-
Notifications
You must be signed in to change notification settings - Fork 1
/
notes.tex
2585 lines (2584 loc) · 145 KB
/
notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[a4paper,12pt]{article}
\title{\heiti 物理海洋学笔记}
\author{\small 2017级海洋科学专业 崔英哲 \quad cuiyingzhe@stu.ouc.edu.cn\\
\small \url{https://github.com/Cuiyingzhe/OUC-Physical-Oceanography-Notes}}
\date{\small 2020.07.06}
\usepackage[UTF8]{ctex}
%\usepackage{indentfirst}
\usepackage{geometry}
\usepackage{amsmath}
\usepackage{booktabs}
\usepackage{tabu}
\usepackage{caption}
%\usepackage{gensymb}
\usepackage{graphicx}
\usepackage{float}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{cases}
\usepackage{esint}
\usepackage{fancyhdr}
\usepackage{CJK}
\usepackage{titlesec}
\usepackage{titletoc}
\usepackage{mathrsfs}
\usepackage{harpoon}
\usepackage{amssymb}
\usepackage{color}
\usepackage{bm}
\usepackage{framed}
\usepackage{setspace}
\usepackage{gensymb}
\usepackage{tikz}
\usepackage{cancel}
\usepackage{multicol}
\usepackage{subfigure}
\newcommand*{\circled}[1]{\lower.7ex\hbox{\tikz\draw (0pt, 0pt)%
circle (.5em) node {\makebox[1em][c]{\small #1}};}}
\newcommand\prt[2]{$\frac{\partial #1}{\partial #2}$}
%\usepackage[T1]{fontenc}
%\usepackage{mathptmx}
\hypersetup{
colorlinks=true,
linkcolor=black,
citecolor=blue
}
\captionsetup[table]{labelsep=space,font={small}}
\captionsetup[figure]{labelsep=space,font={small}}
\captionsetup[subfigure]{labelsep=space,font={small}}
\geometry{a3paper,left=4cm,right=4cm,top=4cm,bottom=4cm}
\graphicspath{{C:/Users/Gary/Desktop/OUC-Physical-Oceanography-Notes/figures/}}
\begin{document}
\maketitle
\renewcommand*\contentsname{}
\tableofcontents
\newpage
\section{基本方程}
\subsection{旋转坐标系的速度和加速度}
\setlength{\parindent}{0pt}
惯性坐标系:
静止的或是匀速直线运动的坐标系,固定在恒星上的坐标系可以被看成惯性坐标系.\\
固定在地球上的坐标系:
地球对恒星的加速度主要是由地球自转引起的,于是可以把地球当作一个对惯性坐标系作纯粹地转运动的物体.
\subsubsection{旋转坐标系和惯性坐标系中的速度}
\begin{figure}[H]
\centering\includegraphics[width=7cm]{1.eps}
\caption*{}
\end{figure}
惯性坐标系($XYZ$)绝对位移:$\vec{pp''}=\vec{V}_a\delta t, \vec{V}_a$为绝对速度\\
旋转坐标系($xyz$)相对位移:$\vec{p'p''}=\vec{V}\delta t, \vec{V}$为相对速度\\
$\because \vec{pp''}=\vec{p'p''}+\vec{pp'}$ \\
$\therefore\vec{V}_a\delta t=\vec{V}\delta t+\vec{V}_e\delta t\Rightarrow\vec{V}_a=\vec{V}+\vec{V}_e$(绝对速度等于相对速度与牵连速度的向量和)\\
其中,$\vec{V}_e=\vec{\Omega}\times\vec{r}\Rightarrow\vec{V}_a=\vec{V}+\vec{\Omega}\times\vec{r}$
\[
\Rightarrow\frac{d_a\vec{r}}{dt}=\frac{d\vec{r}}{dt}+\vec{\Omega}\times\vec{r}
\]
\[
\frac{d_a\vec{A}}{dt}=\frac{d\vec{A}}{dt}+\vec{\Omega}\times\vec{A}
\]
\subsubsection{旋转坐标系和惯性坐标系中的加速度}
令$\vec{A}=\vec{V}_a=\vec{V}_e+\vec{V}=\vec{V}+\vec{\Omega}\times\vec{r}$
\begin{equation*}
\begin{aligned} \frac{d \bar{V}_{a}}{d t} &=\frac{d_{a}}{d t}\left(\vec{V}+\vec{V}_{e}\right)=\frac{d_{a}}{d t}(\vec{V}+\vec{\Omega} \times \vec{r}) \\ &=\frac{d}{d t}(\vec{V}+\vec{\Omega} \times \vec{r})+\vec{\Omega} \times(\vec{V}+\vec{\Omega} \times \vec{r}) \\ &=\frac{d \vec{V}}{d t}+\vec{\Omega} \times \vec{V}+\vec{\Omega} \times \vec{V}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r}) \\ &=\frac{d \vec{V}}{d t}+2 \vec{\Omega} \times \vec{V}-\Omega^{2} \vec{R} \end{aligned}
\end{equation*}
\subsection{作用在海水微团上的外力 运动方程的向量形式}
压强梯度力:$\displaystyle\frac{1}{\rho}\nabla p$\\
分子粘性力(摩擦力):
\[
\left\{
\begin{aligned}
&F_{x}=\frac{1}{\rho} \mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)=\frac{\mu}{\rho} \Delta u\\
&F_{y}=\frac{1}{\rho} \mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)=\frac{\mu}{\rho} \Delta v\\
&F_{2}=\frac{1}{\rho} \mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)=\frac{\mu}{\rho} \Delta w
\end{aligned}
\right.
\Rightarrow \vec{F}=\frac{\mu}{\rho}\Delta \vec{V}=\nu\Delta\vec{v}
\]
重力(地球引力与地球自转产生的惯性离心力的合力):$\displaystyle\vec{g}=-G\frac{M_g}{r^2}\cdot\left(\frac{\vec{r}}{r}\right)$\\
科氏力:$\displaystyle -2\vec{\Omega}\times\vec{V}$\\
天体引潮力(受其他天体万有引力与惯性力离心力的合力):$\displaystyle\vec{F_M}=-G\frac{M}{L^2}+G\frac{M}{D^2}\cdot\left(\frac{\vec{D}}{D}\right)$\\
由牛顿第二定律和坐标系转换关系:
\[
\left\{
\begin{aligned}
&\frac{d_{a} \vec{V}_{a}}{d t}=\sum_{i} \vec{F}_{t}\\
&\frac{d_{a} \vec{A}_{a}}{d t}=\frac{d \vec{V}}{d t}+2 \vec{\Omega} \times \vec{V}-\Omega^{2} \vec{R}
\end{aligned}
\right.
\]
\[
\Rightarrow\boxed{\color{red} \frac{d \vec{V}}{d t}=-\frac{1}{\rho} \nabla P-2 \vec{\Omega} \times \vec{V}+\vec{g} +\nu \Delta \vec{V}+\vec{F}_{M}}
\]
\subsection{运动方程在球坐标系的标量形式}
\begin{figure}[H]
\centering\includegraphics[width=5cm]{2.eps}
\caption*{}
\end{figure}
速度:
\[
\vec{V}=u\vec{i}+v\vec{j}+w\vec{k}
\]
\[
\Rightarrow
\left\{\begin{array}{l}u=r \cos \varphi \frac{d \lambda}{d t} \\ v=r \frac{d \varphi}{d t} \\ w=\frac{d r}{d t}\end{array}\right.
\]
加速度:
\[
\begin{aligned}
\frac{d\vec{A}}{dt}&=\frac{\frac{\partial \vec{A}}{\partial t} d t+\frac{\partial \vec{A}}{\partial \lambda} d \lambda+\frac{\partial \vec{A}}{\partial \varphi} d \varphi+\frac{\partial \vec{A}}{\partial r} d r}{dt}\\
&=\frac{\partial \bar{A}}{\partial t}+\frac{\partial \vec{A}}{\partial \lambda} \frac{d \lambda}{d t}+\frac{\partial \vec{A}}{\partial \varphi} \frac{d \varphi}{d t}+\frac{\partial \vec{A}}{\partial r} \frac{d r}{d t}\\
&=\frac{\partial \vec{A}}{\partial t}+\frac{u}{r \cos \varphi} \frac{\partial \vec{A}}{\partial \lambda}+\frac{v}{r} \frac{\partial \vec{A}}{\partial \varphi}+w \frac{\partial \vec{A}}{\partial r}
\end{aligned}
\]
\[
\begin{aligned}
&\Rightarrow\frac{d}{d t}=\frac{\partial}{\partial t}+u \frac{\partial}{r \cos \varphi \partial \lambda}+v \frac{\partial}{r \partial \varphi}+w \frac{\partial}{\partial r}\\
&\Rightarrow\boxed{\bm{ \frac{d}{d t}=\frac{\partial}{\partial t}+(\vec{V} \cdot \nabla)}}\\
&\Rightarrow\boxed{\bm{ \nabla=\frac{\partial}{r \cos \varphi \partial \lambda} \vec{i}+\frac{\partial}{r \partial \varphi} \vec{j}+\frac{\partial}{\partial r} \vec{k}}}
\end{aligned}
\]
\[
\Rightarrow
\left\{
\begin{aligned}
&\frac{d \vec{i}}{d t}=\frac{\partial \vec{i}}{\partial t}+u \frac{\partial \vec{i}}{r \cos \varphi \partial \lambda}+v \frac{\partial \vec{i}}{r \partial \varphi}+w \frac{\partial \vec{i}}{\partial r}\\
&\frac{\partial \vec{j}}{d t}=\frac{\partial \vec{j}}{\partial t}+u \frac{\partial \vec{j}}{r \cos \varphi \partial \lambda}+v \frac{\partial \vec{j}}{r \partial \varphi}+w \frac{\partial \vec{j}}{\partial r}\\
&\frac{d \vec{k}}{d t}=\frac{\partial \vec{k}}{\partial t}+u \frac{\partial \vec{k}}{r \cos \varphi \partial \lambda}+v \frac{\partial \vec{k}}{r \partial \varphi}+w \frac{\partial \vec{k}}{\partial r}
\end{aligned}
\right.
