-
Notifications
You must be signed in to change notification settings - Fork 1
/
ssd_pascal.py
667 lines (605 loc) · 24.1 KB
/
ssd_pascal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# -*- coding:utf-8 -*-
from __future__ import print_function
import caffe
from caffe.model_libs import *
from google.protobuf import text_format
from caffe import layers as L
#net[bn_name] = L.BatchNorm(net[conv_name], in_place=True, **bn_kwargs)
import math
import os
import shutil
import stat
import subprocess
import sys
### Modify the following parameters accordingly ###
# The directory which contains the caffe code.
# We assume you are running the script at the CAFFE_ROOT.
# Add extra layers on top of a "base" network (e.g. VGGNet or Inception).
#ljw-2017-12-18 about fine-tuning
#--If we provide the weights argument to the caffe train command,
# the pretrained weights will be loaded into our model, matching layers by name.
#Since there is no layer named that in the bvlc_reference_caffenet, t
# hat layer will begin training with random weights
def AddExtraLayers(net, use_batchnorm=True, lr_mult=1):
use_relu = True
# Add additional convolutional layers.
# 19 x 19
#注意,代码里的卷积层的名称与论文里不太一致!!
from_layer = net.keys()[-1]#得基准网络的倒数第一层,19*19*1024,conv6 fc6
from_layer2 = net.keys()[-3]#得基准网络的倒数第二层,19*19*1024,conv7 fc7
from_layer3 = net.keys()[-14]#得基准网络的倒数第三层,38*38*512,conv4-3
from_layer4 = net.keys()[-12]
'''out_layer_conv512_1024_1_1 ='conv512_1024_1_1'
ConvBNLayer(net, from_layer3, out_layer_conv512_1024_1_1, use_batchnorm, use_relu, 512, 3, 1, 2,
lr_mult=lr_mult)
out_layer='conv512_1024_1_2
ConvBNLayer(net, out_layer_conv512_1024_1_1, out_layer, use_batchnorm, use_relu, 512, 1, 0, 1,
lr_mult=lr_mult)'''
'''net.conv512_1024_2_1 = L.Pooling(net[from_layer3], pool=P.Pooling.MAX, kernel_size=3, stride=2, pad=0)
out_layer = 'conv512_1024_2_2'
ConvBNLayer(net, 'conv512_1024_2_1', out_layer, use_batchnorm, use_relu, 512, 1, 0, 1,
lr_mult=lr_mult)
ConvBNLayer(net, 'fc7', 'fc77', use_batchnorm, use_relu, 512, 1, 0, 1,
lr_mult=lr_mult)
# 得到19*19*1024
net.fc88 = L.Concat(net['fc77'], net['conv512_1024_2_2'], axis=1)'''
# TODO(weiliu89): Construct the name using the last layer to avoid duplication.
# 10 x 10
out_layer = "conv_1024_512_1_1"
ConvBNLayer(net, 'fc7', out_layer, use_batchnorm, use_relu, 128, 1, 0, 1,
lr_mult=lr_mult)
from_layer = out_layer
out_layer = "conv_1024_512_1_2"
#kernel_size, pad, stride
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 256, 3, 1, 2,
lr_mult=lr_mult)
#2*2pooling和1*1*256的卷积
net.conv_1024_512_2_1 = L.Pooling(net['fc7'], pool=P.Pooling.MAX, kernel_size=3, stride=2, pad=1)
out_layer2 = 'conv_1024_512_2_2'
ConvBNLayer(net, 'conv_1024_512_2_1', out_layer2, use_batchnorm, use_relu, 256, 1, 0, 1,
lr_mult=lr_mult)
#聚合
net.conv6_22 = L.Concat(net['conv_1024_512_1_2'], net['conv_1024_512_2_2'], axis=1)
# 5 x 5
from_layer = 'conv6_22'
out_layer = "conv_512_256_1_1"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 64, 1, 0, 1,
