbwQaCjFpAxyzFqVoRxjPR1lLG7GL8bacw4P5Gta6OMnxZj+CDQUQvJmAaMmhlpTJsGEnrpZhjDJvJBY/jEKWnOIOtcKkWVMOMeYtw5wrgdabOchD4mwthDvjPnRhhdMs5PxRg+KUmaz5F1GyIHqo5aLH0dPhDVapwYj4ow9iTrNJAy344x/oxsrPELYgwfqLp6L8lj+EBUq/HS10dGGHuRdZaRMt+KMf6crHMJUROnpPmiGMML867eGzPgUshGDKbT41HDL0X1PDS83elNascL6HlU+N+A49DvtBOZ9qP9MCkn9EfGnjGHGT89gFS/8GNT/8VjGXLmiSRHhRcLEsOG0veMT9Jl1/DvvelaT59DzyRlzg43kiTjXETWuZioPKbMV8i4y1D0C2139X7S1+F5NGoSGdOAqw8ObVf0IesuJ2W+EWssnQvDJ3cpc1YV4wFkzDKMmhJhnCzGgyKM/ci6y0iZr0UYU2Sci6sYv1bFeJDkMfxCj1FTxHhApDHjNpAyZ1UxXkTUBDRlvkHGbUDRN8J4sBx7wi/CGDVVjPtVMX41wpgm61xMxvl5jPFsMfaOMB4qeQy/CGPUdDHuG2HsT8ZdRsqcGWO8hIxzIaWHRIcZz5G+jjIeTsYsj7xQ1GbcJ8I4gKy7jKT50mYY3Qjjt8k4yyIvuCX0kWRMA1qFFwuMmkHGLMfVe0UYB4rxCxHGDFnnUjLOzyKMipQ5l6yzLPJiVsm4HK3CC0NG7Sjjy8URxkFk3QaS5nNVjD+JNKbNuWSdhsiLWQl9NGnTgFbhBTajdpLx5aII42DJ4xkRxixZ5xdiDDvPKNLme2IMv5iV0EtIm2VoFV6oNGqm5HGP0HbNkFIe9acjjHVknEtQKv4CSy1qUYstF7Xd3z7g2Np2f2sJ375FzruSon8vliaMGk/CHIOrS8Uia9eT928g7/8Wa9eg1SAS+jBcvT9KOVhbpOD/lrx/A759E6W6k9D7k9BHoFQXrLUU7V/Ie1fh2adRpHH0ApJmKVqVJmSe/19y/uUU/X8CCkfvRFIfh9HjxfgmOe8qiv4fsTRj1AQx7howXi/GtWI8HFfvJ8aCGG8MGA8goQ8PGP9M3ru61ejqhSTMUrTqL8YnyflXBIw7i3FcwNiSxxbjElw9J2C8jrx/uxgHi3HfgPE3YnwLpXoE8lgnxj+J8Rkx7iHGfmJ8Qoz/EuNMkvrYCuMVFP37xDiRpFmCo2cHjNeKcR1aDQkYjRhvI+/fFDC25LHF+IAYn0WREeOSVmPRf5y8fwVF/98B43EYvZ0Y3wgYcxg1SYy7iHEdOf9aCv7vIox5Md4sxp4BY1aM94vxOTEuEmNfMT4mxodQaEyrcawYXxfj/QHjUhw9K2C8Rozr0WqoGPepMN6Eb98W44Ek9GExxsVi7FNh/DcKg9GzxDgmYLycov8AlnzAOFPa15JvzeN6tBomxr0Dxlslj2+jVU9cfaDkMSPG+8h714gxK8ZjKoyXSx4Njt6FhDkOo0aL4TXJY5zxGgr+7wPGI8SosTYXML4jxoMkjy3Ge8l711YYl6BVbzE+KsaHQ42efZV8q7GAUZNJmmNx9E5iXBPI44b2Rj+PXX0rdtWtUHgH3F6oHgegeh6K0mmstbDuXvz3rofmF8BkUN0Wo3odjXJLE7LmF19k/b33k3vhRTCa9Phx1C9YQGJA6di06bU1vHrdI6x88GX8oke3Cf0ZduRUekwvFQ7zaxp57ebHeevuZyluaCY7tAeDD55E/4VjUVphCwU2/PXvbHzw7xTXrsV0radu1ky67LoLOpnEWsumhx9j3f1/ofDWO+hUiuwOU+m6YC5O13rJ438kj4+gcCSPx2PUSMnjK+S9yyn6f8ZSwNFTSOilOHpHyeNq6es/SB6HkzRH4ajFrX2d92+i4N+Kb1egVe9AX6ekr++Wvn4Rpepw1Z7yeewlxoflO9NinC3GEWJ8WYx/EeNUMe4gxlVivANrN2DUCBLmyArjjWJcGWG8i7x3XZtR70VCHx0wPkTev5Ki/x8ULo6eI5/HFuNLYvxrwHhs665HJePVYtwoxqNw1CIxNgeM76JVHzEeKkY/YHwJpboEjD3F+G8xPiLGXcU4PMRYDBini/E98t7VFOydYhwZMKoQY9+AMdlqzHnX4tuXxbi3GHuI8V9ifFSMc0mYYwPGF8l7v6bo/y1gPA5HTxPju2K8S4yjxLiHGJsCn8cW48Ek9CGtxoJ/J3n/uoBxHxL6qDJjzrsCzz4mxt3EOOx/NI4W48KAsSWP70UY7xDjKwHj0WjVXYz/FOPjYpwnxqFifCFg9HD0NDFOLTf6d2LZFGJsDOTxPbTqR0IfgqsPChj/QN6/PmDcV/LYYvw/ct6VMcbn5fPYYpwuxiliXCnGu8Q4RowLAsaWPK4S46FiTGCtJ8YbxFgfyGM3Mf5DjE+gSODoeSTNsWhVukjm+c+R8y/H8/8uxhli3D5gvEqMjWI8unTHQavxBvL+bVi7Cq36i/HAgPH3YnxVjPuS1EejVFcx/l2MT4pxvhgHi/FZcv4VYvTFeGzAuEKMdweMx+Co+WLcJMbfiHGA9HXQ+DsxvoZSXcV4VMD4N3LeVZLHJI7eXYzxq7m2dHwcdn/rwbBp+3wEd3/7vT2L1bXd3zoc4Zc6a/GRD0V/XL07pUV/TRg1ASewxFypehw9H2s3YtVqtBqMo3dFKUfaHRy9K5ZV+PZ1FD1w9HyU6iLtCocZWP022g4A0rh6d7llqxRajZX/VvodR++EVm1LxBUDcPX8CmPb973NuEmMQ3D0nIDRDRjf2Cyjo3cvu+pbMs4PGHdGq7bbNkrGljzmMGp8jHGNGGdXGOdiWV1hrAsYd8Dqd9B2IJARY9tVX622CxhLBZtwI2KcULYCQKl6HDUfqxrFOFSMJsT4JoqeOHpeO6Ov30HbQaFGo8ZJX9eLcVaFcaAYlRgnVhi74qr5oBqxaq0Y5wSMCRw9F5/VWPtWwJgNGHcU4+CAsU+FcQGKrmLcBa1GBYyDAsa8GKdWGHcH1RQwzo42ql4hxh3w9dsVxt5lRkftjtJB48gQoxbjpLKVFFp1C+RxHVoNizCuCRjno1SmSh7DjN3EOLts5aNicIVxclke24xNYhyOo3dBKS2GJI7eTYxvo1RvyWPQuFPg85jF0bu3FpRKxvEBY6moFDRqhojRiHF7jNo+YOxeYRwheRSjTkD9XCiugcIKcHuj6ndD6XSr0dbthCqsgORg0FlU/bzWghJAcsgQMlO2x9RlQRvSE8bj9mv7TmUGdaPP3JEoR+PnPbpO7EfXCW3tie4Z+swZgddUoLAhR3ZYD3rtNBQlz3xSrktq0mSaVxWwq9bidK8nPXl7dDLZakyPG0Nh1XpyPd5GZ1JkpmzfWlACUIXteeeOM1j50EqUoxk4dwADdxvUuhBM26Gs/ttJvPnAnnh5n97TejNsn2GtC2+06iHfmWasWo9WIzFqVllfu3oelnVY+w5K9cHV81AqFejrmfh6JdoORVGHq3dvLdaU+nqi9HUP6etdy1aQaobi6AWUVg0UMWpK2coerXqKMRdjnI9lvRj7lo7HZcZZAWMXXFVpnFSahLUa51YYhwWMnhgnRRg3oNUonDJjKmBcEWLUGGbh6HfR9oWAsWfAOFny2BNwxDi0wrh7wDi1bGWPVr1K3yk/L8bROGomSm71LBnnBYz9pK+TZUZXr8S3L6KoF2OPgHF7MfaKMA6XPCYDxgkBY+/S3+DnsWpjiDEd+DyuFONuZUZHz8KyEt++FGl09QK07QW4uHq3spW47Y3TNsO4c4hxfcA4r8K4C5Z3xdhVjN1DjL2BBK6eG2FMiXF6iHE+kMeyEa3GVBgzOHo3yeO7KNUfp10eW4wvi3F+hXEKrn4zYKzM4wj5PKYAX4xtK6QUpTxa8kCj5HGnCmNLHluMc1EqIe0GR88W4yuBPHYLMfYR47yyFc1ajZRxUQqwGDUDE1gh1WYsiHFMjPE9lBoQYXxPjN1w1e6txZqScSqufgtt+4pxftmKZq1GVTH2EWNRjGNx1I4BY7ZktOuxalWEcY4YXxXj/ArjtIAxKcb4W+9qUYtabPmorVT6gGNrXKlk7To2FU/Ds/+oaOlKxrkQR82i2fsmef+6inaHlPkaSXMsOe9ymr3vAeVbTyf0UaTMtyjav9FY/AywvqzdqJlknV/g8y6NhRPxebWsXTOcjLscTU82FT+JZ/+vnTHr/ByjdqbJ+yYF//oQ49dJmqXkvF/R7P0gxHg0KXMORfsgjcUz2hkdtQsZ52J8VtJYOCnEOIKMuxxFdxqLn8Sz/yxrV3Qj4/wco3aiyfsGBf+GCqNLynyDpDmGnPdLmr3zQoxLSJlvUrR/obH4WWBDhXEOGecifN4R42sVxpFk3MtQ1IvxXxXG7mLckSbvaxT8m0KM3yRpjibnXUazd36I8VhS5hsU7Z9oLH4uxLgrGefn+PZtNhVPwvJ6hXGU5LGexuIpePahEOPFGDWdJu8sCv4tFcYEaXM2CXMkOa+BZu8CKregTejjSJmvU7QPiLH8IciOmivGN8X4RrlRjSbrLAfqxFj+PS4ZL8GoaTHGb5Ewh5PzLqXZ+1GI8XhS5msU7f1i3FRh3I2McyG+fUOMb1YYx4gxQ2Px1BBjDzFOocn7KgX/thDjt0mYw2j2LiHn/STEeAIp81WK9l4ai18IMc4T42tifCvEeBmQkjw+UmHsKcbtafLOpOD/tsKYJG2+jasPIedfQs77aYjxJFLmKxTtPWJsrDDuTsb5Gb59RYxvVxjHijEhxkdDjJdi1EQx3h5iPBdXH4Rd8Qvs2xdSvm2zQvU5ATXgS7DuHvxXzwS/3EjX3dFDf0T+jfdYceFFeGvWlP+NgwbR97OfxvOTPPTZ37DuyXfK23tmmP7j/akf14fHv3kXb9/1bPnfmHSY9I2FDNh7HCtvvIeV198DwTGAUvQ+cB59l+zNhn8+ytuXXI3Nle8YWrfDZAZ8+lhWP7ue+46/l8a3y/+GHhN6sOCKhSijuO/4e3nv0ffK2tN90sz/5e70ntaVJu9LFPzfV+QxRdp8D1fvT877GTn/onZ5TOpTSZovUvDvoMk7k/Z9vQcZ56d49jkai6diKc+TVhPIOg2AobF4Ip59sqxd0Uf6ehxN3hco+HdUGNNi3I+c91Ny/sUhxtNIms9T8H9Pk/cVoKnCuJiM82M8+6wYV1QYJ4pRsal4En47Y18xjqWx+HmK9q4Q4w9w9T7kvB+T8y+h/MkRWoyfo+DfTpN3VohxTzE+Q2PxFCwry9qNmkjGWQ5YMf43xLgMo8bQWPwcRXt3iPE8XL03Oe+H5PxLQ4yfImnOoOD/VozlD6p39d6kzQ/x7NNifLfCOEmMnhifqjD2K91irUaJ8Z4KY4aMcz6O2pOcdwE5f1l7o/k0Sf0ZCv5vaPK+FmLch7S5AM/+l8biJ0OMk8VYEOPTIcblaDVcjH8MMV6AoxbT7J1H3l8eYjyDpP4UBf82MZbvmuXqfUmb8/Hsk2Is/94aNUVup8+zqXgivi0/tij6i3EYjcUzKNr7Qow/xFGLaPZ+QN6/rMJoSJrPktSnUfBvocn7Rohxf9LmPDz7uBhXVRinijHHpuIJ+Pa5CuMAMQ4RY+V29Fkyzo9w1IKAsewdSJrPkjKnk/dupMn7JlB+fHT1AaTND/DsozQWT8OyusI4TYxNksdK48DS4x3UEBqLn6Zo/xRi/DGO2p1m73vk/V+FGD9PynySvHcDTd7ZIcaDSJvv49lHJI/l5xmjpssjKBrF+HyFcZAYB4nxzxWGOjHOp9k7l7x/eTtjynyRpDmFvHc9Td45IcaDSZvv4dmHaSyeHmKcQca5tKxg+2FHbaXSthu1lUqdE7Wi0gccW2NRaVPhWIr2rxGtSVx9YEixpi0S+gTy/i8j2111BAV7G5UDgpYwzMbnxXaTurYYgFFDQgpKLZHC1fuHFGuCxhNDBgRB45EU7C1UnsjKjS+0m4y0xUCMGtSuoNQWaVy9LwX/xg4Yj6JgbwIKEcZd8Xku0qgYjFb92xWUyo37hBSU3odRHy1/Y5RxN3yeajcZaTMOQas+7QpK5ca9Kfg3d8B4jHxWoozz8Hmy3UC/3Ni7XbGmLTK4es+QglLQWOU7o4+R71wxtN0wH5/H2w3024zD0Kp7u2JNW2Rx9SIK/q0dMC6h4F8XY9wdn0fbDfTbjCPQqguefSzGuEdI0avtFRL6E7HGhF5K3r820uiohXj24XYD/bZ3GIlSWXz7eMQ7lFbCtC96tb1Cdt0JqDcujzTSawm8dy2VRbGW8BN78VaDxt+wIbTd6d+f114ezbqnwr9TTl2CPruO4K07nokiMvHU7Vh3Z+Wkry167rsL6+/9C/h+aHty6nT+cZVLbk34Mb7r2G4Y17D6yfDPQqI+wb7/egybivrOKBL6+JAJU+A19HHk/auIyqOj9sSz/8CyNuIdxqBw8HkqtB3qcdWuFGxl0asltBjijMeT96+gvOAUNO5N0T4IrIswbocCfCL6kq44ajZF+4cY47Hk/V/HGI8j71/ZAeM4FDbSqOiGUbMo2srCXEsYEnpJyMSzLVx9PIXYPO5D0f6FygtEbYYJKAr4PBfR3g2jZlK0d8YYj5G+jDJ+goL/a6Ie+eqo/SjaB6i8+NISmolADp/nQ9sV3TFqx5DCXOs7kNBHxxpLx89oo6v2o2Dvp/LiS5txMrAJnxcjjD0wanpI0avN6OqjKPhXdsB4AAV7b4xxe2ADPi9FGHti1FSK9t4OGKuNgQ+iYO+m8uJLm3EKsA6flyOMvTBq+5DCXJsxoY+U49//ajyYgr2TyoJ8m3EqsAafVyKMvTFqUkhhLmg8grx/dYyx2hj4YAr2DiqL3S1h1A5knetbV0V92PFxKSrt9REsKt1RKyp1StSKSh9wbG1FpaL/GJuKB1b5KYeoSVkpUlReiXt/v98ZYYiaTJSiZty86KjRJapY03mxLRg1UROeUnwUjAmiirCdF9WMSaKK1aXYEkZF5F4hFjLPZ9GFGKNKgI02rntoCOv+Eb0T1cb1WV5/Ifyh8JtDBMvAkavQXrTRyYDyoj+Pb7zej9df6R/ZXi1Sfdez5z8uQumO9HW19s6I2ERuhqFm3LzoqLFaDjojqh1basbNi2rGauehbcFY7TzWGVFtzPBRMFYb+0HWuaH1+XcfdtSKSttu1IpKnRNb1e5vSqkFSqllSqkvK6XOk/+/2//wOg8rVWUvy7afbXmfBS3vJf//TUqpk9/ve2/t0X6ZauhPVWmPOwlszu93RsSfaGrGzY2OGj/oQghsG8Zqg7OPgvGDLtZAdWO1ye+WMEZPaFSO+IISxBaUAJpfiV/Ov3Fd/PbtpfeIbnLdYmxBCSwU4z+Pa1aF7yy3udF315eqFJSgel9viUJItclrzdg50VHjlrg4Wu3YUjNuXlQzVjsPbQvGD7pYA9XHDB8FY7WxHxT9BzZbU4ta1OKDja3mQd1KqUOArwarhFIYelgpNd1au3YzX2ca0PJ7cT+60Fp7L9ANOFn+BZdRnm+tbXiff8bWH1UmNLWoRS1qUYv/LVQnzHesF7+U39oOLvXvBKS1Hbsepd3qk4Va1KIWtahFLeLCbpELSbWoRS02J7aKopKsELoJWBj879ba/yil/gMsBw7dzJcbAbwk/8KiB/CSFJRaokF+D+A/wDJrbdTvb9Nh9KROuECxJZYfdzS2BeOWWH7c0dgW8lgzdk7UjB0NPwlWK5QfZ4z/GxJ9N5BfWR/ZnspUu7obH8WCg0WjIo89qqqxrq6RTRsz/7NhzeMDNuOnqvX11vBZqBk7J2rGzomasXNiWzBWi4+HMbgLZi22TNit/nNViw8rtpbb3w6T/xv2tN4bgEPex2vtAEy31i4M+0epoFRWoLLWnhL4mTM/qgUlKO2AVG0rzuDW2eHtO8W2lx7wFxf9iK9nOmVbvYe+xwdsVAwg3uhuhnFybHt1Y/wdnNWNibKt3sMN8Sdko3au0l7NOJDSffFRkUDRK6a9tAtSvKGjxkHEG5Moesa0l3aTijfE97VR8bdxl7YhjjOmUMTfNtVx44zYdsVQ4k8p6epGxsW2G7VjlfaOG0uLV6NDs11cI7ZHlec7ZOP7um56EmJW2Xbrl8Ptmox9jS6jo79T1mqSY8bE/n5q7KjY9sEzdGk+EBFO1iHRNRHZvvbJ/viN1b7X1fo6Ps+KkcQiyQLRxTsATXyeOmrUxOcZ6oD4Ww01oztkqG6Mf/2Sr67Ka8T/ndWN8Xmu1k+lfo6/bVQzsooh/thS3Tg2th26Ut04Ira948aYYxtQMsYVkxWaYVUM8ce/6sbxse2l43c6pl2hGVrFUM1YbewWf66F7pSeJxQVCsWQKoYP2tiDeKOWcUmcoaPG+HOEog+uXhz7M7WoRS22XGwtRaVDgbURt7i9BK23x21OrIq6VU4pdR7w/f8F+FEJpRyyziWoiIlTUp9GxmmIHAQ6aj4Z04Cj5oW2azWarLuMpD41/P3pRp3TQNr8kPCCiEPa/ISM00BpABNm/FRpO9OIQaCjFpAxy3HU3AjjGDLOpSR0+COzFN3JOg2kzfmET+QdMs5PZFvYKOOnxRg+CHTUQsljlHGsGE+KMPYg6ywnbc7bDGP4xClpzpC+Dn8osKP2kDzOiTBuR9o0kNAnxBgbxBh2qHHJOD8TY/jEKWk+J3kcFmFcLHncJcI4TozHRxh7ivH7McYLxRg+cUqaL4gxfKDq6r3ImAaMmhVhHC/G4yKMvaSvvxthTIjx0hjjF0vbZkcMVF29DxmzHKNmRhgnkjENJPTSCGNvsm6DGMMm8i3GS4iaOKXMl8m6DZEDVVfvK8bwIqJRE8mY5ST0MRHGPmTd5aTNuRHGJBnnIrLOpURNnFLmK2Td5VKIDDPuhxlwKdRFTIwyE1HDf4HqdWR4u9uH1I4/pOeSo0MLS8p16fepk5n2w/0xGTf0Jbb7/Fym//QA0v3Dv/cD9h7HqHOWkhkffmxKjx7M4DNPpNvu4d8pp0dXxp6zlJnfmxmaRpMyzF8+n/mX7Y6TCS9673jOjnTtenHkBQ5XHyTfmfBJslFTyJgGXH14aLuiH1m3gZQ5O7QdUmScS8g6lxA1AU2Zb5Bxl0nxPsx4sBjDJ05GTRVj+CJrRX8yscY0WecSss7FMcZvijH8oemuPlSM4RdRjJpOxizH1QdXMX4j1phxLiZqApoy54ixX4TxcDFOiTE24OqDIowDpK+/FmP8RYxRkTLfijUm9JFy7Am/mGXUDpLHAyKMA8V4VoQxI8aLKD1MO8x4rhj7RhiPEmP4hSKjdpQ87h9hHCTGr8YYl5Fxfh5pTJtzybgNkRfcEvpoMYYXC4zaWfK4b4RxMFl3GSnz5QhjlqxzKRnnQkoP264MTdp8T4zhF9wSegkZ0xB5McuomWLcJ7RdM6Q0BjZfjDDWBfIYZfw+Wach8oJbQh8rxvDCUMnYgKv3ijAOJes2kDRfiDB2EePPKD1sO84YfsEtoY8TY/iFIkftIuPL8KJQm/FzkcaMcwlKxV9gqUUtarHlYqvY/U0ptQZYba1tVyVQSo0AXqT0jKMzO/AeC4Bp1trzK/77MmvtKXIL3gL5z/du7jOcNuN9t6rd31rCtyvIe1dTsH/E2iaMGk/SHIOjSxMJazeS92+i4P8W365Gq8Ek9GG4eh+UMljrUfB/T96/Ed++jlY9cPX+JPRhKFWaNBb9v5HzrsKzT6NUGlctJGGOQavSoMjznyHnX4nn/x8Ajp5JQi/F6LFifEeM94JtRrcaZwWMN4pxjRgPx9V7i7EoxpsCxgNI6EMDxgfJeVcHjHuIsY8YnxbjPwPGYzF6jBjfFuN9AeMSHD1TjBvEeLsYh4hxrwrjjfj2DbTqGTCWJrYF/6/kvWsCxkUkzNEVxivEqEtGcyxGjQ4YrxJjDq0mkDRLcfROAeMNYlwrxiNw9Z4B4+/E+KYYDyShD0GpDNZaivZB8t7VePaZgPEYtOotxqfE+K+A8TiMGiXGt8R4P9gcRk8koZfi6B3FuD6Qx7UYNRS31aixtiDGm8TYK5DHtBj/KsZnUSoTyGPQeDme/28xzhLjSDG+Sc67qrQttM1h9CQSekmF8Qby/u+wdh1GDSVhjsBRiwPG28X4lhhb8thi/Iv0tRj1YhL6qIDxv5LHFuMuYhxRbvTvB/IYPZmEPibCuBajhpMwh1cYf0vev1mMvSWPQeOfxfgcSmUDxl5ifFKMDwFGjMdWMS5p3cGlZLw+kMfhksdFAeNvxPi2GFvymBLjn8h711YYj0arnmJ8Qr7XUcY3xPhAwLgUR88Q4zox/l6MIySPYvTz2DW3Y1fdCoV3wO2N6nEAqseBKF0ysv5P+O9dD83Pg86iui9G9TwS5ZZWc+VefoX1991P8wsvoLQhPWEc9Qt2x+1bOn42vrmOV294hHcffBk/79F1Yn+GHTGF7lNKhZrC+mZeu+Vx3r77WQrrm8kO68GQgyfTd/4olFL4hSJr//QQa+7/N4VV63C719Nt3gy6z98BnXCx1rLpP/9lzb0Pkn/jHXQqSZedp9Jt4Wyc+lLx8t1H3+XpXz3FyodWoo1mwNyBjD9hPPXDSwWtDa9t4OlfPcUb97+BX/TpPbU3444fT58ZfSTPa8n711Hw/4C1GySPR+KohSilsDYX6OsVaNVX+vpglEpKX98vn8cXUaoOV+9FQh+JVj3kGP8Yef8KPP8RwMHRc0iYpRg1TAyvkfOuoOj/BShi9BTp66kB47UU/DsCxqNw1IKA8Tby/i2txoQ+CFcfFDDeJ5/HoPEotOouxkfJ+1dWGI/FqFKh2rOvkveuoOj/NWA8FkdPEeOagHGjGI8urUxuNd5K3r81YDwYVx8YMN4rxpdQqksgjy3GR8T4qBh3JWmORashEcapYtxejKulr1uMI8U4P8Z4CK4+IGD8I3nvuoBxbzF2CxivwPMfE+NcMQ4W4ytifFCM06Svg8ZrKfh3inGU9HWbMe/fQsG/TYz9AnlMiPEe8t71YqwnIUaluorxPwGji6N3I2mWBowvk/eulDx6YjwWR08W46pAHjdh1GgxzhNjc8C4MsToVxi7hhgfFuPjQCJgHCTGl8T4oBinSx6DxpY8bo6xv/T1/gHj3WJ8WYz7iLFejA/J57HFOE+MAwPGKyj6fxPjDJJ6aekREIBv3xPjXWIcI8bdAsabxfiuGA8VoyvGu8h7N4ixmxiPCBj/Td6/KmCcT9IsqTBeLkZfjMdi9MSA8RoxNmLUWDHOFWNTwPgeWg0Q434Vxuvx7KuSx31J6MMDxn+J8QlQSRw1r8L4YiCPPkbvIMYJYnyXvHcNBXt3wHg0jto1YLyJgv8bMQ6Uvm4zFvw7KfjX49nX0Korrt5P5hJB45V4/pOgkrhqPgmzBK025zbqLRcfl93f9lTf/bApnR532q/Vdn/rhNgqnqlEab3q6s34mf8ppGB0SuVtb4H284BVwM3iuEkp9cfKAlSV94iqGlVbT/yhhKIPjt4F6zeCKhVDTOB2LaXqcNQsrHoPX61Bq0E4eieUMtJucPRO+LxZKobQHUft0lqsATBqMo6ejbY9gRSO3qXsCpZWI0q/o0sfQ0fvjFZtV88VfcXYFDC2XYVrM64S4+AKoxMwvommB46aFWLcpcLYdgVLq5FidAPGtpU9in4BY6lgU27sEjCu3TyjntVaUAJw1Pb4+hUxpqsYdckYWNnTZmwGlcOoiZjAFa6ScResWo2v1mLUEBy9Y4jxLTH2LDMqpXDYHl+/jLa9AsZeIcYELUWlcGNOjJMqjPViXIWvSgWbklFLuxswviXGXVAqHTBOkTz2BjIRxtkonaSlqBRcfaToXyq6+vkqxtWtRqN2qDDujM/bYuxV3agqjaMkjy3GXcpWH7UayQM5jJpcdlW4ZJyFr1Zh1XqMGhZinInPOzHGqfj6VbTtEzD2DBhHizElxtmbYazM4yx8tVqMw2OMb6PpLZ/HVMA4DV+/irK9UWTF2CNgHBPIoyN5DPb1ADEWxLh9hbErjtoFX60JN+oE1p2NXdOE3fgeZLpjes+RnJSMNjkdu34NdvV2kMhgus0Bp3vre7gDBmEHz6B5bV+U0aSHjsDp1fa9T/evp37qSDasTeLnPeqm9KbL2LZVDG59im7TR7D2TYtZnyc7sivdpgxq3YxCuw5dp40gad/EW5dEd+lOavpwdMJtNabHDKP43kryvbqg0ynqth+D6dJ2/Oy+XXf6zxmETiVQRtF/zkDqhrStlqsbnGXqN5uY9PUngTxGTcHVbasSteom35l1kscRGDW91ahUMtDXKwJ9nWw1Gqbh6FdRth+KOunrtjwaNVa+15lAX7ethlMMxNGzKT3froBRUzCBq+ttxvUxxln4rBBjH0yssUvJExjSGLWdfB5bjLPRgdVwmkEBYxGjpmJU29BC0Q1HzRbjBowaiVHTyoxGz8KxK/DVSjR9QvI4HUe/hrL9xbhLa0Gp3JilVAyZXbbSrGTcJWCchlFjA8bugTxuwKhRIcaZbUbVF0fPjDHWizEsj3URxsGSRxswbhdh3BhqdPQsrF2Br95Fq36Sx0TAOANHv15mbCnWlIzj5PNYR6nQUGkcInlsMU6vyGOPCuPoCmNKjCsDxl0CRi3GN1B2gBhnVxjHi7ELkJRz5YCAcajkETHOiDBuEOOYEOPMgLF/RR41hh3EODCQx7bVlyXjLhXGthV7pTzOprSc0sOo6Wg1JmDs2WpENcp5KyyP7waMM1HKfR/GCe/D6GPUDLQaHWLcKMYxOGpqwFgaa5WMpaKSo3eOMA5C0zXCOBul6yOMQ+XzGDSOChh7ydhtkxjHxhhXhRodvSOWN1D21SrGrgFj+KrCWnywYdn6nwT7v8SHv7zmoxFby0olC4RWCKUgtAa4OaootBmvv4zSw7f/E9J2HvDH4IO75T1fBs7c3B3g4opK06ZNy2xNK5V8u5bG4ql49l8VLV3IOD/DUbNp8r5Gwb+pot0hZc4kaU4g511Gs3c+ldveu/ow0uZcivavNBbPADaWtRu1E1nnUnxWsqlwIpbXy9o1Q8m4l6HoIcZ/hxgvxFG70OSdRcG/OcT4VZLmeHLecjGW7zTk6iNIm+9QtH+isfi5EOPOZJ1f4NsVbCqeiOWNEOMvUXSjsXgKnq3s23oyzs9x1M5ivCXE+DWS5lhyXgPN3gXtjAl9JCnzbTF+FthUYZwpxrfF+GaFcZjkMcrYVfK4M03eVyj4t4UYv07SLCXnXUqz96MQ41GkzLco2vtpLH4+xDiLrHMJvn2TTcWTsLxVYRwuxnoxVn49u5J1LsKoHcT4mxDjN0iaJTR7F5PzfkLl6S6hjyFlzqFo7xVjY/krqF3IOJfg2zckj29XGEeIsY7G4sl49tGydkU3Ms5FGDWDJu/LFPzbQ4xnkzRHxxiXkjLfpGjvobH4xRDjbDLOxfj2dTG+U2EcKcaMGB+rMHYn41yMUVNp8r5Ewf99hdElbc7B1UeQ8y8i5/0sxHgcKfN1ivZuGotfCjHuSsa5CN++Kn1daRxF1r0MSNNYPAnPPh5ivASjpsQYv42rDyPnX0jO+3mM8S4xNlUY55Jxfo5vX2FT8eT2RjWarPNLICHGJ0KMv8Co7WnyvkDBv6PCmCBtvoWrD6P4f1fi/esaKocqZurBOHNOxn/+rxT+eAEUy7f41sN2xN3z62x8aQ1PffUG8u9tKGvPDO/NhPOPxMflgU/8kVWPv1fWnuyZYrflC+g1uRcPnvFnXv3Dy+Wvn9Ds/P3ZjDxsNJvuvonGe2+DijFAeu7e1O17DBv/7yFWXnYVNl++LXRmykT6nX4iq57ewD3H3kfjivI8d9+uG4uvWUBm4CY2FU/Et/+tyGNPyeNEGoufo2jvrshjkrQ5F1cfRM77MTn/knZ5TOiTSJmvUPBvp8n7KpVbUztqdzLOhXj2ORqLJ2N5tzwPaixZ5zLAiPGpEOMyjBpPY/GzFO09Icbv4uoDyXk/JOdfWmFUYjyTgv9bmryzQowLyTg/xbPP0Fg8BUt5X2q1nRiVGJ+uMPYS43Zi/GOI8fu4en9y3vnk/IZ2xqQ+haT5EgX/N2Is/zw6ag8xPkVj8dQQ43iyznLAivGZCmNvMY6lsXgGxbL9UQBSYtyPZu888n7lcEuR1J8kab5Awb+VJu/rIcZFZJyf4Nn/inFVhXGCGD0xPlvxDn3EOJrG4mco2vtDjD/A1fvS7H2fvH9ZiPF0kuZzFPxbxFi+I5WjFovxCTGWX0PVaqIYi2wqnoBvnwsxNmDUSDFWbqOeJm3Ow9V70+x9j7z/yxDjp0iaz1Lwb6LJ+2Y7o6v3Im1+hGcfo7H4SSxrytqNmkjGuQzIi/H5infoW7oNXI2gsfgpivbP7YwZ5wIctZhm77vk/V9XtGsxnkHBv1GM5cceV+9N2vwwxjhJjM1sKpyAzwsVxn5kneVoNZTG4qdDjBkyzvliPJe8f3l7o/kMSf1pCv71NHnnhBj3IW0uwLOP0Fg8PcS4vTzeoUmML4YYL0OrwZLHv4YYL8BRi2j2vkPevyLE+FlS5lPkvGtp9r4VYtxXjA+LcW2FcQoZpwHLJhoLJ+BX7Huk6C/GQTQWT6doHwwx/ghHLaTZ+xZ5/6oQ4+dImdPJeVfT7H2b9nOJ/Umb8/Dsv2ksfjrEOLX0+AYV/7zLLRkfh5VK3Rk2bfFHcKXSXfZrrKmtVOpwbEtFpXvlQdvv97VHUCoaxT+Fsf3v3QQssNZ2r/rD8a+z1d3+tqmwhKL9W0RrElftR8FWFpTaIqE/Qd7/VWS7qw6jYH9D5aClJQw74/NKu0ldW/THqMEhRa+AUe8bUlAKGo8PGbQEjYdTsLdSebJtM87C50UsKyJeYQBGDcCzYc+WB0jh6r1DCkrvx3gEBXtLjHEXfJ7HsjLiFQZiVL+QglLQuBcF/9YOGm+mckDQZpyNz7PtJnVtMQij+oQUlFoijasXhxS93odRHykF0ijjrvg81W7C1BKKwWjVC88+0gHjcSED1Pdj3A2fJ9pNmNqMQ9Cqe7uCUrlxUUhh7v0Yj6bg31DF+Hi7CVObcShKdcWvKCi1RQZXLwgpzL1f4/VUFkDbjPPxeaTdQL/NOBylsvj2yYh3yOKq+RTs7yINqWc+g33gD5HtZtI+eE/eATb8ep83YFcevzxFcX1TaHtqSC9WrOrP6ifDPwtuncuA+YN59faI/SYULPxuV8xjMcemHfbivTv/CX640Z04gz//Kk1ubfgxvtu4ehbf80t8ng5thzoctStFW1mYa0Mm9NKQCVPAqJeQ968h6rqpo/agaP8JrIt4h9EoDD7PhLZDFxw15wM2LqJo/wGsj3iHMSgUPs+GtkNpVV/R3hXRrknoY8j7V0YaXb2Ugn8VUddqHbWnTBo3hLYrxqKw+DwX2g5dcdTMD9k4DkWhXZGhrb0bRu0YUjxsCUNCH0nevzrGeCwF/8oY495SxNgY2q6YgKK5XZGh3LhDSPGwzVg6j1QzRn9eHbWPFKw2hbaXHu7c1K7I0GbsjlHTKNr7/mdj1WO82rd0K3/FhY0240RgEz4vh7YremDU9iGFuZZwcPXhFPxrOmDcn4K9h8oLG23GycA6fF6NMPbEqEkU7Z9ijIdR8K+NMVYbux1Awd4dY5yCZTWW1yKMvTBqQkhhrs2Y0IeS96/rgPFACvauSKNR08k6N7auivqwo1ZU2najVlTqnNiaikovVXmm0v+0UklWKWGtPeV9/t6XgfOAhcFVTP/D+29VRaWi/xibigdW+SlD1KSsFEkqrxaWh0PUxLPzombsnKhmTFF5hb08toRRE7/gdmvIY0eNLlHFw86LbcFYbYvhrdzoQ+La0agNMXnWDvjRn8e3nh7Mm/8dFtne2JhkxYoqV2fj0qgs8w/6PxJO+MQRoHFjN4qN0QP1V14ayMsvhD+sHKD//OeYc8X18cYO93WCqAsXnRfVjNUMW8JYLWrGzomOGrfEFu/Vjn/VvlM1Yyk+DsZq44HOiA/emHWub31m5IcdtaLSthu1olLnRId2f1NKPayUsv/Dv8qd3NZuxttVe+ZSVBwGdKSiE7+H6zYW0Vc+ghFXZID4kwB88BN4qBk7K6oZ4wpKsGWM1QY+W0MeO2r8oAshsG0Yqw3Et26jWuvGF5QgtqAEsO6d+MWxTU2bsdtNTBrr6jfFFpSshWL4IoDWWPVu+K6XLdFvXvhqi4p3qtJera+3RJGhmrGa4cMuhEDN2FnRUeOWuIBb7fhX7TtVM5bi42DcEk/G+eCNpc00arElw34E/6cWnRMdKipZa6dba9X/8K/yvqWHiC7etPz3910Ykh3fukH4Wl2l1DIpcnV7v6+9zYbdEpOuWtSiFrX4GIbf8WX4vh9/Wra2Y++hdccnE9WM2q1WrK5FLWpRi1rUomNht8iFpFrUohabEx0qKnViRD/Ap62o9L/cgtbyDKaoVU4jiF4l1XJ/QdRDc7bJMLJ1bsdia/nYxEXN2DlRM3ZObAvGreO5BPFRzfjh/g22awGbqPZT8ca6HuHPhWmJZLJjg+hN67MUveiNX5UC7cYXnuq7hj8XpiXWPNYZWz1v3X1dipqxc6Jm7JyoGTsnqhm2hvN5zQilB5/Xoha12DpiazjqANwIEHJbHMChlB7S3W61kTxvKS6qtf8RmG6tXRvSdgilh4dHPUF4mwxHzUMFtlMOC6OmVWmfGduuif/90ta0bsxPuFW3CzVqapX2nWPbNfG3zZa2+I2eeEFiM4xTqrTH59GoGbHt1Y1JFH2qvEf8CbnjxsFUN/aOad8cY3xfd9yY2gzj5Crt1Yw7xLYrhlJ6/lVUpFHEP2dHq4lVDNX6Ov65BYphVDf2iH0NrSZUMVQzVsvjcOJPe5nqRmKMrkWNHx9vGDgptr3PDAd09GC8vo9Hsnv8LXDdJ0T/DZ5nKPaLP/7VTYw/dQ7fWcXOF95+YArYbrGvodkutr36d2anKq8/ivhJTR0QfxufZmxse8eNo4k3dgHqY9q3hHEs8cZ6Ss641xgT217NUP18Hv9ZKhnrqrzGqNj2D97YlXijQhO/30y1Y3R1Y/yxq7TwPxvTrtAMr2KIP0ZXH1/Gn8egO5CJfYWOG6vlsZqxJ5COfQXNsCqGjhkN8ech6EXpmZrRr6AYUsUQP/aqnsf4cZWiL67eI/ZnalGLWmy52CqKSlLUOYXSg7FbQyk1jVJhqN0DupVSDwMvys9ERcvIeG3E+54PnFdZnFJKnQf0CHvfbT2Ucsg6v0AR/tyOpP4MGWcZWoUPAh21BxmzDEeFb8Sn1Viy7jKS+tPh708Pss5y0ubHhE/kXTLOz8g6y1F0Czeaz1YxLiJjGnDU7hHG7cR4eoSx52Yal8UYPy/G0RHGxZLH+RHG8WScZST1qRHGXmSdy0ibH8YYLyTjNMQYv1DakjViMO3qvcS4W4RxAmmzjIQ+OcLYW/J4AeHFhgQZ5+eyvW745C5pvljKY8Rg2tX7SF/PjTBOJGMaSOiToo3uZaTN+ZthDJ/cpcyXxRg+UHX1vmLcNbTdqEliPDHC2Iesu5y0OS/CmCTjXFTF+NXSds8RA1VX7y/G2RHGyWTMMhL6+AhjXzH+gPDTSpKMczEZZxlRE9CUOUuMQyOMB4pxlwjj9mI8LsLYT4zfjzCmyDiXkHEuJWpylzJfJ+suizEeTGLWD9CDpoQb+m2Hu8+3MNsfENpOXS+6Hv0VRn9pn9DCkk66TPjuIez2y4U4deGF+R3O2Zl5v9qDuqHheR552GgGffaTuKPCi2PO0NH0/ORn6Log/Dvl9OjOqG8ex5wLZoXWGpy0Yd6Fi8m6lxI1AU2Zs8m6yyMvcLj6UDKmIXIib9R06eujQtsVA8i4y0mZ7xBeEEmTdS4l61xK1AQ0Zc4RY/gDyV19uBjDJ/JGzZDv9ZERxoFk3eWkzLeqGH8RYVSkzLfJug1ygaF9JPSRZMyyyMmdUTuQMctx9eERxkFk3QZS5uzQdsgEjGGTZEXKnCvG8NVrCX2U5DG80GnUTmRMA64+LMI4WIznRBizZJ2GWGPafI+M24Cif4TxGMlj+HDTqJ3FGHZdFDRDpK+/GWNcRsa5OMKoA8bwi1kJvVSM4RfcjJopfX1whHGo5PHrEcY6sk6DGMOKDZq0+T4Zd3mM8Tjp6ykRxlmSx/DNZErGZaTMWRHGLmSd5WSciyg9BDrM+AMx9o0wHi/G8IKGo2aLcf8I4zDJ41djjA0xRkPanC/G8IuCCX2C9HV4YchRc8S4b4RxOBm3gZQ5M8JYv1nG0vEx/IJbQp9ExiyLvJjlqLli3CfCOIKs20DSfCnC2JWMcylKbcYzBmtRi1pskdgqdn9rCXkG0inAvymV8rsBZ4atJJLCzyGUdmeLfGYScJi1NvbJp/Ja3SgVkrpRWqEUdbR9X7G17f7WEr59l7x3DQX7R7BNGD2BhD4GR5cG8dY2kvdvpuDfjrWr0GoIrj4MVy9GKYO1HgX/Lgr+Dfj2dZTqiav3I6EPQanSALjo/5O8fxWe/xSoNK5aSMIcjValk5BnnyfvXUnR/ycAjt6ZhFmKUaPEuFKM94JtDhh3FOMm8v4tFPzfYu1qtBpCwhyOoxajlBbjnRT8GwPG/cWYFuP/kfevFmMGVy8koY9qM/rPkfevpOj/S4wzxTjyfRhb8rgarYaSMIdVGO8Q4xso1UuMBweM/yDnXY1vnxbjHmLsFTBeUTIqjaNajCPEuCJgzIlxCY7eQYwbA8Y1YjwcRy0KGP9A3r8Ra98U4wEk9EEB49/F+IwYF5HQRwaMz7blMdT4jhjvE+NEMc4IGG+i4P9OjMPEuIcYi2K8KWA8UIwpMf5NjM+CygaMPcX4DDn/Sjz/32KcJcbhAePVFOz9YpwkxukB441iXCd5PAJHLQwYfy/Gt1CqFwl9EK4+EKVSWGvx7N/IedcEjItJ6CMCxqfJ+VcFjLuQMEsCxrcDxjxGTxbjNDFuCORxLVoNF+OCCGNvEvpAXH0QSiWx1lK0D5L3rsG3z4GqC+SxR8B4JZ7/ECgTyOOwGONSHD01YAzmcTgJc6QYFdYWxHhzwNiSxzjjUWjVXYxPBYyOGI/FqKFifEuMD4hxezFOEeN6Mf5ejCMCeVRYr4j/3AN4T92D3bASsj0x4xZgtluAchJYa/FfewjviT9gV70CiQxm1BzMxL1R6VJhcOPz7/DWLf9i/ROvo4ym24wRDDh4B9IDS3ne+OZGnr3iKd68/3X8vE+vqb3Z7rjx9Jpamojk1+d5/rpneOX2l8mvy1E/sitjjt6OQQuHtBqb//M3mv/9Z/x1q9H13UhN35XUjDkox8VaS+MTT7H+vr+Sf+ttdCpJ3Y7TqZ83G1NXKha998Qq/nvZ06x4aCXaaAbuNoAJnxhH/bAuksc3yXlXlTaIsEWMniKfx+0DebxB8rhB8ngkjpovfZ2n4N9O3r8Fa99Bqb7yeTwg0Nd/Ju9di29fQKk6XL0Xrj4CLY9K9PwnyflX4PmPSF/PIWmWotXggPHK0tbYtojRU8U4OWC8noL/BzGOFOO8gPG35P1bA8aDxJgQ45/Ie9cFjHuT0EegVFcxPiGfxxbjrmIcJMY3xPiXVmNSL8XoSWJcFzBuFONROGq3gPE3YlyBUv3EuH/A+IAYX0SpLmI8vNVY9B+X83mLca4YB4rxdenroPFYjJ4o7Wsp+NdT8O8Q4ygxzo0xHoyr9wsY7xfjS2LcR4z1YnxMjI+KcTeSZknA+Jrk8UExTpM8thnz/nUU/TvFOFqMu4oxJ8bbxNg/YHRDjPViPKzCeKUY3c00HovRE6R9jfT1nWA3otUYMc6pMN6KtSsjjPcFjF1DjI+K8TFQCVy1GwlzTKvRs6+Wxm72b2KcLsbxAeN1FPy7NtM4gIQ+BFfvEzDeK8aXI4yPSF+3GOeJcYAYXxHj38F6AeM4Ma4W490B49E4anbAeJsY3xXjoWJ0xPhH8t71YuwWMHYR43/E+LgY54uxf4Xxb2B9jJ4hn8dK411gN6HVWMlj0HirGN8LMfoB46uSx31J6EMrjFfi+U+ASgaM/cT4MnnvqoBxB5J6ScC4KpDHkjFpjsbRs+XY1Ezev5WCf5sYBwb6usV4D3nvBjF2CxjrxPiwGJ8U4+4yl4i/W2BLx8dl97eF6twPm9Lp8Uf79drub50Qcfd8bPGw1t7LZj47SYo+sYUfa+0plIpUm/NaH6tQ9MTo6Vh/LVY1YdR4jBrX1q4yOGo6vnoLq1aj1WAcPQWljLQbHD0FnxdRth+KHjhqRmtBCcCo7UpXSHUWRRqjp5fdoqMZUro6KQ+ONWo6OnDlWtELo2eIsVmMbUvIlcriqGn46k2sWoNWgzFqe5TSAeNUfF6qMLZdCTRqXJnRUdNR9GozqqHSbmOMLXnMRRhb8rgGrYZg1JQIY38xTi8zajUOR8/As3UBYyCPYrTaolBiHBQw9hbjuoBxbMBYFzCujTbal/DVgAjjeDF2QZEJMQ6rMM6oMPYJGPMYNQETWImmVB1GTcdXb4txaEVfOzh6Gr59GV8NQNMTR01rLSiVG+sDxh5lRkfNAE3AODBgbMnjejFOjDC+sxnGt9H0xASMSik0QWM2xDgcR01vNTo6Ko8bAsbRAWOXQB7XSb+UG42eitNq7IVR01uvBiqlMEwQY1cxzihb+dhmVAHjwBjjpDIj1GHUDMlji3EySikxuBg9Dce+0mbU5UZ/zQzeuLUL619YjZN1GbTHCHrt2K31HWxuNCv+cCyr/rMIZRR9Zw1mwIJBrXflKvqKcaMYJ7cWu0vRJWBcj1bDJY9iNA6q/3jU2jdRG/tCpju6/wSUk2jr696jsQMmYJN1kEijB0yAVNvqovTgntRPKhWAMJquk4eQ7Nu2oi/bP820pTmmLngJvAL0clHD2lYGuV1cxixOM7T/OmxzI6ZXkuSM+jKjO2wM3nvv4K9bg67vijt8LMpxW42JIUNRQ1Zh6QmZFM7wMehs2zG+58QMM3/8FkX7CAqDo2fjBI4Lin6lwrC/CasKOGr7kDxOx1crsGo9Ro2o6OuE9PVr+OodNH0wekbF53GifB67oSh9B1Vg5aNWI+R77YhxRtmKFEVfMTZiVVGMIyOMGzBqJEZNqjBOF+OKgDFRYZwuxi6yKqc+YBwZYuwXMPYLGD0cNQVdZqwX48qAcWKFcYYYV6Ll811unISjn8ez3UONRo2U77WDwhFj34Cxf6nAXmYcEWjvGjBuxKhRIcbpFcZpFcbJYuwRMHYJGEeJ0Q0Yg3kcIHlsFuPUsjwquuKo6Vj1rhhHY9SEgDEpeXxdjP3E6EYY6yOMM8To4ugdNsMYzGO3CuOYEGNLHt9F01/6utxo9PMo21OMM9oZS+OeBAq39HkOGHWrMSfGaWg1vMI4A6veCxgnVhinVRjb57Fk7BVhHC3jxwSKhIwv+waMAwNGG2LsLsZVWLUpvK/VNBz1Gr56T4xTUcoJGLfH6BfE2BWjZrQWa8qNyYCxT4xxeohxeoVxYoRxFZr+OHpawKgDxt6t38H2xhmgUwFj7zJj6TMcZewRMDZi1Jiy29iVSuGoaVj1uhgH4OjpIcYXxdhNjHUhxnRoHmtRi1psHbFVrVT6KMbWuFLJt6tpLJ6CZytNGTLOz3DUrjR5X6Xg31rRrkmZL5M0J5PzltHsXUDllp+uPpi0+R5F+xcai2cA5XtTGzWdjNOAtSvYVDwRy1tl7aVbAn6FoieNxZPw7CMVhqwY59DknUnB/01FuyFlziRpTqTZ+wU570cRxu9TtA/QWPxciHGGGN8W49sVxkFi7C7GR0OMP8dRs8T42xjjxeS8n4QYDyVtvkvR3kdj8Qshxh3IOg349i02FU/A8k6FcbAYu4rxsQpDnRhn0uR9iYL/uxDjV0maT9DsXSTG8mOFqw8nbc6laP8oxqYK405knUvx7ZuSx3KjZggZ91couojx8QpDFzHuTJP3RQr+7yvaHVLmLBL6WHL+z8l5P2tnTOgjSZlvU7R301j8UohxZzG+LsYVFcahZNxfivEEPPtkiPEiHLWjGP8QYvw6Cb2EnPczcv7PI40F/y6avC8BzRXGmWSdX+DbV9lUPAnLyhDjr1Bk2VQ8Eb+dsZ6sczFGzaCx+HmK9s4Q4zdI6GPIeT8l518UYjyalPkWBf8OmrwvhxhnkXUuwbOv0Fg8Ccu7FcZhYkyL8b8Vhq5inE5j8bMU7d0hxrNJ6KPIeT8RY3kk9BJS5mxe/8OL/PvM+/Fz5TuQ9dllELMuWsyGl9fwt1PupPnd8u9U3fBuzLlsbzJDmsT4VIjxFxg1RYz3hBjPIaGPpPiPX+P9+7p2RrP9/jhzT8N/9k8U7v0ReOXbkOsh03D3PpsNz6/mqbNuoLB6U1l7ekhPJlxwFKmuBfw/fRHWPF+RhHr03O9Dj4msv+ZC8v+t2GfCGOoO/ASpHeez6Y7raby/8tgE6TmLqdtvKav/9Biv/uwWbKFY1l4/fQwjzjoam3yKxuLJWFaV/w2MIuv+EnDYVDyhtHoxEIruZJxfYNQkGotnULSV15Fc0ubbuPowmr3zyPsN7YwJfTwp8zUK/m9o8s6icjt3R80l41yEZ58VY/leHVqNJuv8EtBsKn6itKKtnfFSjJpIY/HTFO39Icbv4OpDafZ+QN5fHmI8gZQ5i4J/C03e10OMu4nxKRqLp2BZU2EcI0Ykj2HGZRg1XoyVW2u7pM13cfXBNHvfI+//MsR4IinzVQr+zWIsfwi8o+aTcS7Es/+lsXhqFeMn8G3551HRQ4zjaCyeXloNVi4gbb6Hqw+k2fsuef9XIcaTSZkzKfg30uR9M8S4uxifoLH4yRDjWDH6bCp8Ap8XKow9yTgNGDVGjH8JMX4fV+9Ps3cuef/ydsakPoWk+bIYvwGUf2cctZCM8zM8+5gY11YYtxNjUYwvhhiXY9QoMf61UiDG/Wj2vkPevyLE+EmS5osU/Otp8s4OMe5Bxvkpnn2UxuJpIcZxZJ1fYsnRWDgBv2JTZUUvMY4Q44MhxvNw9T40e98i719V0a5I6tNIms+T96+l2ftWiHGRGB9mU/F0YF2FcbwYm8T4csU79BbjcDYVP4ln/15hSIlxb5q9c8j7V4cYP0XSfJa8fzXN3ndCjIvJOD/Bsw+JcX2FcYIYN4nxlYp36EPWWY5WQ8X4jxDjBbh6Mc3e2eT9a2OMV9HsndvO6Oq9SJsfUbT/orH46XZGoyaScX6JZYMYX614h75iHBJhTJNxLsBRi2j2vknerzwXKpLmMyT1Z8j7V9DsfS/EuDdp80Mxfgoo38DCqElknMta7yrYGqK2UmnbjdpKpc6JWlHpA46trahkrWVT8ZiQk0BLuLhqXwq2sqAU+Am1lIK9MrLdUYdQtL+lcvDXEpodsLzabnLcFn0xalBI0aslErhqbwr2tv/Z6KpDKNjfUHkiawnDzvi82G5y3Bb9MGoAXuRz3JO4ei8KfrQxoZeS9ztinIXPc1jei3iF/hjVL6QwFzTuGVKYez/Gw+SzEmd8tt3Esy0GYFSfkMJcS6Rw9aKQwlxnGmfj81S7iWdbDMSoniFFrzajo/eg6N/+vxv14RT8m4HwrdgNc/B5st2EqSUUg1GqG759IuId0jh6AcV2xcOgcUnIQD9oPIKCf1OMcS4+j7WbjLQZh6BUl5CCUpvRVfMp2MrCXNCwhEKMcdPjX+DvR2usF35e6zd3CKsfXUF+XS60vW54F2b//gZ8VVlQaokMrtqNgr0j0pB66nTsn++KbDcT98b77x0Qce71+s/h8ctTFDc0h7anB3dn6lH/hrXPh7bjpNnk7UPu0X9FG3deSNPf/xjZrrbfm9dueCrS2GPRcHp88hdUTkZaf5/hKBL4PBvxDlkcNYeijc5TQh8TMqkLth8lk5Vwo6MWULT/pHIy0mYcicLg81xoO9ThqF1CCpxtr5DQR8caXX00Bf/aGONCivb/YoyjUCh8IvqaLjhqZkiBM2g8irx/TQeMi0q3vhC+459iNAq/XSGk3LgzRRv1edsc4zEUYvLsqMVSaNkU2q4Yg6LYrhDSFvU4aseQAmdLaDlGty8Utxnjj00l41+ovEDUZtwORT7GWFpF1b7A2ZnGvUq3qkYax6FoalcIaWvvhlFT5DXCwuDqQyn413fAuLfkoCm0XTMey0Ysr8UYtw8pcG6+seq5Uu1TupU/0jgRyzosr0cYu6PVRLx2xcP3Y6w2LtqPgr2HygtEbcZJWNbGGHug1Xi8dsXDlnBw1UEU7I0xxmp53J+CvTvSaNRUss7NrSu3PuyoFZW23agVlTonakWlDzi2tqJS0X+ETcXwBzW2hSFq4liKJBA+Kdu83++M0FSu7imPakaHqCJD50VHjbU8lqJm7JyoZkxQuZqiPLaEURE1uS1FvPHRzxzCynuH/c/v3nP2y0xvuKXKT8UYfUhcMxq1MSbP2gE/Oo9vPTWYN58aFtnefchKxu0ZfT7x84a1T4c/XBqkTmRcKIYX/QHee2sATesS0YbD/0vPI6OKg5sbHevr0r2K0X/DlolqxmrtWyK2BWO1vqwZNy86aqz2neyM2BaM1c5124Kx2phjWzBWG7NA1rkGR8fvGLil4uNQVOrGsGkL9UewqOR/nbW1olKHY6vY/a0WWy7aL+0Oi2qFjLiTwOb8fmdE/ImmuvGDnhxDx421PJaiZuycqGasNiHaEsZqg9xoo7Xw3oPhu2BtbvSa/XL1H4oxqrVufEEJYgtKAOtWxO4rQbfBUSsTS1HYGLcNtERMQclaaFoXvrNcS2SnvhPbvnnxv/d1KT7sghJUN37YRQbYNozV+rJm3LzoqHFLXGTeFozVznXbgrHamGNbMFYbs0DR35w5TS1qUYstEbWi0sct7JaYGNaiFrWoxZYPW+zYKU051QexseF3fBm+9eP/BqXjjdZugVsBOpqnWtSiFrWoRS06GHaruLhQi1rUAmpFpY9dGNnKuWOxLXxsasbOiWrGreFe9o+CcWuIbTuPSkHXySsi2zcn1j3ev/oPxYTtVsBG3zUmEZ/HbI/w5+u0xMaV3WLbnUy1q7+UkhXTlMjED9Sbn+sR2945sW1/HjevfUvEtmCs1pc14+ZFzdg5UTN2TnzwRqOmdvg1alGLWnRObA1HnVpswXDUbmiGxv5MaevWuPZdYts18b+vGEjpnvSoSKAYUMUQf9urU8Vo1A6x7YrBtO4vHhrJsi12w99jWmx7deOOse3VjanNMMafkKv1dfU8DqV0X31UpMq2AQ5/j44aq+VxGPHGdNXta42aUqV9VpX2nWPbN88YvwuKUfEF5erGnWLbFSOIN2ZQ9Ip9Da0mVTHEG4cvia/odBnZDWWiB7qr/jYRbM/Y19BqYnSjY1ETYtoBNSi+H/ru4IKONq55eyg20S2akC7gDI4+xisF7uh4Y/cdBse255/ehfjhQxcUcbfxKTTjY9/DqPjnZFRr14wl3liPoltMu0IzrkOG6sbtiJ94dZV/UaHkNf53Q3XjOOKN3YD6mHYlfRFnqHbsqWYcT3Vjl5h2hWZMFUP8Mbq6cQLVjXUx7RqtRlcxVDPG51kTf1yAHlQ1MqqKoaPG+HME9ASyce+AZmQVQ/y5zqn2eaXaxdteQCb2FTTD49+jw8Ypse3Qh+rGYfHvUWXsVXXsVsWo6I+rF8b+TC06P3zsR+5fLTonakWlj1ko5ZBxLkERPnFKms+TcS5Fq/DBtKMWkzHLcNTi0HatxpN1l5E0nw1/f3qSdZaTcX5KeEHEJeP8nKyzHEX41fCk+YIYwwfTpe1SL8VRe0QYJ5BxlpHUn4kw9hLjTwifJCfIOBeRdS6LnDglzRfJOMvQKnww7ep9SJtlOCr8hKjVRLLOMpL60xHG3mTdy2KMyUAew40p82Uxhg+mXb0vGXMpjto9tN2oSWSdBpL69AhjH7LuctLmxzHGi8k6DZGTu5T5ivR1+GDa1fuLcV6EcbLk8ZMRxr5i/GGsMRNrPKuUx4jBtKsPlO/MbhHG7cmYX5DUp0QY+5F1LyNtLogwpsg4vyDjNBA1AU2Zr4kxfDDt6oPFODfCOJWMuZSEPjnGuJy0OZ/SA+YrIx0whk9AU+YbZJ0GNCOqGHeNME5jxN6fY8wJ4QP6dP86Zi/bmxk/mBdaWDJph51/vA9ZN854thjDB/yuPpTEzO+jh4QXlFX/8bj7nIOZGrFZQpc+1B/9VcacuW9oYUmnXLb79lGYeeeBGza5U6gdvkD90i9jeoUXlFM7zqfr8V/EHR0+OXOHj6X/GafSZ//wAX+iTzeGHPdp0uZ7hA8hMmSdS8k4ywifgCpS5ltk3YbICxwJfSQZ0xA5UTdqBzJmGQl9bGi7YhBZt4G0+W4HjN8R45AI41FkzLIY407ynTkmwjg4YAwrNmTJOsvIOssInyQr0uZcsu5yucAQZjyGjLk0cgJq1M6Sx6NC2zVDyLoNpMx3YoyXijFsAqpJm++JMfzh8Qm9VIzhE1CjZpIxDST0kRHGoWTdZaTMtyKMdZLHS2OM3yfrNsgFrzDjcdLX4RfMjJpFxjTg6iOqGM+JMHYh6ywXYzrC+AM5D4VfcEvo4yWP4RfcHDWbjFmGqw+LMA4LGMOiXoyXRBgNaXM+GbcBRfiKz4Q+oYpxjhgPiTAOF+M3Y42ZzTKGHx8T+iQxhl/MctRc0mYZrg4/hmtGkHGXkTJfjzB2DRjDnn9nSJsLyLjLY4wni3FKFeOBEcaRYjwrtF3RjazTQMa5OMLokDY/IuNeFmlM6lPJOsswanKEcR4Zcymu3j/cqEaL8asxxktRqurS4FrUohZbKGq7v33AsbXt/tYSvn2PvH89Rf+PWJoxahwJfQyOLg2arG0i799Gwf8t1q5Bq0EkzGE4ag+U0ljrU7T3kPduwLdvolR3XL0/CX0QSpVOQkX/IfL+VXj2GRQpHL2QhD4SrUoFLc++RN67SrZUVjhqZxLmGIwaETBeJ8YcRo0X4/SA8VYxrhXj4ThqYcB4N3nvxlZjQh+Aqw8MGP9N3r86YNyDhD4iYHxRjP8MGJdg1HAxvivGewPGJTh6mhgbxXi7GAeLcYEYPTHeJMYeYjwgYPyXGJ8NGI9Eqx4B45UU7b/EOFOMwwLGayn694lxghinBoy3iHEdWg0R4+4Vxhvx7VtiPFCMyRBjOpDHFuMLYvx3wLgUo4a2Gb1rKNj7gRxGTRTjlIDxZgr+7wLGI8SosNaj4N9Fwb9JjD0DeWwx/lOMz4lxkRi7i/F5MT4EaBw1k6RZilZDxLhSjA+IcZIYtxfjJslji3GoGOcHjHeK8W0xHoir9w8Y/0Hev7bV6OrFuPrwNqP/HHn/KsmjwVGzSJolEca8GI+JMQ6Tvg4a76Dg3yzGXpLHSuM1ePZ5FJmAsZsYnxXjQ2LcRYyDxbiCvHdtjHGjGH8fMB6Bo+aJsRgwviPGA3H1fq3Glf94gxev/S/rn1+Nk3UZuGgkIw4fR6Jr6Tu17rlVvHDVE7z38Dsoo+g7axCjlkwiO6hejO8EjIVAX08OGG8W43q0Gi55FKPv4T/3Z7yn78ZufA+V6YEetwAzdj7KuFhr8V9/BO+J32NXvwZuGjN6DmbCnqhUaUXFphdX8Nat/2b9k2+gjKbb9OEMOGgHUv1LebaNK7HP3YZ98+/gF1G9xqHGHILqWSq2+82NNP/7T+Qe+we2qRHTuz+pnXYnsd2UktHzyD36D5r+/Wf89avRXbqRmj6H1LTZKMfBWsuGR1/g3Tv+SfPrKzHpJN1mT6LXoh1w6tLS10+T86/Cs/8BHBw1W/p6oOTxbfLe1RTsXySP25PUSzB6ouRxA3n/Jgr+HVg2oBlOwhyJo3aVvi5Q8P9Awb8F365Aqd4k9EG4el+USmCtpWgfJO9di29fRKk6XL0XCX0YStUHjFfi2UcijG+J8a9inCLGCWJc32a0G9BqBAlzFI6aEzD+nrx/C9auFOPBYnQ30/iU5LFkdNUcEuaYCuNVYiyKcSlGjw8YbxTjRjEejaNmB4y/E+O7KNVHjPsEjH8V40so1UWMhwaM/xXjo4AbMA4Q45uBPBYxaqoYx0UYR0oew41a9cXVB+PqvQPGv5D3rgsY9xZjl4DxSjz7mBh3FWP/VmPOu4qifVCM06Svg8YbKPh3YtmEZiRJcxRG7SLGvBhvrTDug1KOGP9M3rtejPViPCRgfFKMj4txLglz9PswrpM8thhHiXFWwHg7ef+2GOOfxPhywHgoStWJ8QkxPiHG3cTYT4xvBIwejppOQi/B6O0CxpY8NrYaHb2LtOckjy3Gfrj6EFy9V8D4gBhfEeM+ksc6OQ89LuPLFuM8MfYV4+ti/FvAuBSjx0r7Wgr+DRT8u7A0YtRoEvooHD0rYGzJ43tiPBRX7xkw3i9j4FdQqmvAmBXjYzLmeAJIiPGogPE1Mf5djDPEOCZgvF6MTRg1RowzA8bfinEVWvUPGE3AeD2+fVWM+5LQB1cYr8KzTwaMR6NVnxCjXzKapRi50OfbNTKXuDtgPBpH7xww/oa8/xsxDpC+DhrvE+NrEcZHA8YkrpovxvjV2Vs6Pi67v+2uv/NhUzo97vO/Udv9rRMi7l6FWnyEQ9EDoyZi1dtSaBiHVm2rGJRKY9QEfPUiVq1BMxijJqCUlnaNYTxGTUap7q2v11IIAdBqJEZNAlwUyVJ7YNWMZkDJwCYAjJqIDlwpVHQX4zsxxon46qWAcXyZUTMeoyZtpjEVYhwoxkZAYdQkdOBKYVseV7QWlbQKrrRIY9QkfPVyhNGgmYBRz8QYR8nVnoQYJ5WtmmnLY1PA2HalsM24srWoZCKN6yKMLXnsgaKnGJMheYwytuSxOWBsu8Kl6IHRk7D+u2Kc2Fq4Kze+UjKqIRg1DiXPhlHKYPR4fDsJpXqKcVKFcVTAmJG+blvZoxmEUZOw5FqNwVvzFD3F+F6EMSOfx6Bxuxhjr5A8jsaoidFGNSiQRxNi7IHRE/H9dylNkMOMEwLGoSF5nIBvnxVj75g8plCkQ4yDA3kMM/YsvUercVKFMRvI43q0GlZhdEp/o30WpXqJsTyP9aN70H1ib0zS4GQTdJ/YG7e+rT07qJ7uE/rg532UVnSf1Id0n7bVIIpeksf3AsZhIcZXw43aoPqMQq16GTLdS0WlPmNQxpW/QaF7DsP2GYPvJFGJNKrPaEi2rZpJ9e9O3dgB2IIHWtNluwEkegVu4Un1gG7jsBvWg1+ArtuhurStBlHJ0mt6XTfguY2o7n0xfYe1GY2BPmNoTG4kr9bhJrqQ6rMdynFajemh/ciOHoROuph0kuyogZhs8Ng0BEdNorSjU0tftw30Fb0xehK+v5rSBHkiWgVXJ9VJHl8rFZXUCIwaG+hrN9DXvVH0kb5OtBoNYzF6EspmUPJ6wVudWj6PpZ2IHBw9uex21jbjmoAxuDqpixx7XseqaKNjn8NXKwLGtr4uGScGjJMqjEPEXTIaPSnCuFaMk2KMG8ONaiJGPYdVK9H0LXnaGSehbLaK0QsYg33dJ8QYXEHVRfq6xTgyxDjhfRi7iKftO9Nm9COMveXYtBbwIvpajGxCq5HoMmNC8vi8GPuV3kO1fWfa+jrOOInS7ltRxomtRqddX9dXGEeh1ZgQ4wsxxu0kj3Uoeb3garjSeaFlJWPp8x28dbn0GZ+EZZ3ksbKvW4xvYNmEUaPLVkQrlZS+fh6r3kXTX/o6aBwnxi6hRqOGhRjbVuCr/2fvvuP0KOoHjn9mZvep19IuBZKQkAJphCSEUAIBQui9hqJ0EAT5gYqIImJBwEJPQgigUgQEBAQLIEWlFxWk917Trz3P7s7vj2eeu7292X0O7xISeL6+8iJmnmf3/cy2me/O7jDQGJcb46RORkG9uRa+GzJ2jIguGcv1WDaOtxgnRIwdo+GUGGH+rZJxRageQ+fw9np81yS+xiQYPym1BeU4hFCWbV1nfrPNONGsL232x6hxgqnHoHTMEDbWm/ble8Y41mKciBKvosWnoXoMG8vbut4sb2KMUYSMq+O9ftWoRjU+S1RHKq3iWBNHKgX6U5q9o8zdvHDkyDm/whFb0+J/m2Jwe6RckFanklHH0+pfSpv/S6LTkrpyD7LqPDz9N5q9U4CWTuVKTCbnLETrj2jyjkTTeWpqwWDyziKE6G+M/7EYL8ARW9Hif5Ni8MdIuSSjvklaHUerfwlt/q8sxj3JqnPx9L00e6dajBsb4wfG2Pnlv4IhxtjXGJ+xGC/EETMTjN8iJY+hLbiYNv9Ci3FvsupnePqvNHvfBFojxqnknMvR+j2avKMsxnXIu1ciaKDZO9Lc4YkaL8IRW9Din0oxuMtiPI2UPIo2/0Lagostxn3IqnMoBn+hxf9WjHEhWr9Nk3c0mo8sxqsQ1NHkHUXQxZg3xs1p9v4PT//ZYvwOKXkkbf4Fxtg5XLkfWfUTisGfjbHzS4yV2IS8czm+fpNm72g0H0eMQ0091tLkHUGgn7MYL8ERM2j2TsbTf4mUKzLqdFLycNr8X9IWXGox7m+Md9Lin2YxTifvLMDXbxhj5ynlJcPIuVciyBvj85E11JBzLsURmxjjXy3GM0jJr9Lm/5y2YJ7FeCBZ9SOKwR+NsfOUykpsaoyv0+wdhebTGGPOGF+IrKHW1OMmNHsn4el7LMbvk5KH0uafT1swv4sxJeeSUWfz1m2v8MR37yco+J3KB2w6hC3m78TyV5bwz2Pvom1x5/01P6yOmVfuSn54M03ekQT6xS7GvHMZSkwxxnsj5Y4xHoL3zyvwn7yxi1FN3BVnmxMJXriX4j2/hKDzbJxy3cm4u57FipcX89zpN1Bc2typPLtuX8affxCZhiLeX74NS16PVEINavaPoN9EPrxkIc3/jpybpKT/oQdQt+1WvHvln/jw5q7TMQ/YZQZDv7Y7i//2NG9edAva61yPtZNHsf73DkFnnqXZOxbNks6rYITZ1o6px5cia6g39bgRzd7X8fT9lno8i5ScS6v/UwrBoi7GlPwKGXUmxeBmWvzvEZ2m3BFbknMuw9fP0+wdZzGOJO9eCSiaiocT8IrFOB8lJtLsnYCnH+hizKqzceUBtPo/phBcZTEeRkZ9j2JwEy3+94lOr+2Imcb4X2NcGjGub4zCGF/tVC5oIOfMR4nxxhjdlg5Z9SNcuZ8xXh1j/D7F4AZa/DMtxq3JOZfg62dp9r5mMY4yRm2Mr0WMfcg581BiHM3e8WZkS9T4Y1y5L63+2RSC31iMR5JR36UY/I4W/wcxxkvx9X9o8r4GLOtsFKPJO1cCvjF2PmZKxgUoMdYY/xkRuGTVT3Dl3rT6P6QQ/NZiPIqMOp1CcB2t/g8txm1MPf7LGJdHjGPIO4vQeDQXDyfgDYtxIUqMpsn7Gr5+yGI8B1fuSav/AwrBtRbjMWTUaRSCa2j1f2QxbkvOuRhfP0WTd0KM8Uo0bTQXjyDgzYixrzGub4wPRwXGuDut/pkUguu7GNPyWNLq2xSC3xpj53OPI2aTcy7C108YY+dJDaQYS965Ck0zzcUjLcZ+xjiSJu84fP2IxfgzXLlbgvE40upbFILf0Or/2GLcnpxzIZ5+nGbvBGBlxLiBqcdmU49vRYz9jXEETd4x+PqxqMAYd6XF/x7F4AaL8XjS6lQKwdW0+j+1GOcY4yM0eydajOPM/riSpuIRaN6OGAcY43BjfNxiPA9X7kSLfwbF4CaL8euk1f9RCK6k1f+ZxbgDOecCPP2wMTZFjOPJO4vaR1StCfFlGam0zRdwpNJ91ZFKvRLVpNIqjjUtqaS1psmba7lQlcPBFbtQ1LfFLsMVB1PUXRst7UsQe+LpPxJttJRDMg3Nm1068B3RiBLrmEcBrAJcsRNFHU16fRbjXnj6jgTjJmhe79KB74iBKDHYPAqwaoyu2Nt8325UTCfgFTSLE4wDLYm5cqRw5Q4UgztiDSl5sLWB2mHch6L+A9EGQYdxBgEvJRgHIcUAgi6JuXKkceT2eF0Sc5/FuC9FfWuCcXMCnu/S8eyIwUjRl0D/N8E4Gy+4M94gD6IYXJdg3I+ivqWC8bkunbqOWAcpGhKMGRyxLZ6OJg8/q/FmSqMAbMYtCXg2wbgukloCokmvcmRxxNaW5GH3jU3/Opl/HuJCYL+uDdxyKIuf+YjiMvsMafn1aph55+8IRDTpFTZuZUkedkTmv8ehH7w7tlyN3wn/uT9DzLXXG7gF//l1Dn9lq7U8s24Dk/d5Cpa+Zi3HybB45Z6sfCzuuIfUjNl89McnYsv77bAJn/718WgeuT36zBlOv+PnE+3UlUMwHEGKgJdj1pDDEVvg6fh6cuVcipZOXUf5gaZDZUeW9vfHiHaYOowjEChLQils3NyS4Iwafvc/lztiO/P4d5O1XDASgeiSUOqIPI6YYUlwdizBlQdUMCbXc2XjKAR+l2RNR9TgiOl4+m+r0Li9SQY1W8sFoxF4CcZaHDENT9+XYNzf2oHvvnEOnv470ZtYnY2FLomQjqjDERtbEpzlkLhyX4pB12R2hzH5/OmIHUxyMs44FmhBRxIhHVGPIyaZ3xln3MeaZOi+cUdTB3HGDYCmLomQjvIGpJiA3yXBGTKKfSjqnhh3Nvu7/RwuGAcsR/NOgnE8fpcEZzkUrtiLov59gvFgiontol0o6nuI3sQqh2Q8mqVo3k0wjrMkOLtvTMlDKATX/M9GJTYi79zSPkrv845qUmntjWpSqXeimlRaxbGmJZW84CmaPPtLEDtCEde5LUWK6EiFz/b93ghJXOe2FFVj9+LLYHSIS8z1XqwNRkFslgD4Ihif/vq+fPy39f7ntfff6jWmzL+lwqcSjAGkrh2NWJmwL0gFQfwx8+5zw3jvufjZ2xrW/ZgNtouOMu0Ir9XhvcfHxBK1hhUr+hIU4o3CUV1GKIWj74HP0vfA6Ki93g6X6Aikz1a+OqLSMbMmGNeGeqxkqFTPqyOqxt6JSteRSsZK14jeiKqxd2LVG/PONe3vwfq8o5pUWnujmlTqnajO/vYlCy/o+rhD16iUJKjUKFnVSQZI7sBD1djd+DIYV3UiBNYOY6UG5Npt1Bo+/ad99qbuRr8t3ujGp+KNYqmbnFCCxIQSwLIP7LM1lqNhyKeJ5a1L84nVGPgyMaEEJCaUAHIbf5BY3jtRKdHxeSdCoPIxsyYY14Z6rGT4vBMhUDX2VlS6jlQyro4b4VVj78SqNxa71aepRjWqsTqimlT60sXqSAJUoxrVqMbqD+337JImVKXkYIUIemEYvk5ehpAVGtoVvq/pBaOqjnCuRjWqUY1qfN5R7dNUoxprSlSTSl+yUGaK9p7F2rDbfBGMa8Jz4lVj70TV2DsRbxQC6jfq2QiaZf8eUvlDCaEbiuhUpU8l12O+3/LE8hUf1yeWp+rs7xoph1I+ouKmTja2vtgvsbx3ohJyTTjHV429E2uDsdL5r2rsXlSNvRNVI4AjN+7xMqrR/dCA/kL+rxq9EWvCWacaqzEcMQtJ/Ps6oDQjVvIyZlb4/vTEcsFQIJ3wiTQiNGWpfR2r2jic0vPecZFBkNwBVWJaYrkjtqzw/U0TyysbswgGV1hH8uPDleuxknEEpfc8xEUWwaAK65hSobyScUZiecnoJHwii2BghXUkN2xUxW1dyTiSZGOu0xTk9nX01LhZYrlgfZKN+U5TZ9tCio0qGJKNIw/NJJbXje6DUPEN3cUPTQCdZBRIMSm+2NGICRPjywExdHJi+cDpGZDxxqUfD4dM/CNyqXyBzKihseVCQP209RMNtZOTy4svbEnpfWpxUVdhymeBZEJCOThii8RyJZLfoyHZkOQmTj2CpEcNJZLxFQyVjMnlknEkGxu6YRzXI0PlehxPZWND4hJK2+J/N1Suxwkkd2D7AEnJWIkUG1Qw9NRYmhI9PvoCdYlLkGJsBUNPjZNINvYDapPWgBRjKhiSryMV20UkXyNgABWNjEpeR4+NlRIdjUBN4hIkyefgVW8cCOQTlyAZmbyOCu2aiu1Lktt+giE4YvvEz1SjGtVYfVFNKn3JQghFzpkf27lLq2+ScxYghb3B78pdyap5uHIXa7kUE8g580mrU+3rZwB5ZyE55yLsCZE0OecS8s7lCPpbl5FR3ybnzEcKe2PalbuRVfNxxE7WciUmkHcWkFanxBgbybsLyTkXYk+IlI0LEdjv2GfUd4zR3ph25e7GuGOMcRJ5Zz5p9Y0Y40Dy7hXknAtijBlyzqXknSsSjN81Rntj2pV7GuOcGONGJaM8KcY4yNTjr7AnGzLknMuM0d4BzagzjNHemHbl3uTUvNiGhRIbG+OJFYwXxBiz5Jz5ZlvbO3cZ9X1jtDemXbkPOTUfR2wXY5xijCfEGAeTdxeSVb9MMM4zxoYY4w+McXSMcT9j3DbGOJWcmkdafi3GOMQYfx5rzDvzycUaBRl1FnlnQWyD35UHmG09K8Y4jRE7/x9jj7E3lnPr1LLF/J2Zfv521sSSk3OZccFu5N3LsXdABRn1Q2O0N/hTci6pGecgh9uT3mLIRNxdzkJN3d9eXjeIuoO+w9jv7mFNLMlsig1/PBc15xxI2TpOArnFKQz8+vG4g+2J0Lptt2K9079K3VT7/lozcQQjv3coA/e2N/hTg/oy9Iivk1XnYk8s5ck7l5NzLsfeSRZk1Y/JuwuQjLCvQx5MVi2I7RgpMYOcmk9KHm4tlwwj715OVv0MezOnhryzwBht9SjJqp8Y43oxxkPNMWPvqCuxGTk1j5Q8LMY4nLy7gKz6aQXjggTjT43RfqMoJQ8jp+bFdkCV2JycWkBKfqWC8ScxxlpzPZ+PvZMsyapzyLuXJxgPJ6fmxxodsaUxHhJjXK+CsY68s5C8swB7J1mRVeeaNoc9GZuSRxqj/SaKI2Ya40ExxhHk3QVk1I+wJ23CxlyM8fwKxqPNtrbfMHPE1sY4N8Y40hh/GGOsJ+9cQd6Z3w2j/aZgSh5j6tF+w80RW5v25YExxvXJuQvIqLOsRkEDeedy8s5lQNa2BrLqF+TchQjs799Ly+NMPdpvuDliG7JqPq60n8OlGE3OnU9G/cBaLmigxllYwfhLY7TfuEzL48k7ScZtjdE+KY8UY4zx+4nGXKLxAmO037hMy6+Td+bH3sxyxGxj3KeC8YwYYx/yzgKESLppWY1qVGN1RnX2t1Uca9rsb+UI9GIKwQ14wT1oWlBiHCl5CI55PE7rNorBHygEt6NZjGQoKbU/jtgWISRaB3j6bxT8Gwh4B0FfUnJ3XLknQpRGIXnB0xSCa/D18wiyOHI2KXkgUpQ6575+g4J/DZ5+FBA4YlNS6hCUGB4y/s4YW1FivDFuZIytFIPbKAS3oVlijAcYozDGeyn4N4aMe+DKPULGpygE17YbXbk9rjwgZHzdGB8zxhmk1SFIMcwYPzXGexOM5XpcgmRYqB7LxnuM8V1j3BNX7h4xXoOvXzDGOcbYEDL+Fk8/boybGePQBOOhOHKSMbaEjEuRDDfGbULGu43xPWPcC1fuFjI+aYwvIsgZ4/4h42umHuOMn4SMbSgxgbQ8FCUnthsLwa0UgztCxgNwxKyQ8a8U/JuMsZ8x7hoyPmGMLxnjDqTk/ghRHzL+Fk8/gUCgxObGuK4xfmyMfzPGiaTlIRHjLca4zBgPxBFbG6MfMr5vjHsbY8oYH6MQXBcy7khK7hcyvtpejwJpjIcixToh4/V4wX1oCiHjBGNsDtXjMiTrGeNWIeNfKPi/J+B9JP1x2+sxbLwWX7+MIB+qx7qQsVyPEkdsQUodUsF4KEqODxlvoRj8MWSciyNmRow3EfCBMe6NK3dpN3782Hu8ev1/Wf7yYpycy7o7jGTE/hvi1pb2heWvLOaVa57l0yc/QChB4+brMuqQCeSG1IaM1xljESUmGeM4Y2wKGZcjGWHq0RgDn+CVf+A/9xf0yk8Q+T6oDbdHjp6FUKWkW/DOv/Ge+SN68VvgZlCjtkKN3xGRLnV8m17/mPdvfZzlz76DUJKGqSMYstc00gNL+4Ju/oTg+dvR7zyC9j3EgA1R4/ZC9Csl5YLWVlb84xFWPvoEQXML7qBG6mbNJDthw5LRD1jyj2f49J4nKX66HKdPLf22m0LfrSYhnFKyaMV/XuXjux6l9e2PkNk0fbacSP/tp6HypRFhfvASheC3ePppBApHbGm29WBTjx9S8K/D0w+gKeKIyaTkISi5oanHlaYe70SzAskI0mouSmxhtrVHMfgTxeAWs60bzf64S3tnwgseNsfMKwhqcOXOpOS+CFFrjC8a47+McSYpdXDEeC2efjBkPBQlNwgZb243KrE+KTkXJTYPGe8yxg+Nsbw/Omit8fXDFILrQ8ZdSMl9QsYXKATXmHp0cMRWxjjIGD8IGT2LcUXIuNIYD0KJzULGO43xIyQDjXHnkPEhY3wVQW3IWBMyluvRDRkHGuP7Zls/iMYPGceGjL+nGNxljKNIyYNw5GamPGocZIw7hYz/pM2/noDXjHFXUnLvkPF5U49l49ak1EER4zV4+h/GuLExjgkZb6IY/AlNU8g4w5QXjfHWkHEfXLlju9HT/6Dg/84Y60L1mG83tgW/xdf/DhkPRopGY3zPbOuQUX0FZW4IaL3c1GPYeDCO3DRivIWAj0PGnRBChYzXE/B6jPE5Y/yPMc4y9Rg2lusxwBFTSKlDI8abKAZ/jjEWQsdMyZhS++GIHULGvxvjG8a4qzHmjPG/tAXXdBjlNqTkQUgxwBjfNcZ/GuNUYxwVMt5IMfiLMY42xukhY7keP4kxPmi29RsI6kP7Y9j4W3z9DIKUMc7tZGzzf4uvHzLGaca4vjEsC9VjM0qMMftj2PhHCsEtaD5FMtgY54SMDxjjm8a4mzFmjfFZY3zWGLc17fSy8R3a/GuMUYeMI0PGcj2WjQfjyE1MeZsx3mqMQ0ipfU09SmO83/Ql3kTQYIx7hYzPhIxpHLmdMdpvPH9e8WWY/a2e9aZsI8/+vCm9HvcFZ7KsOvtbjyPpWYVqfIFDUI8SYwjEm0ALSoxp7+CXIoUUY1BidHtSSYr1EeZlHEJIJOujxBgEWQR9zUiNjtFHUgxFiTGUZoDIms923LmWDDTLXwKAEqORoUd4OoxvGePo9g5+KdJIMRolxhjjMGMUEeNoY+xnMQ4zDaGSUYrRFuMYNEvbjSLW2Gapx7JxdHtSSYpREeMoUze5dmM5EdK5Hn0gZ4wdd647G6UxdoxEKxlHh4xjI8ZMqB6XIBmO6mIcbYx5BP1Lhk7GYaZugwTj6JBxTMTYYIxvt9ej6LStM6Z8tEkqrWc1ltYbZxxujBrIm1E7tnpcFmPsEzIWSvUcqcdS+ZiQMbw/KiRjStuXGgT9zTLC++N6xhVnHFTaVu3GsZ1G9HXU4zshY7ges6F6XIZkRDeMYyzG8iiXvPl7xygFyUBjXE75kY1k45jIcZ01x1SScbRZbi2CAV3qMT+8nvzI/hQ9hZt3qRnVDyffUZ4dVEPN+v1pXuIjHUHNqP6k+3Xcfe8wvhsyhu9s54xxjDGO7GyUCl27Pm1yPH6wGEUDmZpRKNVxydW1wyiocXh+HdLNks6NRrkdd4XTjXXkRjTirWxDKEl+ZCNun9BIi3QDumYUfnop+EVkbjTkO0YniXSa1DqDSa0zhKC5GXfQQNzBgzqMSpIdPpDseoNQNVncPrVkhw9sTygBpIf0JztsEGiBymXIDhuIzHbUo24ZztK/7s7yZzcuJb42WZ/+Ww9oP8UK+iDFGCTvAUWkGB2px3xof1yOFOsjxYjQtnZQYjS+OZ8IGkv7fOjudMf+KBDUmvN5aH8Ug0vXMpoAx+zbHaM3O4zvA17p7yI8QiAfOq7jjGPwzfVNmPOIEI4pF0hGmGM5zjjEYuwYvVm+vko+MMaxEWNNyLgCKUYlGOsTjGMAGTJ27G8dxuaQsWP0ZunaNTpkHNOeuLMbRyPFeh3f72IcZI7rzkYlxyC0QlBnMa5jzj1xxnI9fmSMoyPGvLkWvhpjdI1xtDEO7mJUjDTX4LJxDOGRPVKsY/6tGXBRcqylHsPGMchOj4jXRIxjLMbRph4bjHEMQqiIcQwCx7QPxsYYW4BUqc6txo9Dxs7butR+fM0Yx0aMKZQYZeqxAcEQc70OG8vtS7e9nRUeNSPFumb7G6NZVoexf2m9fAL4MfU4BileA5os9ZgK1WOf/8koxDrG2BprVGIsmk+AwBjDI0xrzT5YNkb3x9IyS+2WTxKMYxGk2q9rkAktY13jbgsZw9t6QPvyS8bRMcbXY+ox3E4vG8eE+hIC1d4GrmQsAOku9ViN1Rs9nM6kGl/gqI5UWsWxJo5UCvTHNHtH4utnIyUZcs4vcMR2tPinUgzujJQL0upkMupEWv2LaPMv6LLs0uNxP8fT99DsfZPSxbQjlJhIzlmE1h/S5B2J5qPIGgaSd65EiP40eUcSWI2/whGzaPZOwdN/shhPIS2Pp82/kLbgolhjMbibFv+blC6mYeMkY3yPJu8oNB9H1jCIvLPIGI8g0P+NrCFrjFvT7P0fnv6zxXgqafk12vwLaAsuthh3J6vOpxj8hRb/WxbjZHLOFQT6HZq9o8wFP2q8EiH6GuNzkTXkyDkX4IiZNHvfwNN/tRi/SVoeR5v/S9qCSy3GPcmqcykGf6LF/zbR6WGV2NgY3zLGzlOhCwYbY4MxPm8xXogjtqTZOwlP3x0pl2TUt0jJY2jzf05bMM9i3Jus+hnF4E5a/NMsxinknIUJxiHk3asQ1NLkHU6gX7QYL8IRmxvjPRbjaaTkUbT559EWLLAY9yGrzqEY/NEYO08LrcRUY3ydZu9oNIsjxnWMMW+ML1mMl+CITWn2TsTTf7MYv0NKHkmrfy6F4HKLcV9jvI0W/3SLcRp5ZyG+ftUYl0SM6xpj1mzrqDFvjNNp9r6Op++zGL9LSh5Oq/8zCsFCi3F/suonvHbzqzz6nb8TFDs3fRqnD2LWFXNY9vJS7j/qL7Qt6XxM1QytZZtf70jtyCZjfDmyhhpyzqU4YirN3gl4+oFIuSKjziAlv8rK26+l+f67uhizM7ahdr8jaX38QZbftAj8zjPXuOtvQMORp7Li5U957vQb8JZ3ful2Zkgfxp9/EJl6j7abv18a5RSOVI707t9DDB7PBxdfTst/IucmKel/8H7UzZ7FOwv/yEd/+GcXY/+dpjPs+D359O4neeuSP6C9zvVYM2kko35wKCtf+ZDnz7AY1+nD+PMOJr1uC03Fwwl4NbKGWvLOZSgxmWbveDz9d0s9fp+UPJRW/0cUgqu7GFPyIDLqbIrBjbT4ZxKdulqJzcg78/H1czR5xwHLOlcDw8m5VyFQxvhaZA11xjjJGP8RKXfIqDNJyYNo9c+mEPzGYjyEjDqLQvA7Wv2zLMbNjfFZY+z8gnbJesYoaCoeRsAbFuM8lJhIk3ccvn7IYjyLlDyQVv8sCsE1FuOhZNQPKATX0+r/sIvREVuQc+bh62do8r5mMY4g716FRtNcPIyANyNrqDePwIwzxoe7GLPqbFy5P63+DygE11qMh5FR36MQXEurfzbR2Z4cMZOccxm+/hdN3vHAiohxpDH6NBcPjzEuQIkNjPERi/FHuHJfWv0zKQTXxxi/TyH4La3+jyzGrYzxKWNcGTGub4xFY+x8XAsayDkLUGIsTd6x+PpRi/HHuHIfWvzvUwx+ZzEeQUadQSH4Da3+jy3Grck5l+LpJ2n2TrAYRxljG03Fw9G8HTH2McYxNHnH4OvHLMaf4sq9aPHPoBjcaDEeRUadTiG4mlb/J0S7r46YZYyPG2NTZ6MYTd65Ck2LMb5jMS5EifVp8o7G109EBC5ZdQ6u3IMW/7sUg5ssxqPJqO9QCK6k1T/HYtyWnHMxnn6UZu/rlJKHYeMYY2wyxncjxr7knIVIMYJm72h8He07uGTVz3DlbrT4p1MMbrYYjyGjTqMQLKLV/5nFuJ0xPkSzd5LFONYYVxjjexbjFUixXowxZYy70uJ/h2JwSxdjWh5HWn2LQrCQVv88i3F7cs5FePofNHvfsBg3IO9cSXk055oQX5aRSlt/AUcqPdBLI5WEELOB/YBXKb2ErgE4TWu9dFUvSwixL7A9MJLSS/qeiPu8EOJcs7ybgCe01kvN+o4F7tZad+0IdMdcTSqt2ljTkkpaa5q8AywX03I4uGInivqO2GW4Yi5F3bVh1b4EsTuevotoA7Ucko3RvNWlA98R/VFiHXz97wTjjhT1HxOMB1LUXRtWHcY98PSdCcapaF7v0oHviAEoMRhf/ydOgCvmUNTRxFzYWKke98TTdxA3ZapkGppXu3TgO6IRKQYS6GdijY6YY+phVRk3QfNy+0ivrjEQKfpbEnPlSOHI2XhB1w56+yfkgRQsjehyuGIvivo24u6vKDYl4MUE4yAkfQmIJuZCRrGdJcEZMsgDrQ397htn4PM80c5xRwxG0kBANDFXjjSO2MaS4Pwsxn0o6lsTjJvh81+iHc+OGIKkloBoYq4cGRyxlSXB2X3j8ie/wQNzc8RN5TFoy3X49D8fU1xesJbXDM+z3d2/JRBJxpmWBGdHyIe+QfNt0U5faAmbbEXr438nDilHbszLdwb4TW3W8syQBibs8GzXhFI5nDTL5Ryanog77iE1fVs+uuup2PJ+20/l078+FVuPtVPH8OmTH+I3xxiH1jP2qrsIeCVmDVkcsTmevjfW4Mr9rR3PjvL9rJ2+cii2xucJoh3PcgiGI1CWhFLYuJklCRs2HEAxuKEHxln4PEa0w9RhXA+BIOD1mCXkcMSmliRs2FCpHpPLS+eNRyiNCLEZRyIILEmvcuRxxCZ4+v4EQ3I9VTZui6cfTjCuj8CzJJTKUYMjploSxR1LcOU+FIPf98C4HZ5+KME4CiigiTmuqcURky1J2M9iTN5fHbG9WX6rtVxQGhkUTdaEjUpshN8lCRsyir0p6q6JkO4bdzDbKc5YGgUWb6xDiQmWJGw5pLkeJxmTr0Ml4/1EbwZ2GDcAlndJ1nREPUqMsyRhw8Y9KequyZruG3c05zb7tVAwDliC5v2Y8gak2MCShO1N407mGmE3lt6Pelv7iMzPO6pJpbU3eiOpZJI6p4eXIYSYQilxM/WzJJY+67JMkuhxrfXvzf9vAO6llGCaqrV+LfL5BcAxllWfp7U+rbvOLu5qUmnVxpqWVPKCJ2jy7C8Y7AhJ8gDHFHEn+e59vzeip0ZFXCKk96Jq7J0QxPZugaqxu9FTo0NcErb3omfGx447kA/vtb/8uTvROOsVNl0Y37ktRbxR+1A4d1P0soRGrlQQxG/rT97tz+L3498VUT9oMaM2fSG23C8oPnpxaGw1ag0rVvQlKCQc91KBF19eLDh4XvzT83Wbv8Xws+MTHd0Ll+iIuM9WvjqiauydWBuMlc5/a4Ox0jl+dURP67HSNaI3oqf1WDWWolK7pufGvPMbHJk8093qimpSae2NniaVTBJnCbC91p0fWRBC3ASgtd5vVSzLJJsOiCaDQst5TWu9fqSs/NhEeQrHp4AF0eTTZ43qO5W+ZOEFcXeQwlEpIVSpUbI6nrjtqXFVd+ChauytqNTwqRq7Fz01ruqEEvTEqDV8/A/7rEPdjQFbxo0I6bSm+JKPs8kJJUhMKAE0L7fNrNQRdQOWJpa3rcwmVmPgy+SEkgY8n1KD3h5+kDxxbM20uDvwnyUqddA/7w48VI29FWuDsdL5b20wft4JJeh5Pa6OG+E9rceqsRSV2jU9NxaDf6wxSaUvR2iC1bLvrO7o8W8qj9awPQZ0A6URRqtqWccCXd6tYR5puweYLYSYorV+KlJ+7GcwdSuSW4bV+ALG6ui8VqMa1ajG6g/t9+ySJlQPE+JBz4fha528DCEqNH4qFq+GRwXkF7HRWY1qVKMa1VizotqnqcYaEfsBS2MecXsN2h9pWxXLmgY8aUYsReOp0GdWeVSTSl+yUHLjXljK2rDbVDKuCc9grw1GVaF8TTCuDfVYNfZOxBuFgD4b29//0N1Y8vQ6lT+UEGJAC2QrJKYqvP8hW2N/50o5Vi6pTSx38/b3eJRDKR+RdFgLQCYbpUz+jc3PDUgs715U2h/XhOtQ1dg7UTX2TlQ6R1eN3YuqsXdi1RudXunTVKMaPY5pEPsS3qXmv5usomXdY/59KZ8xhBANQoh9zZ+Gz/r9aKwJZ51qrMZwxNbI9kco7aHEjIrL6Mn3BcMJTxfaNTIIhiaUgxKbJpb33DgCSCd8Iosg+VEbJaYnllc2bpZY3j1jcidZieRznCO2qvD9SsaRtM8vbo0cgiEJ5b1h3DyxXLA+pfc4xEUe0Wm6ZNs6km8CqIrGLRLLSy9xTTLWIEiaBUWgRPKj4j03jib5iepaRKepiLsuQVlvtHREpW095vCkfQ0aNuiDcOIve58+PAl0Y8ISBEpMji91NZnNxiYaUmMmJJb3n1yHUPHGFSvWhVyf2HI365EZPTzeKKBhk1GJhropoxPLa8c2JhqbntoQdPx7oUCixEaJ63DEzMRyVaFcMo7kpHgDgr6JS1BiYuI6Kp97kh/LkIwn2din0/TeljUgSd6fKtVT5XqcSHJTsW9loxhfwZBcT5WNk6hsbEhaA1KMq2DoqXEjko39gfqkNSDFBonrcCoYK+6vTCY5ETAAqEtcghTJ57+eG6eQbGwEkhLvCinGVDCsauNAko0OkuRzcKXrccX2JZVeHTMIqElaA5Lk60iltldlY3K7SrAujtg+8TPVqMZniA2EEE/a/nTjuw299JnPvCyt9Wla6z4x70MqN6q7PEpnXu59DKXRTPcANwkhvt1NozWqSaUvWQihyLnzYzt3GfWd9mmKbeHKPciqebhyd2u5EpPIO/PJKPvL4wUDybtXkHMuxp4QyZBzLiPvLERg79xl1HfJOfNQwt6YLk11fxmu3DXGuBF5Zx5p9a0Y4yDy7kJjtHVSw0b7HfmMOoOcMw8Za9zb1OMuMcaNyTuXkVanxhgHG+NFMcYsOWe+Mdo7dxn1fXLO/NjGdGmq+3k4YqcY4xRTj6fEGIcY44XYEyJZcs68CsYzTT1uGGPczxh3iDFONcaTY4zrVDTmnfnknSsQ9LMuIaPOMkZ7g9+VB5BT83DEnBjjtJJRnlTB+CvsSZtcyGjrJAsy6ofGaG/wp+RcY7Q30JTYxBhPjDGuS427kJxzQYJxgdnWtg6oIKPONkZ7gz8lDzLbenaMcVPW3/n/mPD1ydbymqG1zFo4hy0umIVwujb4nbzLzEt3Ju9eHtMBlWTVj8k5C5DC3uBPyUOo3fF7pMbZ7566o8ZRf9jJ5GbHnD/7NdJ4womM+d6e1qSNyqfZ8MdzSe91FmQsnRIhSG1/EgNPPB53iD3JWDd7FsO/81XqNrHvC7Ubrc/IMw5m4P72Bn96cF/G/PBQRp++R6xxg7MOIe8uTKjHn5bOPaxvKS9N0V7a1naDEpuTU5eRkrbJS0AynLx7OVl1HvakTS15ZyE55wrsHXlJVp1T2tYxN2FKxstiO5iO2JKcmkdKHhljHGGM58YY64xxIfaOvCKrfkbeXYDE/nL6lDySnLostpPsiJnGeHiMcSR5dwFZ9bMYY70xXo69k6zIqvPIOwuQrBdjPNqce+ydZEdsbYyHxRjXN8afYm/S1pN3FlUwnm+M9mRsSh5DTl0WexPFEbOM8SsxxlHG+BOrUdBA3llI3lmAvSPvkFW/IO8sjDWm5XFk1bwE4zZk1TxS8lC7UYwm1y3j5UA+xvhLYxwWYzzetN3sN/UcsZ0xHhxjHEPOnUdG/Qhb0kbQhxrnClOPtnfTOWTVBeY6ZL9xmZZfJ+dcFntT0BGzjXFugnE+GfXDCsb5scacc4E5f9pvXKbliaadbr/h5og5pg18YIxxA2M8K8bY1xjnAVnLElxyzoXk3IWxNy7T6hvGaE9eOWIHY7S/u1iKDY3xB9ZyQT/yzgKESLrZVo3eDg1o8QX80zvVszTm38ujjpLuYvX6soQQI4HZwO+j71Myy79ba32e1vo186jdfsDpQgh7w6obUZ39bRXHmjb7Wzm0XkYhuIli8Fc0rSgxjrQ8GCUnmvI2isGdFIPbCFiMZCgptT+O2BohBFprPP0ABf8GAt5B0hdX7oErd0GIUrLID56hLbgGXz+PIIMr55CS+yFEqREf6Hdo86/B16Xptx0xg5Q6BCnWMeVLKQY3UQzuBlqRYrwxTggZ/2iMS4zxAByxVch4PwX/xpBxT2MsJWK84D8UgmuNMYsrtycl90eIOmN4mzb/2pBxM1Lq4IjxRorBPSHjISg5PmS8g2JwuzEOM8aZIeN9xvgukn7GuHPI+G9jfMEYy/VYNr4VMkpjPChkXBIytiHFBGMcFzLeboxLjfFAHLGlMQbGeFMF4zX4+kVj3IGU3Lfd6Os3KfjX4uvHQsaDkWJIyHgDxeBeoA0lJpKSh6DkhiHjbRSDOwhYihLDceUBCcb+IaNrjP8y9fgigpwx7hMxXoOvHzfGzY1xsDEuphDcgBf8LcbYSjG4jUJwB5rlKDGclDwAJbYIGf9mjO8Z4164cqeQ8WkKwXUh447GWGuMb5h6LBu3MNs6bPwdXnCfMU4iJQ+OMS5DiRHGuHnIeC8F//cJxqeM8SUEeWPcO2R83RifAFTIOMgYPzX1GDYegpIbGGMLxeB2CsHtph5HkJIHosRmIeM9xvi+Me6NK3dsN3785Ie8fO3zLH1xCU6Ny7Ad12P9/cbg1pT21+WvL+Ol3z7HR49/gFSSQVuuw5hDNiQ3KG+Mnxjj/ca4kTGODRnD2zpiDALann2S1scfxF/yKbKugewmM0lPmo5Qpc554fWXaHnoHrwP3kGks2Q2mk5mk62QmVIjvvmtT3n/D0+w/Jm3EUrQMG0kg/ecRrp/qZ5101K8Z/6E/9rj4BeRg8fiTN4V2X+90m9oK7DyoUdZ+egT+E3NpAYPpG7WTDIbjikZ/YCljzzHp/c8SeGTZbh9a+m37RT6bDmh3bjyv2/w8Z2P0vrWR8hsmj4zJ9Jv9hRULm2Mn/D+rY+z4r/vIJSkYZORDN59GiljDPTHZn98ACiixGRS6hCUScpp3Uwh+APF4E40K0w9HoQjNzXlPp7+KwX/ZgI+RNJotvUOCOGY/fFxsz++iqAGV+5k9se82R9fNcf1U4CLI7Y0+2NjyHg9XvCgMW5MSh0cMd5KMbjLGEeSknMjxr9Q8G9pN6bUPjhiB4R5ztALHqMQXB8y7kxK7hUyvmKOGWOUM0nJg5BiQMh4HV7w95DxEJQYZQxNIeNKYzwIR06PGG8m4CMkA0mpvS3G6/D1awhqQ8acMb5sjE8b41ak5NyQ8SNTj2XjFGNcP2S8hWLwJ2Nc39Rj2eiFtnXZuA+OmBMyPmqMrxvjLqTknhHjNfj6X8a4NSl5YGejfy2e/qcxTjXGkSHjzRSDPxvjKGPcpN1YDP5CMbjFGAcZ4/YIodBa4+tHzbYuGVNyV1y5J0KUjms/eMlcK/8FpHDkLGPsb4wfUvCvw9P/ADyLcWWoHptQYrQxTgsZ/2yMH8cYHwkZ6yzGF43x30DaGA/oofEgHDk1xjiYlNoXR8xGCGmMD1MIfhcy7oYr9wgZXzDX87DxQKToZ4wfGOM/AT9kHGEMK4zxz8Y4xhinmPJiyPiJMe6HI7YLGR+iENxgjPUhYyZkvAZf/8cYtzH1WDa+HzIGKDHNGNcLGcv7YzNKjDXGjUPGP1EMbjXGIca4bcj4T2N8M1KPZePzxviMMW5rjH1jjJuY82PZuNwY/xIyHowjJ4eMd1EM/mCM65ht3WH09D8oBjfg67eQ1OPK3XDl7rFGV26HK/dvN64p8WWY/a2O4VNmqi/e7G9/989kOW/2ZPY3DVi/H5qF7R6tdcWhdb21LDPCqgGYGvN+Jtt3bgJma62Thh/HRnX2ty9t5JFiKFIMB1qQYhhChO9sp5BiXaQYCrrGfHYowrwPRAiBxHxfS6ToU/psaNSMEIOQYhjQBGRNeccdLkEfpBiGpvQeFCmGdbqzLaiJGIciRHiEVcqUDwNdm2AcZox9jaHjzobsYhxG+O5RyTg0YuwTKs93GGgz9RgeYZVCimGmHsvGdWPqUcUYB5s6aI4x9g0ZpcUYrsc2VKxxGOg6lBiGFOuEjBKpy/WokKKfMUTrsbSdOowd21q2Gz9IMA5rN8bXY8koGRapR4nU5f01bOw4xXVs6xYgF2MchubDkLGhsxFjoGAxppFiGEoMJ9BLkQxFdDGW69FBiv4xxqEh49BO27qjHj+LMXzMpNv3V62XddM4PGIcbJbfGmPsZ+rxoxhjbcQ4PFKPmfb9tWQchojdH12kGGB+Z8f+mBuSp2ZYLV6Lh5t3qRlWh8p2/IZMvyw1Q2tp+agZoSS1w+tINXSMnBTUfWZjp/1RSlS/RlTfRlAKWduA6tfYnqwBUA39UP0a0cUCIpMrlac6DKk+eTJD+lD4dCVCSbLr9MWpDT02nM4h6gchGgaDX0TUD0bkOxrZwnVwBvTHGdAfmW/BaRyAM6Bfh1FJ0oP6kh7cF+E6uH1rSQ/u18no9m9ADWhErBTIfBq3sT8y01HP2aEp1v36h6axr3BEH1wZugZ0qsdi6fzcaXRnJrQ/LkcyvD3RXNrWCqmHm22dRopGc/4K749DkAxDU0CIGrOujrvrkv5mf/yU0qMvwxGh0UmdjV6McVjIWDo/xhsHmn22ox6lWCdkrLUYB5jj2hgZjgiNTioZhyPFG4Bf8nQyZkPGFeazUaM5v+qMMQ6PGIcgGY6mGDJ27G+i3biY0qMvwyLGelM3Q0PG8AjUqDFaj445rrtj9BCizqzLZlwSbxTDkbxljENjjEPReqW5Nof3RwclhuGLYcY4qNO2Ll3Py9s6bAydW8z5qmR0jbFjBJWgIWKM1mMuVI92Y/v1XmeNcbjFOByNjxD1Xbe1aCyd21gKpErXiS71OMyMSPKNN1qPQzuMYhjlGx+djcOMcbC5Fsl2o2ivx7Ixsq1Fo6nHstFWj8OQvB0yhkcb5yi3GaHZ/D38mLvT0SbRuRjjukiGRozhbV02LuuGMTB/DydKch31lGgcZoxDYozD0ARI0WCWFTUOR7M8ZOwYLVcyDjXbOjB/D9djvsNAs/l7uC9RNg6NNcp2o04wDjPGtGlTJL9bsBrV+ByiIebfywf10tW1LPNoWwOfIaFk4nFgXyHEbK31PZ/he6X1VkcqrdpYE0cqBfpjmrzDCfRzkZI0WfVzXDmbZu9kPP2XLt9NyxNJyW9QCC6kLbi4S7kjdiTn/IpicDct/jeJThkqxXjyzpUE+n2avaPQfNKpXDCAvHMlQgwwxue7GHPOL3DEdjR738DTf+1qVN8gLU+izf8lbcGlFuNOxvhnWvxvW4wTyDuLCPR7xvhpxNhojP2M8QWL8Zc4YluavZPw9N0W4/+Rll+nzf85bcG8LuWu3IWs+gXF4C5a/NOITrOrxARyzpUE+l2avSNNQz9sHGiMfYzxxcgaMuScX+GIrWn2TsTT90bKhTGeQJt/Hm1Bl9kqceWuxnhnjHESOWcRgX7L1OOSGGODMb4UWUPWGLei2fs6nv6bxXgKaXk8rf65FILLLcbdyarzKQZ30OKfbjFuZIxv0OwdbTEOMsY6Y3zZYrwQR2xBs3cCnr6/izGjvkVKHkurfw6F4AqLcQ+y6jyKwW20+N8lOlWwEpON8TVjXGoxXoUQNTQVDyfglcgacsa4mTE+YDGeRkoeTav/EwrBlRbjXmTVuRSDW2nxz7AYNybnXEGgX6HZO9ZiHEzevRpBjqbiYQS8ajFehCNm0Owdj6cfjJRLYzyKVv/HFIKrLMZ9yKpzePWGV3j0jH+gvc7XtgFTBzLryjkse2kJ9x/1VwrLOh/3uXVq2O7XO1I7qskYo4+n58g5l+CITYzx7xbjd0jJI1lx629o+XvX82dm+lbUHXAMLY/ez4rfXwVB55lr3BFjaDjqmyx/8ROeP+NGvBWtncrTg+qZ8PODydR7tN18BnrJu5FKyJLe/QzE4Al8cOF8Wv4bOTcJQb+5+1I/ZxveXnAHH9/xcBdjvznTGH7i3nx451O8dsFdaL/zS7nrJg5jw3PmQv7fNHnHAcs7r4Kh5N2rEDimHt+IrCFPzrkMR2xMk3ccvn7IUo/fIyW/Qqt/FoXgmi5GVx5AVv2YQvA7Wv2ziM4ApMR08s7l+PpZmryvASusRlA0Fw8j4M3IGmrIOZfiiMnGGK0nZYyH0uqfSSG4rosxJeeSUT+iEFxLq3+2xbgpeWcBvn7GGFdGamEYOfcqQNBcPNxqLD1eMokm71h8/YjF+H1S8hBa/e9TCK5PMF5Dq/8ji3Ez8s58fP1vmrzjLcbhxqiN8a3IGmqNcQJN3jFmpGrU+ANSci4t/vcoBjdYjIeQUWdRCH5Dq/9joPP+WDIuwNNP0+wdT+kGUdR4NeDTVDwczduRNdQZ43iavKPNKNBwOGTUWaTkAbT4Z1AMbrQYDyWjfkAh+DWt/k+6GB2xBTlnHp5+imbvBItxPfLu1Wg8moqHoXnHYlyAEhsYY/T1GA5ZdTau3I8W/3SKwe8txq+SUd+nEFxFq3+OxbilMT5Os/d1SjexwsaRxthq6jFy7qG+9AihGEOzdzS+jrZ5HbLqR7hyH2O82WI8zBgX0er/zGKcaYyP0uydaDGub4zNxvhep3JBQ/vjy83eUWZkYNT4Y1y5Ny3+dygGt1iMh5NR36MQLKTVP5fogzOO2Jqccymefphm7xsW4yjy7lVo3USTd3j7DcvOxsuRYn1jfNpi/Cmu3JMW/9sUgz9YjEeSUd+lECyg1T8/xngZnv6nMXaeHEKK0eSdq9B6hTF+YDFegRTrGeO/LMZzcOXutPjfohjcbjEeTUZ9h7ZgHm3+LyzGbUw9/p1m72SLcQx556pIku3zjepIpbU3emGk0hJgsda6yzP95jG0V4HLtdbHruplmZnhTge2+4wJJcw7lc4FjtVad+1UVfp+Nam0amNNSypprWny9rNcTMvh4Io5FPVdsctwxf4UddeGVfsSxK54+k/ETfUp2QjNW1068B3RFyXWMXe/7UZHzMFbpcaN0bzepXPcEf2QYhCB/m+CcXuzjjjjfhT1TQnG3fD0nUQbVh3GKabjG2fsjxSNluRh2DgbT/+5B8bd8fQfE4zTCHgZWBazhAFI+hMQTR62C3DEttYEZ+8aXyLaOe6IgUj6EBBNHn4Go9yPYhBvdMUeFPXtxD3ZrZiOzwsVjPXmd9gihSO2tiY4O4z7WjsjHcY9KerbEowz8Pkv0Q58RwxCUmv2B1ukccRMvISbI5WMyx//Bg8cnIt9QH7gZkNY/MzHFFcWreX5oTm2u/fXaBFNzIWNW1qSsB0h/nkiLbdHO6YdkZk2k9Ynogmp0PfXm8wrdwX4zQVreXpQHRN3/C96SbRzbMJJsZztaXoq7twE7rRt+PjP0c5KRzTMmsYHdz4bW95/p0EMOuUSoh2mjlgXiUvA6zHlGRyxGZ6+L94o97F2PDvK97Z2+sqhmInPk7FGwVAEypL0KkcWR0y3JGE/izG5XLEVPo8T7TB1GIchEJaEUu8ZHbkPXqJxa3weSzAOBzS6S0IpbJxmScKGjcnbstJx74ht8PTDlEZP2owjAM+SUCpHDkdMMY9zxRn2ohjcuoqNRUtCqRx5lJiMr/8ZbxB7UdQ9MW5rHnOyzyBZmtSi1ZJQKkcNSky0JGE7llC61v0hwZh8rSy1WR4kejOwYw2jgKYuyZqOqEWJ8ZYkbG8atzfHZJxxDLC8S7Kms3FDSxI2bNzdXI//V+Mcc/61XwsFY4GlZlS0LepQYqwlCVsOiSt2Ne2aGGPFttsO5mai3SjFeGqc29pHPX3eUU0qrb3RC0mluyk9NtblJWVCiNnA3XQzUdOTZZny05IejRNCLKD0gu4+0aRTNam0hseallTygsdo8uwv7+sISVwHvBQucSf57n2/N+LLYFTEJb16LwTJr6irGrsXVWPvRM+Mjx1zIB/eZ39pcXdi4LYvM31BfKerFPFG7UPhZ5uilyfM/CMlBPHnhU/e7c/i9+NnTqsf9CmjNo2OPOwIr+Dw8QvxM1NqDSuW9yUoxhuKxQy+vT8EQONhT9N4cFzSv7ei0v7oEB0xt/pjbTBWMlSN3YtKhkr7wuqItcFY6TryRTBWuo71RlSNADnn17gyeebF1RVflqTSFuqHnzel1+Of/g96mlQ6BlgQkwg6BlgArB8zQ1uvLEsIMQU4XWu9X+TfG4D9y0kik7SaBoywJJXOBb5N6bG5uNEnsbFmpHersdrCC+LvcnVEpWRLpQv+qk7WdGcdXwTjqu7AQ+VGRdXYvagaeyf+d6PW8PFD8cmU7kT/zd/oxqfijfrjbHJCCRITSgDNy20zAnVE3YC4UX+lKKzMJJYHvkxMKGkNfiF5O9RMiRsF0JtRaX/8vJMMsHYYKxmqxu5FJcPnnQiBtcNY6TryRTCujpv1VSN0t09TjWqs8rgR2h89i8Z+lF6s3SWhZB5n6/GyzHKOjSaUTMyGTu9zuJv4dy3tS+kl4Z85oQTVF3V/CWN1JFOqUY1qVGP1hw56dp9EqB6eH4MKCaVuhOXmVKcoTQyStIBKxT03ClUd4VyNalSjGtX4vGN13OyqRjWSQ2u9VAhxLKVHx9qHu5vRQyMB20xuTwJThBCdRgV91mWZkUh3A6+Z2dvK0WD+Oy38Ha31eUKIm4QQp4WTU2aUUl+g4gx1cVFNKn3JQsmp3cgrVRpyWmlI6+oYVlspqsbeiaqxd6Jq7J2If6RUCOg75T0+fXTo/7z0xU+uy4hD/qcbNCXDgBbIBdCckNwSojQcKCaytS20NWdjy1curmPAiLj3XICbt78PpRxK+QhVelQvjicdCBIGPTQ920h2zKfxH+iVqPT48Op4hLlSVI29E1Vj78QXwbg6HrOuFD1tA6+OqBoBHPmFfNKsGmthaK0vF0KUEzuPA/1InoHtHlPepewzLuteSskm26in8vJei/z//YQQ55qEVF+z7Ke01n0sX+92VB9/+5KFI7ZCMirxM0psVmEZs3r0/dILKeM7TZBFMrxH66hs3DyxXDCS8PS1XSOHILnzqsSMxPLKxi0Sy7tnTH4cSIlNE8t7bhxFeGrYrpFHsE5CeW8Yt0wsF4wGUgmfqKlgFCgxPXEdjtg6sVyJ5HcCSMaQbKxFkDQLikCJTRLXUcnoVDSOpfSOhLioq2CUKJHcQKy0rcccnvzoV59xfZFu/GXv00cngR4UW14yToktFa4ms9mGiYbU2EmJ5f0n1yOceOOKletAvm9suZv1yI5ZL94ooGH66ERD3xmxbRMA2l7cmuR7Ug2ITlPeR0OhxOTEdVTeH7dKLJdMINnYB0H8u6tKxo0qGCod18nlkomUOlZx0RfRafruLmtAieT9qefGjUg29kcQvz+WphSf2CPD6jFOSFxHpf2tYj0zmeQm9wAESe15hRTjKxiSz9EVr5VMIdnYCNQnLkGK5PNfZWOlepwKiaMtBwJ1SWtAig0qGHq6raeRbBwM1CaUu0gxtoKhp9t6E5KNQ6hoZEzyOiq0vSobp5NkFAzFEbMTl1GN3g/9Bfxfr9WN1vdorffTWp+ntT5Na31s3Axspjz2PUvdXZbWeqrWWiT9SVj/sWYd22utT+vJb4dqUulLF0JIcu782M5dRn2PvHMZSmxsLS9N230ZrtzbWq7EFPLOZWTUd+3rZzB5dyE551LsCZEsOWc+OfcKBPbOXUZ930wBPDnGuK8x7hljnGqMp8cYh5B3r0g05p355N1FMUZBRv2gfbpnu3F/Y9wjxjjNGO3HuGAd8u4ics7F2JM2OfLOAmMcGGM8i5wzDxXT4HflgWTVpbhytxjjJuSdeaTVt2KM61LjXkHOuSTBeDl5ZxGCxhjj2cZob/Cn5FxTj7vGGDcl71xGWp0aYxxqjBdjT9rkjfGKmE5y2XhZbKckJQ8mq+bhyp1jjDOM8RRruWSY2R8vijHWhIy2TrIkq35CzpmHFONijIeSVZfhiB1jjJuRc+aRVifHGIcb44XYE0tho62TXDbOj+2UpORXjXGHGOPmjNzx/5j0f/akT+16dcy6Yge2vGhba2LJrU2x9bydqXEXxnRAFVl1jjHaOyUpeRi1O3yX9MRp9vIxE2g4/P/Iz9nL/hsGDKLxhJMYe+be1sSSqskw7qcHk9n7h5C1dO6EJLXD/9F44vGkhtoTofU7bMfw075C/Qz7vlA3ZTSjzzyIdb9i71hlhvZj/a8dS1b9EnvSpp68c4XZ1rZOsiKrzjVTe9s7JSl5pNnW21nLHbEVWXUZafk1a3lpavHLyaqfJxgXkXOuQLSPEO+0BrLqvPbpx+3Go8mqS3HENjHGrcmpS0lL+wzCpanF442Chm4Yzy8ZY24UpeWxxmjvBDtiG3LqUlLyGLtRjCbvLiCrzk8wLqxg/Hlpqnm6zI5sjF8jl2jclpy6jJQ8KsY4xtTjudgSS4I+1DiLyDkLsSdEHLLqF8ZoT6am5QnknMtiO/KOmE1WXUZKHhFrzLkLumG8HHtCxCHnXGiM9okI0vJEcs48nJiOvCO2J6suJSUPizGOJefOJ6vOwdY1EPSlxllE3lmIPdngGuPlSNaLMZ5Ezrks9qaeI+aYeowzbkDOnUdW/TTG2I8a50ryzuVATYzxIvLOwtgbl2l1sjHab1w6YkdjPDTGOM4YfxJj7E+Nc4WpR5sx1Q3jKRWMOxnjwTHG8eTc+WTUj2KMA4zxciAfY7yEvLsQybAY46mmL2G/KejKXYxxboxxAjl3Hhl1NrbEkqCRvHM5QlQfuKlGNdaUqM7+topjTZv9rRxaL6cQ3EwxuBtoQYlxpOQhKLmhKS9QDP5EMbgNzWKkGIYr98MRWyKEQGuNp/9BMbiRQL+NoC+u3ANX7oQQpY6vHzxHIbgWXz8HZHHl9qTkPghRajQF+l0K/vV4+lEAHDGDlJqLFENCxt9TDO4BWo3x4IjxLmNcghTDSMn9UWKLBOOexuhajDlj3DtivA7PTO3qiM2McXDIeBPF4N7PYDwAJTYPGf9ujO8g6GeMO4aM/6UtuJZAP2+Mc4yxNmS81hgFjtjcGAcZw7KQsQ0lxhvjBqa8zRhvDxkPRInNQsYHKfg3onnXGPfClTuEjM8a4wvGuAMpuVfI+I4xPt5N4wRjHBsy3kkxuMMYhxvjjJDxAQr+TcbYP2R0jPEZY3wxZNwbIWrajW3+Nfj6iZDxIKQYaMqXUgxuohj8zRgnGuOYkPGPxrgsZNw0ZLzfGN9D0J+U2htHzGk3esF/KATXhYw7mnosG9+mzb82ZNzCGBtDxhuNsYASk0ipg1GmY9zZuBQpRpCSB+LITU25xtP3UfB/b4wDSKm9IsZ/G+NLQD5kzBvDW7T51xmjxJFbkJJzQ8YloXqMM94RqscRpORcHDndlAch4/tW4yf/+oiXr32epS8twc27DNtpBCP2Ho2bL+2vK95azku/fZ6PH/8A4QgGb7kOow/akGxjLmS8kWJwnzFuZIyjQsbbKQZ/NMaRph6NMQgoPPc0LY8/iL/0U1RdHzLTZpKeOA0hS4344puv0PzQvXgfvINMZ0hvtCnZaVsi0qVEdsu7i3n/D0+w/Jm3EUrSMG0kg3efSqpfaV/QzcvwnvkL/uuPg19EDh6Ls9GuyH6lEZRBocDKhx9n5aNPEjQ34Q4aRN02W5IdO7rduOyxF/j0nicpfLIMt28t/badQsNm4xGqZFzx3Dt8cNsTNL/5MSqXov+s8QzYfhIqa87x+g0K/rX4+ilA4ciZpOSBSDHA1ONiCsHv8IIHAM/U4yEo825KrVspBrdRDO5Es8LU41wcOS20re+l4N+M5gMEA8223h4hlNkfnzb74ysIanDlzrhyD4TIGePrxvg04ISM/Y3xU2N80Bgnm21dNraYbV02rm+2ddh4DwX/lpBxbxwxO2R8ikJwfci4izFmjfE1Cv51IeNWpOQBIeMnFIIbKhjL9bjSGOe2PxqitR8yfohgUMgojfFJY3wVQa0x7h4xXouv/xUyHogU/WKMGxvjiJDxDxSDu4xxlDFOSTDugyO2CxmfMMbXQsY9ECITMl6Dr/9tjFubeiwbPzbb+h/GOMUY1zOGZgrBH/CCP4WMB+HIjUPGuyn4t4aM++KIbUPGxykEvzPGulA9lo2vhurRxZGzjLFvxPh3wI81FoO7gCakGG2Mk0PGvxrjRzHGx0LG+hhjuR5TuHIWrtw/Yrze1KOPElONcbgxNBnjn0LGg3HkRqbcC9XjRwgGG+M2EeP1BPp1Y9zVGNPG+Iqpx7JxG2PsEzJeZ17kHKDEVNLqYKQYFjLeSjH4szGOMfUYNpbr8WNj3A9HzEIIidYaX5fr8XUEDca4W8j4sjH+xxi3xZX7hYwfmfblPwGNEtOMcagxrAwZm5FirDFOihhvQfMJgiEhozDGR43xTVOPu+HKXTuMwUumDfwMkA4ZG4zxQ9NOTzLeQjH4S7sxLQ9GyYntxmLwF4rBrca4jtnWYeMjxviWqcfdcOUuIeOLxvisMW5HSu6HEEmj5lZ/fFlmf9tcnfV5U3o9HvLP6tHsb9UoRTXF+6WNLIJGpBiI1i0IMRAhwneVXaRoRIiBoFOlz9KIEKU7BkIIpG5E0IigiBB9TOe7Y5SCEH0RohGhP0WIrBmN0vHYm6AOIRqRZiSNEI2ITnfAMsbYiNatxhgeQRA2po0lahwQMvY1HduO3V6IPp2MpfKwsRYhBnbT2GaM4ZEYLlIMCBkHlpZhNXoxxr5IGtEsNsYBhEdQlY1CD0QIYYzhO2Dhbd1mqceUMTYmGEvfD7RfwbgEIXLGGN3WZaO01GMWwQBTjwWrUXQxDogYB7YbpehnDB13hUvGgWiWGmNjpB7rzPfLxoGd6lF0MTZ2OWZE+/6YSTAOItABUvQzo586jFL0CxnzMcbGdqO0GsvbulBaf6cRBGVjYydjRx2F67FsbIwY+xvjspCxYySaoB4pBnQYiRpzEWNjjHEg6KwxdozAEkKGjNoYB3YyZvplyTbmKCxrw8m7ZAfmUOmO8lRdimxjltygPEIJsgPzuDWhcxc5BAORejCaAkIMioy6cUsuBoHOIxjUaSSbkBJR2w+d649uU+hsPaK2b+nZs/Jnauoh1x+dbUNnMoiavuB2jERzarOk+tWS6l+HUJJ0/1pUPjTiL5VF1PQtfc/3EPl+iGzHMSUcB9VQj9OnniDt4vRpQNV3jIIQUpIeUEN+SJp0Jo3TkCHTWAOyw5jqmyO/Tgblp1C5DNmBWWSq47gPVgzkkzu3Y/mzYxFK0meTETRu39C+ywrySAaabV00+2u4I5AKbeucucZ03tai/dxD6TzFwPZkDZT3x0Y0KxCiprRvd9ofG0LHtVNaR+jue2ejV7qmdNof0+Y4TjIONMdld4y15phLhQw2Y/iYqUG2HzOeqcewsXx+HAR6hcWoEHqQWYcwv3Fgewe+9JmycWU3jQMj9dgdY3lb581no8ZyPZaNjTHGJmNsjBjrLcZK9RjeH9Olf2s3DuxkBFk6L7QbB/4PxobQOdxNqMdBMfWYRopy+UpjDLc5wkaJFINK6+hkLLc5mo1xYJd6LLWLSkbR5ZipMesdFDpmwvWYMcaBaN1kMar2dlPJONBi7G/OsS2hegyfoxtKv0MPRIiUMeZC5eHjOrAY0xZjeFuHjapLPQohEAwIGetijI0Jxhrz2weFjOGRapnQto6rxwFmn3fMsjq33TqMrXZjexu4bByA6NR2K51TO4zRYya8rZtNHYXbbgoposaBEWOjuYa2IUS9OfdE+xIDEfrjdmPyqx+qUY1qfB5RHam0imNNHKkU6A9p8g4zoyHC4ZJV5+HKHWn2vo6n7+3y3bT8Gil5KoXg57QF87uUO2I2OediisGfaPFPIzplqBRjyTtXE+j3afaORLOkU7mgHzlnEVI0GuNLkTWkyKrzceX2xvg3i/EEUvL/aAvOoxBcbjHOIedcSDG4yxg7v5FWig3JO1cR6Hdp9o6yGPuXHtkS/Y3xZYvx57hyNs3eCXj6PovxRFLyG7QF51IIFlqMO5BzLqAY/JEW/3SLcZwxvkWzdzQ68p63kvFKhOhLU/EwAl6JCsg5v8AR29DsHY+nH7Aa0+pkWv2fUggWWYw7GuPttPjftRjHk3euJNBv0uwdYzEOMMYGY3w1wfg1PP1gV6M6mbQ8kVb/xxSCq7qUu3JnsuqXFIM/0OJ/z2KcYIyv0+QdA3Serr00xPpKhKinqfhVAqKPPqfJOb/CEVsZ498txlNIyxNo9X9EIbjaYtyVrPoFxeAWWvzvdzEqMYGccxWBfpUm71iLcaAx1hrj65E1ZMg5F+CILWj2jjN3HDsvoWQ8nlb/hxSC3yQYb6bFP9NinETOuZJAv2yMyyNrGGSMeWN8w2K8EEdsRpN3HL5+yGL8Jml5rDH+1mLcnaw6n5eve4XHv/9PtN/52tZv8gC2uWpHlr64mAeOvpviikKn8tzgPNv+ekdqR6+guXgkgX4zsoYsOfdXOHJTmorH4wcPdzFmnFNJyaNZesM1ND3Y9dyUm74Zfb5yFE3/eIClN14DQecX1qbWG0m/E05hxYsf89wZN+I3dX7pdrqxjvE/P5hsQ5G2m89AL30/UgkZ0ruejhgyifcvmEfr85HzpxD03X8vGnaazYeLbmTpPV2nY66buQmDv3Ywn/zpUd65/PYuxvwGwxn5g8NZ8cIH/PeMm7saB9Yx8ZcHkRm+gubi4QS8Fa0Fcs7FOGIqTd6x+Gakaqd6VKeTkkfQ4n+PYvC7LsbSY9g/oxBcQ6v/I6Iv/i094nwFnv4Pzd7xQFNkDUPIu78GBE3Fw9G8bTFeiiM2psk7Gl8/HimXxngYLf4ZFIMbLcZ9yapzKAS/odX/icU4zRj/ZYzNEeM6xghNxcPQvGMxXoYjJtPkHWVGBkaNZ5CSX6HFP51i8HuiUXoM+ycUgqtp9c+xGDch7yzE00/T7J1gMa5L3r0a0Mb4bmQNeWOcZIzRdpAko75PSh5Ci/8disHNFuOBZNWPKQRXGmPn41qJ6eSdy/H0UzR7X7cYhxqjb4zvRdZQQ948vtzsHWVG3XVagzEeZIy3dDGm5Fwy6kcUgkW0+j+zGGeQdxbg6cdp9k7qYpQMI+deDRSNMXJcU0PePBpcMj5tMf6AlDyQFv/bFIM/WIwHkVFnUwgW0uqfZzFuZoyPGmNLxDi8ZNStNHmHo/kgsoZaY9yAZu9IMxIrajyLlDyAFv9bFIPbLMZDyKizaAsW0Ob/PMH4CM3eNyzG9ci7v0brJpq8IyzGutIjhGI0zd4RZgRRZ2NWnY0r96XF/ybF4A6L8Stk1Jm0BfNo83/ZxeiILcg58/H0P2n2TgZaY4wrjTE66UJd6RFCsb4xPhMpd4xxH1r8UykGf7QYv2qMlxpjZAliS2N8kGbvFItxJHn3arReYbb1R5El1Jt6HGmMz1qMP8KVe9Hin2JG1UWNh5FR36ctuJg2/wKLcStyzmV4+gFj7HydKT3ifDVSJL+Tc3XGl2GkUi3Dp2z2BRyp9LB/FiuqI5V6HNWk0iqONS2ppLWmydvHcsEvh8IRc/D0n2KX4Yp9KOqujb9yOGInPP1X4mZ1kExE83aXJENH9EGKwQT6uQTj9nj6zz0w7my+b5+FRLKR6fgus5ZDXzPiJM7o4Ijt8PRfEoz7UtRdG/q9Z+yHZAABLyQYtzXbKs5YqR53wdN3ETfDh2Rjkyxabi2H/kj6ERBNcIaN2+Dpu3tg3BVP35lgnELAy8CKmCUMQNJgPhNnnIWn7+mBcTc8/ccE41RTRytjltCIpD7B6OKIrayJ4vZPyH2snbr2crEbRd21kV0OxSb4PEe0A98RA5HUWJKHYeNMa6K4w7i3tVNXjmWPnsiDh9jeU1GKxhmDWfzMJ3hNRWt5ft0M2917DbpL8rAcKRy5OV5wf+w69ANfZ+Ufop2+jshuMoOWxx+JLVcjJvDaPR5BS8Fanh5Yy8Qdn0UvjXbgywtIsZzZND0dd26C3IzNWfZANFHSEfnNpvPJPdHOTOj7E0fz0WOLCVrt9Zhep4Zxv70dLd6IWUIaJTbFtySKy1FpW7tyT2vnuRyKzfF5mmjHsyPWRSItSa9yZHDEdGsyu8OwF8Xg1thyR+6Jl2jcEp8nY43lySC6Jr3Cxml4+h89MO6Fl1BeMj5BtOPZYRwGBJakVzmyOGJqBWPytqxs3AqfR4l2PDsbfUvSq8OoxMaWZHbIIPbA010TIeWoWM9iazz9SIJxOFC0JL3KkUOJSfg6/tzhit0p6tt7YJyFpx8C7Oee0iQrrZakV9g40ZIo/izG5OO+1Gb5O9Eblh3G9YEmS0KpHHmUGI9vXmmwaozbmfNGnHEUsNySrClHDUpsYEkUdyzBFbsmXo8rtzlm4+n7id4g6ljDaGBZgrEWJcZYEsVh4y4UddekV28ZpdiQGueOTiPcPs+oJpXW3qgmlXonqkmlVRxrWlLJCx6lybO/GK8jKk356hJ3seze93sj1gZjpelUq8buRU+Nq2Nq3bXBWCnWBGPP6vHRo+by0QPr/c9rH7jdy0y/LL7TVSm0L2g6ewZ6eUIjV8ouo3/CsfjDPiz7OH4WqIbBn7L+9LgkLHgFh49fiJ/1UWvwgzTaizcUill8e78SgNaWNIXW+Fkd67d6nRE/7DpC87OFQ1xnonvlqyOqxt6JqrF3otI5em0wVroOrY74MhgrXWt7I1a9MedcjSuTZ+tbXVFNKq29UU0q9U6sGendaqy28IL4O3EdUSlJUOliuqqTDN1Zx5pgrHTBrhq7Fz01ro5kzdpgrBRrgvF/r0et4ZOH45Mp3Yn+M6KPvH22CD7MJieUIDGhBNC6MptYXjsgbmRiKQorK7xrQpOYUNIa/ELydvCKya9jrJ0SN5Lhs0Slzu/n3TmGqrG3omrsnah0jl4bjJ93sga+HMbVMaBg1Ru716epRjWqsTqi+qLuL11UR6ZVoxrV+GKG1l2nHv4sIWQPz4+r4fQqKq1kTTjF97Qeq1GNalSjGtWoGGvCDbkvVwRrRCOjGmtiVEcqfclCmWmQk6NSx0xVKO9Zx657sTYYK0XV2DtRNfZOVDKuCZeLeKMQ0Hdq3PtIuheLn+zZSCc5sAWRrzB6TyRv63TO/u6acqxcXJdYnsrb39nSsX46zfDWpViArHC7yXGSRzw0PTMweQHdirV7fyxF1di9qGSo9BtWR1SNvRNVY+/E2mDsaTu9cjhykx4voxrVqEbvxJrQmqjGagxHbIkUYxI/o8QWFZaxXYXvb5lYLhhJeLr5rpFDMqLCOjZPLO+5cRTJxjyS4RXW0dN6nJlYXnqRYpKxxrz8M34Jletx28RyJZKfZReMIXnq19r2l9HGLUGJzRLXUakeHbF1YrmsaKzrhnFGBUNPjRsQnia9a9QjSJoFRaLEphUMydvaqbCtJRsSnpa6a9QjGJK4BCWmVzAkG8cckUss7zuhHzIVf9lb/MQkhB6csASFEvGJeeFoslttmGjITJiUWN5v434IN76xvbJpKOT7xZY7WZ/sBiPjjQJqp45PNNRvOjaxvGHiQIQTX49N/x6H0EmJJYUSya8ucMQ2PSqXbETyYOx+CBqT1oASU3pkqLS/SiaTbOxvps+OXQNKbFzB0LN6VGxMsnEAgv4J5Q5KTO6RobJxCskd1EYEfRPKHaRIPi57bpxKz4wuUkysYJhVobzC9ZxpJBsHIYh/31vJOKGCYVaF8krG6SR3XQYjaEgod5FiXAVD8vW4snFTko3rAPUJ5SmkSL6O9I4x4eYC6wJJNzBSSLFBBUNPjTNIMkqGV1xGNapRjdUX1aTSlyyEkOSceTEdUEFG/YC8c2lsg780BfEluHI/a3lpmuRLyagzsV0MStMkX0HOmY89IZIj7ywg5y6M6YAKMuqsCsYDjXGfGOMmxvg9a7lgXWrcK8g582KMefLO5eTcRQhsHVBBRp1tjPYGf0rONca9Y4ybGuN3reWSYcZ4aaIx716BYJB1CRn1I/LOZbEN/pQ8mKy6FFfuGWOcYYynxxiHh4y2pE2NMS6KNWbVj41xoxjjoaYed48xbkbOuYSMOi3WmHcXkXMuqWC8AoGtkyzJqp+Scy5DxTT4U/KrZNXFuHK3GOPm5JxLSatvxRjXI+8uNEZbYqm2ZHQWxXSSVchob/Cn5GGmHne1lpemIL6MtDo1xjjCGC/GnliqI+9cQd65IqaTrMiqn5EzU3vbjUcY484xxpmMnHMyG33TnvSpW7+era+Yw8xLtrMmllL1KbaevxP59OUxnWRF1j2HXOqS2AZ/Sh1Jw87fJDvFbkiPm0i/o0+gbte97L9h0GAGf+N4NvjB3tbEklObYcNzDiKzz48g19B1AVKR2vEUBn79a6SG2UddNey8PYO/cSQ10+3HVH7yOIad+lUGHbS9tTwztJFRZx7KhmftZTfWZRn/k4PNMWNLfjlk1fnknHmxnZK0PJasuhhHzLGWO2Ibcs4lpOWJ1nIpRpN3F5BzLqD0MtjOIWgI7Y+2jrxDVv3cGO0JtrQ8zhjt9eSIbck5F5OWJ8QYx5B3F5BVv8SWtBH0CRltHXmHrPoFOWd+7I2itDyBnHNxbFLbEbPJqktIy6/FGnPufLLq5zHGvtQ4i8g5V8R05B2y6lcVjCeScy6JTco4Yg5ZdTFpeWyMcYNuGhfFGF1yzgWlKdIZFWM8yRhnJRgvISWPiTFuSM6dR1adH2PsR41zZUI9uuScC41xfbtRnUzOuTS2I++IHcmqi0nJo2KM44zxXGyJJUF/U48LsSdEUuSci4zRntROq1NMPdpvULhyZ1OPR8YYx5NzLyOrfhZjHBAy2hIiKXLOJeSdy2NvXKbVqaYe7TceXbmLMR5uLVdigjH+NMbYSI1zBflYYzpkXC/G+C1Tj/Ybl67c1Ri/GmOcaLb1T7F1AwUDzbnncqA2xngpeWdh7M3VjPo2OefS2JuCrtydrLqUlDw0xjiJvDuPrPpJjHFQqZ8gqm9xqUY11pSozv62imNNm/2tHFqvpBDcghfcjaYVJcaRkgeh5FhTXqQY/JVicBuaxUgxlJTcHyVmIIRAa42vH6EQ3ECg30HQF1fugSvnIESpEe8HL1IIrsXXzyPI4MjtScm9EaI05XegP6DgX49npp91xAxSai5SDDSGFRSCW0PG8cY4JmT8izEuMcYDUGLTkPFhCsGN7caU2hNHzGm/EPnBCxSC64wxa4x7hYzvU/B/12GUm5GSc5GiMWS8BS+4p8OoDkaJ0SHjnykGtxvjMGOcHjI+ZIzvIuhHSu0RMT5vjC8Y4xxjzIeM5XqUxnhgyLicQnALxeAeoA0lJhjjKFNeCBmXGuOBOHK6Kdf4+p/G+J4x7okjto8Yr8XXLxrjDqTkniHje8b4WMg4FykGhIw3UwzuNcaJxrh+yPgnisEdxjiclDygk9HT/6AY3GSM/Y1xdsj4nDG+hCAXMuaM8V1jfNwYNzf1GDb+nmLwtwTjXca4PGTcJMG4lzEqY/yv2dYloyt3xJV7JBi3ICUPiBhvMsYCSkwyxpGmvC1Uj8uQYoQxTgsZ/04x+H03jXlj3D1ivA5PPwGokLG/WceyUD0mGW839TjC7I9TQ8YHjfF9Y9wbR2zXbvz0mU94+brnWfbiEpwal2E7jWDEnqNwsqV9YeXbK3j5uuf56PEPkEoyaMt1GD13AzL9sx1G/2aKwf2gCyg5iZSai5IjOhv9P6L1cqQcQUodgCOntBtb//sMzY/8A3/JYlRdPbkZW5CZOBkhSw3kwptv0PSP+yi+9y4ikyG38SZkp89ApkqJw9b3l/L+bU+w/Jm3EUrSMG0kg3abQqpP6ZjSLSvwnv0r/uuPg19ADtoAZ/IuyD6lGwZBoUjTY0+y8tEn8JuaSQ0eSN2smWRGj2w3Nv3rOZbd/yje4qWohjrqt5pOzdQJ7cbml9/mkz89SuvbHyKzafpsOYk+W2+MTJfO8S3vLeH9PzzFsmfeQShJ3+kjGbTb5HZjoJdSDG6kGDwAFFFiMil1EEqsF6rHP1IM/ohmpdnWc3HkxqY8wNP3U/BvRvMhgkazrbdtn0baC/5NIbieQL+KoAZX7mT2x4wxvEWbfx2+fgpwceSWZn/sa8qXGOODxrixMQ4PGe+gGNxpjCONcXLIeB8F/5aQcR8csU2CcWdcuVu70ddvUvCvbze6ciau3D9kXGyMf48xthrjXSHjQThyo4jxZjQfIRho6jFqvI5Av2aMuxhjOmS8Dl8/bYxbGWOfGOMU0uogpBgWMt5OMfiTMa5v6jHJuA+OmBUyPm3q8XVj3BVX7hoyvmGM/zLGrY2xwRg/pRDcgBf8M2Q8GCmGhoy3UQz+bIyjjHFSyPg3s60/QopBuHIfHLF1jLHWGHeJGK81xhSunIUr97MY/wF4FmNLqB6bkGI0aTkXJSeacj9k/DhknIUwj956wVMhY53F+Lox/tsYt8GV+4aMn4Tq0cMRU0mpg5Fi3f/ROBhX7osjtgoZn6QQ/C5k3A1X7hwyvma2dYcxJfdDiHqL0Q8Z1zGGZmP8M5omlBhDSs5FyQkh473G+Ikx7ocjZoaMT5g28OsI6o1xp4jxWnz9H2PclpTcN2T8OGQMcMQ0UuqgiLG8PzYb40EoOT5kvIeCf6sxDjHGLUPGx43xzUg9pozxVWN8BkiHjHUxxk1MO73DWAj+gBf8JWQ8GCXHhYx3U/D/kGB8zBjfitRjnHE7UnKfduOaEl+W2d82VT/4vCm9Ho/6P6zO/tYLUU3xfmnDRVCPEA2gWxE0tCdSSqEQoq508dN+6bPUt18EhBAIXV/6HisQot6c4Dt2KSFqTHkDQmQQ1BO+ayzIlr6nG8zn6xGdRt2kENSFjPXtSYoOY/k3BGZdNmN9h5E6wnePhKg15Q0IkTXGjpEWglypHspG6hGdRrSkzDrrQWdMeZKx3vwmWz2uLK2LeouxIWIM333PGmOfGGMaQT1SNKB1m8XohIyYdXVcrDsbm0w9Ro01FYw5s63LxgZEp1E3EaOIM9YbY32CsTnGWK7HeoTIxRgbEuox1U1jA2hR2s5WY32kHmXoM+X90RhFXD02ADJ+f6QBKFqM7mc0NiQYzbYWdXTdH5OMaVRbH2jrB7qIdPsic/nQpnJQxQZo7YcOUginLzJb304QQqCKfdAtfdF+ASH7IbMNEBp95NamcGszOLUZ3BoXtzaNDD2u5eRd3NoMbl0WoSRuXQaVCd9VTqO8eij0AYpIpw9Sdd7Wyq9Ht/VFBw5SNSAzdZ2MMpdHZGoQmQIiW4PI5ju9T0lks6XybC0yk0Fk8wjVcf6UGRenNotblwMlcOuyqHSonl0XVZdB9EuBLxANaUS645gSjkLmc8h8ab0yn0fmOs6vQghUPoeqyREUCqia0t/DRpnLoGpL/65yaVRNttNjb+nBAesc+zIDg6cpJTkVrkm2AAhzXJf2Ia/CMaPMPhXuKAgEDUjRQKBbQ8dMqB5FXei4rjHHTLhpEz73KGTk3FMyNoSMdQjCj1FGjfUVjA0WY/i47mrsfJ1xjCcTKs9EjPUxxvpQPYZHGIjQ9b4NKRrMOSJqjNZj6PxpNUbrsfO25jMb6yoYw9u61lKP+dC5xzGesLFcj3VAkGCsC21rWz3WQ/u1tKE9odRhrK9gLF9nkoz1QGASOWGjG6pHp/RbOhllaFsXQkZbPTZ0tPNija65TsQbhWig84hpJ9R+dJDUxxjrQ8Z6i7E+ZIy0L6kJHdeusUSN9QlGt5MxuR6LdqO5fsYb8xWM2dD1Os5Yrqdymz2uHsvGOouxvv1z8du6ASHSdG0DZ9qXAdpyzLghg2s5rsNGL6Ye67thrI8Yk14HUI1VGdWhKNWIi+pIpVUca+JIpUC/T5N3GIF+OVLikFXn4sqdaPaOx9P3d/luSh5DWn6btuBcCsHCLuWlxxIupRjcRYv/HaJT2EoxmrzzawL9Ls3e0WiWdioX9CHnLEKKRpqKhxHwisV4Hq7cwRgf6GJIy2NJyW/RFpxDIVhkMW5rjHfQ4n/XYhxjjG/T5B0NdJ7Cu2S8Ein601T8KgGvRdbgGuMcmr2v4ekHLcbjSMlv0hb8hEJwlcU4m5xzMcXgNlr871mMY43xTZq8YyzGvsbYL8H4c1y5Hc3ecXj6Hxbj8aTkKbQFP6YQXG0xbk/OuYhi8Adj7DwLhxQbkHeuJtBvGOPyiLEfeedKhOhjjK9H1pAyxm2M8Z8W44mk5DdoC86mEPzGYpxDzrmQYnALLf6ZFuOGxviaMa6IGPsbYz1Nxa8QEJ1yPkXO+SWO2Jom7xh8/bDFeBJpdRKt/lkUgmssxh3JORdQCH5Pq/8Di3EceecqAv0qTd6xFuMAY6w19Wgz/gpHzKTJO9ZuVCeTll+n1T+TQnCdxbgTOedXFIIbafV/aDFOIO9cSaBfosk7DlhpMV6NCPIUFh+B9t+OCkg1/ByZ3pzCkq8RFB7raqj5Bk7NcRSXn4XffEOXcpXZCbfhfF789cs89v1H0EHna1u/Sf2Zfc0cljy3hPuOuofiys7TGWcbs8y+dkcaxi6nbdlR6OCdyBoypGp/jnI3pW351wi8J7oY3NzJOJljWHLtb2j6e9fjPrfJdPoefhQrH7yfpTdcD5Hrrzt8PQac9H8sf+Ejnv/eTfjNhU7lqf61TPj5QeT6F/D+dCqs/CBSCWnUtmeiB0zjg19dSuuL0fMn9N1vTxp2mcMHl/+OZfd13RfqtpjK4OMP5eO7HubdhXd0MeZGD2X9Hx6BrnmSZu94oLlTuWAQeecqEC5Nxa+ieTeyhiw55yIcsQlN3pH4OnptFGTUt0jJo2nxT6cY/L6L0ZV7kFXnUwh+Q6v/E6LNXCUmk3OuxNf/ptk7IcZ4NQhljNEXvGfNY2NTafKOijGeRkoeSYv/HYrBzRbjXmTVuRSCq2n1z7EYNybnLMLXT9PsnWgxDibv/hrAGN+PrCFnjFNMPT5lMZ5OSh5Gi38axeBWi3EfsupnFIIrafV/ZjFOJe9cgaefNMaWyBqGGGNgjJH9kRw55xKUmEyzd4QZnRM1fpeU/Cot/rcpBn+wGPclq86hEFxBq39ejHERnn6cZu8ki3GdklF7NHmHxRhLjy+XjP+OlEsy6gxS8lBa/G9SDG63GPcjq35KW3A5bf75XcpLrwW4Ak8/ZoydX8YvWJe8ezXoojF+aDHOQ4nxxvgfi/H7pORBtPinUgz+aDEeQFb9hLZgHm3+LyzG6eSdy/H0ozR737AYhxpjK03e4Wg+iiwhT96ZhxQb0uwdjq+ftRjPJCXnxhpTci4Z9SPagsto839pMW5qjA/R7J0MdJ6UQDKMnPtr0M0xxhry5lHMJu8IAqvxB6TkAbT4p1AM7rIYDyKjzqYtuIQ2/wKLcYYx/p1m7xSLcTg592rQTcb4scW4AClGGeN/o2sgo84iJfej2TsZT//ZYjyYjPohbf5FtAUXWYybGeMDxtj5OlN6LcCv0Xo5Td4RaD6JLKH0yL0UI2nyDifQz3UxZtXZuHIfmr1v4Om/WIyHkpY/oBBcSFtwscW4OXlnAcXgflr8Uy3G9ci7v2kfHbcmxJdlpNL0L+BIpceqI5V6JapJpVUca1pSSWtNk7enGUZqC4kjZuPpv8YuwxV7UtR/iC13xBw8fQ9gnwVJMp6Ad4gmQjqiHskQAp6PKVc4Yls8fXcPjDuY78cZJ5rO+XJrOTQgGUjAiwnGbUw9/K/GHc3F2H6MloxvEE0ydEQfJAMIeCnBOAtP39sD406mURNnnGQSWiut5dAXST8CognO9jXgiK17wfin2HLJZJO8jDP2Q9JAwKsJxpl4+r4E4x4U9W0Jxp3xdNcGbIdxY7Mdm2I+0R9JfY+MjtgDr0fGKQS8QLRzXA6hG0kta0D70eRhOVxkajOCQtdkTPs6MrsRtN4RW/7Jf47jb0fED4lvnD6Qxc9+itdsn70sPyTDzn/+Leg34o3upgTFrknYchQeOZYVt8edXyE7bRNanng8tlyttyGv3+cRtBat5anGGqbs/zisiCZrTEiXT5fsStO/485NkJ0+g+V/j78m5TfdhE/+Fu1wdUT9NoPod+Iioh34jhiEwEUTTR6WI4US0/EtyexyuHJ3awe+HI7YDU/H7wuKTfH5N9HOcUcMRuAkGNMoMQ3fkszuPeNm+DxFtOPZEesgwJKYCxun4uuH/nej3B0voVyxOT5PJhjXRRBYEnPlyKDExtZkdrtB7I6ne2LcAp/HiXY8y1GaaMGzJObKkUWJjfD1IwnGXfF010RI941b4vNYBWPRkvQKGyfi664J994zzsTnEcB+7ilN/NFqSXqFjePxddeEezlcsQtFfWd8udyDYpB0HdoaTz+UYFwPaLYklMqRQ4kNLYniz2CseD2fZW7U2a8zpclqVlgSSuXIo8RYS6I4vI5d8BKNldpF2+DpvycYRwFLLQmlcuSM8emEdSS3GSobtzU3Ze1GKcZQ49zVaaTg5xnVpNLaG9WkUu9ENam0imNNSyp5wSM0eQdV+JQkLtlSCoe4k3z3vt8bUWpqx8faYHSJaxiVomosxdpgrBRrwv5YKSoZFdERSp8lREHgrujpE9fJxgdPOoAPHkqelTEphmz7Elv8Kr6zUCm0L1h63qYEKxIauVJCEL+tl3zUwLJPG2LL+w7/kDGz4pNWxRaX9x8fHW/U4PtptB9vaCtkCRIOqb6HPEPD3vFJq96JVbs/9k5UMlYqXx2xNhgrbcuqsXtRNfZOrA3GnrbTV0f01Fip7Qc550pcOeszy1ZFVJNKa29Uk0q9E9V3Kn3Jwgvi7xZ2RKXObaUL1eroHFdKhq4NxqRECFSN5VgbjJViTdgfK0UlY8868LIYPzVw9yPeqDV89IRtVsvuR+MmcaNWuhf+x9nkhBIkJpQAWpttsxB2RN2gJYnlbcvyieVoEhNKWkNQ1ITfZRONzIS4UQC9Gat2f+ydqGT8vDt1sHYYK23LqrF7UTX2TqwNxp6201dH9NRYedCDFzy8xiSVvgyhgUB88QajfPF+0ecTa8aYwWqsxqgeOtWoRjW+oBH0LHElZA/Pj71wetW6h8m31XGKr7YcqlGNalSjGp97VPs01ajGmhLVpuGXLJSZ3jw5KnVqVIXy3hiRUCmqxtUTa4Ox0oDLNeE0V6kev/jGwOmNxl+8UQjoPyXuvS7di4+f7NlLP9WAFkS+wt1ZkXzMZHJx7wAqxYqPGhLL0/X2d1p1rB9Q8QYhQFY4pFqf65/8gV6JL8IxU6l8dUTV2DtRaX+rGrsXVWPvRNUI4MjpPV5GNapRjd6JNaFVVo3VGI7YAinGVvjMzArl2yeWK7FVYnnpBYBJj2jkkYxMXIISWyauwxGzE8uV2DqxXDCGztOmRqMGyYjEJVQ2VqrHSsaxdJ5+Nhq1SNZLXEJPjY6YlVgu2YBkYx2SpHfgSJTYooIheVs7FepRsiHJxnokQxOXoMTmFQyVjLMSyyXjgKTHourNi17jl6DEZhUMlYzbJJZLxpM4zW+qHqGSHk9TyNSmyetIb5tYvuHhyY9+9duoPyod35D95N8TQQxJWIJCOvGJeeFo8luNSzRkJm2UbNy4P8KNN65Yvh7kGmPL3bxPblz8+VMIqJ06MdHQMGODxHL/tVmU3mUWF/0QDEood1Ai+QaHI7arUJ68v0omk2wcgGBg0hpQYloFQyVj8v6q2JjkpHgjgvhtXTImvwKisjG5XDGVZONABAOS1oASU3pkqGycRmVjUiLURYnJPTJUbHOwCcnGQQj6JZSnUCL53FFpf6tcj9NJ7ugP6YYx+dxS2VipHmeQbFwHQZ+E8hRSTKhgSL7W9dQoWBdBQ8IS0kgxvoKhp8bNSOoCltoT9QlLSCPFhhUMsyqUV2oDb06SUbJexXqoRjWqsfqimlT6koUQkpwzP6YDKsmos80UwPbsf0rOJasuIiXnWstLU75eQkb9ENsoFskwatwryDvzsSdt8uSdheTcKxDYRg1IMupH5J1LYjslKXkwWXUJrjwgxjiDvHMxGXVWjHE4Ne7CBGNNyGjrJEuy6sfGaG/wp+ShZNXFuHK/GONmph6/n2jMxRprQ0ZbJ1mSVT+tYPyqMe4TY9ycnHMJGfW9GON65N2F5Jx52JM2ZeMiBINtazDGS2M7JSl5GFl1Ea7c21ruiC2N8bvWcskI8u7l5JxLY4x1xnhlTCdZkVXnGOPkGOMRph73jDHONMbTY4wjQ0ZbYqmevLOIvLsowXgeOefS2E5JSh5ljHvEGLc2xtNijOsb4yVWo6CBnLuIVJ8FIG2dZIVb/1NSfS5CuPZOiZM/ErfhV6jMrnZDeiuG73YSU063JwLqRzewzaLZbD1/W2tiKdWQZttFO5Gpnw/C1klWpGp+RrruIqRjb/A72aOp3+0UstPs58/MxEn0P+Zr1O8Zs78OHsLgk49jwx/ui0x17YA6dVnGnXMwzo7nQrZv1wVIBzXrDBpPOJ7UesOs62jYbUcGn3Q4tZttbC3PT5nA0FO/wuBDdrD/huGDGHr018k5FwGpLuWCPqX90VkUk2xwyKpfkHMui+04peXxZNVFOGIna7kjZpNzLiKtTraWSzGWvLuAnHNhjLEvNe1GW7LBJat+ZYz2JGFafp2cczGOsNeTI+aQcy4mLU+KMW5Azp1PzrkAW/JL0C9ktHXkXXLOBeTMNO5240nknItwxJwY4w7GeGKMcUNy7rwEY/+Q0bI/4pJzLjRG+82stDrZGO0dTEfsSFZdRFqeEGMcR86dR1b9ElvSpmS80hhtyYYUOecics4CpBgTYzzFGO1JGVfuTFZdSFp+LcY4wRh/HmMcQI2ziJxzRUyyIUXOuZicMz/BeKrZH+1JG1fuSlZdTFoeZy1XFY2NFYxpcs4l5JzLkcI+UUBafcsYZyUYLyIlj4kxTiTnXkpWnR9jHFjBmCHnXEreuRzJKOs6Murb5JxLYm9GuXJ3YzwqxjiJnHsZWXVujHEQebdktCdtwsb1Y4zfMfVov4Hryj3JqotJySNijJPJu5eRVT/DlvwqG/POFYBtNtUsOWceeWdh7A3gjPquqUf7jUtX7m3q8bAY48bkncvIqp/GGAeX2rdiTRiR9WUKTfAF/FN9jLJ3ojr72yqONW32t3Jo3UQhuA0vuBtNK0psSEodhBKjTLmHp++h4N+GZglSDCUl90OJTRBCoLXG149TCG4k0O8g6ENK7YEjZiNE6ULq61co+Nfh6+cRZHDk9qTkHghRGk0Q6I8pBL/DCx4BBI6cQUoegDQdupLxD3jBPcY4zhjXDxnvNsalxrg/jnnEz27c0xiVMb5Mwb++3ejKObhyD4TIGeNHxvioMW5GSu4fMq40xntDxoNRYmTI+FcK/u0h4wE4clrI+JgxvougrzFuFzFeh69fMMYdcOXuIeOHxvhYyHgAUvQPGW/FC/5mjONNPZaNRVOPZeMwY5waMj5qjO8Z4144YtsOY/ASheA6fP0igmzImO0w+tfj6cdjjCtCxjaUmGCMI9qNxeCvFIM7QsYDceSUkPERCsFNxtjPGLcJGV80xpdijB8Y4xMIJKrd2C/GOJGUmhsx/sUYlyHFcGPcOGR82BjfN8a9ccSskPEFCsH1IeOOuHK3BOPmZn8MG2/BC+5DUwgZ14sxrmeMk0PGhygEvyfQ7yNFf1xZrkdpjM8b48sIciFjxhjfp+D/rt3oyC1w5f5IUep06mAFfssf8NvuB11AuhNQublIZ5gxFPBb78ZvuRP0coQajpM7AJma1G4MCg/jN9+MDj5EyH6o7J7I9NbtxsXPLeala15g6UtLcHMuw3ZZjxG7j8TJls5NTe+u5KVrX+Sjxz9EKMHgmUMYPXcsmb6ZdqPXdit+4QGgiHQm4mQOQKqQsfBX/La70MFyhBqBk9kP5XYY255/jqaH/om/ZDGyvp78jM3JTJiIkCVj4e23WPngA3jvv4dIp8lNnUZuk00Rbqnz3vbhMt6//UmWP/sOQkkapo5g0K4b49aXjnvdtoLg5T+j334EAg8xYAPkBnsg6kpJZO15rHzsKVY++gRBcwvuoEbqtplJZuR67cbm/7zAsgcepbh4GU5DLfVbTSc/eVy7sfm19/j0T4/Q+vZHyGyahi0n0mfmRsiUa7b1u2Z/fBqBwpFb4sr9kKKPWcdyCsFNeMGDaIo4YiNS6iCkGGrK2ygGf6IY3IVmBVKMMPtjRz16+u8Ug5sJ9IdI0Wj2x61D++N/zXH9KoIaXLkzrtwFIdIh43V4+l/GONMYG8w6lhnj341xsjGuGzHeiWYFSqxPSh6IkhNDxgeN8SNj3BtHbBUyPmuOmbJxF1y5c8j4TqgeHRy5Fa7c12J8EI0XY7zLGFca41yUnBAyPkAxuCVk3McYhTE+QyH4nTHWGuNOEWO5Hl0cOZOU3A8h6k35UorB743RDxnXCRnvNNu6bDwIJceb8sDUY9k40Bhnthu94D8Ugt8R6NdijG8b47+NcStjrAsZb8QL/mGMG5NScyPGP1IM/oSmKWQcFzI+QDG4NWTcF0dsGWOsCxlT7cY2/1p8/R9j3JqU3DdkXEIxuOkzGEeZbR023m+MH8cY/22Mr8cY36LNvy5knEVK7hMxlusxwBFTjNGce3RryNhsjAeh5IYxxkGk5L4osUXEeD2BfsMYd8WVO7Ybff2mabuVjduQknuHjIuN8Z/GOJWUOjBivINi8GdjHG3qMWy8zxg/Mcb9UGLzkPFfph7fQFBvjDuEjG8Y4zMIUsa4VydjIbgBP3jIGKcZ4+CQ8XZjbEGJMca4gSn38fT9FPxb0HyKFIONcbOQ8WljfNMYdzNGN2S8Dl8/a4zbGmOtMX5KIbgxYpyLFIOMocUY/xIyHoSSY0PG+yj4txrjELOtw8anjPEtBA3GOCdkfD1kTHcxrinxZZj9rYZhU6Y6Z37elF6PJ72zWclbX9htt7qiOvvblzYcBBkggwAEWUSnR1dkqUxkQGdMWab9IiCEMP9u/ojSssKD3wTp9nLa/xve5RxTnjWfz9D5bmjUmIkxZkG3htZFyJjucIisMXaMqimVpdvXU/oTvvPhRozpGGM6VI/hO+PRerQZbfUYHvmTCn2v/BtsxlL9l/5eyRitx3Q3jNnYekSk6NjGpXV1HgjpIEQGocvGbIwxg0BY61GITKnzELJEjXSqx4hBpKH9e+XfEDa6CJGtYEyHjJkYYwZ0W0w9ZtsNQpS3Q9SYvK35TPUYZ0yHtnXHvhA10l4e3tbpTuW2ekSk242lz4aPewXl/VxIEFkQbqdyIUr7o6bNlEdGm4iM+fe0+W/n/VGlFSqj2v/rZBQi9B4hmTLlGYV0JE7WQTrh7aBMPWXRWpnf2PW4Lv2GgvF2fvRPpFKIlFv6r5tCpFKd3qckXLdU7nZ8pnO5QqZdZMpBOBKVcRFOaF+QDiLlQsYtTbKTcsEJ1aMQpGoEuX4eOldA9Q1wsp3v6op0ySVTLjLV1ahlija/jua2NhwnjU8OZHhbp0BkETpN6dye6bqtzX4skGY7Rbd1+ZgpdDlmgNB+WD6HZYnbH9uXxWcxOiGjijGmzXWmSOm8EtnWRI8Zm7F8bsqafSVqLB/XcfVYXrZX2ue7HNdlo1f6bHR/bP+NYWP4A53PnyVj3LnHNXXWYSx5y7+zbAzXo2w/pkrGbMQoItvavi+ITvUYPT+Wt3XYqELfj9aj/bgu7Y+2ehSm3spthqzFmA4Zbftj+TqTpnRtjxodKm3rrsawQUS2dZwx+ZjpuDaUf2t0W5f3ec9yzITbZj6Vt3X5Wtd9oyBFuf1W2ejHbuuSIcC+rcP1Z+pURNuP5W2d7rI/im7UY8e2CmLrsWTQFqMsGUTWtH9sxkw36jEbMpbPk+VyN7StumOMbuvO7cv2z8Ya0wnG8jUg2peoRjWqsSZEdaTSKo41caRSoN+lqfhVAl6LlDhk1U9w5a40e8fh6b93+W5KHkFafpe24CcUgqu6lDtiK3LOPIrBHbT4ZxCdmrX0mMyvSwbvaGB5p3JBAzlnIVIMoqn4FQJetxjPwZU7GeM/LMajSMvv0Bb8mEJwtcW4tTHeRov/PYtxlDG+TZN3TIxxEVIMMMY3LMZzceUONHnH4OuHLMajScvTaAvOphD8xmKcRc65jGJwKy3+mV2NYjR559cE+k1jXGExXokU/YzxTYvxPFy5vTE+bDEeQ1p+i7bghxSCayzGbck5l1IIbqbVP5Po9LFSjDHG141xZcTYxxj7mP3RZjwfV25njI90MaTl10jJU2gLfkAhuM5inE3OuZhCcBOt/lkW41hjfIUm7ziLsS8550qEqKe5+FUC3oqswTXGbYzxUYvxBFLyZNqCMykE11uM25NzLqIQ3ECrf3aM8TcE+iVjbOpizDtXgailqfhVNG9bjL/ElVvR5B2Frx+3GE8krb5Bi38GxeAGi3GOMV5Pq/8ji3FD8s7VBPpFY+z8smhBP/LOVYighsLiI9D+u5E1pEg1nIdMb0lh8bEExa7nS6fm6zg1x1NcdiZ+y++7lMvMHFINv+CFK1/msR880mU0c9/xfZl97Y4sfu5T7j/6XrymztMZZwZk2f6aHWjYYBlty49CB9GXfqdI1Z6PcjejbflxBN5TXQxu7kSczNdY8puraXqo67kpO2Ua/Y46hpX3/42lN90AkeuvO3QYA75xCsue/4jnv3cTQWuxc3nfGib84iDyA1rx7/k/aPqw8wpUCrnlWdC4CcsWnkfxjZe6GPI77kdu9p68P/9alj/wWJfy2hkbM+TEr/LOTU/w6iX3dKnHmrGDmPTLAxH1j9PsnQC0dCoXNJr90TX74/uRNaTJORfiiE1p8o7A1093MaTVqaTlcbT436YY3NqlvPSYzC8oBFfT6v+MKFKJieScq/D1v2j2TrQYBxqjMsYPImvIkHMuQolpNHtH4Ot/WYzfJC2PocX/FsXgNotxN2NcRKt/bpdyJSYZ41PG2BoxDioZETR5h8UYL0aJKTR7h+Pr/3RZR0Z9m5Q8ihb/VIrBHRbjHmTV+bQFC2nzz7cYNzLGJ2j2TrIb3V+DDowxsj+SNfW4sTE+EykXZNRppOThxvhHi3Evsuo82oL5tPm/sBg3Ju9ciacfM8a2yBoGG6NnjB9ZjJegxCRjfNZiPJ2U/Cot/ikUgzstxr3JqnNpC+bR5v/SYpxC3lmEpx+h2Ts5xvgb0AVj/DiyhJx5fHk8Td4RBFbjd0nJr9DsnYyn/2Qx7kNW/Yy24FLa/AssxqnG+JAxFiJrGGKMrcb4icV4GUqMo8k7jEA/ZzF+j5Q82Bj/bDHuR1b9lLbgEtr8Cy3GaeSdK/D0P2j2TrEY1zHGJpq8w9F8ajHOQ4kNjPH5SLkko75PSs6l2TsJT//VYjyArPoJbf6FtAUXW4ybkHcWUgz+Tot/CtD5HC5Y1xhX0OQdYTHmyZvHRZu8rxLoFyzGM0nJA2j2vhFjPJCM/BGF4ALagkstxunknSsoBvfR4n/TYhxK3v0NWi+j2TsCzWKLcQFSjDLGFy3GH5CS+9PsnYin7+liSMm5pOXZFIJf0hbMsxhnkHcupxj8zRg7X68lw8i7v0EK+2Pen0dURyqtvVEdqdQ7UU0qreJY05JKWmtWentYGiXlkDhiW+tFoByO2B1P3x5brsRsfH0vcc+oSjYg4D2iyZqOqEcyiIDohSps3AZP3xtrcMXuFBOMjtje/MY44zgC3iaarOlsbCTg5QTjLDz9twTjbhR114Z+h3EOnr47wTjeJGJWWsuhAUl/Al6JKVc4Yis8fV+CsVI97oCn/xJbLplokpdNMZ9oQNKPgFc/R+MkU0dxs2b1RdJgScK2rwFHbImn708wJB8zlY0bmX0tztgPSZ0lCRs2bo6nH0ww7IaXuD/uZO2sdBgnm2O2xVoudH9SyxrQfjR52GGUqRkEha7JmPZ1ZHYhaO3aqSvHx/86lvuOin+56IBpjSz+72L8Fs9anhuUZpe//gZ0NHkYMrrTCYpdE8XlKDx8DCvuiDu/QnbqNFqefCK2XA7fgDfu8wja7MbUgDxTD3kEVkYTc+UFuKxs3p7CC/+NXUcwajuWPvDv2PLU5Bm8dccbseUDdujDuqdfQjTJ0BEDEbho3okpd1FiE2vCvf0TcldrkqEcjtgFT8fvC4rp+PybaAe+IwYhUGhi6pEUSky1Jty7b9wVT8eXKzbF52mineOOGIxAoImb1TCFElOsCffuGirX4wx8nkowDkEQWJJe5UijxGRrwr27BkfuipdQz4rN8HmCaOe4I9ZB4CcYMygxCV93TbJ2GHfG03f1wLgFPo/FGkvvkCxaEnNh4wR8HX/u6B3jo0Q78B3GoUCbJTFXjixKjMPX8e3disaK16GZePrhBONwoNmSmAsbN7AmszvWkXytq9x22wpPP5RgXA9YaUnMlSOHEmOsyeyOdexoTcx1GCu1i7bG0/9MMI4EllmSXuXIGmP8daSysVI9zjI3t31ruRSjqXHuWmPeq/RlSSpN+QImlZ6qJpV6JapJpVUca1pSyQseosk7pMKnBMkvLXOIuxB17/u9EV8GoyQ6IqT3o2pcPfFFMCriGnfdCVEQuCt6OmQ92fjgiQfwwcNJswkmxzrbvcTmv+w66qS7oT3BkvM2Ra9MmANDSgjit/WSjxpY9mlDbHnfER8wdva/Ysv9Nodlz8fPsqc1LP14ALoYf0wt/rQ/heb4bTXkmMcYeFB01Elvx6rdH3snKhnWBmOlel4d8UUwVrd196Jq7J2o1Gb4Ihgrt9NzzhW4MnlGwdUV1aTS2hvVpFLvRHX2ty9ZlF44XSkqJVsqXahWR6Lyy2BcHUmGqnH1xBfB2LMOkyx2nSHws0e8UWv46In4ZEp3YsAmcSOUuhf+J9nkhBIkJpQAWppssxB2RP3g6KMIncNbmU4s94sqMaGkNRSak+/81mwcfaRtVcSq3R97JyoZ1gbj593xhC+GsbqtuxdVY+9EpTbDF8FYuZ3evT5NNapRjdUR1aRSNapRjWpUoxq9EasjVy0qraQ3knfVqEY1qlGNaqzpUX3aphrVWFOimlT6koUjN+nGpyp1Sio9wrI6OjVVY+9ET41rwimkauydqPRegp4ZA6c3Gn/xRiFgwJS4d890Lz5+YmiPvq8GtCBqKtydlcn1mMnHvaeoFMvf75tY7tQkf1+5PsKJP+6FgFQ2+Q7yyn8PTizvnai0P64J79GoGnsnqsbeibXBWOk6sjYY14SZx6pGAEdu2uNlVKMa1eidWBN6MtVYjaHE5kixYcInBI6YlbgMR8ypsI5ZJCUrBGOBmoQl1CIZlVAucMTWiQZH7JBYrkTyM9iCDYB8wifqkKyfUC4rGt0KRqeCUbIBkEv4RD2SkYlLUGKrCobkbe2IbRLLJeOobByRuASnx8ZK9TgeotNrd4p6JOsllCscMbOCoZJxu8RyyUSSjX2QJM2ColBiiwqGSvtjJeMkotNCd4pUH4RaN2EJCpnaLHkdme0Tyzc4si6xvP+UAahMfKdl8bMTQVQwujNiS4WjyW89IdGQnTS5olGm4hvbK5atD7lB8cKMJjUm/hwvBNTPSDYO3Dbp3AaF17an8/Tc0RiAYEhCuYMSyZ2BysdM8r6gmEqysRFBfD2WjNMrGHpq3ITO03NHY2AFY+mF5z0xVLyeVzQOQjAwodxFiWkVDD01Tie5gzoIQWNCeemF58mG2RXKKxk3Jdk4BMGAhPI0SmxcwVDJWKFdxGYkG9dB0D+hPIMSkysYemrcnCSjYCiCfglLyKDERhUMPd3WW5B4A4ShCJJuDpReHJ9sSL4euxXPTVuSbByOoE/CEjJIkXwdqWSs3OaYSVI3VTKyYn+lGr0bGgjQX7g/1fFuvRPVpNKXLISQ5J35SGwvs5Vk1U/MFMD2zl1KHkpWXURK2l/2rcRm5J2LyagfYdu9JMOpcReSdy7HnliqJe8sJO9eEdNJVmTVT81UyvbOXUp+lay6gJQ8KMa4OXnnQjLq7BjjeiGjLbFUR95ZSM69wsyGEme8KLbjlJKHkVEXkJJzreWO2JKccxEZdVaMcSR5dyF5Z0GMsb4bxp+Rdy6K7ZSk5BFk1YW48oAY41bknIuNsWsSUbI+efdy8s587ImlevLOImO0deQdsupcs63tnZKUPMoY94sxbm3q8cwY4yjy7uXkYoyCBvLOlcZo6yQ7ZNV5xmh/v19KHkNWXYAr94kxzjLG79mNYjR5dwE5Zx62xFLJuIiceyUC2wgSh6w6n7xzaWzHKS2PrWDcxhi/G2McY4yXxRpz7iJSfS4HaeskO7gN55HqcyHCtTf4nfyxuPW/QGX3sJbL9DYM3/lEpn7fngho2KAP21wxm1mXb2dNLKX7ptn2yh3J1M8HaeskO6RqzyddewHSsTf4nexx1O9yMrlN7eemzEaT6Xf0sdTvbd9f3XXWZdA3vsYGZ++LTHftOLkNOcafezBq9s8hZ+mAShc58yzqDj0FZ6g9MZTbfm8GHn8kdVvY99eaTSYx8rS5jDjOnjDOj2pkzEmHkXMuAbq+v0nQjxrnSvLOophkg0vOucBMPz7Ruo60PJGccyGu3NVa7ogdyDkXkFanWsulGEfOnUfOuTjG2N8Yr4xJNqTIORcao73jlFbfIOdcgCt3iTHuRM65kLQ6JcY4npx7GTnnImzJL8GAUD3akg0pcs5F5JzLkGJ8jPH/yDkX4oidrOWu3NnU48kxxgmmHi+MMTZS4ywyRluyIU3OudgYx8UYTyXnXBDbwXTlrqV6lCdZy1W78QJsya+S8SpjtCUb0uScS8g582JvuKXVt0w92jvqrtzNGE+MMU402zrOODC0rW3JhowxzkeKDazryKjTjNGeoHPl7mTVr0jLE2KMG5FzLyWrfoktaSMYRI17JTnniphkQ9g4Jsb4HWO0J21cuSdZdQFpeXyMcTJ591Ky6uexxnyiMUvOuSzBKMio7xqj/WaUK/c2xuNijBsb4/kxxsHk3avIOYsQNMQY5xnj6BjjGeSci2Jv6rlyH9O+PCbGOJWccwlZdV6McQh5d5GpR5sxR85ZQN65POYGsCCjvm+M9purrtzPtNOPSjBenGBch5y7cI2Z+a0a1ahGdfa3VR5r2uxv5dC6hWJwO8XgHjQtKDGOlJqLEiNMuY+n76MY3EagFyPFUFJyfxzZ0Sn1gicpBDcR6LeRoi+u3ANHbNN+kvf1axT83+Hr5xBkceVsXLk7QpQ6nYH+hEJwI35QmsZXyU1Jyf2Rop8xNFMM7qAY3AO0IsU4UurAiPFvFIPbjXGYMW4cMd5IoN9Bin7GOCtivB5fP2+M2+PK3ULGj43xcQAcOQNX7hcx3k4xuNcYxxvjeqbcCxmXGOMBOHKyKdf4umx8N8F4Hb5+AUEuZMxEjI8BMmTsGzLeZoxtxjgXJYaHjPdSDO4wxuHGuFHI+ITZ1mXjnsYojfFVY3zRGOfgyl0jxhtMPdqMTRSC2/CCv7Ub0+ogpBgWMt5Dwb8DzdIY4+PG+J4x7oUjtg4ZXzHb+kUEeWPcJWT8yBifMMbNjLFPyPgHYyygxARSam7EeDcF/49olqHEcFx5AI6cFGPsb4xbhYwvG+NLxriDMaZjjJsbY4NZx0pjvM8YJxrj0Ijx/9s77zi5ibtxPzOSdm93z/a5FzDFFGMw4IoB03vvNQmENEgnnYQ3hXQ6IZTQTUh+eUNL3hRCEiCUQAo9gQRIgkMxzfVcruyupPn9sbN3ul1Je+e7s8/298nnPg472tGzX2kkzVcjza+s41Yxjo9TCu/qg+NhePqIiOM71vEp6zgfT5/U7RiuIej4JUHxYTAltDcdJ38q2t3cOpQJOx/A7/wNhCtR7la4+ZPR3vQux7D0OEHHzzHBWyg9Bid3LDq7V5fjipdW8O//9yKtL7XiFly2PGIrtjp6Ck620qba327jXz95icVPvIN2NRPnT2LbU7cnOzLb5egXf0lQehgoo93puE2noJ1ux6D0AEHxNxizCu1shdt0Mtrdqcux+NKLtP35MYIVK3CGjyC/x540TdsRZR9/K72xiLY/Pkz5zTfRTU3kZs0hP3sOyqt0OotLVvH2r55m1fOLUI6mZfbWjD9yBt6wyrHJlNowC3+LeePPEJZhzDT0dseimiuJRRP4FJ97guIzfyHsbMMdO