-
Notifications
You must be signed in to change notification settings - Fork 8
/
hparams.py
56 lines (49 loc) · 1.27 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from text import symbols
################################
# Experiment Parameters #
################################
seed=1234
n_gpus=2
output_directory = 'training_log'
log_directory = 'fastspeech-phone'
data_path = '/media/disk1/lyh/LJSpeech-1.1/preprocessed'
teacher_dir = '/media/disk1/lyh/fastspeech_phone'
training_files='filelists/ljs_audio_text_train_filelist.txt'
validation_files='filelists/ljs_audio_text_val_filelist.txt'
text_cleaners=['english_cleaners']
################################
# Audio Parameters #
################################
sampling_rate=22050
filter_length=1024
hop_length=256
win_length=1024
n_mel_channels=80
mel_fmin=0.0
mel_fmax=8000.0
################################
# Model Parameters #
################################
n_symbols=len(symbols)
data_type='phone_seq' # 'phone_seq'
symbols_embedding_dim=256
hidden_dim=256
dprenet_dim=256
postnet_dim=256
ff_dim=1024
duration_dim=256
n_heads=4
n_layers=6
################################
# Optimization Hyperparameters #
################################
lr=384**-0.5# ~384^-0.5 = 0.05
warmup_steps=4000
grad_clip_thresh=1.0
batch_size=32
accumulation=2
iters_per_validation=2000
iters_per_checkpoint=10000
train_steps = 200000
distillation=True
pretrained_embedding=True