\]
\newpage
\[
\begin{aligned}
&\frac{d \vec{V}}{d t}=\frac{d u}{d t} \vec{i}+\frac{d v}{d t} \vec{j}+\frac{d v}{d t} \vec{k}+u \frac{d \vec{i}}{d t}+v \frac{d \vec{j}}{d t}+w \frac{d \vec{k}}{d t}\\
\Rightarrow&\boxed{\color{red}\frac{d \vec{V}}{d t}=\left(\frac{d u}{d t}-\frac{u v t g \varphi}{r}+\frac{u w}{r}\right) \vec{i}+\left(\frac{d v}{d t}+\frac{u^{2} \operatorname{tg} \varphi}{r}+\frac{v w}{r}\right) \vec{j}+\left(\frac{d w}{d t}-\frac{u^{2}+v^{2}}{r}\right)}
\end{aligned}
\]
压强梯度力:
\[
\frac{1}{\rho}\nabla p=-\frac{1}{\rho}\left(\frac{1}{r \cos \varphi} \frac{\partial p}{\partial \lambda} \vec{i}+\frac{1}{r} \frac{\partial p}{\partial \varphi} \vec{j}+\frac{\partial p}{\partial r} \vec{k}\right)
\]
重力:
\[
\vec{g}=-g\vec{k}
\]
科氏力:
\begin{figure}[H]
\centering \includegraphics[width=4cm]{3.eps}
\caption*{}
\end{figure}
\vspace{-2cm}
\[
\vec{\Omega}=\Omega \sin \varphi \vec{k}+\Omega \cos \varphi \vec{j}
\]
\[
\begin{aligned}
-2 \vec{\Omega} \times \vec{V}&=-2\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 0 & \Omega \cos \varphi & \Omega \sin \varphi \\ u & v & w\end{array}\right|\\
&=-2[(w \Omega \cos \varphi-v \Omega \sin \varphi) \vec{i}+(u \Omega \sin \varphi) \vec{j}+(-u \Omega \cos \varphi) \vec{k}]
\end{aligned}
\]
\[
\Rightarrow-2 \vec{\Omega} \times \vec{V}=(f v-\tilde{f} w) \vec{i}-(f u) \vec{j}+(\tilde{f} u) \vec{k}
\]
其中,$\displaystyle\left\{\begin{aligned}&f=2\Omega \sin\varphi\\ &\tilde{f}=2\Omega \cos\varphi\end{aligned}\right.$
\[
\Rightarrow
\boxed{
\left\{
\begin{aligned}
&\frac{d u}{d t}=-\frac{1}{\rho} \frac{\partial p}{r \cos \varphi \partial \lambda}+f v-\tilde{f} w+\frac{u v \tan \varphi}{r}-\frac{u w}{r}+\gamma(\Delta \vec{v})_{\lambda}-\frac{1}{r \cos \varphi} \frac{\partial \phi_{T}}{\partial \lambda}\\
&\frac{d y}{d t}=- \frac{1}{\rho} \frac{\partial p}{r \partial \varphi}-f u-\frac{u^{2} \tan \varphi}{r}-\frac{v w}{r}+\gamma(\Delta \bar{v})_{\varphi}-\frac{1}{r} \frac{\partial \phi_{T}}{\partial \varphi}\\
&\frac{d w}{d t}=-\frac{1}{\rho} \frac{\partial p}{\partial r}+\tilde{f} u=g+\frac{u^{2}+v^{2}}{r}+\gamma(\Delta \vec{v})_{r}-\frac{\partial \phi_{T}}{\partial r}
\end{aligned}
\right.
}
\]
\subsection{直角坐标系的运动方程}
略去地球曲率的影响
\[
\Rightarrow
\boxed{
\left\{
\begin{aligned}
&\frac{d u}{d t}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+f v+\tilde{f} w+F_{N \lambda}+F_{T \lambda}\\
&\frac{d v}{d t}=-\frac{1}{\rho} \frac{\partial p}{\partial x}-f u+F_{N y}+F_{T y}\\
&\frac{d w}{d t}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+\tilde{f} u-g+F_{N z}+F_{T z}
\end{aligned}
\right.
}
\]
\subsection{海水层流运动的基本方程组}
\subsubsection{连续方程}
\[
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{V})=0 \Leftrightarrow \frac{d \rho}{d t}+\rho \nabla \cdot \vec{V}=0
\]
特别地,对于不可压缩流体:
\[
\nabla \cdot \vec{V}=0
\]
\subsubsection{盐量扩散方程}
\[
\mathop{\frac{\partial}{\partial t} \iiint\limits_{\tau} \rho s d \tau}\limits^{\mbox{盐量增加量}}=\mathop{-\oiint\limits_{\sigma} \rho s V_{n} d \sigma}\limits^{\mbox{平流作用}}+\mathop{-\oiint\limits_{\sigma} S_{n} d \sigma}\limits^{\mbox{分子扩散作用}}
\]
\[
\begin{aligned}
&\iiint\limits_{\tau} \frac{\partial (\rho s)}{\partial t} d \tau =\iiint\limits_{\tau} \nabla \cdot(\rho s \vec{V}) d \tau -\iiint\limits_{\tau} \nabla \cdot \vec{S} d \tau \\
\Rightarrow&\frac{\partial(\rho s)}{\partial t}+\nabla \cdot(\rho s \vec{V})+\nabla \cdot \vec{S}=0\\
\Rightarrow&\rho \frac{\partial s}{\partial t}+s \frac{\partial \rho}{\partial t}+s \nabla \cdot(\rho \vec{V})+\rho \vec{V} \cdot \nabla s+\nabla \cdot \vec{S}=0\\
\Rightarrow&\left(\frac{\partial s}{\partial t}+\vec{V} \cdot \nabla s\right)+\frac{s}{\rho}\left[\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{V})\right]=-\frac{1}{\rho} \nabla \cdot \vec{S}\\
\Rightarrow&\frac{\partial s}{\partial t}+\vec{V} \cdot \nabla s=\frac{k}{\rho} \Delta s=k_{D} \Delta s
\end{aligned}
\]
其中,$\displaystyle k_{D}=\frac{k}{\rho} \sim 1.1 \times 10^{-9}\left(\mathrm{m}^{2} / \mathrm{s}\right)$
\subsubsection{热传导方程}
与上面类似:
\[
\frac{\partial \theta}{\partial t}+\vec{V} \cdot \nabla \theta=\frac{\kappa}{\rho c_{p}} \Delta \theta=k_{\theta} \Delta \theta
\]
其中,$\displaystyle k_{\theta}=\frac{\kappa}{\rho c_{p}} \sim 1.4 \times 10^{-7}\left(\mathrm{m}^{2} / \mathrm{s}\right)$
\subsubsection{热膨胀方程-状态方程}
热膨胀方程:
\[
\rho=\mathop{\rho_0}\limits^{\mbox{0℃时的海水密度}}(1-\mathop{k} \limits^{\mbox{海水的热膨胀系数}} \theta)
\]
EOS80国际海水状态方程:
\[
\rho(s, t, p)=\rho(s, t, 0)\left[1-\frac{n p}{k(s, t, p)}\right]^{-1}
\]
\subsection{基本方程的矢量形式和标量形式}
矢量形式:
\[
\boxed{
\color{red}
\left\{
\begin{aligned}
&\frac{d \vec{V}}{d t}=-\frac{1}{\rho} \nabla p-2 \Omega \times \vec{V}+\vec{g}+\gamma \Delta \vec{V}-\nabla \phi_{T}\\
&\frac{\partial \rho}{\partial t}+\rho \nabla \cdot \vec{V}=0\\
&\frac{\partial s}{\partial t}+\vec{V} \cdot \nabla s=k_{D} \Delta s\\
&\frac{\partial \theta}{\partial t}+\vec{V} \cdot \nabla \theta={k}_{\theta} \Delta \theta\\
&\rho=\rho(\theta, s, p)
\end{aligned}
\right.
