-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.go
168 lines (139 loc) · 4.85 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
package main
import (
"fmt"
"image"
"image/color"
"gocv.io/x/gocv"
)
var (
deviceID = "0"
faceModel = "data/face/opencv_face_detector_uint8.pb"
faceConfig = "data/face/opencv_face_detector.pbtxt"
emotionModel = "data/emotion/EmotiW_VGG_S.caffemodel"
emotionConfig = "data/emotion/emo_deploy.prototxt"
Emotions = []string{"Angry", "Disgust", "Fear", "Happy", "Neutral", "Sad", "Surprise"}
ageModel = "data/age/age_net.caffemodel"
ageConfig = "data/age/age_deploy.prototxt"
Ages = []string{"0-2", "3-7", "8-12", "13-20", "20-36", "37-47", "48-55", "56-100"}
genderModel = "data/gender/gender_net.caffemodel"
genderConfig = "data/gender/gender_deploy.prototxt"
Genders = []string{"Male", "Female"}
)
func main() {
// open capture device
webcam, err := gocv.OpenVideoCapture(deviceID)
if err != nil {
fmt.Printf("Error opening video capture device: %v\n", deviceID)
return
}
defer webcam.Close()
window := gocv.NewWindow("DNN Detection")
defer window.Close()
img := gocv.NewMat()
defer img.Close()
// open DNN object tracking model
faceNet := gocv.ReadNet(faceModel, faceConfig)
if faceNet.Empty() {
fmt.Printf("Error reading network model from : %v %v\n", faceModel, faceConfig)
return
}
defer faceNet.Close()
faceNet.SetPreferableBackend(gocv.NetBackendDefault)
faceNet.SetPreferableTarget(gocv.NetTargetCPU)
// open DNN object tracking model
emotionNet := gocv.ReadNet(emotionModel, emotionConfig)
if emotionNet.Empty() {
fmt.Printf("Error reading network model from : %v %v\n", emotionModel, emotionConfig)
return
}
defer emotionNet.Close()
emotionNet.SetPreferableBackend(gocv.NetBackendDefault)
emotionNet.SetPreferableTarget(gocv.NetTargetCPU)
// open DNN object tracking model
ageNet := gocv.ReadNet(ageModel, ageConfig)
if emotionNet.Empty() {
fmt.Printf("Error reading network model from : %v %v\n", emotionModel, emotionConfig)
return
}
defer ageNet.Close()
ageNet.SetPreferableBackend(gocv.NetBackendDefault)
ageNet.SetPreferableTarget(gocv.NetTargetCPU)
// open DNN object tracking model
genderNet := gocv.ReadNet(genderModel, genderConfig)
if genderNet.Empty() {
fmt.Printf("Error reading network model from : %v %v\n", emotionModel, emotionConfig)
return
}
defer genderNet.Close()
genderNet.SetPreferableBackend(gocv.NetBackendDefault)
genderNet.SetPreferableTarget(gocv.NetTargetCPU)
var (
ratio float64 = 1.0
mean = gocv.NewScalar(104, 177, 123, 0)
scalar = gocv.NewScalar(0, 0, 0, 0)
swapRGB = false
)
fmt.Printf("Start reading device: %v\n", deviceID)
for {
if ok := webcam.Read(&img); !ok {
fmt.Printf("Device closed: %v\n", deviceID)
return
}
if img.Empty() {
continue
}
// convert image Mat to 300x300 blob that the object detector can analyze
blob := gocv.BlobFromImage(img, ratio, image.Pt(300, 300), mean, swapRGB, false)
// feed the blob into the detector
faceNet.SetInput(blob, "data")
// run a forward pass thru the network
outputFace := faceNet.Forward("detection_out")
for i := 0; i < outputFace.Total(); i += 7 {
confidence := outputFace.GetFloatAt(0, i+2)
if confidence > 0.5 {
left := int(outputFace.GetFloatAt(0, i+3) * float32(img.Cols()))
top := int(outputFace.GetFloatAt(0, i+4) * float32(img.Rows()))
right := int(outputFace.GetFloatAt(0, i+5) * float32(img.Cols()))
bottom := int(outputFace.GetFloatAt(0, i+6) * float32(img.Rows()))
r := image.Rect(left, top, right, bottom)
if r.Max.X < img.Cols() && r.Max.Y < img.Rows() && r.Min.X > 0 && r.Min.Y > 0 {
gocv.Rectangle(&img, r, color.RGBA{0, 255, 0, 0}, 2)
mat := img.Region(r)
blob := gocv.BlobFromImage(mat, ratio, image.Pt(227, 227), scalar, swapRGB, false)
//feed the blob into the detector
emotionNet.SetInput(blob, "")
// run a forward pass thru the network
emoPreds := emotionNet.Forward("")
_, _, _, emoLoc := gocv.MinMaxLoc(emoPreds)
//feed the blob into the detector
ageNet.SetInput(blob, "")
// run a forward pass thru the network
agePreds := ageNet.Forward("")
_, _, _, ageLoc := gocv.MinMaxLoc(agePreds)
//feed the blob into the detector
genderNet.SetInput(blob, "")
// run a forward pass thru the network
genderPreds := genderNet.Forward("")
_, _, _, genderLoc := gocv.MinMaxLoc(genderPreds)
texts := []string{Genders[genderLoc.X], Ages[ageLoc.X], Emotions[emoLoc.X]}
for i, text := range texts {
size := gocv.GetTextSize(text, gocv.FontItalic, 1.2, 2)
pt := image.Pt(r.Max.X, r.Min.Y+((i+1)*size.Y))
gocv.PutText(&img, text, pt, gocv.FontHersheyComplexSmall, 1.2, color.RGBA{0, 0, 255, 0}, 2)
}
agePreds.Close()
genderPreds.Close()
emoPreds.Close()
blob.Close()
mat.Close()
}
}
}
outputFace.Close()
blob.Close()
window.IMShow(img)
if window.WaitKey(1) >= 0 {
break
}
}
}