5Gm3Q/A23zrLsf2f/yLlQ8/jr+8FbdlOMP33o3CrjugVCVxuOblxbz1i2doe2Upbj7D2P2nMXb/HbpGUoXmbbsvPAM4uHovMvoklBph17GaUvgz/PBhwMdRu5JxTkOrzWx5iXL4e8rhPRhW46ityejTcfSOkf3xT5TCnxGat9FqHJ4+AVft1eUYhC9QCn9KYF5G0YynD8fTh0X2x7fseegZwI04DrfrWGUdH7GOM8g4p9Y4/o5y+BvrOMU6Tos4PmYd30Gr8bbNpDkeYR0z1vFNSsHtEce9yegTaxzvxg//GHE8Da0mRRx/ax3X4KhtyOjTejj65lHK4c+7HDP6BBw1v8bxfwnMQut4JJ4+NOL4hnV81jruQ0afkOI40zpOjDjeSzm8t4HjzwjNYrSaYB33jDj+0zr+F8Uw63hIjeNP7TTnLq7e1zoOizjeiR8+CgQxjkXr+FvruK113CHF8UQctUfE8R92W1cdj7KOXo3js4CHq/cjo4+POK6kFN5V43g6Wk1IcNzOOk615WFkWy9Gq4k2jlHH5yOOwxMc/9fGMWPjWOt4J374mHWcZePYV8efEZol1vEkHDUvwXEEGecoXHVwxHGRdfy7dazGsdmWt1IO77KOIY6eRUafhlbjI46/sY5tOGp767h9xPGP1nEpWk2yjrtFHJ+zjq8kOL5uHZ+zjvuT0cfVON6JH/7JOs62juMijvdQDn/X7eicjmOTTRXHR+y2rjqejKPmdjn64d8ph7cTmFdrHN2I408IzPPW8QDrWLDlK2wcq45zyOhTaxx/TTn8fcTxXThq24jjw9ZxWYLj3yiHd0Qcj8ZVB0UcX6MY/ITQ/APIWsdjuxyHCpvC7G8Ftpg10/3K+lYZcJ7xv0mbzP7Wb4bCQ7fCekMBCoWiMhqmdgSCivmLontVrhKX6fmZii2v/bd21E4jx6T19izvrWNyeZxvkl93uVIKTG3842OpYv3i1pseh+r/khxVzXe7HRvFudYxyQHq97ee20Al7I9KKYyJLhv/G9d+f4yutzdton5/rDh2/6r+OyZ9nwblvamjGuu+OMa1mXTHtP0tbl+o35drHWuOPaq2XdH936paHl1FZTtVL2rRqu5nqAC0DxhTWdbUtIsQVBmUMZV3Z4e1FWgwCkPlLyLW9dtM11/MvlbjrXTPOPolj4WPT+PNh5oJSwGjdx3LduOGUbADQE2oeeeN8bz6150prSoyfEoL204bzqjooEClI6FWKN3TQWtw3BDX9XFcB63DGk3V9Tvjt6Vdpm571paltbme27q+TWl67h+9WUetX+25LK6+pDYXdWjUpuL8oL7uuEHkOrJMWruLX4dK/Y29WUfc99N+RyPH2u0GPa9F4o+v6Y5x2zLuNyYd35Lqq3WM+iUdm+zStceeOvcGv0GlHR/T/jttW9fsrwPuGFOXSmpTjfaVpLaX/v3683zysanrmKKS9rektt/od6SX97yO6Y1jUptI3t+j61AqbplGbabWMXmZte9LRGKS4Kh6HF+T2rYgCOsTGak0yAzFkUqhWURb+UxCXqkpccg538LTR9Pmn01g/lT33Yx+L1n9FYrhNyiFt9WVu2o+efd6yuEv6Qi+Qu3UrJqtKHg/qjj4ZwOra2qoPFqm1QTr+GqC41HW8c8xjmeR1V+mGF5AKfxxjONe5N3rKYU/pzP4KrXTnmq2puDdRmhet45ramoYYR3HWcfaacgrj795+nDr+JcYx/eR1edTDL9GKfxJjOM+5N0fUArvojP4eozjNhS8HxKaV2jzzwHaYhxvQqkxtJffG+PoknO+i6cPpc3/EIGpn5Y1oz9AVn+RYvhVSuH/xjjuax3voDP4RozjttZxIW3+h+scFS2VIeBqJG3l92J4PcbxIjx9EG3+BwnMEzGOZ5PVn6cz/DLl8PYYx/2s40+tY8/jnVbbUXB/SGj+Yx3bYxxvQakRtJXPxPBGjOPFePoA6/hknUNWn0NGf47O8HzK4Z0xjgeQd6+hFP6EzuBbMY7bU3B/SGD+Rbv/kRjHkdZxmHWsfVl15fE3T+9Pm/8BAlN/LMrqj5DRn6Yz/BLl8O4YxwPJu1dTCv8fncG3ExxvIzAvWseOGMcF6LCZ4rL3Q1g7JX3l8Tcnuzel5WcTlp+pd2j+ME7hE/irvkzQ8fO6cp09kMzI7/HPG17iyW8+XjcpzMhpIzn4J4ex7PllPHT2Hwg6er6MOju6iYN/fCgjp7VSWvp+CN+uWYOHN/ISdNN8Sks/hCk/W+fgDPsYbvMnWLbgFtr/Un9sys2YyZhzPszqB+6n9a76fcHbfHPGffozrHz+HV742t2EneWe5SMLTL/0Xfg08cAZv6Hj7Z77gvY086/cnwnzJ/GH9/6WZc8uqVvHzufOYpdzZ/DWtT9m1aP1+2vzbruy2bln8cYdf+HV6++vKy9sO4EdL30PasRfafc/AfR8MbhiDAX3VsClzT8LQ20cM+TdK3DU7rT777MjDXqSdc4lqz9GR/BZyuGv6spddRh590qK4U0Ug0vqyrXaiYJ7K4F5hnb/kzGOY62jto7vxDh+D0fNo90/y440qHX8NFn9ETqCz1AOf11X7ukjyDlXUAxvoBhcFuM43To+Sbt/LlCscRxHwV0AKOu4uNaAvHsljppjHZ+PcfwsWX22dbwnxvEocs5lFMPrKQaX15U7amfy7gIC8wTt/qcSHG8FjHWs3d+y9jHwWbT5Z9mRBrWOnyOrP0S7/yl8c2+M49HW8VqKwfdiHHexjn+h3f80UKpxHG8dA+u4tKaGJvv48q7W8Z9162hyvkBGv592/1x887sYx2PJOZdQDK6mGH4/xnFX6/gn2v3PxDhOoOD9EEzJOi6LcbwaR+1sHV+IcfwiGX0W7f4n8c3vYxyPs47fpxheFeM4g4K7gHL4KB3BZ4Cex56K421gOmjz34dheU0NOfLuNThqJ9r89xKaF2vKFU3Ol8joM6zjfTGOJ9CkL6QUXkkxvCbGcSYF9xbK4SN0BJ+LcZxIwbsNY9po99+HYUWM47U4ahpt/pmE5l8xjueT0e+h3f8Evqk//nn6RJr0dymFV1AMfxDjOJuCezPl8CHr2PM8U3m07DaMWU27//4Yx7x1nGrjGOf4ZTL6XbT7H8M3f4hxPIkm/R1KYaVtJzv+gY7gCzGOm1nHldaxNcbxBzhqO+v47xjHr5DRp9PufwTfPBTjeApN+tsUw0sohTfEOM6l4N5EObyfjuC8GMfNKXi3dT0VMBTYVEYq7ep+eX2rDDh/878lI5UGAEkqDTJDLalkjGGNf3TshVOFyou6ffNgYh2uOgLf/Cax3FEHEJgHSZrqUzHVds5rkzVVhqEZT8h/+uF4JL6pv4judjyQwDyQWK7ZgZDXqU/WVBmOZlyKY+UF03En0yqeOpJyiqOrDsRPdZxmk0VJjiPQjCZkYWINjtqbwDzcD8eDYi+8utewEyH/pTYR0tNxlF0mvgZX7YVvHklxSN/WvXNcSG0ipJsWNC0xSdgqDq7aE9/8McUhvc246uDYi+xux53tvpbkOBLN8JgkbNRxD3zz6CA67kLIvxMdlRlFZmULJqhNHnY76sxuhKX6ZEzXOpoOI+z8bWL5O0+fzcNntySWj5k1lhX/XE7QGcSW5yZkOObXt0KY7Kgyu2FSHDseP5vVv6nv9HWtY+ZMOp6pT5pV0ZO359WHA8JS/Axsbkszby+bSNsb8cdP7WrGzh3PO3+uTdx1s/vZefy/1ye7q2RnzOXN3yYdN2DUQS1MOu86ajvH3YxD4cYkOKu4OGpObMK9awl1eGySobv8MHyTvC84zCbguRTH8Sg0hqQ4eThqJoF5vB+O6eUOcwl4ltrOcU9HFZOYizrOiE24rzvHCShMTGKuSgZH7RKbcB84x90IeJrajmc3E1EEMYm5KlkcNT024d7tcGhsQqn3jrsT8GSK4yQU5ZjEXNRxJwLzdD8cG1y7sQcBTyQ6Vt592BmTmKvShKN2sI/2DZbjngQ8nuI4GWiPScxFHafaR/uSHA6JTcz13nE+AX+h9qZqt+MWwJqYxFzUcfvYhHu3Q/r5uPG121745s8pjlsCq2KSXt2OWm1LGJPM7q1j42u3vfFN5fHFODTb0Oz9dsi8V0mSShsuklQaGCSpNMgMtaSSHz5Km39mg6UUSQmhCi7JF0a9+f5AII4DQ38dNUkn/HWHOA4Mg+uoigpvTX+fuE53fPhjp/HOX9NmwUtn8wNeZP6Fv1jr7xtfsfSKPTFtKXNgaA1hchxXLG5h1fIRieVtbU0sXTZyrR2VCpmx20s4KilJAKtaWyh3Jl+oj//Qk4w9JenGxEDhkNTh6V35ukAcBwZxHBg2BMdG55ENwbHRuXJdII4AefdGPJ0+y9y6QpJKGy6SVBoYZPa3TQw/TL6j2U2jREajk8C6SFSK48DQX8f1nQgBcRwoBtdR+wPxDoRkR2NgydNp09g3ZtyspBFKvSNYmktPKEFqQgmgs70pvbxYPwtXX2jKFVMTSsZAuTP9NxR2SRqVMpA06liu744niONAIY4Dw4bg2Og8siE4ru9kDYijrSGsf3WDIAjrB3lRtyAIgiAIgiAIgrABIS/sXtcMhVugwtBERiptYrh6Xi+WanSQbpSLXBcH+U3BcV00T3FcN4hj6A7EyLtkR6Vg7Oykd/j0jsVPrf2jcwDOmA50ocEll06PY1O+M708m/SOoN7R2ZElMF5iuVLgNaX/hra/TeiXQ+9otD8OhfdoNHIQx97RyGEo3P/cGOK4ITgOhW3d6Fwnjr1j8B1716cRBGFdMBR6MsI6xFF7oNVOKUtoXHVAah2uOrzBOg4kLRGg2QEYllLDcDTbp5RrXLV/qoPXwNFt6Lgj0JxSwwg026WUa1y1X6rDunHcNqXcwVX7pjo0djwotVwzHSikLNGCZkpKeWNHVx3WoLyR485APmWJkWi2TikfCMeDU8s1uwC5lCVGodkqbQ24au8GDv11nEGqY2YUyklL2jjozPz0dTQdklq+4weT30UEMHb2OJxc8oXs8hd3Bp3m6KKyeyaWKtfQvN/0VIfcjJmp5aPnjkdnkx1bJns0T04+fmpXM2F+8mOAxmiyM+emOozdP+34C/4rBwHZlCXG25f6JuHhqD1S1+HpQ1PLXZVe7jCXxo5pj0t6OGr3Bg6N2kx6ucNuQNrjjBNQTEwpz+Co9E5VY8dGcZxHuuMkFGlJxgyO2q1fDm6DfcFhdyA5UQqboRifUp7FUeltorFjo229J2mOis1RjEupoQlHpb/uw1Xpx8eG127sSWrinskoxqbUkMNRsxo4pJ9HGreZvUh33KIXjjMaOKTH0WvYpvYm3XFLFKNTamjCUbs2WEd6HBtfu+1DWoJPsTWKUSk15HDULg3W0cixURz3Jc1Rs23Day9BENYdklTaxFBKUXCvS+gkV6aZz7vfx1V7xX4/o99HzrmCjD4rttxVe1NwryTnfIe4k4FmCgXvRgrujcDwmBpGUHBvpuDdlNBJdsk5F1rH+A5oRn+AJucKMvq9CY77kHe/T875doLjNhS8Gyi4NxGX/FK0RBy3THC82E6lHN9xyugPWsczEhz3Je9eSZPzzXhHtZ2N4w0pjrf0wvGqFMezaXIuJ6PfneC4f8Sx/lCi1fY2jjcQl/yqOC4g792MJq4j75JzLrFxjO84ZfU5dn88PcHxAOv49QaO1xOX/FKMpODeQt672c4qE+d4mXWM7zhl9UfIOVfg6dMSHA8i736PJueCBMepDRxHRRzjOvIeOedyu63nJDh+3DqekuB4sI3jV4lLdGq1AwXvevLudcQl6BSjKXi3kBl1A8rZLNbRa7mUzMgr0V58p8Rt/iiZlktxcifEluvswUw+7OPMvWBebC525I6j2P/mg9j/pgNx8/UX/E1jcxxw6+FkxtwATlyyIYM36nIyo76PysQ7OsM+zohjPk1hz/hjU27WbMZ86GxaTj6lMiSoBm/yZCZ+8sNM+9bJ6Kb6Dqg3qsD0S09n/1sPIz+pfl/QGc1eVx/A3j84iDGz4juou3xmNtucdyrD94nfX4fNm8FWn3sXW330kNg4FrafyDaf+CB591rikoiKcTS7t1Dwbk5INlSmma9MPz4j1iHrfIac8z08fVxsuaePJO9eQZPzReIkHTWdvPcD8u7VKY4LKLi3pDhebaf2ju/cZZ3PknevwNPHJDgeRd69gqzz+dhyR+1sHa8B6t+jpRgfcYxLiDRFHOM7d1nn89bxqATHY8i73yPrfC7BcRfy3rXk3asSHCdUtnWq4zXWMS7ZqmhyzmvgeCx55wqyzmcTnF5sBQAAdl5JREFUHGdEHOuTiIoJNHtVx7g2kety1ImOX7KORyQ4Hk/e+R5Z59MJjjMpeNeQd69McJxIwbuFgrsgISGSI+9eS979QcJNQUWTcz5594rEpIynT7T747kJjrMoeNdax/okomKSdbwFxZiYGirTzFccd0xw/DJ593uJCTpPn1Rx1J9IcJxNwbuavPu9BMfNrOPNCUmbPHn3OvLu9Wi1Q4LjV6xjfGLJ0yfT5FxBVn88wXEOefcqcs7lxCURFZtH4hiXtMlTcG+wjlNjyjVNztesY3zSxtOn0uRcTlZ/NMFxrnW8LMFxMgXvZvLuzSjiJoUoWMcb0CruBoSmybnAOsa/RDujT7dx/HCC4zzreClxCTrNFuS9G4fMzG+CIMjsb4POUJv9rYoxRcrhPZTD3wOdOGpHMs5paLWFLQ/xzSOUw19gzHK0moynT8HV3Revfvg3yuEdhGYRSo3C08fiqn1QqtIxDs1rlIL/JTAvAE14+hA8fSRKZW35CsrhXfhhZVppV++Bp09Cqxbr0Gkd7wOKEcfJEceHreMKtJpMRp+Ko3dOcTwOV+3d5RiYVykHP7WOOet4RMRxuXX8a4rjrymH90ccT0erzW15YB1/aR23sI7TExxHW8e9ejiWgv8lNC9ax0Px9OE1jndaR42r9yCjT0KpERHHX1EOH7COO1nHzSKOD1nH1gTHZymFd2DMG9bxeFw1P+L4CqXgpymOy6zj4wmOHdbxD9Zxut3WSY5bWsedIo7PUArvtI5jbByjjv+1ji8Beet4WMRxKaXwToLwCeu4p3UcHnH8JeXwQeu4Mxnn1BrHB63jqojjjhHHp63jmyg1how+HkfNR9kEQ2AWUgpujzgehqcPTXGcT0afGOP4B6CEo3axjpNiHFei1dbWcVrE8SlK4V3WcSwZfVyM408Jzb+AQsQxE3G8gyB8EnCs4wndjmE7Qec9BJ0PAiW0tzNO/hS0M9E6+oTFhwg67sGEq1DuVrj5k9HeDrbcEJafJmj/GSZ4G+WMwckdh87s3uW48j+t/OsnL9H60gq8gseWR27FFodvhZOpXIB2LOng3//7EoufeAflaCbtPYltTt6OzPBMt2PHrwg7HwJTQmV2wS2cinImdDt2PkjQcQ+Eq1Du1jiFno7F//yHtj89RrB8Oc6IERT22JPsDjt0OZbfeos1f3yE8ptvopqy5GfPIT9zFsqtXECXlq3h7XueYdVzr6McTcucKYw/bBfc5krnvtxW5pVf/Ic3HnydsBgweuY4tj1tKoWJlQRu6Icsuv9VXv31Qkoriwyf0sK2p+/AyB1GdTl2vPgyKx/+K/6yVpyRwxmxz27kd9q+y7H91SW886unaH91CU4uy5j9dmTUPtPQrmO39RJK4e0E4VOAi6v3JqOPR6lhdh1tlML/ww8fBso4egYZfSpadcfRN/dTDu/BmNVoNcXuj1O7HAPzhN0f30GpcWT0CThq98j++B97fHwZpZrx9BG46mCU8qzjYuv4NODh6r1qHNdYx0es40zrON6Wl63jbyKOp+Ho7SOOj1MK7444noij5kUc/23bTJLjO7bNVB2rcWyOOP4cP/xjiuN91nFNxdE5HUdtF3H8q3VcjFLjreNu3Y7hvyiFPyU0C1FqmHU8qMbxdoLwGeu4Dxl9XMRxtY1j1XGWdRyX4LiNddw2xfEkHDU34vgSpfD2iOOR1tG1jm9bx2et477WsRBx/Dl++Kh1nG0dx3Y5lsPf45t7reO2ZJzTahz/Qin8mXWcYOOY5DjcOh7Y0zH4qZ3S3sPV+5HRx8Y4/hHwYxxLlMNKHKENrbazjttEHP9MKfx5xPEkHDUn4vhixHFEjONb1vHvQAZP74enj4k4rorE0cfRc8joU2ocf085vDfieDqOmpLgONE6zo44vmAd/2sdj8JVB6Q47m8d8xHHn+GHjwGBjWOt4+8oh7+1jtvbOEYd/2Qdl1jHk3F192ixesejrWP1+PgmpeD2iOMBeProGse7rWMYieOYiONvrWM7Wk0l45xa4/iYdVyKUpOs46yI4z+t46t2fzwGV+0fcXzDOj4HZCNxzCU4ziWjT444Fq3j7yKOp+GorbscffMo5fD/rONmZPRJMY4/JTSv2Tgeg6v2q3H8KYF53jpW45g2envdsynM/pZni1k7u/+zvlUGnOf8b9Mus7/1m6Hw0K2wXgiAIlDCdP1FZ2IIgSLGFG1Z0S5foZKM7P4uplrenaQ0lLvKFdqWR2f28G29Jbt8EYjOShR0lRuK9i9aXnWM/oZax2LEsVTnWHVIdgxiHP2Y8mLEIfrOE1MXx3TH+jhWYlKNo2PLo+886fkbqnHqvn/fW8dSbHnVsdshLo6NHIMax8r+lu4Yt63jf0O3Y3Ud1W0WcTRRRzfmNwSRcm3/f5pjsa7NGFONY7Hr9/Z0LPWIo+lyUBHHYrqjKaY4drepbseecex2LPXCsZjgWBvHnvtjvWPQ7RiE6EWg3sxAAGq0g9o27B7MZkC9Y3Be86CUQQ1zUNuERG88G7eI39xBaNrRqgOlO9ARx+YpbzP9/N8QmH+hbOJL682pjvrLjmll+48+yBTzJAoXV8/H1ZPouvutfIKmTvxMJ4YSrurE0aVInEMIi6ighAlLoIoQ1syoFpRRYbHSpsMiJihVplaznSYT+BAUIexEhQr8EpjuOJogJCz5hCUf5WhM2ceEkeNrYAiKAWExIChV/jXlyPfDSnlQDAhKYWWZUs+ZlfxOQ+dqh9IqF891KXTQwzEs2+92huBU6iAwXVcOnW838codc1j+7GYoRzNu/mS2PN4j09IVhMj+VLbHt+Q2Q905gB77s+raX6P7Y7X+IhgPY4qgovtjGUz1+6H1iZZXP+uLY8/3Wpm6dl3z3it77qk4ZjCmVOMYbTNVn57nIajW4dv6ah1LEUd7vosM4jJ17br23VzVdl11rI1j1LF6nKiNY/X4WHVMOvbEOZqabd3zfN7tWI1jNsGxVOPYHUdTF8fa/S16nrHb2pRrHKvfr54La+MY3dbFeEd641hKiGP0fFx1rI1jrWPPOEb3hcaO1TbYyNHvsYaejvbapm5bpztGr90qjj2vObqvKRo5BrFtJnrNEB/H+useY0xX4qvHObTLMaR6njENHf2IY5jiWIo41u6PvXGstus4R79rmWTH6jpC22aix6ae14eVbR11rB7Pel6bJTtWj7G1cUx2FARhaCAjlQaZoThSKTSvsaZ8Boba6bM1Tc7XyehjafM/RGDqp+rM6HeR1RdQDL9GKfzfunJH7U7BvZFS+DM6gwvo2SGuDFkteD8iNK/T5p8DtNXU0EzBvRGlJtBWPgPDohjHb5DRx9Dmf5DAPB7j+B6y+mt0hl+hHP40xnEPCu4NlMK76Qy+HuO4pXV8hTb/w0B7jONNKDXOOr5R55hzvoWnj6TN/wCBeTLG8Uyy+it0hv9DObwjxnFP63gHncE3Exx/TGAW0u5/JMZxmI3jWNrKZ8Y4OtbxcOtYv39m9HvJ6i/TGX6JcnhXXbmr5pN3b6AU/i+dwbdjHLem4N1GYF62jh01NQy3cRxlHWtfsuyQc76Npw+jzX8/gXk6xvF9ZPWXrOPdMY57k3evpxT+PzqD78Q4TrGO/6bd/2iC480o1WK39dsxjt/F04fQ5r+PwDwT4/gBsvo8OsPzKIc/j3Hch7x7HaXwx9axJxXHHxGYl2j3PxbjOMI6DrdxrHWsPDLq6QOt47Mxjh8iqz9PZ/gFyuH/xTjuax1/SGdwYYzjtjaO/6Td/zjQ82XTihby7i04q4cTPvhJ6FjSswLloOZ9BTVpT8KHPgXL/1m3DjXtDNjlHDrDz1MOfxnjuB959weUwgV0BhfXO6rtKLi3EZjnrWPPTkzFcQGKJtr8szC8U7sGcs4leOxDeckHMKXn69bhDD8b3fwpVvzwRjqerD9+Nu28K6M/9HFWP/A7Vv0ipk1N3Iyx536e1ufe4cWv3U1Y6jnlsjs8x/TL3o1PE3844146Fvds99rV7HH5vkzce3P+cOa9LH9uad06dvrYDHb9zExeufQOVjzy97ryEfOmMeX8d7Pof//Mqzc+WFeenzKOnS9/D0ufeYcnPvu7ukRVZlSOPW84huHTltk41mxrXHLO5bh6T9r8swhNfRyz+mNknU/SEXzajsioqUEdTN69imJ4PcXgirpyrababf0U7f6nqO34Vx4ZvRVwaPPfi6E2Th559wocNc86/iPG8RNknY/T7p+Lb34b43gIeff7FMMfUAyujHGcRsH9IYF5wjr2TKYpRltHZR2XJTjuRpv/XkLzQr2jcy5Z/RHa/U/im9/HOB5acQyuphheFeO4o3X8K+3+p2Mcx1BwfwiEdlvXOmbIu9/DUbOt44sxjp8mq89JcTycvPs9isFVFMOrYxx3ouDeih/+hY7gMzGOY20cfeu4Isbx+zhqJm3+GXYEZq3jZ8nqD9LufwLf3F9X7ukjadKXUQq/TzG8NsZxunV8jI7gs9ROpV5x/CGGEu3++2Ics9ZxV9r8MxMcP0dWf4B2/2P45g8xjkdZxysohtfVlTtqZ/LurfjhI3QEn49xHGcdO61ja4zj1ThqunX8d906mpwvkNHvo93/KL6pP7Z4+mia9KUUw8sohTfEOO5iHR+iI/hCjON4Ct5tGNNGu//+GMcm+xj4TrSVzyTkPzGO55HRZ9HufxjfPBzjeCxN+hKK4SWUwhtjHHel4N5KOXyAjuCLMY4TrONq2v0PJDheg6N2sI4vxzh+iYw+g3b/IwmOx9OkL6IYXkQpvDnGcYZ1vM869jyGVxx/hDGttPkfBFbW1JCzjttbx4UxjueT0e+h3T8H3/wxxvFEmvR3KYbfpRQuiHGcRcG9hXL4OzqC82McJ1LwftQ1amsoICOVNlxkpNLAIEmlQWaoJZWMCVnjH2kfr4nHVfvGnqi6yw/HN/cmljtqPwLzUGK5YjubQKhNKFVpRjMu9kRVrcFVe+ObR1IcD4u90O923J8g5qKmew1TbdKtNllTZRiasamOjtqbINWxURx74/ga9UmGqONoQl5JcdyLIOaE31tHV+0fe3FYRbMDIa+mOA5HM9IuE1+Do/YkMI+mOKRva1cdEHuR3b2GaTZGSY4j0Iwg5LXEGly1B755rB+OB+KbB1Icd7IXl0kzg41AMTwmUVzFwVHzCMyf+uF4UGyHqttxZ0L+neiowlEUfr85tL0VX4HSMHYmLE4+VpYOnkdp+K/74bgLIS9Rm1DqZhSKXEwStopDrnUeprM+mV2l46kPsOb39R38Kk27zqTzb/XJxy4mbc8rDxpMOf5OrNtS4O2lE2l7M/74qVzF2DnjWfyX2uRiNzPPHE7nU8kOzXN3YfEf6jtcVfI7TGbRX9sJy2FsedPEDPPvvQ2jErY1Lo6aFXtToGsJdSi++V1K+SGxSYgqmpmEPE9tkqGbsXbUZG3yMOo4k8A8MWiODrMJ+Bu1Hc9uxqFQDRx3jb0p0HvH9HKHOQQ8m+I4HoXBsDih3MNRO8feFOh2SI9T/x0noPBjkodVMjhqp9ibAgPnuBsBTzdwLMck5qKO0+xjc0kOB+Ob+/rhOI+AJ0keBTLJjnJLcsziqKn2ca+1dWxw7cYeBDye4rgZig4MyxPKM9bxuRSH9PNIfx0r72dcE5M8rJJFq+1iE+7dDunXDA2vL9mTgL+QNEF8xXF1TNKrShNaTSE09TeAeu/Y6Dp9PoH5c6KjZmuavd8PmfcqSVJpw0WSSgODJJUGmaGWVCqHf6Tdj3+BdTeVAabJOKQPPW30/YFAHNcNG4KjS/KFOlReft1gmvdBp1EcN35HZ1GG3F/TZ2dLwyhD+1ErMZmkJAEMdhyVD9mlyU+NG1+x7Jp5mPaUOTCUqjxilsDyt0excmlLYnlbWxNLl8W9PLV3KGXYfsfX0CltprMzR1hOnnlyzZocnZ31L26uMv6IF9jpu8mdhd6xMbSZRuXrAnEcGBrtb+LYO8RxYBBHgLx7A55On+F3XSFJpQ0XSSoNDPJOpU2Mygt+G9EoSdDoJLAukgziuG7YEBzTEkqw/jue0DiOG7+jszRtyu/GhMOCBgklGOw46lJyogUgWJ5LTyhBakIJoLMtOVkD0FlMm969MZlsKTWhZEz966Fq8f30S4eWWUkjvfrCxtBm1nenDsRxoGi0v4lj7xDHgUEcAfzw8SGTVNpUCIfEdb8wFGlw9StsfKR3igRBEIYkch2zwWCMnGcEQRCEwUbONYIwVJCk0iaGq3fvxVKNDtKNBriti4N8fx3Xxa7fyLHRyI2h4LghxFEcB4ZGjv17b0EwrtEoo3T0GgfVcJTO4L5bIcyY9AdaR3egmxvcndXp27qpkPRuL1veVDvbVN8oFjOEKccepcBpEGbPSx8d2PrE5mujVsPg7o8DQyPHoTAYfENwbLQtxbF3iOPAsCE4Nrpm2BgcG/cletenEQRhXTAUejLCOsRRu+OonVOW0Ljq4NQ6PHVUarmrDiJt19LsCKS9W2UEmh1Syh27jmR655h8wtJMB4an1NCCZmpKuYOrDkx18NSRqeWuOoR0x52BYSk1jESzfUq5g6sOSHVoHMdDSXfche654uMYhWbbtDWsA8cZpDuORrNN2hpw1X6pDo239WGp5ZqZQCFliTFo0mZBaezoNnQ8NLVcMwvIJ5aHE0bA8C1SKvBg4h6JxcooMsWj++k4G8ilLDEOzVaJpcb10Lm9kx0dQ2HfmakOuZlzUsvHzJuIbkpO+rRskaF5y+R2rz3NxH02S16BUQzbI91x7AFpx18Yv/t4nKbkDsGaf85AmZRtTQZH7ZW6Dk8fkVruqvRyh3lA2qOEE1GkJb+yOGp+6joaOx6eWu6wB5BNWWISipRtSRZH7dkvB1c3ctyTdMfNUUxKKW/CUcntGhpvS7dBnB3mA8mZUMVkFBNTasjhqHnpDg3j2MhxLxo7TkipIYej5qY79Ntxb9Judim2RDE+pYYcjko/vnkNznWebnQe2oe0ZIRiKxRjU2rI46j016Z4Dc4jjc/n+5HuOKUXjrMarKNBHBs67k+64zYoxqTUkMdR6eeRwXbUantctW9qHYIgrDskqbSJoZQi7/4goSPvknMuJu9+L/FAndEfosm5lIz+YGx5ZVrvK8k5FxF3MtBqOwrejZWp5Gmp96OFgruAgndjQke+Mq13xXGfBMezreP7Exz3t44XJjhuT8G7gYJ7E3HJL8VI63hTQkc+6hjfAc3qD1vHsxIcDyTvXkHO+U6C41TreCNxya/KlNm3UPBuRrN1zBo8cs5l5N0rcRM6Tln9UesY/2L3yrTel1vH+jt7Wu0QiWOa4y0JHXmPnHO5nZI6vuOU1R+3jmckOB5iHb+V4DiNgne9jWN9R10xmmZ3gXXcMmYNGXLOFeTdKxM7Tln9CXLuZWT0uxMcDyXvXk6T880Exx0peNdRcG8gLvmlGNPQMe9+z05JHX9XL+ucS969jIx+V4LjYdbx68SdNrTaqYHjWAqZBeh9LofmmE6yzqD3/CZ6/rdgXPzFtNr5bLKjLyKjT48t9/QR5N0raHIuSHCcbh2vJy5BpxhHs7uAvHeznfmmlix59yq80d9DZeM7Ts6ITzP8iHMpzI8/NuVm78ao951NyynvrgwJqv0NW27N+I99mB2/cwo6V98BzYwZxs6Xns4Btx5GYfP6ODtNDntfeyB7X3MQY+fGd/5mfH4OU88/jtGHxP+GkfvuyrZfPIkpnzw0NhfbPG0S0797EvOuOgInX98BbRpfYI9rjqeQuSUhIVKZMrvgXp3QuVNknc+Tcy7D0yfGOnr6GPLuZTQ5/0OcpKN2Je9dS979AXGJTsUE22YWJCREcuTdq61j3P6oaHLOs44nJDgeZx3PT3CcSd67hrx7LXGJTsVEmr2qY1xCJEfevdZO4x7XuVM0OV8i716Gp49LcDyBvHM5Tc4XExxnUfCuIe9ek+A4iWbvFusYlxDJW8drcNSMBMfzreOxCY4nkncuo8n5QoLj7IhjfRJRMYmCt4CCe0tCQiRP3v2BddwlwfHL5N3L8XR8UtvTJ5F3LiPrfC62vOJ4NXn36gTHzXrheB159wcJNwU1Tc5XbRzjb7J4+hTyzuVknc8mOM6l4F1F3r2KuCSiYnMK3i3WcVxMDQUK7vXWcXqC4wXk3MsTE0eePo2ccxlZ5zMJjruRd68i734/wXGydVyQkLTpdtSJjl8n516emKDL6NPJuZeRdc5NcNydvHslefd7xCURNVtQ8G62cYxzbKbg3mgdd4xbA03ON8i7lycmbTL63RVH/YkExz0aOG5Jc5djXGJpGAX3JvLudWg1LcHxW9bxkATHM2hyLiOrP57qmHMuJy7RqdmKgnsjSkk3dt1iCNXG9yfvVxgYZPa3QWaozf5WxZgi5fC3+OY+jOnAUTuRcU5Fq81seYhvHqMc/hJjlqHVFmT0yTh6p646gvAflMI7CM3rKDUaTx+Dq+Z3HeRD8wal4KcE5p8olcNVB+Ppw1Aqa9exklJ4N374V6AyjDWjT0Sp4RHHe/HN/RjTaR1PiXH8BcYst46n4OgdI47PUwrv7HLM6GNx1HyU7dCFZhGl4HbrmLeOh9Y43oUfPm4d9yCjT2jgeCpaTYo4PmrjuByttrSO0yKOz1nHRdbxOBy1Z43jTwnMC9bxEOuYseWtlLsctXU8vsbxN5TD+4GidTwNrSZGHP9oHVfEOvrh3ymHdxKaN6zj8Thqj4jj69bxRet4KJ4+JOK4gnJ4dwPHeyiHD1jH6TaOUcdHKIe/so5bWccdEhzHWMfdI46vWceXUKpgHQ+ucbwLP3zCOu5pHYdZh07r+IeKo96ZjD4VrSZEHB+2jittHE/F0VMjjn+zjm9axxNw1Lwux8C8Sjm4vcvR04fhqoNRyuuD46+tYwlH70JGnxJxDCJxbEWrra3j9gmOY20cax1/SmD+leC43Do+aR3nW8dKEsT4nZjX7se8+SgEZdToaagpx6LylQtsEwbw1p8xr96HKa9CDdsCtc2xqBFTIo7PWse3rOMJOGq3iOMrNo5Jjssijk69o+mwcXzQxnFXG8fxXXEMOx8hbLsHwpUob2t08ylorztZX1z4H9r/8ijBiuXo4S0Udp9PZtvtuxz9xe+w5rGH8d98A9XURG7mHHK7zkQ5lSRyaUUb7/zmWVY99zrK0bTMmcK4Q3fGzVeOTX6Hzyu/fJk3H3ydoBQwZsZYtjl1B/LjK0mUMAh588HXeeVXCymtLDJ8ygi2O30HRmw30v4GQ9uLr7Hs/qcoLV2JN3IYow+cRfP0rbscO15fxtu/epr2V5bi5DOM2X9HRs+finIrx/jisnZe+dk/Wf7M2yhHMX7+Fkw+eipuIROJ4y8phw8BPo6eYeM4NrI/Pkg5/DXGrEarKWSc03DUNl2OgXmaUng3xryNUuPt/jg3sq0XUgpuJzT/QalmPH0ErjoQpVy7rZdSCu8gCJ8BXFy9Nxl9LEoV7DrarePDCY6+dbzHOm5Dxjm1xvEpSuHPIo4n4Kg5KY5H4qoDIo5LKIV3djl6eh88fSxK5SOOv6AcPpLi+AfruMY6noajpkQcn7SO76DUBOs4u8bxp4TmZZQaZh33r3G8gyB81jrui6ePiTi22ThWHWdaxzERxwcoh7+xjtvaOKY5noijZkUcX7aOC63jUdbRSXDcD08f3cOxFP4ffviodZxFRp9c43g/5fBe67idddw64vgEpfDnGPMOWk3E0yfiqJkRx//Ybb0QpYZbx/0ijosjjp51PAalcjWOfwSCFMffYExbiuPPMGZxl6Oru5Ojgfl3xHFEguPtBOHfgEwkjlXHNZE4Brh6Np4+Ga1G2/JyJI5Vx9Nw1FYpjifj6hk1jj8lNP9NcHzHxrHquD+ePqrG8ef44WNAGHEcFXG8j3L4W4xpw1Hb4zmn4agtI46PW8cl1vEUXL1rt2P4L0rh7daxxTruW+N4O0H4d+t4gHVssutYbR3/ZB3n4OmTUhyn4jmn1jj+1TouRatJNo5Rx5es46s2jkfjqn0ijm9bx+eArHU8MsVxrnWsnkdKlMP78M3vuhwr15dbRBz/YtvMUrTaDE+fVOP4ou1LvGrjWHWs9iXestfpz1vHA61j2gjKdc+mMfvb5FnTvPPXt8qA80L5O7Tz+ka77dYVQ+GhW2G9UMawEmNWYejEsApj2iI3AoNKmVmJYXVlWVZhjEEphTGm8t+swrAajIcxq0CFVEcJGLMmUl7GqJVAmeodJkOHrX+VXX4lhg5U16iWkl1n1XFljGP1N6zuWle948puR1ZRmXHCjThWy/0Ex1X2e8ou21njuNK6F+362iJxrnXsRRxZGeO4Ksaxeoepo6v+bsdi5J5u0da5yjqubuBYrQu7fmO/W3XIrKXjyojjqgaOqzC0Rxx967gy4riqh2NXbHs4hlRH/xjT1v09E1hHPyWOq+y2ro5gKvV0NCsTHFfRvU1rHePi2O2Iaev6HZjKdkGV6b5T1x5pM46NRbHOsVJejnGM29ZpjtkYx+i2Dmy79yOOHTWO1TjakTVhGUqrobTG/v814EfeI2QCTGk1pmyXqS5b57g6xTG6rcMYx87I/hjjWBfH2v0xgHAlhKswZjWEqyDs2WZMRzthe+VPuR5he1tlarVqkrOzA9PeRtjRjgpDTHs7Jgi6kkphZxl/dSf+mk6UownWdBIWfbBJpaAUUFpZpLSqSFgOKa0sEXR0v7fK+IbSyiLlVUXKq0uUV5Uore75PqZSa5n2JYbiEsgEhmEry5UbdrZhlteU6VwR0L48wO0MKLaWCP0AxyaVyu0+HcsD2paFKEfRscInKAa4diBYd1teRVf7oA267tD79fujWR05xhv73er+1mS3Wbdk97Gnuq1X2m1dvbyJtmuHavtVdrRavWP9tq47hps1KY45+99Rx+5jf7dj9/GTHucZN3J8zCc4rgai796KOq5JjGP1NyjyCY61cYwc42nvhePKHnHs6ejHONbHsfeOJrKtnRTHUkIc7fE11XEl1DmujpyHCj2On/XbOs1xtXWsHsNtMqR6PcZqIACzCuiMcVzdFcd6x1WR/bVA9JqjZxxXg1Exjm0Rx+p1Uwm6HIs9HOO39aouR1hd4xjSfd20GkOz/e80x1UxjisjjitrHDv75Fgfx6rjqmRH4hyDXjg2ReK4OsWxHNkf2+z+2JbiuKp+W9v6K7+vuq2jjt1tRpGNceyku82EkTYzsjuORB1r+xK1jisTHFfVOHZfmxnau8q7HYukP5YrCMK6RkYqDTJDcaRSYF6hrXwGhtppnxVNztfI6ONp8z9AYJ6s+66nT6VJf5PO8MuUwzvqyh01h4J7C6XwbjqDb1C5IIyuYXMK3o8IzWu0+x+BHhfvAHkK7g0oNdE6vhnjeAEZfRxt/vsJTH1cM/p0svrrdIbnUw7vinHcjYJ7E6XwTjqDb8U4TqbZ+xGBecU61r44t2Adx1vHt2rKK0OoM/po6/h0jOO7yOoL6Ay/RDm8O8ZxnnX8XzqD79SVV4ZQ/4jALKTd/2iMY7MdGjyWtvJ7MLwd4/gNMvoo2vz3EZhnYhzfTVZ/jc7wPMrhz2Mc96Dg3kgp/EmC45bW8T/WsbNmiebKY5BqFG3lM2Mdc8638PThtPlnEZi/xTieSVZ/mc7w85TDX8Q47mkdf0RncGGC448JzEu0+x+PcRxm4zjSOr4T4/htXH0o7f5ZBObvMY5nkdVfso6/rCt31Xzy7g2Uwh/SGVwc47iVjeOL1rEY43gziuG0+WdiWFwbBXLOd3D1QdbxuRjH95HVX6Qz/Czl8NcxjnuRd2+gGN5CMbg0xnFr6/hP2v1PxDgOp+DejLOqhfDBT0Dnsp7FSqN2+zJqs70q5SteqluHmvoumPFROsPPUA7viXHch7x7HcXwZorBZTGOU6zj89ax9oXXI+xw/yba/LMwLKldAznnIjz2pbz4/ZjyP+vW4Qz7AHrYZ1ix4AY6nn6irjy7486M+fAnWH3fvaz6VX2bcidMZOy5X2DF39/hxQvuxpR7TrnsDs+x08WnE6gcD5xxL51Le7Z75Sr2uGRfJu27OQ+8515W/LMmzsCOH96FXT83m5e+/nOWPvRiXfmoPbZlx2+dzCu3/ZWFNzxaV17YejSzrjmVxU8u4U/nPkBY7vli8szILPstOIKWnZfS5r8XQ61D5fFgV8+nzX8voXmhPk76HDL603QEn8Q3v6+Pk9qfvHstxeBaiuFVdeVabU/BvY3APEm7/2kqCe5InGgh796KwrGOy2McL8XVe1jH+jhl9UfI6E/SEZyb4HggefcaisHVFMOrExx/hB8+TkfwaSoJ7qjjSArurQB2f1wR43g5rp5Hm38GoflXjOPHyTofo93/BL65P8bxYHLO9ymFV1EMr41xnErBvQ0//AsdwWdjHEdRcG/FENLuvy/WsfL48twUx0+QdT5Ku/8xfPOHGMdDyDlXUgqvpBheF+O4g3V8jI7g8zGOoym4P8RQto6tNTV45N0rcNRs2vwzCc2/6x2dc8nqD9PufxTfPBjjeCg550qK4eWUwhtiHKdZxz/SEXwhwfE2DKUUxytx1AzaymcS8p8Yx0+T1WfT7n8Y3zwc43g4OecKiuFllMIbYxx3ouD+ED98mI7gvBjHMTaOnbT57wdW1tSQsY9Y72wdX45x/CxZ/QHa/Y/EOnr6SJr05RTDiymFN8c4Tqfg3oofPkhH8EVqp6RXjLVxXEOb/wGoSfhVHmH+Po7ayToujHH8HFn9ftr9c/DNH2Mcj6JJX0YxvJBSuKCu3FHTybs/xA/vpyM4P8ZxnHVcRZv/wQTHq3HUDrSVzyDklRjHz5PVZ1nH+mO0p4+mSV9KMfwupfDWGMddyLu34oe/oyP4Hyo3ZKKO4yl4t2FMq3VcXVNDk3WcmujY5JxHRp9Jm/8hAvOnGMdjadKXUAy/RSm8LcZxVwrurZTD3yY4TqDg3Yaj0t7JuW6RkUobLjJSaWCQpNIgM9SSSsaErPGPiL24q+KqvWNPpt3lh+Kb3yWWO2ofAvNIYrliG5uIqU0oVcmjGU/If1PWsRdBzMl04By3tUm3pJmYCmjGxp5MqzU4an4Dx0NiOyPdjvsSxFx4da9hOwyLUhybUYzG8GqK454E5rEUx0Zx3I/APJTiOBXDaymOw1CMtMskOe4Re1HSW0dX7Yef4qiZSsir1CeUqgxHMQLD64k1OGoegflzikP6tnbV/rGdle41TLMXwLXJmiojUAyz+0OS424E5i/9cDwgttPXvYYdbUci3lGFLRR+PxnaapOH3TUwbgYsrk/CVikdNJfSiN/0w3E6If+iPqFUpcWOkKhNZldxyLXuhumsTxhV6Xjyfay5rz4pVqVp513pfK4+QdrFxO145SHqEkpV3OF53lo6kfa344+fylGMmT2eJY8nxRmmnzyaVX/5R2J5yx47sPih+g5XlfwOm/H6XzvqEkpVchNdDnjwZoxKcnBw1MzYGxdVXHUwvrkvpfyg2ERJFc0MQp6ntnPczRgUOiYJ27UGHLVr7I2Ldec4FgUxCc6o4y6xNy5669Co3GEWAX9PcRyHIsSwNMVx59gbF713TI+zw2wC/tbAMYhJcFbx0GpHwpgbFwPnOIeAZ6hNMnQzHkU5JsEZdZxGGHPjotvhQHzzQD8c5xLwdIrjBBSlBo5TCc3z/XBscF3EPAKeoDbJ0M0kFO0xibmo4/aEJvn41+g80thxdwIeT3HcDFhDfWKuSgattiU09Tcuuh3Srxn666iYTHVkdjxZtJoSe1Ng4Bz3IOAv1N74rVJ599N9XY/orm82haRSjsmzdtgIk0ovlr9DhySV+o0klQaZoZZUKoeP0O6f1WCpymVsMg7JFx29+f5AsCE4NkIcBwZxHBgaOWqSL5J7UfuiDLm/ps36mI5RhrajWiGTNp19/xwboXzILk2+gDW+Ytk18zDtKS8PVaryGFwCy94axaplLYnlbW1NLF02MrG8MYbJWyxFmeRt7QcZwpQwr1nTREdn8sxqk475BzMuqR/x1jcGd38cGDYGx0bl64JGcRLH3iGOA4M4DgyD75h3r8fT6TNWryskqbThIkmlgUFem7+JEYTJd4a7adS5bXQSWBed4w3BsRHiODCI48DQyLF/nWNnafJU1b0hHBY0SCjBYHfgdSlmOrQIwfJcekIJUhNKAMX25GQNQGcxeVry3uB5fmpCyRgI/XTHsp9+Z3jU7KQRc31hcPfHgWFjcFzfHU9oHCdx7B3iODCI48Aw+I6VSUsEQRgKSFJpkyO9UyQIgjAo9PfQMxTybkKvkAHQgiAIwuAj3VhBGCpIa9zEcPWevViq0W7RaMTButitNgTHRr1ocewd/XV0BkokBXFsRDC23HihFPQaB9VwlM7gxjHMmPSHbkd3oJsb3J3V6W2mqTnp/WMVck1J74PqHeWyi9HJI42UAu2l7yuelz5ibNmft1wrt540ek/GUHiPhjgODOI4MGwIjo2O0f0b0TowbAqO6+IG8+A7unqPXtsIA0OI2ej+hIFBkkqbGI7aDUftmrYErjoktQ5PHZ1aXvl+8slEszPQklJDC1rtmFLu4Kr0Z6gbOx5K2u6v2QVIe//LSDTT0tYwAI6H0dhxeEoNo9BMTVsDrjoo1cFTx6SWVxyTT/yaGaQ7ju6F44GpDr2LY5rjLGBYSg1j0GyXtoZeOB6VWu6qw0l3nA1d093HMQ5N2iwoHq46INWhd47JaOaAnaY9jnBiCwzfKqUCDybNTyxWRpEpHpvq4KkjUssddgM7vXg849FMSSw1bgad2zfZ0TEU9puV6pCbvVtq+Zh5k9C55ORZy5YZhm2d3KZ0RjNpv81T1qAYtd/OqQ4TDtkhtXzS3uNx8skd1NUvzESZrVJqyOKofVLX4en0du2pI1PLHfagOr14PJuh2CKlPIuj9k530A3ajG7kOJ/q1N3xbI5ickp5E67aK3UdjR3Tyx32Is1RsQWKzVJqyOGo5HYNlVm/0uidY/L04hXHSSk15HBUeufUbbC/NXbch+oU6XEotuyF47zUdTQ6/jVqU67al3THrVFMTKkhj6PSj2+NHRudh/YjLRmhmIJifEoNBRw1N92h344HkO64LYpxKTU046g5KeUKr8H5uPF10QGkJRl755h2rlP22qs/jgemOmq1A26DY7QgCOsOSSptYiilyLs/QKvtY0o9cs6l5N0rEjugWf1hmpyLyepzYssr0yhfQc65hLiTgVZTKXg32Km76182W5mieAEF98YUx8us4/4Jjh+lybmYjD47wfFg8u7lKY47WMebUTHJr8r0vwsoeDeiVVyyIUPOudw67pfg+HHr+MEEx0PIu5eRcy5McJxGwbsxxXEMze6tFLybEpINGXLOFeTd79kLyTjHT5BzLyaj35/geKiNY5LjThS86ym4NxGXoFOMjThuE2dA3v2edYy/cMg655JzLyGjz0pwPNzG8TsJjtMpeNdRcG9s4Hgzmq0THK+0jvGdu6zzaXLupWT0e2PLPX2kdfx2rKOjplPwfmDjWJ9MUIyj2V1gHbdKcPy+ndo7fqRi1vmsjeMZCY5HRRzrE8aO2jniWJ+gq0xRvAC97+XQHJPwcLLo+d9G7/lNGB93Ma1Qu3yE7OjvktHvSXA8mpx7KU3ONxMcdyHvXWu3dZzjBJrdW8l7N6OJG2mTI+9egzf6ClR291hHZ8RnGX74JynsHX9sys3dnVHv/RAtp50RO2Ips9UUxn/sI+z03VNxCvWd5MzY4Uy/7F0ccOthNG9R/xucnMs+1x3EXlcfyLjdYzp/CmZ+aTemX3AkE46J7xCMO3Rnpn35aKZ+/iDQ9YnOETtPYubFx7LP9YfiFuo7TvmJBfa96WgKmZsTEiJ58u61FNzvJ3RAFU3Ol8g5l+DpU2MdPX2C3dZfJe4yxlGzKHjXknevIy7RqZhEs7eAgncLirgEXJ68+wMK7lUJHVBFk3O+dTw5wfFE8s6lNDlfTnCcTcG72jrWJzoVm1nHBQlJmzx59zo7tXfcu0U1Tc6XreOJCY4nk3cuocn5H+KS2o6aYx1/kOC4OQXvFgrerQkJkYpjIdXxq+ScS1McT7VxPD/Bca51vDbBcTIFb4F1jEuIFCi415N3r8FRMxMcLyDvXoKnj491zOjTreMXExznUfCuso71iU7NFhVH9xYUE2LW0EzBvYG8ey2OmhFT7tDkfJ2ceymejk+8Z/Tp5JxLaHK+kOC4uz1PXJPguGVlW6c63mgd425cOjQ537CO8TerMvrd5JxLyDqfS3DcwzpeTVyiszIb2C0U3AUJiaVhEcddEhy/ZR3jE0cZfYZ1/GxsuaP2tNcEVyU4bkWzd3OK43Dr+AMcNT3WMed8m5x7WWIyNqPPJOdeQtb5dGy5q+Zbx+8Tl4zVbG3jeEtCYmkEBfcm8u516FhHl5zzHfLuZYk3ozL6LOt4boLj3vb678oExykU3BtRSrqxgjBUkNnfBpmhNvtbFWNKlMP78M19GNOJo6eR0aeg1URbbgjMXyiFv8CYFWi1ORl9Mo7uvoMdhC9SCu8gNG+g1Egy+lgctTtKVS4GQvMWpeB2AvMiSjXhqoPx9MEolbHrWEUp/D/88C+AwtXzyOjjUWpYxPH31rGIo3e0jhMijn+2jq3W8RQcPTXi+AKl8M6I43E4al7E8U1KwR1djp4+BFcdjFJexPHn+OFfrePuZPRxNY6/wzf3RxxPRavxEcc/UQp/aR0nW8ftExxHWcfdahxvJzAvpTj+DD983DruYR2bbXnROj5gHXeycaw6hhHHlWi1BRnnFJxIwiwI/2kd37SOx+OouRHHN2wcX0KpnHU8qMbxbvtSxSTH31rHEo6ebh3HdTn65jHK4a9SHP9BKbzLOo62cax1vJ3A/Ms6HoqrDow4rrSOT6KUxlFVx0LE8V588wfruLN1HFvj+EuMWYVWW1rHbWsc7yQ0b1nH43HUnBTHw6yjW+P4BEo5OGpPMvrYfjhuZR23iTg+b+P4FlqNwdPH1Tguso7/Rqm8dTygyzE0rZS74ujgqvl4+phux6CIee0P8OZjmLCMGjUNNeVoVG50lyNvP4559feY0mrUsMmobY5FDd8y4vicdXzbOh6Po2ZHHF+3+2Oa41344VMRx2NRKh+J42/wzYM2jruQ0Sf3iKPpfJSg/R4IV6HcrdHNJ6G97lFOpVf/S9ufHyVoXY4zfAT5efPJTNm2y9FfuoS2xx6m/Nab6GyW3Ky5NE3fFeVUEmLlle28c+/fWPX86yhH0zJ7CuMOno5jRzEFnT6v3rOQNx58nbAUMnrGWLY9ZSpNYyodQhMa3nx4Ea/++mVKq0oM33oE2542leFTWrocV7/wJm//5m+Ulq4iM6qZcYftwvDpm3c5ti9q5c1f/I22V5bh5DOMP2AqY/baBuVULuSLKzpZeOdLLH3mHbSjmLDX5mx5zLa4+Wqb6qQc/hrfPIIxJVw9A0+fhFZjbHmAbx6hHP4GY1bb/fFUHNWdwPXDv1EO7yY076DVWDx9Ao6a2eUYmFcpB7cTmJdRqhlPH4Gr9kMpx27r5XZbP4NSLq7ay+6PuYjjr/DNH63jTOs4OuL4cJejo6bgOafiqK0ijs9ax8XW8UQcNaMPjstsm3kapTxctTeePjri2BFxLCc4PmQd19Q5Vs5DVcclaDUOT5+Iq2d0tynzinVciFLDrOO+NY7VOGYijk0xjn7EcVSC4zbWccsEx/HWcdeI438pBbcTmv9axyNx1T41jnfih89ax33w9FE1jr/EN49ax1nWcWTE8UHK4b0Y04ajtiHjnIpWW0Qcn6Ec/qyXjsMjjto6LqUU3kkQ/s067ounj4w4tts4Jjn6No5Vx22t4+SI49PWcWmC40JKwR0pjkus49+t437WMRtxrMYxwNWz8fSJNY7VOLb3wnECGX0Sjt65xvF2QvOKdTwKV+2d4rg/nj6ixvEX+OaxiONJaNUScfwD5fC31nE767h5xPEpyuHPUxxftnGsOh6Nq/aqcbyDIHzOOh6Apw+POLZRCn9BYP5kHefYOEYdH7COHThqe+u4WcTxSUrhzzFmGVpNtI7TI47/sY6vWsdjcNX8tXQMcfUcMvpElBoRcbyfcvi7FMcnKIX/Zx0nWcedahxvJzSvodQIG8eo42Lr+Lx1PBBPH9blOFTYVGZ/29770vpWGXD+Vf6uzP42AAyFB6yF9UInhsWEZknl/5sxGNMKqnonr0xoFmPMYgwrMGQJWYI2U1FKYYwhZAmGpRgWg/EJzWIc5VMd9mtMK4YllT/ThFGLgU6qw6sNa2z9S+zySzCsQXWNIqg6LrWOizFmBagJNY5LuhwNSzFm+4jjUuvQO8fQLAbV2V3O6oijSnFcAhQr5WYFqPERxyU1jkswZruaOKY5rrBxrjou6aVjc4pja4LjSgxN9v9vm+AYWMeA6iHEmBXdy3Q5Fhs4ttU4LrHbOuo4rsvR9HDMYczSBMclYEJCs6TGcbldZjHG5O22rnWs/gaFpupokyF01DguxtAKjI04LrZeUcdtejiGphrH0Maj2zE0ywhZHONofwOrKvs8SzFGo1WcY3Vb25ilOuYxZinYpFKtY2hMjOPyyLbO1TnCavv9imOolmBo73LE74TOpZjOZRCWoXMZlFaBTSoRljEdSzEdy6C8Grw8dC6H4dXOZxjjuJjKTDNOxHGxjXPBOpYijqtiHNtQdqSDob0mjksxrOoZx2AJJlgK4SpQBQiWgU0qmTAkWLWScGUrwcqVYCBY2Vp5g3U18bVmNcHKyjKmKUewshXj+11JJX9NJ6VlaygvWwOOprx8DUFHqSup5Hf4dCxup2NJB2EpoGNxO8XWYldSKbCfdSzpoLyqhNfs0bmsk+E272VCU6l/+RpKS9dUftXyNRAacCqOpRXtdCxpp/2ddtyCT8eSNoKSj2sdSitLtC/uoO3tTpSjaFvcQbmt3J1Uot1uq8WAb/fdVcCYmv1xcaX90Ywxy8AmlYxtI5XvLSY02P2xe1ubyP6I6cB0betcpM1Ut7VDqJbabV0tb4txXAmMjjhWjz2rCRlmHbeqcazujyrGcVmN45IYx2q7diNtplre3rXPVxyX2DhWHUsRxzWEDMeY5V2OYLqOXVFHY8KujlvFcWmNY7n7N7AyxrENZUdjdMex1nFUxHFxjGM1WRx2ne/THE2XY6fd1rWOS2LiWOtYOV50b+uRXY7d1z1thAwjNMu7kkoVx+i21nZdtY5LahxL0OWwysag4mgaOlbjmOQ43DpOrnFc2kvHYiSO2YjjUvs9D6MWW8dsjeOSLkdYHeO4xC47IsZxsf1tSwiNQ8hidA/HpQ0cV0bi2BvHpcAqul+9UIxxXNaVVIIgxnEJ2piuZHEljov76NjRw9HExrGnY+XzdkJarONmEcclXesIjdvD0RhTs61LMY6tkeuerN0fo46V6/TK/mhsm1mN6hrZ3VnjONK2627H7uvLZQmOS2scl/R0NPWOlb7E0EoqCcKmjoxUGmSG4kilwCykrXwGhrfqypqcL5PRJ9Hmv5/APF1X7ukTadLfoTM8n3J4d125o2ZRcG+hFN5JZ/DtunLFRArejwnNa7T7HwVqX0qbs0NqN6Ot/B4Mb9fV0OR8hYw+gTb/LALzbIzjyTTpb9EZfpFy+PMYx9nW8XY6g+/EOE6yjq9Yx86aJfIU3OtQagJt5TMTHL9GRh9rHf8W43gqTfobdIZfoBz+IsZxjnX8CZ3BhTGOm1PwfkRoXqbd/3iC4w0oNdY6vhPjeAEZfQxt/nsJzN/r1pHRp5PVF9AZfp5y+MsYx90ouDdTCn9EZ3BxjONkmr0fEZh/W8dijOONKEbT5p9pEwO1jl/H00fR7p9JYJ6PcXwXWf01OsPPUg5/HeM4j4J7E8XwhxSDS+vKK48d/IjAvES7/4kYxwIF9yYULdZxSV0NTc438PThtPnvJYx1fA9Z/RU6w89QDu+JcdyDgnsjxXABxeCyBMcfE5gXrGPti5qbreNw67i0roac8y1cfYh1/EeM45lk9fl0BJ/GN/cmON5EMbyJYnBFjOOW1vF52v1PArUv5R5Gwb0JZ+UIwgc/CcUVdTWo3b6E2mzvSnnrv+rWobY/BWZ+go7gU/jmt3XllSH9N1AMb6QYfC/GcSu7rf9Ou/+pBMebUeRp89+LYVltFMg538HjAMqLz8KUX6pbhzPsLPSwz7P85uvofLb+mJ+dthNjPnwuq353D6t/U9/u3XETGHPu51nxt3d46Rs/w/g9X/rtNDcx/ZLT8cnxwJn3UlzWs90rR7H7xfswad/NeeA999L64vK6dezwgenM/OJcXvza3Sz7Y32cR+42hR2/ewoLb/krL9/457rywlajmHvdKbz918U8du5DhDWOmREZDvjhYYyascTGsXZbO+Sci3D13rT5ZxCaeoeM/iBZ/Vk6gk/gm/vr46T2Je9eRzG4imJ4bV25ZhsK3o/xw8fpCD4L1L5YfAQFdwGgaffPsonXHmsg51yMq+enOJ5NVn+KjuDj+OYPMY77kXOupRR+n2J4XYzjthS8H+GHf6Ej+Hydo6KFvLsAgHb/fQmOl+DqPazjv+vWkdUfJqM/SUfwUXzzUIzj/uScayiG36MU3lDvqLaj4P4IP/wTHcEXEhxvBUyK46W4eh5t5fcQ8nKM40fJOp+g3f8wvnk4xvFAcs7VFMPLKYU3xjhubx0ftY49pylXjKTg3orBp81/P7AyxvFyXD3HOi6Mcfw4Weej1vGRGMeDyTnfpxheSim8OcZxKgX3NvzwETqCLyY4/hBDyTquqnOsPL48g7byGYT8N8bxE2Sdj9Dun4Nv/hjjeAg550qK4cWUwgUxjjtYx4foCL4U4ziKgnsbhnba/A9QSX5E8azjLtbxlXpH51yy+mza/bPxzWMxjodaxwsphbfGOE6zjg/QEZxP7ZT1lVcT3IZhDW3+BxMcr8RRO9tt/WqM46fJ6g/S5n+IwPwpxvFwcs4VFMPvUApvi3Hc0TreR0fwPzGOY+y2Xm0d19TUkCHvfh9H7WjjGOf4GbL6/dax/hjt6SNo0ldQDL9JKfxxjON0Cu4P8cPf0hF8JcZxrI1jq3Vsi3G8CkdNs3F8Lcbxs2T1+2jzP0hg/hLjeBRN+jKK4dcphT+pK3fUdPLubZTDe+gMvgr07KsqxlFwb+sx6n99s6mMVNrO++L6Vhlw/l2+UEYqDQCSVBpkhlpSyZiQNeXDCPlP4jKOmk8Qc8Kv4qqDYi/0e/t9xRSb0Eqa5SiHZlzsybR7HXvGnvB777gXgXm0H455FGMwMSfT7nXsEXvCHzjHbTC8QX1CqUoBxSgMr6esY/fYE37vHfcmiLmA7XbczsaoNllTpRlFC4ZFiTU4al4/HfchiOkIdK9hewyvNnAcYWOd5LgbgflriuOB+OaBlPJ9YztUVTTb24v0pJm/hqEYhuHNFMe5BObxQXTcwXbI4h1V2ELhd5tBe23ysLsGxu4MS+qTsFVKB82iNOJ3/XDckZB/U59QqjICRS4mUdxdQ651DqazPuFepePxs1jzQH0Sokp2p10o/qM+idvFuG145RFVl1DqMhiW5+2lE+l4pz1BUTF25liWPJUUZ9jpxJGsfvyFxPIRu03lrYeSj7+F7Sby2hPFuoRSldxEh4MfuQFUkoODo3YhMM8krsNVB8Qma7rL98c3DyaWa3Ym5AXqE0pVRqFwYhLFUcedY29c9NbRUQcQpJRrdiXkHymOo1EQk+DsMsBRO8XeuBhYx+epTTJ0MwZFiKE+gVl11GpHwpgbF711bPgbmEHAc/10nEZonktxSN/fGjvOIuBZajvw3YxDUY5JwnbXoNUOsTcFuh32i00edpenH+MdZhPwTAPHUkzysGsNaLU9ofnnIDrOIeDpFMcJVK7bapOHUcftCE3y8a//jnMJeJLaREg3E6kkamqTh1U8tNqG0LyY4pB+rmt4XcRuBDyR4rgZlaRckmMGzVaEJJ/rGl179ddRswXN3v1dj7WvbySptOEiSaWBQZJKg8xQSyqVw4do9+NfvNxN5TI2GYfki7fefH9dII4DgzgODOLovp6l6fG0mQDTMdrQdmQrZNKms9ckdzb6j/IhuzT5Atb4imVXz8N0pLw8VKnKY3AJLHtrFKuWtSSWr2nLsSylvDGGyZOXoFLiVCxlCfzk2QjXrMnR0Zn86MHmxz3HrEvrRw72jUbbcnC3de8Qx4FBHAeGjcGx0XloXdDfa+B1gTgC5N0f4OlD+1XHQCFJpQ0XSSoNDPLa/E2MIEy+w95No45jo5PA+u4cgzgOFOI4MIijXta/u4lhc9AgoQSD3WHSpeREC0CwLJeeUILUhBJAsT1tinkoFpOnqu4NnuenJpSMgaBBmMt+/ex6UUbNThp52Bcabcv13TkGcRwoxHFg2Bgc13ciBPp/DbwuEEcAP3yy33UIgjAwDI0xg8I6JL1TJAiCMCj089CjhkDezTT6DevgNs2GcAQ34YZgKQiCIGzYpN/gEAYWQ+U1+xsbG98vWj/ISKVNDFfP78VSjXaLRnfK18VutSk4rouTZaPOnzj2DnFsRDAu6T1GvUOtcVApj1xVGNw4hhmTPph/dDt6WIPLE53umGtOeo9bhaampHd/9Y5y2cXo5PtJSoGTSd9XMl76UKalj229Vm49abQ/DoV7YhuCYyMHcewdjRz6N4JwYNgQHBsdozcGx3WRVBdH6G2fRhCEdYEklTYxHDUXR81MWcLFU4el1uGp41LLXXU4aScTza6orqln4xiFVtPT1oDbb8cjSHecgeqa1jWO0Wi1U9oacFX6c969c0xuopqZkOo4Bq12TFvDOnCcDV1Tz8YxFs20NANcdUiqQ2PHI0l3nAOkvetnHJqpaQa46uBUB08fl16ujiTtAsphLjAspYbxaNJmQcngqoPSHfSx6eXqKNId55HmGE4YBSNSkg3ag832TixWRpEpH9/A8egGjrsDzSk1TESzTXKxk0Xn90921FDYP/2R/NzceanlY/bYHCefSSxv2bqJ4VOS25STddjsgMmJ5aAYfeCuqQ6bHZ62v8Nm+07ALSR3YNe8NBNlpqTU0ISrkuMI4Olj+lXusBeQSyxXTEazZWI55HDVvv1yaNSmHPYm3XGLXjju0y8Ht2Ec9yHdcUsUaftbDlclt2vofxxdtR+Q/NioYisUmyeWQx5X7dXA4egG5em/obK/pzlujWKzxHIo4Kg90x1UI8dGcdyftGnaFdugmJRSQwFH7ZFSrnrh2CiOBwHJx0fFtigmptTQjKN276djozg2ctwOxYSUGobhqN0aOB7VwPG41PKKY3JSRzEVxfiUGobjqLkp5dpe1yTT+NrtYNIctdoRV0lSSRCGCkMyqaSUOkkp1a83WyulDlJKXa+U+oJS6iL7/1v6u+yGjlKKvPsDtIrryGfIOZeTcy9L7Mhn9cdpcr5LVn8sttxVh5B3LyXnXE7cSVWrHSl4N5B3b0Exut6PMTS7t1Jwb0SrHRIcryDvXpbYkc/qT1jHjyQ4HkrevYSccylxJyytdqLgXU/eXYBiVIzj2IhjXEc+S979nnU8MN7ROZeceyFZfU6C4+ENHKdT8K6n4N4Sm6BTjOuF4/fJu5cndu6yzqfIuReS0WfHlnv6SLutLybuDqmjdqbg/cBO094S4zi+4ujdiFbbxayhKeK4X0y5Iut81jp+MMHxKBvHixIcd2ngOIFmdwEF7yY02yY4XkXevSKhA6rIOp8j51xIRse/IN/TR5NzLyHnXJjguCv5XjnenJAQyZF3r7GOcR1QRZPzBXLORWT0+xIcj7WO30lwnEHeu5aCeyNxSUTFBArereh9LodhMZ1kpwm914XoPb4BE+IuphVqxsfJjvo2GX1WguPx5NyLUxxnWsebiEsiKibS7N1KwbsFTVzyK0/evRZv1OWoprjOncJpOY/hh36cwn7x7T4/bz6jzvgALe86C3T96TczZVvGf/QcdrzwNJzm+g5odvwIdr70Xez/w8MYtnX9b3ALLvtcfzB7XXUAE/aM6fxpxawvz2OnrxzOxOPnxDqOP2JXpn35KHY8/2CUU5+ga5mxGbMvPZr9bz4Ub1j9Mb6weTP7LziSQubmhIRInrx7nZ1+PK4Dqmlyvmz3x3fFOnr6ZHLORTQ5Xyfu5oCj5lDwrqbg3kBcElGxOQVvAXlvQYJjwTp+P6EDqmlyvmodT09wPNU6XpDguBsF7yoK7vUJjpOt4y1otohZQ3PEMa7NODQ5F5BzLsTTp8Y6ZvTp5J2LaXK+StzloKPmUfCuIu9eBxTqyjVbUPAWUPAWJCSWmim4N9jpx+M6oA5NztfJORfh6VMSHN9l4/iVBMc9yLtXpjhuaR1vTUgsDYs4xiWEHZqcb5BzLsbTJyU4vts6/k8Dxx8A+VjH5i7HuMTSMArujRTcaxIcXZqcb5FzL8LTJyY4nkHOuZAm53ziEu+O2tM6XpvguBXN3i12W8clloZTcG8i716Do2bFOuacb5NzL8bT8TcHMvq95JyLaXK+GOvoqr3Iu1eQd69JcJxScXQXJCSWRkQc426uuuSc71jH4xIcz7Lb+gsJjntHHOuTsT0d6xNLihbreC2Oikv+u+Sc71rH+ARcRr+fnHMhWedzCY772mvUqxMct6XZu6mB483WcZcExwvJuZfg6fjkV0Z/sHIN7Hw2xfEK8u5VxCVjtdqOgnsDSg3JbqwgbJIMmdnflFLXA6OA5cBBAMaYlFvGqXWdBHwp+hZ3pdQs4E5gtjGmdW2WXUuXITX7WxVjyvjmAcrh/RjTgaN3JKNPRqtxttwQmCcoh78gNCvQajIZ52Qc1d2xDsy/KQV3EppFaDUSTx+Lo+aiVOUEEZrFlMI7CMIXUCqHpw/CVQd1Tf9pzBpK4S+6pmJ31O5k9LEoVYg43m8dO63jKWg1NsXxFBy1TYrjcThqTsTxHUrhnRHHg3HVgTWO/9c1Fbur9sDTx9Q43kc5fCDF8XHK4S+t4xY2jhHH8F+UwjsJzRtoNco6zq5xvIMgfNE6HoKrDog4rraOT1jHPfH00SmOO9ltHXX8K6XwlxjTah1PwVFTIo4vWcc3rePxOGpWxPFt6/gSSuWt4/41jj8nME9GHI9BqbwtL1EO78M3D2BMEUdPt45jIo5/oRT+KsXxRUrhXdZxtHWcGXF8yzr+yzoeiqv2iziusnF8ElCROEYdf49v/oAxRVy9M54+qcbxz9ZxJY7aEs85BUdtXeN4J6F5yzqegKNmRBzftPtj1fEw6+jUOD4B6EgccxHH39mpr0s4quo4OsFxKzzn5BrHF2wc30KrMTaONY7BHQTm3ymO1W2tcdV8G0frGJQxix6ENx+DoAyjpqGmHIVqGtnlyDtPYl67D1NahWqejNrmGNSwyTWOdxKat63jCThq14jjG5SCOxs4/ozAPBXvaIqROJZx1C42jqNseYgp/pmg7R4IV6O8rXAKJ6G87gRF6fVXaf/zowStK9DDR1DYfT7ellt3OfrLl9H22CP4b7+ByjaRmzmHpp12QdlkU3l1B4t/+3dWPf86ytG0zJ7C2IN2wslWksxBMeC1e//LGw++TlgOGLPrOKacvD1NoyoX4CY0vP3YG7zyq4WUV5UYNmUE2546lWFbdiej1vzrLd7+zd8pLV1FZlQz4w7bheE7dndqO95cyaJfPMea/y7DzWeYcNBUxuyxFcqpOBZbiyy8618seXoxylVM2ntztjx6Cm5TtU0VKYf32qmvyzhqBp4+Ea2q2zrEN49RDu/BmNU4amsyzilo1Z1ECcLnKYU/s9t6HJ4+Hld3d7ZCs8juj/9BqWY8fQSu2qersxGaVsrh3QTmWcDBVXvj6SNRqini+Bt880iK46MRx22sY3R/fM46vmMdT8DVu6Q4Homr9o5xfIbKCNJ9rGM24niPdfSt40loe++r4vhH67jGOp6KVt1JFD/8O+XwZ4RmMVqNJ6NPwNE7Rxxft44vo9Qw67hXxHFFJI6edTwiwTGIxDHq+Ajl8DfWcVsbxyTHCdZxesTxNeu40Doehavmpzjui6cPjzh2Ug5/jW8etY4zyegTUWpExPFhyuG9GNMWcdws4vg3yuHPI44n4uidEhyH2zhGHZdbx7+tpWNg4xjvWDnGV+O4JNYxMK9SDu4gMP9NcbyLwPzdOu6Hpw+rcfyVdQxx1CzrODziWI1jey8dT8LRO0YcX7GOr6DUcDL6KBy1Z8RxmY1j1XF/PH1oxLHDOj5mHWeT0SfUOD5EOfytddzOOk6KOP7NOi61jifj6GkJjiMijirieBeBeY7KaOGqYybi+Et88yfrOIeMPj7ZUW9vr4uijs9ax2VoNdHGMer4X+v4qnU8GkftEXFcah2ft44H4OlDIo7tNo5/Aox1PK7G8UHK4e8ijqeg1cSI4zO2zSxDq0nWcYeI40JKwR2E5jWUarGOu/dwrFwXPY9SWVx1IJ4+uMtxqLApzP7WxORZU7wvrG+VAWdh+WI6Zfa3fjMUHlQHwBjTNWTDjlJqWZt67AijO4Eew1iMMU8rpZ4GbgRO7uuyGx/thGYRoXkd6CA0wzFmMdikEpRs+SJCVoCpXBhrtkEphTGG0LxhyxeBaSM0i3DUDKojlIx5h9AswvA6xuQIzSJQbVRHMhhaCc3rlc8BzesYWlFddxvbuxx6Oo6NOL4ecVSVxAxTIo6V3xjyBph267hrxHExoXk94vg6qHaqIxkMKyIOENY4GtoicSwSmhEYsyTG8XVCWuMdqcY56rhLl2PYI475GMfWiIO2jitrHF/vcjSmBWOW1jkas4iQVhTaOm4d4/gmmA5C87p19HrpuKLGcZGNY77L0VDdF6qOS8AmbLodXydkJQqnxjEk5I0Yx50jjosjjoU6xzDWcWXEcQ0h1TiWCBMdF3U5GvMGhq1qHN+ocZzeC8dhEcdqnDQhb1jHXKyjoupYHRVY7NoXDKtQuBjzZh8d37HrrTouAtVBdbRFyPJUR8prYM2bmDVvQlhGZVugcznYpBJBEdNmy0urQLnQ9g6mefOI4yLr+BaYzoijG3FcRMjrqFjHZZE24VrHVTFxXGTjOMrG0Y5cNEWMvwjjvwFhxdEEb4G7RcUxDAmWLcVftpRgxXKccgl/6RK8yVuCU0lsBSuWEyxbgr9kCTqXI1i2FFMqopoqDuUV7XS+1UrnW60oR1N8uxV/dWdXUkkHq9h84uNM2uMJTFBGT5iKGw4Htqoolsp4a95gjPsifqaTJsbCylHdbTI0tL+xirZFqykuXkOmDYa9sYrm7Sei3UrHreOdNbQtWs2a11bjFjK0LVrFyKKPax/Pc0e8wVZn/ZzJ732aSjJkL7TzLsDenGB117GjEsfRGJZC1+jK6P64GoVnk5mVpJIxgf3+64S8U4k7b2DM9K4EYWjestt6Eco02zbTAV3Hv+X2XGW3tVpk12WTSqyKOJZRjMGwLOLY2bU/V76XsY6TaxwXWccShkUYs1PE8c3K/sQilBlmHTuh69iyLHKeqTquQjE2xtFHMdY6ttQ4vmEds1SS65t3OZoux8VgSoQsQpsdE+LYyNFLcHy9xnF5xLGjxrHJxjHJsWwdpzVwLEJXu41zrMSjy9H0jGPIMpyu0ZUdkW29xsbxrUgyxMfwht0fl4DxreMONY7d29qYRQmOrwMZQvVGHx07axybqCRcq4mvoOv7PR2noZTGGIOpiWOdo1la49gdj4rjSlv+hnUcZx2rCeuOrvLK93JUEq5Rx+p10VKwbagSxzjH4fa6qER11ErF8fWI4+sxjm9YxwDF+ATHRUAbYZfjpBrHRTWOUyOOb0YcV1nHYsRxSYLjqBrHRUCIYgIhyyOO7ZFzaRuhyVNJZlYd/YjjMrDn73rHN6z7anuunFXjuKiB46KI43hCVvTCcWIDx+17OJpYx2yXozGL7HE1i1GvY2hDpTxiKAjCumfIjFSKUk0qrc1IJaXU2cD1wMjaUUZ2VNKdxlTm8OnLsmvLUBypFJiXaSufgeHturIm53wy+hTa/PfaO2k98fRxNOkL6QzPoxz+oq7cUbtScH9IKfwpncGFdeWVx2B+TGheod3/GFD70tkm+3jeJNrKZ2J4J8HxZOv49xjHE2jS36Ez/Dzl8FcxjjMpuAsohT+hM7g4xfG/tPsfj3HMkXevQzOeNv9MDItjHL+Mp0+g3T/T3gGqdTyRJv1tOsPPUQ5/HeM4i4K7gGL4I4rBpTGOE63jy9axlOA4zjouiXH8Kp4+ljb/vYSxjifTpL9JZ/hZyuE9MY6zreMPKQaXxThOso7/ot3/ZKxjwb0exRjruLSuhibna3j6KOv4jxjHU2nSF9ARfAbf3BvjOIeCewvFcAHF4IoYx82s44vWsfZl0vnKEGtGWsdlMY4X4OkjaPPPJDQv1K0jo08nq79GR3AuvvldjONuFNybKYY3UQyujHHcnGbvxwTmH7T7n0pwvBHFCOu4PMbxG3j6UOv4Yozju8jqr9IRfBLf/D7GcV7FMbieYnhVjONk6/icdax9kXOBgnsTTmsL4UOfhGJrXQ1q7nmozfYhfPCTsPI/9evY7kSYda51vC/GcXcK7k2JjpVHdX6MH/6NjuDTMY7NFNybUORo88/CsKKuhpzzbTwOpLz4LEz5X/XraH43zrDzWX7TtXT+/Zm68uzUaYz+6KdYfe+vWP3bmHY/dhxjz/0Cy595m3996/8wQc/pt51Clp0uPp1h4zop/ux86FxVEySFd9CnMJvtxb+/fCOdr9YfP8cevSeT3ncEz3/p/1j66Mt15SPnbskul57If274Ky/f8kRdeX6LFna/8WScsX+gI/g89XEcRsG9GfBo99+HobU2SuSc7+LqfWnzzyA0/65bR0afRVZ/gY7go/jmobpyV+1FzrmeYnglpfCGunLNVhS8/4cf/pWO4AsxjsMpuLcAToKjQ865EFfvRVv5PYTUxymj309Wf46O4CN2JFat4z7knOsohldQCm+McZxi98c/W8fa6bWHU3AXANDmvx9YGeN4Ea7e0zoujHH8EFn9aTqCD9sRRLWO+5JzfkAxvIxSeHOM4zbW8VE6gi/GOI6wjqF1rNkfccg5l+DqedbxvzGOZ5PV59IRnGNHvtQ67kfOuZZieAmlcEGM47bW8RE6gi/VOSpayLsLAN86rq5dg3Wcax1fqVtHVn+YjP64dXwsxnF/cs41FMOLKYW31juq7Si4P8IPH6IjOB/o2a4rjrcCRdr8DwBrYhwvw9WzrOOrMY4fJet8jDb/gwTmzzGOB5JzrqYYfpdSeFuM4/bW8Q90BP8T4ziSgnsrhg7a/A8mOF6Bq2ekOH6crPNh2vwPJTgeRM65imL4bUrhj1Mc76cj+EqC420Y1ljHtjrHymO3u1jH12IcP0HWOcfG8S8xjoeQc75PMfwGpfAnMY47UHBvoxz+js7gq9TOK6UYZR1X0eZ/KMbRs47TWVN+D4bXYxw/Sdb5EG3+B7pG0fd0PJSccyXF8OuUwv+NcZxmHX9DZ3BBjONo67iCNv9soD3G8UoctaN1XFTv6HyKrH6/daw/j7jqMHLOFXSGF1AOb49x3NE6/prO4OsxjmMouLf1GPG0vpGRShsuMlJpYNgYk0r3AXOMMXUvmrGPtT0FnGyMuasvy/b5R3TXM6SSSsYErCkfGnsBWsVRu8eeTKu46gB884eU7+8Re8FQRbGlTRZ1JizRZO9y1p9Mu9cxr+uxuXjH/e2jK2vruDWGt1Icc/aue/3JtHsdu8We8HvvOJ8g5gK2p+Ob1Ce9oo6jMLyRso65sSf8bsdG27qR4xQbo9qEUpU8ipH9dGwUx70IYjor3Y7b2H0tybGAYrjdH5LWMafr0b748v0J+uW4HYZXqE8oVWlG0RybKK7W4KhZ9nGveBrF0VV745s/JpZrtrOdxoSZwYLhNP9uM+ioTR52OzJ6Oix7LnEdpYNmUBpRn1DqveNUmyBImr1sOIqm2ERx1TG3Yjam+GziOtr/eiZtf6hPilXJTptO8YX6JG4XY6fwyiO6LqFUxWvJsOuRz0J7bfKwqqh4/c0jWfPP5DblTZvB4kfqO31VWnbbhrf/mHz8HX+ox3bfuorkOLZURsHVJYqraBy1c+yNiyqu2i82oVTFUfsSxCRzutewEyEvUp8IiTo6MYniqOP02BsXA+c4nZAXUhxHolAxieKuNaCZRkjy/tTIobHjLrb++P0RRqEwMUnYiKOaFnvjoveO+xGkxLmx42gUYYqji1bbE5p/Jq7DVfvEJua6yxvsC+xKwHMpjmOoHN9rk4fdNVQc629cDJzjTAKepbYD3804KtcbaY7bEpqXUhzSj9ENz+fMIuCZBo4d1CcP16XjbAKeTnEcTyVRk+TooplCSP2Ni651qL0J+uU4h4DkaxaYaP1qk4dRx60Jqb8p0O2Yfl3T8PqSuQQkX/spNmeY9wBKDYUZAyWptCEjSaWBYWNMKq0Alsd9Vyk1BXgZuNgYc15flu3zj+iuZ0gllcrhg7T7H+hnLQ7JF8FDBU3yxRtUXgy4vvf9RnEUx96xIWxrcXRfz9L0eNose+kYbWg7cgVk1t/+qHzILk1+atz4imVXzcN0prw8VClIOe8ue2s0q5Ylz+42avJipsxJ7mwU1zSx8K/JMyoaAytXjMSkhLHke4RB8iDdKZ99hEmnJSdbBoZG+2Oj8nWBOA4M4jgwNDr+iWPvEMeBoZFj//sSefcaPH14v+oYKDaFpFKWzWdtvREmlf5bvpgiizbabbeuGDLvVBpAWiDxtl50mb4um0rKbHVDZ2wmEIRPD0QtA1DHYNPoZLq+O/DQOI7i2Ds2hG0tjnpZ/+4mhs1Bg4QSDHYcdSn9aehgWS49oQSpCSWAzvbkKb0BmkfVPmLUk/aV9TNgRQl8JzWhZAyEDcI8bJfkUXsDR6P9cX13mEAcBwpxHBgaHf/EsXeI48DQyLH/fQk/fHrIJJUEYVNnY52LsTXh82oCKTpPfF+W3Qion9pYEARh0FH9S/j08+sDQsM37A3AGbXhS/waSKhGgerXWwKtQrCxXjoIgiAIGw7SpxGEocKmemXYMtDLGmNmx/0B9W/FXY+4en4vlmq0WzSacWFd7Fb9dVwXJ6INwbFRD1Mce0cjx0ajdDYEx/4NbA3GJb0PKkqyo1rtoDrTR/EM9uDbMGMwKY7O6Hb0sAZJHZ2+rXPNHanlq5a0pJYXRia9p6OC4wQ4mZQ4K1LLAVofn5xaPjA02h+Hwns0xHFg2BAcGx1bxLF39NdxALLiDdkYHBtdF60Lx0bXNf137F2fRhCEdcHGmlRqSfi8OuqodS2X3eBx1BwclfbIqIunjkytw1PHp5a76kjSTniaGV3TlcYz2k5Xn+Z4RAPHE3rhmHzC08xCdU0pHcdYO119sqOr0ofkNnY8qoHjbFRqznMcWk1PMxgAx6NJd5zTwHE8Wu2YZoCrDkt18HS6o6eOIu1Q57AbkPwOGxiPJvkdNZDBVYemOzR0PIZ0x3mkO05Apz5pm8VVh6Q7NHQ8mrSLPIc9oGua4XrCCWOgJeU1eToDm++TWKxQZMonNnA8poHjnsCwlBo2Q7NdcrHThM4fkOyoofmAuamOud12r2RuEhiz52ScQnLyrJOtUaO2SCz3hilG7jk12VHBxCPT2hxsfuQOqdfz/ltHAsmP2Skmo0l7JWIOVyXHESozjaaXH5ta7rAPkE8sV2yBZuuUGnK4av8GDunnwsaO+5LuuCWarVJqyOOq/Ro4HNev8koMconliq3RbJlSQx5X7dsvh8aOB5DuOAVFcpuBAq5KPvaAargtG+0LjR23QZGWrG3GVXv30/G41HJXHUR1qvn4NWyLYvOUGobhqLROvsJT/Y3jwVSnmo9fw3YoNkupYTiO2qOB49ENHBtdFzVynIpiYgPH3VPKdS8cG8XxENKSOoppKCak1DACR81r4HhMPx0PJS2Bp9V03NT9TRCEdUm/kkpKqaeUUmYt/k4aqB8QQ2svlqk+2taXZTcKlFLk3WsTkg1N5N3vkXMvTkw2ZJ1zybnfIas/GVvu6SPIu5eQd79H3EnVUdMpeNdTcG9FMbbej/E0uz8k796IVjslOH6fnHtJQrJBkXU+Tc79Nln9iQTHo8i7F5Nzrkhw3JmCdx15d0GK463WMa5zliPvXkXevTShI6/IOp+1jh9PcDzaOl5G3InfUbtGHMfErGECze4CCu6NaBWXEMmRd68m716W4vg56/jRBMdjyLsXkXMuTXCcEXEcHbOGidbxJrSKS4jkybvXWMeDYh2bnC+Qc75NVp+T4HgcOfeSFMeZ5L0fUHAXxCY6FZNodn9IwbsJrbZv4HhgTLmmyfkiOec7ZPTZCY4nkHMvIudcQtwFlKNmkfeupeDeHJvoVEyi2WvkeC159/KETrKmyTnfOn4owfFE63hxguNs8t41KY6bUcjcit7nchge05F3c+i9L0Lv8XWYGHfBr1EzP0V21DfJ6PiJBjx9knW8kLiktqPmUOhybIlx3Jxm71YK3i1oto1ZQ4G8ex3eqMtQTXGdO43Tcj7DDv0YzQfEJ/Dye+7DqDM+wMh3nwVOfTI2s91Uxn/0HHa66DTc4fUd0KaJLex06XvIHP8t1KiYDmgmT+aYC9jiM+9m+KyYfUErNj/nGLb/4lFMPm1OrOOk43Zlp68cxs5fPRjl1l8ijJqzOdM/fxoF92biEp2aLSh4C2wcp8SsoZmCez1590pctVdMuUOTcwE557tk9HtjHTP6dHLOheScbxO/rXen4H2fgntTguOWFLxbKXgLEhJLwyi4N1jHuE6LQ5PzddtmzkhwfBc550KanG8mOO5hHW8kLhlbdcx7CxISS8O7HOM7yS5NzjdsHN+d4Pgecs53aXK+nuC4J3n3SgruDcQlYzVb0ewtsI5xiaXhFNybyLvfT3H8lnU8PcHxTOt4AXE3MFw1n7z7PQru9QmOW9PsLbDbOs5xRMQxrpPsknO+Tc65EE+fluB4lnX8WoLj3uTdK8m71wHNMY7bRBzrk1+KFut4FY7aLcHxO9bx1ATH99n98SsJjvuQd79nHesTxpptuxzjkl9Vx4J7NY6KS6y7lTbrXoinT05wfL+N4/8Q1z1x1b7k3cuTHdV2NHu3WMf65FfF8Wby7jUJN1c9cs5F5NyL8HT8DYyM/iA55zs0OecnOO5H3r2CvHstcQljrban2buZgndrbPJLMZKCewt599oUx4sbOJ5tHb+Y4HiAdbwmxfEme50+KcZxVMRxVoLjpdYxPnGU1edYxy8kOB5ot3VSHKdScG9AqY11bMTQJcRsdH/CwLAxzv52H3CQMfUvnlBKHQTcB5xjjLmhL8v2+Ud01zOkZn+rYkyAbx6iHP4e6MBRO+HpE9FqjC03BOYZyuEvMSxHMxnPOQlHdV+AB+a/lIM7CVmEYhSePhZHzUDZu/ChWUo5vIvA/BPI4elDcNV+KOXYdbRTDn+Fb/4KgKt2x9NHo1TOlvvW8T6gM+I4usbxFxhWWMeTcdRWEceFlIO7Io7H4ahdI45LKId3W8c8nj64geMeePqoGscHKYf3pzg+beO4As0W1nHLGsc7CXkDxWjruEsPx1J4l51KOG/juG+N4y+to444NkUc/2AdizhqunUcFXF8yjq2Jji+TCm4E8ObXY6u3rWrvOJ4J6F50Toeiqv2iTi2WcfHUxwfoBw+YB13to4jI45PUg5/ZR23JOOcjFZbRBz/Qym4yzqOwdPHxjjeYacSLkQcdZdjKfwFgXnCOu6Jp4+MOJat4x9SHJ+wjivRbGUdJ6c4Hoerd4k4LrZxrDoehqv2jjiusY5PWsf51jEbcbzfOpZw1C7WsSXBcWsyzkk1jv+mFNzd5ZjRx+PonSOO79j98SWg2TruVeP4fwTmKcCxjkd0O4Y+LHoY8+ZjEJZh1I6orY9AZUd0ObLkWcyrv4fSKhi2BWrK0ajm7ovbIPwXpfBuDG/10/FJKqMKaxxNGd/cRzl80MZxVzL6RJTqdjTFJwja74FwJcrdGqf5RJTb3ZEpv7GItr88SrBiOc6IFvLz9iSzxVbdv6F1BW1/+iPlt95ANzWRmzmX7A47onTF0W8rsvj3f2fVc6+jHM3IOVMYs/+O6Eyl828Cn/DlPxH893Hwy+iJO+DseBCqaViX45rnFrLij38nWNNOdrOxjD5kLtlx3Um/NS8v4a1fP0fn4tVkRxeYeOR0hk3tvjvd+c5qXv+/f7Bm4TKcQoaJB2/PmHlboLSy61hNKfw5gXnaxnEvPH14JI4lyuHv8c3DQBlHzSCjT0Cp4ZH98S+Uw19jWI1mim0z3Z2tIHzRbut3UIwjo0/A0d3J/NC8ZdvMf1AMw9OH46g9I9t6ld3WT1MZ+bgXnj6sxvF3dir2Mo6aSUYfX+P4Z8rhPRVHtQ0ZfTJaRffHFyiFP4s4noijp0Uc37T7Y9XxCOuoEhz3to6ZiONv7TTnSY5/ohz+poHj3RgWoxhv41jreCehedk6Homj9qhx/DmBecY67oOnD404Fm0cq46zyOjjIo6hdbzXOm5rHSdGHP9p41h1PBFH7xBxfINScCchC63jUThq9xrHnxGYZ63jvnj6kBrHe/HNYxHH41FqWJejbx7DD39rHbezjhMSHCdYx6k1jncQ8l8Uw63jvIjjyohjBlftZx29GsdHAR9HzbZx7OlYDu8F1qDV9mT0STWO/7COS1BMtNu6r453E5i/ARk8vT+uOrifjiej1fiI4/OUwp9HHE/E0dtHHBfZbV11PBpH7Ra5LmqlHP6sgeNv7LYOIo7NEcdHKYe/tY5TbRyjjs9Zx6UVR+ckHLVdxPF1SsFd1nGEdZxb43g3gfm7dTwAVx1U43iPdQxx1Bwy+tgaxz9axzbreDJajety8MO/Uw7/zzpOso7b1jjeScgrCY4rrONzQNY6Hhhx7IzEMcRRc61jIeL4COXwdxHHU9BqbMTxb/Y6PcnxNev4KooW6zgnxfFA6zi05praVGZ/29L7/PpWGXBeLV8is78NABtjUuls4PqERNHZwPXANsaYhX1Zts8/orueIZlUEgRBEARBEARBEPqHJJU2XCSpNDBs0OMGlVJxY+vvsGVxj9idDNwfSRL1ZVlBEARBEARBEARBEATBMlSTSi2Q+ibn6miml5Xq+UCvMaYVOAe4qGb5WcAUKsmiPi8rCIIgCIIgCIIgCJscCsKN8G+dTIa4CTBkHkhVSn0BmEslmTPFfvYy8DSw0BhzXs1X7qeSfGqtrcu+L2mhUupO4AlgtF12tk0krdWygiAIgiAIgiAIgiAIQoUhk1Qyxlzcx+XPA2oTTdHy+6kknnpTV6+XFQRBEARBEARBEARBEIbu42+CIAiCIAiCIAiCIAjCEGbIjFQSBEEQBEEQBEEQBGFoYYCQoTdrfH/Z+H7R+kFGKgmCIAiCIAiCIAiCIAh9RpJKgiAIgiAIgiAIgiAIQp+RpJIgCIIgCIIgCIIgCILQZ+SdSoIgCIIgCIIgCIIgJLIxvlNJGBhkpJIgCIIgCIIgCIIgCILQZySpJAiCIAiCIAiCIAiCIPQZSSoJgiAIgiAIgiAIgiAIfUaSSoIgCIIgCIIgCIIgCEKfkRd1C4IgCIIgCIIgCIIQiwGCjfBF3RvfL1o/yEglQRAEQRAEQRAEQRAEoc9IUkkQBEEQBEEQBEEQBEHoM5JUEgRBEARBEARBEARBEPqMvFNJEARBEARBEARBEIREQnkDkZCAjFQSBEEQBEEQBEEQBEEQ+owklQRBEARBEARBEARBEIQ+I0klQRAEQRAEQRAEQRAEoc/IO5UEQRAEQRAEQRAEQYjFYDbKdyqZjfA3rQ9kpJIgCIIgCIIgCIIgCILQZySpJAiCIAiCIAiCIAiCIPQZSSoJgiAIgiAIgiAIgiAIfUbeqSQIgiAIgiAIgiAIQiKBCte3gjBEkZFKgiAIgiAIgiAIgiAIQp+RpJIgCIIgCIIgCIIgCILQZySpJAiCIAiCIAiCIAiCIPQZSSoJgiAIgiAIgiAIgiAIfUZe1C0IgiAIgiAIgiAIQiwGCDDrW2PA2fh+0fpBRioJgiAIgiAIgiAIgiAIfUaSSoIgCIIgCIIgCIIgCEKfkaSSIAiCIAiCIAiCIAiC0GfknUqCIAiCIAiCIAiCICSyMb5TSRgYJKkkCIIgCIIgCIIgCIKwFiilDgJOBl4GRgMtwHnGmNbBrmuwl+8NklQSBEEQBEEQBEEQBEHoI0qpk4AvGWNmRz6bBTyllJrdl2RNX+sa7OV7i7xTSRAEQRAEQRAEQRAEoQ8opVqAO4Hzop8bY54GngZuHKy6Bnv5viAjlQRBEARBEARBEARBiMVgCNTG904l0//3RJ1i/30ypux2KkmcwaprsJfvNTJSSRAEQRAEQRAEQRAEoW+cDLQmPDa2ELoeORuMugZ7+V4jSSVBEARBEARBEARBEIS+MQdYnlDWav+dO0h1DfbyvUYefxt8tnrhhReYPXt24yUFQRAEQRAEQRCEDYYXXngBYKv1rDGohGYJbcWr1rfGgBOaJQA7KKWeiiuPvtA6gRaSEzXRZXpDX+sa7OV7jSSVBp9VHR0dPP3006+sb5EEdrD/vrheLYRaZLsMPWSbDE1kuww9ZJsMPWSbDE1kuww9ZJsMTYb6dtkKWLW+JQaRF6FMaN5c3x6DxVb9/H5rwufVBM6oQaxrsJfvFZJUGmSMMVuvb4c0qlnZXmRhhXWIbJehh2yToYlsl6GHbJOhh2yToYlsl6GHbJOhiWyX9Ysx5t3r22EDp2U91jXYywPyTiVBEARBEARBEARBEIS1oSXh8+qon9ZBrGuwl+8VklQSBEEQBEEQBEEQBEHoG629WKbRe4zWtq7BXr7XSFJJEARBEARBEARBEAShbzwJTEkoq34e+xLwAahrsJfvNZJUEgRBEARBEARBEARB6Bt3ppRVEzX3D1Jdg718r5GkkiAIgiAIgiAIgiAIQt+4A0ApdVJM2cnA/caYhbUFSqm4EUN9rWuwl+81yhizNt8TBEEQBEEQBEEQBEHYZFFKnQ2cZ4zZJvLZLCojg2YbY1prln8KmGXLnu5nXYO6fG9x1+ZLgiAIgiAIgiAIgiAImzLGmBuUUguVUncCTwCjqcyylpSkud+W15X1ta7BXr63yEglQRAEQRAEQRAEQRAEoc/IO5UEQRAEQRAEQRAEQRCEPiNJJUEQBEEQBEEQBEEQBKHPSFJJEARBEARBEARBEARB6DOSVBIEQRAEQRAEQRAEQRD6jCSVBEEQBEEQBEEQBEEQhD4jSSVBEARBEARBEARBEAShz7jrW0BYNyilTgK+ZIyZ3Y86DgJOBl4GRgMtwHnGmNb+LLspMlDxUUo9BXzIGPN0L5a9yK7nTuBJY0yr9TgHuM8Yc0Nf1r2xMYDbpE9xlraSzEDGxh4DDwamAKOAJ+Pq2tTbyQDHvE91SVtIZn20BbvsJt0e0lhf54yBXPfGyPq4vrLLS1tJYF33QdZmeUEQ+okxRv420j/geiont+upHFRf7kddJwFP1Xw2y9bbsrbLbop/AxUf+x3Ti7+DIvtDXPlF6zsm6/tvIPfZvsRZ2so62yYXASdF/rsFeApYAUxZ2+23sf0NcMz7VJe0hXW2XXrdFmz5Jtse1uE26VOMpa0M/nahj9dXa7MdN/Y/1lMfZCD3A/mTP/nr/Z8yxiBs/Ng7Li3GmG3W4rstVC44DzbG3F9TdieAMebkvi67KTKQ8bF3fi4CFiYsMgpYGNk219vPp9h/nwauN8YkfX+TYKD32d7GWdpKMgPcTmYBpxpjzktYx8LocXFTbScDHPM+1SVtIZn12RZs2SbZHtJYX+eMwVj3xsT6vL6y35G2ksC66oOszfKCIAwM8vib0BtOsf8+GVN2O5U7EWuz7KbIQMZnLjDbJA/9vbP2xGmMOacP9W8qDPg+28s4S1tJZiBjcw6VO6U9MJVHE+4HDlJKzTKRRxw20XYykDHva13SFpJZr23Blm+K7SGN9XXOGJR1b0Ss1+srkLYySMj5RBA2AORF3UJvOBloTTi5LoSuuzp9XXZTZCDjsyzlguci4LtrI7gJsr72WWkryQxkbOYAT9lRGrU8HVlmU2cgY97XuqQtJCNtYeixPvdXaSvJyPXVxomcTwRhA0CSSkJvmAMsTyhrtf/OXYtlN0UGLD7GmIvjPrcvJ1xWe7c5Ut6ilDrJ/rX0Zl0bOYOyz/YiztJWkhnI2Nxvv9OavlhPNsF2MpAx72td0haSWe9tATbJ9pDG+jpnDNq6NxLW+/WVXUbaysAi5xNB2ACQpJLQG1r6sExflt0UaRmgZWKxFzDnpFwQXQScTeWu9P3AnUqpL6zt+jYSWgZomS56GecBX+9GRMsALYMx5jxjzMiE91pUR2z0GCa/ibaTlgFaZm3qGsh1b2y0DNAya9UWYJNtD2m0DNAyXfQhxgO+7o2IlgFaJpZG11d2GWkrA09LH5fp6/KCIAwA8k4lobe0JnxevRswai2X3RRpTfh8IOKTNiy7lcq0tl0vLlRKnQz8VynVajbh6W4Z2G3SSu/jPJDr3dhoTfh8QGKjlJoCHATcVXPXuZVNt520Jny+tu2gL3UN5Lo3NloTPh/stlBd96baHtJoTfh8sM8ZA73ujY3WhM8H+/qqum5pK4NDa8Lncj4RhCGCjFQSBoqWQVp2U6Rlbb5U7RgkDcu2d6nvr/mslcrdtIvWZp2bEC29XXCA49zr9W6CtPTz+3dSeb/Ch6IfSjtJpWU91jWQ697YaOnn92PbAkh76ActvV1wEGLc63VvgrSszZcaXV+BtJX1TMsgLy8IQgMkqST0lpaEz6vZ/ta1XHZTpCXh8/7G5zwqFy995Qmgxb4rYFOlJeHzgdxn4+K8Lta7odKS8Hm/Y2MfUWghZXafGDaFdtKS8PnaxLyvdQ3kujc2WhI+X19tATaN9pBGS8Lng33OWFfr3lBpSfh8fV1fgbSVgaAl4XM5nwjCEEGSSkMMpdRTSimzFn+DOZNBay+WqQ4p7cuyGwwDuF1ae7G6tY3PKcBTa/ldgCn9+O46ZwPZJnFU47yu1zvobAjbxK7rIPreia6yQbWTPtDai2V6G/O+1jWQ697YaO3FMuurLcDG2x7SaO3FMoNxzlgf696QaO3FMuvr+go2zbYyELT2Yhk5nwjCekaSSkMMY8xsY4xai7+7BlHrSZJPhtXPn1qLZTcYBnC7DEp87B2wFux0qTHl19vOe0tf6x6qDMVt0sc4b3RtZShukyi2nZxjPVtjyje6dtIHBjLmfa1ro2sLA8h6aQt2mU25PaSxvs4ZA7rujZD1cn1ll5G2MnjI+UQQNgAkqST0hjtTyqoH6Oqw4L4suykyWPE52P6bdPdlCsl3b0bbf+tm/dlEGMht0pc4S1tJZsBjo5SaRaUTfXDN5y1KqbMjdbcmVLGxt5OBjHlf65K2kMz6agvV+lsTqtnY20Ma6+ucMdDr3thYX9dX1fpbE8o25bYyEMj5RBA2ACSpJPTAvoywljtsWdwjdicD90emKO7LspsiaxWfhO0SpVH5fSQ/4nAS8HTaCyg3cgZym/QlztJWkhnQdmI/P8cYc3JM8UF034HelNvJQMa8r3VJW0hmfbUF2LTbQxrr65yx1uveRFhf11cgbWVAkPOJIGzAGGPkbxP4A14GVjRY5inAALNiys4GXq75bJatt2Vtl90U//oan7TtErPMlJRl7qwtpzIjyYq0720KfwO5TfoSZ2krg79NqDy28DKVi/47I3/32b8e22VTbicD3A76Wpe0hUHeLn1tC/Y7m2x7WBfbZG1iLG1l3WyXmGVS93dpK6mxWWd9kLVZXv7kT/76/+cibLQopb4AzKVyl2WK/exl4GlgoTHmvJqv3E/lorO1ti5jzA1KqYVKqTupzGQxmoQZY/qy7KbIWsQncbtEeJLKRUvi3RdjzMlKqYvsM/+jbJ1PG2NG9v1XbFwM5DbpS5ylrSQzgNvkASLHwIR1LYz8/022nQxwO+hTXdIWkllfbcH+9ybbHtJYX+eMtVz3JsP6ur6y65a2EmF99UHWZnlBEPqPMsasbwdBEARBEARBEARBEARhA0PeqSQIgiAIgiAIgiAIgiD0GUkqCYIgCIIgCIIgCIIgCH1GkkqCIAiCIAiCIAiCIAhCn5GkkiAIgiAIgiAIgiAIgtBnJKkkCIIgCIIgCIIgCIIg9BlJKgmCIAiCIAiCIAiCIAh9RpJKgiAIgiAIgiAIgiAIQp+RpJIgCIIgCIIgCIIgCILQZySpJAiCIAiCIAiCIAiCIPQZSSoJgiAIgiAIgiAIgiAIfUaSSoIgCIIgCIIgCIIgCEKfkaSSIAiCIAiCIAiCIAiC0GckqSQIgiAIgiAIgiAIgiD0GUkqCYIgCIIgCIIgCIIgCH1GkkqCIAiCIAiCIAiCIAhCn5GkkiAIgiAIgiAIgiAIgtBnJKkkCIIgCIIgCIIgCIIg9Jn/D2nj5kGhHwfsAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 579, + "width": 586 + }, + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,10))\n", + "plt.scatter(full_grid[:, plot_dims[0]], full_grid[:, plot_dims[1]], c=lamstar, vmin=0, vmax=0.2, s=14)\n", + "plt.colorbar()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.5 ('confirm')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.5" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "b4c6ec5b2d6c7b38df115d547b82cd53ca25eea58d87299956d35a9dc79f19f1" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/research/adagrid/plotter.md b/research/adagrid/plotter.md new file mode 100644 index 00000000..fa17b5d3 --- /dev/null +++ b/research/adagrid/plotter.md @@ -0,0 +1,165 @@ +--- +jupyter: + jupytext: + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.8 + kernelspec: + display_name: Python 3.10.5 ('confirm') + language: python + name: python3 +--- + +```python +import confirm.outlaw.nb_util as nb_util +nb_util.setup_nb() + +import matplotlib.pyplot as plt +import numpy as np +import jax.numpy as jnp +import jax +import scipy.spatial +import pickle +jax.config.update('jax_platform_name', 'cpu') +import confirm.mini_imprint.lewis_drivers as lts +import adastate +import diagnostics +``` + +```python +from confirm.lewislib import lewis, batch +name = "play" +params = { + "n_arms": 3, + "n_stage_1": 50, + "n_stage_2": 100, + "n_stage_1_interims": 2, + "n_stage_1_add_per_interim": 100, + "n_stage_2_add_per_interim": 100, + "stage_1_futility_threshold": 0.15, + "stage_1_efficacy_threshold": 0.7, + "stage_2_futility_threshold": 0.2, + "stage_2_efficacy_threshold": 0.95, + "inter_stage_futility_threshold": 0.6, + "posterior_difference_threshold": 0, + "rejection_threshold": 0.05, + "key": jax.random.PRNGKey(0), + "n_table_pts": 20, + "n_pr_sims": 100, + "n_sig2_sims": 20, + "batch_size": int(2**12), + "cache_tables": f"./{name}/lei_cache.pkl", +} +lei_obj = lewis.Lewis45(**params) +data, II, fp = adastate.load(name, 'latest') +``` + +```python +P = adastate.AdaParams( + init_K=2**11, + n_K_double=8, + alpha_target=0.025, + grid_target=0.002, + bias_target=0.002, + nB_global=50, + nB_tile=50, + step_size=2**14, + tuning_min_idx=20 +) +D = adastate.init_data(P, lei_obj, 0) +``` + +```python +g, sim_sizes, bootstrap_cvs, _, _, alpha0 = data +``` + +```python +worst_tile_idx = np.argmin(bootstrap_cvs[:,0]) +worst_tile = g.theta_tiles[worst_tile_idx] +``` + +```python +plot_dims = [1, 2] +slc = diagnostics.build_2d_slice(g, worst_tile, plot_dims) +slc_ravel = slc.reshape((-1, g.d)) +nx, ny, _ = slc.shape +tb = diagnostics.eval_bound(lei_obj, g, sim_sizes, D, slc_ravel) +tb = tb.reshape((nx, ny)) +``` + +```python +# step 1: evaluate the field of interest. if it's lambda*, we already have what +# we need. if it's TIE, we need to calculate it for the relevant tiles. +``` + +```python +alt = np.logical_and(*[slc.dot(H.n) - H.c < 0 for H in g.null_hypos]) +plt.figure(figsize=(10,10)) +plt.scatter(slc_ravel[:, plot_dims[0]], slc_ravel[:, plot_dims[1]], c=alt, s=14) +plt.colorbar() +plt.show() +``` + +```python +alt_space = (slc[...,1] > slc[...,0]) & (slc[...,2] > slc[...,0]) +sym = slc[..., 2] > slc[..., 1] +def alt_and_sym(f): + f[alt_space] = np.nan + f2d = f.reshape((nx, ny)) + f2d[sym] = f2d.T[sym] +``` + +```python +lamstar = bootstrap_cvs[idx,0] +alt_and_sym(lamstar) +alt_and_sym(tb) +``` + +```python +plt.figure(figsize=(10,10)) +plt.scatter(full_grid[:, plot_dims[0]], full_grid[:, plot_dims[1]], c=tb, s=14) +plt.colorbar() +plt.show() +``` + +```python +x = full_grid[:, plot_dims[0]].reshape((nx, ny)) +y = full_grid[:, plot_dims[1]].reshape((nx, ny)) +z = lamstar.reshape((nx, ny)) +levels = np.linspace(0, 0.2, 11) + +z = tb.reshape((nx, ny)) * 100 +levels = np.linspace(0, 2.5, 11) + +cmap = None +plt.figure(figsize=(6,6), constrained_layout=True) +cbar_target = plt.contourf(x, y, z, levels=levels, extend="both", cmap=cmap) +plt.contour( + x, + y, + z * 100, + levels=levels, + colors="k", + linestyles="-", + linewidths=0.5, + extend="both", +) +cbar = plt.colorbar(cbar_target) +cbar.set_label('\% Type I Error') +plt.axvline(x=0, color="k", linestyle="-", linewidth=4) +plt.axhline(y=0, color="k", linestyle="-", linewidth=4) +plt.xlabel(r"$\theta_1$") +plt.xticks(np.linspace(-1, 1, 5)) +plt.ylabel(r"$\theta_2$") +plt.yticks(np.linspace(-1, 1, 5)) +plt.show() +``` + +```python +plt.figure(figsize=(10,10)) +plt.scatter(full_grid[:, plot_dims[0]], full_grid[:, plot_dims[1]], c=lamstar, vmin=0, vmax=0.2, s=14) +plt.colorbar() +plt.show() +``` diff --git a/research/adagrid/rpe.ipynb b/research/adagrid/rpe.ipynb new file mode 100644 index 00000000..d7f63dbc --- /dev/null +++ b/research/adagrid/rpe.ipynb @@ -0,0 +1,79 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import jax\n", + "import jax.numpy as jnp\n", + "import numpy as np\n", + "\n", + "def memory_status(title):\n", + " client = jax.lib.xla_bridge.get_backend()\n", + " mem_usage = sum([b.nbytes for b in client.live_buffers()]) / 1e9\n", + " print(f'{title} memory usage', mem_usage)\n", + " print(f'{title} buffer sizes', [b.shape for b in client.live_buffers()])\n", + " \n", + "key1 = jax.random.PRNGKey(0)\n", + "unifs = jax.random.uniform(key=key1, shape=(256000, 350, 4), dtype=jnp.float32)\n", + "def f(x):\n", + " return jnp.sum(x, axis=1)\n", + "fj = jax.jit(f)\n", + "for i in range(2):\n", + " for size in [1000,2000,4000,8000,16000,32000,64000,128000,256000]:\n", + " subset = unifs[:size]\n", + " fv = np.empty((size, unifs.shape[2]))\n", + " for i in range(size//1000):\n", + " fv[i*1000:(i+1)*1000] = fj(subset[i*1000:(i+1)*1000])\n", + " print(size, fv.shape)\n", + " memory_status('report')" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hi\n" + ] + } + ], + "source": [ + "print('hi')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.6 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/research/adagrid/rpe.md b/research/adagrid/rpe.md new file mode 100644 index 00000000..663cffaa --- /dev/null +++ b/research/adagrid/rpe.md @@ -0,0 +1,43 @@ +--- +jupyter: + jupytext: + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.8 + kernelspec: + display_name: Python 3.10.6 ('base') + language: python + name: python3 +--- + +```python +import jax +import jax.numpy as jnp +import numpy as np + +def memory_status(title): + client = jax.lib.xla_bridge.get_backend() + mem_usage = sum([b.nbytes for b in client.live_buffers()]) / 1e9 + print(f'{title} memory usage', mem_usage) + print(f'{title} buffer sizes', [b.shape for b in client.live_buffers()]) + +key1 = jax.random.PRNGKey(0) +unifs = jax.random.uniform(key=key1, shape=(256000, 350, 4), dtype=jnp.float32) +def f(x): + return jnp.sum(x, axis=1) +fj = jax.jit(f) +for i in range(2): + for size in [1000,2000,4000,8000,16000,32000,64000,128000,256000]: + subset = unifs[:size] + fv = np.empty((size, unifs.shape[2])) + for i in range(size//1000): + fv[i*1000:(i+1)*1000] = fj(subset[i*1000:(i+1)*1000]) + print(size, fv.shape) + memory_status('report') +``` + +```python +print('hi') +``` diff --git a/research/adagrid/tuning.ipynb b/research/adagrid/tuning.ipynb new file mode 100644 index 00000000..b34c95b7 --- /dev/null +++ b/research/adagrid/tuning.ipynb @@ -0,0 +1,1271 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/conda/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import confirm.berrylib.util as util\n", + "util.setup_nb(pretty=False)\n", + "\n", + "import time\n", + "from scipy.special import logit, expit\n", + "import scipy.stats\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "import jax.numpy as jnp\n", + "import warnings\n", + "import confirm.berrylib.fast_inla as fast_inla\n", + "import confirm.mini_imprint.binomial as binomial\n", + "import confirm.mini_imprint.binomial_tuning as binomial_tuning\n", + "import confirm.mini_imprint.grid as grid\n", + "import confirm.mini_imprint.execute as execute\n", + "from rich import print as rprint\n", + "\n", + "import jax" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "n_arms = 3\n", + "n_arm_samples = 35\n", + "n_theta_1d = 16\n", + "theta_min = -3.5\n", + "theta_max = 1.0\n", + "\n", + "null_hypos = [\n", + " grid.HyperPlane(-np.identity(n_arms)[i], -logit(0.1)) for i in range(n_arms)\n", + "]\n", + "theta, radii = grid.cartesian_gridpts(\n", + " np.full(n_arms, theta_min), np.full(n_arms, theta_max), np.full(n_arms, n_theta_1d)\n", + ")\n", + "g_raw = grid.build_grid(theta, radii)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4096" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g_raw.n_tiles" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "fi = fast_inla.FastINLA(n_arms=n_arms)\n", + "test_table = binomial_tuning.build_lookup_table(n_arms, n_arm_samples, fi.test_inference)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "simulator = binomial_tuning.binomial_tuner(lambda data: binomial_tuning.lookup(test_table, data[...,0]))\n", + "accumulator = binomial.binomial_accumulator(\n", + " lambda data, cv: binomial_tuning.lookup(test_table, data[..., 0]) > cv\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "target_grid_cost = 0.001\n", + "target_sim_cost = 0.001\n", + "target_alpha = 0.15" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3185" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "g = grid.prune(grid.intersect_grid(g_raw, null_hypos))\n", + "g.n_tiles" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 0,\n",
+       "    'overall_cv': 0.9999433449435139,\n",
+       "    'n_tiles': 3185,\n",
+       "    'n_refine': DeviceArray(5, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.1985',\n",
+       "    'sim_cost': '0.0052'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m0\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9999433449435139\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m3185\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m5\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.1985'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0052'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 1,\n",
+       "    'overall_cv': 0.99992445348847,\n",
+       "    'n_tiles': 3220,\n",
+       "    'n_refine': DeviceArray(66, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.1635',\n",
+       "    'sim_cost': '0.0045'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m1\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.99992445348847\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m3220\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m66\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.1635'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0045'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 2,\n",
+       "    'overall_cv': 0.999866298740245,\n",
+       "    'n_tiles': 3682,\n",
+       "    'n_refine': DeviceArray(212, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.1191',\n",
+       "    'sim_cost': '0.0032'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m2\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.999866298740245\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m3682\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m212\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.1191'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0032'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 3,\n",
+       "    'overall_cv': 0.9997672181515694,\n",
+       "    'n_tiles': 5460,\n",
+       "    'n_refine': DeviceArray(155, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.0978',\n",
+       "    'sim_cost': '0.0032'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m3\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9997672181515694\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m5460\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m155\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0978'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0032'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 4,\n",
+       "    'overall_cv': 0.9997359654526813,\n",
+       "    'n_tiles': 6647,\n",
+       "    'n_refine': DeviceArray(436, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.0855',\n",
+       "    'sim_cost': '0.0032'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m4\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9997359654526813\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m6647\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m436\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0855'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0032'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 5,\n",
+       "    'overall_cv': 0.9995931788192733,\n",
+       "    'n_tiles': 9765,\n",
+       "    'n_refine': DeviceArray(1183, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.0666',\n",
+       "    'sim_cost': '0.0023'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m5\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9995931788192733\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m9765\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1183\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0666'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0023'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 6,\n",
+       "    'overall_cv': 0.999490806059448,\n",
+       "    'n_tiles': 18834,\n",
+       "    'n_refine': DeviceArray(401, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.0556',\n",
+       "    'sim_cost': '0.0023'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m6\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.999490806059448\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m18834\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m401\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0556'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0023'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 7,\n",
+       "    'overall_cv': 0.9988557559917002,\n",
+       "    'n_tiles': 22120,\n",
+       "    'n_refine': DeviceArray(565, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.0523',\n",
+       "    'sim_cost': '0.0061'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m7\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9988557559917002\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m22120\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m565\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0523'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0061'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 8,\n",
+       "    'overall_cv': 0.9987595684067953,\n",
+       "    'n_tiles': 24282,\n",
+       "    'n_refine': DeviceArray(621, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(2, dtype=int64),\n",
+       "    'grid_cost': '0.0446',\n",
+       "    'sim_cost': '0.0055'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m8\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9987595684067953\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m24282\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m621\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0446'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0055'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 9,\n",
+       "    'overall_cv': 0.9986481352779226,\n",
+       "    'n_tiles': 27672,\n",
+       "    'n_refine': DeviceArray(831, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(67, dtype=int64),\n",
+       "    'grid_cost': '0.0393',\n",
+       "    'sim_cost': '0.0052'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m9\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9986481352779226\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m27672\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m831\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m67\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0393'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0052'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 10,\n",
+       "    'overall_cv': 0.9976587924386348,\n",
+       "    'n_tiles': 33279,\n",
+       "    'n_refine': DeviceArray(1296, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(590, dtype=int64),\n",
+       "    'grid_cost': '0.0359',\n",
+       "    'sim_cost': '0.0031'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m10\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9976587924386348\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m33279\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1296\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m590\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0359'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0031'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 11,\n",
+       "    'overall_cv': 0.9960356046658166,\n",
+       "    'n_tiles': 42658,\n",
+       "    'n_refine': DeviceArray(1975, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(2624, dtype=int64),\n",
+       "    'grid_cost': '0.0296',\n",
+       "    'sim_cost': '0.0040'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m11\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9960356046658166\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m42658\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1975\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2624\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0296'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0040'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 12,\n",
+       "    'overall_cv': 0.9954605900957582,\n",
+       "    'n_tiles': 58631,\n",
+       "    'n_refine': DeviceArray(1150, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(5964, dtype=int64),\n",
+       "    'grid_cost': '0.0261',\n",
+       "    'sim_cost': '0.0025'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m12\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9954605900957582\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m58631\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1150\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m5964\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0261'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0025'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 13,\n",
+       "    'overall_cv': 0.9953569797705519,\n",
+       "    'n_tiles': 67194,\n",
+       "    'n_refine': DeviceArray(160, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.0707',\n",
+       "    'sim_cost': '0.0051'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m13\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9953569797705519\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m67194\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m160\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0707'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0051'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 14,\n",
+       "    'overall_cv': 0.9953255597012131,\n",
+       "    'n_tiles': 68314,\n",
+       "    'n_refine': DeviceArray(1522, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(10494, dtype=int64),\n",
+       "    'grid_cost': '0.0226',\n",
+       "    'sim_cost': '0.0024'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m14\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9953255597012131\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m68314\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1522\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m10494\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0226'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0024'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 15,\n",
+       "    'overall_cv': 0.9951789487053084,\n",
+       "    'n_tiles': 79435,\n",
+       "    'n_refine': DeviceArray(183, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(3, dtype=int64),\n",
+       "    'grid_cost': '0.0687',\n",
+       "    'sim_cost': '0.0025'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m15\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9951789487053084\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m79435\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m183\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m3\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0687'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0025'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 16,\n",
+       "    'overall_cv': 0.9945718583016021,\n",
+       "    'n_tiles': 80716,\n",
+       "    'n_refine': DeviceArray(1781, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(16570, dtype=int64),\n",
+       "    'grid_cost': '0.0198',\n",
+       "    'sim_cost': '0.0022'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m16\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9945718583016021\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m80716\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1781\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m16570\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0198'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0022'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 17,\n",
+       "    'overall_cv': 0.9944184822106266,\n",
+       "    'n_tiles': 93231,\n",
+       "    'n_refine': DeviceArray(173, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1, dtype=int64),\n",
+       "    'grid_cost': '0.0698',\n",
+       "    'sim_cost': '0.0025'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m17\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9944184822106266\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m93231\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m173\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0698'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0025'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 18,\n",
+       "    'overall_cv': 0.9932252869809425,\n",
+       "    'n_tiles': 94442,\n",
+       "    'n_refine': DeviceArray(519, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(2, dtype=int64),\n",
+       "    'grid_cost': '0.0644',\n",
+       "    'sim_cost': '0.0024'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m18\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9932252869809425\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m94442\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m519\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m2\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0644'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0024'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 19,\n",
+       "    'overall_cv': 0.9929738936479922,\n",
+       "    'n_tiles': 98075,\n",
+       "    'n_refine': DeviceArray(1678, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(45, dtype=int64),\n",
+       "    'grid_cost': '0.0348',\n",
+       "    'sim_cost': '0.0019'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m19\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9929738936479922\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m98075\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1678\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m45\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0348'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0019'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 20,\n",
+       "    'overall_cv': 0.9929717607175813,\n",
+       "    'n_tiles': 103921,\n",
+       "    'n_refine': DeviceArray(748, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(1280, dtype=int64),\n",
+       "    'grid_cost': '0.0564',\n",
+       "    'sim_cost': '0.0016'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m20\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9929717607175813\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m103921\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m748\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m1280\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0564'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0016'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 21,\n",
+       "    'overall_cv': 0.9927870015382633,\n",
+       "    'n_tiles': 109169,\n",
+       "    'n_refine': DeviceArray(4606, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(350, dtype=int64),\n",
+       "    'grid_cost': '0.0317',\n",
+       "    'sim_cost': '0.0018'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m21\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9927870015382633\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m109169\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m4606\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m350\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0317'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0018'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 22,\n",
+       "    'overall_cv': 0.9904096400173534,\n",
+       "    'n_tiles': 133367,\n",
+       "    'n_refine': DeviceArray(542, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(6973, dtype=int64),\n",
+       "    'grid_cost': '0.0247',\n",
+       "    'sim_cost': '0.0047'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m22\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9904096400173534\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m133367\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m542\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m6973\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0247'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0047'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 23,\n",
+       "    'overall_cv': 0.9903227986087999,\n",
+       "    'n_tiles': 138522,\n",
+       "    'n_refine': DeviceArray(19664, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(3128, dtype=int64),\n",
+       "    'grid_cost': '0.0228',\n",
+       "    'sim_cost': '0.0052'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m23\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9903227986087999\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m138522\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m19664\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m3128\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0228'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0052'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 24,\n",
+       "    'overall_cv': 0.990320131143711,\n",
+       "    'n_tiles': 283296,\n",
+       "    'n_refine': DeviceArray(11398, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(13852, dtype=int64),\n",
+       "    'grid_cost': '0.0300',\n",
+       "    'sim_cost': '0.0025'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m24\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.990320131143711\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m283296\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m11398\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m13852\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0300'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0025'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
{\n",
+       "    'II': 25,\n",
+       "    'overall_cv': 0.9871989245281456,\n",
+       "    'n_tiles': 352219,\n",
+       "    'n_refine': DeviceArray(33181, dtype=int64),\n",
+       "    'n_more_sims': DeviceArray(6249, dtype=int64),\n",
+       "    'grid_cost': '0.0178',\n",
+       "    'sim_cost': '0.0010'\n",