lr_mult=lr_mult)
from_layer = out_layer
out_layer = "conv_512_256_1_2"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 3, 1, 2,
lr_mult=lr_mult)
# 2*2pooling和1*1*128的卷积
net.conv_512_256_2_1 = L.Pooling(net['conv6_22'], pool=P.Pooling.MAX, kernel_size=2, stride=2, pad=0)
out_layer2 = 'conv_512_256_2_2'
ConvBNLayer(net, 'conv_512_256_2_1', out_layer2, use_batchnorm, use_relu, 128, 1, 0, 1,
lr_mult=lr_mult)
# 聚合
net.conv7_22 = L.Concat(net[out_layer], net[out_layer2], axis=1)
# 3 x 3
from_layer = 'conv7_22'
out_layer = "conv_512_256_1st_1_1"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 64, 1, 0, 1,
lr_mult=lr_mult)
from_layer = out_layer
out_layer = "conv_512_256_1st_1_2"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 3, 1, 2,
lr_mult=lr_mult)
# 2*2pooling和1*1*256的卷积
net.conv_512_256_1st_2_1 = L.Pooling(net['conv7_22'], pool=P.Pooling.MAX, kernel_size=2, stride=2, pad=1)
out_layer2 = 'conv_512_256_1st_2_2'
ConvBNLayer(net, 'conv_512_256_1st_2_1', out_layer2, use_batchnorm, use_relu, 128, 1, 0, 1,
lr_mult=lr_mult)
# 聚合
net.conv8_22 = L.Concat(net[out_layer], net[out_layer2], axis=1)
# 1 x 1
from_layer = 'conv8_22'
out_layer = "conv_512_256_2nd_1_1"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 64, 1, 0, 1,
lr_mult=lr_mult)
from_layer = out_layer
out_layer = "conv_512_256_2nd_1_2"
ConvBNLayer(net, from_layer, out_layer, use_batchnorm, use_relu, 128, 3, 0, 2,
lr_mult=lr_mult)
# 2*2pooling和1*1*256的卷积
net.conv_512_256_2nd_2_1 = L.Pooling(net['conv8_22'], pool=P.Pooling.MAX, kernel_size=3, stride=1, pad=0)
out_layer2 = 'conv_512_256_2nd_2_2'
ConvBNLayer(net, 'conv_512_256_2nd_2_1', out_layer2, use_batchnorm, use_relu, 128, 1, 0, 1,
lr_mult=lr_mult)
# 聚合
net.conv9_22 = L.Concat(net[out_layer], net[out_layer2], axis=1)
DeconvBNLayer(net, 'conv9_22', 'up1_3', True, True, 256, 3, 0, 2)
net.eltwisesum1 = L.Eltwise(net['conv8_22'], net['up1_3'], operation=P.Eltwise.SUM)
DeconvBNLayer(net, 'eltwisesum1', 'up3_5', True, True, 256, 3, 1, 2)
net.eltwisesum2 = L.Eltwise(net['conv7_22'], net['up3_5'], operation=P.Eltwise.SUM)
DeconvBNLayer(net, 'eltwisesum2', 'up5_10', True, True, 256, 4, 1, 2)
out_layer = 'conv1_1_1st'
ConvBNLayer(net, 'up5_10', out_layer, use_batchnorm, use_relu, 512, 1, 0, 1,
lr_mult=lr_mult)
net.eltwisesum3 = L.Eltwise(net['conv6_22'], net['conv1_1_1st'], operation=P.Eltwise.SUM)
DeconvBNLayer(net, 'eltwisesum3', 'up10_19', True, True, 512, 3, 1, 2)
out_layer = 'conv1_1_2nd'
ConvBNLayer(net, 'up10_19', out_layer, use_batchnorm, use_relu, 1024, 1, 0, 1,
lr_mult=lr_mult)
net.eltwisesum4 = L.Eltwise(net['fc7'], net['conv1_1_2nd'], operation=P.Eltwise.SUM)
DeconvBNLayer(net, 'eltwisesum4', 'up19_38', True, True, 512, 4, 1, 2)
out_layer = 'conv1_1_3rd'
ConvBNLayer(net, 'up19_38', out_layer, use_batchnorm, use_relu, 512, 1, 0, 1,
lr_mult=lr_mult)
net.eltwisesum5 = L.Eltwise(net['conv4_3'], net['conv1_1_3rd'], operation=P.Eltwise.SUM)