}
\]
标量形式(直角坐标系):
\[
\boxed{
\color{red}
\left\{
\begin{aligned}
&\frac{d u}{d t}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+fv-\sim{f} w+\gamma \Delta u-\frac{\partial \phi_{T}}{\partial x}\\
&\frac{d v}{d t}=-\frac{1}{\rho} \frac{\partial p}{\partial y}-f u+\gamma \Delta v-\frac{\partial \phi_{T}}{\partial y}\\
&\frac{d w}{d t}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+\tilde{f} u-g+\gamma \Delta w-\frac{\partial \phi_{T}}{\partial z}\\
&\frac{d \rho}{d t}+\rho\left(\frac{\partial {u}}{\partial {x}}+\frac{\partial {v}}{\partial {y}}+\frac{\partial {w}}{\partial {z}}\right)=0\\
&\frac{\partial s}{\partial t}+u \frac{\partial s}{\partial x}+v \frac{\partial s}{\partial y}+w \frac{\partial s}{\partial z}=k_{D}\left(\frac{\partial^{2} s}{\partial x^{2}}+\frac{\partial^{2} s}{\partial y^{2}}+\frac{\partial^{2} s}{\partial z^{2}}\right)\\
&\frac{\partial \theta}{\partial t}+u \frac{\partial \theta}{\partial x}+v \frac{\partial \theta}{\partial y}+w \frac{\partial \theta}{\partial z}=k_{\theta}\left(\frac{\partial^{2} \theta}{\partial x^{2}}+\frac{\partial^{2} \theta}{\partial y^{2}}+\frac{\partial^{2} \theta}{\partial z^{2}}\right)\\
&\rho=\rho(\theta, s, p)
\end{aligned}
\right.
}
\]
\subsection{边界条件}
无质量交换的运动学边界条件:
\[
\frac{\partial F}{\partial t} + \vec{c} \cdot \nabla F=0
\]
例:\\
(1) 海面($z=\displaystyle \zeta (x,y,t)$):$\displaystyle \frac{\partial \zeta}{\partial t}+\vec{V}_{H} \cdot \nabla_{H} \zeta-w=0$\\
(2) 海底($\displaystyle z=-h(x,y)$): $\displaystyle \vec{V}_{H} \cdot \nabla_{H} h+w=0$\\
动力学边界条件:\\
由牛顿第三定律,在界面法线方向有:
\[
\left(\vec{p}_{n}\right)_{1}=\left(\vec{p}_{n}\right)_{2}
\]
\subsection{ \texorpdfstring{\color{red} $\divideontimes$} 时时间平均的基本方程(直角坐标系)}
\begin{framed}
连续方程:
\[
\frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}+\frac{\partial \bar{w}}{\partial z}=0
\]
运动方程:
\[
\left\{
\begin{aligned}
&\frac{\partial \bar{u}}{\partial t}+\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\bar{w} \frac{\partial \bar{u}}{\partial z}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}+f \bar{v}-\tilde{f} \bar{w}+\gamma \Delta \bar{u}-\frac{\partial \bar{\phi}_{T}}{\partial x}+\frac{\partial}{\partial x}\left(A_{x x} \frac{\partial \bar{u}}{\partial x}\right)+\frac{\partial}{\partial y}\left(A_{x y} \frac{\partial \bar{u}}{\partial y}\right)+\frac{\partial}{\partial z}\left(A_{x z} \frac{\partial \bar{u}}{\partial z}\right)\\
&\frac{\partial \bar{v}}{\partial t}+\vec{u} \frac{\partial \bar{v}}{\partial x}+\vec{v} \frac{\partial \bar{v}}{\partial y}+\vec{w} \frac{\partial \bar{v}}{\partial z}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial y}-f \bar{u}+\gamma \Delta \bar{v}-\frac{\partial \bar{\phi}_{T}}{\partial y}+\frac{\partial}{\partial x}\left(A_{y x} \frac{\partial \bar{v}}{\partial x}\right)+\frac{\partial}{\partial y}\left(A_{y y} \frac{\partial \bar{v}}{\partial y}\right)+\frac{\partial}{\partial z}\left(A_{y z} \frac{\partial \bar{v}}{\partial z}\right)\\
&\frac{\partial \bar{w}}{\partial t}+\bar{u} \frac{\partial \bar{w}}{\partial x}+\bar{v} \frac{\partial \bar{w}}{\partial y}+\bar{w} \frac{\partial \bar{w}}{\partial z}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial z}+\tilde{f} \bar{u}-g+\gamma \Delta \bar{w}-\frac{\partial \bar{\phi}_{T}}{\partial z}+\frac{\partial}{\partial x}\left(A_{z x} \frac{\partial \bar{w}}{\partial x}\right)+\frac{\partial}{\partial y}\left(A_{z y} \frac{\partial \bar{w}}{\partial y}\right)+\frac{\partial}{\partial z}\left(A_{z z} \frac{\partial \bar{w}}{\partial z}\right)
\end{aligned}
\right.
\]
盐量扩散方程:
\[
\frac{\partial \bar{s}}{\partial t}+\bar{u} \frac{\partial \bar{s}}{\partial x}+\bar{v} \frac{\partial \bar{s}}{\partial y}+\bar{w} \frac{\partial \bar{s}}{\partial z}=k_{D} \Delta \bar{s}+\frac{\partial}{\partial x}\left(K_{s x} \frac{\partial \bar{s}}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{s y} \frac{\partial \bar{s}}{\partial y}\right)+\frac{\partial}{\partial z}\left(K_{s z} \frac{\partial \bar{s}}{\partial z}\right)
\]
热传导方程:
\[
\frac{\partial \bar{\theta}}{\partial t}+\vec{u} \frac{\partial \bar{\theta}}{\partial x}+\vec{v} \frac{\partial \bar{\theta}}{\partial y}+\vec{w} \frac{\partial \bar{\theta}}{\partial z}=k_{\theta} \Delta \bar{\theta}+\frac{\partial}{\partial x}\left(K_{\theta_{x}} \frac{\partial \bar{\theta}}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{\theta y} \frac{\partial \bar{\theta}}{\partial y}\right)+\frac{\partial}{\partial z}\left(K_{\theta z} \frac{\partial \bar{\theta}}{\partial z}\right)
\]
状态方程:
\[
\bar{\rho}=\bar{\rho}(\bar{s}, \bar{\theta}, \bar{p})
\]
\end{framed}
\subsection{铅直向平均的基本方程}
\[
\frac{\partial}{\partial x}[(h+\zeta)\langle u\rangle]+\frac{\partial}{\partial y}[(h+\zeta)\langle v\rangle]-\left[\left.{u}\right|_{\zeta} \frac{\partial \zeta}{\partial x}+\left.{v}\right|_{\zeta} \frac{\partial \zeta}{\partial y}-\left.{w}\right|_{\zeta}\right]-\left[\left.{u}\right|_{-h} \frac{\partial {h}}{\partial {x}}+\left.{v}\right|_{-h} \frac{\partial {h}}{\partial {y}}+\left.{w}\right|_{-h}\right]=\mathbf{0}
\]
\[
\frac{\partial \zeta}{\partial t}+\frac{\partial[(h+\zeta)\langle u\rangle]}{\partial x}+\frac{\partial[(h+\zeta)\langle v\rangle]}{\partial y}=0
\]
\subsection{尺度分析}
Rossby数 Ro=$\displaystyle \frac{U}{FL}\left\{\begin{aligned}&\gg 1:\mbox{平流非线性项比Coriolis力重要,小尺度运动}\\ &=1:\mbox{平流非线性项与Coriolis力同等重要}\\ &\ll 1:\mbox{平流非线性项可以忽略,大尺度运动}\end{aligned}\right.$\\
\begin{spacing}{2}
水平Ekman数 E$\displaystyle _\mathrm{l}=\frac{A_l}{FL^2}$ 水平湍流摩擦项与Coriolis力比值\\
垂直Ekman数 E$\displaystyle _\mathrm{z}=\frac{A_z}{FD^2}$ 垂直湍流摩擦项与Coriolis力比值
\end{spacing}
准静力近似 $f$平面近似 $\beta$平面近似 Boussinesq近似
\section{海流}
\subsection{地转流}
地转流:不考虑海面风的作用,远离沿岸的大洋中部大尺度、准水平、定常的海水流动.\\
产生原因:海水受热力和动力因素导致压力(和密度)在水平方向分布不均匀.
\[
p=p_a+{\color{red} \rho}gh \quad \rho
\left\{
\begin{aligned}
&\neq\rho_0 \Rightarrow \mbox{梯度流}\\
&=\rho_0 \Rightarrow \mbox{倾斜流}
\end{aligned}
\right.
