-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathPrimer_RobustnessEvaluation-Figures.py
154 lines (132 loc) · 5.69 KB
/
Primer_RobustnessEvaluation-Figures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Evaluting the models on the whole dataset and displaying results.
AM, May 29th 2020
For "A Primer on Motion Capture with Deep Learning: Principles, Pitfalls and Perspectives"
by Alexander Mathis, Steffen Schneider, Jessy Lauer, and Mackenzie Weygandt Mathis
"""
import os
import pandas as pd
import numpy as np
from pathlib import Path
os.environ["DLClight"] = "True"
import deeplabcut
#########################################################
##### Results for evaluation on the large dataset (before finetuning on additional frames)
#########################################################
#Notes: mouse 5 - 8 domain shift (i.e. different camera)
#m4 >> training mouse;
for shuffle in [1, 2, 3]:
RMSE=pd.read_hdf("ResultsComparison/Errors_shuffle"+str(shuffle)+".h5", "df_with_missing")
differentmouse_samecamera=[image for image in RMSE.index if '/m1' in image or '/m2' in image or '/m3' in image]
differentmouse_differentcamera=[image for image in RMSE.index if '/m5' in image or '/m6' in image or '/m7' in image or '/m8' in image]
print(shuffle)
print(np.mean(RMSE.loc[differentmouse_samecamera]))
error_files = ['ResultsComparison/Errors_shuffle1.h5',
'ResultsComparison/Errors_shuffle2.h5',
'ResultsComparison/Errors_shuffle3.h5']
augmenters = ['imgaug', 'scalecrop', 'tensorpack']
data = []
for n, file in enumerate(error_files):
df = pd.read_hdf(file)
temp = df.stack().reset_index()
temp['aug'] = augmenters[n]
data.append(temp)
data = pd.concat(data).set_index('level_0')
data.columns = ['Bodyparts', 'Error', 'Augmenters']
same_camera = data.index.str.contains('/m1|/m2|/m3')
diff_camera = data.index.str.contains('/m5|/m6|/m7|/m8')
import matplotlib.pyplot as plt
# Produce the PCK curves
data.loc[same_camera, 'Camera'] = 'same'
data.loc[diff_camera, 'Camera'] = 'diff'
bpts = ['snout', 'leftear', 'rightear', 'tailbase']
cmap = plt.cm.get_cmap('viridis', 4)
colors = cmap(range(4))
fig, axes = plt.subplots(2, 4, figsize=(5.32, 3.14), dpi=200)
for (mask, bpt, aug), df in data.groupby(['Camera', 'Bodyparts', 'Augmenters']):
n = bpts.index(bpt)
sorted_errors = np.sort(df['Error'])
n_detections = len(sorted_errors) + 1
x = np.concatenate([sorted_errors, sorted_errors[[-1]]])
y = np.linspace(0, 1, n_detections)
axes[int(mask == 'diff'), n].step(x, y, color=colors[augmenters.index(aug)], lw=2)
for n, ax in enumerate(axes.flat):
#ax.set_box_aspect(1)
ax.tick_params(axis='both', direction='in')
ax.set_xlim(0, 20)
ax.set_ylim(0, 1)
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
if n < 4:
ax.set_xticks([])
ax.set_xticklabels([])
ax.spines['bottom'].set_visible(False)
if n % 4 != 0:
ax.spines['left'].set_visible(False)
ax.set_yticks([])
ax.set_yticklabels([])
patches = [plt.plot([0, 0], [0, 0], color=color, label=f'{label}', lw=2)[0]
for color, label in zip(colors, augmenters)]
fig.legend(handles=patches, loc='center', frameon=False,
bbox_to_anchor=(0, 0.45, 1, 0.1),
ncol=3, borderaxespad=0.)
plt.savefig("ResultsComparison/PCKresults.png")
#########################################################
##### Results for evaluation on the large dataset (after finetuning on additional frames from mouse 7)
#########################################################
nameprefix="ResultsComparison/ErrorsafterAugmentation"
error_files = [nameprefix+"_shuffle1.h5",
nameprefix+"_shuffle2.h5",
nameprefix+"_shuffle3.h5"]
augmenters = ['imgaug', 'scalecrop', 'tensorpack']
data = []
for n, file in enumerate(error_files):
df = pd.read_hdf(file)
temp = df.stack().reset_index()
temp['aug'] = augmenters[n]
data.append(temp)
data = pd.concat(data).set_index('level_0')
data.columns = ['Bodyparts', 'Error', 'Augmenters']
same_camera = data.index.str.contains('/m1|/m2|/m3')
diff_camera = data.index.str.contains('/m5|/m6|/m8') #DROPPING mouse 7 as it has now 5 frames in training set!
# Produce the PCK curves
data.loc[same_camera, 'Camera'] = 'same'
data.loc[diff_camera, 'Camera'] = 'diff'
bpts = ['snout', 'leftear', 'rightear', 'tailbase']
cmap = plt.cm.get_cmap('viridis', 4)
colors = cmap(range(4))
fig, axes = plt.subplots(2, 4, figsize=(5.32, 3.14), dpi=200)
for (mask, bpt, aug), df in data.groupby(['Camera', 'Bodyparts', 'Augmenters']):
n = bpts.index(bpt)
sorted_errors = np.sort(df['Error'])
n_detections = len(sorted_errors) + 1
x = np.concatenate([sorted_errors, sorted_errors[[-1]]])
y = np.linspace(0, 1, n_detections)
axes[int(mask == 'diff'), n].step(x, y, color=colors[augmenters.index(aug)], lw=2)
for n, ax in enumerate(axes.flat):
#ax.set_box_aspect(1)
ax.tick_params(axis='both', direction='in')
ax.set_xlim(0, 20)
ax.set_ylim(0, 1)
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
if n < 4:
ax.set_xticks([])
ax.set_xticklabels([])
ax.spines['bottom'].set_visible(False)
if n % 4 != 0:
ax.spines['left'].set_visible(False)
ax.set_yticks([])
ax.set_yticklabels([])
patches = [plt.plot([0, 0], [0, 0], color=color, label=f'{label}', lw=2)[0]
for color, label in zip(colors, augmenters)]
fig.legend(handles=patches, loc='center', frameon=False,
bbox_to_anchor=(0, 0.45, 1, 0.1),
ncol=3, borderaxespad=0.)
plt.savefig("ResultsComparison/PCKresultsafterAugmentation.png")