Skip to content

Training Pipeline

Alexander R Izquierdo edited this page Dec 21, 2024 · 1 revision

Training Pipeline

This document outlines the training process flow and methodology implementation details.

Training Methods

DDPM Training Flow

The DDPM trainer (methods/ddpm_trainer.py) implements:

  1. Velocity Prediction

    • v-prediction parameterization
    • Enhanced high-frequency details
    • Reduced color shifting
  2. SNR Weighting

    • Signal-to-noise ratio gamma: 5.0
    • Better detail preservation
    • Improved stability
  3. Zero Terminal SNR

    • Infinite noise approximation
    • High-frequency artifact reduction
    • Enhanced contrast

Flow Matching Implementation

The flow matching trainer (methods/flow_matching_trainer.py) offers:

  1. Optimal Transport

    • Direct velocity field learning
    • Faster convergence rates
    • Lower memory overhead
  2. Time Sampling

    • Logit-normal distribution
    • Better coverage of time steps
    • Reduced training variance

Pipeline Stages

1. Data Loading

graph TD
    A[Dataset Load] --> B[Cache Check]
    B -->|Cache Hit| C[Load Cached]
    B -->|Cache Miss| D[Process New]
    D --> E[Cache Results]
    C --> F[Batch Formation]
    E --> F
Loading

2. Training Loop

graph TD
    A[Forward Pass] --> B[Loss Calculation]
    B --> C[Gradient Accumulation]
    C -->|Steps Complete| D[Optimizer Step]
    D --> E[Memory Cleanup]
    E --> F[Metrics Logging]
Loading

3. Validation Pipeline

graph TD
    A[Generate Samples] --> B[Quality Metrics]
    B --> C[Log Images]
    C --> D[Archive Results]
Loading

Performance Optimizations

Memory Management

  • Dynamic tensor offloading
  • Gradient checkpointing
  • Activation caching
  • Async memory transfers

Throughput Enhancement

  • Mixed precision training
  • Optimal batch formation
  • Worker thread management
  • Pipeline prefetching

Custom Training Extensions

Adding New Training Methods

  1. Extend the base trainer:
from .base import BaseTrainer

class CustomTrainer(BaseTrainer):
    def training_step(self, batch):
        # Implement custom training logic
  1. Register in configuration:
@dataclass
class CustomConfig:
    """Custom training configuration."""
    enabled: bool = False
    # Add custom parameters

Custom Loss Functions

  1. Define in trainer:
def custom_loss(self, pred, target):
    # Implement custom loss
  1. Update training step:
loss = self.custom_loss(predictions, targets)

Monitoring & Analysis

Key Metrics

  • Loss curves
  • Learning rate progression
  • Memory utilization
  • Sample quality metrics
  • Training throughput

Validation Methods

  • FID scores
  • CLIP scores
  • Perceptual metrics
  • User feedback integration

Advanced Topics

Gradient Analysis

  • Gradient flow monitoring
  • Layer-wise updates
  • Update magnitude tracking
  • Convergence indicators

Training Stability

  • Loss smoothing techniques
  • Gradient clipping strategies
  • Learning rate adaptation
  • Batch size scaling

Dynamic Scheduling

  • Noise schedule adaptation
  • Learning rate modulation
  • Batch size adjustment
  • Memory optimization timing

Research Integration

Experiment Tracking

  • Hypothesis validation
  • Parameter sensitivity
  • Performance correlation
  • Quality metrics evolution

Methodology Comparison

  • Training speed analysis
  • Memory efficiency
  • Quality benchmarks
  • Stability metrics

Next: See Research Guidelines for experimental protocols and Quality Metrics for evaluation methods.