-
Notifications
You must be signed in to change notification settings - Fork 354
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Embedding] Remove the dependency on private header file in Embedding…
…Variable. Signed-off-by: lixy9474 <lxy268263@alibaba-inc.com>
- Loading branch information
Showing
13 changed files
with
1,049 additions
and
741 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
278 changes: 278 additions & 0 deletions
278
tensorflow/core/framework/embedding/embedding_var_ckpt_data.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
/* Copyright 2022 The DeepRec Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
======================================================================*/ | ||
#include "tensorflow/core/framework/embedding/embedding_var_ckpt_data.h" | ||
#include "tensorflow/core/framework/embedding/embedding_var_dump_iterator.h" | ||
#include "tensorflow/core/kernels/save_restore_tensor.h" | ||
#include "tensorflow/core/framework/register_types.h" | ||
|
||
namespace tensorflow { | ||
namespace embedding { | ||
template<class K, class V> | ||
void EmbeddingVarCkptData<K, V>::Emplace( | ||
K key, ValuePtr<V>* value_ptr, | ||
const EmbeddingConfig& emb_config, | ||
V* default_value, int64 value_offset, | ||
bool is_save_freq, | ||
bool is_save_version, | ||
bool save_unfiltered_features) { | ||
if((int64)value_ptr == ValuePtrStatus::IS_DELETED) | ||
return; | ||
|
||
V* primary_val = value_ptr->GetValue(0, 0); | ||
bool is_not_admit = | ||
primary_val == nullptr | ||
&& emb_config.filter_freq != 0; | ||
|
||
if (!is_not_admit) { | ||
key_vec_.emplace_back(key); | ||
|
||
if (primary_val == nullptr) { | ||
value_ptr_vec_.emplace_back(default_value); | ||
} else if ( | ||
(int64)primary_val == ValuePosition::NOT_IN_DRAM) { | ||
value_ptr_vec_.emplace_back((V*)ValuePosition::NOT_IN_DRAM); | ||
} else { | ||
V* val = value_ptr->GetValue(emb_config.emb_index, | ||
value_offset); | ||
value_ptr_vec_.emplace_back(val); | ||
} | ||
|
||
|
||
if(is_save_version) { | ||
int64 dump_version = value_ptr->GetStep(); | ||
version_vec_.emplace_back(dump_version); | ||
} | ||
|
||
if(is_save_freq) { | ||
int64 dump_freq = value_ptr->GetFreq(); | ||
freq_vec_.emplace_back(dump_freq); | ||
} | ||
} else { | ||
if (!save_unfiltered_features) | ||
return; | ||
|
||
key_filter_vec_.emplace_back(key); | ||
|
||
if(is_save_version) { | ||
int64 dump_version = value_ptr->GetStep(); | ||
version_filter_vec_.emplace_back(dump_version); | ||
} | ||
|
||
int64 dump_freq = value_ptr->GetFreq(); | ||
freq_filter_vec_.emplace_back(dump_freq); | ||
} | ||
} | ||
#define REGISTER_KERNELS(ktype, vtype) \ | ||
template void EmbeddingVarCkptData<ktype, vtype>::Emplace( \ | ||
ktype, ValuePtr<vtype>*, const EmbeddingConfig&, \ | ||
vtype*, int64, bool, bool, bool); | ||
#define REGISTER_KERNELS_ALL_INDEX(type) \ | ||
REGISTER_KERNELS(int32, type) \ | ||
REGISTER_KERNELS(int64, type) | ||
#if GOOGLE_CUDA | ||
TF_CALL_GPU_NUMBER_TYPES(REGISTER_KERNELS_ALL_INDEX) | ||
#else | ||
TF_CALL_FLOAT_TYPES(REGISTER_KERNELS_ALL_INDEX) | ||
#endif // GOOGLE_CUDA | ||
#undef REGISTER_KERNELS_ALL_INDEX | ||
#undef REGISTER_KERNELS | ||
|
||
|
||
template<class K, class V> | ||
void EmbeddingVarCkptData<K, V>::Emplace(K key, V* value_ptr) { | ||