return net
### Modify the following parameters accordingly ###
# The directory which contains the caffe code.
# We assume you are running the script at the CAFFE_ROOT.
caffe_root = os.getcwd()
# Set true if you want to start training right after generating all files.
run_soon = True
# Set true if you want to load from most recently saved snapshot.
# Otherwise, we will load from the pretrain_model defined below.
resume_training = True
# If true, Remove old model files.
remove_old_models = False
# The database file for training data. Created by data/VOC0712/create_data.sh
train_data = "examples/VOC0712/VOC0712_trainval_lmdb"
# The database file for testing data. Created by data/VOC0712/create_data.sh
test_data = "examples/VOC0712/VOC0712_test_lmdb"
# Specify the batch sampler.
resize_width = 300
resize_height = 300
resize = "{}x{}".format(resize_width, resize_height)
batch_sampler = [
{
'sampler': {
},
'max_trials': 1,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.1,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.3,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.5,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.7,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'min_jaccard_overlap': 0.9,
},
'max_trials': 50,
'max_sample': 1,
},
{
'sampler': {
'min_scale': 0.3,
'max_scale': 1.0,
'min_aspect_ratio': 0.5,
'max_aspect_ratio': 2.0,
},
'sample_constraint': {
'max_jaccard_overlap': 1.0,
},
'max_trials': 50,
'max_sample': 1,
},
]
train_transform_param = {
'mirror': True,
'mean_value': [104, 117, 123],
'resize_param': {
'prob': 1,
'resize_mode': P.Resize.WARP,
'height': resize_height,
'width': resize_width,
'interp_mode': [
P.Resize.LINEAR,
P.Resize.AREA,
P.Resize.NEAREST,
P.Resize.CUBIC,
P.Resize.LANCZOS4,
],
},
'distort_param': {
'brightness_prob': 0.5,
'brightness_delta': 32,
'contrast_prob': 0.5,
'contrast_lower': 0.5,
'contrast_upper': 1.5,
'hue_prob': 0.5,
'hue_delta': 18,
'saturation_prob': 0.5,
'saturation_lower': 0.5,
'saturation_upper': 1.5,
'random_order_prob': 0.0,
},
'expand_param': {
'prob': 0.5,
'max_expand_ratio': 4.0,
},
'emit_constraint': {
'emit_type': caffe_pb2.EmitConstraint.CENTER,
}
}
test_transform_param = {
'mean_value': [104, 117, 123],
'resize_param': {
'prob': 1,
'resize_mode': P.Resize.WARP,
'height': resize_height,
'width': resize_width,
'interp_mode': [P.Resize.LINEAR],
},
}
# If true, use batch norm for all newly added layers.
# Currently only the non batch norm version has been tested.
use_batchnorm = False
lr_mult = 1
# Use different initial learning rate.
if use_batchnorm:
base_lr = 0.0004
else:
# A learning rate for batch_size = 1, num_gpus = 1.
base_lr = 0.00004
# Modify the job name if you want.
job_name = "SSD_{}".format(resize)
# The name of the model. Modify it if you want.
model_name = "VGG_VOC0712_{}".format(job_name)
# Directory which stores the model .prototxt file.
save_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the snapshot of models.
snapshot_dir = "models/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the job script and log file.
job_dir = "jobs/VGGNet/VOC0712/{}".format(job_name)
# Directory which stores the detection results.
output_result_dir = "{}/data/VOCdevkit/results/VOC2007/{}/Main".format(os.environ['HOME'], job_name)
# model definition files.
train_net_file = "{}/train.prototxt".format(save_dir)
test_net_file = "{}/test.prototxt".format(save_dir)
deploy_net_file = "{}/deploy.prototxt".format(save_dir)
solver_file = "{}/solver.prototxt".format(save_dir)
# snapshot prefix.
snapshot_prefix = "{}/{}".format(snapshot_dir, model_name)
# job script path.
job_file = "{}/{}.sh".format(job_dir, model_name)
# Stores the test image names and sizes. Created by data/VOC0712/create_list.sh
name_size_file = "data/VOC0712/test_name_size.txt"
# The pretrained model. We use the Fully convolutional reduced (atrous) VGGNet.
pretrain_model = "models/VGGNet/VGG_ILSVRC_16_layers_fc_reduced.caffemodel"
# Stores LabelMapItem.
label_map_file = "data/VOC0712/labelmap_voc.prototxt"
# MultiBoxLoss parameters.
num_classes = 21
share_location = True
background_label_id=0
train_on_diff_gt = True
normalization_mode = P.Loss.VALID
code_type = P.PriorBox.CENTER_SIZE
ignore_cross_boundary_bbox = False
mining_type = P.MultiBoxLoss.MAX_NEGATIVE
neg_pos_ratio = 3.
