forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtbx_scfg_hmri_proc_US.m
341 lines (306 loc) · 13.5 KB
/
tbx_scfg_hmri_proc_US.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
function proc_us = tbx_scfg_hmri_proc_US
% Configuration file for the segmentation part of the processing modules of
% the "histological MRI" (hMRI) toolbox.
% -> Apply "unifies segementation" (US) on series of images.
%_______________________________________________________________________
% Copyright (C) 2017 Cyclotron Research Centre
% Written by Christophe Phillips
% but largely inspired by the batch from the past VBQ toolbox.
% NOTE:
% It could be advantageous to define the TPM in a definition file and use
% it when ever we need it. Right now, this is hard-coded in the cfg file!
% ---------------------------------------------------------------------
% vols_pm Parametric maps
% ---------------------------------------------------------------------
vols_pm = cfg_files;
vols_pm.tag = 'vols_pm';
vols_pm.name = 'Maps';
vols_pm.help = {['Select whole brain maps of one type (e.g. MT, R2*, ',...
'R1, etc.) from all subjects for processing.']};
vols_pm.filter = 'image';
vols_pm.ufilter = '.*';
vols_pm.num = [1 Inf];
% ---------------------------------------------------------------------
% indir Input directory as output directory
% ---------------------------------------------------------------------
indir = cfg_menu;
indir.tag = 'indir';
indir.name = 'Input directory';
indir.help = {['Output files will be written to the same folder as ',...
'each corresponding input file.']};
indir.labels = {'Yes'};
indir.values = {1};
indir.val = {1};
% ---------------------------------------------------------------------
% outdir Output directory for all data
% ---------------------------------------------------------------------
outdir = cfg_files;
outdir.tag = 'outdir';
outdir.name = 'Output directory, all together';
outdir.help = {['Select a directory where all output files from all '...
'subjects put together will be written to.']};
outdir.filter = 'dir';
outdir.ufilter = '.*';
outdir.num = [1 1];
% ---------------------------------------------------------------------
% outdir_ps Output directory for per-subject organisation
% ---------------------------------------------------------------------
outdir_ps = cfg_files;
outdir_ps.tag = 'outdir_ps';
outdir_ps.name = 'Output directory, with per-subject sub-directory';
outdir_ps.help = {['Select a directory where output files will be '...
'written to, in each subject''s sub-directory.']};
outdir_ps.filter = 'dir';
outdir_ps.ufilter = '.*';
outdir_ps.num = [1 1];
% ---------------------------------------------------------------------
% output Output choice
% ---------------------------------------------------------------------
output = cfg_choice;
output.tag = 'output';
output.name = 'Output choice';
output.help = {['Output directory can be the same as the input ',...
'directory for each input file or user selected (one for everything ',...
'or preserve a per-subject organisation).']};
output.values = {indir outdir outdir_ps };
output.val = {indir};
% ---------------------------------------------------------------------
% Get stuff from SPM-US config file & adapting it
% ---------------------------------------------------------------------
% get the prproc8 config object
preproc8 = spm_cfg_preproc8;
% % set the bias cutoff and regularisation to 'no bias' 'no reg' correction
% preproc8 = cfg_set_val(preproc8, 'data', 'channel', 'biasfwhm', Inf);
% preproc8 = cfg_set_val(preproc8, 'data', 'channel', 'biasreg', 0);
% NOTE that this only change the values for the 1st channel!
% -> use dirty trick here under to both change 1st and default values...
% ---------------------------------------------------------------------
% rstruct Structurals
% ---------------------------------------------------------------------
% extract the data channel from preproc8 for the structural reference def.
