This project is for the paper: Triple Adversarial Learning for Influence based Poisoning Attack in Recommender Systems, Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 1830-1840.
The code was developed on Python 3.6 and tensorflow 1.14.0.
usage: python generate_fake.py [--dataset DATA_NAME] [--gpu GPU_ID]
[--epochs EPOCHS] [--data_size DATA_SIZE] [--target_index TARGET_ITEMS]
optional arguments:
--dataset DATA_NAME
Supported: filmtrust, ml-100k, ml-1m.
--gpu GPU_ID
GPU ID, default is 0.
--epochs EPOCHS
Training epochs.
--data_size DATA_SIZE
The data available to the attacker.
--target_index TARGET_ITEMS
The index of predefined target item list: 0, 1 for ml-100k, 2,3 for ml-1m, 4,5 for filmtrust, 6,7 for yelp.
python generate_fake.py --dataset ml-100k --gpu 0 --target_index 0