Skip to content

Latest commit

 

History

History
142 lines (118 loc) · 5.59 KB

README.md

File metadata and controls

142 lines (118 loc) · 5.59 KB

[ICCV2023] Open Vocabulary Semantic Segmentation with Decoupled One-Pass Network

This repo is for our paper Open Vocabulary Semantic Segmentation with Decoupled One-Pass Network. It is based on the official repo of SimBaseline. The project page is Project Page.

Results

Results on COCO-Stuff and Pascal VOC in the open-vocabulary setting. Results on Pascal VOC, Pascal Context and ADE20K in the cross-dataset setting

Guideline

Setup environment

Environment
conda create --name deop python=3.7
conda activate deop
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 -c pytorch
pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.8/index.html
pip install mmcv==1.3.14

#FurtherMore, install the modified clip package.
cd third_party/CLIP
python -m pip install -Ue .

Data Preparation

Data Preparation

In our experiments, four datasets are used. For Cityscapes and ADE20k, follow the tutorial in MaskFormer.

  • For COCO Stuff 164k:
    • Download data from the offical dataset website and extract it like below.
      Datasets/
           coco/
                #http://images.cocodataset.org/zips/train2017.zip
                train2017/ 
                #http://images.cocodataset.org/zips/val2017.zip
                val2017/   
                #http://images.cocodataset.org/annotations/annotations_trainval2017.zip
                annotations/ 
                #http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip
                stuffthingmaps/ 
    • Format the data to detecttron2 style and split it into Seen (Base) subset and Unseen (Novel) subset.
      python datasets/prepare_coco_stuff_164k_sem_seg.py datasets/coco
      
      python tools/mask_cls_collect.py datasets/coco/stuffthingmaps_detectron2/train2017_base datasets/coco/stuffthingmaps_detectron2/train2017_base_label_count.pkl
      
      python tools/mask_cls_collect.py datasets/coco/stuffthingmaps_detectron2/val2017 datasets/coco/stuffthingmaps_detectron2/val2017_label_count.pkl
  • For Pascal VOC 11k:
    • Download data from the offical dataset website and extract it like below.
    datasets/
       VOC2012/
            #http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
            JPEGImages/
            val.txt
            #http://home.bharathh.info/pubs/codes/SBD/download.html
            SegmentationClassAug/
            #https://gist.githubusercontent.com/sun11/2dbda6b31acc7c6292d14a872d0c90b7/raw/5f5a5270089239ef2f6b65b1cc55208355b5acca/trainaug.txt
            train.txt
            
    • Format the data to detecttron2 style and split it into Seen (Base) subset and Unseen (Novel) subset.
    python datasets/prepare_voc_sem_seg.py datasets/VOC2012
    
    python tools/mask_cls_collect.py datasets/VOC2012/annotations_detectron2/train datasets/VOC2012/annotations_detectron2/train_base_label_count.json
    
    python tools/mask_cls_collect.py datasets/VOC2012/annotations_detectron2/val datasets/VOC2012/annotations_detectron2/val_label_count.json

Run demo

The demo is almost training-free, we only train the learnable text prompt. You can download the weights from text prompt which is trained on COCO-Stuff-156 dataset.

python3 demo.py --input dataset/test/000000000285.jpg --output ./output

or you can add --class-names to set classes.

python3 demo.py --input dataset/test/000000000285.jpg --output ./output --class-names bear other

Evaluation

We release the weights of DeOP in model weight. The results are shown on Results.

sh deop_verifycoco.sh

Train

# 1.Train a learnable text prompt model.
python train_net.py --config-file configs/coco-stuff-164k-156/zero_shot_proposal_classification_learn_prompt_bs32_10k.yaml --num-gpus 8 

# 2. Train a MaskFormer model.
python train_net.py --config-file configs/coco-stuff-164k-156/zero_shot_maskformer_R101c_bs32_60k.yaml --num-gpus 8 MODEL.CLIP_ADAPTER.PROMPT_CHECKPOINT ${TRAINED_PROMPTS}
# 3. Train DeOP.
sh deop_train.sh

Cite

If you find this project useful for your research, please consider citing the following BibTeX entry.

@proceedings{Han2023ZeroShotSS,
  title={Zero-Shot Semantic Segmentation with Decoupled One-Pass Network},
  author={Cong Han and Yujie Zhong and Dengjie Li and Kai Han and Lin Ma},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2023},
}