rstruct = eval(['preproc8',cfg_expr(preproc8, 'data')]);
rstruct.tag = 'rstruct';
rstruct.name = 'Structurals for segmentation';
% set the bias cutoff to 'no bias' correction
rstruct = cfg_set_val(rstruct, 'channel', 'biasfwhm', Inf);
% set the bias regularisation to 'no regularisation' correction
rstruct = cfg_set_val(rstruct, 'channel', 'biasreg', 0);
% Dirty trick to set the default values of biasfhwm to Inf for new channels
kk_exp = cfg_expr(rstruct, 'channel', 'biasfwhm');
ll = strfind(kk_exp,'.val{1}'); % pick bits with '.val{1}'
% Replace 1nd occurence by '.values{1}' -> defaults
kk_exp = [kk_exp(1:ll(1)-1),'.values{1}',kk_exp((ll(1)+7):end)];
eval(['rstruct',kk_exp '.val = {Inf};']);
% Same goes for 'biasreg' sot to 0
kk_exp = cfg_expr(rstruct, 'channel', 'biasreg');
ll = strfind(kk_exp,'.val{1}'); % pick bits with '.val{1}'
% Replace 1nd occurence by '.values{1}' -> defaults
kk_exp = [kk_exp(1:ll(1)-1),'.values{1}',kk_exp((ll(1)+7):end)];
eval(['rstruct',kk_exp '.val = {0};']);
% ---------------------------------------------------------------------
% many_pams Parameter maps
% ---------------------------------------------------------------------
% used for 'many subjects', i.e. list the data per map type across subjects
many_pams = cfg_repeat;
many_pams.tag = 'maps';
many_pams.name = 'Parametric maps';
many_pams.values = {vols_pm};
many_pams.val = {}; % Empty to begin with
many_pams.num = [0 Inf];
many_pams.help = {['Select whole brain parameter maps (e.g. MT, ',...
'R2*, FA, etc.) from all subjects for processing, one type per entry.']};
% ---------------------------------------------------------------------
% vox Voxel sizes
% ---------------------------------------------------------------------
vox = cfg_entry;
vox.tag = 'vox';
vox.name = 'Voxel sizes';
vox.num = [1 3];
vox.strtype = 'e';
vox.val = {[1 1 1]};
vox.help = {[...
'Specify the voxel sizes of the deformation field and tissue classes ',...
'to be produced. Non-finite values will default to the voxel sizes of ',...
'the template image that was originally used to estimate the deformation.']};
%--------------------------------------------------------------------------
% bb Bounding box
%--------------------------------------------------------------------------
bb = cfg_entry;
bb.tag = 'bb';
bb.name = 'Bounding box';
bb.help = {'The bounding box (in mm) of the volume which is to be written (relative to the anterior commissure).'};
bb.strtype = 'r';
bb.num = [2 3];
bb.def = @(val)spm_get_defaults('normalise.write.bb', val{:});
% ---------------------------------------------------------------------
% many_sdatas Many subjects data
% ---------------------------------------------------------------------
many_sdatas = cfg_branch;
many_sdatas.tag = 'many_sdatas';
many_sdatas.name = 'Data & options';
many_sdatas.val = {output unlimit(rstruct) many_pams vox bb};
many_sdatas.help = {'Specify images for many subjects at once.' , ...
['Processing will work on 1 subject at the time, using his ',...
'structural image(s) to estimate the segmentation and warping parameters. ', ...
'Then warps are applied *only* on his parametric maps, if provided.']};
% ---------------------------------------------------------------------
% preproc8 Segment MT/T1w data
% ---------------------------------------------------------------------
proc_us = preproc8;
proc_us.name = 'Proc. hMRI -> Segmentation';
proc_us.tag = 'proc_us';
% Combine data defintion (local) with the tissue specs & other parameters
% from preproc8 (these 2 are the last elements in preproc8.val)
proc_us.val = [{many_sdatas} preproc8.val(2:end)];
% get the output for the tissue classes
w_native = hmri_get_defaults('proc.w_native');
w_warped = hmri_get_defaults('proc.w_warped');
% get the number of Gaussians per tissue class
nGauss = hmri_get_defaults('proc.nGauss');
% use the hMRI specific TPMs.
fn_tpm = hmri_get_defaults('proc.TPM');
% Fill in each tissue class parameters
for ii=1:size(w_native,1)
proc_us = cfg_set_val(proc_us, 'tissues', ii, 'native', w_native(ii,:));
proc_us = cfg_set_val(proc_us, 'tissues', ii, 'warped', w_warped(ii,:));
proc_us = cfg_set_val(proc_us, 'tissues', ii, 'tpm', ...
{spm_file(fn_tpm,'number',ii)});
proc_us = cfg_set_val(proc_us, 'tissues', ii, 'ngaus', nGauss(ii));
end
% set the output to write out the forward deformation field
proc_us = cfg_set_val(proc_us, 'warp', 'write', [0 1]);
proc_us.prog = @hmri_run_proc_US;
proc_us.vout = @vout_preproc;
proc_us.check = @check_USdata;
end
%----------------------------------------------------------------------
%----------------------------------------------------------------------
%----------------------------------------------------------------------
%% =======================================================================
% VOUT function
% =======================================================================
function dep = vout_preproc(job)
% This depends on job contents, which may not be present when virtual
% outputs are calculated.
