- LONDON_2022.zip from HERE (2.8 GB)
- MADRID_2022.zip from HERE (4.0 GB)
- MELBOURNE_2022.zip from HERE (0.9 GB)
- T4C_INPUTS_2022.zip (1.0 GB)
- T4C_INPUTS_ETA_2022.zip (available September 2, 2022, 1.5MB)
After downloading and unzipping the data, please revise the data path in “t4c22_config.json”.
conda env update -f environment.yml
conda activate t4c22
# Installing the torch geometric extras is optional, required only if using `torch_geometric`
# install-extras is not passed to pip from environment yaml, therefore add as post-step (https://github.com/conda/conda/issues/6805)
# replace with your CUDA version (cpu, ...), see https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html
CUDA="cu113"
python -m pip install -r install-extras-torch-geometric.txt -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
python t4c22/misc/check_torch_geometric_setup.py
Enter t4c22 folder and run the following commands.
python prepare_training_data_cc.py --data_folder [DATA_FOLDER]
python prepare_training_data_eta.py --data_folder [DATA_FOLDER]
You can choose to train the model from scratch, or use our trained ones for testing (put the save folder in the root).
train model for core challenge
python rec_cc.py --city [city] --device [gpu_id] --batch_size 2 --hidden_channels 32 --epochs 20 --fill -1
test model for core challenge
python rec_cc.py --city [city] --device [gpu_id] --batch_size 2 --hidden_channels 32 --epochs 20 --fill -1 --model_state test
train model for extended challenge
python rec_eta.py --city [city] --device [gpu_id] --batch_size 2 --hidden_channels 64 --epochs 50
test model for extended challenge
python rec_eta.py --city [city] --device [gpu_id] --batch_size 2 --hidden_channels 64 --epochs 50 --model_state test
This repository is based on NeurIPS 2022 Traffic4cast.