-
Notifications
You must be signed in to change notification settings - Fork 2
/
mpi_trap.c
133 lines (113 loc) · 3.81 KB
/
mpi_trap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/* File: mpi_trap1.c
* Purpose: Use MPI to implement a parallel version of the trapezoidal
* rule. In this version the endpoints of the interval and
* the number of trapezoids are hardwired.
*
* Input: None.
* Output: Estimate of the integral from a to b of f(x)
* using the trapezoidal rule and n trapezoids.
*
* Compile: mpicc -g -Wall -o mpi_trap1 mpi_trap1.c
* Run: mpiexec -n <number of processes> ./mpi_trap1
*
* Algorithm:
* 1. Each process calculates "its" interval of
* integration.
* 2. Each process estimates the integral of f(x)
* over its interval using the trapezoidal rule.
* 3a. Each process != 0 sends its integral to 0.
* 3b. Process 0 sums the calculations received from
* the individual processes and prints the result.
*
* Note: f(x), a, b, and n are all hardwired.
*
* IPP: Section 3.2.2 (pp. 96 and ff.)
*
* Plotar função online: https://www.desmos.com/calculator?lang=pt-BR
* f(x)=x^2-4x +8
* a = 0
* b = 3
* 0 <= y <= f(x){(a-x)(b-x)<0}
*/
#include <stdio.h>
/* We'll be using MPI routines, definitions, etc. */
#include <mpi.h>
/* Calculate local integral */
double Trap(double left_endpt, double right_endpt, int trap_count,
double base_len);
/* Function we're integrating */
double f(double x);
int main(void) {
int my_rank, comm_sz, n = 10000000, local_n;
double a = 1.0, b = 5.0, h, local_a, local_b;
double local_int, total_int;
int source;
/* Let the system do what it needs to start up MPI */
MPI_Init(NULL, NULL);
/* Get my process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
/* Find out how many processes are being used */
MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);
h = (b-a)/n; /* h is the same for all processes */
local_n = n/comm_sz; /* So is the number of trapezoids */
/* Length of each process' interval of
* integration = local_n*h. So my interval
* starts at: */
local_a = a + my_rank*local_n*h;
local_b = local_a + local_n*h;
local_int = Trap(local_a, local_b, local_n, h);
/* Add up the integrals calculated by each process */
if (my_rank != 0) {
MPI_Send(&local_int, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
} else {
total_int = local_int;
for (source = 1; source < comm_sz; source++) {
MPI_Recv(&local_int, 1, MPI_DOUBLE, source, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
total_int += local_int;
}
}
/* Print the result */
if (my_rank == 0) {
printf("With n = %d trapezoids, our estimate\n", n);
printf("of the integral from %f to %f = %.15e\n",
a, b, total_int);
}
/* Shut down MPI */
MPI_Finalize();
return 0;
} /* main */
/*------------------------------------------------------------------
* Function: Trap
* Purpose: Serial function for estimating a definite integral
* using the trapezoidal rule
* Input args: left_endpt
* right_endpt
* trap_count
* base_len
* Return val: Trapezoidal rule estimate of integral from
* left_endpt to right_endpt using trap_count
* trapezoids
*/
double Trap(
double left_endpt /* in */,
double right_endpt /* in */,
int trap_count /* in */,
double base_len /* in */) {
double estimate, x;
int i;
for (i = 0; i <= trap_count-1; i++) {
x = left_endpt + i*base_len;
estimate += (f(x) + f(x+base_len));
}
estimate = estimate*base_len*0.5;
return estimate;
} /* Trap */
/*------------------------------------------------------------------
* Function: f
* Purpose: Compute value of function to be integrated
* Input args: x
*/
double f(double x) {
return x*x - 4*x + 8;
//return x*x;
} /* f */