+       "}\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m{\u001b[0m\n", + " \u001b[32m'II'\u001b[0m: \u001b[1;36m25\u001b[0m,\n", + " \u001b[32m'overall_cv'\u001b[0m: \u001b[1;36m0.9871989245281456\u001b[0m,\n", + " \u001b[32m'n_tiles'\u001b[0m: \u001b[1;36m352219\u001b[0m,\n", + " \u001b[32m'n_refine'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m33181\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'n_more_sims'\u001b[0m: \u001b[1;35mDeviceArray\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m6249\u001b[0m, \u001b[33mdtype\u001b[0m=\u001b[35mint64\u001b[0m\u001b[1m)\u001b[0m,\n", + " \u001b[32m'grid_cost'\u001b[0m: \u001b[32m'0.0178'\u001b[0m,\n", + " \u001b[32m'sim_cost'\u001b[0m: \u001b[32m'0.0010'\u001b[0m\n", + "\u001b[1m}\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [9], line 25\u001b[0m\n\u001b[1;32m 23\u001b[0m nsims \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mmin(target_nsims[tuning_unfinished])\n\u001b[1;32m 24\u001b[0m this_iter \u001b[38;5;241m=\u001b[39m (target_nsims \u001b[38;5;241m==\u001b[39m nsims) \u001b[38;5;241m&\u001b[39m tuning_unfinished\n\u001b[0;32m---> 25\u001b[0m sim_cvs[this_iter] \u001b[38;5;241m=\u001b[39m \u001b[43mbinomial_tuning\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchunked_tune\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 26\u001b[0m \u001b[43m \u001b[49m\u001b[43mgrid\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mindex_grid\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mthis_iter\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 27\u001b[0m \u001b[43m \u001b[49m\u001b[43msimulator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 28\u001b[0m \u001b[43m \u001b[49m\u001b[43mpointwise_target_alpha\u001b[49m\u001b[43m[\u001b[49m\u001b[43mthis_iter\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 29\u001b[0m \u001b[43m \u001b[49m\u001b[43mnsims\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 30\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_arm_samples\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 31\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 32\u001b[0m tuning_unfinished[this_iter] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 33\u001b[0m overall_cv \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mmax(sim_cvs)\n", + "File \u001b[0;32m/workspaces/confirmasaurus/confirm/confirm/mini_imprint/binomial_tuning.py:79\u001b[0m, in \u001b[0;36mchunked_tune\u001b[0;34m(g, simulator, pointwise_alpha, sim_size, n_arm_samples, tile_chunk_size)\u001b[0m\n\u001b[1;32m 69\u001b[0m padded_tiles \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mpad(\n\u001b[1;32m 70\u001b[0m g\u001b[39m.\u001b[39mtheta_tiles[tile_start:tile_end],\n\u001b[1;32m 71\u001b[0m ((\u001b[39m0\u001b[39m, tile_chunk_size \u001b[39m-\u001b[39m (tile_end \u001b[39m-\u001b[39m tile_start)), (\u001b[39m0\u001b[39m, \u001b[39m0\u001b[39m)),\n\u001b[1;32m 72\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mconstant\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m 73\u001b[0m )\n\u001b[1;32m 74\u001b[0m padded_null_truth \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mpad(\n\u001b[1;32m 75\u001b[0m g\u001b[39m.\u001b[39mnull_truth[tile_start:tile_end],\n\u001b[1;32m 76\u001b[0m ((\u001b[39m0\u001b[39m, tile_chunk_size \u001b[39m-\u001b[39m (tile_end \u001b[39m-\u001b[39m tile_start)), (\u001b[39m0\u001b[39m, \u001b[39m0\u001b[39m)),\n\u001b[1;32m 77\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mconstant\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m 78\u001b[0m )\n\u001b[0;32m---> 79\u001b[0m sim_cvs[tile_start:tile_end] \u001b[39m=\u001b[39m simulator(\n\u001b[1;32m 80\u001b[0m padded_alpha,\n\u001b[1;32m 81\u001b[0m padded_tiles,\n\u001b[1;32m 82\u001b[0m padded_null_truth,\n\u001b[1;32m 83\u001b[0m samples,\n\u001b[1;32m 84\u001b[0m )[\u001b[39m0\u001b[39m : (tile_end \u001b[39m-\u001b[39m tile_start)]\n\u001b[1;32m 85\u001b[0m \u001b[39mreturn\u001b[39;00m sim_cvs\n", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/jax/_src/device_array.py:266\u001b[0m, in \u001b[0;36m__array__\u001b[0;34m(self, dtype, context)\u001b[0m\n\u001b[1;32m 265\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__array__\u001b[39m(\u001b[39mself\u001b[39m, dtype\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, context\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m):\n\u001b[0;32m--> 266\u001b[0m \u001b[39mreturn\u001b[39;00m np\u001b[39m.\u001b[39;49masarray(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_value, dtype\u001b[39m=\u001b[39;49mdtype)\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "iter_max = 50\n", + "init_nsims = 2000\n", + "g = grid.prune(grid.intersect_grid(g_raw, null_hypos))\n", + "target_nsims = np.full(g.n_tiles, init_nsims)\n", + "tuning_unfinished = np.ones(g.n_tiles, dtype=bool)\n", + "sim_cvs = np.empty(g.n_tiles, dtype=float)\n", + "typeI_sum = np.empty(g.n_tiles, dtype=float)\n", + "hob_upper = np.empty(g.n_tiles, dtype=float)\n", + "\n", + "seed = 1\n", + "for II in range(iter_max):\n", + " holderq = 6\n", + " # TODO: partial update here, need to batch!\n", + " # TODO: just move this to the refinement code!!\n", + " pointwise_target_alpha = binomial.invert_bound(\n", + " target_alpha, g.theta_tiles, g.vertices, n_arm_samples, holderq\n", + " )\n", + "\n", + " # TODO: combine the two simulator functions.\n", + " np.random.seed(seed)\n", + " updated_tiles = tuning_unfinished.copy()\n", + " while np.any(tuning_unfinished):\n", + " nsims = np.min(target_nsims[tuning_unfinished])\n", + " this_iter = (target_nsims == nsims) & tuning_unfinished\n", + " sim_cvs[this_iter] = binomial_tuning.chunked_tune(\n", + " grid.index_grid(g, this_iter),\n", + " simulator,\n", + " pointwise_target_alpha[this_iter],\n", + " nsims,\n", + " n_arm_samples,\n", + " )\n", + " tuning_unfinished[this_iter] = False\n", + " overall_cv = np.max(sim_cvs)\n", + "\n", + " np.random.seed(seed)\n", + " checking_unfinished = updated_tiles.copy()\n", + " while np.any(checking_unfinished):\n", + " nsims = np.min(target_nsims[checking_unfinished])\n", + " this_iter = (target_nsims == nsims) & checking_unfinished\n", + " typeI_sum[this_iter] = execute.chunked_simulate(\n", + " grid.index_grid(g, this_iter), accumulator, overall_cv, nsims, n_arm_samples\n", + " )\n", + " checking_unfinished[this_iter] = False\n", + "\n", + " # TODO: partial update here, systematic way to do this.\n", + " # TODO: jit zero_order_bound\n", + " typeI_est, typeI_CI = binomial.zero_order_bound(typeI_sum, target_nsims, 0.01, 1.0)\n", + " typeI_bound = typeI_est + typeI_CI\n", + " hob_upper = binomial.holder_odi_bound(\n", + " typeI_bound, g.theta_tiles, g.vertices, n_arm_samples, holderq\n", + " )\n", + " sim_cost = typeI_CI\n", + " hob_theory_cost = target_alpha - pointwise_target_alpha\n", + " hob_empirical_cost = hob_upper - typeI_bound\n", + "\n", + " worst_tile = np.argmax(sim_cvs)\n", + " which_refine = (\n", + " hob_theory_cost > max(0.9 * hob_theory_cost[worst_tile], target_grid_cost)\n", + " ) & ((hob_upper > 0.9 * hob_upper[worst_tile]) | (sim_cvs == sim_cvs[worst_tile]))\n", + " which_more_sims = (typeI_CI > max(0.9 * typeI_CI[worst_tile], target_sim_cost)) & (\n", + " (typeI_bound > 0.9 * hob_upper[worst_tile]) | (sim_cvs == sim_cvs[worst_tile])\n", + " )\n", + "\n", + " report = dict(\n", + " II=II,\n", + " overall_cv=overall_cv,\n", + " n_tiles=g.n_tiles,\n", + " n_refine=np.sum(which_refine),\n", + " n_more_sims=np.sum(which_more_sims),\n", + " grid_cost=f\"{hob_empirical_cost[worst_tile]:.4f}\",\n", + " sim_cost=f\"{sim_cost[worst_tile]:.4f}\",\n", + " )\n", + " rprint(report)\n", + "\n", + " # plt.figure(figsize=(4,4))\n", + " # plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=typeI_est, s=20)\n", + " # plt.colorbar()\n", + " # plt.show()\n", + "\n", + " if np.sum(which_refine) > 0 or np.sum(which_more_sims) > 0:\n", + " target_nsims[which_more_sims] *= 2\n", + " tuning_unfinished[which_more_sims] = True\n", + "\n", + " refine_tile_idxs = np.where(which_refine)[0]\n", + " refine_gridpt_idxs = g.grid_pt_idx[refine_tile_idxs]\n", + " # refine_target_nsims = target_nsims[refine_tile_idxs]\n", + " new_thetas, new_radii, unrefined_grid, keep_tile_idxs = grid.refine_grid(\n", + " g, refine_gridpt_idxs\n", + " )\n", + " new_grid = grid.prune(grid.build_grid(new_thetas, new_radii, g.null_hypos))\n", + " nearest_parent_tiles = scipy.spatial.KDTree(g.theta_tiles).query(\n", + " new_grid.theta_tiles, k=2\n", + " )\n", + " new_target_nsims = np.max(target_nsims[nearest_parent_tiles[1]], axis=1).astype(\n", + " int\n", + " )\n", + "\n", + " old_g = g\n", + " g = grid.concat_grids(unrefined_grid, new_grid)\n", + "\n", + " target_nsims = np.concatenate([target_nsims[keep_tile_idxs], new_target_nsims])\n", + " tuning_unfinished = np.concatenate(\n", + " [tuning_unfinished[keep_tile_idxs], np.ones(new_grid.n_tiles, dtype=bool)]\n", + " )\n", + " typeI_sum = np.concatenate(\n", + " [typeI_sum[keep_tile_idxs], np.zeros(new_grid.n_tiles, dtype=float)]\n", + " )\n", + " hob_upper = np.concatenate(\n", + " [hob_upper[keep_tile_idxs], np.empty(new_grid.n_tiles, dtype=float)]\n", + " )\n", + " sim_cvs = np.concatenate(\n", + " [sim_cvs[keep_tile_idxs], np.zeros(new_grid.n_tiles, dtype=float)]\n", + " )\n", + " else:\n", + " print(\"done!\")\n", + " break\n", + "\n", + "%load_ext line_profiler\n", + "%lprun -T prof.txt -f grid.build_grid -f grid.prune -f binomial._calc_Cqpp -f f -f binomial_tuning.chunked_tune -f execute.chunked_simulate f()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAF7CAYAAADR4jByAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADh0ElEQVR4nOy9eaAdRZk2/lT32e6Se7MvNxsJIYQlIQoIKBJQEVBxQRgWZRScUXHGTz5n4ENRxFEHF/wcfvMxOoozokBQVGRQYIZdBNkEhEBAQvZ9v/u955zu9/dHd3VXVVf16T7n3JPk5DzQuX1q7+6qp956660qRkSEFlpooYUWmh7Wvi5ACy200EILjUGL8FtooYUWDhK0CL+FFlpo4SBBi/BbaKGFFg4StAi/hRZaaOEgQYvwW2ihhRYOErQIv4UWWmjhIEGL8FtooYUWDhK0CL+FFlpo4SBBi/BbaKGFFg4StAi/hRZaaOEgQYvwW4gFYwyHHHLIvi5GKhyIZW6hhUagRfgtNARr164FYwynnnrqvi5KCy0ctMjs6wK0sH9j5cqVyGaz+7oYqXAglrmFFhqBFuG3EItFixbt6yKkxoFY5hZaaARaKp0DFKKKpK+vD5/73Ocwe/ZsFAoFHHHEEfje974H13W1cf/4xz/iAx/4AKZMmYJ8Po9DDjkEn/nMZ7B58+ZIWJ0+XMx7eHgYV111FebOnYt8Po8FCxbgW9/6FsRjFq699lrMmzcPAPDoo4+CMRZcH//4xwEAIyMjKBQKQTgR73vf+8AYw2mnnRbxO/roo5HJZNDX1xdb5pUrV+Liiy/GoYceikKhgClTpmDp0qW4/PLLsWXLFu37/dSnPoVDDjkE+XweU6ZMwbnnnosXX3xR+06T4J577sG73/1udHd3Y9KkSTj77LOxZs0aAMB1110Hxhief/75qtNvoYWKoBYOSKxZs4YA0IknnkjHHnssjR8/ns455xx63/veR21tbQSAPv7xj0fi/exnPyPbtokxRm9729voggsuoIULFxIAmjZtGq1cuVIKD4Dmzp2rzfukk06ik08+mSZMmEBnnHEGnXHGGVQoFAgAXX311UH4O++8kz784Q8HeXzsYx8Lrh/96EdBuFNOOYUA0Jo1awK3crlM3d3dBIDy+TwNDw8Hfjt27CDGGB177LGxZf7Tn/5EbW1txBijE044gS644AJ673vfS0cccQQBoIcffliK/9hjj1FXVxcBoKOOOorOPfdcOumkk4gxRm1tbfTQQw9V+jwSXNelT3/60wSAZsyYQX/1V39FRx11FAGgE044gYaGhmjq1Kn0/ve/P1W6LbSQFi3CP0DBSRcALVmyhHbs2BH4rVq1inp6eggA3XXXXYH7+vXrqa2tjTKZDN19992Bu+M4dPnllxMAOv7446V84ggfAL397W+X8n7mmWcok8lQe3s79ff3R+IsW7bM+EzXXHMNAaD//M//lNLjxKuS8x133EEA6B/+4R9iy/yxj32MANCvfvWrSJ6vvPIKbd68Ofjd29tL06dPp2w2S3fccYcU9v7776dcLkczZ86k0dFR43OouPbaawkAnXbaaTQwMEBERKVSiZYuXUoA6Ctf+QoBoGeffTZxmi20UA1ahH+AQiTd//mf/4n4f//73ycA9O53vztw44R68cUXR8KPjIwEncQf//jHwD2O8C3Lotdeey2S1tlnnx0h5ySE/+CDDxIA+tjHPha4XX/99QSAfv7znwfkyPH3f//3BEDqvHRlPuusswgA7dmzx5g3x/e+9z0CQF/4whe0/rxj1HUeOmzZsoXy+TwVCgVp5EJE9H/+z/8hAFQoFOh973tfovRaaKEWtHT4BzgmTpyI008/PeJ+0UUXAQCeeOKJQJ/+2GOPAQA+8pGPRMLn83mcd955UrhKOOSQQ7Bw4cKIO3fT6cbj8Na3vhX5fB6PPPJI4PbII49g/PjxOPfcczFr1qyIn2VZOPnkk2PTPfbYYwEAf/3Xf42nn37aOLcBAPfffz8A4IMf/KDWn+f1zDPPJHgi4JZbbsHo6CguueSSyLzC+PHjAXjzF9dcc02i9FpooRa0CP8Ax9y5c7XuXV1dGD9+PAYGBoIJTT4pa1qUxN11k7c6zJo1S+ve2dkJABgdHU2UDkehUMBb3vIWrFu3DmvXroXruvjDH/6AU045BZZlYdmyZXjyyScxMjKCnTt34uWXX8bSpUsD4jThiiuuwKmnnoq7774bJ5xwAiZOnIgzzjgD//qv/4r+/n4p7Nq1awEAJ5xwgjS5zK9zzz0XALBz585Ez1SpAwGAs846C8cff3yi9FpooRa0zDKbGCRYyohgjMXGq+SfNlwaLFu2DI899hgeeeQRLFmyBHv37g0Wa5166qm49dZb8eSTT2L37t0gokQLubq6uvDQQw/h8ccfx913341HHnkEDz74IP7nf/4H1113HR577DEceuihAADHcQAA5513Htrb241pnnDCCYme57nnngPgjV5U8I74yiuvTJRWCy3UihbhH+BYv3691r2vrw+9vb3o6OhAV1cXAKCnpwevvfYa1qxZo1XFrFu3DgAwY8aMsStwBZx66qn4+te/jkceeQS7d+8O3MS/ot+yZcsSpcsYw8knnxyoZHbs2IHPfe5zWL58Ob74xS/i5z//OQBv1PLaa6/hS1/6EpYsWVLTs4yOjmLnzp0YN25cMOrh2L17N37wgx8EebbQQiPQUukc4Ni1axceeOCBiPvy5csBeJIll8Tf/va3AwBuvfXWSPhisYg77rhDCldP5HI5AEC5XI4N99a3vhW5XA6PPPIIHnnkEUyYMAHHHHMMAGDBggWBHp/r70855ZSqyjNlyhRce+21AICXXnopcH/Xu94FAPjNb35TVbo6DA0NoVgsSm5f+tKXsGfPHgCAbdt1y6uFFuLQIvwmwBVXXIFdu3YFv9esWYOvfe1rAIDPfOYzgfsnPvEJtLW1Yfny5fjd734XuLuuiy9+8YvYtGkTjj/+eJx44ol1L+PkyZORzWbxxhtvBGoTHdra2nD88cdj3bp1uP/++wP9PceyZcvwxz/+EStWrMAxxxxTUX8PAD/4wQ+CBU4i7r33XgDAnDlzArdPfepTmDJlCv75n/8Z//mf/xlRiw0ODuKnP/0pNm7cWDHffD6P+fPnw3Ec/PjHPw7cf/GLX+AHP/hB0AnqytZCC2OCfWsk1EK1EBdevfnNb6YJEybQhz/8YTr77LOpvb2dANBHP/rRSDxx4dXJJ59MF154IR1++OFVLbwymVhyu3LRnp4oNNc86qij6OKLL6ZPfOIT9B//8R+R+FdffXVgcvq9731P8vvRj34U+F1++eXa/NUyH3PMMQSAjjzySPrwhz9M559/fmAD39bWRk888YQU/w9/+ANNnDgxSOe9730vnXPOOXTcccdRR0cHAaDnn39em7eK//t//29gwnrmmWfSu971LgJAixYtohtuuIEA0KxZsyJrCVpoYSzQIvwDFCLp7t27lz7zmc9QT08P5XI5Ovzww+n666+ncrmsjfv444/T2WefTZMmTaJsNktz5syhyy67jDZu3BgJW0/C37ZtG1188cU0ffp0sm07YnPPcf/99wekrhLr66+/Hvj95je/0eavlvm//uu/6NJLL6WjjjqKxo8fT+3t7bRw4UL65Cc/Sa+//ro2jU2bNtE//MM/0KJFi6itrY06Oztp4cKFdP7559PPf/7zxAuvXNel7373u7Rw4ULK5XLU3d1NH/7wh2nnzp00MjJCF198MRUKBXrXu96VKL0WWqgFjMhgytHCfo21a9di3rx5WLZsmWSb3kILLbRgQkuH30ILLbRwkKBF+C200EILBwlahN9CCy20cJCgRfgHKA455BAQUUt/30IL+wgDAwO4/PLL0dPTg0KhgKVLl+L222+vGG/jxo24/PLLsWzZMowfPx6MMfzkJz+pGG94eBgLFy4EYwzXX399VWVuEX4LLbTQQhU455xzcPPNN+MrX/kK7r33Xhx//PG48MILcdttt8XGW7VqFW699Vbkcjm85z3vSZzfl7/8ZQwODtZW6H1sJdRCCy20cMDhd7/7HQGg2267TXI//fTTqaenx2gSTeSdP8HBz3tQTZhVPPXUU5TL5YIzIL7zne9UVe4Dai8d13WxefNmjBs3bkw27mqhhRb2HYgI/f396OnpkVZXp8HIyEhkG4ukyOVyKBQKicLeeeed6OzsDLYU57jkkktw0UUX4amnntJumAcg9bMVi0Vceuml+Lu/+zscd9xxqeKqOKAIf/PmzZg9e/a+LkYLLbQwhtiwYUNVG8qNjIzgkHmd2LbVvHVHHKZPn441a9YkIv0VK1bgiCOOQCYjUyjfcG/FihVGwk+Lf/qnf8Lg4CC+9rWvYceOHTWldUAR/rhx4wB4FYLvANlCCy00B/r6+jB79uygnadFsVjEtq0OXn79EIzrSidF9/e5OOqwtdi5c6fELfl8Hvl8PhJ+165dmD9/fsR94sSJgX898MILL+Db3/427r77bnR0dBxchM/VOF1dXS3Cb6GFJkWt6tpxXRa6UhI+h6pB+MpXvhLsqqoirpz1UDmXy2VceumlOP/883HGGWfUnB5wgBF+Cy200EIlMBdgbjrCZf6pl6r2QCfdA8CkSZO0Ujw/p4FL+rXgX/7lX7B69Wr84he/wN69ewGEh+aMjIxg7969GDduXKrttVtmmS200EJzgVh1F0LtAb9MhL948WKsXLkycr4DP1vh6KOPrvkxVqxYgd7eXhx22GGYMGGCdDbEl7/8ZUyYMEE6yyEJWoTfQgstNBWYy6q60uBDH/oQBgYG8Ktf/Upyv/nmm9HT05P4CMw4XHXVVXj44Yelix9s9OlPfxoPP/wwFixYkCrNlkqnhRZaaCp4Kp30cdLgrLPOwumnn47LLrsMfX19WLBgAZYvX4777rsPt9xyS6Bm+cQnPoGbb74Zb7zxBubOnRvE/+UvfwkAWL16NQDg2WefDY7BPPfccwEAixYtwqJFi6R8165dCwA49NBDE53nrKJhhN/f34+vfe1reOGFF/D8889j586dsRMiLbTQQgtVwfWvtHFS4te//jWuvvpqXHPNNdi9ezcWLVqE5cuX44ILLgjCOI4Dx3EiJ6ep9vs33ngjbrzxRgCIhK0nGrYf/tq1a7F06VIcc8wxWLhwIW666abUhN/X14fu7m709va2rHRaaKHJUGv75vE3rV2Arq505wT39TmYeciqpueWhkn4c+fOxZ49e8AYw86dO3HTTTc1KusWWmjhIAIj70ob52BAwwi/tRVC/TD0yE+BF38CywKIAObXcMaIGxvAHQRYG2DBAoHgDhPa//HRMSmP278NztM/Bu1+AygOAiwDwAVcAllZoFwCsjmgXATsLOCUAebbC7gOYOcBZ9T/WwSsrOcOArEM4JYBO+eHyQHlMsBsAOSFy+S8PDJ+Hjw+Y14+PH55FGTnAKfkxScCyPXLVPLDiGX045dLQDYPlIugTN77bWUAOIBLgGUL5RDKyJfQOw6Q8fPI5P0wch6MHJCd9fLnz2PZXvnEMmZzQEkoo2UBjIG5PP6on0fRKyO53nuybMD1n9Ep+uUpA7AABu8+mwcrF0GZHBh/127ZO1CSWQBzvHzL/rdyi957dF2v/mWyftp5oDTq5+EAnZOROfJMZI5695jUPxWMqtDhtwj/wEWxWMTqq36I4bVbYXd1YMbH3o3N/3433KKD8W8/Gs7ACPqfXwW7LYvpn3w/tv7ot3CGRtBxxCEozJqCXQ88C5axMePSM7H9F4+ivKcf+ZmTMe6Uxdj5c480J513CgYffxkjG3cgM74Te/a0w9nq2cgSeW3EYgBAoIk5sN1FAAwuee2L93/UAWDA++26ABiPB7gZF52FIViW5zc8Qlh4+jOYODHkq3BbDs+0jDEXzhBgt/kNmQAGBruNYfjGZXjldydi/tV/jW2//D1YNoOeS87ArvuewfCarWhfOAvdpxyNrT99EOQSpl2wDEMvrUXfC6uRnzUJs//mLPS/uAbucBHjjpkPt1jC6NM/R/ueO6HrzskVyuaxhiaQ+EP29zoz76/nwOTkSIgTSUfOr6Li0v9m/H1FvCPxKz2LIYw5+5oQH5+/Cy8U8XqhfQQKYzAhPvOSEN+DGJ9/J8bCsnBv6tuC8uaXUH76FuQuvglWJpfm0dLDJe9KG+cgwD4503bnzp2YMmVKRR3+6OgoRkdHg9986XWcnm3nI89j/Xcq70ldK0hoML27x8GyRIIRXymDpgkAAByHcQEtkq5lldE+bjjid9R7njGWialiipougD19LjY9elLgSRTNPxLZ4MdYGYs/+JR/r4SLIXIvkFp47sYi5BqSPovGIzFjQ16R8hvgyuVQ4zGmpqHrbFTsbyNb/jAJwsD/rrxeic9ZwaDbNKC3Dn8Hcmd+QetXLx3+1tcPRde4lDr8fgfTD3uj6XX4+7Ud/nXXXYfu7u7gSrJxmo7s4xp6tX68Qu/Z0eGTveQLfYsKwzmOKJ1H020fN6yJ/0wkrEy0DM6wq+U9LnmN7zKVLQ2855i6aFOkDDwvL4uYvFRnRXLUd0JCkkGnEukBEpRfA1kI1gfR+UmdYD3ebYMQ6ZRFhM9BfLiqPmcFSxjduyIC3Dcer668LdQF+zXhf+ELX0Bvb29wbdiwITb8jv/RS79x0wfV+nHYGf4KYxgs4uc1Gh1ZemmWtH7WPCUH0jSsjBCPEG3YBGQKo8gUhpDrGIadH0Gucwh2zvvLmOvHj7ZYuUwu8p0DQRnIlf9qyUQtD9N4xfG1yS9CSL4zGd6RLk3dIESQ7McKkfdHUT/dvepWfQHSBE73InQjNZRHtWHrCrfK6yDAfq3DN+1UZ0LfM6+OYWnSIl5cjCMRy9bXPloL4AhdHkJeZYCyQtMUpGEGr14fcdafwjQFPTn/27tpEtY/fRgA/bB46uEbMG3RRlg2yY2aK4dJyJSrYeL6Q8XNSGJCkmaEAUQVjFE6N3RAQRBtWfhzir9Vf55BTEmDvOX3RsonFX/zQY2oXiNfX5esY1JVjBTzTv3yQDevUWE4JDxjMF9FaIjxBnMJLKVOPm34AxX7tYSfFlPe/zYAsmRXl8sFyGGhFOYov7UXKWVhkp936eOWi7bWPb+QP6nYaJj8N8NCbYoSRNdwefsT2+H4Wbsw54TXpLxd/1knzd+M6UduAPPVWEzKXmUOheylrJVywAQWTYcUPyV8YqlXjR6Qr+8dKZSOyOMIrMJ8glRO5SWpz8DLpo0DpROoBF39MYfVTWJXA9PIse5oSfhGNFTCv/feezE4OIj+/n4AwCuvvBIsMX7Pe96D9vb2mtLvWjw/nNxLopQ1+isNmwchC17NsMAlMqc8gky2oInHlLKI/roGFJbZdTNwXebr+MPnGHkNwKGiWzQNKhIoy0IzMxJ9ATdWSR3ydnfPHlhWGa4bVhEiYNoRG6KSuPY1Ct9Am6VMmkSmZ+IZqSSlfBsxKBKSnzhi0BCpWbpXE0lGiPJoyJSe6BZXhzXvg+RXFS9MK56xr5/MknmCx5dHkQ2Q8AktO3wDGkr4l112GdatWxf8vuOOO3DHHXcAANasWYNDDjmkpvSLu3v9CmgUK32Y/HUSKnfjkpfcmVh2mz6eVgoM44WdATThXKGxhuVkhyRoLNmIDB/kSyBfWtPUboVbGID2yQMY2D7ey9tP1M6Ipwmpqg01TQYx/yiBxUmawm8+42zivTQkr4sb6ZjTJpISsWRvyqNS2TSdYOKixat2Ykk6YR6haqeBEn7aOAcBGkr4fOOfscKGf/9dJbHGhymMQdqS2ptMWBFTSOjCAWoHEFfMbL4c8Z9/ygtoHy9vxUouAMcvov8lvRPX/MbrAp4envFcPY2skaDl2+JQFpXfVUQnoqQf1/mGfpLpZURs539NnUU9UElU1UjEVSNp5xI3EowL73fwLoFZItmaoHz4NK82RfhGSfgtmLFfT9qmRWHWJAAIFhdqJW1O0J5+I4QFhVgAHbnItthh2rJKght0h/mH8Ximnj9p9CKuw6TnWPzBP0oNl0exbF/LpCkbs/zHcBzwyVeKEIVO6uY+DHa+DLdPjmFutDqyj+ssTEyhIbNIh6uJpR0xpUEKIaBKsg+/T60jibjnJOkvnysgxJG+Ug/SkH7KV96IZT+N2C3zQEVTTdrOvPgMkAOf6URzSVEl4zOhq/i5fjyRQWFBrdEyQbNgMlN+lbYQTyV2G4AlTOwKZfPzK5cywXPMe9sKbxcC8kOREMPvAKTfwn2QXVB4fiPmyRS38HnJ0VnpxBAjsZRqBKFocR1FAqG+YZJjog7NELWGuMmh1ncEf+PNOE2jMD86Ra8g/VQToA34TgR9gWOvsS/W/oCmkvA9JJWERAlcMxLQ3qsE7SlJQlaNG4KLQwh+a25kRBYYI3RO6QeRGiIsb+gXfRad3E6JlJXhCCNW1SIVWPkr/dC9QyVHKZ+Y9NXBV7WIId9Ys1DViY+oEvAYY/6oLXaEU08oL8vPsrKKB1LxRBNQsY7J9VKpf9y2QZvw2KK1l44ZTUX4m257GMkakY7QFUKuGM93sXi8Sp2L3KEwyxSHIZPhk7aqxKzJX0rbJJ25YEwsJwn73ChRCcG+ZnaubJZKEzYQ8tVjopWGSqjyfjmA9pFiHrGilkBMU9Ba8FGecVVvkudVSFRVuwUpRdwaNCJR8+LmwkhH+tq04vIBYkh/jNGatDWiqQh/eO3W4F5sXGpjk3Td0j2rGI+nXVmii5eIJZlXyYMJ4gkR30xNzZCnr8tDlvJZxid9VyBgf05AJ5nzzqA4kAvegfjM8qhChG60JD+jjpzDcihqCABwmeJnel4D1Ofj35oA4iMZ7WfSkX1Uwg3ZvsIzShvJ7SvII0wz6QvfMCB9Xf0DQssvQ3yB9FtmmfseTaXDn/Gx0xU9pb5Bi7/1957aRhdPbNTxE3Cqu6zW4Lp/XVmLxUxIsjE5qPFkwgmfIcjDt+vnO+5GiqU45DqL3g6evNScLBVdvwzyO5W4MKIqSwnL51dcy7uoUjoVCCToF5l0EZm2ttAQfSSMKvqySPrRA7JjykrKpeYPjZ/JLRZM/psobvw7Ni/K0oxGWeJMWxgjNBXhd8yc7N+JlVSnvtH5VYIuHaBc4pucmVoq/y3rLCw7rlx2IIlXIntvxS4LSI0TORFALtc3SFlHi2UgvZH+AsKOLySJqLWPGI9Jo4K4sktliKg74vMIHiEujxhCjC8jk4sRKZtImDUQmDqyibhr8jd1DImKIX5sXyAwqjLU5zSkWPEbs0BdUrslVUK0Vtoa0VSEP/DaRugrlNoBRCt++g7Cu7cz7UY/syRLcByCnG8Y17JC8btS8wiHyKJkKripqoxgeK6RZJVytI0b0T5PkqX2iUfuug4o4mGOGJtPhQGAHNcQsFL61RJY5J1Xk06S71gpjzjSj4nGvRIV2yP91tYK+x5NpcPf8ovfJwyZfBiqI2TxPt62WQRJfrqtkTlsuyzoy5mvb45BhLhMEbwRgbyKV6+3IAJmLlmDee2vQprvDdKIb+kV9eJBQE2QQHKuzCaJJmwTxTXkV2kEkbCcZugEBZ5mXOZqvGqJ1ItHLoLJekOQaLZAwvmsBHnUEZ4OP903aenwD0B0vWn+vi5CYsQRlSusBWCRuySkZBJtdR2BPj0GIN85Asu3OOUN1dN7p5Xw40TEaN4V4xjzSZC+MW6DJXxj4roeMObbx6aVtAwp4irFS75DZ722YEuAloRvRFMR/rT3nehpBTSTrSbUuvDPU80ACURB2cXVKq8BEJxyBroJXbMaqhJ8fa1Wh2qWUDmx63bUTIcYKVjVj9ebFWqV3FJ2QPWBieDjRhO1PCjFPF58XUvefvjMTwPeY4vwjWgqwgcg1XvVAqfSb9VPNbPTrTSUTTl1s2m6e8DOMLiiCYziPzSY9/OsZbiuNtQEKqugU6i+YYbvJ2HHZOyIkuUVn64ubV0Z08UHRJ10beoUJdUYd+5XT9L0aThxkizyXiqTvpDHQbLv/P6KptLhr/3+b4N7k0200Q68Sj8uBTtlN7C8cV3Xa56W10BdhwI/cr0Nii2LwbIYXCeMR0Qg1wvrujb69vLDnisN5dWHVLyUIIHeVaPhEXOKa8jiIqNKYbU6YB1vadPgZp5hvjw/iaQ0D0JAcskt7kXwIFWpM2LyMCJOmhbnjTTzLzH69krQfUO92ot/fDmCJPgEg7VGjozC7FP3wQdJP9RUhF/eOxjcJ114JcLkLvqLaYuNgVm25M6lPyLm67+5p+UvpPJWpFi2nCfXmRMRmJVDMlSQUJVnGtzdiVz7iL8rp7lBmleHUmxH6HkoJKQTXIOdluUykPSP4qcblRGkPAj+xB0AqthZasoluQlSrPgcDObFVDUSuw5EQHEki1y+pIlmyNA0UBDglLzNQTK5qKSvLriLJCx8nkg9IV+Jw8Iv4G3VMfYdAHMZmJsun7ThD1Q0lUpnzmffr9F96xdQhf4m9zg1gBhetoOHfx8e/sx/s2D3S++kLP/UK1eJ5/K44dA5QmziBeVegr4S/+XhpfA2iTNLkonsq3UTisKzSIuOxL/80q584s+dUq0UdChe2uRfgI6whLQjHZru2dQ8YC5jIrJP+Ww+nv6vt6FctjT1NMWl1JVtq3uwddXMsPgu5IV5lZ6DKuUX3jd0g7tqroMATSXh5zrbhF+6yhWnAzDFEf1UXQlQKpWRsVVJ3CcdSY+ipKNdQar6eZK0JZKZWnbxMSKPJDvw/fAL3YPIFkpGlYR+UZLp3YhSOPNuq1WjVMwrJo3IiCM6GomHOU+pw2UA4uZVjF7C0CAl1NFp9YjWG8ex4ZRtTcdH0juVzSmVdmR8LD46ChNvCOkT87bkSBvnIEBTEf6uP65EZaIHIiSljtWleGpY2S8ke10eav6k/DaVNdQf8MOeoiFjSMfgzzug9q7BisRRSb0l5yNlkhyaR0htNSWkUZXFVRDfTMaRzd3iiDtSBrXOVFHEIH8W7GBaHaIv3M44ypoQtV14t8ns7ePzbZ14te/RVIS/47+fSxhSJ1nr3E1uSf3ixO9kccOGpuuIdHHEDkNx953nHLcqJTmmaOlS0SpItBpyTN7RyGnIJqdx70rwEwVedc4hNs8k76NShyzmbUiBRf2TnWBlzEkpF8OMwzYH95oSQJTgo/kqIwZjmdS63MK+QlPp8CeftgRAqI5oxOWBDBeU+7iw+rjm9qGSmzoSYdLvqFpA1bfq0qwCkkql0jAi+qMqCR+iqiCu02Z6Z8gbqbFgesPwjrSPVt175CQYe2ys2Be58cdjxkM/ToxPjkXKYIxt/HZhOGqE6iRpE9M1uSZHcxH+ssUGvXNaCb5SvPB32Skp/rr7ONWNSSr1QMQQvyMhT0OMY+qYEKND1Qzltb8rIEg+QRypc+DlS56VPhtdvgbxUxPUKMF6vgkKlPwB1PUdOn/VrziSr051FYFSzgppVp7ET5ZOTcJEUrisuusgQFMRfnFgRPhlIm0TIVcKryN9hoydEeJXSi+8iNyYMOF9ZRWHRmozSoxJK7VJ8q8ASVKqECdpuKT5BkjYqVfIP1HHE9s5xEP/TU2CQ4gNK+ekykcPnrZSCG3nScIoKq4uCvUlNkwDROlKW1Ubt7BufjSVDn/99+9BbVJYpbhJJHUT5IrOWNQscuHbX8DkudsDiwjRrj+pVKcPy8uYpJxKqbneVVT/inyhceN7zYvx1b+V/MICKHlo8pSfl/9QM9GUVXhGKS9UIPwaOEv/bdTf5gx2rJuBCdP2YOoh2yq+R/ld6za8S0HAiauOOc1G6fBbh5ib0VSEb+W8x6m0qKrahVdxYVS3pKdl8TAn//X/RCbkVPPIJOWTzRJFJuNuKSDsY87EZMQyRNwYisMZjPR3eEk4gG0TnLINO+ugXLKQzZfQOXFIKq/6V34ouTyBG3n5md+Lz1JqGRXpPogvvLJkNCi+42qYTBdHr0YS68FrTx2JdS8fgtlHrEe+fRggwLIJ5ZKFTM5BuWQjk3XglJln0ssY2rv7kWsra9SD4m8SiJ0kZwDSWQvmXS+FF6hk1bAJ22pUNAeJSqepCH/WZWdi213P+L9kcVAkwtAuWJZGQksPivhF0+FwQWRLYXR5RPPnKh2GN3/gsfDIQUTJq/JhHbry6sJUgIa7mJR+XMSQmPp3jMeap4/wf4tqIS9cW3cfjj79heTlCQsjEL1cUOPIJnj0+AbNmE9okTwqlCkBxA47KFfst9LdyxgZaMeqZxfpclPie7+PPPnPmNizJ0G/ZBpqyXmYtzpWes2Dg0cPGDQV4edymgVQsb9VMOVvpXCAS6olTZy6SG2MXtj28cOKZA4pbLxUr6apulUqlyZIZHibjOwBrj0JyV+XjlO0VY9okqb3wQDdwifjO0qqsYj0mRpSNna4FdLV3NfKhKk2O/MjxMfRDHEq5KEnfTEiST+9fqQBPUBchx0X5yBAUxH+lt89A30tjXMzKIYjfrp0CCx4hXEV2UT2leIAlWuiTlpUn20sIT8DEWBBnpC2rDLy44ZRHrVh51zkOwYjqSRJ28sgxk8XL+ErMM991IbU6wriUwN/GLMQrh+RkUsVBHfDu05N+uZ627iFVy2VjglNRfi9T69KGNIk+SftLJL6xVXuMK5+cRU08XVpxrXKxo+pGRMPcHFx+Ckr0DW1NznxSQKi2tkmSUB53jQSfmIk70jrQfbRkQFVkNajnsxKOyqIk/RlUpdJXxOBT6U0TMJnSG11c5BY6TSVWWbPX711H+SaVJfAFD9Vb5Kks+GNSRwdVNshVUKlEYgeRP7ePwCOfOcLAdkDCQlHDCPuMlopWpwmrZb4WiRn8Xrwmy6NZAsCBbjRTQQ1qSK5WjMMo5fwo6Oshm+t0DoAJYKmIvyuo+Z66jtV9RpTx9L46fSxpTK3/RcD66Rwk67da2SkLYjaAKPxEqGB+kkuyec6htAxwVPdxBJRHETNUJiDNmhddPgV8pD9k7376NxMdZ1oNH+xHJXTHNg7LkHnYxj5Gt8hBZJ7bHp8sEC6PMYALTt8I5qK8Ie27lYql560TUReyU8FEZDP5wCUDSUSh/4E73VzsrYhbAhvGOqaSCKF9M2zdxOQbjWTXUp8b9hOGD9jdw0JQXk80jmGvsk0Z0ZIdvimCFW8l3qQPRCnq9f/1oVfv3Iu3ERSfqV8omVLql7y7g6S2dH9FE2lw1//wwcgSsF6U0zfV2qMsrllMj8/BPOOK2TMQbmkr8yZLPP9HI2fE6RbV/WmOAjwi8WosiDj2VpXv18LAzBh5i6M79mVPrJYZllNnCL3auIhnuxNecQlNwa8tuQdf0J71xAsuwwiC4z5o0MQGAggC2AuXCeDod4OrP7zoRjY3eV9S9fGiw8dg8Wnvgg7Uz/9RZp665V27CVp7+yJdPk0ZI+f/QBNRfhtc6YIv8wSUBTV+akdgZ0xS6B2hkVWPlpWKHHVRPZxkjnJt4wQLKCJrspkclmUDqMyvOdRT/FKjQTqFaOaI2W+kVOrYuPLZUn2jPUjkq7JfcK3cv38KeJm2WV0TenF0nc9h9efPhzb1s4AAPTvmoAnfrUME2duR9u4IVjMBYFh/NRdmDC9Pz5zgwYxWb316xUfAo41WpO2RjQV4c/9+GnYdPMj9ZeWDWAMcBzAtkPS5O6mei36Vaz7oiZDpxnifpFA6m/5Xnw36oSqdmsDOaOYQtbhvfOiGt6N/G1T9UZB/CC2lE7qpOS4DUDct9K5EQELjvsLtq2dDt4ZMwbs3jRVTtdyKxO+AfujhN/aD9+MptLhV4N6CBxiY1Mrf1xjSJy3Gs4/KlE29tHpuWtsXImltzo24pgORt9RJslf1m/zvYGkdIwTo/sHqulIGfO2XJhYSb1WkeyEDvFAUME3aNJ2YGAAl19+OXp6elAoFLB06VLcfvvtFeNt3LgRl19+OZYtW4bx48eDMYaf/OQnkXB9fX34xje+gVNPPRXTp09HZ2cnFi9ejG9961sYGRmJJpwATSXhr/vZIwDSNY5aJFIiT7rXSTlxEr+qQjEXDgkamW44oU83tXRV00RlPdIOy5t4NJQmDVL+KuEbCm1ZFFTZt06atQ35tiHA4lWK+SNFAiNg3OTeBKnoJ1VStbVGvdsGLbw655xz8Mwzz+Cb3/wmFi5ciNtuuw0XXnghXNfFRRddZIy3atUq3HrrrVi6dCne8573YPny5dpw69evx7/8y7/g4osvxuc//3l0dnbisccew7XXXov7778f999/f+p1DU1F+MNrttecRu9eAMgCcNA93vV/5wAU/RD8lXmWOYVCGNfVSEpEkI6Qc1WdsRDOrE4R46iK9TgLFlLipEBFVY4eiRdY6TozJnrERYxJTwoTJSeK7UDVtFW12BhAnKSu9M4JfkVJV5zp83YA83YYEkyDaPhUKp0kQs4BgnvuuQf3339/QPIAcNppp2HdunW44oorcP7558O29VuInHLKKdixw/sezz77rJHw582bh7Vr16KjoyNwe8c73oGOjg5cccUVePzxx3HyySenKndTqXTmfPJdNaloeve2A+gEUADQgd69nf7vvP+3E0Cbf3m/uamj6zIwxvwK7V38XjaHC1u3aCYZa5UZIMKOukApwyAkXl3yKZH6/Ys1kPg/cZlrMoiQeJSkJZNUSXefRB00hiSldnwMqEjEkiovLWr5yNHw6UfTDZy0HUOVzp133onOzk6cd955kvsll1yCzZs346mnnjLGtaxktNvR0SGRPcdb3vIWAMCGDRtSlNjPO3WM/Rjt0ycG9clkSqnaovP73r1t0L+OONJkGB2N+om6fHFikEtD3iXkZTJeiNUr1yC9V0q2Bl1tKgFOW/xoAhU7kQR5SpZHiRNJ8hJqIDA+uUgsxXsXOqCqvpNuFJMUJP0Bou0pNjalza9KNODEqxUrVuCII45AJiMrSZYsWRL4jxUeeughAMBRRx2VOm5TEX7/q5sAMMHULqyMpoVT4V9xi2No7vV+uZz3N47oQpIXJU4K3De8NDdaRq1ON62E33iklvDTkHWN6QThtGXUsWfSRKuZ7FAdqviONXbO6TPT/KTkarzGSfhVXvAmSsVr1JPoIti1axcmTpwYceduu3ZVsQ4lAV588UV8+9vfxoc+9KGgc0mDpiL8jbc+5t95QzQKpCdPghJ/U2DpwirrTmOQRn8p1XVhCLlpxQL0bhuniaTNMUXpNOnFVPZq0lf3cEkl4XPVRIX3H12xqqQhPUMC9ZUahkUCxCdRL7KOxE2jPhLCNYz09UgrYI19eVhVFwDMnj0b3d3dwXXdddcZ84mbjxiLuYq1a9fife97H2bPno2bbrqpqjSaatK2+83zsfv3rwou6aT1tOqRuBW42vDBP4C3OtJT8+Q6+9E9ZcDb4ArhToi6RVFVw9h5mAqeLD9VukvVqKXs4xoPT1fzfSKPUKEAukeuRkCvQUiQCxNJOUWaqi5urJCgjhBFyV79VI0ajNaw8GrDhg3o6uoKnPP5vDb4pEmTtFL87t3eliI66b8WrFu3DqeddhoymQwefPDBqtNvKgm/50PeZEZ1kkT6SIwB5TIF93HhtDn6WS49609BON2kb32lBSZcut9AGhKraqVwQqlcHDkYw2mlbTmcfvShEwDSSNhjhWryH2vRmWkuMW/ShiFlYrlREn4t6Orqki4T4S9evBgrV65EuSzvo/XSSy8BAI4++ui6lWndunU49dRTQUR4+OGHMWvWrKrTairCLxaLlQMZUV1Dt6xw5WqoqxdSVe51xFjPvU2qR3WtURyNJI+ULLt66e6TlbGBbFT3rBrdSalzSaaRioyGSfgNmLT90Ic+hIGBAfzqV7+S3G+++Wb09PTghBNOqMujrF+/Hqeeeiocx8FDDz2EuXPn1pReU6l0Nnz/fgC1VKz0ES1LJz0aJrJ8Qcjz029xMLaIy2QfSLZ1Jb4EvYjmaMSGoBE6dlHQBlJ/znQjtX30HpOCz82ljZMCZ511Fk4//XRcdtll6Ovrw4IFC7B8+XLcd999uOWWWwIb/E984hO4+eab8cYbb0hk/ctf/hIAsHr1agCePX5nZycA4NxzzwUAbN++Haeddhq2bNmCH//4x9i+fTu2bw/XGs2aNSu1tN9UhF8e0s+op0MR2azXAMplj9Bt29szx3WBbNYLVSrVRtL7QnHA5w3qmmbN7b5e5TEXJCxjXGGrKUeCCWLdJPGYgA9jgn9SZBvOYdVvHyoWSa9hC68ovcRezdYKv/71r3H11Vfjmmuuwe7du7Fo0SIsX74cF1xwQRDGcRw4jgN1t17Vfv/GG2/EjTfe6BXFD/vKK68EHcJHP/rRSP5f+cpXcO2116YqMyP9yRv7Jfr6+tDd3Y3e3l5pYoWjODCKZ95rnlWPT7sDuVxJUrtU2hrBCwTNQc56iUmchPXMMj0p/8QLHoqErTvGkHiqqkH+Nszp0jdNhog/zPMBxjmDlBOwiSdsDauqxx4C4afKOnyR8XUxaYfiz28p7aP9H+/Thq7UviuBx9/178ehqy2dLNs3XMakTz1bdd4HCppKws91ehMs1Ugp2WwJpgVwIlFH/UiSDnRWK6GljdgRNJAEJAl3P5DwE8aJbpJWKa0Yso9Lo6KfEtJQF/Tl2hdjuVBiTx8vSZw04bhw02AJv7U9shZNRfg7H1tZ9ZBUp4s3SfYSiVve4SoMDDAQgW6PHcBrCPzghbq3g6UbkMl76bou4DxlA5hZ1yxSbZTGoPQ38Q9cd7KvWFaDLaGxXHWaUR4z0Fj076hFd9+whVctGNFUhL/9v/9cm149ocWHqurhqhkV4lYKXKXAh7f8ABQ1bD2QOWGDlJZtA9ZJDkrb1gOr5yRKQ+3oVLfEUAlX2s45+sCJFjUlKId21XLFdCqNENTIMR+MEoQZU9Q2sRqtj7rhrZCVOaXgNTRMwm/QbpkHIpqK8KeecYyy8Cod4git0uIiU1wpXvCPd0OKKqgueHNI9mqa2WlAaXWyZBgDXvv9Ueg5ci06Jw1q00uk1ggsY5jiUbEEyb2U5KSJQhCs8SOwuodBlgswBkY8kF8yYuG9mhAAb19h8p3EyVGAHzAIBsBlcPsKcPe0A2TtYzWByLJp4pk6CvE7kuycML1GSfhEDGmPLGwdcVhnDAwM4Etf+hJ+8YtfBDPaV111lTSjXSsmv/0IxcVQSTVw3VDirqSj5eofACCXwARJXRdX1OGrUFfV1opMVkhXUOWG5doMoKdiOkTAcH8e3IxU5x+fAGL02ObvkXRfFikfTRoAwLqHkT96O1jWjQ2fGrHP1gtygOKrU+Bs7dL4Nwpyx5Se9EPdeyRNsWKlGMS0JPx9j4YRfrWHBaRBcUBceKVWTtE92gpEshf/AtEJV+m3Rp2jqn34X9eVOws1Tj2gEn21eTAG5DtL4Ns/6J4RqETOcRmmUZ9USEaclM46gOUCuTJyS7Zptl+uA9Q8lWdhNpA7cgdGHQa3P+9J+gxA2QLKdiT82KJa1U7COCnrVEN0+K1JWyMaQvi1HBaQBmv+9Xcw10CV6KNK3kqSrI7kTNJ73B4zuoVX9UREKKuyjc0//mVksm7FrSH0nunzq8VA2Jo0hMzCHbDyMauWa1NrhwgGjeYPyBhQWBI9kMcdsVBcOQ3u7ug+52OGuk4lqPqz5GnXc54qPp+WSseEhmytUMthAWlgt/F9L8hwAVGilyswEUCud7kupP1cQjVO6KeN54T+ritb6ai/674Kghm0DcG9vPdHHPLtLuzsGJSxzrAmDCN79LZ4sq8ngneZ/sVYBRf5pVtgdQ/XtUj7DKkl/Bb2JRpC+I06LGDOZ96FqLommUpH2mDLv5hyAT5ZC26eHb6QHAMsO/S3LD+cvw0w/w3QmBGppNZRH7na9FK41zsfPQj2zF7kTlyP7JJtKTJJW6qxQe7orYDd6A6qFiiVfH+GW+V1EKAhKp1du3Zh/vz5EfdKhwWMjo5KBxD09fXF5pPL5RSX6ipmnH5a3QCNXATdZhxhMYPuPkhnrIe7dU57LDurymkTskdshzVlOIiTLhPUrtoJ0kivL2EMQN5B/rj1GH1mDuCOsdxVlUpHfUkGwWl/nLRt6fCNaNikbTWHBVx33XX46le/mjiPLXc/y1NUc/D/ms3NTBY0Jh2+uPBK9NPBtICrrnVfaXgEijy2aQI2cRaUlJBRNanKaRPYhGFk5vSCdRYByxuGMQCwveepCnXtrKoXKqyOMjLzdqH8xpR6FkiTWTWREk7Q7IeTtuKBJmniHAxoiEqn2sMCvvCFL6C3tze4Kh3au+epVZBrYHRi1oP+44qEnsQmX2eXbvLT5FYpQCKIedpv3uS5geQv64/CvZW9teeXLGB16YfvzUVm4U7klm6DNXEELOeC2QSWBZCFP1exn08uVABjQO6QXmRm7R3DXKjKb6Grn7W9b6/uNFDCH8NDzA9UNITwqz0sIJ/PRw4kiMPMC94GcZI2lChME7Wyn0r0kUlZceJW81uXjpSmFIdSdhB6BPHyRX/SUiB7S7j47xrqdaoy1jCKAAA2cQT2zAF9mgc2z0eQXbgT2SO3wOoaQv0fjtVRwjfNiyUsSaMkfN9KJ+11MKAhhN+owwK6j54NQCameJIKPV03rIiqnl5NS9pkjeLjmfOXX30tkjdjgH3UNi8vldy5WwaA7U8y14DEpB/otwlgwlWhwTMGsK4RZBfHTMQ2WdtkDMjOGETh+M3Iv2mTt46gLvDfd6pPXvkbeeDD4RQpN0rCb8GIhujwkx4WUCuGtu4O7uNIX7cxl7rwit/rJHB14VVcPMnPEv1cMGHf2Jr1+eJ8NU9Wk2buOMB5rrasEunxuQ7fQji/wH+7hpk+2wW6hpE9ekdlXqhl4rUek7ZjBGvCCLKH7kTp9ak1pkThc+4nxgANXXjVgP3wD0Q0bNI2yWEBtWLdDx5MRJxRwqLAPU3cNBO1fPM0btJJxDDnTa+iZ+HmwL8W0hc7Fc9BFwhg46rPIzVUDYD4l0QmIlize2HP26s9W0ALsRNpNCJ1p35kwRiQmdWH0qopNZIQtwyovhyJBoMtK50DCg0j/M7OTtxwww244YYbxiyP9rlTsLtyMCPSkm4t2pFj3vtHtHeNAKiTtY6/PqCRI+ZYUogrh0LU1owBZA7dW7+CjRVMNgB1BrMAWA7g1NI8A9OstLmDzy8lDp40aMN0+Onb5v6+uLBeaKpDzOdeciqAyh8vzW6Xqional6pN+nUTv5ytWd2pG5kr6YduR8j1E1QayvBPky/DmNMwTzqKeeBkUnA0BRgcCowNNm7H57o+UW0f+K8yBii7ZS1yB29xdsbqFrUOFmb6Bvvjzr8BhxifqCiqbZHroSoBE9aT1Flo1rhiGnwIaq6KZraSajxFp9a2779sdB1AKpfI6EO+cUy5MvIHrspuRqnxmK4Gf8ioFwAaDoixC0Wz/H/sTYD2RJglb2rEdTALMCeOohC53qMPD23usVZVWmbPAk/Wj/jPmTaQo0tWnvpmNFUhL/up48CMEsmcSoIfnKV/wsAt9xhQjwKdJCiH/+t9SPfMibwA6ysuKtnbYg8q6jbVv0Y4G7lgQTHGvOPHVFp9Oxs/DDseXvAxpWqy5SUvxUwMgEoT0V1UrkNuLOBYL23C2R2AIWdVaSVEowBaHdgT+uHs6XbEEr94KKuLEkual2I09Fp/IwdQ7QCtvbS2fdoKsIfWh3dnVBFXKUTT6DywrKAzDxTzHAEwMNyLhcno5g4UmBeWHGvHmc0B6BKsjOBAZQhwAIGpwNQN2McADq2As4G4R0EppNj3BIFrrB6+pA5bE/taRKMK23JAoZmAdQu5F8vWEB5GjAwBcAI0LaBwa7zpxTBGJCZ3hdD+CIRK2Sf6NMa4kuI6VmDPPiNOb3WpO2+R3Pp8D/9zpoGjEkmbkwLrCqFA0KizbQl37EyKci3yBichJDsxYUBncDgFCCjnhHjxa57eSJgAPIl2AtqIHuCNznN1WT+fwBQ7gAGFgADi4DBhQB1YGwnsS0AbcDwAsLQtLF9g6xN16OQcAHBg1Y1lxO+qFg+ZoYrLjMhTKO3Vkh7HQxoKgm/ffpEveo6xvqG+/ETr1QdvQ6SGsOPYIqnzgNYFlAaygDjRlE3vGkDLH+7AYxH9GH5724CEyV/aZRevaSfyIQvX0b2uM21DesVAicGjEwF3G7Bv5Hwy0MTgaEJQG4DkB0cg2wKLuzJg3B28o9H4bPybyhVumpyMU3WVmPtwxmeIvW/MRI+qpDwx6Qk+x2aSsLvXbFe617JXh4wL7zSxRfJnVfguHhc0Oa/c+11kvBzZdiH7kS2UEMausZdTTIV2ldm0XaAH/ZUo+RdbgcG5wFDCwF3POCt4q0+vdRQttQl5qnSinOA4THaBy131BZ/O2WF7KG5rwpxjaSa9CjsKxot4be2VjCiqST8zT9/oqb4cdspiL8lK56EaYkLr4pDGbTVKOHb83bDmj6g99QJ65UmVoMwcWY+8dCPjAj2gt2wxmvUEnFzhBq4FjA8B0ABmrnKBsxFAAHJa+cPGOBOBopDQK6Okj5jADKAPXkAzrZxQV5ivtI3r/gaUpJuxVdr6HCVbOq+Q2wLqdFUEv74Ew7170hzVYa3m2QYR7wPfyO4F/elETdT0128VK4LZGvU4bOJgx7Z8334wRTS5jfK88e9hkijrk4Sk8g+68Catye6CZqIhARQKgDDh8EjezFenUYoiRBH9hwMKM0em5JY44fN7yv1yCka0EjGCck+MrJV2KVhZN+ywzeiqQh/xvuOh9zUVEWnGXwBlVgpLU2FFcN5Yd3AT4VJtVMa5Qn7ZMxUco7vrOy5vRUavuZZK6k96kSgjAHIOsgs2YrsSRuRmdOfOg0V5QxQnFsp45qzSYREe/BbgNNW/7yt7nrtppl4KJA4KV1dV+d1GrXwqpLwFSeUNTuaSqVTLIr27bpKbR6bcnI3qXDUv7qFVklVQpmsoosVi6mreIykSShW0Kz+KQODhylpqUhaqePKUhGE7DFbgHanZonOBTA8G0A7Gkbo9QLlAdT52Fqr00F2/i6U1kyuY6q1fGz9KvMgZU3db6QOP22cgwFNRfgbfnA/4kXf+MpWaYsEvY7aSqWb7DnyDRS6RuL7I/GvH4aEhV1SXAbP/h7wvmYSKT41KuvHWdcIrAW7wTpK6Yje8ElK44BiT8Vs91uUOgiZvVWfyaUFY0BmTi9K6ycCTrWD8/oS7n6pl69GRXOQqHSaivDLg+JEqFqxRUnGTP5xdvW6LRPi8xPdSjjposcA5mtcdPVLdeOLZ4jfK3k48E5/0sWtGxKQ/fhh2Iu3V9fwNQJmsRMoHcBkDwDUzVAcBfJ1XpHLLIC1FUED1ZhmeS9Za1DQADSqc2hJ+GY0lQ5/3mffi0AnzvzGEZzyRMKkll/xlROgRBWNSbWjI3rGSBNPblzHfvhJrzwMld96UE4xJQSnVwV1UyD7wSzqT5DKs2jnFSwX1uE76pYlWUBpJtI/S6NIS1jspbqpfuV6al5E2NVsqGZ+Qbr6XimOGDdZ3vHqnxYag6aS8HOd+cgkUgCxUjOAXNnPdYGk57CI+nudBKxT/eQKpeokHIbQ6pCjaAG5wGTEw+yU6aaGMOdA/j+WC/tNW2Hla2fbUhdQnIaaj2EcU1gILHUAj+iDzll4BUTkTe5awHAH0FbnxVjMqq5/i6t7+rrpP1jMIC9ZnfbS8QweGiFjMqTfKmF/rXT1RVMR/s7HXkk0cUqEwGRMnYRVF1DpVs3Kk7jMmIeaf7USTkSTs7Erun/8WNXXjlFYPQNgHSXQYBbu5nHAkHe8ljV3L1gdFpGNTAEc/Tn28YiwXgMarUL62qz5nAsY3DmA+7q3y2b9UL3JrKkOVtxSweSV+JUzbyTM6nV8oxktlY4ZTUX4O+7/c6Jwpp0HklRexoBjzn4chc70C6dq1WEG9vxbx8GZOAx7Uh23Z4jmBmveXti+WSURYI0vwp45CGfdOGA0A2v2QM0UO9IOOBOqjKxOeDcQknQf9fRIn7yJ9uFDgfbX6tkdVZdScvWLxonpw+i2BDel6yXTAGJtTdoa0VQ6/CmnH1NT/CSTV2/6wGMB2Yv2+HGXGLZayGmOALn6bbGszW/icED2PH8Oe24/rMP21NR0CUCxG3Bm4cAbTVdSO6kdge3t+bOvkWxyViw8k/5Ew6Wp15zqG2GWWd11MKCpJPzJbz8SfwEQFUniLE08P9cl2LYcJrpwpIhcewlpJ6DSDHsrxl+0DdnuUnRbh3qSZmcR9lFjt+E7ARiaA2AMFic1DIrePg4EgjuJoVgCcnvGtFSxSCdwCA8YaT7hj+Sj1sZJ+C2VjhlNJeEXB0YhW5ToQAY/G66r7+m5vn76ok1gLEr2teroE6Mwgmy3sidNvSUTy0VmydYxlbqHZuLAJvskUIUFRihNB9yEhgGxSVf5zdPFEyehTGFYwnRFi7WDRJTeT9FUhL/2X3+nMY1UTQpNfgBfROW6CMhfvB/qDfcW1i0lF/+KSDrk1TeGsIyZxTuD5yO+VUI9iZkR7KN2AJmEZa4i7+EJADrTx0uGBpNJ3KAxuOVKbu+bDU+rQ75VL7qqBI3ZrerHlL8pXnnD1Cb8AJS010GAplLp2B15/06nchEJVSVXMXC0MfFha7YQXUWqG9Kq1j3S7ppCeHVXSfmvxo/HA4U2+OTb4KcB0zdUe8EusAmjiSev1eJVwmgBcMdo++Dwk8ap78YIYpa6zyh0zNRNoM3VqzbIBWgoXylUVWlrhQ4ulTOhXnPhRmPZZsyfNfCrVHOgSWvS9sDD7E+fDpnUxb86shf8DBM3UmVWNiVLqsJRJ2/j0tD9juQjrq61kM4Gn084WsIFgE0aApsxVNU6ASktfrHwIgADswiluQSyoguU6g+TlDpG4O+Mn8YlVi9LCWcB5U6EAZlyQXd5IBBo1AbL62w845852eSqobMUnFRjhP0Rrf3wzWgqws/lcopL8o9oIiCxE9ixak5kRt+0/04SvX6lTkA/EkCs1UQ1YONHYB+1q/6N2Cf8wXnkqXEiHUGdSVlI20ODiV/X6QHyp2FAaTzkzoAZwga/KQzWXkbh+PVgHSaTXLNQEq9SMY0wo7vImtLXxo/k3wBibal0jGgqwt9y11P+na7VmD6o5x539JpIwP07vAMo+F75fE98cW/8aidx1UVfySPKPwkEYsqlnb/wLquWc2bjykTAyCTy9rBXSG/MSD/C8aruad9PGrrqMZPqPVMuAAHpMwA2kF2wE/E6dyFZY32sEL8qDlQjhSOXRk3atiR8M5qK8HufewPRBq67V9U8vmsgUYdE7uktw3Av/febQa4/YRooJqnKxhHNu5I/ZeMna6UFQeJlwZvohTIsz7iwOspjMkQvZwnlSTEBxoL0mXhjeqh9TPqZGGsdHdlrRoD2xOEa1nzodezazgeVRgamtKNtghp1KlkLRjQV4c+86BSIUksoUeikW/G3f+eG8cS43l75Xidw4gW/h2WzYNJN/TsWkKyOYrNh8YuCWEj6gZM9Nkvd3QxhZF5MWcYS0ndXpFhFYt4nYMBw2o3VtKoeTbCKo0SRdDWdoiZOevt9MVKYh+fUgK0V3OqugwFNRfjjDp8FQF/pdVKP6EeuK+2vo9N9WoVhWFlxZk7sPEwTbvoJOD0qxKtgU0WVGhMDSu2aLMcAQz1IXbvqOpmrG+UYJOZ9AZqY4tVH1DtV5yr8VeqWbgDMQ1cl4RvcGjHb2yAd/sDAAC6//HL09PSgUChg6dKluP322yvG27hxIy6//HIsW7YM48ePB2MMP/nJT4zhH3jgAZx00klob2/H5MmT8fGPfxzbt29PXV6gyQh/eOvu4N4k6Zjs5i2bVYzXc9jmigJ2dUjWGVCSRTsVyhA5em8M2h+BwrNn08TR3I8t9qGUbwGuamNQCfX8VonT8gImI31TILG3ah4d/jnnnIObb74ZX/nKV3Dvvffi+OOPx4UXXojbbrstNt6qVatw6623IpfL4T3veU9s2EcffRRnnXUWpk2bhrvuugs33HADHnjgAbzzne/E6Gj6vbSayg5//Y/+J70NeQJ3jr6tHeGAmEEeHQeJIFqnJbcYPaYuri6MCZaLyHm2gWWE17dHxgBEyfJNgcE5SEYoaj9nadzGCsEz7zu9spMH7LHdEkmARh1Y8bsL0j9D8m0UImEEg4YGvOtGbK1wzz334P7778dtt92GCy+8EABw2mmnYd26dbjiiitw/vnnwzbst37KKadgxw7vDIlnn30Wy5cvN+ZzxRVXYOHChfjlL3+JTMaj63nz5uFtb3sb/uM//gOXXXZZqnI3lYTffsh0/86kSolXmXDLG70KhtAx2bdTZ5JzFOoQnAR3XTl06gYhjWTyfxmwBD21VAaCdzwWhTb8prLWiFI7Jds2QXyosD8KytE4KX/foVrDECLA7Us7PECyuqoLHOkYYtSOFZ+pAd+1ASqdO++8E52dnTjvvPMk90suuQSbN2/GU089ZYgJWFYy2t20aROeeeYZXHzxxQHZA8Bb3/pWLFy4EHfeeWeqMgNNRvizLz4V5grluZskFG8r26gah7GwMhfVFY6ViJI04Ux6ZTXdtGpPi/TpSW4ukOcF8y+VdJNeangfo9NRGXwaBNBPMu8HOvZGoBbqK69KM+tbI8lGBkExI1RDvmEdbo6Pu2LFChxxxBESEQPAkiVLAv965CGmqeZTTR5NpdIRoZt0NU3a6g4+Ue8ZA/Zs6AHRK9q09IVIV2ZjXFL+6hDXdYsjDaYcj1e2QQ4Ds2uXvBybktWophIzakDKV04EuINZlF+bArc3ze5zNerslPkuk78MU6VthA4fqbdW4BzR19cnuefzeeTz0a0sdu3ahfnz50fcJ06cGPjXCp4GT1PNp5o8mqrprf/pQ0ZrnKjkHv1tWjUrhtu+alrgXt0+2jHD4ZgYAIByouB6RFRGBDazH/bxWwFG6Z9D865Gpujdq8WYqnX2neq+aji7Cig+PacC2aetXxXCa8lel17l/Bq1HUMtk7azZ89Gd3d3cF133XXGfOIXa9bvYU1pVZNHU0n4I+tEUyWx0sVJOOmkn9VPLcberROw4K2vwbKqO5hZPdbTmzowM1Cw6Rrgkb7y1Qhpz88jWEfvABtfCtLn5ai2nhII1FVdXCWhhqh56z1RXVURUr5re+IInEmDcHd1xIQSHixR+n54g8AD6ISaMA40K8xNEI8EHVNUU4f88Bs2bEBXV1iRddI9AEyaNEkrYe/e7VkK6qTytJg0yVu1aMqnmjyaSsKf87fvBkDge9aHl/o76gckk9aJgJ1rZuHp5e9EaOVRBwSTq/o8wb0JQBFAySdZUPKDv/k6gynDsCaUwDfsCtJh4QrjtBjtTFiGSojT7dcjbUkIreNsdTXFSdv6GJA9fDvMahKF6RJ9Sl/QIGas/7H75VRS9wjhD4StFbq6uqTLRPiLFy/GypUrUS7LwtZLL70EADj66KNrfg6eBk9TzaeaPJqK8AvTJ1YtoTqOVxF12xqL9+KB5/wMn1qRZPdBdvymiCVLcJ/mK1oAmz6EyJmswiRyNaqUcr2O8FMmgeuKfcvvEZRnAE4KYxvGAKvggrWrtpy1DFd4XKoiiXhDCDWPRm2t0Ag7/A996EMYGBjAr371K8n95ptvRk9PD0444YSan2PmzJl4y1vegltuuQWOE869Pfnkk3jttddwzjnnpE6zqVQ6/S+vqzouYzZc1w3IXAfXN2IPVt76Wy74KVTIwW8cBjIL2gJp3NGHwKRXCTM4wUndhlhbKdppVAsCnEzCydpqkvf37q+r/XbwDvexIp8BwzOBzjUpoxXKmj3x60H6SSCHSy5gMd/irTn2MDjrrLNw+umn47LLLkNfXx8WLFiA5cuX47777sMtt9wS2OB/4hOfwM0334w33ngDc+fODeL/8pe/BACsXr0agGeP39npnQx07rnnBuG+9a1v4fTTT8d5552Hz3zmM9i+fTuuuuoqHH300bjkkktSl7upCH/LL/9QU3zGrAjZ6yx8Dj/1WUyaq575Sn5dtmS3SGNS5xbC9NX9PIKyHNcvb00iJjERqTmLbNccxU/fJOVHiJcBxfHpy5AIwjOTS81J+ilXJAMAjdqoSNBaDo/R7Sd6DVFVTrJ5H280SQQwqwESfhUHoKQ+MAXAr3/9a1x99dW45pprsHv3bixatAjLly/HBRdcEIRxHAeO40RUpar9/o033ogbb7zRK4sQ9tRTT8U999yDa665BmeffTba29vxvve9D9/5zneM6qY4NBXhdx93GPb+4RV4evzQPdyHOyqdqGqbSpX3mLP/gM5JA1L8IB0LHmtL2cRJ9mEr4xI+iVaTrlfuSJnqIZ0naeDcX1ILR4k3sl3DWIAh0mg856pnmZUf+5GuxwDyBWQaFPRAmm+k/e2HVetsUHeTPr7a36d4bY3S4Ve1N04Vq+A6Oztxww034IYbbjCG+clPfqLdJyfNXNnpp5+O008/PXX5dGgqHf60974FItkH++QIqhdVX25Z/m+qbHFDBIns1b+MecTObP+ywt8xqQZlDjsm/7KYp3MXnCIoadzqDSXfiPTfiFrE5ypUC6dqCUR6n/s/2QN+PbAAZN1ofWCGK0C0XZj+6lHBoKBSHBa0wLgIdUFrP3wzmorwi8VibGUOyB0y8XNCNR1xyMNNO3xNognWMLL/N5H1T0ygmPwy6+10QtNgwiLpRhXiqElMIdiuwRWuMZbkhBW/tdvr6+JHTHr2CzAGzaRtMsRWsSRkrwljjkfK38ZJ+C3CN6OpVDqbb7ov0cZo+jAa1YkCt5zydYnzuaZ6zv38UUbFtILCwNseJwtgK4DpiBee/PjtW22gZAPZGNv9hHWfQHDy8Ld1cOW4xK0+6mxfyVVnInx1T1XqHa0uXyE4Etz2h9GAlZY0k4SPq6Bm/1ANaogfqfuNkPArjTz0cQ4GNJWE7w6K24WqEpoqraWX4JySna5iiFKx6V5wirYF30E1bPB/l7Kef0e/DfSj4mNYfF3anvSTPbpigQGlTkTJnt8zXtg6tqaYkUd9VuZqpFmTOu0Ag16g4fXf9IC+vzoihkD0jOT9lcS/4veROs4W9gWaivBnXfZev9FH9fWyKib0D/9W3l4g3zlU+/JwlUikEqVDaWoYr2ObjewqeDp9V7lGgI7XbbT1epMJtKUDqEIKUssMAG5GQ/Zi2LEgfR24Wq6afIJyxlixBNgfCKtSGTRCjPGZKvRmineE9C0lbMzfA2FrhWZHU6l0cp3tYR2roNpRyS6TGUW5XNBaMPC/W16Zg0NPWBVNX2wU1ah8mcA30lyCd0MO9F8qL+edYzZy65Qw6ujAAjCaAb08CezoGjZ4Cl40xRNkoLLiixiSnOJSQ5lq4eNK8bXqn/0RGjVMxSKbHlwWjrRxkqoACY3ZWsFl3pU2zkGAppLwd/3+RePmaSJE80v+t3NcEdnsMERJ3zvjNiRgohxGfZO4wE2nYtDomLV/hXsySFIAPF29Ch4vA7OQJjZy1b+3AOpPqaLSZZFEZJCG9g70D1QjpNFSHY9KNGLfSfrJSFMgY4OQo6RqdIrNLgVPtiZt9z2aSsLf82h0zwkdTBW4o7OESnaOr99/HBa88zkUxo2EfKqmF0zCIkrupPz2/zLmC+NB5yKEK2lET5L+6CEKerzhi6OHFycDJ24LaoE6qqkEAgHqGbmVEJTBATAG0r5GuB27TPYNaIQ3W43aRmco4H9/VaUZC7EDjasPaeeyGyDhN+LEqwMVTSXhT3r3m/078o7741dwiInrqxZ8nXLgLlxMuFR3/37Vg2/CirtO8nXGGnBy1ek3LcVPkL5M2y5gRLPhCt8ILQmxmdJlNujJHrhrO+CWvM2z3NHK1kocTt5N1tB18xaBtF9niBJttfp8E6hSgCqQdB2F3xG7QzZoOAu5FxfKJ44SfTNkZkEhezGeOhzWZF1Jwk8j5bck/H2KppLwJ5xwBABXIDhfzOFDSWKhztn1Kj4p+vMgmgheRy0vefDN0wiw4kzkInpTQexS8mMAyGWR1b+MARjKAxiVk+G3tQrJDMCmbu/ixZ7dBzZnIPxtkPBSH8It5hlI4g7GZGvMoCOt85YMXqrRjKqEtTkmCbX+EFBaKexSx4S6pCB+y2sy3PPISuhKEn6CV6DW6xb2DRoi4ff39+PKK6/Eu9/9bkyZMgWMMVx77bV1z6c4MKiQvfCXwbdf9n/7HBOsYjXtRMnCsGLljizcgqZRxDU0XSPxex51HoJ2tEcbi//bnVDFPHEFqYw2dMFdMRHUmwOV4S3np2iDrbr9ip+GAWNixSPkUV99fn3LmR+J8VS+kbOrALevEP1+ut/8VkqDoDaLJKivDr8RqEa6Pzgk/IYQ/q5du/DDH/4Qo6Oj+OAHPzhm+Wz8wW9hZjNDizAFMflLuk3zcnUpWqK65O0myHIOWK4MlivDypcBVgZrL8sdgEg6OQZ3LL5ibwG0YjLoqR7Qkz2gvbnoZHi9Nj4MSH8MUIt6J0G6NYFSrqFyvA8dbOMhXLxMUaMFUTUZhpP+Ji2sqNrkI+UU5W+YhM/30kl7HQRoiEpn7ty52LNnDxhj2LlzJ2666aYxyccex3fxiiOPCsPZigjZlW+lrLMK0u2lr5sQVU0wVT8rB9CkUL0iwxtyjMwG2talaL8pGyoIwMuT4R62G2xqKJJmhhlKRLWTX9ryVJM+6qTe0UavUsUzmPbVebo/U50zxol7uYkKoHxjLvgoI16V0FUT6IbZ4buI7DybJM7BgIZI+Iyxhtjfzv3U+wG40r45/C+/LEvvlsSPqZJoCpIKRwDyZHDcawnitCkze76aIsg+0cxtHfD6RNATPd6JWwAs16p93rUqaTNl2mOVPoCgEgSjv+TfIrM3ZVblUMJvKFQVnOGbaUcdEOt8Y9CatDWjqax0AL4zpgd1/5xKv1U/nZpGtCUe3NmhbXyqnX98A02wS2ebhlVrVjumaIRiQycAxDyLIgbktsfG3O8wJvb5VX6HtMTt7mmrkuxjIsW+Dq6+iU+icpm8AM104tWBiv2a8EdHR9HX1yddceh/ZQ2ANMPddI0uJG/PxHP1HxYJi7Lkv16EuNYkZszVOSoJ+/cmS5zhKgiMlz/InpS/CdPwr8yQ1ZCdE2qCIqHWtKVyHZF0YEYEuCMW3N1JFj1odPapVDrp6kOy9iOoKxs1Gm1Bi9SE/8gjjwQqmkrXCy+8UFPhrrvuOnR3dwfX7NmzY8MPr96iuIgVX9cIqvHziNlT/2Tx2I/eiaK/EEbW25v0xdwtmqYxf2U3XOb/V9ggx0gMdWieJrYFqZUzMOQ2p8k8LeqoXK15VGRIM4Jk79NOussxAaU/95gyi49YyTJMGzaMwypMAaSZiG3YnG1Lwjci9aTt4Ycfjh/96EeJws6ZMyd1gUR84QtfwOc///ngd19fXyzpjz/xKGz6wW/gqUn48NGryPyDMuYiPGgE0ElC4QRU1E+dZAWyePKnp0cmr9728ftgZd0Y0qfIbfBbzXooA7RHtzPOBDN4CLtuHT+qpy6CS1sIn8k02hZfozoo8X9nR2zYa12MTiG47aiBWF3IL4C/hPqvytWd3FU/6D6ikpcLWKNIBBrJ+IutkuZtoNZYjYoXT2svX68RclCIsYVnQpzu2x4sawRSE/6MGTPwN3/zN2NRlgjy+Xyqcxtzk7vBshZQFnXevCKHtd2r1ATGmPFDm6wOvMVWot8AwMYF/hzDfe3onDRoKKmasOKs8sRQAWADMvmakHDMFrH0iCN7nb/y23IstG0FiBGG5rrpa1Yw3Nc8nAvUlfQtL5uxWZQFSJ158JM/l+do7U3eJ9JQkhVuFRgrxYRyhMRjOor4bTiEiIFs0gBJuhozy4NEwt+vdfhpUewbAMpcElbZTBZT1UlV8wSt3j/4a3VAnXhlDHju1ydCv4mX3PAjzmJxeZCdbQjOE4EmXEqYJ5INHVGatF2G9rUW7D7otGHVIXjOOmzFoMw31DSJG/d+dNXPzxEEFHYkz8bZ3Fl9YQx1JNXkb1USvkE91BAJv6XSMaFhWyvce++9GBwcRH9/PwDglVdewS9/+UsAwHve8x60t6fdhSuK3j+8CHPtVBk1WvGSLJqKdgj6vWcYy2HDn+Zh9rFrBFfxLNJKUj4LhaMZg5E8VKJStS0mP12IcDRjSkVJYdgGCm4YTHmdDAyF7TawHSiOc1CaFilAegR51CDpEwLpHsDYSfqVkioRrITb8Trb2+DubkNiohTlGilK1BpMq76RQHp1nhiCoMw/xaRGaIh5dmvzNDMaRviXXXYZ1q1bF/y+4447cMcddwAA1qxZg0MOOaTmPPLTJvp3HhmJFTpcBCJYDICkIWk0LGLSUXOPVvodr83BntUzMX3xG5i6aHN0czRd4xQlQa717BpWcvKfQWnVUgkEL8OYQsqf8XS1pnOyG+1oB5vQKydqaC/ZfgulKW79xpIM8PbfSUn6JvVUJRVZWlSS+gnIq7YFBhDxvXN0EgX0PbuB7Hl6yS3YpB5cCi/vqqp5eWonIbWdg0RZvp+iYSqdtWvXgoi0Vz3IHgC6jl0EWG5EBSPa5vPFVRyqxK6GjUuHSWoGlUWAkZEciIAtLy7wdJjcSxxmi3917gAieyfwA7wBaU81JXuz1kjcDVQIK07kAuK74S3Yv3a2gYaS7aXPwGCZpjKSQqseSWm9oyM2Sp9MzSDAHkoY1lE/iOZvpfokOaYopCaqSa0ZKYuapV/XoqPIsQFfaZv2OhjQVDp8ALD8WqjTzZsWV8WFreTn3wl/w0wsy7M6UYm0IiQpH2A7NZun+ciJGiNdPnFuFqBOlAZPIsVR1UcM9NLkmAeQkd1Vp0Yu1dY6SIr+JGJDJhI5yuFoikAgJlzCnA8R4Pb7Bgu6AdeYQa/qjJ3zqfj6eJus16ROPFo6fDOaivB7n34ZoMorV+sLG/pKzJAvyIbWaSfKgsVce9oRaFsU5LjaJ0W6ekkslOBN5ZQaftlKLB3bZVZbO1d5Iij/GOynP8aw+WhH9w381shJv7x2vD6R1PU7zctn4Z8k+SQqS9KOoT5oEb4ZTUX4pV29wi9BBRH723Rv+q2Gh8ZdnCcQfFO0u3Dlrq93WDnBSPqJYKrPga5VaOgJJrQZAzCcbAqIgYHVotaJHbkcQKRPQG6nf6/reAW9d+nViaC+QhhXDVcF0qyKTYykwXm5G8A4LcI3o6kIf8KpbwJAYBaBWYBlwzvth+9By+DvAeP99vxlIpdVPIKqI/gtT/qKHYM89CWUyxYY80/dQtIGJ+RnE6wMwcoAKGdAL04BVnObfzmxRPVVJ2gr6iOJ/CNlVjq/jUnMBT3kd9Qo5etQK+kzyCoVNsZn4ZYBixdVPygMLnd3hzmdit9aNyQyCQsxzxubT5zUruQvqhBbKp19iqYifLutDVbOs96I2suHk66WcsASt55JapYpp60XXRkDRoYt6Q0nl871IwjGAMzxZ/zqVT/DmVxj/pLuVewgdhdAG5KZ09qOBUQXC9eOgPSrmHVjmgsYM9LPbVXyjStXTUXgGcSPOOXMNATtQ19vg5dl9uPpioPlRs6XtBBBUxF+cdsuwHEqkjRfLSv6xUnf8X7tUPXePI+OznKQtluMk7JCxFoydI0ABSdokAQCZbwEi9PMiibuGPGTGqJA6Mq2FOGDIXq/aVzijiyzs3KYxCDlqiNJj8kkLgEZUX8fF7QujxJNxJyuSNAa30qdUxwicxUtCX9foqnOtO175pVE4WrRrWtSM44MLNsNbZ/LWbhWCVZGzky2afbdXPLUT0wJM7c/0LgQCMgibEw5BtciWK6kCg6EqqDNvRq4hqGY/NNbkCQsrJI8IUugVIEQBOQGLZQdtz47JKidDwFV2eeLGEvTvITnvQPpVH8xqUAl14o292o94L5x31isbBXyb5QSv7XwyoymIvz2hXNSrfzjEM0m1YVYok4+CCv4TZmxE64DFEdzcB3vdbquQT1UyoJKALGidPg4AYAt0DCzvJGw6wZubhmeLl9KUP45OtOBvctGbija1JwMUJwCtD0hRORtUlfXVT91QVbgzkD9GaCzbCYFPy0Ghrb1DMOH0NiM7Bn8jqoKUiHxVlBn1amgqSeta842Wl9jM2MK6Yu+VUn4uvRq1lUlAzEg4UpmKc5BgCYj/LneJCyva4LkbNoITfeXIzzC0KBPB2BZnjqnLTOKcrGM0ZFCoC4iF2DCRmtB+qRIoZa3wUvY8ZAvOYciF1lem/T7ggiIlQELcCcCI5MMlZcIQB56NY2G/bUjfSEMd1/dDSzeZW78Qju3HAu5TQ6KM1EHUlPyAGobrik7jtZNtUNAYVvaOLq8oxOxZqQhV6pB+DaK+BrnloS/r9FcOvxiaPeuWxWoW0SVNIzOXw2TyTlgzBXi2MIKPlnP723hyhP2JV7xawgTy8Tj9pq2yE2+dQETTh7XL64ykISlhBFVPYM5YMUk8/yd4pEdqe9Wx5H8qrHa4e9COsGyDlY7BGQ3C9Y5lYKTd9hJ/CNUIqfobI46UpXDIrb+eHVVF89UZ+Le2dgvaW3p8M1oKsLf8ZO7vDmiffDteAeQzZeC3wAAsj3VMkRJ3waVZbdgnx1BvRSkzcl2TadegOWdQ6LnVs1Hw/KLYWRP3V8xDAEDWWBzuyeYWsKlw1iP7CPlSxlXLD9DbaRPQK4/RfYMcFZNgjAxESYkJhpx478FdVSsukU3yostmRRX/0aEdKX6mGZk0sJYoqkI3x0V7f5c5YJyT8JvsQGo8UgTXo2npkvKfSiuE4VuVPYJX9zBUQULk3DdDOjl8UleRQz0Epa6OZxcfqEskY5F8F87Dhi2oo9Pmvhj1e6DdKuQJHXaCb+sVZE+AdaudFHKf5kAd0eHMnqU9fFhYfnfOIkeSjgxECX+Fuq2COQCIwN5r4NnkOcAtGnyZxh7HT4fPae9DgY0FeFPu+RseOYQrr/gCsFh24JiFmC+zjzwE4ibqfE8P+Y3Dq0flwTJRbnoqV3kXTkR3DPGwCwXVsaFlfHNQynSFMOyQuiKhjNwdo2r8S3JLTH1aEiU8sXGzshLbCjrlVfll1SjkBpRbR5xcxCogvQdoJCQ8IkAd1ce7ubuMFuTalyjWlTVkkrqvicio5fIaNKYdhiYABSHclj5yNJw3omJaeo7oIaNvKtR57RUOgcecp2dsY2WWYaKxxuLZfIjbbrqdsfiAi5Lk1YgRXBJMhglGwotSN3kMt9Kp1ZRRFYO84lkfkWPcOT3GglRF67XP52pgmrHGjQkVy+MQftNO4lbWJ+8GFRmKK+c6uUTE0lngCD6GXykP9Uh/P4M3ir1cjEbvyhLqTMN2y2zpcM3oqkIf+8Tz2t1+CrJEyGyula0phHjcT/xN79X02EMyGTLQR5i2O1/mRG6q3VL0fF7P0I3Igi7MDuy6qHGrWT0ZntM8pOh0yUL5dlZ8EYsFci8sGMMqx6hPhKbqLFLCzfFIeUAaDALlPWT2fHzLbGpQiLdmjrYMFMC4JQJuUIxwcS/0FEw1W9s0CJ8M5qK8Psefy6hPlL/27SAqpKf5Gbr983Z9upc7HhjCgBP/xla6MDrNYRJXH6cIReIqAgAltfB2NwRHtlbkC1LYp6fxPQ1+ktRujdZKQUJqUN5/iyuBawcby4ED0oM2Q2ob/uXBMo6NGBhFJZWuk+ju68k+cafGxsJLajYEL2qgtBx+GkXuopY8t6nBQseDdkzxdRYO0lSf7QI34ymssMf/44TMPDUi2NSp5I2Oqdkw3VZEJ58hTZjwJYV87HtlfmY97YVGDe9D8GELAtXn+rUQCwHoOgvKGKA6wB2hoH4BFjRBmyn8nMzr7N5/Z5jwVmaCDj8fc94Kq8YnbFsRqpPO2jTvXng9XHAwnjzlFzZBrY7KBkOdUoEU4fBzU8JkGxcq86GqzMSpENAYY+SZaWOLcY/HdnzSEnjJMyDhTehJp+7i5KAmJ5XKeSkD5LZ0f0UTSXhdx17dEg8AuLUC2n8xN86PyLAKXt9qNyAPAmCu5VKotgMwPKYMrSECK/AzRYa81MTQtVQGehYA9lQCB5Bif8JHr4aygUX+1wnvhroO7toWSVJcmcbaGc+Nl0AyA3ayG9m1Ztn66RYdfTBlJPLq8om+UEprBeIGKNU0MtjIFd12SL5VNG3mduBILkzhKMHnplGFRgtUIUgdQa5rKrrYEBTET4AzPvuF7SkH4Cq8VMrth9c6QAG+9sBWMbFWvx3e/eIXPFZ/KEtLOgUuEMB7h8nCKWTxTpSyZf5bgQ4A35ICwC8jeZ2rOyJPI+av+wn6mTFzoDkSH/pBvVVPgoxM2ohvx61crIeAddXkbjUTxo6UE1+7aZVtTHf2N2efKtpI+LqfU3pakYOqbY6FnuhRujwq1HrjHmx9gs0lUoHANrmTMeRd9yAHy74Do6YvxPbd7Xj0efm4T1v+wva20r4wwuzUcg5OP7IzegbzOO//7gA73rLakzoGsaf/zId23oLeNdx61As2bj794fjbUs2oGdaH97YMAEvbZiCc9++EgBwzyMLcPTCnThs9h64TgbkyK9SJUlPSvZaZFl3Di306pwgLSkgACrIgfk+/1xwB+Q2FqTdCbXx7V3bg66ePWiblHzDF90q5WijYcCq8cAxuyruaeZ0I5YQqwZf41BNixbfY+TbkC/0yh6Z7emyIALcHW2g/sqjIU3sqFPd36GG7LVqo7j321g2bW2tYEbTET4AfG7mz0GbZ2PFG7ODgfi9jy8OJDMCsHbztMDvwaePkKS2Xz04IfB74sUFfhwvxG33HQde0//w4gRM6ngNXR1RBtdZvxC8Q9vtrKsNq0uDq4oYEyZkTe0n1NIoCYk/yA9oCb8Z1j9xFDJtw+g59g3Y+RIAgmUT7Jx+u2kVWj5lAEYywIsTQUt3x45i3CyUjqmOCN5bHTPQfQsXyPUmiEdhcWhvDo5vjllbYXiiSPSIYv2MM/X0JndMQz8k5/KxGn1o0CJ8M5pOpQMAtNnV6lyZ8p/qB4MflJAiVm0eHw1haECMkWdlw6rcS0YrWfkIJicrgauPQtJnzJsrcEby2PDEkVj78DFY+/BSrHnwTXDL4YEyVS+cGckC6+NVFnaRja1+l6E6XX4cgXJVmR8utyHhI/ARmwOUV04RVE5pykb6+xRkr97r066UmCnttM9z4GFgYACXX345enp6UCgUsHTpUtx+++2J4m7fvh0f//jHMXnyZLS3t+Okk07Cgw8+GAk3OjqK73znOzj66KPR0dGBadOm4ayzzsITTzxRVZmbkvAbib4hb7JN1dVzSA3Av1/39GGyOaRhwkhcFEUuN/hHBQm+EmQCD8tM0sI0Xu7eDZO06w9URBu6aMUBb5+dLYVIPI5sr36epO5gKWeHE75beyeQHUmYpv96yi/MAEoZeeVropfg1yUpXjLEjSbDwgmFTPlRonVD7YzGXpJulFnmOeecg5tvvhlf+cpXcO+99+L444/HhRdeiNtuuy023ujoKN75znfiwQcfxA033IC77roL06ZNw5lnnolHH31UCvu3f/u3uOqqq/DBD34Qd999N2688Ubs2LEDy5Ytw9NPP526zE2p0hkFkAdFJHVRpaOT4uP2QWdgvr8s8i2Zv6NieQKSJG9cWxrshDNqwc77B6S4DLBIaiwRlZComxcRaGYsgTBMlZcA9AukXQaQkYb1KiHsXDkHE+Zuh5WR/SurAiJvAVjTBeouAm1utGMkhsxOoDwlaXoJoZYvkKbrSDxDQGF3uijOa5NAgzl95x2reiJ9HK4yqdOj8WTqr2VrxKTt2Kt07rnnHtx///247bbbcOGFFwIATjvtNKxbtw5XXHEFzj//fNi2fiT/4x//GCtWrMATTzyBk046KYh7zDHH4Morr8RTTz0FwOsYbrvtNlx00UX4+te/HsR/29vehp6eHtx66614y1vekqrcTSnh/ztdGNyHJB9KLgyECZ0DyGZHfZdRTOgc8CndRWfbALI5wW9cLwijcFBGe24Q7Tnf1AWjyOeHAfAllcXg3iO0ouxH4dLLtb8/EsN7PImXyIJbkk3DROmfSsr+BGKbYd4EYnYbQ7W2jYzvLcTCd8QzYQBW3bcUw3vapHKp95pUdRkBL08EyvrGle+3gaGUha8EplyBSWodQAAcoH1DumjOlgLcbZpDypNwjkmtRwZ3MWps+vKojC+YYol073KA0AZfV57mkPDvvPNOdHZ24rzzzpPcL7nkEmzevDkgbVPcww8/PCB7AMhkMvjoRz+Kp59+Gps2bQIAWJYFy7LQ3d0txe/q6oJlWSgUzCNmE5pSwgeA//X6cfj/DnsGCCRzgODi8r9/Gc7uvaEg5UO0hNH6iSIPFD8XkJlKZa0hQSIeCeJte96bEJ73jhWeXt+FsH9+DMS66a+0ze0FStOTKHD5s3GduYOoiMjBCSCDDY8fFbr6WyQeesazyORcwb1C3gSgZHuTuG/epSWg9q0Whma63jktYwESb2onn/bV6Y9Jcbb4JkkxcwOxJKuLl4CYEy0eNKVdMZIvIERUQ2r85pDwV6xYgSOOOAKZjEyhS5YsCfzf+ta3GuO+/e1vj7jzuC+//DJmzpyJbDaLz3zmM/jxj3+Md73rXXjHO96B3bt344tf/CK6u7vxt3/7t6nKDDQx4S9YsAD/Hy2Q3N747NVwdu31fjBE1RjCvU7FoaogiRISNPQTZZJKJA3/qG0mEP4rJ8DyYTjGRPtjqbuTOzn/xYRhvfvRvgIyk00iuVpIn+BceJO4q7tA8/uiqh0wtG+yMDrehTMh0SOlQ7Bhfy1peH9ya/zDytKilInXlyTpOHUSfoV3ZSZ7jZooVdoq2QP6HojQsBOvUi6k4oTf19cnuefzeeTzUelj165dmD9/fsR94sSJgb8Ju3btCsJVivu9730P3d3d+PCHPwzX9SrbnDlz8NBDD2HBggWRNCqhKVU6HFew23AFuz24ONmbrBTizA+T7qVTCbo83FJo6RGBVgeNsAHyNpSwLKqBULSR+slqpMFwMtereBueWChNPuvDCgUXiWNrO7CxXR8XDIW9NtrWM29Cpl5CoQvUq8rb24DcaFpSAWjIBkb5PhpqgCSJGMImKErV+76nJvu4yd5GzMxXj9mzZ6O7uzu4rrvuOmNYFkMAcX5p4n7jG9/A9ddfj2uvvRYPP/ww7rrrLhx++OE4/fTT8fzzz8fmoUPTSvhXsuVgzAYRgTGGCZ291ZsVjjEYs+C6LiwrTgGLSFtx17fDmjMkEGm9ptjkIbqJ0Ily2Pz8XPS8aZ12wjkSX51m2NgJTBgFdURt/QHv/NuOTUC53cXoVKoDV9epAgwBbb1VpEVA+bXJcjnUT8bVbZUwpnWZoj+1+VUgb50qpwEiZi0qnQ0bNqCrqytw10n3ADBp0iStFL97tzd7r5Pg08ZduXIlrrnmGnz729/GP/7jPwbhzjrrLBx55JH4/Oc/j4cffrjSo0loSgn/s7mfg2/ZxHvLwZE2n3j8TWeYf0VOriLBjzQXhDhKGIuCfXEkN34f7EMipuUTK1lwSwS3TIAjXOR6u6U5jvdXvDaOA40KyQ1XGJoHUrfpuaL3RDo/7zdjhP6N0/Da3W/Bjr9M8993TP4qcbgWsGKSN58dwx2ZIQtta1gd5loJ3pwFv6pAGejYWF1UZ3s7qE+ZaBNHagF038evOzXuAxd+fzEfNe+Ink0ppBwvKt2rtySkM/YSvmlH2EoX4E2IipeJ8BcvXoyVK1eiXC5L7i+99BIA4OijjzaWb/HixUG4uLh//vOfQUQ4/vjjpXDZbBbHHHMMVqxYkeyFCGhKwi+U3MiQqVjOgZ9oJdbn4LxYrscUozGEBB2QtZAGr8CWrCphNuSGKd5LKuRQamUMsGwLFmOALV4ElgdYTrkyAMt6/QEjBuYydGxOsKCLAPG4OsZUEkCsX/QkLy+tPX+Z4/tXzh8AkHGBRXuAE7cDBe+daBUBXDBkFtrXW8CILlBCWMrFnHSJuUD7amhNehNhMGaDNF6f1DKqJ1RVCb2dvQqR7E36pjhVjRBfbUthSSoVtWa4xKq60uBDH/oQBgYG8Ktf/Upyv/nmm9HT04MTTjghNu6rr74qWfKUy2XccsstOOGEE9DT4+1txf8++eSTUvzR0VE899xzmDVrVqoyA02s0tFBd5CJ5wClHiuszygMpOi8mRW66dIVJz8l23pLDhfqzAUdCG80qg2+IBV61kX+mgNZ2NDCLUbLKt6T1CEwyT8sY9RP9pcRsXJiBCzZCbS52vYvyZhiOf1OrVhwUJoBbdxU4PMRlKCjdIC2tYBVwxJ88k1b9xUi58nG1nsxQNjJx27BEKu756EaIeGPvZXOWWedhdNPPx2XXXYZ+vr6sGDBAixfvhz33XcfbrnllsAG/xOf+ARuvvlmvPHGG5g7dy4A4NJLL8WNN96I8847D9/85jcxdepU/Nu//Rtee+01PPDAA0EeJ598Mo4//nhce+21GBoawimnnILe3l7867/+K9asWYOf/exnqcoMNCnhl8ZZyPaTJOXncqJ9vIzQJFP30cUKqo6/zSqUipPBJOcnSdKc4P2OgRgiFkJqcQPST9CgQgL3qDWqf9enoy4GEwmAMWDVQ4fjsHe+ZgzjqWQYMGkIaNfoZ5IVH7khG9k3CE4bwc0RSl2o3oyTwRsmmQa75K2ibdutqzjRsNokCKC9OWCoTlsgVwXxIycMp0FkQaAaj2k9GyHYC0WpYuVsFR35r3/9a1x99dW45pprsHv3bixatAjLly/HBRdcEIRxHAeO4wiqUW9e4MEHH8SVV16Jz372sxgaGsLSpUtx7733YtmyZUE4y7Jw//334zvf+Q7uuOMOXH/99ejs7MSRRx6Je+65B2eddVbqMjOiioPw/QZ9fX3o7u5Gb2+vNLGiw5VsOcCsYNK2q6MfF3zwT8bwpBCw4OP/ZYob09zHgTQ/PZKZc/LL8HTimqQyjt7dT4MO3wZrXJj84OFx5SHkf8yw7rEzvF9+HNHcMozr+mQdHVqEpqhMIHYebgSHnrECViamWh2+F5gUc/6fuR81CpFOxkVpIsHpRHpFpSvp2UKMAu3rEkr1Bo0HEUDDNpzne0DlxmlQo4KNqEevBFG9Gb91t9e+eKb6dGQTZ4bcpx/WppWmfcfF/+Xir6HdTrcoacgZwbkvfbnqvA8UNKUOHwC+TRfCJX6+LKFvoDOBWVqSvi+q604GrgLhjMXnA/gq1+pKxbh6yEbQQM36WZLuxfUA3qHr5K+69YYYIdmHnRtRyMYEj+hZMGQhAAW88d/HoX9rdzAHoF7IuRVfnfY7xcSxixYKW22wUny6ieB6G6F1rmXJVTga0iP/lTgvTgcqHDLTMCStspW1MwBgIHshMinhGqjSaR1xGEVTqnQ4rqePSL/XXfkaipu3SrrmqN5Zld517rLugZRKrf5W1UKexC7sncM4eUafgVzA0n0l3p72tION9xc/WQCKBOQMlbeoP7rDtNhMXpTlPbMXxutlWDB8Z8LbIRAx7Fk9DeOmG0xhB7JAZ8yEgwNviK0bJZj4wv8k2d1AcYY5aX1aLLzvAzq2AawaAlAHgQCcV6YAxfADmlUi9YNReEj8SHL9j1+h67/4yMSL3D6Y5De2aG2PbEbTEv5DN63Aw596CbLIdRj+9qoMRjdslBpc7A5/WvewIYjpV0pH7QDExm8ZBEB3yAYb58jxRVXMjnHAIT7hM6BtE8PwPHVjfE/iatvEPNk90KvL8xzQ+MnPJKSn6NuDk079CMO7uuGWLViZ6EZp2NYGzBjWPzAB2NQBbBgHmjQMzBwEOsqVacIvT6bfQnGKK4x4KoDgdS5DQNtOwB6pT8MnApxV40G728Mi7mtOSap95IH98JXLHTP5YlItjSHIZaCUL/tgOeKwaQn/4U+tQKhGYZ6u0bLxo2/NBzAfTNDvi3/JnykNJ0GBQC52HcDytxdW/EpuCXkrG+QHABdf8LAwCSpC+U28DLonycAdsmC1laKjAAZQicHZkYM9pQgQYLkW2ta6GJ1GcNu8slnDQH4bg+VacITRh0nKVCdjjdKo0s6DoxX983tX3bcUh777z8EhKoGkN5QB1nUAcwd5xPCVDGS8BVkEYGc7sLsNOHIX0FVBVxOoqBna1jIMzzdMBIh9tstg77FQ2B1+T62SM6F6Q4qyKw/a0nhdcCzPxXKa+QEr78FjmMDQpt2grRVaEr4WTUn4/8e+DTlYkvQa3ofqB+7G//qabf9fIS4nd4XsxXuV7AHAdRlsO6qjD0cG4XDY1KAYACrbcAcyAEp+o/W2NUbGVz2snAZ30gZYDIDj2ay3bVESCghcfCc+SUfaqaizD0oR8UPEj9/yEVAGq/77WABlHH72c3IWmzqAvVlg5jDQXgZKDNjSAewseBI3z8dlwIpJoEkjwPRBoKukf1dCESzXQvtqwvAMF9QuhHG8ji8zaEXiVESMECsVgwAatOG8Mg0VGHZMEEvOsRK+8IDKSDK5hC+/JKbl9jrtVBqDFuGb0ZSEnwODaa8KFtpg6v0NLYJL8qZ99MUOhOOpZxbgbSf9RZJuw79+98IY3HIGzDYQGRPbaAZe4f3PRiXwQ1t5/uQqBC62QUdx42kzSJvAcXNNgDd2Ty8flltIBwRuN8qXK6i6f8YyeiIazIG9nvPyFkk+iCtgVwHY1QZMGwQOlTe40oG5DO2bKtjXJyRx7ZSOBkQAXMBZOQXYB2RfEWlUM4mKH/dCDKPWfa7XOrixn5gO1Bn7yNJUtXBdMH+rNCGq/uX3/VsmmNtBxrc00k+3ItLofCk/Msp2eYcUnpyltaAJyiY3VnH+QfWTLVRI+4zifeS3kHbspCwI2NYBemUCaCAjW13tYx6hsncYefnZGf6K2n1TB2P5NGmREquwkmYmduYN0OG3rHSMaEoJP3/sOIw+5+mHRalbJGRP4pT9GABXI8mLZCvq9jm807DciPvUqX1ayTbUi3seA5snoW3CAArdQ5FRt2UBruWCuVYQx0vPBVxL33wI/CRD2c0wRBdXwVayIuFzHfJziJnIeQSjBY06QYrL+EiBwqQiLw7eUKStDOTDvXCkd1yJT2rhG03/SgTQnhycl3QqnFSzpPsJ0kr5hviRuI3rmV1C6q0S3H3TPzccTUn4X3rmbHzZug184ZWIMpVhEYNl2RE/13VQtBhy/qStCAbCcKeFwoCvn5Y6Bhdzz8ngOOf3yGZd/Om5eRg/YQDMMtmbR9nJLdmhlMFkPyvrwCUHrGh7rpaqHhKSJgB8QaeYjQ1P3eOrgPTlUSFa6qgNVtzvIc7P91eke3mxl/8ggU6IF1OcJ/CzmTMANmswwUSiATpOrhLkAu7WTrhvjJcTTtD5xE6Gp8CYaUjSpJtUNdYgtHT4ZjQl4QPA19yLcIV9OwrCZNLoBAvf3vlRAMA/dN6O9uHQb5ixwG7/S/N/Cawrgdf6Ihx82/H8/t95D2Hrr7cF0rxLJXzqH1bA3bkraCRvP9nbXkCy9feJi5+La/nKcyKgY+petE/mxyZyyKxhMcCFAyackympibh+PYNoY+UN0gKCDXeE5BknWk5CUkcSmm7qzDVDKyS+KEsutxhWT9Ki7kns8JSyA0DW8cw0AXlCkKt2ygA9M8XLxHbA3rQr6ByNSENWQlgioPyHWQBVrxXdP9XZVTK3qJbjTkwNUG0vnQ4twjejOXX4Pr7jXICOxW1wMy7mXTIT3955fuD33YEL0HPONLi2i+6Tx+P6crj/xddXn4u3fPUwkE3IL8wFZA8Af3/HO/CB3x0P1ybQRML//pnlkb0AVV/tOQLw1UGqV2fPnhhpLyo5ahdo8fimL+p3CiwvS9ukuRPz4ZO2Sm7aZ9Tp/jlKw9loWaV4PJ9oOQK37tGgc5P8/fgsCyALoJwBRvOgFZOjBakXRm3E7r+yH0m8AZJymkb1pt+BxaT3U+uG910JAMbPTViI6kHkjb5SXfvj9xoDNK2E/82lvwGt9BYkjWMM2362Edf97Da86663YMuf9uLlf/qL52cxlJ7cg+vyt2H8+6fj9Ovm4OdHPgMGoJMB9MYo/jm3HEOTGb6++QJ8I7ccDMA4BlAv0Hf/w3qCFxDVL4eiImOAlTFY6AjROB9GzTv9FF1U/poalTJTJFxVhx/dWE3vp4rK6ghhw1OHYf6pr2jJPragPFkCqFCOTvQyITgByDjwWB/AQPLNynRzM5Ei8VsC3I3j5EcWyxAks59JjRWnFFTdYBg43D6Dye8qQuz8Tt7Mj/tkTvmH6sreQl3QtBI+J3vV1v6BDzwdkL3qt/e/tuLnRz4DSyBw/rd9J+Hr2dsgHkpViejlAqkOQmOy1BWt0biuywDYgWWKqB5hDKDBsem7E3VkCfydwXZseGIhXIdJ/vrOwwcJFxBODehGT4GbYGOvDBhqBi/rjgLcLf7iMKknUP6OSSHSgYgiUyFyQZUyMl24sM6FBO4rJwPpX3lG3537FAfzWP37o2FNX1zHp9OjZaVjRlNK+P+UuQW5TNQGW7YwYRE/1yWtABQQq69zF6O6LoNlRbcPiBBY0JAo3CY4CFyJPH1ZSRMmkLpfnQScsC0ukaAYegISpLFgP2YI9vkUCRtdlCWHVRvRyJ4uvHHfsZi29HV0z+qNPIc8kRv+4RO4zE7SKAloKwKTRwF1/3cTgpGLIuUrPEaAt6jqtSlhPFLKaihSAvF6TMAYw441U5DJlzC+Z084XxOG8MoWGZ0IftJvz2l0MI9X7z/Wbw8mE14g3HU12ubGCtUcaJI2/IGKppTwM7b5sZikBI76mepkdEM0D6+unK7dBye2bvNTtph37xQzqXWIEf35aA5uf1YfWITfQAFlW1tOjkxuwEyY9NSvJdCTfXjPIv1B74buyCglTE9NQyjjSGX5hM3vg3XcTliH9MOaOwCmm8Q2RgYk6yz/+xDzed0FnFenyI9XSXrfx7phImBgT0H4phqyBwxkb0ZpMNx+2FzXZRUfsgkOmqkDWhK+GU1J+LVMwMTtL6PDYQvNUrW6qElSAQlvvn/zRGPegcrD30s9To1Ez083lsWLDHDzFk6sTG3/YWpSh6BOwumIWn1GuUMJ77Nt5ueQV+kq5dqbM34fIoAcaPfckdUZusjCpUMJcDd2ovx0DzCUDQNGCFQDs3zREDAGdIwfBcGkNvQLaCwjC9IRR2GbX57ju1PF9hZ853KCI9nqgBbhm9EQwn/ooYdw6aWXYtGiRejo6MDMmTPxgQ98AH/6k/lAklow/7MLfN2lXBNDN71fqIqA4mfWNedy6Q/DViceh3d3YXC7eaMtchhAnqhJjunyw1UCtVeeezAOz6MSuZK45Of5u6oXSoOF2M4tkh73KFvA2k45PfGvwQQzZlDnBzB7EQE0asFdPR4o2WFegWI8gXTRcClf1s1PnLMNXVP3mMMkUH2J32bzy3Mw3DvO/5XsxarGAWOJFuGb0RDC//73v4+1a9fic5/7HO655x7ccMMN2L59O0488UQ89NBDdc/vwu++BSUn3BxGJPcBxjAkCBqi36jjor9T9AvvHdfFxA9Mk/zqacrVu24atj4/D32bJmBwRycGtnegb9MEUNECHFtoO0y5VPcKsLzN3EKo9/Jv8zNG44UTygTXJbg6/T8BVrZYYc5DeRYx8OZO0KvdoBErMKejvgzojXG1mXgLWUYW3XW4wYgoHC4w+TD6RGlXGkrUAySNpsCATBawM0oYYxnN2LKyBy/99i3Y8Xr6w7Nb2D/QkEnbG2+8EVOnTpXczjzzTCxYsAD//M//jHe84x11z/Oa8kdx/bJ7UXxyDxgAxyW8+7/eguPPXAAA+K9vPIuXvvoXWMzzm/HXs3DpTacAAFatWoXbj3gafNGQdWQbvvzCB4O0/ylzK2xfcb+3vw0Tugx7uxtgIlG3nEH/Jtl2vHNyv9CAdS1SpxfROwd+4B0dH66Lm6PxAjL/f4/IuSURn8T1wvIHYYKbgTmEPJiyjaJRstea48DbRG1XmxSUdcYcmVgnsEDHH/QMKRMQ44zFJK5GDSZmb5ofSViU7a/NApFIGXEvQB1BA5KJ2xiCqpi0bUn4dYRK9gCCw3g3bNgwZvn+46NnAZaLrO2inHUDsgeA9199HBzm+RFzA7IHgAULFqBUIOQyDpjl4AsC2QOAM91G1nZhWw7GffUyY/6qKig6Kgj1EXJYRQpMQSyVzDvJ9YbiUb27QhYG/T1T1CaVTVPDxHgeg9smGkdIcnr+e4h7Jh52JFufEZeu//RNXmN14Elg6scaBl/6t4SLhV7a8L5HeTQD181E3I35+H9Fvb/d2W6MUU+IbS3NdTBgn5ll9vb24rnnnhsT6R4Aru28BV1gaMt4NXocAf+381bkTpmCvav2on1zCZ1ZT+LssD2/3gKw+OOHYd0PXkc3AGYzZHy/gRLhopdPxG+OeQpdvh/AcNfxz6PkvBUf+dxfUN6xEwDgOB5pBdY7+TwwMgoAcF3vHJWMb1DjOhRsExC1XOENS9cq9azhrM0hM68Yldp4pSaxEXqB9Iur/AS0ftF8ZbNKRPKQAwN9Gyeia9buZLr8JPrfsgXsKICmjGjVRRU5NqYcrKMM++SNXhgXoOEM3I1doO3tqIq99wm5xLwErbtcyPXPLRDea5IPEl1x7fQPVipkXUAug97AOj7OwYB9Rvh/93d/h8HBQVx99dXGMKOjoxgdHQ1+9/VV3gcd8FQyXcoH5wRU/P0OtAtuIrpHgPU/eN2T2RS/zizDb455EpbmVIesncdt/7oYOVsmbE4YpRLBzsjx3n36M8hkXTmgX6h8x2DYWQjmkhLvk4ZIAeD18aBZ271tBiCEB4Cn2hEuNjOpUqLkbLIj16URWm2w2Dy2vTgfo/0FTD58C5hFQXradBNqDmhVN1jWBSYo6p2BDKi9bB6JGNJXJ9c9tQRgdZVhHbkb7qRhOK9MQqqB8lirdeKSM2kEDSMXcgnDvZ3Y8MI8jASTtLrEdB+Lb1xIQV1ulBTd2kvHjNQqnUceecS3V698vfDCC9o0vvzlL+PWW2/F9773PRx77LHGvK677jp0d3cH1+zZsxOV8c7FT2pVDXEWJqJ+U+fHbZhV6x5OoFlLlc7D+2w2WpkG+/Nc5PbUJnx4TYTRYVHqZvqGym35I+4M+NNU4M85b198B0A/QE9OBtCJ6HDc+y2OKsKDK/iQQwnrlzVK9kKqsYztpbt3dQ9W3XucEEdOKyTcGKaQeMcCvTIZ7nNT4K7pgrtmHNw/TQY9Pw1wKhMOE/7T+it1ypo2DDZpJD5RXVmZ6lBHJFerh9BopYiA/u1deO3hpRjaMy7F5L0+Mz4P1AjwhVdpr4MBqSX8ww8/HD/60Y8ShZ0zZ07E7atf/Sq+/vWv4xvf+Ab+/u//Pjb+F77wBXz+858Pfvf19SUifTtmfYde6pT9deC8F7da0GQSqMvv8SeX4D3veTISj1kAOW1gbIjnDH6ilNSG+DYDqqTvEjCnHzS1GFhEsnYAb9oFvDQJVLKCCVc+KR3a5EdXEgfWJdxP9LIQTOKqz2hZch7Bs0iSPwvUWLrFa0G8VJuUETCc9ezlhRXN9OIUsDftMCYTu49ODKyZ/XB2VaubHgMJPw4psmIMYEE78ipfpG5IAhJJcfm3s6zwPtszqapit1A/pCb8GTNm4G/+5m+qyuyrX/0qrr32Wlx77bX44he/WDF8Pp9HPp9PnY/rmkm/kpQXrdQeGPMPSSAykr4urim/k054yTwCsYaE34KEL6p0mPhXII7uMjB1WE4PAGwCFu4Ge3GKRMAyIcu6d50ff6igc/BJX1RjyZ2ceFC8+LAAyPUsdiJzF3J+xDs9FeJ7kNz9xMR3M5QDPTENOGkb1InoakEEsPYyqifuBkuVKYrpWWTxXlg/8pU7AvlD6OpDacsuNYExQTWTsAfLpG3DVtp+7Wtfw7XXXosvfelL+MpXvjKmeZ366xO1H138rfdjRj+RBGU/L3DZjTYIUYevoqvbbMpZ6BDT4kMLIUBENRDCOrTX89KppdpdAE5Fy5o41ZcpHBCjkjGUJ+63lCZP198SQtJKEdfZiokhJLdA+iSAbNBrE8wPlBKMAcQXY1U1EzsGLBNH6GklfEGVZq4HuorJocRv0LFSrYVXZjRk0va73/0urrnmGpx55pl473vfiyeffFLyP/HEE+uaH7vph/jAuXtgMc9qulRiyGW9yuY4ABjAt9spjTJk8v7xhi7guhYyGU9PUSxayGQIlkVw3TIy+dCU2BWESMBbNZ7hZ4v7B13xzkH1AxBY5jhlwLbDjiaUdPnZs0wvmYmkBgRti3U55nbNgn8SSzS1SD56CxzfkWTp0TSyAhCSdrCpWyjxe+9ZWUcgvhwm/CQAu9tAL2RAc/rAuouAReJrSf18tK1dP8pIhPqRzPbVUzB+xi5k25z4yek0Ej4RAMdXtyWJqL6Eql9MTWhtnmZGQwj/7rvvBgDcd999uO+++yL++sMVqsPLH/47TOwOLXsYgFwuTD+TlYko1+ZblbiAZQN2xg388wXXJ+gycgWemudpKUPYjPAmmeWdcstNG7MZQUi15GaQybBAZcGl4tCcMQHUYKJttTa8MiEMWQWjm4gNdelKUoKkbR5NicORUK1D5HqF9Qk5kYpF6uS8m8CISdUtSzPISlEGs8DKSYHpHnvr5gSZyyACMGzB3dqROm69QQRsfnke2ruHkW3rr1u6TiknqOPUlwjEE3xEzxZKWWOMlkrHjIZ8gUceeQR8HxvdVU+0+2TPyTOxSkJRPwQmghZg58QATLlXIivpM05oQUwmpMLvmZynkJxLjj55sf3FqK5UuCXRqiSUrskQT0f2UdVY0m/oSu/VO7WlgjpHhUm9xX+KqjA1niEOBtPtVkoEoMRQfmE64AT2s8kTCFOqIk60LKWRLMrFHLb8ZWbljjNFltte1W2hQMLl/Q47gzg/+MPrsUdLpWNGU+2H/+I5/wtdGhWtOIHEf0cauKFzCC1TdONhnkgZXXN2wcqXQcyFnS171gnw9ld3QbDATwpywApK+oz/lSc2iQCMAsiVvMlRjdojiH/c9nCUQYBrAcN+2A746WQA5IGZJ70Mfpi5pwpx4fojDDB4dvHC4wacbgnCNbzfPH/X9c/dVVRdvCPh1hom9Ul0srdKLNgNNmU06k4ADVr+PEbEC0MIyajTbxYuCEXvMZEBYIkFzxIyJ22W+a0CnN05lP883X9WF5nD9sCeORh5HzSYwehLk8GG5RO75LoSutv5It70oce8PBzPYCEM6xVOnDjXpRNaVFHwe+E7n1fy92zqXfF7MpLKH0zkQy7j3r3A5t/XV3XbQno0FeHbTJQgxFYoT+qJ6osIwRqhkwAYOmfuQPuUAY/0HB6O76vvxbH8/C3/iL74CbCwEIwBZMtWR5EyEoDjt4erdQEMzQQgGDcNEoB1QLsD2HbB2yMeXHXlq6jaR8Hm9QNtjpy2+FcsNz9S0XezAYzkHTg6obAfQJvPAi68Ewj9e7YDQBeAgiZeIoS9Un4rYJXMAyLW6U2uiP6Dsx0vb8FxgMq+SWe4aV2R91y83NKQ0JChivlFoGs9kGfAIQStvFsE8hvKaDtxq9dJm0YO6tjcz6+0oRPYNEEYLYbxeWfNtZHypLqscrMCm3kSAwlZky8caFQ8apEtYOJEYMIHnkQj0NLhm9FU++G3vf+sQN/oEStXlXhuljAPalmy7bfOT2dzLCJTGEb7lAHBhZkJPV/SpKlDNIBlAWXFqCdIhylkPw8egYn7pdgA5gFDswEs3h5Np3sE7Mi9AdkHy4/ECWORQAgeaQvvb3CWA2c2wjmEwM8CxtleGTLMIzvGANu7aDoD2q3wpae+mD+08Mje+FY16rLBmY6+o+HlFwUI7mYDyABkUfjb0lySu19GmwGLAMyj0E29CgyjC4ByO4Cc8C3E8vGpDxZVXWZnD4AtlL+xNAxhkL6nHCYOpL335riUYY4mKd6uhn+wrEI+tcMzKU15tXT4Bx7mf+x9Aokz6S8f3soTowj8XFe/+IcxbzdND3Kl756/IwgTuBoqjrgApTJYkFYgceXD8kj5LAmCY2gO4idt8wAT5hiDYf28mIk+gegDaVHMgwEjTCHOIH/hhYp6njEQpjK7DDwmFksNwLfC0Q/ezIkZSTMBksxOM4bRHjV9j/T5pL8ub550ZqKq0lIKW6EeMqYJpBgp8IRYYMFTYcSDULU31mjp8M1oKsJ/5v2f9u/UjydXSJ29uE43GjSgDCDrN3w1SCY6KE9jtx4PObDJpp25QvA4BZ3/CgZnKs7ZMuCbrJq2FYgsNPPU/wGcQxBp8whU5abWz33r1NCS7nCwP0hyCStCWbeAt0IHFUj74weUAIIuS5u92j5Mmej+RrPS5tAgTm1trWBGU+nwJ3SVYRa7FN24RqcfVyEtW07Di8dgMdXNnE6srXlMedW4Utkt8xNroXTxgWl7LTCKDfEp143sk6LRZK8TihPHZXAKhASnFOtha0al/sS77GCCzi8q4etMGSIWUX6ghqlNqIrXvj8IAg1AU0n4g4M2zF9OL+GLiKuQOj9nNHpOqInQXTfa0cTkFqTFw7ujcjmCfF5EOOioZDFCAIQdaokAFDNAmXvrI0dMZ/k+Phw66TrY3M0k7pnzqwblSRUen5OAqoo2RdjXBEAEW7c5bIUyBzbou8QjCFl4G0GcfkqnBhKle82IUE1G6BEaJeG3YEZTEf4xd/67f6czZTGRWfhXZ/IIhGQdievkVBfzoo/RrHDkXxyikR0HyLTpRyWgqd7h3QAg7LdmStbSbGdCG9Stb6PxJNLnpyT6V8dm2/CKgx3ezOnXC50Mca+Xk71Yksz6CmlWEnKTdLARN1MFUeACGd328fwhNUnwZJ1+w7ggVhRXE1S/mzpi8P6SsEGdEYYN9sYKLlWj1mlM2fY1morwV69ejb69ei2VR+hRiZz78b+6FaPkeGStEu7glvFSfN8HIBfkEsgN/4IINGzDHfII3Cn7f0viX4Lj8C0evC0ZnCEvSceB5MfvHRdwn5mKchno2AZAZ6nCiWkd4E4EykOAM2zBHWFwRiy4G9tRfrkbVPTWCgT/ccN5gfQDtxKktm9vFPLifxkAlYYV3qBqlkXqng/A6FwGR3hcadDDwlfD3XJFO+y81PRcAGTYgU8XR1cmnnHgpqhXtPEIcAj5lVzlpRm6iaTvX7zTL+8swH15urlMRsRI+IqtffL4SgjdZPAYgFeptNfBgKbS4e/5+xvR1lHAYC+Qax+EbXsS98AeoHOCZzJZGmVgFiGT9QhzYDfQOdGrjOUSUC5ZyLd5NuoDe4HO8T75DmdRckvo8K1choaAgpPH0PZxaJ/aj5AbmXf+q0v+qVj+pKdd9sy6GYThBHmmesFfICJZtXvB3eGcPFlLPLQX3n5uKnDc9rALF4bSADz3WUDHWoDaAL7qNZDch/PAi1OizfEY/zAVnpZPMMxmEg+1DWWA14CBQhmYBeWAb4XoxExYDRSgiTg6Nz5KCQqJuzZfQKHAvMc2A4v0Y6aQ4N+7BGA90OECrMww0E7ANCV4H0NhN/MaJX9/rpIeZHeuFis9NQU1LGYIcwjUiKpEXwlJwjWGVYmqOPGqNWl7YKM4GJo4ZDLAyICgEGcMpWEA8Ih/pF/QcRJh2BcFM7bgB4+k+0cQbAc8MAQM7B6PTNsIJh+6Fdm2UTB7FJlCaP4ZwvIOI2Gur/7UD5HFRkEE0CgAV1UdQegXKAiLp4EOBgzOR1TgcoH29ZD6k9jmxz1fmAp603ZvsZbQJ/GVmXIUQsewDawGBuEA8/w4dhgvJDLxhwgnqlJWOy9dOR34Nn9VNFwnk3ICmWLOgxXqmUNAGehYj7CjLHujqI4hAOvC+FpdOMHLJyB9+UUEZL+qppVrBiiCBws7A/Vv0iSAxujxXUrYHytxDgY0FeFP+H9/h+Er/8UjW4FLiPx/gsrmfV2+XUGo00FQsdV4XBomglxrCXCGC9i24hCJAOaf9meDmafXglnMKU48njvkLeg3hhQJp5gFclOB8nZ0rAEGOwFM9v13Ah1cH+zK70Z6R6a0X5jq/W4fAjAQ8DQdQtCakRDQARtYEzqV2h0Up0IQnMnv9FQGsEP9hDjo0eQRuPNVv66/IVtq0ufWJlWwEX9vgZqHgFGf5BXWEfdOclyCw9dHDcPrsGwAZRvonQhYA96o0MkAKAN2CcjBs75xGDDUCYwUkIzoa2SzSB1OSNzBN+L5N2Y+hy+IThvnYEBTEf78+fPxsslTqajSB/broY4IRbMyMX7gRXJ15jfFoQwK48pSUqImx2SiKc4n8AKxuAqsqkeIgZUJHQOQLHICVYqjb6lxUltQzqF2AIJx+AoAb9oecizXjHDeFZAdspFdGy374BzHW30r5xhttbq+gYS8AnIVFia4iBZEB/9DSlZDhHAEY+Irfr8H6NgLWV2lbr8gRCECnKeip8HJEDdcEvKvCryCx4UJH4yJFZkLR4a4FYmfAd5W1qour4V9gaYi/GfO/RI6IqqUKMmTQuD8t04i14b1AwYEiWieG546Cgve8edw0zNfgvPiWL5eiCSSZQxwAkncW93EbBYqe+T+I1CzEBGoWPI6hlEgU2BA2Y/FF0kRwLdGjmh7RoTnpBhph+cv+j8yFSiMgL25D8giXFDrQjgiTwM/jY61tkeMfhm9raL95wMDZaMFHuwGMAmh6kfgkqpt+3nvXfafM8tCqZ2PYlzA3gwUinFpACZecx2gvDkDbJxRRdnSRQkhd2L616NLXI4XaENj11wYCslC/0ZI0i4xuCnrQWvh1QEIe2TIO79VA3V1ra7iJVz1LtvCGwQnxoBNT01Hz1u2+qRvAWUXLOPHdywQuWCW1wicQQsgYXaUk68DhON9wQO8A3D9fWlynl786Smgk3eEm1o5QocHwH2uTdlNEWA5gEZtMF99xCwXICsgCCq68PQJiDwsAWAjbXAfnwDGGFwiWHN7YS3YG3YuTInAoZOCbf9xOflr0NELoDfqXs4BxWlUoVYbClMGstuA7GgNnUYFuNs6gY0T0kc0EnWKSFqilt9vaEWjrdEAKHKAjyktExqhw2+pdMxoKsLHpCmgoS0olSxks6ECVSQebgvPyY5cBr7Fq0suMhnhkA7VopCPADRbFZdLNvr2dEB6pczFtuc7I8VUO59px6xCQOii7jzgds6CPG0eyBGi+W45AC9MARbuAHUIaqcSgJenhGpxcdQCwCo43gQxLI/4macr0ZK9UEY5PX+L3fXj4WzthLVwF2j8sGflo8JBsDgrkPC5u6+2BhCqbExEQeHfzGi8bT3jUpyoqak3AWlGGsF6jk0x6x3iUFUZlUgaNZtc2YDIucORjAVhIzIXlGQYUtNQJTEaRfgDAwP40pe+hF/84hfYvXs3Fi1ahKuuugoXXHBBxbjbt2/HlVdeid/+9rcYGhrCMcccg69//et45zvfGQk7ODiIb33rW7j99tuxbt06dHZ2YsmSJfjhD3+Iww47LFWZm4rw33zzF/DSOZ8LyJ6TuqUhaA5mhUrXLN9Thofjk5M+8celk805GD+5H3t3TgSvbr27O9E+LnqgeFRfzhSC9yG56cfSTAoMoAggD9DrU0RXNZScBifAjAtW5g9tecMLLVsLmZsaSjEDd4Vqd8iftwy7qwR07gY7vORn5797+Huyi1ZBYsF15EdAuN+7wOZx5atKak4IzVoId0snUN4Xza0SyYq6e/GFMDkIU92T1CxzXmOJRql0zjnnHDzzzDP45je/iYULF+K2227DhRdeCNd1cdFFFxnjjY6O4p3vfCf27t2LG264AVOnTsWNN96IM888Ew888ACWLVsWhB0YGMBpp52GzZs346qrrsKSJUvQ29uLJ554AkNDQ8Y8TGgqwl/929/DtmXSVneyjKhkfFhKPH7PddsS9xjSsSxCJjOCcrkAgFBoK6FcspHJOlLcCNQNbXgblf5qKqSlCa/ws86UTgcir/MjJV5w9qypPaQQ2oJnz/jlGJwIem436M0lgUZ88cyF3hRezctfzCse3CGK8EyNxxBOLovvT8qC0qt1ePolL0HydflUBMprJgN729KlV1dw/SA039HzM6tadB9YKzYY3OUwbrlCkDogZholNk4a3HPPPbj//vsDkgeA0047DevWrcMVV1yB888/H7atn8T68Y9/jBUrVuCJJ57ASSedFMQ95phjcOWVV+Kpp54Kwn7pS1/CypUr8eKLL2L+/PmB+/vf//6UJfbQVIS/59/uQntUgxKBbvO0qN28EN4QV02HMaCtcxT9e70TNfJtoyDXQrloAcwzxSRXViuIKgnJTayBxrYkMDiPW4Js4EHyM5qGrsHkcy4UTxkBDkqeqaDJ2qVCSyHmwi4UAdsN8qcyLw8DMBF4NuxXeKJqBxWWW5DgxdGR4Cc9Y/cQrEP7gmcMciAADkA5SK9RfNe6tQZGMPhWQQzOKOC+MEsu4z5FoGeqE3RDUQ2Ub0ouQ+GyR+tViH2KO++8E52dnTjvvPMk90suuQQXXXQRnnrqKbz1rW81xj388MMDsgeATCaDj370o/jiF7+ITZs2YebMmRgaGsJNN92E8847TyL7WtBUWytwpaJu2bRoDimSoEqAnl4fkUMR1LBSOpDT5A2Ar94j8iq761gI9t92LIAsbzKXDyHEBsn11oH0rmlUuo4gxjImTk8ZvCP/Yv7hHXZbGVbHKIxLWeJIJFNGZtwIWNb1z7D10rVyoc4/+hyiikHzjbyNUpQX7l3BOgkRve1wV3dJ3553Ou6fp4Je6QqSCS7Al0SZti4JWYaXA6DIUB6y4D43S9l+oTGqjIqoczG8rUAIDt/iQ9j+w3EAt0zeFiIloH9bDs//4u31LYABvIqkvdJgxYoVOOKII5DJyDLzkiVLAv+4uDycLu7LL3vG5X/6058wODiIww47DJdddhkmTJiAXC6H4447Dr/73e/SFdhHU0n4x/7uO3jlvP8FQC/F69wDf181wM/jDD2835YddgZgvj7f7xS4bp9cYKCXn6pBGOpvQy5f1KqJeCcATnyqpC7kL9uZR0quiRTmpT6/CdIkrkKylg1QzgEVY+SDSOfjwm4vRsoRXx6S/HWjLlKLII6wgtOXlEi97XCfb5fd+fvc2wl6ojMySgD8CX5Se2L1GWJUbWpe+xp1k/C9l/XcHacGwkh4wI+qHpL9GgFCFVsr+OH7+uQtSvP5PPL5fCT8rl27tFL3xIkTA38Tdu3aFYSLi7tp0yYAwLe+9S0sXrwYP/3pT2FZFr773e/i7LPPxr333oszzjgjyeMFaC4JX0GEMFjUn0O1tw8u5Q0xSzgOUeMnE4YlEWmkLBo1QvQhEN2OmMPRuPNFqjHPWglqWYkAJsxDSCDlL7/JuPFqMlW57o9gxHefrLDiX/1LjHQuldRQkZEfQd0imqTnNSS436h0KoMLIYor9M/GpFt1viy6uryxoCqke/7os2fPRnd3d3Bdd911xnzi1H2VVIFJ4rq+SWEul8O9996Ls88+G+9973vx29/+FjNmzMDXvva12Dx0aCoJ/9mzr0J7wUx2Oik/sOQxqEJEPbKYTqBjtmS/jq4hDPZ5aoLOrkHJTyxP3ARqGBChwEqALCqOAgVPNcEy8HT3GSY1QHGhFhO+dKK8ob4nUspSChd1Wcz7nYO0ZECd3+CQJu4IYLaOVKKIVUkJW2GSI/TepPRFaucqvlLupx6TSfA2xCP5nahli1hfBXzpm6vqwmCsSFFTyMA0U/ciAE2FC50hxyMCph2+GlbGhUuARQws48AtZmAXCOWihUy2BIcsWLCwfeVMEDWGbmK64Ng4ALBhwwZ0dXUF7jrpHgAmTZqkleJ3794NAFoJPm3cSZMmAQDe+ta3Yty40KS3vb0dy5Ytw29+8xvzAxnQVIRvuaVYK5RKSNvwdI3ftsOl/ZZlzpQpUlICA4ewc2kbDaXgnF+GLAAQnH5467csBLtzBhKrb/tOLgOsOMsMD3qLIgC5kiCFl4PdNHXvQ+wkyQFAdmSkQ3C8AU+ib6fqePy/4kKzLJM7Zz+eOJcjxeWqOnm4EIaRRg9y2qpb4MJHcBr20UnC9QMvMAt/m7VSQhzNqAtQnp3fEyybYc6b1ivhfFhqHGDmknXo31HlOoSUqGXztK6uLonwTVi8eDGWL1+Ocrks6fFfeuklAMDRRx8dG5eHE6HG1en5OYgIVhUHBDeVSie79KhYKxQOLSlFhvECBHfdvICI4jCXCAjFYtaov46sIk3Y+FnbKCwrhixyACyvc4gQiw3ABfaump5Ywpf+ZlwgW5IOomY5aIf1/i9ZyrcBXVOMK0os2QtO0jNqe0+hg1P+GslezUohPx1Bat8rU/IfU6iZMICYZpjDw/rdoerEosEYr1dWhXelHIrC0x43pR+lh9KrIfZHfOhDH8LAwAB+9atfSe4333wzenp6cMIJJ8TGffXVVyXzy3K5jFtuuQUnnHACenp6AAAzZszASSedhMcff1yaWxgaGsKjjz6KE088MXW5m4rwF3/jUrhutBKKljpaqxwCnDILfot+AEJi0KiExLCuC4yMtIG3rqG+rNbaR5J6pYaogUIqosSuszJCEdp2yCVyYsBob1uiEY9sCOMTA198BgCsLIXV6b7FdAAY9tdJotsyif9CKBZeopsxySR5xBRNlPCNqNyPjDH8IUZsWfUHA4Xx40YjTAym9ZPSXv2AsaT1AlV5pcFZZ52F008/HZdddhl+9KMf4eGHH8YnP/lJ3Hffffj2t78d2OB/4hOfQCaTwbp164K4l156KY466iicd955uO222/DAAw/gr/7qr/Daa6/hW9/6lpTP9ddfj/7+fpxxxhn4zW9+g7vuugtnnnkmdu7cWZUOv6kIHwDav/M5OA6TyUoDSc8KgGAFpC/GEzsKHcmLfq7DYGdCErSzFvp2dfnmmGE878hEptSyJKQ3GnmGSEPMmRsnL68zmkNpMBevEyc5HWc0HLYGzgp5m1QVqtVGBBWPwIspqPqsmqDJSD9FHsk9EwcZOyjqKWMYZvSuPDKJC5DgA9UZjTDLBIBf//rXuPjii3HNNdfgzDPPxFNPPYXly5fjIx/5SBDGcRw4jiNNiOfzeTz44IM47bTT8NnPfhZnn302tmzZgnvvvVdaZQt4+vsHH3wQ+XweH/nIR3DRRRchm83ikUcekez4k4JRdGp+v0VfXx+6u7vR29tbUc92+/z/g0PmlbF1axYjw4dg8pQ30NHhYs1qG4Qs5swto78vg969c9A5biMOPbzXr9iiysHb4Azgld6zj/TIULznfkB/bx6rX+8GEXDYQr71JQPgwrJcuK6/5bFVhktZwLWw+P1/FMKZQGBsFJZhczgOpx+wDapSxrzOZtPvjwKsMiYvWYtC96h2ElmsFc4ogHLe87ed8H3YZTBbTwimCVty4Z0yFQnvgon7GCXtDHk4Uokt2nlH0uHCrwPEyj6RFiJKrhXYUBIf9xXzkzKA0au8IuoxwT2e9PnQV3CyNP5+2tm/+b02lTTtOy7+5fgP5E27KBowSkP4F1xadd4HCppq0pbjhp6bMDU/D2vXhG47dxyKHdsR6Os3rAsn2gb6Z4GoD9z+MSQdru/093cB+URPip8XnjGgv68LwGSPRDGA8FxSBlcgOtfNwDMqV/RGWuj7ZJ3FR/RAkjD/cPsBAE4Gr9/3JpRZBuOm9aJ78m4wi9A2ZS/sbNEL61qwLBdO2YJtMbh2EXk7NDWNIwKT2ssMy7MqsgTzz+AVU0xGkF+PQcLX5i3F5ZkZwhnSroha4o4p1BfnjThffmgJJs7cBbdMsCzCuGl70TVVd5p6XFqaEKZvMAZwUcWk7VgUZD9EUxL+1HzRJ2YZqlmliP7eNnRPGJQqZrCgikjqBAJ9OImdgvd7x7ZJQZp793RgwoQhaBsEEXgH45UnhnAM0Kmd5K0V4hXIQ0OeJLNrdTvssoNsDhjZOT6aT7AACZh50muCR6rixpYlRHRlVZo3owtbN6KpzGtjE7ceYLof0UL1bp6G3s1Tg98zFr2BrqlvGBJNIqz4IRv47NXo5Pe7/niM0HQ6fABIu8oOAOyMPOwU9dHqbxWim2WFskI2K26byIRLdAPccqVj+aJ+ajnkCWY1H004BUYLL64NECTVIA3HPLdhbOCmHRqYnzj/E6hq4stdpbFTY1lhn+rwK0FXV7zfjAFWNu6hKw1fNC+5MD5tAVuoI5qS8Ldm2isSkerX0TmUSBdtmpDkflOn7xbSNB+NxFjYAbxy7zHCpI5OP0HaIbF20jZOFU08by9ee+eeMJodQ6rCM+58pUdILwPXCdM2EX3wzv2Dy3WWUETegixn1PKuEdu7RjPB9tSy1ZB/7/8jWy6xaHlcPn+AsNNJSuAa3pKtqwwJifkdUCJkWFg7W42yw/xO2Pv/vboipYBb5XUwoCkJ//Ovfwz8E6oEX3bCGXlVJZIWujiW7YRmoIlFuwJW3P0mFIdtv0xegyECSsM2Nj51OEYHQuV8rBWMYyZudTl3tlACUIaV0WzgHkSSfxb7x2Hjs/Pg8H11yhm4RYRtXOy3hMspWSDHCg6gkTtfgltigJMFIxsg5k0G215HxK0/pVGWr43ge8oxphZVkVwtFmzgFpQv7kGNXqH0WxGRgdv+yvrmco305ypHF54x+OTCtycXGNrdgZfuPB6ZrpTHO1YBnn+qa8xLtX+gKXX4AHDhms/g5tk/QD7DCZ2wd8TCpzd/CgDwo55/R0eeQMQARhgZyaLQVqpI0TrpVPy9fet4qXPJ2LoU+aSvqHEu4LX7j/fcLBfjJ/dKpLJ9xXxgxos45MgKBcyYyUjt/CwGjJ88EHZQ+qJG0yjmsPmZwwNPEnY0I//g8GBhmbAIx/XvJx+xBp0TBRNTuwSQYLkjLSwrBwduRcA5XRoBqIwu/mahU6SFi98iDmG4RBORShmT59NIaCZw/d8d3SPpUyKGFXf6WwMzN1i70Si0Jm3NaFrCB4CPbfg0AGDt2rU45JBDJL+/9Ymf+/U/9zI2fesHUnNUyV2UMFXyZAxoWzAH597xv7FmzRoAwLRp0/DKh/jiCJmIGLMgW8TyRsYA14LrWLAzodknEcC2LAEd8WKQn4igTGW5TGoYx1fBeOSbC9yHB3JoH1eUid+XfFhEVRNaF4VbQAvvSiF71cRy58pp6HzbuvC5/Q5Dfb+MIbYD42UM+SkMKFtaSdmH8bQeBmg6CaO5Z2wZG41Kmar+JN1vfm0Weo5aX/kb8FsC3FJYP0SyL5ca09HFKNli4xwMaFrCf/D//Rmbv/1UsMXK4/DI7q83fhJr167Foyf/Dyzf8zF4kukxX/sg2p9+FOVdewAA5bIN23b8Fao2rPY8aHAIREC5bIH528K6xDDh7W/Gvd8cQvvyUEdJAIasGXjTYZsNpXThbaolmme6sOwSyqUMCGXYths0GNf1LvWoRZVQiWLCDPN7C8AIGCv4BkM5DA8DbW1FOT0XwSS4rLcOJXbBKfwtSLR847AQHfBOleLPHRIBkStPEjP5OSKoG5FWK3kniLNPyF54nohNvDrq8QrXu6U7kkpxoAPFkSzybSXIJ4FxqSJMhn/j9X86NPAXyX5ooDF76bRgRtMS/haf7EXCy2SAn83+IQiAbcu7F1o28OI1q+HSTLQXpkfI0iWgbzCLce3CwiOEFbrvsWGMa5MlVRDQ4ebxxDNzMb4jo423d8TFpHZZL3zU4pXeIqlyJnIk3Bv3HYdDz3w2sKqJDpUJNFSA2z4aycsdAgjezmqMASwDaUdNKuYxVOR7ATnCDqJ8VBJ9z1amHJk8ZkC4Y6ZgVi+OjNY9fhTmvu1l8APMw11HlQVtgp8WGiI1qlo0ol8iKT2WrCt0FDHiplrH1HUVlfz0YfwOFgDjYy0pvHL2r1+4gV2dWPHAW6R3x4M8tfztOP68J1DoHPaI3RcB+OiP5w8CVj97GLa+Nl8oU6P2EApBSK+iaUn4BzD+dcpNmNQhu/FKZ1ne6TyiWyhNumjLORGJkjHAZkBnWxkAi/gBQGebTNr8ngiYOM7yt1PQ+LVFd1ocHckgWyj6LUbwIC/iG/ceBwBYcOazOoNNoG00kiZjgNUO0EAobbvqXC35Nu9MkOgFwk2rh9WHDx3X/uEoAMM45O2rBVKqRcKXtyHWloEPKjhRuQD55xZUN4pIoAqCPj5jwFBvHn954kiUB4Fcl4uB3jw6u0dR7GPIdDCUS95p7tlMEYNDWXR2Fb0w44ooDgMs65/yNkJB/HHdoyj2M9gdQLmYAWMMuVwRfb05dHYXMdBXQGfXCIrDFqwMw0jvhGjhJDWejT/9ahmIyih0D2FkNIdCoYjygIVsG1AqMzDYKA0X/OcKBYRG6u45Wjp8M5qS8LsL5s8X17Dj/LiaxOQnkZSabkxZdIS26vXDcMxxK6JzBgzCjY/I1gbkq6pIiu/9ZUC+GJRZOvzWLygDQC7ByoRu5CLYfVOULgHAKQIZzZbhOsk52vgZgHa4ZRt2lo+cosd7JdUfixKu7BYpilyESnmIcaslMEOnMbS3E0N7JoAxoLjTK8fATu9g5qJg1VsE9/O+z0DJP7x5WAiz0/s7sKvTe+ZRr8CMefHJIQzs7ArykN6NMpLiUjwAWBbzT3rLYKTXiz8y4tWdch+kMyHI9RqDOgIBGkf+LR2+GU1plllLxWpkXFP4bL5PQ9a+JwO81gm4Q3Y0Hds0jPaG8pzIeecmdnLBX18K1o1kIuWJ26pZzD0Iow5ZgJ2rpkWeI7gvIbAiMkIifc2YR3USflsWAOYm+3a1kD2/eFL+M/3l8WOM79b4/lk4mlS/oTZ7HlcYnerrVegmpum64UhTF08yYGCGswEQX8Z6omWHb0ZTEv7wkulakgjdotvBen6e6kXnB3iTvjpiYAyI7G8v+pFZj0lutCEcdtgmbSOOumV8iwjh2QwnEYYSf7g1BKxh6fn0ecBoVscYYGfMfjw/nodM+mEmg9snYqSvED6HuJ0OZYJnkr6pmGcFka5SZ2HFERGhQvop5Ekmh9zylxnaeqH7HuL6haQdbKTDYJbxW4n58jYS+rFE9dFE9Dq/sQRV+d/BgKYk/E/f836U/MlIThK8Mu8ZZBgcYVq/0SKwvr+g9RsayeDhrYK9ueBXLFnInLNQ60dE6PnJQogbl4mNbvqVJ6BUZlq/JKCRHJz+LIhvCS01rATSbgVU21CJr2yN+mifc/PzC7Dx+XkojWThOjbKRaDsm5i6pQzcYQRnC7iuv6WtA8BVROeUcMknYWZ48aaOWku8FT6e/31Gh7J49pfHY91zR6Qqawst1Iqm1OEDwMc3fRLXT/sPTMuXA9X3o9tL+A3zdv67eKALb5poB3rxrZTHlVs/BgD4wQd+i/bnNiGbceG6DG/syeD60k7AAp5ZC1w+YxJyWRcEYEd/Bv979ycAAM+/bx5e/vh/B7r+kSLDJZu8tQBrfj8PD7/tfmT9hVhlh3DqH07HvHnzgM8eg+9PvQkdeW/C8tVXZ2KJf3ycTgca7RQycIf8T5kVlLoGAnLKFhhzg3GsqMtVLTT4xK3uzF8iwCkDWd3CKAZp0ZWs0yU/H7kDHdnTjXVPdAd5iuUplbz9+xmFlkGHvut5FDpiVgnzojBzR7p30yR0T9sjr8LVPQsgvU59Rxjf8fDoz9319ogUbyov/2sJenLVAECbl26USi6YZiJK/eZ8VBr6+QsUoa+Pcb+Nk+djiNakrRlNKeFz/OO2S7FzYhf2DAG3b94bkD0A/Mztw2+3DmLvMNA7dxKu3PSxwO/Td70PnR87Epv6bDyyDR7Z+1hTAL60ZRc29lnY6LYHZA8Ab3rHPLzt0TOwt8iws2jjkk2fCvzmzZuHSzd/ErtLDHuLCMnex2Xb/wY7ihn0jlhY8P8+CMcJpf7IX78VuXAQIZkI/+klYCILRG3KaCTwlXSz3E8bNm5UElO71OG+J72LJCOSvXimYni79cU5iYbikfIJz7L6mYWR8iRFqPpIHtnbKI/H1z+vOjEuvntOwHp3OT4oXI/h++jrE/Ru/K9tm/3UjlnMAyDlORQb4zECVXkdDGhaCf97x/0C03btxnQArAv46LgufISAK9f1YRaA/zW3GwDAmAvatBO3zv13lN4+B++87mg8vuxuZLMu5k8B5k0G3u124vebMriZ9uLGKeNRyDlgrAigiJ8feiM29LXhH3dcitvm/RssxjCpDQBc3D7/+xgpAR/fcNn/396Zh9lRlPv/U33WmTmzZE8mJGzZCFtkC0FREBEQ1AvP5QdhUYkIYVOeey9eA4RF9Ioo1x2CqMglIShX1KuyKMiiLAkCkQQkELKSZLLMZJYzy1m66/dHnz7d1V19ZkmYmJn+Ps/M6dNvvVXVfbq/9dZbb1Vx38R7SCVgbJVdvxdP/iN/tSQXb5zPXWN+QkNNkYmlUNKur92PrM6QSHeRSNoObClBWqUBsZLvdP1fZnHQias8Vy18yxDoicidCJXHslIIz4spZWnlUAmmJTCQCMPAMi2kNDBKm7Rbpj0InKzS33/3RXf9TMEoHwtnMTUjZvcWpCVBursv2WSvzmFwPrt2jEKa7yJi4EwKktj6OsuyXLaTdy6OzCUV2fsFpx5v/OnIsoUuhEBaEmG4Y0qmaUdZlUmyFCHlraMTS+/41nX1tyzpWd7blhkxgWWaSGmPtHt7UuX5c6WFptyIHft7LGZhmmA/EfZpiSciSqp6zriVS/Z56kf1b5mGgSKy8MMxZAl/fLO9aqWfJO44oK60amNQlvjLRp7/8DqSKffnF8K2kj6yX5FjuuqoSpkKiRgC9q/vZvHku4jHg4yRTsB9jT8ilQze6pghuG/i3YzIqHrJdBEwKPRUU/C9I/F4nlSNG6+39i+Cg06019UHacffpSBI9k6PQZavqyNbzUsvziqdt1N15iAeEn/anjeJGw752vld+P+e1aZ1ygiznLxk4BznuqpKdbHcsFA/fO6Ht/5wHFNPfZV4aSaok0h6dsDyDkLK0sqVPR1p3nnyKFKpIpJeBm4rwm3QtFKPJbzmhekUOjOk03mlTgMpcyCNkzC8u7f1J1+LmHYvYp2eegyyvI/xYLl1JBIZNiYTpjOYPqe9iCFJ+D+ZcA8ZjeXpdHMVy8QrwyKRDLb1TjRCdZWFlMGJV1JSJnudrCodPvEqlQjqdXamqKvNl867D6KUgmJRkJReqjiUtaUd46ae+Td7O8JQIlGtrtWrx/uuH1Jxd2KaH5lEjB4T5d4ViwZJzT2z6+svXS8Lcy9U4jRv2rf/eJTvvBu5VMxDLOE1fTUb4zjlDYh/KysJAdveHst7f5+ukVZuLCqhcn315BWu4xoBlfR7L8uvJ8qD4e93D8qLyMIPx5D04Velwh9YXXhZX2QOAVV6aHWySjHIYeXt2DYe1VLyNgqxUqOliNzvReWbv0TF4tzVMl6RSlnZ0nXcCV789tFDAj5kJy/8VmygWm6YYCHvlgGG7dN3q11Wl6hlhd1DJ0086SV7v9y+H2YxthtkVJkcpYRdm8b0Pbd+cK0+rfekb3xB07C66XT6rrxSvbzht2o+Uk0z8G5UhD2EIUn4YRYq9P5Chcn7Qgg6Xd2gWm9lVVe3BcjeJf2i/1TZpy+VGHz9C2h1uzqQ7XOdnCz8Xd+PnfRueEPpJ4KAX90q68UT3jws14fsu0ZvWf4ek64OxYKn4QzIbdm7f5kZ+ht5kgYvrxeLuOwmaxlZIeOwPHc3rdAe6++TvpHoq8Wvd0+JYBqrl5dvDyGaeBWOIUn4E798fLjVCegsFju9oZ1c5eRVKOr1bFjaF9D2Y4fLLMvt8joYN76VsK5+LC5Dyc3K2T+n2aVVLa2dkyzrHzt7beA68qETtyDnc+cA1Nf1aIlSV0cRItOmDWtEfD58ReRxG2j1fWU6KHRmaNtSrylMh/5ZqaseP2KP5aVo9ltVVFiX3s7MG13jLadSzzesYSl/943TDA4GMulqePjwB4XwV6xYwZlnnsnkyZOpqqpi5MiRzJkzh8WLF78v5Z1y9SyyPe7D533QthTTbO+OaWW7ugw2pEdqfcq7OpIkLzxCmfHooKsnzuynPlE+6Q+hu2DdVViWVM7LkrV8wjOnByZeWZZTd4tEKkequptEOodh5Ikni+FdBuLYhJ7E6k5i5SWWJbFM27KXBTVgvqszqWSTN+GIm6ZrH33TgotXH4uUUvmrhL6+4E66VE0nsXgXVTU9pNI9xON5Sj6qAcOIlXo+HjPOe/uc440vz2Tlb4+ha1c1+R6DQg4KOYN8j7A/u6GYC85UdcnQJg0nv+1rxvDaIx8in62rdOUDvq5/zjHGf45KRRZ+OAZl0La1tZVJkyYxd+5cJk6cSGdnJ0uWLOHiiy9m/fr13HjjjXu8zC9svZyHr3uWnl/8g5gBhYLgw389rbwRyou/fJu3/+1p4jF7Z6qJ/zmbC66eBcCmTZv44+zHqE4VMS1BzwkHcOnSM+yMv3Yid427l/p0EUsKmkaN4Lo15wFw4Nor+fHERdSnLaSUbC+k+OKmSwG4cMN8vjf+J4xO2QS2K2dwdZMdp3/gpsv51v4PMN6yTfOVb4zhmKO3kK7JuYPCwkQmKY/z2edLzvywcBgzqSy1ICjZPiW2eHXFDOLOuvmH1/KVlz4FwCdvPIabYotJxewtFzvr4Rs75wJwmzmF64wlpEo+lzfXjOPQqdsCRXt7U/5zOtJ01vlPVjkDFIJE0iKesOjpBv+jqhsEdPLxliFEybK1ACm0ebj1SfLOM7M8+iJwHbPOfr7iAKST36YVukFa/fXveei7RlKGLQBoV0h1I0pF5o2o8uvp4ShQ1h+sQduBLJUQLa2wB3HSSSexaNEiLrroIk4++WTOOussli5dyuzZs/nxj3/8vpV77rc+Qlt3nJ68wfaehLLr1Zz/N43m7gQ9eYNdXQlOKZE9wKRJk9hRTNLZlaStM8nHv3mokm97JkNXd4JsV4LTfjBHkRUOn0BnV5xsV4Ip1xypyPa7dBpduRhduRix2Y2KbPZXj7Z7AUiyNUnSNe4WgKJCr1nieRnBjuqp0EMt5yWhy7DdqqYp+ZfF6t6J5sgYlpRY0uKcxccqsvqj6soWfsvhH0UYag+lTGg+s8lvWXsfv7LroHzsXkAqXSwPAtuRN/ryHLecf1AXKI0JqDel0oC6vxM1IJL2+bbDxwkG7lKoPHDryzdw//3l+vXC6hSmp8lnL4zTRhZ+OITciwGoZ511Fm+++SZr167tPTHQ3t5OfX09bW1t1NVV6irDHePuY3JNNzHPpBXTEnTO3p+2d7KMb24hHnMv3TQFG2SGqRfsT8+SN4nF3ME+y4KtHUnOfe1jPH3CEyTiliJr64xz5c7Ps3j/u0klXJmUkO2Oc8nmy7mv8V7SKVOR5QsxPvveF7h/4iKSSZd4Djx4HXUjvEskqPBbplLay9dOPeXvnlTC/ZDOp0QK2PjXmSBg7TujePPNQ0p5SLqLcP4bs/nFzJeViCQpoWhZ3FS8kBtjS7GnOJVIFwnS4tLr1lF4b7N7r4vufr5eK9my3GPnU9cbcMjSkXV3prHXyndWCC0ST7q/kWmCEG44pn1e49bzhGWGWfFAaRE9taWVEj5wzvMV/dGOzqv/+yFFN1CPAPrDjG4mlQdg/UUEl8wONoJSexzsGVTSA7DK7Xn5OQKO/sM3Q6vXn/e7kv7Z/JiEqO6XbkF28WsuG3DZ+woGNQ7fsiwsy2LXrl08/PDDPPHEE/zwhz/c4+Vs3LiR/Wu6AwODMUNS/dIGqhDEDPWBNQzJ/jJL1+J/kIjLgO6EujxPHf846ZT/QYeGTJH7Ji6itjpoJ2Sqivxswj1UpYMvYipp8rMJi6jyLUufSLp+a521qrp1wDJLYYXOUvLBHrnr+kGWI2DGjOlQyq2Kwy9mLsfQmLxxw2Ch8SD2LBq/T8Zg0R37Y3JwqZ62/oWfeoGqtDoK7BKHLG+RqCNQh7QdWSrtrOPv3BuVnGMxe49gq7SZiZOHc98qkbRf5ndf6L6H5ee4lcozTq2g3M1zIOav3/0SBu9DIEo6Ol3vF6nV0zciOj3nWAKl7qOQlbN5HyBFwHvXu07539DGoBL+lVdeyT332Hu+JpNJvv/973P55ZeHps/lcuRyrmujvb29T+U8cewTNGi2zxQC4jGJaeknXhlIxXr3ygTYC6aFTLyqSet3ypISaqpNhYi8MrshUPNs2VlHY1Wza6QLjzug9G6Vj0tQyUeEcImdSJYahddWuCt8OvcjXtoRTFfXdFzQZXr3NaW8nEFMxDElyn3dsHkUMw7erquIp74yQH69EWpwLEA1P70EHeZGqeSu0Zehyr2f3ny8z0DvfWc/sfYdvfrElV2nZNmd038ffm/lhbl2+qq/52G7aPrH3sPFpdNvH/4zzzxjD4T14W/FihWK7vXXX8/LL7/MH/7wB+bNm8fVV1/Nt7/97dCyvvGNb1BfX1/+mzRpUp/qmEqG/9iVQ8zCZV6Lsz/52o2Ffsp6WF47d4wLpCmnFeqxZQU3nAg3VUR5bRYpob2tQdWS4SGfpeIUsnfPi5ILSJX99ZXpvRCudw9gWT4vyqXZsDShokG3Vjm1WjdvlQIRVmHhueEyVT8oA3s1Uq2byld3Vy4Vme64dEbJLzStrkHyNEJqvmqeroUOOtIO1kf9/ZTCQA0FjQ1OFHjkww9Hvy386dOnc++99/Yp7eTJkwPfnXOf+MQnAFiwYAGf/exnGTMmOBtxwYIF/Nu//Vv5e3t7e59IP5cXVGm23YPera4wS8QbARI2yKeT2caV0OYbVpdRY7apxO6pg9eKtC02WV62odATI5E2Pf1T/4sM773UWM6rrr5VIX0hRNkS1F4j4CxSpp4vRTJLtef0oaNXV2wgpbQXTwN3yQdR5j93f1ojFiR9b3qV/H0byXvSOi4vN61bhjctnmvxy1rfG0HDfru0lrzzueavM5Qy/KSv9l5Uub/evqsO5BOWVnf9+sbcb817/S/h5Xl1ZblnF8zHXhyudL2VZkTuQURROuHoN+FPmDCBSy+9dI8Uftxxx7Fo0SLWrl2rJfxUKkUqFcLcFXDay6fx4km/DzzgUkLRFMiSD98vs6TALBrEfW6dUo+YQsEg5fPhOy9uZ0+M2mpTL+uKUZWWAZIQArp67MbJKxs1ul3zctnwkkWJn8tY99w0ppyyEkNIiIPhCbu3LOjcWgM0lHU/MOttnn32uFJ97JwKlgjMgHfK6ylKhDAU0ndeFFMWgbhC+vtPbNZfBH7S85GF56vWtVOSu/fSaThcncrlae5jiLXsl61bPpND6l8hXatb+VGw490xdJVm1oa5pdQLGRhCe6kVnhsIa8xLv6V0d0Xrc3kBn7/erTNY7hyI1tKphL060/bpp5/GMAwOOuigPZrv5MmT2ZitUmZyS2lH6Ty8KcdzWyWmpT6BlhRsKGaouugQTFMECGDLriRf3NpCvmAEZK3ZOJdsnk9PPjgxJ9sd59rWXfTkgssN5vIx5m2Zr2xWDVAsVFyaUCkbbBdCsQjpke3EayRGtUv2zosWi0GmsbO8a5SUsLO0WbaDniKc9+Zx9i5QvusoWha3WRegfTWkxTflRQFZrhC0JyzL+bMdRH4XgpQSaQmkFAH3gzKO4bsHlV0hlYlX58NXyvPhH386mtceOY6d60azc0MDu96rZcubE3ntkQ/x3t+nl3f70u/4pZQc8tdb+t57qn1HpXIr1Uen53UFWWDI3WnTIrwPGJSwzMsuu4y6ujqOO+44xo0bx86dO3n44Yf5xS9+wXXXXccdd9zRp3wGErb1wzE/oTphsbPL4I6eFkX2lfQoRlRZdOZjfLF5niL75tifM8oo0lMUXN+8AzyRNPPkSA6tMyhagg/+5lSO+JDruvrBRx+h5q2dSAk/aGphrUfviB747LhRCKAwewJX/Passuy5+99k3fXPIQzYGTc5/ZjVQLCH4sCxHq2iQbFoE+shn1qGEa/MMu1b6mh+80CQsOS3HyQjwbQk/7rqeKZMmVJOt2DEUqqzNgGfuGgWJ1/qzkW46fDfYL5hTxI76JJJfP6nJ5Zli/99GSv++10AqqYWufCo5WVrPEjKLum73x2iNBQXliyFU5a9JB4fuzMgLqUzpqFnGXutIX+jrIZlunm69XFkbr113/15ufUMg/7NcxpBv57Ea0GHW8zSs5Z9UKbqqhVQzwcj1dzPSj0AT++4FKHjzeeoQQjLPE0sIiFCNmoIQUF284ScP+TDMgfFwp8zZw7Lly/nqquu4mMf+xiXXnopTU1NPPDAA30m+4HgV9c/R23KJJWwGF1tgRvwQ10ORlWbpBImtekCTy9aWZZt3LiREaJIKmFSkzSZ7XuDDqqJkUxapFMWf/zSS4qsuLKFqmSRqpTJ6TUjFNlJmVGkExappEn2eXV26iu3vUwyKUkmLOpzPfR0uq4sxdL091pMN/rHT/Y6UqidUIp0ElBtSQwBiZjg/y5+S0mX6jAxhCBmGDy54HVF1v1md3lg/o3/2azIXvrh+tIgriCxM6tSpggjDnWTbGGAEJaiVz4OXlIgT6/Vr/YAfGMPut4DjttDNxjeu2tCcSOGkKNGy/NXrpEmjfs5UDNNrb+/zEr16YueVGVS9O3y9zCcsMz+/g0H7NWJV/1FfyyAu8bey9iGvDJgZVnw6tYEtTGDKaNz5R2BHNmWtjSFxgyTOlqIxVyfu5T2Wjr37djJ1ZNHEPfJOnvinLb8NF48+bfE4+rLmM8ZXL6tnbvGNJBMqIRcNAUn/uUs/vrh35fHFKSESZPfK+0Ta5FIFYjFTEwrhpkXJNL2fq7SEliW6vqZefaLyndd70BK2PDnIwHYtLGeFa8eVi63aEpm3DCDVV99JzAYaknJ+f84jp9P/5uGiiRfM+dynViKlwjOP2sZmQp7zlolS171AZfqWZaVyjc9E6ag/Ia6RK1GxljeW61sdO5314nyp996d9O45/QWfgUrPtBT8OYZphu8Hzq5tvHRxtr3QU8TceO1+EP2xCnL9XqAsJQex2BY+B8z7h6Qhf+kdcWQt/CH5AYoTy9aydgG1zHutQBnjSsGzjmfjfU9FNvzGLHggzuiNs+VqYbyhC2vrCZd5LkP/Z6qKgKyVNrirjH1pDSbhCTikmc/9Du8m2EJQal8ARgUcknPNrWCXJdBorQjly66pNJ3f9Oeqc4p6eIxwcqvrkZoIl0MIVg8/WXA0AZmfkUsQQj1cYrF+jIU5roqwqKDKiFsYNQhKMvCXofd00PSDWAGZwAPBpyypOZcGHpz6exNOC4nnUtqMNH/KJ290hXZCxiSyyOvv+0FbQiaEBCLSQwRjIt30sdj4TL/DFxHBpDybX3oQEpIp8NlDtl78925vQF1QMxLDLI07V+tWyXyD5RbGlB8/vmDAzoJzXixI0uW9o4N5IfEEDH8ncVVbzeGuh7U81I539sArJPca91766nLx1eMpgw9SYUN6IZmXEE3mI//Nxb0Tjy9uHR6Ue+b5R90LYVfS2DQwv45hMT/uw4Wojj8cAxJwo9XCHKpRIayglzKyjaLroHxltcff3BXl3easPB9xkPz1Pmu/eUVuuOeC2nQpql0j/oz8er1tw4IzwjwP36quqG427R1EeHX7OZlVCBB/+QqlaT8ddI1Rr1b2r0lEH1IE6xfbyGfYY2m/tnwE3z/2Fkdj/H+CG7WQgCxf8puybDCkCT8zlz4ZYWRoS0MlwmBNlzRgdfq1pUXKtPkNXL0DqdUfy1w1jvW9TRa3lX3qNW96FtePNjWFTBq1KZAHmHXAQ4V6C18CQEL/+Mnvt4LIToL/6h1sHWs8jWE+Y9dwtVvMFMuw99m4pJUUE/nv/fqqN978+H33/qv1AAE71VYEl2ETbheJZeSCC/L0VbugXA/fI0l5uCY+RZyQH/DAUOS8Odv+0Iglh7shy5fMDDNYLy8E9KX08TAS2nH8HfnYloiBTsW3/vde9zcFi5rbQ920TOZHiqRSNjL1/T6OLp21tj5eaxiJ++mVxpx4kuFgJmHblPSSAkFU99YAHQW7MbGS/rOcVE6i5u5sjEjglso6q+hn9fqIbWKvRGvrNd0+gS74ysfuPU/2ORjs/PA3C6VbrKb4WCOOcgB/g0HDEnCB9gyegxFz5aEDtkffOepNMw/mkIhpsgKRYPcyVP4yF/PoCevyoqmYINRz+e3Xka3bwKVJeG99hRf2DqfbHdwk44drUnmb59Pc0dCJVGgozPB5TuuoDWr5pnLVR5LD3sxq0cVqRrRjTQNexlgE2T5z2DskU1KHps2jFTyaxNwY+FC7daj3Sb8l7wI7Wwiy+QO+RlM3+5UHV3hs6TDfPiV0/VPXpY5TtqwnosMr8P763v+Z6KZPVEXfx57x4VjCTmgv+GAIRuW6eDbsx4isTlLwycn89mffVyR3XXab8i/0kzs0BFc8+w5imzpNX+m6cH15MdU8Z9vzVVkyx5Zw/NfeI5cdZIFmy5SZJs2beIXRz+BZRh8uUmdzAXwzTH3YUjJ+a+dGlgX6PsTfkpSFpl5x4lUL3mgdDY4gBZPFPBPaJESppyygmQmF/6aCdi1bhSt6xpBwrLq89jwwCbytYKv7rxQSfr0T97gqctfx0zCN7rV61+zZg2Lpr+MRHCneX6gmGuMhzCwuHLVLPjqXQG525h67Q2JYmVKcOwRy6I88crV987EDZ9MJS3DHY6Vqsx7b03T+R7m0vFbwLrBU1fXvY5w0tOHZlZyr4RbzK57S2rdOpX1peecP41U0ofrOUpWYLOZslwIjvr97f5KlbGnwjI/GPsB8X6GZRZlN8+b1wz5sMwha+EDfHvCfUxs28W42jyxp9by3TkPu7LDHqT+rSbG1eUZuX473zzgf8qyez79Owq/eYdxtTn2627j22N+VpY99o2XeePqpxmbKbCf6OT7o1zZimfW8+c5j9JYbTIxVeAnE+4py9avX8+94++lMV1kfJXJn457nPXr15flP2m8h9HpAnVVko0Ln6Vz4gGh11Us6H+23sheSqid0ApAdzbO9oc2UZ0QNPRIbku5+wv/39f/xgtX/p2auKTOktyacGVr1qzh59OWU4WgGrhBLFGK+XexhLSEpDT408f/GGo3umSn6VB7SFzneqvsfvCRbkW3jyy58hy9cP99WBkVXRW7ZUo5GQcz6S0AINzVpTupr2T/XTASsAKzfJV8Bsm2jFw64RiyFv7PJ95DbSY46WfzrhQJAWPq8wHZro4E7cU4k+q7A69GZ3ecHaMa2K+jpTxhy0E+H6Pq/OkU/vctxf9tD4JKJt4/g40Xv6PoOQOkE//zOLbd+SLCQ2JOHrvGJ5lVtYZkwqJQMNi8Oc3k/bsQAro649RkuonFBBIo5CRHzV3W6/BhoUew9sljAGjaVsvKldM8cknX5Gri7/ZgrxTpWHD28cyF0/nbze9oZR/8QwNPndGqyOZ+6iVqqoKbkKtRN16CFr6JSq5v2V5fR9WzlHEKpzfg6PqYR2NxO42HurvVHrLwQ64xmG8lhFn+FQi5DxOvgnLveb2FX2kdfTetPUAeauEzOBOvThighf/CMLDwh+TEq5+d/yj1JbL3uz0m1OfQRR5ICSNqC9QVi6UQQ1VWU1Uk3rbL3vDJJ0+lTPIP/6MclqhMWDIEmz6zGsPQL9vb9K3nMYxYQAYwoinHmsKBimz1P1yymHnoWswSn8Z0oaiCgOliCNU1okxCQhB/t9tzf7yWrOD1W1fjxryrsuc+0YIQsYCslLtaB0MlSy+pqjtF6aNSHJe704A61+FGi/TPPDUMx6UThL8BV3sm+kYCCN3xypfKk5cO3jL2HPSRSVJzrPvu18MjdywaqZENHgYSdRNF6ezDiD+/SdutFcImRhEy8comkfDJVfGYPvzPJhz9iyllaaJnyPMkjGDEkFtmsAHxfs9mU1QkOE2+ErNMkm+84d3xyv6Mx/TXIqUkHhoeKTGEEQjLfPHVgzznhOdPBtLqooK8x8IgwCFuOn9jGnKzPXrBMvTk6v9t3DIcItQ7BXTuqGA+XnLU/Y7Cl6YPkMHnRV9/nxL+a1Nl+uvxX7c/gft9MP0IgxWWmc1mufbaa2lsbCSdTjNr1iweeuihPulu376dz33uc4wePZrq6mrmzJnDU089VVGnu7ubadOmIYSouHFUJQxJwjeMgT9dlScd7YZumN91gFUVAnK5ROB8IDsPj9g9F2cT8JB8ey237xbnhs0jQu9JpQYtmM57Qv0aJO5gbH9vvvheG4p+5NX38+8fKjU2fSPe/j2UwUaw14TvKwZrpu0555zD/fffz80338xjjz3Gsccey9y5c3nwwQcr6uVyOU455RSeeuopvve97/Hb3/6WcePGcfrpp/Pss8+G6i1cuJDOzs4B1NTFkHTptHTHqNb4jkF1AQRk5X96q9rZnFpvcUv8+90qZWrylBKEUdmyDMsPoLbW++MLz3/llKsHIM1ynuPHb6WpaYJyHaa0Lfbgnr8CS0qtzK5T8Dr+5dTXtdfmt1xVl4x67CWoskunpO66o7wboDiLsQlVzzml6LnlDwzejH0SXxl+6CN0vHn6v0uNLKRK6J+bykphaxnZskqDwOrGKSHuIcGgmfmDsePVo48+yp/+9CcefPBB5s61o9hOPvlkNmzYwHXXXcd5551HTOtnhZ/+9KesWrWKF154gTlz5pR1jzzySL785S+zbNmygM7y5cv5wQ9+wJIlSzj33HP7VVcvhqSF/8XtX6BQCG5iAtDTE6dQUCdCOY1AsWjQ3ZPw+WpLMlOQ7U4qes6xZUFrl9DKALa3U1GmdzFAoWhpZULYoZlJz45WttBDBxoeEYKyc1kImDDB3R/AKadQdLrw3u64TfSthaJWBtAlg7Kaas961AH4CDksVQWLPlxX153qrQx9goFPnuoL+qo7GJbxnijDn4cMlbyfkANw5/SX8H/961+TyWQC5HvJJZewZcsWLWl7dadPn14me4B4PM5FF13E8uXL2bxZXXI8n88zb948rrrqKo455ph+1dOPIUn4AOOuO5G8bwJVZ1ecBU3dfGVDN909cYU8crkYhz5wJp957zKyXXG8Oy7lCzF+uC7LgrYWOjoT5SUW7IbA4L3akVy5/XKyPe5yvs7fplbBf/W0sa1DKOcB2rsNvtR8BVtjKRBSkRVMyTEnb+bYE17n2BNe55g5r3P08e7xrKP/QTLdTSKVI5HKEU/kbVKHcJe+tIWJVA9Swpo1Y5Uykx8ew42FizAtl/QdAu+oEdxhfYaCh9gdWQ/wHXkxPR6rVkrJ9uZagn7u0q5WmgZOSjw7RYmAzHJkvoa69M0V+MuUsrQuhv6e2NE+QWFlP7y3DI3eHtnxyn/u/bCQ3TL0cfthZYbVtze9oYFVq1ZxyCGHEI+rTpIjjjiiLK+k66TT6b7xxhvK+a9+9at0dnZy22237W61h6ZLB+Ck+UfAfPsGHii+i5mU4Cw0nITrm+wdm5J5gzXyS4ru5zZfDsAR6R+xRXba3FOaNLqgrQXagBxs6rqWqirXzL6s6QsAXPeZB7jvga1lHYDbu1ug29a76sr9ufVH55Vl//7u58rH69at48ADD2TVef+BkcuXXUFSoqzfjwGJVJFCPo60DIQhsYoGRtyyI/NCxgyKPQmMOCSrerh0y7WsWbNG2ekK7Nm2gFZ2u3VRWQYo8h9Y5/tk57P6/KtQXR/ezcHVmdCAu+G11Lt6ECAt1/fuXVO/HBpYtmMc/4a0DwPLTbj5qA2HvsUMG1zXuW2EQeha+MEyg981GvSJREtV8bpn/K6aMJemm4HmrFbH6+7RN0qKjn+z5PcJlpBKeGmfdEr1bm9vV86H7avd3Nys3Zp15MiRZXkYmpuby+l6012xYgV33HEHv/vd76ipqWHHjh0Bvf5gyBI+wL0Tfkx9TYFvTY1jmgbvtcb5Xtb2e19Xl2FMbZFYzOIXB99FSzbOFdsuA+DOsT9jQk2OG/cTWFYt2e4YX9nVCsDFRgNHj5bEYxa/mflTenIxTnnpdCZPnszdH32E+rXbOUrAUQfUYVrwXxvb2Z6CKTm4cmKDHT75+zYe+L8f033sRC575EzWrVvHiyc/XnYtvFbVwYxD864bBv0LKyXE42Z5IlbrhjGMmrLNNbB8OgBNrx8AgBGD/858DxiNYBmmJfmPLpvMbxi9lEyH88Isx5L2XrdTpkzh9g8/RufzrZ7MX2bGtQdx4Z2z+c3XXuH5hW+XZUce