\]
\subsubsection{梯度流}
\paragraph{假定和方程}~{} \\
(1) 在相当长一段时间里海面温度变化和降水蒸发变化都不大,于是可以认为已形成的海水密度场、温度场和盐度场近似于定常,从而相应的海水运动也近似于定常:$\displaystyle \frac{\partial }{\partial t}=0$.\\
(2) 海洋深而宽广,在远离海岸及海底的大洋中部海区,大尺度运动:$\displaystyle \mathrm{Ro}\ll 1$.\\
(3) 不考虑海底摩擦及边界摩擦的影响,且海面无风力作用,则流动属一种无摩擦流动:$\displaystyle \mathrm{E_l,E_z \ll 1}$.\\
(4) $\beta$平面近似 准静力近似\\
$x$方向基本方程:
\[
\frac{\partial {u}}{\partial t}+{u} \frac{\partial {u}}{\partial {x}}+{v} \frac{\partial {u}}{\partial {y}}+{w} \frac{\partial {u}}{\partial z}=-\frac{1}{\rho} \frac{\partial {p}}{\partial {x}}+{f} {v}+\frac{\partial}{\partial {x}}\left({A}_{x x} \frac{\partial {u}}{\partial {x}}\right)+\frac{\partial}{\partial {y}}\left({A}_{x y} \frac{\partial {u}}{\partial {y}}\right)+\frac{\partial}{\partial z}\left({A}_{x z} \frac{\partial {u}}{\partial z}\right)
\]
\begin{spacing}{2.5}
假定(1)$\Rightarrow\displaystyle\frac{\partial {u}}{\partial t}=0$\\
假定(2)$\Rightarrow\displaystyle{u}\frac{\partial {u}}{\partial {x}}+{v} \frac{\partial {u}}{\partial{y}}+{w}\frac{\partial{u}}{\partial z}=0$\\
假定(3)$\Rightarrow\displaystyle\frac{\partial}{\partial {x}}\left({A}_{x x} \frac{\partial {u}}{\partial {x}}\right)+\frac{\partial}{\partial {y}}\left({A}_{x y} \frac{\partial {u}}{\partial {y}}\right)+\frac{\partial}{\partial z}\left({A}_{x z} \frac{\partial {u}}{\partial z}\right)=0$
\end{spacing}
可得梯度流的控制方程:
\[
\left\{\begin{aligned}&0=-\frac{1}{\rho} \frac{\partial p}{\partial x}+f v \\ &0=-\frac{1}{\rho} \frac{\partial p}{\partial y}-f u \\ &0=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g \\ &\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \\ &u \frac{\partial \theta}{\partial x}+v \frac{\partial \theta}{\partial y}+w \frac{\partial \theta}{\partial z}=0 \\ &u \frac{\partial s}{\partial x}+v \frac{\partial s}{\partial y}+w \frac{\partial s}{\partial z}=0 \\& \rho=\rho(s, \theta)\end{aligned}\right.
\]
\paragraph{特征}~{} \\
水平速度:
\begin{numcases}{}
0=-\frac{1}{\rho} \frac{\partial p}{\partial x}+f v \\
0=-\frac{1}{\rho} \frac{\partial p}{\partial y}-f u
\end{numcases}
\[
\Longrightarrow
\left\{
\begin{aligned}
&{v}=\frac{1}{\rho f} \frac{\partial {p}}{\partial {x}} \\
&{u}=-\frac{1}{\rho {f}} \frac{\partial {p}}{\partial {y}}
\end{aligned}
\right.
\]
(1) 水平速度和压强梯度成正比;\\
(2) 与密度和科氏参数成反比;\\
(3) 地转关系在赤道不成立($f=0$).\\
垂向速度:
\begin{align}
\frac{\partial (1)\times\rho}{\partial y}-\frac{\partial (2)\times\rho}{\partial x} &\Leftrightarrow \frac{\partial(\rho f v)}{\partial v}+\frac{\partial(\rho f u)}{\partial x}=0 \notag\\
&\Leftrightarrow f \rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)+f\left(u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+w \frac{\partial \rho}{\partial z}\right)-f \rho \frac{\partial w}{\partial z}-f w \frac{\partial \rho}{\partial z}+\beta \rho v=0 \notag \\
&\Leftrightarrow f\rho\mathop{\boxed{\nabla\vec{V}}}\limits^{=0}+f{\color{blue}\vec{V}\cdot\nabla\rho}-f \rho \frac{\partial w}{\partial z}-f w \frac{\partial \rho}{\partial z}+\beta \rho v=0
\end{align}
\[
{\color{blue}\vec{V}\cdot\nabla\rho}=\vec{V}\cdot\nabla\rho(s,\theta)=\vec{V}\cdot\left(\nabla s\frac{\partial\rho}{\partial s}+\nabla \theta\frac{\partial\rho}{\partial \theta}\right)=0
\]
\[
(3)\Leftrightarrow f\left(\rho \frac{\partial w}{\partial z}+w \frac{\partial \rho}{\partial z}\right)=\beta \rho v \mathop{\Rightarrow}\limits^{\mbox{尺度分析}} f \frac{\partial w}{\partial z}=\beta v \mathop{\Rightarrow}\limits^{\mbox{尺度分析}} W=\frac{\beta D}{F}U\sim 2\times 10^{-4}U
\]
垂向流速比水平流速小得多,地转流为准水平运动.\\
\paragraph{运动特性}~{}
\[
(1)\times u+(2)\times v\Leftrightarrow u \frac{\partial p}{\partial x}+v \frac{\partial p}{\partial y}=0 \Leftrightarrow\vec{V}_{H} \cdot \nabla_{H} p=0
\]
(1) 梯度流平行于等压线;\\
(2) 北半球,流向右侧为高压,南半球相反;\\
\paragraph{密度特性}~{}
\[
\frac{\partial(1) \times \rho}{\partial y}-\frac{\partial(2) \times \rho}{\partial x} \Leftrightarrow f \rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+f\left(u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}\right)+\rho u \frac{\partial f}{\partial x}+\rho v \frac{\partial f}{\partial y}=0 \Leftrightarrow \vec{V}_{H} \cdot \nabla_{H} \rho=0
\]
(1) 梯度流近似平行于等密线;\\
(2) 在北半球,流向右侧密度小;\\
(3) 等压面倾斜与等密面倾斜方向相反.\\
\paragraph{温盐特性}~{} \\
忽略垂向运动:
\[
\begin{aligned}
&\vec{V}_{H} \cdot \nabla_{H} \theta=0\\
&\vec{V}_{H} \cdot \nabla_{H} s=0
\end{aligned}
\]
(1) 梯度流平行于等温线和等盐线;\\
(2) 在北半球,流向右侧温度高,盐度低.
\subsubsection{倾斜流}
\paragraph{假定和方程}
(1) 海水密度为常数;\\
(2) 水平方向的压强梯度是由海面倾斜引起的.
\[
\Rightarrow p=p_{a}+\int_{z}^{\zeta} \rho g d z=p_{a}+\rho g(\zeta-z)
\]
倾斜流的控制方程:
\begin{numcases}{}
fv=g\frac{\partial \zeta}{\partial x}\\
fu=-g\frac{\partial \zeta}{\partial y}
\end{numcases}
性质:
\[
(4)\times u-(5)\times v \Leftrightarrow u \frac{\partial \zeta}{\partial x}+v \frac{\partial \zeta}{\partial y}=0\Leftrightarrow\vec{V}_{H} \cdot \nabla \zeta=0
\]
(1) 倾斜流平行于等水位线;\\
(2) 在北半球,流向右侧水位高;\\
(3) 倾斜流从表至底流速流向相同,压强梯度相同.
\subsection{Ekman漂流}
由恒速定常的风长时间驱动大尺度、均匀密度的海洋,所产生的处于稳定状态的海流.
\subsubsection{无限深海漂流}
\paragraph{物理背景}~{} \\
Ekman的老师Nansen在海洋调查时发现,冰山不是顺风漂移,而是沿着风向右方$20\degree\sim{40}\degree$的方向移动.Ekman在1905年研究了这种现象并提出风海流理论\cite{Ekman}.
\paragraph{假定}~{} \\
无限深海Ekman漂流中用到了以下假定:\\
\indent
1) 海洋无限广阔,海洋无限深.\\
\indent
即无侧边界效应,仅有垂直湍流所生水平湍流摩擦力,并假定垂直湍流粘滞系数$A_z$为常量.由于海洋无限深,$z\rightarrow\infty,\vec{V}=0$\\
\indent
2) 定常均匀风场长时间作用.\\
\indent
即运动的基本参量与时间和水平坐标无关且海面无升降、无水平压强梯度.\\
\indent
3) 密度分布均匀,$\rho$为常数,不考虑热盐性质.\\
\indent
4) 采用$f$平面近似.
\paragraph{方程推导}~{}
\paragraph{控制方程和边界条件}~{}\\
首先给出一般的控制方程:
\begin{equation}\label{eq1}
\left\{
\begin{aligned}
&\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+f v+A_{l}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+A_{z} \frac{\partial^{2} u}{\partial z^{2}} \\
&\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial y}-f u+A_{l}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+A_{z} \frac{\partial^{2} v}{\partial z^{2}}\\
&\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
\end{aligned}
\right.