loc_weight = (neg_pos_ratio + 1.) / 4.
multibox_loss_param = {
'loc_loss_type': P.MultiBoxLoss.SMOOTH_L1,
'conf_loss_type': P.MultiBoxLoss.SOFTMAX,
'loc_weight': loc_weight,
'num_classes': num_classes,
'share_location': share_location,
'match_type': P.MultiBoxLoss.PER_PREDICTION,
'overlap_threshold': 0.5,
'use_prior_for_matching': True,
'background_label_id': background_label_id,
'use_difficult_gt': train_on_diff_gt,
'mining_type': mining_type,
'neg_pos_ratio': neg_pos_ratio,
'neg_overlap': 0.5,
'code_type': code_type,
'ignore_cross_boundary_bbox': ignore_cross_boundary_bbox,
}
loss_param = {
'normalization': normalization_mode,
}
# parameters for generating priors.
# minimum dimension of input image
min_dim = 300
# conv4_3 ==> 38 x 38
# fc7 ==> 19 x 19
# conv6_2 ==> 10 x 10
# conv7_2 ==> 5 x 5
# conv8_2 ==> 3 x 3
# conv9_2 ==> 1 x 1
mbox_source_layers = ['eltwisesum5', 'eltwisesum4', 'eltwisesum3', 'eltwisesum2', 'eltwisesum1', 'conv9_22']
#mbox_source_layers = ['conv4_3', 'fc8', 'conv6_22', 'conv7_22', 'conv8_22', 'conv9_22']
# in percent %
min_ratio = 20
max_ratio = 90
step = int(math.floor((max_ratio - min_ratio) / (len(mbox_source_layers) - 2)))
min_sizes = []
max_sizes = []
for ratio in xrange(min_ratio, max_ratio + 1, step):
min_sizes.append(min_dim * ratio / 100.)
max_sizes.append(min_dim * (ratio + step) / 100.)
min_sizes = [min_dim * 10 / 100.] + min_sizes
max_sizes = [min_dim * 20 / 100.] + max_sizes
steps = [8, 16, 32, 64, 100, 300]
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
# L2 normalize conv4_3.
normalizations = [20, -1, -1, -1, -1, -1]
# variance used to encode/decode prior bboxes.
if code_type == P.PriorBox.CENTER_SIZE:
prior_variance = [0.1, 0.1, 0.2, 0.2]
else:
prior_variance = [0.1]
flip = True
clip = False
# Solver parameters.
# Defining which GPUs to use.
#gpus = "0,1,2,3"
gpus = "0,1"
gpulist = gpus.split(",")
num_gpus = len(gpulist)
# Divide the mini-batch to different GPUs.
batch_size = 16
accum_batch_size = 32
iter_size = accum_batch_size / batch_size
solver_mode = P.Solver.CPU
device_id = 0
batch_size_per_device = batch_size
if num_gpus > 0:
batch_size_per_device = int(math.ceil(float(batch_size) / num_gpus))
iter_size = int(math.ceil(float(accum_batch_size) / (batch_size_per_device * num_gpus)))
solver_mode = P.Solver.GPU
device_id = int(gpulist[0])
if normalization_mode == P.Loss.NONE:
base_lr /= batch_size_per_device
elif normalization_mode == P.Loss.VALID:
base_lr *= 25. / loc_weight
elif normalization_mode == P.Loss.FULL:
# Roughly there are 2000 prior bboxes per image.
# TODO(weiliu89): Estimate the exact # of priors.
base_lr *= 2000.
