diff --git a/nb/presentation.py b/nb/presentation.py index 71d3ae5..77c6848 100644 --- a/nb/presentation.py +++ b/nb/presentation.py @@ -42,7 +42,7 @@ # - Statistics: statistics is the larger collections of tables on the topic, finds the ones with keyword in title # - Variables: variables are the values (DE: Merkmal) in columns of the tables, find ones with keyword in label # -# Returns the titles of relevant tables/statistics/variables and their [EVAS](https://www.destatis.de/DE/Service/Bibliothek/Abloesung-Fachserien/uebersicht-fs.html) number – useful tool to look these up (EVAS is necessary for the Table method) +# Returns the titles of relevant tables/statistics/variables and their [EVAS](https://www.destatis.de/DE/Service/Bibliothek/Abloesung-Fachserien/uebersicht-fs.html) number – useful tool to look these up (EVAS is necessary for the Table method) # # 1. call Find using a keyword `query=` and specifying a database `db_name=` # 2. actually query the API and print the results using `.run()` @@ -68,22 +68,22 @@ # Add `.df` to convert to a dataframe for easier handling. # %% -results.tables.df +results.tables.df # %% [markdown] # We can then access the relevant codes with `.get_code([#])`. Doing this returns a list of codes from specified rows which may be useful to run in the Table method. # %% -results.tables.get_code([0,1,2]) +results.tables.get_code([0, 1, 2]) # %% [markdown] # To then check that the object has the relevant data, we can preview the columns using the `.meta_data()` method. # %% -results.tables.get_metadata([1,2]) +results.tables.get_metadata([1, 2]) # %% [markdown] -# The `pystatis.Find` is a useful search tool to browse the database by any keyword. It is quicker than downloading a table and does not need the EVAS number to run. +# The `pystatis.Find` is a useful search tool to browse the database by any keyword. It is quicker than downloading a table and does not need the EVAS number to run. # # Use this to identify the tables of interest and to look up their EVAS as to use in the further analysis with a `pystatis.Table` method. @@ -150,10 +150,25 @@ t.data # %% [markdown] -# The `get_data()` method supports all parameters that you can pass to the API, like `startyear`, `endyear` or `timeslicec` +# The `get_data()` method supports all parameters that you can pass to the API, like `startyear`, `endyear` or `timeslices` # %% # GENESIS t = pystatis.Table(name="43311-0001") t.get_data(startyear=2000) t.data + +# %% [markdown] +# ## Jonas + +# %% [markdown] +# + +# %% [markdown] +# ## Outlook + +# %% [markdown] +# - `quality=on` + +# %% [markdown] +#