8r8cWzZkhPIphOMzFiFkYiGEoZK9cy1a37+TwEf25WOp4Uxv4+PX0ZMyeMuToY2AW2x4A+JP7/+N9f58/BdRMc9Kx55KhpRRqZFxM3J+R11j6fr3Qbtmx/uA4LB933SAwOz3m2++mVtuuUWrUymAobfghr7oFotF5s2bx3nnncdpp51WMb++YsgS/pID7mZUvbvZiWGYHDjG5OZ0NTGgNpPzyCRjG/L8z6R76MwZ7F/aPMWRjaiz+F6yjg2tcaaMVidsZaqL/PXDj7Kttp7x2TblSYvHYOEBddy7vp3PT25QCMQwoOaVzdwx88dM6rYwDJd4Jk5qrhjdopCgJyKpadUYqho6qRpV2lrQ9/61rhsDxUQ575NOXsuzz4xGSojFBP+dWczOYoxaH4vFDMHDhy6ntXY5yV2GkqkQBm99dx03/W093c/JEknb+odN20r4q6f68MOsXd14SnDw1bHqnYRhN0/iTLwK3MeQAVht+YFr6JsVr5ProC+jNwKuWBUlbz3pe8nZ3wCEDdq68uDx3oOFRPSzHo6Fv2nTJmXilc66Bxg1apTWim9pscfFdBZ8f3W/+93vsnbtWn75y1/S2toKuD2Qnp4eWltbqa2tDR0c1mFIEv63D1nCQengzlZSQkMmX7ae/LKa6gLplAjogT256sCRlnLOQSJuMT7bquTpQAj4/OQ65bsDKWFyTxHvQCqAVRRluR+qlRk83r7yAGKpPJkJu0hUdxNPFSl0p2h+awIQV0iuqyvhq5OgTtqviy5Kp7ZNkiNonQghKP7FtsjxyE3TwF7OWffyqRbiQKG6YnTH/cmjX1qlz77Ykr1b+ZXLCPu+J7En8t77ZA/sVpROXV1dn2baHn744SxdupRisaj48VeutPfGPuywwyrqOum88OuuWrWKtrY2pk6dGki7cOFCFi5cyGuvvcasWbN6ra+DITloO76rAyGCxGxb7ITKwJmYpc83TOZvQPyyyr27YFjghnUTtK4MtyxP42B6ibMGJJi5JO0bxrHzzQNoem0KzW9NAhnHLHoaDAteXv6BQG0qTbyKVZx45S6p4OBPz88gSAJBt4Q/DDPcolZV9a4YHRE7N8ttSIP56kk5PCrIex3On6qn1i+YpncMoJHo5XnTy6RPFryf4fcsrFFSZbvTqPcXgzHx6uyzzyabzfKrX/1KOX///ffT2NjI7NmzK+q+9dZbSiRPsVhk8eLFzJ49m8bGRgC+8pWv8PTTTyt/S5cuBWD+/Pk8/fTTgTG23jAkLfx9BX2NldZZ9X55uWHR+Gu9bhBX2L+6unn2XTHb5Z0YptPrXyXCScPfiOhcLXqXja+EXuvUf+Ly1mV3WE/XqPUfvRsgu5P/P4dLZzBwxhlncOqpp3LFFVfQ3t7OlClTWLp0KY8//jiLFy8uu1k+//nPc//99/Puu++y//77AzBv3jx+9KMfce6553L77bczduxY7rrrLlavXs2TTz5ZLmPGjBnMmDFDKddZcPHggw/mpJNO6ne9h6SFv62Q0r6Y3rDIMHnYjk9C2OuthLtZ9AN4tiTkvLSl/hdw4qTtob0Q/znvhutCdHrq468fGL79c4/8wMpAOvv6gzW2J17pZfa1BM9/6pQ3sEnAzzDOOdd69LrQKo1flNW935V5kmGkIxW9MD92aJl6qecz6PuvFL3Sd/gbs959+ANtlPR6rotTf8/8DZH+nvTDTthtDNbSCo888ggXX3wxN910E6effjrLli1j6dKlXHihu9S4aZqYpqm8H6lUiqeeeoqTTz6Za665hk9+8pNs3bqVxx57jI985CN75B6EYciulrn0oLtIlzYW97oMOrvsQcvqqqIiEwK6e+Lk8gZ1noXXHFk+b9CcTTC2Lq/IwN4Na0tXjMZqKyADWFswOMC36Joj39hlcUDGTSsEHDh1HXX13aHX5g+5K+ScCWGdZBrCdUollM9l2+M88/Rs5T609QjS5bqqbprtRcj4Fk9z5C0Cqj0LkAkhuPDTL5BOhaxKVq6T183iWditHG6pSwfeVS+9oZmmGYNQK13aG8NoyjdNL1FVrqc3nRohpClRCc3smy8/3FXlNmahBNqH1TLDyVcdtHXTydBtJlW90nFMbZy85Q3GaplT498k1s/VMk3ZzTvF/xzyq2UOSQsfYO7aK8l2JrAse/lb0xTsak9y8cb5XLRhPm0dCUzTllmWoD2b4ML185m35TJ2tiU9MujqjvPBZ8/k6h2XsrktRdE0ypOvcvkYDZcfzb9vu4wm30xcKWFn42hueO8ymkbUBXoYW4tJFuyYT/zsaThxw1LCjm0N4b0Fn39bjW6pCe296KJNXnnlYE9dJZ9aMZtbixfQVXTPORh38X58x7yA0iXiTrySFBsNflQ8H2NqshwdIaVk3abwSIVK/t1KPnzhcp7nWv2hmCEWfki+Tk+rfz58R0fnx9bp9t2u0pfRR/TWAQhtCLyk3ft90BfoTzSIZr0H9to4/bXwhweGrIW/r2PVv16LIdTVOXWhisWCPfHK+V5V21m2xvy9CbMARlyUXTfTHwzuRrWnYU+8Av/L71jG3sZR2blKVtrFCpx1i7zWPTiWekgDYAklH++xpVjiOheHbs0du/XRraXvXkdw8MTvR/f32HRl6FxVoeQdcHk5Zbj6XovcydsfkimEX6ZrjHyuKyGV9fC96VOTxnDoov/QVRrYcxb+QYlvYoh0v3Qt2cPaQmThR9hLmPbzr2GJhEKIChlIKOZjLtmX5D3ZGt/GIPanWYBYwn77LHNwyB7gwO8uVM1ywpZG9pK9/eG1OB3PieMiCZK9QEpRWmtfY3X6Zr36LfzKg9H6zU+CvQK3l6Y3zF1/ePl39WRXuQwfWYdWVyg9ILUM/fXryV69pqCevhcljEDmACTGjqhI9nsSg+XD3xcRRen8kyKZyXDYL+8k35ol+/d3yBw5lWRDhuw7Gyl2dNNw1HT+tnw5hQW/QsyawvF3foGX5n0bubGZwo2XUHjwQeJrchS64YSn7ualeXcQ37Ye85pPMfv00wfvOsaPZ/rSH5JvaaH7H2upOnIGyUyG7JvvAJCZOZV8NkvX6+9QffhUkrUZsuvew2rtoO4Dh2CaJvmN20iOGUEsU0WhPUtxVwfJ/cYSi8Xo3rCVWEMtyfoMZnc3uaZdpCaOJpZM0rbiHWKpBJlDDiC/K0vHyrXUHn4QyREZsqs3UezK0fCBKeTzedpfWk1m2kTS40eS3dBEblMLoz4005YtW0P6wHFk9htFd1ML2bc2U3/CdJLJJC3L3yFRX0Xt9P3It2RpfW0dDbOnkcykaP37OgAajjyQfDZH67K3aZh1AMlRtWTfaaJnRxujT5hOPp+n7fm3qZrSSGbSSLKbWuhas4WGD04jmUyy84XVpMfUk5k6nnxzqYzjp5PMJGn527vE0gnqD5vslvGBA0mOzNCx+j3ybd2MOm6qXcYLq6mZMZHq8SPJrm+iZ1MLdbOn2GX85U3Sk0aSOWA8PU0tZFdvpm6OfY2tr60hXp0mU7rG9r+voe7IKXYZb67HzBXt+5jtpOO1d6k9dH+SI+vJbmyi0NTCiONmDtrzFqEyIpdOhAgR/imwp1w6kxPfGJBLZ2NhwZDnlsjCjxAhwpCCSf9n2kYunQgRIkTYB2H1N7KJiPAjRIgQYZ9ERPjhiAg/QoQIQwqmsJCif5H11jCJxI/CMiNEiBBhmCCy8CNEiDCkEA3ahiMi/AgRIgwpDGRT8v6m31exTxG+M2XAv+9khAgR9n047/XuTg0qip5+73glRW63ytxXsE8RfkdHBxDcdzJChAhDBx0dHdTX1/dbL5lMMn78eJqabh9QuePHjyeZTA5Id1/BPjXT1rIstmzZQm1tbb824ohQGe3t7UyaNCmwn2eEvYfh+JtIKeno6KCxsRGj8nrMoejp6SGfz/eeUINkMkk63b8Zuvsa9ikL3zAM9ttvv71djSGLvu7nGWHwMNx+k4FY9l6k0+khT9q7gygsM0KECBGGCSLCjxAhQoRhgojwI5BKpbj55ptJpVJ7uyoRSoh+kwjvB/apQdsIESJEiDBwRBZ+hAgRIgwTRIQfIUKECMMEEeFHiBAhwjBBRPgRFPz5z39m3rx5zJgxg5qaGiZOnMinP/1pXnnllb1dtWGBbDbLtddeS2NjI+l0mlmzZvHQQw/t7WpFGCLYpyZeRXj/cffdd9Pc3MyXvvQlZs6cyY4dO7jzzjs5/vjjeeKJJ/joRz+6t6s4pHHOOefw8ssvc/vttzNt2jQefPBB5s6di2VZXHDBBXu7ehH2cURROhEUbN++nbFjxyrnstksU6ZM4bDDDuPJJ5/cSzUb+nj00Uc588wzyyTv4OMf/zhvvPEGGzduJBaL7cUaRtjXEbl0Iijwkz1AJpNh5syZbNq0aS/UaPjg17/+NZlMhnPPPVc5f8kll7BlyxaWLVu2l2oWYaggIvwIvaKtrY1XX32VQw89dG9XZUhj1apVHHLIIcTjqqf1iCOOKMsjRNgdRIQfoVdcddVVdHZ2csMNN+ztqgxpNDc3M3LkyMB551xzc/NgVynCEENE+EMYzzzzDEKIPv2tWLFCm8fChQtZsmQJ3/nOdzj66KMH9wKGISot+x0tCR5hdxFF6QxhTJ8+nXvvvbdPaSdPnhw4d+utt/K1r32Nr3/961x99dV7unoRfBg1apTWim9paQHQWv8RIvQHEeEPYUyYMIFLL710QLq33nort9xyC7fccgvXX3/9Hq5ZBB0OP/xwli5dSrFYVPz4K1euBOCwww7bW1WLMEQQuXQiBHDbbbdxyy23cOONN3LzzTfv7eoMG5x99tlks1l+9atfKefvv/9+GhsbmT179l6qWYShgsjCj6Dgzjvv5KabbuL000/nzDPP5KWXXlLkxx9//F6q2dDHGWecwamnnsoVV1xBe3s7U6ZMYenSpTz++OMsXrw4isGPsNuIJl5FUHDSSSfx7LPPhsqjx+X9RTab5YYbbuCXv/wlLS0tzJgxgwULFnD++efv7apFGAKICD9ChAgRhgkiH36ECBEiDBNEhB8hQoQIwwQR4UeIECHCMEFE+BEiRIgwTBARfoQIESIME0SEHyFChAjDBBHhR4gQIcIwQUT4ESJEiDBMEBF+hAgRIgwTRIQfIUKECMMEEeFHiBAhwjBBRPgRIkSIMEzw/wFx084X3cdmjgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAF7CAYAAADR4jByAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAADV0UlEQVR4nOy9efwdVX3//zxzt8+aT/aEbCQhJGELIGtwAVQQBBRQRBAriNZia6VaqFYF/NmKtrZ+aWsXl7ZYJFZEVBS0LIIKioCgIDskISSELJ8kn3y2u835/THbmZkzc2fulnBzX5/HfO7MnHVmznmd93mf9zlHSCklXXTRRRdddDyMPZ2BLrrooosu2oMu4XfRRRdd7CPoEn4XXXTRxT6CLuF30UUXXewj6BJ+F1100cU+gi7hd9FFF13sI+gSfhdddNHFPoIu4XfRRRdd7CPoEn4XXXTRxT6CLuF30UUXXewj6BJ+F1100cU+go4i/HXr1iGE4KSTTmppOkIIFi9enCrMxRdfjBCCe+65pyV56qKLZuOf/umfOOSQQygUCm2pV120Htk9nYEuuugiHuvWrWPJkiWceOKJbRMYvve97/HRj36UadOm8ba3vY3+/n5WrlzZlrS7aB26hN9FF12E8P3vfx+A7373u7zxjW/cs5npomnoKJVOF1100Ry89NJLACxdunQP56SLZqJjCX9iYoJPfOIT7L///hQKBZYtW8YXv/hFopb//9WvfsXb3/52Zs2aRaFQYPHixXz4wx9m06ZNqdK9+eabOfbYY+nt7WXOnDn80R/9Uc041q1bx4c+9CEWL15MoVBg1qxZvPOd7+T3v/+91q+jTx0ZGeHjH/84S5YsIZfLcfnllyfK44svvsif/dmfceCBB9LT08OMGTM49thj+fznP8/ExETIf5p3o+ZvbGyMj33sYyxcuJDe3l5e85rXcOutt7p+b7rpJo499lj6+/uZM2cOf/7nfx5KP/i8H/3oR1m4cCE9PT0cdNBBfPnLX8Y0Te1z1pvvtGWn3u+XJJ1rrrmGJUuWAHDvvfcihHCPiy++WJufRt7FNddcgxCCn/3sZwAsWbLETS+NOum2227j1FNPZWhoiBkzZnDWWWexdu1aAK699lqEEDzyyCOJ4+uiSZAdhLVr10pArl69Wr7uda+T06ZNk295y1vkW97yFtnT0yMB+alPfSoU7n/+539kJpORQgj52te+Vr773e+Wy5cvl4CcM2eOfPLJJ33+Abn//vuH4vnnf/5nCchMJiPf+MY3yne9611yv/32kwsXLpRnnnmmBOTPfvYzX5hf/OIXcsqUKRKQhxxyiHznO98pV69eLYUQsre3V959993aZzz22GPlEUccIadNmybPPvtsee6558prrrmm5ju699575dDQkATk0qVL5bve9S55xhlnyCVLlkhArl27tqF3o36D4447Ts6cOVOeeeaZ8qSTTpKGYchMJiPvuOMO+Y//+I8ym83K1atXy7PPPlvOmDFDAvLCCy/Uxnf88cfLo446Sk6dOlWee+658swzz5S9vb0SkBdffHHoORvJd5qyU+/3S5rOLbfcIt/xjne4+X7f+97nHl/72tdqfu+07+KWW26R73vf++ScOXMkIN/xjne46QXfmQ6maco/+ZM/kYDcb7/95Lve9S55yCGHSEAed9xxcnx8XM6ePVu+7W1vS5T3LpqLjiR8QL7+9a+XW7dudd0efPBBmc1mZV9fn9y9e7d7/8UXX5S9vb0ym83KW2+91b1frVbl5ZdfLgF5zDHH+NLREf7atWtloVCQhULBR+pjY2PylFNOcfOluu3atUvOnTtX5nI5edNNN/niu+OOO2Q+n5fz58+XxWJR+4yrV6+WO3bsSPx+hoeH5axZsyQgv/zlL0vTNH3u9957r9y5c2dD70bN30knnSSHh4ddt//6r/+SgFy2bJmcPn26/PnPf+66bdy4Uc6ePVsC8vnnn9fGt2rVKt83fe655+S8efMkIH/wgx80Ld9Jy06j3y9pOk6YE088UaZFPe9CSilPPPFErQBQC9dcc40E5MknnyxHR0ellFKWy2V5xBFHSEBeffXVEpAPPfRQ6mfponF0JOEbhiGffvrpkPtZZ50VIt2rrrpKAvK9731vyP/k5KRLKL/61a/c+zrC/8xnPiMB+cEPfjAUz1NPPSWFEKG0v/zlL0tAfvKTn9Q+j1Mhb7755tAzAvLBBx+MehVafPGLX5SAPPPMMxP5r+fdOPnLZDLy2Wef9YWpVqtug3PVVVeF4vyLv/gLCcj/+q//CsUHyP/7v/8Lhfm3f/s3CchTTz21KflOU3Ya+X5p0mmE8Ot5F1LWR/gvv/yyLBQKsqenJxTur/7qryQge3p6Epe/LpqPjtThL168mOXLl4fuO/defvll994vfvELAN7znveE/BcKBc477zyfvyj88pe/BOBd73pXyG3FihUceeSRoft33HEHAGeffbY2zte97nUAPPjggyG3/fbbj6OPPjo2T0HceeedAHzoQx9K5L+Rd7N48WKWLVvmu2cYBvvvvz8Ap5xySijMAQccAPi/j4Pp06drw1x44YUA3H///a7uu9F8Jy07jXy/NOk0gmaV7yS44YYbKBaLXHLJJaF5KlOnTgVgcnKSq666quG0uqgPHWmWuWDBAu39gYEBAIrFonvPGbSKmkjl3K818Oq4L1q0SOu+aNEifvvb3/rurVu3DoDjjjsuNu5t27Zp40uLDRs2AB6x1kIj72b+/PnaMP39/ZHujpv6fRw4DUUQU6ZMYerUqezcuZORkRGGhoYayneastPI90uTTiNoVvlOgloNIMDpp5/OMccc03BaXdSHjiR8IUTTw9Ryd6TLNGlXq1UAzjvvPPr6+iL96Qilp6cncTpBpH0/9bybRt9nGjjvvhl5aNf3a+bzJ0E7vocj0Jxwwgkht5GREQCuvPLKhtPpon50JOGnwbx583j66adZu3attou9fv16wFKh1IrnmWeeYf369Rx44IEh9xdffDF0b8GCBTz99NN8+tOfZtWqVXU+QXIsXLiQp556iueeey7RrMlmvZtmQPf+wCKSXbt20d/fz5QpU4D25bvd368etOtdFItFtm3bxuDgoNtLcTA8PMy///u/A9E9my7ag47U4afB61//egC+9a1vhdxKpRI33XSTz18UHH2t41/FM888w6OPPhq6/+Y3vxnwZjW2Gk56X/3qVxP5b9a7aQa2b9/ujkGoWLNmDWBJlY6U2q58t+v75fN5ACqVSuqw7f6G4+PjlEol371Pf/rT7NixA4BMJtOUdLqoD/s84V966aX09vayZs0afvzjH7v3TdPkr//6r9m4cSPHHHMMxx9/fGw8l1xyCfl8nm9+85u+AbCJiQk++tGPaicHfehDH2LWrFl8/vOf57/+679CqomxsTG++c1vurMeG8UHPvABZs6cya233sq//Mu/hNL7xS9+wa5du9zrZr2bZuGKK65g+/bt7vXatWv53Oc+B8CHP/zhtue7Xd9v5syZ5HI5nn/+eVeNlBTteheFQoGlS5dSrVb5xje+4d7/zne+w7//+7+7jZYz+aqLPYQ9aSLUbNQyX3NsgFWzPyn9E1Ne97rXyQsuuECuWLEi9cQrx0wvk8nIN73pTfL888+X8+bNkwsWLIicePXLX/5STp8+3Y3zjDPOkOeee648+uijZX9/vwTkI488kvgZa+Huu++Wg4ODEpAHHHCAfNe73iXPPPPMRBOvkrybWvmLM/dz7PSvvvrqUHzHH3+8fM1rXiOnTZsm3/GOd8izzjpL9vX1SUBedNFFobiane+ostPs7xeVjmOuecghh8j3vve98tJLL5X/+Z//qY2j0XchZX1mmf/4j//ompyedtpp8s1vfrME5MqVK+V1110nAblgwQL58Y9/PHGcXTQXXcK3cd9998mzzjpLzpgxQ+ZyOblo0SJ52WWXyZdeeinkN4rwpZTyO9/5jjzqqKNkoVCQM2fOlBdeeKF86aWX5Pve9z4t4UtpTTr6+Mc/LleuXCl7e3vlwMCAXL58uTz//PPl//7v/2on7tRL+FJK+fzzz8s//uM/lvvvv7/M5/Ny5syZ8rjjjpPXXnutnJiYCPlP825aRfgnnnii3Llzp/zwhz8s582bJ/P5vFyxYoX80pe+JCuVijatZuY7ruw08/tFpfPKK6/I9773vXLu3Lkyk8lIQL7vfe/TxqFDmnchZX2Eb5qm/Id/+Ae5fPlymc/n5dDQkHzHO94ht23bJicnJ+V73/te2dPTI9/85jcnjrOL5kJIGWHi0EUXewH2xNLAXXTRqdjndfhddNFFF/sKuoTfRRdddLGPoEv4XXTRRRf7CLo6/C666KKLfQRdCb+LLrroYh9Bl/C76KKLLvYRvKrW0jFNk02bNjE4ONj2xae66KKL1kJKye7du5k3bx6GUZ8sOjk5GVraISny+XxDixK+GvCqIvxNmzaxcOHCPZ2NLrroooXYsGFDXYusTU5OsnjJAK9sTrf8hIO5c+eydu3ajib9VxXhDw4OAlaBcFZG7KKLLjoDIyMjLFy40K3naVEqlXhlc5U/PLuYwSnpegi7R0wOOXAdpVKpS/h7Cxw1zpQpU7qE30UXHYpG1bWDUwympCT8fQWvKsLvoosuuqgFYYIwU27yE17MtiPRJfwuuuiisyCFdaQNsw+gS/hddNFFR0GYog4Jv0v4XXTRRRevOlgqnfRh9gW0bWRj9+7dXHnllZx66qnMmjULIQTXXHNNu5Lvoosu9hWYdR77ANpG+Nu3b+erX/0qxWKRs88+u13JdtFFF110YaNtKp3999+fHTt2IIRg27ZtfP3rX29X0l100cU+BCGtI22YfQFtI/zuUgjNwz2fvYeffe5lQAASKQUSiWlfA5gSMgIMHDf42+oFLcnPzg1j3PGpx3jl8Z1MjlTI5MCsAlKSzRlUSybZngyVSZNsj0GlZOLMnDcrkmwhQ7Voku01qEyYZPICsypBSjI5A7MkyfQaVMarZHsymKUqRlYgTYlZlWR7DKqTThpVsj0GZlkiDIEQVhqZgkFlokqu10pL2OGlKcnkDapFk1yPYYfPYBZNZBYMIaiWquR6s1QmTHK9BuVJK4+yKpFSYmQM6zl67Pz3GpjFKiJrgASzapLJZzCLVbK9GcoTVbIF6z2IjMAwBGZZWvcmq2R6MlSKJkZOgGmFz+YzVIpW/iuTJkaPgTlphRcGmGX7GSerZHuzVCerGDklj1mDatF+jxMm2YJBtWwiMiAQVMpVcj1ZK337e2TyArMikUhERmCWIVPIUJmokunNYE6akMNOA7K2W7bX+bXSHFzQyxHvW8rhf7S0JeUvCCHr0OF3Cf/Vi1KpxDN/+Q0mXniF7JRe5l96Khu+8mPMcpVprz+Y6liJkd8+S6Ynz/w/fSsb/+0nVMcm6T9kEb2LZrHtJ7/FyBrM++CpvPLtX1Ie3k3PghkMnXgYW9bcC8Ds81/Prl8+weSGbeSnDZDr3wnbd9k5cEqP3cgN9MLohN4tn4FSxb427V/LbUJKzN19WJo3E2lO8OOfHQRMt+9J91cgyABVDJAmOSFACJCe26czN/K2N/6BZddcyCvf/QUil2X+xaey/acPMb72ZfqXL2DoDYfwyv/chTQls88/kfHH17H70RcoLJjBgkvfyuhjL1CdLDG4aimyVOZX//g4d39lOPJbCNxsUKvNryUSGEJ9d1IbJml6YSevxhvacFJJV9R8Fqj9vO2C8y78C6E7zxP2G3Qz3XDee3euk/DkzrVjbPjFNn7xt3/gTx47nWy+xbRjSjXTycPsA9gj6+Fv27aNWbNmcfXVV8cO3BaLRYrFonvtTL3etWtX5EzbrXc/ytprb2p2lmMxMHUEpOHVEX+dCHG8d13FImy14lmVrVIxmBztDbn9+GerApEprtLzZ3kRIccqOzj7TRsUp2DFl6GgQTdn5KdSEdx61+GR+XHupCG+KK8OkROgmKB/PVknTctrRJpF6HsL6TtIUtuDfvRcaD1YWvI45N37c843V2vdRkZGGBoaiq3fcXDCb372AKYMZtKF3V1l7oHP1532qwV79fzja6+9lqGhIfdIsnCanuzjimW9bhb6puy0yF6FJ6THROeQfRBWQIvs/fD28NaziBBQlqZ3EXQEDKY2TkJ2Es+snUP0w1pJNovwvFfnTy/UttYtvjQm9zjPurcRfD1Qn8Mhe+etG8I6LEVhuPGNf3zJMz98qen57SI59mrC/+QnP8muXbvcY8OGDbH+X/nJQxEuccWwXjcLhpHRew0yUTBa4TvxoVIytG5jMlczTwZEs459e3wyy+h4lt1jeSYmM4yM5hmfzDIymsc0rXT1xOnlyTRh1+5CbF6aC0kSUk5PuP7uV1Bp0XpIzRF0050H77UOSXpqyV67oDxR30qWqdA1y4zEXq3DLxQKFArJSWXnA0+3MDcpUZM5oqtI1dR3R/tFhTHpqB2ET1ftELQJZCL0s844wU9/eYhyz6+bBsn82Ts5+tD1ZCJ6xU8+P5dn1s7BDPRsjEB+kujtayGsOIgnuKRjBVKJSwRk1VpZDurDIzpTCXobMjTm4OjQ/aMVUnPuqd6kVH0kz3tYr695Do120LkW0sqPCKQbXfSjymVzIUyJSKmTT+v/1Yq9WsJPi7nnnNCCWC0pSgi/FBa8Dh1uTbKvRcBNRofNZivoqsy47AMEhlL7nFPn1+LoqEoVrpyK/Obe2bhlGr95bLE/z4YJQvLs+pk89cJcTM3aI0GybUQidPoSlnohQmWkiSdpAyOU/yoNxeZZQ+RJ/OshfXkPfkf12YJ50+U1jUY96TcCW30T+x2jv432bjt4tSvhR6KtEv7tt9/O2NgYu3fvBuCJJ57gu9/9LgBvfetb6evrayj+oVVLAL3EpCuCjnQUdPMqtr90GoalyjAML/7JSZOenkwgnBOl9EtRYW4N5MX6zWRNu0ERvufoN8YZM6V9T/88VSRGDQk/Hla4l7cOUakYZLOmovWQPP3CXNuXF7+uDteylKml8fL5lTJEbs3hDf0AcBoST9eL8Y9ERKWlliP3PcbkQ/WTtK+SpucV/4zRUnv4OzWhy5cAXTv8aLSV8C+77DLWr1/vXt90003cdJM1yLp27VoWL17cUPyl4RHAT4jWj7+QqQVYJc6whCpcslElMLUi9vYaWslWJwUGG6EoVYBpenlW0x2X2ZrzGYISvlPpPDJIWuEE23b1M3fGbmdgAIByJeOSfZCMgrELEUzfTwJRTZIT1ounNsVHNRq1Q6mqkVjP+hjq4K8kDUswDVcNU8OP7j2niT/KPcY1Pm5fPtos4acNsw+grYS/bt26lsb/4r/dlmiCV+SYZoy0pV4n0YEG3cINQHQ+K+Xw4OzdDxxAyezDT6vSttBX0sHw9VqyQu1YBLXVcZD05ouhbDqqA3+DaofQRO1Tl8S4ufFr36mqw9bHFc6jd14rjKC2pN5MwTRp4xJVHuPKHOAK0l45iG/oGzPMTiNEtEfC7yIae/WgbVoU5s2wzywK1Ena3nVQBvJLe+Andp0/P6F7Eru050/p0nOsJj33sIRpuNMErd/v33U44YprnZsB+dlRBTmoSIv0rRBhFUaUNCgQFMtZYFLzHsOVVqt2CPkKp6uLJzqEPg2X0KMacsLPF8xjGiGgfthloMGeRFyenLjDKp4Y1Uug15oyZ4l9yDZJ+N3VMqPRUYO2Cy85BTARAnfqvqOOcSqJYTjnMuAmfeH8fj2oBG25mYD0h8t44Vx/djgjA8Kw0guqi5z0MrmK+xy/eGgpehk5eC9KjvZDKEcwlHofIJuRoeeII8Y05BgroYccaytmYkkwYZ7SIn1joCg3WiToBr+T/ztLot6G+p3TQUYc0flrOSS4hhGJjzbkay9AR0n4kFwSciqFTrKJisPx66scUuCa4sd0wYURlp7iKplhWGvkbN81SFA680ustmSv+IqTZpMIMk5KhuHFWI/0p1OlxCkAahF3EuiC66OU7v80s3Oj4kmm1rCUamq5ayVUFY8fadQw/vi09UXjph8vkrRjZ6nuWjrR6CjC33jj3YkqkY7QDQ0hx4Vz7xmiZuXVq5b067EIAWY1g6WeCbjp4kbUpJyqtBZSQ1NZ41AuZ2lUKtWpYPQI6ptrE6nORR9aH3etBibd80blX81t6yV8HVRp3/Speuojfd91hJsujSgTzqajO2gbiY4i/Ml1m5UrvX4+fK0QQMgaRHftxF1DdVKTWINyr3df+iY0Saw1L8OhozrPOrqpSsvF0ITQ0atE0tMzGUjJ//wa+S22hxEFV+3gilkKMeJNToJw71snofvzEYyzfrIPS7jSnWymT0t9Rk8VuKegjrPEkb6u7OqMFwzQCjt+i6FAuWnDC+iaZUajo3T4c993Ki45Cbx1ydSvKcCtkEE3NZyhCedORPLOo0g9rsJYbqaXV5+7JJMt2XmpTaGx6pFwrrQLYalV0pMGBRMTeYI2QI5bVLpOXLr0XVWRsF+z8Cb2qFKowOqRZIR+4o8bv4hXxwg3t15aRkScbpgEfKQzww3Gr0tvTxuoBFWISbJTK9+13qPfWewzuvK9FR1F+P3zZ1on6gKU6q/ztIbGTf1VERePgImitTZIlAmmc+2znhAghPfqgxUxkwGMaGlRzZpKsA6RuumGHskKEUXI/vxI+vqKvgFtL159nuLiVP14aTi5lCE/caaHsQTku7Ib5Rp50qUR5xZuvBtDuxoC//wT7ztH5anh8ZRQGrJ2AWkGujNtI9FRhD/6zIboBSj9fVk/6QdI3BeOeLe+HstRNy6gs3BxB7Wkqa1Ulg5fFY/ia0iYQD2pN9xW2aqYgEQdjMuKTzA+3hN+DhyZOTmSPUHgbo0kotzDTUey3NZLbs0i67rGR1KSstY4IIb0mwUvjTZJ+F3Cj0RH6fBf+e7Pk3mMFG0T3AsxZDLCSjXxqpp13YXSOgVDaPX3QtWfhklcSlPrN0wGkseeXMgDjxSQAcsK3YJZUVAbHT056RmgXiuWcJBkDFNveo1a2+gEhSQ28cFw9fY09Lr25sKXRtt0+CmFkn1E1dRREv7A4Uv2dBaaAsNnU2bZ4bhSu1rRiWijnN4Efr9x6wZpYmF0okcZQPaoOzXZx3qvT8JPjoR53QMSvi6sbuwn2GNsZj7aMbbQ9vGLroQfiY4i/DlnOKtlBpvruOa7saZdyrAOP+xHd0/6dPuq32yuin9A15b2NSqiJFD9hixaYoQu4ZPP1d90qL34ViOxe9CHb47otkfMKFN8q0bGEuJWBk5b1qLQjLGOxOgSfiQ6ivAtBI321PNa10E3nUmf30015QwSeNxArhAGplLTgu6FXmsPXMvsL762RGqoAhU1ytRQF18z+C0NWYTUVWnN6rR3a5tCJslfXC9I12gnhS5clHpGHf9pZuPjX/qjNmqVp/g0ghddtBsdpcN/8T9+qFSYKCsXXYGLs4iJd3Okb9M0lXNLaSlcQlD82UbbQgiEEJim56b6zWRM8j2jgCfh61Cf/lZV7QQDN4dNglr/sEu0ztiXu8QEp3+O5grm4TRaofmO6w2p4z/6tZ4agXZUKJQvz/AgIpbQeFWbrTHDhl/JwuwD6CjCr+weB5xCFiSZuOta91V3NW6vMli7Q/nTsMjKk/7BUakId119fd4s4s/nY7KihkhZ4acNjTE2nrdn0ibr5KmDrq6JaYQ/K09R7zHcq4rKflKyF5qcJJnolChu10+0MNAe/b+kUChRLIYLRSNCsxBVhJCYpkMFaqYc5gw03zXSU8uJX10kfZv3tArCFAgz5aBtSv+vVnSUSmfBn5yFX92iI3+IrqjBcDp3P2GppK6GUxdZs379KiJLh2/d86fnLaoWzFdaRBXhk094Umls0sfj5Nfb0Nr7FUJ67yPhoabhxaOca/wG7zn3k0x0inJTVVCx4ZW81rMOT7068dPPeICMshuaLr+1jiCWLN3M0qUvK3eC6szazxF3+CegieZ3h3QIal6THvsAOkrCzw/0u+e19NVRetIoqKoT9bxiVskbRsiv5UcjeQpPcg2mF3TzVFN+s8ykZTOsgLDWw9850kuxWHtD9GDetGkoUrinbmisgYrjhfB9fVrB3kjNtGNfhT+SetRojenf1cGg+hlTl+dspkomay8nbt9Tn0+6/710a9WjoD/PTysUYBpIAWkl9jYs6rY3oKMIf8dvnkg0MBkkKdXuOTgoFSY0v1s+G5545aQRTD+oc43Kq6Mf9ROo33MtWtW5O3NOR3b3huKLiqOmn5CndotK1pM2Wl3jydhLQ9p+k0r29QxyRqYvoBHS1DVU1WoGqazVFKoX6Em/vnRFe4pHd/G0SHQU4Q/f8VAifzrJWnc/6l5St3grnaRhrYqmeteRudosqD1Uf3NhXT3y2NLY4Uap/IoaedXknrQUESSbNGHVNxHXMAf9hPKgGXPQeU36PurpBURDN/6UnnyDE7qEgBdemOeeBxF+Bn+6SZ/PV5bboMPvIhodpcOf+oZV9lm9Srz6FH+ORB48VDcHUX6jwkZVbBH4lYF7QuPHWnnScrGshPyqJec3uDRDOkhfHmpBR/bp0ha+8HGNdpxOX/fGdPrvJOMCtfwmQbg/Z58ZMuSaOE5tsPgv5YUJ+0k6FuH5axPZ11+VOx4dRfgzXn8EcRJfUgm+Vjj1ulytRnbbk6huoqRS95zoZQxUWa9WVXIk/CgTz6iufHpJ1YooaRAnjfrhT0k/yS1NGtESbFJyS4vg9wtH4WWkp6dEM9gpfT6j00weV9AYoUUwRX3HPoCOIvzS6Kh7HkXaUYRcy7+O9IWArJHRSoG68OphmtF+/OcO9erRiBQd6d9OW7ecQzw8USlpkChdeBpK85Flwka9tls6AqhHfRMkescqKdwIehfLV2xIn1AwXTu6WnkO29pHl8Uk0r4Qoj2StBT1HfsAOkqH//I3ftyQFFa7wOrvJZEgg5VLt1/uz+9fyYaNM/EquKqJrw9CyaM6ASw51JEB9Vfn5qQZ58c/olA7daeHE5cPxb+in3auaz+yjoVaM6nKi93+1QgS7jPY99R87L//FrZumcaGF2drfES/I923T9J7S8vP8XG2R4ff3cQ8Gh1F+IY7U0lfgf0EWstPFJL4SY9v3fR6wkQWI1Ep50F6BWdJBvueS4L1kL0MXBN7TwD5XIkpUyYAgaCKaWbIZitUqlmymSqlUo5dI4OJciC06TppxasIapG9Xz+tqAKxGpqaeVPJOcWrjetxOeo0NQ3v2krs6GOeYsXKdTz7zCLGxwqAxDQzZLIVyuUsuWyZSiWHYVSx96Vi585+yuW8lvTVtNXz8BtQ37/+geMbkDZJ+PWoaPYRlU5HEf6cS89g+233AX7JW11qwbqWPj8epCYcAb/+Emua9ixboUlT4m1e7hCDfe2odIQBP7ztKPwkryK+IAbT1DURyfXw4R6Fs2duXC787pJZs0Y47qgX7LT971oIGN7Rxz2/WBVISRdffGOXpkdWm5C9N9dKyd7JS9T3SJrnwcFJXnPUs6H7+jIL9/3yELZumZ44b/6GJpxGmu0R/R5qZqGLFqKjdPj5wFoEcYOtOsQNsgb9OYeUpq8QR6qL1F24nDjst797tA+w7LzV2atxcGUt6SfAetVVti884vNLvHH5CMiMIYk0mIecPVs0Kl5roDr6fbRGK+B/3rTjHWnR+DMki8A/HhMdRifk1E5d0weQce+kHeI9XvFNe6TE6Ogol19+OfPmzaOnp4cjjjiCb3/72zXDvfTSS1x++eWceOKJTJ06FSEE//3f/x3p/84772T16tX09fUxc+ZMLr74YrZs2ZI+w3QY4W/96a+0hS3qXvA3yipDN6gKlv9sxMQr6yZaN4fsfYO0QdoUYfNIXR9Al276wdb6EU5CIqXf5LNaNdixq5exsTy7dvWyc1dvpOWRL+7ge4txiwuXDML97/ZzmvT+ovpuqePxRRDR+4n49rIGq9X/rPpGXd9wiPaqdFpspXPuuedy/fXXc/XVV3P77bdzzDHHcMEFF3DjjTfGhnvuuef41re+RT6f561vfWus33vvvZfTTz+dOXPm8IMf/IDrrruOO++8kze96U0Ui8XUee4olc7ob59O5K8W+cf5TeOWZNo5eNJSUL+q0+cG44zTU9c/lb8RCAxbjWOacN+vD2Lb9il4VOoRqx6WH4n0jfGpKqvY1JtAXEnSSGOVExyVSQ8lb27a0THpxwac3lttJC67rp5fHRyO+wZtKpD1WN2k9H/bbbdxxx13cOONN3LBBRcAcPLJJ7N+/XquuOIKzj//fDLWioohvOENb2Dr1q0APPTQQ6xZsyYynSuuuILly5fz3e9+l2zWouslS5bw2te+lv/8z//ksssuS5XvjpLwZ51zYtvTjKoXcTbcjg7f7x4ucMFGwZnS75P+my7peunVS06OsuaeXxyqkD0ki9HzIxFNnK2aPN1aSL2OTsqcJIshnX7CMGrrLaLmhUTmyvUjQvf04dsl4dd5pMAtt9zCwMAA5513nu/+JZdcwqZNm3jggQciwxpGMtrduHEjDz74IO9973tdsgc44YQTWL58Obfccku6TNNhhD+wcol9FixVcaUsjZsMnU8WK9ZVwMLBF0qGB9OQ3n11IDkYTqdO8q+1kwRtY00cSX73aIFdI/1E0V2yHIVtZVonIPql6Dik1dtL0hGpPgZ/+mo+ksQ5deoYtZqetGNe3tLH8eolDwm6aM1AG+zwH3/8cQ466CAfEQOsWrXKdW8UThxOnMF06kmjowi/tHkYZTgz8ItyHUXktdyCkOSzOSoVrZOvayzt9e+ltM4zWag6OxkSL+EnGZOIRvDZajVwjTYOVvd+8ytTUUcm0qs0FEnffUcNZi0S0k2xFWk0PqYS3/sLX4f9L1+xHiFM0n7fZNZNSdVLbZLwG8DIyIjviNKTb9++nenTw1ZPzr3t27c3nBcnjqh06kmjo3T4m274UWDQyK7IWgladfOuk7p5sDb1rlYEzv62QQiRQcqqRfABVKWj51M1vc1AvTXLUcjUlxeBYNPL09j08jTlnv+3Vtoe/abLRcMqrFRqjOTxNgs/v+cIdo/0UakYNnk78po3UC4lZLImQ1PGOGTV80ybNgoIsll43et/x/33raJa1euW60OactseHb6UAplyEFbaEv7ChQt996+++mquueYabZj4neia95zRy6GkT6OjCL9nwRxG7PM03dP69eD+hkCIqA6T46YObqn3oDFqSEvujsLSoVfrNyyPJ4dHmBLI4DUcer+RYx+uu0xtHlkfkqeTOC91hEmCYWXwW0rrHXspSpu0JJWywfbtQ/z8Z6/h8Nc8zeLFrwAwc9Zu3nb2fWzaOJ2R3X3IqpW5V7ZMZcfwtHCCiVD7AT0hrB36HOpS0Tj+N2zYwJQpU9zbhUJB633GjBlaCXt4eBjQS+VpMWPGDEDfWxgeHq4rjY5S6cx991vss3b1GwVQVc7RnOvCOKiVT1XFElTJ+NUvwRSjcmN1wJ0/fL9ReRcEdy7y28f7CTNZoxHnmlRmrF8fHnh3DfCQ9p0oR3OhU5BF3bOuf//Icv/yxMC8+cOsXPkSBx2ygYMO2cDMWbsayFOautauxdPqPIApU6b4jijCP+yww3jyySepBPS5jz32GACHHnpow4/hxOHEGUynnjQ6ivDrQzMaB10FDLo1knbtwWNdP6EddasVxJZWsk8yyBqI3T6Pfv/tN2ethXoyJJDSYPPmeEnQiNx/2I5lb9A0pkpDtHzQ9pxzzmF0dJSbb77Zd//6669n3rx5HHfccQ0/xvz58zn22GO54YYbqCr64F//+tc8/fTTnHvuuanj7CiVzubv/J99lkrz20CKnvpCT/RSc+5d19bBxSk/on3EqVL2HkRYdqjnTchw3GQlXfR7juiTMmH6DL704izGRgtYDYA9KQ6JaauAtm6tva5R9ISq5Plppl47Fm1YS+f000/nlFNO4bLLLmNkZIRly5axZs0afvKTn3DDDTe4NviXXnop119/Pc8//zz777+/G/673/0uAC+8YC1B8tBDDzEwMADAO9/5TtffF7/4RU455RTOO+88PvzhD7NlyxY+8YlPcOihh3LJJZeke0Y6jPAnX9zchFhGyfZYFjSyPACMkuuF8oTlmrF7eFV38F5dzkFnzCvxd6Ts/UND5UvXaIQJSuIn+bgRABkIUw/q2aQ7GexGz75yn0PoSEUJlSA/8eSkDgnHx63mpbUWQk6vwzMWiPQt4764Hps2zmXTxrmauLwcJIH+u+x9g7btwve+9z0+9alPcdVVVzE8PMzKlStZs2YN7373u10/1WqVarUaMhoJ2u9/5Stf4Stf+QrgNzA56aSTuO2227jqqqs466yz6Ovr48wzz+Tv//7vI9VNcRBSZwC+l2JkZIShoSF27drlG1hxUNo8zFMf+hvqpbfewVHfssVqZdctuwtQmswp90P05Z4Hw5u2mSbA/37vdTF5Dn8eNZVGCT0OaVQrUeHjoQ4YK9SXSkWT1E/4PQYbs3qetTkNouYbR8QbXp8+ZUoBztWvihkf3oFlh58yDwL+avwCrVOt+l0LTvgdNxzOlL50lkgj41WmXfS7utN+taCjJPz8XFVXqdJg8JyQW8/AKLoJcMGp/WG3MkLkgqEC584qnJ60b6UV1MUnk/BV360i+6gcNTe8XyHVaAMTj3BaPldNukn3OWh0OYc0SzXozI7TqVXC10nTjpbwk+ahlaVVQXd55Eh01KDt6LPrFdNAB0HlB1o3Z9kL33IGMRKg1xA4bWZcgbG67KoO0yJ/6/5By9dp8hjOb3AUoFaq9cBRLjQj7mTh21/RtOovGdWg10Z9feRAY97Qa2h9J73mOveJ8iDaNGhb57EPoKMIf+v37gZQLDdkwIpD+twcvw7qq3Qp9JdqKCXYqkM3Mm3arqamVisO9dDlqz00nM48slm28vE68trh60kzSdg0Fk9JVFbtgAilXUPAakPBkqao69gX0FGEP3Doct91XGVSr6MH+WohWNBriQ/etTd0IhkezrFzxxSsrUZMwpVGask5LYJxqOSuI/7W6u89X0lVOfVsJdlqNIvsHaRREbXO3j+cJx2CC/nFkz20T8IX9R37ADqK8Ged8Vr7LH2pqo8oBFJW3PM4fxGpAvCzX7zG9edNhILwpKjGESQJHWm03pDCa/jS6O2TSu966devP9ap69pBnrVQT/qtbuTUdxN8R44qTDcBLVwP2yPhdxGNjhq0LZVKdYett6IL31ZWaiS6wSyHyv0Voblrm+hR6/GSrDWfNJ3a/JNU59ssOOlFp9nevQOa++xpBl6bgdDKrzX8KL7b89m7g7aR6CjC33L9j+yz+j5efRXev0aOEhtxXVtrr9dgY9BaxD1fo2SnPm3SqJr5xElIzxDqkr5NSDOxz3axsW5Yv/loqIFpB69K0qto9pFB244ifHN8suE4SiXAtGfPGqbd8hsgqlZhNW1p3NCvjJkc7ZcorAXbWpNu3fW/SdmJJyDp+olKrp581A4TNgxoFYJqljQmkI4OPq1Nfs38SPBvdt4ms0xZh4Tf1eG/+jD30rc1FL40mQUzh7VcgnOeta5lzr42rGvTuQZ9IQ5WHb+6xxq0jTfDbDbaNrU9AdLo7puTWjzav4tVO5C+TCV5rjTvSsRctQrOuELaY19AR0n4eXstinpQLmaIbv8cyURjGy+DKwAG/alhPbc9Qb6t1FOni1amlvUaM7esLWk3/720T7oPol6rM0dVU2uEJalKx8tHsA60GG3Y0/bVio4i/J2//n0DoXW6+GDRVwf/rHMhREBVoqsJ+g0zrXBpNd/JcJ/0q7eWAvONnqamkRzhCp9mSYKmkH2N8GnXzGnWnIBWoVUSa2PxtmnQtotIdJRKZ8e9DzcYQ5IaGh5otchedzh+gpY8wpa2DdRdi5qFINkDvAA8YqYZ4wjOIagX4TkFkJw4Glu2IF3e06SVJP97Uk3Q7MamXrWHP0ybzDIdK520xz6AjpLwp514FKO/sjcL8KvMPQTNSYIFMhK19O1RYfXhLMJvvlWFQ/ZmID8GgtFUMQlWH/ckTz41n527BuvMn8Rw1AShQcUaqTf0OryehClNdkiTnaZJFXVXL7uHhdVgSyecq4fwMuq5K822ACFt1ZQAiSAjBENCMCNjkBF7XsL31m9KnpEotY4QapzJ8+H33x4JX0qRenettu3GtYfRNsIfHR3l05/+NN/5znfcpUQ/8YlP+JYSbRRTj1/FBgDb5NEtpPbm4Vqid/WMJt4WhbW0mN7WhGHLF13YOP1l8y0YgmSv3ttkTjIvkWpH0t87YVeE+sheJUcVrbcbtxLcYZr8rlrCvyeRlbChPpOaGV3GtPeUfpxrFWM3EJUqB+cyzMsYe4z0/emmJ30IP3ZTZqa3br1tD107/Ei0jfDPPfdcHnzwQb7whS+wfPlybrzxRi644AJM0+TCCy9sShql0VG3XAcLp3WhkE1AAvOTvfoL4UFbVYcf9EvArxqfs/G0rqa0juzrg2BisgfhruqZPn/tHSS1Gt+SlFSlpCglD8tKtN+AtF9XevZvMBYJ/KFcRZhVpmQM94tnhSAvBO0csK+3cW1NgyyihrOai+6gbSTaQvi33XYbd9xxh0vyACeffDLr16/niiuu4Pzzz3d3iGkEr/znDyMI2F/wg5XA1+UMQad20emI4kg/HCY88WrvwwMPHUClkmVvzyfAVrPKE9Uy5TamWWsA7PEqUPUzXB44NJ9hZubVOXzWWEPQQjMxNZWuSicSbSl1t9xyCwMDA6FdXi655BI2bdrEAw880JR0jD5LVRGysTU9lU6Q6KW6Vpl1VznMwLUq4QcDBsOZgXMHwev2juyNpEivUingbeG492LYrPK7lGTfjCeqJ44S8NtSlR3Vdoi6exvao8PvIhptIfzHH3+cgw46iGzW36FYtWqV694MzPqjMy0CJ6DSUbQqrnQvFTdXERuUukXgAI+srXv6DcMMJYxzLn1u/g0s9nbsfdKPKSXrqxV+XpnkEbOdcn1z8LtSlcqraLaP2jtuSEhvR1Ey6zz2AbRFpbN9+3aWLl0auj99+nTXXYdisUix6G4ey8jISGw6+XzeV6DqL5g61Y3qFmcCFBdnLSug1teGxhefCKPdzYGUkseqJbbtBQ1mvV+tBPx6ssLqniyZvWgGtIOg2rM5A+9tUmN2dfiRaNugbdxAVZTbtddey2c/+9nEaWy74347vmD81q/UcLNXcKMsaKJ0+M6grW6QN0k8rS38UU3Vrpal2HxIKdkuTdabFUaRVAkPm+9pNJKHceC5cpUV+b3POjqOzOvvmLRHpVPPhibdDVCaiBkzZmil+OHhYcCT9IP45Cc/ya5du9xjw4YNsemM/vZpv7230k1TzTKj2x6V0GtJ46p/9X6UWyClppUvL80H5IQvdzqfzUQrq4hpSp6slnnULLMDSRn/iAo09jx7S/VeX5WsrzS6EF806iXnqM1ZGoNsz4vvboASibYQ/mGHHcaTTz5JpeI3k3vsMWuS1KGHHqoNVygUmDJliu+Iw8yzT/IGaW2yd89l4BpvUNdDkOijBmWjrnXx6OKUig4/WQMRDSvcqCxRUmKrYPqOaouUlK2qJttllU0tVKzueWWQh6fLJr8vltlRqUaMCdWPegULXTa0ps7pctMeCd+20kl77AtoC+Gfc845jI6OcvPNN/vuX3/99cybN4/jjjuuKekMrFgSUaA0N10LMWlfquQS1NOr90F9bf6KoQunL0hG6M03Jq/+Dk9KrASJ0hZgHPJvF5wG1VSOJHy2S5r8LsaGvhOx2YQHyyYPFStUm0T69SyHkDRMfaTfJgm/i0i0RXl4+umnc8opp3DZZZcxMjLCsmXLWLNmDT/5yU+44YYbmmKDD1DaPBzhUnv8QBCceOWc6yRwVYevSyNK9++5mSYYRvB+/XBo3Efoum55Q6mkh/SNV1jTnQitMGqhIiXDZpXHeXWQfSvGEXZIeKZU5aBCY1Wz0TajNeWkTWaZ3fXwI9G20aLvfe97fOpTn+Kqq65yl1ZYs2ZNU5dWePlbt9YVLn7iVRBRjUCcPwg2AEJIHnpkMS+snae4N7HQJRmDbhC13oKXlH9g29FmqcvnrpcVnpet02Xr89ec2bbNpooNpmSFlBgNDPS0e9vDZJD1dg1SJtO10olC2wh/YGCA6667juuuu65laRTmz2kwhrTVt/4addtPj2RsvM++enUXNv1bS94YbpLVtpM97D2WPjpUTJN8Az3fdEKMh9Y2FO152/WqsvYF7H32YA1g7rtPY+u3/6/O0FHVXyWnYKkQgUXXgvHpzmF0VDaR7K18GyhzR/ZWFtNgTJo8tYf09RLJKGV2U6Jsz74R9jhMBsEQBfrIRfYCWvma7ymZzDZMDs5nybfRTr+1xNemJra7eFokOorw00IqPO5fwldVVgTJXi20jh1+cFG0oL7fH+6+Xx9Oswt+yNhIF/0ekWKCmfEyMSklvzFLbcqFpESVElVMTMapsDVTjP0MW5gECftVC/RSIE+GApmG1UBJscWEkckKr23j5Cwh9Bu917PE9Z5Cdy2daHQU4b9yUwrpXjW5B3fnKuvcdpKmshibtAu90Lg511Fu6iClSbHYTOMoRS+uQkf6dvtlKsYSreeR8MDBdrPKWsrsbnXSNraIMTYbE/W1sQJezhYBe8a3hDlmD/vJwbbIq5PAyxWTBTm9ekddoz6sjqmdu+Bs2igiT6rqCeYnEMveZQ+7D6KjCH/yxZeTe9baGRuBa5WsDF8PwPNrVXt1tnBwu0PLr3T95nNVJr0VI5qGMiYIeIGdFA2/+WWharCUqeH9tZo0jhZPft57fElWeLZJVjhR6VUwWWvsZEKY8R7rTPSVzCSvmJMUpOAAOZWeFlejTTGErxJxmOxrN0lqeJ1kH4432o+zzo4anz/17qDtnkZHEf5+7zmLkV/8roEYkshsQd18Ev2JX9VTMZv/2su2Bv9FRjyyV9qdYsbkxeouFjEUzmWbSH9Smjwjyz5/jahH1Lc6QpH1md3eW291/TWgKCVPyZ1Mk3kWycGWqXrGNfd0m5OEiTlZflT5pF4BPKr8+ONrj4TfXVohGh1F+Pm5+iUa4qnIcpOY9tCnX0evhyexel3XqHDBcQCDfLbIOH00C/fZSyogYMyo6FU5wFimChpjmHaQ/oQ0+bWc1Ax/128aWcXkJWM3I8JeLbPddVZYG87spMxOMcxic4AhCk1PpgRsqZrMttfQ10nyDdvdNyDdB+FfuypQ/tsi4VOHhN+SnOx16CjCH31qbYRLLRNBx84l6DeqWyxdN/3iacFw/vDFcnNIYVKarKPclLLaTNLX4TEmrT5IYPzWbjZTkf4IRTZkdltPLqwojXayvfSnJ4WV/3XGKDNkmQVyoOlJ/q5U5eQey3rIQ/OeudnmmP59cZV60A4JvztoG4mOIvytP7inwRh0Hz1i5DN0Xiuc56+QKzMxUU/+PDwnS2yyxXXtKg3RyUdC4lXURojf19eRkqcpWQO0Ea8y6eBnhSrPGuHxCQlUkQEybA2EtNRQ2gZKwHaKDMosQyTZNzg5JPBKxWRe1tHl6wQMNG6auBSvTREWEquC2iThdxGJV+c+axEYPHIFQHjHq4SlWkppH044GYjHU+M4fpXQNQ7Hj0mpkmvoObfJikv2oNeDV5G+Iw0c4m8EEihJyXOU2ajTIzlIWP9HKfJ4ZjhE9irSPmdqxJG9AwHrjDFkC/KyoxoXp1CO2nAXQmswT36yD/ZoNS18O1Qnjh1+2mMfQEcR/sxTT9Bu2pCkuyqdnc19hTT4ekTAn8CMne2kqwACw7B0zrWaCLWpUPF8jc38qiIcSncvDo2QflFKfisn+QUTvNgEi5wiZZ7LxG9+0w5YXy8BMQgYa8HuujtCQkZ9CK562QjVxZN9MK+yLeMsOoEvybEvoKNUOqWSN4lHt5Sr3jbYgU6H71xLza9uolUylZBpZlIJOkGVR9Ci016SjCcYjpVyWy4BYzWcv2WCNBqrqE9iYvKMsYNJYbZ/QLZBTFKl2Zr8CeDZcpXl+cZ6iCq0mwMlRPTGQW7s4euuDn+PoqMIf8t//yiS0JMNSukC63Sj3j1rmeOkWmh47In5jI33RqQZPR4g3Wn/fvhWx2xRfy2+obSwU1Z5hhKjaWt0xMDtsJjgRWP0VUf0DkZEkRmyp+mmmutNyVIpydapC3dt9u3rxnOXvOw3KcHa6C6tEImOInxzwtuxVWen7NyPJ/8oh2DB9vurZRddLsMtP3qd6kOTRrBBcXoTVtrBnAWXQm623lja/2pxy7Cs8mio35EQPgnTyv9OJl/VZA+w26iy2RxnP9nf9LjHTJOhOhZW0w2utleTIWnHBKeuhB+NjtLhz730bQF9nKeT91km+NxVqEQbpdoJE71XWHTpWdc//r9jFfdahSvKT8R9AVvZWSPO+qHO5AzqO6tS8od6yT6YDtYEsvWZvZPsra8vQw2rRGLah+q2RbRiy3go16F/SW5J4w9TG7U/lFdm9sKPuo+hoyT8/ICqNa2lTw+WZhNIKjV5+vvINUMCaZRKeVJ3fyPiyoE3JGg7bxOm1Sttssjm5Dg07V5CBcnDTDRleHJYTLLRsBVCdfJCy6UXAaaUrg2+Q/Tq+KSjnspggIBhxphOs6X89hBnMjVo7TLtxCOlRBjtyLuooyexbzRGHUX4O3/1GMkGTtVCGhyEFYFwQR2+VPxFTbxCE07nJyn8tW4RubClTovK626qbKTCGCb9CBaQZwADCaylpJ32nxYviRGGjcZWzUxsQdMohE1cCIvs1QwoqEqTDAYbjEkGzB7yiYWJ2qhrgLVpqQeR7J1bpC/aYg3TVelEo6MIf8e9DyX0qVPX6O7rw976kyOZmOit7TWEeiT8YHiYJ7JskxW2Ky7NtsCRSJ6n5DOr3AVsYoJFZOnBYIPt1gjRDjPOsGjPEsnNgqPaAWLH+U1MDGHwpLGTw8zpTZsN3EopOelCaeD1ZizE58kbo2kDsXYHbSPRUTr8aSce3WAMtUv7D358tEL2IuFB4LweePFNyiJjLR5u20Yl0ob+RSo8Q8nOVZ3WIki2Mc5Lxvirrzct8Ev3GnefBaKAjaJ5i0E3wxY/Cs6Kl855nD/7jCQfUF0uvNXo2uFHo6MIf+rqw7QThuI+pietmMSrZaBUkhRLeUwJphT2r/6Qvl+huef/jS9wXr4eleM8hBmau9rMD7mbKo/TOqlbInlaDLMp8yokewcp8i2RDIsyW0SD62mkT7r+NGL09/6GIBlTqlZYrYaj0kl7pMXo6CiXX3458+bNo6enhyOOOIJvf/vbicJu2bKFiy++mJkzZ9LX18fq1au56667Qv6KxSJ///d/z6GHHkp/fz9z5szh9NNP5/7770+dX+gwwi+NjnqDZxFlK4pcrYUITfSF0tLXP/fCfpjSk2jiiogM/Orupe3g7pSTjAbTaXIdsgZiJxNXzXpMQZ8Vw5SMZqug9jIEMlQVJi+LcUpxy0zUG3kLkKRceZqleM8+i7W97kPVj3PPPZfrr7+eq6++mttvv51jjjmGCy64gBtvvDE2XLFY5E1vehN33XUX1113HT/4wQ+YM2cOp512Gvfee6/P7wc/+EE+8YlPcPbZZ3Prrbfyla98ha1bt3LiiSfym9/8JnWeO0qH//LXbkW1atGbYoavnXPDANN0BmVdVzfOwcFx33Uzyq4ThyEsaT+onlXnDTyu2N1XHaVCE+uQieT3TBC9Wk0gbzhNYe3VLh0/L7ObySaTfTCNtiEqKac8ITxLHizSf0mMslQONZRsVruHcuNI1hP2kP5Nt0mH34YNUG677TbuuOMObrzxRi644AIATj75ZNavX88VV1zB+eefTyZirsQ3vvENHn/8ce6//35Wr17thj388MO58soreeCBBwCrYbjxxhu58MIL+Zu/+Rs3/Gtf+1rmzZvHt771LY499thU+e4oCT/TZ61Q6NjG+7tr+nOpSOxgkX74kBgGlIo5WlVgHbPHkGqIsElkNaDSeZnhVCQddTzFJDtTNh9ebyX+D2AnE2w1WrDVlw2T+nocDUPTjXNKiRm4sVOU4vX/CTBQY9BWyrBqMQkiNzGRThnxe/CuRdi/VlXZpsbY3gAlzZF20PaWW25hYGCA8847z3f/kksuYdOmTS5pR4VdsWKFS/YA2WyWiy66iN/85jds3LgRAMMwMAyDoSG/gDBlyhQMw6CnJ/2KrB1F+LMvOcMtYMGBJ/V+0I9XKKPUORbMPahwVnPmkr2dnWEhQz2DeIQHlbdRYXPiZiOct7ijiuRZsYO1xihVYa3e2SpiNu30GiXVVPA6lS4keDb6qj8BOyna7voj+P4cmEABKGoeLUiumizVRNQSGv44gsYIKdEOAb8NOvzHH3+cgw46iGzWryRZtWqV6x4X1vGnC/uHP/wBgFwux4c//GGuv/56vv/97zMyMsK6dev44Ac/yNDQEB/84AdT5Rk6TKWTz+d912mWG4leL8Yr7iuWvcLDjy53Yk+dv1ZChOYMJMcOqjzWpNmyOjwptlMJcITVtLRuDXuHcNtmnw/RRSJA+tuNSaaa8dJZsNPgSGYTwH2lMifkswwYYXmt3jEddTZ1+H7c+wtL9zGp1IirSWhApTMy4l+VtVAoUCiENyzavn07S5cuDd2fPn266x6F7du3u/5qhf3yl7/M0NAQ73jHOzDtpXkXLVrE3XffzbJly2o9VQgdJeFv/bE1ch0kbtXULIgkJmiqaeW0qVaBcGRUR1LdI6oEN1d+BNfCD66JH1QbPSUnWzaYtlHspmJoMqnktVUIkr1uWYQ9gd015ibrchhsAJ4qV/yqG6J7BpHpaNUujSFYj/xptMsss34Jf+HChQwNDbnHtddeG5mOiCGNOLc0Yf/2b/+WL33pS1xzzTX87Gc/4wc/+AErVqzglFNO4ZFHHolNQ4eOkvBHf/9M5HLIvu6u8Aqh/73bg7G2Z+vFW2vgOx/hTW/4Pd/94WtRZep2UkiJ6KWCBZaVTRR05FpGMtmiejhJmW2ids+h2YOtgugtD1vds0gEAWWq5FLMvg1+ue2y/nKXZPVTf7rJJXO1pxAmf1mTCPc0NmzYwJQpU9xrnXQPMGPGDK0UPzw8DKCV4NOGffLJJ7nqqqv4u7/7O/7yL//S9Xf66adz8MEH87GPfYyf/exnCZ7KQ0dJ+LPe8caQRBGUYHTX3rnEk0TUsAbOWiDf+9EJWHTimGb6f1uJag0du4GoWS+Duu1WSdglqjxt7ErEE/WNHETDGTdQ/6zFzTy0Y2+ASAjY1MSJWGmgEnFcz9dBbQPkgH8R/lUnabVlaQWzvgOsAVH1iCL8ww47jCeffJJKxT858bHHHgPg0EMPjczfYYcd5vqLC/u73/0OKSXHHHOMz18ul+Pwww+PHSeIQkcR/sDyRfZZcKTM+Q0WXM/NlHF+rVI6OmpQNQ1t17nWwGWSnkCtcLUsuGs1CAjY1UJdvYoXxM7UPfhmq1yCA6F7E3YY5barl3SrniYj4OT51MXnM4poh4Dv6PDTHilwzjnnMDo6ys033+y7f/311zNv3jyOO+642LBPPfWUz5KnUqlwww03cNxxxzFv3jwA9/fXv/61L3yxWOS3v/0tCxYsSJVn6DCVTmnzsHKlI33nXO2iBiV0nV/r/IUX59OKEptI35rAT5IpPaMa/bH3hM2BRFJMuaVi1R5gtQYo22NP366Nz7UQMEGVvr28CnpWbbXVOrVm5kopmt+d0+aj9YunnX766ZxyyilcdtlljIyMsGzZMtasWcNPfvITbrjhBtcG/9JLL+X666/n+eefZ//99wfg/e9/P1/5ylc477zz+MIXvsDs2bP513/9V55++mnuvPNON43Xve51HHPMMVxzzTWMj4/zhje8gV27dvHP//zPrF27lv/5n/9JlWfoMMLf+M3bSEZbScwpwpg2tItGLQ0atlOICWxGyIyqTtsM1TjpO4uKXo23Vv6fFsOpHjI4FpJmoepGYSKbtqhZWkxQbhvh16NKMUMCeX2l1y/ht/5dt2u1zO9973t86lOf4qqrrmJ4eJiVK1eyZs0a3v3ud7t+qtUq1WoVdf2jQqHAXXfdxZVXXslHPvIRxsfHOeKII7j99ts58cQTXX+GYXDHHXfw93//99x000186UtfYmBggIMPPpjbbruN008/PXWehWzlSkxNxsjICENDQ+zatcs3sOLg5W/fwSvf+j9t4a61tndv/4TWkkDYkqqUgieensvv/pDeFKpxWHm4lzFtfXtCbKdimCH7fCUoYOnv+ioZPsgi994EVR5owhovTpK7KLIu07h+2jLsaQ8R7ykpf0Gln5n01RV2EDi+kK/pz0HaWh6cWev1ddPr4YP+P1m8QOuvVv2uBSf8Mx96F4OFdPv+7i6WWf4f36k77VcLOkqHv9+7T4ksjL71PLTujvTiV+moa3j39rZH/x1GbUKqOt6ihimwJOdJe9jWOZpFqs7rXb+HBiNfjWhEh78yl7xnULdtPvoJXIktfELptkmH30UkOorw/RDoCFzvJ+gWvG8dSxbtINnw614G5dGC1il5BM1a2qZEtR1blu7T6AeOzmWZqpl0FYXmaVGSRxQ1kasdVUdKUi+t8OrRczSGztLh3/hT9IUyRux1r3XiMQS114sXbGbdS3ND95Mial2TxEsj1DvCavfJpf1rItlImZcoW1r9hgcX7DXfm0j4e1K/3h6ke7bpwFE11DiNqm5C7u6Zl9d4S5w4tOdbdne8ikZHSfjFDdvcc9P0juC1zi0pVh/7Ascc+RRCOIGaU1BqL3AlyEV8rmJK0weJ5PeM8wIlSk43WzVIqgMSyYjQb5iSFs5mk+0Qul5NFWAY2FqN/9ZppfnwxEPdER0m3Uzddpll1nnsA3g1lfeaWPC+020itwqqM1M2eO2cC+G5WUhmILlsyTbefY5lG9vMMe/apC/JIcghLCldKouEpTBO2kqFXUJiOoczMUnIup9nmOZtZtIuu/kMom0DwzrUnDehwR8qldA3CtrXp4EzEcvqYUYFDtjq1D1oK9qk0mnPBiivRnQU4efnTse1q7e/X1Aace6FF4lyKp/qoDu3LMWx52+2a6r4/YyjVjyftJ8yCy9TjlxNUor6BhM3Gc3Zzald2BsK/ubMBJM11tUJogyMBiSDWhZocXDChk0wayNpml4a7ZHwu4Qfjb2h3DcNo0+uA8Ld2uA+ncF1dYQAa56ESvq60uxvFKQ0lOUY4tHIIlUjjNupSiUHVmTPsy11JRqvIVmmzWYpdgWfxtCqpY732Nr5KgS8YOxKHUxnK9aI3OFOjErgt5GGBXdGexd7Ch01aLv55l/EbuLgIEj63o5XOkV2eJT0rp+vZOMrM2xXf23JBHoUalrBZqR2HbVGUh8Hb9EBOz4nntGoseYYJKHnKDLUqUC2iImWSm6S1syKNWnfrN4olFLOSAbIUx/x1hqgTRo+Lfwk34aJV86mJinD7AvoKAl/6KjltkkWyKrwDtOWMEyQVesAXDdP4K1dom/9vyNcsteNdFald5h4vzq9dJL6I5zeRFS4OsppkiBR41o6aXsspVqiXgQXRGuGhL5XSPopMVCnOG99w6AZcpuJrh2vug1r6bxa0VGEP+v04+waHCjM0nBJ3rU8cHUj1pxOqfqPhGTHrgF/3A1WmKDUb7iHI3la+6JGWo3WsTaJdP/VhyDpV9qxQIqbttd4OrtbNYo9KeHXg3qaV/8s8lq/UeHTQSvZd3X4exQdRfilUon4wmwErr1zEcmCnr8nnplDNPM2hrAEL7RuQSymPxV5F5o0bqZKxVU7Qtfap0nSd3z6HholfV1em92TaCbG0tgR+xD3HM0leydMiPS7Vjp7FB2lw3/5G7cTXXBFxLl6K/6j57KtlWRVaT9ULxTrS9WtjGR2Nc+WTCk++3aglcwkh+FMt2owr5JxykihrDXvdKrsBrRda+I0ouN3lGZOPvWL0LXvWWoh7ZdLMlBae6XLxtOwIkzorwHUa566L6CjJPzq2KR7HlzzO7j+d/o1wSGbrdIeJaQFQ/jrhzrr1ACKlBDAXAbJJ8jajKq1mcO0Jq5FuZPJENmr5+3Ukdcr6ft7V9G5bZ/iqrkQmjMH+p3fwu5RcLZYTKYmku2sPl1o0FGEv+BPzgoUUL/axjkPL6TmdDXjS+PusR6iRBR1j1hdw+JAbWQSSV6o+2vhmyq0gVEMm6BWMIMV1UFrFTUzcFTgsOoM5jGAiWS+zFtxNKHylRwa1L2WPUD69ZpwOuMBtUh9j+6UZaNWDtIIMUl2vUoOPdnLxGNkzUFXpRONjlLp5AfUpWZrqXb8NWJyMktPb8W+L7S/Kw/YxKOPH+CLR0farlpGejFol2zGm/AiCa+no06GUVUJzlk58BR58hwmZ9RkhB4MDpO9/L4JyyJLUWNQwH64du0l2w463qMbpySAQ+BpJlPVXmU2DK/sx6fi1gHatKetKawjbZh9AB0l4W/7+WPoB1WD15KgFFKe7GdiIufqngG8KezWbz4PPT1F956ZoFcQ5xrU10c1HvpWuTEroWlk6VMHDerEZKJ9tnA/SxXZcim5VZO1VLRzIDc4eJyENPVzP6LzXD8PJwso7P9t2dO2K+FHoqMk/B33/D6hT/3HrUz2MTqpdXJx+uue5v/uW87YRA/+hqN1yAJRy5LVVkJEhYMj6eN+xj0aCHZqasYhKdW5tnKrpeRW8Ypl69XcfEv0k7+khqoF0COCqsmkzxsO1zjUnMX7gJjBgiaiu1pmNDpKwp9x6msAWz+urIjp6sw19+o5TjnhGc5+k9O4tF5k6Y91rf8TZsjwejnIQjNLxgQhIWuSuA0bp5zMb4SBVDsk/WajVcs1S8WkVTVrDXbCeoA+vIFWd8kQbawicGjCNfw4acyUu2aZexodJeFPP/4gnlMEXiEEzk5WUkr/MgexwoZezx/W7UvbWC8ZgiaVUakGMUCG7RGqk3rMK01pNxN2gkvoZYnivk5O8qJQpvdESPwTSdU5Otgvo9pic8dm9iS8UiHdV9JovhdWe7VlIqqcHJrJuv0BRwUYLJXB3AY/nm5ZkfoR3R3UpNwWCb+LaLRFwt+9ezdXXnklp556KrNmzUIIwTXXXNP0dEqj3iCko+dU9Z1SioD+MywBhcVR9ZAat+Q1JolPnZ/Z2nbZ8rmDEnVNDoqpd4tlD4eaPUyRBhln4E+j769bjx141a224mmmpG/aSrRmxThAT2K/MxBMsXe6UtMPjgX5oZb/tLlLgmiyV39dv20Z+qhHut83GqK2EP727dv56le/SrFY5Oyzz25ZOi/+yw/dde6DUO956+KHfNVIwR9Oxkg3aeE0HSUTioFjIlBLfFeZ1ixtMJ0cR8h+XisHeb0cZKrMhB4128RK0mob92YM4jZhjDsUYTZFFcz69OU6YYXQddq5JlFQzY4923twakHw0EO2h1e7a+lEoi0qnf33358dO3YghGDbtm18/etfb0k62SFL2x0387zR7qx/K9EUI5w1EJeVLWY1tml+PrOL5dWpLVOLAKyij6fMCbYou1oNiDzIscYfP11HqS44CrhWvCO1d5Im/h4zrUooWk0TqcUXzSF7fV6sN5ocbdLhm9aRNsy+gLZI+FFSd7Ox+LIzFbLXqWic66jKUsst3XaIOiSThPwY0+jK/V36tvSTWUkvb5CDZO00sxiNb4DeRsGqFXXaUfF4i7olfyHTZW+qtPIiqky3C3Hqz2j4ehhtyHp30DYaHWWlYyHYvVXPa10H3fQF2ym806eMhdzSICnpj0X4UtUUtcgsqFNtpJsvkPbOWDDPjLch2tvQXH1++Puliz1d9ZshMtRT3uqVtbzZ4HoVaNJn9SaCtUcw6RJ+NPZqwi8Wi4yMjPiOOIw8vt4+S9bdre2m8ytcE88TDn8BDZW653HSngj5tn5V4vbvvxUemC0g3HuC6AbEuWcGzsFvtaT+RrkF6+xUCi1QbrcWrZyUlSbmNJUvD8wwaofQ6ezT8KyuHDQKU+KW0n1lkbK9FakJ/5577nFVNLWORx99tKHMXXvttQwNDbnHwoULY/2PPf+y7zrJmjZp3Zx7IMjlBO85+xfkciXHxfMToS927qjm7g7RRxFzjjCRCAQrmObqV/UrPCp51pw76cQRe+jX9xRWPhZXB2NSbgytIOdWc05StU5viiG0o7L51GrRNL043TdXXFOlG5NKW8ZGuxJ+NFIP2q5YsYKvfe1rifwuWrQodYZUfPKTn+RjH/uYez0yMhJL+jNOOIgX//lHduEV7oCVZXNvFVrTtGRh3bKv/kXVZISb9F3ncnDROb9WcmGFvf67r6VqGrGkHwe1ivUCJdSBRwtZsqHxu7TCtuM/TXEPxj9InhXVqWw0Rhl1BnXrqD+m8mzqc7RiVm4rZ/qqyyw7CE3YktCTsPr1AP0imWxW7yBtfLhmvSfRliVHnfqfNsy+gNSEv99++/GBD3ygFXkJoVAoUCgUEvvPzxqydiOveKXKI32h6DKdiVhx5iE6N+ee4bqNjsLgoOpuYXBggl0jA+iQlmSnkGWXqHiBWlA405J+EHkyLDGHMJE8ldmRXlcuYhor+eohfYG+t1W1GzOH+KeZ+cQWOgMJyD4JYdVPavWVDlMGFwSU7Zl4VY+Z5T4i4e/VOvy0KO0axyxbZK+WK2cquX92bdAyRzdAq7Pe8f/29zt6SX+4M9/4W63e3bkySM7bM8n5PLdKGEkab1zVMBCsrE5jyMw1XbffiqUSmm3hFPfITg8NCXNl8sHu+QkIv7U8mj5yZ6XY7o5XexfatrTC7bffztjYGLt37wbgiSee4Lvf/S4Ab33rW+nr64sLngjD9zwWu5GDg+juqy5w3ACw02sIh8vnBauWb+D3z3gqqDQLEagxvqxZsyZIVKq0GOcG0b1qlVbUGIJP1yMFRRFdcw0Ei8wpAGxjgpez45F+E8Pu2TRbKjdR9w9uPUwgLwW5hJvQzEQwQ2QaVjnUE94/uSr6/fjHd2JzEV4DvAXoLp4WjbYR/mWXXcb69evd65tuuombbroJgLVr17J48eKG0yjsNx0gYIsvlXPwljx2JHO1u+r367+OcrOvNKX94AO2sGL/YR5+ci7PveTsh5sMaq6GA2tlOrrhIPFFSaueJU98+s5rC8qTwQ79HPLsosayojam08PL5nhT+5KtIP3m7QFWGwtNvapPh8My6Qdrg6iH7P0rccaTffLo26PD7yIabVPprFu3Diml9mgG2QNMO/ZATOlsVK6qXtTHNALXQRVO0G9cPIKqLbYHVUgAuZ4iCMnRBzvWQ/WJabGtcooKFFyBMY0KRw0zS+bolUaiCAwEAzKXPJNRGQicN8t6J/hVWw4JA+QTeTUAowm6mrRRJCV7yz1BfK4/2Z6JV2Z9x76AjtLh+6HTzQeZQ3cE/dZy8ypUcLs4s+IM0dVXyp3KNJt8ZM06jKmp2hHdmEKt4EF3A8HhKSZczU05ozQSymtsBt07g6jt3JjckFZPS21Ag4eDoTbmy0Fy9UzynoPXJ+5ugLKn0VGEP/yrp+yS2r6Pl8noC74QUC4FLYzqy9dMbAlZk07elhYbHXxMK/XnUtBkj2M+Wi+CGbMTbnQQd09U8amyttWZ81RLMw32jJz4UrymVgz+BsdtW40u4Uejowi/uMWbiatudgJWodddO+euZBPo4rkzF5UuX1QXMDTLMVTR6iOoKnCQWfCiUEwYm6nacJA0xr6ExUcgGJANDBcFO2fQNNJvK1JY5xxEhqkJbe+biZZL4G3c8apL+GF0FOHPPvVwi9Srth2uNEAKzKrdlZTY13YAaXhuODtheSocNZy04/EaCeHunGVdg8pMUoKRqWCawp7sBWnFGxPPsqeHLEea/SwxC8jgKKpsjoTvICqXwV7AIjP5HIn55kBz9DAqGiR9E2+PXfVoFQys+QpJMNOofxg5OMM2jmPjCL7ewVp9T9GuG22ZeNUl/Ch0FOFneguIrCNJBkhWqsNzhl9Cl8K61n10Kfz2+1IRN6VgbDQqNwKRLVKP7BynWtkgiuGbIp3Jpw7BXMrAtYmf8CUwgyzzzWSSe55M4ytr6tDkQVxovPGMwkIz+RIUjdCPOu+k1vIKqj8HSWy64hoR1Y4tNGK0b/DqXouOIvyJl3cgy7pNWYMDrRLv0f2Dsjprm6Cb2gD0RUy8Akm11O/GnSXoJxqqEaiKYcqW/bsdTQXT3eLwZXZTa+ereDf/edAyR+9fsEj21GzHHOf9zMbnWvgiVTLXTIpuySCuTKa/V7w3llxKvb0kat37mHDpvOPqIluMroQfjY4i/B33PZPQZ/Dj2vSV4JvrZvDqi77ArHrzafOGNcEnCcK+rDvrFOnenb5vJ13OePvbqsQebAQGzdqDsxKrx+Ct8R7tTyBia77Ky9PoIWa+VjpojKuaoY5pZYVI05A0Sj9pVOU66T5RuLj0o9LpDtruUXTUJuYDB88H6hl48vTunnzrPw9vrGK5bXt5JgiTfKFENud4snsZAVG9x55lOGk6Mzz1Kk2HdNTlkTNIvNilPys2XsjsYna1l2n0hKT5SUq8xDgnM62uOhdVVy07e4NRzJqVWSBYXp3K05mdLav4JjK8UFmq8OBor62jORkdTDlo3XYJ3/WfrlGKEwaC8bVt/3IpwEyZWJfwX32YcvACu6V2iptzriuaQTf114Eloetbf6eRsAaGixO9VMoVevqK+Ck7o6RtxZ8NRFeRfuJXc2/lQtjT/yPKpYSSsGIYNooM6/T8tr+pVcNNS31i3dNHRBHys8zs5VFjLKKp9CNHhsXVAdZlRptL+oq6rRlRNZPskbDQXmoiKXQTrpIOxDruaZZGtkMlC6CGTRHKv5ZV69BdWiEaHaXSKZVKypXQ/AZ0AKn86Nz9fqqVrG2RY10bGUCYgfBhJNmtygQGpf5zpRmwVf2qzZAZuBeVj6AfAQySYZXZB9KvLgqqg5zzfpLrsutBo6od5xnMGmMiSSNbUO1PbJ0D1mYncQPctUgzbqBWv7cDgAg9qdT6U9LQ+NNdq0g7TlAPuiqdaHQU4a//lzvtsz3x8SyiL5dyyrVH+lY5t/4HJfwkkMBSZ8ZtsPIF258a8cS51dLvq35VaX4KWebLnEsEuv5UrfSbiWZNRHNMNxvBTNINVi8XOYQQ/vkhqp5dc8+5TrpMclhv753rolANFhzVp47o/fdUVWkXewM6ivDNYtk7NwlNvoqaiKVWgGA4tXLp3IITukKlXoJhBAhP1qdLy5JlpdmjRJQeZgpD6LgBW9WPk50lsod8IICqLmpLvRf+fDULdZG+hJkp5ioAHEiGOQEbfB1hBncnq0WqUnrStdsDc6V0jfpIE96/7IKkr2ci0r8ap1TTaouEX9+xL6CjCH/JR063yVfgLZJmLXKmDrqapmNKabmpxG0VVCPk5k3ICrt5aUhyOXujEiltxlRN0SytcMU+ksOKoEfAvEw2sTSvQ9pgSVQ8XsMgGAwso5Cm19A0tKiDV0+vYb5Mbns/DVjUpOUUVPjVL1bhUYelk8C17bdj6e0tcdLrn1Di8A4pY9bMaUfnux51Th0qndHRUS6//HLmzZtHT08PRxxxBN/+9rcThd2yZQsXX3wxM2fOpK+vj9WrV3PXXXdp/Y6NjXHVVVexfPlyCoUCM2bM4OSTT+bZZ59NneeOGrTND+SJLlHBwi0DbhJ9+yeQkfZkQTsbxbbfN3isphmOJ87awfHhmHQqqzvXhR3AjBp+gnlRZzYEkw2qA4bIsD1BczYoc+zWrPO/t6KeQdxl1aHEfjPAYUZrxja8Adzo/NdqypxGwyqrltCUy1bQlWknPVPumc/brkHbc889lwcffJAvfOELLF++nBtvvJELLrgA0zS58MILI8MVi0Xe9KY3sXPnTq677jpmz57NV77yFU477TTuvPNOTjzxRNfv6OgoJ598Mps2beITn/gEq1atYteuXdx///2Mj6ffZ6KjCH/L3U/YZ8GPp6MpdeKVcx0svMGGoLZbpZwlX3Aqgud32aLNPPfiXE0aVgzxA6/STaUsVUkrPaK7dF6+dOaiweYxeM/BbJlnrSjWtLmebw7yVGa4Zn7rQguIJnV8EvrI2b2b2qaiA0CuySYsYSnb/1HSlCF3Rq4TUpiUSgV/fJKQdZBqEZY60TrRDsK/7bbbuOOOO1ySBzj55JNZv349V1xxBeeffz6ZjH6g/hvf+AaPP/44999/P6tXr3bDHn744Vx55ZU88MADrt9Pf/rTPPnkk/z+979n6dKl7v23ve1tqfLroKNUOlvu+gPJqmZUg6ALm8TNg2nqGgc4ePlmFs9/xb5y9gJIJgVZ66KrqQZCqCqUmJlNEunamYcP5Rlq5CcOWQQHJ5hRm0GwpNrk9XWUR2k+4aeLMai7b+bSD3FwypSjM/d/XXsQlXSvXYbiE0xM9nL7XUeglmWISle5boPI3w4rnVtuuYWBgQHOO+883/1LLrmETZs2+UhbF3bFihUu2QNks1kuuugifvOb37Bx40YAxsfH+frXv855553nI/tG0FGEP+f0w2mdCJEsXiNbAcMEo2rZ1hmma5p52EGbOOtNv2PmtFGkYgZXi2BNBKZaICU+iTHnGyeIgbB6Emcd/wxvP8E5nk70XErSNTGNLMsSDFb2UWCubc5ZNyIGCdSF0ZqxNk6tZSuCeZrDQMh6N470m2Hz71/QTG9CLH1X6fk3rPUXCCFcK55gH1iXx07A448/zkEHHUQ261eSrFq1ynWPC+v404X9wx/+AMDDDz/M2NgYBx54IJdddhnTpk0jn89z9NFH8+Mf/7iufHcU4c963XL0GvEkQ49J3IIyS9BNks05yhmfSG6Rv03ahlEOhTQjDofL3AU+JRwt/QOjq5gZIj1Lmpd+W3LpfHAD0/QG4jJGcpneeSpdHlXMIc/0BAurzZC97F+dUj/p63gtcFh5bIxpBMk3ShmS+fAWjPZlVD4GmrYUcvxArE4pGQdVYgf/udeE2NeaZEO32iHhm6KuA2BkZMR3FIv6SYzbt29n+vTpofvOve3bt0fmL2lYR9L/4he/yGOPPcY3v/lNbrnlFqZMmcJZZ53FT3/60xRvxUJHET7AUTf8MfFFOa5Dq3ezCrIujL8B6BsYwzAgXK38MtXomF/lEae/d3Jk4lW+Aj28xvRI3yEigdUgVG3VjRq2alONt5uqYW/PKDho0VbN88TnR3fPr+cXHCR76Tdr9z4GyLGsEdKPg/T91A2n8azav3Hp7S8jZtUK53uEw88Vje+qK5X/SRHfPOhqkleOo1LSKUzbq8OvR61jhV24cCFDQ0Puce2110amE7fXcK19iJOENW3Twnw+z+23385ZZ53FGWecwY9+9CP2228/Pve5z8WmoUNHDdoCDCyZzYn3fZq1Hz+fLU/tz8CsnSx5w+95+vZjKU0UWLL6MSrFPBt+u4KegXEOPPVhnr/7SMZ3DjDv0Ofpm7GD539+FNlchZVn/pr19x/MyMszmbFkEzMP3sAT338tAMvfcj9bnlzKjhfmkc1UyeaCJTlYVSTCsJZhNlIaZQYhgR56AKWnIKwORPz65jDbEL5JNADL5u9k07YpDI/Gb0UYN1ir9y9YKft4WIzV9LtDlFoj/dmfoVGeCfbtqliGjcHB2KQrgkqk21DPRDBUh4Sv344w/iWmfQ9RZB9E3FiUL4426vDThgHYsGEDU6Z4DXahoFdNzpgxQyvFDw9bhgg6CT5t2BkzLHu6E044gcFBz7y3r6+PE088ke9///txj6RFxxE+QOXWt7DwyF0sPHK9XakEq97+oK87PXv5Ftft4NMe9bm95vxfum7LT3oS8Lrix77vbpcwp+33BE+O9lMc0VXyMD06m7ZXZXppLlFFTeBJIjFN7J4IrmXFGw5/kd1jWR5+dh4T5QzChIo0qFQzODJaregd/bCKXjIcYfbxqDEeW9mLoqqPoBlwSd8j2WYg9D4kzKTG/r1KAySAIeAwI9mm5lEwghY0Ec9YT6NnZTfqnXlCTRL1UN2ZSIlGCH/KlCk+wo/CYYcdxpo1a6hUKj49/mOPPQbAoYceGhvW8aciGFan5/fyKzGM9EJCx6l0ANi5S6tzFcpdnZu14GO8rjbYE5u+dLPOF7qSLe0JYXV8p1iachqjJNFa5VoESN+qIP29Vd6w6iXectR6Tj1mPW89dh25TONzVgfIsrjGWvB9Mtta6a9Juvwg1PGRJeZgsgbF9mIAh4oCAv8yConSlfrzZpB9uoFVoTmLUZy2QcJvB8455xxGR0e5+eabffevv/565s2bx3HHHRcb9qmnnvJZ8lQqFW644QaOO+445s2bB8B+++3H6tWrue+++xgZ8bZvHR8f59577+X4449Pne/OJPw2Ij/gTC8P6upR7vvPjzp0HWqVSFIH4gk/OTwVhH9kU50xrD7Hglm7EubQa+Z0SzLMl3nmxgziTpe9bZH+mr3kghPfLLPAYNJF4eznPErkyQtr1qtjtZV4LRzwh0uf9ci43TRk8vcVlYc2fNJwmm0wyzz99NM55ZRTuOyyy/ja177Gz372M/74j/+Yn/zkJ/zd3/2da4N/6aWXks1mWb9+vRv2/e9/P4cccgjnnXceN954I3feeSfvete7ePrpp/niF7/oS+dLX/oSu3fv5i1veQvf//73+cEPfsBpp53Gtm3b6tLhdybhG6ZWkpPUNq6L8uFIbsEKueWJ/RNkyB5UtZdAnD6lTC7j2t3Y6yjGV41aHyrp9oHblS5/xR1KcO6FIzlsyXZEaC3NaIqRgV8HAsEBspeeCBPSDII5Zg11SD3QjCg3W8ovmAb7kXwJBYCDRM62zPETTS3S1+8lqwoajT2b97qct7QnKLsxtGu1zO9973u8973v5aqrruK0007jgQceYM2aNbznPe9x/VSrVarVqj1b30KhUOCuu+7i5JNP5iMf+QhnnXUWL7/8Mrfffrtvli1Y+vu77rqLQqHAe97zHi688EJyuRz33HOPz44/KYSUrx7L2JGREYaGhti1a1dNPVvlhuOtrrKtt1W73gCjWwfJ9+2mMCAoliSlnYMMzNoNmIzu6CGfh8JAmWJJMjE8QO/0UfL5CqO7LH394LQSxSI88b3jKE/0kM8LnNWZ87ZKtlSyiDSft86lKchlLXof2dnLg0/MZ9e4RXKWJU1YT66uCBTEL43dICyy3MoEGzKjtoweUXglvNWczgeO3gpIpDTJZv2bu6gzJR3rpEoFfvmHhYyM92giDacVZ/kxickjxijVCA/Pix1MNkGNFAtJ2GyyTggJh5szU40NzAEOoce2xgiGs1e5iYjOW144HE5/3+8ahahNyb170c9XO6wCAf9f+XxtPGnqd1z4W4/+DP1ZXVmNxlhlkrMe+lzdab9a0JGDtgAcfwPyVxfZpnBeP/VX//tHFF9xdh5Xi6Qj4eokJdVNb43j2KEIAWMKYUqJ7SYRQjChVMxjDrb0/3c+tMTe5KR+TKPAS4wipIjVwExWnbxYeahWCW167cA5z2YFJx2+wXtiYYW/9VcHUA2oaWrRXg8GR5h9PBwxiLtUTuVZcwfllux4Dl6734QBXAmHmtNTx7OQQgTZe1msYdQXca/+dxYfskZuNNZhe1KK7G6AEo2OJfzssmWw7Ne+e7848ysUX9ltXzkVLqp6RblFD00FpTL/2iLCvfabt6lKkPoKnWNjnyR0UcmnRTrSzavzDN5CW1LJt2KRYUv+U/qK7Bj1ilDwadT7at76yLJM9vAck6FMCwQHmtN4RY6z3Qi7Nwpr2LwJkUo4wJxCNsXGJg4KNcpe7dzpwtVffmr38ePj1oXXNT9t3fEq5RaHXcLvAJS+/jpfOS2+cqZ9Fh5IDZ/XcnPuqSSIe67bjk6/YqEI/KZEynpeCt3RP4O+R2N5ME2JYcDqgzZw24MrXLco3tApG/aTeSYw2UjY/l4gmCv7mVHtYW1mF2Vkc4hfNo/sZ5k9DJLenLIHh/AhWi2TMBM1y2ezkI7sY8fIXjUK5M5EZw7aYpG9M2NNIBh5ZYB47XJzoZP2o5CxJea0mBdQpzSrMvnzHvW+rLGJw5duclJPnc7+skAv+kFcsPa/XV6dzkKzOYusNevLF6RgnjJnOQ0OcdU5DvwPFqe/d9yDZ0kQ5zskiSuH3od9V8a5hv1q5Z0WoLvFYTQ6kvBLN3iSvaNf7e0fA6xJR1XlCO5cpdsJy10t0C7Zqj8Hwd2wkuyy5dwDyNi1XGoOZ7Hlqv3rrGGziF6f3Zw0lfEKDSSSufify7eTkebcGdPX6felFCzZbzdnv/Zpls3bSlzV17lkEBxu9pNBEmc7MEUWOKg6rWHSt96hdI96I1khpyuXyeOZQ4apoSUU/GNGEm+1S90h6xBa/OSt/96q3yglkxouuMaOGj6UvvTuyxaPx7vp1XHsC+hIwrdUw/5imx+wCD5cQIVbmXRwCjdKo6DCI+9w9zp6coy/gXGQEWFLeMd40yH7Kh7hu+EQ5DA4jBnxXCBsG3nfjkRWSvq86tz8ChqnshyyeIfjIyYDHsqY/EGM8StjNxX7YeOMZg0MVlankUmy72IUhP9IvZKmrG+Q1sFAbHUTCY/GoC5jDIGGQEkhmJIZCBf045C/Loe++20QpE0p6jr2BXS0Dj+MZPryoD4eqbdEsO4l1/MHpTkdDAHVlITmWJwkKbL+IVbduXQbBBGqpVbV1bt57jqod00kjxijTAZ18w4JCb0FTQaDleYMdjLBxkz8Ug2JICwCSzLsKiSsMKeSaUBGml7HAG8jCAk3MkzwKnSjS5Kw6kZXPF2/tfLSBkm6a6UTjc6U8AeNkORWHHUG2PSkHKU7DQ6+qn7iu4GqRBaUzqxrax1x736clBQHK5wkm+BzWvbvQcldfRARo0PWPYd3fuLBzwVyFc6nALaIEpNC6hkmAabSy6HV6exfGWBOtZdsI2oCUWNzEgkzqz2sMmdSCMhHzvcKLUOtwRCCQWG0g+/0qhaZjGtl4IAEJB48d3rDup5zO3i1Hv19l/Bfvcif/3NPWrRPShM5ml3a0piYqRVAHQ9w3ZUqI4Ql6RsJ4/cqZu0qHVynM06PGaeSCo5xAEydCm95zbMYIrzgs0MgVWBr3GqhCZ7Zbi6ZQoHZso+DzBksqwwxZOaaKkFmTDjEnM78hAO0DvkH0QOsosfnr1VoNG4RuKol+eoaF0cw2jco9NWFjiR8gPwHfomUzoZ+koFZo8R3OpMN3MSRYBw800zhkb+pjitEVY/4PDs04t+MRCddW3dfBGtw11TTFICBlNbm1N7mKDKQd0eHr9iK2L0Uh/h7euCs1c8zZ9puolAWNcTN+EfWvqlesiw2hyjUsRKpLv39qwMcKmcm6jUFEST9o+gJ7VfbCtKv9UqbG2NMKEUICH2rNqp0ulY6YXS0Dj//gft81323f53xtdvxK05svbR9R9VPB8ndm7AUJPsoHX148NaZeGV1sYOdYr19RPTytDCDHBuVdfEzUmBG7GtrRBZqlfiD78Z7dm8CmXQ3epFShtRcQkiWzt3BKzsGtc80IDOManoBbj6J3ti9VrWcLXvZwGgNX05mlTill7clcmpz7PWBVRQoRKx1X4/6Lgq1eFQk8KP6deKsJ151w/PQ87WBV7s6/Gh0LOFPPve/8NN/d6VUgGNOhoez72P02aAJoXT/O6SvujhFwdnkwRvEkoraJVz0w3bKwQZArVp6UugB33IMfkgWUmCjLLvOy8ypPJXZgVCaCafirqhO9eVVmiBCeiPbTeKbXQvBhjDKzbo3e9oEGcOkaoYXCNtP5tlshKeAOZldKAvsLwtso8wGUWTU1vfXkrUlkqkyz0ZpWzElqcPSUg/1yQzz5SC9dpVoVPUskRxIjpkxO1k1k2JqEXpawVotcfU2Jtr77ZDwTYFMOaU37czcVys6lvDFT/8tYAtmrWVz1Ou+Ca+XCpn5fyXWOvHqWisSS1yRJjj11+cGyGoVIbJKevCzr5+GbhBUdx1UlTjIGtBrwoSdWtBPBsF0DIZtQ82cbb74krGbUWHpygdklvnmIHkMxU4kriqrbkn9eQ2B1cgKTj/mOX768AGUKxnU99xHhkVmgRcNe79Q5bH6MVgorTXiZ5NnhszxmBhjd4KFep29DA6qTuMPmR16T2pvS8Js2cN+ckBrFRQMloYSZiBYQK6pcdaKqxXhk8Tr+ImaiKVet21pha6Er0VHEv7kv73OJt+wRYnwLcolfL/SlIisUxEVPTX2CJQhvWvVDSBA9mCpNkxTKBKxA+lbsCxWbSMgn4G8gFLFClvB+nCmAAPJEfRzN57OPIfBEnNIG12/zzpHgGmvw6O0e35JXmpW0NS7Oc/mXGezkjOOe45KBX70wArVEwtlD1OrWTaKIuPCJGcK9pN5ZpEjo7xhZ3LWVspsMsrsplqTJbNkOKQ6nbXGCOPCP0C8vznAVJluJUXvyZIRdB9wOL219zWtKxfRcTVC+qmk9Ag/ankmIlw7Jjh1CT8aHUn4VHMx/f94iTXqs0ur76/14S1d5ndbdvxjPHP/EUqa3q+13aGlNsllTYrlcHjw1DECyGasc+ejlUwrvJe6iDcxFDAv4OwUdFcXb48tqHb2jl7eybcaoermf0ZP95/NBscGLAySZaXM4lho+ptE9VcwizyzzTybRInnxWT0M9rIYnCgObWmv2ZDAIcmIPtmoxk8GlDS4fVf06epm7fi3O9iz6EzrXQiBi1bD3+6m59bSLAX4f+1zufNHEFH9gAVZVkGAr6s8QR/mtkYuTGLEfjgQnMAroQU7iE5Syro3JwGQPeMugbRgdT8BgcMJZZefp7Mc0i1lz5phDw1e2OTtJhFhuPoZQAjmcVX67PUAJymNhpxbsEZua7U30YJv2ulE0ZnSvj7L4IXX7QvdHKjcx5Qsxg2gQYkeXXzFN0sUIG1PENQehnZMl2TjpMnT4peMHuU4d297BrtDfk3EVSltBdY81CVamsdrkVBjXcwx37o1Fz6mmmZYOr1+/7KHOg51IC/b6DPJVgmjxPCpOhbRMjyrI7ENHOz8lqYiuBIegNlxvqXaq6Gch7d02xcfROHoJSfNp0oyV7VIrYa1lyXdAlFLa3SaehIwu8585tMfuUkd912FZIqSCNkgQI22RtVhLWcl9/NFDBFIEY9236wyd6E0RnH8Lt/GcCsZFly9JOM7RjEjBj515l9Zg3TV73U1MtSUJaSnAh0uYVKcdZZBakd3pRACRNDI32q+REK31t6WTv+gA7fsdVXn0PnFnxOX7p4BKNT+qjNioN1oshGoxSpUDejR0OagmCy+5FhOYW6G5gonqlXldI8vHol3q4OPxodSfgAPX96D5P/8Tqo5BDCWh+GoRw9F/0fAJP/fTKMKYOOhSo9H/iF5XbT2bB1p2vSKUWFng9bNv2T91yBfOJBj9xklftv/SMmNnlqmad/caSdC7+07N9VSrgN0ubt/QyP9PvyH5azLdLPCp0vz3ctW5aKTvqSQiFvJ69WZj3St+IPm2sK5bmk69drBFS/Hl0Gny+Cv30oYbJRlCxNjuJZYLV9BnCc7AMEFUwednT9LarLJ9LXtK0S9xYEi0fa3kRc4y5BYwbcfHQJPxqdqcO30fOhX2LOnUe1CuZhJ7tkD9Bz8c8wlx9ruS050CV7gJ7zvo957HupVqE6Yy49f+JN4Oo56e8xT73KWl65r4dnR66xyV6FXl/tX3TMw8Ztg0SqUFLcTbKkzOaQL2+AVZuOb2VNFL+6Z9Tp/i305Mu+a6k5ohbCdO7tpIIUYT9OA2AKKEsokKGfHEfIPt1DNQUFRNMmZ71akbR34g21SGatbP1+sVLiziZPfHRVOq9ujN/8Hli71eaeAjz4S8Z+cyri7E/AjrXw8/+1fRbgyfWMP3kqrDoClvwx/PAyAAQF5EvDjP/jKTA7T99FP7bOHbeiyYtrHiFuQBLbtwW/pO+4lcrhyUl+qPJvAyQjdaF14wuq7l0qyevkcjtUSHfrqYKEEBy34iXufWxJ4Fm0WdTmCmAixgbJuV9RBuynJFyd0iGjJGoZx8eiGjb2kE5/vzfAN8KlEU5qjZE4prqW7t/yE1RSvv3fj2pyrrtIg44lfNZtDZCUNSFIfv8LmqV97Q7n7x+Fxy4jaGcvkbClxPg/vBkhvJU4RU2iV+GnKt8SzE4aMXEJZGBnLL/fQSB69RoP6T94XKe+Voffcx8aqLD64A088OR8TGko7mkQL4ZZfCNarn6ehcF8m/Djvlp4SY32wz9objfm1PpyfrWcLz73Nzj+pbrLkJ++3iJHHbyBxSe8O03260JXpRONjiT88X94I2glMIG31IJGspWmtva6s2pFWLoRwqRatSV0tQ4Iz65dTU+qbj6XOLKPvnJwEL38Rk7EeQGstd+DMyIFfgndHbuwJTZhvxonXs+vbuJVOB4Hs4YmOfP45/nNU3PYvGMoMo+67MtIl0BYAaNU2GZvb+IM4iaZSSuRNdU0PcChOKqi+AFiGbjYE6QvhGDhgi1MFrO8smVaSDYPE79atj3rlWDW+3qLnHriH7B6cdYbDi8ZArLqpdKuuQn1bGiyr2yA0pE6fCnj2rF41UsUMfileg9zD1gHtk24b718KaK3c/O5CXI5Zz+rJND7GyBbY0clC3mswq3ay0v8pO3XwyvSkqtA17i5Yf3nOkupOVNHIp8Dosci+hKoaJ4TkzxkjLPOKLLeKLntcFIbfa0/WwmdAVbRF3JKFu+egqS/f8wa4KhJ9oqb8Pyg8dffV/TFpO0NBFR8MteeDWC6dvjR6EjCD0qWaRBFDFENwStrF4U2RvF3oXUHqA3PwtmOMiZ6yFK/U5Ufx9If6eYELbix6pZ8UFINuYkabnHP6L9nElz2QpO+5t5UsrEjhYZEv+aObIyYDWABOVbTR3/ArHXvpwnB+HifvSxI+OlqKSXDQrkVx8HLN1pX0pHe4/MAQCl6hdRmokv40WgL4d999928//3vZ+XKlfT39zN//nze/va38/DDD7cmwdWn44plPqj3NG6OIBvUT+LtZhR0q5RydUwh9xPizKkTzJk+FunbwFrQzVo2WGoPYf/WQq9v11wPtfS5+uto6d5Jw9sD2HMc6K0QlaKas+CXyiJYLAvhQGpOdO894rsmgrQayWUUyLvVxdt0fc9J7tEIbraz/sUZvLLFr0KTgSMNDj5wI9OGLPWhXtBRrmM/TGvQJfxotIXw/+3f/o1169bx0Y9+lNtuu43rrruOLVu2cPzxx3P33Xc3Pb2+Ez6Gf28npUj3liBb0rsZZZimSLK+qmDCYUf63Jo5lX/pvF0ctWIz82aOMHNojJlDo8yfOUIWa8VMB+5uQsFeBcl0xCZmSO2inofdZNhN48/za5GhtfmMGUoDJMWSXq7U9QcInC+UBVaYPRRs9ZKQMCANlpqFmpyS5GtZ8qrfpz0yYuuzpfKulXGZBFBJuFVw1qH33SOLunNv7aZWGzMHLt7IW9/8KMsPeCUy7S72brRl0PYrX/kKs2fP9t077bTTWLZsGZ///Od54xvf2PQ0+z5+N+O3fRD5xHrAGlzl7Z+kb5mV1viD34Cff9vSSwsTjn09fa+/ynJ77jnkD/8EHOuZxbPoO/dGK+JTYPzLbwR7Z6XeaWNM7gxvgRdf+PWO+ZzJ/nP9tjZbhwfdcx2ha0leEll3XelZsd6wJl5Jm8qkb4DR67LbVOgusmYvseBreKx49HsDe8sm6wbv1DtSc0+9ni3zzJZ5n9vuuG0TUyAqbdddmaTWiHwfNSejEejI3o/0SyWoWLHsFbJZL4a4Mq4KB+5JGyZdWWmnH7TtSvhNRJDsAQYGBjj44IPZsGFDy9Lte+vXMKtQLWWoZqRL9gB9x1xKFWm5SemSPUDfsmVUC1CdzFIt45G9DXNaP2Ypg1kSvOY/3uGpHmRQSg6qkPwdaNdaRvr9Oitp1oW4cBKmuPuz+nXuaoHXa3q9c3/liJcM1Z6IE27+zDFC70JzRE3E0qEPo6bnequ0OjISTKKWXNxO1HpXnntwrEUfWu255XMVslkzcN/zFwznRekNDWcGems9QlOg1sM0x76APWaWuWvXLn7729+2RLoH2P1Pb4bRAoK8VeTGDXZ//gw4Yhls3wgbJsBZA6WUsdxmAIe+GXHvnQgKgIBqhtHPn4EsTCLe/h9w05/b9SQDZMj/8C957XkVHvnVuxnfsBMAYVQtSdBuT42+LOa4syuVQ2NWD0HKKii6YVU8l6alXvA2W/EQRTJzpOAVZ8/YYH12I3CkdZ0VjZ2WdtGzoHZdza4gHI+ahj+e+TNH2LhtihJBTLckAXIYzJJZa4P0YDR21GkmVrnhgDHgHnvbRIG1p8Ai8szxrdy/dyMtnzkb8jjqrdcctg7n7QRNcbULpkkgIDVXRyZoB6Sp7veWPMy+gD1G+H/6p3/K2NgYn/rUpyL9FItFikXP/GtkJLiEgR67n3sORv2De+7kpkef893zYTuIe+90XX3hiz3I7/y5di2QfD7LcW/4DsgsfuKya4Eo42yQ4pDfb390LKZpb6en1BYhBLtHenAaAenjQS/eKHpcxgBbzd2Yat/Njn6VVG8GCdqvZgi1FxHEHY7DUQHFp3HUgVsY7C3yzEszbZ12vJonCZbLXspinJ2B3XD7EYzb6qcoaJ00DYcERpE8QZGtGBxKT91LLLRCrROPqBFtTZ9OCCQmUwcnWHXQeqZPmwi4e+e+ciOtcRWclWclIFWBpvXoTryKRmqVzj333IMQItHx6KOPauP4zGc+w7e+9S2+/OUvc9RR0VOtr732WoaGhtxj4cKFifIov/NnONvdqdDuVKVcq7bxBFwt3TPoO/Vg6fSDNOm4WZPA1EpS6B9XVDcCbOsZKSWZ7ITrFqMs0VafPHA8UzjQGTM1oWDC8eYAA/RbapJAd9xnky896c7UdN0dv54/zbvA76br8kspWb5gJ2etdhpgjUpBOZLAQLDK7Ofoaj9LqgWWmHmOMvs4Vg5apBwRkXB/hbbc+DwqTlsx2d7A2EH7J2JFvUmdYkoyc9pu3vi6J5g+zVHBaWKMUu2YNvGr6s026fCdiVdpj30BqSX8FStW8LWvfS2R30WLFoXuffazn+Vv/uZv+Nu//Vv+7M/+LDb8Jz/5ST72sY+51yMjIwlJP27jaL1Eo/rQQ9Zwj3JTJV4Ph5z8OA/+4ARNOIPeXpPdZY+A9YOE0v2vhq4C68QEW4RwP27VgEfkGIeZ/fTYIbyVLZ1r8O/zq6TiU/0E9Plu5zn4To1AGuqzqO/EYYVo2SNNVZRYE7T6yGAo7+4I2ccjYjwmjfoq/AYqzEqwro4Oe4eEH+c3qMIJlA1FReie27vHe5ZOBs73z8+bUVeuu2geUhP+fvvtxwc+8IG6EvvsZz/LNddcwzXXXMNf//Vf1/RfKBQoFPR21/EwiSJ9j6CiEKUscYgrTtescwuSnYUn7jlE49e6Hh/3ZE4/I2h06IFUR6mwxdnHVQlaBZ4yxjjS7A/kKU73bp+7UYlwOBlsJFSdvOc3vEm7wDQlhhEMF0Za7b4vB/Z7n0KGE2Qv91N7+Yk0mIhRr9XCnpHwkyYqMXxLbBAK619iwyZ9A0u6d8UA72uUNg03mP+EOQ/0TJOG2RfQtpm2n/vc57jmmmv49Kc/zdVXX93StMS7rkBnJ+9NnkLrJgzvioCrQ4JRhG4Nxka5WQO2aqGaGI2eFVut9HpxuUSpI/4wnhdFvRcBk1h2+PoufMBzgrQin9d1i4tHBM6i05HKr65eRhViidX0V21VcpYsB9e5gXkUchH9myRoP8mkk/BN03+t9SX05xB8PtG2baW6E6+i0ZZB23/4h3/gqquu4rTTTuOMM87g17/+tc/9+OOPb2p6j3zk5+zeeDJSWt1JIcpImcPSw1ftgmjp3I1MGbNquYGJkTExqxkQkMmUMc0s0hSUyhJrQTaHXoLEWcF7nVZN8ezNKzgKlvCaPBWEcHojXg/CcBeUFBF9f1Wy9irSeNyyEr4okla+RiqpRi9vs4BhBKXHaOkzqg/hwMRP+rpYnFc4kxyvkQZrKTJC1RverbO+z22gCjVTwl8w7xU2b5lKqZwnXQ80ChIEVKsARqK8BhswrfVOG9BdPC0abSH8W2+9FYCf/OQn/OQnPwm5hwf/6sddx32OiXF1kwWBVCbpSNeSxnIzqwVUPbJZtQdfJVQrlptF9oXAipLBrQKV1W5sN8+0MetWNdXEUgBCZG0yUiX5NHb4YfVOXJ1W5VH/mj+qHO0PET1dRypp6XpFXhreu7NuWOoc69ppAqMQpSirl9YGyHCY7HP9/EKMxviORg+wX536++ZCcujBGxkd72N4R76294Qo5CuuOs6RgIPWOSrcVVU1blICmfYoFLoqnWi05Qvcc889dqHRH83ExLijKhHKEYUolYMaTgA5H3Gp5+qvPn4vLqmGCYUPpmmhalYiEpAhvyEnDUp4y0qEJ4jpAuoWkJB+94Sf0HSXygUwlD1/46Wr4ChDEuibHz36EKkTyAJH0+828/XIh80p+pJCvkxPT4VlS19OkJPkiS4/4GUrhEKgwYlK1rk3tqPuHqW6AchKkj3ZGkdXpRONjloP/+7V1wBDGhdVGeBc6wp+FLE6ViwBFzuKSgVe3DrIZNGyTClVMq46ySpIltJBIilFyqoSM8qtqhsfUP3Ar9ntNt+mnbmn2AHASqZDFbJZQQX42e/n+VZWMREITASGvYq8cO1mnFEPd9mFyPxbz2hNeQn7MSPDB+PxI201fJIxthn6VRl7JJQiWudRMco4kwzQy4A9G9nEpEgJA4McWQznBUtLgfdLxtwMJsnnEHAU1hhCFZNnKLNJw/q9wGHkEy13DTBRzPC9Wx3z5iqOutLqPXkqRHUANagocyyqvEXhTO667yBfOqb0f2uvXHiQMqqs7OScN72U6Hm6aB06ivCl6dGYOuBkOJNAPJ/ur2td4LsfRtQ6Nus397NtxNo4GzxTY7/0buVrooaA4xFsOoHz14y4ZC+FTfRKfp+Sw5CBlZXp9Ig+xzzfh1EkLxgTTIaqsKJ+Uu5VNDncySQbMuFVP3tNQdV+IabSYxDADJlhFJNyEwSsRXKAHrKaBseipknbskidKPUE2yhnUB5uAuQESKwNylVZwc64ISBrv/BqzJcKbXAuYbPMM0qJbTEjzQfKKfwGa06FoSH9qEWGDQTzMFgivAcKr4CvJKQOnLv1wFGxZUJikWdGn8GZUxWKUX1lUg0/nVvumsaxEXlvJro6/Gh01Hr4Cz98FKYpbVWBs0iXwDSdLpu6tZ692LBbIsNuanHWdb93j2dtsvfHoEMtsneQTMnh4SmF7BGSJ8UOL/vOYa0CwVOZYe6X4dnKOyjzhEP2At/kOSkCb0IIa9/YgMbsSbazITvmebZ/DQGlDFSESVVIa9KlfUgDho2qRbjBPKc9JPTEyC+6RuAph+zDnq2OlToArhQL04CqYVI1ZGyeqobEVP1kYF2mxLa4583As5kRRpikZOdb3UozbkV5E8kmTJ6Qk777YWVdWNVpymilHvjLvyn9/nThgn6cF/hJY03MEzQHrmqpu4l5CB1F+Mvf91acRwrr11Vb8KDsonZTgxBY6934C4WUsHbzFNeP+tMo0kSz0wkg4Al2BNspP2ziD+IFwyIIXS/GcOMXeg/ApJikonKtUMI6t1TRLxh3EzDdXhcpyQQqZyv0oiMI64LUiCbpVh4hHknyvAI2ZsaDtxKlaSJtRZ4/bEDxoksyJK373IVX/oM1SA0b9ONHreH05qCrw49GRxH+T19rTebSbcTgvxcke7UI67rA2dCgFUCl0rrXV1fxi8uO/YhP4Z/8UsKkartFE2Z8bp4XY5GMUYuAm7X42FCbtZMNffmEjzzCZG1PEdgiS77rsLQdyFJAZtGWgoAQpRWPgirNGum2At2lFaLRUTr88u6pkRYzoUkgoU6pcz8KQTNMrDXkZWtIv109zGbYTUQtNNgusod0z1HvYmdthYDJxP2IMJz3oZflbTdNIYsbQ/L1cBP60cfeYoTUScnC7AvoKAk/lx2L1MVFS/hJ7uvdskZgxfYmFZo4XWpsgFoBNW49GO52p9E7eMXnptfUFCNhxRe3K1gzdwxbz1jN9DQZqK8otAMSplDPsiIW5grLHj9KY+XA6f3qJPI4Kd8Iju1E+Am41Mj1qwujo6NcfvnlzJs3j56eHo444gi+/e1vJwq7ZcsWLr74YmbOnElfXx+rV6/mrrvuig0zMTHB8uXLEULwpS99qa48dxThv+W3nwXCkkv8RAxVpgkWSMdNbxbZU/BHaqpBAuhN+KbT8szxTAmLc1rRy/rZn/AmFItMi1h078iTnKNztoxpWvK03pqIJOGmWmVnnGUj9NDlYak5qPGZDHXnPWlrLqE30AEPWf1oYCAI77/mIKBgUS5dlaXiU82msyqCDPwGYw1OtKs1dtAKWNtIplXppE/n3HPP5frrr+fqq6/m9ttv55hjjuGCCy7gxhtvjA1XLBZ505vexF133cV1113HD37wA+bMmcNpp53GvffeGxnuM5/5DGNj0XtfJ0FHqXReeOEFCj27KE4OaVz9KzcG3fy/fmV0PmdSKgfMUpDsN32UkfFpqI2Fs/ywyu+mtEwd84Bfs+pHvSRyPIP82tzNwcZ0njCHw824Iv2vZ4IM0rXUBphPjl5T8JwxSVnKkJRn4khrVogsImSWubDab5lkOq9COs8UMPNU21VpuRuEB3TrwXOZEQ6oDpKJWDivQpkcOZf8B8h7Y/Wa8Yc4gnXna0eNQzpx+Fg14B4VTsKB5hQK9twNFRnizTJnACtF1HpB0YOmumUQnM8YJm5NeAKPpyXQ6Ma/mfCbgyYPkwa33XYbd9xxBzfeeCMXXHABACeffDLr16/niiuu4PzzzyeT0ZfDb3zjGzz++OPcf//9rF692g17+OGHc+WVV/LAAw+EwvzmN7/hn//5n/nWt77Feeedly6zCjqK8Ddf+g16enrp6Rll90gBaa9RL8QIMAUQGJkySGFvPmICnpswKhhGxV1SwXMzKeQrFEsVvA3vxunr6WH21HG27OzDqUxON1aVGIQQlJRCqHKi+qsOHQfLX39ED0EAUkqOl1P4DbujOywGUIWDmU4VESKNQXIcaeZULgbgYXZTNbzGyBvG9mdoJn3MrPaxmR28TMW1BvKeRfoj8J03jwSezOyKdQ+SeAZh2dLLeH9BN+20DgUCZaxAAiYsJM+AHKBAhpfYyrZAmAFgEVPJ2tXSeedOPN67V5O2PvRrgJ5Iok8Pt28rw2Qe5x/8hOtvR9sj4UtZx45XKQdtb7nlFgYGBkLke8kll3DhhRfywAMPcMIJJ0SGXbFihUv2ANlslosuuoi//uu/ZuPGjcyfP991K5VKvP/97+dP//RPOfroo1PlM4iOInwVA4OqhUMWISbcyVeWpF+0K20W4a6T7phuVpRwlpuUMCgEsAtPxVNi5swRxiayPL9hJmOTOcYnDHu9HqvKO1CXXLPrvxVvxK+DDNDjzMjSlEl1QplhYkn5cjjs14SDmBaOIBhf4PooBnnQ3G3Zzwu1kdLPqJ3NVGYDo9VRnnesTBxBR/EupH7wtKprGKIFU1+GrSym7ypYe1YlDyexWFDXI8vYZUgoHg5iupvPAhkkkvnMZA4yROb+dJwelrTnMOsIVLA/zSV7Jz9xGsKk2BNDIaZM31tOq9J5/PHHOeigg8hm/RS6atUq1z2K8B9//HFe//rXh+47Yf/whz/4CP//+//+P8bGxvjc5z7H1q1b02U0gI4i/LnfuJQXL/oWQbIFZ80eq7r4J1up6/mosnYwnNMYOKohL+7+3gqrlm/2hbvz18uQGqZyuDtJ+eoFe4GxGMaz++K9Ao6Wg/yaEQ42p/OE8JtfHsz0BCnqcQyDYMI2xhmmSgWrSZxE+tQh6hsfYIDDHW1yFXZRZJ3Y7bpLQBrhRsMncTtOcWyI58eU1gIWaUm/jMReSzVxGB+hSP8NIYVF8v7skbdbPmE/Y7DBKwBTgbkIdiGpYKkBy0ARSRFrf90BYCaCaYhERL8nSFfXYMSN5zQTjah0gtuoRu3JsX37dpYuXRq6P336dNc9Ctu3b3f91Qr76KOP8nd/93fceuut9Pf3dwlfxdKlS3kx0jXIHjLgJomaeBXPPrqiJcjnyhTLeiuLpLTiLpEcp+MOKB9z0qAszEiCzzUwTj+TPmYG7v1G7naz6KjDddLVEAUOl4H3UYXH2UbQyMclizidd0hpbP2Y9oXjNakJZhmJgfTejsQbgVT0E1LTWmckrMTbzckZKipoxhIcO6I3iPDguYopsa7p4L2q6Heh02HXO6wS2uQcR8jZE01POgR31Lv66qu55pprtH5FlA14DbekYSuVCu9///s5//zzectb3hIbX1J0FOH/5p3XYD1S8GUGST5I4EFtOho37zq4PaA/DQtvOGo9d/z6QG28Dil6uu3wiGEOe7BM3VkqtNa9AHvBqwnFzCInDMoB2hVAVhp1iHvxAY6VA+yUkzxHxVujR12logYOZSYZ0yPWKtLXKJWt7ZN8WXmJXewUlVD8BrUrWiwkSBN6hEFFSAxTUFVH4E2YJ/uYQg2pWqqnfpqbDhxSg+ybCRm6Cr8fnTojbTHR6fnVe9Z5ktGAxmFKoVmIsHYYgA0bNjBlitfcRu24N2PGDK0UPzxs9ax1EnzasP/v//0/XnjhBb7zne+wc+dOwOuBTE5OsnPnTgYHByMHh3XoKMIvbalA5PrkOok+iCSFJFyMo/wduugl/vDifCSCrJBUFK9ZLGsLRyLtAXKGkgOH55FUJWSFM/6gSk+Sqn2vX1hd5qPMfh42x8gZitisPNaKCEkuD74BZ0N4z2hKSU9MmRqih8V4ku1aijxDOTqAAt/gqH1akWZoUFjFAoZYoJG0xyjxohitWzRdaPYzQAFDCn/cdZpPBcl+PhmWiuatVx+fdvA1hF+KugyCThRSQ6nlTlfiQ2QvdA1JeyT8RlQ6U6ZM8RF+FA477DDWrFlDpVLx6fEfe+wxAA499NDYsI4/FcGwjz/+OLt27eLAAw8M+f3MZz7DZz7zGR555BGOOOKImvl10FGE37d4kJHnyhhGGdNUiV8laNXeRCKEaY/QC0zTxKyqPQSPZL1rZ3zAXzUy2QoDQ7tQx3Cq5hD9/a9ocupvfH7z5Fyyas1y/NhCfVZARVoNgupFbUBU/fNRDPCIOerNgLXJ8Sj02ypKoAgUpD2hRlgSj/UbT/a+J5JW3pZQYD+Z40mKbIkyIrQFdymCYyJWZ6YsTa8xiBnCUN36yXOQnK6t7dYX9kditoKA7ChzGL7YDQQL2ljdNPQeuutqrCKIXAQiUm3r46R5J87gvVeDDj8pzjnnHL72ta9x8803c/7557v3r7/+eubNm8dxxx0XG/bDH/4wDzzwgOuvUqlwww03cNxxxzFv3jwAPvGJT3DxxRf7wm7evJkLLriAP/mTP+H8889n2bJlqfLdUYT/mm/+Ffe+9rMK2au6eT1rOEsjmKa0tzok5M/buSo6nmolx8iOacyYvUORFnYxttuZBhOlKlL0xgJCRdX2Gi3vWvEGu+5HMhBR6qNLtjNICBbpVyUU6pSWe4TBkZpJXgDVCowCmxnlRZd0rHxlhD1oKwJLD6tttgr72nAU7HEqnbiGo8kIjh3sR4a8qH/8pF7UUqJEmVBGvaZgI+HGo4s7dN0eCb8RlU5SnH766ZxyyilcdtlljIyMsGzZMtasWcNPfvITbrjhBlfNcumll3L99dfz/PPPs//++wPw/ve/n6985Sucd955fOELX2D27Nn867/+K08//TR33nmnm8bKlStZuXKlL91169YBcMABB3DSSSelyjN0GOG/8NP7bdt70OvWVV29383a2jDoX+83Kh5pGkxOZunpqSAlFMu9ZHNlKmVdb0NJJVTWwtU0kse0JBcnDkdDJ4sbKTgqKZ9aRq+CuQySN3fzrJAKkcjIgV83kWAeVQdZIxcJNHl6k9MaUOLNB5rnleSYIZLrWZsNrzTppfw46VbXYOild0UtFBGfQGA0d361FhptX6IwafG9732PT33qU1x11VUMDw+zcuVK1qxZw7vf/W7XT7VapVqt+synC4UCd911F1deeSUf+chHGB8f54gjjuD222/nxBNPrCMnySFks/cYbCFGRkYYGhpi165dWj3bfSd+mnI5akAsSNzSd14p6wZ7vXDhtXh08UA2V2LqDGtgZfvWqZRLlsGfaVoNgjBsrb20KUVIHnhsUaj77Ic1MBtcm6Rshgcpx8zgc+qeJzmZ9SLJiuTEH8xjxYRJaamfnJw5s0WjLGjiKCGYDRHjBrCNCutEKexZQokqrmCnqi4k7u5PqQaBpUX2OeA44UzGa1unIhJeBY943zUYQCu9K99T1yDopHuB5Frzgsh0atXvWnDCfyr7DXpEX+0ACiblOH9bubTutF8t6CgJX/hs6kKuhKkkSUfUvqtM2pK2wlqVSh03hHSFbmEPfDoqIZHxZGjDCPQSXMZXCTuqSvky1jQJX4cJBIaU9Ju1ST+YatGEcQ17V23fuh0Iasl/OqnS+dU1ZTPJgpSsE+WAkhmOEr2MSpOnRNHnJgFh2mSf4pXlMegBjha9vpy2UZNUA83MiSQ8CmJ1F2TgyxhAX36ct775aSCa8JuFdky8erWiowj/hJ/9Dfec8Df2VWgYKeJ+EndvHMDrEBnuRCzVrX9wt9tN7u8foziZR6cmshqBIH2BvkJGa2LbQSYmghKyljGiLy+mj+yT5TBJnVMJXu1j6fLgYCY5Zspc6L4B9AGzpWc5E+zIGSI+9+EVIaNyvTegOSXFqQLvOvMh5dqpA/50wm6th9WXSPesaf2/WtFRhB9GkBJ0krAjnTsbjuv8BYlZ9ed3U4VtwzCJJ/JgGs2SzJvdDEjKkpqED16HwzLKrP3M1tbp6fSuUf5a1fjFKclc00ZtwnuHSicpgu8v6j2HTS6D9SFq7Ks9kHVI+K8exXZj6CjC/9Wpn8JakCBKxaGT4h2JO0pfoVaDoN4+7Da2e4ChaaMA7N49GAjn5Se0MoqWrew07Kyq+4SOmUowaelIjaY0LnoEK1DJ9L9BZ3G4BEooBfa7xzHXa5IEqonJT0nh8RDVj3NmKD0wESIzXT9DR3jBMtceUozrDzqNclCNocuZL7QdzunZPv7UXKrSWgwDBJWKQTZXxTRzZIwS5WoOQZVMRrBiyRay2fawahrhQQ2zL6CjCN8sqtJ3EEk+adqKF64ajrWPECCjtoJyPKSE0+0cM/2pOuf+teujVEOmbV9PhJ/aKCqqmop0rG6SEXZ4WpxwrXbiUKspU2k3eqjB0S8LdxVI9TMI24+6D7IXUr3j5UbiqHWix1HCbyZpw5weTlphdVc4LV2zFDwHv/RrCR3WVph/eG7/kD8vPv9TP/7sAmZM3c2RiZ+kfnR1+NHoqA1Qpr12MTEdUeU86EenDY5CXNWAQk/RcpGQK5TRV2p1LMDJQrLKHyR7JYKIc3+6AAfuNxLjJypuQVUKm+y9sBWfHz90hUtXEWu99bT0GJ2G0Nyz4K4GEfsdhLbkhLfPTJZ+K6BrdpyGDPCN8QuRbAxCKoeaRpRIYf2GXbfvHOTb7/117QS7aBk6ivAP/vwHECKqukd1Vi03I1NRrtGcq9dR8Zj0DUy6BFAojOGvKo4/tYFxKmJ8QxU3rT2MuLgkQ73FxDE58BcU6xkqNaLQ7ROm+zq1OCeu39YoVB18vcvwxIfbsxr8YOnT5TUuh7UkX5+YIfz3dL2aR29cHx9hEyDrPPYFdBThAyz8n4sQokptbbKftA0DDEOdeqSGd/zqSN52ExIjY1IueVoyIbJMm77LHrxVw5ohSbL26nqe3r424iR8QW++Sn++QrJibj133k8bQPTOS8HQcddQuxC2ujKGpfQUYRPx+Z4j/eg+jeJH+HsBjaQRfB8h0m8Ds1pbHKY/9gV0lA4frCWSl953Fb866z3I8XkYA1tYvLjKuuemYE72Ifo3kc2CHJ2N0TfKgsUTvLQuz+iWAzAygFBt5a0lF7AHpaxrAIlhCPvccwMol6FnxmZAUtm2iEzGZMbMXZgmmKZhkz9UKoJszrTSZP/4ST4p7cEdYg8rsazGKZszOXLpKzyybiZjkwW8Bk3fSc8gyfrWf7D8NquOOFFHNSCtpEu3z9ayRPYmJvH3FiGoc3fupHsZvv5r7OOmj7se1COx701fqZXoOMIH2PbZc1iytA942b23eNkI1m5VjkS+BafwLVhc4qmtEmk6Fd+pGNLt6ktp2REbhrA3RZeKGsBT9QxOH2fmTOt8w1YnrPWbyXgieiZrkb2nUoiuCOrmLcngkb1Dz9ZyBV6lLuTh1KOfJdNb4ZXhAYa3TEVi8PK2HorljL24vYRKlmymijAMJismAqeBaC4M+6go9+qnoPSotQxP/dCp//Y8gguhOVZIr1/9OJs2T0cIE9MUbNk+hV0j8TNP1SeMX6qhPT0dd5nulGH2BXQk4Ze29WFoR6NU3bnfvW9glLGRKfiLrzrZymsEPK2yxFtYzYp3+lxvp6newREmR6foK4EEqSi5U0/jj4FQqjBeEiHqmTrT2r5xsH+Y9aUckGPuVHVrSAem+4z3PbbAvRu75k1k3uKhqneEG397JMPOhvf+1EHb4Lo4C+fvZMG8na7fx56cx+/+oCf84CBubXQl/D2NjtPhW0j/+UxTXdxKHSYUmusgvHumsn1TtaLq8zUDg/Z5JlOtuQNO0idy9nVNX61qzUMIK4jqKTxxYeIbj9ZUyWQzZRvF3ttY6QarVbPUuM29VfFJBx3x9s/SbyjSRXvQkYRfOMAZkNQNGeoHcydG+9BXzOBgZdCPv2HYsdnb6aY0oV/Ayapkwq1sb3ztY66VjmqtE77XOOkZSl63b+sLuNSKX7BikbenZlZIZdV3XR799wTOUtDRfnJYSzTngRwSPz3UToMEaTQT8QN+r04bELU3Wq3WowRQt37xP/+fPvDmRrKWCGadx76AjiT8GZd/xx5QhWBll6KKdE03G9USh8NUq95CAUk1ND09cMobHiWXK1mGDNKz089lSqw+/EV68sVAnvUwY/wE5f5KMUelAqXJuGLgDzNzqMThB24ga1s05QVktaTvv5dF2vrDsB8TSQZBr4E1OCz8Rya2l6VTXAV7OcK9q4ZSpfuk3yq+fxfvsrfSvrMYoA6Fgk7FFxeXvqGdNjjG2078PdMXD+iCNRUS7HG2FEfLc7V3oCN1+ADz/vlbbP6L85HVLPbaAxh9E8z9wvcAeOWKdyBLBdctVyhSLiYZkNQVaO966qxh776oInQbWUtvENghmp4eeMtJf7DWAanAjuFpvry85qDN/PIRGGf/2Nx5Enxc3j3t6+4dQ3jkW6uHY10P9MDqwza6kqC18qcTo8QwvIrvVxmYCAMefXI2o+NexS+azhaO4d5TRSYz/3TgNF1B/XIw9tB1wkHbYLjaQfyKj71xNMLS5XuafHXMaWxMv0tadFxWPO988+8Bx6qtvQPX3UHbaHQs4QPM/fL/AjC8bh3TFy/2uc35+5sB2LFuHdMWLyZ3/3P8/uPfwV8lg+SuG/70qGXwoHks/tqn2bF2LQAHz5nDE+d8znJ1B2etX8OwapUbWrHmMTLWwmvWuIJ003vdkYL/eyR+qMxacjiKVrxhUDDJ5737PT1jTE4O1Hh+J+/ec3grfoZVUWErJut6+f5bePiJAfc6q30eKx/1kH0wliRoZLy8dtg9Jz/WSlndH9l/bZ2vOHAjTz8/j+TNlCSbMZV41IakEhWoqahHidaV8F/lGH50DeXrf4BTUF8BEJI5//htdqxbR/mf/sp122K7LfnL97Dpm+spbrE2MMlkqraKRiCygkxfgcrIJCAxMlXLygYDYUhmvfkQpu3+Fpsv97YoKwKzl1d45ZkDtCXKrIIwBMLwlo41q1CuGOTzFcplSbXqkD5YG7eZtpZaT+oFoBwr4VsV0DBgYhx6+6zrfB5Mc4JSyb+Wu181FSQFM2bAD9evI/U56O+3tLyGs7eA2ygIqj6iaBekks90SD7xqr2U4i8d3pnak/EWUbPyNmvGzlA8g/0lCoUSxWIBdScw/dNYd49YuT7UkAhRYWDqRP0P1EVT0LGEX77+h/j1vhKkwSsfe7dttqiSpuXWd9+NHHCApLqwgL/KWDJDbnCc6rizo1ZACh77LVTDbvlMlgVHPEam0q8NZ2YnECW/2zO/XQYIcjmTXM7f2Txr9Qvc+qulyIjhlyIwxZCMahduE/QZpj1JTBA0rOztrdLba630aZq420XKGBIul1Slu99fcKMYlfhOPGYt9z64hKDxaEZgk367lB9WL8uoU8SvrQqKI/pgGROa3zi3sB89KXv+/Tt5SXcv16Epo5xy8mOo38iJ+5y3PsAPf3oMY+M9dmxR6cORhz7PQSs3u/csVVF7lViSOpZHbkVG9kJ0JOFv/czbgODgkCPW2JVCKPfsX9MEs5JHr6kVVMZ6AuGU83KQ7J1ziSgOQia4soztVgpbB2XzJUqVvGbClVVRz1r9PAA//NUyN28OChBB9nZ4X4X2K0w8gvZ29cJtHCF9tQj7V1UGJx7zAhMT8MDjS+07jUn4aZoI1V9G6WGkRe12Ik66F/T2jHP8sU+TMcoUy3kG+kcZHRugkCtRNXNkjDLCgFIpRy47RrE8wED/KOPjA+SyJbfhF5gUy3kG+0fZPTbohjdECZERlEp58tkRSpUBN41crgRkmDk9SvK28p0x4B1nPESlIhkZ7SHfM0lpsod8tkKlmiObKSOygv4eaxcE/74S7afSrg4/Gh1J+OZY3H6WcRJHnJvVC9A7x+vVa6fnJ5ulh77Ikw8cpNzz/KgTvXTVqYilwzcJ2+ILhLLnraRX+5qE3dCom7o7mxEGpUuw5saGFz123P3bIvpzKwT09UEuY1K2l5X2JPz6kJS2w/7aK4U6mDp1nFkzx+z0S4BgcGDUdi0pPku2n1GklIofAn5gYGAU6wmLyg5UJaSETGZUSUPgT8Ov+nHv2r2BbBamT520/PU41jsV1HLqWemEy3W7yL+rw49GR5plIhr5fC0IG5kf/f2REbXhCf86ldjbgUoZUMWT431ZILgDqQgcwbR0vZyo3yRkaflRJWKHGw5Y6Nj2h99H2MYpSSrpQphub6ZV0L0ji5Zef8JTxL9bQvf8KrLgN4xKH22vVh/O7+Y3tdSF84SIcA+4VlrNR9cOPxodSfi5E+agb+ete0HLEcfNMi+MCgcYVY0beCSsg9CoZoJx+902P3cA+krsv5cVKiH68617AkdWd+KZGNf51qUbNSlLYOUgyk0E5kN4xKMS/36zRxnsm1T8ecgKZ9sXqXVvGuqMNt1Ki/73umT/l0P3wplxvoc6dyRpA+tvMKzeVtS3Ut384y7CHfOJL4/RRK9zax1knX/7AjqS8Ke/45/At769R4ZG/xjCN4nJcxPZMoVFO7Vu2UKR3JEvKKko4TIVes46SuuGlPC2P8ZPWF7hyr/3TIS7LHP6zmi/Af14H9KhhSiZMj3qrajeswRN/XTPefShL3HEyhfpyZfJZapY4wvWjOm8MMngDMU5v9aRtH8RDSvORqq7S5c1I7E8FPJFTj/lNxxz1NoGUu2ii/ToSB0+wJwv3cS2a99GdYs9KCokxqFrKbx7BwCl/56N+fx8sCec5BaUmPaxWwAY+fHHmbhzI2Y1gxCS3PxtZC9/zop41TDmmiMwy1kQkJu6mxlX/wiAHQfcT/G6f7J0/QCZEnP/8SbLbckSyv96BZjOfNMq+T/7O6YtWQKvuYitnzwb0574NXfZs2x88hD7SfRdZxXZDDi7545W/bKgCkdRkzGqVM2g9BWMW5X6VJ2+ColFzDodvgXHZl9KYdvsewPCQf3+rOkTzJr+gpsHpycmgULBW7+/UrHGE376q2VMFpNsrR6N/ebsYMuWaXWH973FhC3P2898iLAUH4w1+D0MxU23tUwQ4T6eaRKxqGDwm6u6eHsVWSPoR59G+DrYe2g9uoO20ehICd/BzE/+kNxhOUT/GOL1z7hkD5C/eAsc8xz0jZM9csAle4ApZ/wDPe98PdlZO8gc8YJH9kDu0CrG+x4mO2sHvQeOu2QPMG3JCRQ+ei1iYJLMtAmX7C23Jcz+++9iDE4g+ic9srcx69rvk505idE3zvRPXhaQ+v2/jr14VVZDJGMpnbzK5ZeAPZVKxpD09gVVWKpErpIOij9do5OsMkdvBeiQWFClYF1nMvoJO4cesLkB2dx6liNXPq/JT3Kk3SnL2Q8BILxGkvobJH3v8Nu469SQKtF66jj/Egpx3zGqsYkK512raQTLUaXcHtIPvpWkx76AjpXwh//7fRQfKdvDl1PgnoMYu0eS+dBDsMPAvOk1tk9B6eEJNj98Ifk3HkDmyD9m7IuftDcjnw2bZlF8cDmF1zxL/o9eYfLKY6mWc1a4TTD2pxdRWLCTGZ/8EZs+ciECA+jHBF7+yEWQK7HfP36HzR8/D6o5HHPR6nWfYjMmc//ft9n6qbdTHe3HkdM3fuxmBqb0Mj6ao1pxpsNKe/tGb5DuzavXcc8Dy9xn9qx3bGIPvRVPShNCUixCT4+p2Eo7hGIVC8OoYprC3uylam8AY5sBCtMm23woFScNT6oMVn6/m9ODkLICQvok+0ymQjarxun9zp89xsNPWrbejv25aocehpe2ISCXKzPQHyTZVsFK5w0n/B5HQg/axFu+HPsqXb5kIBwhNzc16VhWSSWcQbVqYhhR41gErGy8Rto0DRCmvf6QR+jBGeT+gV7vOcpFyeT4UKI31Si6En40Opbwi49U7IqjWDcA1f84OmDl4PxKSnc/j3nHJzF9KwQKkFB8eDnlxxaBa6fvuRdfmsbGj74bQ/c6y3k2fvSdZISOGA1e/ug7EYE5A5VSAWFA30AZKPvcSpNZSooaY2b/c2wdPUCxnQc0pOc0AVLR8vcOTnD4mx53wwCQmySTyegrc26CTDbji/Hn/3mq5rnUVKNkJ9XNOu/rt8ZWrF3Gouxz/IT0thOf5Lb7llMqZ11p3yL9cGpq+P7eSU597dNUys4ku/o6u2kmXh1zxNNMHyrZazZhD4bWkWad7GSaannXxCv1btUqxNpLKRvbq3E4C5O1c8AWrO8vU1rqRe8p3VnoSMJ/5cp3IOjVuNg0aCklQ26mKTEruoJtF+By3tVD+90kwsz6/KpuhlmATEQ4V0L23PK9E5Qm+23hTAkjJMLw70V76KEAlsrph7860HtGDfwzJGHOinWhZ8TMIQ3/kgnuYlqVAmRVu2swslXMSpQOX+3ae9fR52nURJ77W1/7tO++NzYggQpCZF3/hpZk1Z5HOiSZeLX/wpc5atWLIZdW7bIVzV36ZwxL52kSi07Xv/FPq3tQHroSfjQ6Uocvi1FqBtDbryRxk7HuUUoUVQWTNL3Zi3ZYbZKic7d8C1u94e9hBPMZLVNbSg8HcxcEJ+9IkCKGhML5PejU+9BrQeMIFsXNCef0ZHTmg+FnjMuT6kcl+6C7o9bIZasRcdRGEsucBfsNRzklvVlXfqLHF/xp6OZGqIg253RjCIXzpHvPjz2luYs9iI4kfIy49jq55OhHksKqJ5boYSF9Wru394TJ3v6tlP1qKu/XCpFzpDRtLvyqnlHdZE0ha5CY3/H5X76GaNK1lqsIE4903bxwWffcf9//jP60gj0mnfRa0d633Kxwx7/mGRoZuouXqGHOLN2LjspWc0gx2EPzx+9PI7qRUL9HHMJ7P4QbGtnYFOoU6E68ikZHEn7+j84mTupEO2BlT7wSptYNJAjdxCubvCJ1lXETr1Sduhfvrm3TI6VsaTrEGPaQBypELatmpderTKJZ+9DBoedAs4StSwiZcijdyRFnSeVwWj7Nue/9BPOve554yT3aLSoNXf4sTJ9SZo5mpcj4UP7cROHE4x+NjquNAq83wBvOcfRqqE6YmHcZ2bDoGpp2oZ5JV/uGDr8thP/oo49yxhlnsGjRInp7e5k+fTqrV6/mhhtuaEl604+8AOHbqcf7mNn5o2SmjWrdMv3jDB5T1brlBkcZfM8JoFn/PdNTou/jnwuY2VmHKSXz/uVG22pC+g8p6bn884jAJDFnjXnThMmJPOPjBSYn8pRKBuVyxrcjloqsgD5D0GNAn+HPiQH0BQayCn0TvucgU8F44/moFd8z2jAxzvh6+BlikbQSWf7GRnsYH88wMd7LxHieUjFLpeEl1HWzhNW8W+fHH7mO0096lCkDY2SzJQxRJpspkzFKZIwyGVEkY5S1zyRRZ9xa8S1asJlz3vog06eXQv7dcB3GMXvL83Ql/Gi0ZdB2586dLFy4kAsuuID58+czNjbGt771Ld773veybt06Pv3pTzc9zTl/dzPD93yZ0vcfQEoDYZTJf/Tv3I1Qhh/7IaX/ugHMDIgq+fedzfQjLrACv3kDk/98OdWJHkTGpO+tSxg69fMATDnhT9n66XOo7u5FCJPeo7NMucjaaGXav9zA5r86l+pYHwLIzx1j5qdvAWC/69aw7bNnUx62BpMzg5PM/hvLjX/8X7b/v3dQeTEHEqYf8DyvPHkQkxO9OFJZFQHlHOpYgkX6frM+Fb3B5twlcMvv8tXPWM+PhIPnMvD2/7T8Hf1Bxq87CRxrpekGfRfb6/wvu4fJ/3gtomoN1M5ZsZ5Xnl6s+QJ+Hb41gBduLG1XwERKA1kt4KgIqtWsvR9AUTHNVOPX9Qr8PSbr3Qg3Tn0clt98Hk4+4WnXTdVdO2Fvuf0o4mHFd9Sq9TX8tQ66noP33cMyXnDQVh1sDQ+4qwr/6DzsSfKvZ6mE7tIKTcRJJ53Ev//7v3PRRRdx8sknc+aZZ7JmzRqOO+44vvrVr7Ys3ekn/QXZKRNk8mVys8Z9u15NP+xt5KaNW25DYx7ZA0MLF5KfPUmub5LcwDhy5Z/44s0tFGR7i2T6JzHf8Oc+t77V88n2TpLtnyB/xtt9bvlTTyHTWyLTW6LntUt9bvJ170Hay5vJ2Vmb7B0E1R9BeIXVdDbojCi/LuVKoLdiqbBEBQ75a7/Hqfb24ULC6z7hd1uw1K1Uy/94rrI5bFjy9xOHX7L2D+j6dfNSsU4ql/OocXs7JwXTU9dDUuN14gy+Dd1YgJvzQDxR5/FItG2ibC5Bqu88HK/3roLuwXCReQp0kHQDtupvu9GV8KMh5B40QD3zzDN54okneOGFF2p7BkZGRhgaGmLXrl1MmTIl1u/wF89k8qWpuMscIBGGSe9pi2D7RiYeqtjSrQ1h0rtiHA5/I5M33w+msxyw5ZafuQvjj/6N0j9dYZtueiSXHRhj5t/8gM0fvQCzkvW5ZXqLzPnSd9hyxXmYpbzPTWQrzPmH/2Xzx96FrObcAdX1T85nYjTu+fySqaUCMrnj1ytwBm9dla0aSlokfeKRlvQ5Y+EGlh+3zoszU8Y459/gh5dZ8boDwBKESd9f3MXkv56EMKTPTZrwyC/fy+gz25T8mQiRUa6trRvd5dt8g9F+Kdp9P4pbb98kpjTJ2I1LuSJBqu+6qiwbYL0f3UBxcDkH3wQkn5vp36vX9nfL7UejbyDsKGy12Tlv/U0gbABqViGVTb6Ma9BrSt3+Ri5M1iJ0bvkJZDCQBzUciMBAr+d27B1/G5m/NPU7Lvw5fJWciFsiPYyyHOcW/rjutF8taKsdvmmamKbJjh07uOmmm/jpT3/Kv/zL/9/el4dJUV3tv7equ7pnpmdhgGEYYRBkEVlEVJZ85hNwiQYTo3GPT6JIYnD54gZfAD/BJ1EURSX5RU3UKIkBDFFcEsUEEBM3ICwKGBFkmREYBmbvmem17u+P6lpu1a2a7mGccXruy9NMVZ27nNvVde6pc8859/91eD/1FRWIVBbBrhlTVULrmoOpN3/7D5igdXcupC/eT00EhKHFjhWBLL0HNOn0OU+E81B111VQE868LsnWAI7efQVoIuCg0YQfR+74PkDZelokr1GKGYN5zTRVyHLSSeMIGT1CUyc2He8F4IClYz/UV2ZB9vFsAhJaHj8XvhzikDVEAs745guQL2Bf+z94/nwkY/Zxa9+7JkRUj8VEdozRiAJCtEVpvU8TKiRJW9vQhLSbhHWThnaa3XzBO3cT+rpZyV7XBpoaQ4ZrmV7CnuHCYpYxA+icbzR2l0x+PV4HlmZUtiyl1hxKbfPa0aAETPhKWnWM/7IbnSrwb7nlFvz2t78FACiKgl/96le4+eabXctHo1FEo1HjvLGxMa1+4r+5E1oOSTsIqCpDEzQc+y8FaNIm7HUaAJqQU4u2dhMLTWnvfFoyGoTkEnhFVW0XLau7ZKioDrVHA5byukDSP9ZzHaZQcvXwsdnQTzlzm2OMvO1T9JQFoAooYlyaRCRomXxMWu9BR1G9p5zPTIoH5zaIOs0poHUN1b5xupevv70//rljCrNcc5N2Xv20Iex1qk2wdiSsdnn2vmdmw7eUAnfcHJOQ/diz/lcAzUSTmfTuKSadjG34GzZsACEkrc/27duZuvPmzcPmzZvxt7/9DTNmzMBtt92GRx991LWvRYsWobCw0PgMHDgwLR7VuNc8ZlVN3Og8pNQfN7rr3p3Ek8a7WlLewOHH+tc8NvPrmHy6aVWE6IFXmkArKnUMAqDEhSt3jk0jEksbMW0HnBOT2ZcpqNm0EBqv1rKqQxN1TgraX77POF/Yu+2LYPLmNkl4CxPtjYs3Dls7hkbtNvnYJzzewjO/rAZeYfZ+2KN9rVq5c0Ky23/Mfuy+/CwPKaLcOV7gwobvjow1/BEjRuCZZ55Jq2x5ebnjXL/27W9/GwAwd+5c/OhHP0Lfvn0d9efOnYu77rrLOG9sbExL6Ev+BMeUoKOtmd/DJKCFv/LphKaattNo6q2A1y7lXq2uLAR/YrJq9qk3BKpvRE6g+BKIJVI5ZWwRs7pQGTu40mirvgo2oU8Aotn53YQ+j6Zdc45x9/oxnDGYfakqdU2spgki/Zo2Rr4gYf96p05gz9k+rDSkeHPSSktqUVVd7Bir/k0AwMTxn9v64PGj/TF5sNEcx/ZyLm26tmM1kVnbBFdYeyVGczQL6z7I9nYs9yjZOWJVeOm4I2OB379/f8ycObNDOp8wYQKefvpp7Nu3jyvwA4EAAgE3we0O/62PI754Hpw/cKqlHSZgF2VTNBAKIic5Zp2UtuZLcmz4KbOCEoPqyM2u0eRAJGXDt7/uExApAtAAI0jDdb3gfIB1WIUQW2bS6L14Z9sIxHUTlE1r7pPTgqIis50vtpyBM6dvY8qAsxuu8TCQmGHCYRZ0AW1B1TIuAKg52M9lDOw4nCYE+xjdNFKrcPboitOOVx/u5YDJZ+7D3zfkoLnVmatJIkD5gKOWyFqnWYrhqHMsHHpvqb/OicounPlviC7MWoZov4/Oe9o5ELl03NGlkbbvvPMOJEnCkCFD2i6cAYrKyxEcUA92L1nNS8c/5T/wj9vnTL9AKHKGNSNw+X+laJShKX1q4Zv1b0g+NnkZAPhCzSh97M+QfM7AHDkniuCirZAUZwAO8cXR/4m/gMhsRkytnXSQmmzkJAhJoLoxiJiha9tNKQTHW3NgviFQhOzRpVIc0uVP8TUkoiL3zne5JhOqAsFZ7zmyOPoCvHFojyMhqiEgWHdAmqKZfDI0idpkR3pmFm+6nWYVjs56F07ZhUvO/zdO6n8MJX2OoW+vGgwf8iUu+/bmVJI06lqX6ZXyP22V70h49evZH8cWYr2PqtrxvAqcODrFLfMnP/kJCgoKMGHCBPTr1w/Hjx/HqlWr8NJLL2H27NlYvHhxWu20x23r+L2XQo0qkArCUO7+gqHFHx0KNZwLKSeK3ve/wdDqFk9HoiYI4k8AN+yA32KdSjzbH7SiFJCT8N08D0XlE0weV/0UrZtqAEIhX/MJ/KPNUNH4e0Gofx8JUCA45WQUXLzE5PPfryCxfCVAJbQUxlHx9zNSFOebhnmdQpKS8CtaH6v/ORJJx5uLFRSlhU0Yd0oNAGDyD/8OtCgAVOCKJxEaaubWb3n+QqBO1SbN6T9G7vBrDFrktauAQ0e1k1FTETx3oUGLbX4U+GQ1AKDZ1x/bnjL3HbBr0XreFufCrZrS2E0TluEiScx6xoQnqUZZQrzt3HbbvNMt03zTsb412O3YPLs2b02gTS3ebiUxzDw2zqnlu2pjUnC7/3bTjFtcginoreWIWYb7MqS/bfHaN/npDLfMb5Gn4Se8bLnuiNNWvE1/mvVumZ2i4U+ePBmbNm3CrbfeivPPPx8zZ85EVVUV/vjHP6Yt7NuD+n/9GsmWANS4D2pjCDFLhtrYZ0CyKQ/JuA/J5iDqd5i7U9VXVCBRF4Aa90ONKMBu1uOHHukNNSFDjfmBd1m30thnh5CMKFAjCsh7ZQxN+rgUNOqHGlMQ376boeGfL2n9JWTQowTBnFZrj+BrshSyJdOjt7DXUNVg5t6nzQqoKoGqPtCPbQ9ifSpvDpWAD59naUcOwzCX7VnH0na/Ct0vLnGowcaP1cRmmg5M10ydJllyt2s0Q8hTwhF4zjZNmN8bP9LWemyW1ez3vO8yHQlulvFUp3RTPoFlEuPXsyfRaz/MBtyyafL4cTRhkf869Emp43htH3S3zEw/PQFdGniVKTLRAI7N/x5idQVgFqyIisDwSpBmBdHDJZowsyz4KX3r4Tu5F1q3JEGpzND8BWGQiz9D4pVxZjqCFE0ORKHc/jiaFs0DjHoaJF8CeUs+ROuciamgLBNEUpE3+yGEF/88xYvW3pF9/QDVD1UFYlEFqipBklRIcgLxuB+gEoikwudjbSh/2XAavAWSJtQuGq/NfIUlVTjtHMsCI0lCvuBK4J8rGVu9bh6Svvs0yD9ucnRBVYLgLRsQe/YchrbxT9MQb/HStFTLoq1dQFg1bApZ1saqCRVq8cPX3wD0Y6embdX6eTQAgCVC17keQD01fG/B5kF3EaptuWt6bYDiusCaAc1eTtPaPXRDlV/PrNu5Gv750lPt0vDXqrOEht8dUb9jVUrY69BXpQiiewakhL1TRYkdL0Tr1mTK84WlxRtDSLxyuiVgy6QlowE0PzInJex1mvZRE3603DMhtUkIYT5UlRF+ZDbMaGCkrmvnkgQEgjHk5EYQCMagKCoCgSj8SiIl7Hm24jRUSn28kRzmGqEy1PUrLaVZLVt948cp1072nyQBkae/6aCpybZ/Xqz5wp13d7WkbTWUG3PBqKjEmBTS8+nvGNiDldJRvb7O6plnoFanonOyZYbDYdxxxx0oKytDMBjEuHHjsHLlyrYrAqiursYNN9yAPn36IDc3F5MnT8a6dezbcmNjIx544AFMmTIFpaWlCIVCGDNmDB5++GFEIhGXlr2RlQI/+sIq2F+tNRBAlUBVFxrVhS1fQHgFZalx+9aHOmhqX1o+Daru9WO2W1hcywgAu2AAs+G3PhbqaIfbn/GX4uSzPnGMw5y0rBSdZm4jyLZKIUFy0MpG7Yf7g2ReZwUEfwJzDwZi/fnd23HvH9DSQ3j6zBvw0o7bqmujqqa2zq5nuKMjTToGHzbNnG9acmHMctn+luC8r52DzvLDv/zyy7Fs2TIsWLAAb731Fs4++2xce+21WL58uWe9aDSK8847D+vWrcPSpUvx2muvoV+/frjooovw7rvvGuUqKirwxBNPYPz48fjd736H119/HVdccQUWLlyISy65BO0xzmTlFofUnjaBgVU4utG5rabRs4vN11M7dRLzimNoqEmVsJgiKAV8PiAe5xhQAcP44qX1Bv2m54zpomlBuwOvnP75J5+5D5VbR7i2ZTXn6C2xZhXdbJa0V7WUd+4nYG3La7cmxrzDmWDtPDnboWjr99SWgHbm0Em1qTdtpWT0fFsbsB+DaZyfHRNcOh/Eo77lt5pFO169+eab+Mc//oHly5fj2mu1xItTp07FwYMHMXv2bFx99dWQZf4+wM899xx27tyJDz74AJMnTzbqnn766ZgzZw42btwIABg8eDAOHDiAvDxzDXHatGnIy8vD7Nmz8f777+Occ87JiO+s1PDlnKgH1Uvz86KRNuhuNAoz8Cq9OjVfFmo92p4PQvQNpXV+WP6GlNVa2uX3NWmYvuAKHNpX5GgDksrV4s1W+Bo+j/bJX70TjalcrTplCjNsvxT6z9S5kEhtZfl9uE3EjPeJJY0zC+uYeG933jb8dBZtmUuEuAZ0Z6bdE5dj57l7lKxV2Hu/OToXau2DoJ244xVt1ycTrF69GqFQCFdeeSVz/cYbb8Thw4cNoe1Wd8SIEYawBwCfz4frr78emzZtwqFDhwAAeXl5jLDXMWGC5hVYWVnpoLWFrBT4fR9cDbedqyRfApKPTyMShezn+Y5TgKiQ/DE4NTrtWM4NM+fWY3+o0ZVG/M560UhOGw83nzi8rAp9Qi2OPvS/YwdWIWjEhhFU7xlkK0sBmoS5UKtTdNU3wp5bjlU14aCFjxelNYZMxup8I/Cq7CX02HLuPJyIVupd1z3n0Ql02Q7Y3Vwzq8y2Y0VXBV7Rdn4ywc6dOzFy5Ej4bBs1jB071qB71dXL8eru2rXLs+/169cDAEaNGpURz0CWCnwAyPuGH0S2bkmoCfucWdcj54bzIflYGpGTyJk+HIE7F0P2x1iapCJ3VCv6LfkLJMX29kAoAv3q0X/JK/DlOBdSAr0a0W/xq/AXNjlovrwW9H/8Vch57J6nPr/7Lkk6Tzy0xHNRF86FDKSiXs2HTAawq9Ia+UrRq+wI0x4tiiL0v2v5Gr4cQ+6d/+J6iNAkRfCW92E3vQTyW5yFOWPwFnAs0VsDd6O1bc9vrx3+RND1i5smOoIXN1fSzoZKaLs+gLZQav1YkzdaUVNTg+LiYsd1/VpNTY0rfydS95NPPsHixYtx2WWXcSeNtpCVNnwAKPrB71H0A6D++R8icbAWvklnoeiiBWaB8TNQ//KtSOyogG9kKYqutuQHenwl6tc+jOQH/4JcloOimaaPfskjq1D/nzeh/uVJSEU+FN3+qkErfewlNFRWIv6HWSABgt73mMFcfR/QytU+Oh00Afh/8DQKUnmB+j28GgBw/P7vIRkhGLDgezgwfzMA5wKaLOtmCruRl2L757rfv3bdtCCadtQ9hwox7KR6AMCgnw4G3VQBFCrI/8mbRuncu/6Bls9Xgq55CghIyL35HYMWvOVdRPbuBV37I0AmCP74PYOm3PQhACD2h8lAgmL0oz/CphmvwQmrnd5uI+bZ4k2XTPY70QS5V6Iza057O40xP3Bs5m71HFe5tn97Hy4tUrdFUvd+3HmzL1p7rUeZNL5LJsufuUBoZRbMNULM5HVcXjtpBmiPiUYvb8/VtWDBAixcuJBbxyu3kXfeo/bVPXDgAC655BIMHDgQzz77rGf7bshaDR8Aah75Dlq3JRCrKURkzWeof3GGQat/9jq0/qsW8ZoCtH7QjPpff9+kvX4nom9uRfx4ASI7fahZ9B2TtvX3iP/+ecRr8hHdl4OahSat9sBHaH38biSOFSD+ZT6OzjHbrDtwAMfmfB+Jw/lIVucj8qs7UXfggEE/es8VSNTmgrbkIP7HVQidne86Lknib/QabrWmVOaB4nCN1q4SaAHe/xCIB4DjQNOj5xulWjY/B7zxnEYL+9Hy2DSDFtm7F3h7JojqB4n7EPnNuUwPsWe/AcRlgPpQ/wevrStTbxWUJxysQtyu4es++PwH2m1NgMsB1dtRQaT03x6ci7rthIdMcnVxdK1jN19xFtc5rKbj7uo50VCzTJv++p30SnMiJp3Kyko0NDQYn7lz53L76N27N1cTr63V1tF4GvyJ1D148CCmTp0Kn8+HdevWebbvhazV8I/efRXiLeaXoiZkhN9PIr7nu6AxGfEGi0BNAs3/8SE25/uQi6KIHuoFQDFo0S+LUH33VVDGBNC6VYW2YYn2E4nVFOLoXVfD/91JiL26GYDfoNFYEFV3XAfyvZ8Arz8NAot7ZtKP+K9+jrofXorI798AkQLQc/8QSCgK70T+pbmo+muhthuWnEBOQQ1a60ogywT+nAZEW3JBoAV6UZpe/h01qSI3LwJAwhcbh+GUiXsBECAWQNOD34Y8NB+orAOz+Tf1o+XRCyGddxXIhy+mJIeuwUqIPjkFdMjPIR36JQiRDZPQvo/GuHCh2/15WrGZY8e6SKsLZ6oVAZFMzV9VwQRpAW3509u9V8zJx91Dx8IlU85biPHSJLAFOHLQbfxpy0u+dt+2B461nr0N3mxhHpjZMlV0Zz2yoKAgrcCrMWPGYMWKFUgkEowdf8eOHQCA0aNHe9bVy1nhVvfgwYOYMmUKKKXYsGEDBgwYkNZYeOi+d8YD9X+ba4nwJLBqPNFjRYg3hri0eDgP0SOFXFoiEkDrtgTYgK2UR0lcQexVc0s7VsMioK8+bXFZZLWv1udeTwkvJ03e3YLyUV9i0Nj9KB/1JUoGtmLQ2IMYNHY/Bow4Cr8C+PxJ+BQV/gDfBcwOYs1JTjRXSitv6oE6/jgIgbp+hesYsf9Box22TVOLN7V5KfVhx6sJOJ2WjrZujZkwzQqZB0+15cbrPLZ7tmTyZmGUkGDuekVsVewTAUU6TaYJthEr7zwvHVeYt0o7tbwleaZm+IrRGV46l112GcLhMF5++WXm+rJly1BWVoaJEyd61v3ss88YT55EIoEXX3wREydORFmZmZKloqICU6ZMQTKZxPr16zFo0KCM+LQjKzX8yNp9AHih1QSgBJS67HgFykmbbNJoUnaxr7VhLzU0YmcZM+c6p08j26eTRghFIBBGLKZNXum+LatJU1UcOsHcS9jwzFFlQOaFoVBoqwI8n3gKQiVQJBhBP2TyTuxedyZAWC8YZ7I0vX2vY562bdfmU/epLa2a0w5V9T132ypLDN69FynbviE0lfONa8MnFu2bahND+hYRr8F7af7mpOn0q/ey4dvL8s7TWiTpEJyIDT9dXHzxxbjgggswa9YsNDY2YujQoVixYgXWrFmDF1980fDBv+mmm7Bs2TJ88cUXhrCeMWMGfvOb3+DKK6/EQw89hJKSEjz55JPYvXs31q5da/RRXV2NqVOn4siRI3juuedQXV2N6upqgz5gwICMtf2sFPhsqoJMcSI/Spe6lLiQTqwvX04SMYdDj9eDRWwbfbev33TRq7zaQ/Jatyrkm07caLYlR4aiqtrCNhw1OC0bjRBDo25bK0137cD7ut5tWsj4Z+KmKOg07wZ5E1lbgVd6Of6OY5aGOgGdlQ//lVdewfz583HfffehtrYWp556KlasWIFrrjEzyyaTSSSTSSYqNhAIYN26dZgzZw5uv/12tLS0YNy4cXjrrbdw7rnnGuU+/fRT7NunKWXXX3+9o3+vBWU3ZKXAlwubkaj22vHK7Udv/VXzNO4kWDOCvaxLu147XlHi8dbA48OktTSYbzFswIsbaErD18pUHShC6cn1ZhvGW4XLG4fXd0ecEuGT177BfcZ1AWIKWNaWzh5z7onNY8S6AYoevettiyepZqjZfzt0BOtaA4dq68O9DV6b9nPTWyZt7tItaGnXeW9NIc67kam/VKtn59HBb6ct2nbOjlehUAhLly7F0qVLXcu88MILeOGFFxzX+/Xrh2XLlnm2r9vtOxJZacPve//rILJ9oxLtWFbikJUkc00XZJIvCTngElwlJeHPi9jqpY6JCgRa+DQAJKfBlYZgo9G/naYi4UIjiEdlGAvLDLx+IIRZL6g7XGKplfpHE8YVtk0KSM2u46DUGZQVbc5158QhkN15ZsEzsXi1nV4f7Q28OhGlNd26naEYd0QfX5/Aq8zt9z1li8OsFPgAkHfzpZD9FqFPKHzBCPIXboV/xr8hB9iACkmJI+eeu9DvsZfgC0Ysmq42EShXfIzAfTvhy2thaXISOeMllD78KqSAnsPeFNJScR1y7t0LUtTooJGcVvRf/Ff4B8VSlyzCnSRR8cVZ2PX+mNRnNHa9P8o4/nzLSESaFcQifsQifsSj+suat4ZPCNDaonkLlQw+xGpD44Yi/+drweanSdGKCXLvfB8UCQeNynEEb9kI+JIpivYvv2+dY8FW+/AnOO2vviOWG82ZGhkw27YeW/tz15S0dvlkO58WCmX75NfzFiKUwkigZv2AMw5Y/nYk2HEQLo1fEZ47Xn2dgsoETGRtPnwrjm8djuBg/twW2aeiz5mfc2k1O0bBPyTOlaGxCqDXsI8hy87F4ZrPfoak+haCJ3PqHQCIfAV6j3iQ22fd/v3oNXgw3pv2ABIRgDV32P8CfiVmBBe93uaOV0BBTgQTRx4BISrO3zwPTXv3It+y05UVLXv3IteFFtm7FwAQ5NBjKZoydCjWTVzEmD4MEwi1+9Pru1oRy7F5TiwmI0m2/mTtOfVVJqALgCHsWc8RizkHAIhqTCQ8l0uv1APOXbasfHOrpAeLpZBZtPV4YvlatWlysdPs16zn1LIriHZsW7AlcOTC14S9dZ8JCySCCW//0pX3jsqHP873GOQM8+EnaSu2J+7K+nz4WWnD11E95wrEm3NA1UmISiqUkjrk/I+2zWHrY8MRry8ATUo4/ML18OU3o+TB1QCAmge/g1hVPtTkeEQlCn9uBIEFWirh2PP9kNg7AGpCRjWZCTkQg3L7EhSVl6N2+SzENjZAc3Y8Gy1EhXT1FgRPB6LbJKgvj4Pm1rkfR8k18J87EMWXPoK6/fvR+vh8w8Pl8yYFicgpAOOHZ314TIGSiPugBDSt++T+dfjiUB+Xb0N7Ik8fXKWdUQn775qOPn2AJgAUKgrmvQUAaHnhW6DHNWHVor95fO8p5A4disjbNwF79xkCOLKGAGddguCkuxHb+Qzw0TKD1c+XDAEwUuM+dc0QwtCkP3HxYNJ86+12fZ1Gbdk0TcFqF/baMeFq+NrkY/bBd62ktnMY/Zl2b149ax+cImnA6MP+3aWlopE0jvlrBnof1vUD1+b1yZsQ21g5E4raObqlvuFlpnV6ArJWwz/yP9chEdVt3OaDq+SHASrZ/PQ1mi8YgZwTQ6w+30YjkJUY/CU1iB625qPRyhA5gcBoCbGd9q8yVX/yFpCNZ8ApQAB1CIA9EiN4Dn42EK1N7pG2rICkCAQ1V53GBorte4egpond2EQvd3K/egw7qcG44g804azp26HvbKVSCl+vZqDVvjaQevILADlhdwvS+KaDToFUtRvWxGsfvnABknHeOoPJk1WbZtMgsDteOdIpMJ44ppYvyypXwOo/c9ZH35LlUdbMUXzh/BXteNUGrKmTmQXRtDR8Z6deNJPe/h2v9DaoxUvOLl06Y8er0b4l7dLwdybuFhp+d0T9765CIqovGDKqCGLhPJgPIUtLRIJIxhROPSAZ80M90tdG00CTPkR3JG1twiz74fjUFnp2OgXdLUGS2b5k2b6obGvPQTOPxw2tRktUxpGaEJpa/IjGfQjlxDFiQA20gECTD39uJHWktUkIoIaVlDC1jYMQoCmZCm9wjpFU7AVRCNOeJCeRjPM1xEx91t1h2vCNKxk3l3n/Vk+UdMq2R+jbA6++Ss2sI9S+r4vq2FleOt0RWSnwWz/l7UwF7Rol0FIncwQzKLx8+Kmqa+IOiouw12heIIxpQkPJoCMI1xeyfDna000ZZiBUQSFFYwOQG0jilLJGOPtOAtD33KU4fepnToY8A6/cvhsKUHMPXB2nXrAZn7z238zXYpgJVKsGaxiDOTzzZguWZg9c0m31rHug1e+fY95JAhL3aeC/tfHMHW6TmJ2XdMFo9BlNGF6F29b82xt4ZS3vFP4ZD6LdUEFBMhTgmQZedVdkp5dOt9mCPl0+rbZ8O8nNzt9GvfaA8vpwhz8UY+zPjLCzn6fPgAP2tnnh/en4sKenoWYmGOxrF+0CMcdy4u6TbfPfXk29q1IpCKSPrBT4yoAw+D9savtw6NyNUwDtqXOnuS/geYGm8suzT8rxyn7gC2vnNWrZVL2xwUvwA+bt1s53vTfEVooAksf4vVwNOYFXu96YzBVSdg2c1f68JiliFrecW6M73QQ7u1Tl7IO4piJyl2K8icXeh7vGmx7sC7Vf5aTEq8cuwtpvJHvJarpyfiedNxt0Ri6d7oqsFPi9Z78OWdGzR7Kv8f6cCPzBOFhTifZXVhKGXdtOk3wJBHrZd6dKCUApCanYvquVRTgOdN8Ni/Sts/ila9fiMT/Sg/0hauu1mVWxW1JmI+sWhZKx+Yp9HBTwtdpo5jH1sz74AJCItncc6dL4dH5074n04VEzzaqdEaB1IvjqA686D0LguyMrBT4AlP36T/DntIKk/LmJpEIpCKP0iZUofWIF/HktICltlhAKX04r+i9djpJHVkEpbDJoIBRyMIKcexahzy9eg9Kn3txJi1BI/jhybzgP/Ra+AV9J2BCd2v8UyllBlN7zOvxjTNu5Tved1Iz+C95E8DtnWLRUiqKSWsD1B2gXtuZ5QaGXFu5cCzh5wlZDOKugwFVLkXvnO4DPGgiWenDPPge5d7xnyQyt9UMpAS0uQHDme0CfPkYXFBTFg4/ADaww8LLbc2zojEZKOX73vP68+3BfWOXZ8M1+vIOMKFO2Pej4ICa+Dd8aeJXe9+C8bOezq0w8WjxYpgK/ZyBr3TK7O9795i9Ak/bXaOvCWWrS8MUh+0wh39iQC7vpxqyXhGTk41Vxwb/5mzt0JNZNXKRx4ngZ4QVemedm4BUs9VPnxBqk1Z7AK8ppM/PAKzOQjNrqsX24L+y2AWLtw9KOxxPLD7zSKlFmbYsY5c22nYFX5uI0x1xo8GM3XUmp75wdbHBgH4z9/Z2uvHeUW+YQ/8OQSLDtChaoNIJ98f/NetmStRp+d8fkt+6BHAC4JqIUZJuwBygKClvBhpFYhb1uqO4cYQ8AE1fd7PD6oJTaZIFq26bQOrHZ7MhEnxhswp4gFfFqF1p2oW1QmGMiObf3Y+s527G/FTg9WnjtpAd98qFq+sLe2Ye1sD1fkP3tI51IXEs99mXVUtYq7E2i0q/IU9h3JIRJxx1Z6ZaZDVBCOfjmO/ciVhtG/bYvUHTGKVCKQwjv/hKxhlYUTxiGrZs2IXbfKihnDMX4RTdj048XQz10DH0fugTHlq8B/tUKIIFvbXkE62Y+BLqrAWTBf+O8iy7qtHGEyosx7aO5iBwLo27rQfT+r2FQQgpqtx0AABSfcTJi4RjqN+1F0bhybYx7qhCtbULvicOQTCbRuv8YlNJCKKEcxBpaEK9tQrC8D2RZRvP+o/AX5UHpFUKyNYLI4ToEB/aGrCio37YXcsCP/NMGIVYXRuOO/SgYMxhKrxDCn1ci2RxB4RnDEIvF0LTxP8gfNhBKaTHCFVWIHzqGXpPHIBaLoXnLbgQHlSKnrC9iVbUI761AaMJpUBQFDVv+A7kgD6Fh5Yg1hBH++HOExg+HEgohvEtLMREaNRSxcBjNW3cjb/QQKMW9EN5/CMlj9SicMErrY/OnyB1ShkD/EkSPVKNl/2HknZXqY/MuyH2KEBp8EmK1dWjeuQ9540dACYXQ9PFukICC0KmDzT7GjYBSEEJ4z0Ekm1pQOH6k1semT5E3tJwZY96ZI6AoCuo+3AH/SX0RKi9FrKoWTXsqkD8x1f/2PZBzgwgNH4hYfRiN2/ag4IxhUIpCCH96AMloXPsew61o3LoXBaMHQSkuQPhgFWKH61A8eWSn/d4EvCFMOgICAl8LdJRJp9y/qF0mnYr43KyXLULDFxAQyCokkXmkrTDpCAgICHRDqK6eam3VyX4IgS8gIJBVEALfHULgCwgIZBWSRAUlmXnWqz3EE1+4ZQoICAj0EAgNX0BAIKsgFm3dIQS+gIBAVqE9m5KLfPhfQ+ghA42NjW2UFBAQ6G7Qn+sTDQ1KkEjG+fApiZ5Qn90F3UrgNzU1AQAGDhzYxZwICAh8VWhqakJhYWHG9RRFQWlpKaqqHmpXv6WlpVAUry05uz+6VaStqqo4fPgw8vPz20h3K5AJGhsbMXDgQFRWVmZ1lGF3Qk+8J5RSNDU1oaysDJLUPn+SSCSCWMy+73J6UBQFwWBmEbrdDd1Kw5ckCQMGDOhqNrIWBQUFPUa4dBf0tHvSHs3eimAwmPVC+0Qg3DIFBAQEegiEwBcQEBDoIRACXwCBQAALFixAIBDoalYEUhD3ROCrQLdatBUQEBAQaD+Ehi8gICDQQyAEvoCAgEAPgRD4AgICAj0EQuALMFi/fj1mzJiBU089FXl5eTjppJNw6aWXYsuWLV3NWo9AOBzGHXfcgbKyMgSDQYwbNw4rV67sarYEsgTdKvBK4KvHU089hZqaGvzsZz/DaaedhmPHjmHJkiWYNGkS3n77bUybNq2rWcxqXH755di8eTMeeughDB8+HMuXL8e1114LVVVx3XXXdTV7At0cwktHgEF1dTVKSkqYa+FwGEOHDsXo0aOxdu3aLuIs+/Hmm29i+vTphpDXceGFF2LXrl2oqKiALMtdyKFAd4cw6QgwsAt7AAiFQjjttNNQWVnZBRz1HKxevRqhUAhXXnklc/3GG2/E4cOHsXHjxi7iTCBbIAS+QJtoaGjA1q1bMWrUqK5mJauxc+dOjBw5Ej4fa2kdO3asQRcQOBEIgS/QJm699VY0Nzdj/vz5Xc1KVqOmpgbFxcWO6/q1mpqazmZJIMsgBH4WY8OGDSCEpPXZvn07t43/+7//w5/+9Cc8/vjjOPPMMzt3AD0QXmm/RUpwgROF8NLJYowYMQLPPPNMWmXLy8sd1+6//3788pe/xAMPPIDbbruto9kTsKF3795cLb62thYAuNq/gEAmEAI/i9G/f3/MnDmzXXXvv/9+LFy4EAsXLsS8efM6mDMBHsaMGYMVK1YgkUgwdvwdO3YAAEaPHt1VrAlkCYRJR8CBX/ziF1i4cCHuvfdeLFiwoKvZ6TG47LLLEA6H8fLLLzPXly1bhrKyMkycOLGLOBPIFggNX4DBkiVLcN999+Giiy7C9OnT8dFHHzH0SZMmdRFn2Y+LL74YF1xwAWbNmoXGxkYMHToUK1aswJo1a/Diiy8KH3yBE4YIvBJgMGXKFLz77ruudPFz+WoRDocxf/58/PnPf0ZtbS1OPfVUzJ07F9dcc01XsyaQBRACX0BAQKCHQNjwBQQEBHoIhMAXEBAQ6CEQAl9AQECgh0AIfAEBAYEeAiHwBQQEBHoIhMAXEBAQ6CEQAl9AQECgh0AIfAEBAYEeAiHwBQQEBHoIhMAXEBAQ6CEQAl9AQECgh0AIfAEBAYEegv8PDDYjfbKotEcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "ename": "ValueError", + "evalue": "'c' argument has 352219 elements, which is inconsistent with 'x' and 'y' with size 546097.