-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_unanno.py
313 lines (273 loc) · 9.88 KB
/
eval_unanno.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import argparse
import copy
import logging
import os
from collections import defaultdict
from functools import partial
import fsspec
import torch
import yaml
from eval import KEYS, compute_average, load_pkl
from image2layout.train.data import collate_fn, get_dataset
from image2layout.train.helpers.metric import (
compute_alignment,
compute_overlap,
compute_overlay,
compute_rshm,
compute_saliency_aware_metrics,
compute_underlay_effectiveness,
compute_validity,
)
from image2layout.train.helpers.rich_utils import get_progress
from image2layout.train.helpers.util import set_seed
from omegaconf import OmegaConf
logger = logging.getLogger(__name__)
@torch.no_grad()
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("--input-dir", type=str, required=True)
parser.add_argument(
"--load-gt-split",
type=str,
choices=["val", "test"],
default=None,
help="instead of loading generated samples, load ground truth samples from the specified split",
)
parser.add_argument(
"--save-score-dir",
type=str,
default="tmp/scores",
)
parser.add_argument(
"--dataset-path",
type=str,
default="",
)
parser.add_argument(
"--debug",
action="store_true",
)
parser.add_argument("--batch-size", type=int, default=1)
args = parser.parse_args()
set_seed(0)
if args.debug:
logger.info("Debug mode!")
# Create result directory
fs, path_prefix = fsspec.core.url_to_fs(args.save_score_dir)
if not fs.exists(path_prefix):
fs.makedirs(path_prefix)
use_generated_samples = args.load_gt_split is None
if use_generated_samples:
# Load all pickle files
fs, _ = fsspec.core.url_to_fs(args.input_dir)
scores_all_path = os.path.join(args.input_dir, "scores_all.yaml")
# if fs.exists(scores_all_path):
# logger.info(f"Find {scores_all_path}. Finish!")
# return None
pickle_paths = fs.glob(os.path.join(args.input_dir, "*.pkl"))
logger.info(f"Found pickle files: {pickle_paths=}")
else:
pickle_paths = [None]
ckpt_name = "ground-truth dataset"
seed = "None"
split = args.load_gt_split
train_cfg = OmegaConf.create(
{
"dataset": {
"max_seq_length": 10,
"data_dir": args.dataset_path,
"data_type": "parquet",
"path": None,
},
"data": {"transforms": ["image", "shuffle"], "tokenization": False},
"run_on_local": True,
}
)
test_cfg = OmegaConf.create(
{
"dataset": {
"max_seq_length": 10,
"data_dir": args.dataset_path,
"data_type": "parquet",
},
"batch_size": 1,
"dataset_path": args.dataset_path,
}
)
logger.info(f"Use ground-truth {split=} dataset")
# Build dataset
if use_generated_samples:
train_cfg, test_cfg = load_pkl(pickle_paths[0])[2:4]
training_data_dir = train_cfg.dataset.data_dir
dataset_cfg = copy.deepcopy(train_cfg.dataset)
dataset_cfg.data_dir = args.dataset_path
dataset, features = get_dataset(
dataset_cfg=dataset_cfg,
transforms=list(train_cfg.data.transforms),
remove_column_names=["image_width", "image_height"],
)
# Check whether a cross-evaluation setting
training_dataset_name = train_cfg.dataset.data_dir.split("/")[-1][:3]
eval_dataset_name = args.dataset_path.split("/")[-1][:3]
use_cross_dataset = False
if training_dataset_name != eval_dataset_name:
use_cross_dataset = True
dataset_cfg.data_dir = training_data_dir
_, features = get_dataset(
dataset_cfg=dataset_cfg,
transforms=list(train_cfg.data.transforms),
remove_column_names=["image_width", "image_height"],
)
# Build dataloader
max_seq_length = train_cfg.dataset.max_seq_length
if max_seq_length < 0:
max_seq_length = None
collate_fn_partial = partial(
collate_fn,
max_seq_length=max_seq_length,
)
loaders = {}
batch_size = test_cfg.batch_size
for _split in ["with_no_annotation"]:
loaders[_split] = torch.utils.data.DataLoader(
dataset[_split],
num_workers=2,
batch_size=batch_size,
pin_memory=True,
collate_fn=collate_fn_partial,
persistent_workers=False,
drop_last=False,
shuffle=False,
)
# Build metrics
feature_label = features["label"].feature
batch_eval_funcs = [
compute_alignment,
compute_overlap,
partial(compute_saliency_aware_metrics, feature_label=feature_label),
partial(compute_overlay, feature_label=feature_label),
partial(compute_underlay_effectiveness, feature_label=feature_label),
compute_rshm,
]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
scores_all = defaultdict(list)
for pickle_path in pickle_paths:
# Load picjke
if use_generated_samples:
(
fs,
generated_samples,
train_cfg,
test_cfg,
_,
_,
ckpt_name,
) = load_pkl(pickle_path)
split = "with_no_annotation"
seed = (
pickle_path.split("/")[-1]
.split(".pkl")[0]
.split("with_no_annotation_")[-1]
)
else:
# Load ground truth samples for gt-gt evaluation
generated_samples = [
{k: v for k, v in dataset[split][i].items() if k in KEYS}
for i in range(len(dataset[split]))
]
generated_samples, validity = compute_validity(generated_samples)