\end{equation}
\begin{spacing}{2}
\indent
由假定1), $\displaystyle A_{l}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=0$, $\displaystyle A_{l}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)=0$;
\par
由假定2),$\displaystyle\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=0$,$\displaystyle \frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=0$;
\par
由假定3),$\displaystyle-\frac{1}{\rho} \frac{\partial p}{\partial x}=0$,$\displaystyle -\frac{1}{\rho} \frac{\partial p}{\partial y}=0$\par
\end{spacing}
则(6)化为:
\begin{subnumcases}{}
0=f v+A_{z} \frac{\partial^{2} u}{\partial z^{2}} \\
0=-f u+A_{z} \frac{\partial^{2} v}{\partial z^{2}}\\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
\end{subnumcases}
\indent
不失一般性地,假定风力仅沿$y$方向作用,即$\tau_x=0,\tau_y=const$.再结合假定1),控制方程的边界条件为:
\begin{subnumcases}{}
z=0,\rho{A_z}\frac{\partial{u}}{\partial{z}}=0\\
z=0,\rho{A_z}\frac{\partial{v}}{\partial{z}}=-\tau_y \\
z=\infty,u=v=0
\end{subnumcases}
\paragraph{方程求解}~{}\\
$$(7a)+(7b)\times{i}\Leftrightarrow{A_{z} \frac{\partial^{2}(u+i v)}{\partial z^{2}}=i f(u+i v)}$$
\indent
令$W=u+iv$,得:
$$A_{z} \frac{\partial^{2} W}{\partial z^{2}}=i f W \Rightarrow
\frac{\partial^{2} W}{\partial z^{2}}=\frac{(1+i)^{2} \Omega \sin \varphi}{A_{z}} W$$
\indent
令$\displaystyle a=\sqrt{\Omega{\sin\varphi}/A_z}\mbox{,}j^2=(1+i)^2a^2$,得:
\begin{equation}\label{eq4}
\frac{d^{2} W}{d z^{2}}-j^{2} W=0
\end{equation}
\indent
(9)式通解为:$\displaystyle W = A{e^{jz}} + B{e^{ - jz}}$
\par
结合边界条件:
$\displaystyle (8a)+(8b)\times{i}\Rightarrow{z=0,\rho {A_z}{{\partial W} \over {\partial z}} = - \tau_y},z\rightarrow\infty,{W=0}$
\[
z \rightarrow \infty \Rightarrow{A=0} , W=B e^{-j z}; \\ z=\left.0, \rho A_{z} \frac{\partial W}{\partial z}\right|_{z=0}=\left.\rho A_{z} \frac{\partial\left(B e^{-j z}\right)}{\partial z}\right|_{z=0}=-\tau_y \\, \Rightarrow{B=\tau_y /\left(j \rho A_{z}\right)}
\]
\par
因此,方程的解为:
\begin{equation*}
W={\tau_y \over {j\rho {A_z}}}{e^{ - jz}}
={{i{\tau _y}} \over {(1 + i)a\rho {A_z}}}{e^{ - (1 + i)az}}
={{{e^{i{\pi \over 2}}}{\tau _y}} \over {\sqrt 2 {e^{i{\pi \over 4}}}a\rho {A_z}}}{e^{ - (1 + i)az}}
\end{equation*}
\par
令${D_0} = \pi /a$,得到最终解的形式为:
\begin{equation}
W = {{{\tau _y}} \over {\sqrt 2 a\rho {A_z}}}{e^{ - {\pi \over {{D_0}}}z + i({\pi \over 4} - {\pi \over {{D_0}}}z)}}
\end{equation}
\paragraph{物理性质}~{}
\paragraph{运动速度}~{}\\
在海面$(z=0)$处,$\displaystyle {W_0} = {{{\tau _y}} \over {\sqrt 2 a\rho {A_z}}}{e^{i{\pi \over 4}}}$
.大小为$\displaystyle \left|W_0\right| = {{{\tau _y}} \over {\sqrt 2 a\rho {A_z}}}$,方向与$x$轴成45$\degree$,即与风向向右偏45$\degree$.
\par
在任意深度处,$\displaystyle |{W_z}| = {{{\tau _y}} \over {\sqrt 2 a\rho {A_z}}}{e^{ - {\pi \over {{D_0}}}z}}$,方向为${\pi \over 4} - {\pi \over {{D_0}}}z$,即流速随深度增加呈指数形式减小,流向随深度的增加而逐渐向右偏.
\par
在摩擦深度$z=D_0$处,$\displaystyle |{W_{{D_0}}}| = {{{\tau _y}{e^{ - \pi }}} \over {\sqrt 2 a\rho {A_z}}} = {e^{ - \pi }}|{W_0}| = 0.043|{W_0}|$,方向${ - {3 \over 4}\pi }$,即与$x$轴成$-135\degree$,与表面流向正好相反.
\paragraph{Ekman螺旋和Ekman螺线}~{}\\
根据速度的垂向分布,表层流速最大,流向偏向风向的右方45$\degree$;随深度增加,流速逐渐减小,流向逐渐右偏;到摩擦深度,流速是表面流速的4.3\%,流向与表面流向相反,运动可以忽略.连连接各层流速的矢量端点,构成Ekman螺旋;Ekman螺旋在平面上的投影,称为Ekman螺线\cite{Ekman}.
\begin{figure}[H]
\centering\includegraphics[width=5cm]{Ekman.eps}
\caption*{}
\end{figure}
\paragraph{水平体积输运}~{}\\
体积输运:
\[
\begin{aligned}
S &= \int_0^\infty W dz \\
&= {{{\tau _y}} \over {\sqrt 2 a\rho {A_z}}}{e^{i{\pi \over 4}}}\int_0^\infty {{e^{ - {\pi \over {{D_0}}}(1 + i)z}}} dz\\
&= {{{\tau _y}} \over {\sqrt 2 a\rho {A_z}}}{e^{i{\pi \over 4}}}\left[ { - {{{D_0}} \over \pi }{1 \over {(1 + i)}}} \right]\left. {{e^{ - {\pi \over {{D_0}}}(1 + i)z}}} \right|_0^\infty\\
&= {{{\tau _y}} \over {2\Omega \sin \varphi \rho }} = {{{\tau _y}} \over {f\rho }}
\end{aligned}
\]
\indent
可以发现,得到的输运结果只有实部,没有虚部,说明体积输运方向为$x$轴正向,即在北半球水体向风向右侧90$\degree$输运.
\subsubsection{有限深海漂流}
\paragraph{假定}~{} \\
有限深海Ekman漂流中用到了以下假定:\\
\indent
1) 海区无限广阔、有限深,远离海岸.\\
\indent
即无侧边界效应,仅有垂直湍流所生水平湍流摩擦力,并假定垂直湍流粘滞系数$A_z$为常量.由于海洋有限深,$z\rightarrow h,\vec{V}=0$\\
\indent
2) 定常均匀风场长时间作用.\\
\indent
即运动的基本参量与时间和水平坐标无关且海面无升降、无水平压强梯度.\\
\indent
3) 密度分布均匀,$\rho$为常数,不考虑热盐性质.\\
\indent
4) 采用$f$平面近似.\\
控制方程和边界条件:
\[
\left\{
\begin{aligned}
&0=f v+A_{z} \frac{\partial^{2} u}{\partial z^{2}} \\
&0=-f u+A_{z} \frac{\partial^{2} v}{\partial z^{2}}\\
&\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0\\
&z=0: \rho A_z\frac{\partial u}{\partial z}=0,\rho A_z\frac{\partial v}{\partial z}=-\tau_y\\
&z\rightarrow h:u=v=0
\end{aligned}
\right.
\]
\paragraph{方程求解}~{}
令$\xi=h-z$,定解问题化为:
\begin{numcases}{}
-fv=A_z\frac{\partial^2 u}{\partial \xi^2}\\
fu=A_z\frac{\partial^2 v}{\partial \xi^2}\\
\xi=h:\rho A_z\frac{\partial u}{\partial \xi}=0,\rho A_z\frac{\partial v}{\partial \xi}=\tau_y \nonumber\\
\xi\rightarrow 0:u=v=0\nonumber
\end{numcases}
令$W=u+iv,\tau=\tau_x+i\tau_y$,控制方程:
\[
(11)+(12)\times i\Leftrightarrow \frac{d^{2} W}{d \xi^{2}}-j^{2} W=0
\]
边界条件:
\[
\begin{aligned}
&\xi=h:\rho A_z\frac{\partial W}{\partial \xi}=\tau\\
&\xi=0:W=0
\end{aligned}
\]
与无限深海漂流解法类似,解得:
\[
W=\frac{(1+i) \tau_{y}}{2 a \rho A_{z}} \frac{s h(1+i) a \xi}{c h(1+i) a h}
\]
\paragraph{物理性质}~{}
\paragraph{与水深的关系}~{}\\
(1) $h≥2D_0$时,有限深海漂流流速流向与无限深海相同;
(2) 水深越浅,流向随深度增加右偏(北半球)越缓慢;
(3) 从上层到下层的流速矢量越是趋近风矢量的方向.
