-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsvi_model.py
139 lines (120 loc) · 4.77 KB
/
svi_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
from numpy import random as rand
from numpy.random import normal
import pandas as pd
import helper_funcs as hf
from pysvihmm import hmmsvi, hmmsgd_metaobs
from pybasicbayes.distributions import gaussian
import matplotlib
from matplotlib import pyplot as plt
from pysvihmm import PositiveDefiniteException as PDE
debug = True
index = 100
# read in data
stock_data = pd.read_csv("../data/mquote201010.csv")
stock_symbols = hf.get_stock_symbols(stock_data)
single_stock = hf.stock_data_in_one_line(stock_data, stock_symbols, index)
# break up stock data into train and test sets
train_size = int(0.2*single_stock.size)
train_set = np.asarray(single_stock[:train_size])
train_data = train_set
test_set = np.asarray(single_stock[train_size:])
# add extra dimension's data
train_index = [i for i in range(train_set.size)]
test_index = [i for i in range(test_set.size)]
# putting two dimensions together into columns
test_data = np.column_stack([test_index, test_set])
train_data = np.column_stack([train_index, train_set])
# PARAMETERS FOR GAUSSIAN, TAKEN FROM TEST FILE
kappa_0 = 1
nu_0 = 4
# prior emissions are gaussian
prior_emit = [gaussian.Gaussian(mu = np.array([0,0,0,0,0]),
sigma = np.eye(5),
mu_0 = np.zeros(5),
kappa_0 = kappa_0,
nu_0 = nu_0),
gaussian.Gaussian(mu = np.array([1,1,1,1,1]),
sigma = np.eye(5),
mu_0 = np.zeros(5),
sigma_0 = np.eye(5),
kappa_0 = kappa_0,
nu_0 = nu_0),
gaussian.Gaussian(mu = np.array([2,2,2,2,2]),
sigma = np.eye(5),
mu_0 = np.zeros(5),
kappa_0 = kappa_0,
nu_0 = nu_0),
gaussian.Gaussian(mu = np.array([3,3,3,3,3]),
sigma = np.eye(5),
mu_0 = np.zeros(5),
sigma_0 = np.eye(5),
kappa_0 = kappa_0,
nu_0 = nu_0),
gaussian.Gaussian(mu = np.array([4,4,4,4,4]),
sigma = np.eye(5),
mu_0 = np.zeros(5),
sigma_0 = np.eye(5),
kappa_0 = kappa_0,
nu_0 = nu_0)]
obs = np.array([prior_emit[int(np.round(4*i/train_set.size))].rvs()[0]
for i in range(train_set.size)])
# set up parameters with intent to burn in
mu_0 = np.zeros(5)
sigma_0 = 0.75 * np.cov(obs.T)
kappa_0 = 0.01
nu_0 = 5
prior_emit = [gaussian.Gaussian(sigma = np.eye(5), mu = np.array([_,_,_,_,_]),
mu_0=mu_0, sigma_0=sigma_0, kappa_0=kappa_0, nu_0=nu_0)
for _ in range(5)]
prior_emit = np.array(prior_emit)
prior_init = np.ones(5)
prior_tran = np.ones((5,5))
# instantiate model
model = hmmsgd_metaobs.VBHMM(obs = single_stock[:train_size],
prior_init = prior_init,
prior_tran = prior_tran,
prior_emit = prior_emit,
mb_sz = 50,
verbose = True)
print("Model has been instantiated")
# inference step is unstable. Try until it works
worked = False
iteration = 0
while not(worked):
try:
iteration += 1
print("iteration: {}".format(iteration))
model = hmmsgd_metaobs.VBHMM(obs = single_stock[:train_size],
prior_init = prior_init,
prior_tran = prior_tran,
prior_emit = prior_emit,
mb_sz = 50,
verbose = True)
model.infer()
worked = True
except PDE.PositiveDefiniteException:
pass
# plotting
plt.style.use('ggplot')
matplotlib.rcParams.update({'font.size': 13})
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)
ax1 = fig.add_subplot(311)
ax2 = fig.add_subplot(312)
ax3 = fig.add_subplot(313)
# Turn off axis lines and ticks of the big subplot
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off')
ax.set_xlabel("Minute")
ax.set_ylabel("Stock Price")
ax1.set_title("Actual Stock Data")
ax1.plot(single_stock[train_size:], 'b')
ax2.set_title("SVI-non-fitted HMM Model Output")
ax2.plot(obs_seq[1], 'k')
ax3.set_title("SVI-fitted HMM model Output")
ax3.plot(post_obs_seq[1], 'g')
plt.show()