-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
192 lines (148 loc) · 4.57 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
project: decision_for_screening
# -- Initiation characteristics of the model
model_type: "linear"
value_function: "rel_point_cond_mut_info"
elicit: False # It can be True, False
noise: True # (for sensitivity analysis purposes)
noise_std: 0.3
lambda_list_from_config: True
lambda_list: [4.011942483017116, 4.168480067521723, 6.801984517973132, 7.0]
# original = [4.011942483017116, 4.168480067521723, 6.801984517973132, 7.0]
# first change = [4.011942483017116, 4.168480067521723, 6.3 , 7.0]
# second change = [4.8, 5, 6.801984517973132, 7.0]
patient_chars: {"Age": "age_4_adult",
"Sex": "M",
"SD": "SD_2_normal",
"PA": "PA_2",
"Smoking": "sm_1_not_smoker",
"BMI": "bmi_2_normal",
"Alcohol": "low"
}
# -- Flag for calculating values
calculate_info_values: True
# -- Flag for assigning a new test
new_test: False
# --------- If new_test = True, the following parameters must be defined
cost_new_test: 3
sensitivity_new_test: 0.85
specificity_new_test: 0.94
# -------------------------------------------------------------------------
# -- For the elicitation step
point_cond_mut_info:
PE_cost: 200 # Probability equivalent cost
PE_info: 0.01 # Probability equivalent info
PE_prob: 0.7 # Probability of equivalence
rel_point_cond_mut_info:
PE_cost: 5 # Probability equivalent cost
PE_info: 4 # Probability equivalent info
PE_prob: 0.7 # Probability of equivalence
full_example:
PE_cost_array: [5, 10, 50] # [3, 5, 10, 50, 100]
PE_info_array: [3.8, 4, 4.2] # [3.7, 4, 4.2 , 4.4, 4.5]
# -------------------------------------------------------------------------
# -- Lower bound of estimation of performance metrics
sens_analysis_metrics_lower:
screening: [
# Specificity
1, 0, 0, # No screening
0, 0.843, 0.157, # gFOBT
0, 0.92, 0.08, # FIT
0, 0.606, 0.394, # Blood-based
0, 0.859, 0.141, # Stool DNA
0, 0.89, 0.11, # CTC
0, 0.89, 0.11, # Colon capsule
# Sensitivity
1, 0, 0, # No screening
0, 0.631, 0.369, # gFOBT
0, 0.35, 0.65, # FIT
0, 0.212, 0.788, # Blood-based
0, 0.170, 0.830, # Stool DNA
0, 0.05, 0.95, # CTC
0, 0.17, 0.83, # Colon capsule
]
colonoscopy: [
# Specificity
1, 0, 0, # No colonoscopy
0, 0.99, 0.01, # Colonoscopy
# Sensitivity
1, 0, 0, # No colonoscopy
0, 0.03, 0.97, # Colonoscopy
]
sens_analysis_metrics_upper: {
"screening": [
# Specificity
1, 0, 0, # No screening
0, 0.961, 0.039, # gFOBT
0, 0.95, 0.05, # FIT
0, 0.786, 0.214, # Blood-based
0, 0.872, 0.128, # Stool DNA
0, 0.89, 0.11, # CTC
0, 0.95, 0.05, # Colon capsule
# Sensitivity
1, 0, 0, # No screening
0, 0.418, 0.582, # gFOBT
0, 0.11, 0.89, # FIT
0, 0.068, 0.932, # Blood-based
0, 0.025, 0.975, # Stool DNA
0, 0.05, 0.95, # CTC
0, 0.09, 0.91, # Colon capsule
],
"colonoscopy": [
# Specificity
1, 0, 0, # No colonoscopy
0, 0.99, 0.01, # Colonoscopy
# Sensitivity
1, 0, 0, # No colonoscopy
0, 0.03, 0.97, # Colonoscopy
],
}
# -------------------------------------------------------------------------
# -- Assignning colors to the different screening strategies
colors:
No_screening: '#1f77b4'
gFOBT: '#ff7f0e'
FIT: '#2ca02c'
Blood_based: '#d62728'
Stool_DNA: '#9467bd'
CTC: '#8c564b'
Colon_capsule: '#e377c2'
Colonoscopy: '#bcbd22'
New_test: '#17becf' # Possible name for new test, change if necessary.
H(CRC): '#7f7f7f'
# -- Use case
single_run: True
num_runs: 640
max_workers: 64
all_variables: True
from_elicitation: False
operational_limit : {
"No_scr_no_col": "inf",
"No_scr_col": 3000,
"gFOBT": 30000,
"FIT": 42000,
"Blood_based": 7000,
"Stool_DNA": 6000,
"CTC": 2000,
"Colon_capsule": 2000,
}
operational_limit_comp : {
"No_scr_no_col": "inf",
"No_scr_col": 0,
"gFOBT": 0,
"FIT": 49074,
"Blood_based": 0,
"Stool_DNA": 0,
"CTC": 0,
"Colon_capsule": 0,
}
operational_limit_new_test : {
"No_scr_no_col": "inf",
"No_scr_col": 3000,
"gFOBT": 30000,
"FIT": 42000,
"Blood_based": 7000,
"Stool_DNA": 5000,
"CTC": 2000,
"Colon_capsule": 2000,
"New_test": 50000,
}