\paragraph{体积输运}~{}\\
(1) 在$x,y$方向(平行和垂直风向)都有输送;\\
(2) 运输方向为风向右端,±90°之间:\\
$$\displaystyle S_x>0;\\0<h<D_0,ah<\pi,S_y>0;D_0<h<2D_0,\pi<ah<2\pi,S_y<0;h>2D_0,S_y=0$$
\subsubsection{漂流分离}
\paragraph{利用风速大小相等、方向相反的两次观测余流分离漂流}~{}\\
$\divideontimes$余流=漂流+恒量常流
\begin{figure}[H]
\centering\includegraphics[width=5cm]{4.eps}
\caption*{}
\end{figure}
\paragraph{利用一组风速大小相等、方向不同的实测余流分离漂流}~{}\\
$\divideontimes$漂流速度矢量端点落在同一圆周上
\begin{figure}[H]
\centering\includegraphics[width=5cm]{5.eps}
\caption*{}
\end{figure}
\subsubsection{升降流}
由不均匀风场或风场和地形配合产生的“较强烈”的铅直向流动。
\paragraph{物理背景}~{}\\
$\boxed{\mbox{非均匀风场}}\Rightarrow\boxed{\mbox{非均匀Ekman漂流}}\Rightarrow\boxed{\mbox{非均匀体积输运}}\Rightarrow\boxed{\mbox{辐聚辐散}}\mathop{\Rightarrow}\limits^{连续性}\boxed{\mbox{升降流}}$
\begin{figure}[H]
\centering\includegraphics[width=8cm]{6.eps}
\caption*{}
\end{figure}
\paragraph{赤道附近的升降流}~{} \\
\begin{figure}[H]
\centering\includegraphics[width=8cm]{7.eps}
\caption*{}
\end{figure}
\paragraph{顺(沿)岸风产生的升降流}~{} \\
\begin{figure}[H]
\centering\includegraphics[width=10cm]{8.eps}
\caption*{}
\end{figure}
\paragraph{气旋和反气旋产生的海洋升降流}~{} \\
\begin{figure}[H]
\centering\includegraphics[width=8cm]{9.eps}
\caption*{}
\end{figure}
\paragraph{假定}~{}\\
(1) $\rho$为常数;\\
(2) 直线风系,风仅沿$x$方向有变化;风区内为恒定的均匀风场;风区外无风;$\displaystyle \frac{\partial }{\partial y}=0$\\
(3) 定常风场;$\displaystyle \frac{\partial }{\partial t}=0$\\
(4) 大尺度;$Ro\ll 1$\\
(5) 有限深度.$h \geq 2D_0$
\paragraph{控制方程及边界条件}~{}
\[
\left\{
\begin{aligned}
&A_{l} \frac{\partial^{2} u}{\partial x^{2}}+A_{z} \frac{\partial^{2} u}{\partial z^{2}}+f v+g \frac{\partial \zeta}{\partial x}=0\\
&A_{l} \frac{\partial^{2} v}{\partial x^{2}}+A_{z} \frac{\partial^{2} v}{\partial z^{2}}-f u=0\\
&\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0
\end{aligned}
\right.
\]
\[
\left\{
\begin{aligned}
&z=\zeta:\rho A_{z} \frac{\partial u}{\partial z}=0, \quad \rho A_{z} \frac{\partial v}{\partial z}=-\tau_{y} \quad(0 \leq x \leq L)\\
&z=h:u=v=0\\
&x=0:u=v=0\\
&x\rightarrow\infty:u=v=0,\frac{\partial \zeta}{\partial x}=0
\end{aligned}
\right.
\]
\paragraph{结果讨论}~{}
\begin{figure}[H]
\centering\includegraphics[width=8cm]{10.eps}
\caption*{}
\end{figure}
(1) 近岸产生上升流$x\leq 0.5D_l$;\\
(2) 风区外延附近下降流$x=2D_l$;\\
(3) 上升流来自 $z=1.5D_0$或更深;\\
(4) 最大$w$出现在$z=D_0$;\\
(5) 上层离岸流,下层向岸流,构成一个循环.\\
若风向与海岸成$\theta$角:\\
\begin{figure}[H]
\centering\includegraphics[width=8cm]{11.eps}
\caption*{}
\end{figure}
(1) 三个升降流系统:两个顺时针,一个逆时针;\\
(2) 大顺时针循环;\\
(3) $\theta=21.5°$时,升降流达最大强度;\\
(4) 纬度越低,升降流越强.
\subsection{非定常运动}
\subsubsection{漂流的发展}
\paragraph{假定}~{} \\
(1) 远离海岸和海底的开阔大洋;\\
(2) 风场均匀恒定;\\
(3) $\rho$为常数;\\
(4) 海面无倾斜;\\
(5) 运动非定常.\\
\paragraph{控制方程}~{}
\[
\left\{
\begin{aligned}
&\frac{\partial u}{\partial t}-f v=A_{z} \frac{\partial^{2} u}{\partial z^{2}}\\
&\frac{\partial v}{\partial t}+f u=A_{z} \frac{\partial^{2} v}{\partial z^{2}}
\end{aligned}
\right.
\]
\paragraph{初边值条件}~{}
\[
\left\{
\begin{aligned}
&z=0:A_z\frac{\partial u}{\partial z}=0,\rho A_z\frac{\partial v}{\partial z}=-\tau_y(t>0)\\
&z\rightarrow\infty:u=v=0\\
&t=0:u=v=0/u=C_1,v=C_2
\end{aligned}
\right.
\]
\paragraph{解的讨论}~{}
\[
\left\{
\begin{aligned}
&u=\frac{2 \pi \tau_{y}}{\rho f D_{0}} \int_{0}^{t^{\prime}} \frac{\sin (2 \pi \eta)}{\sqrt{\eta}} e^{\frac{\pi z^2}{4 D_{0}^{2}}} d \eta \\
&v=\frac{2 \pi \tau_{y}}{\rho f D_{0}} \int_{0}^{t^{\prime}} \frac{\cos (2 \pi \eta)}{\sqrt{\eta}} e^{\frac{\pi z^2}{4 D_{0}^{2}}} d \eta
\end{aligned}
\right.
\]
根据下图\cite{Ekman}:
\begin{figure}[H]
\centering \includegraphics[width=7cm]{12.eps}
\caption*{}
\end{figure}
随时间增加,空间某点流速端点顺时针旋转(北半球),逐渐趋向一个极限值(即漂流).
\subsubsection{惯性流}
\paragraph{假定和方程}~{} \\
(1) 风场消失或者流动离开风区;\\
(2) 外部驱动小时,湍摩擦失去作用;\\
(3) 流动转为由惯性项维持平衡;\\
(4) 强制流动转变为自由流动.\\
\begin{numcases}{}
\frac{du}{dt}-fv=0 \label{ic1}\\
\frac{dv}{dt}+fu=0 \label{ic2}
\end{numcases}
\paragraph{求解}~{}
\[
\begin{aligned}
(\ref{ic1})\times u+(\ref{ic2})\times v&\Leftrightarrow u \frac{d u}{d t}+v \frac{d v}{d t}=\frac{1}{2} \frac{d u^{2}}{d t}+\frac{1}{2} \frac{d v^{2}}{d t}=0 \\
&\Leftrightarrow \frac{d}{d t}\left(u^{2}+v^{2}\right)=0\\
&\Leftrightarrow u^{2}+v^{2}=c=V_{0}^{2}
\end{aligned}
\]
\[
\begin{aligned}
(\ref{ic1}),(\ref{ic2})
&\Rightarrow
\left\{\begin{aligned}&v=\frac{d y}{d t}=\frac{1}{f} \frac{d u}{d t}\\ &u=\frac{d x}{d t}=\frac{1}{f} \frac{d v}{d t}\end{aligned}\right.\\
&\Rightarrow
\left\{\begin{aligned}&y-y^{\prime}=\frac{1}{f}\left(u-u^{\prime}\right)\\ &x-x^{\prime}=-\frac{1}{f}\left(v-v^{\prime}\right)\end{aligned}\right.\\
&\Rightarrow
\left\{\begin{aligned}&y-\left(y^{\prime}-\frac{u^{\prime}}{f}\right)=\frac{u}{f}\\ &x-\left(x^{\prime}+\frac{v^{\prime}}{f}\right)=-\frac{v}{f}\end{aligned}\right.\\
&\Rightarrow\boxed{\left(y-y_{0}\right)^{2}+\left(x-x_{0}\right)^{2}=\frac{1}{f^{2}}\left(u^{2}+v^{2}\right)=\frac{V^{2}}{f^{2}}=r^{2}}
\end{aligned}
\]
流体质点沿半径为$r$的圆周作匀速运动,这个圆称之为惯性圆,对应的流动为惯性流.
\paragraph{惯性圆半径}~{}\\
科氏力充当向心力:$\displaystyle \frac{V_0^2}{r}=fV_0\Rightarrow V_0=fr\Rightarrow r=\frac{V_0}{f}=\frac{V_0}{2\omega \sin \varphi}$\\
随纬度增加而减小;赤道$r\rightarrow\infty$,水质点作直线运动.
\paragraph{周期}~{}
\[
T_{i}=\frac{2 \pi r}{V_{0}}=\frac{2 \pi r}{f r}=\frac{2 \pi}{f}=\frac{\pi}{\omega \sin \varphi}
\]
\paragraph{运动方向}~{}\\
北半球,顺时针;南半球,逆时针.