key_vec_.emplace_back(key); | ||
value_ptr_vec_.emplace_back(value_ptr); | ||
} | ||
#define REGISTER_KERNELS(ktype, vtype) \ | ||
template void EmbeddingVarCkptData<ktype, vtype>::Emplace( \ | ||
ktype, vtype*); | ||
#define REGISTER_KERNELS_ALL_INDEX(type) \ | ||
REGISTER_KERNELS(int32, type) \ | ||
REGISTER_KERNELS(int64, type) | ||
#if GOOGLE_CUDA | ||
TF_CALL_GPU_NUMBER_TYPES(REGISTER_KERNELS_ALL_INDEX) | ||
#else | ||
TF_CALL_FLOAT_TYPES(REGISTER_KERNELS_ALL_INDEX) | ||
#endif // GOOGLE_CUDA | ||
#undef REGISTER_KERNELS_ALL_INDEX | ||
#undef REGISTER_KERNELS | ||
|
||
template<class K, class V> | ||
void EmbeddingVarCkptData<K, V>::SetWithPartition( | ||
std::vector<EmbeddingVarCkptData<K, V>>& ev_ckpt_data_parts) { | ||
part_offset_.resize(kSavedPartitionNum + 1); | ||
part_filter_offset_.resize(kSavedPartitionNum + 1); | ||
part_offset_[0] = 0; | ||
part_filter_offset_[0] = 0; | ||
for (int i = 0; i < kSavedPartitionNum; i++) { | ||
part_offset_[i + 1] = | ||
part_offset_[i] + ev_ckpt_data_parts[i].key_vec_.size(); | ||
|
||
part_filter_offset_[i + 1] = | ||
part_filter_offset_[i] + | ||
ev_ckpt_data_parts[i].key_filter_vec_.size(); | ||
|
||
for (int64 j = 0; j < ev_ckpt_data_parts[i].key_vec_.size(); j++) { | ||
key_vec_.emplace_back(ev_ckpt_data_parts[i].key_vec_[j]); | ||
} | ||
|
||
for (int64 j = 0; j < ev_ckpt_data_parts[i].value_ptr_vec_.size(); j++) { | ||
value_ptr_vec_.emplace_back(ev_ckpt_data_parts[i].value_ptr_vec_[j]); | ||
} | ||
|
||
for (int64 j = 0; j < ev_ckpt_data_parts[i].version_vec_.size(); j++) { | ||
version_vec_.emplace_back(ev_ckpt_data_parts[i].version_vec_[j]); | ||
} | ||
|
||
for (int64 j = 0; j < ev_ckpt_data_parts[i].freq_vec_.size(); j++) { | ||
freq_vec_.emplace_back(ev_ckpt_data_parts[i].freq_vec_[j]); | ||
} | ||
|
||
for (int64 j = 0; j < ev_ckpt_data_parts[i].key_filter_vec_.size(); j++) { | ||
key_filter_vec_.emplace_back(ev_ckpt_data_parts[i].key_filter_vec_[j]); | ||
} | ||
|
||
for (int64 j = 0; j < ev_ckpt_data_parts[i].version_filter_vec_.size(); j++) { | ||
version_filter_vec_.emplace_back(ev_ckpt_data_parts[i].version_filter_vec_[j]); | ||
} | ||
|
||
for (int64 j = 0; j < ev_ckpt_data_parts[i].freq_filter_vec_.size(); j++) { | ||
freq_filter_vec_.emplace_back(ev_ckpt_data_parts[i].freq_filter_vec_[j]); | ||
} | ||
} | ||
} | ||
|
||
#define REGISTER_KERNELS(ktype, vtype) \ | ||
template void EmbeddingVarCkptData<ktype, vtype>::SetWithPartition( \ | ||
std::vector<EmbeddingVarCkptData<ktype, vtype>>&); | ||
#define REGISTER_KERNELS_ALL_INDEX(type) \ | ||
REGISTER_KERNELS(int32, type) \ | ||
REGISTER_KERNELS(int64, type) | ||
#if GOOGLE_CUDA | ||
TF_CALL_GPU_NUMBER_TYPES(REGISTER_KERNELS_ALL_INDEX) | ||
#else | ||
TF_CALL_FLOAT_TYPES(REGISTER_KERNELS_ALL_INDEX) | ||
#endif // GOOGLE_CUDA | ||
#undef REGISTER_KERNELS_ALL_INDEX | ||
#undef REGISTER_KERNELS | ||
|
||
template<class K, class V> | ||
Status EmbeddingVarCkptData<K, V>::ExportToCkpt( | ||
const string& tensor_name, | ||
BundleWriter* writer, | ||
int64 value_len, | ||
ValueIterator<V>* value_iter) { | ||
size_t bytes_limit = 8 << 20; | ||
std::unique_ptr<char[]> dump_buffer(new char[bytes_limit]); | ||
|
||
EVVectorDataDumpIterator<K> key_dump_iter(key_vec_); | ||
Status s = SaveTensorWithFixedBuffer( | ||