cdep = cfg_dep;
% Collect tissue class images (4 of them)
for i=1:numel(job.tissue)
if job.tissue(i).native(1)
cdep(end+1) = cfg_dep;
cdep(end).sname = sprintf('c%d Images', i);
cdep(end).src_output = substruct('.', 'tiss', '()', {i}, '.', 'c', '()', {':'});
cdep(end).tgt_spec = cfg_findspec({{'filter','nifti'}});
% cdep(end).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); % cfg_findspec({{'filter','nifti'}});
end
if job.tissue(i).native(2)
cdep(end+1) = cfg_dep;
cdep(end).sname = sprintf('rc%d Images', i);
cdep(end).src_output = substruct('.', 'tiss', '()', {i}, '.', 'rc', '()', {':'});
cdep(end).tgt_spec = cfg_findspec({{'filter','nifti'}});
% cdep(end).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
end
if job.tissue(i).warped(1)
cdep(end+1) = cfg_dep;
cdep(end).sname = sprintf('wc%d Images', i);
cdep(end).src_output = substruct('.', 'tiss', '()', {i}, '.', 'wc', '()', {':'});
cdep(end).tgt_spec = cfg_findspec({{'filter','nifti'}});
% cdep(end).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
end
if job.tissue(i).warped(2)
cdep(end+1) = cfg_dep;
cdep(end).sname = sprintf('mwc%d Images', i);
cdep(end).src_output = substruct('.', 'tiss', '()', {i}, '.', 'mwc', '()', {':'});
cdep(end).tgt_spec = cfg_findspec({{'filter','nifti'}});
% cdep(end).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
end
end
% Collect warped parametric maps
for i=1:numel(job.many_sdatas.vols_pm)
cdep(end+1) = cfg_dep;
cdep(end).sname = sprintf('Warped p. maps #%d', i);
cdep(end).src_output = substruct('.', 'maps', '()', {i}, '.', 'wvols_pm', '()', {':'});
cdep(end).tgt_spec = cfg_findspec({{'filter','nifti'}});
% cdep(end).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
end
% Collect the deformation fields
cdep(end+1) = cfg_dep;
cdep(end).sname = 'Def. fields';
cdep(end).src_output = substruct('.', 'def', '.', 'fn', '()', {':'});
cdep(end).tgt_spec = cfg_findspec({{'filter','nifti'}});
% cdep(end).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
dep = cdep(2:end);
end
%% =======================================================================
% CHECKING the data
% ========================================================================
function t = check_USdata(job)
% Checking that the data are consistent.
t = {};
nSubj = numel(job.many_sdatas.channel(1).vols);
nChan = numel(job.many_sdatas.channel); % number of channels
nPara = numel(job.many_sdatas.vols_pm); % number of maps type
% 1/ Check the number of structurals in each channel
if nChan>1
for ii=2:nChan
if numel(job.many_sdatas.channel(ii).vols)~=0 && ...
numel(job.many_sdatas.channel(ii).vols)~=nSubj
t{1} = 'Structural channels have different number of images/subjects!';
warndlg(t,'Structural channel numbers');
return
end
end
end
% 2/ Check this number matches the number of parametric maps
if nPara>1
for ii=1:nPara
if numel(job.many_sdatas.vols_pm{ii})~=0 && ...
numel(job.many_sdatas.vols_pm{ii})~=nSubj
t{1} = 'Number of maps not matching number of structural images/subjects!';
warndlg(t,'Maps numbers');
return
end
end
end
end
%% =======================================================================
% SUBFUNCTIONS to handle matlabbatch structure and fields
% ========================================================================
function expr = cfg_expr(c, varargin) %#ok<INUSL>
expr = 'c';
for i=1:size(varargin,2)
% if strcmp(class(varargin{i}), 'double')
if isa(varargin{i}, 'double')
expr = [expr '.val{' num2str(varargin{i}) '}']; %#ok<*AGROW>
else
v = eval([expr ';']);
for j=1:size(v.val,2)
if strcmp(v.val{j}.tag, varargin{i})
break
end
end
expr = [expr '.val{' num2str(j) '}'];
end
end
expr = expr(2:end);
end
%_______________________________________________________________________
function c = cfg_set_val(c, varargin)
expr = ['c' cfg_expr(c, varargin{1:end-1})];
eval([expr '.val={varargin{end}};']);
end
%_______________________________________________________________________
function c = unlimit(c)
try
if isa(c, 'cfg_files')
c.num = [0 Inf];
end
catch e %#ok<*NASGU>
end
try
for i=1:numel(c.val)
c.val{i} = unlimit(c.val{i});
end
catch e
end
end
%_______________________________________________________________________