\paragraph{背景流}~{}\\
(1) 当无其他外加流动时,所有惯性圆的圆心位于同一条铅直线上,因而海水就像以角速度$2\omega \sin \varphi$旋转的刚体一样;\\
(2) 当有其他外加流动时,除了在同一水平面上所有海水质点皆在同一时刻由同一流速速率外,还依外加流动速度方向移动.
\newpage
\subsection{风生大洋环流}
\subsubsection{Sverdrup理论}
\paragraph{假定}~{}\\
(1) 远离海岸的大洋中部海区,Ro$\ll 1$大尺度、等深大洋$h$为常数;\\
(2) 远离边界、无侧边界影响,无水平湍摩擦应力E$_l\ll 1$;\\
(3) 定常风 定常流动;\\
(4) $\rho$为常数;\\
(5) $\beta$平面近似.\\
\paragraph{控制方程}~{}
\[
\left\{
\begin{aligned}
&-f v=-\frac{1}{\rho} \frac{\partial p}{\partial x}+A_{z} \frac{\partial^{2} u}{\partial^{2} z} \\
&fu=-\frac{1}{\rho} \frac{\partial p}{\partial y}+A_{z} \frac{\partial^{2} v}{\partial^{2} z} \\
&0=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g\\
&\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
\end{aligned}
\right.
\]
\paragraph{边界条件}~{}
\[
\left\{
\begin{aligned}
&z=\zeta(\mbox{海面}):\rho A_z\frac{\partial u}{\partial z}=\tau_{x\zeta},\rho A_z\frac{\partial v}{\partial z}=\tau_{y\zeta}\\
&z=-h(\mbox{足够深}):u=v=0,\frac{\partial u}{\partial z}=\frac{\partial v}{\partial z}=0,\frac{\partial p}{\partial x} =\frac{\partial p}{\partial y}=0
\end{aligned}
\right.
\]
\paragraph{求解}~{}\\
对上式进行垂直积分:
\begin{numcases}{}
-fM_y=-\frac{\partial P}{\partial x}+\tau_{x\zeta}\\
fM_x=-\frac{\partial P}{\partial y}+\tau_{y\zeta}\\
\frac{\partial M_x}{\partial x}+\frac{\partial M_y}{\partial y}=0\nonumber
\end{numcases}
其中,$\displaystyle M_x=\int_{-h}^0\rho udz,M_y=\int_{-h}^0\rho vdz,P=\int_{-h}^0 pdz,\tau_{x\zeta}=\int_{-h}^0\rho A_z\frac{\partial^2 u}{\partial z^2}=\rho A_{z}\left(\left.\frac{\partial u}{\partial z}\right|_{z=0}-\left.\frac{\partial u}{\partial z}\right|_{z=-h}\right)\quad (\zeta\ll h)$
\[
\begin{aligned}
\frac{\partial (15)}{\partial y}-\frac{\partial (16)}{\partial x}&\Leftrightarrow -M_y\frac{\partial f}{\partial y}\mathop{\boxed{-f\frac{\partial M_y}{\partial y}-f\frac{\partial M_x}{\partial x}}}\limits^{0}=\frac{\partial \tau_{x\zeta}}{\partial y}-\frac{\partial \tau_{y\zeta}}{\partial x}\\
&\Leftrightarrow M_{y} \frac{\partial f}{\partial y}=\frac{\partial \tau_{y \zeta}}{\partial x}-\frac{\partial \tau_{x \zeta}}{\partial y}\\
&\Leftrightarrow\mathop{\boxed{\color{red}\beta M_y=\operatorname{rot}_z\tau_\zeta}}\limits_{\mbox{Sverdrup方程}}
\end{aligned}
\]
$\color{red} \mbox{Sverdrup方程的物理意义1}$:海水南北向的输运由风应力旋度所驱动.
\paragraph{讨论}~{}\\
将质量输运分为Ekman漂流输运与地转流输运两部分:
\[
\begin{aligned}
&M_x=M_{xE}(\mbox{Ekman漂流})+M_{xg}(\mbox{地转流})\\
&M_y=M_{yE}(\mbox{Ekman漂流})+M_{yg}(\mbox{地转流})
\end{aligned}
\]
\begin{numcases}{}
-fM_{yE}=\tau_{x\zeta}\\
fM_{xE}=\tau_{y\zeta}\\
-fM_{yg}=-\frac{\partial P}{\partial x}\\
fM_{yg}=-\frac{\partial P}{\partial y}
\end{numcases}
\begin{align}
&\frac{\partial(17)}{\partial y}-\frac{\partial(18)}{\partial x}\Leftrightarrow\frac{\partial {M}_{xE}}{\partial x}+\frac{\partial {M}_{yE}}{\partial y}=\boxed{\nabla \cdot \vec{{M}}_{E}=\left(\operatorname{rot}_{z} \vec{\tau}_{\zeta}-{\beta} {M}_{y E}\right) / {f}}\\
&\frac{\partial(19)}{\partial y}-\frac{\partial(20)}{\partial x}\Leftrightarrow\frac{\partial {M}_{xg}}{\partial x}+\frac{\partial {M}_{yg}}{\partial y}=\boxed{\nabla \cdot \vec{{M}}_{g}=-\beta M_{yg}/f}
\end{align}
(1) Ekman漂流质量输运的水平散度与$\circled{1}$风应力旋度$\circled{2} f\circled{3} \beta$有关.\\
(2) 地转流质量输运的水平辐散引起南北向的地转运动.
\[
(21)+(22)\Leftrightarrow \operatorname{rot}_z\vec{\tau}_\zeta-\beta M_y=0\Leftrightarrow\boxed{\color{red} \beta M_y=\operatorname{rot}_z\vec{\tau}_\zeta}
\]
$\color{red} \mbox{Sverdrup方程的物理意义2}$:地转流流量的散度和Ekman漂流流量的散度相平衡,所以Sverdrup方程又称Sverdrup平衡.\\
(1) 所有南北向的地转运动,必须显示水平散度;\\
(2) 虽然Ekman漂流流量的散度与地转流流量的散度本身不为0,但是它们的和,即总流量的水平散度必须为0,说明Ekman漂流流量的散度和地转流流量的散度刚好取得平衡;\\
(3) $\operatorname{rot}_z\vec{\tau}_\zeta=0$:只存在东西方向的输运,$\operatorname{rot}_z\vec{\tau}_\zeta>0$:质量输运向北(北半球),$\operatorname{rot}_z\vec{\tau}_\zeta<0$:质量输运向南(南半球);\\
(4) 地转流引起的南北质量运输量比Ekman漂流引起的大.
\paragraph{缺陷}~{}\\
设仅有纬向风,且$\tau_{x\zeta}$仅为$y$的函数:
\[
M_y=\frac{1}{\beta}\operatorname{rot}_z\vec{\tau}_\zeta=\frac{1}{\beta}\left(\cancel{\frac{\partial \tau_{y\zeta}}{\partial x}}-\frac{\partial \tau_{x\zeta}}{\partial y}\right)=-\frac{a}{2\omega\cos\varphi}\frac{\partial\tau_{x\zeta}}{\partial y}
\]
\[
\frac{\partial M_{x}}{\partial x}=-\frac{\partial M_{y}}{\partial y}\Rightarrow M_{x}=\frac{x}{2 \omega \cos \varphi}\left(a \frac{\partial^{2} \tau_{x f}}{\partial y^{2}}+\frac{\partial \tau_{x f}}{\partial y} t g \varphi\right)+{\color{red}c(y)}
\]
在东、西边界,$M_x=0$而Sverdrup理论不能同时满足.
\subsubsection{Stommel理论}
\paragraph{假定}~{}\\
(1) 远离海岸的大洋中部海区,Ro$\ll 1$大尺度、等深大洋$h$为常数;\\
(2) 远离边界、无侧边界影响,无水平湍摩擦应力E$_l\ll 1$;\\
(3) 定常风 定常流动;\\
(4) $\rho$为常数;\\
(5) $\beta$平面近似;\\
$\mbox{(6) 考虑底摩擦}$
\paragraph{控制方程}~{}
\[
\left\{
\begin{aligned}
&-f v=-g \frac{\partial \zeta}{\partial x}+A_{z} \frac{\partial^{2} u}{\partial z^2} \\
&fu=-g \frac{\partial \zeta}{\partial y}+A_{z} \frac{\partial^{2} v}{\partial z^2} \\
&0=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g\\
&\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
\end{aligned}
\right.
\]
\paragraph{边界条件}~{}
\[
\left\{
\begin{aligned}
&z=\zeta(\mbox{海面}):\tau_{x , \zeta}=\left.\rho A_{z} \frac{\partial u}{\partial z}\right|_{t=\zeta}=-F \cos (\pi y / b),\tau_{y , \zeta}=0\\
&z=-h(\mbox{海底}):\tau_{x,-h}=\rho A_z\left.\frac{\partial u}{\partial z}\right|_{z=-h}={\color{red}\rho k u},\tau_{y,-h}=\rho A_z\left.\frac{\partial v}{\partial z}\right|_{z=-h}={\color{red}\rho k v}
\end{aligned}
\right.