# Evaluate on whole test set.
num_test_image = 4952
test_batch_size = 8
# Ideally test_batch_size should be divisible by num_test_image,
# otherwise mAP will be slightly off the true value.
test_iter = int(math.ceil(float(num_test_image) / test_batch_size))
solver_param = {
# Train parameters
'base_lr': base_lr,
'weight_decay': 0.0005,
'lr_policy': "multistep",
#'stepvalue': [20000,40000,60000,80000, 100000, 120000],
'stepvalue': [80000, 100000, 120000],
'gamma': 0.1,
'momentum': 0.9,
'iter_size': iter_size,
'max_iter': 120000,
#'snapshot': 80000,
# ljw change from 80000 to 2000, it means every 2000iterations record the log once.
'snapshot': 5000,
'display': 10,
'average_loss': 10,
'type': "SGD",
'solver_mode': solver_mode,
'device_id': device_id,
'debug_info': False,
'snapshot_after_train': True,
# Test parameters
'test_iter': [test_iter],
'test_interval': 10000,
'eval_type': "detection",
'ap_version': "11point",
'test_initialization': False,
'show_per_class_result': True,
}
# parameters for generating detection output.
det_out_param = {
'num_classes': num_classes,
'share_location': share_location,
'background_label_id': background_label_id,
'nms_param': {'nms_threshold': 0.45, 'top_k': 400},
'save_output_param': {
'output_directory': output_result_dir,
'output_name_prefix': "comp4_det_test_",
'output_format': "VOC",
'label_map_file': label_map_file,
'name_size_file': name_size_file,
'num_test_image': num_test_image,
},
'keep_top_k': 200,
'confidence_threshold': 0.01,
'code_type': code_type,
}
# parameters for evaluating detection results.
det_eval_param = {
'num_classes': num_classes,
'background_label_id': background_label_id,
'overlap_threshold': 0.5,
'evaluate_difficult_gt': False,
'name_size_file': name_size_file,
}
### Hopefully you don't need to change the following ###
# Check file.
check_if_exist(train_data)
check_if_exist(test_data)
check_if_exist(label_map_file)
check_if_exist(pretrain_model)
make_if_not_exist(save_dir)
make_if_not_exist(job_dir)
make_if_not_exist(snapshot_dir)
# Create train net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(train_data, batch_size=batch_size_per_device,
train=True, output_label=True, label_map_file=label_map_file,
transform_param=train_transform_param, batch_sampler=batch_sampler)
VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True,
dropout=False)
print(net)
AddExtraLayers(net, use_batchnorm, lr_mult=lr_mult)
print(net)
mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers,
use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,
aspect_ratios=aspect_ratios, steps=steps, normalizations=normalizations,
num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,
prior_variance=prior_variance, kernel_size=3, pad=1, lr_mult=lr_mult)
# Create the MultiBoxLossLayer.
name = "mbox_loss"
mbox_layers.append(net.label)
net[name] = L.MultiBoxLoss(*mbox_layers, multibox_loss_param=multibox_loss_param,
loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')),
propagate_down=[True, True, False, False])
with open(train_net_file, 'w') as f:
print('name: "{}_train"'.format(model_name), file=f)
print(net.to_proto(), file=f)
shutil.copy(train_net_file, job_dir)