tensor_name + "-keys", writer, dump_buffer.get(), | ||
bytes_limit, &key_dump_iter, | ||
TensorShape({key_vec_.size()})); | ||
if (!s.ok()) | ||
return s; | ||
|
||
EV2dVectorDataDumpIterator<V> value_dump_iter( | ||
value_ptr_vec_, value_len, value_iter); | ||
s = SaveTensorWithFixedBuffer( | ||
tensor_name + "-values", writer, dump_buffer.get(), | ||
bytes_limit, &value_dump_iter, | ||
TensorShape({value_ptr_vec_.size(), value_len})); | ||
if (!s.ok()) | ||
return s; | ||
|
||
EVVectorDataDumpIterator<int64> version_dump_iter(version_vec_); | ||
s = SaveTensorWithFixedBuffer( | ||
tensor_name + "-versions", writer, dump_buffer.get(), | ||
bytes_limit, &version_dump_iter, | ||
TensorShape({version_vec_.size()})); | ||
if (!s.ok()) | ||
return s; | ||
|
||
EVVectorDataDumpIterator<int64> freq_dump_iter(freq_vec_); | ||
s = SaveTensorWithFixedBuffer( | ||
tensor_name + "-freqs", writer, dump_buffer.get(), | ||
bytes_limit, &freq_dump_iter, | ||
TensorShape({freq_vec_.size()})); | ||
if (!s.ok()) | ||
return s; | ||
|
||
EVVectorDataDumpIterator<K> filtered_key_dump_iter(key_filter_vec_); | ||
s = SaveTensorWithFixedBuffer( | ||
tensor_name + "-keys_filtered", writer, dump_buffer.get(), | ||
bytes_limit, &filtered_key_dump_iter, | ||
TensorShape({key_filter_vec_.size()})); | ||
if (!s.ok()) | ||
return s; | ||
|
||
EVVectorDataDumpIterator<int64> | ||
filtered_version_dump_iter(version_filter_vec_); | ||
s = SaveTensorWithFixedBuffer( | ||
tensor_name + "-versions_filtered", | ||
writer, dump_buffer.get(), | ||
bytes_limit, &filtered_version_dump_iter, | ||
TensorShape({version_filter_vec_.size()})); | ||
if (!s.ok()) | ||
return s; | ||
|
||
EVVectorDataDumpIterator<int64> | ||
filtered_freq_dump_iter(freq_filter_vec_); | ||
s = SaveTensorWithFixedBuffer( | ||
tensor_name + "-freqs_filtered", | ||
writer, dump_buffer.get(), | ||
bytes_limit, &filtered_freq_dump_iter, | ||
TensorShape({freq_filter_vec_.size()})); | ||
if (!s.ok()) | ||
return s; | ||
|
||
EVVectorDataDumpIterator<int32> | ||
part_offset_dump_iter(part_offset_); | ||
s = SaveTensorWithFixedBuffer( | ||
tensor_name + "-partition_offset", | ||
writer, dump_buffer.get(), | ||
bytes_limit, &part_offset_dump_iter, | ||
TensorShape({part_offset_.size()})); | ||
if (!s.ok()) | ||
return s; | ||
|
||
EVVectorDataDumpIterator<int32> | ||
part_filter_offset_dump_iter(part_filter_offset_); | ||
s = SaveTensorWithFixedBuffer( | ||
tensor_name + "-partition_filter_offset", | ||
writer, dump_buffer.get(), | ||
bytes_limit, &part_filter_offset_dump_iter, | ||
TensorShape({part_filter_offset_.size()})); | ||
if (!s.ok()) | ||
return s; | ||
|
||
return Status::OK(); | ||
} | ||
|
||
#define REGISTER_KERNELS(ktype, vtype) \ | ||
template Status EmbeddingVarCkptData<ktype, vtype>::ExportToCkpt( \ | ||
const string&, BundleWriter*, int64, ValueIterator<vtype>*); | ||
#define REGISTER_KERNELS_ALL_INDEX(type) \ | ||
REGISTER_KERNELS(int32, type) \ | ||
REGISTER_KERNELS(int64, type) | ||
#if GOOGLE_CUDA | ||
TF_CALL_GPU_NUMBER_TYPES(REGISTER_KERNELS_ALL_INDEX) | ||
#else | ||
TF_CALL_FLOAT_TYPES(REGISTER_KERNELS_ALL_INDEX) | ||
#endif // GOOGLE_CUDA | ||
#undef REGISTER_KERNELS_ALL_INDEX | ||
#undef REGISTER_KERNELS | ||
}// namespace embedding | ||
}// namespace tensorflow |
Oops, something went wrong.