\]
\paragraph{求解}~{}\\
对上式进行垂直平均:
\[
\left\{
\begin{aligned}
&-f\left\langle v\right\rangle=-g \frac{\partial \zeta}{\partial x}+\left.\frac{A_{z}}{h+\zeta} \frac{\partial u}{\partial z}\right|_{\zeta}-\left.\frac{A_z}{h+\zeta} \frac{\partial u}{\partial z}\right|_{-h}\\
&f\left\langle u\right\rangle=-g \frac{\partial \zeta}{\partial y}+\left.\frac{A_{z}}{h+\zeta} \frac{\partial v}{\partial z}\right|_{\zeta}-\left.\frac{A_z}{h+\zeta} \frac{\partial v}{\partial z}\right|_{-h}\\
&\frac{\partial}{\partial x}\left[\left(h+\zeta\right)\left\langle u\right\rangle\right]+\frac{\partial}{\partial y}[(h+\zeta)\left\langle v\right\rangle]=0
\end{aligned}
\right.
\]
将边界条件代入方程:
\begin{numcases}{}
0=f \rho h v-F \cos \left(\left. \pi y \middle/ b \right.\right)-\rho k u-\rho g h \frac{\partial \zeta}{\partial x} \quad(\zeta \ll h) \label{stm1}\\
0=-f \rho h u-\rho k v-\rho g h \frac{\partial \zeta}{\partial y}\label{stm2}\\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \nonumber
\end{numcases}
\[
\frac{\partial (\ref{stm1})}{\partial y}-\frac{\partial (\ref{stm2})}{\partial x}\Rightarrow \frac{h}{k}[\beta v+r \sin (\pi y / b)]+{\color{red}\overbrace{\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)}^{\color{red}\mbox{来源于底摩擦}}}=0
\]
引入流函数$\displaystyle \psi:u=\frac{\partial \psi}{\partial y},v=-\frac{\partial \psi}{\partial x}$:
\[
{\color{red}\overbrace{\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}}^{\color{red}\mbox{来源于底摩擦}}}+\frac{h}{k} \beta \frac{\partial \psi}{\partial x}=\frac{h}{k} r \sin \frac{\pi y}{b}
\]
边界条件:
\[
\psi(0, y)=\psi(a, y)=\psi(x, 0)=\psi(x, b)=0
\]
\[
\Rightarrow \psi(x, y)=\frac{F b}{k \pi} \sin \frac{\pi y}{b}\left[\frac{e^{\frac{h \beta}{2 k}(a-x)} \operatorname{sh} \alpha x+e^{\frac{-h \beta}{2 k} x} \operatorname{sh} \alpha(a-x)}{\operatorname{sh} \alpha a}-1\right]
\]
特别地,若$\beta=0$:$\displaystyle\psi(x, y)=\frac{F b}{k \pi} \sin \frac{\pi y}{b}\left[\frac{\operatorname{sh} \frac{\pi}{b} x+\operatorname{sh} \frac{\pi}{b}(a-x)}{\operatorname{sh} \frac{\pi}{b} a}-1\right]$
\paragraph{讨论}~{图片来自$Introduction \;to \; Physical \;Oceanography$(Robert H. Stewart,2008 pp190)}
\begin{figure}[H]
\centering \includegraphics[width=18cm]{13.eps}
\caption*{\large$ \color{red}\divideontimes\beta\mbox{效应导致了西向强化现象.}$}
\end{figure}
\begin{framed}
\begin{multicols}{2}
\begin{spacing}{0.8}
\centering
$\mathbf\beta=0$(非旋转坐标系或f平面近似):\\
(1) 流线南北对称;\\
(2) 流线东西对称.\\
$\mathbf\beta\neq 0$($\beta$平面近似):\\
(1) 流线南北对称;\\
(2) 流线东西不对称,西部密集,东部稀疏.
\end{spacing}
\end{multicols}
\end{framed}
\subsubsection{惯性理论}
\paragraph{方程}~{}\\
在Sverdrup理论的控制方程中引入惯性项:
\[
\left\{
\begin{aligned}
&\frac{du}{dt}-f v=-\frac{1}{\rho} \frac{\partial p}{\partial x}+A_{z} \frac{\partial^{2} u}{\partial^{2} z} \\
&\frac{dv}{dt}+fu=-\frac{1}{\rho} \frac{\partial p}{\partial y}+A_{z} \frac{\partial^{2} v}{\partial^{2} z} \\
&0=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g\\
&\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
\end{aligned}
\right.
\]
\paragraph{求解}~{}
\paragraph{内区(中部区)}~{}\\
满足Sverdrup理论:$\displaystyle \beta M_y=\operatorname{rot}_z\tau_\zeta,M_y=\frac{\partial \varphi}{\partial x}=\frac{1}{\beta} \operatorname{rot}_{z} \tau_{\zeta}=\frac{1}{\beta}\left(\frac{\partial \tau_{y\zeta}}{\partial x}-\frac{\partial \tau_{x\zeta}}{\partial y}\right)$\\
又设风应力:$\displaystyle \tau_{x\zeta}=-W\left(1-\frac{y^2}{s^2}\right),\tau_{y\zeta}=0\quad (0\leq y \leq s)$\\
\[
\begin{aligned}
\Rightarrow &\frac{\partial \varphi}{\partial x}=-\frac{2W}{\beta s^2}y\\
\Rightarrow &\varphi=-\frac{2W}{\beta s^2}yx+C(y)\\
(x=r:\varphi=0)\quad &0=-\frac{2W}{\beta s^2}yr+C(y)\\
\Rightarrow &\varphi=\frac{2W}{\beta s^2}y(r-x)
\end{aligned}
\]
\paragraph{大洋西部海域}~{}\\
不考虑湍摩擦效应:
\begin{numcases}{}
\frac{du}{dt}-f v=-\frac{1}{\rho} \frac{\partial p}{\partial x} \label{int1}\\
\frac{dv}{dt}+fu=-\frac{1}{\rho} \frac{\partial p}{\partial y} \label{int2}\\
0=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g\nonumber\\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0\nonumber
\end{numcases}
\begin{align}
\frac{\partial (\ref{int2})}{\partial x}-\frac{\partial (\ref{int1})}{\partial y} &\Leftrightarrow \frac{d}{d t}(\xi_r+f)+(\xi_r+f)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \nonumber\\
&\Leftrightarrow \frac{d}{d t}\left(\xi_{r}+f\right)=-\left(\xi_{r}+f\right)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \label{int3}
\end{align}
$\displaystyle \xi_r=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}$相对涡度,$f$行星涡度,$\xi_a=\xi_r+f$绝对涡度.\\
对连续方程进行垂向平均:
\begin{align}
&\frac{\partial \zeta}{\partial t}+\frac{\partial[(h+\zeta)\langle u\rangle]}{\partial x}+\frac{\partial[(h+\zeta)\langle v\rangle]}{\partial y}=0\nonumber\\
\Leftrightarrow & \frac{d(\zeta+h)}{d t}+(\zeta+h)\left(\frac{\partial \langle u\rangle}{\partial x}+\frac{\partial\langle v\rangle}{\partial y}\right)=0 \nonumber\\
(\mbox{令}H=h+\zeta)\Leftrightarrow & \frac{d H}{d t}+H\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \label{int4}
\end{align}
将$(\ref{int4})$代入$(\ref{int3})$中:
\begin{align}
&\Rightarrow \frac{d}{d t}\left(\xi_{r}+f\right)=\frac{1}{H}\left(\xi_{r}+f\right) \frac{d H}{d t}\nonumber\\
&\Rightarrow \frac{1}{H} \frac{d}{d t}(\xi_r+f)=\frac{1}{H^{2}}\left(\xi_{r}+f\right) \frac{d H}{d t}\nonumber\\
&\Rightarrow {\color{red} \boxed{\frac{d}{d t}\left(\frac{\xi_{r}+f}{H}\right)=0}} \label{veq}
\end{align}
$(\ref{veq})$为$\color{red}\mbox{位势涡度守恒方程}$.\\
假设在西边界区$\displaystyle\frac{\partial u}{\partial y}=0$,则:
\[
\xi_{r}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}=\frac{\partial}{\partial x}\left(\frac{1}{H} \frac{\partial \varphi}{\partial x}\right)
\]
代入$(\ref{veq})$:
\[
\begin{aligned}
&\frac{d}{d t}\left[\frac{\frac{\partial}{\partial x}\left(\frac{1}{M} \frac{\partial \varphi}{\partial x}\right)+f}{H}\right]=0\\
\Rightarrow & \frac{\frac{\partial}{\partial x}\left(\frac{1}{H} \frac{\partial \varphi}{\partial x}\right)+f}{H}=F(\varphi)\\
\Rightarrow & \frac{1}{H} \frac{\partial^{2} \varphi}{\partial x^{2}}+f_{0}+\beta y=H F(\varphi)=G(\varphi)
\end{aligned}
\]
\paragraph{在西边界层的边缘}~{}\\