# Create test net.
net = caffe.NetSpec()
net.data, net.label = CreateAnnotatedDataLayer(test_data, batch_size=test_batch_size,
train=False, output_label=True, label_map_file=label_map_file,
transform_param=test_transform_param)
VGGNetBody(net, from_layer='data', fully_conv=True, reduced=True, dilated=True,
dropout=False)
AddExtraLayers(net, use_batchnorm, lr_mult=lr_mult)
mbox_layers = CreateMultiBoxHead(net, data_layer='data', from_layers=mbox_source_layers,
use_batchnorm=use_batchnorm, min_sizes=min_sizes, max_sizes=max_sizes,
aspect_ratios=aspect_ratios, steps=steps, normalizations=normalizations,
num_classes=num_classes, share_location=share_location, flip=flip, clip=clip,
prior_variance=prior_variance, kernel_size=3, pad=1, lr_mult=lr_mult)
conf_name = "mbox_conf"
if multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.SOFTMAX:
reshape_name = "{}_reshape".format(conf_name)
net[reshape_name] = L.Reshape(net[conf_name], shape=dict(dim=[0, -1, num_classes]))
softmax_name = "{}_softmax".format(conf_name)
net[softmax_name] = L.Softmax(net[reshape_name], axis=2)
flatten_name = "{}_flatten".format(conf_name)
net[flatten_name] = L.Flatten(net[softmax_name], axis=1)
mbox_layers[1] = net[flatten_name]
elif multibox_loss_param["conf_loss_type"] == P.MultiBoxLoss.LOGISTIC:
sigmoid_name = "{}_sigmoid".format(conf_name)
net[sigmoid_name] = L.Sigmoid(net[conf_name])
mbox_layers[1] = net[sigmoid_name]
net.detection_out = L.DetectionOutput(*mbox_layers,
detection_output_param=det_out_param,
include=dict(phase=caffe_pb2.Phase.Value('TEST')))
net.detection_eval = L.DetectionEvaluate(net.detection_out, net.label,
detection_evaluate_param=det_eval_param,
include=dict(phase=caffe_pb2.Phase.Value('TEST')))
with open(test_net_file, 'w') as f:
print('name: "{}_test"'.format(model_name), file=f)
print(net.to_proto(), file=f)
shutil.copy(test_net_file, job_dir)
# Create deploy net.
# Remove the first and last layer from test net.
deploy_net = net
with open(deploy_net_file, 'w') as f:
net_param = deploy_net.to_proto()
# Remove the first (AnnotatedData) and last (DetectionEvaluate) layer from test net.
del net_param.layer[0]
del net_param.layer[-1]
net_param.name = '{}_deploy'.format(model_name)
net_param.input.extend(['data'])
net_param.input_shape.extend([
caffe_pb2.BlobShape(dim=[1, 3, resize_height, resize_width])])
print(net_param, file=f)
shutil.copy(deploy_net_file, job_dir)
# Create solver.
solver = caffe_pb2.SolverParameter(
train_net=train_net_file,
test_net=[test_net_file],
snapshot_prefix=snapshot_prefix,
**solver_param)
with open(solver_file, 'w') as f:
print(solver, file=f)
shutil.copy(solver_file, job_dir)
max_iter = 0
# Find most recent snapshot.
for file in os.listdir(snapshot_dir):
if file.endswith(".solverstate"):
basename = os.path.splitext(file)[0]
iter = int(basename.split("{}_iter_".format(model_name))[1])
if iter > max_iter:
max_iter = iter
train_src_param = '--weights="{}" \\\n'.format(pretrain_model)
if resume_training:
if max_iter > 0:
train_src_param = '--snapshot="{}_iter_{}.solverstate" \\\n'.format(snapshot_prefix, max_iter)
if remove_old_models:
# Remove any snapshots smaller than max_iter.
for file in os.listdir(snapshot_dir):
if file.endswith(".solverstate"):
basename = os.path.splitext(file)[0]
iter = int(basename.split("{}_iter_".format(model_name))[1])
if max_iter > iter:
os.remove("{}/{}".format(snapshot_dir, file))
if file.endswith(".caffemodel"):
basename = os.path.splitext(file)[0]
iter = int(basename.split("{}_iter_".format(model_name))[1])
if max_iter > iter:
os.remove("{}/{}".format(snapshot_dir, file))
# Create job file.
with open(job_file, 'w') as f:
f.write('cd {}\n'.format(caffe_root))
f.write('./build/tools/caffe train \\\n')
f.write('--solver="{}" \\\n'.format(solver_file))
f.write(train_src_param)
if solver_param['solver_mode'] == P.Solver.GPU:
f.write('--gpu {} 2>&1 | tee {}/{}.log\n'.format(gpus, job_dir, model_name))
else:
f.write('2>&1 | tee {}/{}.log\n'.format(job_dir, model_name))
# Copy the python script to job_dir.
py_file = os.path.abspath(__file__)
shutil.copy(py_file, job_dir)
# Run the job.
os.chmod(job_file, stat.S_IRWXU)
if run_soon:
subprocess.call(job_file, shell=True)