-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathrepeatability.py
executable file
·234 lines (206 loc) · 10.7 KB
/
repeatability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python3
# Python Script to mount a single tool multiple times and measure
# repeatability on aJubilee printer with Duet3d Controller,
# using images from USB camera and finding circles in those images
#
# Copyright (C) 2020 Danal Estes all rights reserved.
# Released under The MIT License. Full text available via https://opensource.org/licenses/MIT
#
# Requires OpenCV to be installed on Pi
# Requires network connection to Duet based printer running Duet/RepRap V2 or V3
#
print("Loading libraries; some of them are very large.")
try:
import cv2
except:
print("Import for CV2 failed. Please install openCV")
print("You may wish to use https://github.com/DanalEstes/PiInstallOpenCV")
raise
import os
import sys
import imutils
import datetime
import time
import numpy as np
import DuetWebAPI as DWA
if (os.environ.get('SSH_CLIENT')):
print("This script MUST run on the graphics console, not an SSH session.")
exit(8)
os.environ['QT_LOGGING_RULES'] ="qt5ct.debug=false"
# Globals.
cameraCoords = []
# initialize the video stream and allow the cammera sensor to warmup
vs = cv2.VideoCapture(0)
time.sleep(2.0)
# Get connected to the printer. First, see if we are running on the Pi in a Duet3.
print("Attempting to connect to printer.")
printer = DWA.DuetWebAPI('http://127.0.0.1')
while (not printer.printerType()):
ip = input("\nPlease Enter IP or name of printer\n")
print("Attempting to connect to printer.")
printer = DWA.DuetWebAPI('http://'+ip)
print("Connected to a Duet V"+str(printer.printerType())+" printer at "+printer.baseURL())
# Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
params.minThreshold = 40; # Change thresholds
params.maxThreshold = 180;
params.filterByArea = True # Filter by Area.
params.minArea = 500
params.filterByCircularity = True # Filter by Circularity
params.minCircularity = 0.5
params.filterByConvexity = True # Filter by Convexity
params.minConvexity = 0.5
params.filterByInertia = True # Filter by Inertia
params.minInertiaRatio = 0.5
ver = (cv2.__version__).split('.') # Create a detector with the parameters
if int(ver[0]) < 3 :
detector = cv2.SimpleBlobDetector(params)
else:
detector = cv2.SimpleBlobDetector_create(params)
###################################################################################
# End of initialization
# Start of method definitions
###################################################################################
def vectDist(xy1,xy2):
return np.around(np.sqrt(abs( (xy2[0]-xy1[0])**2 + (xy2[1]-xy1[1])**2 ) ))
def printKeypointXYR(keypoints):
for i in range(len(keypoints)):
print("Keypoint "+str(i)+" XY = ",np.around(keypoints[i].pt,3))
print("Keypoints "+str(i)+" R = ",np.around(keypoints[i].size/2,3))
def eachTool(tool):
avg=[0,0]
guess = [1,1]; # Millimeters.
target = [720/2, 480/2] # Pixels. Will be recalculated from frame size.
drctn = [-1,-1] # Either 1 or -1, which we must figure out from the initial moves
xy = [0,0]
oldxy = xy
state = 0 # State machine for figuring out image rotation to carriage XY move mapping.
rot = 0 # Amount of rotation of image.
count=0
rd = 0;
printer.gCode("G10 P{0:d} X0Y0 ".format(tool)) # Remove tool offsets, before we start positioning.
print("mounting tool T{0:d}... ".format(tool))
printer.gCode("T{0:d} ".format(tool)) # Mount correct tool
printer.gCode("G1 F5000 X{0:1.3f} Y{1:1.3f}".format(np.around(cameraCoords['X'],3),np.around(cameraCoords['Y'],3))) # Position Tool in Frame
# loop over the frames from the video stream
while True:
(grabbed, fg) = vs.read()
frame = imutils.rotate_bound(fg,rot)
target = [np.around(frame.shape[1]/2),np.around(frame.shape[0]/2)]
keypoints = detector.detect(frame)
# draw the timestamp on the frame AFTER the circle detector! Otherwise it finds the circles in the numbers.
timestamp = datetime.datetime.now()
ts = timestamp.strftime("%A %d %B %Y %I:%M:%S%p")
cv2.putText(frame, ts, (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX,0.90, (0, 0, 255), 1)
lk=len(keypoints)
if (lk == 0):
if (25 < (int(round(time.time() * 1000)) - rd)):
cv2.putText(frame, 'no circles found', (int(target[0] - 75), int(target[1] + 30) ), cv2.FONT_HERSHEY_SIMPLEX,0.90, (0, 0, 255), 1)
cv2.imshow("Nozzle", frame)
key = cv2.waitKey(1) # Required to get frames to display.
continue
if (lk > 1):
if (25 < (int(round(time.time() * 1000)) - rd)):
#printKeypointXYR(keypoints)
cv2.putText(frame, 'too many circles '+str(lk), (int(target[0] - 75), int(target[1] + 30) ), cv2.FONT_HERSHEY_SIMPLEX,0.90, (0, 0, 255), 1)
frame = cv2.drawKeypoints(frame, keypoints, np.array([]), (255,255,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imshow("Nozzle", frame)
key = cv2.waitKey(1) # Required to get frames to display.
