Skip to content

The project aims to utilize deep learning models to forecast wind farm power output using CNN, LSTM, RNN, and GRU artificial neural networks.

License

Notifications You must be signed in to change notification settings

Dawidemm/wind-farm-power-forecasting

Repository files navigation

wind-farm-power-forecasting

Project Description

The Bachelor's Thesis Wind Farm Power Forecasting Using Deep Neural Networks project aimed to develop models for forecasting the power output of wind farms using advanced artificial intelligence techniques. Deep neural networks were employed, including convolutional neural networks (CNN), recurrent neural networks (RNN) such as Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU).

Methodology

  1. Data Preparation: Data pertaining to wind farms was collected and processed appropriately, taking into account seasonal and temporal variations in energy production.
  2. Model Building: Models based on convolutional, LSTM, RNN, and GRU networks were implemented to predict the power generated by wind farms based on historical data.
  3. Training and Evaluation of Models: The models were trained on the training dataset and then evaluated for their effectiveness on the validation and test datasets. Model parameters were optimized to achieve the best forecasting results.

Results

  • The employed deep learning techniques enabled effective forecasting of wind farm power.
  • Models based on LSTM and GRU yielded particularly good results, indicating the effectiveness of models based on recurrent structures.
  • The results of experiments were thoroughly analyzed and documented, allowing for insights into the effectiveness of different forecasting methods.

Example Prediction Plot (CNN Model)

CNN Prediction Plot

R2 Score

Here's a plot comparing the R2 scores of all utilized models:

R2 Score

Conclusions

The project confirmed that deep neural networks, including models based on LSTM, RNN, and GRU, can be effective tools for forecasting wind farm power. Further research efforts can focus on refining these models and their implementation in industrial practice.

About

The project aims to utilize deep learning models to forecast wind farm power output using CNN, LSTM, RNN, and GRU artificial neural networks.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published