# Attach image and saliency to generated samples.
assert len(dataset[split]) == len(
generated_samples
), f"{len(dataset[split])} != {len(generated_samples)}"
# compute scores for each run
logger.info("Evaluation start!!")
batch_metrics = defaultdict(list)
# Compute metrics and extract features.
pbar = get_progress(
range(0, len(generated_samples), batch_size),
"Eval generated samples",
)
for i in pbar:
i_end = min(i + batch_size, len(generated_samples))
_batch = generated_samples[i:i_end]
# append image and saliency in batch-wise manner to avoid OOM
for j in range(i, i_end):
assert _batch[j - i]["id"] == dataset[split][j]["id"]
for key in ["image", "saliency"]:
_batch[j - i][key] = dataset[split][j][key]
batch = collate_fn_partial(_batch)
for func in batch_eval_funcs:
for k, v in func(batch).items():
batch_metrics[k].extend(v)
# take average on (possibly) varying number of elements (due to filtering None)
scores = {}
for k, v in batch_metrics.items():
scores[k] = sum(v) / len(v)
scores["validity"] = validity
scores = {k: float(v) for k, v in scores.items()}
scores = {
"seed": seed,
"pkl_path": pickle_path,
"scores": scores,
}
scores_all[split].append(scores)
# Save scores_all as yaml
if not use_generated_samples:
scores_tmp_path = os.path.join(
args.save_score_dir, f"{split}_with_no_anno.yaml"
)
save_paths = [scores_tmp_path]
output_score = scores_all
# Create log for pasting to google spread sheet.
log_parts = ["=== metrics ===\n"]
_split = list(scores_all.keys())[0]
log_parts.extend([f"{k}\n" for k in scores_all[_split][0]["scores"].keys()])
log_parts.append("\n\n\n")
for k, v in scores_all[_split][0]["scores"].items():
log_parts.append(f"{v}\n")
log = "".join(log_parts)
for save_log_path in save_paths:
save_log_path = save_log_path.replace(".yaml", ".txt")
with fs.open(save_log_path, "w") as file_obj:
file_obj.writelines(log)
else:
# Define save paths
scores_all_path = os.path.join(args.input_dir, "scores_all.yaml")
save_paths = [scores_all_path]
try:
g = args.input_dir.split("/")
expid = g[5]
expdir = g[6]
scores_all_tmp_path = os.path.join(
args.save_score_dir, f"{expid}___{expdir}___{ckpt_name}.yaml"
)
save_paths.append(scores_all_tmp_path)
except Exception:
pass
scores_avg = compute_average(scores_all)
output_score = {
**scores_all,
"average": scores_avg,
}
# Create log for pasting to google spread sheet.
log_parts = ["=== metrics ===\n"]
log_parts.extend(
[f"{k}\n" for k in scores_avg[list(scores_avg.keys())[0]].keys()]
)
log_parts.append("\n\n\n")
for k, v in scores_avg.items():
log_parts.append(f"=== average {k} ===\n")
log_parts.extend([f"{vv}\n" for kk, vv in v.items()])
log_parts.append("\n\n\n")
log = "".join(log_parts)
for save_log_path in save_paths:
save_log_path = save_log_path.replace(".yaml", ".txt")
with fs.open(save_log_path, "w") as file_obj:
file_obj.writelines(log)
for save_path in save_paths:
logger.info(f"Save score to: {save_path}")
with fsspec.open(save_path, "w") as file_obj:
yaml.dump(output_score, file_obj)
if __name__ == "__main__":
main()