continue
# Found one and only one circle. Process it.
xy = np.around(keypoints[0].pt)
r = np.around(keypoints[0].size/2)
# Keep track of center of circle and average across many circles
avg[0] += xy[0]
avg[1] += xy[1]
count += 1
if (count > 15):
avg[0] /= count
avg[1] /= count
avg = np.around(avg,3)
#print('')
#print("state = ",state)
#print("Average Pixel Position = X{0:7.3f} Y{1:7.3f} ".format(avg[0],avg[1]))
#print("Target Position = X{0:7.3f} Y{1:7.3f} ".format(target[0],target[1]))
if (state == 0): # Finding Rotation: Collected frames before first move.
print("Initiating a small X move to calibrate camera to carriage rottion.")
oldxy = xy
printer.gCode("G91 G1 X-0.5 G90 ")
state += 1
elif (state == 1): # Finding Rotation: Move made, see if it aligns with carriage.
#print("X movement detected = ",abs(oldxy[0]-xy[0]))
#print("Y movement detected = ",abs(oldxy[1]-xy[1]))
if (abs(oldxy[0]-xy[0]) > 2+abs(oldxy[1]-xy[1])):
print("Found X movement via rotation, will now calibrate camera to carriage direction.")
ppm = 0.5/float(vectDist(xy,oldxy))
print("MM per Pixel discovered = {0:1.4f}".format(ppm) )
mpp = float(vectDist(xy,oldxy))/0.5
print("Pixel per MM discovered = {0:1.4f}".format(mpp) )
state += 1
oldxy = xy
drctn = [1,1]
else:
print("Camera to carriage movement axis incompatiabile... will rotate image and calibrate again.")
rot = (rot + 90) % 360
state = 0 #start over.
elif (state == 2): # Incrementally attempt to center the nozzle.
for j in [0,1]:
if (abs(target[j]-oldxy[j]) < abs(target[j]-xy[j])): # Are we going the wrong way? Depends on camera orientation.
print("Detected movement away from target, now reversing "+'XY'[j])
drctn[j] = -drctn[j] # If we are getting further away, reverse!
#print("Direction Factor = X{0:-d} Y{1:-d} ".format(drctn[0],drctn[1]))
guess[j] = np.around((target[j]-xy[j])/(mpp*2),3)
guess[j] = guess[j] * drctn[j] # Force a direction
printer.gCode("G91 G1 X{0:-1.3f} Y{1:-1.3f} G90 ".format(guess[0],guess[1]))
#print("G91 G1 X{0:-1.3f} Y{1:-1.3f} G90 ".format(guess[0],guess[1]))
oldxy = xy
#if ((np.around(guess)[0] == 0) and (np.around(guess)[1] == 0)):
if ((np.around(guess[0],3) == 0.0) and (np.around(guess[1],3) == 0.0)):
print("Found Center of Image at printer coordinates ",printer.getCoords())
return(printer.getCoords())
#print("oldxy Position = X{0:7.3f} Y{1:7.3f} ".format(oldxy[0],oldxy[1]))
#print("Circles per frame = ", end='', flush=True)
avg = [0,0]
count = 0
# draw the blobs that look circular
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size of the circle corresponds to the size of blob
frame = cv2.drawKeypoints(frame, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# Note its radius and position
ts = "X{0:7.2f} Y{1:7.2f} R{2:7.2f}".format(xy[0],xy[1],r)
xy = np.uint16(xy)
cv2.putText(frame, ts, (xy[0]-175, xy[1]+50), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), 1)
# show the frame
cv2.imshow("Nozzle", frame)
key = cv2.waitKey(1) # Required to get frames to display.
rd = int(round(time.time() * 1000))
###################################################################################
# End of method definitions
# Start of Main Code
###################################################################################
# Where is ithe camera? Command line arguments can tell us.
if (len(sys.argv) == 3): # Yes command line. Must be two numbers, the X Y of camera.
cameraCoords = {'X': 0, 'Y': 0}
cameraCoords['X'] = float(sys.argv[1])
cameraCoords['Y'] = float(sys.argv[2])
else:
print("Invoke with X Y cordinate of Camera")
exit(8)
# Now look at each tool.
toolCoords = []
for t in range(10):
toolCoords.append(eachTool(0))
print("Unmounting Tool on pass ",t)
printer.gCode("T-1 ")
###################################################################################
# End of all vision, etc. Now calculate and report.
###################################################################################
print()
print("X average = ",np.around(np.average([toolCoords[i]['X'] for i in range(len(toolCoords))]),4))
print("X max = ",np.around(np.max([toolCoords[i]['X'] for i in range(len(toolCoords))]),4))
print("X min = ",np.around(np.min([toolCoords[i]['X'] for i in range(len(toolCoords))]),4))
print("X stddev = ",np.around(np.std([toolCoords[i]['X'] for i in range(len(toolCoords))]),4))
print()
print("Y average = ",np.around(np.average([toolCoords[i]['Y'] for i in range(len(toolCoords))]),4))
print("Y max = ",np.around(np.max([toolCoords[i]['Y'] for i in range(len(toolCoords))]),4))
print("Y min = ",np.around(np.min([toolCoords[i]['Y'] for i in range(len(toolCoords))]),4))
print("Y stddev = ",np.around(np.std([toolCoords[i]['Y'] for i in range(len(toolCoords))]),4))