-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdcr.py
178 lines (135 loc) · 5.34 KB
/
dcr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python3
__author__ = "MistySheep"
import numpy as np
import time
import sys
#=======#=======#=======#=======#=======#=======#=======#=======#=======#======#
#=======#=======#=======#=======#=======#=======#=======#=======#=======#======#
#=======#=======#=======#=======#=======#=======#=======#=======#=======#======#
class MultiDelayCoupledRC():
"""
Note: Can only handle 1D Input
"""
def __init__(self, N, alpha = 1, beta = 0.1, gamma = 0.09, M = None, theta = 0.4, m_amp = 0.1):
"""
Args:
N: number of virtual nodes
alpha: scaling param TODO
beta: for mackey glass equation
gamma: input scaling
M: second delay
theta: length of subintervals
m_amp: mask amplitude
"""
self.N = N
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.M = M
self.theta = theta
self.m_amp = m_amp
# creates a mask with either value either being m_amp or - m_amp
self.mask = self.m_amp * (2 * (np.random.uniform(low = 0.0, \
high =1.0, size = (1,self.N)) < 0.5) - 1)
self.mask -= np.mean(self.mask)
if (M is None):
self.M = 2*self.N - 3
#=======#=======#=======#=======#=======#=======#=======#=======#=======#
def transform_mp(self, u):
"""
Args:
u: data to be multiplexed
Returns:
J: mutliplexed data
"""
# apply mask on input data
u = np.reshape(u, (-1,1))
return np.dot(u, self.mask)
#=======#=======#=======#=======#=======#=======#=======#=======#=======#
def mg(self, X, b = 0.4, n = 1):
"""
Nonlinear Function, the Mackey Glass Equation
Args:
x: input
b: scaling parameter
n: exponent (the higer, the more nonlinear mg becomes)
Returns:
output: output of mackey glass equation
"""
return b * (X / (1 + X**n ) )
#=======#=======#=======#=======#=======#=======#=======#=======#=======#
def calculate(self, J):
"""
Calculate Reservoir Activity
Args:
J: multiplexed input
Returns:
R: matrix of reservoir history (rows being timesteps)
"""
# due to the fact, that we have a delayed differential equation,
# every calculation needs values from previous timesteps, thus we
# need some sort of padding
pad = 3
# get number of cycles for this data
cycles = J.shape[0]
# decay terms with shape N
b = np.exp(-self.alpha*self.theta*np.arange(1,self.N+1))
# array for values of virtual nodes
VN = np.zeros((self.N))
kx = b[0]
f0 = 0.1
phi0 = 0.1
# reservoir history matrix
R = 0.1 * np.ones((pad+cycles, self.N))
# since we introduced this padding to matrix R, we will do the same
# to input matrix J (with empty padding), so that we can index them
# the same way
# furthermore, apply input scaling via gamma
J = np.vstack((np.zeros((pad, self.N)), J)) * self.gamma
# iterate, but leave out padding
for i in range(pad, cycles+pad):
# for calculating with delay values, we will need values from
# 3 cycles steps in the past
delay_val = R[i-3:i].flatten()[-self.M:self.N-self.M]
# apply nonlinear mackey glass equation
ff = self.mg(R[i-1] + delay_val + J[i], b=self.beta)
# value of first virtual node
VN[0] = ff[0]
# calculate values for the rest of the virtual nodes
for t in range(1, self.N):
VN[t] = kx * (VN[t-1] + ff[t-1]) + ff[t]
# calculate reservoir
R[i] = b * (self.theta/2 * f0 + phi0) + self.theta/2 * VN
# update
f0 = ff[self.N-1]
phi0 = R[i, self.N-1]
# progress bar
self.update_progress(int(100*(i)/(cycles+pad-1)))
# remove padding so we are left with "pure" values
R = R[pad:]
#np.savetxt("new.npy", R)
return R
def update_progress(self, pg):
if (pg != 100):
sys.stdout.write('\r[*]Reservoir Progress: [{0}] {1}%'.format('#'*int(pg/2), pg))
else:
sys.stdout.write('\r[+]Reservoir Progress: [{0}] {1}%\n'.format('#'*int(pg/2), pg))
sys.stdout.flush()
#=======#=======#=======#=======#=======#=======#=======#=======#=======#======#
#=======#=======#=======#=======#=======#=======#=======#=======#=======#======#
#=======#=======#=======#=======#=======#=======#=======#=======#=======#======#
def complete(data, N, Model = None):
"""
First initiate a new instance of the MultiDelayCoupledRC, multiplex the
input and finally apply reservoir
Returns the Resrevoir Activity, which can be used for a lineary readout
"""
if (Model is None):
# create Multi Delay-Coupled Reservoir Class
Model = MultiDelayCoupledRC(N)
# multiplex
J = Model.transform_mp(data)
# calculate reservoir activity, measure time
X = Model.calculate(J)
# return reservoir activity matrix
return X, Model