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/matplotlib/axes/_axes.py:4367\u001b[0m, in \u001b[0;36mAxes._parse_scatter_color_args\u001b[0;34m(c, edgecolors, kwargs, xsize, get_next_color_func)\u001b[0m\n\u001b[1;32m 4366\u001b[0m \u001b[39mtry\u001b[39;00m: \u001b[39m# Is 'c' acceptable as PathCollection facecolors?\u001b[39;00m\n\u001b[0;32m-> 4367\u001b[0m colors \u001b[39m=\u001b[39m mcolors\u001b[39m.\u001b[39;49mto_rgba_array(c)\n\u001b[1;32m 4368\u001b[0m \u001b[39mexcept\u001b[39;00m (\u001b[39mTypeError\u001b[39;00m, \u001b[39mValueError\u001b[39;00m) \u001b[39mas\u001b[39;00m err:\n", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/matplotlib/colors.py:487\u001b[0m, in \u001b[0;36mto_rgba_array\u001b[0;34m(c, alpha)\u001b[0m\n\u001b[1;32m 486\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 487\u001b[0m rgba \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marray([to_rgba(cc) \u001b[39mfor\u001b[39;00m cc \u001b[39min\u001b[39;00m c])\n\u001b[1;32m 489\u001b[0m \u001b[39mif\u001b[39;00m alpha \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/matplotlib/colors.py:487\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 486\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 487\u001b[0m rgba \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marray([to_rgba(cc) \u001b[39mfor\u001b[39;00m cc \u001b[39min\u001b[39;00m c])\n\u001b[1;32m 489\u001b[0m \u001b[39mif\u001b[39;00m alpha \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/matplotlib/colors.py:299\u001b[0m, in \u001b[0;36mto_rgba\u001b[0;34m(c, alpha)\u001b[0m\n\u001b[1;32m 298\u001b[0m \u001b[39mif\u001b[39;00m rgba \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m: \u001b[39m# Suppress exception chaining of cache lookup failure.\u001b[39;00m\n\u001b[0;32m--> 299\u001b[0m rgba \u001b[39m=\u001b[39m _to_rgba_no_colorcycle(c, alpha)\n\u001b[1;32m 300\u001b[0m \u001b[39mtry\u001b[39;00m:\n", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/matplotlib/colors.py:381\u001b[0m, in \u001b[0;36m_to_rgba_no_colorcycle\u001b[0;34m(c, alpha)\u001b[0m\n\u001b[1;32m 380\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m np\u001b[39m.\u001b[39miterable(c):\n\u001b[0;32m--> 381\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mInvalid RGBA argument: \u001b[39m\u001b[39m{\u001b[39;00morig_c\u001b[39m!r}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 382\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(c) \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m [\u001b[39m3\u001b[39m, \u001b[39m4\u001b[39m]:\n", + "\u001b[0;31mValueError\u001b[0m: Invalid RGBA argument: 0.0", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [10], line 23\u001b[0m\n\u001b[1;32m 21\u001b[0m plt\u001b[38;5;241m.\u001b[39mfigure(figsize\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m4\u001b[39m,\u001b[38;5;241m4\u001b[39m))\n\u001b[1;32m 22\u001b[0m plt\u001b[38;5;241m.\u001b[39mtitle(\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m$\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124mhat\u001b[39m\u001b[38;5;132;01m{f}\u001b[39;00m\u001b[38;5;124m(\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124mlambda^\u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m*})$\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m---> 23\u001b[0m \u001b[43mplt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mscatter\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtheta_tiles\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtheta_tiles\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtypeI_est\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43ms\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m20\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 24\u001b[0m plt\u001b[38;5;241m.\u001b[39mcolorbar()\n\u001b[1;32m 25\u001b[0m plt\u001b[38;5;241m.\u001b[39mshow()\n", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/matplotlib/pyplot.py:2778\u001b[0m, in \u001b[0;36mscatter\u001b[0;34m(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, edgecolors, plotnonfinite, data, **kwargs)\u001b[0m\n\u001b[1;32m 2773\u001b[0m \u001b[39m@_copy_docstring_and_deprecators\u001b[39m(Axes\u001b[39m.\u001b[39mscatter)\n\u001b[1;32m 2774\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mscatter\u001b[39m(\n\u001b[1;32m 2775\u001b[0m x, y, s\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, c\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, marker\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, cmap\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, norm\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m,\n\u001b[1;32m 2776\u001b[0m vmin\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, vmax\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, alpha\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, linewidths\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m,\n\u001b[1;32m 2777\u001b[0m edgecolors\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, plotnonfinite\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m, data\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[0;32m-> 2778\u001b[0m __ret \u001b[39m=\u001b[39m gca()\u001b[39m.\u001b[39;49mscatter(\n\u001b[1;32m 2779\u001b[0m x, y, s\u001b[39m=\u001b[39;49ms, c\u001b[39m=\u001b[39;49mc, marker\u001b[39m=\u001b[39;49mmarker, cmap\u001b[39m=\u001b[39;49mcmap, norm\u001b[39m=\u001b[39;49mnorm,\n\u001b[1;32m 2780\u001b[0m vmin\u001b[39m=\u001b[39;49mvmin, vmax\u001b[39m=\u001b[39;49mvmax, alpha\u001b[39m=\u001b[39;49malpha, linewidths\u001b[39m=\u001b[39;49mlinewidths,\n\u001b[1;32m 2781\u001b[0m edgecolors\u001b[39m=\u001b[39;49medgecolors, plotnonfinite\u001b[39m=\u001b[39;49mplotnonfinite,\n\u001b[1;32m 2782\u001b[0m \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49m({\u001b[39m\"\u001b[39;49m\u001b[39mdata\u001b[39;49m\u001b[39m\"\u001b[39;49m: data} \u001b[39mif\u001b[39;49;00m data \u001b[39mis\u001b[39;49;00m \u001b[39mnot\u001b[39;49;00m \u001b[39mNone\u001b[39;49;00m \u001b[39melse\u001b[39;49;00m {}), \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 2783\u001b[0m sci(__ret)\n\u001b[1;32m 2784\u001b[0m \u001b[39mreturn\u001b[39;00m __ret\n", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/matplotlib/__init__.py:1423\u001b[0m, in \u001b[0;36m_preprocess_data..inner\u001b[0;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1420\u001b[0m \u001b[39m@functools\u001b[39m\u001b[39m.\u001b[39mwraps(func)\n\u001b[1;32m 1421\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minner\u001b[39m(ax, \u001b[39m*\u001b[39margs, data\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 1422\u001b[0m \u001b[39mif\u001b[39;00m data \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m-> 1423\u001b[0m \u001b[39mreturn\u001b[39;00m func(ax, \u001b[39m*\u001b[39;49m\u001b[39mmap\u001b[39;49m(sanitize_sequence, args), \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 1425\u001b[0m bound \u001b[39m=\u001b[39m new_sig\u001b[39m.\u001b[39mbind(ax, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[1;32m 1426\u001b[0m auto_label \u001b[39m=\u001b[39m (bound\u001b[39m.\u001b[39marguments\u001b[39m.\u001b[39mget(label_namer)\n\u001b[1;32m 1427\u001b[0m \u001b[39mor\u001b[39;00m bound\u001b[39m.\u001b[39mkwargs\u001b[39m.\u001b[39mget(label_namer))\n", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/matplotlib/axes/_axes.py:4530\u001b[0m, in \u001b[0;36mAxes.scatter\u001b[0;34m(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, edgecolors, plotnonfinite, **kwargs)\u001b[0m\n\u001b[1;32m 4527\u001b[0m \u001b[39mif\u001b[39;00m edgecolors \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 4528\u001b[0m orig_edgecolor \u001b[39m=\u001b[39m kwargs\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39medgecolor\u001b[39m\u001b[39m'\u001b[39m, \u001b[39mNone\u001b[39;00m)\n\u001b[1;32m 4529\u001b[0m c, colors, edgecolors \u001b[39m=\u001b[39m \\\n\u001b[0;32m-> 4530\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_parse_scatter_color_args(\n\u001b[1;32m 4531\u001b[0m c, edgecolors, kwargs, x\u001b[39m.\u001b[39;49msize,\n\u001b[1;32m 4532\u001b[0m get_next_color_func\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_get_patches_for_fill\u001b[39m.\u001b[39;49mget_next_color)\n\u001b[1;32m 4534\u001b[0m \u001b[39mif\u001b[39;00m plotnonfinite \u001b[39mand\u001b[39;00m colors \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 4535\u001b[0m c \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mma\u001b[39m.\u001b[39mmasked_invalid(c)\n", + "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/matplotlib/axes/_axes.py:4373\u001b[0m, in \u001b[0;36mAxes._parse_scatter_color_args\u001b[0;34m(c, edgecolors, kwargs, xsize, get_next_color_func)\u001b[0m\n\u001b[1;32m 4371\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 4372\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m valid_shape:\n\u001b[0;32m-> 4373\u001b[0m \u001b[39mraise\u001b[39;00m invalid_shape_exception(c\u001b[39m.\u001b[39msize, xsize) \u001b[39mfrom\u001b[39;00m \u001b[39merr\u001b[39;00m\n\u001b[1;32m 4374\u001b[0m \u001b[39m# Both the mapping *and* the RGBA conversion failed: pretty\u001b[39;00m\n\u001b[1;32m 4375\u001b[0m \u001b[39m# severe failure => one may appreciate a verbose feedback.\u001b[39;00m\n\u001b[1;32m 4376\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 4377\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m'\u001b[39m\u001b[39mc\u001b[39m\u001b[39m'\u001b[39m\u001b[39m argument must be a color, a sequence of colors, \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 4378\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mor a sequence of numbers, not \u001b[39m\u001b[39m{\u001b[39;00mc\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m) \u001b[39mfrom\u001b[39;00m \u001b[39merr\u001b[39;00m\n", + "\u001b[0;31mValueError\u001b[0m: 'c' argument has 352219 elements, which is inconsistent with 'x' and 'y' with size 546097." + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAGCCAYAAAABo2PaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAirklEQVR4nO3df3DU5YHH8c8mgQ2QZglosEtCKGXAGAipjqQ4VWRqQOSqDXe0/JpCiI4iJYLOUVMsyllLvNIWOH+caNXUSLjBkNJeA1N+Xh2tlKp4JIQOBZQcEakbs5sgBJJ97g8nW7ZJIN/sBkKe92tm/8iz++w+T2nf+fa7+924jDFGAIBeLeZKLwAA0P2IPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPXqlbdu2yeVyKSMjQ+fPn7/SywGuOGKPXufMmTNatGiRJkyYoGPHjmn16tVXeknAFUfs0es8+eSTamho0ObNm/X000/rySef1NGjR6/0soArysVXHKM3OXjwoL72ta9p06ZNuvvuu2WM0dSpU+VyubR169YrvTzgiiH2AGABTuMAUXL77bfrww8/vNLLANpF7IEIvPXWW6qoqAgbO3HihJ577rkrtCKgfcQevVYwGNS///u/KzMzU/3795fL5dJXv/pVSdLKlSsVGxurgwcPtpn35ptvyuVy6Utf+pLuvvtu+Xy+Dl9j2LBhKikp0Zw5c1RfX68XX3xR06dPV1paWugxH3/8sfr166dFixZFf5NAZxmglyosLDSSjNfrNd/5znfMvHnzzOrVq83JkydNQkKC+e53v9vuvD179pg5c+aYpKQkI8ksXbr0kq/1i1/8wkgyX//6183nn3/e5v6CggITFxdnDh06FPG+gK7gDVr0SmfOnNG1114rt9utw4cPa9CgQaH7HnroIa1bt0779+/XuHHjOnyOLVu26Nvf/rbGjx+vvXv3tvuYEydO6NFHH1UwGFRVVZWmTZumnTt3auXKlZoyZUrY44YNG6Z/+Zd/0X/9139Fb6NAJ3EaB73S22+/rdOnT+vuu+8OC/3nn3+u4uJiZWZmXjT00hdvuEpSVVWVOjomOnbsmGbOnKnXX39dAwcO1H333ac33nhDf/3rX8MeN3ToUE2aNEnl5eX65JNPItsc0AXEHr3K7t275XK5dMcdd0iSXn31VblcLrlcLj3++OPatGmT/H6/5syZc8nn8ng8GjZsmE6fPt3hRVnf+MY3NG3atLCxlJSUds/Pz549W+fPn9err77qfGNAhIg9epW4uDjNmzcv9AbpP/3TP2nevHmaN2+epkyZov/+7/+W9Pej9ouprKzUxx9/LEn63//930s+fs+ePRo+fHiH97e+5u9+97tLPhcQbZyzR69044036v3335fP5ws7jfPlL39ZPp9PDQ0NcrvdHc4PBoO65ZZbQufqV65cqRUrVkS8rmuvvVYNDQ3y+/0XfX0g2jiyR6/T3NysgwcPKjU1NSz0p06d0smTJzV8+PBLhnbt2rXau3evUlJSJEkHDhyIytpGjx6tpqYm/eUvf4nK8wGdRezR6xw8eFBNTU3KysoKGz916pQkKSkp6aLzjx07ph/96Ee67rrrVFJSIil6sW/95fO3v/0tKs8HdFbclV4AEG379++XpDax9/v9kqQvfelLF51///336/Tp03rttdd0yy23qG/fvvrrX/+qs2fPKj4+PqK1JSYmhq0FuFw4skev88EHH0hqG3uPxyNJCgQCHc599dVXtX37ds2YMUO5ubnq06eP0tPT1dLSoqqqqojX1hr51rUAlwuxR6/TemT/j5+jT05OliTV1dW1O++TTz7RI488osGDB+uZZ54JjWdmZkqKzqmczz77TNIXb9QClxOxR6/zwQcfKDExUSNGjAgbT05O1nXXXaePPvpIZ86caTNv8eLFqqur07p160K/GKS//9KIRuwPHTqk+Ph4jR49OuLnApwg9uhVampq5PP5lJmZKZfL1eb+W2+9Vc3NzXr//ffDxrds2aJNmzbpW9/6lmbPnh12X7SO7I8cOSKfz6fx48fzsUtcdsQevUpHb862ar3adffu3aExv9+vBx98UB6PR88//3ybOdE6st+zZ48k6a677oroeYCuIPboVTp6c7bVd77zHXk8Hm3YsCE0tmzZMtXW1upnP/uZhg4d2mZO6+mfkydPRvSRyQ0bNqhPnz6aP39+l58D6CquoIV1li5dqjVr1ujdd9/VjTfeeFle8//+7/+UlpbGt17iiuHIHtYpLCxUQkKCioqKLttr/vSnP1VMTIz+7d/+7bK9JnAhYg/rJCcn61//9V9VVlbW7l+qiraPP/5Y69ev13333cencHDFOI59Q0ODli1bpsmTJ+vaa6+Vy+XSE0880en5p06d0vz583XNNdeof//+mjBhgnbu3Ol0GUBEVqxYoZaWFt1www3d/lpf/vKXdebMGf4uLa4ox7H3+Xxav369mpqa9O1vf9vR3KamJn3zm9/Uzp07tXbtWm3ZskVDhgzRnXfeqf/5n/9xuhQAQCc5/m6ctLQ0ffbZZ3K5XPr000/10ksvdXruL3/5S1VWVurtt9/WhAkTJEmTJk3SuHHjtGzZsg7/9BsAIDKOj+xb/+pPV5SXl2v06NGh0Etf/LGJuXPn6k9/+pNOnDjRpecFAFzcZf3Wy8rKSt16661txluvUKyqqmr3c85NTU1qamoK/RwMBlVXV6fBgwd3+RcPAPQkxhg1NDTI6/UqJib6n525rLH/x78a1Kp1zOfztTtv1apVWrlyZbeuDQB6gpqamtAfzYmmy/599hc7Eu/ovsLCQj388MOhn/1+v4YNG6aamprQ94MDwNUsEAgoNTX1kn9voasua+wHDx7c7tF761fOtnfUL0lut7vdL45KTEwk9gB6le46NX1ZL6oaO3Zsu18m1To2ZsyYy7kcALDGZY19bm6uDh06FPYRy+bmZpWUlCg7O1ter/dyLgcArNGl0zhbt27V6dOn1dDQIOmLP/D8xhtvSPri61v79++v/Px8FRcX68iRI0pLS5MkLViwQM8++6xmzJihoqIiJScn67nnntNf/vIX7dixI0pbAgD8oy7FfuHChfroo49CP2/atEmbNm2SJB07dkzDhw9XS0uLWlpadOGXarrdbu3cuVPLli3T4sWL9fnnnysrK0tbt27VxIkTI9wKAKAjV+VXHAcCAXk8Hvn9ft6gBdArdHfX+NZLALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALCA49g3NjZqyZIl8nq9io+PV1ZWljZu3Nipubt371ZOTo6Sk5OVkJCgzMxMrVu3Ti0tLY4XDgDovDinE6ZPn659+/apqKhIo0aN0oYNGzRr1iwFg0HNnj27w3k7duzQlClTdNttt+nFF1/UgAED9Jvf/EYPPfSQjhw5orVr10a0EQBAx1zGGNPZB1dUVGjatGmhwLeaPHmyqqqqdPz4ccXGxrY7d+7cuXrjjTfk8/k0YMCA0PiUKVP0zjvvyO/3d3rRgUBAHo9Hfr9fiYmJnZ4HAD1Vd3fN0Wmc8vJyJSQkaMaMGWHjeXl5qq2t1d69ezuc26dPH/Xt21f9+vULGx84cKDi4+OdLAMA4JCj2FdWVio9PV1xceFnfzIzM0P3d+SBBx7QuXPnVFBQoNraWtXX1+u1115TeXm5li1bdtHXbWpqUiAQCLsBADrPUex9Pp8GDRrUZrx1zOfzdTg3Oztbu3btUnl5uYYOHaqkpCTl5eXpqaee0iOPPHLR1121apU8Hk/olpqa6mTZAGA9x5/GcblcXbrv3XffVW5urm666Sb99re/1a5du1RYWKjHHntMTz755EVfs7CwUH6/P3SrqalxumwAsJqjT+MMHjy43aP3uro6SWr3qL/VokWLNGTIEJWXl4fexJ00aZJiYmL0xBNPaM6cORoxYkS7c91ut9xut5OlAgAu4OjIfuzYsaqurlZzc3PY+IEDByRJY8aM6XDu/v37ddNNN7X5tM7NN9+sYDCo6upqJ0sBADjgKPa5ublqbGxUWVlZ2HhxcbG8Xq+ys7M7nOv1evXnP/+5zQVUf/zjHyVJKSkpTpYCAHDA0WmcqVOnKicnRwsXLlQgENDIkSNVWlqqbdu2qaSkJHTUnp+fr+LiYh05ckRpaWmSpKVLl6qgoEDf+ta3dP/996t///7auXOnfvazn+mOO+7QuHHjor87AICkLlxBu3nzZi1fvlwrVqxQXV2drr/+epWWlmrmzJmhx7S0tKilpUUXXq+1ePFiDR06VL/4xS9077336syZMxo+fLgef/xxLV26NDq7AQC0y9EVtD0FV9AC6G161BW0AICrE7EHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAs4jn1jY6OWLFkir9er+Ph4ZWVlaePGjZ2ev2XLFk2cOFGJiYkaMGCAMjIytH79eqfLAAA4EOd0wvTp07Vv3z4VFRVp1KhR2rBhg2bNmqVgMKjZs2dfdG5RUZGWL1+uBx54QIWFherTp48OHTqkc+fOdXkDAIBLcxljTGcfXFFRoWnTpoUC32ry5MmqqqrS8ePHFRsb2+7cd999V+PHj9eqVau0bNmyiBYdCATk8Xjk9/uVmJgY0XMBQE/Q3V1zdBqnvLxcCQkJmjFjRth4Xl6eamtrtXfv3g7nPvPMM3K73Vq8eHHXVgoA6DJHsa+srFR6erri4sLP/mRmZobu78gf/vAHpaenq6ysTKNHj1ZsbKxSUlL06KOPXvI0TlNTkwKBQNgNANB5jmLv8/k0aNCgNuOtYz6fr8O5J06c0OHDh1VQUKCCggLt2LFD8+fP1+rVq5WXl3fR1121apU8Hk/olpqa6mTZAGA9x2/QulyuLt0XDAbV0NCg0tJSzZw5U5I0adIknT59WmvWrNHKlSs1cuTIducWFhbq4YcfDv0cCAQIPgA44OjIfvDgwe0evdfV1UlSu0f9F86VpClTpoSNT506VZL03nvvdTjX7XYrMTEx7AYA6DxHsR87dqyqq6vV3NwcNn7gwAFJ0pgxYzqc23pe/x+1fhgoJobruwCguzgqbG5urhobG1VWVhY2XlxcLK/Xq+zs7A7n/vM//7MkaevWrWHjFRUViomJ0c033+xkKQAABxyds586dapycnK0cOFCBQIBjRw5UqWlpdq2bZtKSkpCn7HPz89XcXGxjhw5orS0NElffDzzhRde0IMPPqhPP/1UN9xwg3bs2KFnn31WDz74YOhxAIDoc/wG7ebNm7V8+XKtWLFCdXV1uv7668PedJWklpYWtbS06MLrtfr06aPt27frhz/8oX7yk5+orq5OX/nKV1RUVBT25isAIPocXUHbU3AFLYDepkddQQsAuDoRewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAsQewCwALEHAAs4jn1jY6OWLFkir9er+Ph4ZWVlaePGjY5f+LHHHpPL5dKYMWMczwUAOBPndML06dO1b98+FRUVadSoUdqwYYNmzZqlYDCo2bNnd+o59u/fr9WrV2vIkCGOFwwAcM5ljDGdfXBFRYWmTZsWCnyryZMnq6qqSsePH1dsbOxFn6O5uVk333yzbrvtNn3wwQf69NNPVVlZ6WjRgUBAHo9Hfr9fiYmJjuYCQE/U3V1zdBqnvLxcCQkJmjFjRth4Xl6eamtrtXfv3ks+R1FRkerq6vTUU085WykAoMscxb6yslLp6emKiws/+5OZmRm6/2IOHjyoH//4x3r++eeVkJDQ6ddtampSIBAIuwEAOs9R7H0+nwYNGtRmvHXM5/N1ODcYDGrBggWaPn267rrrLkeLXLVqlTweT+iWmprqaD4A2M7xp3FcLleX7vv5z3+uw4cPa82aNU5fUoWFhfL7/aFbTU2N4+cAAJs5+jTO4MGD2z16r6urk6R2j/ol6fjx41qxYoWKiorUt29f1dfXS/rizdpgMKj6+nq53W7169ev3flut1tut9vJUgEAF3B0ZD927FhVV1erubk5bPzAgQOS1OFn5o8ePaozZ87ooYceUlJSUuj21ltvqbq6WklJSSosLOziFgAAl+LoyD43N1cvvviiysrK9N3vfjc0XlxcLK/Xq+zs7HbnZWVlaffu3W3GlyxZIr/fr1deeUUpKSkOlw4A6CxHsZ86dapycnK0cOFCBQIBjRw5UqWlpdq2bZtKSkpCn7HPz89XcXGxjhw5orS0NA0cOFC33357m+cbOHCgmpub270PABA9jq+g3bx5s5YvX64VK1aorq5O119/vUpLSzVz5szQY1paWtTS0iIH12sBALqRoytoewquoAXQ2/SoK2gBAFcnYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFiD2AGABYg8AFnAc+8bGRi1ZskRer1fx8fHKysrSxo0bLzlv8+bNmjVrlkaOHKl+/fpp+PDhmjNnjg4fPtylhQMAOi/O6YTp06dr3759Kioq0qhRo7RhwwbNmjVLwWBQs2fP7nDe008/reuuu07Lly/XiBEjVFNTo5/85Ce68cYb9c477ygjIyOijQAAOuYyxpjOPriiokLTpk0LBb7V5MmTVVVVpePHjys2NrbduadOnVJycnLYWG1trYYPH67vfe97eumllzq96EAgII/HI7/fr8TExE7PA4Ceqru75ug0Tnl5uRISEjRjxoyw8by8PNXW1mrv3r0dzv3H0EuS1+tVSkqKampqnCwDAOCQo9hXVlYqPT1dcXHhZ38yMzND9ztx9OhRffTRR5zCAYBu5uicvc/n04gRI9qMDxo0KHR/ZzU3Nys/P18JCQlaunTpRR/b1NSkpqam0M+BQKDTrwMA6MKncVwuV5fuu5AxRvn5+XrzzTf1q1/9SqmpqRd9/KpVq+TxeEK3Sz0eABDOUewHDx7c7tF7XV2dpL8f4V+MMUb33nuvSkpK9Oqrr+qee+655JzCwkL5/f7QjXP8AOCMo9iPHTtW1dXVam5uDhs/cOCAJGnMmDEXnd8a+ldeeUUvvfSS5s6d26nXdbvdSkxMDLsBADrPUexzc3PV2NiosrKysPHi4mJ5vV5lZ2d3ONcYo/vuu0+vvPKKXnjhBeXl5XVtxQAAxxy9QTt16lTl5ORo4cKFCgQCGjlypEpLS7Vt2zaVlJSEPmOfn5+v4uJiHTlyRGlpaZKkgoIC/fKXv9SCBQs0duxYvfPOO6Hndbvd+trXvhbFbQEALuT4CtrNmzdr+fLlWrFiherq6nT99dertLRUM2fODD2mpaVFLS0tuvB6rd/+9reSpJdfflkvv/xy2HOmpaXpww8/7OIWAACX4ugK2p6CK2gB9DY96gpaAMDVidgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYgNgDgAWIPQBYwHHsGxsbtWTJEnm9XsXHxysrK0sbN27s1NxTp05p/vz5uuaaa9S/f39NmDBBO3fudLxoAIAzcU4nTJ8+Xfv27VNRUZFGjRqlDRs2aNasWQoGg5o9e3aH85qamvTNb35T9fX1Wrt2rZKTk/Xss8/qzjvv1I4dOzRx4sSINgIA6JjLGGM6++CKigpNmzYtFPhWkydPVlVVlY4fP67Y2Nh25z733HNatGiR3n77bU2YMEGS1NzcrHHjxikhIUF79+7t9KIDgYA8Ho/8fr8SExM7PQ8Aeqru7pqj0zjl5eVKSEjQjBkzwsbz8vJUW1t70WCXl5dr9OjRodBLUlxcnObOnas//elPOnHihMOlAwA6y9FpnMrKSqWnpysuLnxaZmZm6P5bbrmlw7m33nprm/HWuVVVVRo6dGi7c5uamtTU1BT62e/3S/riNyEA9AatPXNwssURR7H3+XwaMWJEm/FBgwaF7r/Y3NbHOZ27atUqrVy5ss14amrqJdcMAFcTn88nj8cT9ed1/Aaty+Xq0n2RzC0sLNTDDz8c+rm+vl5paWk6fvx4t/yH0lMFAgGlpqaqpqbGqvcq2Df7toHf79ewYcPaPSiOBkexHzx4cLtH4HV1dZJ00UVGMtftdsvtdrcZ93g8Vv2XoVViYiL7tgj7tktMTPdc/uToWceOHavq6mo1NzeHjR84cECSNGbMmIvObX2c07kAgMg4in1ubq4aGxtVVlYWNl5cXCyv16vs7OyLzj106FDYJ3aam5tVUlKi7Oxseb1eh0sHAHSacSgnJ8ckJSWZ9evXm127dpn77rvPSDIlJSWhxyxYsMDExsaaDz/8MDR29uxZk5GRYVJTU83rr79utm/fbnJzc01cXJzZs2ePozWcPXvWPP744+bs2bNOl39VY9/s2wbsu3v27Tj2DQ0NpqCgwFx33XWmb9++JjMz05SWloY9Zt68eUaSOXbsWNj4yZMnzfe+9z0zaNAgEx8fb77+9a+b7du3R7QBAMClObqCFgBwdeJbLwHAAsQeACxA7AHAAj0q9rZ+V35X971582bNmjVLI0eOVL9+/TR8+HDNmTNHhw8fvgyrjlwk/94Xeuyxx+Ryua6aazUi3feWLVs0ceJEJSYmasCAAcrIyND69eu7ccXREcm+d+/erZycHCUnJyshIUGZmZlat26dWlpaunnVkWtoaNCyZcs0efJkXXvttXK5XHriiSc6PT9qbbvS7xBfKCcnxwwcOND853/+p9m1a5e59957jSTz+uuvX3Te2bNnzZgxY0xKSoopKSkxv//9780999zTpY91Xgld3ff48ePN3XffbV5++WWzZ88e89prr5n09HSTkJBgKisrL9Pqu66r+77Q+++/b9xutxkyZIjJyMjoxtVGTyT7XrVqlYmJiTEPPvig2bp1q9mxY4d55plnzH/8x39chpVHpqv73r59u4mJiTG33367+fWvf222b99uFi9ebCSZgoKCy7T6rjt27JjxeDzmtttuC+358ccf79TcaLatx8T+d7/7nZFkNmzYEDaek5NjvF6vaW5u7nDus88+aySZt99+OzR2/vx5c8MNN5jx48d325qjIZJ9f/LJJ23GTpw4Yfr06WPy8/OjvtZoimTfrc6fP2+ysrJMQUGBmThx4lUR+0j2/ec//9nExMSYp59+uruXGXWR7HvOnDnG7XabxsbGsPHJkyebxMTEbllvNAWDQRMMBo0xxvztb39zFPtotq3HnMax9bvyI9l3cnJymzGv16uUlBTV1NREfa3RFMm+WxUVFamurk5PPfVUdy0z6iLZ9zPPPCO3263Fixd39zKjLpJ99+nTR3379lW/fv3CxgcOHKj4+PhuWW80uVyuS35JZEei2bYeE/vOfFf+xea2Pq69uVVVVVFcaXRFsu/2HD16VB999JEyMjKitsbuEOm+Dx48qB//+Md6/vnnlZCQ0G3rjLZI9v2HP/xB6enpKisr0+jRoxUbG6uUlBQ9+uijOnfuXLeuO1KR7PuBBx7QuXPnVFBQoNraWtXX1+u1115TeXm5li1b1q3rvtKi2bYeE/tIvu8+krlXWjTX3tzcrPz8fCUkJGjp0qVRW2N3iGTfwWBQCxYs0PTp03XXXXd12xq7QyT7PnHihA4fPqyCggIVFBRox44dmj9/vlavXq28vLxuW3M0RLLv7Oxs7dq1S+Xl5Ro6dKiSkpKUl5enp556So888ki3rbkniGYfHH+ffXe6Et+V3xNEY+3GGOXn5+vNN99UWVnZVfGHXbq675///Oc6fPiwfvOb33THsrpdV/cdDAbV0NCg0tJSzZw5U5I0adIknT59WmvWrNHKlSs1cuTIqK83Wrq673fffVe5ubnKzs7WCy+8oAEDBmjXrl167LHHdPbsWf3oRz/qjuX2GNFqW4+J/ZX6rvwrLRprN8bo3nvvVUlJiYqLi3XPPfdEfZ3R1tV9Hz9+XCtWrFBRUZH69u2r+vp6SV/8v5pgMKj6+nq53e4253d7ikj/e37y5ElNmTIlbHzq1Klas2aN3nvvvR4b+0j2vWjRIg0ZMkTl5eWKjY2V9MUvuZiYGD3xxBOaM2dOu39BrzeIZtt6zGkcW78rP5J9S38P/SuvvKKXXnpJc+fO7ba1RlNX93306FGdOXNGDz30kJKSkkK3t956S9XV1UpKSlJhYWG3r7+rIvn3bu/crfT3v1naXX/0Ihoi2ff+/ft10003hULf6uabb1YwGFR1dXX0F9xDRLVtjj67040qKiqMJLNx48aw8TvvvPOSH8167rnnjCTzzjvvhMbOnz9vMjIyTHZ2dretORoi2XcwGDT5+fnG5XKZ9evXd/dSo6qr+/7ss8/M7t2729zGjRtnhg8fbnbv3m0OHz58ObbQJZH8e7/wwgvtfi69oKDAxMTEhH2leE8Tyb6/8pWvmDFjxrR5zA9/+EMjyezfv79b1twdnH70Mppt6zGxN6ZnfFf+ldDVfX//+983ksyCBQvMH//4x7Dbe++9dyW24khX992eq+Vz9sZ0fd/nzp0zN954o/F4PGbt2rVm+/bt5gc/+IGJjY013//+96/EVhzp6r7XrVtnJJmpU6eaX//61+b3v/+9+cEPfmDi4uLMHXfccSW24lhFRYXZtGmTefnll40kM2PGDLNp0yazadMmc/r0aWNM97etR8Xe1u/K7+q+09LSjKR2b2lpaZd3E10Qyb/3P7qaYh/Jvn0+n7n//vvNkCFDTJ8+fcyoUaPMT3/6U9PS0nIZd9A1key7rKzMfOMb3zDXXHONGTBggMnIyDBPPvlkmwuteqqL/W+1da/d3Ta+zx4ALNBz39EBAEQNsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALAAsQcACxB7ALDA/wObhhoPo10aZAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "plt.figure(figsize=(4,4))\n", + "plt.title(r'pointwise $\\alpha$')\n", + "plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=pointwise_target_alpha, s=20)\n", + "plt.colorbar()\n", + "plt.show()\n", + "\n", + "hob = binomial.holder_odi_bound(\n", + " np.full(g.n_tiles, pointwise_target_alpha),\n", + " g.theta_tiles,\n", + " g.vertices,\n", + " n_arm_samples,\n", + " holderq,\n", + ")\n", + "plt.figure(figsize=(4,4))\n", + "plt.title(r'holder component of $\\alpha$')\n", + "plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=hob - pointwise_target_alpha, s=20)\n", + "plt.colorbar()\n", + "plt.show()\n", + "\n", + "plt.figure(figsize=(4,4))\n", + "plt.title(r'$\\hat{f}(\\lambda^{*})$')\n", + "plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=typeI_est, s=20)\n", + "plt.colorbar()\n", + "plt.show()\n", + "# plt.figure(figsize=(4,4))\n", + "# plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=which_more_sims, s=20)\n", + "# plt.colorbar()\n", + "# plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAHVCAYAAABMjtr0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydZXQcR9q2r8bp7gGNmNEyMzMzOzElDmwYN8y4STacDTNzHHDIYQaHnNiJHTNLtmzZFtNIGurvx8gjtZX9NvuuvLGyfZ3T50TPdFdV13T8THXddZdgmiY2NjY2NjY2bYP4RzfAxsbGxsbmz4SdWG1sbGxsbNoQO7Ha2NjY2Ni0IXZitbGxsbGxaUPsxGpjY2NjY9OG2InVxsbGxsamDZH/6AYkJCSYOTk5f3QzbGxsbGyAlStXlpqmmdjW5U6YZJhlZaG2LpZVP/s/Mk1zSpsX/B/whyfWnJwcVqxY8Uc3w8bGxsYGEASh8FCUW1YW4svv09u8XK9jR0KbF/of8ocnVhsbGxub/wUECEt/dCP+K9iJ1cbGxsbm0GOCEBb+6Fb8V7DFSzY2NjY2Nm2IPWK1sbGxsfnvYNojVhsbGxsbG5t/E3vEamNjY2NzyBH435ljtROrjY2Njc2hxwQh/Ec34r+D/SrYxsbGxsamDbFHrDY2NjY2/x3sEauNjY2NjY3Nv4s9YrWxsbGxOfSYIJh/dCP+O7TpiFUQhL8KgrBCEIRGQRCeacuybWxsbGxs2gNtPWLdA9wITAb0Ni7bxsbGxqYd87+iCm7TxGqa5hsAgiAMADLasmwbGxsbm3ZO+H/jXXC7Fi+FwybBoPUnkGmaBAKhVjG/v/U+gP8sZprWLz8QaB0LhcKEQta6f297/n91H8xv1R0Mhgkf9ID+O30R+K16fiMWDIRb1/0bMRsbGxubZv6QxCoIwmlNc7ErSkpK/u3rTdPk0os/ISHmDhK9d3DCcW/h94d49OEVJMX+g0TvP5g0/gXKy+v54P2tZKbcQ6L3Dvr3eozt2yv45ee9dO7wAIneO8jPvo8fl+9mZ2EVg/s/QaL3DtKT7ubtNzdSVdXAjKkvkeiNlHnfPcsJBsOcfvK7JHjvIMF7B+ef8yHhsMktN31DovcOEmLuYO7sV6mr8/PyS2tJTbiLRO8/GDn0afYW17Ls60JyM+4l0XsH3Ts9xPp1JWzaWEqvbg+T6L2DrLR7+OLzAvbvq2PMiGdJ9P6DlPg7ef7Z1dTXB1g093VSYv5BSsw/uOHarwiFwtxwwZd0dz9ID8+DnH/ch/j9IZ59YBU9Yh6ih+chjh63hKqKBr5+t4AxiU8xzP04c3u+TNH2ajasKGF21ouMdT3FzIwXWLd8P/sKajmz59scYbzAgtjFfPdWIb5KP3eM+5wztdc4U3+Nj+/aeAieDBsbmz8tTeKltj4OR4RDMfoQBOFGIMM0zRP+1bkDBgww/92Nzp947GeuvuILfL4AALouM2VqPh9+uJV6XxAARREZODidX1YWU18fbGoXZGR6qKn2U1nZEC3P7VFJSXGxbWtFdCSo6zJDhmbw7Te7oiNJw5CZNqMj772zJVqmYcjMmtOZpW9tjrbH4ZAYOy6Hr74sjJ4nSQJduyWwY3sldXWBaN3xCTqyLLJ/Xx0HvgrDUOjSNZ5fV++PjkJ1XWbC+Dw+/2Q7DQ2h6Hnz53Tl8zd3RO9b0yXGTs/ly/cLmvtCFek/OJUdP1XQcKAvRIG0LBcNFUFqK/3R9jhjVHISPezdVhvtC4chMWRQKluXlRLyR9qjGhJnvTGCHpNT/63vzsbG5vBGEISVpmkOaOty+/XWzG8/zm7rYjFSNh+S9v4ntMtXwR9/tD2axADq64MsW7YzmjQAAoEwK3/agyw336JpQvGeGoLBg157mliSKoAoCvy4fLfl9azPF2TZVzujyfJA7MsvCiztaWwM8f13RbT8zRIKmaxbW4IkWbvcVxegqrLRcq4si6xetc/yajcUMvn+m13RpBqpO8D3XxRFEyhAQ32IH7/abe0Lf5h1P5Ugys0+nWbYZN+uOsKhg35YhU2KWyRViCThHT+URZMqgN8XYtOX+7GxsbH53YQPwXEY0tbLbWRBEDRAAiRBEDRBENp8rWxmpgdFaW66KAokJBhomrUqb6zWai5SEAUCAeu34feHLOW1vL4lmiaTkGQgis0JSpYFkpKcqKpkOTc2TkeSrIbTLpfaas4zGAwTCodbxTwehyWmKCJxCTpCiyIVVSQ+ybD8eBBFgbhEHcdBfeGKVTAP7gtJIOC31h3wh5GV1kbZule1tkeX8KbZwm8bG5vfR8SE32zz43CkrUesVwP1wOXAsU3/fXUb18HlVw4nIcHA6VRwOhU8HgdPPz+LTp3jcToVDCNyPPnMTCZOyovGdF3m3vuncP5FQ5rOkTEMhTPOGsBDj05D1yN/O10KI0dl8dSzs6J1OF0KeXlenn5uNl6vFo3Hxuk8/exsMjI9uFyRmMul8vRzs+g/INVS9+NPzeToY3o0xWQMQ+ZvN4zmplvGNdftVDhibhcef2qGJdazVxJPPj8Ll1uNtictzc0Dz08lLlHHcCroThlXjMq9L0wlr3MshisS0w2Z25+dxJCJmeguGc2QcegyVz40kkUX9UIz5Oix4NwenPvYMFRdwmFIaE6Z3mNTOH3xUFSnhMMp4XDJJHd0M/KUvLb+am1sbGzaPYdkjvXf4f8yxwpQVdXARx9sIxgKM2FCHknJTvz+EB+8t4Xq6kaGj8wiLy8W0zT59JMd7NldQ99+KfTqnQzAD98VsXFjKR07xTF8RBYA69buZ8VPxSSnOJk0uQOiKFBYWMmyr3bidKpMnZ6PpsmUlfr4+OPtCAJMnpJPbKyGzxfgg/e20tAQYMzYHNIzPIRCYT76YBulpT4GD0mnc5cETNPk668K2bG9kh49kxgwMA2An1cW8+vqfWTneBkzNhtBENiyuYzvvysiLk5nyrR8ZFmkeE8NX35WgOqQmDwtH5dLpaaqkc/f30E4ZDJqUjbxSQZ+f4jP39tBTVUjg0dlkJUXg2mafPfRLkr21NGtfyKdeicA8Ou3eynYUElWlxj6jIjMme74tYLNP5USl6rTf0o6oihQsqOWTV/sR/Mo9J6ZhuKQfuObsbGxac8cqjnW/r0089v3stq6WPSsLYfdHGu7tTRc8VMxTz3xC4FAGEUWmb+wOxs3lPL0k6soL2+grLSecy8YzJ7dNTz71CoKCqoYOSqLTp3jaWwM8vxzv7J61T6690ika7dEXC6VVxav44vPC8jI8NClawLZ2TG8984WXlm8jpgYB9k5MfTrn8qyZTt58rFfEESIidGYOi2fX1ft46knf6Gu1k9DQ4iTTunD9m0VPPXkKvbtrWXXzmouu3I4FeX1PPv0r2zeVMaAgal06ZqAKAq8+Pwalv+wm/z8WLp2TSAxyeCN1zfw3jtbSUwyyO8YR+cu8Xz60XaeeXI1ui6TkuJi+KgsVi3fy+LH1hAKmiiqyIwFndm6rpzXHltLVWUjNeWNnHB+X/YX1fHOkxvZU1BD4Zg0crrE4q8P8vHTW9m6qoy8XnF06B6H5pT55sUd/PpZMQlZTrK7eUnMdrLmrd2seKkQw6uSlOMka0DcH/0Y2NjY2Bx2tMsR67KvC5k357WoiEg3ZK6+ZhQ337gsqrg1DIUTT+7Na69soKzMRyhkousyo8dks2d3DRs3leFvDKGqIrl5sXTtlsBHH2yjvj6IJAnExGiccFJvHnloZVSYZBgKf7t+FNf97auoYEjXZW64eSzXXvVFNGYYCudfNJgH7vuJmuqIMEk3ZI48sgvffLOLPbtrCATCOBwSvfskozpkVvy4h4aGILIskpziZOLkPF5ZvI56XxBBAJdb5aILh3Lnbd9b1NA33zyeO6/4LipW0gyZC64bwgPXLae+rrl/jjqtJ1+8uJ3qskZCIROHLjFoQjrVOxrYtakqMreqiqTne+jcOY5fPtiDvz6EKAk4Y1Vmn9iJZfdvwe+LzBGrTolLVkwipYvnP/n6bWxsDjMO5Yj1u3fbfsSqZR9+I9Z2mViPP+Yt3nrDuo4yNdVFSYnPoqQ1DAVREqitaV5OIkkCDodsUfEaTpmG+pBF6OR0KUiiSHV1YzQmipCW5qaoqMZSd2aWh107qy2xuHidel/AoiCWJAHDUKhp0R6HJmGGreYQbrdKY2PIEnNoEl63Rul+n6We7lkJ7Cuss8RS0pxU7K0n1ELxG+N0YAgKvprm+5YlgViHRkNdcxt1p4zDJ2C20DRpLpkUFBqrm88TRJh8TXemX9cDGxubPw+HNLEuPQSJNffwS6ztcrmNLLVWrYqSYFHMQkQhS6vfDWZr5yCTVtdGr2+BIAiIUusuk36rbqF1mYIg0KrqcOv2mPzGtQhI4m/fd6v2iCLCwW3/rW/apHXdZqSdB9OqPEFopXq2sbGxsWmnifWscwaiG83Tw7ouc+XVI9ANJZoMDUPhvAsHExevR5fS6IbMvPnd6NM3Jbo0x6FJdOmayLHH98JoKlOWRTxuBxddElEPQyTRGYbCldeMQNetdV919UgMQ4kmQ12XufSK4RiGGk0+hqFw2hn9yMr2oDaJfnRdZtTobCZN7hAtU1UlUlNdnPXXAdG6JUlA12Uuu2q4pW7DULjg2qFoLWKaLvPXawaj6XK0LzRD5i8X98XtdSA39YVmyExclE9+n3hULdIeVZPI6e5lzPG5OIxITFIEjBiFiZd3QW2KCULEIGLgcTn/x2/Qxsbmfw4zYsLf1sfhSLsULw0YmMa7HyzivruX4w+EOPX0fkyYmMfwkVnccuM3lJfVc+S8Liw6tiennNqXG29YRsGOSkaNzuLcCwbj94e47ZZvWfXzXnr2TubyK4ej6wqdOsfz+ac7yMyK4eprR5KU7CQ1zc2rr6wjxqNx+VXD6dgpnvR0N488tBJBEDj3vEEMGZZBj15J/OP276mt9XPscT2ZfUQXZs3uzI1/X8bePTVMnZ7PKaf1o6bGz81/X8bGDaUMHJzOJZcNQxDgrjt+4PvvdtGxczxXXTOySSzl5d2lm0lOdnHlNSPIzIohOdXFc0+tRtcVLrx0CD17J5OT5+WJu34mGAhz7Jm9GDkxm4Ej0njwxh+pLGtg+sJOzDqmM0ed2pNH//YTe3bUMGBcGosu6EXQH+aFG1exZWUZHfrGcdw1fVEcIuldY/j1070k5Tg56vo+xCRpeNMNVr60EyNOZeq13YnPcf7Rj4KNjY3NYUe7TKwA2dkxDB+ZSTAYJr9jRJ2anOxk2PBMqiob6NkrGUEQiPFqDBmaQWamh/4D05AkEU0TGDQoHY/bQcdOcU2jTYH+/VMJBsIkpzqJjYuYQ3TvkcjIPdm43CrJKS4A8vJiGTEyC0GA7JwYANLSPQwbnkm9L0CXrpFlLPEJOkOHplNaUk/vPikIgoDLpTJ4SAZJSU569k6OGksMGJSGoohkZcfg8TgQBIHefVKormokLl4nIdEAoFPneEaMysKhyaRnRIRDGdkeBo1MJxwyycn3ApCQYtB/eBq11X469YiP1O1V6TUshdRsN90GJiFJIqIm0H1IEm6PSkaXGBy6hCAIdBqYiBAU8KZqOGMj5hAZvbzUFTegeWQ8qVbzDBsbG5t/yf/IBh7tUrxUtKua4YOfwlcfwAybKKrEW+8s5PRT3qN4T0RxqygiTz0zi0ceXsmKn/bQ2BhEVSWuvGYkBQVVLH5hDQ0NQTRN5oi5XejbL4Wrr/iCQCCE6pDp2TOJSy4fxnGL3iQYCCPLIolJTp5+bhZzZrxCY2MIhMjr3LffO4qj5r1OZUUDoVAYRZF4Zclcrr7iC7ZsKY86O9117yQ+fH8bn36ynYaGIA6HzOln9sPhkLnvnh9pbIy0Z9TobOYv7MrZZ3wQuRdVJDfXy513T2LB7CUEAiEkScTtUVny5nxOmvE29XVBTDPSF8+8N4fLT/yE/cV1BP1hZEXkzhcms+TedWxYUYK/MYSiSpx+/QBKt9Tx+Qvb8DeEUDWJUQty6dY7gcWXryLoD6M4RHL6xjH/8u48t+A7Qv4wkiLiTtG46JfJaB7lED0ZNjY2fwSHTLzUUzN/eCOzrYtF7bT1sBMvtcvEes5ZH/DCc79aVK/5+bEUFdXQ0NCsXI2L12lsDFJX20IJKwtIkhhJjE1omkQobFrs/ZwuBZdTZd++ZsWtwyGRk+Nl8+ay6A8vURTo3CWerVvKLVaJGZluKsobLIb7uiEjIFgUyQfmf1te63RG5opbqocNp0JKgpPCgqoW9yLSt1MyhRurLJ6/HTp62buzlsYWvsJJCQZivUB9bXP/KLJIrOQg0OI81SHhCcqEAs3laS6ZTKdK7b5mhbTsEJl2Uy9GX9gZGxubPw92Yv3PaZfipf376yxJFaCqqhG/P2iJ1dX5EX9D4aooVscgWREJBVsrhWvr/JZQY2OIqqoGy9uMcNiksrKhlf9wTbW/VRsj61St7ZEksZX6WJJE6usDllgwELYs/YGIp3B1hb+VkX5NlR9/o9WTuL422Frta5qtfIFlVWxVngk01lr7NtgYprbU2h4bGxubf4qJbcJ/ODN7TueoYhaato2blo/D0Txl7HBIjB6dbVmbKkkCHfLj0HXZspxFVWV69ExqtRPO2LE5aFpzEtZ1mWnT86PqYYgoc6fP7GRRKWuazIRJuVbDfEVk0KA0IlbUEURRID5eJyXVZUmuYdNk6PBMi7G/JAlMnJJnVSQbMhNn51kV0obMmOm5FhN+1SExYFyatS9kgczOXlStuS8EIZJYM3t6kVr+AAibdByfjKw194+iS3SZkoKNjY2NjZV2mViPPqYHF106FI/HgdOpcPwJvbnvwSk8+Og04hN0dF1m4uQ8nnlhDq+/tYCMTA8OTaL/gFSWvncUH356DF26JuBwSHTuHM/7Hy3izaULGDwkHYcmkZbu5pXX5/LEM7OYNr0jui4TF6dx172Tueu+KZx8Wj9cLhW3W+Wc8wZy590TuemWcXhjNQwjYqL/yOMzePbFOSSnONE0mREjs3jl9fm8++HR5HXw4nBI9OiZxAefHsP7Hy2id5/kyKvmXC9L3zuKF18+ktFjs9E0maQkg6eencUDj05j3sJuGE6FGK+Da64fxQ13j+WMSwfg8qgYToX5J3XnhgfHcsMj44hN0NB0mdFTc7jjhcnc/c5UkjOdqJpEt4FJ3PfhdO74YgqZXb0oDpGMzjHc/vkUrvhwLB2HJqBoInEZBhe/M4bjXhpK9xlpKLqEEa8y95EBdBiV9Ec/CjY2Nu0Ie6Pz/xL/VxP+cNhk29ZygsEwHTvFR0ebhYWVVFU20qlzfHSt6t7iWvburaVDfixud2Q7tvLyenYWVpGZFUN8fGT7s9paP9u2lpOUFFlmA9DYGGTzpjJcbgc5OTEIgkAoFGbL5nIEATp2ikcUBUzTZPv2Sup9ATp1jo+ONncXVVNa6iO/YxxOZ0RdW1rio6iompxcL15vRF1bVdXAju2VpKW5SUqOLGPx+QJs3VJObKxGZlZEfRwIhNi8qRxNk8jrEIsgCITDJjs2R/aTze0UG+2Loh1V1Fb7ye0cGx3Blhb7KCv2kdHRg9MdaU9NeSP7CmpJynbiiY+0p6E2wL4tNXiSNWLTIorkYGOI0o3VODwKsbmuf/s7s7GxOfw5ZHOsPTRz+ZK2n2NVuh5+c6ztcrlNQ0OQI2e9ys8riyNLXrJjeP+TY7j6is9Z8uoGZEXE6VT48NNjeeftTdx0w7Joolvy5nxKSnycetI7yLJIIBjmgYemktchljkzX8EMm/j9IS6+dChHHdODyeNfpLq6kWAgzMzZnbjznknMnLKYLVvLwYQePZN4850FnHriO3zxeQGiJJCYYPDRZ8fy0AMreOShFaiqhKKIvPPB0axcUcwlF32CqkiEQibPLz4CRRE5ev7riKKA3x/iplvHMXJUFtMmv4S/MYQ/EOKEk/pw8SVDmT7hJfburSUcMhk+KounX5jFaXPeYe3P+xEEgcxcDy98ciS3X/ot77+6OdIXLpXnP5/L12/s4MkbfkZRI4n3H0unUF3cwF0nfousiAQDYc5/YhjpOW7unPIlpgkhf4gZV3Vn5KIcnh7zOY01AcIBk25zM5jz9ODfdGmysbGx+U3+gDlRQRD+CpwA9AQWm6Z5QlN8CPB3oD8QAr4EzjVNs7jpcwG4FTilqagngcvM3zEabZcj1ptvXMa9dy2P+vCqqsiAgWmsXrUvqsIVRYGOHWPZuas6ao4P4PGoBAJhi4evpkk4nSplZfXRmGEo5OZ52bihNCpCMgyF/gNSWb58d1QcpGkyQ4ams3z57mg9sizQq1cyGzeWWRTA6eluysvrLXUbhowgCFb1sC6TmORkZ2GzAthwKvTslsjqX/ZFhVK6LjN2aA6rv9tLY32kPYoq0ndQCht+Loma8IuiQMfOcVQXNNDoa+FJHOPAaJTw17dQBWsSabpGXVmzcEs1JHp19FC2vjq6WbrilJjx0AB6Lcr5V1+XjY1NO+KQjVi7a+byVw7BiLXn/3/EKgjCkURS+mRAb5FYpwIu4CMgCDwApJmmOaXp89OBC4HxRKRXnwD3mab5yL9qU7ucY/3l572W5OT3h9m8yZrEwmGTgoIqpIO8fX2+QKuYoohUVDRYYoIAO3ZUWpS9Pl+ATU274hygoSHIhg2lluQdDJps3VpOKGz9ebZ7d010ec0BTJNW6mFFkdhdZDX1D/hDbN1SYVEf19cH2bq+PJpUI+eF2b6xIppUD/TFnh01re67sTZgFSkRUUj7Kq2KZEEUqNxeG02qAIG6EPvXVmFjY2NzOGOa5humab4FlB0U/8A0zddM06w2TdNHJLEOb3HKX4A7TdMsMk1zN3AnkZHvv6RdJtZevZKi86cQ8dftkB+H3kIpLAiQmRnZbLwlmqYQPCjmD4SJiXFYYqYJ2VkxFrWuYSjk58da1LoOTaJTpziLWleSBHLzYlslspRUF/6DluWYptnKSD8QCEXneFveY24Hr2W5jq7L5Hby4mihXFYUkeyOXnRnc3sEAVKyXa2W0ahOudUyo6A/jO62zhCYYZOYbKfFyF8xJBK72lvG2djY/D4EQDCFNj+ABEEQVrQ4Tvs/NnEUsK7F392B1S3+Xt0U+5e0y8R68WXD6NU7GcNQcLlUsnNiWPzqkcyY2RFNl3F7VOITDF5eMo8LLx6Kpsl4PA5cLoVXXp/Lw49OQ9cjMU2Tuee+Kbz6+jzcHhW3R0XTZM46ZwCLl8wlMcnA7VYjSuNJebz06lzy82NxuhScToVu3RJ58ZW5DB+RiWEouN0qqWluFr86l+P+0itat9fr4JUl87jx5rHRmGEoPPP8HJ5/6QgMpxJtz7XXj+KVJXOJjdWi7VlwVHdefPVI0tI9uNwqhqEwcEg6j746k669E9GdMoZLITMvhgdfm87YGblouozLoxKXqHPv69NYdHEvVE3C6VHQXQq3vjmJcx4biqpLGB4FVZc4+9EhnLd0NJpbRo9RUDSRyRd0ZtEbI3Amajg8MrIu0XFqKr2OyfmjHwUbGxubUtM0B7Q4Hvt3CxAEoRdwLXBJi7ALaPlargpwCb9DWNIu51gh8npz/boSgsEw3XskoigSpmmydUs5VVWNdO2WEFXh7tpZRXFxLR07xRMbG1G9luyvY/v2SnJyYqIewJWVDWzeVEZyipPsbC8Qef27YX0pLlfEpF8QBILBMOvWRsRC3XskIkkipmmyqWlOtVv3xOiIeseOSkpLfHTuEo/HExkVF++pYefOavLzY4lPiChuy8rq2bqlnIwMd9QDuKamkY0byoiL1+nQIRaIqJQ3rCtFdUh07ZYQVQVvWltKOGTSqUd8tC8KNldSU91Ifrd4DGdkNL+3sIbSYh9Znb14YiPtqdhXz97ttaTkuohNiSikfZV+ijdWE5Oqk5AdUSkHfEH2r63C4VGI7+y2hUs2Nn9CDtUc64Dumrn8pbbfj1Xu8/v2YxUE4UYg48Aca4t4PvAVcLlpms+3iFcBE03T/LHp7/7Al6ZpWl8n/lab/r1bOHx44L4fufsfPxAKhTnuhN78/aaxvPP2Ji696FNqav1MntyBBx+dxppf93P6Ke+yb28t/fqn8vRzs6mp9XPicW+xZXM5uXmxPPP8bOLjdU4+YSk/Lt9NQoLBw49Pp/+ANC449yPeXboZw1C4+fZxzJvfjZtvXMYTj/2CIMA55w3iokuG8vyzv3L9376isSHEkfO68I+7J7Hs652cc9YHVFY0MGJUFo89OYNdO6s4+YR32LWziq7dEnjm+TlIksCJx7/Nml/3k5bu5slnZpHXIZYzTn2XL78oJCbGwT33T2H8hFyuvvRzXn15PaoqccU1Izjx1D48ec/PPPaPlYRDJgtO6s4lNw3n4ze3cvOFX+OrDTJ6ajY3PjaebavKufmkryjfV0+XAYlc+8JYGqsD3HX0Moq31JDSwc0Fi0fgiXPw1NE/ULC8DHeSg+OfGUzOgFg+PW8529/bjeKUGXVLP7rMy/mjHwMbG5v2wgHnpcMIQRCygU+Bv7dMqk2sA3oDPzb93Rvrq+J/Xm57HLG++vI6zj37w6hYSTdkjl7Ug8Uvro2KmhwOiQkTc/nyy8KoV7Asi3TuEk9pqY+S/T7CYRNBgPh4g6xsD2t+3R8VBxmGwqQpeXz4/rao/7Cuyxx7fC9efH5NtG7DUDjhpN48/dSqqIBJ12VmHdGZpW9uaqFclhg4OI11a/ZTWRmxApQkgfR0N7IiUVjQLJTyeBz0H5DKd9/uinoa67rM/HndeOO1DdEydUPm9JP78/oT65vrNmSOOLYLS5/bRMOBvtAkRk/KZtNnpVGvYFkWyOkWi7A3RNW+hqYNzsGd4KBjRgx7fq2M+gWrTomxs5Mo/HgPoSZfYVmXOPKtcaQPs00ibGz+TByyEWs3zVz+4iEYsfb7/49YBUGQiQwi/wZkAKcSUQEnA18Dj5imecdvXHcGcB4wgWZV8P2/RxXcLhPrUfNf5/13t1hiiUkGZaX1Fts+TZOQFYnaFmb2sizg0GSLMb/LreCrC1qudToVELCcJwiQnOJkb3GzMT9AapqL4j21lpjX66ChIUhDC4N7QQS3y2Hx/NU0GdM0LZsCuD0q9b4AwRbCIlUV8TgdVJRb1ctd0uIp3e2zxJKSDCr211s8jb26A6+k4atpvh9VFEnWdBpa+ADrbgVPDZgtflk6XDJ5RpBgC+UzwKCLuzP8b32wsbH583BIE+sLhyCx9v+XifU6Ikm1JdcTSZbXAZZ/0E3TdDVdJwC30byO9Ql+5zrWdileSkjQWxnXu90Oi1oXIqPJg/f/M4mY17ckGAgjHaTMRQCnoVpCiiLhdjssHsCiKBDjcbRaRuN0Kq1UwQ5VbqVIDoXCloQOEA6ZaJp1OzZZlnC5re2RJAFXjIp40Lfo9KioDmtfqEZk3tWCSCtVcCgQRji4LwDZaZ01kBwiDq/a6jwbGxubwwnTNK8zTVM46LjONM3rm/7b1fJocZ1pmualpmnGNR2X/p6kCu00sV5y+TDcHhVFEZFlEcOp8MDDU6O+vKIooOsy9z4whV69U5o2Mo8k2quvHcXCo3pgOJtiToVZczpzw01jmswaIqYNXbokcN+DU9B1GUkScGgSiYkGDzw8DadTQZZFFEXE5VJ44JFpeGM1VIeEJEXqvv/haeTkeNF1GVGMvMq9464JjBmTjbNF3aed2Z9zzh9kaePQYRn84+6JlmszMj3c/8hUDCPSHlWV8Ho1bnt0Ii6PA0UVkWQBw6lw46PjiE82cGgSogiaLnPVg6PI7xWH1nSPmiFzwg39GHF0Dg6nDAI4nDJD52VxxK29UA0JhEhCTu3uYeJ9g5B1CUECSZPQEzV6/CX/j34UbGxs2hFCWGjz43CkXb4KBtizu4Ylr64nGAwz64jO5OfHUV3dyEsvrKG6qpFxE3IZMDCNQCDEyy+tZXdRDQMGpTFhYh6mafL2m5vYsL6ETp0TOHJeFwRB4MsvCvjhuyJSUl0sOrYnqiqx6pe9fPzRNlwulUXH9sTr1dixo5K3Xt+IIMC8Bd3IyPRQVupj8UtraWgIMnVaPt17JFFfH+ClF9ZSWlLHiFFZDB+RRSgU5rVX17NjWwW9eiczbUZHBEHgg/e3surnYrJzvSw8qjuSJPLDd0V89WUBcfEGi47tgdOpsnFDKe+/swWHQ2LB0d1JTHKyd3ct77y8iXDYZPKcfHI6eqmt9vPW8xuoqWpkxKRseg5IJhgI89HzWyjZXUf3IUkMnJiBaZp8v2QnResrSe8Sw7AF2QiCwMZP97Lt21K86TqDj89BViX2/VLGjo/34PAodD06D80esdrY/Ok4ZK+Cu2rmj89lt3WxSIM2H3Zewe1yxAqRPVnXrNnPr6v3sWd3DQCVFQ2sW1vCql/2UlBQCUBtbYD160r55Ze9bN5URrjJC3jjxlJWrdrHhg0lNDRE5le3bC5j1ap9rF9XQk3TPGhhQSWrV+1j3doSyssjlofFu2v49dd9/Prrfvbujcytlpb6WLemhFU/72XnzohrUnVVI2vX7ueXX/axdUs5pmlSXx9kw/pI3Rs3lhEMhgkGw2w60J51pfh8AUzTZNu2iqa691PVJHgq2lXN6l/2sXZNCSUlkbnV0n0+NvxawvpVJexrmuutKm9g46+lrP+lhF07IkuxfDUBtq+rYPPPZRRurCQcNgn6wxRtqGL7LxXs2lBFoDHyarp4QzW7fqlg95oqGmoic6s1hTVUrC2jYkMFjZX2Xqw2NjY2v0W7HLGu+mUvUya82KwK1mXufXAKl174KdXVjYTDJoahcOkVw3ju6dUUFVXj94cxDJkj5nVl185qflq+m/r6IJom07tPMr16J0fVvooikpzi4q/nDuSGv32FzxeMKGbdDu6+bxJ/PfODZmWuLvPQo9M556z3qasLYJqR2K13jOemv39DeVk9wWAYw1A47Yy+fP5pAZs2l9HYEIp4/Y7LQXVIfPTBNurrgzgckV1rZs7uxAP3/oTPF0CWBbxejev/PobLLviU+vpg9LXxw49O56pTP4uqgjVd5saHxnLz+cuorW4kHI689j3nmsF8/OhWSnbXEfSH0QyZ8QvzqN3awNYfS/HXh1A1ibz+cXTvEc/yZwvw+0JIikhMmsaRl3bgp5tWEfSFQATVpXDUNzNxZzrb9oGwsbH5QzmkI9Znctq6WKQhmw67EWu7TKynnLCUV19Zb4llZHrYv68Wv79ZHOR2q5hmZDu4AxyYnzzYCL+xMWTx7HW5FBRFsngIS5JARqaHwgKrR25unpeCHZUWnVRikkFdrR9fCyWtrIhoDonaFkpjVRUxTSwewC6XSjAYji7zgUiyjo3R2NdCkSwI0Cs3id3bag7qCzelxT6CLcqM9+i4Qir1LeqWRYFkRbeY8DsMCW+9hNmiLxwuma7xQQJVzf0oyAIDL+vFwIt7YWNj8+fBTqz/Oe3SIKLRH2oVCwXDHOR5TygUbqXMBVo5BgmCcLB4GJPW5vjhsNlKUQwRVfHB14eCrWNm2PzNulu3j1Yex+Gw2UrBa5pYkme0PcGwxTAfIBwKc3BVIgKC+Bvt+Y0fW+ZBfWGGTcK/UbeNjY3NP+V/5J+MdjnHevKpfS2m97ohc9qZ/SxLTAxDZtFxPaNKXYisax09JpvsnBjUpj1JFUUkJdXF1On5URtCURRQFInjT+iFYbSoR1c446z+1rp1mTP/OgC9xXmGoXDyqf2QFTGazHRd5si5XYnxalEjfdUh0a17Iv36p+BoarskCbhcKguO6m4pU1EkTj69b2QJUYu6Tzi3D1qL9miGzLFn90ZtYcyvGzLT/9IZRRWjy5RUTaLvxFQSs53ITX0hKSJx6To9pqei6JHrBREkVaTrcfnIRnOZsiaRPyfnX3xTNjY2Nv97tMsR65ixOTzzwhxuu/lbgsEwZ5zVn2OP78XYcblcdcXnVJQ3cOS8Llx0yVDOPX8wl1z4CYUFVYwYlcVNt4ylvj7IZRd9wqpV++jeI5F/3DUJl1vlb9d8yRefFZCR6eH2OyeQlxdLYpKTV19eh8fj4IabxjJ4SDppaW7uu+dHRFHg4kuHMnN2Z3r3SeaGv31NXV2A4/7SkzPOGsC8BV257OJP2bevjslTOnDNdaMoK63n4gs+ZvPmcgYMTOXWOyYgigJXXPoZy3/YTYf8WP5x10SSU1ykprl4750tJCU5ueX28XTvkUhiosEzT65G12WuuGYEYyfkkpsby4O3/EQoEOYv5/TmyOO6MWxsJrdf+g3VlY1Mnd+R0y4bwL7zarnnvO/YW1hL39GpnHnbIPy+EE+d9xM7VlWQ3cvLyfcNRHcpvHnZajZ9to/YTIMF9/cjMc+FM0ljy5IdqB6VYdf3I76r949+FGxsbNoLZtPxP0C7nGOFyLzpZ59sJxg0GTMuh/h4nWAwzCcfb6eqqoFhwzLJyo7BNE2Wfb2ToqJq+vZNoWu3RAB+XlnMxo2ldOwYz8BBaQBs3lTGypXFpKS4GDM2suxkd1E13yzbhdutMmFSHqoamXf94rMdCILA+Im5eDwRl6VPP96Ozxdg1OhsUlJdhMMmn326g9JSH4MGp0eN9H/4rojtOyro3j2R3n1SAFi7Zj+//rqP7OwYho+IuJPs2FHJ8h+KiIvTGT8hF0kS2b+vjq+/LETTZMZNzMUwFOpq/Xz9cSHhkMmwcZnExusEAiG++WgntdV++o9IIy3LjWmarPqimNLdPjr1TyC7mxeAbT+VsXtDFWmdPeQPTgBg74Zqdq0ox5Oq0Wl8MoIgULu7juLv96K6VTLGpiEdZMhhY2PT/jlkc6xddPPHJ3LaulikkRvtOda2oKzUx8hhz1BZUQ9ExEgffXYMZ572Phs2lACRacI33prPU0+s4r13t4AQcTS694Ep7NxZxV13fB+dWz373IH06JnIGae8F31VOn5CLudfOJiZ019GQMDEpEOHOJ55fjaTxr9AQ31EBOR2O/jgk0UsmPs6e3bXYGIiigLvf7SI6679ih++K4rW/dxLR/DZp9t57ulfEYTIvOn1fx+DoopcednniKKACSw8qjuzj+jMogWvR+ZATejXP5Xb/zGBaRNeIhwKAwJJyU5eX7qA4ye9EV2Oo6oSL385jytO/IRtGyua+sLk8Xdn8dFDW/j+3V2RukMmFzw6nKrtPpbeuh5BFDDDJtMv7EJ+j1heOuFHRCnSnq6TU5h6WUfeX/AxB2ZkYzrEMOvdqchau3yEbGxsbA4Z7XLEesmFn/DUE79ElbSiKNClawIFOyosKtzUVBfV1Y3U1VlVuIIgWLx5HQ4JURQsSmGnUyEuXmdX05pUiMxpduwUx7q1JVFhkyyLdO+RyMYNpZYy8zp42be3zlK3x6MSCIQt9ShKpD3+FoIs3ZDRdYXysnpLezLTPWzdXB7VFqkOiYHdUtm2piIqYhJFgc7d4tm1rYqGFn2RmebBUSHSUNccc6gS8aZKoLFZUaA4JBIRCTY0x1SXTK8OYXx7mhXJkiYx5G8D6H5yV2xsbP48HNIR6+O5bV0s0qgNh92ItV2KlwoLqyzLU8Jhk/376ywJC6C8vL6Vp3A4HBECtURVJUtSjF7fIrEB1NcH2be3zqIWDgbD7NtX2+r6stL6Vqrimhp/q7plWWzVRkWWqKq0mu0HAmFK9/ssgl1/Y4iSvdZlNeGwSem+OhoP6ovacn8rBTAhE0m1PgKyKhDyW6V7AtBYYTWECDWEqC22mv/b2NjY2LTTxDpufI5FHatpMkOHZaDrzTFFEenTN8WyPEYQIDnZiXiQybwJZOfEWBJcOGzSr39KVD0MTT6+wzNbKZJHjMiytEd1SAwclGZZ3iJJkVH1wSb8ui7j9litAYPBMD16Jlk2BpAkgYFD03FoVuXzoJHpFvWwpkv0G55mUQrLikjHfvFNr5Cb+yImXW+VbE0gNsdpaXs4bJLQOwGxxUYDsiGTOiQZGxsbm9+FCUK47Y/DkXaZWE87oz9HLeqOJAlIksCESbk89ewsrrxmBIoiIkkCvXon8/Jrc3ni6ZkYhoIkCWRlxbD0g6N5c+lCEhJ0JEkgNk7j9Tfn89a7R5Gb642a6D/4yDReeHku/fqnIkkCsixy0aVDefKZmUydnh+t+8i5XXnsqRmceXZ/ZDkSGzo0g2dfnMM/7p6Io2m5T8dO8bzx9gIWvzoXj8eBJAmkpDhZ+v7RvPP+0aSlu6NLbZ57aQ6vvTGfrt0So4YWN982nqeen8XwkVmRumWBE0/tyz1PT2H2oi5IkoAoCYyalMOdz03mr9cORm7qi259ErlnyVQue2YUDkNGkgWSc1zc9tFkLv9gLO4EB6Is4IpTuez9sZz18RjiO7gQJQFFl1j09CAmPzuWxD7xCJKAIAv0vaAXWRMy/uhHwcbGpj0RFtr+OAxpl3OsBygr8xEIhElJie70Q01NIxXl9WRmxUTNFxobg+zZXUN2jjc6Kg0EQuzaWUVmVkz09Ww4bLKzsIrkFGd09GuaJruLavDEqHg8WrSefftqEUWBxMRmS7/KygbqavykZbijdft8AfbvqyM7p7k9fn+Qol3VZGXHIMuRukOhMIUFlaRneHA45Gjdu3ZWEZ9g4HSq0djePbVohkxsrB6tu7zURyhokpjS3J7amkaqK/ykZrqa+6IhSNkeHyk57mhfBAMhSnf6SMgykFv0RUVBHe5UDVVvbk9tUR0Or4rqtg34bWz+jByyOdbOuvnTI3ltXSziuPWH3Rxru5R0hkJhTj/5Xd5o2mFm+IgsXl4yl3vvWs4dt32HJAnk5Hp55/2j+fLLAs458wMEQcAT4+DtdxdSUdHAUfNex+8PIcsiL75yJOnpbmZOW0x5eT1mGO68ZxLTZ3Rk1vSXo+b9fz1vIFdcNYLjjn6TLz4vAGDq9I489exMrrj0c55+ahWiINCzVxJvLF3Iyy+t4Zorv0AQBFJSXLzz4dGsX1vCSX9ZSjhsousyS95agCyLHDnrFerqAggCPPbkDPr1T2XG1MXs2V1DOGxy7XWjOPGUviyY/Rq/rCwmbMIxx/Xk9nsmctkpn/DhG1sRgEGj0nnk9Zk8dvsKHr99JaIokNUhhqc+nMMvn+zhnjO+QxAEXF6V2z6ajK/Ez51zviboDyMpAhe+MYqENIOHJnyBr9wPJsx/uD+9ZqTywcKPqNpahRk26XlWDwZeeVg9yzY2Noc79jrW/w7/lxHr/fcs58a/L2s2ntdkRo3O4ptlu6LG/LIs0LNXMhs3lFpETUlJTnz1AWprmn1vnU6FuDidoqLqqDhIN2R69Urm55XFUaGUYSiMGZvN558VRH18dV1mwsQ8Pvt0R7RuVRUZPCSDlSv2RFXKoiiQ18HLnt210fMAPDEqkiRSUd4sVtINmZwcL5s3lUUFUIahMHRIOt99U4S/SShlGAozJnbku493RRXADk1i2JhMVny1O9o/kizQq08y1WvqaWzhCxyfomNUizTUtlAKO2WyYzUqi+qj/xMohsTwMTrlq0swm2wVZUNm9IOjyJna9ttA2djY/HEc0hHrw4dgxDr+8Buxtss51q+/3hlNGgANDUF+XllMfX1zwgoGTdavK0GSrbdYXl7f6leTKArs3l1jUdyKgsCaNfst6mOfL8CKFcUWc/z6+iA//rjbkiz9/jCrV+0l1MKvNxw22bqlImpneICAP2y5F4ioglsm1cj9hFn1875oUj3QnlXL91qW1TQ2hFizcp+lzFDQZMeaCsSD+qK2pBEOmqIQRaja02DpI1EUqFhfHk2qAEFfkJKVJdjY2Nj8Lkz+Z+ZY22Vizc+PQ23h+iNJAqlpbosqGCAhwSB80JIXWRYIBKxLYxr9QYuK9gBJSdYt0XRdJi3NjdwiQSmKSEaGB62FWlcQIDnFhXzQBgBer2ZJ1BB5rX3wW4NAIERcnG6JHfA0bqlcdjgkUjJdKC2Uy5IkkJzmQjOs9xOTpLUy5heU1ktrgn4TxWFtt2maaAmaJSbrEq5MFzY2Nja/G1No++MwpF0m1suuHE5mlgeXS8XtVolPMHhh8REMGJiK06Xg9qi43CrPLz6ChUd3xzAiMV2XefypmVx/45jIMhd3JHblVSN55vnZ6EYkZhgKs+Z05vmX5uDxOHB7VJwuhV69k3nh5SNISjJwu1VcLpW0dDfPLz6Czp0TcDXV7fVqvPjykYyfkIvTGYkZhsLzi+dw9jkDo/Xousyd90zmvoemRJfd6IbMKaf347mX5kSvdToVRo7K4vlXjsAbqzXVrdChYxwPL55BWpYbp1vB5VaJS9C5/+Vp9ByQjOFScHpUXB6VO16ZxNij8tAMGcOj4NAlLnthFAtv7o2qS+geGVWXmHdDT45/eSiKIaF5ZFSnRJ/5mUx8ciyKW0FxK8hOmfie8XQ6uuMf/SjY2NjYHHa0yzlWiLz+Xfb1ToLBMMNHZOLxOAiHTb79ZidVlY0MGpxOUnJkxLlyRTG7i6rp2TuZ3FwvABs3lLJpYyn5HePo3iMJgJ2FVaz6ZS8pqa6mdagCpSU+lv9QhMutMmJkFpIkUlvr55tlOxFFgREjI2tYA4EQ3yzbRb0vwJBhGcTF6ZimyQ/fFVFa6qNf/1TSMzwA/Lp6HwU7KunaLYGOneIB2Lq1nPVrS8jKjqFP34h/cPGeGlb8tIf4eIOhwzMQBIHKiga+/64IzSExfFRWxNyiIcjyr4oIBk0GjkzD7XEQCoVZsWwPNVWN9BmSSkKyEbnvH0so2V1Hfp94UnPdABStq2TPxmpSO3vI7BHpn7KCOop+riAmTSN7cDyCIFBfUs/+lftRXCopQ5MRf2NLPhsbm/bNIZtj7aSbP92f39bFIk5Ze9jNsbZLVTDAu+9s5vZbviUYNDn19L6ccdYAfviuiCsv+5yqygZmzenM324YzY7tlVx9xefs2lXNsGEZ3HnvJOp9Qa675kvWrimhS9d47ntwKjFeB7fd8i1ff1lIapqLu++bTJeuCTz84E+89uoG3G6Vm28bx+gxObz68joevP8nBAEuvHgoi47tyeefFXDdNV/i8wVYdGwPLrlsOKtX7eOqKz6nZL+PCZPyuOX28ezbV8s1V33Bti0V9OmXzL0PTEUUBW68/mtW/FhMbp6Xex+cQnq6m7vu/IGP3t9KfILB7XdOZMDAVJ55chXPP/0rmiZx1XWjmDazIx+/vY0Hb/6RcMjk2LN6c9yZvfj5u2Juu/QbaqsamXRkPuf/fSi7t1Tz2GU/sX9nHT1HJnPO/UPx1wV5+YrV7FxTSUb3GE59bBCGR+Hj69ey/asSPOk68x8ZQFJnNxueWkvB29tRPSr9rxlM6vC0P/oxsLGxsTnsaJcj1o8+3Mbxi96Mqn0NQ+Gv5w7kgft+jKpwdV1m7vyuvLt0C1VVDZhmZE6y/4BU9u2rY2eTLaIsC6SluenYKZ5vvtlJY0MIQQC3W2Xegm4sfmltVAik6zLnXziEe+9eHhUr6brMxZcO5R+3f9+iPTInntyHZ55eTV1t5DxNk5k4OY8fl++mtMRHKGSiKCKdOsWhOmTWrd2P3x9GFAXi4nVGjcrig/e3NpfpVDj99H488fDPlnu88vKRPHrriqiASTdkTjq/L8/evSoa03SZGQs7s/bNYuoq/ZgmKA6RroMTCe8KUlpYRyhoIsoC8RkGXfNj2PFNScQvWADNozDt1CQK3txKqKk9kiYx9e1ZxHWP/7998TY2Noclh27Eapg/3XcIRqxT1xx2I9Z2mViPOeoN3nl7syWWnOKMJqwD6IaMLInUtFhaI0kCDk3G18Ic3+lSqPcFCbcQ9zidCqIoWK4VhIix/549tZa6MzLcFBXVWGKxsRoNDUHLUh9RFHA6FUuZmiYRDmMx4Xe7VRoaghahk+qQ8LoclJVa/Yu7ZiRQsqvOEktOMajY32ARbsUZGvGCRn1Nc3tUUSTJodPYwphfc0nE1QuYLa5VXTI9UmsJtegzBOh5bh/6XnJYPc82Njb/IXZi/c9pl6+CDUNBELAsj3E4JCRZJBRqTlCKLFmS5QEOjoVDpsUbF0AQhFaG+ZIkRl2RWnJgd5yW5f6Wsb8si63qPtioHyL3JcuiJbFKomBRQkfaGFm32rovZCRJsCRWSREhYLmcMGYrpXA4FFmB0zIqAKIs0vJuRElEsreMs7Gx+b2YYB6my2PamnapPrngoiEW03tdl7np1nF43Gp0KYyuy1x73SgyMt04HJGEZBgKJ5/alzFjsqNG+rouM3hIBuecNyhapuqQSEp2cv2No6PnSZKA261y063jLCb8hqFw023jcblURLG5PX+/eSyxcRpKk3G9YShcfNlQunVPRGtKSIahMHtOZxYs7I7RtDxG0yTyO8ZxxdUjoub6iiISE6Px91vHRusWBHC6VK66fSSaIUd/GGi6zGW3j8DlVqMm/pohc8bfB5KY4YwupdEMmRlnd6Hb2GRUPdI/qi7RaXgiIy/ohGJEYpIq4k7V6HflQKSm8wRJQHYr5C/o9B9+kzY2Nv9T/I8st2mXQ45u3RP5YtlfePzRnwkEwxx7XE8GDU5n8OAMHrjvR8rL6pk5pzNTp+Wz6Lie3H/vjxTsqGTkqCyOOa4noZDJY4+sZNXPe+nZO4kzzhqALIuRcj8vIDPLwznnDSImRiM9w8Mbr2/EG+Pg7HMGkp7h4cNPj+XZp1chCAInn9qXHj2TWPbDiTzy0Arqav0sOKo7o0ZnM3FyBx64dznFxXVMmpzHkfO6cv6FQ3jo/p/YuKGUgYPTOemUPgiCwMDBafzwfRGdOsVz9rkD0XWFvLxY3n9vK8kpTs45dxAJiQYpqW5efWktuqFw2ln9yesQy+vfLOTFR34lGDSZd0I3+gxKoc+gFJ65dxWV5Q1MOqIDY6blMueYriy5ey3FO2roMzqFSX/pSDhk8tEDmyn4uZzs3rFMPrczkiyQ1iOGzZ/vJy7HyZgLO6N5FFxpTgre3YEjRqXbqT0xmpTGNjY2NjbNtMvECpGRWVxcxHDB6YyMNBVVwhurYZomLlckJssiXq9GbNP6T4jMdcbEOIiL1/F4NERRiHgJexzExel4vVr0NbDLqRIbqxET44i+Btb1iAG+IBI1ltAcErGxGqoiNY98VZEYr0ZDQwi3xwFERr4xXq2pbkfU8OFA3Z4YB1LTMhaXWyUuTou0p8kEwulU8Mbp6LocHYk7NJmYOI1QMNw8ynVIeGIjdRquyH3LSsQj2BPrwIhREQQBQQQjRsEV78DwRkbdgiCgxag441X0GAWxyS1KdckY8QqKR0VU2+XLDhsbmz+Sw3Sbt7amXYqXtmwpZ8zwZ/D5AlEz+xcWH8HZZ3xAWZkPvz+Mrsvcfd9kHn14JRvWl9LQEMQwFM48uz8FBVV88N5WfL4AhqEwdlwOffuncNcdP+DzBdA0mQ75sVx86VDOOv196uuDKIqIN1bjiadmcfSC16mvjxjmG4bC4tfmcvyit6ip8RMMRup+8tlZXH3FF+wuqqaxMYRhKFxz3Ug++mA7y5cXUe+LtGfBUd1wOGSef/ZXfL4Aui7Tt18q8xZ05aorPqfeF0R1SKSmurj9HxM4+dil1NcHI1vMuVVeXHwkZ89/j3pfEDNsoukyD746natO+ZTKsgYC/jCaLnPdg2P46N4tFG6sxF8fQjNkjjy/GzWb6/nl3d00+kI4DImek1Lp0SeOL27fiN8XQtZEEju5mXt9B366/GtCDUEERcQR42DaR/NxHOQQZWNj0745ZOKljob5411tP30kzVp92ImX2mViPfPU91j80lqLECgn10txcQ2NDc0SG6/XQTBoUltrVQUrimTx+9V0iWDAtGyK7nQp6LpCaYkvGlMUkazsGLZtrYjGBAE6dopj29YKixApNc1FdVUjdS2UtA6HhCyLltiBOdiWQiWnSwETy3m6IZMYZ7B7V7P6WJIEendIZtfmKot4KScvhv1FdRZf4eRYJ55GhfoWhvuKJJAo6QRa9JmqSSQGBcJBqyq4f34dgYpmRbKoiPS8cCDdzuiDjY3Nn4dDlljzDfPHuzq3dbFIs1cddom1Xb4KrqpqaKWu9fn8BA/y4W1sDFl8fSGSCA+Ieg4gSyL+RqsRPmBJvhBJfi2X6UBEjVtXG2il7q2vD1pM+CPXh6Kvbw8gSQIH/7aRRNFi6g8R9fDBZv2hkImvLtDqel9dgOBBfsiBhhCCaN1DVTAjG6a3rElSwPQf5CkMhA7qn3AwTKDFDxYbGxubf4mtCj58ifj/WpW58xZ0syxH0TSZKdPyLbu3KIpIz17JxMbp0eQqigIut4PBQ9JbLWeZMbOjRQGs6zLzF3azKJINQ2Hh0d2t5xkyc+Z0RmyxhsfhkBg7LhdFkaIKXlkWSM/wkJvnjf4AOJD4J0zMtSRhSRI4cl6X6BzqgfbMOeagmCEz46jOqC2WBTl0mWEzsiz3Jqsief3jIvOqTX0hiAKaWyV7SDxSyzlUAdIn5iC12GhAckhkTMjBxsbGxsZKuxyxzj6iC+Xl9dx+63eEgmFOPrUfl14xjPET8rjkwk+oqW5k+syO3HHXRDZuKOWs099nz54aBg1K5+HHp1NX6+e0k99lw4ZSOnWK49EnZxIXp3H26e/z7be7SE528cDDU+nVOxm328Fbb27E5VS55fbxTJ2eT0KCwcMPrkAQBS64aAinn9mfnr2TuO7qr6hvCLLwqO5cf+MYjlrUg/PO+ZCy0nrGjMvhvgenULynhtNOfpeCgkp69Urm0SdmIEkCp53yLqt+2UtWVgyPPD6d7BwvF5zzEZ98vJ3YOI2775vM8BGZuNwqi59fi+qQuOq6kSxc1IOszBgeuvUnQsEwx57RizMvH8jwcZncdMHX1Fb7mTA7j6vuHk3hugr+cco3lO3x0W1oEhc/OZLGmiAPH/8dReurSOsSw1nPDcUdq/LyyT+yY1kpnlSNhU8OIq1XDD+7FXZ9uAPFqdDvmmHE90n6ox8FGxubdsPhuzymrWmXc6wQea3684pigqEw/fqnousKpmmyetU+qqoa6N0nBa83stXZ5k1l7N5dQ7duCSSnRLY621lYxdat5eR1iCUnxwtAyf461q4tISXFSdduiQBUVzey6pe9OJ0q/fqnIAhCZP/XFcWIokC/AamoqkQoFOaXn/dSXx+gb79UXE1K3LVr9lNS4qNXryTiEyLLU7Ztq6CwoJLOneOjxvx7dtewcWMpWdkx5OfHAZG9Y39dvY+4OJ2evZIQBIG6Oj+rVu5FdUj0G5CKJIkEAiHWrNhPMBim14BkNF3GNE3W/1JCTVUj3fom4fFGFMKFGyop2+0jp4eXuJRIe0oK69i7uZrkfDdJuZH+qdnXwN41lXjSdJK7xUT6vKaRirUlyC6V2B6JCAe7atjY2LR7Dt0cq9P88Y4ubV0s0pE/23OsbUFtrZ8p419g+/YKBEEgNlbj48+P5aLzP+GLzwuQZRFRFHj/40W88vI6Hnt4JYoiEQyGeX7xERTvqeHiCz5BVSX8/hA33jKWzl3iOWre69FEdfwJvTnltL5MnvAiwUCYYCjMsGEZPPzYdCaPf4H9JT4wISPTzbsfHs3xi95m9aq9iJKArsl8/MVx3HHrd7yxZAOKIhI24c23F/Ddd0XccuM3qKpEIBDioUenoSgSp570Dooi4Q+EuOiSIUyY2IFZ0xcjIBAMhpk+syPXXT+aSWNeoK7WTzhs0rVHIi8vmctfpr5F0Y4qECA2XuflL+Zx/dlf8MOXRUiSiCQJPPfpkXz5/HaWPrwRWRUJBU2ufXUcNbvqefa8lSiqSNAf5pg7+5HT0cOzc5ZF3Jb8YQaflseYs3L44ug3CQdNzFCYxEFpjHhsGoK9w42Njc3v4cBG5/8DtMsR69+u/pKHHvgpahkoyyK9eiexaWOZRUmbnRNDyX6fRQhkOGXCIZOGFkpYh0PC4ZCprm5scZ5CepqbrVvLo+Igw1Do3jORVT/vjap4VYdEv34prF61L+oLLIoCXbrFU7ijytKehESD2hq/RRTlcEjRUfABdF3G69UoLm72JHY6FTp2iGP92pKoUErTZIb3y2DDitKoAlhWRHr0TmTb+nLqW3gAd8iLhT0mjS0EUIZTxhtQCDQ0i74Uh0SWKtPY0lPYKTF0kB/fzsqo16Gky/S9ZgS5C7r99pdkY2PTLjlkI9YOTvPH27q2dbFI81cediPWdjncWL++xOLDGwyG2VlY1UpJu7e4NirMOYC/MYwsW0VKqipZluRARPO0e0+NRXHr8wUoLKiyLI3xN4bYsaPSYrYfDpsU7awmGLKqlEtLfKgHGSscMIhoiaJI7N9vNdYPBMLs2lltUR83NATZtb3asqwmGAhTVFhtSaoAZbt9rfoi1BCOeAi3QFYF/D6rohhBoGFfrcVAOFQfpKagqlXbbWxsbP7XaZeJddDgNIsKV3VIdO+ZhN5CrStJAvn5sYSC1uTm8ai/YYQfJjHRas8XDpt06hRvWZpjGAo9eiThaKGO1XWZXr2TLUphRRHp2i0RqUXSFATIzo6xJOUD7TxYjRwIhMjJ9Vo2BpBlka7dE6LrXiGiAO7aOzHq/hTpC5HOPRPQnc0xURLI6OQhfFCi171KaxP+oIkzwbosxwybuHJjocX9SLpMbPdEbGxsbH4vZlho8+NwpF0m1vMvHMKoMdk4HBK6LtOzZxIvLD6CE07sjapGLAXT09288vp8brp1HA6HFLEC9Gq8sXQhzy8+AqdTwelUIi5Jz8zijaULiI/XcToVVFXimutG8fJrc8nO8WIYkdjCo7vzwstz6Ns3BU2X0TSZwUMzeGHxEcyc3QnVIaEbEdemxa/O5YKLhqCqkbqTkpy8/vYCHnxkGpom43QquN0qr7w+jyVvzsfjceB0KWiaxF33Tea1N+eTkuqKtuescwbwwitH0qlLfNTOcPLUfB5+eTqDR2egOiQ0PZJo739lGnNP6IaiiuhOmbRMN/e+OZ1Tbx2I4hDRXDLuOJWb3p/Eua+MwOGU0FwyqiHx18XDOeWD0RjxKqpLRlJFptzUk5GPTcWZ4UbSZURVJOfIzmRM6/BHPwo2NjY2hx3tco4VwDRN9uyuIRgKk5UVE1Wolpb4qKpuIDu7eW1oVVUDJfvryMyKifr9+nwBinZVk57hxumMjNAaG4Ps2llFQqIzqigOhcIUFlThcikkJbuide/aVY0gQEaGJ1r33uIa6huCZGXFRP1+y8vrKS+vJzs7Juo/XFPTyN7iWjIyPeh6ZKRbXx9pT3KKC0+Tr3AgEKKwsIrYWJ34+Ih1YDhssmtnFaoqkZrmjrZnb1EtoVCY9Ozm9pSX1FNT1Uh6jifaF7WVjVTubyAp24XatE62oS5I2a464jOdaE0j3WBjiIrCOlxJGro30j9mKEztrmoUt4oWbxvw29j8GTmUc6zLb+7e1sUiH/XTYTfH2i5VwaZp8rdrvuShB1Zghk3mL+zO/Q9N4aUX1nD5JZ9R3xBk5Kgsnn/pCFauKOaUE5ZSXl5Pt+6JvLJkHtXVjRy94HV2FlaRlu7mpVfmkpzsZOG8Jfy6eh9er8YjT8xgxMhMTjjubT7/dAcOh8z1N47mlNP6ccF5H/Pic79Gdrc5rS+33Daee+/6gVtu+pZAMMS0aR154pmZfPD+Vs4960Nqa/30H5DKy6/NZfu2Co5b9Bb79tWS1yGWV5bMQ5QEjpq3hC2by0lMNHjmhTl07ZrAooVvsPyH3TidCnffN5lZczpz5snv8e7bm5FkgYsuG8rFlw/jjqu+5dkHVhMOm8w+ujM3Pjye159ez22XLqOxIcSQMRnc8/JUNv5Qyq3Hf0VNRSO53WP5+9sTqK8IcOcRX1NaWEd8psGFb4wiNknjmdnLKF5dieZVOerZweSPSuCH8z5m37e7EFWJXpcNI//YHn/0o2BjY2Nz2NEuR6zPPLWKyy/5LCpW0nWZGbM68e7SzVERkapKDBmWzoofi6PniaJAdk4MVZUNlJc3RMuLiXGQmuZmy+ayqDhI12VGjMziq68Ko+Ig3ZCZc0QX3npzY9Re0DBkjpzXlTeWbIzWo2kSEybl8dknO6LtkWWRHj0T2bqlIiqUEgRITDSQFYniFkIpp1Ohe49EfmmhPtZ1mSlTOvDx+9ujCmLDUFg0vwcfvbo12h5Nl5k0uwOfv72dhqaYokoMGZHOnu+qo6pgURRIzXOhlEJdebNwyxmr0DnFScnmWsymvlAMiQlzNcp/KiLsj7RH0mSGPzqV5OGZ/9Z3Z2Njc3hzyEaseU5z+U1t/2NcXvTjYTdibZdzrO837UxzgPr6IF9+XmBZsuL3h1j+w26LEvbAa1S/36p6DYdNNm8qsyhuRVHgu293WRS39b4gn3+6w+LZ6/MF+eyTHZb2NDSEWPbVTouiOBgMs3rVvuhm6BDxGa6p8VNW5rOcK0kCK1cUW4ROoZDJsi93Wu7R5wuw7ONCS3sa6oN8/9lOGluolAP+EGu/24/YQiMVDpuU7KgjdJCYKhw0KdlUE02qELE6LF9ZHE2qEPEO3v/9bmxsbGx+H4dgk/PD1MmpXSbW9HSXxVxfECA2XkPTrG+2PR5HK9WrIAitlLl+f8iito2cCJ4YhyXkcEjExeuWJTKSJBCfoLdS9nq9Wiuzf8OpEAxa2xMMhgmHDo6ZUeemA8hN29a1RFFEYhN0JNmqPvbG66iatT2GR25l1m+KEPJb+yLoNxHl1o+F7La2R1QltAR7yzgbGxubg2mXifWyK0YQG6dhGDK6LuN2qzzx1Cxy87w4nQqaHok/9uQMRo3OjsS0SOy2f0zgzLMHYBgKDk3CcCqccFIf7rl/MnqT0tfpVBg0OJ3Hn5qJYUTKczoVsrJjeOLpmbg9KrouYxgRI4fHn5pJSqoLo0ll7HQqPP70THr0TLLU/eAjU5lzZBeczqa6DZnLrxrOtdePRjea6542I5+HH5tuaU+XLgk8/szMpu3sZAynQmKSk3uemYI3Totcr0u4PCp3PDOJzNwYdKeCQ5fQDJnrnh5H71EpaE4ZVZNwGBJn3TuYSed0xuGUUTQRh1Ni3OkdOOKh/iiGhKyJqC6JnGEJDLlrPJIuI2kSkiHjzHDb5hA2Njb/HmGh7Y/DkHY5xwoRte1772wmGDSZMrUDqWluGhqCLH1rE1VVjYwek02nzvGEwyYfvLeFoqIa+g9IZcDANAC+/qqQ9etK6NQ5nnHjcwH45ee9/Lh8N6mpLqbP7IgkiWzdWs6XnxfgcqvMmt0Zw1DYt7eWD97fiigKTJ/RkfgEg5qaRt5Zupl6X5DxE3PJyfESDIZZ+tYmSkt9DBueSY+eSZimyScfb2fH9kp69kxi2IjIHOXy74tYtWof2TkxTJ7SAUEQWL+uhG+W7SQ+3mDWnE4oisSundV8+tF2NE1i+uxOeDwOKssb+GTpNkJBk7HTckhOc9HYEOTjN7ZRU93I0LGZ5HaOJRw2+f6dnZQU1dF1UCKdB0bWoa77fC9F66pI6xpDzwkpABStLKfw+zI8aTrdZ6chSiI1BZXs/7YI2aWSMTkPSWuX2jcbG5v/D4dujtVlLr+hZ1sXi3zcD4fdHGu7/Zdx3dr9LHl1A4FAiPh4nVlzOrNjewVvvL6B8rJ6QqEwHTvFsW9vLW++vpGCgkr27a2lV+9kGhuDvPXmJlb/spcePZPoPyAVw1D44L0tfP5ZAZlZHvr1TyU9w81XXxTy2ivr8cQ46N49kZ69kvn5570seXU9oiiQkelh3PhcNm0s4/XXNlBX60fTZXJyvOzaVc2bb2ykeE8tNTV+unZLoLKykbff3MTGDaXs2F5Bn34piKLAO+9s5vtvi+jYKZ4BA9KIi9f55KNtvPvOFpKSnPTum0x+fhw/fLeLJa+sR9dlOnSMY9CQdDb+WsK7r24mGAgTn6gzcbaLwq1VfLBkM1XljYTDJjmdvJTvrefrJQXs3VFDxb568nrHEWwMs+KNInb8XE5271g6DIzDYcisW7qbLZ/uIzbbSeagOGLSdfZ9W8TOpZtRPQ5iOsfh7ZLwRz8GNjY27QTTpNV01J+Vdjli/f7bXcyZ+UpUcavrkaUwN/xtGXV1fkwzopg97cx+vPLSOkpK6ggGTXRdZsKkXIp21bB+XcQWUXVIdOwYR/ceibzzdkRVLEkCcXE6J53ah/vv+SkqTHI6FW68ZRxXXvaZpe5b7xjPFZd+Hj3PMBQuu2IYd9+1nOqqSGIzDJkFR3Xn6692smtnxBZR02T6DUhBc8h8920RDQ1BFEUkNc3NlKkdeOG5Nfh8gaY9Y1Uuu2wYt/z9m6hYSTdk/nHHJG65aBkN9c2q4MtuHs7dV39PfdMm6Lohc/zZvfn+2Z1UlTYQCpo4dIlBUzMIbPdTtK6KYGMY2SGS2tlD925e1r+9m0B9CEEScMarzLk0ja1PryLUVI9kyExcugB3085ANjY2fw4O1Yi1f67LXH59r7YuFuUv3x92I9Z2mVhPOO4t3liy0RJLS3NRUuKzCJOcTgVBFKitaV5OIkqgOWR8Lc3oDZmGhpDF6tDpUpAlkaqqZmN+URRIS3dTtKvaUndWtoedhdZYfLyOzxeweAhLkoBuKJb2OBwSYdMk0EJE5HarNDaGLOplhyYR69Yo2e+z1NMjO5G9BbWWWGqai/J9PkIthFLxTp04HNS3NNcXRVJU3eIN7HBKxNebmC00TapLpl9eBaGWfsqiQLe/DqD7uQOxsbH582An1v+cdvsquBW/tTfoPwn9np8Swm9cLwj/pJrfCP7TrUpbVW62ipm/cb2A8E/q/o2YKCAcdKfCb9z4b/bDP+2cVg36zf61sbGx+accpmKjtqZdqoLPPHugxYRf12UuvWwYmiZHE41hKJx51gA8Hkd0aY6uy8yc3Znu3ZPQmpajOBwS+R3jWXh0d3QjUqYsCxhOlb+eOyhqri8Ikdesl1w+vHXdVwyzmPAbhswFFw1B15Xo0hzDkDnx5D6kprmiO9xomsyQYZmMHZcTLVNRRBITDE45rS9GU3tEUcChSVx46dBoGw+U+dcrBllM+DVd5ozLB+DQpWhfaIbMgnN7YLhVJCUSdBgSw+ZlkdHDi6JF2iM7RFK7eOizKBvFiPSPKAs4XDIdT+qFdKAeAWRNJntWp3//y7OxsbH5k9MuR6yDh6Tz5tKF3HXnDwQDIU4/sz9Tp3dk5Ogsbrjua8rL6jlyXldOOqUPZ5w1gOuu+ZIdOyoZNSabiy8dit8f4u/Xfc2qX/bSs1cy114/CsNQyO8Yx+ef7iAzy8P1fx9DSqqLtDQXr7y8jhiPxlXXjqRb90TS0908dP9PCKLA+RcOZtTobHr2TObWm7+hri7Accf3YsFR3Zl9RBeuv/YriotrmDItn7+eO4iqqkauv/ZLNm4oZdDgdK68ZiSCALfe9A3ff7ebTp3j+NsNY4iL08jMiuHdpZtJTnZx7Q2jyc31kpTs5LmnVqPpChdfPpT+A9PIyYvlsX+sIBgMc/xZfRg3PZdBI9K57/ofqCxrYNqCTiw4pTvHnNGLJ69cSfGOGvqOTWXRlb0JNIZZcvVqCn6uIKu3l/k39UbVJZI6u9nyyT5ic5xMvaUX7hQNV4qTwqVbUGMcdD9vEK7smD/6UbCxsWkvmGAepoYObU27TKwAnbvEM31GR4LBMD17JQOQkelhyrR8qiobGDY8A0GImDdMmtKBoqJqBg5MQ1EkFEVi4uQOZGR66NgpHpdLRRAExozNwTAUUlJcJCY5EQSBwUMyqK0N4HarZOdEEkmPHolMn9kRQRDo2jWijM3rEMu06R3x+QL0b1rSk5LqYtKUDpSW+hg+IhNRFPB6HUya3IH8jnH07JUUNbUYPzGP+ASD7OwY4uI0BEFg5MgsRARi43TS0iIbAPTrn0pJiQ/NIZPfMQ6A/K5xjJ+RRzhk0rVXpD1p2W7GTsulrtrPgOFpCIJATKLGkGmZlBbV0XlQIpIsIskivaekkZjlJLWLB80lIwgCncYno7tk3Ck6riRHpC/7pxBuDCC7VJwZ7v/el21jY/Mn4PBdd9rWtEvx0p7dNYwY8nRUAawoIu98cDSnn/Ju02bgYURR4LmXjuCxh1fy3be7CATCSLLADTeOoaCgiqefXEUwEEZWRI5e1IO+/VK45MJPCIVNFFmk/4BULr50KAvnv044bCKJIimpLp55YTYzpizG3xiKvB7WZN794GgWzltCeXkDoVAYSRJ5Y+kCrr7iCzasLyEQDCOJAg88MpWPPtjGe+9sIRAII8si514wCIcqccdt3xEMmiiKyMRJecyd15UzT34vUrcs0rFTHLfdNYG5M18lGIzcX0yMxutvLeDEaW/hqwtgmiaKKvHch0dw1QmfsbeohlDQRBQF7n5lCh/cu4n13+0nFAwjSgIn3zaQms11fP3EdkKBMJIiMPwveXTuHcsHF/5COBSpO2NwHNOvy2P5X9/HDJsIkoCW5GLc6wuRneq//sJsbGzaDYdMvJTjNn+4pk9bF4t6yjeHnXipXSbW8/76Ic8/uzpqDygI0LFTHLt2VltUuAmJBvX1Aepqm318ZVlAkkQaW3gAOxwSpolFhet0KXjcDoqLmxW3Dk0iL9fLxo1l0fVYoijQtVsCWzaX4W+h7M3KiqGszEddXXPdTqeCaWLxFT5gpXiwmlkVJaqrmxXJRtOergU7Ki3X9uucQsH6yqjP8YG+2FdYS2N98/2kJbkwaiUaaluogmWRZNFBoKG5bsUhkoposTpUXTL9elYRKKuLxkRVovuFw8j/Sx9sbGz+PBzSxHp137YuFvXUZYddYm2X4qW9e2stnrumCRXlDTQ2Bi3n1dQ0Iv6GbPbAvqjRv1WRYNDqmYuJJbEBNDaEKK9osCxyDodNysvqLUkVInvAhg7yAPb5AsiytT2yLFo2CoDIspy6Or8lFgyEqapqsMQCgTCVZY2WekwTqsob8DdYNxqorw60VhqbIB3kkSyrIuGD+wIIHdSecCBEY5mv1Xk2NjY2/+u0aWIVBCFOEIQ3BUGoEwShUBCERW1Z/gGmz+hoUeEeMH44sIk5gOqQGDYsw5J0JEkgO9uLw2FNrLIk0aVrgsU0P2yajBiVZTlX12UmTsqLqnUhoj6eNMUa0zSZMWNzLIlMUUT69U+1JGWhyeg/IcGwGPuHwiYDB6dZNgaQJIGx43MsCmDDkBkzLceiFNYMmeGTs3HoLftCpOeIZMItcq0oCSR2cCGr1kdAlEUSunoQWvSFGTaJG5CO2GKjAckhkzTM3jLOxsbm92OaQpsf/wpBEP4qCMIKQRAaBUF45qDPxguCsFEQBJ8gCF8IgpDd4jNBEITbBEEoazpuF35rbeVv0NYj1gcBP5AMHAM8LAhCm28Zf9xfenH2uZElN6oqseCo7jz4yHTuuncynpjI8prRY7J5fvGRvLwksom5JAn06JnEOx8czXsfLaJDfiySJJCTE8M7HxzFm0sX0LdfCpIkkJBo8MLiI3n6udmMn5iLooi43Sq33D6e+x+ayrHH98LhkNA0mVNP78d9D07l6r+NwulSUBSRadPzefzpmTzx9Exi4zRkWWDgoHRee2M+b717FBmZHiRJoHPneN7/+Bje//iYaGJPS3fz5tsLeWnJXIYMz0CWBbyxGg8+Po2HnpjOzNmdUFUJp1Ph4iuGccsD4znh3D5ouozqkJizqAs3PTqeK+8dicujIssig8dlctvLk/nbG+OITdYQJYG83nHc/PFkLv18PEn5LgRJIDHPxaWfj+PED8eQ3j824rqU6GDRkuEMvWcyScOzEGQR2aXS84qRJA6xE6uNjc1hzx7gRuCplkFBEBKAN4BrgDhgBfBKi1NOA+YAvYFewAzg9N9TYZvNsQqC4AQqgB6maW5uij0P7DZN8/J/dt3/1YTfNE127qwiGDTJzfVGR3x7i2uprm4kN88bfeVbVlZPyf46snNi0PXISLemppGiXdWkZ3jweCLbwzU0BCnYUUliokF8ggFAIBCiYEclTqdKWnpECRsOmxQUVEY2Ts+OiRpE7C6qxlcfJC/PiyRFfrOU7K+jrKye3DxvdERdWdlA8Z4aMrNiotvD1dX52VlYRUqqm9im7eH8/hA7tlcQG6uTlOwEIBQKU7CjElWVych0IwgCpmmyu7CGUDBMZl5MtC9KiuuoqfKT2cET7YvqsgYq9jWQkuuKjmobagKU7/QRm2mgeyL9E6gPUrmjDmeShpEQ6Z9wIETdrioUl4qW5Pq3vzMbG5vDn0M2x5rtNr+/sl9bF4vjjK9/V3sFQbgRyDBN84Smv08DTjBNc1jT306gFOhrmuZGQRC+A54xTfOxps9PBk41TXPIv6qrLZfbdAJCB5JqE6uB0W1YBxBJOAvnLeHbZbsQROjUKZ53PjiKG65bxnPPrEaRI3uXfvDJMXzw3hauvepLFEVCkgTeWLqQ0pI6Tjx+KaIoEAqFefTJGeTkeJk9/WUCgTCBQIgrrxnJ/AXdmDrpRUpLfASDYeYv7MZt/5jA7OmvsG7tfkxgwIA0XntzHmef8T7vvbMFSRJJS3fz4SfH8NijK7nnruWoioSmy7z34dGsWrWX887+CFkWMTFZ/OpcZFlk4dwlmGYkkf/j7kkMG57BjImLqavzE/CHOfOcAZxzwSBmTFzMzsIqQuEwEybl8djTMzlr/rus+HYPoijQoUscz34wh3uv/oG3nt2IJIvExDl45rMj+PHtXTx95UpkVUSURG56fyINext54ujvESSBcNDkpBeGkJLt5PmpXxIOmoT8YcZd35M+R6fx7Qmv46+oxwyGyZjZhd7Xj/9N1ykbGxub3+TQrGNNEASh5ejssQPJ8F/QnUiOAsA0zTpBELY1xTce/HnTf/+uN7BtOWIdCbxmmmZKi9ipwDGmaY456NzTiAyzycrK6l9YWPhv1XXbLd9y1x3fRxXAqkNi8OB0Vq4sxtekwhVFgS5d4tmxo9KiFPZ6NRr9waiRPUTmTl1u1eLDqxsyHTvGs27t/ug8rWEoDBqcxvffFUVVxZomM3xEBt9/VxT1H1YUkT59Uli3rsSiAM7K8lBS4rO0x+mUEUWRmhb+wbouk57ipmBHZXRO1jAUevVOYuWK4qiCWDdkJgzP45dlxVETftUhMWBIGht+2k99XbC5L7rG07jNT2MLX+CYOAeJdbLFK1jRRbK9Kr6SZuGWYkgMGeenbmtpdON4SZfpc8ME0qd1/j1fmY2NTTvhkI5Yr+jf1sXiOPOr/+uI9UmgpOUbVUEQvgUeN03zGUEQQkB30zQ3Nn3WEdgMiOa/SJxtOcdaC3gOinmAmoNPNE3zMdM0B5imOSAxMfHfrmjFT3ssycnfGGLD+hLqWySxcNhk27YKJNl6i7W1jUjiQUpYWaCstN4SEwWBrVvLLeInny/A+vWllqU6DQ1B1q4tsZj6BwJhNm0qJRS2qmt37qy2CJIi7bQutYGIanlnYZVF6BQIhNi4scxybr0vyKY1pdGkeqAvtq4riybVA32xZ2tNK/WxvyrYWpEsi9SXWxXAggh1hZXRpAoQqg9StbEEGxsbm9+LGRba/PgP+Fc56+DPPUDtv0qq0LaJdTMgN2X1A/QG1rVhHUDE+cihNStUFUUkN9eL3kIpLAiQlu4mfNCSF4dDbrW0xu8P4/ZYjQ5MEzIzPBZlr2Eo5OZ5o16/kfIkOnSItfgHH1Afy5K1e5OSnPgPSqJh02y1DCYQCJGcYp3DVFWJ7JwYi3JZ02Wy82MsfSErIpl5MejO5vYIAsRnGBZVMICoi5YdcABC/jCqyzpDYIZBS3FbTPclXcaVG4uNjY1NO2UdkRwFROdYO9Ccsyyf82/kszZLrKZp1hFRWN0gCIJTEIThwGzg+baq4wAXXzaMbt0ScboUXG6V9AwPL706l4kT8zAMBY/HgTdW4+XX5nL2uQPRdBmPx4HhVHjxlSO554HJ6E0xTZe5/c4JLH51bsQUwuNA12VOOrUPL702l/h4A49HxTAURo3OYvErR5Kd48XlVnG5FDp2jOOFl49k4KA0nE4Ft0clMcnJS68eyfyF3aP1eDwOFr82l2uvG4WmydF6Hn9qJk8/NzvS7hgHmiZz2RXDeWnJkcTEOKLnzTqiMy+8eiTJKS7cbhWnU6FPvxQefXUm+V3jMFwKTrdCWqab+5dMY9iELDRDxuVRiYnTuPP1Kcw5tyuqLmHEKGhOmateH8uih/qj6BJ6jIKiSxz1QH+Oen0EqkvGEaMg6xIDz8xn6IMzUL06sktF0mUShmSSOatrW3+1NjY2f1ZM4dAc/wJBEGRBEDRAAiRBEDRBEGTgTaCHIAhzmz6/Fvj1wKtf4DngQkEQ0gVBSAMuAp75Pbfaps5LgiDEEZE0TwTKgMtN03zp/3fN/1UVHAyGWb1qH8FgmN59ktE0GdM0Wbe2hOqqRnr0Soqqfbdtq6B4Tw1duiSQkBhR++4uqmb79gpycrxkZkU8gMtKfWzYUEpyspOOneKBiHp47a/7cbpUevZKQhAE/P4Qq37ZiyAI9OmbjKJIhMMmv67eR0N9kJ69k3A2Wf1t2lhKaamPbt2TomrfwsJKdhZW0bFjPCmpkZHpvr21bN5cRkZmDLm5XgCqKhtYu6aEuHiNrt0ir8x9vgBrVu/D4ZDp2TsJSYqYW6z7ZT/hkEm3vok4HJG+2LymjNpqP517JeBqGpHv3lJN2R4fWd28eBMj7ako8rF/aw2JHVzEZUbUx77SRvavr8KdohPfKaKGDtb5qdpYguxU8XROsIVLNjZ/Qg7ZHGuWx/z20rbfv1k/5/P/b3sFQbgO+NtB4etN07xOEIQJwANANrCciEq4oOk6AbgNOKXpmieAy37Pq+A2NeE3TbOcyLqfQ87TT/7CHbd+TygU5sRT+nDl1SP56MNtXHLhJ9RUNzJ1ej733D+FDetLOeOUdykurmHAoHQef3IGtXV+TjnhHTZtLKVDfhxPPDOLuDids05/n++/LyIpyeDBR6bTp28yV13+BUvf2oThVLj19vHMnN2Je+76gcceXgmCwHkXDOav5w7ktVfWc901X1LfEGTBwm7cfNt4vv9uF+ec9SHl5fWMHpPNQ49OY3dRDaee9A6FBZX06JnEE0/PQpIETjnxHVav2ktGpofHnpxJbp6XC8/9mC8+2YE3VuOu+yczckwWN1+/jJdfXIuqSlx13SiOOb4nix9fw8O3/kQ4ZHL0aT0595rBfPVeAbecv4y62gBjZ+Zw9f2jKVhTyV0nLaN8bz1dBidyybMj8VcHeXLR9+zdVE1SJzenvDgUV6zKO6csZ9f3pTiTHMx8YjCpfb1s+MeX7P18C5Kh0u2SMaSM6/ivvygbGxubPxDTNK8Drvsnn30KdPknn5nApU3Hv0W79Ap+4/UNnHXae1HBkGHIHP+X3jz7zOqoqEnTZCZPyeOzzwqobVLcKopIt+6JlJT42FtcSzgcMahPTDTIyfXyy8/FUWtCp1Nh2oyOvLt0c7RMXZc56ZS+PP3kqqja1zAUTj29H489stJy3rwFXXn9tY3R8yJOUJn8unovFU22iJIkkJUdg6KIbN9WEbVpjIlxMGRwBsu+LIwKpXRdZuEx3XnlpXVRRbOuy/z1rIG8/NDa5pghs+CE7rz91MaoqMmhSYydnsu2D0upr4m0R1JE8nrFou8OU1XcEDHXF8GdpNEt30nxLxWEm/pCcclMOMWg5KsthJtsI0VNZvBj84ntlfZvfXc2NjaHN4d0xHrxoLYuFv28zw47r+B2mViPmv8677+7xRJLSjIoLa0n3EK5qmkyimJdyiLLAg6HbDHHd7kVfHVBy7VOl4KAQG2tVSGbkupibwtjfoC0dBd7dltjXq+DhsaQRbEriuByqVRXN5d54BV2S6Wxx6PSWBeyiKxUh4TLpVJeZlUvd0mLp3S31bM3JdlJ1f4GzBY6qTjdQbyoRxMrgCaKZDoMGlsY82tuiSR/yHKt6pLp1amYcEOLvhCgw0mD6XzOCGxsbP482In1P6ddmvDHxWkWb10Ap0tFOcj3VtclDv7hYJoR96KWBAPhVuVFrre+KVdVKeqUdABBAJcrYqPYEsNQkA4qU1GlVsb8oVD4N2KmRekLIEuixR8ZIiNep1tp1XbDpbbeaECT4aC+CAtmK8P9UMBE+I2+EDVrXwiyiOJ2tDrPxsbG5p/yB4iX/gjaZWK9+LJhuFwRH1xRjCSxe+6bQkK8gdpkmq/rMrffNZEuXROjCdIwFC65bBizj+gSTVKGU2HylHyu/tvIaEzTZDrkxXLnPZPQdRlBiCTV2DiNe+6fjNMZSWaSJOB0qtx7/2RiYhwoioggROq+677JpKW7oxuZ64bMjTePZciwDEvdx5/Ym9PP7B+N6YZM/wGp3HTbuGjdDk0iOcXJXQ80t0dRRDweBzc+MB7DpSBJAqIYuf5v94/Gm6ChqJH2aLrMhfcOJbOLF1WP9I/DkJl/VS/6HpmJ6ozEVKdEr1npjLq2B4oRicm6RFxHNz2uGBdJrgIIiojq1cmY0+O/8XXb2Nj8CTDNQ3McjrTLV8EAOwureHnxWoKBMEfO60qXrglUVjbw3NOrqahsYPLkDgwZlkFjY5Dnn/2VXbuqGTw4nWkzOmKaJq++vJ516/bTuUsCRy/qgSgKfPThNr77dhdpaW7+cmJvNE3mx+W7+fCDrXjcDo47oTfx8TpbtpSz5JV1CKLAwqN7kJvrZd/eWl54fg0+X4CZszrRp28KdXV+nn16Nfv31TF6bA5jx+UQDIZ56YU1bN1aTp8+KRwxNzJvvvStTaxcWUxeXizHHNcTRZFY9mUhX3xWQEKiwXEn9sLtdrBm9T7eeWszmi5z9LE9SE1zs7uwmjdf3EgoGGb6/E7kd42jqqKBN5/eQFVFI6OnZdNnaCr+xhAfP7WF/bvq6DY0iSEzMwmHTX58qZA9aypJ7R7D4GNzEEWBLe/vYde3JXgyDPqcmIesSVT8uof9X21HcTvImNMD1au39eNgY2PzB3OoXgX3y/SY3140uK2Lxbjg08PuVXCbqoL/m9TUNLJrZ3VkT9KKyD6lvroARburKSupp7Q0Mu/Y2Bhi9+4aCgsqycmJwTRNgsEwxcU17CyoIibGQSAQQlUl9u+rY2dBFZgRRyVNkykvr2dXYRWeGI26Wj/x8TqVFQ3s2lmNKAlUN+2RWlsXoKiomtoaP+XlkXnQel+Q3UU17NldQ8n+OkzTJBAIUbynlp0FVaSkuKLzunv3RurWHDJ+fwhFkSgp8bGzsIqGhogFo9vtoLKigZ07q9B1JTr/W1vjp3hXDYFAiOrKiBVhfV2Q4l01VJY1UF4SaU+gIUT57npKC+qozK3HNCOvguv21FNd4MMT6yAcDCMoIr599dTsrEUUTIINIWRNIlRdR7C0DMGvNc232onVxsbm3+A/c0pqN7TLEeuaX/cxcewLUcWtrss89Ng0Ljrvk+gG44Yhc+31o3jy8VUUFlbhbwxhGApHLerOzsIqvv1mF/X1keQ5YGAavfsm8/QTEbWvqoqkpbk598LBXHXZ59TXBxFFAbdH5f4Hp3L6Ke9GFcCGofDYUzM489T3qK31Y5qR9tx57yRuvO5rSkp8BAJhDEPhr+cN5NOPd7B+3X4aGkLohsykyR1wOCTeWbqZel8QhybRqVM8RxzRhbtv/x6fL4gsi8TF6/z9ljGcf/ZH1NcHEYTIq+QnnprJpX/5JKoK1nSZ2x+fyE3nfEVNlZ9wyEQzZM67YQjLHtrO/sI6gv4wDkNi3F86IGxpYPuyUgL1IRRdIntIPF36e1j91DaCvhCSKuJON5h2fRrbH/qMcEMQRAHZ6WDQC6fiSHK37QNhY2Pzh3JIR6wX/MuNYf5tjIs+OexGrO0ysZ5y4lJefXm9JZaZ5WHf3jr8/pbqWgfhsGlR9kqSgKJKFrWurkdGiS1FRC6XgqJKVJQ3RGOyLJKR6aZgR5Wl7rwOXgp2VNLSGjgpyaC21m/xEFYUEdUhUVfbrMxVVbFpV5vmi10uFTNotmpjjFezKJIFAXrlJrF7m9WOOTvLQ3lxPQF/c5lJHoP4oIP6muYyHaJArqITqG/uM1UXSRBDmC36QnHJ9O9TRLi2WZEsyCI5J48k54Th2NjY/Hk4dIk1xvzm/LZPrM6LPz7sEmu7FC+1TDgHCATCrdW+wVArH16glYpWlIRWk+AmEbVwS0KhsCVxH8DvD3OQ3z6BYLhVmaGQiXhQg0RRaOVgJAgQOkitGw6bBAPWug9OyNG6/b+hNA62Pk9AQDjoCRAk4TcVAeZBfWuGwoT9rb8HGxsbm/912mViPeHkPpalMIahcOLJvaMbiUNEHTt/YXcURYwmUocmMXxEJunp7uguM7IskphgMGFiLlrTEhdBAEkSOfqYHhhGc5maJnPyqX3RW8R0Xea00/u1as9xx/ey7Kyj6zKzZnfC5VajRvqqKtKxUzy9eidF1cySJKDrCrOP7GIpU1ZEjj+xt2XJja7LHHtGLzTjoPs+tXu0PIi8Hp6wqAOSIkYTqeIQ6TwmiZh0A0mJtEdUBFxJGjnjU5APLPcRIj88kqf0RNSa6xYdMknjbK9gGxubf4P/keU27VK8NGFiHo89OYPbbvmWQCDM6Wf25+RT+zJufB5XXPoplZWNzD6iM1ddM5LzLhzMBed+xK6d1QwbnsHtd06koT7I+ed8yJo1++nWLZF77p+M2+Pgiks/46svC0lLd3H3vZPJ7xhHfLzBktfW43Kp3HTrOEaMzCIlxc0D9/2IIMBFlw5l/oLu9OydHLE0rA9wzLE9Of+iISw8ujsXX/AJ+/fXMWFSHjfePJaS/T7OP+dDtmwpp3//VO68dzKiCBef/zE//riHvA6x3HP/ZFJT3SSnOPnwva3EJxjcdtcEevdNJjZe5/mnf8WhRSwNJ0/tQE6Olwdv/pFQyOT4s3tz1Ck9GD4uizsu+YbqykYmzcvn7GsHsff8Wh466wdKdtXRY1Qyp90zkEBdiNfOWMGeX6tI7eFhwaMD0dwyn13yMzu/2oc73WDSfQOJy3ehxWns+2Q9stNB/jnjceUn/dGPgo2NTXvB5D/d5q3d0C7nWCFiRv/Vl4WEgmFGjMrC69UIhcJ89WUhVZWNDBmaTmqaG9M0+fGH3RQV1dC7bzL5+XEArF2zn00by8jvGEvvPpG92bdvr2DVz3tJSXExdHgGgiCwb28t339XhMutMmZsDrIsUl3dyLKvChEEgdFjs3E6Vfz+EF9+UUC9L8DwEVkkJBqYpsk3X+2ktNRH/4FpZGVHzP5/XlFMwY5KunZPiJrrb9pYyro1JWRlxzBgUMQmcPeualb+WExsnMbw0VmIokB5WT3fL9uFQ5MZOTYLh0Om3hfgh8+LCIXCDBqdgcfrIBQK89Pnu6mt9tN7aAqJaU5M02TTdyWUF/nI7RdHasfIVoPFqyso2VhDQmc3aX0iW8FV7ahh/6oynMk6qUObNh8or6FmzU4kw0FMv1wEyWpCYWNj0/45ZHOsGTHmsnOHtXWxuC778LCbY22XI9aKigbGDH+GkhJfk4GCzCefH8vZZ3zAr6sju86ETZO33lnIc8/8yutLNiCJAsFgmIcfn07RrmpuumEZshzZGeaiS4fSo0cSJx7/NrIsEg6bTJvekb+eN5AZUxYDkWnHLl0TeOrZmUwa9wJ1dQFMwOvV+PCTYzhq/hIKdlQhCJF5048+O5Ybr/2ar78sRBAFwiGTF149gi8/L+TxR1YiN+1Kc9Pt41AdEpec9wmyLBIKhTn+pN7MmNmJY494IzL/GzYZNCydG+4Yy8yxiwkGw5imSXqmh5ffnscJE9+kommjdk2Xeemr+dxwyhdsXl2G0DRl+uCH0/nmkR18/9pORCnisHT2s0Np3OHjs+vXIUqRNo65sivZvdx8eto3CJKAGYa8GZkMuTCXDRc9DQiYpomRm0T3u09CVNrlI2RjY/NHcJi+um1r2uWI9fJLP+WJR3+OGuZLkkDXbols31YRXYIDkJbmprKywRJzaBKYWLx5HQ4JSRIt5zmdCgmJBoUFzQpgXZfp1DmetWv2R8VBiiLSs1cS69aWRMsUBMjvEMe+PbUWT+IYrwN/Yyi6VAdo2jRdsIiidEPGazgoK21W4RpOhYwsD1s2lkW1RapDYmCPVLauLo8qgCVJoFuPRPZsqaGhhSI5O92Ds1Sisa6FL7AmkYVEsKFZmCRrAhneIMEWSmHZKdNv+F6CJRXRmOhQyD5jMimz297708bG5o/jkI5Yz2n7VQSuyz847Eas7VK8tG1rRTSpQkRtu3dvLfX1Act5ZWU+RMn6CykUNFv56KqqRENDa4VrSYnV3L6+Psje4lqL4jYQCLNnd40lUZsmlOyvI3iQkraqsrFV3ZIktlIpK7IUNb1orifE/r11FsGuvzHEvt11lmU1oZBJSXGdJakC1JY2tlYAB01ExRqUVIlQY2sFcaiqzvJ3uDFA4/7KVufZ2NjY/DNMU2jz43CkXSbW0WOyLepYTZMYMDANXW+OybJIj55JrZaZxCforZbghE2TjEyPJR4Om/TunRxVD0NE7TtwUFrU/xcio8vBQzMs7VEdEn36p1iW1oiiQMfOcZYdayAyWnY6reb6gWCIzl0TourhA/fTd0CKRe2rGzJ9h6ZaVMEOTaLHoGRLTJYFsnvHEg5a304YSQ4OfizNMDjTDSwfhE30DmkgNfeFqCm4u2VhY2Nj87swhYjzUlsfhyHtMrGeefYA5hzZGVkWkWWRESOzePaF2Vx06VBkWURRRLp0TeCVJfN48JFpaJqMqoqkprl45/2jWfLmfLxeB6oq4faovLJkHm++s5CMTA+qKqE6JO66bzIvvXIkPXomoSiRes4+dyBPPz+b8RNym+oWmD69I089O4sTTuodrbtfvxSeX3wEN9w6FkWJxHJyvSx5ewFPvzQbp1NBVSXi43XeeG8hb76/kMQkA1WVMAyFJ56bxYtvzSU3PzZ6/ZXXj+SJl2YzYFBatO6Fx/XgnuenMPnIfCRZQJIFBo/J4I4XJ/OXS/oiKyKyIpLXLY5bXp/E6U8MRtEkZFUkLsPgyk/G85d3R6F5FSRVRItR+MvSkcx6fTyudANRFZEcIqPvGky3mxbi7JCCIIsIkkjq/GHEDf/N/YFtbGxs/qdpl3OsBygvryfgD5Gc4orG6uoiXr2ZmTHRWGNjkOI9tWRlexDFyG+JUChMYUEVWdkx0S3fwuEwOwurSU1zWdbEFhVVEROj4W6xTVrJ/joEUSAhwYjGqqoi87mpqc02f/X1AUr2+8jM8kSNIAKBEEU7q8nOjYm2JxwOU7ijiowsT/R1sWmaFO2sJiHJsIzG9xbXoBsKMTFaNFZZHnFaSkxxNtddF6CqvIGUzOb2BBqDlO9pIDHbsPRFZUEdMdlOS1/U7KrFmWIgt+iLxv2VSE4N2dlct42NzZ+HQzbHmu41vzqr7fdv9lz93mE3x9ouJZ2hUJhzzv6QxS+sAQEmTMjjuZfm8PCDK7jphmWYJnTrnsCbSxfyzTc7Of2U9wgFwyQlO3nrnYVUVjSwYO4Samv96LrC4teOJC3dw5wZL7Nndw2iKHD/Q1OZOLkD8494lVW/7APg4kuHcvFlwzjxuLf54P0tgMCR87rw8GPTue7ar3j4gcgPhEGD03nl9bm88dpGLr/wU8KmSU6ulzfeXcimjaWcuOhtGhuDxHg1Xnt7PpIsMn/mq5SX16OoEk8+P4vevZNZMOM1tm+tQACuu20MRx/fk5Pmvs3yb3ZjmibHn96bv90xmmvP/IKlL2wEAUZOyuael6ey+J41PHHDSkzTJL9nHHe/O42NX+znsZN+IBQM403RufyjsYTK/Lw05xv8tUEUp8TRb4wgNsPBx0d9hG+fD0EUGH7nCLInJFN40+M07CgCIHHeJJIWTP6DngAbGxubw5d2OWJ98P6f+Pt1X0V9eDVNZtz4HL78ojCq7JVlkT59k1m3tiSqwhUESEl1UVvrp6a62T/Y5VKITzDYWVgVFQfpukzffqn89OPuqG2gYShMmJjLJx9vj5apGzKTp3Tg4w+3R+tWHRIjhmfy43e7o+eJokB+pziKdlZb1MderwNJFq0KYEOmU4d4Nq0vjQqldF1mxMgsvv+yKCqU0g2ZqVPzWfZ+YVSs5NAlxkzIYdWne6MxSRbo1T+Z+l/q8R9Q+woQn6aTUhvG38I/WHXJdOwUom53bcTXEZB0iWELamnctgNCTcpnh0rmBcfhHmjvyWpj82fiUI1Y+6Z7za/OHNnWxRJzzbuH3Yi1Xc6xfvVlocXcvqEhyI8/7rGogoPBMGt+3R99tQkH1Lo+zINEr4IgsGtntUVxK4oCq1bttXjx+nwBlv+w27Jcpt4X5IfviizJ0t8Y4ucVxZbywmGTzRvLLO2ByLKflqb8/D/23jo6jiNt374ap7sHxMySmZkZY4g5icPMzJwN44aZyUkchxkcJieOIXYSM1uyJYtpZjTU3x8jj9RS3t+7767zxcr2dc6cHFW6q2qq+/iZqrqfuwBZlixBFSAUjrB6ealFfezzhlj1wx6LArjJF+bXH8toatXHcMhk15pqRLnVRr8J3jKr8jj6vcG7pzEWVAEEUaBp++5YUAUwmwJ4N+5od7+NjY3N/4gtXjp4KSiIa87/jCJJAunpTss+JEBSkk44Yp2RS5JAsI2ZfSAQxuFo7yLUev8UorPGtAyXRa2rKCIZme5ofmwzggDJqU7LdUDs7NfWhEKR2Jms+wmGwsQlWPcwFUUiJc1pUS6rDonUTJdFuSxKAknpBg7dusrvTHJgtmkHWSQSaHNwQSCMqLZ5LUwQ3S5LkaAqKMnx2NjY2NhY6ZCB9fKrRpGR6cblUnG5VeITNJ5/aQ59+qbicim43CpOp8Jzi+YwZ243nM5oma7LPPrEDK6+bjS6IeNyqRiGzEWXDuepZw9F1+XYvVMPKeL5RbNxuVXcbhWXS6F7jxRefGkOSckGLreKy6WSmubkhZfmUFSUEOuP2+PghZfnMHJMLs7m/hiGzNOLZnHy6QMwDAWXK9qf2/45kbvunxxr2zAUjjm+D0+8eGj0OreK06UwaFgmj78yE0+8I1aWmx/HA69MJzXTidOt4HQpxCVo3Ll4Cp37JKG7FAy3gu6SufaVcQyel4PDKaO5ZVRd4tTnhjHuup4ohoTqllEMidFX9mTMg2OQdAnFpSAbMjlTcsi77FhE3RH9aA4cuRnETzzwR0DZ2Nj8TTH/e/JYO+QeK0TVv199sYNQKMKYcfkkJGiEQhG+/GIHdbVRr+CsbA+mabLs+2JKSurp1z+Nzl2SAFjzSykbN1TSuUsS/QdEvYK3bKli9cpS0jOcjBqdiyAI7N1Tz7IfinG6VCZMzEdRJGpr/Xz95U4EAcZPLMDlUmlqCvHF5zvw+0KMGp1DSqqTSMTk2692UlHhZdDgTPIK4gFYsXwP27fV0KNXCj17Rb2C168r57e15eTlxzFkWBYAu3fWsuKnPSQm6oyekIcoClSWe1n2bTEOVWL0pDw0TcbbGOSHz3YRCZsMHZ9NXPNY/Px5CQ21AfqOTCc1K+oVvOHbcqpLvOQPSCSza7NX8OpqyjfUkdzFTebAqJdy7bZaKtdUYKQbpA1LRxAEglW1eNdvQ9Q1XH26IMi2V7CNzd+NP22PNTPe/Or0sQe6WuKvf/eg22PtkKpggC8/38Edt35PMBShutrPCSf1Y/WqUu647Xtqqn3MntuNq64Zxc6dtdx5x/fs2lnHyFE53H7XRPy+EPf880d+XbuP7t2TufeBqbg9Ko88+HPz6TZu0tNdFHVK5MUX1vLaq+twux24XSojRuXwwXubefD+5YiCQCAYZv6CHvzwfTF33PodjY1BjjmuD+ddMIR1v5dz560/sG9fI5OnFnL9LeOoKPdy9+3L2Ly5kgGDMrjr3skIosCD9yxn+U8lFBYmcPeDU0nPcPLs47/wSfPpNonJOr36pvLW4g28/MyvaJqErIiMn1rAsqW7efyWFYTDEeprmph/Uk82/FzOCzetprE2wO4FhRx/TT8qtjfy7i2/U7GzkW5jUznm3gGEvWG+u2MdZWtrSe0Vx4yHBuLwyGx6Zi1ly0ow0l0YqaNwF3io/+Y7Gn78GVHXkZ3z0bt2+qtfAxsbm47EQTrDPNB0yBnr559t56jD37Aocy+6ZBj3/vOnmIhIN2QWHtWLd97aSE21n0jExKFJDBuWTWlpA9u2VhMMRlAUkewcD127JvHVlzvx+0MIAng8Do48uhcvPLfWUudlV4zkztu/x9csGNJ1mauuHc2tN30b649hKJx+5gCeefwXGuqj6mNNlzlkRieWLyuhrDRqi6iqEt17JqOqEmt+KSPQFEaSormxEycW8MFbm2J1Ol0KZ5w9iCcfWBVrW9NlrrxuJI/dsCJ2+LtmyJx22UBev+P3FqWwITH92M5sXFxKY00AMwKKJtF1VDLOEj/V2xuIBE1EWSA+30nvYQJly/YQaQqDAIrHwegLDBq/+w4zEP0+gqqS9Y/LceRk/XsP3sbG5qDkT52xnjbuQFdL/A3vHHQz1g4ZWI858k3efXuTpSw9w0X5vkaLktYwZCRJpL6+JbVGkgQczcun+3E6FXy+kEVE5HQqSJJAXau0HEGAjEw3e0rqLW1n53go3l1nKUtK1GnyhiwKYkkSMAzF0h+HJmFGsJjwu90qEX/Eokh2OCQS3DqV5S1pOQBdcxLZt8vq45ub4cFbFiTSaiwSDQfJOPC3Sq1xSAKFTplgY6sDCVwSeYlV0GosZKfCgOG/QlOrtgWB+FnTSJo/Cxsbm78Pf15gTTC/PHXcga6WhBvfPugCa4dcCtYc7butKCKSJBJulRISPQKu/f1t1bGRiNnOP1gQQGqTGiNJIqrSXu+lqmLseLZY25JAoE2lohg9zq5tX9r+tjHNaFutA6sgCu1SdQQBiyI41rYSNfZvHVhFWYD25wy0Sz2KREwELNk2zRW02U8VBAT7yDgbG5v/CwdpesyBpkOqgs+7cKjF9F7XZa6/aWxslgnRZdsrrhpFWroTVY0GBcNQOPb4PgwfkY3enI6iaVEjiFPPGBCrU1VFEpMMrr52NEazmb0oChhOhRtuHhe7N1qnzA03jcPlUmPBWddlrr1xLJ44NRb4DEPh3IuG0rlLUszEXzdkpkwrYtbcrujN7Tg0ibyCOM67bGisTJZFXG6VK24ehdbctiBEj5K76NYRsesgujx85q1D0V1y7GQfhyGz8Nq+xKVpyM2pNKohMeKUQnKGJyPr0fGRdYnMgUl0OqYHUnM7oiLiSNRInDcTQVXZ37ioOfCMGv4fPEUbGxubvycdcsrRp28aS788hkcfWUkoEOaEk/oxYlQOw4fncO/dP1JZ6WXOvG7MmduNY0/owz13/cj27dWMHpPLyacOIBSK8NADy1m9qpTevVM5/6KhqKpEj54pfPHZDnJzPVx82QgSEjSysz28vmQdcfEaF1w8lLy8eDKzPDzz1GpEQeC0MwfSf0A6PXql8uD9y2msD7Dw6F5MnlLItOmduPeuH9m7p4Ep04pYeHRPLr58OPff/SMb1lUyeFgmZ5w9CEGAJx5ZxY8/FNOlayLnXzIMp1OhoDCej9/fQmqak/MuHUpquov0DBdLXvwdXVc49bwBdO6eRG5BHC89vJZQKMJhp/RkwMhMBgxP56W71lJX6Wf8ggLGzC1gxoldePe2dZRva6DH+FTGn94ZMxThh3s3sndVNel94xlxcTckVSS+WxKl3xXjzHbR86wBqHEO1OR46n9cgeQyiJ8xFTkx4a9+FWxsbDoKJu1W5/6udMjACpCQoFNYGE8oFCE5JWrk4PaoFBTEEx/viBnh67pCXn4coiiQkxv9r6KI5OTEUV8XIDc/DkWREASB7GwPnTolkJHpjs1K09JdFBYl4PE4Yib8Sck6hUUJCAIkJkWNHOLjHBQWxNPoDZKWFjXCN5wK+QXxGIZCVpYbQRBwOCRyc+MIBSPk5HhiM+ycXA8V5Qnk5sWhaTKCIJCR6aZTURKJyTpOV3S2mJLqpHNRIg5dJr7ZRCI+SaegKJ5wyCQxSY+27VbIK4ijIUEjJSPaH1WXyM534RRF0vNciKKAqYgk5xvgDZBUYCApIoIg4Mp0Elfoxkh3ITXPsJUkN0ZeAqJuIBm2Cb+NjY3NH9EhxUvbt9cwevizeBuDRCImmiaz+PX5nHX6h5TvayQQCKNpMg89No3HH1nJr2v34fOFMAyFCy4eyo7ttbz95ga83iCGoTB1WhH9B6Rz+y3f4fWG0HWZrt2SuPiyEZx20nv4/SEUJXrM21PPzeLwea81q4cFdF3mtTcP45gj36SurolgMIKmyzy/aA7XX/kVO3fU4veH0A2Zm28fz8cfbOX7b3fH2j7m+N6omswzj69uLpMZPDSLhUf04toLv8DnDeHQJDKz3dxy70TOPuIDAv4QohRdHn7stZlcNOdj/N4gphldSr7vrWncf8IP1JRHT7xx6BIXPjWKn+/Zwp5fawl6w6iGxOQruxPZUcvmd3YT9IZRDImi6VkUDTdY//AKwr4Qkibj6ZzAiGvzqX3xccxgAGQZ0ekm9apbEJ2u//2B2djYdBj+LPFSv4wE84uTJhzoakm69c2DTrzUIQPrWWd8yMsvrrUIkwoL49mzpwG/v0Whk5DgIBiM0NDKi1eSoiKg1p67miYRCpmWQ8hdLgVdVygv98bKFFUkLy+eLZurYmWCAJ27JLFta7Xl/qxMN3U1TRb1sUOTkCTRUqYoIiYQaiVUcjoVDBS8rfqtGzIZyS727mqwfJcenZPZvbHOIsjqUpRIw24/QX9LnWkJOsl+maaGlvFRZMjxQNjfSvCli2QnVWOGrargoVPWgq+2ZcBlGc/M+bgmzcDGxubvw58aWE+ceKCrJem2Nw66wNohxUtVlb52at+GhoAlZQXA5wvHzkDdjyDQTl0rK2I7v17TxJIqA9Hg19AQaHddQ0OTJagCsdl0a4KBMHIb/2BJEpHEtmUCAb/1u4RDEXyN1v6EwyaNdcF2KmdffZBQWw9gXzQntTWigNWYn+jf7X5rmWCGrN+bUIiI14uNjY2NjZUOGVgPO6K7RRVsGAqz53azGOlrmszkKQWWIKEoIt17pOCJcyA2BzNBAF1TGDgow2LsbwKHTCuyKIA1TWbuvG7t2p6/oLvlOl2XmT6rczvD/JGjc5AkMVYuSQJp6U5ycuMshv2CIDBqQo7l+4iSyOTZhWitFcCGzJQjitqVjZ6fj9LqXlWT6DUtw5JDIykCqb3jUd0Kwv6xEEHWFRJ6pSC0SeNRe/QDpdUhB4qK1qsfNjY2Nv8aAmbkwH8ORjqkeGn+gh7sK2vk7juXEQqbnHhSX669fiwTJxVwyYVLaWho4pBpnbj/4UNY93sFp5/yPqWlDQwcmMHTz82ioTHASce9w6aNVRR1SuDp52eRmKhz2snv8eOyElJSDB57Ygb9BqRz0fmf8t67mzAMhdvunMCcud2IT9B44rGVCILAeRcM4fwLh9KzVyrXX/c1Tf4QCw7vwe13TeTII3tx/lkfU13lY9TYXB55agYlxXWcevx77N5ZS49eqTz1wqFIksgpx73Lr2v2kZXj5vFnD6WwMJ6LTvuEbz/bRVy8g9sfnsTI8bkYToV3XtqIoopc8I9hHH5SLzKz3Dx7x2rCYZP5p3bnjOuHMHxiDo+e/xO++iBDD83h3EeGs/fXWl487ifqS/3kDU3k+JeGE6oP8v7x31O1uY6EIjcznxuBkaSy/OLPqFxdiiNZZ8gdE0nsnUjNqzL+NSsRHBqe+UehFnb+q18FGxsbm4OODrnHChAOR89bDYUi9O6TisMhR03m11dQW9NEz94pMRXv9u017C2pp2u3JJKaj4Lbu6ee7dtqyC+IJzMrqiCuqvKxcX0FqekuioqiqSSNjQF+W7sPl1ulR88UBEEgEAjz69p9CEI09SdqRGHy+2/78HpD9O6TGpvVbt5USUW5l+49U4iPjyppd++qZfeuOjp1TiS1WUFcvq+RzZuqyM7xkJsXB0BdbRMbfi8nIUmnc9fo4QF+f4jf1+xD02S6905BFAXC4Qib1lQSDkfo2jcZRZUwTZOdv9fgrQuS3zsBwx3tT/nWBmr3+Mjo4cGZFB2f+j1earY1EF/gwp0VHZ+maj91W6rRUg3czf2J+P0ES3YjaDpKZla7ZXYbG5uOz5+2x5qeaH52/KQDXS0pd7520O2xdsgZq9cbZMbUl9mwvgJBFEhNdfLp58dw2cVL+eijLciyiKJIfLz0aN54bT333/sTqioRDkd45bX5lJY2cN7ZH6MqEoFAmLvunUznToksmPsaohg11j/9jIEcf1Jfpk5YRFNTmFAowvgJ+Tz06DQOmfwSJcX1mJgUFSbw7kcLOeGYd1n+UwmSJOByqyz94hjuvfsnXl70a7NJhMA7Hyxk+U/F/OOar1FViWAozFPPHIqiSJxw7NvIcrQ/V107iokTCph/yKtEIibBYIS5h3fnsmtHMmfcYupqmohETHoPSOXpJbM4d8aH7NhQjSBEz2J9+qvZPHruT/z8UTGSLCKrIv/8ahprXtrFF3dvQlZFImGT094dRWBvI5+cswJJEQkHIky+byDp3XS+PvljBFEgEgzT5fje9Dwxj3133YoZDEEkjKNHT5JPPwdB7JC7CTY2Nn8Ftgn//z/8OzPWG//xNQ898HNMAawoIv36p/P7b+Uxw3xBgILCePbubYiZ1kNU7RsKmRb1sMMhoesKNTX+WJlhKOTketi0sTK2T2sYMn36prFq5V4CzeIgh0Ni0OBMVq3cGxM7SZJAj54pbNtaTWMrBXBqmpP6uiaLKErTJERRwNuqj7ouk5noYk9xiyex4VTo1iWZdWvKY37Imi4zelAOG5dXxMROsiLSf0A6pWvr8DeLnQQBCori0XaHCHhbRFG6RyZNDBNqrQrWRPJyvARb+yvrMiPm7cCsKIlleAuqg4Qjj8E5YtT/9rhsbGw6EH/qjPW4yQe6WlLuWnLQzVg75HTj11/3WQJjMBhh+7ZqfL6WIGaaUFJcjyRZv6LfH2qnClZVkbq6JkuZIMDu3XUW8ZPXG2LbtppYUAVoagqzZUuVJViGwyY7d9QQCluVufvKGtt5+wqC0E7hrCgSZXsbLGXBQJhd22sthwz4fSF2ba61KIhDwQh7trYE1f1jUbPbi9BGkRzxhRCVNopkVSTY6sdArI/V5RbbFDPQRLB0LzY2Njb/Kv8tB513yMA6cGCGRYWrqhLduiejt1LriqJAQUE84TZpME6XSrhNJAuFTJKaHYv2Y5omRUUJFrWuYSh0657UTn3co2dKzFMYouk8XbokIbVZJs3OdluM9aFZidsm2AaDYbJzPRZVsaJKdOqWaLlWN2SKeiXi0Fv6ozhE8nrEozlb+iOKAklFTospP4DiVoiErGXhYARHvKPdWEjJ6dDq+wiqAyU7GxsbGxsbKx0ysF54yTCGDs9G02UMQ6Fr1yReenUeC4/sicMh4XIppKU7efXNw7j2+jHNZSqeOAevv3U4zzw3C92QcbtVdF3msSdn8NpbhxEfr+FyqzgcEpdePoLFr80nK8uN06Xg0CRmz+3Ky6/Oo2evqDhJ12UGDMzgpcVzmTy1CE2TcToVcvPieOW1+Zx5zqBY20nJOq+/fTh33zcFTYu27XQqvPzqfBa/Nh+XS8Xd3Pbtd01k0VvzSUoxcLlVVIfE8af25ZnXZpNfGI/hjPZn1Phc7lsyjT7D0nHoEpohU9AtgVten8T4IwtRHCK6SyYxQ+eqdyYw48ZeyA4Rh1tGj1M47YMxHPrccGRDQnXLyLrEjKeGM/aZaShxKrJTQVRFep03gLTzzkGKT0BwOECW0QcNxhg87K9+FWxsbDoQZuTAfw5GOuQeK0RnUTt21BIKRSgsjI8t+e4pqaeuronCooTYqTaVFV7KyhrJy4/D6Yx67tbW+ineXUdWtiem1vV6g+zYXkNKikFKalStGwyG2ba1GqdTJTvHA0SPVtu2LSoWKiyMRxAETNNk9646/P4QhUUJseXmstIGqqp8FBQmxE61qarysXdPPbl5cTHlckNDgJ07akjPcMdmz01NIbZvrSEhQSMtI2odGApF2Lm1BtUhkZ3nibVdsq2OcNgkp1NcLEe3oqSRxtogmZ3cKM1jUV/up77MT3KhC7V5lt1UG6Butxd3toEWHx2fkC9Iw656tGQdrbk/ZihEaF8Zgq4jJyT+n5+ZjY3Nwc+fucf66dFTDnS1pN3z6kG3x9ohVcGmaXLbLd/x4H3LCYdNjjqmF/+8dwqvL1nHZRcvpbExyIRJBTz93Cx+WV3KqSe+R3m5lz59U3lp8Tzq6wMcvfBNtm+rISfXw6JX5pKa6uTohW+yelUpCQk6jz89k2HDszjtpPf45ONtaLrMLbeN59jj+3LFpZ/x/LNrQIAzzxrEP24cy2OPrODmG76lqSnMrDldeOTxGXyxdDvnnfkRdbVNDBmexfMvz2HH9hpOPPod9u5poHPXRBYtmYckChxzxJtsWFdJWoaTp1+YRdduyZxx1Pv89G0xLo/K7Q9NYvLMIq4583M+eG0ziiJy9tVDOOXCATx940peuedXIhGTGcd34cL7R/DlS9t4/KLl+L0hBkzO5PJFY9n5cxVPHbOM+vImcvsncPZbowjWBFm84HuqtzcQn+/kiCUj8aSpfHXqZ1SurcCR4GDU/WNJH5JM+ePP4P31V0RVJeGIw/CMtYVLNjY2/yImtir4/y/+nRnri8+v5dKLlsYUwLouM2d+N95+Y0NMRKQ6JEaPzmHZDyWx6yRJoLAwgapqH1WVvpgWJyFBIzPLzcYNFYSa9xx1Q2bc+Hy++Hw7Tc3iIN2QOezwHry+ZH2sTsNQOOKoHrz68u8xZa+myUybXsTSD7fF+qMoIn36p7FpQyX1dVHFrSBAWroTRZEoKa6PWSA6XQpD+maxevlegs1CKU2XOXRWFz57dyt+X0t/Fh7Vk88XbcPf3LbDkJiyoBM/LtlJU/N1ikNkwLhM9n1dTaAxWiZIkNHFjbMygLeyRQGsJ6p07x2hbktNzC9Y0mXGne4luOE3zFCz0lhVSbvwHPTu3f5Pz87Gxubg5s+asfZNSzI/PWrqga6W9PteOehmrB1yj/X99zbFAhtEPX0/+2QbTU0tSthAU5jvvtttER+Fwybbt1fT5A9b1L7BUJj161qCKoAoCHzz9c5YUAXweUN8+vFWS9teb5CPP9xqSZfx+0N8+fkOaxvBCKtW7LXY9Zom1NQ0sW9fo8VXWBIFVv64JxZUASJhk2+X7owF1f39+f6D3bGgCtDkDbPi42KLUjjYFGHD1/tiS8QAZhgqNzcQarJuUpihMLWbaywm/IIITRs3xIIqgBkI4PttHTY2NjY2VjpkYE1Lc7Xx1oX4BA2Hw7qy7XKpRP5gRh4Mhtv8HUFuY0aPQGz/cz8Oh0R8gmZR64qiQEKC3i6NxuNxWPoIoGuyJXhD1Fy/rVo3FDYtfsQQVQ574hztyxJVxDZj4UpQLV7BAJpbbmeuHxEg0kY1HQqalvpi9TqsqmlBkZE87nbX2djY2PxP2Ok2BzFXXDWS+HgNTZNxOCScLpXHn5pBdo4Hw1BQVRFdl3nk8RkMG5aN06mgqhK6IXPL7RM46ZR+OJ0KiiLidCoceVRv7rx7Mroho6oSTqdCv37pPPbEDHRdRnVIGIZMZqabx5+aidutomkSmibjiXPw+FMzSE11Yhj7r1V47KkZdO2ehLG/bV3mvoenMm1mp1jbhqFw/iVDuezqkRiGgqJG+zNxcgF3PjoZTY/2x3AqFHSK585nJqM7o21ohkxCksY/nh6PO17FoUuoDgndpXDZM2NIyXXiMGQUVcShS5z99HCKhiXhcMpIqohqSMy/uz8DTi5EcUpIioDilOh3XAGDbxyOpMuIiohsyCT1SSH1tGMRVBVkGUFVkRIScI8Z/Ve/CjY2NjYHHR1yjxWgotzL229tIBSKMH1GZ3Lz4vB6g7zx2jpqa5sYPyGfnr1SCYcjvP3mRvaU1DFwUCYjRuVgmiZLP93GhnUVdO6axCHTihAEgZ9+LGH5j8WkpbuYt6A7siyyYX0Fn3+2HZdLZf5h3XG5VEqK63j/vc0IAsye05W0dBc1NX7eemMDPl+QyVOL6Nw5kUAgzJuvraeywsuIUTn0H5iBaZp88O5mtm+rpnefNMZNzAfg26928svqUvLy45k5uwuiKPDr6jKWfV1MQpLGrMO74nDI7Nxaw1cf7UB1SExf0Jm4BI3qch9fvr6dcDjC6Fn5pOe68HtDfP3qdry1AfpNzKSgdwKRcIQVr+2musRH4dAkOo9KwTRNNn+0l/L1dSR39dBlRgaCILBvRRnlK8sw0pzkzSxAlEUCJXvw/fY7oqbjHDoIUdMO8NtgY2PzV/Nn7rF+snDaga6WjAdeOuj2WDukKhhg65YqPlu6jWAgQn5BPLl5cZSU1PPFZzuoqPTibjbNr6r08eUXO5qdmUIMGZZFIBDmm692snpVKSV76hk9Jhddl/nhu118/vl2cnPiGDM2j7R0JytX7uXTj7cSF68xdFgW3bons2FDJUs/3YooRK0L09Jd7NpZy+dLt9HQECAt3UnnzomUlTby5Wfb2bu3AUEQ6Ns/nfq6Jr7+YgcbNlRSXe1n+KhsBEHgm6938eMPxXTunMjosbnEJ2isWLaHLz7eTkqawdBR2eQWxLF+bTlffbQD3ZDpNSCV3gM1dm+q5cdPdxMORsgq8pCe66JidyMrPy2hoaoJ3aOQ3yuehsoA6z4ro3xbA0FfmMJhSYSbIuz8qozS1dU07vVSMC4FRZeoXFFCxfe7MTLdZIzMwJGsE9i5jab1vyAaTrQuhYgZmX/1a2BjY9NRMDloj3k70HTIGevyn0o4dNorMcWtrsvc8c9JXHPlF9TXBzDNqFr33POH8NKiXykrbSAYjETPSZ3Zmd276li7pgy/P4TDIdG9RzK9eqXy5hvr8XqjlodJSTpnnD2Qu27/Aa83hCCA06lw+z8ncemFSy1t33P/FC6+cCnexv1KYZlrrx/DPbf/SG2Nn3DznunRx/fimy93sX1bDYFAGE2XGTYiG4cq8c1XO/H5QiiqSE5OHLNnduXFJ9bg84aixv4elcuvG8VdV38fEyvphswtD0zk3nN+oGm/KliXuOieETx76Up8DUFMExyGzGGX9OSXJ3dRV+onHDJRDYl+c7JQdjVStqaakD+C5BBJ7RlH79ESxR9tI+wPIcgCjkSd0Vcm0/Dpe5iBAAgCgsNB+jU3IKekHqhXwcbG5iDgT5uxpiaZHx8x/UBXS+ZDiw66GWuHDKwnHvcOb7y23lKWmeWmfF+jxTLQ6VIQBIGG1obyEqiqbPH2NQyZpqawxYfX6VKQZZHamqZW9wpkZrnZvavO0nZefhw7d9RaylKSDXyNQcsBALIsomkSDQ0tqmLVIWJGsPTb5VZRmkQCTS0iK02TSYnTqSjzWdrpmZ9M+bZGS1lOtoeGvdEAup9El4OEiIK/vqU/qgR5LolgK2N+xSlRmFIBrVTKslNh0Ng10NSqHVHEM2MWcTNnY2Nj8/fhzwysHx0+40BXS9bDLx50gbVDipfaqmgBMM12qldM+AN9K390jGjbe4Xm+63X/EEbzeV/WN8f3N+2cQHhjzrZ/l7+h7b/wNIr0tbVn/bfD9p15f+Gaf5xpTY2Njb/5XTIwHr6mQMtJvy6LnPeRUPRNCkWLAxD4eTT+uN0KrFUGl2XOWR6EV26JseM9FWHRH5+PPMWdIvVKUkCmiZz2pkDLGkvmq5w4cVD27V90SXDLSb8hqFw9vmDcDjkWO6obsgcdWxvUlIMFDU67Jom039gOiNH5aBp0f4oikhCgsbCE3uhN9cpigKqQ+KkC/qjtWpH02WOu6yvxYTfYUgccWlv1FZj4TBkJp/VGdUpx1JpFF2ix6FZJHZxIzmi/ZEcIvEFLrIPKURqtl9EFJAcMs5xE6Kq4GYEVcUYYnsF29jY/B8w/4TPQUiHFC+NGJXDq28s4O47lxEMhjn9rIHMndedcePyuf7ar6iq8jNvQTfOPHsQZ509mGuu/IIdO2oYNSaXa64bg98f4h/XfMUvq0vp2SuVm28bH90/vfV7vvx8O9k5cdxy23iyczykp7tYsngdnjgH110/hr790snMdPPQgz8jCgIXXDyMyVMK6dU7ldtu/o7GxiDHHt+bY47rw9x53fnHVV9RureBKdMKueiy4dRU+7n2ii/ZuKGSwUMzue6msQgC3PyPb/jxhxI6d0nkptvHk5RskJnj5tN3t5Cc5uTqW0ZT1DWRlHQnS57+HYcmcc7VQxk0MpO8oniev2014ZDJYef0ZPz8QgaMzeK5q1dSV9XE2MMLmH1ud2rO6cGSi3+hYkcj3canMvuGXoT9ET6/8hdKf6kmtU88k27vh2pIrHtwBWXf78bIctP3ihHoGS6UBA/e5T8iGk7i5sxHSUv/q18FGxubDsPBm3d6oOmQgRWgX/90Fh7di3AowvDhOQAUdUrg8IU9qa1tYsy4PARBID3DxWFH9KC4uJ6BgzJQVQlVlZh/WHd69EyhS9fEmAn/rNldyMhwkZ7uIis7anA/cXIhkiTicql06ZoEwJChWRxV5UMQBAYMzACgR88UjjiqJz5viLHj8hEEgdy8OBYs7E55uZcRI3OQJJHEJJ15R3Rn+7YaevdOjc2IZ8/vRn5RAnn5cSSnGAiCwKSZhRjxComJOrmFcQAMHZON1x/Eocl065MMQJf+yRxyTBci4Qh9RkaDXXYXDxOPKqKxNkjfCekIgkBchs6Io/KoLvaSPzQJWZWQVYk+C3PI7uchoUscWlx0VppzSD6uLA0txYWe7kIQBIw+PVFdYQTNQEm3g6qNjY3NH9EhxUtlpQ2MGvYs9Q0BME1kReLDT47ijFPfZ/u2mqg9oACLX5vPE4+u4qsvdxCOmAjA7XdNYteuWh59aAUR00QUBE44qS99+6VzwbkfA9Gl1+Ejsrno0uEsmPMapmkiigLZOR6ee3E20ya/TCAQFfwYhswHnxzFEfNfp7zcSyQSdS565/2FXHf1V6z5pTRmV/jE0zP59JNtvPH6+uh1gsCllw9HdcjcfOM3mGbUznDmrC7Mm9eNk499N9af7j2T+ee9Uzhi6muEwyaCIBCfqPHKe/O4YPJHeBuCYIKsijz02UzuP/57yrY1EDGj3/uat8ez/IGtbPpiX3SPWoAFD/TH3FXHmic2QAQQBXqd2ImCITq/3fIFpmkiSCKJA7IYcFlnGl+6ObqvKoqIcSm4T7sLQXX8wROysbHpqPxZ4qU+qcnmh/NnHuhqyXns+f+1v4Ig5AOPAMOBJuB14ALTNEOCIEwEHgZygZ+AE0zT3Pmf9KlDBtYLz/+E559ZQ6jZjk8QoEvXJHbtrLWofVNSDbyNQRobW1S4iiIiigJNrRS3+/dbW5c5XQpxcRp7SupjZZomUViUwIb1lbFgKUkC3Xsks2ljJYFW3r55+XFUlHstbbtcCuGIaVEKK4oIAhZfYMNQ0BTJokg2nAr5aXHs3FpruXdYtyxKfq+NKYD3j0Xtdh+BVr7CGWkGnnqBpoZWqmBVoDAuRLiVX7CkieRnVWC2sn2UDIVh89YieMtbHoKsoE86FsfwQ7Gxsfn78DcNrB8C+4AzgHhgKfAk8DKwFTgFeA+4CRhtmuZ/JCDpkOKlkuL6WFCF6CSqqtKH3x+yXFdX22Qxno9ea7bz9VVVyZLuEr0Qamv8liK/P0xlhc9imB8Om1RUeC1BFaCm2m9J3wFobAyiyFYPX1kWkUSxTZk1RQggFIxQW23tTzAYoabcZ0mrMU2or/RbTPgB/LXBdupjiQhim7GQVQEz/AdS46YG69+hEJGGmvbX2djY2PwRzQYRB/rzL1IALDFN02+aZinwMdATmAf8bprma6Zp+oHrgb6CIPxHx3Z1yMB6yLQii1pX12XGjsuLHSQOoKoig4dmEm4VJERRICvbg6JYg5sgCnTunGgxzY9ETIYNz47NZiG67DtuQl5MrRstU5gwscDSH4dDYuToHEs6iyyL9OmbakmFEYToQQEJbYz9Q2GT/gPTLT8AJElg+NgctNaKZENmyORsi1LYoUv0nZhhUQrLqkjB8GRLmpIgCrhyXYiy9RUwBRFnbjxC65NwIiZidneQWm3JKypyYW9sbGxs/mVM4cB/IFkQhBWtPqf9Qcv3AwsFQTAEQcgCptESXNfEumeajURnsD3/k6/ZIQPriSf345TT+qMoIpIsMGtOVx5/eia33TkRXY+muAwdls1Li+fz4ivzYoGrS9ck3vvoSN776EiyczwIAmRmunnn/YW89d4R9OiZgiBAXJyDZ1+YzfMvzWHk6FxEMZp+c90NY3n0iZksOKwHsiyiKCLHHNebRx6fwcWXDcfhkJAkgYmTCnjm+dk8/Ph0XG4VQYC+/dJ4/a3DeePtw0lNNRAEyC+I58NPj+L9T46iqCgBQYDkZIMlbyzglTcW0G9gOqIo4HQq3PPQVB58bjrjp+YjyQKqKnLGRYP4xxPjmHN6d+TmsRg/v4ArnhnLSXcNwqFLiJJAj5GpXPr6WE5+fSRGggICpHd3c/bS8cx9dxKuLAMEcGYazH17EsOemIerUxIIILsdDLxrOp6jLkbO7xk9Q05W0SYdi1LU769+FWxsbGwqTNMc1OrzxB9c8zXRYFkHFAMrgLcBF1Db5tpa4D86uqtD7rHup3RvPcFgpDlIRmdYFRVeamv95OfHI0nR3w319U2UljaQlxePqkZncj5fkOLiOrKyPLHZZjAYZufOWlJSDOLiokrhcDjCzp01eNwOklOcQHQ5uaS4PhqYs9yxtsv3NdLYGCQ3Ly62BF1T46eiwkt+fjxy8+ywsTHAnj315OTExWbZTU0hdu2qJSPDjcsVVeaGQhF27aghMckgPiHan0jEpGRXHZouk5LmjI1F+Z5GwqEIaTmuWH9qK3x4a0Ok5jtjY+GrC1JX6icp30BuHouQL0TDnkZcGU7k5tlvJBjGv7cGNcmF7IwKlMxImHB1OYJmIDk9/9Yzs7GxObj50/ZYU5LN9+cceKe2vKee+X/2VxAEEdgBPA78k2gwfQbYCDgAxTTNs1pd/ytwvWmab/y7feqQ6TbBYJhjjnyLLz7bjiAI9O6TylvvHc7tt3zPE4+tRJJFUlOdfPjJUSz9dBuXXfIZiiyiqhJvv7+Qykovxx75FgAR0+TZ52eTmxfHrOmv4PWFCAUj3HTrOObM7caMqS9TUlJPOGxy3Il9uemWcSyY8xorV+zBNGHUmFxefnUeF5z7CW+8th5JEigoiOeDT47i2ad/4fZbv0eWRTwelQ8+OYq1a8o48/QPkUQBURRY8uYCZElk/tzXCIcihMMm9z88lWFDs5k7ZTG11U2EQhHOvWQIp587iKOmvsG2TdVEIiZTZxdx15NTuGbh56z4rAQE6NIviXs+nMbL/1jDB49tRJIFEtJ1bvt8Khs/2MsbF6xGlAUUTeLsT8ci1Hr58tQvogNrwtjHxpGY7+CX814h7A9ihiN0OncimVMLqX/6WiJ1lRCJoA6ajDHzlFgQt7GxsTlISQRygIdM02wCmgRBeBa4GXgAOH7/hYIgOIEi4Pf/pMEOOWP9550/cNftP8QUwA6HxIiR2fz04x683qgKd79ad+uWaotSODFJx+8Lxa6D6D6px6NSWtrihasbMt27J7Pml7KYCMkwFEaMzOHbb3fS1CwO0nWZMePy+PbrnXib1b6KIjJwUAZr15TFygQB8vLiKStrsPTH5VKQJJHa2hYFsK7LFGXHs21zdcw1UDdkhg7IZvVPe2MKYt2QmTKmkLVfltLUrABWHCKDR2ex7Ycqmhqj7YiSQOdeCZjr/QRbKYXjUhW6uhsItfYz1iUKutUQrGoZC9Eh02d+Fezb0uKhqDhwzj8XtdeIf/Gp2djYdAT+vBlrivne7AM/Y81/+ul/RRW8DXiClhnrs4AXuADYApwEfADcAIz9r1QF//RjiSU4NTWF+XXtPny+lmAZDpts3lSF1EacU1frb6cUliTYt89rKRMFgQ0bKi3KXq83yNq1ZbGgCuDzhfhldWksgEJUrbvu93LCEatad8eOmnaK5HDYtKT5ACiKxI6tNRYr3lAwwsbfKixpOT5viI2rK2JBFSDYFGH7mpagClFv5X0b6hFl6/cO1zVBm7EQZQjWWMcCUcCs2GU1Jg42ESrZio2NjU0HYB5wCFBONJCGgAtN0ywH5gO3ANXAUGDhf9pYhwys3bsnW9S6siySmxeH3kqZC5Ce7iTSJnVEVSWCIWsgCwQiOF3We00gM9NlUesahkxuXpwlOO73Gm6tSN6vPpYl6/AmJxvt0npap+7sJxgMk5xiWMoUVSIjx21RLjs0icxCN4qjlXpYFkjNc+EwrMpnd4aO2Sb9J6LImG36Ew6YSJp1LDBBcCdhyddRHEhJGe36bmNjY/OHmC1ndxzIz7/UtGn+YprmONM0E0zTTDZN8zDTNPc1/7/PTNPsZpqm3nzNjv/0q3bIwHrZlSPp1DkRl0vF7VZJz3Dx0uJ5jBmTi9MZXdaNi3Pw8pL5nHzaAHRdxuNxYBgKz780l7vunhwr03WZm24dz0uL52E4lWiZIXP0Mb15+dX5xCdoeDwOnE6FocOyeXnxPLKy3LjdKi63Sn5+PIsWz6Vf/zScrmjbSUk6Ly+Zx6w5XZuXmR24XCovvzqPy64YYWn74cem8+QzM9ENGU9ctOz8i4by3GtzcbtVPB4Vw1CYPK2QJ187lMRkHZdHxelS6NY7mX++dgg5neIw3AqGWyE508kNr0+k99h0NKeM4VFwxatc+uZYRp5RhGJIaHEKqlPi+CWjGHrjUCRNQnErSJrE4OuG0Ou2+YiaguRyIGoyGYf2wXPspQi6ExwGqBpyXnfU/uP/6lfBxsamg2ACpikc8M/BSIfcY4XorG7F8j2EwhEGDsrEMBRM02TVylLq6pro2y+NxEQdgPXrytmzp4EePZLJyIyqqHfsqGHL5ioKixIoLEwAolaJv/1WTnq6k569ogd419T4+WV1KU6nysBBGYiigN8fYsXPexAEGDwkC1WVCIcjrPh5L35/kAEDM3C7HZimya9r91FR4aVPn7TYLHTz5ip27qiha9ckcnKjHsDFu+vYsKGC3Ny4mCdxZYWX337ZR0KSTu9+qQiCQGNDgLUrylAdEn0HpyPLIqFghN9+KiMSNukxOBXNkDFNk80rKvHWBug0MAlXQlTZu/f3WmpKfGT2iiMuMzo+9bvqqdtWizvfgyc/qvZtqmygccs+1GQXrqLoWER8jYRLtkRVwZlFCGKH/F1mY2Pz/+DP2mPtnZxivjtrzoGulsJnnzrozmPtkKpggJcX/cpdt/9AKGRy8mn9ueSy4Xzx+Q4uvWgpdXVNzJjZmTvvnsSmjZWcdfqH7CmpZ8jQLB55YgaNDQHOPuNDNqyroHOXRB5/eibx8RqXXvwZ33+3i7Q0Fw89Oo3efVK55aZvefuNDThdKrfdOZFDphXxxGMrefShFQiCwIWXDOXU0wfy3tubuOGar/H5ghxxdC+uu3EMP/+0hwvP/oTKSi/jJuZz70NT2bungbNO+YAd22ro0zeVR56agSSJXHbOp6xZVUZOnocHnppObl4ct13xHV9/uoP4BI2bHpzAkFFZPH3nKt5+fj2qQ+bcG4cyY2EXPn5+E4tuW0MkbDL7zO4cdVkfVn+6h8fPX46vPsSwOTmceu9gytbV8cpJy6kt8VEwMpkjnx5CxBvguwu/pWZzDXGd4hjzwFgc8Qob7lxKzepi1GQXPa+dhrtzEr7PXiHw648IDh1jxgmo3Qb+1a+BjY1NR+Jfd0rq0HTIGeu7b2/ktJPfiwmGDEPhpFP78fQTq2OiJl2XmT6zE0s/2U5dXVRxq6oivfukUb6vMZZCI4oCaelOCgsT+PnnPQSahUQul8qsOV14640NljrPOHMgjz+2KqYqNgyFs88ZxKMPrGi5zpBZeFQvXn3599h1Dk1i9Og8Vq/eS1WlD9OM7g3nF8ZhKApbNlURCkaiBhXxGmNG5PHtZ63Ux4bM0cf35u3nNuBv/t6aLnPqBQN46751NHmj12mGzOzTurH0sc2xMlWXGDUnl7L39uGvi94rqSI5A+PJDFbhLfVihk0ESUBP0SkcEKb2970xv2DJUBl4lkp4/fcQbLZaVFQ8p96InN3p//TsbGxsDm7+1BnrzLkHuloKn3/yoJuxdsjAetThb/D+e5stZalpBpUVPouKV9dlZFmkvpXvriwLOBxyO3N8rzdkERI5XQqC0N6zNyPDxd69Vt/cnCwPe4rrLWXxCRp+fwh/K/WyKILTpVJf11KnpknIphgL6ABuj4rgFQi1EhapDpFUl5OaCqtfcJesRKqLfZaytDQnjWVNFhFvkq6QJqo01bf0x3BE6J4TJNRKQay4ZNLiS6HVWEiGSt9xqxFCVrWwNm4+xpQjsbGx+fvwZwbWd2bMO9DVUvTCEwddYO2Qm2RxcVZvXYjOHGW5vbl+2x8Opkk7c/xQKNIuBQdAc1iVtYoiWjyBIZqfqhuKRa0LoGlyuzoVRbL49UI0FcZsowyORNofFCCJIg7N2h9RBM0ptxsLhyEjt71fk6LqgdbtmEJ7pXA40s6sP3oeXRulsCQjOLS2F9rY2Nj8MeZ/j3ipQwbWiy4dhsulxgKXbsjcdfdkEhL0WEDSdZnb7phIUafEWCqMYSicc/5gps3oFAuQuiEzfkIBl10xIlbmcEjk5sbFvIchumwbH6/xz3snYxgKghANqoahcNe9k3B7HLHgqusyd9w7ibQ0ZywtyDAUrrlhDAMGZcTqNAyFI47uxTEn9Ym1rekyPfukcvmto2Jm/4oqkpiic9V9Y2Im/JIk4HSrXHD/8GhwbX6SDkPmzPuH4EpwICnR/qi6xFF39ye5kwtFi16oOiVGXtSd7Ik5SM2G/ZIukTk6m4KThiM2p9yIqoSWEYcx83hQolaLiBKC7sQxcMKBe6g2NjY2fxM65FIwwLZt1bz43FqCoTCHH9GTPn3TqKzw8tSTq6mq8jF9RifGjsvH5wvy9JOr2bmjlhEjc5gzryumCYteWMvaNWX07JXKcSf0QZJE3ntnI998vYvsHDennDYAp1Pl++928f67m/B4HJx86gBS05ys+72cxS//hiAKHHNcHzp3TqSkuI7nn1mDtzHI7HldGTw0i7q6Jp55fDWlpQ2Mn1TA1GlFBINhnnt6DZs2VDJwUAZHHB09ROGNxetZuXwPRZ0TOe6UvqiqxNef7OCrT3eQnGpw7Ol98MRr/LaijI9f24JDk1hwck8yct2UbK3jw2c2EQ5HmHxkEUV9k6it8PPRYxuprwow9NAc+oxPJ+AL8f0jW6ja6aVodAp9F2RjRky2LN5M5boqErsn0PnILoiSSNkXG6leuQst3UPOYQOQNIXgtt8JrFuOoDvRhk5FdMUd6NfBxsbmL+ZPWwpOSjXfmj7/QFdL50WPHXRLwR1WFRwKRvB6AwRDEQKB6P5kKBTB6w3S2BCIuRmFw9GDxRsbAvj80X3VSMSM2ho2BvF6g0QiJqJo4vOFaPQG8flCseXipqYwjY1BZEWKnQEbDIbxeoMIgkCwue1wyMTnDdLYEIztl4ZDERq9gWh/ms+KjUSi13m9QXy+YCzBOegL09QQpqkx1HzUnUTAH/27yRsi1HzmaqApjLchiBkxY3uwwUCYRm+AUCgSOxc2FIxQ3xikvjFAU1Nz22GTel+ImsYA3v1n15pQXS2wr0xCSBMwI2CKJkGvib8OBCex5WIzGCLiCyIIIcyw1WTDxsbGxiZKh5yxrl9XzoQxL+D1RgOTrss8/dyhnHfOJ9RU+wmFIui6zM23TeDpJ1axdWs1TU1hDEPhuBP7sGtHLV9+uQOfN4SuywwfkU2/Aek89vBKvN4gqkMiJ8fDRZcM45ILl+LzhZAkgbg4jUefmM4Jx72DzxuK7q/qCs+9OJvTT3yfhvoAkYiJrss88Ngh3HjtN5SWNhAMRDAMmYsuH87Sj7exZnUZfn8Iw5CZMasLHoeDd5ZswOcN4dAkuvVKZs6Cbjxw40/4vSFkRSQpReeau8Zyzcmf0+QLIYhgOBXufnEq/zjqC/zeEKYZPY/1hhcncP/pP9BQEyAcMnHoEmf8czDLHtzGvq0NhJoiqE6JsacWwTYv278sI+QNIxsSeSNT6D9JYsfLawj7QoiqhJHlYejVOXjfezaqChZFBM0g8eJ/Inri/5wXw8bG5i/hz5yxvjltwYGuli4vPXrQzVg7ZGA97eT3ePWV3y12Vnl5HvaWNlrUtZ44B5GwSUNDiwpXkgQURcLvb1HC6rpMIBC2iJpcLgXVIVNV2aK4lWWRnFwP27fVWPrTuSiBHdtqLaritDQn9fUBi9m/6pBQZNGiSFZVCT0iWxTATpeCGpYsimLNkEmNN9hX0mKOLwjQrVMSezbXW8YiN99DTYmfUCtf4eR4jfiAjL+hpU5VEsjVZUKtvIYVQ6RX7t42qmCFwVN/QWiqa2lEknBOORxjwoE31baxsfnr+FMD6yGHHehq6fLyIwddYO2Q4qXGxiBtfw/4/WHCIavvbTAYbqeYBdopeEVJaFefCbFl3v2EwxFLQG7ddlvP30Ag3E6RHAqGEdu0LQlCO/WwIAqxZef9RMKm5UcDRBXOTb5wu74H/OF26uNwU3u1rwAIfzAWf0i4zfcOR4gEmv74WhsbG5v/YjpkYD32+D4xxSxE1bXHHN8HtVV6jK7LzJnbDUkSYsFVdUgMGZpFapozlpojSQKJCTpjxuVajP1FUWDBYT0s7WiazHEn9LWk3OiGzPEn940pfaP9kTni6J6WIKVpMofM6ISuK7FAqigi+UXxdOmehKKKsXZVVWLyrEIcekt/JElg1rHdrP3RZWaf2s1iuK8ZMoec2MVizO8wJIYenhftT3OXZIdI3shkXKkOhOZTbwRJQEt0kDQ4C7H5EHSEaKBX+45oUQVHO4+j9+A/fD42NjY2bTHN6AFZB/pzMHJAxEuCIJwDnAD0Bl4xTfOEA1Hv/8Qh0zrx0CPTuP3W7wmFIpx6+gDOPncwEycVcPkln1Fb28Shs7tw483j2LplGOed/RHFxfUMG57NfQ9OxecNcs6ZH/H7b/vo0i2Zhx+dRly8xiUXfMo33+wiI8PF/Q8dQrfuycQnOHjz9Q24XCq33DGB8RPySUtz8tADPyMIcPGlwznmuD707pPGjdd8jc8fZOHRvbjsqpEctrAnl5z/KRXlXiZMLuC2f05kX2kj5535EVu3VNNvQDr3P3IIoihw+Vmf8cuKUvIK4rjz0clk5ri59dJv+eqjHSQk6fzj/rH0G5JOXIKDt55bj+qQOO+GYUycU0hWnofnbllNOGyy4KyeHHZuT4ZMyOKRi36isTbI6Pl5nHzLIMourue505ZTVeyly6gUjntkMKHGEO+e9jP7fq8lpbuHWU8MxoiXWXvzl1T+XIKW6qTv9RNxFyXQ6DZoWrMMQdNxHXosSlbBn/mYbWxsbDokB2SPVRCEeUAEmAro/5fA+u+m2/j9IX74fjehUIThI7Jxux1EIibLfthNbU0Tg4dkkpLqBGDVyr3sKamnd99U8vLiAdi0sZJNGysp6pRA9x4pAOzeVcvaNWWkpbsYOCgDQRCorPCy/KcSXG6VESNzkCSRhoYAy34oRhBg5KgcdF0hGAyz7LtivL4gQ4dlkZCoY5omy38sobLCR78B6WRmRQ8A+O3XfezcXkO3HskUdUoEYMfWGjb8VkFOvoeefaOm9/v2NvLrijLikzQGDI/2p66miV9+2IuqSQwclYmiSjT5Q6z9tpRw2KTPyDQMt0okYvL7t2V464J0HZpMfGrUcH/Hiipqir1k94snOd8FQMWGWqo21ZPY2U1y92gKjbekjpoNFWgpBol90gGINNQR3LkZwaGjFHazTfhtbP6G/Fl7rL0SU803phx+oKul26sPH3R7rAdkxmqa5psAgiAMArIPRJ3/L2pr/UwY8wJ79zQgCOB0Kiz98ljOPetjfl5eEl3yNOG9j45k0QtreXnRb0hy1CLwqWcPpaSknn9c8xWKIhIMRrjq2tF075HMsUe+haKIhEIm8xZ048yzBzF9ystETJNIxKRv33Seem4mk8cvoq62CRNISTb48NOjOebwN9myqRJBEJBlkY+/Oppbb/iOpZ9sQ5IEwmGTV99cwDdf7+She5cjK9FTae66fzKGonDpmUub245wwpn9mDqjEyfPegdRFIiETYaPz+bK20dz7Ng3CDRF91VzCj088s6hXDT5QypLoyIr3aXwyLczefCUZWz8uSK27Hzr0in89OQ2fnxxB6IsEglFOPnl4QR3N/DNdWsRFZFIMMLo63qT209j+YUfI8giZjhC9owu9D69kJpHbgZMiJjI2fnEn3k1gtRhM7ZsbGxs/hQOqCpYEISbgew/e8Z61eWf88Rjq2L5q5Ik0Kt3Kps3V+FtpbjNznZTVeW3KHM1TYqKfloJgRwOEVmWLGpdp1MhNc1pUQDrukz3HsmsXbMvJi5SVZG+fdNYt7Ycf7NhviBA566JlOyut9SZkKjh81n9gx2qhBPF0h9dl0ly61Tua1EkG06ZgrwEtq+vjgmlVE1iQN90tq+uJtgU7Y8oCXTvk0zZhvqYCT9AVq4LdV+YQGNLmaaL5KhmVNjUjOQQ6FJYQ9jX0m9Jlxk2ezPU7m15CIqKe85x6MMnYmNj8/fhz5yxvj75iANdLd2XPHTQzVj/krU8QRBOEwRhhSAIK8rLy//P92/eXBULqhA1gSgpqcfXKoAClJd726lcQyETRbF67qqqHDuZpjVlZY2Wv32+ECXF9RbFbiAQoWR3fSyoQnSTvnRvA6GwdWe9usqP2sbDV5bEdmpdWRGprrSa7QeDEcr3NFrUxwF/mH07G2NBFaLq4YriRktQBWjY14TQVn0ciiC17Y9DJNzUZiwEAbOx2loWDBCu3IeNjY3Nv8aB9wnusF7BgiB8JQiC+T98vvt3GjVN8wnTNAeZpjkoJSXl/3z/yFE5GK3UsQ6HRP/+aeh6i1pXkgS690hul4KTkNDeOD4SMcnIdLUr69kzxWLsbxgK/Qekx7yHITq7HDA4w6IUVlSR3n3TLGk0oihQ2CmeYNDaH1ERLIpiiLomFXZJsNwvyyLd+yfH1MMQVSR3G5JsUQWrmkSngck4nC11SrJAZs84IiHr6oQjSWuXqhMJC2jJRptCEzEtF8RWP0hUB0qufWScjY2NTVv+18BqmuY40zSF/+Ez6v+PTrblnPOGMG16ZxRFRFWjKTQvvDyXs88bjKKIOBwSRUUJvPr6Au59cCoOh4SmyaSkGrzzwUIWvz4ft0dF02ScToVFi+fx9ntHkJ7hQtNkVFXi9rsmsfi1+XTpmoTDIaEoIief1p/nX5rDyNE5qGq0bOLkAp5bNJuFR/dEbm67Z69UFr06j6uvH42iimiaTFa2m9ffOZwnnz8U3ZDRNJn4BI3X3z2cRe/PJyFRQ9Oi5fc+PZUn355FVp4bhyYhKyJnXzWEe1+dRvf+KSgOEVkROeTwztz88iRGTM9FVkQUVaTnsFSue3U8s8/rhqQIKJpIZicPV749jqMeGYjsEFF0CU+axnmfjmP+66NR3TKyJqG4ZOa+OoqRT8/BkWIgOiRERaT3VaNJOu1CpNSM6Ck3ooQ+cjJq74Nq9cXGxuYg579lxnqgVMEyUSHUP4iKl04FQqZptl9fbcO/qwoGqCj3EgyFSU93ITQnq9bVNVFd7Sc31xMr8/mClO5tIDcvDkmK/pYIBsPs3lVLdo4HVY3O7sLhCLt21pKW7sQwojmbpmlSXFyHx+MgLq5ltltW2oAoCjHlMUBNtY+GxiBZWe5Y242NASrKveTkxsVmoE1NIUqK68jNi4/NiEOhCMU760jPcqI1nywTiZjs2VVHfJKOy93Sn/I9jai6RHyiHmu7utxHOBghKcNoabsuQEN1E6m5LeMT8IWo3eMjKd+J2DwW4WCE2l2NeHIM5Ob8VTMcobGkHi3VQG7uj2maRKorQDOQjJbvbWNj8/fhz9tjTTOXTFx4oKul5+sPHHR7rAdK0nkN0aC6n2OAG4DrD1D9FiIRk0su/JRnn/kFTJhxaGeefm4WTz2xmn9c8xXhcIQBAzNY8sYClv1QzKknv4fPGyIvP4433jmc2pomjpj/OhUVXhISNF5ZMp/0TBfzZy9h65ZqNE3mkSemM2FiAUce9gY/LitGFAWuvm40554/hNNP+YC33lgPwNHH9ua+B6dyx83fc98/f8I0TUaPzePFJXN5980NXHzeUoLBMN26J7PkncPYsqmK4458i/q6AGnpTpa8cxiqJHHirLcpLWnA6VZ4cNF0evRJ4ZTZ77Lh1wpkWeTae8cy+8iuXLzwY75fuhtBgOPO78v5Nw/n7vO/552nN2CaMHZ2Pje+OIF3HlnP01etJBI26To4mZvfmcTmb8p58vgfCXhDpBS6uOjDcQQrA7w891u8FU3oiQ6OemsUCVkqX53wIfU765AcEsPuGkf2+HQqH72PwLYtIAp4Dp2Pe8qMP+Px2tjY/B0xgYN0hnmg6ZBewU88tpLrrv4qpvbVNJkphxSy9NNt+LzRSbKiiAwclMGaX8piwiRBgKwsN/X1AWprW+z43G41pgDeLw7SdZkhQ7NY9sPu2IkxhiFzyPROfPTBllidhqEwc2ZnPnpvS6w/DofE6HG5fP/N7th1kiTQtXsSO7bXWpTLiUkaiZJORZk3VqYbMl26JrPh13LCzfuimi4zdkIuP35WTFOzUEozZKbOKuK7d3bhb/7eDl1izLQ8Vn+0JyZgkhWR3kNTqf25noCvRbmclGuQUBemqbalPw6PTK/eARqL62N+wZImM+bkSsI7N8asDQVVJfHUc9B69v0/PTsbG5uDmz9rxtozIc1cMuGoA10tvd6876CbsXbIDP/Plm63pNBEzSKKLWkswWCE1atKLeIj04TS0gaL2f5+WgdViIqNVvy8JxZUAbzeEN9/u9uiIPZ6g3z3zS5Lf5qawvz8Y4lFGBQOm6z7rSKqAm5FkzdMfa3Vc1eWRTasbQmq0fsjrP6hNBZUAfzeEKu+3hsLqhD1Dl77bSlNrYz1Q8EI21dUIcotvxZNExpKfJhtPI4FTEtQBRBECO3aavELNgMBmjZvxMbGxsbGSocMrLm5HpRWaSKiKJCaYqC1UdcmJGjtzPFFUSAYtKaiBAJhVNWagoPQXkEcFUA5LSb+siySmu60+AwDJCYZ7cz+PR61XdvBUKRdH0OhCO44h6VMUUQSknXLoQKKKpKYpiO3GYuEVN3iMwxgJCjtfDVNSSAcsBaGAhFEpf1rIehW1TSKghSf0O46Gxsbm/+J/xbxUocMrFdePYrUNCcul4LTpRAX5+DZRXPo3j0Fp0vB6VQwDIVnXpjFtOmdcDqjZbou88Aj07jk8hEYRst155w3mMeemoGuR1XCTpfC+PH5PLdoduxvp0uhc+dEnls0m/gELdZ2crLBsy/MJjcvDpdLxelScLlVnlk0i8FDs2L90XWZJ56fxTEn9MFwKhjNZf+4dSzX/nMsmi7Hymct7MY9L0xFM5rLXAo9B6Rx98tTcXpUDFe0LD3HzW2vTCYxVUd3KeguGXe8yvWLJ5DXPR7dJaO7ZDSnzCUvj6HvjEwcLhmHU0LVJY57cgijL++OYkgoThnFkBh+YTeG3TkOSZORDBnZkEkfk0PyaWcgOBzNHw0lLRPnyLF/9atgY2Njc9DRIfdYAerrm1j6yTZCoQgTJhaQnGIQDIb59OOt1NY1MXJUDnl58ZimyVdf7mRPSR39+qfTs1fUh/fn5XvYuKGCzp0TGTo86sK4YX0FK1fsIS3dxcRJBQiCwO5dtXz33W5cToWp0zqhqhJVVT4+X7odQYDJUwuJi9Pw+YIs/XgbPl+IMeNyych0Ew5H+HzpdirLvQwelkWnzlFf4O+/3c2ObdX07J1KvwFRH97ff9nHujXl5OR7GDomG0EQ2LmlhpXL9hKfqDH2kDwkSaSitJEfvyhGdUiMnpaHbig01gf44aPdRMImQydnE5+sEQpGWP7Rbhprg/QenUZ6vhvTNFn3WSnVJT7yByWS3SsegN0/VlCxoY7krh5yhicDULupisq15eipBumjo/0JVVUS2LQeQdPRevVFkG07Qxubvxt/2h5rfJq5eNzRB7pa+rxz70G3x9ph/2X84ftiHn7wZ0KhCKFQhKOO6c3vv5Xz6MMrqKryU1Jcx8WXjqB4dx2PPbKCnTtqGT0mlxtvGYffH+apx1exZk0ZPXqm0KlzIi63ygvPreHLL3aQle2hsCiBgoJ43nxjA0sW/44nzkF6hpvBQzL54vPtPPzgcgQhau4w49AurFq5l4cf+pnGxiA1tT5OO2MgWzZX8cjDP1NW2sjUzUVcfe1oqip9PP7YSjZtrGTQ4Axuu3Mioijw1JOrWf5jMYWdEsntFE9qmpPFL/3Gx+9vITnVID3PRfeeyXzw3mZefHoNuq6gJSiMmZDH8m9LePzBlYRDEXyREHOO7sbmNZW8/MCvNNQ0MWFPIcdc2o/KXY188uAmync20n1cGgvv6EfYF2b5o1soXVNDWu84krq4cbhldryxjn3LijHSXbjzPTiz3fhW/ohvxTJEw0CKj0fNL/qrXwMbG5sOw8G7dHug6ZAz1q+/2sHh815vpcyVufyqUdxx2/cxxa1hKBx3fB9ef3091VU+wmETTZMZPSaHPSUNbN5cSSAQQVUl8vLj6NY9mc8+jc44RVEgLs7BcSf04cnHV+H1tiiAr7luFDfd8G2sbV2X+ceNY7nhuq8t/Tn3gqE8+tDP1NcHMM3odbNmd+WHH3azd08DoVAEh0OiV+9UdFVm1cq9NPnDyHI0N3bKlELeXrIBnzcUPWjApXL2hYN54J8/xZTPui5z3U1jufeaH2PCLd2QueDqYbx08xr8jdEyzZCZc3I31i/aS2N1gEjYRNEleoxPRd/tp3JzPeHmvdXEIicDx8C+73cR9odBFFA9DkZd4sK/7DPM5sPNBdVB8qXXo2Rk/SeP38bG5iDjz5uxppuvjD3wM9a+795z0M1YO2RgPe6ot3j7LasiNSPDRXm51+LjaxgykiRSXx+IlUmSgMMhW1S8TqeMzxe2iIicTgVJEqmra1HsCgJkZrkpKa63tJ2T62H3rjpLWWKijs8XtCiIJUnAMBRLfxwOCTEiWLyP3W6VSFOEYCthkcMh4fY4qChvScsB6JKbROnOBktZQUYc/tKgRf2c7NRINTX89a0OAJAE8g2ZYCtjfodLomvGPosqWDYUBo1fhRBo1bYg4DpkNp4Z87Cxsfn78GcG1pfHHHOgq6Xfe3cfdIG1Q4qX5DYm+gCSJNL2eFBJEtt54ULUQag1EROL2haif7dV9YqiYEnfifVHFtvdL0lC+zpFoV3bpmn+QRkWn+D997btjyBEfYDbIslie8N98Q+WYMzmTysi/9MPLaHN944O0B9fa2NjY/NfTIcMrOeeP8Riwq/rMtf8YzS6ocSCq2HIXHjJMJKTddRm43rDUDhiYU8GDsqMGd9rmkSvXqmccFLfmJG+oojExWlcesWIWDuiKOB0Klx93WiLab6uy1x73WgMpxILpLohc+XVo3C6VOTmwGcYCmeePZD8gvhYao6uy4yfWMAhMzrF6lQdElnZbs48f3CsP/tnupdeO9LatqFw0fXD0VqNhabLnPGPwWiGHIuFmiGz4IreuJMcyM1joRoSQ47LJ3NgInJzao6siaT3TiD/sO5Ize0IsogS58A1dRaCGrVVRBAQVAfGkJH/1vOzsbH578PkvyfdpkOKl/oPSOfDT4/mwfuXEwyEOeX0AYwbn8+IUTncedv3VFb6mDe/O0cc2ZOTTunP7bd8x/btNYwdm8eZ5wwiGIxw950/sHp1Kb37pHHZFSNwOGS6dE3ii893kJsbx5VXjyI5xSAzy82SxeuIi3Nw6RUj6NQpkexsD088uhJBFDj73MEMGZpFz96p3Hv3jzTUBzjmuD5Mn9mZmbO6cNst37F3bwPTphdxwkn9aGwMcvut37FhfQVDhmZx4cXDEASBB+/9iWXfF9OlaxKXXT0St1slNz+Oj9/bQmq6k4uvGkFmtpuMLDcvPbsWXZc5++Ih9OydSn5hAk/ft4pwMMLRZ/Rh+PgcBo3M5LlbV1Nb6WfS4UVMObITc07pxpvX/0r59kZ6TEhj6nldCAdNvr19HXtWVpPRP54xV/ZAdkh4ihLZ98NujCwPPc4ZjCNRR0mKbxYvOXEfMhs5MfmvfhVsbGxsDjo6ZGAFyMx0M3BQBuGQSU5uHABJSTr9B2RQW+unS9ckILpf2bd/OskpBj17pzYvGQv06ZuGokp07pyEpskIgkDPXqk0NARJT3fiaTZo6NQpkcFDMnG5VFJSosep5eR6GDQ4M2aRCJCa5qL/gAx83iAFhfEAxCdo9OufTnaOl+7dUxCE6Myzb990PB4Hvfukxc6G7dUnNfpd8uJwOhUEQaBrj2TK93lJTNSIT4yaVeTlxTFocCYOh0x6etS0IT3TSf9B6YTDJlm5nmjbKRpdByTTWB8gt0t0fDS3Qs6ABIw0B1l94hAlEUE0SeqTQEgWSermQdYkBEHA3TkFf10EPdVAdkVnqmJiFqT2BENDcHr+1OdrY2Pz9+NgnWEeaDqkeGnXzlpGDX8WrzeIGTFRVYk33zmc0095n7KyxpiT0pPPHMqjD69g9apS/P4gmqZw2ZUj2LGjltcW/47PF0TXFQ6d3YX+A9K5/rqvafKH0TSZHr1SuPTyEZxwzNsEAmEURSIpWee5F2czd9YSmvxRta6mK7z17hEcefgb1Nb6CQUjqA6JxUvmc/WVX7B1azVN/jAOTeKuuyfx8Ydb+eKLHfh9QTRd4ZRT+6OpMo8+uCLaR11h5KgcDjuiB5ee/Wm0bVUiNy+O2++bxAlzo/2RJRGXW+X5t+Zw+sz38HmDmGZ0KfnJd2dx84lfU1nmJRSIIKsiN7wwgc/v28y2VVUEfCFUTeLwf/TBt7GRVa/sIugLo+gS/Rbk0H+0wS93rSDcFEJyyCR0T2TE1YXsvf9ZzFAYQZaQPC4K7roSydD/9wdmY2PTYfizxEs94tLNRaOOP9DVMvDDOw868VKHDKznnPkhi1741aLiLeqUQElxPX5/i+o1MVEjEAjT0NCiAJZlAUkSaWpqUcJqmkQ4bFoOIXe6FFxOlbKyxliZ6pDIz49n86bKmChKFAW6dk1i8+YqiyI5K9tNTbWfxlaG+7oenRm3ViQrioBoioRat+1UcIgSDa3Uw4ahkJbsonhni/pYkgV6dk5m54YaIq2cCbt0TqR6l59AK1/htCQDt0/G39AyPqoskCmqhPwtNyu6SL+MOsxW30V2yvQfsRWzvjZWJsgyyQtnknToRGxsbP4+2IH1P6dDipcqKnzt/HXr6posKSsQNcgX2kpzweKtu//vPzLmb2gMWP4OBsLU1fktSuNIxKSm1m8JqgCNDQHCYWuZvynUTlUsyxJSG8WuJAn4fEFLWSgUtgRagHDIpKE2YAmqAI11QYJNbfyQveH2KuUISO3GQmhnzA9gNvmtf4dCRBq87a6zsbGx+WMOvHDpYF1a7pCBde68bjHFLEQVwDNmdrYY4Ts0iXHj8y0BWJYFOndJwuVUY0FGEMDhkOnbL81i7G9GYOKkQjStleJWk5l5aBeLItkwFGbN7mpR62q6zJRDiixBXVVFhg3PtgQ3URRIStbJzHJbUmlMYMToHNRW30eSRCZNL7AcNKAbMpPndkJvrQo2ZMbMzEfVWu5VNYm+EzMsPwgkWSC9ZxyqIbX0SSC69NsjCaF1Gk8EjN49EJSWMRdUBWe/7tjY2NjYWOmQgfXwhT244qqRJCRoeDwOTjy5P/c+MJXHnppBapoTp1Nh2vTOPPvibN5+7wjyC+IxDIUhQ7N494OFfPTZ0VHHI12me48UPl56NG+8fTgjRuZgGAo5uR5ef/swnnxmJrNmd4kJlx54eBr/vHcKZ5w1CE+cg7h4BxdePIw7757EHf+cRFKSjsutctjhPXjk8Rm89Oo8MrPcGE6FsePzefX1BXzwyVF07pKIrsv065/Gx0uP4d1PjqT/wAx0Q6aoUwLvfLSQZ1+dw7hJ+RhOhfQMF0+8NIu7HpvCgmN64HKrJCRpXHXraK65ewxnXj0ET4IDl0flyNN6cc3DY7n26XEkpunoLpnRh+Zx/UsTuObDCaTmu3AYEl1HpHDtJxM595uJZPSJQzEkMnrFcc7XE5j4wiGkDklH0mWc2S7GP38I2Rccg3tIHwTNgRTnJv30ozC6d/qrXwUbG5uOREQ48J+DkA65xwrRJdiNGyoIhSJ0654cU9du3VpNbY2fbt2TY7PakuI69u5toFPnROLjo+rainIvO3bUkJcXR0qqE4guJ2/eVEVqqhFTGvt8QTasr8TlVunUKSFqRh+KsGF9BYIA3bonNxtRmGzeVIXXG6R7j2QcjugscufOGirKfXTtloSrWV1bVtrA7t11FBQmkJQUFf9UV/nYtrWazCw3GZlRpXFjY4DNG6qIT9DIb1YaBwJhNq2rxOGQ6NQtEUEQiERMtqyrIhKOUNQjEUWRME2T3VtqaawPUtAtHq15LCqLG6na4yOzqwdnXLQ/9eV+Krc3kpTvxJ0aHZ9AXYDarbXoqTqurKj6ONIUxLdzH5LhwJGV9IfL7DY2Nh2bP2+PNcN8YdiJB7paBn9620G3x9oh0238/hCzZixm7S9lCAJk53j4aOnRXH35F7z11gYUWUTXZT767BjefWsDd9z2PaoqETHhtTcXsK+skTNO/QBFEQkEItz/8FQKCxOZP/tVAAKBCOddMISjj+vD1ImLaGwIEApFOGR6J+578BBmTHmJ7dtrgGhgffv9IzjlhPf45pudSKJIQqLG0i+O5cH7f+LpJ39BUUUkUeS9jxay4uc9XHnZF6iqSChk8tyLs1EVieMWvoUoRa0Nr795HGPG5TFvymJCoai14cLjenHRlcOZO/5VKsu9RCImg0dk8fgrMzn90PfYsKYcQRTIyHHz4hfzuOfiH/jirW3IsojDkHnqi9ksX7KbN279DUWN/hC48r0JeEv8vHjSciRFIBw0OfrJQeR10fnkqKUARAIR+pzTmx5H57LugqcI+wMQjhA/vBudrjoMoa3dlY2Njc1/OR1yxnrzjd/wwL3LYwpgVRUZMDCDX9fui6lwBQE6dUqguLje4tfrdquEQhFLmUOTcBoKVVUtAh3DUMjLj2PjhsrYPq3hVOg/IJ2fl+8h0CwO0jSJIUOz+Hn5nlidkiTQq09qdAbbShWckemiutofM8yHqFJYFkTLdbouk5nisvgPG06Fnt1T+G31PkKhaH80XWbE0CzWLiujqVkBrKgi/QdnsO2XKnzNJvyCKNC5cwLCjjBN3hZRk9OjEN8kEfS1lCm6yKDcIIGaFo9k2ZDpO7aGpuJ97N+oFTWF/PNnkTK5///6vGxsbDoOf9aMtbsnw3xh2EkHulqGLL31oJuxdsjpxppfyixpNYFAhC2bqyxpLKYJu3bVIbVR4fp8ISTJWqYqEjWtAglEA/POnbUW8ZO3McjmTVWxoArg94fZuLHSEqjDYZPtW6vbqYL37mlAbaPCFYBIG0WyrIjsKbEa/QcDYbZvqYkFVQC/L8TWDdWxoBq9LsLOTTWxoApgRkzKdzQitPEaDnnDiG28hhVVJFhnVR8jQKCsmtbqp4g/iG/HPmxsbGxsrHTIwNqvf7pFrauqIp07J6K3UgoLAuTmxRFukwaj63K7gBcMholP0Cxlpgn5+fEWM3zDUOjcJdGi1nVoEl27JlmUuZIkUFiUiNRmmTQj02XJlYWoArituX4wGCEz220pU1SJgk7xMe9hiM5Yi7on4tClVteJ5HWJR3e29EcQBVLynZhtA7hTIhKylgUDERSPaikjAmp6IrQaC1FT0PNTsbGxsflXMc0D/zkY6ZCB9eJLhzNgYAaGoeB0KhQWJfDya/OZO68bmibjdqukpjpZ/PoCLr9yZPORayout8prbx7GY0/NRNdl3B4VTZN54JFpLHljAR6PA7dHxaFJnHvBEBa/Pp+0dCdud/S6aTM68fKr8+naJQmnU8EwFHr3TuOlV+cxdmweui7jcqlkZ3tY/Np8TjylHw4t2nZCgsZrbx7GbXdOjPbRo2IYCi+8NIcXX52L06nE2r7hlnG8+OY8EptVxg5NYuGxvXj6tdlk5XpwuhR0XWboqCweXjKDnv1T0Q0Zw6mQ1yme+16fxoS5hdElbrdCUqrO7W9OYd6VvVA0Ed2joHsUrnh3PMc+OwRFl9A8MooucfRTg5myaBKKW0FxK0gOid5n96LbzUehJLgQDQeCKhM/vBvJE/v+1a+CjY1NB+K/JY+1Q+6xQlQVvGljZUwVvN94Ydu2aupqm+jaLQldj85g95TUU1raQFGnBOLiojPTygovO3bUkpcXR3KzB3B9/X5VsJPsnKgXrt8fYuOGCpwulaKiqCo4HN6vChbo1j0Zsfk4uC1bqvF5g3TtlhRTBe/aWUtlpY/OXRJjquB9ZY3NquB4EhOjquCaan9MFZyeEVXhNjYG2LKxioREndz8qEo5EAizZUMVqipR1DUhpgreur6KSNikqEdibCyKt9bSUBcgv1tCLP+1ssRL9V4fGZ3dMVVwQ0UTFdsboqrglGZVcH2A2q11GKk6zsyoajoSCOLbWR5VBWcm2qpgG5u/IX/mHutzQ04+0NUy7PNbDro91g6pCjZNk/vu+ZH77v6JcDjCMcf34dbbJ/DO2xu59KKlNDYEmTylkEefnMGva8o47ZT32VfWSL/+6Ty/aA71DQGOP/pttm6pIi8/nucXzSYlxckJx77Nz8v3kJRs8NiTMxg8JJNzzviIDz7YjKEr3HL7BI44sic3XPc1zzz1Cwhw9rmDueKqkTz79C/ceP03NPlDzJ3XjfseOoSvvtzBuWd+RE2Nn5Gjc3n6uVns2lnDSce9S3FxHV27JfHCy3ORRJETj36b338rJyPTxVPPz6JT50TOOvF9vvtqF544B3c+OIWJUwu46sLPePPV9aiqxCXXjOTkM/vz+D9X8NTdq4iETRac0IMr7hjFp29s4fYLv8PnDTJqah43Pz2RbauquOeE76jZ56fzwCSuWDwWf22QRw7/nrIt9aQWujjz1ZEkpDj46IRvKFtZiZ6kMfmx4WQMSmLtDZ+w7+ttSLpMt4vGkT2zx1/9KtjY2HQYDt4Z5oGmQ85YF7/8Gxec+0lMrGQYMocd3oMlr66LiYgcjqjz0nff7oophWVZoFPnJKoqfZSXN2I2H3CekKiTm+vht1/LY9aEhqEwcXIBSz/ZFhNK6brMUcf04pWXfm/VtsIxx/XmxefXxtrWdZmZs7rw/rubYmVR5XIm69eVU1sbFUqJokBmpguHLLN7V23MVtHtVhk8MJPlP5TEbBo1XWbW/K6898bGlnYMmeNP6Mdbz67H520pm31kNz5+aXNMfaxqEqMn5lL8RQ3+ZlGTJAvkdItDKg1RX94U3asQwJXkYHhXB1XramL7r7IhM/gIg8ofthFp7o+oyQx5ZD6JA7L/T8/Oxsbm4ObPm7Fmms8OPvAz1uFf3HzQzVg7ZGBduOB1Pvxgi6UsJdWgssJr8c3VNAlFkahv5bErywIOTaaxlTG/y63gbQxZFMBOV3QZufV1ggBp6U5K97YY80NUlLR3T4OlLD7egd8fwt9KsSuI4HY5qKtrUSDruowQxnIogMejEvSGCbcSFqmqiNOlUl1l9ewtzEygosTq2Zue6qR2n9XTOFHXSBV1fPWtTPhFgTRNsxjz626J7mLQ4hesuGQKcvYR8Vv9i4tOHkrXc0dhY2Pz9+HPDKzPDDrlQFfLiC9vOugCa4cULyWnGO2UtB6PA1W1rmwbhkLkD344hIJtVcGRdvVhgstpVccqqoTHo7Xz+42P09qZ6ztdaru0Hs0htzPrD4XC7Q4UCIfN2P7wfmRZwu12WMokWcQTp9LWo8EVp1qUywAOQ26noDNF2qmmQyEToe1bYYKkW8dCVCWUOA0bGxsbGysdMrBefuXIaCB1SCiKiNOp8Mhj08nMdEUNF2QBXZd58JFpDBiQgeFUkKToIeP/uGEsRx/bG6dTQRQFnE6FefO7c+sdE9ANOXZdz14pPPjotOb6RDRNJjXVycOPT8fpUlFVEVWVcLlVHn5iOknJOpoWvVY3ZB55fDpFRQkYRrRtXZe5+74pTJxUgLNVf846ZwgXXDIsdp3hVBg5Jpc7H5yErkf7oxsyOfke7n1iKoahICsiDk0iIUHjrien4I5rGQvDpXDLkxNJyXDi0CUkWcChy1zx2Gg69U/C4ZQRJXAYEsfeOoARxxbgcMoIIjicMkOOyGPUzQOQdQlBAtmQSO4VT5/rJyNqMoIkIDpkHMlOcub2/qtfBRsbmw5CND3GVgX//8K/qwou3dvAG6+vJxyKMHN2FwoLE2hoCLD45d+oq21i/MQC+g9IJxSKsOTV39lTUs+gwZmMG5+PaZp88N5m1q+voEuXRGbN6YogCHz37S5+XFZMerqLI47siaJI/Lq2jM8+3Y7TpXDEkT2Ji9PYubOGd9/aiCAIzFvQncwsN1VVPpYs/h2/L8Qh0zvRrXsyfn+IV1/5nYoKL6NG5TB0eDaRiMmbr69n+/YaevdJ5ZBpUSP7zz7dxi+rSsnLj2feYd2QJJGVy/fw3Ve7SEjUOezoHui6wuaNlXz6wVZUh8S8I7qTlGywb28jHyzZRDhsMmVOEbmFcTTWB3j/5U3U1zYxYnIuPfqnEA5F+Orl7VSWeOk6NJm+EzIwTZNVbxezZ10dGd08DJyXjSAIFH9byt6fKnBm6HQ9vABJEanbsI/yH7YjOx1kzuiO4nL8L0/Jxsamo/FnLQV3c2eaTw847UBXy6hvbrCXgg8UJSX1/Ly8hJ9+KmFHs29vebmXlT/vZdmyYjZuqACgtraJ1StLWfZ9MWt+KSMcjtDUFOaX1aX8+EMxq1aV4vNF91fXrinjx2XFrFy5l9pmJ6ZNmypZtqyYlT/vZd++6F7mrp21/PRTCct/KmH37qjtYOneBlb8vIdly4rZsrkKiBrrr/h5D8t+2M2vv+7DNE0aGwOsXhVte83qMgKBMMFgmF9+KY22s2oPDQ0BTNPkt9/38d2Pu1m+soTKCh8AW7ZW8+2y3SxbXsKePVF3ppLiOn76qYQffyxmZ/NYVOzzsnx5CcuWFbNpfXQsGmoDrFlZyk8/FLNuTTnhcIRgU4R1qypY+cNefl9VTpMvujS9ZWUtq76s4vfvq/HVRPeoS39vZP2njWz+qpHGMqtTlY2NjY1NlA45Y121ci/TprzUooTVZe65fypXXPoZ9fVNRCLR/dWLLxvOC8+tYe+eegKBCIYhM3tuV3btqmPlz3vx+0NomkyvPqn06Z3K4ld+w+sNoSgiqalOzjxnELfe9B1ebzC2bHz3/VM4/+yPLQrgBx+Zxvnnfoy3MYhpRlXKN906nttv+Z7qah+hkIlhKJx0Sj++/GIHWzZX0dQURtdlRo/JxeGQ+Gzpdny+EKoqkV8Qz8xZnXns4ZV4vUEkSSAuTuP6m8Zy+SWfxdo2nAqPPDydy89YGhsLTZe57YGJ3HTJ1zTWB4lETHRD5pwrh/D5E1up2OMlFIygGTITFhRQt8XPlhWVBPxhVE2ioF8Cg3ulsGLRToLeMJIi4E7XOPSSIlbcsYaQN4wgguJUOOK7mXhyXQfwbbCxsfmr+TNnrE/1P/1AV8vob68/6GasHTKwnnT8u7y+ZJ2lLDvbzb59jQQCLWIcl1sFExoaWlTBkiSgqpLF29cwZJqawrF0FwCXS0GWJWpq/JZ7s7I97NpZa2k7vyCOnTtqLeKg5BQDb2MAr7elHVkR0RwSDa2UxqoqYppYrA5dLpVgMGxRCmuaTFy8g7LSFkWyIED3vGSKt7WY9QPk5HioKPVaRFrJbp34sANvq7ZlUSBF1S3G/A5DJscnW+wPHS6ZoqQQwdqWcRRkgcGX9WHwpX2wsbH5+2AH1v+cDrkUHAqG25WFw6Yl1Qaaze3/YG+7rWOQIAjtFbPQTq0biZjtfIb3t932/kikfZkZMdu3LQp/0J/2HpgmZjuzftPkf+hPxJIus7/ttggI8Adt/5EB5x/VFwm1b9vGxsbmjznwwqX/i3hJEISFgiCsFwShURCErYIgjG4unygIwgZBELyCIHwpCELef/pNO2RgPeX0Aeh6S2qNbsicec4gHK1STAxD5rgT+qBrciyVRtNkJk4qoLAwHlWNXqsoIplZbmYe2jlWpygKOFSZE0/uGzssHUDXFc4+Z5DFcF/XZc45b4ilP4ahcOrpA1BUKRa3dF3msCN6kJCoozSfcONwSPTuncrgIZk4tGh/ZFnA7XFw5NE9Y+0IQvQEntPOHIjRpu3TLxjUbixOPm8ADs1aNuek7qi6hNg8Fg5dYvAhWaQXuJDVaH9kVSQl10nPWVkoerRMEAUkh0iP4zohGy3jK2synecV/CuPy8bGxgb+QlWwIAiTgTuAEwE3MAbYJghCMvAmcC2QCKwAXv1Pv2qHtDQcMzaPRYvnccdt3xMKhjnjrEEsPKoX4yfkc82VX1Jd7Wfu/G5cePEwzj1/CJdd/Bk7d9YyakwON948Hr8/xBWXfsaaX8ro1SuF2/85GZdL4abrv+GLz3eQne3mjrsnk58fR2qaiyWLf8fjcXDDzeMYNDiTzGwPD963HEEQuOSy4Uyf2Zm+fdO46YZvaGwMcsxxvTn19AEcdngPrrjsc8pKGzhkWhFXXjOaqkofl168lE0bKxk0OJNb75iAKApcfcUX/PRjCZ06J3LnPyeRmuYkM9PD++9tIiXV4LY7JtKtezJpaU6effoXNE3m6utGM2ZsHoWFCdx/64+EQhFOPmcA847qzshxudx2xbfUVPs59PAunHbRIPad28C9F/5A6c4GBozL5IxbBhP0hXnyop/ZtrqKgr6JnHrvYHSnzPtXrWXT52Uk5DqZd39/EvOduNJ1Nr22HUecyvDrB5DYNe6vfhVsbGxs/hVuAG40TfPH5r9LAARBOA343TTN15r/vh6oEAShm2maG/7dxjpkYAUYOiyLM88aRCgUYeKk6MypR88UTj9zILW1UW9eURTIzvFw6hkDKCmuo/+ADDRNRtNkTjqlPxs3VNC5cxJJSVEj/KOP7R0NXuku8vLiEASBOXO7kpik43ap9O4TPSZt7Lh8QsEIgiAwYlQOAP0HpnP6mQPx+oKMG5ePIAgUdUrg1NMHUFnhZeiwLGRZJDXNyamnD2D7tmp69kqNmT6ccFI/Bg7KIDcvjvQMF4IgcNjCHuTmeUhM1OncJQlBEDhkWiccmozmkBk4KAOAwSMyOeGcfoTDJmMmRVcxuvRM4piz+tBQF2DY6GxEUSAt18XcM3tQVtJIz4EpODQZhyZzyGld2LWhlpyucbgTo/0ZdGIBSb3iiM/QSMx3IggCBYfmI3gMHB6FpJ4J//89bBsbmw6PCX9J3qkgCBIwCHhXEIQtgAa8DVwK9ATWxPpomo2CIGxtLv/vCqwV5V5GD3+W2tomTNNEUSQ++eIYzjjlfTZtrASi24SvvbWAp59YzScfbwWi+5733D+FXbvquP+en2L1nX7mAPr0TeOs0z9EEAQEAcaOy+PCS4YxZ2bzqoAABfnxPPfSHKZOWBTzD3a5VD5aejSHz3+d0r31Uf9hUeCDj4/kumu+YsXyPdG2TZPnXpjN0k+38fKi36J9xOSa68agqhLXXf1ldK9VgAWHdWf23G4cc+SbiM1ryX37pXPnPZOYPvklwmETQYDkZIO33j2C+VNfjdokmlF3qHc/X8gFJ33Cts3V0e1S0+SFd+fy1sPr+eGTXbGxuOrhMVRt8fLGPb817zObzDmvB117JvHcKctBjI5Fj0npzL64Gy9O/zo6FIJAQqGLU7+fiKJ3yFfIxsbm70OyIAitFbBPmKb5RKu/0wAFWACMBoLAO8A1gAsob1NfLdHl4n+bDqkKvuTCT3n26V9iSlpRFOjaLYkdO2piaScA6elO6usDMRN+iB4ELgqCRXHrcEgIghALlgBOp0JCgkZxcX2sTNNkOnVOYP26ipiCWJZFevRMZsOGSgKt6iwojGdfWaOlbY9HJRiMWBTJiiKCED1gfD+GoeBwSFRXtyiSnU6FjEw3W7dUxbRFqirRt0cqG36riCmARVGgW7dkdm+ri5nwA+RkeJBrwdfYUuZQJZJMB8GmlrZVh0SaqRL0t5Q5XDKdEh3UF/tiZbIuMeX2vgw9uzM2NjZ/H/4sVXBXV5b5eJ+zDnS1jF92zf+zv4IgJABVwAmmaT7fXDafaGD9BlBM0zyr1fW/AtebpvnGv9unDile2rWrzpKeEomYVJR7LYEEoLrajyhalx7MSHSG2xpVlWKnyLS9vzV+f4jyfV5LWk4oFImm+TRZ76+q9FmuA6ivD7RrW5ZFpDZmv7IsWoz6IZqOU1nhtQh2A4Ew+8oaLWk1kYhJZbmXJr91LOqrmxDajAVhYsKlWNuqSCjQXu3rqwpY/g75wtS1Mf+3sbGx+X/xV4iXTNOsBoqJrka35Xeg7/4/BEFwAkXN5f82HTKwTppc0EatKzNiVE7sMG+IzgQHDMywmN4LAmRkuNsb7gvRGWbrIByJmAwanBlTD0N0JjlqTG4bBbDMmLH5lv44HBJDh2VZMlkkSaBHz5R26TGGIeOJs1oDhkIR+vRNQ5YFy/3DR2S3UT4rjBybY1Epa7rMsNHZ7cai56CU2DFw+8ciKVtHbHNQAAKkFLgsRvxmxCRrSBJSqyCsGBL5Y1KxsbGx6QA8C5wrCEJq8wz2AuB94C2glyAI8wVB0IDrgLX/iXAJOmhgPeW0ARxzXG8kWUCSBKZOK+KpZw/l+hvHoqoSoigwYGAGLy+Zz3MvzsblUhFFgYKCBN796Eje+WAhaWlORFEgOcXgzXeO4O33j6BT50REMWqO//jTM3nxlbkMHpqJKAooisgVV43kiadncujsLkhStO3DjujJY09O59zzh0Rnn5LAqNG5PLdoDvc+MBVNkxFFge49UnjzncN59Y0FxCdoiKJAVrab9z8+ivc/OpKcXA+iKBAX5+ClV+ex5I0F9OqdGk39cUjcefcknnlhNuPG5yNJArIscvqZA3j4qRksPLZXbCymTC/ioedmcNkNI1FVEVEU6DsoncdeO5SbX5iI7ooePpBdFMcjHx/KLR9NIT5NQxAhLkXj5g8nc8mn40nr7I4Z85/6/DCOfG0k2UOTEESQVJHx/+hF50My/upXwcbGpsPwl+ax3gT8DGwC1gOrgVtM0ywH5gO3ANXAUGDhf/xNO+Ie637Ky6PLoPtVtAC1tX5qqvzk5MXFZqBeb4DSvQ3k5sXHjncLBsPs3lVLdk5cbFYaDkfYtbOW1DQnzuYj40zTZPfOOjzxDuLjtVhZWWkDgiiSluaM9ae62kdDfYDsHE+sPw0NTVTs85Gb39Ifvz/InpJ6cnLjYkvDoVCEXTtryMh0x46Mi0RMdu+sJTFZj6mHTdOkpLge3ZBJSjJaxmJfI6GQdSzqapuorfaT1Ry0AXzeIJV7vWTku2PH2gUDYcp2NZKW60RpNRblOxqJz9DQmmfjpmlSvbMRPV5Fj7ceI2djY/P34M/bY802H+119oGulok/XXXQOS91SElnKBTh5BPe5f13NyEIAkOGZvLaW4dxz13LuO+en5AkkZwcD+99dCRffrmDC875OOr161J55/0jqK72s/CwNwiHIoiiwIuvzCU728Oh016hrq6JcNjkzrsnMfPQLhw6/RW2b6shHI5w+pkDufb6MRx52Bt89+1uACZNKeT5RbO57OLPWPTC2ubZaTJvv7+QRS+s5YbrvkaSRJJTDN7/+Eh+/3Ufp5z4HhAVCr3+1uHIssi8Wa/i94cwTXjsyRkMHJzBzKmvUFbWSDgc4aprR3PKaf2Ze+gSfl1bRiRicsSRPbnvwUM47YT3+PC9zdGxGJ7Fq28t4IHbfuTxe1ciSgI5eXEs/ngBP39azJ3nfI8oguFWeeCj6dRVNHHNgs9iY3HTaxNJz3Rxw5TP8NYGiYRNTn5gMMMOzebxSV9Rta0BM2wy8vwuzLijbzvXKBsbG5s/xAQz8t/x70WHnLHed8+P3HbLdzEFsEOTGD06lx++L8brjapwJUmgV+9UNm2stKhwU1IMfL6gxa/X6VSIT9AoaaUA1nWZXr1T+WV1aUwoZRgKY8bm8tWXO2MKYl2XGT8xn6++2BlrW1VFhgzNYtXK0liZ0LyPu3dPg6U/bo+KLIkWoZSuy+TmxbF5U1XMVtEwFAYPyWTZsuKYUMowZCZOLOTLz7ZbxmL8mHxWfrcHb7MCWJIE+vZJo3adjyZfi8gqMU0n0hCxKIU1p0yex0VVSYsCWDUkhvVKZs/K6tg+reqUOOL5YfSel/0vPzcbG5uDnz9txurMNh/pec6BrpZJP1950M1YO+Qe6/ff7bak1TT5w/zySxk+X0uwDIdNNqyvQJKtXzEawKy/mkRRYO+ehnZlv/9eblEfe71BVq8qtaTl+HwhVq3YGwugAIFAhLVr9hFuZV5smrBta007VXCoTfoNgKJIbNlcZfEqDoUirF1TZlEfe70hVv28p91YrF1dFguq+8di+7qadmNRV9leKSyJAjWlVjW0KAqU/lprET8FGsPs/rkSGxsbm3+F/QYR/w0HnXfIwNq5SyJqK3WsJAlkZbXsTe4nJdVoZ1wvywLBNib+gUDI4sG7n9b7pxCdSWZlu2NevxCdnebkxqG18uYVBMjIdCG3UdwmJmrt2g6HI7RdNQgGwzE3qP0oikhGpsuiXHZoEtm5HotyWZIEMrLcFqUwQEKa1u5QAUkR2qXWBAMRFM0a/E0T3OmatT+GRGKBfWScjY3Nv45pHvjPwUiHDKyXXzmS/Px4XC4Vt1slJcXJolfmMnR4Fk6ngsfjwO1ReWnxfI4+tjeGES3TDZlnnp/NzbdNQNdlPB4VXZe59vqxPLdoTvN1KoahMG9Bdxa9Mpe4uGhdTqfCgIEZLFo8l7R0F263isutkp3t4cWX59KjZzIul4Lbo5KQoPPSq/OYckgRhjNap9Op8OIrczn/oqGWtu978BAeeXx6c5kDXZc58+xBLHplHs7m+pxOhXHj83lp8TwSE7Vo2y6Vrl2SeP6VOeTlx7WMRaqTZ16dzcBhmRhOBZdHxe1ReXjJDKYf0xnNkHF6FDRD5qaXJnL67YNx6BJOj4JDlzj5poFcvHg0DkNC9yg4DInRR+Zz3Osj0eIVNI+M6pLJGZzI4BNtE34bGxubtnTIPVaApqYQP3xfTCgUYdjwLNxuB5GIyU/LiqmpbWLw4EySU6Kq2V9Wl7KnpJ5evVPJzYsax2/eVMmmjZV06pxI127JABTvrmPtmjLSM1wMGBhNJams9PHz8hLcbpVhw7ORJJHGxgDLfihGFAVGjMxB02RCoQjLftiN1xtiyNAsEhI0TNPk5+V7qKzw0q9/OhmZUZesdb+Xs2N7DV27J1NUFPXc3b69hvW/l5ObF0ev3tH80LLSBlat3EtiksGQoZkIgkBtrZ+ffixB02SGj8hGUSSamkIs+66YUDjCsBHZuFwqkYjJzz+UUF8boP+QdJKax2LDqgr2lTTQpW8y6c2HlO/aWMOujbVkd44jv3s8ABW7G9m+uoqETINOg5IAaKxoYtdPlWgehbwRSe1zYG1sbDo8f9Yeaxdntvlgt/MOdLUcsuryg26PtUOqggHeeWsjt9/6PaFQhFNPH8A55w3m++92cfnFn1FT28Ss2V246dbxbN1SzaUXLeX/Y++sw+Qos7b/K++qtnHXjMXd3YknxIDg7g6L++IsLO5OCMEhuIYQgiQE4q6TZDLuPdNa3x896Zmayb4vuwvfkn37vq75IydVdU6derpPP/Xc5372FdcxZGgGDzx8FE2eANf85Us2rC+nsHM8jz4+hZhYG7fdvIxly/aQmurgwUcm0aVrIg/e/wNvvbkJp0Pl9rvHMXZcDgtfXsejD69EEAQuv3IIJ57ck88+2cFNNyylqSnAcQu6c831w1n9cwlXXPo5FeWNjJvQiXv+Np6DBxu58vLP2bm9ml69k3nk8SmIksAN13zFz6tKyMmN4eHHJ5OR4eKuO77j0092EB+vc9/9ExgwKJ0nH/+Zl19Yi2aTufHmkcyYVcS7b23m3jtWEAyanHluX869sD/Lv9nLNVd+SX2dl2kzC7nljtHs2VrLHZcso3RfA32GpXL9o6NoavBz3xXfsX19FZ26xnLDk6NxuFUevf4nfl1WQkKanaseH05u11iW3LuRHxbvRXcrLLivDz0mRPtYo4giiija44icsX784TZOOfG9COnHMBTOOa8fjz+6KmLTdZlZR3fmow+3UVfnxTTD7S19+6ZQerCR4uJaAgETWRZJSXWQlx/LDyv2RTSEnS6V2XO68PriDRFykK7LXHjJQB55cGWErGQYMhdfNpi//+0HSzwnntyTV15aG9EKttlkxo7LYdXKEioqPIRCJooikpcfi6rKbNoYJkqJokBsnI3hI7L49OMdEaKUYSicekZvnn/m14hvXZe5/Moh/P3eHyIxGobCORf04/GHrbmYO7cLq98tobHOF8lFt/5JVB5opLS4gWDARJIEEtPt5ObGsO77UvzeEIIAhlNh7tFd+PG1Pfg84fyohsQNy8aT0zfuX3jqUUQRxZ8Vf9iM1cgwH+p88e99WSb/8pc/3Yz1iCysxx/7Nkve22qxJSfbqaiw6vjqhowkiTTUt+rcSpKAzSZbxPEdDgWPJ2Ah99gdCoIgWM4VBEhJdXRgEKdnOC2tOgCxsTaamgMW/WJRBLtDpb6u9Zo2m0TIxML2dTpVmpoDFg1gVZNwOlQqK1vbYACyMlzsL7b6Tk6xU17msdxPoq6TIBh42rQZSZKAYZMt7Ta6Q4ZGLOfqDpmcoANvQ+txggAzruvG3Ft7EkUUUfz34I8qrAVGpvlQ0e9fWKf8euWfrrAekYtkDrtKe10Cm02OqCodgqJIh5Vdbi+Of2gbtrYQCO/+0hayLFrYv4egt8gWtsUhaUXr+VIHlnIwZGK2Y+uapomqWO9FEgW0dr5FMXzfvyUXknqYR23SgSkcOkwuAGTNer4oC2iHYVJHEUUUUfxfxxFZWC+9YjCGXYkUAN2QufPecbjcWqSg6LrMzbeOIjvbjdbSPmIYCmed05dx43Mj7SiHBPwvuXxQpOVG0yRSUp3cdsfoiOC+JAk4nRp33TPO0spi2BXuunc8DqcaKaS6LnPnPWOJj9cjrTCGoXDNdcPo0TMpUpwNQ2H2nC4cd3yPiG+bTaaocwLX3Tgi4kdRRGJjde66Z2wknkOz3zvvG4dhtMmFLnPHYXJx1e3DSc1yRNqUbIbMcRf2YODYDGyHfOsyfUekcdzlPSM2RRNJSrdz7N29UY3wuaIkoLtVRpwSZQVHEUUUvx3/V/pYj8gpR+cuCSz77hSee+YXfL4QC07oQb/+qQwcmM7jj66isqqJ6TMKmTCxE8cd353HH13F7l01DB+ZxTHHdiMUMnn26V/49ddSevZM4vQz+yDLIt26JbH0691kZrk574L+OJ0a6Rlu3ntnMy63xrnn9Sc1zclnX57AKy+tQxDh1NN606VrIit+PI2nnvyZxgY/c+d3YdjwLMZNyOPxR1dScqCBCRM7MWNWERdcPJAnH/+ZzZsrGTAglZNP7Y0gwKDBafzw/X4KC+M4+7z+2GwyeXlxfPzRdpKT7Zx7wQDi43VSUpy8vngDuq5wxtl9yc2N4asVJ/P8078QCJgsOLE7ffql0m9AKk8++jPVVU1Mm1XIuAmdOOa4brzy8FoO7Kqj/8h0piwoIBg0eeupDWz5tZLCnvHMPacbkiSQ3yOOn78+QEq2g3kXdsfuVInPNFj5VjH2WJWjLioiJkX/3x9WFFFEEcX/MRyRhRVAlEQ0TUYUQxHBBkkK7wSjaVLEdmh3GFWTUOTWV7uaJmOzSShKeJNzQRBQVQmbTUbTWl/jKoqIqknYNDkiWq8oEppNQhSEyKww7Fsm4A8ht/gRRVCVlnhUqU08Yd+q1voaV1HD11RUKWKTlfCrZ63Nq2ZZESP3KB2yySKaTUYOhJBblJ0kKRy3ZpNb71sIv6JWNTmyD6sg0HKchKKFfQuCgKSKyDYJqWWHnEO+FZuEYpMs28pFEUUUUfwW/FlnmL83jkjy0ratlYwa9iIej49QKPwq+KWXZ3HB+R9TVdmE3x9CN2Tu/dsEnn5iNVu2VNLcHMAwFM48uw979tTy2Sc78HgC6IbMqFHZ9OmbwoMP/ITH40ezSeTmxnL5lYO56PxPaGoKIMsiMbE2nnpmGicc9w4ejz/MmDUUFr52NKec9D71LQL+ui7z5LPTuOm6pew/UI/PGwy/Cr5+OJ99soNVKw/Q1BRoEaLojGaTWfTKejweP7ou07NXMnPnd+Gm67/B4/GjqCIpKQ7uvm88p5/8Pk1NASQpvKnASwtncfIx4XgO5eL5hTO56JxPqK5qyYUuc9+DE3j3oc3s2VqDtzkYfhV8fnf2b69jxafFNHsC2AyZgWPT6dwzgVcfWEezJ4Bqk8jIc3HuFf154ZyV+DxBJFnAHqdyx9opuJNs//sDiyKKKI4Y/GHkJT3TfCD/st/7skxff9mfjrx0RBbWc878gEUL11vkrHJy3ZQcaIi0ywC43RrBYMgiuC9JAooiWfR+dV3G7w9ZNkV3OBRsNpmKilYWrqKIZGW52bGjOmITBMjLj23ZAac1oJRUB3V1Xjxt2MeaJiHLooWRfGhm3VaT2O5QMENY9IcNQyY2Trewj0VRoCAvlh3bqtvlIoaSA/WWXKTG2Inx2Tqwgm2qZBHm12wS+KwEL90hU6S4aaxow65WBebe0pNpV3Uliiii+O9BtLD++zgiXwUf6kttC4/HbymMAD5fsAM7VhDCBaUtJEnA623HzAWavVZd30AghKeN0D+EtSqbPIEOTGNvc6AD49bvD6Jp1pRLktDhXkRRoKnZKswfDJqW1h0IM3o9nkCH85ua/JZCDYR7Ug/z+lZsnwtZINAuFwIQaLbmIuQ3aW6w5iKKKKKI4n/C/5VXwUfkStmC43tE2LEQfh177HHdLcL8ui4zdXqBZb9QVRXp3SeF+Hg9UlwlScDp0hgyLMNyvoDAjJmFFj82m8yxx3XDMFrF/g1DYcEJ3dvFIzN7bhfENr41m8S48Z1Q263fZma5yS+Ii8xcBQEUWeSoyXmW1h5JEpk7v6tlswBdl1lwYncrS9lQmH9cN7Q292LTZcbP7GTZ1EdRRbr1T8IdZ4vkQpQEHG6NnkOTUdq25wgC/Y7OQNVbr6noEn1nRreMiyKKKKJojyNyxjptRiH3PTCRu+/8jmAgxBln9+GyK4Ywdnwuf7n8C+pqm5k2o5A77xnHtq1VnH/OR+zfX8+gQek88sQUPI0+zjnrQzZuKKeoKJ7Hn55KbKzORed/zPJvi0lJcfDwY5Pp3iORmBgbb7+1GYdD5Y67x3LUpDwSk+w89vBKBFHg0ssHc8ZZfenZK5mbbviGpiY/xy7ozo03j+TY47px8YWfUlnhYey4XO5/aCIl2lQ4AwABAABJREFUJQ2ce+aH7NpZQ8/eyTzx1FREUeC8sz9k9eqDZGe7efypqWRmubji0s/57JMdxMXr3P/gRIYMzcQdo/HKi+vQbBLX3zSCefO7kZXl5r67vg/LO57bl4svH8TosTlcffkX1NV5mT6riNvvGcuuTdXcfPZSyvY30HtIKjc9NRpPvZ+bT/+anRuryO0cy83PjsEZo3HnOcv45dsSElINrn1yFPk94nDE/sJPbxajO2WOv78vnVo0hKOIIooo/jeY/HnbY35vHJFrrBB+zbvyp/0EAiEGDEzHMBRM0+TnVSXU1nrp0zeFuLhwO8jGDeXs319Pt26JpKWHhfB37aph29ZK8vLjIkL4B0saWLeujNRUR0QIv6ammdU/l2C3qwwYmBZ+TdvkZ+VPBxBFgQED09A0mWAwxKqfDuBpCtCvfyoul4Zpmqz5tZTycg+9eyeTmBTehm7b1kp27aqhc+eEyKYAxXtr2bSpguxsd2RTgIpyD7/+epC4OJ0+fVMQBIH6ei8/rypBUyUGDEpHlsVwLn48QDAQov+gtNZcrCyhrtZLn34pxLbkYuu6CkoPNFLUI56ktLAIf/GOWnZvqyE7301WfgwA5SWNbF1bSWKqncKe4QLaUO1l+8pKdJdCwcCEDgIYUUQRxZGPP2qNNV/PMu/vdPnvfVlmbrwkusb6e6C+3suEMS+zd08dggAut8YXX5/IJRd+yvJv9yJJIoIAH366gEWvrue5p39BUSQCgRAvvDKTkgP1XHXll6iKhM8f5JbbRlHUOYEF899GlkX8gSALju/BWef0ZdL4hQSDIYJBkwED03nq2WlMGPsyVZVNmGZ439WPPlvA8ce8w4YNZUiigKrJfP71Cdx1+3cseW8rsiwSDIV4+935LF9ezH13r0BRJPz+IA89OglVlTjnzA8jtosuGcTESXnMnPYaoiAQCIQ4anIet/x1NONHv0xTkx8zZFJYlMDrb81h5uTF7NsbzoU7xsanS4/n4vM+5fvlxUhSuJVoyecL+ODFzbz+zAZkVSToD/H31yZTsreee6/8rsV3iMvvHEJ2QSyXz/8ESRYJ+EPMPLkzC87sznWjP8MMmoSCJkVDE7nhg7EdNk+PIoooovhHiM5Y/z/hX5mxXn/tVzz52M8R1qssC/TomcyWLZUWFm5WtouK8qYO7NpgyMTbhoyjaRKqKlHfRhfYsCukpjrYuaOVcasbMt26JbHm14MRcpCqSvTpm8KaX0sjTGNRFCjqHM/ePbUWBnB8go6n0R8Rxz/kWxCEDixlt1vj4MHGiM1uV+jUKZaNG8sjRCmbTaZP72TWrC5tkwuRHr2S2LKp0nLfBTmxBA4GI2L9h+5HCAn42uRC1UQ0RbGwh3W7TK+kBMp2NERyoRkSpz8wgAlnFPyDpxRFFFEcifgjZ6z35lz5e1+W2Zsv+tPNWI/I6caWzZWWVpJAwKR4by1NHitLtfRgYwfWq88XtAhFQJjU1LYAQpjnU1LSYGHcNnkC7N1ba2Hc+nxBdu+usRTGUMhk/746AkErM7eyoilCUjqEw71OVRSJ8nJPh7j37auzsI+bmwPs2V3bLhchivfWWooqQHmJp4Mvvy/UIR5FlTqwjwVBoPpAkyUXXk+Qkh1W8f8ooogiiiiO0MI6eEiGhYWraRI9eiWj661sXUkSKCiMI9iuBcflDm9A3hbBYHh3nLYIhUw6d45HlluLkWFX6Nkr2cLW1XWZ3n1SLExhRRHp1j3JUsgEIdxf2r4NRpZFC4MXwm05nfJiLecrikS37omobdi6hiHTu29Kx1z0TLbEI0kCuUWxHVqCXLFax00BAiHiEq1ShaGQSXoXt+VHimaXye8XJS9FEUUUvxHm/x2t4COysF50yUDGjs+NSBD26p3My6/O4oyz+qAoIrouk5nl5vW35nH3feNRNQnDUIiL03l3yTEsXDwbu0PBsCsYhsILL8/k7ffnk5BoYBgKqipxy19H89obc8nNjUXXZVRV5IQTe/Dyq7PoPyAtIn04bHgmLy2cxew5ncPx6DKFhfG8ung2f7lqKKoqYhgKySkO3npvPk88PRWbLmPYFVwujTfenseb787H7dYw7GFRigcfncQb78wjNc2BYSgoqsjFlw5i4eI5dOmSiM0mo6oS06YX8uKrsxg9LgdNC+eid98UXnxtFqee2RtVDeciK9vNy28fzVX3DUfVJHRDJibextMfzOSB1yej2+XwnyHzt9cm8dgH04hNtKEbMoomcskdg7n+3TGkdHKg6hKyKjL+tHyGzMn6Tw+FKKKIIoo/HY7INdZDKD3YgD8QIj3dGelXrapqora2mawsd0Tbt6HBR1lpAxmZ7shuM83NAfbvqyMt3RmZ6fr9QYr31pKQaMfl0oDwbG3v3lqcDpX4BAMIb+t24EA9AgKpaY6I74ryRho9fjIz3ZHZZk1NM9VVTWRmuSNiFR6Pn5ID9WRkuiKCEV5vgH3FdaSkOrDbVaD1tW5MrI3YWD3iu7i4Dt0mR1jGACUH6gkGTdIz2uSi0kNdnZfMNrlorPdRUeYhLcsZ3laPsJjFwX0NJKc7sLXMfv3+ICV764lPMrA7w/EEgyHK9zRguFVc8VEpwyii+G/EH7XGmmfLMu/Jvur3vixzt17wp1tjPSJZwaZpct01YQJTyDSZM7cLjz05lZdeWMO1V3+FzxtkyLAMXl08h5U/7eeMU5ZQW9tMYVE8b7wzj9qaZo6d9xYH9teTnOLg1cWzSUlxMH/OG2xYX47TqfHkM1MZMSqbExe8wzdf70FRRG6+bTRnn9uPiy74hNcWrgfg1NN7c+/9E7jvnhXcc9cKgoEQE4/K4/mXZ/Lhkq1cfMGnNDb66NM3hcVvzmXH9mpOXPAOFRUesnPCs2pJEpg/+0127qwmLk7nxYWz6No1kWPmvsnPq0qw6TL3/30iR8/pzBmnLOGjD7chSSKXXj6Ya64fxg1Xf83Tj68O52JeFx55agovPreGG67+Gp83yNARmbyy+Gh++f4gl5/yKfW1XvI6x/H0uzOorW7mgjkfUrq/gcRUO4+8OZWEJIPzZ33A9g1V2J0qdzw/noEj07lj/lLWfV2KrIqccmdfZlzY5T88EqKIIoojCWbofz/mvwFH5Iz1uWd+4dqrvooQdGy6zNRpBXz04bYI61VVRQYOTufnVSURmygKZGa5qKv1Ul3dHLmey6WRkupgx/aqyDqkrssMHZbBt98W42shBxmGwrQZBSx5f2vkmoYhM/Pozrz3zmY8LTabTWbsuBy+/mp3hAEsywJduyWyY0c1jW0Yt4mJOrIscfBgK1HKblfo0jWBX38pjcg06rrM+Imd+PzTnRGilGHIzJ7dhffe2hLJha7LTJmez0dLtkd8K6rIsCGZbP+piuY2uUjPcdFY6aWuxhuJx+lWSU52sHd7bUSS0WbITBzciQ3LSgn4wvFohsR1b46h78S0f+rZRRFFFH9u/JEz1rszf/8Z67ztf74Z6xG5xvrJxzssrNfmpgDLlu6xsFl9vhArfzyALLXe4iG2rt9v1b01TZPt26os5B5RFPjh+/2RogrhV7jffL3H0rLi8QT4+qtdkaIK4dfM3y0vtrBoAwGTdWvLkERryhsa/FRXN1uOlSSRX1YftGgfB4Mmy5fttbCPPZ4AX3+525KLpqYAy762Huf3hfjlx4MWjeRQyKRkTx3BdszlUMi0FNVDudj8fVmkqEKYFbx26UGiiCKKKH4bfn/iUpS89DsiPcNpEdcXBIhL0C1sXQiLJbQXwhcEoQMz1+cLdmg7AYiJsa4j2mwyCYmGha0rSQKJiXYLWxcgNlbvIPZvdyj4Ax2F/YOhUAeb06lZbIoiRpSk2toSEg1LLkRRID7B6JALp1vt8BpGkAT8vnZi/b4g8mFyYY9RLf9WdYm41OhG51FEEUUU7XFEFtZrrh1OfILewuqVcbo0nnthBvkFcdjtCrouYxgyTz83jbHjciI2XZe574GJXHjJQAzj0HEKZ5zVh4cfmxw5xm5XGDosk6efn45hhH3Y7QrZOW6efWF6mMFrhBnFsXE6z74wnbR0F/YWlrHdofDMC9Pp1TvF4vuJp6Yxb37XVpshc90NI7jlttEYRqvv6TMLefKZqZZ4unZL5LmXZuBwqmEfdoWUVAfPvDiduPg2uXCqPP3SdDrlx4b9GOFcPPrCFIaOzcRwKNh0GZsuc/NDozn54t7ohoymh9nCx5/XixsfG9VyjIThUOg3PI0rXhqBZshohoTNIZPSycnE06PiEFFEEcVvhAkhU/jd//6MOCLXWCHMtv3ow20RslByigOvN8CHS7ZRW+tlxKgs8vPjME2TTz/Zwf599fTtl0qfvikAfLd8L5s2VlBYFM/IUdkArF1TysqfDpCa6mDSlHxEUWDXrhq++Xo3DofKtBmF2Gwy5WWNfPrJDgRRYPKUfOLidBobfXy4ZBtNTQHGjsshM8tNIBDiow+2UVHhYcjQDLp0TcQ0Tb7+aje7dtbQvUcSgwanA7DypwOsXVNKdo6bceNzEQSBLZsr+G55MfHxOlOmFaAoEvv31fHlF7vQNJkp0/JxOjVqa5r5+IPtBAIhJkzq1JqL97dRV+tl5JhsOuXFEgqZLP14Nwf3N9BrQDLd+oT1kFd+u5/tG6vI6xzLwFHhHWs2/1rO2p9KSUy1M2pqDqIoULKjnjVfl2C4FAbPyEK1SYd5MlFEEcWRjD9qjbWTlm3ekX7N731Zjtt17p9ujfWIZAUD/PrLQRa+tA6/P4TdoTJ7The2b6vi1YXrqKxsorHRx/kXDuDA/noWLVzPnt017N5dQ9duCXi9QRYv2siaXw/SvUcSPXom43AovPvOZr76YheZWW6690giM8vF55/uYPGiDbjcGvkFcfTuk8KPP+zn5RfXIkoCiYkGE4/KY/26cha+so7GBh9gctIpvdi9u4ZFC9dTUlJPeXkjhUXxVFc1s/jVDWzeXMGAgWl075GIKAq89cZGvl+xj4KCOHr2TCY+QWfJ+1v5cMk2EpPsdOmaSGFRPN8s3cPLL67FpstkZroYOjyTX34+yMKX1uL3h3A4VWbN6cy2rVUsemU91VVhScdzL+xP6YEG3l64keLddezdXUt+1zh8zUHeW7SZDb+U06VXAp17JWIzZD56cxvff1VMWpaTol4JpGY6+OGTYr54dQeOGJXUAhcFfaICEVFEEUUU7XFEFtbvlu/lmDlvRliva9YcpORAPbff+i0NLYzbTRsqKCmp5/VFG6mo8BAMmmzaWMG2rZXsL65n0+YKfN4gG9aXsWrlAbp0TeDjD8NM2jW/lrJ82V5OPb03jz2yKkIO+n7FPm69bTQ3XPd1xPfqVSXcftdYrr/mqwiBaf26csrKPDz09x+pr/MRCpls2lTBnt11fPftXvbtq8PvD7FxYzlr15SiaTI//rCP5uYg69eVsWLFPo6alMeihevweAIIAqxYvpfL/zKEu+9YEYnnpx/2c8dd47jhqq8i8axdU0pJST233/RtRKZx04ZyDpY08PHCbVRXNBEMmmzdWMmubVWU7Glgx+ZqfN4gW9ZXsOanUgqL4lj60W6amwJs+qWclcsOcOppvXnn4Y0RVvG670p54seZZBW5/z899SiiiOJIx5+VbPR744h8FXzy8e/yztubLba0NAdlZR4Lk9ZuVxBFwSKuL0kCmiZ3EOZvbg5aiE4Oh4IkidTWtraiiCKkpbvYV1xn8Z2V7WLvHqstPl7H47EK7kuSgG4oNLSJR9MkQqZpIRE5nSpebxCfr5XoZLNJuFwaZWVWDeGcLDfF7Xynpjkob5eLWLsNQ5BprG+9b0kSMDTFKsxvlwl6QpZcGA6FVMGOp671XFGEE6/vw8k39CGKKKL478Ef+Sr49rRrf+/LsmD3OdFXwb8H2gvrAyAICO3NAnT82WB20ApuOb3dUeHzrcccxkeL/XDXa28WBAE6+DY7BGkeJp7DBsnhRfxF8fC56IDD/aYyD39sx+sdPhdRRBFFFP8I/1dmrEckK/i8CwZYhOd1Xebqa4eh63Kk0BiGzIUXDSQmxhZppdF1mVmzu1iE9DWbRGFRAguO7x4RrpdlEadD45LLBmEY4eMEAXRdifhp6/ua64dj2FtF73VD5oqrhqLrSqTlxjAUTj+zNxmZLtQW0X1dlxk2IovxEzpFrqmqIsnJds4+t18kHlEUsOkKV1091OLbMBSuuq5jPFdeNwybLkcKn2EonH1JP1xuLdJKYzNkps4vpHOPBLQWEpJmk8jvEseM44uwtdy3LIs4XCrzL+8RsQlC+PwJx+f/K48viiiiiOK/GkfkjHXAwDTe//BY/v7Aj/j9Qc48ux9HTcpj+Mgs7rjtW6oqm5g9twsnntyTs87px603f8OuXTWMHJXNpZcPxucLcudfl/PLLyX07JnMtTeMQNdlCgrj+fLLMHnppptHkpziIC3NxeuvbcDt1rjm+uEUdU4gPcPF44+uQhQFLrpkIMOGZ9G9exL33r2CxgYfJ5zck9lzujBjZhG33bKMkpIGJk3O45zz+lNf7+W2m5exeXMFAwelc9U1wxAEgXvvXsEPK/ZRUBjHDTePIiZGIzvHzZL3t5GcbOf6m0aQnR1DcoqDF59fg67LXP6XofTpm0KnvFge+tuP+AMhzjy3LxOOymPY8EzuvG051ZVNzJ7XheNP7sHpZ/XlvptWULyrlqGjMzn7iv74fUEevPWHFvJSIpfcNBjNJtGpKI4VX+wlPcfFxbcMJiHZIDHdzleLduCI1Tjlxj6k5jr/00MhiiiiOGLw522P+b1xRBZWgE55sYwdl0sgEKJLlwQA0tKcjB6TQ21NM337pSIIArFxNkaOyiYvL47+A1ORZRFJEhg+MouEBIOCwnDvqyAIDBmagSgKJKc4IoL7vfskU1nhweFUSc9wAVBUFB9picnPjwMgK9vNmLE5eDx+evRMBiAxyWDk6Gwqyz0MGhy+tsulMXJUNpmZbnr0SoqI8A8bnonDrpKV7cbt1hAEgf4D0mluChAXr5Oc7ACgW48kxo7PxWaTyc5xR3IxanwOwaBJUedwLlLTHIwck019nZc+/VPCuYi30X90GmkFTvq0yUWfUWkYSSoFRfHhzc8FgV7DkvHLQZJSHMQm6AiCQGG/eKoqm7C7VBIyrNvsRRFFFFH8TzDNw6yE/Zfi3yYvCYKgAY8B44E4YDtwrWmaH/+W8/8V8tL+fXUMH/w8jY1+TNNEUSTe+/AYzj7jQw7srycQCCFJAs+/PJMnH/+Zn37Yj69FUeimW0axa1cNL7+4Fr8viKpKzJ3fld59Urj2qi8JBEKoqkSv3ilcefUQFsx/m2AwhCSLJCfZeeGVWcyYsgivL4iAgM0m8/5Hx3Ls3Leorm4iGAwhyxJvvD2X66/9mi2bK/H7g8iyyIOPTOKTj7bz6Sc7WtSeJM67sD+aJvPAfT/g94fjGTM2h3nHdOWcMz8kGDSRZZG8vFjufWACs2e+TsAfvj+XS+PNd+cxc+piPB4fphneqPz9D4/lzNOWUHKgIZKLF1+ZxRMPr2LVTwciubjx1lHs2F7Nqy+vw+8LoqgS84/tRq9eydx81dcEAiEUVaJ33xSuvHwo18z/glBLLuJTdF5aNSey800UUUTx34E/iryUq+aYt6Zc93tflpOKz/rTkZd+j8JqB64EXgD2AlOARUAP0zR3/2/n/yuF9aLzP+HlF9dYtH0LCuLYt6/OwsKNT9Bpbg5YRO9lWUCSRLxtNIA1m0QoZGXm2h0KDodK6cHG1uM0idzcGLZsqYz88pIkgaLO8WzbWmWRSszMclFV2RRpeQFa1msFCyP50Ppv23PtdgVREqiva2UPG3aFpCQ7u3fVWM4tKIpny6aKSC4EAfIL4ijeW2fRC05MMPA2/YZcaBJyyCr7aHcoFOnxVB9sithUm8S5tw3guEt6EkUUUfz34I8srLckXf97X5aT95/5pyus/zZ5yTTNRtM0bzZNc7dpmiHTND8AdgH9/v3wDo/S0gZLUYWwEpPXG7DYGhp8iIehrh7ah7T13yLBQEdqbkODz2LyeoPU1FgF84NBk+rq5g76w3W13g4xNjUHkGVrPJIkdmA5S5JIU5viCxDwh6irbbbY/P4QNVVNFj+mCbWHyUVjg68De9nkMLlQxQ5xAzTVW+PxNQeprmjucFwUUUQRxf91/O6sYEEQkoFCYMP/cMxZgiCsEgRhVXl5+T/tY/qMwghjFsJM2ImTOkXWKwFUTWL48ExLkZAkgdzcWAtjFkCRJbp2S7AUPdM0GTkq2yJmH/aTF2EKQ5hxO3lKviWeQ9vGWXwoIv37p1k6XEQxvAaclGS3tM2EQiYDB6dbhP0lSWBcG/ZwxPdUq2/dCMfYNm5Nkxg2MotQu1zk5cWh2aR2cUoUdY235CIUMuk7OtUiYajpEoMmZBBFFFFE8VsR3d3mX4AgCAqwEHjRNM3N/+g40zSfMk2zv2ma/RMTE/9pP8ef2INLLhuE3REWs19wQg8efmwKDz06mdhYG6oqMW5cLi+9ejRvvDOXtDQniiLSu08KSz4+jo8/W0BhYTyKIpKXH8uHny7gnfePof+ANBRFJCXFzquvz+G5F2e0FGwJd4zGvfdP4KFHJ3PKaWHhertd4dzz+/HAQ0dx822jcLk0NJvEjFmFPPnsdF54eSYJiQaqKjFkaAavvz2P9z88juwcN4oi0qVrAh99djwffbaA7j2SUBSRzCwX7yw5hkWvz2X4yCxUVSI+QeepZ6fx+FNTOXpOF2w2GadL5dobhnP/g0dx0aUDI7k44cSePPzYZP7+8CRiDuViQi4vvDKT196eQ2qaI5yLvim889ExLPnsOPIL48K5KIhlyWcLWLxkHn36p6IoIskpdl5842huXzieoZMyUTUJZ6zKlQ8Pp9+o6F6sUUQRxW+DSVSEv/UAQVgKjPoH//2daZrDW44TgVcBFzDTNE3/PzjHgn9VhN80TXburCEYCJGXH4vUsu/q/n111NZ6ycuPjcxgy8saKS1tJLdTDHZ7mGxTU9NM8d5aMjLdxMaGt4fzePzs3FFNUpKdpOQw69XnC7JjexUOh0pmVpiFGwqZ7NhehSAK5OXFIggCpmmyd28tTZ4AefmxkVesB0saqKjwkJcfi66HZ5aVlU0c2F9Hdk4MLld4e7j6ei+7d9WQluaMMJKbmwPs2F5FXJxOalq4tSUQCLFjexWqJpOT4474Plwu9hXXUVfnJb8gDlWV/mEuamua2bu3jsxMFzFtcrFrRzWJbXLh9wXZs7UWh0shJSvaahNFFP+N+KPWWHPUHPOmhBt/78tyWsnpf7o11v+13cY0zdH/2zFCePHuWSAZmPJbi+q/Cq83wNyj3+CnH/YjiAKdcmP48LMF3HT9Nyx6dR2KLOFwqnzyxfF8uGQbt970DaoafuX51rvzKS/3cPqp7yNLIoFAiMefmkpObgyzpi0mGAzh8wX5yzXDOObYbkyesJDq6iYCAZNZs4u474EJTJ/8Gls2V2Ji0rt3Cm+9N49zzvyQzz7ZiSQJJCfb+eSLE3jisVU8+vBKFFVCUyU++OQ4Vv98kMsv+QxFEQmFTF55bTaKInLs3LcQBPD5g9x973iGDc9kysRXaWoK4PcHOePsvlx2+WAmTVjIgf31BIMmo8dk89xLMzl27pus/OkAgiCQlx/LB58cxw3XLmXxa+tRZAmXW+Pjz49nyXtbuO3mZeFciEI4F6WNnHXKEmQ5nIvHnplKVpabY6e9QTBk4vcFufy6ocyb35Uzx71PfbWXQCDExHl53PTMmMOqTkURRRRRdEC03eafvIggPAH0Bsabptnwz5z7r8xY7/zrcv5+/w8RBrCqSgwYmMavvxyMsHBFUaCgMI69e2otTGG3W8PnD1r1cXUZu12loqJVh1c3ZPLy49i0oTyyTmsYCv0HpPLjD/sjTFqbLfya98cf9kdE+GVZpFfvZDZtrLAwgDMynFRUNtHcJh7DkBFF0UKU0nWZ5GQ7e/bURgaiYVfo3iORX34+GCFK6brMkKEZfL9inyUXAwelsXr1QTxtclHUOZ7du2osuYiJ0Qg0hyw2m00ixm6jqrKVAawbMoNy09m1sTqyTqvbZa57bBSTjovuyRpFFP9N+MNmrEqOeeMfMGM9/eCfb8b6b6+xCoKQDZxNuLAeFAShoeXv+H/32v8Iq1eXWIqBzxdky2ZrEQuFTHbvqkGSrbfY2OhDEq02WRaoqmqy2ERBYOeOagv5yePxs3lzpaU9pbk5yMaNFZGiCuHXtdu2VhIMWZnC+/bVoypW36aJRSwfwgSi4uI6y687vy/Iti3Wlp6mpgAbN5R3yMXmzRWRonooFzt3VkdeER9CQ72vQ35kRaSmxsr2FQWBfTtqLeSnpsYA29ZVEkUUUUTxWxElL/1GmKa5xzRNwTRNm2majjZ/C3+PAA+HHj2SLKxXRRHplBeL3oYdKwiQkekkFLQWLZtN7lDIfL5QZK3zEEwTMjNdFrauYSjk5cVa2LqaTaKgIM7C1pUkgezcmA6FLDnF3qEtxzTNDkL6fn+QlFSHxaaqEjm5MRa2rq7L5BfEWXKhqhJ5neIsTGFBCN9L2x1rwucrBNrF4/eFcDisog8h0yQly2FhD9vsMrmdY4kiiiii+G34/YlLf1by0hEpwn/FVUPp3iMRuz0s4pCV7ebVxXOYPCUfXZdxuTTi4nVee2MuF106CJstbLM7FBa9MYeHH5sUOc5mk7n/waNY/OYcHE41Yjv73L689uZcEhJ0nC4Vw1AYMzaHVxfPJrdTLA6Hit2u0LkogYWLZzN4aAaGoeB0qiSnOFi0eDYLTuiBrcWPy62x+M253PLX0ZF4dEPmuRdn8uLCWRiGgssd9n3djSNY/OZcYmJs4eN0mTnzurDo9dmkpjlxOsPx9Oufxquvz6Frt0O5UMK5eH02R03OQzfCfuLjDV57Yy4XXjzQmos35/D3x46KxGizyfzt4Ym8/NZsHE4Vp0vFZpM58/x+PPDWZGITdewuBZshM2R8BlNOKPxPD4Uooogiij8djsj9WAGCwRDr15URCJj06JmEqkqYpsmWzZXU1nrp1j0xMvPavbuGgwcaKCiKJz5eB8Js3V07q8nJjYkwbqurm9myqYKkFDudOoVnY42NPjasL8fhUOnSNQFBEPD7g6xbW4YgCPTomYQsh4lIh17Ldu+RGGEAb99eRWW5h85dE3C7w4zbfcV1FO+tJS8/LsK4rSj3sG1rJRmZrgj7uK7Oy6YN5cTF6xQUxgNhpvD6dWVomkS37kmIokAwGGLd2jKCwX8nFzXk5Lpbc1HVxLbNlSSlOMjpFANAU6OfbesqsTtVOnWNjRKXoojivxB/1BprtpJrXhd70+99Wc4uP/VPt8Z6xIrwP/n4z/ztnu8JBk1OPq0XN90yio8/3MYVl35OfYOPSZPyePjxyWxYX87ZZ3zAwZIG+vVP5dkXZtDQ6Oe0k95j65ZKOuXF8txLM4mL0znrtCX8+MN+EhINnnhqKn36pXDlZZ+z5L2tGHaFO+8Zx9GzO3Pv3St4+onVIMBFFw/kkssHs2jhem6+cSne5gBz5nflnvvG893yYi4892Oqq5sZMTKLJ56Zyv599Zx+yvvs3VNLt+6JPPfiTCRJ4LST32ftmlLSM1w88/x0cjvFcP45H/H1V7uJcWs88PAkxozN4cbrvua1RRvQVInrbhzBKaf15onHfuZv935PKGhy6um9uOHmUXy4ZCtXXv4FjQ0+Jk/J58FHJ7F+XTgXpQcb6D8gjWdfmEF9nZfTT3qf7Vur6JQfy7MvzyA2VuesU5aw8sf9JCTaeeyZKfTuk8LdFy/nm/d3odsVLrtvKOPn5P2nh0EUUUQRxZ8OR+SM9c03NnLBOR9HyEqGIbPgxB4sfGldhMijaRITj+rEV1/tjujjynJYlKG83ENZaSOhkIkgQEKCQXaOmzW/lkbWQA27wqTJeXz0wfaI5q6uy5x0Sk9efnFdG98Kp53Zm2ef+iXiW9dljp7TmXfe3hxhH6uqxKAhaaxfW051dZgcJEkCGZkuFEVi185WopTbrdF/QBrLv90bIUrphsz8Y7ry+uKNkWvquszpZ/Xluad/scRz/Ek9eOXFtZF4bDaZiUd14ssvd0VyoSgiXbslUl7SSHmZpzUXiQaZWS7WrSmL5MJuV1gwsTvffbQHb1M4Hk2XeeyTafQakvJPPbsooojiz40/csZ6bczNv/dlOafilD/djPWILKzHznuLjz7YZrElJRlUVDRZCDo2m4yiiNTXt7ayyLKApskWcXyHU8HTGLCce2grubZtMIIAySkODpZYO4rS0h0c2G+1xcRoNHuDltYaUQSHQ6OuzmuJ0TRNC9PY5VLxeAIWkpWqijicmqUN5h/5Tkq2U1HeSFtSsq7LSLJIQ5tcSJKA3aZYhPkdDgWPx5oLh0MhO+SiuaH1XgQBTvlLH86/bRBRRBHFfw+ihfXfxxFJXoqP12nXMYPDqUXUhQ7BMMJFqy0O194S8Ic6MHMRwrPEtlAUEWc7xqwggNOpIbdrWzEMBandNVVVItiOpRwMhgi2Y+sGgyaazXovsixitysWmyQJuJxah9idDrWDuL5uKB1yAR1z4Q90zIUJ2HRrLmRFxBVrZVJHEUUUUfxDmP93JA2PyMJ6xVVDcTg1FCW8UbdhKDz4yCQSkww0LaywpOsy9/19At26J0UKpGEoXH3dMObM64rRUqQMu8KUaQXcdOvISIuKrssUFsbz94ePQtdlRDH8ajk+3uDBRydhdyhIkoAsizgcKg892qrLK4oCui7z0GOTycxyobcI/uuGzJ33jGP4iKyIb7td4bQz+3DeBf0jvg1DYeDgdO65b0LkXJtNJjXNyUOPTkY3ZERRQFVF3G4bDz06GYdTjWxabtgVHnx0EolJdksuHnhwIl27Jlpyce0NI5g1p7MlF9NmFHLdzSOsuSiK55pHRqDpEoIIqiYSm6gz89Qu//8eehRRRHHEwwz9/n9/RhyRr4IhrAn8+msb8QeCzDq6M4VF8dTWNvPKS+uorW1m/IRODByUjs8X5NVX1rFvXx0DBqZz1KQ8TNPk7Tc3s3FjOYWF8cw7piuiKPDlF7v4fkUxqalOTjipB5oms/rnEj79ZAdOh8qCE3sQF6ezY0c1b7+5CUGA+cd0IyvbTXlZI4sWrsfT5GfqtAJ69EzG4/HzyktrKS/3MHJUFiNGZhMMhnht0QZ27qimV69kps8Mt6x89ME2Vq8+SG5uDMcu6I4si6xYXszXX+8mPl7nhJN64nCobFhfxgdLtmHTZI5d0I3kFAf7iut4/bUNBIIhjp7dmYJCay4mTMxjwMA0fL4gC19ex/79dQwclM7Eo1py8cYmNm+soLBzAnPmdwnn4vOd/LhiP6lpThac1B1Nk9mwqozlH+3B4VaZflLn6Iw1iij+C/GHvQqWc82rXLf83pfl/OqT/3Svgo9YVvCP3+/j5efXEAiEiHFqFBbFs21LJa88v5ba2mYa63wMHJTOwZJ6XnpuDSUH6tm+uYpx43Npbg7wygtr2LSxgsLCeI6anIfLpbL4lXV8u2wvySkOxo7NITcvlg/e28riVzdgdyj06ZvCsBFZfPvVbl5+fg2iKJCV4SIrO0x8evn5NTQ1BRAR6NEzmd07a3jpuTVUVngoPdDAsOGZVFU2sfD5tezcWc36XslMnJSHKMKrL63j51UlZGW7mTixEwlJBm+8toFPP95BbKyNYcMy6dErmc8/3skrz69BVWUKi+KYPLWAn37YxyvPryUQDBHrDrfmbN1UySvPr6Gu1kdzvZ8BA9MoLWlg8fPr2H+ggX1baxk7Lpcmj583XtgQzkVRPJOm5GF3KLzz8iaWf1tMSksusvNieO6un1nxWTGaTSI53c74ufn8uqKEt57ciCgJHHdhDzr3SWTP5hoWPbAWT4OfKScVMvioTKpKm3jlrl+pOOBh6LQsjjohH68nwBt3r2fvxlq6DElk5sXhGfDHD21h83dlZHRxM+vqbmh2me9f3s2aJftxp+pMvbYr7hSdrZ8d5Ofnd6IYMiOv6ExSFxcHf6nmp0e2EAqY9D0rn6xhidQXN7D6wfV4q7zkz86h07RsfLVeNjy6mobiepKHpVOwoCtmIMieV36ifvNBnEXJZJ84CEEWqfr0exrWbkVNiidp3ngkh0HDqtU0/rgSyWHHPXUySkI8vp1b8Hz3JYgi9lGTUDJyCFXsxb/yHUxfE3LPici5fTEbqwj8vBCzsQoxdwhS0QQINsHOZ6BhF8T2huzjQQD2vQx1v4CRD1lngKgTaH6XoO9rRDERxTgHQUrEH1qGP/gmCAaadCaSkIfZvIFg9YtgBhFjFiAa/TCb92HufxoCtZAwFTF+Aqa3nuCvL0L9QYT0/oidZ0LQj/+nNwiV7UBMzkcZMBckGf/qjwjuXosYk4w67BgEmwPv+u/xr/sOwe7ENuJopNgkfDs30fzDFyDK6CMmoaTnEijdj+ebJeD3YRswGrWwJ8HaGuo++oBgXS16rz4Yg4Zger3UfPQR/pISbAUFuMaPB9Ok9tMv8G7fiZKeSsy0yQiqSsPy7/GsWYscE0PM9ClIbheetRuo+/Z7RJtGzJQJqKkpNO/cS9XH30AoRMzEERhFnfAerKL0za8JNjQRO6o3MUO6E6j3cPD1r/CVVuHqU0j8pEGY/gAlr3+LZ0cJ9oI0UuaNQJAkSt5ZRc3qXdjS48g6cTiy00bZV5so+3ITilsn+6Sh2FLcVP1cTPFbaxAVkewF/XAVJVO/o5JdL68i2Bwgc1Z3EgZn01TayKbHf8Zb4SFtQi5ZMwoJNPpZ/9ga6rbXkDQwhaJTu4EJG57aQNnPZcQWxdDzgl5IusSWRTvY89k+7GkGfS/tgZGo/0e/o9vDhP+4UpIgCAXAOuBN0zRPaLGNAx4FsoAfgVNM09zzb/k5Emesby3eyKmnvB9+Ui3P6ayz+vL006stMoCTJ3Xiiy9242+zjliQF0NlVTNV1a2yfW6nRnaOm7XryiI2WRKYMb2Qt9/dErEJwHnn9efRx6zxXnjhAB55eKVlr9XjF3Tntdc2WNZPhwxKY83acjxNrWSh1JTwNm57i+siNpsmMWhgOt98uzdiEwWBk0/uyfMvrLH4vviigTz40E+WXJx7dj+eePJnSzzTJufzxee7aA4EI/fSLT+BivImKmo8kdPjnDaystz8uqE0cr4mSYzuksW2tZUICJgt/3P+LQN59q7VEaawzZC55dkx3HnGtzQ3+jHN8L6tlz44lOduWE1tZTPBgInNkJl3cTfWfnSQ4k01+L0hNEOi31HpGJLEzx/sx+cJomgiqUUuhs/K4tN7N+PzBBFlAUe8ynF39WLJ+avxNwURBFDsMvNfGMgHp/2A3xOOR9YlZjwzgO+v/gFfvQ9CYdug63qzZ9EaGksaMf0hJF0mZ3YBUuU+6tYfIOQNIGoyrm5ppPRWqf56JabXD7KEEu8m5ehB1Lz9HqbPB4KAqOsknnYsdYufBH8LOUxViTvpLPyf3Qf+ZsAEWUOZeA6hlU9DUx2YQZBtSH3mIgc+gsZdEPKBaIPEEaAGoWoZhJpBUMHohL9oJIGmF4AmQAYhBin2YppDNwPNLU/RwB68B7P4KjBbyG6CDSnxTth6KwQbgBCINsyMywh99wF4yiEUANkG+ZMJFpcQKtkCQR/IKmJqF3BmEtjwNfi9IMkIzgTEXtNp/uK1sE0QEGwGtqnnUP96m1woGs5jz6Vh8ROYvpbPnaLimHUGVa+/RaixAUIhBFXFMXEyjSt/wV9aCoEAgqqi9+qF6Q/RtG4Dps+HoMgoaanoPXpQ99kX4ecgSeEfOUfPovKVxZg+fzgeTSXhtJMpefSVsA0QVIXks09g78PvEvR4wTQRNIW0kyZT/t63+KvqMANBRE0hdsIAGreW0bh1P6YvgKDKOLpmISYkUf75ekLNfgRFQkt2kzS9P7uf/pZQsx9EAdmukXfZJNbf+imhls4CyabQ49bJrLnhU4LNfjBBtMl0u2Y8v9zxE76aZsygiaTLFJ3Vh51L9lC/q5aQL4SkS2SMz8bXaLJ/2X6CTUEkTSKmKIakYZmse3ozAU8AURawxds4dsVMNLeVE/Jb8EfNWLPkXPMq562/92W5oOak3xyvIAifATqwxzTNEwRBSAB2AGcAS4DbgBGmaQ7+d2I6Igtrz6LH2b2nNlJIAFRJxNeOGCQCHV7BtylA/6OtxdQ+O4ok4m/nR5VFfO1IQLIgEGiXW8GEDj/Y/oHvw0EShQ5EJ1WW8PmDlmtoooQ3FLQeZ4r4hZDlfiRT6HiPh4lHABJDOk7UNoeZaDYZX7PVT04nNwd3Nlh+4MQn6zTXB/B6Wo/VVAmXolqYxooqYoQkAr7WXNocMrpPIOBtw5A2JNLcKo0H22gaC5BWYKd2p5UhnVJoI1jRQKjN87HHi+iKj0AbZrishEhIaYx8AUL4Cy8hoQTa5Fy0adhjmzCbWjdsQJIwMm2YNa0/zACMTk6kpr0Wm+B2IVIHgVZmuGAHNaMRgm2uKcigB6HNRlGmpNNc6AXabh5lI+C2YQrlbb1gK8tBbGzn25+JWFcGtN6j6UkktF+HQCvb3AzKBDwuS4ympGI2Y13UUnUCzRpmc5u4RZmQnkSoqsLiW4xPJlRZarGFbAn4q32Y/jb3KCuYKJjNbX1LEJIg0Bo3mgqBIARbx5SgqqDqBOvq26YCITYFX0k7XeuYZJpKwgX9ECSHjhkIEmpuZc6biJiiLVwsI34Umuoly7iQDJVAUCbY2KaLQJEQnG6aStrEA9gyYvEU11o+eFKMm4aKIKHmtvejEECxjFNBEgmEJEJtPiOSIdPUKBJqI08qGzIj7h5I5+Py+WfxxxXWTuaVjt+/sF5Ue+JvilcQhGOB2cBGIL+lsJ5FeIY6tOUYO1AB9Pmf9hT/33BEkpf8/lCHL//2OrhAx6r4O+BwP0TMw/j+R79XfksN/UfHHO6aZsjsmIt/4Lz9df+ZlzKH4wiEQh2tAX+oQ5zBgNnBZgbNDspNAkLHoi52zK8ZMi0bAoSNEPR3jCfkD2K2YziYgcPkRzhMPP8oQe3vOxSyfMFHEAx0tIWCHR+kGaTjjQsdbQh0fBImbQtlxHa4nRvNQIfzzdBh4sbsePP/IBlm+1yY/ygXHW1mMNjx8xQM0f6+hcO6Fw6TR/Mw8YAZ6Og7FAh2YL6YwX/AhPnNuWg/TkOWH3QRuz/U4bspFAhZCjVAKBjq6ErgsOO0w3eQaVoK7Z8CLdvG/d5/vwWCILiAW4HL2/1XNyDyGtA0zUbCM9hu/86tHpGF9exz+3WwjRiV3cFW1Dme9l00sTEaWru2HEURSU6yW2wC0KtnUodrjh2X08E2YVJHBaIBA1M7fC1mZjg7tLLoNqljC48o0CknptXQMniGDknv4GfiUZ062EaOzupg69wix3joWgKQEKtjU6zL7DZVIj3RaYldRCAjwRF5BXwIE+bkYWvTkmTTZeZd0B2trc2QmXlmZ0s7kqZLjJybg+FSEKWwJ0UTyerhJrd3LLIWPlaUwOZQGHBMFqrR+sxEWWTQWXkobWyKITHwgkJk3WrreUYRktYaj6xL5M0rQFREDg0OUZNIGJKNluREaIlTkEW0RBeO3kUIasv5goAgSziGDwnPjlogKAr6iPGgtHmOioo6YAbIbQheiobUYxqIbXIuawiZE0A2gJbYBRUcReE/4dA1JQTJgaROAWyt5wsyiriA8NutSNYRY04Goe1xOkLSAhDbxCPqCLmH4ml54pKKkDUAwREffgDhhCO6khBze4OsRnKBJKP1GQ1Km2vKCrahEzvkQh8+qZ1Nwz58LILU+rwEVcUYOAhR04j008kySnY2Sno6yC15E0Ukw8A+oB+C2qYFTZJwjR5ufTaqQuzk0ZbjBE0lceowRItNIW58fwRZihROQZVxDShCiXVCZFyEX/vG9MtFPDQuxPC4SJncHbHNhhiiIpM1rzdSW5tNJue4PpbjJJtM7rHdEWXJYsuekY+kywgtnxFRFYnrmUBMYQxiy0YggiSguTU6Tc9qHftCeGabNb7j98V/KRIEQVjV5u+swxxzG/CsaZrF7ewOoLadrRZw/jsBHZHkpUuuHExdvZfHHlmFGTKZPaczjz87jYUvruWqK77A6wsycGA673w4n5++P8BJC96hrt4X3hD98wXU1XmZOfk1DpY2kJho5+0l80lNczJl/EK2bq3C4VB45oUZjB6bw9wZr7Piu2IUReLWv47m9HP6csn5n7Do1fUAnH5Gb+64dzwP3f8jd92+nEAwxLhxuSx8YzYfvL+NC875iCZPgG7dEvng8wVs31LJ/NlvUlXdRHq6iw8/W4Asi0wev5Di4lpiYmy8+vocuvdMZMak11jzayk2XebBR45i1pzOnLLgXT5p2VD9ir8M4fKrhnLLDUt5/NFVmCGYM7cLjz0zlZefW8O1V32F1xdg0KB03vpgPiu/O8CpJ7xHXb2X/Nw43vvyWGqqmpk3+XUOljWSlGjn9Q/mkphiZ/b4xWzZVonLofHUi9MYPDqTuT0WsX9XPYIocOJFvbjknqEseWkLCx9cgySJnHZ1H8bNzqOwZwJP3rASryfA1FMKOebiHoybl8dDl35PdVkTgydncuZf+1Nb1sxjF/zI/q11FA1M4OwHByIIAi9ctJKtP1aQWuDi9EcHEJOiE5Oqs+aDAzgTNY57qC8ZPWNwJGisfGYHii4z4a89KJyYQlyug+V3rCcUNBl4YRG9T+lEzuhkVty4Cl+dj7yZOfS7vAeN53Rh1Y3LaTzQQPLgVPpcN4RQs58t93xGw/YyHPlJFP1lIrIhU/L8+zSs246aEEPa2XNQU+KRXA4af1yFaBjEHTsXW34estuN55uPQRBxTDwaW68BBNIz8C97CTPgRe55FEr/mZhdhuNf9ig0VSPmDEEefBr4T4cNt0PjHojpCV2vDg/27X+FurVg5EDBjahqPP6GJIK+pQhiPKrzOgSpCDEYgy/0Bgg6NukyFHUEIdIJVj4OBBFjT0Nyz8bUB2LuuRcC9WHyUsbZiEn7Ca64H7OxDCGtH9LA85F9TXi/eASzfDdiYi7q+AtA0fB+8SzBvesQXYloR52LEJOMYHfjW/cdgu7AmHwycmYRoiOGpuUfI4gixrjZaD0GIqdk0vjJYsyAH9ugsejDJqH1GETN4lcJ1teh9+qNe+ZsgrV1VL78Cv6yMrS8TsQfdxyYJpWvvEbzzl0oqSkknLQAyemk6s13aFqzDsntIv74Y1Ey0pGcTuq+XYGoqsTNnYnRvQtyXCyV734Opkns1DHEjBqE3jmf/c99QMjjJXZUb5LnjSFx2lCKH38Hf0Utzl75pJ82jaDHy55H3qdpVyl6Xio5F85AUBV2Pvwptb/uwZYSQ95lk7GlxKDG2in7cjOKy0beReNwd0tHjbez57VfECWRvLOGkDy6AEdeAlsf+46QN0jm7B5kH9eH5DEF/PrX5Xirmkkbl0P3SwfSvayJn65fTv3uOhL7JdP/5iGEgiY/XP8DFb9W4M5zM/SuoWhxGj/ctpq9Xx7ASLIx/M6BONLs//A79D8BE/6ovtOK/+lVsCAIvYHxQJ/D/HcD4GpncwH1hzn2N+OIXGOFsDj+N1/uIRgIMXx0FrFxOoFAiG++3E1tjZdBQ9NJz3RhmiY/LN/H/n319OqbTEFRWMx+7S+lbN1cSX5hHL37hWX5dmyr4tefD5Kc4mDYqEwEQeDggQa+X16Mw6kyenwOiiJRW9PMt1/vQRAERo3LweFU8XoDLP1iN02eAENHZpKUbCcUMvn2qz1UVHjoNzAtIma/6scD7N5ZQ5fuCXTrEZ4Vb9pQzoa15WRluxg4NAOAvbtrWfXjAeLibIwcl4MoClSUe/jum71oNplR47LRdSWciy92EwyajBiTTUysjUAgxNIvdlNf52XQ0AzSMpyYpslP3+7n4P4GuvdJIq9zHAAbfilj56Zqcoti6N4vGYBdW6vZ8HMZial2Bo5KRxAENv5cxnuvbCEmTuOUy/ugGwp1NV6++2ovkiQybFwmdoeKtznA8s/30twcYPCoDOKTDEIhk++/Kqa6vIneg1PIyA1vNLDmh4Ps21lHYY94CnqEn82O9VVsW1tJWo6TnkPDz6ZkVz0bfyjDlWCj37g0RFGgtqyZjUtLUWwSPSemotokmhv8bPq8lFDQpPO4ZOyxKsFAiC2fHaS5LkCnEQnEpBuYpsmub8qpP9BEWr9YEovCn62S1VVUbqkjvshFat9wfmp31FC5tgIj2SB5SCqCINBU2kDFqhJkh0LysCxEWcRf10zFj3sRJIGEwdnIhkrIG6B65Q5CvgDuPjmosXbMUIiGNdsI1DViFGWjpbRssLB9O4GKCtSMDNSM8BjwFe/DV7wfOSkBW374zUigohzfru2IDidaUVcEUSTUUIt/x4bwTLmgJ4KiEvI249u8HjMUQivqhmjYMYMBmjduwGxuRs0vRI6NxTRNPBu3E6iqxZaXhZYWHpONW/fRXFyBLTMRe2F49tO0t5yGrQdQE124euYgCALesjpq1xYjGRpxAzshtOSi6qfdCJJI3KAcZEMl6A1Q+cMuQr4Acf2zUWMNzJBJ2ffF+Gqaieudgj09/Bwqfi6hcV89MV3icbdsQFGzuYLaLVU4Ml3E9w2Pi4a9dVT+ehAtTid5aAaCKNBU7qHsxwPINpmUEZlImoS/wcfB5fvAhORh6agujZA/xIFl+/A3+EkelIKRYsc0TQ6uOIin1ENCrwTceeFxWv5rBTXba4ktjCGhZzie6m21lP9aiSPNIHVoMoIgUL+/kZLvy1HdClljUhFlkaYqL3uWliLKIjnjUlDtMv6mALu+KCXQHCR7dBL2RBuhYIidX5TSVO0jY3ACsTnhwrj7u3KqdzeS1juW5G7heA6sreHAuhoS8hzkDE4I52xnA7t+qMSZpFE4Nrmj6M1vxB+1xpopdTIvt9/2e1+WS+tP+B/jFQThEuB2Woulg/DroU3AE8DJpmkOaznWDpQDff+dNdYjcsZaVdnExKEvUV3ZBAKoqsySr47jkrM/YeP68jAhx4TXlszlpWfX8OG72xAFCARNHnhiEvuL6/jb7SuQpDAZ6LxLB9CtRxLnnfohsiRimibjJnXivEsHMHfy60B4bTW/MI4nX57O9LGv0tSizet0abz3xXGcOOdt9u2tQwBEUeTdL4/l9uuX8cPyfQiCQDAU4rnXZvHNF7t56Zk1iGJYYenGO0ejqiLXX/4VkiQQMuGYE7oxZWYhJ819G0kSMUMmfQem8de/jWHG2EXhNUsgNc3BovfncPTExdRUNWNiYrPJLPlqARee+RGbN1QgCAKmafLakrm8/uQGPn9/J4IYXve886nxHNhVx+N3rkQUBUIhkzOu6Ed+11iuPvULJEnANGHUlBxGTMjiqrO/iDyDp+9fzevfzeOEo96muUW72BWjsfDLOZw1awkHiusRBBBFgVe/nMPfrlnB6hUlCEAwZPLIG1P57pO9vP3sprDvoMml9wxBEyUeuHwFkiwSCppMP7WI0dNzuGH2l4hS+F66DU7ignsHcdPIz8NrrSbEZRhc+9EY7h/1FY3VPgRAsUlcuXwcr570Iwc31EXYaOd8PoqVj2xj8/sHQAyvuc5+fiB12+tYcc/GSC6GXNmVjJ4G313yDYIkgmmSOTGbrmd0Yfmp70eu58qPZcB94/nhlEUEfeE1VMVlY/Az89l49av4ylp8iyI9HzmZ0pfew7NpNwgCZihE7rWn4tu0ioZvl7csmJnEHjMfQlD12pvhV9YhE+eoEdj7dKXqqYfCi8+YqHmFuOfMo+6Jm8LrlaaJFBOP65Rrqfj7XyMkK0FVib/kBiqffQp/yYEWP5BwyRVUvPct9T9vCI+VUIi0C06gYUcVBxcvi/hOPW4Uako8O+59L2wzIW54Z5KmD2btpQtblhlMjE5JFF0/k5WnvULIF17bVFw2+j15HL9c9Abe8jC5TJAEBjxzPL/e/h1Vaw5G1gkHPzqNfZ/uYvdbmxFEATNo0vuG4YR8Qdbe/T2CJGCGTPKO60bS8Ey+O+9ThJZ4Egem0uOKwXx5zPuRNUd7uoMRT0/iy2Pex98i5ynZZMa/MZNvz/+a2h01kVxMeG0y65/YwL4vixEEgVAwxMhHRlGxvpq1j65HkMLjtO9lvXBkOll68YqWeKDT9Cy6nFjIe7O/ioyLhO4xjH1kCAvHfUmwRbLUFqdx3CdjeXXqNzSUhL+/REng5KXj+fDi1exfWRVePg6aLHh3BGvfLGb1y7vDuQiYTH+4L02NAZZcvTb8eQiaDDsvn/yxyTw997vwa2MTCkYlcs77I/7l4vpH4T80j3sKeK3Nv68AcoBzW/59ryAIc4APgRuBtf9OUYUjdMZ63eVf8uLTv+JvYcaJokBR13j27KyNiNEDpKQ6qKvz4mnDqlM1EQHBos2raiKSKEZE6yGsihQXr1O8t00bjC6TXxjHpvXlEcF8WRHp2iORLRsqItcUBMjNi6W0pMGiSex2a/h8QYsfRQ3H4/O1xqMbMrquWHSBDbtCeqaT7VuqIoNT1SS6dE9g49ryiGC+JAkUdU1g147qiFg/QGaaC39NqEMuZFPE1yYXSksu2moc63YFny+Itx0JJDPNxf7S+giRSFZEOvdIYOuGysg1BQFy82Oo2O+x+I6JsWF6sfhRVBGbKUWeK4TXaN02jfqqNvrKdpmCtBgObqmPrBnLmkjn7nGUrKkh6A8bRUkgq7ubqm0NkRYcgPhMHbPGj6+x1bdsEzGkEME27GPJJpCe0BT5UoQw2zImVaDpYEOb42TiCg0ad5RHvtAFWSShuxvv3hJMf8v5Arg6uRA9ZRbmqRKjYrfXhNtGWnA4JqygqqiuEKansdWmadjSDEIVB1ofjKxAbC7+fftaSUOiiJScha+kzOrHmURjaQizLRNWUmhqsGP62pCiZIlgSLbYRJtKSHPiK6tvY5ORk5No2F4RIeMIsoizIIn67eWWXKjpidQWewm2Gaey24a/wSTYhp0tKGKYtuVv+2xkUCT8dW20rw0ZW6KT+t2tjFtRlXAXxVKzqQrzEJFIFHAVxlOzrY5gGxauke6gqdJHwNP2HiUCftEyBkRVJGSKlrEiGzKiodFY0tTGJqFnuinfUBcZF6IqEt8thtJ1ta3nCxBX6KJqrwd/Y5vvgXgVT2PQMnZFVcCLlSWv6BIhVaSptvXzpTlkTnllML1m/vPrrH/kjPVS/a+/92W5vPH4fypeQRBupoUV3PLv8cAjQDatfay7/52Yjkjy0t5dtZYv31DIpLy0kaYmKxOyuqqpwy+2UNBEUay3raqSpdBC+HNZ2U7wvrkpQNnBxkhRhTALtrSkwXK+aUJFeSOBdszV2lpvB9+SJHaIUZZFamuaLTa/P0h5qcfyi8/nDVJ6oCFSVCE8Cy472GApWADVVc3hSU4bhAImitoxF22LPISLo689s9KE2ppmCzs34A9RVtJgKdSmCZVlTR00ietrvchq+1wIETJTxCYLNNR4LbagP0RdabOFWRnwhqg50BQpqhB+1nUHmyxfTACeSl+HkW8GQkjt4lFUqSOrUwBfu2cTbA7grWy0MDPNQAhfZX1rIQEwIVDbgNmOIWs2eaANiQdAEESE9oLYkmht8yHMrA01tONeBPyEamusTNxQiECttXgDBOoaw2zsNgj5zTCJp208itSRNStAoNb6GQk1B/BVNFoYrmYgRHN5x1x4K5vCDNk28Nf5wsSytm4EIUIqi0AWIjPQyCWDJs2VTZZxEfIFaSr1tBZVgJBJU1mTpagCNFd5OxCxg82hCFHoEERVxGz32RZEaK62jtNAU5DG0mbLuAj5QjQcaLIUZUxoKGu2tNAAeKr9iHJHRnJ7m6gINNVZv/tCgRA1+6xjJYowTNO8+VBRbfn3F6ZpdjZNUzdNc/S/W1ThCC2sI8ZmWQTybTaZ/oPSLULxsizSvVcSwTYfKEGAhCR7+NWRBQKZ2S4Ltd0MmfTqm2wphIahMGCI1Y9uyAweloHRJh5Vk+g7INXCSJYkgcIu8QTatXrYbBJ2h1VcPxAI0blbAlKbIiPLIv0GpqJprV94uiEzaHhGh1wMGNwuF4pIt96JBNv4FgRISLUfdrPy1EynJRehoElcjFXFRRCgqGe8xY/NkOk/PN0Sj6qJ9BpoXe8RJYFOXeM6tMdouozebqOBYMAkt3uspeCKskD+oAQUrQ3T2C6RPyLBwh5WdImcIVabpAik9Y21ttwI4EjrqFITMsFIsVu+bM2gibtrouWLXtJlYnulIWpW9qerZxairQ3zVJEwirJaGa8AooiSlt6hHUXQVCvjFSAYQk5Nt5wvCCJyZkF4lhq5cQ0lvwjUtixcBS2vwMKYRZLQczOsLSqCgJroOmyrmhrvtBaekImjMCX8mjxy3woxvdI75CKmT4YlF6IqEdfLei6igKsgtsOPGdmuIGnWQk/QxFUQG2HMhkMXiO+VZCmEki6TNCAFqc04lWwSSQOSkdvYREUkvme8tW1FAEemvUMbDICepHcYF4k94yxFT9Yl0gcnILfZUEM2JDKHJVgY7ZJNJGNQvOUHhSAJpPZwEWr3faG7ZOR2uTCDJqldXNbvNVEgZ1B8h7j/0wiZv//fnxFHZGE947x+HD2/C5IkIEkCI8Zm8eQr07niuqHIiogsh1/Pvvjm0Tz87BRsuowsi6RlOHnz4/ksen8usXG28A4tbo2X35rN4g/mkZXjRpZFNE3ivseO4rnXZtGzTzKyHL7m+ZcN4ImXpjF+UqeI76mzCnn0+amcek6fsE0W6D8wjWdenclt941FVSVkWSQ3P5ZF783lucUzcThUZEUMyxZ+dAxvfDyf5BQ7siJi2BWeXjiDhe/MoaAoHlkWURSRG24fxdMLZzBwaAaSHPZ9wqk9eez5qcya15qLUeNzeOLl6Vx6zZBI3N16JPLcG7O4+5nxkVykZjp58aOjefL96bjjtHAuYjSeeG86z3w4k/RsVzgXNonbnhzL4uXzcNpbv5RHjM7i+c+OZuTE7MhMc9LR+fzthYkcd1aPcIyyQJ/BqTy4aApX3TscRRWRZIGcghiefH869y0+CsOhICsi8ck6T348nYc/mUp8io6siOgOmTteG8+d700ks8iNJAvIqsg5dw/kssUjKBqWiCiHf8GPO7OAs14ZQv9jshBb4uk6MYXTXhvKhOu6Ro5L6x3Dqe8M5+hnByLrEqIsEJNlcOqnY5j/3mhssSqiImCLVZn/3mgmLJqMPcOBIAtImsTQ+0Yy9NHJxHRJQJAEBFmg89n96HP3FBKH5oRtkkDqxCK63TKDlJn9QBJAEnH1yKTgxmNIO216eEYoiWjpieTccCaJ552LoGkgSYhuFylXXE7KlZchuVwgSQg2jaQLzib+vMuQk1LCxVWScc05DteJl6JkF4Ztooht8HjcJ5yH3ntgxKZ16UncqefinDQ1YlMys0i68HxSzzkWQVFAElESYsm56VwK/3oSksOGIIlITp2iO06h6z0noyXFIEgioiaTd9XRdLtzHvaCZARJRJBEsk8eTve/ziB+UA605CJlQhd63DadjKN7RvLj7pVB73um0+2KoeFXvZKAs1Msw56awZCHJiIbCoIsYksyGPXSDEa+OAMtQUeQRWS7wtBHJzHq2Wk4ctwIsoioiPS+fijDH51AQp/kiJ+CE7oy+IGxZE7KbX02o7MY9tBYup3XE0EO2+K6xzPmmfEMu3c4kiYhyAKOTAeTXpvEpFfHo7pVRFlEi9WY8tpEpr81AUe6HVEWkGwSYx4ZxrRXRxPfPRahZawN/EsPpr84jJyxrfF0nZ/NzJeG0vvUTghS+LisYYnMfXUo4+/oiaSIiLJAYmcXxy8ZxXGvDUW1h8epM83GGV+M4dzPRuFI0hAVAc0pc9rbwzn/45EkFTrC8agi8x/sQ3b/uP/UV/T/eRyRa6yHUFXlwe8LkZziiNgaG31UVzWRnuGKzMZ8viAl++vJzHYhtvzaDwZD7N1dS2a2C7nltZdpmuzdXUtKmgOt5Re3aZoc2F+Py63hdLb265WXNSKKAvEJRsRWV9dMY72f1PTWFqimJj/lpY1kZrsj8QQCQYr31JGV40aSrPGkZ7oi29+Zpsm+vXUkJBnoeuuv/dKSBjRdJiamtU+xqspD0G+SmNxKsW9o8FFTbc2F1xug9EAjGdlOSy727a4jPdtpycW+3XUkpdkjuQiFQqz9qZT0HCeJbXJeUeZBFCGubS5qmvE0+klpl4vKMg/pWdZnc7C4gfQcpyUXB3bXk5zpsOTi4N4GYpNs2NrkonJ/I5pdxhHT+mwaqprx+01ik1tnoU0NfhqrfMRnGq2+vUFqD3hIyHFEbMFgiKrdjcTl2CPxmKZJ7Z4GHKlGZLZgmiYN+xvRYjTUNm8cPOUeBFFAj2/17av1Emj2YSS35iLY5Mdb7UFPbc1F0BfAX1GLmhyL2OI7FAzhPViNmuhGUlvHpL+iGsnlQNJaf+z4q2oQVRXJ0focAnUNmKEQSkxrR0HQ4yXQ6EFNiGn17fXjr6xHS42N2EKBIM0lddjS3K3xhEI0H6hDS3RE+oNN06SppB7VbUNu8+OrqcKDKAlosa258NZ6CTYFwm8CDsXY5KepohlHRpvn4AtSv78RV5bDkou6vQ04M+1IbcZpfXEjeqKG0mZc1Jc0otoVNFdrPJ7KJghh0dD11vvx1npxpre+vQl4gzSUNOHObrUFA0Fq9zbiznZExkUoFKJmrwdXmo7cZpzW7vOgx6pobcZFfWkzoiJgj2sdp54aH/6mAO7U1uflbfTTUOElLqvVt98XpGafh7hsu+UzUrG7kfhsw/KZLdvdQEyKjqb/67zUP2qNNUPsZF5s+/3XWP/S9M+tsf7/wBHJCg4GQ5x/1ke8tXgTACPHZPPK60fzyN9/4p7bVyCKkF8Qz9sfzufbb/Zy4dkfEwqZxMXrvP3hfKqrmlkw5y2amwOoqsQrr88mLcPJ0VNeo6wsvC7xwMMTOWpKPnOmv87G9eWYJlx0+UD+cu0wTlnwHl98uhOA6bMKefL5adxwzdc8+8QvCAL07pvCG+/N463XNnLjX75GQCAtw8kbH81ny6YKzjphCYFACIdD5dX35iDLIsdOf5O6Oi+SJPD4C9Po2SeZeVNfp3h3HaZpcv1fR3LCab044ei3WPnjAUzT5MTTenH7/WO5+KxPePf1MIltxNgsnl88i0fv/4kH7vwBQYCCzvEs/mAeK74q5upzPsc0ITbexssfzaa6oplz5izB2xxE1SQef2Mqial2TpzyNpXl4fWz2x8dS+8BqUwdvJDGlnXsoUMzeenjoznnuA9Y+tluAKbOLuDvz03i1r98w0tPrUEUBHr3T+HF947m7YWbuOMvy0CAtEwnr3w8h23rK7n8hE8IBkzsDoWnPpiBKIqcM/V9Guv9iJLA3S9NoGvvRM6b/AEle+rDz+HOwcw8pTPXzvycTT+WY5om084s4vy/DeL+079j2eu7AOg7IY3r3xjDO3dv4O071yMgkNHVzQ2fjGPtpwd45qyfMAFXosY1n46lrszLA7OW4W8OotgkLn1nBAkpOs9PXEpjhRcBmPnUAAonpvDa1K+p2FQHpsnQq7ox5C9d+eikZez98gAmUHB0NhMeH8JPN/3Ilpe3IIgCCX0SmfDyBPa8tYk1d38fVvVNdzLqpRnUbytl7TVLMEMmkl2l/8NzMU1YdcHbBBp9CKJA73umEVMUx5arnsdXVgNAxpmTSJzYl203PY9n6z5M0yRxyiAyzpzK9rveoeqbDQC4++dTdMsx7HnxO4pfXgEC2HMT6fHAAsqW72b9bZ+DCWqczsAn5uI52Mx3535MyBfWox325BTUOJ2vT/gAb3VYk3jg3aNIGZbOF8d/Qu22GkzTpOdFfeh2bk8+PWUp+74pwQTyj85hzMNDWXrlz6x/YTsAqQMTmPnGGNa+uIOl161BEMCVbefYD8dwYHU1b5/0A6GgieZSOOGDkYSCJq9OX4a3IayFO/fVoSR2dfPSUUupLQ5/Zo+6rze9js/mlWnL2L+qCkwYcG4+E+/pxTun/MjGt/YBUDAplfmLh/LN7RtZfs8mBEEgqbuLEz8axZYPD/D+eWGdbUeSjVM+HUXt/iZenL2coDeErEuc+t4I9HiVJycupbHShyDAMc8OJH9MEo8e9Q2lm+sxTZNJN3Rj3BVFPDF7OZu+CMs5DjwumxOfHcDCi1az7NkdCALkD03k4vdH8vVT23n92rUIAiTm2rn687FsX1nBwyeuIBQ0sbtVrvl4DD5/iJunf0lzgx9JEbnq1ZFkdnFzzVGfUbEvTGw7628DmX5u59/za/d3wZ91/9TfG0fkjPXRB3/i9lu+jbBebTaJUWNz+Hbp3ggrWJZFevRKYvPGCgsLNznFTmOjn4Y2xAe7QyEuTmdfcV2EHKTrMj17J7N6VUmEHGQYCqPHZfPVF7sj5CBdlxl/VCe+/GwnnpZ4VFVi6LAMfvmxJBKjKAp0Kohlf3Gdha3rilGRJJHqylZCjG7I5OTGsHVzZYQodWgtd8Wy4ghRyjAUxh6Vy5ef7rTmYlwOy77eE7HJskjvPinsXFdtITUlpdrx1gdobGglPhgOBUesSsm++kgubLqMoopU1bbGKAD9+qeyfkO5JRdjJuXy9ae7Ir5VVWLQ8HR+/eFgpC1HFAXyimIp390YsR3KhSJK1LZlABsyuTkx7N5SEyFK2QyZwUMzWLfsIP4WEohmyAydlMHPH++PaBKrNokB49PZ9GVpxCbJAnn94jmwphZfUytDNS5Nx1sbsGgX2+wSBXE26va3EmIUXSKnr4uDP1dF1r8UQ6JgYhL7lpZECDGyLpE3OZmyZfsItORHVEXShiZRv3ZfhPUqiAKufDfUlFp0imWXhhmS8Ne15lyyyaR1h+Z95ZHFJVFTcPbMpGHdzoh0n6gpGL27UPPDDkLeQ8LzMq6+hVT+uCeieytIIvaiNMrX1hLyBiK50BKd1JUKFo1ayZARDZ2mUo8lHkdBApVrKyJr1pIuEz8ok71LD1pykTYmg52flhA49Bw0kbRhSexZXhmxCZJAXJGL0m0eAk1t2LFxCqYJzdWt8SiGhDPToHJrQ2RdVDEkMgbHs/e7igg5SDEkCialsu2TEsvmDHkTktn5RWnEJioC6QPi2L+6Bn+bceHONKit9OFrMy5Uh4TiVKgraX02ii6R0N1N8erqyLhQDYlOY5PY9MVB/M2hiK3L5FTWfHIA36F4NJHC0Uls/rY8YhMlgbRuLvZtr4vYABzxKo1mkIaa1u8vzZCJy7Sxf1tdRKVRMyTu/mISRQMT+WfxR85YL9Ru/70vy9XNC/50M9YjsrAee/SbfPrxDostIVGnsqLJwprVNAlFlSxFVJYFbDaZhjbFxOlUaGwMWPSG7XYFEywtIgBJyXbKShsttuRUO6UlVlusWyPgDeFtxzx0uVTq2rQI2HQZTJPmNsc5XSqeRr+FfayoIna7Sk21lZF6ON8JiToV5Va2pt2mYEiKpYjKsojdZrXZnQr1jT5LLgyHQl2Dt4NYv8uuUuexMjMPF0+M24a/OWhhC0uCQKzTRkNt21xISIiR3XIAHC6VYEPIEo+iiiQaBg3VVt8pKXaqS6z3nZRk0FhqPc6mS6iiZCmikiRgM2Sa61tthlMmqcm0MEBVh4wuBC1f/ADxmQrN5dZnE5+thBmybWBPkJD8TVbBdDWIMyFEoKE1TlGVCCFZi61DIdZeZmkGFBQJ2RAJNlp944jt4FtwufC2izEk2/D5VYJt2tRCpohfcBBoMy4ku4yvEUsuZLuCr1nowK41nU485VaGrBJvp/6A1bfsVmmuD1nYsKYggK7ibcNylW0igihY2N2qs+VZtRmUsk1E0iS8tdbPrDPVRn2J1bc92UZjabt4DAkT8LVpeTFFEO0y3ro2hdUp4W0KWYhFmlOmyRci0NyWCAZaokp9mTUX9nQb1Qes41SPU/HU+y2sdiSQ7JKF8StpIl7FxNvmB6nulGls8Fm++1SbxBn39Gf6eV34Z/FHFtYL1N+/sF7j/fMV1iOSvNQpPzay9gbhL8WUFKdlHRIgPsHoIM4vyaKlPQXA5wths3V8K56YaFj+resyqWkO5DbMP0URSUtzorVh/gkCJCa3roccgjtGw9fOdyjYUbQ+4A8RE2uz2BRFIinFbmHXappEWroTtS0LUhJITnVgGNZcxMXrHfxIstAhF35f0HIvQPgVodK+HQRi4mwW5rKiiKSkOzrmIsWwaAVDWEwi0K69IBg02+uiE/CHOmyoLisiscm6hbmsaBLxGYalhUeUBGJTdQsrGMCZYOuQC1EROrCU/b6OLTiYJkZiu3gMCXuKbmGoiqqIkWq3slkFsCXoCO3aSWSHrQMT1jQ7Uh5DARPJ0Y6dLUnIsU6LMLygyKiJLmuLiiigxTstGrUAaqzegQEsaVIHAfeQ30Rs3/JimtjirONU0g+fC0e6jtSGxS2I4EjWkdrlwhardMhF6DCbLoQCJnqMVWNblEQcyTYLW1e2iTgzDCTFyip3pdlQdOu4sCdZ7wXCIiPB9uPUG+rQ8mKGTBwJ1nGh6hIxabqF0S6rInHpekQPG8K5iEnRO7SfOeJUS1cDgGCahNq1PQUD4dfEbSHKAomZfy5Jw/9LOCIL61+uHUZ6hhOHU8XhVImL13lh0Ux690vB7lBwOlUcDpUXXp3JnHldMOxhm67LPPHsNG64dSS6LuNosV15zVCeeXkGui7jdKrY7QpTphfw4qJZOF1qy/UUuvVM4sVFs4hPMCK+U1IdvPTaLAoK43E4wse63BrPL5rFyLHZ2O0KDqeKYYTZvmee3xfdaPV9+/3juOfhCZF4DEPhxDN68cyrMzFazrXbFQYPz+DZRTNwubWwb4dCTqcYnl00k9T01lzExus8u2gmPfskY3coEfuTi6YzdW5B5Jo2XeaBFyZx6c2DsRkydqeCzZC58PpB/P3FydgOxWNXOGpWHn97cmJ4l5GWP5dD5eWPjiY+8VAuFJLTHDz12nQ65cdGfLtiNJ58bTpDRmdEfOuGzMOvTmHBeT1bfesyNzw0museHolNb41n/tnduGvRBGz2sE13yPQbmcatr4/DEaNiOBV0h0JGvosbFo8hId1AdyroTgV3gsZVr4+mU5+48PZzLhndKXPZGyMYNDcTzR62qbrE+a8MZfYtPVANCZtTRjUkjr65B/NeGYyiS2guGdUu0W1OJkcvGo7qlFGdMopDJqV3LNNeGYker6E4wjZHqs74Z8fgzHWh2BUUh4LqVhn5xESSBqUjGwqyQ0HSZQY9OIWsuWGxdsmuItpkul4zga5Xj0NssUk2mexjepN//bGINgXR0BBtKs5eueRddzyS3Yaoa4i6ii09gYKbjkONdyEaKqKhosTY6XzbPBwFKUi6imSoSHaVHnceTfK4AiRdifjuc9dkul04AMkmh1tdbDI9Lh3I4AfGhm0OBcmQyZyax8gnxyG33J9sl4nvkcDE58dgi9NQHEpLLgymvjSKmE5OFEc4b5pbZearI8gclhixKYbE7EXD6deywYLmlFF0iWmP9WfSA32RdSly3KALCpi3aEj4OJeMapfJHZvEMW8MwxajhG0OmfhCJ8e8PhRHqh55ZkaixvzFQ0nuGYPqkNFc4b9jFg+hy6wMVHv4moohcczCIYy7vqslnkl39OS4Fwe18S3R+9gsTntjKJpTxuaS0RwyWf3jOOuNYdjjVWxOGc0pE5tpcO4bw0nKc2BzyticMkasygVvDqdweCJayzjV7DIXvzGCcWfkoxlSeJwaEmc9NYizHhiApksYLgXNkJh5cReuWTQazZAxXAo2u0yfcWkMnJr5H/6m7oj/1O42/79xRL4KhjDDdNnSvQQDIYaNyMQdYyMYDPHt0r3U1XkZMCiN1LSwPu7KHw9wYH89PXsn0ykvFoAN68vZurmC/II4evQK6+Pu3lnDr7+EtYIHDw3r45aVNvLj9/uw21VGjslGlkXq6rwsX7YXQRAYOToLu13F5wuybOkempsCDBmWQXxCWI/2+2/3UVnhoXe/FDKz3QCsWX2Q3Ttr6NwtgaIuYZ3PbVsq2biunMxsN30HpAKwv7iO1StLiI3TGToyE1EUqKps4ofv9qFpEsNHZ6FpMh6Pn+VL9xIMhhg2MguXWyMYDLF86V7q67wMGJxOcqoD0zRZ/UMJBw800K1XEjn5MQBsXlfBzi1V5BbG0qVneE1mz44a1v9aRnKqg34t+rib11bwzsJNxCbonHJhb2w2mfo6LyuWFiNJIkNHZ2K0qDR993VYK3jQsAziEnRM0+THZfuoqmymV/9k0rPCLNX1P5dSvLOOwu7x5HUJtwfs3FzN1nUVZOS66N4//GwOFjew/qdSYuJt9B3ZohVc2czabw+i2iT6jElD1SSaPQHWfFVCKGTSc1QKdrdKMBhi/VelNNX5KRqaQGxq+Nls+76Cqv1N5PaNJTkvzNjds6aag1vqSSlykt0rPFYqdzRQsroaZ5qNrKHhXYIaDjax7/sKNKdM9phkREnEW+tj3/JSREkgY2QKiiET9AYpWVFCsDlA8qAUbHE2zJBJ+U8H8FU3E9crCSMt7Lt2Qwme/bU48xNxdAr3IDbsrKR+WwV6hpuYbmF9XG9ZDY2b9yG7DZw9cxEEgUBtI/UbdiGqCs5eeYiKTLDZR90vuzBDIVy9c5HtNsxAiOrVuwl6fLh7ZKDGh8dF9a8H8JY34OqSjD0zPC5qNlVQv7MGZ14MMZ3D47R+dy3VGyrQU+wk9A3r43pKPZSvKkVxqaQMTQ3nos7HgeUHESSR9BHhXAS8QYq/OUjQGyJ9aBJ6vIYZMtn7bRlNlV7SBsTjapll7V9ZSc3uRpJ7xJDQOTxWyjfVUba+hthcB2ktrSQ1exvZv7IKe4JG9shEBEGgscLL3uXlyDaJ3LFJyKqErzHArq/LME2TnFFJ2FwKwUCIXV+V4WsMkDkkHmdKeJzu+a6ChpJm0vrFEtcpzH4/8Gs15VvrSeriIrVHOD8V2+vZ/0sN7gyd7MHxCIJAbUkTu1ZUYHMrFI5JQpREPDU+tn5ThiSLFI1NQtVl/N4gm74qJeANUTgyEUecRihksvmbMhoqveQPTiAuI/zGbPtPFZTvbiS7VyxpLZrWezfWsGdDDamdnOT3C4+V0j0NbF1VgTvBRo+RyYftUf8t+CNfBZ+v/P6vgq/1/fleBR+RrGCATz7ezj13riDgD3H2ef04/cw+rPrpADff9A01Nc3MPLqIG24aya5dNdx6yzL27qll2LBM7n1gAk0eP3fc9i3r1pXRpUsCDz4yCZdb4/6/fc83S/eQlubkgYeOoqAwjmeeWs0br2/E6dS4XRvDiJHZvPv2Zh556CcEIbzDzLxjurHsmz3cfONSPJ4Ax5/Yg0svH8z6dWXcdNNSysoamTAxj9vvGkNZaSO33LKM7duq6NsvhQcemoQowl13fsfKnw6Q2ymGBx+ZRFqak0ce/omPP9pBQoLOPX+bQJ++Kbzy8lpefH4NNpvM9TeNZPKU/JZcfEcwYEZy8dMP+7nxxqXU1XmZNbsz190wgl07q7n55m/YV1zHsOGZ3HX/eJo8fu667Vs2riunc7cE7ntkIg6XxoP3/cB33xSTmu7gnocnktPJzV8u/ZyfftyPooqIusBZF/Tj7Tc38dhDq5BEgcuuGsLcY7qybOkebrnhG5qb/Bx/ck8uvnwQ69aUcdNN31Be1sjESXnccudoyks9/PXmZezcXk2f/qnc/dAEBAHuuWM5q1eWkJsXy72PTCQlzcGTf1/F1x/tIj7J4OYHRtO9TxKvvbCe11/YgGaTuPLWYYyZnMtXH+7kiTtWEgyanHRhL445swdrvj/IfTeuoKHWx8R5eZx74wCKt9Xx9xt+oGx/I31GpHLZ34fS1BDgmVt/Zuf6anK7x3LZY8MwHApv3LWejUtLic8wOOPxgaQWOPn8kW2sfH0vhltl/v0ShSOSWL14L8se3IooiYy/NkifY7PZ+mUpn163AX9zkAGnNTHqis6U/FLNx1duorHcS+GUWibc1YvGg018ed0manbWk9K/grH3DwTgy5s3c3BVFbH5Do562IkjxcZP929j92f7MBJ1Rt7jJqFnHOtf2smWV7ch2yQGXG8na1wGuz/Zx5q/byQUNOl+tkjnE4oo+amcFTduwlfnI39WE/2v6kXV1no+/ctm6vZ5yB5Vw/i/9cNb7+eDazZRuqGWlB4xzHy8P6pD5pO/bmHH0jJiMg1mP2GQkO/gm4e2s+7NYmxuhen3q+QMS2DVq3tZ9lA4FxNvCNFnfhabvyjlg+vW428OMvSMToy9vIg9q6tZfM1a6su99JyWxuy7e1FzoIlFN6ylbHsDnQbFc9Kj/TFNePPWdexaWUVygYNTnhyIK9nG+/dtYs3HJbiTbZz0cD+ye8fy5TPb+faFXWiGxPw7etFzUhqr3tvH+3duxDRNJl9SxOgz8tn6XQWvXvcrzXUBBh2bxewbu3NgSz0vXb+G6v0euo5J5qS/98NT6+Olm36leGMt2T1iOfuJQaiGxKI717FhWSmJWXbOeXwwKZ0cvPvIJr57aw/2GJUz/zaALkMT+WLRDt57dBOSLHL89b0YNTeXn77Yx1M3rsLXHGTGGZ059pIebPm5gr/f8AO1lc0Mm5rFuXcMpHx/Iw/d9CP7d9bRfVAyVz48nGAwxMN//YlNq8vJLnBzw2OjiUvSee7+X/ju070kpBhc/fcRdO6d8B/+lrbCJMoK/v+Gf2XG+vlnOznh2LcjbF/DULj40oE8+MBPEVawrsvMO6YrS97bSk1NM6YZXpMcMDCN0tJGdu+qwe8PIcsiGRlOCgrjWfbNHrzeIIIQFtc/5tiuvPLyugjDVddlLv/LEP527/etNkPmqmuGcfcd31niOf2s3jz/zBoaWggpNpvMUZPz+PGH/ZSXhWURVVWkqCgeVZNZt7YMny/Y0hurM3pMDh+8vzVyTbtd4axz+/HkYz9b7vHq64Zx1+1W35dcNpC/3/9jhKWs6zLHHNeNJW9vpfZQLmwSAwelU76/kb27awkEwrlIz3SSmxfL98uL8TaHc+FyaaRnufh1XanlOZx5dl9eeXmtJT9XXjeMe9vFc/o5fXjuqV8iJCmbLjNpcj4/r9hPRbknkovCrvFIosim9RX4fEEkSSAuQWfsyFw+X7Izwj42HAonndOLFx/7tZUNrctcet1gHv/rylaWsiFzxhX9eOm+NRH2sU2XmXZ8Id+8sYuG2jDhQ9Ukeg5LpnZPMwf31hP0m0iKQHKWg85ZcWxeXoa/ObzptO5WGDM/lx9e3h1ha6qGxIyru7D07s0Rgo1iSEy8oStf3roxwjJVDInhFxTw65PbIyxTWZfoPD2Nih9LaKrwYgZNRFUkoasbf1CkfEMtIV8IQRIwEjTyx8az++N9EcKQYpfpeWYBG5/bHGEfS7pE/8t78csDvxJsamXCdr+wJ6sf2BAhXsm6RMH8PFa/si9M+DFbVICGJ1Ky1UPtXg+hgImoCMTm2LFnGuz+roJASy5sMQo952Wy+pU9lvseeWVnvrinXS5u7MbHt2yI5EI1JEZelM+Xj2zH25ILRZfoNTOd9UtLaajwEgqayKpIRk83oYDJ/o11BH0hREnAmaSRNyyRXz48ELmmzSEz9px8vnhsW+uz0SVm3diNd2/bYHle06/pypI7N1psI07OZfmi3XhacqHYJLqMSmLvtloqixsJBlrGRa4Dd5rOlu/L8XvDubDHqgycncnSRbsiDHTNkJh1RVcW37c+QjbSDIkFN/Timdt+jpD0bIbMvAu78cYjG2hu0a/WdImRs3L48ct91FZ4CYVMFE2koGc8DT4/uzZXhzkAkkB8skGPQcks/2RP5JqGQ+HtNceSktnab/5b8UfNWNPFTua58h2/92W5wX/cn27GekQW1hOOfZv339tqsaWkOsL6vG2YeoYhI0ki9W1YwZIkoNlkC9vX7lBo8rRjBTsUREGwnCsI4R1lDuxvFWAHyMh0sa+4zmKLjbPR3BSwtPqIooDdrliuabNJhEJY9HmdTpXm5oCFWKRpEk6nSkWFlU14ON8pqXbKyzwWVrHdriALopUhLYk4bIo1F3aFpqaOuaht8NKOV4TbrlLbaGXcHi6euHgbHk/AKrgvibjsKvVtGNKaTQpryHqtuRA8gkVrWLNJGA6F6gorqzMn083BvdZnk5rmpOZgE21V+xx2BVWQ8NS3YZ5KAm6bRlMbYX7dLuNslC1MWJtTxhGSIsUAwuST9FS9A+s1Lsugdq9Vr9WdqIInYGGPKiq43eBrw0gWVJFA0Cr0rjokNNNniUeySeguAW87nVpXpkHjfisrWE2y03CwmbYP0tRUmpolSztJSBAIaorFptglPE0hi2/NKWOGsGxmIEhgS9Kpbcd6dWUZVLfLhZ6o0ljntwjKC4qAaIg0tWHhypqAIIj427CPNadEkydkITWpuoRqSDRUWsdkXKZBVbHVd2y6Ts2Bdl0ELplQyLSwxRFBtIsWm2aXaG4OWnzrTgVvKBgpqhAmzxlJKpUlVt8xWToHiq3bfcYk2mis80XaxyAsv6noEo1tGdKqiF8OWZjzhkOmuckaj02XueJvw5h7Rlf+WUQL67+PI5K8pLdjvAKoihhREjoEWZYOu7jdnikcCpq0X44Q4LCC+W3ZyIegqSLt9dIVWeqwxiHLYkffIZP2P25M00Rqx8AURQFF7cjM1dprqBLeRq8tWxfChax9MkzTtGqjAsFQqEMuwr46GmWl4/BRNanD+YosIbYzSpJw2OfQwWaaSO0YmIIooByGpXy4Z6OqYkS5xxJ3+3FhHmZchDposodndYrVKkpiRy1bwv2J7S8gKWIHrWqxZXu+9n7a20w6CrALAh1E6xHC7TrtIakdPyOicriHTYdx0f7f/+h8URQ6MqkJ75p0uFy033RBlIUOzPBQ6HDxcBiBejqwjAURi6b0IciqaGEuAxa2f9trtvfdnqEMYGJ28C1KQgemL4BiEzt8RmS142YckiweJhem5UcihONr/3n/R98N/1H8kxrAUa3g/8+4+NJBGHYlMjh1Xea2O8bicKiRAaYbMtfdODzcjtIywAxD4ZTTejFiRBZ6i+SXrsv0H5jGuRf0j7SoqKpEYqKdG24eGRGUlyQBh0Plr3eMjZx76Jq33TEWu0ONFFddl7nl9lHExNgixdkwFC69YjCduyREWnt0Q2bKtALmzO0SEfG32WQ65cXyl6uHRuJRFBGnS+O228dEfAsC2O0qf71zLIbRLhe3j8bh0Cy5uPam4aSkOiy5OPWs3mER/5Zr2vTwZgann9c3ct+qKpGYZGf+Md0sz0AU4KbbR3XMxZ2jsTtUSzy33Dkal1uz5OKSqwaTXxQXac3RDZkpMwuYPrso4ttmk8kriOP8qwdGbIf0na++Y3hkAwBBCG+rd+Vdw6wbEugyl905FLtTieTCpsucfXN/4lONyBeuzZA5+tyudB+ajNbSgqHpEt2GJnHU+YVoLe06siYSk6Iz67YekRYeURKwOWWm39PLIqyu2iWm3tsbzSFHCopiSEy8qxeaW4kUJMWQGHp1N2ILXEi2cDyyIVE4K5OimRnILdeUbCLxhU76XtYjYhMVEc2tMujG/kiHWkcEUOwKA2/sj9wmF5IuMfim/igOGaHlUFmXGHp9L+zJtkgxVAyJgecVkDk4HrnlmooukTM8kSHn5qHYW+LRRJypOkfd2j1y34IkoLkUZt7bs7WVRQjnYua9vay50CWOvqcXNldrLlRDYup13UgqcKK0jAvVkBg0P4s+s9IjOVdsIuld3Uy/qkvEJiki9liVY+7qFbEJAmh2mePu/X/svWV4HFe2tn0XNVSDmJllkpmZmR07dmDCnEyYmTmxAw7HAUMMiR1zOHHAseOYmSSTJFvMrYb6fpRcUqk935k5Z/JOcp2z5/KP7Gn13nXXqtq9q571rE6mlCuLXeL8ZzthdymITd0WVWLa43m4o23GYmh1SIy+KYesnpFYmo7HYpdoNzCGkVdlGXGhWEUi4lUufLiT0SfJAnaXwlXPdDNiShD0kofXP90TW4v7l9Uucf1TPXG4LcaPSJsqc+l9nUnMcGNpYmFTZUaen8nAsSnYms6t1SaR2T6CS+/obPTJiog7zMrgiWn8X/vPtL/ko2CAPbvP8NYbW2hs9PO3SzrSs3cihaeqmf3Sr5SW1jNpcg5jx2dTVeVhzku/cvRIBf0HJvO3Szvi8wWY+9pvbNtaRPsO0dxwUw8URWTBxzv55ut8kpPd/P3WXoSG2li/7jCfLtmLO9TKTX/vQVJyCL9tPsW897YhCAJXXt2FvI4xHD5czuuvbKa2tpEZM9szeEgqpSV1zH7pV06dqmbkqAymTW9LQ4OPV2ZvYt/eErr3SOCqa7ogCALvvr2VX34+TnZ2BDfd0hNVVfhs2T7WrDpAdKyTm2/pSVS0gx++L2Dh/F3Y7TLX3tCdrKxwdu86zZtv/I7PF9BZ9Erg1Mlq5rz8K2Wl9UyaksuYcVk6ixd/peBoBf0HpnDRpXn4fAHeenULO7cW075jNFfd2A1FEVn00S5++LqApFQ3N9zaE3eIlece/YlPFuzC7bby3Ksj6Nojnt82neKDd7chyyKXXd2FDnnRHDlcztxXNlNb42XGrHYMHJJKyZk65rz4K0WFNYwYncG0GW2pr/cy96XNHNhXSrde8Vx6dWcA5r21jc2/nCQzJ4LrbumOqiqsWrKfr1cfJSpW5erbuhERpfLzt8f5dP4e7KrCpTd0Jj07jP07Sljwxg58vgDnXd6eTj1jKT5RwwcvbqOy3MOIqRkMHJdKTWUjH7+wnVNHq+k2JJ7xl+Tg8wZYNmc3B7eVktUpgqk3tUNWRL57/zA7vykmOtXBhDvaooZY2L7qJJsXH8cRbmHk7bmEJ6oUbCxh49tHEBWBvtdlEZ8XypmD1fw45wCNNT66XpRK5pAYas808PML+6g+1UD22Djaz0jBW+djy5w9lO2vIq5XFB2vyALg9zcPcurXEiJyQ+hxcy6KXebAsqMUrD+BGqvS5aZ22CNtnPzhFAeXHEF2yHS4qi0h6W5Kd5exd95eAj6N3ItyiO4SRc3JWra9thtPRSMZE1NJHZlIQ2UjG1/YS2VBLalDYsi7OB2/N8DPLx+gcHsF8Z3D6PP3bERZYNN7Rzj8zWnC0x0MuqMNNrfCnpUn2bHkOGqElQG35RCaqHL0lxI2vnMEURbof0MW8R1COX2gmm9nH8Bb56PHxalkD46h6nQDXzy3l8rCBvLGx9N9RgqeOh/rnt9L4b4qsvpFMfiaLNA0vnn9IId+KSG+XQijbs1FsUn8srCA7WtPERZvZ+wdbXFFWtn1VRE/fZyPzSUz6u85xGS6KNhWztdzDxIIaAy+MpOMHhGUHKtl7Qv7qK1opNf0ZDqNTaC2opFVz+3hTEEt7YfGMvCSdHzeAKtf3kf+9jLSu0Qw5qZcJFngy3cPseu7ImLTXUy6vS2q28KvK4/z49IC3BEWJt/WnsgEld0/F7Pu/YNIisDE69qS1j6Mgv0VLHl1F556P6MvyqLLwHjKiutY8MIOSovr6T8+hSHT0qmv9TL/xe0U7K+kU79YJl/VFk3TWPT6LnZuKia9TRgX39IJq01i7ScH+XHtMaITHFxyW2dCI4Lzcv+Z9kc9Co4XMrSr/4BHwQ/7zv/TPQr+y6qCnU49h9TrDeAO0ROzbXaF2Fh9VxYerifSW60S0TEOGhp8REXpBuySJBIV7SA+3kVMjANZFvWSU5Eq8fEuomOcxmOU0FAbsfFO3G6rsYMMCbESF6cbhrvc+thOh0JsnJO6Wq9hjm+1yUTHONA03axCEPRHmNHRDqoqPURFqcbjn0hjbIexswuPsBEX7yIqSsXatMsNDbURG+fU816bSqw5XRbi4pz4fAFCDBYyMbFOrDaZsCazibMsPB4/kdEtWESpxCW4iIwys4hLcBId07zLjU1wEhXlICTUanynO8RKbLwTWRJxOfUkdVVViIltYtH0OX0+egm2yCazfkWRiIx2UF3dSGRUs/lFZNN8oqNVg0VohJ2IOJWI6GYW7jArUfEObHYZtcnw3OG2EBHvwO8L4GwyYLepMhFxdhS7iLvJBF2xioTE2Kj3+giJsuksZBFXtI3QBDuuaBtSEwtrtAVrooIl1mIk9lvCFeREC3KoYuzYpBAFEqwgCciupt2DU8Ifa8FfLyKGNj39sEkEomz4AyA1mQqIiogW7sAfFUAIsxuPi6UIO0KMAzHCbjzy1ULs1Ie6kEPtiE27mYDTRrXbre8Um4xSNNVCpVMX/gTUJvMCm0xliJM6rZHkpqISolWiPspGdYMfX4QVQRB0M4gYK74EK1q0Ra/OIghIUVYCCVaIsRrl2cRwhUCClUCoxdhNyyEyWoIFTTazEOMVqBeRQ/U5ynYJKc6CKAWwROnnS1JELLFWlFor1uimpx+CgCXGgpJkxRJj0R+pCwK2KAtKgoIlxoLctOO3hslYExSsThnF2bTTdMtYEhQCAQ1rSNPTGIeEJV7B6wBreNN8rCJKrILiV7DFWIy4sMYoWBItWGMUxCYW9mgFS4KCNVYxijNYwxRsCQq2cIuxS7aFKKjxekUrWxMLm1PGHWfDU+9HbTJ3sNj1Pp+s4WqKC9ki4o6xEVrrwRVlRRD01zKh0TbCE+yExuhVugRBICTCRli8jdAYm7HL/bO1P+uj2393+0vuWA8fLmdgn/eprfUSCGjY7QoLPpnC9des4cyZOhob/djtMi+/OpK35v7Ont1nqK/3oaoK19/UjYL8SlZ9fpC6Oi+qqjBsRBqdO8fy3DM/U1fnw2aTycoO5/Y7e3PNlaupr/dhsYiEhdl55/3xzDhvGQ31Xv3isit8smwqF89aTlWVB59Pd3F678MJPHDvdxw/VonH40dVZR5+bBDr1h5i488njbFnXtAeq1Vi3nvbqavzYrfLdO0Wz3kz2nD3HV9TX+/THZbiXTz74jAunrWchgYfkiTidFlYsGgyM85bRl1LFouncN1VqykpqcPr1ecz5/VRvPnKFvbuKaGhicUNN3en4FAF61cdbpqPzJCR6bTvGM3sZzdSf5ZFbjh9ByQzZ84m/d2kAJIoMG/hJK6+bFUzC1Vh4bKp/O18nYXf38Tiowncf/e3nDhRhafBj12VeeSJQXyx6jCbfzlJfZ0+nxkXtUOSRRa8v7OZRY84Jk1rw6N3fk99nc4iLtHFIy8M4ppZq2iob2LhtvDOoglcM3UlDXU+NE3DapN5Y9l4Hrjsa8pL6vE2BrDZZR55cxAfvbyTI3vL8NT7sakyl9zWiRN7K/lx9TEa6nzYVJm+Y5LJaRfBwud24qnzYbFLpOSGMvPWDrxy5S946v36jS/Syh3v9+O5ST/QWO/TF2NV4o7PB/HctO+pr9LtKS12idsW9mfZrdsoO1aHzxPAokpMf74j+5adJH9jKd46PxaHRI9L09A02DzvKI21fhRVry3bbnICn9+xHW+dH9kmEpakMuHFTrw/4xe89X5EScAeonDZ0j68MeFHXY2q6Y9er17ejzf/9gu1pY34GvWxL3unJ58+t5tT+6porPfrhgN3t+PEjgq2rT2Fp9aP1SHRZXwCsTkuVj63F0+dH4tdIrFdCGNuzuWtq36lsa6JRZSVa97vxVNTvm/BQubeFYN5Ztp3BgurXeK2Rf156+bNlJ6sw+sJYFUlLn+hGz8szufAphI8dX6sqszIyzPxeQN889ERGmp9WFWJtn2j6T4ukffu+Q1PnR/FJhKd7OSKZ7rx9Kzv8TT4kWQR1a1w/+LBPDzxKzz1Pl0Rb5d56LMhPHvxBqrLPPgaA1jtEre814/5z2zn2AHdR9qmysy6uwP7t5ayaf1JIy76TUwhNt3Jopd20lDnw2qXSG8XzrQb2/HUNT/Q2ODX3cGi7Nz3zkBum7YOT70PURSwOWReXDaKW6avp7a6US80YJN57pMRPP33HzlzqpZGjz727c/3YdXCA+z+7TQN9T7sDplpV7Sjts7LygX7qK/V59Otbzz9R6fw0v2/0FDnw2KTSEhx8emmmaZ6yf9s+yN3rFdK//4d66P+P9+O9S+5sF539WoWfLzLJDZJSwulsLDa5LkbGmrF5wuYfIElSUBRRNPnbDYJn08zKU8dTgW7XaHkTLOiz2IRSU4O4dChcqNPECArO5zDh8pNKtz4eCeVlR5qWyhurVa9NmvLPkUR0TTMYzftRFt+TlVlwiPsnGihJpQkgYyscA4dKDOxSE8P5eTJapO6NjzMhq8xYPYKlkTsimTyM/5HLKrqGvG3+rkZHaFyurSZjyBAZnY4R1qzSHBR0VRG7myz22SskmTqkxUBAbPNoupQkAOiqXCBXZUJC7dz6oSZRU5WBPn7K0yin/T0UEpO1NLYQm0ZFm7D16hR1younIpiUltabRIWr2g6FrtTxm2xUl3arMJVrCJJCS6KDzUrkgUBYnNcnDpUbRK7xCU48Jf5TH60dlXCKYomda0oCwgCJu9Yi0PG59eaTeLRd13WMAsVJ5pVuKIkEJHlpHh/tYlFWJaD08dqTVaS9kgLtQ2+IN9ki0VqLlKAbg3o9Zn9cW1OGdkiUlPWrMJVrCLuJDuFh5vPjSBCQrabUwerCLSwFQ5PUqksbTApaa2qBJJgno8sIIiCad42h4zX76exZew6ZByhFkpPtigUIAnEZ7k4sb/KxCIhy0VxgZmFM8pCXYOP+hrzeRAVwRQXilWk0ecPigtREalqoc622CTCE+ycONKskhdEgaRsN/kHK01xEZvspKKkwVSUwu6QCQit4lQWCIga3pYsVImAH5MXt90h88hrQxg/K4d/tf2RC+sVf8DC+tifcGH9S4qXyssbghSctXWNQb63ek5qsFquteL2XGpdwJQeArqncG0rU35Ng5oas2E+QF2r9B0Ar9cfpN6TJPEcfYJpUQTw+TUjL/Vs8/s1/Vdvaxa1Xrxe8983NPjOrextxUL6ByzO1edpMM9H06C2pjGIRX2dN0hJeTZP1TS2GKwSlSTBdMMA/bjr67xBfbXV3iAlbX2t13QTAoxc5datdVxIshAkHkbAdDMH8DUGjPzDs03ToKHGF3zcdf6gPr8nEKyOlQQEqbXCVQvyVw74NVP1k7N9nhpfEAtPrQ9fa5/sBn+QWlfTghW3kiwEKakFAVMKDOjezkEsAlBf4zMtqgCeumA+3sZAkDr2bOF609giQec1EDCb00NTrJyDRX2tL4hl6/N69juD7hfnUMMLghB0Pfga/dS3vl8ENOrOERcNtb4gX+BGjz+YhSgEeZBLkhh0vWsB/Vr8v/afaX/JhXX6+W1NJvOqqjBlahtTuoXNJjNiVLrpXqAoIu3aRxMa2mwer+eWWujeI95kZo8Go8dmmlSvdrvMlPPaBI09fUbboM9NmJRtWsisVokBg1KR5eZ0FEkSiIt3kpIaaixwggCiKDJkaKrJzF4SBSZNzjHUw2fHmT7zHCym5RrFyc+yGDk608RQUUTad4zGHWI1Ll5R1JXPnbvHorRKE8hIC6N1Gz4mI2jsaee3NSlz7arM+EnZpnQkq1ViwJAUJKk57UCWBRKSXCQlhxhpDzoLgf7DUkypA5IkMGZKlnkcu8yE87ODxh41Pct4Jwu6ArP/6GRzXFhEcjtHoboUEwvVZSG7a4Q5ZUKDHuMSDJUo6EYCvaenGIpQ0Hde/WalmtSoVlWi69RE081StolkD4/RUz+aukVZIDRFJTTJ3rzACSApEjnDYloZuAt0mppoGkdRJbrNSjErYVWJ7jOSTe/eLHaJruMSzBViLCLp3XVv5bPveQVRQA2xkNYl3JRSogFdWrOwSvQ9B4sBs1KD+vpMTTYtmIpNovPwuKZ3mHqfJAvEpDqJTFCNzwqCvrh1GhJrSqURBIF+U4LHHnR+OtYWcWFVZQZOTzPUumdZ9B6XTMsmW0Ta9ojC5pARmoYRJQFniIXMjhFBC2zfMSmm71RsMsOnZRhqXdDf94+ZmRnUN3xqumnBtNok+oxIMsYF/RpJynATFecw7l+CAIpFouegRCwmFtB7yJ/LK1h3XvrfkW7zlxQvTZ7ShtKSep57+md8/gCXXdGZe+7rx5Bhadxx65dUVzcyZmwmL84eyd49JVx75SoKC2vo1j2et94dR22tlysu/Zx9+0rJzArnnffHExZm59orV/HLzyeIjnHw2htj6NQ5FqfTwucr9qOqCk8/O5RxE7IJD7fz5twtCIKe+nP9jd3pkBfNQ/d/R0ODn/NmtOGJp4dy/qz23HT9OspK6xkwKIXX3hjNqZPVXHnZSvLzK+nQIZp33h+PKApccdlKdmwrJjHJzVvvjiM1LZQbr1vHN18dJTTMxsuvjKT/gGQcTguL5u/CYpG4/6EBXHBRBxIT3Tz3zC/4/QEuv1JnMWhIGnfeprMYOy6LF14ewd7dZ7juyjUUF9bQrWc8b7w7jprqRq67ZBUH95eRkRXG6/PGERpm48Yr1rDp55NExzp4+c1RZOWGM6rffPYfLEUSBf5+ay/ufbQfLzzzC2+9vgVJEvj7bT255obutG0XxWMP/oCnwc95M9vy6FODOe/8dtx8/TrKy+oZMDiVV94czcnjVVx/6WqOF1TRLi+a198fiyjCtZesZtf20yQmu3n1vTEkp4Rw57Vf8sNXBYSE2XjmtWH0GpCIw2lh2fw9WCwSdz7al/MubEdcops3n/0Nvz/ABVfnccN9PegzKImnbtlAXY2XIRPSuG/OQA7sLOWhK76hpKiOvJ4xPP7+UGorG3nw4m8o2F9JSk4Ij344BGeIlacv+4Hdv5wmPMbOXe/2JyMvnLk3/crG5cexOWWufrkHPcYl4gq38sXrBxBFgYl3t2X0jbkktgtl4f3b8Hr8DLwwjQuf6cKBGWl8dM1massaaTc8lovf7k5FQR0LLt5IWX4tCZ3DuOCjXgDMv3AjJ7eVE57qYNZHvQhLVll0xWb2f1WMI9zC9De7kd5fN2/f/HEBsk1i/BMd6HFRKqEJdr54ei+BgMbA67MYfX9bsgZGs/CW32mo8dF1ciIXzOnK8O3lzL1sIxVF9WT3ieL6eb2prfDy+oU/cWp/NfG5bq7/uA92t8Jrf/uZgxtLCI2zc937vUlqH8p7N27mt+UnsLllLn25G13GJeAIs7Bu7gFESWDaPe0Zc30uibmhLHhwGz5PgEEXp3PRU53pOy2V167bSE15I52Hx3HjW70pOlrDi5f8yOmCWjK6hHP7B/0JBDSev/hHjm4vIybNyW3z+hGZ5ODlq35i2zeFuMOt3PRGH9r1jcbmUPh24REsNolLnujC4JnphMfZWfr8LrSAxvjr23D+PXm07x/Dm7duoqHWR9/JKVw7uycTt7bh2Ss2UHa6gQ59Y7jr3f5UlXl4/OLvOH6wkpQ2odz/wSBUl8Jjl37H7l9PExmnct+7A0lrF8ZzN/zIhlUFOFwWbpvdl96jknCGWfn0rT1IssCld3Vh+rXtSckO4/WHN+FtDDD+4hxuerwnQydn8MQN31NV7qHPiGQenDuQ40equPfSLyk8XkPbLlE8NW84fl+AO//2Bft3lpCQ6ua5D0YQk+Dkvqu+5tdvTxAaYePRN4aQ0uQF/mdqf9J18N/e/pLvWEF/J7ltaxF+X4COnWOx2WQ0TWPXztNUVnrokBdNSIiuSD10qIxTJ6tp0yaSqGjd5PvE8SqOHCknNTWU5CZz/JIzdezde4aYGCfZObqxdXW1hx3bi3E6LeR11I2tPR4f27YWIwjQuUssiiIRCGhs31ZMfZ2Xjp1jcDh0pd/ePWcoKamjXftoQ6mcn1/BsYJKsrLCiWsyYC8qrOHAgVISk9ykp+u7w/LyBnbvOk14uJ02bXXz97o6L9u3FmG1yXTsFIMkifh8Abb+XkTAb2axc8dpqqs9dMiLwd2kXj50sIzCk9Xktm1mcfJ4FUcPV5CaHkpikzl+yZk69u8pISbOSWZ2uDHHlZ/uJypaZcLUHERR1Fn8XoQkiXTsHNPMYmsR9fW+IBalZ+pp1yGKsLMsjlRw4lgVmdnhxMbr9mvFhTUc3F9GYrKb1PRQACrKG9iz4wzhkXZy2+keqPV1XnZuPY3VJtG+U7TBYufvxbo/bpdorFadxb7tJdRUN9KmY5ShFj66v5wzRbVkto0gPEqfT+Gxao4fqSQpPYS4ZP3clJ+p5/CeMiJjHaTm6POprWrk4PZSVJeFrI7hCIL+yPrQllJESSCra4TxWP3Q76U0NvjJ7BJh7FQKdpVTXeIhtWMYzqayeGeO1FBaUEtsrpvQOH0+FYX1FO2rIiLFQVSTIXxNmYfjOypwRdlIbKfHbkOtj4Kt5Sg2kdQu4YiigM8bIP/3MgJ+jbSu4ShWCU3TyN9eTl2Vl7ROYahNLE7sr6SssJ6UdqGEROnXzeljNRQdriEu02WUIKs4XU/B7goiElQSs/Wx66oaObKtHNWtkNYxzGBxcEsJoiSS3cTC7w9waGsZ3hYsNE0jf3cFVaUe0vPCcDWxOHm4itPHa0nOCSEiTleRl5yq4/iBSmJTnMSl6eemqszD4Z1lhEbaSGunXzf1tV4ObC3FZpfJ6hxhsNi/pQRN08juEomlicXBbaXU13jJ6hSB6tJZFOyvoLSojrS2YYQ1xUXRsRpOHqkiMcNNTJNNYNnpeo7uKScqXiU5W4+LmkoPB3aU4nRbyMqLMB4R791agiQLtOkchdzEYt+2EjwNPtp0jsKuKvp8dpVRWd5AdocIQpoU9ccOV1J4vJr03DCiYvXzUHyqhqMHyklIcZOUpp+HirIG9u8sITzaTlYb/f7132l/1DvWOCFDu0z8979jfTLw53vH+pfcsdbWNjJ6+HwOHixDFAQiIux88c1F3H7LF3z15VFkWUSSBdZ+cQFLPtnNa6/+hkWR8PkDLPhkCoWnarj17+tRFInGRj9PPzeU7JwIzpuyBEnU31dcdkUnLruiMyOGfoy3MYDPF6D/gGRef3MMI4fNp6ioBjSNlJRQVq6byd8uWM7vWwr1R4gOhS+/vZAXnt3I4kW7URQJDY3lK89n4y8neOzhH7BYJLxeP2+8Mw6LInLZJZ+jyPp87rynD0OHpTN+zELQwOvzM2lyLg881J9hgz+mukr3Du2QF82CxVOZPO4TDh8uA0EgMlLly28u5Jab1vPN1/kGi/VfXcgn83fxxmtbsFgkfL4A8xdPofBkNXf//SssikSj18/jzw8hLSOMi6d9iiSKNHr9XHpVJ/oNSmHGlKW6WxMQc5uDbzdezPgRiygurtWrhqSFsmLd+Vx8/nK2/16EKOmP2dd9ewHPP/Uzy5bsRZF1Fp+tnsHGDSd49tGfDBavvqfvWK+7ZLV+brx+br+vDwMGp3D+qKWA/oNq3NRsbn+wDxMHLqKm6R1zh07RvL1kPBeN/oyCwxUIAkREqSz+9jweuf47fvn6OJIsIisiH38zlc8+3Mv813egWPTF+LVl4ygsqObJm39AsUh4G/3c+/IAklJDuHXKWr2Ob6Of6de1Z+LFuVw3eCU+bwC/X6Pb4HjumtufOwatpby4ATSNuAwXT64fyePTvuXQVn2xtTsVXtgwmsWP7OTHJfnGo8SH1w/j0Len+fyh3chWEb83wBUf90LT4N2LNiIpIr7GABMfaU/WwGieGfktAH5vgF4zkpn0QHse7fcVnqZ3d2ldw7hpWT+eGPYNpw/XgAAhMTYe2jCc16/ayI5vCnUWFpEnvh/J+vcOsnrufmSLSMCv8eBnQzh1uIq3btmMbNHHvnZODyKTHDw69Ru9jm9jgIk3tGHYRZncNWgdfp+G3xeg8/B4rnu9F7cMWE3F6QY0TSMh080z60fy4OSvOby9TLf6cym8vGEM8x7ayoZlzSye/WIUv319ko8e34ZsEfF7Ne77aCBeb4BnLv1Bt/TzBLjs0S607xPDbWPWIaC/2x02M4ML7+7IDQNXUV+rs8jtGskjnwzhluFrKcyv1lPJYu3M+W4sz1z5I9u+L0SSBGSLxKvfjWX523tZ/tZeg8Wzy0dy/EAls2/7Bdki4Wv0c9urfYmMd3DXtC+Qm+Li/Js6MGJmJlcNXYG/SfzXe0QSd83pzyUDP6O8RLdPTMkKYe6acdw4ZQ0HdpQiSOB0W/no+ynMfmAjXy8/oqfPAO98MYkf1ufzxlObm66RAC98NJIGj5+7rvgSxSLS6PFz66O96dwrjsvGrdDfezcGmDgrh8deG/LfrnDzR7U/66Pbf3f7S+5YH3rgO15/ZbMh8FEUkY6dYtizu8QwqAdISw+luKjW1OdwKPj9AZMq2GqVsNlkKiubFX2qqpCY6OLgwTJD+KCqCh3yovl9S6EhlLJYJbp2i2Pb70WGL7AkCeS2jeTokQqT6jU6WqWqutEkirLadLu/lp7Cdruee3rqVLPK1OFQyMwKZ9fO04Y4yGaT6dI1ji2/nTKz6BzLnt1njLEFQVfHnj5VaxJAOR0Kgh+TKthiFbFaZZOHr6oqNPj9NHjM4oyM9DCOHa80WFitEl26xbH19yLjGCVJoE27KI4cLjexiIlxUF/lDWIhCIKpz2aXiQxRKS5s9r1VHQppmaHs21XSzMIu07lrLDs2FxtiJ1kR6dQ5hsM7ywxVsSBASkYIxadqTUpjh0sBr5mF1SrhsCjUtvAUtqkyCfEuTh5qVpnaVJn2HaI4vKXMKJauWEVyekRy4LdSQ10rSgLp7cM5c7AGTwuBT2ScilwWMKl9FbsICK36JKRQmcqiZk9iq0MiJtPFiV3NKlPFLpHaLYxDm0oNH15JEUjuFsbhHeWGwEcQIDbLRfHJWpMy1+6W8TdqJjGPYhURLFDfws/YqkpExTspOtysPrY6ZBLbu9n/e4mhaFasIrk9otj/W4mZRYcwThysMomdIhLsVJZ7TCpci10ETTDNx2KXsLkVyoub1dA2h0xChpuju8sNFla7RE7XSPZuPmP48MqKSG7XSA7uKDOxSMh2U3S8xqTMdYQoeD2BYBaKSH2NOS5C42ycPNocF3aHTGq7MPb+fsbwMLfYJNp2i2LXlmLjGCVJIDsvgvwDFSav6ugEB2Vl9eZrxC7hQzMr+e0yDqdC6ZlmFqpD4dVFY+g/IoV/tf2RO9ZLhH//jvVp7c+3Y/1Lipf27D5jUs16vQHyj1ZQX29W4J06WR2kJvR4fMiyOXnaYjEb9YN+oZ04aU5XqKvzcrSpKs7Z1ujxc+RwuWlh9Ps1jhdU4vebVX6nT9dhae0nKgT7xCqKRHGx2UC9sdHPsYJKk+K2ocHHkcNl52BhXsQ0DU6erAnyifV4/EGeuxaLFKR8FgSdW+tWXFhjYuFpYtHQisWxgsogxWPJ6bogL+Zz/bpWFJEzxWYTc583wImCKjOLeh8FhypMCmKfN8Dxo5WmBVTToPBETZBfr6fOHyRGkS2i6SYLIIpw5kSt6Zw11PkoPlptLKoAXk+AU4eqTSkrAb/GmYIa0+cAqooa/oHS1PzfkiJQVWw2+vf7NEoKak0qU2+9n6JDNSZze79Xo/hIjUk1q2lQcqI2iEVDjS/I91a2iKZjAX1xLD1ZZ2LhqfVReLTalCaks6gKYlFUUBOkUi4rqg8aG00wiXhAT82qOG02+g/4AhQV1JhYeOr9nDxcZTK393kDnDxaFcTi9PGaIOZ11d4gIZ+siHg9wSxOnwqOi5NHq02FQRob/Bw/XGH64eD3a5zKrw5SOZ8pqg2KCy1AkFJYVgRKWxXn8PsD5B+q4M/WtD/g35+x/SUX1u494k0qXItVom27KJM5vygKZGSEBd3QnU4r/lYu1j6/RmSUauoLaBpZWeGmlBBVVWjbLtKkULXZZNp3iDapdRVFJDc3Ekk0q/SSk91BKUG6ub75NHi9flJSQ0wXuWKRyGkTaVI+21WZ9nnR52ARjepoZiFJAhmZYUELvcttCerzeQPGu2CDRUAz3pO2bClpoWYWdp2FPYhFhEnxKAiQeA4WkiQEpf94vQGSUt0mFpIskN0mwrQw21WZNnmR2FoqPa0S2e0jsTua5yNKAilZoUHpDs5QC36fuc/nCxjv/JpZQFJWiOkHm80hk9IuzKRQtdgl0vLCTApVSRFJahtqKiogCBCRqgYtMKIsBJnE+70akakOU3qMJAsktHWbCgNYVImUvJBWal2RlA6hWFuxiM9yB5nMuyKsBFpdN35fAEeIOQYCfo34TFcQi9RWLKx2ibS8cBMLWRFJbRtqOt+CALGpzqAfHpIiBC0mfq9GTLLTFBeiJJLaJsRkpm9TZTLywk0sLFaR9Pbh2FqwkCSB5OzQoB+5oZG2oHMT8GuoLnMhEL8vQHJmiGmeNlUms1244Vx2lkV2XqRJFawoIhntwk3xLAiQmBYSNLZiCS7i4PNqxCe5TH2iKJCb9+eqx/q/qf0lF9abb+1F335J2GwydlWmbdsoPl40mYsuzsNikXA4FOITXHzy6TQeeXyQ/kjPqRASamXZiul88NEkVFXB6bRgt8u8/e54li0/j/BwO06nBYtV4p77+rFoyVSSkkNwOBSsVomp57Vh/qIpdOwUg90uY7PJdO8Zz/xFUxgzNgurVUJVFVLTQlmweCo33txDn49TITJSZeny6cx+bRQ2m4zTacHptLBo6VQWL5uGy6X/t9Um8dyLw1ny6XlExzhwOBUsFomrr+nCwk+mkJEZhqrq8xk2PJ35i6bQu2+izsIu065dFPMXTWbWhR3043YoxMe7+GTpNB54bACWJhahoTaWfD6dNz8aj12VmwwxZOZ+MI6Fn08jNMymj22VuPOhvixfOwOlxU0wJzuC1d/OpEPHaINFj14JfLBoEiNHZxos0jLC+HjJFK77e7dmFlEqn6yYxnOvDMdq0/ucTgsfLp3CR8um4HRZcDgVrDaJp2cP44PPJhMZrRosrrixC+8smUBaZih2VcZqlRgyKo25n4yjW58ErDYJm10mt0Mkry0ey4QLcrFYJVSHQmyik7mfjefmx3rrfU4Fd5iVt1dN4JmPhmNTdXtEm13m2Y9GMGflGNxhVlSngmIVufaR7jzz2UhikhzYHDKKVWTkrEweXDqE9LxwrHZJf9zXJ5r7lgymx5hEFJuEVZVJyHRx37LBjPt7G2SLiM0pExJt495VQ7jgta4oNhGrS8bmkrnx8wHcuKI/NpeM1SWj2EQunNuV21YNJCTahrXJnGHUzTnc/NkAYjJdWFQJxSbSaWw8Ny/rT1bvSBSbXkotuWMYty0dwMBZaShWEatDJjJJ5f4VQ7jwkU4oVhG7U8YZbuHRVcO4/eP+WO0SdqeMVZW4a8EAHl01HGeYBbtTP+6/Pd6VB5cPITJRNVgMuSidB5cOJq1DmMGifb8YHlo6mO4jW7DIcvPwsqFMurGNMXZojJ0nPh/BTXN6Y7HpY6suhSdXjOCxT4dhdyrYnTIWm8Qtr/fhmc9HEBpl0+djEZlxa3ueWDac+Aw3NlVGsUr0HpvEY4uH0q5nNFa7hNUukdkpgseWDGXojHQUq4jNIROd7OCpT4dz2YNdmuaj4A638sLK0Tz4wWCsdj1WbKrMowuG8tLK0bhCLdib4uL6J3vw4qejiE50YHfo8xl3cQ7PLx5BRrtwbKqM1SbRtV88L34yir7Dk7FYJWyqTEp2KLOXjGHmdR1QrCKqUyEyRuX15eO496UBWJrKJDpcCm+sGM/cJeP0/266Rh6fO4R3VkwgItqO6lSwWESuuLUL3fsl/Afv0sFNQ69Y+O/+92dsf8l3rKCXPDt+vAqfL0BqaqjxS7G4qIaqKg+paaHGY87y8gZOF9eQnBKCvclHtaamkRPHK0lIdONq8kxtaPBRkF9BZJSDiAh91+bz6Y9WnU4rsXFOY+z8/AoEQSAlJcR4hHnqZDV19V7S0kKNHVppSR2lpXWkpIYauaWVlQ0UnqpuWrT1XUBdnZdjBRXExrkMr+HGRj/5R8sJD1eNHbXfHyA/vwKbVSYh0W3M59gx/THxf8mirJ7Tp2tJSQ01quzU1jRy4ngVCYlunE3KyIYGH8fyK4iKdhgK3oYGHz99f4zoWAcdOsY0szhagSQKJLViUV/vJbUFi5IzdZSV1ZGaFmbsvKsqPTqLlBAjJ7auzsvxgkpi45yEtGBx7GgFYeF2IlqwKDhaic0mE5/oMuZzsukxcVJa8w7iTFEtNZUekjKad0kVZQ2UFteRmOY2cl1rqxspOl5NbJILRxMLT4OPU0erCI9RCQm3GXFx8nAVzhALEbH6fAIBjaKj+uuHmBSnweLMiVoa633EprsMFpVnGqgubSAm3WWUA6yrbKTiZD0RqQ4j79JT56M0v5bQBLvhKetr9HP6SA3OCCvuJgVvwB/g9JEaLKpMeIJqsDhTUIvm14hOb55PeVE9dVWN+nyaWFSXeSgvric2zWXkutZVeyk5XktkksPYoTU2+Cg6WkNYjB1Xk++yzxug6Eg1jhALYbH2/5pFg4/YtGYWFWcaqCptIK4Fi5oKDyWn6ohNdRm7u/paL8UFNUQmOHA2sfA2+jl1pJqQSBuhkTYjLk4dqcamykQlOAwWRQU1aAGNuDSXMZ/SwjrqqhuJS3cbcVFV1kBZcT1xaS5TXJw+XkNMssvwpW6o91GYX01ErIo77CwLPyeOVOEMsRLZIi5OHq1CkgXikpvHLjpRQ2ODj4Q0d/P94nQdlWUNJKWHGCyqKjycPlVDQqrbeCpXV+vl5LEqYuOduJr8wT0eHyfyqwiLsBMeaX7q9K+0P+oda6yQoV30B7xjff5P+I71L6kK1jSNxx75gVdnbyYQ0Jgxsx2zXx3FogW7uOv2r6iv9zJwcCrzPprI71uKuOLSzyktrad9+2gWLp5CVZWHC2Z8Sn5+JYlJbuYvmkx0tIOZ05exbVsxYaE23nx3HH36JnHZ3z7nqy+OYLNJPPrEYC69vBN33PolH87bgSDAVdd25fEnB/PqnM088egGvF4/Y8dl8ea74/hi3WFuun4dVVUeuvdMYMGiKRw5Us7FFyynqLCGzKwwFi6ZhiQJzDxvGfv3lRIT42DeRxPJzo3kopmf8svPJ3A6Lbz0ykjGT8jmuqvXsPzTfciKyJ139+HW23vz6EPf89ormwkEYOYF7XlpzkgWfLyTe+78mvp6L4OGpDHvo4ls2XSKqy5dRVlZPe07RDN/yRQqKxq4dPpyjhdUkZjs5v1PJhIRqXLJ9OXs2FZMWJiNV98bS9sOUQzs8T6nmywep5/fhtffHcedN3/Jxx/sRBDhquu68sgTg3jlpU08/fiP+LwBxk3M5vV3xrJ+zSFuvm491dUeuvdK4KNFkzlyuJxLZi2nuKiWzOxwFiydgiAIzJq2jIP7y4iOcfD+/Ilk50Rw2fnL2fTzSZwuC8+9OoKR4zK5+aq1rPzsAIoictu9fbjhth48ff+PvPPq7wQCGtMvascTc4ay9MPdPH7nDzTU++g/NIU5H49m669F3HLJOirKG2jXMYo3l4ynvKyBa6av5GRBNQkpLt5YPJ7wcDs3TFvF3u0lhIbZeGbecDr3juOuC7/kly+PY7XL3PZsHyb9LZfZN/3Cug8OIooCU25sy5VPdOOT53by8ePb8Hk1+k9J4Y53+/HryhO8eu1G6qu9tO0TzT1LBnJqfxXPz9xAeWEdibkh3PPZIAIaPD7lW07sryQ8TuXuhQOIz3bzyHnfsPvn06huhZvn9qH3uCSevXQDPy4/hqwIXPRAZ6bf3p537vmN5a/uRdM0Rvwtixtf6cXadw/w1l2/0Vjvo9uIBO6dP4hdvxTzxN/0/MnMjuE8+elwys80cN/0LykqqCE21clTS4bjCrNyz9QvOLijjJBwKw9+OJh2PaK5/4Kv2fTVCax2mZuf782Yi7N57oYfWfPRAQRR4PybOnDt49358LntvP/E7/i8AQZPSeOBdwfx/YqjPHP9j9RVe+nUN5anFg/n6N4K7r/gK8qK6knNDeXZT0cS8Ae4c+oXHDtQSWScyhMLh5GY6eaO6evZsbEYh8vC/W8OoO+oFB6+/Bu+W5GPbBG5+sFuXHhzR+bcu5FPXtuFpmlMvKQNd7zcl8/e3cucuzfiafDRZ2QyT3w0jN9/PMX9l31DVbmHNp0jeWnpaMqK67h1xnqKjtUQn+ripSWjcIVauXnqWg7sLCU0wsaTHwyjXbco7rrgS3795oRRaHz8hTk8ccMPrPp4P6IocNHNHbn+kR68/cwW3n56Cz5vgJHTMnn0rSF8tfwwj9/wPXU1Xrr0i+elT0ZxcE8pt16wjtLiejLahPHasnF4vQGuPW8V+QcriI5zMGfhaJLTQrh+xmq2/VqE023hyTeHMWJixn/4Tv2/t/0ld6wfvL+Nu27/2lD76k5HOXy+fL8hIrJYJPr2TeTXX08Zn5MkgdTUUMorGigrbX7ZHxpqIy7eyYH9pYYgxm6X6T8wme+/LTDEQXZVZsrUNny6bK8hiFFVhWnT27B08V5jHJtNZvjIdL764ogxH1kWyesYzYEDZdQ0CaUEAaKbquucaiGUcjgVOnSIZstvzepju11m9JhM1q45ZHynqsqcN6MtSz5pHtuuykyclMOKz1qwsEr065fE5p9PGqpgSRJISw+lutRDeVmzICYk1EpMnJPDB8qaWagyNpcSJKgaMjSVX345YWYxow1LPzGzGDEqgy/XHzbmoygieZ1j2L+31MQiJtaBKIoUnjKz6Ng+hu1bigwWNrvM8NHpfLnmCA1NNnJ2VWbajLasWLTfmI/dLjNuajbrPj1kiJAsVoleAxLZ/NNJ43OiJJCWGUrp6ToqWni9hoZZiY92kX+wwngna1NlevVNYssPJw3/YZtdZsLUbDYsyzfUtTZVZtj56Xyz8KghkrHYJXqNSWLrmlOGkEdSRLK6RHByV4XhjysIEBZnxytolBfWN6tMXTJxbd0caKG4tdoleoxO5Ne1J4zvtKoSQ2am8+3Co8ZxW1WJAdNS+WFp8xwVq0jHwXFs2VBozFGUBJKyQjhTXGvyvXWHWwmNtHHicJWJRfu+0fz+Q6EhDrLaJYZMTeebT5uP26bKjJiZwRcLDzfPxy7Rb2wyP64+jufsNaKItOkWyaGdZYZfryBAZLyKFoDSomahlOpSSG4Twr5tJcZ7SJtdps+oJH5ae8xQzdpUmVEzMln3SXMM2FSZYVPT+WrZEVNcdBscz6YfThl9kiSQkhNKyak6qiqaWYSEWwkJt3HiqJlFx96x/P7jKYOFTZUZNjmdrz49Ygj6bKrM6JmZrFp4wMRi0LhUvl9VYHxOVkQ6dI9h947ThlewKArEJDho8PkpKW5m4XRbSMsOZe+2EsPj22aXWfbTDLLb/ev5rH/kjvWCP2DH+uKfcMf6l1xYZ0xbytrVh0x9UVEqpaV1tNQlWW0SiiIZN2/QbcFsNtlkzO9yWYxKOWfbuYzwQU8Tab3AxMU5KSysMfWFhFjxePzGjR/0m4TLZaGqRSqL3S4T0Mzyebdbn09L1evZd8fl5WZVaHy805SWAxAVrVJyxqzWVG0yiiSajluWRdw2CzUtPEWdLoW6WrPPscOpUFHjCVLgOVSF2laevedkEWqlod5nUi8LIricZhZnH023ZOZ2W2is8ZvmY2l6f1vRikVinJviU+ZzExPjoKzYrJi022VESTAVJBAlsKvm1BqHS0Gr1UxCJ9WpoASkILVwWnQIla0Uu1HxKmUnzWOHhtnw1flNKlVRFHA5FeoqWxRnsIn4RExKWrtLprK20SQ2UqwiVrtMTYVZ1R4Rr1J6yqymDou1UV5knqPikAiImsl4XpB0W8S6FixUl0xDK59j1aXQ6PObFK6CAGHR9iDmkfEqJa3m4w63Ul9j9nIWJQG7Q6a2qnlsi1VCEDGNo7oUqms9phi32CSsNonqViyi4lXOtBo7ItZOaZF5jtYm03uTCb8Idoc5LlSnjKfBbxK7OVwKPm/AdB0LAoRF2Sk73ZqFPShOQ8Kt1FZ7TWIlUQaLKlPT4hqxWCU0GZPS3elSqK0x+2Tb7DJ3P92PC67J419t/7ew/s/bX1K8FBvrNCn/BEGvWNLSHxfA5bIGKR6BIDVqY6M/SI2KgOFWdLZZbRLh4TaT8k+SBMIj7GafYSAkxEZrk3lVVUzSe9Df1bVWqPp8wSpcWRGN2qZnm6KIhEfYg1mE2Y1F6mxzuq1BC6MoEGTe7W0MmFSrLY+zdXM6LWa1riQQHmkPSqMJCbEG8XWci4XfH6xS9mkmhTPoPwhCQs3nRlFEwiLspnkKgr6QtfRcBr1ma+vfk2Kr6imgm+u3VqNCU85ri2a1S7jCra0UqgLucFtQuoQaqgSZutscUpASNuDXTJVkzva1VLKCXjjAGRYcK+4Iq0mtKwjgCrcG1el0uM3HcnburdWo5zLH1zTNeA99tllsEu4wa1BchERYg1i4Qi1BqTV2hxxUxMHvDwT1BfyaSVl7dhxX67iwiISE28wsRIGQ8OCapU63BaFVRQJJFs/JonVqmKYRxMJqk4NZyHrd1NYs3GG2oOtGbcq5Nx93wFR5CvR0ndbl4URRMNzE/ixNQ+f07/73Z2x/yYX17nv7EhZm19Wodl1h+/a740lJbVLw2iTsdpk33h5L335JhqrXbpd5+rlhXHVNV1SHrnh1OBQuuqQjL84egd0uG0rabt3iefOdsaiqrnhVVYWEBDdvvjcep0tXE9vtMiEhNt5+bzzRMU5UVcFm09Wnb703jrbtokxjvzJ3FOMnZuNoGltVFe64qw/3PdjfUPo6HAojR2fw+ptjTPPJzo7g7ffG43AqxnwiI1Xefnc8oaE2Q5nrdFl4+71xJKeEoLZgMfftsfTqndg8H1XmqReGcclVnQwWqkPhgkvzePrlYYba1uFQ6NI9noceG2Q6BxZF5P1FE3G5rdhasHjzvXFExziauDWxmDee3LaRJhaz545izPgsE4s77+3LXff3RVWbz82osRm8/OYog4XqUMjKDee198c2H58qExmlMuf90YSE2vRH13adxcvvjyIh2W181qbKvPDuSLr2iTOO22aXefilwcy8skNTn4jqkJl5RXvuf3kgNrts8OncK5bH3xuKTdXVqXaHTFyyi/s/GIjqUgzlqSvMwj0fDiA0xoa16bM2h8ydH/QnqU2IoaK12iVufLs33ccnNfepEuc/1JEZ9+dhVSVDudprYjK3vdUHq725L7VtKHd/MACbo3mM0Bgbd384AGeYBasqYbFLqG6Fu+cNJDrZYXzWqkrc9d4A2vWM1pWsTWPfPLsP4y/PMfpsDpnJV7fl7y/1blLbitgdMnl9Ynnw/UEGC5tDJjbFxcMfDDZY2FQZV5iVRz4YQli0zcTtkQ+GkJoTit0h68Ykdpn73xlIvzHJzWOrMlc/0o1L7+5sGnvgpFTuf3Ogrjy26t+X0S6cR+cNwe6QjXMdEaPy6LwhuEIs2JrOjcOl8Oi8IcQmOZvnrso89t4Q2nePNuZjs8vc+0p/Jl6Sa8zH7pA5/7oO3P58H/1vm/q69Ivj0feG6LHSdHzxqS6emDcU1dkce+4wK0/NG054lN1QCqtOhafmDSM1J6xpbD0mH3t7KANGpjTHqSrz90d7c/Ud3bCrzTE5akomT74xFFuLaySnQwTDJqT/Z27Q/z/t/1TB/4/af1cVXFpaz8oV+/H5AowanUlikpv6ei+ffbqPqkoPgwanktsmkkBAY+WK/Zw8WU3XbvH07KVL0L/5+ih795SQnRPBsOFpCILAb5tPsenXk8TGOpk4OQdJEjl4oJRvvs7H6VSYNCUXh8NC4alq1qw+hCDA+AnZREU7qKrysOKzfdTX+xg2Ip309DC8Xj/LP91PSUkdffom0rFTLJqmsW7NIY4cqSCvYzT9B+jOKD/9eIxtW4tJTQ1hzLgsBEFg545iftxwnPBwO5On5mKxSOTnV/Dl+iNYrRITJuUQGmqjtKSOz1ccwO8PMHpMJgmJ52bh9wdYteIAhadq6NItjh5NLL778ij795WSlRPB4OGpCILAlk2n2LKpkNg4J2MnZSFJIl+uO8z8D3YSGmrjgccGEBGp6ixWHUISBcZNzCYySqWy0sPKz/ZT3+Bj+Ih0UtNDaWz0s+LT/ZSV1tG7bxJ5nWLQNI21qw9RcLSCDnkx9BuoVxf56Ydj7NheTEpqKKPHZSIIAru2F/PLjycIC7czYWqOzuJIBd98cQSrVWb8lBzcIVbKSupZs/wgAb/G8HHpxCW4qK/zsmbZQaqrGuk3JJnMNuH4/QHWrzhM8ckaOvWIpXPPOAC+/yKfw/vKyMgNZ+CIVAC2bypi+69FRMc5GD45A0kSObK3nF+/OYHDpTB8WgZ2VeHMyVp+XnkMSRLoNymF0Cg7tZWNbPg0H0+9nx6jEolLd+Ft9PPTsgKqSjy07x9DeqdwNE1j88oTFB+tIa1TOO0H6qrrnd8XcWRbGbHpLnqMS0QQBA5tK2XnhmJCIq30n5qKYpEoPFLNpnUn9Oo9U1JxhFioONPAT8sLCPg1ek9IJjJepaHOxw9Lj1JX7aXL0HiSc0Px+wP88FkBpadqadszmrY9o9E0jV+/OEHBvgpS24bRc3giALs2FrNn0xmiElQGTEpFkkSO7i1n89cncYZYGDItHZtd5vSJGjas0lkMmpxGaKSN6goP3356lEaPnz6jkohPc+Nt9PP10iNUlnroMiCOrI4RaJrGhpUFnDpaTU6XSDr318/Nlu9PcXBbKQkZbvqNTUYQBPZtLWHbT4WERtoYNjUdWZE4cbiSn7/QhWVDp6TjdFsoO13Pd58f1QsSjEslKt5Bfa2Xr5Ydpq7GR88hCaTm6rneX316RC/O0CuGDt31OP35i+Mc3V9ORttweg/Tq8Zs31jErs2niUlwMGRSOqIocHhPGZu+PYnTbdEr29hlik/U8P3qfCRZZOikdEIjbFRVePjqs8M0evz0H5VCQqqbRo+fL5YdorKsgW4DEsjJi0TTNL7+/AgnC6pp1yWKbk0pNBu/O87eHSUkp4cwZKx+/9q99TS//XSK8Cg7o6ZkBpm//LPtj3oUHCNkaDP59z8Kns2f71HwX1IVDLBv7xlWfn4ArzdAfLyLxCQ3x49VsWblQUpL65FlkZzcCM6crmXtmsMcPVJOeVkDXbrG0tjoZ/26w2z7vYj2HaLp2SsBVVX45uujfPPVUZKSQ+jVO5G4eCe//HyCFcv3ExpipVPnWNq1j2bnztOsXLEfQdSNFwZGOzh8qJxVKw9SU91ISIiN9PQwTp2qZs2qgxQWVtPo8dEhL4bKSg9r1x5m/94Sigpr6N4jAUGAL9YfYePPJ8jMCqdXnyTCwmz88P0xVn1+gJgYB917xpOeHsaW306xYvk+VLtCm7ZRdO8Rz759Jaz8/AA+X4CEBBcJiW6OFVSy+vODlJfXoygSObkRlJypY82aQ+QfraCsop7OXWNp9Pj5ct0Rdm4tpl1eND16J2Czy3z3VT4/fF1AYrKbHr0TiI5V+XTxXr7/Jh+7XWHYqHTGTcxm547TrFp+AEnWWfQflMKRQ2Ws/vwAtbVeQkOtpKaHUniymnWrD1J4qobGRj/t86KprGjgizWH2b+vlKKiWrr1jAfgy/VH+PWXk2TlhNOrTyKhYTY2fHuMdasOER3joFvPeFLTQ9n6WyGrlx/Eriq07RBF525x7N9TwvoVh/D5A8QnuohLcHG8oIq1Kw9RWd6AbBXJyA2j5HQd61cd4kRBFeWV9XToGoOnwcdXa4+we/tp2nWMplufeKw2mQ1fFvDTN8dJTHHTpW88UbEqm388ydrPDhISZqVN1yiy2kWwd3sJa1YcQpYFYrJddB+YQP7BCtavOExDnRdbpExcuovTJ2r5cuURSgvrqPE1kpoXRnW5h69WH6FgfyV5xTFk9dRFJ9+uy2fHxiLScsPI7RuFK9TKxm9P8P3KfCLjVHJ6RZGQ5mbnpmK+Xn5Ez4vsEEabblEc3l3G1yuOEPBpRCSrRMYnc+poFV+vPEp1mQesAkk5IZQW1/P16iOcKqimtKqB7K6ReOp9fLP2KPu3l9CmIJIOvaNRrBIbvixg4zcnSEh10b5PDJGxKps3nGTt8oOEhNnI6RpJRttw9mw7w7oVB5FkkYQcN90H6Cy++PwQ9XU+nJEW4tN0C8GvVh2hpLgOj99HRodwqso9fL3mKPn7yyk6U0O7HvpC//26o2zfWEx6bhh5fWNwhVj55ZtjfLc6n+g4Bx16xZCQ6mbbr0Ws+/QQDpdCZl447bpEc3B3Kes/O4SmQUyyk6h4ByeOVvHV50eoqvAg25qESkV1Ootj1VRWNdCmcxQNdT6+WX2EfTtLaJsfRcfeelnFH77IZ+O3J0hKC6Fjn1giY1Q2bdDjIjTcRttuUWS0CWf31tOs++wQsiKSnB1C9/4JHDlQzrrPD9FQ78MdaSUh1U3h8WrWrzpM6el6GgMBsjtEUF7awDdrjnL0YAVnTtfqC30Avll3lK2bisjKDadb33hcIVY2fFPAN2uOEhvvpHPPWBJTQ/6Tt+hztj/pk9t/e/tL7lh//eUEE8YuMlSmdrvM408P5uH7v6emphFN099nXndDNxbM38Xp4lp8vgB2u8zI0RmcOF7Nzp3FeBr8WK0S2TkRtGsXxYomVbEkCUREqlx5dRdeen4jdXVeBEF/5/HkM0O5+/avTGM/9+Jw7rztK5My9977+/HicxupqvLg92uoqszMC9rzw/fHKMivoLExoJsq9IzHapXZ8MMxGhp8KIpIYqKbUWMy+eD97dTVeXVxi8vCPff345EHvzepgp97cTi33/KlaT5PPjOEB+77jtoWLK6/qRsff7CTM2fqDBajx2RSmF/N3p26RaTVKpHdJoLsNhGsWX6Q+nofsiwQHqGS1S6Cb7/JN52H+x/uzwvP/GIa+9mXhnHXrV+bWTzYjxef2UhlpV48QFUVZl3cnm+/yufYsUq8Z1n0ikdWRH7ecKKZRZKbUaMyWDBvJ/V1Pp2F28Kt9/Tm6Ud+bFYAqzJPvziM+2/+tlmBaZd5+LmBPHb3D9TV6uIOuypz9S1dWfDuLkpL6vD7NOx2mRHjMzhyqJz9u0tp9PixWCVy2kaQmxXJVyt1VackC0RE2jn/8g68/+Lv1Nf5EARd3HLPs/157rafDIGN1S5zz+x+PH/zTyY16rWPdGfeE1uprdTFcjZVZvwl2fzyxQnD4s9ql8jrG4ufANt/KsLT4EexiMQmO+k9PInPP9hPQxMLZ4iFK+7uwrsP/24a5+aXevPSzT+3mI/EjS/0Zs6dG2loYmFTZS64PY9P3t5NeUk9fp/+rm7IxFQO7S/n8J4yg0VW+3CS0kP4blU+DU1xERalMuXSNnzw8jYamlioToVbn+7Dc7f/ZDoP987uz5M3bzDN8aZHejL3ic3UVjWzmHpZW75fk0/xcd0u02rXTRX8vgDbfmlmEZ/ipteQRD7/aJ8eF5IeF5ff1YXXH91sjGNXZe5+qT9P3bzBNJ+7XujHc3f+RH2LuLj0js7Mf2MnFSX1+ntLVWb4pAwO7i7lyL4yGj0BrDaJnA6RxCW7+H5NM4uIaJXJf2vDB7O3GXGhOhVue7IPz97VIgbsMvfNHsAjt3xvYnHbo7155fFN1FTpRSXsqsyMy9vz9aojFJ7Q48Jml+gxIJG6Bi9bfy00WCSlhtBrYCKfzdezFSRJwBVi5asdFxs53/9K+yN3rOf/ATvWOX/CHetfcmG95KLlfLp0n6kvPsHJmdN1JmGSw6kgCIJJFSxKYLXKJlWdqso0NPiDlLCyLFLZQmYvigIJiS6OH6syjZ2SGkJBfqWpLzLSTm2t1+QhLEkCdrtiUuFarCJo0NhCOONyWWhs9JtUtDabjDvEyulWiuRzjZ2Q6KK4qNYkcnA6LSBgYiGJAiFWi4mFXdUVj0Gq4FYKTIAQt4XKKrMC85wsolRqaxpNLGRFxGaVzSwsuvF8Y2PzcTtdFvBopj6bXcLlsnLmtFnpmZYSxol887mJT3RSXFhrEr843Ra0gGZWBYu62KQ1C9EjmMRlDqeCIogmpaYkCSTEuyk+bj43SWluCo9Wm/oiouw0VPtMCldZEbHYzCpc2SLgFzWTetjulPF6AiYxjdUuEeq0UXHarPaNS3VSmN9KLZ6kq2NbsrCHKHgCfiOlA3TFtmIXTYbwNrtEY2MgiAUCJsWsJAtExTooOmEeOyHNxcnWLKLt1FQ1mpS0ikXEYpVM3ylbBERBNPlAq06ZxgazkMemytgdMuVnzCwSUl2czDePHZfkpPiU2WPZEaLg9QeCWNjsCvUtsgPOyaJJ0GaatyISGaMGsYhPd3HsqDlOI2NUqis9QQUxFIuZhaQIIJmLRagOmUaPmYVdlXnoxUHMuLQ9/2r7oxbWaCFDm/EHLKyv/gkX1r/so+Cgdq7fBxoQLOr8p5qAcM7vPNfvkHP9ONG0YBP1pi8OGidwjoHO+Xvnn/wR9A8/1qr/f1pR6twsztX3DybUenyBczMP6hT+wSOlc3D85z6mf+v/BMi55v0/qpH1D2D8k2P/s5/7p39Y/xOx3DzMOU/iP9P1P39W+K8g+zdvKoK+TvsH94ZzKm7+ydj9B//HOZn/CdufVWz0725/SVXwNdd2MxnP21WZW+/sjdUmG4uFqipcdW0XXC6Lkepht8uMG59NmzZRhnm8xSqRnhHOeTPaGt8pSQJ2VebaG7oZNntn//72u3qbx7bL3HFXH9PnVFXhplt6YLXKRvqHqspcfEkesbFOIzXHZpPp3iOeAQNSjPQYRRGJiLBz2RWdDGN/URSwWiVuub23yeDerupjt57PbXf0wtaKxTXXdcXpbMViYjbZbSIMk3CrVSIjK5xJ5+Ua3ynLen3ZAQNTgs7D9bf0CBr79rt6B7H4+209sdpkI13DrspcdEke0dEOowCBzSbTs1cCffonNrOwiERGqlx0WUfjuM+yuOG27kEsbrq7p2k+NrvMDXf2wGZvZmFXZS67XldCn00rstllxk3JJiM7zIgLq1UiIzuc0VMzjVQGqYnFhTfkGWMLgv7Y9/K7uphSHmx2mcvv6WpKCbGpMhfe3hGLTTJY2FSZiVfkEhZlR25iYbVJdO4XS6e+cVibzONlRSQiRmXSZbnGd4qigMWmP85tPc7Fd3c2/hbAqsr87e7OWOySwcKmysy8sQN2h2xiMXJaJilZoUZcWKwS6bnhDJ+cbhyjLAuoToVZ15tZ2Owyl9/RJWg+V97dLajvsts7B7GYdmU7wiLtRjqK1S7RfUACHXvFGmlTikUkKs7BlMvamFhYrRKX3NbZNI5dlbny7q5B5+bKu7piaxGnNlXmohs7YVebr1mbKjN2RjbJGSEmFpntIhg+0czC4bRwwXWt40LiqjuDx772nu5Bc7z6jm5YrJLpGpl5ZQfCIppZ2OwyfQYl0amHmUVMvJPz/tbOGFuSBKw2maFj/3yq4P8t7S+5Y+3VJ5FlK6bzwnO/4PX6uebaboybkM2AASk8+tD3lJXVM2VaG668ugvXXtedB+//lvyjlfQfmMzd9/bF4/HzyIPfs22rLl56+LGBOBwWMjLD+OarfJKS3Dz6xCDiE1zExblYvGg37hArDzw0gPYdoomPd/H6K5sRBIGbb+vF4CGptO8Qw9NP/khtTSMX/a0jMy9oz+SpbXj4/u8oLKxh1OgMbrqlJ5WVHh687zv27yuhe894HnhoAIIg8ORjG/jl5xNkZYfz2BODCQu3k5QcwqrPDxAd4+DhxwaRkRFGdIzKvHe3Y7fL3HlPX3r0TCAtPZQXn9uI1+fn2uu6MXZ8Nv36J/Powz9QXlbP1PPacMVVXbjqmq48cN+3FORXMmBQMnfd0xdPg58nHviBnduKadcxmvsfG4BdVXj56V/4/usCklLcPPDEQGLiHFx72SrWrTmCapd5dvZwxk/KIa9TDHPnbEaSRf5+a08GDkmlbYconn3yJ2prvVx0SR4zZrVn/MQcHr7/O4qLahk1NoMbb+lJRXkDD9/3Hfv3ldKjVzz3PtRfZ/HIBkO89MgTgwgLt5OY4mb9ykNExTh44PEBpGaEER3j5OP3dmBXZW67tw9de8STkhbKa89txu8PcPn1XRgxPoOe/RJ59qGfqCxvYOKMXC66Mo+Lr+7Ek/f+wPGCKvoOTubv9/TE0+Dnqfs3GOKlex7vj9Um8fpTm/nl2+MkJLu586m+RMc5iIl3smrRAULCrPz9kd5kt48gJsHJ/Fd2IEkCl97RmR6DE8lqH847T2yhvtbLxMvaMGZWNoMnpPP6fZsoLaqj//gUZt2SR1WZh9fu/ZX8fRXk9Ynhqoe7oWnwxsOb2LGxmLTcMG58shfuMCvxqW5+WJVPZKzKDU/0IjHdTXiMyqr39mNzylx2Xxfa9ogmPs3F/Oe34/dpTL+pPf3GpdChTyxvPbyZ6nIPw8/PZPKVbZh0ZRtm37uRUwXV9BqayBX3dKWhzsfL9/3C/h0ltOkUxd8f74XFJvHmk7+x6dsTxKe6ufXJPkTFqUTHO1i7WBfs3PhITzLbNbF4bQeyLHL5HV3oMSiRzHbhvPnEZhrq/Uy7oi1jZmQzeFwaL9+/kdLiOoZMSOOiv3fi2vu78+I9P5N/oILOfeK4/qEeaBq8+vCvbN9YRHqbcG59sjfOEAvxKW5+WJNPVJyDm5/oTWKam8gYlc/m7UV1KFz7QHfad4shPsXN+y9sJRDQuPimjgwYk0rHXrG8+vCvVFc2MnZmNtMub8vUy9ry/L0/UXismj5Dk7j6nu401Pl44b6f2L+jhHZdoo0CDnOf2Myv350gMc3NbU/2JSpWJSbBwdolhwgNt3Hzo73JbBtOdLyTj1/bgaKIXHlXN3oMSCCzTTivPbWJhno/51/RjnHTcxg0Ko3nH/iJ0tP1DJuQzqU3dea6u7vz3L0/cfRgBd36xnPTgz3RAvD8gz+xbXMRmbnh3P1kf1whFpLTQ/hmzVFi4hzc9Xg/IqP/9ferf3T7a+yr/+ftL7mwArRtF8XkKbn4fAG6dNXl+KlpoUyYnENlhYeBg1IQBIHoGAfjJ2Rz4kQ13brHoyi6G9PY8VmkZ4SRnROB221FEARGjMwgNNRGbKyT2DjdOLzfgGS8Xj9Ol4X0jDAAOneOZfLUNggCdOgQDUB2TjiTJudQV+ejVx89NSEhwcX4iTmcOVNL335JSJJIWJiNcROyaNc+iryO0UZRgNFjMomLd5GaGkJ4hB1BEBgyNBWLRSI83E5Skm6437NnIpUVHmw2mZzciCYW0Uyakovf38wiLT2MiZNzqKr0MHBQqonFyZNmFiPHZ5KaFUpWdgSuJlOMIaPScYfbiI1zEt1kNTj9gvY0+AKEhtro3U9POejUOZaJ03KRJJH2eU0sciMYPzmH+nofPc+ySHIxblI2JSV19O2XhCgKhIXbGD0hizYdoujYMaaZxbhM4hLNLAYOS0WyikREqCQk6yy69Y6nvKoBm00mq4lFmw5RjJqaid+v0aGrPp+U9BBGTM6gurqR3oP0lJXoWAfDJmZQVFhD1+5xBoth49NJzg4hOyfCKEjQf0wK9kiF2DgnUbEOBEGg66B4qgNeXC4LSRn6fHK7RDJoWiqiJJKVp88nJTeUflNS8TT4yOsTC0BMsoO+k5IpL62ne/8ERFE3UOg3MYXUvFByO0UZ5u8DxqcSneQkMc1NSLgepz2HJyLZRMIj7cQk6Sbz7fpEU1pTj9Umk5Srq0HT88LpPS0Zv18ju6teQiwh00WPKUnUVDXScWAsgiAQGavSZ1ISRYW1dO0RhyyLON0W+k9MISbXSXZuhGF+0HdMMvYIhbhEF5GxKoIg0G1QAg2aH6fbQkK6zqJtt2gGT0tHlASyOugs0nLDGDg1DU+Dn7xeOovYZBf9JqdQXlZP9/6JiKJAaISNfpNSSM4PJa9TjMGi77hkQpJtpKaHNhkvCPQamYjmgIhIOzGJOouOfWMpra3HbldIzdGv2eyOEQyYlkogoJHbRWeRlBlC/ykp1NQ00mVgHIIgEBWn0n9SCsVFtXTvGY8sizhcCv0npBKb6yK3TSQOp86iz5hkrFF6MYzIGJ1F9yGJ1Al+3G4riS1YDDwvDVkWyGofrp+bNuEMnpJGg8dPXk+dRXyKi0GT0ygrq6dXf/0aCY+0M2BiKmkFlXTsHGuY4Awen0ZUqoPU9DBCmlj0G56MpIpERqnEtSoj93/t/237S4qXigpr6NvrPUP1Kisiq9fN4porV1GQr1d5EQT4eNEU3n5jCxt+OIbPpzvHPPH0EAryK3n7zd/x+wNIssiFF+XRqXMMt938BQFNQ5ZEuvdI4PY7ezF96jICmoYoCsTHu5j30UTGjlxgiGlUVWHl2pnMmLaU0pJ6AgENURJYvnIG99/zLbt3ncbnDyAKAq+/NYYv1h3h8+V6/q0kidxyey+sVomnn/gJvz+ALIuMGpPJ1GltuPySz9E0/dFOdk4Ez780ggljF+L3a4hNDkvLVkxn/OiF1NbqLBRFYvW6mVx5+UqOH6vC79ddYhYsnsrcVzfz04/Hjfk8+cxQjh4u5/23thksLvpbHu06RHHXrV8ZLHr0SmDw8FTuu+db4xxYFJHVX8xi2qQlQSymT11KWWk9AU1DEgWWrzqfe+/6mj27zxhjv/HOWNasOsSqpjQhSRK4/c4+iJLAM0/9RMCvIcsiY8ZmMWFyNlddtspgkdsmkmeeH8bEcYuaWOiL9NLPpjNx1EJdkazpNWxXrj+fqy5ZxfHjVQT8AQRRYP7iKbw2ezMbfz7RzOL5oRzYV8oH727XWUgiF1/Wkdy2kdxzWzOLXn0SueGWHsyatgwtoCFKIklJbt6ZN55ZI5Y1ufLo9ojz103hqkkrqShrQNP0z85bM4mnb93AwT1l+nwEgWfmDePrz47y7cqj+H16/Fx9bzcIwDtP/07AryHJAkMmpjFwfAr3XfaNzlYSyGwXwe3P9+HSMSsIBPTvC4uw8dbyCVw88jPq67xomoZikfj4iylcd/EaTp3Qq/+IosB7yyby6oub2PTLSfxNLJ54cSh7d51h/ryd+H16XFx8eUeysiN45I7vCAQ0JEmkV/9ELr+xM1ec97nRl5jsYs680Zw3YonBQnUofLL+PC4a/ykV5Q3GeVy4dir33Po1B/aWGtfs6/PG8vnS/Xyx5jB+XwBRErjt3j54vX7mPPdrEwuRsZOyGDEmg5uuWNvEQqRt+ygeenogM8YtJeAPIIr6j4+PP53ClJGf6CzQH/N/+sX5XHXB5xSeqjG4fbh0Mi89/yubfz1pxMVzLw9n+7Zi5n/YxEISuezqzqSmhvDA3d8SCOhx2ndAMldd15WLpn+KpunuVckpIbz53ljGjVioC84EXUS4Yu35TB2/mMoKT1NcCKxYez63//1LDuwvJdDE4u0Px7N00V6+XHdYv39JAvc80I+6Oh9zXvjVuGYnTcll6Ig0brhqjRGn7fOiWfXlrGBHuX+i/VHipSghQ5v6B4iX3vwTipf+kgvrzTeu48N5OwwVnCBAVnY4x49VmZSnUVEqdXVek9+vooiIomBS3J59r9ayz+FQcIdYKWzhw2uzyaSlh7J/X6mhmpUkgTZtIzmwv8ykXE1OCaG0pM40tsOpoAUwUlHOzgfMNouqQ0GRRSorPaa+mBgHR49UmP42NzeSvXvPGPaAggDZOREcK6g0sYiOdlBb2xjEQhHEIBaahulYHE6F2gZvkK1cTIyDM2fqzsGi1KRyTkkNoeSMmYXTaSEQ0EwsZEVAQDCzUBVkWTB5CqsOhehoB/lHzSza5ESyb0+JMU9BgJzcCPKPVpr8h2NiHNTUNppUwYoiIkqCSW2ps9BMx+JwKDhdFoqLmhXANptMu9RIjuwrNwQskiSQ21bva3k8KWkhlBXXmRS3TrcFwWf2f5UVEQmznZ5NlUHSTCpRu0PGGW3leAs1tKLouboH9zQXUhBFgeScEI4cLTcdY1ScSmV1gzkuLE3XiEmhKiH7xSDVvepQOFPcrM622WWSUt0c2lfWzEIWyGkTwcF9Zaa/T053U3i6hroWY7tDrPi8AXNcyAKCKJg8he2q/s6+5TlUHQoRkXaOF7RgYRHJyolgf4u4EEWB7NwIjh4xs4iOd1Be1WD6TotFRBRFU/xYLCKaZr5mHY4mFi2U6na7TFJKCAf3lxosZFkkt20E+/eWmv4+PSOMosIa03GHhFrxegMmPv+QhSCY7zUOhVffGsOkqbn8q+3/Ftb/eftLipcKC2tM0nJNg/KyBlPwA1RVexDO4W/a2pPTYpGC/INBrxXasjU0+PSdWAu1p9+vUVpSb1qIACorGoIWorpar8nXF/QLraWPKYAsCaY0FNBrXrY2nfd6A5SW1pk8dzUNysrqg1hUV3uC/U0DWpA7i2IRg7xIzx5n61ZT7fkHLMx/X1HREPSdtXWNwSwkyahLafTJgqlwAOj+ypUV52JRb5rnP2JRVeUJ8oQN/AMWrY9bEASqqoLjQt+VNvf5/RrlpfVBcVVV0YC/FYv6Gm+Qf7AkCUGezZIkmBZkAL9PM1VeAZ1Feak5/gIBjYqyBtNCAjqL1upevz8QxMJiEU3nGnQW1a3SrTwNPspbs/BplJU2BLGoqPAE+fDW1DSe47hFZCmYT12rAhl+vxZ0zXobA5S1iotAQKOstC6YRaUn6CWgzxc45/3iXF7TrVk0NPgoL6s3fdbnC1BaEhwXFeX1Qb7dtTXeoOMWJTFoFypLomlBBvAHNEpKzOlo//mm/SH/+zO2v+TCOnpMZpBad/CwVJPxvMUi0atXoinXTBQFkpNDjCLbLfuzcyJMBu6BgEaffknGbvbsOEOGpZnUqKqqMGyEuc9mkxkwMNmUziLLIp06x9Dy3iQI4HJbiIhQTZ/1+zW6dYszXdCSJDBosPkYVVVm2Ij0IBZDh6aalIgWi0Sv3okEWpT+kSSBlLTQoJuGLElkZYebWfg1oqMdtG49eyWek0XL+egsUkwG7ooi0qVLnKkSkSDov9DDwm1mFgGNrq1ZiAIDBqWcg0WaoaQ+y2Lw0DSTUthilejVNxF/KxbpGWEoQTcsifSMMBMLfyBA7z6J5rhQZfoNTQ5SKQ8YmWrqs9okeg5KRBSbx5EVkfbdok2LliCAO8yKO9Rs4K4B7bpGmQzcRVGg9+BEkwLYrsr0H5lijkm7zIBh5jlarBI9+ySaxpYkgYxM8/kHkGWJlPRQMwt/gO594g3FrDHOkBRT/NlVmcGtWNhsEv0HJZu+T1FEunSPC2IRFmHDFWJmAQIdu8SaFhlRgH4Dk01xYVdlhgxPNV8jqsygVtexxSrRu29SEIusnIig4gOyIpKcEmLq9/sD9OydYLq32Gwyg4akmuJPVWWGjTzHNTI4xXQsiiLStXucyYRfECAqyo7LFRwXHTubWQhA775J/Nna/xav4L/kwvq3SztyzXVdsVolFEVk6nltmPvmWJ57cThOp4IkCfTtn8THiyazYPEUIiNVRFGgbbtIPl8zk1XrZpGaGoIgQFKym5VrZ7J85Qw65MXogoFwGx/Mn8S8jyYycHAKkqSnWTz+1GBef3MMM2e1R1FELBaJSy/vyCuvj+Gee/tht8vIssiIkem8M28Cb747jpAQvcpIl66xLP1sOp99PoO4OCeCABmZ4az94gJWr59Fdk4Egqg/ply6/DwWLTuP7j0S9CopbiuvvjGat94bx5hxmciyiM0mc+sdvXnl9dFcfW2XZhbT2/L6W+N49vlhBot+A5L5cMEk5n8ylYhIexOLKD5ffT4r1s8kpQWLFevOZ9mq6bTPi9ZZRNiZt3ASGzZeQmREc7WMaee1YemK6Zw/s4mFVeKyKzvx6twx3HVPH4PFyFEZvPP+eOa+PRa3wSKOJZ+ex6crpjeJxCAzK5w1TSyyssMRBL2K0afLp7N42TS6dY83WLz25hjefm88o8c2s7j9rj7MmTuay6/pgqWJxbQZbXn1rTE88dxQHI5mFvMWTOLDRZObWbSP4tPVM1ix7nySU9wIAiSnuPl8/fl8unoG7TpEGSw+XDSZ9xdMov9AfVFwOBSeeHYoz789kgnn5xosLrw6jyfnDuXae7pjtUvIssiQsek8P28kT7wzFFeIBVES6NgjhrnLxzN35Tii4lQEEVKzQ3n/q8m88+VEUrJCEUT9ke1rK8fy6vJxdOgerTsNhVh4/N0hPD9vJINHp+ks7DLX3dudJ+cOZdbVHQwWE2fl8MxbI3jw2YF6qpEk0HdQEm8tHM+7CycSHqGzaJcXzeLV01m2bgZJZ1mkhvDp+hksWjuN3PaRhqjm7U8m8Nai8fQekKizcCo8/PwgXnxnJJNm6CysVolLru3Es3OHG6lPsiwyfHwGs98fzUtvjMLl1ll07RnPh0sns2D5NKJjHQgiZOaEs/zLmXz2xflkZDXFRZyTRZ9P4+PPptC5WyyiJBASYmXOO6N5bd5Yho1KR5ZFPf3rvj68MHcUF1/RsTkuZrbj5bdG8dBTgwwWAwan8M78CcxbOImwpgpWHTpG8+kqPS6SknUWKakhrPxiFsvXnk/b9npcREba+XjxFD5YNJm+/ZOQJAGnU+GZF4fx2ttjmHJeG4PFVdd35eXXRnHzHT2x2WQURWTM+EzeeG8cs+eOwu3Wr5EevRJYsHQqnyw/j+gYnUV2bgQr189i5RczycgMRxAhLt7JspXTWbx8WjOLUCtz3x1Lu/ZR/8G79P/u9pd8xwr6I92TJ6rw+QMkJ4cavx7PnK6lorKBtLQw4xdcRUUDp4trSE4JNX7N1tY2cvJEFfEJbt2VCPB4fBQUVBIV5SCsqUSbzxcgP78Ct8tKdIzDGPtYQWXTYhRiPGItKqyhtq6R1NRQ45FmaWk9paV1pKaGGr9mq6o8FBVWk5gUYvxyra/3cvxYJTGxTkJC9LG9Xj/5+RWEh9mJiNSl84GARn5+BTarRHyC25jPieNV+AMBUlJCjfmcOV1LZZWH1NRQg0V5eQNnTv9zLI41sThbrq6hwcfPPx0jNsZF26aLVtM0CgoqkETdfvDs2KdOVlHf4PsfsYiNcxml+xobdRYR4f8ci4BfIzm1+dycLq6lutpDSgsWFeUNnDlTS3JKiKG2rKlp5NTJ/5qFzxegIL8CV+u4yK/UnZhasCg8WY2nwUdyWnOclpXUU15aT1Ja8xOU6ioPp0/VkpDiNnZ89XVeTh2rJjreYSi2Gxv9nDhaSViknbCmHzt+f4Dj+ZVYbTJxCS5jPqeOV+P3B0hqxaKm2kPyP8kiIdFtlDFsaPBxrKCC6GhnEAu320pUtJmFKAlBceFp8JPSgkVpSR3l5fWkpIYaj6ArKz0UF1WTlBxiqMXr6rycOB4cFwX5FUREqIS3YFFwtALVYSE2zmnM5/ixKjRNIznlvx8X52IRE+MkJPQfswgENI4XVCLJAgmJ/29Z/HfaH/eONV2b+Ae8Y32XmX+6d6x/yXQbr9fPzPOW8cP3BQiCQJu2UaxYPYMnHtvAe29v05Ppw+2s/fIC1q09xH13f4OsiCiyxGcrZ1BaWsfFs5YjiPpjznfnTSA5JYQJYxbh8fjw+gI89MhApk5rw+gR8ykuqsXvDzDzgg48+cxgpkxYzPZtxWga9OqdyKKlU7npurWsWL4fSRJISg5hzfpZvPv2Vp5/9hcURcThsLB6/Uy2byvmhmvXIsm6UGfR0qkossh5U5bgD2j4fAFemj2SXn0SGTNiAdVVHrzeADfe3IMbburBuJELOHK0nIBfY/TYTN58ZxwXnv8ZG344hiDoaUgrVs/gsYc38P67OovICJ3F6lUHeeDeb1EUCVkRWb5yBmeKa7nsws8NFu98OJ7EpBAmj1mEx+PH6wvw4GMD6NU7keFDPjbelebmRvDV9xcxZcISdu7QWfTum8jCxVO44dp1rFyhs0hOCWHN+gt4680tvPjcRhRFxOm0sHr9LH7/vZCbrluLJIuIgsAny6YhCDB9ylICmobfF+DlV0fRvUcCY0fMp7q6Ea83wN9v7cl113dj7MgFHM2vIODXGDMuizfeHsuF0z/j5w3HQYB2HaL4dNV0Hn3gBz56f4fOIlJl9VezWLXiAA/f9x2yrD95+HT1DIoKq7n8opUIou6O8+5H44mLdzF5zCc0Nvrx+QI89MRAxk/MYdzwBbrvsjfARZfm8dBjA5kxbgm7d55B0zR690ti3pJJ3Hrler74/LCuEk0LYckX05n32jbefP43ZEXE6bKw4Iup7PytmPuv+8Zg8eZn49E0jaunrETTwO8L8PjcIeR1jeXC4cuorfHi8/q56o5uXHRdR6YNX8zx/EoCfo2REzJ5/q3hXHHeSn798QSCINAuL4r5q6fw6L3fs/CDXciySFSMyvIvZ7L8s308cv/3KLK+216+5nxOnqjiioubWbz38QRiYp1MGfsJjV4/Pm+AR58azOhxWYwbvoCSEp3FxZd15IFH+zNl3GL27DyDpkHfAUl89Mlkrr18NetWH0KUBNLSw1i5fiavz9nMKy9t0uPCZWHVl7PYtPEkt964XtcfiAKLPp1GwK8xc+oyNPS4mD13NB07xzBh5EJqa7x4vQFuvbMXl1/dhXEjFnCsQGcxflIOs+eOYtbUZfz6y0kQIK9jDMtWnccDd3/Hgg93Issi0TEOVn81i8+W7uXRB39AkfUd5vK153OsoJIr/7YSURLQAvD+golERqpMHb8YbxOLx58ZwojRGYwbvoDS0np83gCXXtGJex7qx+Qxn7BvTwkBTWPAoBQ+WDiJay5bxfo1elykp4ex8ouZvPLSJl6bvRlFEXG5raz6ciYbfz7BbTd9gSyLSKLAJ8vPo9Hj54LzPm1iofHKm6NpnxfNhJELqavVWdx2d2/uvLfvf/hO/b+3/SV3rM898xPPtzB/t1glevdOYPOmQuMlvigKtGkTwZEjFSZ1bFiYDY/Hb3rZr6oyLpeV4hY+vKoqk50Twc4dpw3hg6oq9OqdyE8/HTOEDzabTL8BSfz843HqmlSdsizSpVscu3acNsY5u7s9c7rWNB+HQ0GUzMIHu10mPsHFkcPNKlNVVejUOYbNm04Zwge7KtOvfzI//nDM+E6rVaJXn0Q2bzpliDvOqnUPHyo3jR0eYcdbZ2Zhs0m43GYfXrsqo4mYVIcA7dpFcehQmaEqttlk+g9M5qcNxwwWiiLStWscO1qxSE4J4XSxmYXTqSCIwSzi4pwcPVphYpHXKZotmwtNLAb0S+bHH44bZuvWpvepmzeeMsaWJIE27SI5fNDMIiLSTl0rb2e7XcbhtFByxqz0zMwOZ8+uM81x4VDo3TOBX386afjZnmXx6w8nDbWvooh07h7Hvm1njD5BgOS0EEoL6415w7l9eG12mahYlRP5VQYLuyqT0TGcrb8VGUIguyrTa0Aiv3x/wvhOi1Wie794Nm08aWKR2z6SfQdLTYrkc3k72+16DeDS0npTXGRkhrF3d4npGuneM56NP58w4sJul+k3sClOW7Do1iOe7VuLTXGRmh5K4akaEwuXSy9M31LQZ7fLRMU4OF5QaYqL9nnRbN1ijou+/ZP48fvjhojNatPfp276xcyifYdoDuwvDVLTV1d7gljYVYWylizsMukZYezdU2K8p1UdCt166CwaW7IYkMSPG443s7Do6X3bfi8ysUjPDOPUiWrT2K4mn+uWgj67Xa9H3NLDXFUVlnx+Hn36/evvWf+oHWukkK5N+AN2rO//CXesf8l3rJt+PWUKtkaPn927zlBf3xxsgYDGoUPlQWrL6mpPkBhBkgTOnDEr6ARB4MCBMpOasK7Oy65dp01qwoYGHzt3nDYWEtAfB+3bc8YkkNE0OFZQGSQWCgQ0k3Qe9FzU/BYLCei79L17Skxqwvo6Hzu3F5tYeDx+du86bVJM+v0aBw+WBSluqyoaghXJimi6eQJBUv6z7eiRclOqTkODjx3bi00svN4Ae/eWmEQY/4iF368FqSUVRSI/vzJIWblvT+k5WJw23ZA9Hj+7d54x/XDw+zUOHSgLEudUlDcEqS0lWaC8rBULSeBQ67io9bJ3V4nJJL6hwcfu7WdMC5bXG+DgnlL8rVTcx/OrTIKks8fY8nOgpyO1XFT14wlwYG+pSV1bX+dj9zYzi0aPn727glkcPFAWdD2Uldadk0VlK8WtJIocOlAedI3s2X3GFBf19U1x2jou9pTg9TV/TtOg4GgFllaKZK/Xb7qWQP/x2nJRPcti395zXSOnTcpwT4OfPbtOB7E4cKA0iEVJSW3QuZGkYGW4JIscOlRmEj/V13nZs+uMKS7q633s3NEqLhoD7Nl9xqQK1jTIP1IRNHajx08rFMiyyInjZlP/QEBj964z/NmaJmj/9n9/xvaXXFjbto0yvDJB//WbkhqKvYXSDvQX+y1v6KBXtvH5zLL2xsaA8T7tbNM0SIh3mdR3qiqTmhpiWhAsVom0tFCT8k8UBRKT3UFS+agoNSgVJaBpQWb4Xq8/SIVrsUgkJbtNC4LNJpOeHmZSqMqyzqKl6lAQID7eZVIFn/371ukO3kY/DoeZo6aBtZWSGiAm1mliYbVKpKeHmVjoj8bdQTfqqChH0CIa0LSgdAedhdmaTVFEks/BIi0j1MRCj4uQYBYJ7qDUEZtdDpqPtzFgvNMyWAQgLqF1XCgkp4aYboJWq66itbWIU0kSSEh2Bd0sI6PVoPMAwQbuPq9GRCsWsiyR2JqFXSYlI9Sk1lUUkeTUEJMSVhB0d7DWpvCqwxKU+uFtDJiuOdBv3nHxTjMLh0JySojpfFutEmnpYSa1riQJJCW5g9J6omMdNLYaG4KN672+AJFRrVmIJCW7TYvj2dxzEwvL2ftFKxaJ7qA0GofTEvTD1+v1B10PAb9GXNP73LPNruosTNeITSI1LSSIRXKyOyhbITrGERQXgkhQ7Hp9AUN3cLaJkkB6Rij/1/4z7S+5sN55Tx9yciJwOhVcLgtx8S4WLp7KkCG6rN7tthIWZmPh4qlcc51u2O92W1FVhY8WTubF2SOxNfXp9UuHsmDxFN0Uoqnvb5d1ZOGSqYSF2/W/dSj07ZfMwsVTSUoOwemy4HRayMgIY/4nU+jSNQ6HQ8HlthAVpbJw8VSmTGtjjO10WVi4ZCr3PdjfNPabb4/j3XkT9M+F6H233dmbhUum4nZbjXmPHZ/FwiVTiY524HJbcDgU8jrG8PEnU3T7PaduXJCQ6GLhJ1MYNDjFYBEaqrO48pquzSwcCh8tmsKzLw835mOzyTz1/DA+/mQKaksWl3fko4WTTDfQyEg7676aRVKSu5lFZhgfL5pMp86xBovISJUFi6cwaUoudlUfx9XE4u57+5pYvPXueN55f7wxR5tN5o67+7BwyTRcbov+OVVm/MRsFiyZSlSUA5dLZ9Gxk84iMzscR1NcJCS6mb9kCv0HJTezCLPx8ZLJXHZVFxOLjz+ZwtMvDG1mYZd55sVhfPTJZBOLS6/sxPwlUwgNs+F2W1BVhf4Dk/lg8SQSEl04XRYcToWM7HDeWzyRDl1iDFOJiCiVt5dMYNTkTOyqjCvEgtNt4c2l47n+3u5Y7XqfzS7zwgcjee69Edia+qx2mRvu68HcpeNwui24QizYVZmRUzJ4e/F4IqJUXG4LqkMhr0sMb38ynvSsMBxNcRGf5OL9JZPoO1Bn4XJbCA238eHSKVxyRSeDhcOh8PEnk3nq+WF6qcImFs++PJyPFplZXH5NZ+YvnUJoqM3gOHBQCvOXTCEh0aWfG6dCVk4EH34ymbxO0XpcuCxERTv4eMkUxk3Iao4Lt4X5i6dy+129jTKJdrvM2x9MYO67Y5vjwi5z9/19mb9kCk6XxZjPpKm5fLx4MpFNLBwOhS7dYvl48RTSM8JwOi04XRaSkkL4ePFk+vZPNo4nLNzO/CVTuPiyPBOL+Yun8MSzQ0xx8fyckXywaJLxtza7zJXXduHjJVOb4kK/ZgcN0VnExTezyM6J4KPFU2jfsZlFdIzOYvS4ZhZut5UFS6dyy529TNfIux9O4LW3xxj3C5td5t4H+wexmHpeG4YMS/vP3aT/Qfvfkm7zl3zHCvqjst+3FOL3BejUJRa7XUHTNHZsL6aqykOHvBhCm5R6Bw+UcupUNW3aRBkKzuPHKjl8uJy09FBSUkIBXUW7Z88ZYmOd5OTqfqJVVR52bC/G4bDQqXMMgiDg8fjYuqUIQYAu3XSf2UBAY+vvRTQ0eOnYKdbYAe/ZfYaSkjratY8mokmpd+RIOccKKsnOjiC+ScFZeKqa/ftLSUoOIaPJk7isrJ5dO08THm6nXfsoBEGgtraR7VuLsVglOneJRZJEvF4/v28pIuAP0LlrHDabbGKR1zHGUBof2F9KYWFrFlUcOVRGWkYYySkhBou9u0uIiXMYLE6erGLFsv1ERqtMm94GURTxeHz8/lshoiTSpWssiiLh9wfYtrWYhgZv0yKrs9i96zSlpfX/VhbbthZhtcomFlu3FOH3a3TuGtvMYlsx1VWNdOgUQ0iI1WBRdKqG3LaRBotjBZUcPVx+Thax8U6yc3Tf28pKDzu3FeNyW8jrpMdFQ4OP7VuKECWBTi1Y7NyqP5bN6xKD6tDjdP/uUspL6mmTF0VouH5uCg5XcLKgmozcMGLi9d1P0ckajuwvJyHFRUrTDqS8tJ79O0sIi7ST014/N3W1Xnb8XozNLtOhc7TBYseWYvx+jbyuMQaLndtOU1PdSIdO0YbS+CyLNu0iDTXruVicLq5l355zs3CHWOnQMdpgsXVLEZIk0LllXPxehMfjp2PnGBwOC5qmP7IsL62nfV40YeFNcXG4nOMFlWTnRhAXr8fFqZPVHNxfSnJKCGln46K0nt07TxMRpdK2na5Ur6nRrxG7XaZTl1hEUTDiIhDQ48Jq1Vls31pMbY0eF2fVtfv3lVBcWGtmkV/J0SPlpGeGk9TkVX2WRVyCk6zs/5qFLAt07qp7Mbdk0alLLKqq/EMWhw+VceJYlYnFyRNVHDpQRkpqKKnpof+QxX+n/ZHvWMcKT/y7v5YPtVl/unesaJr2H/3XtWtX7b/T3n37dy0n41UtM2WO9uTjG7RAIKCtX3dIy2szV0tNfFm77urVWn29V9u2tVDr1e0dLSX+ZW3a5MVaSUmdVpBfoY0c+pGWEv+yNnTgB9qRI+VaeXm9NvO8pVpKwstaj85va5t+Pal5PD7t5hvXaWmJs7X2ua9rqz7frwUCAe2F537WslLnaNlpr2ivvbJJ0zRNW/zJLq1t9mtaetJs7e47vtK8Xr/244YCrUvem1pKwsva3y78TKuu9mj795VoA/q8r6XEv6yNG7VAKzxVrRUX1WgTxy7UUuJf1vr1ek/bveu0VlPj0a64ZIWWmviy1rnDG9p33x7VfD6/9sC932jpybO1NlmvafM/2qFpmqa9/eYWLSf9FS0zZY721BM6i7VrDmod2szV0hJnazdcu0ZraPBqv28p1Hp21VmcN2WxVlqqsxg1+CMtPe5lbcTAj7Sjh8u18rJ6bda0ZVp6/GytV+d3tN82ndSqqz1a905vaW77U1qY8xntkQe/0wKBgPbs0z9pmSlztOz0V7Q3Xv9NZ7Fol9YmS2dxz106iw0/NLO49KLlWnW1R9u390wzi9E6i6LCam3CGJ1F/97vaXt26ywuu3iFlprwsta5w5va99/laz6fX7vvnq8NFosW7NRZzN2itUl7VctJeUV79skfdRarD2odc+dqmQlztL9ft1Zn8dsprXeXd7T0+Nna+VOWamWldVrB0Qpt5CCdxchBH2n5R3QWM6cu1dLjZ2u9u7yj/f7bKa2hwav9/bq1WmbCHK1j7lxt7eqDWiAQ0J576ictJ+UVrU3aq9pbZ1ks2KW1z3xdy0qaoz1w9zeaz+fXNnxXoHVr/6aWHj9bu+LiFVpNjUfbu+eMNrDX+1p63MvapNELtaJCncXEUQu19LiXtUG952n79p7Rqqs92uUXrdDS42dr3dq/pW34rkDz+fzaQ3d9q7VLelXrnDlXW7pgt6ZpmvbO61u0jmmva+1TXtNeevpnLRAIaOtWHdS6576ptUl4Rbv9+vWax+PTtmxuZjFz6lKtvKxeyz9Sro0YqLMYNfgjreBohVZWWqedP2Wplh6ns9i6pVBraPBqN13bzGLdmkN6XDz5o8HinTe2aJqmaQs/3mmwePDebzWfz6/98G2+1rX9m1pGwmztyr99rtXUeLQ9u083sxizSCsuqtEKT1VrE0YGs7j0guU6iw5vaT/+cEzzev3avXd8pWUmztE6ZL2uLVmks5j76mYtN1WPixee0VmsXnlA65gzV8tMnKPdcsM6zePxab9tOqn16qyzmDVtmVZRXq8dPVyuDR/wYTOL/AqttKROmzF5iZYe97LWp+u72rbfC7X6eq9249VrtMyEOVqnNm9o69fqLJ5+bIOWk/yK1jb9Ne3dt37XNE3TFnzUzOKhJhbffX1U69JOZ3HVJZ9rtbWN2u5dp7UBPXUWk8cu0k4X12inTlZp40cs0NLjXtYG95mn7d9XolVVNWiXzNJZdM97S/tpw7H/1n1V0zQN+E37A+714aRpFwoL/u3//qj5/k/+/SV3rMs/28c1V6wyRDKqqvC3Szsy771thpDHZpMZPTaDr744SnW1riZUFJH2HaI5c6aOwlPVhhF5VLRKWloov28pMqwJHU6FceOy+XzFfuM77XaZK67uwrtvbTWED2drnc597bfmz6ky02e0Y8kne4zPWa0SffolsX1bsWFzJst6OorFInHoYDk+n25aHhJio1fvBL77tsAQXdhVmVkXtGfh/F3Gcdvtes3YN17bYprPpZd35L13zCzGjMvki/VHqGliYbGIdMiL4fSpWoqLagwW0TEOklPcbP29yHi35HAqRMWoHG7hUwxw3ow2rF55yDT21dd25Y3XzSxmnN+OxYtasLBJ9O+fzO9bCilvMmWXZYHUtFAkUeTw4WYWoaE2uvdI4Pvv8w3RmKrKnD+rPYsWmFlcd0N33nrVzOKSKzry/ttmFmMnZLF+7WGDhWIR6dgphpMnqikuqtULKYgCMbEOEhLd7NhWZLwbd7osjBydweqVBw1x0NlHxPPe2W6MbVdlrrm+K2+8tsUQqthVmRkz27F44W5j3labRP+ByWzZVEhFxVkWImkZoU0ClnJ8Pv09fGiYja7d4tjw/TFDHKSqMjNntWfpgj3N49hlrriuC+/M/d009t+u7MS8t7YZ87bZZcZMzGTVqkOG4tZiEenUOZZjx6o4XVzbZK4vENNU8WnnjmIjLpwuCyNGpbNm1aFzsNjWfG5UmWuu78Ybr5rj4vwL27Po413GHK02iYGDUti08RSVlc0s0jND8fs1Co5WmFh07hrHTz+0ZKEw7fw2LFlkZnHVdV15e+7v5mvkqk689+ZW07U9blI2a1YeNLyCLRaJzl1jyD9ayZnTdQaL2Dgn0TEOdu04bbyXd7ksDB2RzrrVh5qvWbvMJVd04oN3/2sWMy/swMKPd5pYDB6SysafT1BZ6TFYZGaFNeWrNhcbCQu3k9cphl9+PG5isWHzpUZFrn+l/VE71gghXRstPP7v/lrmaxf86Xasf8mFddb0ZaxaedDUFx2jUlpi9gQ96/5zdmEF/QZutcqtDOEV6up8JlGAw6kgCIJx8z3b4uKcFBbWmPoSElycPFlt6gsNs9HQ4DMpM0VRN59vaSh/9vFcSxWly22hvs5n8te1WCVcTkuQYjch0cXJE+axY2IdnDlda1IPnouFJAk4bIrJdPxcLJxOC5W1ZhUkgNOhUNNKLXwuFmHhNurrvDS0UFOfm4XuwfpfsbBaJRxOiyndASApwc2pc7A4XVxrEqWoDgVRNJ9bUQLVrpjSGBxOhYZ6nymmnE4FTTOnHgmCLuQqah0X5zg3YeE26uq8JmX5WWevlmlGVqtkPEY0xnYp1NeZ52OzybhVCxVlZu/k+EQnp06Y5xMT5+B0kZmFzSETEMypLKKoC5ha8jknC5eFgN9cSEEU9RSVohZFCv4Ri/AIO7U1jabzLcsidlU2sbBYJERJMF1LTldTnLZkYZex22TKW3lqxye4ONUqJmPjgs+X06kL1VrGwDlZOBQaGoJZ+P0Bk9r37I/24n+CRUSkneoqj0nceG4WIpIkmtPUXAp1teZr1m6XefzZIVx2ZWf+1fZ/C+v/vP0lxUshIbYgWbyqWoLUlmerk7RsmhZsKH+2pFzLJoBJuQd6UKutFLOCoN90Wqdv2O1y0Hfq75nMY/v9gSCVXyCgmdStoBvzt1QxAoalXutxHKoSpLY8u4C3bq1TOs7FArRz9GG40pxtgoBhHdiy2W2yyR8X9JtlMAstmIVfC1JLSpJoUh7rfTqL1gprh+McLKzBLAQEUzEDIMgsH3TRsrVVXCgWyeRRDP8/LOwKUmsWVsm0QIDuSdxa0a4FOKfP9blYqKoliIXqUIJSnGw2OcjIXBCEoGP/R6rl1kphRZGC1PmiKPwDFnJQn2IRg1gE/hELJZiF7Vxx4QyOC9WhoFha3S9scpCluyieg8W54kLTgq4HxSL+iyyC71/nujec67ppfV5FUQjKdPgztP+EeEkQBKsgCO8KglAgCEK1IAhbBUEY3eL/HyoIwj5BEOoEQfhWEISU/+lx/iUX1tvu6m0EpyDojz1enD2CiHDVuFjsdpmnnxtGdk6kceNRVYVbbuvJuAnZRgrGWSP7e+7va/TZbDKpaaE898Iw428VRSQ0zM6LL49EbbqBn71IXnh5BCEhNiPFwG6XeeHlEcTFOY0FUlUVHnl8ED16JRgLpKoqXHBxHpdf2dkY226X6dQplsefGmyMbbVKREc7eHH2SKNPlnWnmpdmjwxi8fzLIwgPt5tZPD+UzKwI48eCqircdkdvRo/LbMFCYdjIdO64t7eZRXoYV1/TRYffdE2LosDLr4xEVVuysPDinJG43VYzi9kjiW3Bwq7KPPrEYLr1iDedm4sv6cill3cysejSNY7HnhxsMLNaJWJiHLzw8ggTC5fbygtzRuBwWkwsnps9gvAIm4nFUy8MJSMz3MTi9rt7M3JMhonFiNGZ3HFvHxOLjMxwnn5haHNcWPTi9c/PHmGw0G/mFp6fMwJXKxbPzx5OTKzDxOKRJwbRuVucicUll3Xi4ks7NrNQZbp2j+ORJweZWcQ6eHr2sCAWz8wZbuzMz7J4ZvZwQsPtxk3Ybpd56sWhpGeEmVjccW8fho1MN7EYMz6L2+7qbfyAsNlkMrPOwSLczgtzzCxUhxLMQtVZRMW0YGGXeezpwXTqGtvMwqFw2VVduODiPFNcdO8Zz0OPDzSxiItz8vxsc1y4Q6w8P3uE8QP0bH3YF+eMICzMzOKZF4eRmhZqYnHX/X0ZMry5uIOqKoydkM3Nd/Rqjgu7bibz1PNDTCzCw+282IqFo4mF02VpFRcjiI4xx8VjzwymY6cYU1xccU0XZl7Y3nT/6tUnkYeeaMHCJhEX72LcxGz+rwG6w+BxYCAQAjwALBYEIVUQhEjg0/+PvbeMk6Na17ev6q52Gelxd0km7u7unpDg7g7BXWIEC25xJSEJCQkQF2JA3GUmnnG3lno/VE/N1PRwNuwN58D734vffEhRXWvVVc+qVVXrXvfj3RYI7AMW/6cV/iM/BQNkZhayYO4hnE4Po8em0zgjhPz8Cr78fD+FBZX0G5BI5y4xVFa6+OqL/ZzPKqJ9hyiGDk/F45FYuOAwhw9m06hxENdNaoJWq+G7NafYvu08EZF2brmtOSaTjl07L7J2zSlsdgM339KcoGAzJ47nsnjRETSCwIRJTUj05lKc/dUBysucDB2eSqvW4ZSUVPHV5/u5eq2MHj3j6N0nAZfLw5yvDnDqZD4tWoYxZlwjAJYvO86+vZdJTArgxpubodNp2bQxkx9/OEtIsIWbbm2Gn5+R/b9e5ZvlxzGaRK6/oSmRUXYyMwuZP+cgLrfEmLGNaNQ4mLy8Cr76QmbRf2AinTrLLL78fD8XL8gshgyTWSyad5gjh7NJbxTMhOsz0Go1rP32FDu3XSAq2s6NtzbDZNLx6Ue/sGDeQfz8jUx7qw/JKQ6OH5NZiFqZRUJCAFculzBn9kHKy50MG55Ky1Yyiy8/28+17FoWTqebOV8d5PSpfFq2Cmf02HQAvl56jJ/3XVGx2LjhHBt+PEdIsIWbb2uO3W7g11+u8s2K45hMIjfc2IyISBuZZwtZMO8QbpfE6PHppDcKJj+vgq8+309hYSX9BybRsXM0FRVO5nxxgAvni+nQKYpBQ1PkuJh7iKNHcmjUOJgJ1zdBoxFYu/oUO7erWfy04yLfrTmFv7+Rm25tTqDDxLGjOSxbdAytKHDdpCbEJfhz+VIJ82YfpKLcydARqbRoFU5xcRWzP99P9rUyevSKp2efeJxON3O/OsiZU/m0bB3OyDFeFkuO8evPV0hMDuT6m5rKLH44x6YN5wgJtXDTbc2x2Qzs//kq3644gcmsY+JNTQmLsJJ5poDF84/gdkmMmpBOanoQebnlzPviIEVFVfQbmEi7TlFUVDiZ/fkBLl4opmPnaAYOScbt9rBw7mGOHc2hcUYI4ydloNEIrFl1kp92XCQ6xs6NtzbHaBTZuf0C69aeJsDfyI1eFkeP5PD1YpnFxOubEBvvz6WLxcyffYjKShdDR6TSvGUYxcVVfPXZfnKyy+jZO54evWUWc748yNnT+bRqE8GI0WkqFknJDq6/uSmiqGHDD2fZvCGT0DArN97aDJvNwC/7rrDqmxOYzTquv6kp4RGyi9mi+YfxuCXGTGhEaloQuTnlzP5iP8XF1QwYlET7jjKLrz7bz6WLJXTsEs3AwWoWGU1CGDdRZvHtypPs2nmRmFg/brilGUajyI5tF1j/ncziptuaExBo4sjhHJYvOYqo03DdJF8Ww0am0qxFGEVFclzkZJfRq08C3XvFUV3tZs6XBzh3poDWbSOU/KpLFx3lwK9XVSx+/P4sWzbKLG66rfm//cb6V30KDhQSpH7CK3/2YVkkTfrD7RUE4SDwEuAAbpIkqaN3uwXIBVpIknT8323TP9IrGGRXk9y8cpzVHmVOpKrSRV5eOXm5FZR4nVGcTjf5+RWyOX9hJZIk4XZ7KMyvIDenjPx8i1e4I1FYWElOdjlGk47qajcmk46S0mpyssupdrqV+a6yMie5uRVoBCgvk+c/Kipd5OWWU1pSTWmpXHd1tYfc3ApyrpVR5M2Z6XJ5KMivJDdHbo/HIyEIAoWF8jb/ACNOp5wPs7ioktyccrR1EhuXllaTnVOOxayjwtueinK5PS6XR5krq6p0kZtTTkFBpTKPWcMiO7tcxaKgoIKcnHLCCipqWRTIdZtMItXVHkwmyM8vpyC/UpX3sqzMSV5uOVqtRnF7qvDWXVZWrbSnuspNXp7Moua3MouK32QREGj05sPUUlRYRU52GVqNoDjZlJZWkVOPRXmF3B6XS1Lmjiu916Ygv1KZY3Y65byYuTn1WVSS4+XmdnsQBI23PeWYzTqcTplFSUkVudnluF0eJS7Ky5zk5pYjigJl5bV15+aUU1HuVNpTXeWW4yK7XHHwcbk85OfK16HQK+iSJMlrCF9OYKCplkWRHKdaUSOzsEFpSTW5ORWYzU4qvQ5k5RUu8r1xUab0ETd5ueUU1mFR7c1ZqmYhKXFRUFChsJCTOJRhNst9xGgUKSmp/v0scmtYqOMiN6eWhZxP1lu3V+gnSRIF+V4WDjMulwdR1HjjQmah9JESuc9arXplXra83CnbdEr146KCosJKSkqqfFgU1WGRny+3Jz+/QhUX2dllWCw6nE6ZRXGxHBcet1SHRTW5uRXodBrKvdemoqKWRakSF/K2uixcrrosfOPCESSz0GoFeVt2OTqdVo4LtV/Ff4u3CIIQCqQAR4C7gQM1/0+SpDJBEM4AjYF/e2D9R76xHjmcTe/ucykvdyJJ8qeUjz8fzMP3r6fQm2DcZBZ56ZVufP7pfjLPFVJV5ZY/vV6fwfmsYrZuyaKiwoXJJNK2XSTNW4Tx6ceyclCv1xAVZeehR9vz5GM/UlHhQqsVsNkNzPpwALfdvFoRD5jNOr6YPZQ7bl1NaWk1Ho/cnnfe789Lz28hO7sMp9OD2azjoUfa8f33Zzl8ULZYM5lFBgxMwmAQWbniBOXlTgwGLemNghg+Mo2pb+ykvNyJTqfB4TDz+pSe3HvXWioqXN45PD2ffTWEW25cRUUdFp98MZgH711PUZGXhUnklde788lHv5KZWUi1l8X1NzYh80wRO7xewyaTSLsOkTRuGsKXn+yXWRi0REXZad0hnIXzjyjXQBDg/Q8G8NgjP6hYfDlnKLfdspqyOizendWfF57dQk5OLYuHH23Puu9Oc+RwjsJi0OAUtFqB1StPUF7uwmjUkt4omKHDUpg25SeFRVCQmVfe6MH9d3+nsLBa9Xz25VBuu6Eeiy8H8+A96ygqqlJYvPxGDz6etY/z54sVFjfc0pSTJ/L5afsFhUX7TlGkpQcx+/MDCouYGDt33d+a5yZvoqJcjgs/PwMzZ/Xnrlu+VdpjMuv4bPYQ7rj5W8pKq5X2vPNhf55/ajN5ueVeFiKPPNGBNatPcexIDpWVbkxmkcFDU5AkWLP6JBVeFo0yghkwOJmZU3+ivNwlswg28/JrPXj0nvVUVrgUsc0HXw7krhvW1KqUTSKzvhzEI3evp6S4qraPTOnBe+/s4cKFGhaykvXokVx277yosOjYJZqk5EDmfnmA8nIXeoOW2Fg/7ri3Fc8/VZeFkZmz+vmw+HT2EO6sz+KjATw/eaOS+Nts1vHo5PasWnGSE8dyqayUr82QESk4q918t+a0l4VI46bB9O2fyDvTdyksgkMsPP9KNx6+dx0VXhYWq56PvxjMbTesVrH45KshPHDXdxQX18bF69N68d7MPVy8UER1tdyeW+5ozsED2ezddUlh0alrDAkJ/sybfUjps7Fx/tx6VwtefGazwsLf38iM9/px96314mLOUO64cTVlZbUs3vtkIM88voH8vFoWjz/dkRXLjnPieC5VlfK1GT4qjfJyF+u/q2WR0SyEXn3ieO+tvXIf0WsICbGw85dblbW5f6T8lW+sff6CN9Yl0qQs5LfMmvKJJEmfNLSvIAg64DvgjCRJdwqC8DmQI0nS5Dr77AA+lSTpq3+3TX/KwCoIwjygF2ABrgJTJUn67Pf89t8ZWG+/ZTVLFh1RqRtjYu1cvVKmLJcBsNsNeDySSvGo1Qro9FqVwlB+K3PXU3/q0eu15NfxihVFDdHRds6dK1S1JzHRn3PnClUq3NBQCyUl1SrFpF4v54OsqyjV6zVIEio7PatVh9st+Rh/+wcYuXK5VskoCJCQGMCZ0wWq9sTG+nHlSolKYejnZ8DtrsdCI2DUi7+LRUl5FfV0FPj7GygsVKuFE5MCOHe2QMUiLMxCcXEDLPQalSK5Zr6rPguXS1KpY81mET8/o0qdLQiQlBDA2dOFahZxfly+VKI6pp+/AbdL8lHCGgyiirnRpMVZ7fFhIeo0FNZRnup0GiIibWRlFvmwqJtIQWZhpai4UqUeNRjkbEM+LARUdnoWqw6X06NS0ZrNOhx2o0p5qtFAbII/5+qxiImzc/lSqUqIZA8wUOl0q1lovSzqtNFo1OJ01mehQ+t9a1TardcQEfH7WISHWyksrPRhLmo1KmWuqBPQCBpV3zZbRFxOSb3NLDsZ1U2modFAfEIDfSTej0sXSlRCpIBAo/cLmJqF0SCq/K8bZGHTo9EIytcYkGM8LNzC+axaH9+aPuvDIsJKQUGlT1/UagU1C1FAo6nHwizidHlUsWK26JjxTl/GT8rgj5a/cmDtrfnzB9alnt/3KVgQBA2wALADwyRJcgqC8A6gkyTpnjr7HQJelCTp63+3TX+WeOkNIE6SJDswFHhVEIRWf9KxfUrNG0ndUl3l9lEOulxuHzUg4KNw1WgEn+NJkuTjl+p2e6iqdlG/VFV7fIyxq6vdPsrThhS3sqCiniJZEHyUh26PhLNa3Z76S1Nq2+PyUQ46XR5Z6qyqSB5c67fHhwWSzzZoWClaVelqkEV9daPb3TALH3W2pgEWbvUNFWQW1Q2xqHL7sJDbXe+EBHwSEmg1mgbOu+G4qN+emrrr/97pbIiFr+q6QRaCryLV4/H4eOt6PA2zqK5246nXR5yuBlhIDfQRbQMdCcEnBtwuqeGYbIBFdUMsXJJPf9BoBIR6dyqNRvDp7x5JapBFVZVvn3VW+94vnE6Pj0L697Pw7Q8NxYXcZ10NxIXHRw3tcnkQfkdcyCzqrX7wqB9G/18vghxUnwOhwChJkmqeVo4AzersZwESvdv/7fKnDKySJB2RJKnmUU3y/iX+GcduqNxwczPVEgOzWeSGm5qplqiYTCKjRjdCFDXK4GowaGnfIYqICJuiyBNFgaAgMz17xSlLB2QFn4Zx4xurllEYjSI33VKrWq2p5xav12pte+RPznU7oNEoMmhIskpqr9drSEwKJKNJsLKMQqMRMBpFhg5PVR1TFDVMurGpT9233l6/bpEbb26mMh03mURGj0lH1KpZdOwUrTLSF0X502K3HrE+LBpn+Fqkjbuusbo9ZpHbvB68ahZN0YpqFoOHpmA2qVmkpDpIbxSE3qvg1WoFTEaRocNSfFhcf2NT1bUxmURuvqOFakmS2Sx7PtddEmIyiYwel462Lgujls5dYgkJsdSJC/nTYpduMT4sxoxrpKrHYBC54ZYG2uNzbXRcd2OGyqDeaJINK+ouPdHrNaSmO0hNdShq5polNIOHJasN3EUNE25oomqPySSbQdSt22QWmXRLU9WSEJO5ARYGLV27xxIcXMtCp9MQFmajY5dopY8Jgsxo1Nh0VT0Go7ZhFnc00EdubOLDYvCwZIx1lqrp9RoaNQ4mJUXNwmLRM3BIPRZageuub+LTR266rbmaj1nkhluaq35rMouMGd8IrUYdF917xhPoMCN641en0xAebqN9pyg1C60vC71By/U3N/NhccsdLXz67KQbm6qWCxpNIkNGpGIw1GWhpXGTEBKTApQ+q9UKWG0GBgxKUp2PRivQq28Cf6ciAR6kP/3vd5YPgXRgiCRJdRfArwAyBEEYJQiCEXgeOPifCJfgTxQvCYLwAXATYAJ+Bdb+WceuX/r2S+SDTwYy9Y2duFwe7rirFXfc1ZJeveOZ/MQGCgsrGTY8ledf6sZDj7bjwfvXcfF8MR06RjP97T5UlLt48L51HD6UTVp6EO/O6o/dz8CTj/3I1s1ZhEfYmPluP1LTHAQ4THy99BhWq57X3uxBt+5xhIZamPXeXgRB4NHHOzD+ugyaNgvlxee2UFHh5LpJTXj08Q6MHZ/BYw9/T3Z2Ob37JvD6mz3JvlbGA/et48ypfFq0Cuft9/qh0Qg8/MB69u29THxCAO+835/ISBvPPr2RdWvPEBRkYuqMPrRqHU5ggIk5sw9iMGh57oWuDBycTGycP1Pf2Inb7eGue1px2x0t6dFDZlFUVMnwkWk890JXHnioHQ/et/G/NCAAAHtrSURBVI5LF2X15/SZfSkvc/LQves4cjiH9EZBvD2rPza7nsmP/Mi2reeJiLTx1nv9SEj0Z3D/hezbewWdTsMLL3bjngfa0KRpKLPe24tWK/DYEx0ZO74xjTKCefmFLVRUuJh4fRMeeawDo8c24rGHvycnp5w+fRN4fUpPrl4t5YF713H2dAEtW4cz891+CILAww+s4+e9V0hIDOCdWf0JD7fy7NObWP+dzGLaW31p2SqMgAAjc2YfxGgUef6lbgwYmERMjB/T39yJxy1x572tuOWOFnTpHsszT2yguKiK4aPSePqFLtz9QBseue97Ll0qplPnGKbM7E1ZaTUP3bteVgU3CubtD/phscosZLW4zCIpOZBAh4kVy45j9zPw2pSedOwSTUiIlY/e34dGK/DYkx0Y7WXx6gtbqaxwMfHGJjz0WHtGjErniYd/JDennL79E3j5zR5cvVzKw/et58yZAlq1Duet9/oB8PB96/nl5yskJgbw9qz+hIZbeG7yJn5Yd5agYDPT3u5D0+ah+AcaWTT7sGzK/nIX+gxIJDrGzswpu/C4Pdxxf2tuvL05HbvE8OLkzZQUVzF0VCpPvtCZ2+5txSP3r+fypRI6d5FZlBRX89C96zh2NJfGGcHMfF9m8eTDP7Bj+wUio+zMfL8fCYkBOILMfPP1cfz8Dbw6pRcdO0cRHGzhkw9+luPiqY6MGtuI9EbBvPbCViqrXEy6sSkPPtqOYSPSeOLhH8jLraDfgEReeqM7Vy+X8tC96zh3tpBWbWQWHo/EI/d/zy8/XyEpKYCZs/oTEiqz+HH9WYJDZBZNmoUSEGhk4VyZxfOvdKNv/0Siou3MnLYLj0fingfacNOtzenYKYpnJ2+ktMTJiDFpPPVcZ26/uyWP3P89Vy6X0KVrDG++1Zvioioevnc9x47lkpERzMxZ/TGZRZ58+Ed27pDV4jPf70d8QgCBDhOrVpzAz9/Ia1N70qFTFMHBZj758BdEUcPjT3Vk5BhZof3ai9uoqnJxw83NuP/htgwelsyTj/wosxiUyMuv9+DyxRIevHcdWecKadU2grfe7YvbLfHwfes48Os1EpMCePuDAQSHmHn2yY1s+P4cwSFmpr/TV/E0/n+9eNel3glUAVfrfBG5U5Kk+YIgjALeB+YBu4Hx/3Gdf6Z4SRAELdAB6A5MqfO6XX+/O4A7AGJiYlplZWX94boqKpxs23oet8tDx87R+PkZcbs9bN92nqLCKtq2iyTMm8Zp757LXLpYTNPmoSQkyBZfR4/kcPJEHknJgWQ0CQHkJTwHfr1KWJiVtu0jEQSBnOwydv10EavNQJeuMV73oiq2b7uAIEDXbrGKQnLb1vNUlDvp0Ckah8OEJEns3HGB3JxyWrWOICpaDvT9v14l81yh/CTuNTI/dSqfI4eyiYn1o2WrcEA22v553xUCHSY6dopGoxHIz6/gpx0XMBhFunSN8c4LOtm65Twet5rFtq3nKSmWWYSGWZEkib17LnP5UokPi1Mn8kiswyLrXCEH9l8jNMyisDh6OIfFCw/jcJi4457WXkVoFdu3nkej1dCla4zCYuuWLCorXP8ei5N5HDmcQ2ycPy1ahiks9u29jCPITKfO0QiCmkXXbrHo9VoVi05dYrDbDSoW7dpHERJqQZIk9uy+zNUrJTRtHkZ8vD8gC+NOncwnOSWQxhneuDhbyMED1wgLt9KmXQSCIJB9rYw9uy5hs+np3C0GrVZDcXEVO7ZdQKsV6FyHxbYtWVRVuunQKYqAQC+LbRfIy6ugVZtwIqO8LH65SlZmIY0yghVT91Mn8zjqZdHcy+LihWJ+3neZoGAzHTvJLPLyKti1U82ivFzuI3+ERbMWYcTFySwOH8rm9Kl8UlIdiqn7uXNyH4mItNGmrczi2tVS9uy+hM0u95FaFnJcdO0Wg8mko6rKxbat56mqlOMiMNCExyPHRX5eBa1a17L45ecrnM8qonEdFidP5HH0SA5x8f40b/E/s/hpxwVMZh1dusYoLLZuyUKSoHOXaGw2Ay6XzKK0pB6LXZe4erX0X7I4e7aAg/uvERFpo227SACFhd3PQOcuMouiokp2br+AVpT7yP/EYsf28xTkV9K6TYSSlEJh0SSE5ORAQE4UcOxoLvEJ/jRrLrO4cL6IX36+QnCwhQ6donw+qf/e8lfNsQYICVIPzct/9mFZ4bn+b+e89C/fWAVB2Iy8sLahskOSpM41/5AkyQ1sFwRhErKM+d2GfuRVbH0CsnjpD7aZwsJKuneeTfa1MhBkK7rvN07k/nvW8csvV9AI8jzhqrXjmfPVQZYsOoJWK8/Vffz5YC5dLOblF7YiihpcLg9PTO5Io4wQbrr+GznzhEti6PAU7rmvDYP7L0RCdgRq3DiEL+YMpU/3uZSWViMBgYEm1v1wHePHfM3ZMwUIgoBWq2H9hom88tJWNm3IVOZAFi0bxZZNmXwwax+iVq57yvTe6A1aHr5/vdwet4dbb2/BoMHJjBq+FK1GwOOR6Nwlhten9KRPj3k4nfL8bUysH8u+GcvgfgvIzi4HQXZd+n7jJO65cy3791+VWQCr1oznqy/2s2yJvLbQ5fTw6RdDOJ9ZxOsvbatl8UwnUtIc3HbDKm8WDolhI1Lp1iuW22/5VrkGU97cyZbtNzKo/0JKSqtBklPJrf1hIuNGLePcWZmFKGpYv2ESLz2/hc2balksWT6aDT+c5aMPf1ZYTHurD1qtwCMPfq/UffudLenbP4ExI5eh1Qp43BJdusbw6hs96dtzrjwvJskipaUrRjOo70JycsoVU4QfNk3irtvXcuBALYvVa8fz+ae/snzZcYXFZ18O4ezZQl5/pZbF0891ISkxgNtvXI2ok9szYlQat97ZgmH9FwHyvF6TZqF8/MUg+nabR3mZEwkICjLz7Q8TGDdiGVnnipRPp+s2T+KFpzezbXMWGq3MYvHy0Xy//gyff/SrEqfT3+mDR4LHH/oBnTcubr+rFb36xTO2hoVHolv3WF56tTt9e87D5fIgSRLx8QEsXj6agX3mk+u1fbRa9Hy/cRJ33LqaQ4ey0QgCCPDtdxP4+MOf+Wb5CYXFl3OGceJEHm++tl1h8czzXYiL8+f2W7wsXBKjx6Zz863NGTJwEQKyK1DzFmF8+MlA+vSYp6j2Q0LMfLv+OkYPX8L5rCIEQUCn0/L9pkk88+RGtm87L8eFR2LZijGsXXOKLz7dr7CY+V4/nNUennj0B6WP3H1Pa3r0imPcqK8VFj16xvH8S93o23MebrfMIiEhgIXLRjGw7wLFDtRmlVncdvNqDh/OVj61rlk3gQ/e38eqlSeVur+aM4xjR3OZ8sYOhcVzL3YlOtrOHbd+q8Tp2PGNueGmpgwdtAhBkFm0bBnOrI8GyisYKpwgyTlWv103gVHDlnDhvJeFXsv3Gyfx1OMb2LnjAhpvn//6m7GsXnWCLz7fr/SRt9/vR2WFi8mPb1Dac+8DbejSNZYJY2pZ9Oodz9yFI/7twfWvKZLvHPb/T8tfstxGEITPgDJJkh78V/v+O6rgp57YwKcf/6IIA7RagUaNgzlzukClPI2MtFFQUKnaZjBqoZ7oR2/QIIpaZR0myHZ0wSFmMs/VqhtNJpHUtCAOH7qm2N/pdBqaNgvlyOFsxQtXECApKZDLl0tUCmB/fyNVVS6VClKv13hT0dW2x2QWsVr05OSUq9oTE+PHiRN5iuDDYNCS0TSEQweuKQpgrVagcUYwp0+pWURF28jPU7MwGrVoPIIvC61WtZ/FoqPC6ZJVh3X6aXSUnStXSxQWNcb+hw9lK8cUBEhOcXDpYrGKRUCgkcqK38HCJGK26MjLrZ0WsVh0REfbOXEiTxGB/BaLjCbBnDqpZhEdYyc/r0LVnoY8m/V6DXqNVtVGs0VHUJBJpfQ0mUVSUhwcPpStiEh0ejkuDh/KVnyBBQGSUx1cuqBm4XCYKC93/i4Weouo8ki2WHRERds5WZ9FkxAOHaxlIYoCjTNCOHkyT6X2jYm1k5erZmEyiXg8viw0Go1anW3R4Qg0ceFCLQuzWSQ52cHhw7Us9HoNTZqFcvhgbVxoNAIpqYFcOK9mERRkoqzs97EwmkQK6ngkWyw6IqNsnDqZr7AwGrU0zgjh4IFrijJcFAUymoRw4nieqp7YOD/v+uva9pjNOtwej8rb+bdYBAYYuVjHA9hs1pGUHMCRwzl1WGhp2iyEQ/VYpKY5OJ9VpKo7ONhMWVm1SpH8WywMRlGlVLdY5GWAAwYl80fLX/fGGi91/wveWL/x3PC3e2P9j8VLgiCECIIwXhAEqyAIWkEQ+gETgI3/efMaLqdP56vUdm63xJXLJVRUqL885+aW+yj43C7JxzvWUG/JSU3Jzi5X/buiwsXly7UDCchqvosXi1UG85IE166V4qqnOiwsrPTx9JSFI/X8UkX1Mp+aeq5eLVWpKKuq3Fy6UKxaVuN2S1y+XKIaSABycsp91IQupwddPe9ZvV5LZX0VpeBdAlP35xLk5ZWrWFRXyyzqdnpJkj+P1VezFhb4stBoNT4qSJ1Oq7p51rJQm8n/JotLpb4ssst91OJOp9vHh9dg0PqoOjWC/Pu6paJcjou6ykxntYdLF4tVN+QaFs566tH8gooGvF41PtdLFAUK6sWFyyXHhQ+Li2oWLpe3j5Srr22O90tH3VJV5fJhoTdofa6hRhBUD38A5eUuLl9Rs6iuYVEnLjweiatXy3xZ5Ff69E9BI/j0Y1FUL3kCcLk9XKsXF5WVMou69bhcch+pqKjPQm2WL//e6ctCr/Xp2xqNQE5u/fuFkyuXS+uxcHPxYokviyulPrGWn1+hEncByhexukUUBYoK1Szcbkn1wPN3KLJ46f+NROd/hipYQv7sexEoAKYDD0mStPJPOHaDpWvXGB+1bsvW4ZhMtWpAUZTfYusbaNck2K5bPJJEZKRNdbP1eCSaNA1R3fDMZh2tW4er1YQmkbZtI1VKRL1eS/OW4fLnNm/RaASSkgO8yxtqi2zUrf4i73S5SU11qIy6RVGgRcswlfLZbNbRtl2k6vdGo5bWrSNU7RFFDRkZIT7LC4JCLNTX/UseeX2hioVbwq/+QnMB0hsF+bJoV4+FQUvzFqGqG6NGI5CcEuhjem8waDEZfVmkpDpUg4zWy0Jfj0UbHxayv64PiybBPssTaubX6haPRyI0zKLa5nZLNG4SrLrhmc06WtaPC7NI67YRDcRFmEohrdEIpKQ4fAYYo1HrY/bvdkukpKhZaLQCLVqEqW7+MosIXxatG2IRolrmIQgQHm7zWQYjeeQ3KHV7PGQ0wKJVKzULs1mkTf0+YtDSskWoorYF+QtDapoDp0s9wJhNOgz1Bje3WyIpOVDNQhBo3iCLSJUKV2ahvjZySslQ1XkLAoRH2HyWwUiS733E7fLQuHGI6nxMpobjom29uDAYtLRsGa5SBcssgnziwtJAIgW3W14nXJeFoEHRavy3/O+X/3hglSQpR5KkbpIk+UuSZJckqYkkSZ/+GY37rXLP/W0YMjQVUdSg02no0CmKOfNH8NCj7RBFDXq9lqRkB4uXjea9DwZgMGgV8/aVa8azdMVo7HYDBoMWq1XPwiWj+ObbcYRH2DAYtOj1WqbP7MPCxaNISw9Cr9ciihruvKcVX84dRrceseh0GkRRQ7/+iXw5dyjX39hUqbtps1DmLRzBS692R6fTYPA69ixfNY6v5g7HbNZhMGgJCDTyzerxrPx2PEFBJgwGLUaTyKefD2HpijHExfvLdes0PP1cF+YsGEGLlmFK3eMmNObLucMYMiRFYdGxczSz5w/ngYfaKu1JTglk0dJRvPN+f4VFWJiVld+OY9Hy0djsepmFTc+CZaNYvmacYpqvN2iZ/k4fvt80SXWDaNc+ku9+nETXbjFKe/oPTOKrucOYeH0TpT3NmoUyb9FIXny5Wy2LWD++XjmWL+cMVVgEBpr4ZvV4Vqweh8MhszCZRD7/cijLVowhNs5PMdh4/sVuzFkwnBYtalmMv64xX80dxqBByUrdnbpEM3vecO57sI3CIiXVwaKlo5n5Xj/0Xhbh4VZWfjueRcu8LIxabDY9i78e48Nixrt9mb90FKlpDiUu7nmwNV/OH0anrtGI3vYMGJTEF/OGMX5SY6U9zVuGMXvhCJ59savCIjbOjyUrx/Dp7CHyJz2DlkCHieVrxvH16rEEBtay+HT2EJatHENMrB8Gg8zihZe6MXfhCJq3CFVYXDcpg6/mDmfAwCSl7i7dYpg9fwT33t9aYZGWHsSipaN4652+CouwcCvffDuORctGYbN5Wdj1LFk+mpVrxhMWZlVi6J33+7No6WhSUmtZ3P9gW2bPH06nLtFKewYNTmH2vGGMm1DLomXLMOYsHMnTz3VBp5PbExvnz7IVY/jsi1oWDoeJb74dz/JV4wgINGIwaGWHr7nD+HrlWGJi7AqLl17tztyFI2jWvJbFpBua8OWcofQfkKjU3bV7LF/NHcbd97byYTHj7b7o9d64iLCxas14Fi4dhdUq9xG73cCyb8awas14Qr2m+QaDlndnDWDxslEkp9SyePDhdsyeN5wOnaKU9gwdmsqXc4cxdnyjWhatwpmzcDhPP9sF0csiLl5m8ekXQzB6WQQF1WERUMviq3nD+HrlOKKja1m8/Gp3WreJ+Ctvw/9W+T9cbvO/Wv6RloY1JS+vApfLTWhorSlmSUkVBQWVREfblU+sVVUurlwuJSbWT3mqc7ncnM8qIjrGT/n0JEkSWZlFhIVblUFEkiQuXSrBbjeo7MFysssQBAgKrn2jKSysoLzcSXi4Tam7vFz2LY2J9VO2OZ1uLpwvIibWD1GU63a7PWRlFhIVbUevr637/PkigoLMWCy1htpXrpTITkz+tU/Nv5dFZaWLq1caZlG3PR6PxPksNQuPx8PPP18hKtJOeIRNqefatVJErQZHUO0bzR9lERvnr3ziqmFR/9o0xOLy5WLMZp2aRW45LrfHh0VhYSVRUX8OC0mSuHSxBD9/AzZbbVxcu1qKKDbMIiKidvlDWVk1uTn/AYusIoJDzJjNemXblSslv5tFUVGV9yvNn8PiwoViAgKMahbXShFFrertrrCwgooKF+HhtfFTVlZNbm45MTG1LKqrXVy8UPynssjNkXMUh4TW9tni4iqKixtmERv3P/fZGhbhEVZlffAfYVFQUEFl5e9jceliCTGxfgqL37p/nc8qIiTUovp690fLXzXH6i/ES521L/3Zh2WN+8a/3RzrP9KE3+OReOj+dcydfRCAfv0T+WrecD7+8GdefmELHo9E02ahfP3NWHZsP88dt36L0+khIsLKitXjKCioZNyoZRQVVWG16Vm0ZBRhEVZGDllCVlYhOp2WWR8NoFefBMaNWsa+vZcRBIHJz3TioUfac9vNq1i98iQA4yY05v0PB/Dyi1t57509IEHHTtEsWjaKr5ce4/FHfsDl8pCUHMiKVeM4eTKP669bQUW5C4fDxLJvxiCKGkYOWyInADCKfDl3GE2bhjBy2BKOH8tFq9XwxtSeXDepCRPHLWfLZnl50p13t+K1N3vy0P3rmTdHZlHz1vjh+/t45aWteDwSzZrLLLZtO8+dt35LdbWbqCg7y1ePoyCvggmjvqbYy2LBslGEhlkYNVhWLer0Wt7/eAAtW4XTqd0XSmLznj3jWLJiDLfetIpvV8ksxk/I4L0P+/PS81t5/z2ZRecuMSxYMpJlS47xxKMyi+QUBytWjeX48TxuuG4FFRUugoJMLPtmLBqNwMhhS8jNkVnMnj+cxo2DGTF0MSdP5KHVanhzWi/GX5fBxHHL2bpFZnH3fa15+dXuPHjfehbMOwTAwMHJfDF7KO+/u5fXX9mGxyPRomUYS1eMZcvmTO6+fQ1Op4fIKBsrVo8jL6ecsaOXUVJcjc2uZ/HS0QSHmBk9ZAkXL5Qg6jR88OlAuvWIY+zwpez/5SoajcBTz3fmngfacPuNq1m7+hQAEyZlMHNWP156dgsfvr9PZtE1hnlLR7J04REmP7oBt8dDSoqDZavHcvRIDjdft5LKSheOIBNLV40FYMzQJeTlVmAyiXy5YBhp6UGMGLqEUydlFlNn9GbMuEZcN3Y527edBwHuu78tL7zclQfuXcfC+YcBGDQkmS9mD+Pdt3fz+ivbkSSJlq3CWbJ8DJs3nuOeO9dSXe0mOsaPFavHkX21lPFjv6akuBq73cDiZaMIDDIzcshiLl0qQafT8NFng+jaNZbRI5YqCvRnn+/CPfe34eYbVvLdmtMATLy+Ce+8359nn9rERx/ID9Fdu8eyYPFIFs4/zOTHN+B2e0hNC2LFqrEcOpTNTZNkFsHBZpavGovbLTFq2BLy8mQWcxaMIC3NwfAhizl9Kh9R1DDtrT6MGpPOhDFfs2P7BRDg/gfa8vxLXbn/7nUsWiizGDIshc++HMrbb+3izdd2IEkSrVrLLDb8cJZ77/oOp9NNTKzM4urlUiaM/ZqSkmr8/Aws/no0AQFGRgxdwmUvi08+H0ynzjGMHrGEA/uvodEIPP9iV+68pzU3X7+Sdd/JLK6/sSkz3+3H05M38smHPwPQvUcc8xaNYP7cQzz95Ebcbg9p6UGsWDWO/fuvcvMNK6mqdBMcYmbFqnE4nW5GDV9Kfl4FJrPIvIUjSU4OZMSQxZw+LbOY8XZfbrhJMRT6b/lfLv/IN9aPPtjHi89tVtRyRqNIr77xbPrxnLJNp9PQomUYhw5mKyKFmjmT0pJqJXsEyD6fwcFmMs8VKlOOJpM8P7dn1yVFBGI26+jbL4H1684oxzSZRAYOTua7NacVkYzBoKVz1xh2eg3dQZ4zSUkNJCurWKU+Dgg0Imo1KhGIrCYM5EgdZaXJJK9P3LwpUxE+mM06Bg5KYu2aUyoWffrGs6Eei1atwzmw/5qKRUSkjbKiakqKa71RrTY9DoeJ81lFKhY6k5aCemKRdu0jOXig9phms8iAQb4sunSLYcc2NYvUNAeZ54pUwqJAhxGNIJBbRwFsNutITArg6JFaZaXJLNK5SwxbN2epWAwYlMR39Vj07ZfAjz+cVbFo3Sac/b+qWURF2yksrFSxsNn1BPmbuHC+WMWiecsw9u25rMx/mc06evWN54f1ZxURnMksMmBQEuvWnFGz6B6rJD2oYZHeKIizZwpVLBxBJq9ATM0iJtGP48dyVXHRuUsMW7f4sli75pQiVjKZRPr0S+TH78+oWLRpF8GvP19VsYiJ9SM/r0LJfiPHhfz2d+mimkWzFmH8vLceiz5eFpV14yKJ7+qyMGrp3j2WrVvULBpS9wcFmfBIqNTQZrOOuHg/ThzPU7Ho2CmabdvOK5aOZrOOAQMTWbv2tIpF3/6J/LD+rFKPTqehXftIft53RcUiNtaP3LwKSuuwsNn02P0MXL5UomLRtFkov/x8pR6LOH5Yf64OC7k9361Vx0WPnnFs2ZKltFFW94dw+lS+ikVwsBmX26MS9JktOmJj/Dh5Us1i3Y+TlHXgf6T8VW+sfkK81En74p99WL5z3/S3e2P9Rw6sY0ctY93a06ptQcFm8nLLVVqcmvnSujcIURQwGnUqo22bTU9ZmVMlXLBY5E8pdeXvIJvr1zX5BggLt3D1inqbn5+Bqiq3SpIvCGCzGVSDuskkIkmo9rPbDZSVVasENnq9FotF5zO4hYdbVWb0IHe+3HosjEYtok6rukFotQJWk161zWrTUV7mUrOw6iguq90HAAksFpGyeirThtrj52egstKlUkIKGrBZ1SyMJhEaYCFnDarLQoPZovdRhTZUd0iI2UfdLdsHanySM5jNOp/BpLqsfkICHW6P5KOuDQm1yOuq65SwCCtXL6vb4+9voLzCpfLy1Whkc//iOoO60SgiCKiUqzabnuJyNYua+df6yRDCwq1crc+igTaazSKCRlAlANBo5MxJKhZWHZWVbpUy2GrV43Z7fNS1DTEPj7CqEkgABAQYKStzqtSwGo2A1apTsTAYtWgEwYdFqTdTTt39jAaRoqJ/zSI01My1a+o21iQkr9vnazLkqB4+G2Jh0+Nyenz6e1Cw2UdF3lCcBgQaKS2pVomVapLE163bYNDKKRrrDLYNsTAaRV59owd33PXHLdv/O7D+5+XPMuH/Xy2xsX4qZZxGIxAaYpFvzHVKYKAJdz11o0Yj+JioV1e7VGpb5ff1lH9Go0homKWeWldDaKhV9XtBkN84tPWWCNhsep+6XS6PjwLT5fLg529UbdPpNAQHm1VqXb1eS2i4xYdFSKhFJTQCFGeXukUUNT7G/tVVvstOkPCR/SOAn79RdY46nYbQMF8WQcFmn9/bbQZfM/sGWDhdbvz81YpknU7ry8KgVfkeg3xjkueb1Cxq3I/qFlGn8VnuUF3tVik1QVaEBgaq48JkEgkJMfuwCAuzqpTLggCOYDO6+iz8jD7qT7fH46Ncdrk92P3ULGr8neuyqBGn1WcRGuLLIjDQ5OPBr9P5LjOqrnb7xLMkSQTUZ2EWCQ6xqBSqclxYVHFVExf1Fa5+/gYftbjkkXxZuDw+KdFE7W+wCLeo4k+OC6tPH3E41H0OQK8XfftIQyw8EgGB6t/LceHLIizcqvhhg8wiOMjs0+/8vVmYVPVIks+yJ5fLo5rPrTnHiDo6iL9Lkf6C//6O5R85sE5+pjNh4VasVj1Wqx5/fyOz5w8nIyMEi1WH1arHYtHx1dxhDBmagsWiw2rVYTKJfPDxICY/3QmTWcRi1WE263jw4fZ88vlgTCYRq1WHxaKjd58EZs8dptRhtepITXMwe95wAh0mZXtIiJk584cTn+Bfu69Nz9wFI+jQMUppj8ks8sWcYdx8q2zib7HqMJlFXnuzJ9Pe6q3UbTbrmDAxgy/nDMNs9p6LVUfrNhHMWTACu92g1BMdY2fOvBGEhlmVNgYEyCwaN8Bi8ODkeiwG8thTHTHXYfHw4x348PNBKhZ9+ify9rt9VdfAbBJZsXocAYEmpe7gEAtz5g8jNq6Whc1mYM784bTvoGbx5dxh3HBTs1oWJpE3pvZiyvRemEy17Zl0fVMvC1Gpp03bSGbPG47NbsDqPWZsrB9z5g8jJNSibPP3skhvFOzDYsDAJBWLjz4ZxGNPdFDiwmQWeeyJjnzwqZpFv4GJfDFvmPd4ctvTGgXx5YLh+AcYvXXrCAm18OX8YcTG+intttkNfLVgGG3aRXrrlll8Pmcok25qitlSy+LN6b15bVrPWhYWHdff1IwvZg+VDUS8cdGufV0WMvPYOH9mzxtGSEgti4BAE3MWDCctPUjZz2LV8dW84fTrn6hi8fHng3nk8Q7KtTGbRZ54qhMffqJmMXBQMl/NHaqci8Wqo3HjEOYuGEFAgFGpJzTMypx5w4mpw8Jul+OidZsI5dqYzTq+mjuc6yZlYK7Tnqkz+vDamz1VffamW5vzxZxhtSwsOjp0lFcH2GwGpZ64eH9mzx1OSIhZaU9AoIk582UWSlx4WfTpm6Bi8ckXg3nw4faqPvvUM52Z9dFAFYvBQ1P4au4whYXVqqNxRgiz5w33spC3h4Vb+WrecKJj/JRtdruBOQtG0Kp1uLJNVj4PZ9yExt77gNye6TP78srr3VX3i1tub8Hns4d6t8ksOnaKZuDgP24O8d/y55R/5KdggNLSajb+eA6Xy0O3HnE4HCZcLg8//nCW4qIqOnSMIjrGD0mS2L7tPJculdC8eRhp6UEA/PrLVY4fzyU5OVCRpZ86mcfPP18hLMxKt+6xCILA5Usl7Nh+AatVR68+Cej18lzj5o2ZCAL07B2P3S5/6tzww1kqKlx06RpDaJgVj0di08ZMcnPKadMuQvHm3f3TRc6eK6Rx42CaNgsFZI/agweziYv1o0OnaED2Lt790yUCHSZ69opDq9WQk13G1i3nMRi09OoTj8kkf9be8MNZ3G6J7j3jCAxUs+jYKZqoaDuSJLFt63kuXy6hRYswUtO8LH6+wonjeSSnBNLKy+LkiTx+/fkq4eFWunSPQRAEft57mQXzDhPoMPLwY+0xm/UUFFSyacM5tFqBnr3jsdl+m8XGDefIy61Qsdi18yLnMgvJyAimSVOZxeFD2Rw6pGZx7lwhe3bJLHr1jkejkf16t27JkufY/wcWTqebH384R0nxv2bx874rnDyZR0qKg1atw3+TxaWLxezcfhGbXU+vPvFeI4sKNm/MRKvV0KN3HDabgYoKJ5t+zKSiwkmXbrGEhFrkuPCyaNsukrgEf4VF5rlCMpqGKJ7Nhw5mc+RQNnHx/rTvGAXIHrV7d1/GEWSiZy81C5NJpFefBMXHeeOP53C7JXr0iicgwKiwKC2ppmOnKCKjZBZbt2Rx5UopLVuGK57NNSxSUx3KmsgTx3P59derRETY6NJVZnHxQjE7d1zA7megV2+ZRb7CQqBXnwSsVj0VFU42/HCOqio3XbvFEBxiwe32sHFDJvl5FbTrEKl48/604wKZWUU0aVKXxTUOH84hId6fdh3ULIKCzfToGYdGI3sXb9t6vkEWHg907xlXy+L7s5SWOlUstmzO4urVUlq1Cld8ivftvcypU/kNsoiMtNG5i8ziwvkiftp5Ebufgd59EhBFDXl5FWzZlIkoaujZO/4Ps9i5/QJZ54to2jRE8a8+eOAaR46oWZw5U8C+PWoW/075Kz8Ft9e+8Gcflu/dN//tPgX/I1XBANu2ZDFj2k+4XB7Kyqq5/sZmHNh/jbdn7CI/v5IRI9N44qmOnD9fzNtv7eZ8ZhGdukTz+pReVFS4eO+dPRw6cI30xsHMmNkHm93AJx//wuaNmURG2YiMspOYGMDCBYdZuugINruBwEAT7TpE8f26M7z3zh40gvwZZ9iINHbvushb03dRVubk2rUy7rmvNceP5TJzxi6uXS2l34BEnn+xG3m55bwzczenTubTqk04U6b3RqMR+OD9fezZdYmExACiY/zkJ9sv9rP229MEB5sJC7OQ0SSE5V8f46svDmAyiZjMOnr1jmfr5ixmTNuF2+2hvNzJpBuasv/Xq8ycvovCwkrOnSvgsSc6kpVVxNtv7ebC+SLFe7ii3MX77+zl8IFsGmUEM+3tPlhtej776Be2bsqSWUTbiI3z55UXt7Bjx0X0ei2RkXZuurU569ae5v139ygOUkOHp7Lrp4vMmLaLinIn2dll3H1va44dzeHtGbu4dq2M/gOTeP7FruRkyyxOn8qndZsIpszojSDAB+/vZe/uyyQmBRAT6ye//X32K+u+O01wsIXwcCuNM4JZ/vUxZn95QLE97Nkrns0bMxUWNdl19v8qx0VhYSWZmYU89kRHzp0rZOaMXVy8UEyXbrG89kYPysucvPfObo4cyqFxk2BmzOyL2aLj0w9/YdvmLKKi7UTF2ImL92fB3EOsWHocu78Bh8NEm3aRrFt7hg/f3YtW1KDVCgwamsLunZd4a+pPVFa4yM0t5467W3H0SA5vT99NTrbM4pkXu5B9rYx339rNmVMFtGkXwevTewHw0Xt72bfnCknJMovgEDNffb6f79aeJjRUZtGocTBfLzvKnK8Oet9w9XTvEadiUVXlZsLEDH75+Sozp/9EUVEVo8em8+jjMou339rNxQvFdO0Wy6tv9KCs1Ml7b+/myOEcMpqGMP2tPpgtOj7+6Be2bckiOtpOVLSduDh/5s87yPJlx/H3N+JwmGnTNoLv1pzmg/f3otV617IOSeGnnRd5a/pPVFS4yM0t4467vCxm7CInp5wBg5J49nmZxTszd3PmtMxiyvTeeDwSs97by897r5CUHMhb7/gRFGzmi89+Zf13ZwgNsxIebiW9URDLlh5j7uyD8tujTU+37nFs2pDJjKk/4fHmQx1/XQa/7LvCzBm7KC6qImtcIx55rANnzxbw9lu7uHSxhO494njl9R6UllTz7tt7OHYkhyZNQ5g2s6/8leODn9m+9TzRsX5ERfsRE2Nn/txDrFh+nIAAI0FBZlq3iWDttyf56IOfEUWZxcDByezcUcsiP7+c2+5oyZHDOcyc/hO5uRUMHJzEs8935eqVUt6ZuZuzZwpo2z6SKdN743Z7mPXuXn75+QrJKYG8FedPoMPEF5/+yvfrzxAWZiUiwkp6I99Uj/+XRfobrzv9s8s/8o1108ZMxo9eVkeNquOxJzowfepPyqS+2Sxy3aQmrFh+nIL8SjweCaNRpEOnKK5eLuXMmXyqqz3odBqiY/xIS3OwcUMmlZUuNBoBu93AxOsz+PLzA6pjTn6mE2++tkNRVppMIs++0JVXX9qqas/d97bik49/obREFhWYTCKDBifz008XvRZ/EnqDlkZe96Jff7lKVZU8dxMcbKFn7zhWfH1cOabVquO+B9ry7tt7lPaYTCLPvdiVV17cqlLmPv5kJ6ZN2alq98QbmrJ86TEKCmpYaOnUOYYrF0o4e6YAp1NmERPrR1JKIFs2Ziks/PwMxCT48csvV1XX4b772/DF57+qWPi2R8c997fm4w9+VgQWJpPIkGEpbN92gexrtSwyMmQXnwP7ryksQkIsdOsRy8oVJ6iocCEIsrDmnvta8/67e/81i8mdmPZmXRY6rr+xCUsXH6OwsDYuunSNISuriMxzhVRXu9HpNMTF+5MYH8C2zedVLMZMaMS8rw6pjvnYUx2Z9sYOlfL0mRe78NqL21TtueeBtnw0ax9ldVgMHZ7K1i1ZZF8rw+2WZK/fZiEgyW+s1TUsQi107BbN6pUnFRZWq5677mnNrPf+NYsnnurM1Dd2qOLixpuasWjhEYqKqhQW3brHcuZMAVmZhUpcyA98drZvvaCw8Pc3MnpsOvPmHFRiwGzW8fjkDkx9c6eKRUNxcf9DbZj17j5FRGYyiQwfmcrmjVlkZ9eyaNY8FJfLw+FDOfK8tygQGmalY6dovl2lZnHn3a344P19/yMLk7cfT6nTj+XPy81YMPcwxcW1LHr0jOPkyTzOZxXhdHrQ62UWkZF2dmw/T2WlG41GkJffjE5j/txDynmbzToee7ID06b8axYPPNyW99/ZQ6lXRGYyi4wclcaGH86Rk1OusGjRMoyqKjdHjuRQXSWzCAu30a59JGu/PVXLwqZn7y+3Kxly/kj5q95Y7UKc1O4veGP90X3L3+6N9R85sE6asJxV35xUbQsLt5Lj7Yw1xWyW1Z8l9ZSwBoPoazJf4auE1Wo0KtWqIEBEhI1Ll2qNtkFeqnGxni9nQybzDSlPjUYtHg8qsYjNpqey0qUStBgMWmx2A7n1vFmjY+xcOK+uOyzcQk52uYqFxaJDoxF8WJgNOtXyH7NFpLLCrWJh9aqC60eK1apTbgRKe6LtPh6lgQ4T5WVOlWKyIRY1oqe66uGGWBiNsmNW3WU5v1V3eIRVGbDqshA0gkoNrdHIFnRqA3YRZ4WnHgvZhKCuolijEQgNs/ioXhu6Ng6HbDJfl4UoajCZRBULvUGDgNps3WrVUVblUolXjCYRi1mnWpbzWywiIqxev+nabVabDiSh3vk0zKKqqp5C2qZH8kiq/WoeAHxYNNCeoCATJaXVKj9lnU7j/XRbh4Ve9pCuu5/VKvfZuu2p+YqT/3tYRMoq5bq3P5tNjyTVv7ZgMutUquk/xCLE4qMAbigugoLNlBRXqa73b7GonwDgt1hMmd6bm25pzh8tf+XA2vYvGFg3/A0H1n+keMlo8P2CLXo/v9UtWq2mvhUuQIOesPVN2QXwOZ5GI/ioREHuAPV/L4q+5voajdBg3fW3SRI+RtsajeCrzPXW7btN6zO/otUKviwkWc2o2uTB51wAH6N2kFWYPtsaZCGgqberfG18WXgaYFH/XARBQOtjTo5PQgGQ+fia2Wt8lLByXb51+7KQVF6/ILevvnF8Td0+LBrYptH6xoXk8bFxbpgF/G4Wok6+Kau2aX33k+vyZeG7k2/dGo3go3oG2RO7IRYa4V/HqSTJPOq3zzcuQNT6bmuwj4iaBszsNTQUGPXrrq9cl3f6z+4XugbuFw3dvxq6X3gaZCE0eN7/Lf875R9J/v6H2qpMrE0mkedf6orZoleC22QWeXxyR0JCamXsZrOO6yZl0LZ9rSm30SjSrHkot97eUjmmXq/BP8DEU892VozMa9azvfBSN9WSBZNZ5IWXu2Gx6JXOYjKJPPdCF2w2vTIYms067nuwLYmJgcqbmckk0rtvIoOHpij1yF66dh56pJ3SHlEUsFj0PP9iV6Vu+ZOojhde6v4bLHRKZzObdTzxVCeCg82KzN9sFpl0YxNatY1QlikZjSLNWoZx023NlWPq9BoCHSaGDk/1uQ7PvtDVh8WLr3SX3wjrsHj2ha5YbYZ6LNoQnxAgp/Hz7tdvQCIDByUrx6zx0n3g4bosNFitep57Qc3CbNbx4svdVMkZZBbd6rGQFa5BQaY6LHTceHMzWraKUJZg1CR2uOGWZqq4cASZefzpjnXiQsBi1fHsS11ULMxmkedeluuuy+LpF7pgrRcX9z/chth4f1Vc9B+URN8BCbUsjFriEwN44OG2ahY2Pc+90KWBuOiqMuFXs6i9Xk8+3ZFAh5rFzbc2p3mLcOWYJpOcUOD6m5opfPV6DUFBJp58qpPSHo1GXnf5fL0+YjbreOGlbso60ZpjPvdCV6xWvWJcLyv02xETa69lYRYZPCSZPv3ULBKTArn/wfosDDzr00f0PP9yd18WL/uymPxMJwICTcqAZDbruPX2FjRtHqrEhckk0rZ9FBOvb1InLrSEhJh5/Ml6cVGvz9Yc88WXu/uweP7FrlitOhWLhx9tR3SMXVmyZTKLDB2WSs/e8SoWKSkO7r2/jYqFza5n0JAU/m7FI0h/+t/fsfwjxUvNmoexfsNEZr23F2e1h1tub06XrrF06hTNtKk/kZ9bzojRaYwa3YibbmnO1Dd3kHm2kK7dY7njrlZy8uQZu/j1l6s0bRbCI491wGDQkpbuYOOP54iO9eOJyZ1wOExERNhYuuQofn5GHn2iA/Hx/kRF2fnk41/QaODue9vQqnU4GRkhvD1zN6Ul1Uy8vgn9+icycFAKU9/cwZUrpfQfkMSkG5rwxOSOTJ+yk2PH8mjbLoIHHmqHIMCsd/fy008XSUlx8NiTHbBa9cQnBPDt6pOEhFp44smOhEfYCAu3Mm/2QUwmeV4mvVEw8Qn+zHpvLy6nh1vvaEHnLjF06BDN9Gkyi5Fj0hk5Kp3rb2zGtDd3kHmukG494rj9zpY4nW7enbGb/b9cpWnzUB58rL1sSt4oiM0/ZhIT58fjT3UkINDEs09tZOnio9hset55vz+dusTQpGkIn3z8C6Ko4e57W9OyVTiNGgXxzszdlJY6mXRDE/r2S2TAgCSmTdnJlSulDBiYxMTrm/DYEx2ZMVVm0b5DJPc90BaAD97by86dF0lLc/DYkx2xWHQkJASwds0pwsKsPP5kR8LCrYRH2GSRilnHg4+0Iy09iNg4fz54fy8ul4fb7mhBp84xtGsfyYypu8jPK2f0uEYMH5HGpBuaMvWNHWRlFtK9Zxy33SGzmDljF/t/vUaz5qE88lh7dDot6Y2C2LIxi9h4Px5/qhP+AUaioux8veQYAYEmHn2iAzFxfkRG2fm8hsX9bWjeMoy0RkG8N3MPZaXVTLqpKb37JtC3fyLT39zJtatlDBicxIRJGTz0WAdmTNnJyWN5tOsYxT0PtJFZvLuX3TsvkpLu4NE6LL5be5qwMCtPTO4oC3cibMybcwirVR6cUtNkFh/O2ofL5eH2O1rSsXM0bdtFMmPqTxQWVjJ6TDrDRqQxYWITpr65g/OZRfToFcett7ekulpmcWD/NZq3COXhR2UWjRsHs2VTJnHx/jw+uRMBAUaiom18veQYgQ4zjz3RgZhYPyKjbHz2ya+IooZ7729D8xayIv/dmXsor3By/Y1N6d0ngT59E5n65g6uXStj0OBkJkzM4IGH2zF9yk+cPJlHhw5R3PtAGyQJ3ntnD7t3XSI9XY4L2ZUrkHXfnSY83MoTkzsREmohPNzG/Lkyi4ceaU9KqoPYWD8++mAfbrfMokOnaFq3ieStaTKLMWMbMXR4KmPHZzBtisyiZ+94br29BVVVbt6a/hMHD2TTomUYDz/aXskMtHVzFnEJ/jwxuRP+/kaiY/1YvvQYgUFmHn+iA9ExfkRE2vji0/3o9DKLZs3DSEl18N7be6iocHL9Tc3o1Tuenr3jmTplJ9nXyhg8JIXx1zXmvgfbKiw6dozinvvb4PFIvPfOHvbuuUx6ehCPPtFBcWtbv+6MwsLf33dd7v9lkdPG/T0Hwj+7/CMHVoDgYAuNG4fgdLkJ85pY+/kbSU8PoqiwkpgYf0B+ek9LC8Jq0ZOYFOj9bKchJcWB2+UhOVnORiEIAolJgeRklxEWbsNqlZ/+omP8yMgIxmozKIEaEmahcUYwGkEgJEQ2Ww8MNNEoPYjycieRXsGA1aYnNS0Ih8NEfII/giBgNIqkpAWh08lPmlqtgCDIadRKS6uJjfPDZNIhCAJxcX40aRJCoMOkGANERtpolBGMySjicJi9LMw0bhyMy+0hLNzqZWEgLc1BSbGVmBg/hUVqmryOsSbNlF6vJSklEJfbQ1KK/DYtCAKJiQHk5pQTFmbF7HWhapwRzP5fA/H3MxIdY/eykBW6olZDSIhsbu5wmElPD6KiwqWwsNkNPixMJpHkVAc6nZbk5EDla0NSspdFvD8mk4ggCMTH+5OREYwjyIzNrldYZDSpYWHyYREaJrPw9zeSli6ziI6uy8KB3V4bF3q9luRkBx5vera6cZGXV0F4eC2L6Bg/MpqGYLcbFAOLsHArjZuEoPUaFcgsTKQ3CqKy0qUISWx2PanpQQQFm4mLr2VRU2dSippFWVk18fEBtSwSZBZBwRZsdoMPixoDi5AQSy2L8FoW6Y2CKCmuItobF1arnrS0IPzsBoWFwSBfE8lTn0UAebnlRETaFHeymBh/mjQNwVaHRWiduAhWWJhp1DiIikqXYl5gs+tJSw8iJMRCvJeF2awjJc2BwaAlKTlQmTZITg6kotxJXIK/15lKICGxloXVVicuMoIxm3V1WJhp1CgYjySpWKSlB1FaUpeFjtTUWhaCUBsXSJCcHOj9lCvHRX5eBZFR9jos/GjSNAS7n1ExeQkLt9G4STA6UUuwN2lHUFBdFlalj6SlBRFah4XJpCMlNVDFQqORWVRWuIhPDKjDIoCMjGCCQyxKH/lv+b8p/0jxUmZmIV06fEm514bQYBRZunw0d9+xluxrZV4nJZEPPx3ER7P2cfBANhUVTkwmHY8+0YFzZwtY8fVxysqcmC2y326LluG89vI2KiqcGE0i6elBPP5kR265cRVVVbJK1OEw88WcoYwavoSqSjeCIH/GWbZyLBPHLqeouAq3y4Ner2XeohE8+9QmMs8VUlnpwmgSeXNqL75bc5qtW89TXuaUlYi3NEOv1/LJR79QXi63p337SMaMa8wjD66nslI+l+gYO9Nn9mHCmK+9ilmNnNps2ShGDl9KRXkti2UrxnDnbd+Sk12usPj4s0HMem+f1ztZZvH45I6cOZHPyhUn5PZYdAwakkxG0xCmvLpDYdGocTBdesQyY9pPyjXQagQWLRvFTV6D8Losrhu7nOKiKtxumcX8xSN4+smNZGUWySyMIlNn9Gb1ypNs33ZBPm+zjltua45GK/DZx78q2zp2imLk6HQeffh7Kivk30bH+DF1Rm8mjP3aq5itYTGakcOXUFHuRJLkT8lLV4zmjlvXkJNThrPajcEg8ukXg3ln5h6OHJZ9pE0mHZOf7sTRozmsWnlSYTF0WAqNGwUz9bWdXmYijTKCeeCRdtx587dUVbnQ6bUEBZn55KshjB22lKoqLwuzjiUrxzBxtGxk73Z70Bu0zFsykqce3cCF80VKXEyd2YeVy0+wsy6LO1sgeSS+/Gy/0p5OnaMZPCKFxx/5QeEYE+vHG1N7MXH8coWF3W5g0dKRjBy2lIoKLwujlmUrxnDbzavJzS2vw2IIM2fs4ujRHCprWDzTicOHsvl29Sml7uEj0khOCWTamzuVuGjSJJT7H2zLHbeuVliEhFj4+LPBjBmxVFEPm8w6vl45lvGjllFSIrMwGLQsWDyKxx/9gYsXipXzmfF2X75edoyfdlxU+sMdd8pv0F99cUDZ1rVrDAMHJ/Pk4z8qcREX789rb/Zk4rjlsjuSqMHPbmDB4pGMGr5EUQAbjFq+/mYst9y4iry8WhaffTWUGVN/4tixWhbPPN+ZX3+5JvtxlzmxWHSMGJVGfEIAM6b+pPSlps1CuPve1tx1+xpvoniRkFALH306iNEjllLlZWE261i2cgzjRn5NaWkti0VLR/PIQ99z8UIxVVXy+bz1Tj+WLD7C7p8uKed91z2tKCtzMnf2QaU93brH0rd/Ik89sUHhGJ/gz+btN/m4S/2e8leJl2xCnNRSfO7PPixbXbf97cRL/8iB9d671jJ/7kGVujEhMYDLl0pUarnAQCPV1W6VclUryiKgugpDo1GLy6W2CrNYdVjMOpXnqV6vITbOn1Mn85VtcqLqQE6fLlD9PjLSSmFhlUolaDSKaLSCSoWr02mQAFcd1as8R6lWaprNOoKCTJyvoybUagWSkwM5eTJPxSIxKYCLF4tV5xjoMFFV5VKpG0VRQK/VqvYzGLW4G2BRWuH0EW0EBZlUylyNRk40cPpUPRZRNgoKKlXnbTLLT9n1WQAqBXBDns1msw6Hw6RSetayyFe1MykpgAsXilVqS4fDRGUDLERRq4ofg1ELTnxYmIyi6rwNBi3RMXZOnypQsUhODeRMPRZR0Tby8ypVqnSzl0XdcxRF+UtGXRZmiw43kvq3FvmtrK4qXRQ1JCYFcKo+i+RAzp8vUvkUBwWbqKhogIVOqyQUqDlHt1uq5xWsw2AQVYpkg1FLVJSdM6frsoCU1CBO1TGJB1kdm5db4aPQB/41C7MOSZJUqnuLRYd/gJFLF0vq/FZDUlKAT1wkpwSSlVmkUuMHh5gpL3f6sNDptKp6fouFXi+Sn1/LwmgUiYy0cebMv2YRE2Mntx6LhpTGshBQUBKDQMN+4xaLjndnDWDMuEb80fLfgfU/L/9I8VJeXoVqIAEoLany8TctL3f5KO0EfH1vRZ3GV+knoTzh1hSn06OSvoOs0isuqfLx7ywrc/r4FFdVu3yUtFqtBm09RZ9GK6g6Ccj5F0vrJQRwu+W667MoKan28TetKHf6sJAkfBScOtGXhUDDSsj65usej0RxccMsPPW8XqsqXT4KTq1WaFDZXZ+F2+2htF5SAJlFtU87S0qqfeKiosKJgC+L+gpOneirXBYQKK933tXV7gbjouQ3WLjd6m2VlW40DZy3rzKcBlmUlarrdrk8lHjXYtYtpSVVPnFRXubyYeHxSL5xofNlgSBQUaGOSWe1W/VAKB8PSoqrfPx+S0urcfmwcPmqa70mE3WLVqtelgU1LNTtcbk8DcdFcUP3C/Vv5bZLvveLBlTPQgMsqn+DRXFxpS+LMqdPrFRWuHziQqNpSM0s+JyL2yNRVKROUvF3KP+vJDr/Rw6so0anqZSwZrNsOFDX/N1g0NKrd5xq+YYoakhNC8Jm1SsqUUEAo0FHi5ZhKnm6JEGffvGqTylGo8iwYSn16tYxfGSaWh1rktNk1e0Ser2Wjp2iVbJ4ec2fmahou+pmIiDQtVuMysBdq9UwaHCyuh6zyMhR6SolrNksMmRoipJ4uZZFvGppjShqaNQ4GEs9FiaTjmYtQn1YxMTUJumuKb16x/uwGPFbLOolD+jktYCryyI0zEpEhE3NQoAuXWNVLDQawZeFSWTEqPpxoWPIsBSfa9ird4JqkNDpZCGK2VSr1KxRGmc0DanHQqJXH9+4GDwsxec6DB+V7qNGHTA4WRUDeoOWLt2iVctOtFqBiEgbYRFWFQutRkOXruq40AgCAxtgMXxUulotbhYZMizVp919+sX7sGjWLEzJrlPD22LRy3OmdQYVySMploE1xWAQGTLEl4V8bdRtHDQ4WfVQqfemGKy7tkurFYiKshESqk5+odVq6NQ5up6xv8DAQUm+LEam+twvhg5PVe0np1tMUC2t0ek0NGsRhqEeC6tNnheuy8IjSfTsHY/RqL4HDR7qe78YOSrdp42DhiSrzs9g0NK1e6zqoUerFYiJsRMcUj8RiJYOHaN8khx06x7L36nUiJf+O7D+TcuYcY159oUuOIJM+AcYueOuVsx4ux+ffzWUiAgrdruBIcNS+Xz2MFatmUBiUgBWm56OnaJYtWY86zZMolnzUKxWPU2ahrB+w0SWfTOWrt1isdr0xCf4s3zlWD7+bAgjR6dh9zMQFmZh1scDmfpWH+57sA0BgUYCA008PrkDb0zpxfSZfQkJseDnZ2D8dRm8/+FAFi0bTUysHzabnl6941m0dBTf/XAd6Y1kAVGr1uF89/1E1qy7jrbtIrFa9aSmOVizfgJzF46gX79EbDY9UdF25i4cwTvv9+f6G5vi728gOMTMG1N68fqUXjzzfFccDpnFnXe3Ysbbffnk88GEe1kMG57K57OH8s2340lMlFl06hzNN6vHsXbDRJo0C8FqlQeRtRsnsnTlGDp3i1FYLF01lu27b1G8SzUagXvua83chSO494E2BAQYcThMPPlUR16f0otpb/VRWFw3qQnvfzCAhUtHER1jx2bT07tvPAsWj+S7HyYqpvCt20TILNZfR5u2EXVYXMe8RSPo2y9BYTF/8UjenTWASTc0xc9PZjFlem9ef7MnTz3bGYfDRECAkbvuacX0mX35+PPBhId7WYxI5bOvhvDN6nEk1GGxYtU41m2YSNNmclw0bRbKug2TWLZqLJ26RCssvv52LB9/OZhhI1Ox22VT9Q8+G8TUmX24877W+AcYCXSYePLZzrw6pQdvTO9FSIgZPz8DE29owtuz+jF3yQiivCz69EtgzuKRrP7hOlLTHVitOlq3jWD19xP49vsJtGoTgdWqIy3dweofrmP+4pH06SOziI6xs2DJKN6d1Z/rrm+Cn5+BkBALU2f05o0pPZn8dCeFxb33t2HaW3348NNBMgs/AyNGpvHpF0NZsWqcnETCpqdL1xiWrxrLug2T6rAIYd2GSXyzejydvSwSEwP45tvxfPblEIYNT8FuNxAeYeWTzwcz/e2+3HVPayUunn6uC69P6cUbU3sRHGLG39/A9Tc25d1ZA5i3aCRR0TKLfv0Smb9oJGvWTyA1zYHVqqdtu0jWrp/Id99PpHUbOS7SGwWx9vuJLFgykt594rHZ9MTE2Fm4dBTvfTiACRMzFBbTZ/bljSm9eOKpjjKLQCP3PtCWaW/14YNPBhIWZsHuZ2Dk6DQ++XwIK1aNVVh07RbL8pXjWP/jRJo0DcFq1dOseSjrN0xi5bfj6NTZyyIpgJXfjufzr4YyeGgqdruBiAgrn305hBlv9+WOu1riH2DEEWTi2RdkFq+92ZPgYJnFDTc14533+jNnwYhaFgMSmbtgON+um0BKqsyiXftI1qy/ju++v46WrcPrsLiOhUtH0au3l0WsH4uWjlZ8jv9b/vfLP3KOFeTPPkeP5OBySTTOCEav1yJJEqdO5lNYWEmjxsGKS875rCKuXC4hOdWhqASvXS0l81whsXH+ipK2sLCSE8fzCA2zKINIebmTI4dzsNnkG7081+PmyOEcBAEyvCpQSZI4djSX8nInGU1ClKf4M2cKyM0pJ71RkJLm6tLFYi5eKCYxKVBRj+bllnP6VD6RUbIHK0BJSRXHjuYS6DCRlBQIyD6nhw/lYDRqSW8UjEYj4HZ7OHJYTgRel8XJE3kUF1fTqHEQFovMIiurkKuXS/81i4JKTp7IIzTUQmy8zCI3t5zvvj1FcIiZvv0T0Wg0OJ1uDh/K8SZmDlZYHD2SQ0WF6z9iERVtJzJKZlFcLLNwBNWyqKx0ceTwb7PIaBKMTvcvWFwpIyXVQUCA8V+yCAuzEhMnq0fLyqo5diQXm11PSmqduPCyaORl4fHIcVFV6aJRRnAti9P55OVWkPYvWOTmlHPmdMMsgoLNJCYG+LBo1DgYQfhjLDIzC7l2Vc3i6pVSsjILiYv3VxTW+fkVnDqRR1iEldhYf4XF0SO52OuxqB8XMoscKivdNK7D4vTpfPLzKkhvFKSkP7t4oZhLF4tJSg7EEfTHWRw+lI3ZrCO9UZDC4vChbCRJVrfXsDhxPI+Skmoae1XE/w6L8AgbMbF+KhZ+fgaSU2RVcXW1fL8QRTmRe30WGU2ClS9Mp07lU5D/r1nkZJdx9kyBspwHoKiokuPH8lQs/p3yV82xWoU4qYn4zJ99WHa57vjbzbH+I5fbVFQ4Gdx/IUeP5CAIAmHhVtb/OJHJT2zg21UnEXUaDHqRdT9OZPnXx3hr2i70ei1uj4fFy0aTfa2Me+9aq+SdfOudviQlBTJq+BKlI9xzX2tuuLkZ/XrOo7xCnv/o3TuB9z4cwIDe87lwoQhJkkUQK9eM55YbV/HTjototLKf7PcbJvHOzD3M+eqAd6kCrFo7gT27L/Hc05vQ67W4XG4+/2ooOr2WGyZ+g6iVc4I+92JXuveIZXD/hbjdEtVON+MnZDD56Y707TmP/IJKPG6J1m3CmbdoJCOHLuHYUZlFeISVdT9O4olHf2Dtt6dkFgaR9T9OZOmSo7w9Yzd6vRaPx8Pir0dz5VIpD96zDr1OS7XTzVvv9SUuPoCxw5eiEaC62sO9D7ahY9doRg5ZTM3X5IgIK9t23cKgfvNlEZEEKakOVq4Zx03Xr2TXzktotQJ+/ka+3zCRt2bsZt7sgwqL1d9N4KedF3jh2S1eFh6+nDMUjVbDjRO/QRRlFi+83JUuXWUWHo/MYsJ1GTwxuSN9e82TvY/dEm3bRTJ7/jBGDFnCieO5CIL8OXXdjxN59KHvWbf2NKJOg9Egsm7DJBYvOMy7b++RWUgSS5eP5sKFYh64t5bFO+/3Iyban/EjliqCkfsebsu46xozsNd8KitduJwe+g1MYvo7fRjYewGXL5YgSRKp6Q6+/nYsN1+3kj27LqPRyn6y322cyIwpP7Fw3mH0XoeslevGs2P7eV5+dqsSF1/MG4YkSdx6/SpEUY7TF17tRofOUQwZsEhmUe1m4vVNePTx9vTtNZ+iQnnurl2HSGbPG8awQYs5eSIPQRCIirbx3Q+TePj+daxfdwZRp8FklFksnH+Y9+qwWLZ8DJlZhTx0/3r0Oq281nlWfyKj7IwduRSNRr42Dz3ajjFjG9Gv93yqqmQWAwclM+2tPvTvM5/Ll2QWaelBrFg9juuvW8He3TKLwAAj32+cxJuv72TRQpmFVivw7boJbNmcxcsvbFXiYs6C4bicHm65caXC4uXXutOufRRDBy5EkuT5zOtvbMpDj7ajb895svexW6JDpyi+mD2UYYMWc+pkHggQE+3H2h8m8uB93/HD92cRRQ1mk451GyYxb/YBZr23T2Gx/JuxnD6dzyMPfa+weO+DAYRHWBk3apnC4pHH2zNyVDr9e8+nqlpmMWhIMlOn96Zvr/lcvVKKJEk0ahzM8lVjuW7ccn7edwWtRiAw0MT3Gyfx2ivbWbr4CDovizXrr2PjhnO8+tI2mYXbw9wFI6iqdHHbzbVx8eobPWjdJoJhgxYpLG68pRnTZvT5v71R/z9c/pFvrK+8uIX33tlDpVfNqtNpaNkqnEOHshWVqSB4lcKXSxQDbJDX7LlcHh/1p9mko6CgdrLfbNYRE+vHyRN5ivDBbNbRvEUo+/ZeVlR5BoOWNm0j+HnfFUXMIz+lh3D6dL5K9RoWbqWwoFJVt9GoRaPRqIQTJpOII8isUnpaLDpSUh0cOnhNSQRtMom0bhPB3j2XlWPq9Vpatgzj4MFs5ZiCICuFL11Ss7Db9LirJR8WRqNIUWGtR7LZrMMpeXyEM0lJAbLKtIaFUUvbthHs26tmkdEkhFOn1CzCI2QWdQVQNes067MIDDSp/JktFh3JKTKLGhFIjTvQnt2XFJWzXq+hZasIDh64pmKRlBzIpYslqnrsdj3V1fXiwqDFbNBRXKRmERVt49TJfMVuzmzR0aRZCL/su4KzDos2bSP4uR6LJk1DOHlSzSIi0kp+fqVKhWsyiSCgul5Gk4hfoIHLdXx4LRYdSSmBHD6YrWbRJoI9e9QsWrWO4MD+WhYajUBySgAXzqtZ+PkZqKpy+7AwGESVd7bZrCMyysbpU2oWTZuG8PO+K4qK12gUadM2gn17LyssRFGgSdNQTp7IU6leI6Ns5OdV+MQF4LPNz9/I1To+vGaLjuTkQA4faoDF7kuK2Emv19C6TQT7f1WzSEkN5HxWsYqFv7+RykqXTx/R67QqwZrZLBIRaefM6Xpx0SSEX37+Vyw0NG0WyonjuSoW0TF2cnPKVedtNssK4LrbjCYRPz8D166WqVgsXDKKHj3j+KPlr3tjjZUy/oI31t2uO/92b6z/yDnWgwezlUEVZLXumdP5VNTpEJIkf0Kpr6CrrHT6qPr0Og1FdW6eIN+Az58vUqkJy8udnD5doJK6V1W5OXUqXxXobrdE5rkCH/Xn1SulinVcbT2Cj2JRp9Ny5bLa6L+62k3muUJlUAW5c506mafq9NXVbk6fyVfdHCQJLlwoRlvPJ7a83OmrhNVpfBSuguCrRgW4fKlEzaLSzcmTDbEoxO3yZdGQl2l9r2CdTutjYu50euRjuuuxOJGnWjpUXS3HhQ+L88U+3sVlZU6f9uj0Gh/FraCRf1+3meVlTs6eLlAG1RoWpxuIi3PnClVLqwCuXClFX69uScLHtlanE3xZuDxknvVlcfLkv2bh8UiczypGqMeipKSqQRb1VbMajdAgizPebEk1pbLSxalTeSoWLpfMwlmfxeUSH99lScLHq1oUNVy7qmbhdnk410BcnDyZp1IQV1d75Ifeeiyysop8PHyLiyvR6X3V4hX1+oNGq1G+Yil1lzuVzFFqFvn1WHg4d7bAR9l7+VKJz3VwuyUfdb9O1JB9rUy1zeOWP/n/t/zflH/kwNqiZZhKiajXa0hNdajUdxqN7FxU/4ZuNut9Bjyn00NAoNr+S5IgISFApb4zm2W3nrrqY6NRNpOoq/4URUF2Sal3946MtKkGIvAah9cb6J1ON1HRdlUn1+ll55W6+5pMIunetHO1LLSkpgUpDkE1LOLj/X3O22LT+0j8XU6PjxWaR5Iwm3xnDaJj/FQKVaNRpFGj+iw0JCUH+DzgREbafG6qgoDP0iOZhTr1lajTkJwSqLrpmMwiafVZGLSkpvnGRXyCv89SKJvNgLMBFjWOVwoLj0Rcgr9K2Wu2yE5B9VmkNQpSqT91Oo3PNQSIirJTXY+FRguCDwuJqCi1OlsUZRaquDA3HBcpv8Gi/lIof3+jz7VxOT2KZqGmuN0e4htikepQKVTlPhKsYiGKGpKTAlQPdoIAUdF+OJ3qAUarxWcwcbk8iqtX7X7ymlWxTpIEuY8ENxAXQSoWWq1AYkKAz4NdQKDJ50HI5fJgqfNbkAf1+Dg1C5O5hoVvn20oLnT1VL3RMb5x0ZCpv9PlITxCzUKjEWjUOMhn3//L8l9V8N+8PPp4B9q0i1ASXCcnO5i/ZBSjxzbCYNBitekJCbWw6OsxPPN8Fznlmk2Pza5n2YoxfPblEEwmEZtNj9Ek8sHHg1i2Yix+fgZsNj0Gg5aHH2vPoqWjCA+3YbXq5SUVQ5OZv2gk6Y3kTmk262jWPJT5i0fSq7e8BMNi1REVLavy7rirpVJ3oMPE0hVjmD6zD0ajvM1i0TFv0UgWLBmJ1aqT6zZqee3NnixdPka27/O256abm7Fo6Sji4v2xWHQYTXIO0XmLRtK6TS2LlJRA2WlmdDpGo4jVqic0zMKiZaOZ/ExnpT12u55ly8fw8ReD1Sw+G8TiFaNVLB59sgMrVo9TDXpxcf58v2ki6d4blMks0rxlGPMWjaRHjzhvwm0d0TF2Fi0dzW13tFDqdnhZTJneW8Vi/uJRLFgyCoullsUbU3t5WZiU9tx8a3MWLhlFTKyfwqJbt1gWLB5Fy1bhmMyi/BCU4mD+4pGMGJXmw+LJyZ1qWfgZWPbNGD7+rJaFySTy8WeDWbxiNPY6LB6b3JGFy0YRFm7BapXbOGxEKvOXjFQGcZNZpGXrMOYsGkG3nnFyajeLjugYPxYsG8XNtzdX4tQRZGLRitG8Ma0XhrpxsXgkcxeNULF4c3ovliwfjcNRy+K221uoWJhMIj16xDF/0UhatAxTWKSlB7Fg8UiGjUhV0u6FhVtZtGw0T0zuqGKxdMVYPvp0kIrFJ18MYemKMdjttSwmP9OZRctGExpmUfrIyFFpLFg8Un7QtcgsWrUOZ/7ikXTtHivHhUVHbJwfC5eO5uZbmqn7yPLRvD6lp8LCatWxcOlo5i2sZWE0apk6ow9Llo8hsA6L2+9qyaKlo4mO8cNi1WE0ivTsHc/8RSNo3iJU7rMWHenpQcxfNFJZilXDYuGyUTz6eAelPX5+BpYuH8MHHw9Usfjsy6EsWzEGu12v1P30c11Y9PVoQkJla0WDQcvoMenMXzyS5GQvC+90xfxFI+jcNUZhERfvz8IlI7nhpqa1fSTIzJKvx/Dq6z3qsNCzaOko5i4cgdlcw0Jkxsy+LF0+msDAWhZ33t2SLl3/XsttEP7fMeH/R86xgrye8PTpAtnvNyVQeSM6n1VEcXEVScmBylNq9rUyrl4tJT7BX1HaFRRUcj6rkOgYP0UdW1ZWzZnTBYSEWBRFaFWVi9On8rFY9YpS2O32cPpUPoIgv5nWpIPLzCyiotzpfZuSnz4vXyohL6+cxKRA5Qk5L7ecixeLiYv3x89PfjssLq7i3NkCIiPtiiK0osLJ6VP5BAaaFBWk0yl/YtQbRBK8nruSJHH6VD5ut9Qgi+SUQEV1eO1qKdeulclLTbxvIIUFlZzPKiI6xk6Al0VpaTXnzhQQXIdFcXElG3/MJDTUQodO0QqLUyfz5Sf+pFoW584VUlnh+pcscnPKuXRJzaKoqJLMc4W/i8Wpk/kYjH8ei/z8Ci6cL1LFRQ2LkFCLogitqnJx6mQ+dptBUQrXZZGUHKi0J/NsIRWVahaXLhaTn19JUnIAJlMti8uXSoiN98fP+6ZcVFRF1rlCIiJtCovycidnTjfMwmgSFZ9Zj0fizGlfFllZhZSWVJOU/O+xOHumgNCGWNgNijr2t1icPVtIdZVLfkNTsaggKTlQxeLSpWLiEwIU1XRNXERF2RV1bA0Lh8OsqGP/JxYej6R47v4Wi6tXSsnObphFTKy/ohQuKani3NlCwsKshITKHsCVlfL9okEWXheo+iySUxzKF4eLF4opKFCzyMku4/LlEhWLwsJKsjL/NYt/p/xVc6wWTayULj71Zx+Wn513/+3mWJEk6f/0r1WrVtIfLR6PR5ry+nYpImSGFOqYLj3y4HrJ5XJLSxYdlmIj35aC/KdK40YvlYqLK6VtW7Ok9KT3JYd9qtSz62zp0sVi6fixHKlNi08lh32q1LLpx9LhQ9eka1dLpX695kpBflOllIT3pI0bzkllZdXSDdetkIL9p0kx4TOlubMPSG63R3rqiR+lMMd0KTxohvTyi1skj8cjffzhPikq7C0pJGCadNvNq6TKSqe0ds0pKTHmXSnIb6o0ZOBCKTe3XPp532WpaaMPJYd9qtShzefSmTP5UmZmgdSlwxeSwz5Vykj9QNq966JUUFAhjRi6WArynyolRL8jrfrmuFRV5ZLuvuNbKSRgmhQV+pb03ju7JY/HI7352nYpIlhm8ehDMotFCw5LsRFvS8H+06TxY5ZJJSVV0tYtmVJaosyiV7fZ0uVLxdKxozlSu2afSiG2aVKbpp9IRw5nS1evlEj9esyVQu3TpPT496XNG85J2ddKpdSE9ySb8Q3JbnpDuveuNZLb7ZGefOwHmUXwDOnVl2QWH87aK0WFyizuuHW1zOLbk1JizDtSkN9UaejAhVJeXrm0b+9lqUm6zKJTuy+ks2cLpMzMAqlzey+LtA+kvXsuSfn5FdKwwQulID+ZxeqVJ2QWt9eymPXeHsnj8Uivv7pNYfH4I99LLpdbWjDvkBQbMVMK9p8mXTfua6mkpErasjlTSk18Xwrymyr17j5HunK5RDp6JFtq3ewTyWGfKrVq9rF09Ei2dOVyidSvu8yiUcIsacvGTKm0tEqaNHa5FOY3XYoPf1taOO+Q5HK5pcmP/iBFBM6QooLekt54eZvM4r09UmzITCk8YLp0z23fSlVVLmnNqpNScvS7Uqh9mjRi0CKpIL9C2rfnktQs9UMpxDZN6truCynzbIGUebZA6tr2CynENk1qnvaR9PPey1JeXrk0dJDMIjHmHWnN6pNSZaVTuuPW1QqLD96XWbz68lYpPHiGFOaYLj3x2A+Sy+WW5s89qLCYNH65VFpaJW3edE5KTZBZ9OkxV7p6pUQ6cjhbatXsY8lhnyq1af6JdOxojnT5UrHUq9tsyWGfKqUmvi9t3ZIplZRUSRPGLpOC/adJsREzpYXzZRaPPfy9FOqYLkUEz5Bef1Vm8f67e5S4uPt2mcXqlSekhOh3pCD/qdLwIYuk/PwKac/uS1JG2geSwz5V6tz+Cykzs0A6e7ZA6tj2c8lhnyo1Sf9Q+nmfzGLIwBoW70pr15ySKiud0u23rJJZhL0lffzhPsnj8UivvLRFCg+SWTz1xI+S2+2R5s4+IMWEe1lMWC6VlVVLGzeck1IS3pOC/KZKfXvOla5dLZUOH7omtWxay+L4MTWLtKT3pW1bs6SSkipp/Bgvi8i3pSWLDksul1t69KH1Cospr2+XPB6P9O7buxUW99y5RqqudkkrVxyX4r0sRgxdLBUUVEi7d12UGqfKLLp0+ELKyiyUzpzJlzq0kVk0bfSh9MvPV6Tc3HJpcP8FUpDfVCkp9l3pu7Wn/vB9taYA+/6Ke71JiJFa6D780//+qvb+J3//yDfWBfMO8ciD3yviA5NZZNTodL5eekwRBRgMWrp2i2HHjouKArPmraogv4Lc3HJFaBAQaCQ62s7RI7nKnKPZLNKjVzw/fn9WET6YTCLjJjRmyaIjit2h2axjwsQMFs4/pGwzmUQGDkpi7ZrTSnt0Og0tWoVx/GieoqzUaATCwi3odFounC9WRExWm57mzcPYs/uiMidrMsnuUqtXnlSOaTbrmHh9E+bPPaRiMXpMI5YtOapi0a1HHNu3nlf202oFklMc5GeXk59XoWIRGWnj+LFcRShlNuuwBehValSA/gMS2bolS8XiukkZLJinZjFoSAprVte2W1brhnPkSA4lxdUKi/AIKxqNwKWLJQoLm002a9i755KKxeChKaxedVJR0prNIhOvb6piYTaLjB7biKWL1Sy694xl25YLyn6iKJCSGsS1a6UKC0GQMxZFhNk4eVzNomv3GDZtyFTFxejxjVi2+Kii4jWbdUzwsqioy2JoMmtWnaqNC69C9fDBbEU0ptEIRERaAYHLl+qwsOtJbxLMz/suq1gMGpLMmtWn6sSFyMRJTZk/Tx0XY8c1YsmiOiyMWnr2jGfL5iwVi7S0IC5fKaUgvw4Lh4mQEAsnT9R63JrNOrp0jWHz5kxFKGUyiYwZ24ilS9UsJl6fwfy5h2vbYxIZOiyFVSvVcdGmbSQHDlyjtA6LqCgbbrfElSulCgu73UB64yBZie2sZTFwcDJrv61lYTKLTJzUhAXzDqviYsz4xixZeEQVF737xLNpY10WGtIbObh0sYT8fHnFgCCAI8hMkMPEKe+XkZpz7NQlmq2bs9RxMTadZUuP1WHhG6cmk8jQ4Sms+qYuCy1t20ey/5erii2iRiMQHWPHWe3h6lU1i7R0B7/+clXFYsuOm0hL/+PzrH/VG6tZEyul/QVvrL/+Dd9Y/5ED67jRy/huzWnVtuBgM3l55Srf3IZk8aIoYDTqVB6eVpuO8jKXSp1rsehAwMd7NCzMwtWragVeeISVK/UGnYaWLAgasFn1FBfX1m00ikiSpFIt2u0GysurVQpgvV6L1apTOnhNiYiw+gx4ISFmcnJqHxxA7mhaUaPcsABErYDFqP/XLKw6iut58yKBxSJSVs9PuaH2+Psbqah0qlSqGo289Kk+C1ArkO12A2Vl1Sqlp96gxWJWL4+Chq9DSKiZnOwGWGg1qvPWauUsLHX5WG06qsvcqrqtVj0ej9oIXxAgONRC9u+IC/8AIxXlTtX11mjAYtUrDxmAkr6vLgubTUdxuToZgsGgxWTWUfg7WISGWrhWTz1qNsvJvusmqtBo5AThdfuN1aqjosLlw8Lt9qgUroIAwSEWH5VqQ+0JCDBSVlatEvRptXKy9PosNBpBVY/NpqOsXpwajSJGo5bCQrXC//eyaCgBwG+xqKx0q034vULAukumNBoICrKQna2up6E+EhhopLTUqVIGi6IGk1lUsdDr5TWuahZyH64b40aTyOtv9uS2O1ryR8tfObCmiJP/7MNywHnP325g/UeKl0JD1R6qIOdi1evVylWrRe+j8gN8VIfOag9asZ7OXsBHBWkwaPHzN6rUuhqNgL+/0UcWb7MbfNpoNIqqwRLk+Zf6y21cbo8yv1JTRFGj5N6su80/wOTjrevnb1R5BYN845bq1YPwGyzqtRt81boI8g2nPgu/BlnofZIPmEw6HxYul9tHuexyezCZfVnY67HQ6TQEBBhVqszfYmG16pHqqQkFAR/1p7Pa46PMlZCwWNXtMRhE/P0MPiwCAnxZ2O16tKIvi/qm7G6Px4eF2127prOmiKIGu00dpzILUwMsDCpFO8iDRP0eotVqfFTBTqcvC5Cw+PQReU1lXRZarzlGfTW03c+AKKrbYzbrfFTKbrfHR73udsuDh7rdgqKhqCk6nYYAf9+48A8wNsDCN4dpQyyqnW6f5T+SJCkDc03R60UfVblWK+AfYPoNFuqDmkyiDwuPx+MbK26PLwuNQECAyed8/q+L9Bf893cs/8iB9YnJHfHzM2I0isqb3EefDiIyyobJLKLTaTCZRN7/aCBt2kRgseiUp7+XX+vBDTc1w+zdZrHoGDu+MVOm9cZkFpVtTZuG8sHHsjJSr9diMomEhVv58JNBshrUoJUVfHY9H302iKAgs3dfDWazjo8+GUhySiBmi05pz9vv9qPfgESlPWazjgcebsfjT3bEbK5tT48ecbw7qz8mk3wuZrOO+AR/Pvp0MGazDr1ePl6gw8RHnwzCbjcoLCwWPR99OoiIyHosPhxI6zoszGaRV9/oyaQbmyrbLBYd4yZm8Nq0nphMMguzRUezFmE89Wxn1TUQRQ1fzBmK1apHb9BiMGqx2w18/PkgHI76LAaR5BUs1bRn5rv96NM3QcXi4cc68MjjHVQsevWK4933+6lYJCYE8NFngxQWRm9y748+GYSfn0H+UmHQYrHq+eiTQUREWJXf18RFi5bhqrh4fUovJkzMULG4blITXp3SQ4kLs0VH85ZhvO9VidYcLyzcyqzPBmGpy8LPwKzPBhHoMGE0iei8LGZ9OoiExADMda7NzFn96Nk7TsXikcc78MCj7RQWZouO3n3jefu9eiwSA/jw00GquHA4zHJc1GFhter56NPBRETYVDE96+OBNG8eVsvCJPLG1F6Mm9BYxWLSDU157Y0eqmvTslU4sz4aUMvCLBIRaeOjT2tZGI0idruBjz6VWajjYjAJCf6quHhnVj+691CzeGJyJx54uJ2q7n79E5n5bl8Vi6TkQFVcmEwiQUFmPvp0EDa73GdrWQwiLNzqw6JZ81BVXEyZ3psx4xrVtsei48abmvPKaz1U94s2bSKV+4XcHpHIKJmFnFJOZuHnZ+SjTwcREFhz/5KP+dEng4mLV7N494P+dOseq2Lx5NOduff+1qr714CBybz1jjouklMcDBmW8n90h/5v+Ud+CgZZ6bti+XFcLtk6LC7On7KyapYuPkpxURXde8bRtFkobreHr5ce4/KlElq3jaBzlxgkSWLdd2c4fjSXlNRABg5ORhAEftpxgd27LhEabmX0mHR0Oi1Hj+Sw4YezWKx6xoxrhM1m4OKFYlatPIEgCIwYmUZYuJWCgkq+XnqUygoXffsnkpLqoKrKxbIlR8nNqaBj52jatI1AkiRWrjjBubOFNGkWQu8+CQBs2pjJ/l+uEhvnx/CRaWg0Ar/8fIVtW84T6DAyZlxjjEaR06fzWbf2NAaDyMjR6TgcJrKvlbH862O43RKDhyYTG6tm0aNXHE2ahuJyySyuXK7HYu0ZThzLJSXVwYDBSQiCwM7tF9i7+zJh4VZGjU1HFDWs/OYE8+ccxM/PyMuvdyc83MaF80WsWnkSrVZmERqmZtFvQCLJKTKLpYuPkpdbQacu0bRuE4HHI7PIPFdI0+ah9OodD8DGDec48Os1FYuf911h+1Y1i1On8lm/9jQGo8ioMekEBpq4drWUFcuP43ZLDBmaQkysH6WlMouS4ip69o4no0mIikWbdhF06iyz+G7NaU4czyM1zeHNytMwi8OHstn04zlsNgOjxzfCatVzPquINatOotVqGDYyVWaRX8HyZceprHDSb2ASScmBVFa6+HrxUfLyKujcNYaWrcPxeCRWeVk0ax5KjxoWP5zj4IFrxMX7M3REKhqNwL69l9mx7QKOIBNjxjXCYBA5dTKP9d+dwWiS46I+i6HDUoiOqWVRWiKzaJwhs1i29ChXL5fStl0kHTtHI0kSa789xckT+aSlO+g/UGaxY/t59u6+THiEjVFjalls/PEcdj8Do8fKLLKyCvl21Sm0WoGRo9IJCbWQl1fB8mXHqKpy0X9gEklJMouli4+Qn1dJ564xtPKy+Gb5cbIyi2jWIpSevWQWP/5wlkMHsolP8GfocJnF3j2X2bn9AkHBJu9yOzWLUWMaERAgOzR9s+I4Ho8cF9ExfpSUVLF08VHKSqvp1SeBRo2DcTrdLFt6jGtXSmnXPpIOneqxaBRE/wGJCILA9m3n2bfnMhGRMgutVsOhg9fYtCETu5/BOyDXshBFDSNGpv0mi4oKJ8uWHCU/r5Iu3WJo2UpmseLr45zPKqJ5yzDFSemH789y+KDMYtiIVAShYRb/TvmrPgWbNDFSkvjkn31YDjvv+9t9Cv5HegWDbJS9bUsW1U4PKakO4uL8uXq1jO3bzpOXW0Ggw0STpiEUFlSyc8cFzp4txO3x0L5DFE6nm107L/Drr9fIzS2ne884jEaRvXsvs3lTJtExfvTqFU9IqIVDB7PZtCkTfz8jnbvEYEs1cPp0Pls3ZyFoBJo3DyUs3Mqli8Vs23qe0pJqomLspKQ6yM0pZ/vWC1y5UoLBqKV1m3CKi6vYufMCx4/lUV5eTZeuMWg0Art+ushPOy+SnBxIz97x+PkZ+OXnK2zelElIqIVu3eOIifXjxLFcNm/KxGzS0aZtBA6HiXPnCtm65Twul4fUNAexsf5cuVLKti3nKSiowBFkIqNJLYvMc4V4JIkOHaOoqnKze+dFDvx6lby8Crr1jMVoFNm35zJbNmYSHWOnR684QkItbPrxHHv3XMZi0XH4UDbh4TZOny5gy+YsRFGgefMwQsOsXLxQxNYt5ykrqyY6xk5yioOc7HJ2bJNZGE1aWrUOp6REZnHieB7lFU66dI0BYNdPF9n10yVSUuqyuMymjecIDbPSvUcc0TF+HD+aw+bNMot27SMJDDSRWYdFWnoQMbF+XLlSyvatMougYDONM4IpyK9gx/YLnM8qRJIk2neQWfz000UO7L9Gfn4F3XvGYTBo2bP7Eps3ZRIT60/P3nEEBZs5eOAamzZlEhBgolO3GJKTAzl9Op9Nm7MQRQ3NWoQSGmblwoVitmzOpLzCSXSsH0nJgeRkl7F123muXS3FZBFp0SqM4uIqduy4wIkTeZRXOunkZfHTrovs3nWJ1CsOevSOw2438OsvV9i08Rzh4Ta694gjKtrO0SNeFma9wuLc2UK2bsnC5ZJIbxREdIwfVy6X1GFhoXFGCAX5FezcfoHzWUUgQLsOkVRWuvhp50UOHsymoLCCbj28LHZdYvOmLGLj/OnVOx5HkIkD+6+y2cuic9cYkpICOXUy3xsXGlq0DCck1MLFC0Vs25JFeYWTuDh/kpICyb5WxvZtF8i+VobFqqOll8XOHRc4eTKfyioXXbrG4PFI7P7pIrt3X+byFQc9esksft53WcUiMsrOkSM5bNqYidWmp32HKAICjJw7K8epxyP79cos5LgoLKokJNRKo8bBFORXsnP7BS6cL0LQCLRtL7PYueMihw7JLLr3iEWnq4mLLOLjZRaBDhMH9l9j86ZMAh0munSLJTFRz8kTMgudTkOLlmGEhFq4cL6WRUJCgMwiu4ztWy+QnS2zaNEyjKIimcWpU/lUVbno3CUaj0di108X2bvnMleuOujZOx6rVc++vZfYtPEcERG1LP5b/m/KP/KNdd/eywzqt6BW+WcSmfZWH55+ciOlpXJSY7NZx0OPtmPu7INcvVKK0+nBbJYVlBculLD/l6tUVrowGLU0bhxMkyYhLF1ylPJyF6KoITjYzJ33tGLqGzspL3ciCPI85dQZfXj0wfWqut9+rz+PPLheET2YzCIvvtydaW/uoKBANkY3m3XceHNTNm/K4syZAqqr3JhMIh07R2PQa9m0MZOKChd6vZaYWD8GDU7i049/pbzciVYrYLcbeO7Frjzz1EaV2vLt9/rx4H3rVO2Z/lYfnnpyA6WlToXFw4+1Y/aXB7l2tYaFjqHDUjh/rogDv16rZZERQnrjIJZ7lYyiqCE4xExGs2DWrTurug6vvNaD11/dpqr7nff789AD6xUltskk8vKrPXjz9e0UFtayuPnWZvz4wznOnS2kulpm0blrDFqNwJbNWQqL2Dg/BgxM4rNPaln4+Rl5+rnOPPf0JpVCukEWM/sw+fENirjDbNbx6BPt+eLT/WRnlylxMXxEGqdO5XPoYDaVlS6MRpGMpiGkpjhYsfwY5eUudDoNISEWbr29BdOn/qTEhdWq583pvXjsoR/+RxZm71TE669sp6iolsUttzfn+3VnycwsVOKiS7cYkGDb1vMyC4OW+Hh/+vRN4IvP9iss/P2NTH6mM88/U4eFRcfb7/qymPF2X5587EcVi8ee7MBnH/9KdnYZLpccF8NHpXHiWC6HD2dTVenGaBRp2iyUxKQAvllxnIoaFqEWbr61OW9N20V5uVPOVWrV8cbUXjz2cD0Ws/rz0H3rVSrl197oySsvbqXYmwTdbNZx2x0tWLvmNOezipS46NYjFpfTw47tFxQWCQkB9OwVx1dfHFCxePLpTrz43GZFlW6x6HjrnX48dL+axVvv9OWJR9UsnniqIx9/8DM5OeVeFvIb75HDORw9ItuoGo0izVqEEhfnz6qVJxQWoWFWbripKW/P2F2HhZ7Xp/Tk8UcaiIv716tUwa9N6ckrL2yVkwd4++wdd7dk9cqTXPD6cZtMIj16xckPPTsuKiySkgLo2j2WOV8eVFgEBJjYu/92HI4/Ps/6V76xJohP/NmH5ajz/r/dG+s/cmC95YaVLFt6TLUtMspG9rUyldDAatWDgErpqdXKooL6xtZVVb7qT1HUUFhYWee3ApFRdvnJvk6Ji/cj85x6W1CQifJyl0o9KoryfGBdNaper0GSULfbpsdZ7VYpR+X5GYOPkrGhuqOibFyrx8Jm0yNRj4VGwGQQVUbvJrNItQ8LHcXlatUhgJ9dT1GxWi3cUHuCg82UllarmOu8WXfqswBBpYy02vRUV7uprsPCZBKx2Q0q5akgQGxcAyyibVy9UqYSv9jtejySmoVGA0ajzicBQHW1LwuNVqMy5hdFDeERVi6cr02aUMMiK1PtHxsSYqakRM1Cr9ei12tVLHQ6jZJpqaZYrDqc1W6VirbGESg7u9yn7vosomPsXL5Uojofu58Bj1tS1f37WejRaFApu3U6DWHeN/W6JT7en3PnClXbQkItFBdVqZTPeoMGvV5UXRudToNGI6j6g8Wio7rarYpxs1nEYtGTk1OfhT+Z9eqOibFzqR4LPz8D7oZYmHSqpAm/xUIQUKmHdToNoaEWLl5U+343xCI0zEJRYZVPgg5Rp/1dLKqq1Cpls1l+2bj+xmb80fJXDqxx4uN/9mE57nzgbzew/iPFS/VVcSCbTte/8ddX28pF8PEdRcDntxKSz+8lScJTT6n5m+2R5P3r/76+mlAQfNsj8BvtaeAhyOPbHNwe37Y39FsEEPjXdf9WaQhvgywa2LFmfaSq7vobatrjcx18j9nQNqiJi/rKSnwM7hsqgtDQbkID7ZF+87x9Y9KXr8cjNcCiAT40EBf/w3nXLw21UT6XBs6ygfY0FBf148/jkXzUzCCrnH1/66vqlDw+XcSnLb/Vnt9m0XCfbbB/NnjF/9UGeVtDMVnfkxoa3ibHSv04lRquygdQQ/eahu8N/y3/O+UfObDefldL1bIDk0nkgYfbYjDWyufNZpGbb22G2axTlo+YTCJ9+iWQlBSgGKbr9RpiYvwYOjxFOaZWK2A0iNx2RwuVUbfRKKt469f94MPtVMbzZrPIXfe0Qq/XKjJ/k1lkwnUZBDlMyhIMg1FLs+ahtO8Qqazh1Ok0+PkbmXRDE8zeYwoCGPRa7r2vtao9St1122MWuf/BNirTcfnTa3Pv+k3Bey4i/QYkkqBioSUmzp/Bw5JVLAxGkXbtomovgLcP33m373V48BF1e8xmkbvva43Om4dVYTExg8A6LIxGLS1ahtG2XYRyHXU6Df4BRiZe30ThKwjyNbvn3oZYtPdl8VBbHxa33tYcYx0WJpPIgEHJxCf4K+bxer2WuHh/Bg1SszCaRG65rX5ciDzwUFtVDDTUHrNZxz33tVJy0tZsm3h9E9XSHHk+PoJWrcNVLAIdZiZMzFDFhd6g5e57Wyvbaq9De98+8lAbDEb1tbnl9uYYjWoWg4akEBvrV8vCoCUhMYABA5NULExmkZtva+7D4v6H2vrU/dAj7ev1ER333Ncag4qFyKTrm6qWbBmNIm3bR9KiZZiKRVCQmQkTGyvH1GgEdHotd9WPC7P4m33WWGdJm9ms49bbW2IwqFkMGZZKdIxdMdI3GLQkJQXSt3+imoVJ5KZb1SwMRi33P+jL4sFH2vrExb33t64XFyKTbmjqXYZT20c6dIqiabNQZamQTqchJNjCuOsyVCz0ei39ByTydyr/L5nw/yPFS527xLBw6SimvbkTp9PDXfe2YvSYRnTrHsdzz2yiIL+CEaPSuf/Bttz3QFsmP7GBrMwiunSN4fmXulJZ6eKZyRs5sP8aGU1CeH1KLywWHa+/uo2NP2YSFWXjjWm9iInxIyzMyuJFR7DbDbz4SndatAwjMtLGu2/vQdAIPPp4B/r1T6RZs1BefWUbZaXVTLqhKTff2pxRYxrx7OSNXL1aSv8BSTw+uSOFBZVMfvxHTpzIo3XbCF59vQeCIPDCs5vZ9ZMsXnpjai+Cgs1ERtn4dtUpgkMsvPZGD1LTgggJtfLl5/sxGkWefq4znTrHkJAYwLQ3d+BySdx9XytGjZZZPP/MZgoKKhg1phH3PdCGe+5tw+QnfuR8VjFdu8fw3Atdqax089yTMosmTUN4dUpPzBYdr7+0jc0bZSHXa1N7EhVt4/oJ37Dhx3MYjSJTZ/Rm7PjGNG0exvvv7EUUBR55vAN9+yXStInM4v9r795jq6zvOI6/v9C6lpbalksL9AIMykWgLOKAIlqozokIMuJ0U5QxdYNhWCbUQluh0FqKuj+24BYSNo1bls2NXb0lK3RItuggio5NKcsEhhduC5eWa/nuj1O2arK1NM85z2n7eSVP0ufJOef5nm9+ybe/3/M839PcdJ77v1LIfQsLmTd/DOVlW/now9PcOiuSi+PHzrCytJ533z3GdZOHsK6m+OO5KOjH+g0l9OufTE5uGi/8tpGsrBSqa2cysiCTrOwUfrj5TZL7JFJeMZ2i63MZNjydJ+v+yMWLzpKHJ/GF+WOYfkM+qysiubjzrmtYsnQSDy2+lpWl9Rw4cJIbZ+RTufoGmpsvUF62lbd2R3LxeF0JffokUl21nYZt+8nLS6N2Qwk5uWlkD0rl+Z/uIT09iarqYgonZjNocCobv7OThATjkdIibv7ccMaNG0DNuldpbr7AwkUTWXD/BObOGx3JxUdNzJo9guWlRRw7eoay0noa9x5j8pQhrK2ZgbvzWHkDr792iIKCfqx/ooTMfsnk5KTx0ov7yMpKoWb9TEaMzCQrO5VnfvAmfVKuorzieqZOy2XosHSe2hDJxdJl13HHvNEUTctjTWUDJ06c4867xrL4G5N48KFILg4ePEnxjHwqVt9AU9MFysvqefutw0wozOLxupkkJSWwrmo72xsOkJefxvoNNzEkpy/Z2an84vm/kpGRTFV1MRMKsxg0uC9PfzeSi+WPFnHTzcMZO3YANdWvcvbMRRYuKuTe+yYwZ+4oVpVt5cjhJm67fSSPrJgaycWK39PYeJwpU3Ooqi7G3aksb+DPrx1i1Kh+1G4oISMzmZycq3n5pX1kZadGcjEig4EDU3ju2d30SbmKisrpTCnKIX9oOt9+4k9cuuQ8vOyzzLljFJOn5lD1WCQXX7x7LF9fMolFD05kVelWDh48yYySoZRXTqep6QKrHq3nL28fpnBiFjXrW3OxZjvb/3CA/KFXU1tXwuAhfRk0KJUtP/8bGZnJrK0uZvyEyM2N39+4i8TEXqwoK2JmyTDGjBlAbfUOzp69yKIHPsM9C8Zz2+wCyldu48jhJmbPGcm3lk9l5ZFmykrr2dd4nClFOaytLqalxaks38bO199n9Jj+1NaVkJ6RRF5uGq+8/Heys1OpqZv5n17OEntd8hqriIhER7SusSb1yvPcxOVBfyz7zi/TNVYREZHurEsuBYuISNdy+RprT6DCKiIiMRC/NxsFTUvBIiIiAdKMVUREos6BFs1YRURE5EppxioiIjHRU66xqrCKiEhM9JTCqqVgERGRAGnGKiIiUec4LdYzfhlAM1YREZEAacYqIiJRp8dtREREAtaCB751hJllmtkvzazJzPab2Zej+T01YxURke5uI3AeyAImAi+Y2W533xONk6mwiohI1DnQYrFfCjazFGA+MM7dTwM7zOw3wAKgLBrn1FKwiIh0ZwVAi7vvbXNsN3BNtE4Y+ox1165dR81sf9hxBKA/cDTsIOKcctQxylP7lKP2dTZH+UEHAnDJD71y6uzK/lH46CQz29lmf5O7b2qznwqc+MR7TgB9oxALEAeF1d0HhB1DEMxsZ7z9in28UY46Rnlqn3LUvnjLkbt/PqRTnwbSPnEsDTgVrRNqKVhERLqzvUCCmY1sc6wQiMqNS6DCKiIi3Zi7NwFbgLVmlmJm04C5wHPROqcKa3A2tf+SHk856hjlqX3KUfuUo/9aAiQDh4GfAIuj9agNgLn3jE4YIiIisaAZq4iISIBUWEVERAKkwhowM/uRmX1gZifNbK+ZPRB2TPHEzD5lZptb+3WeMrM3zOzWsOOKN2a21Mx2mtk5M3sm7HjiRax7vnZFGjvhC/051m6oFviqu58zs9FAg5m94e67wg4sTiQAB4EbgQPALOBnZjbe3d8LM7A48z5QDdxC5KYLiYhpz9cuSmMnZJqxBszd97j7ucu7rdunQwwprrh7k7uvcff33P2Su/8O+AdwbdixxRN33+LuvwKOhR1LvGjT87XS3U+7+w7gcs9XaaWxEz4V1igws6fNrBl4B/gAeDHkkOKWmWUR6eWpGYe0J+Y9X0U6Q4U1Ctx9CZE+lNOJPJh87v+/o2cys0Tgx8Cz7v5O2PFI3It5z1eRzlBhvQJm1mBm/j+2HW1f6+4trUtVOcDicCKOvY7myMx6Eel8ch5YGlrAIbiScSQfE/OeryKdoZuXroC7F3fibQn0oGusHcmRmRmwmcgNKLPc/UK044onnRxH0qbnq7s3th6Las9Xkc7QjDVAZjbQzO42s1Qz621mtwBfAraGHVuc+R4wBrjd3c+EHUw8MrMEM0sCegO9zSzJzHr0P8Jh9HztijR2wqfCGiwnsuz7T+BfwJPAN93916FGFUfMLB/4GpFHJT40s9Ot2z3hRhZ3KoAzQBlwb+vfFaFGFB9i2vO1i9LYCZl6BYuIiARIM1YREZEAqbCKiIgESIVVREQkQCqsIiIiAVJhFRERCZAKq4iISIBUWEVERAKkwioiIhIgFVYREZEA/Rsi5lLQxf/wIQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline \n", + "plt.figure(figsize=(8,8))\n", + "plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=typeI_sum, s=20)\n", + "plt.colorbar()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAD7CAYAAACbtbj+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAuh0lEQVR4nO3deXxV9Z3/8debLYEgyI5CAUFQgSmo+VUKylLQxAUQYdwYoYMCShEJ4zxAR0pL1S4zA4IFFBULYrGIUEEr4gZWXGrYLIjgKA0gAoFggEBYwuf3R25sjDfcG0hycm8+z8fjPCDnfM6972+PzYezy8xwzjnnTqdK0AGcc85VfN4snHPOReTNwjnnXETeLJxzzkXkzcI551xE1YIOcLYaNmxorVq1CjqGc87FlDVr1uwzs0bR1sd8s2jVqhXp6elBx3DOuZgiKaMk9X4YyjnnXETeLJxzzkXkzcI551xE3iycc85F5M3COedcRN4snHPOReTNwjnnXEQxf5+FKx1fffUVTz/9NHl5eQDUqlWLCRMmAPDCCy+wb98+Ro8eDcDs2bPZuXPnaT+vcePG36lPTExkyJAhAPzv//4v2dnZxa57+eWX079//7Mek3Ou9CjW32eRnJxsflPe2RsyZAjPPfcckgBo0KABmZmZAAwaNIitW7fyySefANC1a1c+/PDD035ex44dv1Nfp04dli9fDuTfSLl9+/aw65kZCQkJZGRk0KRJk1IZm3Pu+yStMbPkqOu9Wbhdu3bRsmVLRo0axbRp0wLNsmXLFm6++WaeffZZLrvsskCzOBfPStosojpnIam+pCWSciRlSLq9mLoESVMl7ZJ0QNJMSdULLV8pKVfS4dC0pcj6N0vaLOmQpE8l3RjtQNyZmzFjBnl5eYwZMyboKFx00UWsX7/eG4VzFUy0J7hnAMeBJsBgYJakDmHqJgDJQEegHXAZ8FCRmtFmVjs0XVQwU1IzYD4wDqgD/CfwR0mNSzAeV0JHjhzhiSee4MYbb6RNmzZBxwFAEgcPHmTTpk1BR3HOhURsFpKSgIHARDM7bGbvAUuBO8KU9wWmm1mWmWUC04FhUWZpDnxjZq9ZvleBHKBi/AaLU/PmzSMrK4u0tLSgo3zHDTfcwC233EKsHyZ1Ll5Es2fRDsgzs62F5m0Awu1ZKDQV/rm5pLqF5v1a0j5JqyX1LDQ/HdgsqZ+kqqFDUMeAT773JdIISemS0gtOwrozk5ubS58+fbjyyiuDjvIdDz/8MH/4wx++PeHunAtWxBPckq4CXjSzpoXmDQcGm1nPIrUPA72AG4GqwMvAj4DzzexrSVcAn5J/SOtW4PdAZzP7IrT+ncA0IDFU86+hPYxi+Qnus2dm/kvZuUqmLE5wHyb/HEJhdYBDYWofAdYB64H3gT8DJ4C9AGb2kZkdMrNjZjYXWA1cFwreB/gd0BOoAfQAnpbUOdrBuJL56KOPKnSj+Oqrrxg2bBibN28OOopzlV40zWIrUE1S20LzOgHfO/toZkfNbLSZNTOz1sB+YI2Z5RXz2cY/D1t1Bt41s3QzO2VmHwMfAX2iHIsrgQ0bNtClSxeefPLJoKMUKyEhgQULFvDYY48FHcW5Si9iszCzHGAxMFlSkqRuQH/guaK1kppJOl/5ugATgUmhZedKSpGUKKmapMFAd+D10OofA1cV7ElIuhS4ijDnLNzZu/jii5k7dy4333xz0FGK1bBhQ4YMGcK8efPYt29f0HGcq9SivXR2FFCT/MNJC4B7zGyTpBah+yVahOrakH/4KQeYC0wwsxWhZdWBh4FMYB9wL3CjmW0BMLNVwC+ARZIOAS8BjxZa35WihIQEhgwZQv369YOOclpjx44lNzeXJ554IugozlVqfgd3JfT4449z4sQJ0tLSKuz5isKuu+461q5dS0ZGBgkJCUHHcS4ulMkd3C5+HD16lMmTJ7Ny5cqYaBQAaWlp7NmzhxdeeCHoKM5VWt4sKpn58+ezb98+xo0bF3SUqPXp04eOHTsyZcoUv0nPuYB4s6hEzIypU6fSuXNnevToEXScqEkiLS2NTz75hLfffjvoOM5VSt4sKpHXX3+dzZs3M27cuJg5BFXg9ttvp3Hjxn4ZrXMB8ZcfVSJTp07lvPPO45Zbbgk6SoklJiYyb9482rVrF3QU5yolbxaVxMaNG1mxYgWPPPIINWrUCDrOGUlJSQk6gnOVlh+GqiQee+wxatasyciRI4OOclY2btzIgAED2L9/f9BRnKtUvFlUApmZmcyfP5+hQ4fSoEGDoOOcFUl88MEHfPrpp0FHca5S8cNQlUDDhg1ZunQpF154YdBRzlqHDh3YsWMH1atXj1zsnCs13iwqAUlcc801QccoNdWrVycvL49du3bxgx/8IOg4zlUKfhgqzr3wwgvcf//95ObmBh2lVPXt25d+/fr5TXrOlRNvFnHu73//O++8807cPVPppptuYv369axatSroKM5VCv4gwUrgxIkTcXeM/+jRo7Ro0YKuXbvy8ssvBx3HuZjjDxJ038rIyACIu0YBULNmTe655x6WLVvG559/HnQc5+KeN4s49emnn3LBBRfw3HPfe0dV3Bg1ahTVq1dn2rRpQUdxLu55s4hTjz32GAkJCaSmpgYdpcw0bdqU22+/nWeffZYDBw4EHce5uObNIg5lZmby3HPPcccdd9CoUaOg45SpsWPHcuTIEWbPnh10FOfiWlTNQlJ9SUsk5UjKkHR7MXUJkqZK2iXpgKSZkqoXWr5SUm7oVayHJW0psn6t0Dr7JGVLevfshlc5PfHEE+Tm5jJ27Nigo5S5Tp060bt372/f/uecKxvR7lnMAI4DTYDBwCxJHcLUTQCSgY5AO+Ay4KEiNaPNrHZouqjIstlAfeCS0J9pUeZzIceOHWPGjBmkpqbSvn37oOOUi7S0NGrXrs327duDjuJc3IrYLCQlAQOBiWZ22MzeA5YCd4Qp7wtMN7MsM8sEpgPDogki6SKgHzDCzDLNLM/M1kQ7EJdvwYIF7Nmzh7S0ytNnr732Wj799FPatGkTdBTn4lY0exbtgDwz21po3gYg3J6FQlPhn5tLqlto3q9Dh5lWS+pZaP4VQAbwy9Dyv0saGC6QpBGS0iWlZ2ZmRjGEyqHgTXgdOnTg6quvDjpOualSpQpVqlQhJyeHnTt3Bh3HubgUTbOoDWQXmZcNnBOm9jXgPkmNJDUFxoTm1wr9OR5oDTQj/5DTMkkF/xxsTv7hq2zgfGA0MFfSJUW/xMxmm1mymSXH+wncknj77bf55JNPSEtLi7k34Z2tU6dO0blzZ8aMGRO52DlXYtE8SPAwUKfIvDrAoTC1jwDnAuuBY8BTwKXAXgAz+6hQ7VxJtwHXAY8DR4ETwMNmdhJYJekd4Bpgc3TDqdy2bdtG69atGTx4cNBRyl2VKlV4+OGH/cGCzpWRaPYstgLVJLUtNK8TsKlooZkdNbPRZtbMzFoD+4E1ZpZXzGcb/zxs9UkJcrsw7rrrLrZu3UpiYmLQUQJxyy230LVr16BjOBeXIjYLM8sBFgOTJSVJ6gb0B753a7CkZpLOV74uwERgUmjZuZJSJCVKqiZpMNAdeD20+rvAduCB0PJuQM9Cy91pfP7555gZVatWDTpKoDIyMhg9ejTffPNN0FGciyvRXjo7CqhJ/uGkBcA9ZrZJUovQ/RItQnVtgPeBHGAuMMHMVoSWVQceBjKBfcC9wI1mtgXAzE6Q34SuI/+8xVPAEDP77CzHGPf2799Pp06dmDRpUtBRApeVlcWMGTN4+umng47iXFzxp87GgdzcXJ5//nm6du3KJZd873qASqdXr1588cUXfPnll1Sr5u/3ci4cf+psJZSYmMidd97pjSJk3Lhx7Nixg5deeinoKM7FDW8WMW7ZsmVMmzbNH3VRyPXXX0/btm2ZMmWKv0nPuVLizSKGmRmTJk3iySef9MMthVSpUoWxY8fyt7/9jQ8++CDoOM7FBW8WMezdd99l3bp1lfImvEiGDh1KvXr1mDJlStBRnIsL3ixi2JQpU2jYsCH/9m//FnSUCicpKYmRI0eyZMkStm3bFnQc52KeN4sY9fnnn7Ns2TLuueceatasGXScCmn06NFUqVKF6dOnBx3FuZjnB7pj1LRp06hevTqjRo0KOkqF1axZM5566im/q9u5UuDNIgYdOHCAZ599lttvv52mTZsGHadC++lPfxp0BOfigh+GikGzZ8/myJEjleJNeKVh3bp1jBgxgpMnTwYdxbmY5c0ixpw4cYLHH3+c3r1706lTp6DjxISMjAwWL17M1q1bIxc758Lyw1AxpmrVqjzxxBM0aNAg6Cgxo2/fvmzfvp1atWpFLnbOheXNIsZUqVKFG264IegYMaVq1arUqlWLU6dOkZ2dTb169YKO5FzM8cNQMeSDDz7gwQcfJDu76IsLXSRmRpcuXbj77ruDjuJcTPJmEUNWr17N008/TfXq1YOOEnMk0aNHD1566SUyMjKCjuNczPFmEUPuv/9+vvjiCz/2fobuvfdeAB5//PGAkzgXe7xZxIisrCwAzjnnnICTxK4WLVowaNAgnnrqKQ4dCvcKeedccaJqFpLqS1oiKUdShqTbi6lLkDRV0i5JByTNlFS90PKVknJDb9c7LGlLMZ8zSZJJ6nNmw4ov2dnZXHDBBf5QvFIwbtw4Dh48yJw5c4KO4lxMiXbPYgZwHGgCDAZmSeoQpm4CkAx0BNoBlwEPFakZbWa1Q9NFRT9AUhtgEPB1lNni3tNPP83Bgwfp1atX0FFi3o9+9CO6du3KtGnTyMvLCzqOczEjYrOQlAQMBCaa2WEzew9YCtwRprwvMN3MsswsE5gODCthpt8D48lvTpXeyZMnmT59Oj169ODSSy8NOk5cGDduHNu2bWPp0qVBR3EuZkSzZ9EOyDOzwre/bgDC7VkoNBX+ubmkuoXm/VrSPkmrJfX8zsrSvwLHzewvpwskaYSkdEnpmZmZUQwhdi1evJjt27czbty4oKPEjRtvvJFWrVr5YT3nSiCaZlEbKHphfzYQ7kzra8B9khpJagqMCc0vuHxnPNAaaAbMBpaFDjshqTbwKDA2UiAzm21myWaW3KhRoyiGELumTJnChRde6DfilaKqVaty33338fXXX3974YBz7vSiaRaHgTpF5tUBwl1O8giwDlgPvA/8GTgB7AUws4/M7JCZHTOzucBq4LrQur8EnjMzf1NNyAcffMBHH33E2LFjqVLFL1wrTaNGjWLLli3Ur18/6CjOxYRofgNtBapJaltoXidgU9FCMztqZqPNrJmZtQb2A2vMrLgzicY/D1v1BsZI2i1pN/ADYKGk8dEOJt5MmTKFc889l6FDhwYdJe7UqFGDqlWrcvToUb8j3rkoRGwWZpYDLAYmS0qS1A3oDzxXtFZSM0nnK18XYCIwKbTsXEkpkhIlVZM0GOgOvB5avTf5V1F1Dk27gJHkX4lV6fzjH/9g8eLFjBw5ktq1awcdJy7l5OTQunVrHn300aCjOFfhRfsgwVHAHPIPJ+0H7jGzTZJaAJ8C7c1sO9AGmAc0BnYAE8xsRegzqgMPAxcDecBnwI1mtgXAzPYX/kJJecABMzt8FuOLWWvWrOGcc85h9OjRQUeJW0lJSYwbN44f//jHQUdxrsKTmQWd4awkJydbenp60DHKxNGjR/392s65MiFpjZklR1vvZ00roD179mBm3ijKybZt25g0aZLfpOfcaXizqGBOnjxJly5dGDVqVNBRKo2PP/6YyZMn88orrwQdxbkKy5tFBXPq1CnGjx/PwIEDg45Sadx00020aNGCqVOnBh3FuQrLm0UFU6NGDe6++2769PFnKJaXatWqMWbMGFatWsXatWuDjuNcheTNogJZt24ds2bNIjc3N+golc5dd91F7dq1fe/CuWJ4s6hAfvvb3/LAAw9w4sSJoKNUOnXr1uXOO+/khRde4Kuvvgo6jnMVjjeLCmL79u0sWrSI4cOH+wuOAjJmzBjy8vKYMaNS3gfq3Gl5s6ggCl71WfDqT1f+WrduzYABA3jyySc5cuRI0HGcq1C8WVQAhw4d4qmnnmLQoEG0aNEi6DiVWlpaGllZWcybNy/oKM5VKN4sKoBnn32W7Oxs0tLSgo5S6XXr1o1f/epX9OzZM+gozlUolfpxH1lZWXz55ZcR69q2bUvdunW/re/QoQM1a9Zkz5497NixI+L6Res7d+5MtWrV2LlzJ7t37+aWW26hadOmrF69+ozG4ZxzJVXSx31gZjE9XX755XamFi5caOQ/Jv2004oVK75Tv3HjRjMze+yxx6Jav2h9VlaWmZmNHz/+25pFixad8Thc6Vu5cqXNmjUr6BjOlRkg3Urwuzbap87GpW7durFs2bKIdZ07d/5OfcF5hX79+tGmTZuI6xetT0pKAmDo0KFceeWVJCUl+WGPCmbRokX86U9/Yvjw4VStWjXoOM4FrlIfhnKuOPv37ycpKYnExMSgozhXJkp6GKpS71k4V5wGDRoEHcG5CsWvhnKuGM8++yy33XZb0DGcqxC8WThXjMzMTF544QV27doVdBTnAhdVs5BUX9ISSTmSMiTdXkxdgqSpknZJOiBppqTqhZavlJQr6XBo2lJoWRdJb0jKkpQp6UVJ5539EJ07MykpKQCsWLEiQqVz8S/aPYsZwHGgCTAYmCWpQ5i6CUAy0BFoB1wGPFSkZrSZ1Q5NFxWaXw+YDbQCWgKHgGejzOdcqfvhD39I06ZNWb58edBRnAtcxGYhKQkYCEw0s8Nm9h6wFLgjTHlfYLqZZZlZJjAdGBZNEDN7zcxeNLODZnYE+D3QLdqBOFfaJJGSksIbb7zhr1x1lV40exbtgDwz21po3gYg3J6FQlPhn5tLqlto3q8l7ZO0WlLP03xvd2BTuAWSRkhKl5SemZkZxRCcOzMpKSlkZWWxZs2aoKM4F6homkVtILvIvGwg3HO0XwPuk9RIUlNgTGh+rdCf44HWQDPyDzktk/S9u9ok/RD4OfCf4QKZ2WwzSzaz5EaNGkUxBOfOzNVXX40kPxTlKr1omsVhoE6ReXXIP6dQ1CPAOmA98D7wZ+AEsBfAzD4ys0NmdszM5gKrgesKf4CkCwk1HTP7a9Qjca4MNGzYkOTkZF5//fWgozgXqGiaxVagmqS2heZ1IswhIjM7amajzayZmbUG9gNrzKy4A75GocNWkloCbwK/MrPnoh2Ec2UpJSWFDz/8kAMHDgQdxbnARLyD28xyJC0GJku6C+gM9Ae6Fq2V1Iz8BvA1cAUwEbgztOzc0LxVwEngFvLPS4wttO7bwAwze+LshuVc6enfvz9ff/01OTk51KtXL+g4zgUiqmdDSaoPzAGuJn9vYYKZ/VFSC+BToL2ZbZfUHZgHNAZ2AJPN7PnQZzQC/gJcDOQBn5F/hdUboeWTgF8AOYW/28xqny6bPxvKOedKrqTPhvIHCToXBTNj48aNdOzYEUmRV3Cugitps/DHfTgXhblz5/LDH/6QzZs3Bx3FuUB4s3AuCikpKcyZM4fzzvMn0LjKyR9R7lwUzjvvPP793/896BjOBcb3LJyL0u7du5k1axZHjx4NOopz5c6bhXNRWr9+PaNGjeLdd98NOopz5c6bhXNR6t69OwkJCf7oD1cpebNwLkq1atWiR48e/ugPVyl5s3CuBFJSUti8eTPbt28POopz5cqbhXMlUPD2PN+7cJWNNwvnSqB9+/Y0b97cm4WrdLxZOFcCBW/Pe/PNNzl58mTQcZwrN94snCuh1NRUsrOz+eijj4KO4ly58WbhXAn17t2bpKQkPv/886CjOFdu/HEfzpVQvXr1yMrKokaNGkFHca7c+J6Fc2fAG4WrbLxZOHcGvv76a370ox+xcOHCoKM4Vy6iahaS6ktaIilHUoak24upS5A0VdIuSQckzZRUvdDylZJyJR0OTVuKrN9b0meSjkh6J/RObucqnMaNG1O/fn0SExODjuJcuYh2z2IGcBxoAgwGZknqEKZuApAMdATaAZcBDxWpGW1mtUPTRQUzJTUEFpP/3u76QDrwpxKMxblyU7VqVZYvX06/fv2CjuJcuYjYLCQlAQPJf1/2YTN7D1gK3BGmvC8w3cyyzCwTmA4MizLLTcAmM3vRzHLJfx93J0kXR7m+c+Xu8OHDZGdnBx3DuTIXzZ5FOyDPzLYWmrcBCLdnodBU+OfmkuoWmvdrSfskrZbUs9D8DqHPBcDMcoAvwn2PpBGS0iWlZ2ZmRjEE50pfVlYWDRo0YPbs2UFHca7MRdMsagNF/+mUDZwTpvY14D5JjSQ1BcaE5tcK/TkeaA00A2YDyyS1Ken3mNlsM0s2s+RGjRpFMQTnSl/9+vW56KKL/NEfrlKIplkcBuoUmVcHOBSm9hFgHbAeeB/4M3AC2AtgZh+Z2SEzO2Zmc4HVwHVn8D3OVQgpKSn89a9/JScnJ+gozpWpaJrFVqCapLaF5nUCNhUtNLOjZjbazJqZWWtgP7DGzPKK+Wzjn4etNoU+F/j2XEmbcN/jXEWRkpLC8ePHWblyZdBRnCtTEZtF6NzBYmCypCRJ3YD+wHNFayU1k3S+8nUh/8qmSaFl50pKkZQoqZqkwUB3oGAffgnQUdJASYnAz4FPzOyz0hioc2XhyiuvpGbNmn4oysW9aC+dHQXUJP9w0gLgHjPbJKlF6H6JFqG6NuQffsoB5gITzGxFaFl14GEgE9gH3AvcaGZbAEJXTw0k/1DWAeAK4NazHJ9zZSoxMZFevXr5q1Zd3Ivq2VBmlgXcGGb+dvJPTBf8/C7QqpjPyAT+X4TveRPwS2VdTElJSeEvf/kL27Zt44ILLgg6jnNlwh/34dxZ8rfnucrAm4VzZ6ldu3a0bNnSD0W5uOaPKHfuLEli/vz5tGzpjzJz8cubhXOl4Morrww6gnNlyg9DOVdK5syZwx//+MegYzhXJrxZOFdK/vCHP/D8888HHcO5MuGHoZwrJUuXLqVu3bqRC52LQd4snCsl5557btARnCszfhjKuVI0btw4xo0bF3QM50qdNwvnStGePXt4/vnnOXXqVNBRnCtV3iycK0Wpqans3buX9evXBx3FuVLlzcK5UnTNNdcA/ugPF3+8WThXipo0aULnzp390R8u7nizcK6Upaam8v7773Pw4MGgozhXarxZOFfKUlJSOHnyJO+8807QUZwrNd4snCtlXbt2pXbt2n4oysUVbxbOlbIaNWrwk5/8hOXLl2NmQcdxrlRE1Swk1Ze0RFKOpAxJtxdTlyBpqqRdkg5Imimpepi6tpJyJc0vMv9mSZslHZL0qaQbz2hUzgXspz/9KUOGDOHEiRNBR3GuVET7uI8ZwHGgCdAZeFXSBjPbVKRuApAMdASqAsuAh4BJYT7v48IzJDUD5gP9geXAdcCLklqZ2d5oB+RcRTBgwAAGDBgQdAznSk3EPQtJScBAYKKZHTaz94ClwB1hyvsC080sK/TO7enAsCKfdyvwDfBWkXWbA9+Y2WuW71UgB2hTwjE5VyEcOXKE9PT0oGM4VyqiOQzVDsgzs62F5m0AOoSpVWgq/HNzSXUBJNUBJgP/EWbddGCzpH6SqoYOQR0DPvnel0gjJKVLSs/MzIxiCM6Vv/Hjx9OjRw+OHTsWdBTnzlo0zaI2kF1kXjZwTpja14D7JDWS1BQYE5pfK/Tnr4BnzGxH0RXNLA+YB/yR/CbxR2CkmeWEqZ1tZslmltyoUaMohuBc+Rs5ciRLliyhatWqQUdx7qxFc87iMFCnyLw6wKEwtY8A5wLryf+F/xRwKbBXUmegT+jn75HUB/gd0BNYC1wOLJV0rZmtjyKncxVKx44d6dixY9AxnCsV0exZbAWqSWpbaF4noOjJbczsqJmNNrNmZtYa2A+sCe019ARaAdsl7QbuBwZKWhtavTPwrpmlm9kpM/sY+Ij8BuNcTNqwYQPTpk0LOoZzZy1iswgdBloMTJaUJKkb+VcsPVe0VlIzSecrXxdgIv+8Emo2+SerO4emJ4BXgZTQ8o+Bq0J7IEi6FLiKMOcsnIsVy5cvZ+zYsezatSvoKM6dlWhvyhsF1AT2AguAe8xsk6QWkg5LahGqawO8T/5VTHOBCWa2AsDMjpjZ7oKJ/MNbuaGrpjCzVcAvgEWSDgEvAY8WrO9cLEpNTQVgxQr/z9jFNsX6HabJycnmlye6isrMOP/88+nZsycLFiwIOo5z35K0xsySo633x304V4Ykcc0117BixQry8vKCjuPcGfNm4VwZS01NJSsrizVr1gQdxbkz5s3CuTJ29dVXI8nfnudimjcL58pYw4YNufzyy71ZuJjmzcK5cpCSksKHH37IN998E3QU586INwvnykFqaipNmjThiy++CDqKc2ck2keUO+fOQrdu3di5cyeSIhc7VwF5s3CuHBQ0iYL7mrxpuFjjh6GcKyerVq2iefPmfPbZZ0FHca7EvFk4V05atWpFt27d/OY8F5P8MJRz5aRly5YsXLgw6BjOnRHfs3CunP3jH//wt+e5mOPNwrly9M4773DBBRewatWqoKM4VyLeLJwrR1dccQUJCQksX7486CjOlYg3C+fKUa1atejevbs/+sPFHG8WzpWzlJQUPv30U3bs2BF0FOeiFlWzkFRf0hJJOZIyJN1eTF2CpKmSdkk6IGmmpOph6tpKypU0v8j8WqF19knKlvTumQ3LuYorJSX/TcK+d+FiSbR7FjOA40ATYDAwS1KHMHUTgGSgI9AOuAx4qJjP+zjM/NlAfeCS0J9pUeZzLmZ06NCBZs2aebNwMSVis5CUBAwEJprZYTN7D1gK3BGmvC8w3cyyQu/Wng4MK/J5twLfAG8VmX8R0A8YYWaZZpZnZv62GBd3JJGSksIbb7zByZMng47jXFSiuSmvHZBnZlsLzdsA9AhTq9BU+OfmkuqaWbakOsBkoDdwZ5F1rwAygF9KugP4GviFmb30vS+RRgAjAFq0aBHFEJyrWFJTU5kzZw5/+9vf6Nq1a9Bxovb666+zatUqHn30UQAWLVpEenr6adepUqXKd+o///xzHnjgAQDmzJnD1q1bT7c6devW/bb+5ZdfJiUlhcTExLMdiispMzvtBFwF7C4ybziwMkztw8BqoBHQFPgIMOC80PJpwPjQ338BzC+07oOh2l8ANchvRoeBS06X7/LLLzfnYk1WVpZVqVLFfv7znwcd5bQOHjxoffv2tQ8//NDMzCZNmmS1atX6dvnw4cMtISHhtFPR+gsvvPDbn2+44YaI6xfU5+XlWffu3W3w4MHlNPr4BqRbhN//hadomsWlwJEi8/4DWBamtibwe+Ar4EvgAfLPdVQFOgObgBoWvlmkhWqrFZq3DLjvdPm8WbhY9d5771lOTk7QMYr1zTff2I9//GOrWrWq/elPfwo6jpmZzZ8/3zZu3Bh0jLhQ0mYRzQnurUA1SW0LzesU+sVfdC/lqJmNNrNmZtYa2A+sMbM8oCfQCtguaTdwPzBQ0trQ6p9EkcW5uNGtWzdq1aoVdIyw9u/fT+/evUlPT2fhwoXcfPPNQUcCYPDgwXTo0AEzY8aMGf7mwXIUsVmYWQ6wGJgsKUlSN6A/8FzRWknNJJ2vfF2AicCk0OLZQBvy9zA6A08ArwIpoeXvAtuBByRVC31PT8AvGXFxKScnh0mTJvHmm28GHeU79u7dS69evdi4cSNLlizhpptuCjrS92zevJm0tDR69+7N/v37g45TKUR76ewo8g8x7QUWAPeY2SZJLSQdllRwlrkN8D6QA8wFJpjZCgAzO2Jmuwsm8s9H5Fr+VVOY2Qnym9B1QDbwFDDEzPzh/y4uJSYmMnPmTD744IOgo3xr165d9OjRg//7v//jlVde4frrrw86Uljt27fnz3/+M5s2baJXr17s3bs36EhxTxZ6c1esSk5OtkhXYzhXUR09epSaNWsGHQOA7du385Of/IQ9e/bw6quv0r1796AjRfTmm2/Sr18/WrZsyVtvvcX5558fdKSYIWmNmSVHW++P+3AuQBWlUeTk5NCjRw/27dvHG2+8ERONAqBPnz4sX76cnTt30r17d7Zv3x50pLjlzcK5AB07doyrr76a6dOnB5ojKSmJCRMm8NZbb9GlS5dAs5RU9+7deeONN9i3bx/du3fniy++CDpSXPJm4VyAEhIS2L17N0uXLg3k+zdt2sS77+Y/gm3kyJFcfvnlgeQ4W126dOHtt9/m0KFDdO/enS1btgQdKe54s3AuYCkpKfz1r38lJyenXL/XzPjZz37G8OHD4+KxI5dddhkrV66kcePGVKniv9pKm/8v6lzAUlJSOH78OCtXrizX75XEggULePXVV6lWLZon/1R8//Iv/8LatWtp27YtZkZGRkbQkeKGNwvnAnbVVVdRs2bNcnsK7XvvvcewYcM4efIk5513HhdeeGG5fG95kfIfT/fII4/QuXNnbxilJD7+OeFcDEtMTKRnz57l0izefvtt+vbtS/PmzcnKyqJx48Zl/p1BueOOO6hSpYo/bLSU+J6FcxVASkoKW7duZdu2bWX2HcuXL+f666/nggsuYNWqVXHdKABatmzJgw8+iCQ+++wz3nnnnaAjxTRvFs5VAGX99ryXX36Z/v37c/HFF7Ny5UqaNm1aJt9TUY0dO5brrruO5cuXBx0lZnmzcK4CuOiii2jRokWZNIsXX3yRQYMG0blzZ95++20aNmxY6t9R0c2fP59LLrmE/v378/LLLwcdJyZ5s3CuApDEgw8+yMCBA0v1c+fPn8+tt95Kly5deOONN6hXr16pfn6saNiwIW+99RaXXnopgwYN4sUXXww6UszxE9zOVRAjR44s1c976aWXGDJkCL169WLp0qUkJSWV6ufHmnr16rFixQquv/56br31VnJzc7njjnBvh3bh+J6FcxXI9u3bI76mNFrdu3fnZz/7Ga+88kqlbxQF6tSpw/Lly+nZsydDhw7l6aefDjpSzPBm4VwFMnjwYO6+++6z+ozFixdz/PhxGjVqxOOPP15hHlZYUSQlJfHKK6+QmprK8OHDmTFjRtCRYoI3C+cqkP/5n/9h7ty5Z7z+2rVrGThwILNmzSrFVPGnZs2aLFmyhP79+7Nz586g48QEf5+Fc3Fm+fLl9OnTJ24e4VGWTp48SdWqVZHE3r174/7ek8L8fRbOxbhly5bx1FNPRV1vZvzXf/3Xt0+PTU1N9UYRpWrVqiGJHTt20LFjR/77v/876EgVVlTNQlJ9SUsk5UjKkHR7MXUJkqZK2iXpgKSZkqqHqWsrKVfS/GI+Z5Ikk9SnZMNxLvYtWLCAhx56iFOnTkWsPXXqFPfeey+PPvoor776ajmki0/NmjVj2LBh9O/fP+goFVa0exYzgONAE2AwMEtShzB1E4BkoCPQDrgMeKiYz/s43BdJagMMAr6OMptzcSU1NZW9e/eyYcOG09bl5eUxYsQIZsyYwf33389vfvObckoYf6pUqcJvfvMb2rVrh5mxcOHCqJp1ZRKxWUhKAgYCE83ssJm9BywFwl2g3BeYbmZZZpYJTAeGFfm8W4FvgLeK+crfA+PJb07OVTrXXHMNcPpHf5w8eZKhQ4fyzDPPMHHiRH73u999+7RVd3ZeffVVbrnlFkaMGEFeXl7QcSqMaPYs2gF5Zra10LwNQLg9C4Wmwj83l1QXQFIdYDLwH+G+SNK/AsfN7C+nCyRphKR0SemZmZlRDMG52NG0aVM6depU7HOMjh8/zm233cbzzz/PI488wuTJk71RlKLrr7+en//85zzzzDMMHTo0Ll4MVRqiaRa1gewi87KBc8LUvgbcJ6mRpKbAmND8WqE/fwU8Y2Y7iq4oqTbwKDA2UiAzm21myWaW3KhRoyiG4FxsSU1NZfXq1Rw6dOg7848dO8agQYNYtGgRU6ZM4cEHHwwoYfySxC9/+UseffRRnn/+eW677TaOH/cDHdE0i8NAnSLz6gCHwtQ+AqwD1gPvA38GTgB7JXUG+gBTi/meXwLPmVnZPaPZuRiRkpLCyZMnv/NYbTNjwIABLFu2jJkzZ5KWlhZgwvj3wAMPMGXKFBYtWsSgQYPIzc0NOlKgomkWW4FqktoWmtcJ2FS00MyOmtloM2tmZq2B/cAaM8sDegKtgO2SdgP3AwMlrQ2t3hsYI2l3aPkPgIWSxp/h2JyLWd26dSMpKek7h6IkMWDAAJ555hnuueeeANNVHmlpacycOZNly5bRv39/jhw5EnSkwER1U56kFwAD7gI6A38BuprZpiJ1zUJ1XwNXAC8Cd5rZCkm1+O4eyv3kN497zCxTUgOg8GW2HwPjgNfM7HBx2fymPBev+vXrx8aNG1m3bh2bNm2ia9euQUeqtObMmcNdd91Fjx49WLZsGbVr1w460lkrq5vyRgE1gb3AAvJ/wW+S1ELSYUkF7y1sQ/7hpxxgLjDBzFYAmNkRM9tdMJF/eCs3dNUUZra/yPI84MDpGoVz8ezaa6+lYcOGDBs2jGuvvZYDBw4EHanSGjZsGPPnzycjI4OsrKyg4wTCH/fhXAVlZkgiMzOT9evXc/XVVwcdqdLLzc0lMTGRNWvWMGTIEJ555hm6dOnCa6+9xv333x9x/aL1S5cupU2bNsybN4/f/va3EdcvWr927VoSEhLOaCwl3bPwZwI4V0EVXA7bqFEjbxQVRGJiIgC1atWiffv23z76vU6dOrRv3z7i+kXrC37RN2jQIKr1i9aX5yXTvmfhnHOVkD9I0DnnXKnzZuGccy4ibxbOOeci8mbhnHMuIm8WzjnnIvJm4ZxzLiJvFs455yLyZuGccy6imL8pT1ImkBF0jrPUENgXdIgyFu9j9PHFtso4vpZmFvULgWK+WcQDSekluZMyFsX7GH18sc3HF5kfhnLOOReRNwvnnHMRebOoGGYHHaAcxPsYfXyxzccXgZ+zcM45F5HvWTjnnIvIm4VzzrmIvFk455yLyJtFOZCUIOkZSRmSDklaJ+na09SnSdotKVvSHEln9pLdclKS8Un6qaQ8SYcLTT3LN3HJSZov6WtJByVtlXTXaWpjavtB9OOL1e1XQFJbSbmS5p+mJua2X4FI4zub7efNonxUA3YAPYC6wERgoaRWRQslpQATgN5AK6A18MvyCnqGoh5fyAdmVrvQtLJ8Yp6VXwOtzKwO0A94WNLlRYtidPtBlOMLicXtV2AG8HFxC2N4+xU47fhCzmj7ebMoB2aWY2a/MLN/mNkpM3sF2AaE+z/jUOAZM9tkZgeAXwE/Lce4JVbC8cWk0PY4VvBjaGoTpjTmth+UaHwxS9KtwDfAW6cpi8ntB1GP74x5swiApCZAO2BTmMUdgA2Fft4ANJHUoDyylYYI4wO4VNK+0OGOiZKqlWO8MyZppqQjwGfA18BfwpTF7PaLcnwQg9tPUh1gMvAfEUpjcvuVYHxwhtvPm0U5k1QdeB6Ya2afhSmpDWQX+rng7+eUdbbSEMX43gU6Ao2BgcBtwH+WX8IzZ2ajyN8OVwGLgWNhymJ2+0U5vljdfr8if49hR4S6WN1+0Y7vjLefN4tyJKkK8BxwHBhdTNlhoE6hnwv+fqgMo5WKaMZnZl+a2bbQ4aq/k/+voUHlGPOsmFmemb0HNAfuCVMSs9sPIo8vFrefpM5AH2BqFOUxt/1KMr6z2X4VfvcxXkgS8AzQBLjOzE4UU7oJ6AQsDP3cCdhjZvvLPuWZK8H4ijJAZRas7FQj/DH9mNx+YRQ3vqJiYfv1JP9k9fb8/0ypDVSV1N7MLitSG4vbryfRj6+o6LefmflUDhPwBPAhUDtCXSqwG2gP1APeBn4TdP5SHN+1QJPQ3y8GNgKTgs4fIXNj4NaC/xMCKUAO0D8etl8JxxeL268W0LTQ9D/AIqBRnGy/kozvjLdf4AOtDBPQMtTBc8nfzS2YBgMtQn9vUah+HLAHOAg8CyQEPYbSGl/oP+Q9oV9GX5K/G1w96DFEGF8jYBX5V5ocBP4ODA8ti4ftF/X4YnH7hRnvL4D58bL9SjK+s9l+/iBB55xzEfkJbueccxF5s3DOOReRNwvnnHMRebNwzjkXkTcL55xzEXmzcM45F5E3C+eccxF5s3DOORfR/wcY2f274mjMnwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "nsims_base = 50\n", + "cvs = []\n", + "ns = []\n", + "for i in range(10):\n", + " nsims = nsims_base * (2 ** i)\n", + " np.random.seed(0)\n", + " samples = np.random.uniform(size=(nsims, n_arm_samples, n_arms))\n", + " test_stats = simulator(g.theta_tiles, g.null_truth, samples)\n", + "\n", + " target_alpha = 0.2\n", + " cv_idx = int(np.floor((nsims + 1) * target_alpha))\n", + " nrejects_max = cv_idx - 1\n", + "\n", + "# sorted_stats = np.sort(test_stats, axis=-1)\n", + "# sim_cv = sorted_stats[:, -cv_idx]\n", + "# np.partition lets us do this in O(n) time instead of O(n log n)\n", + " partitioned_stats = np.partition(test_stats, nsims-cv_idx, axis=-1)\n", + " sim_cv = partitioned_stats[:, -cv_idx]\n", + " overall_cv = np.max(sim_cv)\n", + " typeI_sum = np.sum(partitioned_stats[:, -cv_idx:] > overall_cv, axis=1)\n", + " assert(np.all(typeI_sum <= nrejects_max))\n", + " ns.append(nsims)\n", + " cvs.append(overall_cv)\n", + "plt.plot(np.log10(ns), cvs, 'k-.')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# uniform_samples = np.random.uniform(size=(nsims, n_arm_samples, n_arms))\n", + "# theta_tiles = g.theta_tiles\n", + "# null_truth = g.null_truth\n", + "# test_fnc = lambda data: binomial_tuning.lookup(test_table, data[...,0])\n", + "\n", + "# max_sim_size, n_arm_samples, n_arms = uniform_samples.shape\n", + "# n_tiles = pointwise_alpha.shape[0]\n", + "\n", + "# p_tiles = jax.scipy.special.expit(theta_tiles)\n", + "# y = jnp.sum(uniform_samples[None] < p_tiles[:, None, None, :], axis=2)\n", + "# y_flat = y.reshape((-1, n_arms))\n", + "# n_flat = jnp.full_like(y_flat, n_arm_samples)\n", + "# data = jnp.stack((y_flat, n_flat), axis=-1)\n", + "# test_stat = test_fnc(data).reshape(y.shape)\n", + "\n", + "# max_null_test = jnp.max(\n", + "# jnp.where(\n", + "# null_truth[:, None],\n", + "# test_stat,\n", + "# np.min(test_stat, axis=-1, keepdims=True),\n", + "# ),\n", + "# axis=-1,\n", + "# )\n", + "\n", + "# temp_sim_size = nsims\n", + "# cv_idx = jnp.floor((temp_sim_size + 1) * pointwise_alpha).astype(int)\n", + "# nrejects_max = cv_idx - 1\n", + "# partitioned_stats = np.partition(\n", + "# max_null_test[:, :temp_sim_size], temp_sim_size - cv_idx, axis=-1\n", + "# )\n", + "# sim_cvs = partitioned_stats[np.arange(n_tiles), -cv_idx]\n", + "\n", + "# t1s = np.sum(max_null_test[:, :] > sim_cvs[:, None], axis=1)\n", + "# half_nsims = nsims // 2\n", + "# half_t1s = np.sum(max_null_test[:, :half_nsims] > sim_cvs[:, None], axis=1)\n", + "# err = np.abs(half_t1s - (t1s / 2))\n", + "# pct_err = err / half_t1s\n", + "# pct_err\n", + "# np.random.seed(seed)\n", + "# sim_cvs = binomial_tuning.chunked_tune(g, simulator, pointwise_alpha, [nsims // 2, nsims], n_arm_samples)\n", + "# overall_cv = np.max(sim_cvs[-1])\n", + "# overall_cv" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.6 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/research/adagrid/tuning.md b/research/adagrid/tuning.md new file mode 100644 index 00000000..70db4cb2 --- /dev/null +++ b/research/adagrid/tuning.md @@ -0,0 +1,314 @@ +--- +jupyter: + jupytext: + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.8 + kernelspec: + display_name: Python 3.10.6 ('base') + language: python + name: python3 +--- + +```python +import confirm.berrylib.util as util +util.setup_nb(pretty=False) + +import time +from scipy.special import logit, expit +import scipy.stats +import matplotlib.pyplot as plt +import matplotlib as mpl +import numpy as np +import jax.numpy as jnp +import warnings +import confirm.berrylib.fast_inla as fast_inla +import confirm.mini_imprint.binomial as binomial +import confirm.mini_imprint.binomial_tuning as binomial_tuning +import confirm.mini_imprint.grid as grid +import confirm.mini_imprint.execute as execute +from rich import print as rprint + +import jax +``` + +```python +n_arms = 3 +n_arm_samples = 35 +n_theta_1d = 16 +theta_min = -3.5 +theta_max = 1.0 + +null_hypos = [ + grid.HyperPlane(-np.identity(n_arms)[i], -logit(0.1)) for i in range(n_arms) +] +theta, radii = grid.cartesian_gridpts( + np.full(n_arms, theta_min), np.full(n_arms, theta_max), np.full(n_arms, n_theta_1d) +) +g_raw = grid.build_grid(theta, radii) +``` + +```python +g_raw.n_tiles +``` + +```python +fi = fast_inla.FastINLA(n_arms=n_arms) +test_table = binomial_tuning.build_lookup_table(n_arms, n_arm_samples, fi.test_inference) +``` + +```python + +simulator = binomial_tuning.binomial_tuner(lambda data: binomial_tuning.lookup(test_table, data[...,0])) +accumulator = binomial.binomial_accumulator( + lambda data, cv: binomial_tuning.lookup(test_table, data[..., 0]) > cv +) +``` + +```python +target_grid_cost = 0.001 +target_sim_cost = 0.001 +target_alpha = 0.15 +``` + +```python +g = grid.prune(grid.intersect_grid(g_raw, null_hypos)) +g.n_tiles +``` + +```python +iter_max = 50 +init_nsims = 2000 +g = grid.prune(grid.intersect_grid(g_raw, null_hypos)) +target_nsims = np.full(g.n_tiles, init_nsims) +tuning_unfinished = np.ones(g.n_tiles, dtype=bool) +sim_cvs = np.empty(g.n_tiles, dtype=float) +typeI_sum = np.empty(g.n_tiles, dtype=float) +hob_upper = np.empty(g.n_tiles, dtype=float) + +seed = 1 +for II in range(iter_max): + holderq = 6 + # TODO: partial update here, need to batch! + # TODO: just move this to the refinement code!! + pointwise_target_alpha = binomial.invert_bound( + target_alpha, g.theta_tiles, g.vertices, n_arm_samples, holderq + ) + + # TODO: combine the two simulator functions. + np.random.seed(seed) + updated_tiles = tuning_unfinished.copy() + while np.any(tuning_unfinished): + nsims = np.min(target_nsims[tuning_unfinished]) + this_iter = (target_nsims == nsims) & tuning_unfinished + sim_cvs[this_iter] = binomial_tuning.chunked_tune( + grid.index_grid(g, this_iter), + simulator, + pointwise_target_alpha[this_iter], + nsims, + n_arm_samples, + ) + tuning_unfinished[this_iter] = False + overall_cv = np.max(sim_cvs) + + np.random.seed(seed) + checking_unfinished = updated_tiles.copy() + while np.any(checking_unfinished): + nsims = np.min(target_nsims[checking_unfinished]) + this_iter = (target_nsims == nsims) & checking_unfinished + typeI_sum[this_iter] = execute.chunked_simulate( + grid.index_grid(g, this_iter), accumulator, overall_cv, nsims, n_arm_samples + ) + checking_unfinished[this_iter] = False + + # TODO: partial update here, systematic way to do this. + # TODO: jit zero_order_bound + typeI_est, typeI_CI = binomial.zero_order_bound(typeI_sum, target_nsims, 0.01, 1.0) + typeI_bound = typeI_est + typeI_CI + hob_upper = binomial.holder_odi_bound( + typeI_bound, g.theta_tiles, g.vertices, n_arm_samples, holderq + ) + sim_cost = typeI_CI + hob_theory_cost = target_alpha - pointwise_target_alpha + hob_empirical_cost = hob_upper - typeI_bound + + worst_tile = np.argmax(sim_cvs) + which_refine = ( + hob_theory_cost > max(0.9 * hob_theory_cost[worst_tile], target_grid_cost) + ) & ((hob_upper > 0.9 * hob_upper[worst_tile]) | (sim_cvs == sim_cvs[worst_tile])) + which_more_sims = (typeI_CI > max(0.9 * typeI_CI[worst_tile], target_sim_cost)) & ( + (typeI_bound > 0.9 * hob_upper[worst_tile]) | (sim_cvs == sim_cvs[worst_tile]) + ) + + report = dict( + II=II, + overall_cv=overall_cv, + n_tiles=g.n_tiles, + n_refine=np.sum(which_refine), + n_more_sims=np.sum(which_more_sims), + grid_cost=f"{hob_empirical_cost[worst_tile]:.4f}", + sim_cost=f"{sim_cost[worst_tile]:.4f}", + ) + rprint(report) + + # plt.figure(figsize=(4,4)) + # plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=typeI_est, s=20) + # plt.colorbar() + # plt.show() + + if np.sum(which_refine) > 0 or np.sum(which_more_sims) > 0: + target_nsims[which_more_sims] *= 2 + tuning_unfinished[which_more_sims] = True + + refine_tile_idxs = np.where(which_refine)[0] + refine_gridpt_idxs = g.grid_pt_idx[refine_tile_idxs] + # refine_target_nsims = target_nsims[refine_tile_idxs] + new_thetas, new_radii, unrefined_grid, keep_tile_idxs = grid.refine_grid( + g, refine_gridpt_idxs + ) + new_grid = grid.prune(grid.build_grid(new_thetas, new_radii, g.null_hypos)) + nearest_parent_tiles = scipy.spatial.KDTree(g.theta_tiles).query( + new_grid.theta_tiles, k=2 + ) + new_target_nsims = np.max(target_nsims[nearest_parent_tiles[1]], axis=1).astype( + int + ) + + old_g = g + g = grid.concat_grids(unrefined_grid, new_grid) + + target_nsims = np.concatenate([target_nsims[keep_tile_idxs], new_target_nsims]) + tuning_unfinished = np.concatenate( + [tuning_unfinished[keep_tile_idxs], np.ones(new_grid.n_tiles, dtype=bool)] + ) + typeI_sum = np.concatenate( + [typeI_sum[keep_tile_idxs], np.zeros(new_grid.n_tiles, dtype=float)] + ) + hob_upper = np.concatenate( + [hob_upper[keep_tile_idxs], np.empty(new_grid.n_tiles, dtype=float)] + ) + sim_cvs = np.concatenate( + [sim_cvs[keep_tile_idxs], np.zeros(new_grid.n_tiles, dtype=float)] + ) + else: + print("done!") + break + +%load_ext line_profiler +%lprun -T prof.txt -f grid.build_grid -f grid.prune -f binomial._calc_Cqpp -f f -f binomial_tuning.chunked_tune -f execute.chunked_simulate f() +``` + +```python +%matplotlib inline +plt.figure(figsize=(4,4)) +plt.title(r'pointwise $\alpha$') +plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=pointwise_target_alpha, s=20) +plt.colorbar() +plt.show() + +hob = binomial.holder_odi_bound( + np.full(g.n_tiles, pointwise_target_alpha), + g.theta_tiles, + g.vertices, + n_arm_samples, + holderq, +) +plt.figure(figsize=(4,4)) +plt.title(r'holder component of $\alpha$') +plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=hob - pointwise_target_alpha, s=20) +plt.colorbar() +plt.show() + +plt.figure(figsize=(4,4)) +plt.title(r'$\hat{f}(\lambda^{*})$') +plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=typeI_est, s=20) +plt.colorbar() +plt.show() +# plt.figure(figsize=(4,4)) +# plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=which_more_sims, s=20) +# plt.colorbar() +# plt.show() +``` + +```python +%matplotlib inline +plt.figure(figsize=(8,8)) +plt.scatter(g.theta_tiles[:,0], g.theta_tiles[:, 1], c=typeI_sum, s=20) +plt.colorbar() +plt.show() +``` + +```python +nsims_base = 50 +cvs = [] +ns = [] +for i in range(10): + nsims = nsims_base * (2 ** i) + np.random.seed(0) + samples = np.random.uniform(size=(nsims, n_arm_samples, n_arms)) + test_stats = simulator(g.theta_tiles, g.null_truth, samples) + + target_alpha = 0.2 + cv_idx = int(np.floor((nsims + 1) * target_alpha)) + nrejects_max = cv_idx - 1 + +# sorted_stats = np.sort(test_stats, axis=-1) +# sim_cv = sorted_stats[:, -cv_idx] +# np.partition lets us do this in O(n) time instead of O(n log n) + partitioned_stats = np.partition(test_stats, nsims-cv_idx, axis=-1) + sim_cv = partitioned_stats[:, -cv_idx] + overall_cv = np.max(sim_cv) + typeI_sum = np.sum(partitioned_stats[:, -cv_idx:] > overall_cv, axis=1) + assert(np.all(typeI_sum <= nrejects_max)) + ns.append(nsims) + cvs.append(overall_cv) +plt.plot(np.log10(ns), cvs, 'k-.') +plt.show() +``` + +```python +# uniform_samples = np.random.uniform(size=(nsims, n_arm_samples, n_arms)) +# theta_tiles = g.theta_tiles +# null_truth = g.null_truth +# test_fnc = lambda data: binomial_tuning.lookup(test_table, data[...,0]) + +# max_sim_size, n_arm_samples, n_arms = uniform_samples.shape +# n_tiles = pointwise_alpha.shape[0] + +# p_tiles = jax.scipy.special.expit(theta_tiles) +# y = jnp.sum(uniform_samples[None] < p_tiles[:, None, None, :], axis=2) +# y_flat = y.reshape((-1, n_arms)) +# n_flat = jnp.full_like(y_flat, n_arm_samples) +# data = jnp.stack((y_flat, n_flat), axis=-1) +# test_stat = test_fnc(data).reshape(y.shape) + +# max_null_test = jnp.max( +# jnp.where( +# null_truth[:, None], +# test_stat, +# np.min(test_stat, axis=-1, keepdims=True), +# ), +# axis=-1, +# ) + +# temp_sim_size = nsims +# cv_idx = jnp.floor((temp_sim_size + 1) * pointwise_alpha).astype(int) +# nrejects_max = cv_idx - 1 +# partitioned_stats = np.partition( +# max_null_test[:, :temp_sim_size], temp_sim_size - cv_idx, axis=-1 +# ) +# sim_cvs = partitioned_stats[np.arange(n_tiles), -cv_idx] + +# t1s = np.sum(max_null_test[:, :] > sim_cvs[:, None], axis=1) +# half_nsims = nsims // 2 +# half_t1s = np.sum(max_null_test[:, :half_nsims] > sim_cvs[:, None], axis=1) +# err = np.abs(half_t1s - (t1s / 2)) +# pct_err = err / half_t1s +# pct_err +# np.random.seed(seed) +# sim_cvs = binomial_tuning.chunked_tune(g, simulator, pointwise_alpha, [nsims // 2, nsims], n_arm_samples) +# overall_cv = np.max(sim_cvs[-1]) +# overall_cv +``` diff --git a/research/database/db_test.md b/research/database/db_test.md new file mode 100644 index 00000000..2e560267 --- /dev/null +++ b/research/database/db_test.md @@ -0,0 +1,152 @@ +--- +jupyter: + jupytext: + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.8 + kernelspec: + display_name: Python 3.10.5 ('confirm') + language: python + name: python3 +--- + +```python +import numpy as np +import pandas as pd +import sqlite3 +import pickle + +with open('../adagrid/4d/2090.pkl', 'rb') as f: + S = pickle.load(f) +# all_data = np.concatenate((S.db.data, S.sim_sizes[:, None], S.todo[:, None], S.g.grid_pt_idx[:, None], S.g.null_truth), axis=1) +# np.save('2090.npy', all_data) +``` + +```python +df = pd.DataFrame(S.db.data) +``` + +```python +rename_dict = dict() +for k, v in S.db.slices.items(): + if isinstance(v, slice): + for i in range(v.start, v.stop, 1 if v.step is None else v.step): + rename_dict[i] = k + '_' + str(i) + else: + rename_dict[v] = k +df.rename(columns=rename_dict, inplace=True) +``` + +```python +df['sim_sizes'] = S.sim_sizes +df['todo'] = S.todo +df['grid_pt_idx'] = S.g.grid_pt_idx +for d in range(S.g.d): + df[f'theta_{d}'] = S.g.thetas[S.g.grid_pt_idx, d] + df[f'radii_{d}'] = S.g.radii[S.g.grid_pt_idx, d] + +for i in range(S.g.null_truth.shape[1]): + df[f'null_truth_{i}'] = S.g.null_truth[:, i] +``` + +```python +df.head() +``` + +```python +%%time +RR = df['grid_pt_idx'].sample(frac=0.1) +``` + +```python +%%time +RR.shape, df['grid_pt_idx'].isin(RR).sum() +``` + +```python +df.columns +``` + +```python +all_data = np.load('2090.npy') +``` + +## SQLite + +```python + +con = sqlite3.connect('tutorial.db') +``` + +```python +con.execute("DROP TABLE tiles") +con.execute("CREATE TABLE tiles(a REAL, b REAL, c REAL)") +con.execute("CREATE INDEX 'tiles_ordering' ON tiles(b)") +con.commit() +``` + +```python +rows = all_data[:int(1e6),:3] +``` + +```python +%%time +con.executemany("INSERT INTO tiles VALUES (?, ?, ?)", rows) +con.execute('select count(*) from tiles').fetchall() +con.commit() +``` + +```python +%%time +np.array(con.execute('select * from tiles order by b limit 1000000').fetchall()) +``` + +```python +all_data[] +``` + +## duckdb + +```python +import duckdb +import pyarrow as pa +import pandas as pd +con = duckdb.connect(database=':memory:') +# con.execute("DROP TABLE tiles") +con.execute("CREATE TABLE tiles(a REAL, b REAL, c REAL)") +con.execute("CREATE INDEX tiles_ordering ON tiles(b)") +con.commit() +``` + +```python +%%time +tbl = pa.Table.from_pandas(pd.DataFrame(rows)) +con.execute('insert into tiles select * from tbl').fetchall() +``` + +```python +%%time +con.execute('select * from tiles order by b limit 1000000').fetchnumpy() +``` + +## redis?? + +```python +import redis +``` + +```python +r = redis.Redis(host='localhost', port=6379, db=0) +``` + +```python +r.set('foo', 'bar') +``` + +```python +r.get('foo') +``` + + diff --git a/research/lei/analyze.ipynb b/research/lei/analyze.ipynb new file mode 100644 index 00000000..2dc59a06 --- /dev/null +++ b/research/lei/analyze.ipynb @@ -0,0 +1,321 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analyze Upper Bound of Type I Error for Lei Example" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import jax\n", + "import os\n", + "import numpy as np\n", + "from confirm.mini_imprint import grid\n", + "from confirm.lewislib import grid as lewgrid\n", + "from confirm.lewislib import lewis\n", + "from confirm.mini_imprint import binomial" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Configuration used during simulation\n", + "params = {\n", + " \"n_arms\" : 4,\n", + " \"n_stage_1\" : 50,\n", + " \"n_stage_2\" : 100,\n", + " \"n_stage_1_interims\" : 2,\n", + " \"n_stage_1_add_per_interim\" : 100,\n", + " \"n_stage_2_add_per_interim\" : 100,\n", + " \"stage_1_futility_threshold\" : 0.15,\n", + " \"stage_1_efficacy_threshold\" : 0.7,\n", + " \"stage_2_futility_threshold\" : 0.2,\n", + " \"stage_2_efficacy_threshold\" : 0.95,\n", + " \"inter_stage_futility_threshold\" : 0.6,\n", + " \"posterior_difference_threshold\" : 0,\n", + " \"rejection_threshold\" : 0.05,\n", + " \"key\" : jax.random.PRNGKey(0),\n", + " \"n_pr_sims\" : 100,\n", + " \"n_sig2_sims\" : 20,\n", + " \"batch_size\" : int(2**20),\n", + " \"cache_tables\" : False,\n", + "}\n", + "size = 52\n", + "n_sim_batches = 500\n", + "sim_batch_size = 100" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# construct Lei object\n", + "lei_obj = lewis.Lewis45(**params)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# construct the same grid used during simulation\n", + "n_arms = params['n_arms']\n", + "lower = np.full(n_arms, -1)\n", + "upper = np.full(n_arms, 1)\n", + "thetas, radii = lewgrid.make_cartesian_grid_range(\n", + " size=size,\n", + " lower=lower,\n", + " upper=upper,\n", + ")\n", + "ns = np.concatenate(\n", + " [np.ones(n_arms-1)[:, None], -np.eye(n_arms-1)],\n", + " axis=-1,\n", + ")\n", + "null_hypos = [\n", + " grid.HyperPlane(n, 0)\n", + " for n in ns\n", + "]\n", + "gr = grid.build_grid(\n", + " thetas=thetas,\n", + " radii=radii,\n", + " null_hypos=null_hypos,\n", + ")\n", + "gr = grid.prune(gr)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# construct tile informations used during simulation\n", + "theta_tiles = gr.thetas[gr.grid_pt_idx]\n", + "p_tiles = jax.scipy.special.expit(theta_tiles)\n", + "tile_radii = gr.radii[gr.grid_pt_idx]\n", + "null_truths = gr.null_truth.astype(bool)\n", + "sim_size = 2 * n_sim_batches * sim_batch_size # 2 instances parallelized\n", + "sim_sizes = np.full(gr.n_tiles, sim_size)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# get type I sum and score\n", + "cwd = '.'\n", + "data_dir = os.path.join(cwd, '../data')\n", + "output_dir = os.path.join(data_dir, 'output_1')\n", + "typeI_sum = np.loadtxt(os.path.join(output_dir, 'typeI_sum.csv'), delimiter=',')\n", + "typeI_score = np.loadtxt(os.path.join(output_dir, 'typeI_score.csv'), delimiter=',')\n", + "output_dir = os.path.join(data_dir, 'output_2')\n", + "typeI_sum += np.loadtxt(os.path.join(output_dir, 'typeI_sum.csv'), delimiter=',')\n", + "typeI_score += np.loadtxt(os.path.join(output_dir, 'typeI_score.csv'), delimiter=',')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "delta = 0.025\n", + "n_arm_samples = int(lei_obj.unifs_shape()[0])\n", + "tile_corners = gr.vertices" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# construct Holder upper bound\n", + "d0, d0u = binomial.zero_order_bound(\n", + " typeI_sum=typeI_sum, \n", + " sim_sizes=sim_sizes, \n", + " delta=delta, \n", + " delta_prop_0to1=1,\n", + ")\n", + "typeI_bound = d0 + d0u\n", + "\n", + "total_holder = binomial.holder_odi_bound(\n", + " typeI_bound=typeI_bound, \n", + " theta_tiles=theta_tiles,\n", + " tile_corners=tile_corners,\n", + " n_arm_samples=n_arm_samples, \n", + " holderq=16,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# construct classical upper bound\n", + "total, d0, d0u, d1w, d1uw, d2uw = binomial.upper_bound(\n", + " theta_tiles,\n", + " tile_radii,\n", + " gr.vertices,\n", + " sim_sizes,\n", + " n_arm_samples,\n", + " typeI_sum,\n", + " typeI_score,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "# prepare bound components\n", + "\n", + "# classical\n", + "bound_components = np.array([\n", + " d0,\n", + " d0u,\n", + " d1w,\n", + " d1uw,\n", + " d2uw,\n", + " total,\n", + "]).T\n", + "\n", + "# holder\n", + "dummy = np.zeros_like(d0)\n", + "bound_components_holder = np.array([\n", + " d0,\n", + " d0u,\n", + " dummy,\n", + " dummy,\n", + " dummy,\n", + " total_holder,\n", + "]).T" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([-0.98076923, -0.94230769, -0.90384615, -0.86538462, -0.82692308,\n", + " -0.78846154, -0.75 , -0.71153846, -0.67307692, -0.63461538,\n", + " -0.59615385, -0.55769231, -0.51923077, -0.48076923, -0.44230769,\n", + " -0.40384615, -0.36538462, -0.32692308, -0.28846154, -0.25 ,\n", + " -0.21153846, -0.17307692, -0.13461538, -0.09615385, -0.05769231,\n", + " -0.01923077, 0.01923077, 0.05769231, 0.09615385, 0.13461538,\n", + " 0.17307692, 0.21153846, 0.25 , 0.28846154, 0.32692308,\n", + " 0.36538462, 0.40384615, 0.44230769, 0.48076923, 0.51923077,\n", + " 0.55769231, 0.59615385, 0.63461538, 0.67307692, 0.71153846,\n", + " 0.75 , 0.78846154, 0.82692308, 0.86538462, 0.90384615,\n", + " 0.94230769, 0.98076923]),\n", + " array([-0.98076923, -0.94230769, -0.90384615, -0.86538462, -0.82692308,\n", + " -0.78846154, -0.75 , -0.71153846, -0.67307692, -0.63461538,\n", + " -0.59615385, -0.55769231, -0.51923077, -0.48076923, -0.44230769,\n", + " -0.40384615, -0.36538462, -0.32692308, -0.28846154, -0.25 ,\n", + " -0.21153846, -0.17307692, -0.13461538, -0.09615385, -0.05769231,\n", + " -0.01923077, 0.01923077, 0.05769231, 0.09615385, 0.13461538,\n", + " 0.17307692, 0.21153846, 0.25 , 0.28846154, 0.32692308,\n", + " 0.36538462, 0.40384615, 0.44230769, 0.48076923, 0.51923077,\n", + " 0.55769231, 0.59615385, 0.63461538, 0.67307692, 0.71153846,\n", + " 0.75 , 0.78846154, 0.82692308, 0.86538462, 0.90384615,\n", + " 0.94230769, 0.98076923]))" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t2_uniques = np.unique(theta_tiles[:, 2])\n", + "t3_uniques = np.unique(theta_tiles[:, 3])\n", + "t2_uniques, t3_uniques" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# slice and save P, B\n", + "t2 = t2_uniques[25]\n", + "t3 = t3_uniques[20]\n", + "selection = (theta_tiles[:, 2] == t2) & (theta_tiles[:, 3] == t3)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "bound_dir = os.path.join(data_dir, 'bound')\n", + "if not os.path.exists(bound_dir):\n", + " os.makedirs(bound_dir)\n", + "\n", + "np.savetxt(f'{bound_dir}/P_lei.csv', theta_tiles[selection, :].T, fmt=\"%s\", delimiter=\",\")\n", + "np.savetxt(f'{bound_dir}/B_lei.csv', bound_components[selection, :], fmt=\"%s\", delimiter=\",\")\n", + "np.savetxt(f'{bound_dir}/B_lei_holder.csv', bound_components_holder[selection, :], fmt=\"%s\", delimiter=\",\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.5 ('confirm')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.5" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "b4c6ec5b2d6c7b38df115d547b82cd53ca25eea58d87299956d35a9dc79f19f1" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/research/lei/analyze.md b/research/lei/analyze.md new file mode 100644 index 00000000..7e1a307b --- /dev/null +++ b/research/lei/analyze.md @@ -0,0 +1,196 @@ +--- +jupyter: + jupytext: + text_representation: + extension: .md + format_name: markdown + format_version: '1.3' + jupytext_version: 1.13.8 + kernelspec: + display_name: Python 3.10.5 ('confirm') + language: python + name: python3 +--- + +# Analyze Upper Bound of Type I Error for Lei Example + +```python +%load_ext autoreload +%autoreload 2 +``` + +```python +import jax +import os +import numpy as np +from confirm.mini_imprint import grid +from confirm.lewislib import grid as lewgrid +from confirm.lewislib import lewis +from confirm.mini_imprint import binomial +``` + +```python +# Configuration used during simulation +params = { + "n_arms" : 4, + "n_stage_1" : 50, + "n_stage_2" : 100, + "n_stage_1_interims" : 2, + "n_stage_1_add_per_interim" : 100, + "n_stage_2_add_per_interim" : 100, + "stage_1_futility_threshold" : 0.15, + "stage_1_efficacy_threshold" : 0.7, + "stage_2_futility_threshold" : 0.2, + "stage_2_efficacy_threshold" : 0.95, + "inter_stage_futility_threshold" : 0.6, + "posterior_difference_threshold" : 0, + "rejection_threshold" : 0.05, + "key" : jax.random.PRNGKey(0), + "n_pr_sims" : 100, + "n_sig2_sims" : 20, + "batch_size" : int(2**20), + "cache_tables" : False, +} +size = 52 +n_sim_batches = 500 +sim_batch_size = 100 +``` + +```python +# construct Lei object +lei_obj = lewis.Lewis45(**params) +``` + +```python +# construct the same grid used during simulation +n_arms = params['n_arms'] +lower = np.full(n_arms, -1) +upper = np.full(n_arms, 1) +thetas, radii = lewgrid.make_cartesian_grid_range( + size=size, + lower=lower, + upper=upper, +) +ns = np.concatenate( + [np.ones(n_arms-1)[:, None], -np.eye(n_arms-1)], + axis=-1, +) +null_hypos = [ + grid.HyperPlane(n, 0) + for n in ns +] +gr = grid.build_grid( + thetas=thetas, + radii=radii, + null_hypos=null_hypos, +) +gr = grid.prune(gr) +``` + +```python +# construct tile informations used during simulation +theta_tiles = gr.thetas[gr.grid_pt_idx] +p_tiles = jax.scipy.special.expit(theta_tiles) +tile_radii = gr.radii[gr.grid_pt_idx] +null_truths = gr.null_truth.astype(bool) +sim_size = 2 * n_sim_batches * sim_batch_size # 2 instances parallelized +sim_sizes = np.full(gr.n_tiles, sim_size) +``` + +```python +# get type I sum and score +cwd = '.' +data_dir = os.path.join(cwd, '../data') +output_dir = os.path.join(data_dir, 'output_1') +typeI_sum = np.loadtxt(os.path.join(output_dir, 'typeI_sum.csv'), delimiter=',') +typeI_score = np.loadtxt(os.path.join(output_dir, 'typeI_score.csv'), delimiter=',') +output_dir = os.path.join(data_dir, 'output_2') +typeI_sum += np.loadtxt(os.path.join(output_dir, 'typeI_sum.csv'), delimiter=',') +typeI_score += np.loadtxt(os.path.join(output_dir, 'typeI_score.csv'), delimiter=',') +``` + +```python +delta = 0.025 +n_arm_samples = int(lei_obj.unifs_shape()[0]) +tile_corners = gr.vertices +``` + +```python +# construct Holder upper bound +d0, d0u = binomial.zero_order_bound( + typeI_sum=typeI_sum, + sim_sizes=sim_sizes, + delta=delta, + delta_prop_0to1=1, +) +typeI_bound = d0 + d0u + +total_holder = binomial.holder_odi_bound( + typeI_bound=typeI_bound, + theta_tiles=theta_tiles, + tile_corners=tile_corners, + n_arm_samples=n_arm_samples, + holderq=16, +) +``` + +```python +# construct classical upper bound +total, d0, d0u, d1w, d1uw, d2uw = binomial.upper_bound( + theta_tiles, + tile_radii, + gr.vertices, + sim_sizes, + n_arm_samples, + typeI_sum, + typeI_score, +) +``` + +```python +# prepare bound components + +# classical +bound_components = np.array([ + d0, + d0u, + d1w, + d1uw, + d2uw, + total, +]).T + +# holder +dummy = np.zeros_like(d0) +bound_components_holder = np.array([ + d0, + d0u, + dummy, + dummy, + dummy, + total_holder, +]).T +``` + +```python +t2_uniques = np.unique(theta_tiles[:, 2]) +t3_uniques = np.unique(theta_tiles[:, 3]) +t2_uniques, t3_uniques +``` + +```python +# slice and save P, B +t2 = t2_uniques[25] +t3 = t3_uniques[20] +selection = (theta_tiles[:, 2] == t2) & (theta_tiles[:, 3] == t3) +``` + +```python +bound_dir = os.path.join(data_dir, 'bound') +if not os.path.exists(bound_dir): + os.makedirs(bound_dir) + +np.savetxt(f'{bound_dir}/P_lei.csv', theta_tiles[selection, :].T, fmt="%s", delimiter=",") +np.savetxt(f'{bound_dir}/B_lei.csv', bound_components[selection, :], fmt="%s", delimiter=",") +np.savetxt(f'{bound_dir}/B_lei_holder.csv', bound_components_holder[selection, :], fmt="%s", delimiter=",") +``` diff --git a/research/lei/download_data.sh b/research/lei/download_data.sh new file mode 100755 index 00000000..62caf74e --- /dev/null +++ b/research/lei/download_data.sh @@ -0,0 +1,10 @@ +#!/bin/bash + +# directory where current shell script resides +PROJECTDIR=$(dirname "$BASH_SOURCE") +cd "$PROJECTDIR" +cd .. +mkdir -p data +cd data +aws s3 cp s3://imprint-dump/output_lei4d/ output_1/ --recursive +aws s3 cp s3://imprint-dump/output_lei4d2/ output_2/ --recursive \ No newline at end of file diff --git a/research/lei/lei.ipynb b/research/lei/lei.ipynb index 3bb3f140..b296cdce 100644 --- a/research/lei/lei.ipynb +++ b/research/lei/lei.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -12,14 +12,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/opt/conda/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + "/Users/tbent/.mambaforge/envs/confirm/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } @@ -181,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -198,9 +198,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "DeviceArray([0.01431 , 0.01442 , 0.95712996], dtype=float32)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "d = 4\n", "mean = jnp.array([2, 2, 2, 5])\n", @@ -219,7 +230,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -231,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -253,7 +264,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -274,7 +285,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -291,9 +302,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "DeviceArray([0.03982225, 0.45002747, 0.47545388], dtype=float64)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "n_sims = 13\n", "out = pr_best(data, sig2_rule, sig2_rule_ops, key, n_sims)\n", @@ -325,7 +347,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -335,9 +357,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "DeviceArray(0.47249139, dtype=float64)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "def posterior_difference(data, arm, sig2_rule, sig2_rule_ops, thresh):\n", " n_arms, _ = data.shape\n", @@ -403,7 +436,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -434,7 +467,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -507,9 +540,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 2.24 s, sys: 43.5 ms, total: 2.29 s\n", + "Wall time: 2.26 s\n" + ] + }, + { + "data": { + "text/plain": [ + "DeviceArray(0.36100003, dtype=float32)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "%%time\n", "jax.jit(lambda data, p, key, best_arm, non_futile_idx:\n", @@ -520,9 +572,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIklEQVR4nO3deXhU9b3H8fd3JoRAdhJCQgiEVQEFhICAC1I3tLXctj5eUWtFKfWq1V611vapWuV2sWJbbVVK3Wpttb3XBWoRtaJCBYSA7IiGsCQkQBIggUC2Od/7RwZNIZAhmcyZ5ft6nnmYOcucz3lIvhx+53d+P1FVjDHGRC+P2wGMMcZ0Liv0xhgT5azQG2NMlLNCb4wxUc4KvTHGRLk4twO0JjMzU/Pz892OYYwxEWPVqlWVqtqztXVhWejz8/MpLCx0O4YxxkQMEdlxonXWdGOMMVHOCr0xxkQ5K/TGGBPlrNAbY0yUs0JvjDFRzgq9McZEOSv0xhgT5azQG2M6hc/x0eg0uh3DEKYPTBljIsf+uv2s3rOaVXtX8dn+zyg5WELlkUrqffUAJHgTSO2aSn5qPoPTBlOQXcDZ2WeTFJ/kcvLYYYXeGHPKquureWv7WyzcvpDC3YUoSrwnniHpQxjRcwTZ3bPpFtcNj3iobaylqq6K4gPFvPLZK7y4+UXiJI7z+pzHNwZ/g3Nzz8Xr8bp9SlHNCr0xJmDbq7fz4uYXmb91PkeajpCfks93Rn6Hib0nMjxjOPHe+JPu3+hrZE3FGj4o+YA3it/gvZL3yE/J5+aRNzMlf4oV/E4i4TiVYEFBgdpYN8aEj921u3lyzZPM2zoPr3j58oAvM+30aQztMRQRadd3NjqNLNq5iN+v+z2f7f+MoT2G8sCEBxieOTzI6WODiKxS1YJW11mhN8acSL2vnrnr5vLHjX/EUYerT7+aG8+4kcxumUE7hqMOC7ctZHbhbKrqqrh+2PXcftbtdPF2CdoxYsHJCr013RhjWrVy90oeWvYQ22u2c3n/y7l99O3kJuUG/Tge8XD5gMs5r895/GrVr3h+4/Os3rOa2ZNmk5OUE/TjxSLrXmmM+TcNvgZ+seIX3PjWjTQ6jcy9eC4Pn/9wpxT5lpLjk3lgwgM8OulRtlZv5ao3rmLN3jWdesxYYYXeGPO5HTU7uG7Bdfx585+5dui1vDb1NSb0nhDSDJfkX8LLX36ZlPgUZrw9g0U7F4X0+NGozUIvInki8p6IbBaRjSJyRyvbiIg8LiJFIrJOREa3WDdFRLb4190b7BMwxgTH29vf5qq/X8WuQ7t4fPLj3DvuXrrFdXMlS35qPn+6/E8MSR/Cf7//3yzcttCVHNEikCv6JuAuVR0KjAduFZFhx2xzGTDY/5oJPAUgIl7gCf/6YcC0VvY1xrhIVXlq7VPc9cFdDEofxP9d8X9M7jvZ7Vj0SOjB05c8zVlZZ3Hvknt5Z8c7bkeKWG0WelUtV9XV/vcHgc3AsY11U4EXtNlyIE1EcoBxQJGqFqtqA/Cyf1tjTBioa6rjB4t/wJNrnuSKAVfw3KXPhdUN0O5duvPEhU9wZuaZ3PPBPSzdtdTtSBHplNroRSQfOAv46JhVuUBJi8+l/mUnWt7ad88UkUIRKayoqDiVWMaYdqhpqOE773yHN7e/yR2j7+Cn5/60zQee3JDYJZEnL3qSAWkDuPODO/ls/2duR4o4ARd6EUkCXgG+p6o1x65uZRc9yfLjF6rOVdUCVS3o2bPVicyNMUFSdaSKm966iXWV63hk0iPMOHNGux98CoXk+GSeuPAJEuMSueXdW6g8Uul2pIgSUKEXkS40F/k/q+qrrWxSCuS1+NwHKDvJcmOMS8oPlXPDwhvYXr2d337pt0zJn+J2pIBkJ2bzuwt/R3V9Nd//4Ps0OU1uR4oYgfS6EeAZYLOq/uoEm80Hrvf3vhkPVKtqObASGCwi/UUkHrjav60xxgW7Du3iWwu/RdWRKuZeMpdzc891O9IpGZoxlPvG30fhnkKeWPOE23EiRiBPxp4DfBNYLyJr/Mt+BPQFUNU5wALgcqAIOAxM969rEpHbgLcAL/Csqm4M5gkYYwKzu3Y3N711E7WNtTxz6TMMzRjqdqR2uWLgFazas4qn1zf3yDm/z/luRwp7NtaNMVFm2TN3H7fsAPXM9q6ghgbu9BWQT2pQjjXhptlB+Z5TVe+r57oF17Gndg+vTX2NjG4ZruQIJzbWjTExrIZ6fu1dSTX1fC+IRT7Ujv0H7Goy+B/vp/z3y1dxszMKabXvR/u49Q9YZ7FCb0wUq6OJx7yrqOQId/jGMJC0oH5/a/97CJXeJDHVGcQr3k9ZoeWcrb1dyxLubKwbY6JUEw5zPGvYxSFudkYxhB5uRwq6izWfAZrGS57NHKDe7Thhywq9MVFIUV7wbGSTp4pvOsM5U6Pz2RQPwg2+M2jAxyueLW7HCVtW6I2JQq97PmO5p4ypvkGco507vLDbsknkUu3PR55ytsg+t+OEJSv0xkSZJVLCm55tnO/04XId4HackJjiDCBDu/EXzyaacNyOE3as0BsTRQp3F/Jnz2aGOxlMc4YGtSdKOOuKl/90TqdcalkkO92OE3as0BsTJXYd2sWd799JT7rzbWck3hj79R6pPTnDyeQfnq0cosHtOGEltn4SjIlStY21fHfRd2nSJm7znUV3Ym9ibUH4hjOEOpp401PsdpywYoXemAjnqMMPl/yQ4gPFzJ40m14kuh3JNbkkM0FzeU92UskRt+OEDSv0xkS4p9Y+xXsl7/H9sd9nYu+Jbsdx3VRnEIIwz2Pj1h9lhd6YCLakdAlz1s5h6sCpXHP6NW7HCQvpJHCh9uMjTzmlHHQ7TliwQm9MhCo7VMYP//VDTks/jR+P/3FYTxwSapc6+SSolwXWVg9YoTcmIjX4Grjz/TvxOT5+dcGvSIhLcDtSWEkknsnaj1WymzIOuR3HdVbojYlAv1z5SzZWbeR/zv0f+qb0dTtOWLrY6Uc8XhZ4trodxXVW6I2JMH/f+nf+uuWvTB8+nQv7Xuh2nLCVRDyTtS8rZTflMX5VH8hUgs+KyF4R2XCC9d8XkTX+1wYR8YlID/+67SKy3r/OZhIxpoOKDxQza/ksxvQaw+2jb3c7Tti72MmnC14Wera5HcVVgVzRPw+ccPZgVX1EVUep6ijgh8AHqtpyZKHJ/vWtznxijAlMva+eexbfQ4I3gV+e/0viPDadRFuSiedczWWFlHOAOrfjuKbNQq+qi4FAh4SbBrzUoUTGmFb9ZtVv2LJ/C7POmUVW9yy340SMC51+OCiLPLE7Bk7Q2uhFpDvNV/6vtFiswNsiskpEZrax/0wRKRSRwoqKimDFMiYqLC5dzIubX+Sa069hUt4kt+NElJ505yztxWIpoY4mt+O4Ipg3Y68APjym2eYcVR0NXAbcKiInnK5dVeeqaoGqFvTsGZ2TJBjTHhWHK7jvw/sYkj6EOwvudDtORLrEyeewNPGh7HI7iiuCWeiv5phmG1Ut8/+5F3gNGBfE4xkT9Rx1+NG/fsThxsP88vxf0tXb1e1IEWkAaQzUNN717MBB3Y4TckEp9CKSCkwC5rVYligiyUffA5cArfbcMca07o8b/8jy8uXcM+4eBqYNdDtORLvI6UelHGGDxF7TcJu37UXkJeACIFNESoEHoHkMVFWd49/sa8DbqlrbYtdewGv+x7LjgL+o6sLgRTcmum2q2sTjqx/nor4XceXgK92OE/FGahap2pX3pYQRGls3s9ss9Ko6LYBtnqe5G2bLZcXAyPYGMyaW1fvq+dGSH9EjoQc/mfgTG8cmCOLwcJ724R+ylUoOk0l3tyOFjHXENSYElj1z9ylt/7+eLWz1bOcO3xg2vTirk1LFnvOcPizwFrPYU8rXnSFuxwkZGwLBmDDzKfv4p2xnkpPHcM10O05USSeBkdqTf0kpjTE0ibgVemPCSB1NPOfdQAbd+EYMXXGG0iTN45A0slp2ux0lZKzQGxNG/tezhX0c4UbfmSRYy2qnOF0zyNLuLPaUuh0lZKzQGxMm1ksFSzylXKL5DCLd7ThRy4NwjpPLZ7KfvdS2vUMUsEJvTBg4RAN/9GygtybxVWew23Gi3njtjSgs85S5HSUkrNAbEwb+4tlMLY3c5DuTLvZr2enSSWCYZrJUymLiSVn7iTLGZatkN4We3XzFGUgeKW7HiRkTtTf7pY4tEujgvJHLCr0xLjpEAy95NtNXU7hU+7sdJ6aM0iy6aRxLY2CgMyv0xrjob54tHKKRb/mGE2e/jiHVBS/jNIfVsocjUT58sf1kGeOS9VLBck8Zl2l/a7JxyUSnN43iUBjlfeqt0BvjgiM08aJnEzmayOWOjUrplnxS6aXdWSnlbkfpVFbojXHBK54tHKCOb/nOsF42LhKEsZrDFtnHAerdjtNp7CfMmBD7RKpY7CnlIs1nAGlux4l5Y51sVJp7P0UrK/TGhFA9Tbzg2UiWduerziC34xgghyT6aDIrPTFc6EXkWRHZKyKtzg4lIheISLWIrPG/7m+xboqIbBGRIhG5N5jBjYlEr3uKqJQjXO8bTle8bscxfmOdbIrlAJUccTtKpwjkiv55YEob2yxR1VH+10MAIuIFnqB5YvBhwDQRGdaRsMZEsq0cYJHs4AInjyH0cDuOaWGsZgNQGKU3Zdss9Kq6GGjPo2PjgCJVLVbVBuBlYGo7vseYiNeIwx+9G0gnIaYmvIgUmXSnv6ZGbfNNsNroJ4jIWhF5U0SG+5flAiUttin1LzMm5iyUYnZLLdc5w2z44TA11smmRA6yOwpHtAxGoV8N9FPVkcBvgdf9y1ub5PKEoweJyEwRKRSRwoqK2Jul3USvbdXbeNNTzDgnmzO0p9txzAmM8TfffCx7XE4SfB0u9Kpao6qH/O8XAF1EJJPmK/i8Fpv2AU44JqiqzlXVAlUt6NnTfhlMdFBVZi2fRTxernJOdzuOOYl0EsjXVFZ7rNAfR0SyxT9FvYiM839nFbASGCwi/UUkHrgamN/R4xkTSeZvnc/K3Sv5hjOEFLq6Hce04Swnix1Sw+7a6GqrD6R75UvAMuA0ESkVkZtE5GYRudm/yZXABhFZCzwOXK3NmoDbgLeAzcDfVHVj55yGMeFnf91+ZhfO5qysszhH+7gdxwRgtPYC4N2d77qcJLjavCukqtPaWP874HcnWLcAWNC+aMZEtkcLH+VQwyHuH38/Fa/OcTuOCUAvEsnRRN7d+S7XDr3W7ThBY0/GGtMJVpSvYN7WeUw/YzqD0u0J2EgyWnuxas8q9tftdztK0FihNybI6n31zFo+iz5JfZg5YqbbccwpGuX0wlGH90vedztK0FihNybInln/DNtrtnPf+PtIiEtwO445RX1Jpndi76hqp7dCb0wQFVcX8/T6p7m8/+VMzJ3odhzTDoLwpb5fYlnZMg43HnY7TlBYoTcmSFSVWctm0S2uG/eMvcftOKYDJuVNosFp4KPyj9yOEhRW6I0Jknlb51G4p5A7x9xJRrcMt+OYDhiTNYbELoks3rXY7ShBYYXemCDYV7eP2YWzGZ01mq8N/prbcUwHdfF2YWLviSwpXYLqCUduiRhW6I0JgkcLH6W2sZb7J9yPR+zXKhqcl3seew7v4dP9n7odpcPsJ9KYDvqo/CPmb53P9OHTGZhmE31Hi/P6nAfAB6UfuJyk46zQG9MBR/vM903ua33mo0xmt0yGZwxncWnkt9NboTemA55e/zQ7anbw4/E/tj7zUej8PuezrmJdxD8la4XemHY62mf+KwO+woTeE9yOYzrBpD6TUJR/7fqX21E6xAq9Me3gqMNDyx6ie1x37i642+04ppMMzRhKZrdMlpQucTtKh1ihN6Yd5hXNY9WeVdxVcJf1mY9iHvEwsfdElpUvw1HH7TjtZoXemFNUdaTq8z7z/zHoP9yOYzrZhN4TOFB/gM37Nrsdpd2s0Btzih4tfJTDTYetz3yMGJ8zHoBlZctcTtJ+gcww9ayI7BWRDSdYf62IrPO/lorIyBbrtovIehFZIyKFwQxujBuWly/n78V/58YzbrQ+8zEis1smp6WfFt2FHngemHKS9duASao6ApgFzD1m/WRVHaWqBe2LaEx4qPfVM2uZ9ZmPRRN7T2T13tURO5plm4VeVRcD+06yfqmqHu1kuhywyTFNVPrDuj+w8+BO7ptwH129NtF3LBnfezxNThOr9qxyO0q7BLuB8SbgzRafFXhbRFaJyEkvgURkpogUikhhRUVFkGMZ0zFbD2zlmQ3PcMWAKz5vszWxY3TWaLp6u7K0bKnbUdqlzcnBAyUik2ku9Oe2WHyOqpaJSBbwjoh84v8fwnFUdS7+Zp+CgoLIHy7ORI2jfeYTuyRy91jrMx+LEuISGJ01muXly92O0i5BuaIXkRHA08BUVa06ulxVy/x/7gVeA8YF43jGhNLrRa+zeu9q7hpzFz0Sergdx7hkYu+JFB0oYk/tHrejnLIOF3oR6Qu8CnxTVT9tsTxRRJKPvgcuAVrtuWNMuKo6UsWjhY8yptcY6zMf444OcxGJV/WBdK98CVgGnCYipSJyk4jcLCI3+ze5H8gAnjymG2Uv4F8ishZYAfxDVRd2wjkY02lmF85u7jM//n5ExO04xkWD0weTkZARke30bbbRq+q0NtbPAGa0srwYGHn8HsZEhmVly3ij+A1uHnkzA9IGuB3HuMwjHs7OOZsVu1egqhH1D7891mdMK+qa6pi1fBb9Uvox48zjrmNMjBqbPZbKI5Vsr9nudpRTYoXemFbMXTeXkoMl3Dfe+sybL4zNHgvAyt0rXU5yaqzQG3OMov1FPLfhOb468KucnXO223FMGOmb3Jes7lkU7o6sEV2s0BvTgqMODy57kKT4JBtn3hxHRBibPfbzdvpIYYXemBZe+ewV1lSs4a6Cu0hPSHc7jglDY3uNpaquim0129yOEjAr9Mb4VR6p5NeFv2Zc9jimDpzqdhwTpo6200dS840VemP8Hl7xMHW+Ou4bf19EdZ0zoZWXnEev7r0i6oasFXpjgCWlS1i4fSHfHvFt8lPz3Y5jwtjRdvqVu1dGTDu9FXoT8w43HuanH/2U/qn9uemMm9yOYyLA2Gx/O311ZLTTW6E3MW/O2jnsOrSL+8ffT7w33u04JgKM7RVZ/emt0JuY9sm+T3hh0wt8ffDXKci2SdBMYPok9yE7MZsVu1e4HSUgVuhNzPI5Ph5a9hCpXVO5c8ydbscxEUREKOhVwOq9qyOind4KvYlZf93yV9ZXrueesfeQ2jXV7TgmwpyVdRaVRyopPVjqdpQ2BW2GKWMiyZ7aPTy+8hGGORmkv7eIZe+953YkE2HOyjoLgI8rPiYvJc/lNCdnV/QmJv18xc9pQrnGGYZgfebNqRuYNpDk+GRW71ntdpQ2BTLxyLMisldEWp0dSpo9LiJFIrJOREa3WDdFRLb4190bzODGtNeinYt4d+e73JxyBll0dzuOiVAe8TCq5yg+3vux21HaFMgV/fPAlJOsvwwY7H/NBJ4CEBEv8IR//TBgmogM60hYYzqqtrGWn330MwalDeJbKUPdjmMi3OheoymuLuZA3QG3o5xUIDNMLRaR/JNsMhV4QZtvPS8XkTQRyQHygSL/TFOIyMv+bTd1OLWJasue6bxRI1/ybGav7OGGmnwKK/d32nFMbBjVcxQAayrWcEHeBa5mOZlgtNHnAiUtPpf6l51ouTGuKGI/78tOJmtfBpLmdhwTBc7IPIM4T1zYN98Eo9C3didLT7K89S8RmSkihSJSWFFREYRYxnyhER8veDeSTgL/4Qx2O46JEglxCQzLGBYThb4UaNm3qA9QdpLlrVLVuapaoKoFPXv2DEIsY76wwFPMbqnlOmcYCdar2ATR6KzRbKjcQL2v3u0oJxSMQj8fuN7f+2Y8UK2q5cBKYLCI9BeReOBq/7bGhFQpB3lTtjHe6c0ZahcRJrhGZY2i0WlkU1X43n5s89JGRF4CLgAyRaQUeADoAqCqc4AFwOVAEXAYmO5f1yQitwFvAV7gWVXd2AnnYMwJ+XD4o3cDiXThKuc0t+OYKHT0wanVe1Z//j7cBNLrZlob6xW49QTrFtD8D4ExrnhXdrJDavi2bwRJ2MiUJvh6JPQgPyWfNXvXuB3lhOzJWBO19nKYeZ7PGOn0pECz3Y5jotiorFGsqVgTtgOcWaE3UUlRXvRsxIvHhjkwnW5EzxEcqD8QtgOcWaE3UelD2cUnnn1c6QwhnQS345goNyJzBABrK9e6nKR1VuhN1DlAHf/r2cIQTedc7eN2HBMDBqYNpFtcN9ZXrHc7SqusQ7GJKorykmczTTh80zccjzXZmHZozzAced4Elm7+B8s2VJ3SfhNumn3KxzpVdkVvospK2c3Hnr181RlELxLdjmNiSH9NpYQaGvG5HeU4VuhN1Kimnpc8mxmgqVys+W7HMTGmv6bhE6WEg25HOY4VehMVmnvZbKIBHzf4zrQmGxNyA7R5OsptUu1ykuNZoTdRYYWUs9azl6nOYLKtyca4II0E0jWBYjngdpTjWKE3Ee8Adbzk2cxATeMi7ed2HBPD+muqXdEbE2xHm2wacbjBd4Y12RhXDdBUKuUINYTXSJZW6E1EWy5lrPNU8DVnsPWyMa7rr2lA+LXTW6E3EWs/dbzs+YRBmsaXrMnGhIG+pOBRsUJvTDAoyp88G2myJhsTRrriJZcktmGF3pgO+1B2scFTydedIWRZk40JIwM0jW1SjXPimVNDzgq9iTgVHOavnk8YoulM1r5uxzHm3/TTFOqkiQoOux3lcwEVehGZIiJbRKRIRO5tZf33RWSN/7VBRHwi0sO/bruIrPevKwz2CZjY4qA8612PIEy3B6NMGOqnKQDskBqXk3yhzUIvIl7gCeAyYBgwTUSGtdxGVR9R1VGqOgr4IfCBqu5rsclk//qC4EU3sWihbGOrHOAaZygZdHM7jjHHySGJOPVEVqEHxgFFqlqsqg3Ay8DUk2w/DXgpGOGMaWkH1cz3FFHgZHO25rgdx5hWxeEhj2R2hFHPm0AKfS5Q0uJzqX/ZcUSkOzAFeKXFYgXeFpFVIjLzRAcRkZkiUigihRUVFQHEMrGkHh/PeNeTQjzXOkNtxigT1vppCjupCZsbsoEU+tZ+o06U/grgw2Oabc5R1dE0N/3cKiLnt7ajqs5V1QJVLejZs2cAsUwsedXzKbullhucM0m0Sb5NmOunqdSJj71hckM2kEJfCuS1+NwHKDvBtldzTLONqpb5/9wLvEZzU5AxAdsolbzn2cmFTl+GaYbbcYxp0xc3ZMOj+SaQQr8SGCwi/UUknuZiPv/YjUQkFZgEzGuxLFFEko++By4BNgQjuIkNh2jgec8GcjSRrzlD3I5jTEBySKSLetgeJjdk25xKUFWbROQ24C3ACzyrqhtF5Gb/+jn+Tb8GvK2qtS127wW8JiJHj/UXVV0YzBMw0evo06+HaOB232ji8bodyZiAePGQRwo7I6XQA6jqAmDBMcvmHPP5eeD5Y5YVAyM7lNDErA+khI89e7nSN4Q8UtyOY8wpydcUPpRdOKjrz3vYk7EmLJVykL95tjDcyeQimxbQRKC+mkK9+NhNbdsbdzIr9Cbs1NPEH7xr6U4c0x0bsMxEpnz/1ILh8OCUFXoTdv7q+YTd1HKjM4IUurodx5h2ySaRePWGRc8bK/QmrCzctpB/eXYxRftbV0oT0TyI/wlZu6I35nOlB0t5cNmDDNA0rnAGuR3HmA7rpymUcND1J2St0Juw0Ohr5AeLf4AgzPCNIM5+NE0U6KspNIiPPS7fkLXfJhMWfrXqV6yrXMdPJv6ETBuV0kSJPE0GoEQOuprDCr1x3cLtC3lx84tcN/Q6Lsm/xO04xgRNDkl4VSi1Qm9iWXF1MQ98+AAje47kzjF3uh3HmKCKw0NvkijB3RuyVuiNaw43Huau9++iq7crsyfNpou3i9uRjAm6PE1mpxxEXbwha4XeuEJVeWj5Q2w9sJWHz3+Y7MRstyMZ0ynyNIWD0kA1Da5lsEJvXPG3LX/jH8X/4NZRtzKh9wS34xjTab64Iete840VehNy6yvW8/DKhzkv9zy+PeLbbscxplP1obnQl+LeDVkr9CakKg5X8L33vkdW9yx+du7P8Ij9CJro1p0uZGo3V7tYBjRMsTHB0OBr4Hvvf4+DjQd58eIXSUtIczuSMSHRfEPWmm5MlFNVZi2fxbqKdfz03J8yJN1mizKxI09TqOAwdTS5cvyAruhFZArwGM0zTD2tqr84Zv0FNE8huM2/6FVVfSiQfU1kWPbM3R3af5Hs4HXvJ3zZGUDSP99iGW8FKZkx4S+PZFRgFwcZSHrIj99moRcRL/AEcDHNE4WvFJH5qrrpmE2XqOpX2rmviWKfSBV/82xhpNPTBiszManlUAgDNfSFPpCmm3FAkaoWq2oD8DIwNcDv78i+JgpUcJjfe9bSi+7c6IywSURMTEongUTt4lo7fSCFPhcoafG51L/sWBNEZK2IvCkiw09xX0RkpogUikhhRUVFALFMuKulkce9qwG4xXcW3ezev4lRgpCnya71vAmk0Ld2CXbss7yrgX6qOhL4LfD6KezbvFB1rqoWqGpBz549A4hlwlkTDk95PqaKw9ziO4teJLodyRhX5ZHCLg7hwwn5sQMp9KVAXovPfYCylhuoao2qHvK/XwB0EZHMQPY10UdR/uTZyKee/XzLOYPBLtx8Mibc5GoSTeKwl8MhP3YghX4lMFhE+otIPHA1ML/lBiKSLSLifz/O/71Vgexros8CKWaZp4yv+gZytvZ2O44xYSHXf0N2lxwK+bHbbDRV1SYRuQ14i+Yuks+q6kYRudm/fg5wJfBfItIEHAGuVlUFWt23k87FhIEVUs48bxHjnd58WQe6HceYsJFDIqKwSw5SoKEdxC+gu2P+5pgFxyyb0+L974DfBbqviU6fSBXPe9YzRNP5pjMcsR42xnwuHi9ZJFJK6K/o7clYExQ7qeFJz8dkkch/+UbRxX60jDlOH01ilws9b+y30XTYXmp5zLuK7nThDt8YEol3O5IxYSlXk6mUIyEfCsEKvemQA9TzG+8qFOV7vgLSSXA7kjFhK5ckAMpC3Hxjhd6022EaedxbyEEauN03hmzrK2/MSbnV88YKvWmXOpr4rXc15dTyX84o8kl1O5IxYS+TbnRVb8jb6a3Qm1NW7y/y26hmhjOCYZrpdiRjIoIHIYckdlnTjQlnDfh4wvMxReznRudMxoS4P7Axke5ozxttfTSYTmGF3gSsEYenPGvYIvu4wTmDcZrjdiRjIk6uJnNIGqmhIWTHtEJvAtKEw+89a9joqeQ6ZzgTtNVBSI0xbTja8yaU7fRW6E2b6prqeNLzMes8FVzjG8p52sftSMZErKM9b0L5hKwVenNShxsPc+u7t7JRKrnON4wLtK/bkYyJaMnEk6LxIb2it5kgzAnVNNRwyz9vYUPlBqY7ZzLeRqI0JihyNTmkfentit60an/dfma8NYONVRuZPWm2FXljgiiXJMo5hBOinjdW6M1xSg+Wcv2b11NcXcxjkx/jon4XuR3JmKjSR5NpDOEkJNZ0Y/7NpqpN3PLPW2h0Gpl78VxG9xrtdiRjok6uhrbnTUBX9CIyRUS2iEiRiNzbyvprRWSd/7VUREa2WLddRNaLyBoRKQxmeBNcS3ctZfrC6cR74/nTZX+yIm9MJ8kmCVEoD1HPmzav6EXECzwBXEzzHLArRWS+qm5qsdk2YJKq7heRy4C5wNkt1k9W1cog5jZBNq9oHj9Z+hMGpA3gqYueIqt7ltuRjIlaXfGSQTfKpDYkxwuk6WYcUKSqxQAi8jIwFfi80Kvq0hbbL6d5EnATAXyOj8dWP8ZzG5/j7Oyz+fXkX5Mcn+x2LGOiXo4mUR6injeBNN3kAiUtPpf6l53ITcCbLT4r8LaIrBKRmSfaSURmikihiBRWVFQEEMt01MGGg9y26Dae2/gc/3naf/LUxU9ZkTcmRHJIZA+1NDmdPwlJIFf0rU382WqfIBGZTHOhP7fF4nNUtUxEsoB3ROQTVV183BeqzqW5yYeCgoLQjfYTo3bU7OC7i75LSU0J942/j6tOu8rtSMbElN6aRJNHKT1YSn5qfqceK5Ar+lIgr8XnPkDZsRuJyAjgaWCqqlYdXa6qZf4/9wKv0dwUZFy0aOcipv1jGvvr9jP3krlW5I1xQY42T9SztXprpx8rkEK/EhgsIv1FJB64GpjfcgMR6Qu8CnxTVT9tsTxRRJKPvgcuATYEK7w5NY1OI4+sfIQ73ruDvOQ8XvryS4zNHut2LGNiUo5/cLPiA8Wdfqw2m25UtUlEbgPeArzAs6q6UURu9q+fA9wPZABPighAk6oWAL2A1/zL4oC/qOrCTjkTc1Llh8q5e/HdrKtYx7TTp3F3wd3Ee20Sb2PckkAc6ZoQkiv6gB6YUtUFwIJjls1p8X4GMKOV/YqBkccuN6H1zo53eHDZgzQ5TcyeNJtL8y91O5IxBuitieFxRW8iV01DDT//6Oe8UfwGwzKG8cj5j9A3xUafNCZc5JDEkupifI4Pr8fbacexQh+llpYt5f4P76fySCW3jLyFGSNm0MXTxe1YxpgWcjSJel89ZbVl5CXntb1DO1mhj2DLnrn7uGW1NPKa51MWe0rJ1kR+4BtL/qqtFK76oQsJjTEn01u/uCFrhd60SVFWSDl/82yhlkYudvKZ6gwins7776AxpmNy+KKL5aS8SZ12HCv0UWAPtfzFs5nNniryNZXv+caQR4rbsYwxbehOF7K6ZbH1QOf2vLFCH8EO0cAbnq28LyXE42GabyiTNA9Pqw8zG2PC0YC0AZ3e88YKfQRq8DXw8icv84R3CUdo4jztw1edQaTQ1e1oxphTNDBtIK9+9iqqiv+Zo6CzQh9BGn2NvFb0Gn9Y/wd21+5muGZwpXMaudhAZMZEqgGpAzjSdITdtbvJScrplGNYoY8ADb4G5m2dxx/W/YHy2nJG9BzBgxMfRN581e1oxpgOGpg2EGi+IWuFPkK01uWxvQ7SwGIp4T3PTmqkgf6ayh3OGIaVZyDlVuSNiQYDU/2F/sBWzs09t42t28cKfRgqoYYPPCUskzIaxWG4k8nFTj+GagZiN1qNiSppCWn0SOjRqT1vrNCHicM0skLK+dCzix1SQ5x6GK85XOTLp7d/lDtjTHQakDqAbdXbOu37rdC7qJ4mNkglq2QPa2UvjeLQR5O52nc6Z2sOidjoksbEggGpA1i4fWGn9byxQh9iB2lgk1TysexlvVTQKA7JGs9EzeVcXy59SbHmGWNiTP/U/tQ01LCvbh8Z3TKC/v1W6DtZPU1sk2o2SRWbpIqdUgNAisZzjuYy2unFYE3HG9AcMMaYaNQ/tT8A26q3WaEPdz7Hxx5q2S7VbJUDFEs1pRzEEcWjwkDSmOobxDDNoB+p9gSrMQZoUehrtlGQXRD07w+o0IvIFOAxmmeYelpVf3HMevGvvxw4DNygqqsD2TfSqCo1DTXsOrSLskNllBwsoehAEZ/t/4zi6mLq4+oB6Kpe8jWVS+nPQCeNwZpON/t31RjTiuzEbBK8CZ12Q7bNyiMiXuAJ4GKaJwpfKSLzVXVTi80uAwb7X2cDTwFnB7hvp1NVHHWaXzifv29ymjjSdKTVV3V9Nfvr9rOvbh/76vaxv24/lXWVlB0qo7ax9t++P6t7FoPTBjMuexyyfhV5mkxvkqw5xhgTEI94yE/Nd6/QA+OAIv+0gIjIy8BUoGWxngq8oKoKLBeRNBHJAfID2DdoJv11EkeajuCog099qCo+9XXoO7vHdSc9IZ2MhAxyk3IZlz2O3om9yU3OJTcpl95JvUmJ/2KkyGXrgvfAlDEmdvRP6c+6ynWd8t2BFPpcoKTF51Kar9rb2iY3wH0BEJGZwEz/x0MisiWAbK3JBCrbuW+ksnOOfrF2vhAr5zzj0ZafMgVp7zn3O9GKQAp9a3cMNcBtAtm3eaHqXGBuAHlOSkQKVTX4dzPCmJ1z9Iu18wU752AKpNCXAi3nuOoDlAW4TXwA+xpjjOlEgdwtXAkMFpH+IhIPXA3MP2ab+cD10mw8UK2q5QHua4wxphO1eUWvqk0ichvwFs1dJJ9V1Y0icrN//RxgAc1dK4to7l45/WT7dsqZfKHDzT8RyM45+sXa+YKdc9BIc0cZY4wx0co6ehtjTJSzQm+MMVEuIgu9iEwRkS0iUiQi97ayXkTkcf/6dSIy2o2cwRTAOV/rP9d1IrJUREa6kTOY2jrnFtuNFRGfiFwZynydIZBzFpELRGSNiGwUkQ9CnTHYAvjZThWRv4vIWv85T3cjZ7CIyLMisldENpxgffDrl6pG1Ivmm7pbgQE0d99cCww7ZpvLgTdp7sc/HvjI7dwhOOeJQLr//WWxcM4ttltEc4eAK93OHYK/5zSanyzv6/+c5XbuEJzzj4CH/e97AvuAeLezd+CczwdGAxtOsD7o9SsSr+g/H5JBVRuAo8MqtPT5kAyquhw4OiRDpGrznFV1qaru939cTvMzC5EskL9ngO8CrwB7QxmukwRyztcAr6rqTgBVjfTzDuScFUj2D56YRHOhbwptzOBR1cU0n8OJBL1+RWKhP9FwC6e6TSQ51fO5ieYrgkjW5jmLSC7wNWBOCHN1pkD+nocA6SLyvoisEpHrQ5aucwRyzr8DhtL8sOV64A5VdUITzxVBr1+ROG5uR4ZkiFQBn4+ITKa50HfOdPKhE8g5/wb4gar6OmP6NRcEcs5xwBjgQqAbsExElqvqp50drpMEcs6XAmuALwEDgXdEZImq1nRyNrcEvX5FYqHvyJAMkSqg8xGREcDTwGWqWhWibJ0lkHMuAF72F/lM4HIRaVLV10OSMPgC/dmuVNVaoFZEFgMjgUgt9IGc83TgF9rcgF0kItuA04EVoYkYckGvX5HYdNORIRkiVZvnLCJ9gVeBb0bw1V1LbZ6zqvZX1XxVzQf+D7glgos8BPazPQ84T0TiRKQ7zaPBbg5xzmAK5Jx30vw/GESkF3AaUBzSlKEV9PoVcVf02oEhGSJVgOd8P5ABPOm/wm3SCB75L8BzjiqBnLOqbhaRhcA6wKF51rZWu+lFggD/nmcBz4vIepqbNX6gqhE7fLGIvARcAGSKSCnwANAFOq9+2RAIxhgT5SKx6cYYY8wpsEJvjDFRzgq9McZEOSv0xhgT5azQG2NMlLNCb4wxUc4KvTHGRLn/B805kZrghCNuAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# Sampling based on pdf values and linearly interpolating\n", "n_sims = 1000\n", @@ -578,15 +643,15 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 2.2 s, sys: 1.19 s, total: 3.39 s\n", - "Wall time: 4.23 s\n" + "CPU times: user 409 ms, sys: 125 ms, total: 534 ms\n", + "Wall time: 153 ms\n" ] } ], @@ -617,7 +682,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -630,24 +695,24 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 5.58 s, sys: 453 ms, total: 6.04 s\n", - "Wall time: 6.46 s\n" + "CPU times: user 28.9 s, sys: 3.53 s, total: 32.4 s\n", + "Wall time: 17.2 s\n" ] }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 5, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -663,26 +728,25 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 19, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 17.7 s, sys: 4.76 s, total: 22.4 s\n", - "Wall time: 20.3 s\n" + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m:1\u001b[0m, in \u001b[0;36m\u001b[0;34m\u001b[0m\n", + "File \u001b[0;32m~/Dropbox/active/confirm/confirmasaurus/confirm/confirm/lewislib/lewis.py:398\u001b[0m, in \u001b[0;36mLewis45.pr_best_pps_1_table__\u001b[0;34m(self, key, n_pr_sims, batch_size, n_points)\u001b[0m\n\u001b[1;32m 395\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpr_best_pps_1_internal_jit__ \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 396\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpr_best_pps_1_internal_jit__ \u001b[39m=\u001b[39m jax\u001b[39m.\u001b[39mjit(internal)\n\u001b[0;32m--> 398\u001b[0m tup_tables \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39;49m(\n\u001b[1;32m 399\u001b[0m process_batch__(i, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mpr_best_pps_1_internal_jit__, batch_size)\n\u001b[1;32m 400\u001b[0m \u001b[39mfor\u001b[39;49;00m i \u001b[39min\u001b[39;49;00m \u001b[39mrange\u001b[39;49m(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mn_configs_pr_best_pps_1\u001b[39m.\u001b[39;49mshape[\u001b[39m0\u001b[39;49m])\n\u001b[1;32m 401\u001b[0m )\n\u001b[1;32m 402\u001b[0m pr_best_tables \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(t[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m t \u001b[39min\u001b[39;00m tup_tables)\n\u001b[1;32m 403\u001b[0m pps_tables \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(t[\u001b[39m1\u001b[39m] \u001b[39mfor\u001b[39;00m t \u001b[39min\u001b[39;00m tup_tables)\n", + "File \u001b[0;32m~/Dropbox/active/confirm/confirmasaurus/confirm/confirm/lewislib/lewis.py:399\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 395\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpr_best_pps_1_internal_jit__ \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 396\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpr_best_pps_1_internal_jit__ \u001b[39m=\u001b[39m jax\u001b[39m.\u001b[39mjit(internal)\n\u001b[1;32m 398\u001b[0m tup_tables \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(\n\u001b[0;32m--> 399\u001b[0m process_batch__(i, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mpr_best_pps_1_internal_jit__, batch_size)\n\u001b[1;32m 400\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_configs_pr_best_pps_1\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m])\n\u001b[1;32m 401\u001b[0m )\n\u001b[1;32m 402\u001b[0m pr_best_tables \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(t[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m t \u001b[39min\u001b[39;00m tup_tables)\n\u001b[1;32m 403\u001b[0m pps_tables \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(t[\u001b[39m1\u001b[39m] \u001b[39mfor\u001b[39;00m t \u001b[39min\u001b[39;00m tup_tables)\n", + "File \u001b[0;32m~/Dropbox/active/confirm/confirmasaurus/confirm/confirm/lewislib/lewis.py:381\u001b[0m, in \u001b[0;36mLewis45.pr_best_pps_1_table__..process_batch__\u001b[0;34m(i, f, batch_size)\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 376\u001b[0m meshgrid \u001b[39m=\u001b[39m jnp\u001b[39m.\u001b[39mmeshgrid(\n\u001b[1;32m 377\u001b[0m \u001b[39m*\u001b[39m(jnp\u001b[39m.\u001b[39marange(\u001b[39m0\u001b[39m, n \u001b[39m+\u001b[39m \u001b[39m1\u001b[39m) \u001b[39mfor\u001b[39;00m n \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mn_configs_pr_best_pps_1[i]),\n\u001b[1;32m 378\u001b[0m indexing\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mij\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m 379\u001b[0m )\n\u001b[0;32m--> 381\u001b[0m outs, n_padded \u001b[39m=\u001b[39m f_batched(\n\u001b[1;32m 382\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mtable_data__(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mn_configs_pr_best_pps_1[i], meshgrid)\n\u001b[1;32m 383\u001b[0m )\n\u001b[1;32m 384\u001b[0m pr_best_outs \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(t[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m t \u001b[39min\u001b[39;00m outs)\n\u001b[1;32m 385\u001b[0m pps_outs \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(t[\u001b[39m1\u001b[39m] \u001b[39mfor\u001b[39;00m t \u001b[39min\u001b[39;00m outs)\n", + "File \u001b[0;32m~/Dropbox/active/confirm/confirmasaurus/confirm/confirm/lewislib/batch.py:81\u001b[0m, in \u001b[0;36mbatch_all..internal\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minternal\u001b[39m(\u001b[39m*\u001b[39margs):\n\u001b[0;32m---> 81\u001b[0m outs \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39;49m(out \u001b[39mfor\u001b[39;49;00m out \u001b[39min\u001b[39;49;00m f_batch(\u001b[39m*\u001b[39;49margs))\n\u001b[1;32m 82\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mtuple\u001b[39m(out[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m out \u001b[39min\u001b[39;00m outs), outs[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m][\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m]\n", + "File \u001b[0;32m~/Dropbox/active/confirm/confirmasaurus/confirm/confirm/lewislib/batch.py:81\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minternal\u001b[39m(\u001b[39m*\u001b[39margs):\n\u001b[0;32m---> 81\u001b[0m outs \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(out \u001b[39mfor\u001b[39;00m out \u001b[39min\u001b[39;00m f_batch(\u001b[39m*\u001b[39margs))\n\u001b[1;32m 82\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mtuple\u001b[39m(out[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m out \u001b[39min\u001b[39;00m outs), outs[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m][\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m]\n", + "File \u001b[0;32m~/Dropbox/active/confirm/confirmasaurus/confirm/confirm/lewislib/batch.py:60\u001b[0m, in \u001b[0;36mbatch..internal\u001b[0;34m(*args)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[39mfor\u001b[39;00m _ \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(n_full_batches):\n\u001b[1;32m 54\u001b[0m batched_args \u001b[39m=\u001b[39m create_batched_args__(\n\u001b[1;32m 55\u001b[0m args\u001b[39m=\u001b[39margs,\n\u001b[1;32m 56\u001b[0m in_axes\u001b[39m=\u001b[39min_axes,\n\u001b[1;32m 57\u001b[0m start\u001b[39m=\u001b[39mstart,\n\u001b[1;32m 58\u001b[0m end\u001b[39m=\u001b[39mend,\n\u001b[1;32m 59\u001b[0m )\n\u001b[0;32m---> 60\u001b[0m \u001b[39myield\u001b[39;00m (f(\u001b[39m*\u001b[39;49mbatched_args), \u001b[39m0\u001b[39m)\n\u001b[1;32m 61\u001b[0m start \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m batch_size_new\n\u001b[1;32m 62\u001b[0m end \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m batch_size_new\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -698,7 +762,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -780,11 +844,12 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "class LeiSimulator:\n", + "\n", + "class LeiDriver:\n", " def __init__(\n", " self,\n", " lei_obj,\n", @@ -814,10 +879,16 @@ " self.typeI_sum = None\n", " self.typeI_score = None\n", "\n", + " def simulate_rejection(self, p, null_truth, unifs, unifs_order):\n", + " test_stat, best_arm, score = self.lei_obj.simulate(p, unifs, unifs_order)[0]\n", + " rej = test_stat < self.lei_obj.rejection_threshold\n", + " false_rej = rej * null_truth[best_arm - 1]\n", + " return false_rej, score\n", + "\n", " def f_batch_sim_batch_grid(self, p_batch, null_batch, unifs_batch, unifs_order):\n", " return jax.vmap(\n", " jax.vmap(\n", - " self.lei_obj.simulate,\n", + " self.simulate_rejection,\n", " in_axes=(0, 0, None, None),\n", " ),\n", " in_axes=(None, None, 0, None),\n", @@ -846,7 +917,7 @@ " scores_reduced = self.reduce_func(scores)\n", "\n", " end = time.perf_counter()\n", - " elapsed_time = (end-start)\n", + " elapsed_time = end - start\n", " print(f\"Batch {i}: {elapsed_time:.03f}s\")\n", " return rejs_reduced, scores_reduced\n", "\n", @@ -863,10 +934,16 @@ " out = self.simulate_batch_sim(sim_batch_size, i, key)\n", " self.typeI_sum += out[0]\n", " self.typeI_score += out[1]\n", - " return self.typeI_sum, self.typeI_score\n", - "\n", - "\n", - "simulator = LeiSimulator(\n", + " return self.typeI_sum, self.typeI_score\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "simulator = LeiDriver(\n", " lei_obj=lei_obj,\n", " p_tiles=p_tiles,\n", " null_truths=null_truths,\n", @@ -1149,7 +1226,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.10.5 ('confirm')", + "display_name": "Python 3.10.6 ('base')", "language": "python", "name": "python3" }, @@ -1163,12 +1240,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.5" + "version": "3.10.6" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "d8e1ca1b3fede25e3995e2b26ea544fa1b75b9a17984e6284a43c1dc286640dd" + "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe" } } }, diff --git a/research/lei/lei.md b/research/lei/lei.md index 985fed83..b9091e62 100644 --- a/research/lei/lei.md +++ b/research/lei/lei.md @@ -7,7 +7,7 @@ jupyter: format_version: '1.3' jupytext_version: 1.13.8 kernelspec: - display_name: Python 3.10.5 ('confirm') + display_name: Python 3.10.6 ('base') language: python name: python3 --- @@ -541,7 +541,8 @@ p_tiles = jax.scipy.special.expit(theta_tiles) ``` ```python -class LeiSimulator: + +class LeiDriver: def __init__( self, lei_obj, @@ -571,10 +572,16 @@ class LeiSimulator: self.typeI_sum = None self.typeI_score = None + def simulate_rejection(self, p, null_truth, unifs, unifs_order): + test_stat, best_arm, score = self.lei_obj.simulate(p, unifs, unifs_order)[0] + rej = test_stat < self.lei_obj.rejection_threshold + false_rej = rej * null_truth[best_arm - 1] + return false_rej, score + def f_batch_sim_batch_grid(self, p_batch, null_batch, unifs_batch, unifs_order): return jax.vmap( jax.vmap( - self.lei_obj.simulate, + self.simulate_rejection, in_axes=(0, 0, None, None), ), in_axes=(None, None, 0, None), @@ -603,7 +610,7 @@ class LeiSimulator: scores_reduced = self.reduce_func(scores) end = time.perf_counter() - elapsed_time = (end-start) + elapsed_time = end - start print(f"Batch {i}: {elapsed_time:.03f}s") return rejs_reduced, scores_reduced @@ -622,8 +629,10 @@ class LeiSimulator: self.typeI_score += out[1] return self.typeI_sum, self.typeI_score +``` -simulator = LeiSimulator( +```python +simulator = LeiDriver( lei_obj=lei_obj, p_tiles=p_tiles, null_truths=null_truths,