forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobilenetv3.py
498 lines (437 loc) · 15.1 KB
/
mobilenetv3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear
from paddleseg.cvlibs import manager
from paddleseg.utils import utils, logger
from paddleseg.models import layers
__all__ = [
"MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
"MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
"MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
"MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
"MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25"
]
MODEL_STAGES_PATTERN = {
"MobileNetV3_small": ["blocks[0]", "blocks[2]", "blocks[7]", "blocks[10]"],
"MobileNetV3_large":
["blocks[0]", "blocks[2]", "blocks[5]", "blocks[11]", "blocks[14]"]
}
# "large", "small" is just for MobinetV3_large, MobileNetV3_small respectively.
# The type of "large" or "small" config is a list. Each element(list) represents a depthwise block, which is composed of k, exp, se, act, s.
# k: kernel_size
# exp: middle channel number in depthwise block
# c: output channel number in depthwise block
# se: whether to use SE block
# act: which activation to use
# s: stride in depthwise block
# d: dilation rate in depthwise block
NET_CONFIG = {
"large": [
# k, exp, c, se, act, s
[3, 16, 16, False, "relu", 1],
[3, 64, 24, False, "relu", 2],
[3, 72, 24, False, "relu", 1], # x4
[5, 72, 40, True, "relu", 2],
[5, 120, 40, True, "relu", 1],
[5, 120, 40, True, "relu", 1], # x8
[3, 240, 80, False, "hardswish", 2],
[3, 200, 80, False, "hardswish", 1],
[3, 184, 80, False, "hardswish", 1],
[3, 184, 80, False, "hardswish", 1],
[3, 480, 112, True, "hardswish", 1],
[3, 672, 112, True, "hardswish", 1], # x16
[5, 672, 160, True, "hardswish", 2],
[5, 960, 160, True, "hardswish", 1],
[5, 960, 160, True, "hardswish", 1], # x32
],
"small": [
# k, exp, c, se, act, s
[3, 16, 16, True, "relu", 2],
[3, 72, 24, False, "relu", 2],
[3, 88, 24, False, "relu", 1],
[5, 96, 40, True, "hardswish", 2],
[5, 240, 40, True, "hardswish", 1],
[5, 240, 40, True, "hardswish", 1],
[5, 120, 48, True, "hardswish", 1],
[5, 144, 48, True, "hardswish", 1],
[5, 288, 96, True, "hardswish", 2],
[5, 576, 96, True, "hardswish", 1],
[5, 576, 96, True, "hardswish", 1],
],
"large_os8": [
# k, exp, c, se, act, s, {d}
[3, 16, 16, False, "relu", 1],
[3, 64, 24, False, "relu", 2],
[3, 72, 24, False, "relu", 1], # x4
[5, 72, 40, True, "relu", 2],
[5, 120, 40, True, "relu", 1],
[5, 120, 40, True, "relu", 1], # x8
[3, 240, 80, False, "hardswish", 1],
[3, 200, 80, False, "hardswish", 1, 2],
[3, 184, 80, False, "hardswish", 1, 2],
[3, 184, 80, False, "hardswish", 1, 2],
[3, 480, 112, True, "hardswish", 1, 2],
[3, 672, 112, True, "hardswish", 1, 2],
[5, 672, 160, True, "hardswish", 1, 2],
[5, 960, 160, True, "hardswish", 1, 4],
[5, 960, 160, True, "hardswish", 1, 4],
],
"small_os8": [
# k, exp, c, se, act, s, {d}
[3, 16, 16, True, "relu", 2],
[3, 72, 24, False, "relu", 2],
[3, 88, 24, False, "relu", 1],
[5, 96, 40, True, "hardswish", 1],
[5, 240, 40, True, "hardswish", 1, 2],
[5, 240, 40, True, "hardswish", 1, 2],
[5, 120, 48, True, "hardswish", 1, 2],
[5, 144, 48, True, "hardswish", 1, 2],
[5, 288, 96, True, "hardswish", 1, 2],
[5, 576, 96, True, "hardswish", 1, 4],
[5, 576, 96, True, "hardswish", 1, 4],
]
}
OUT_INDEX = {"large": [2, 5, 11, 14], "small": [0, 2, 7, 10]}
def _make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def _create_act(act):
if act == "hardswish":
return nn.Hardswish()
elif act == "relu":
return nn.ReLU()
elif act is None:
return None
else:
raise RuntimeError(
"The activation function is not supported: {}".format(act))
class MobileNetV3(nn.Layer):
"""
MobileNetV3
Args:
config: list. MobileNetV3 depthwise blocks config.
in_channels (int, optional): The channels of input image. Default: 3.
scale: float=1.0. The coefficient that controls the size of network parameters.
Returns:
model: nn.Layer. Specific MobileNetV3 model depends on args.
"""
def __init__(self,
config,
stages_pattern,
out_index,
in_channels=3,
scale=1.0,
pretrained=None):
super().__init__()
self.cfg = config
self.out_index = out_index
self.scale = scale
self.pretrained = pretrained
inplanes = 16
self.conv = ConvBNLayer(
in_c=in_channels,
out_c=_make_divisible(inplanes * self.scale),
filter_size=3,
stride=2,
padding=1,
num_groups=1,
if_act=True,
act="hardswish")
self.blocks = nn.Sequential(*[
ResidualUnit(
in_c=_make_divisible(inplanes * self.scale if i == 0 else
self.cfg[i - 1][2] * self.scale),
mid_c=_make_divisible(self.scale * exp),
out_c=_make_divisible(self.scale * c),
filter_size=k,
stride=s,
use_se=se,
act=act,
dilation=td[0] if td else 1)
for i, (k, exp, c, se, act, s, *td) in enumerate(self.cfg)
])
out_channels = [config[idx][2] for idx in self.out_index]
self.feat_channels = [
_make_divisible(self.scale * c) for c in out_channels
]
self.init_res(stages_pattern)
self.init_weight()
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
def init_res(self, stages_pattern, return_patterns=None,
return_stages=None):
if return_patterns and return_stages:
msg = f"The 'return_patterns' would be ignored when 'return_stages' is set."
logger.warning(msg)
return_stages = None
if return_stages is True:
return_patterns = stages_pattern
# return_stages is int or bool
if type(return_stages) is int:
return_stages = [return_stages]
if isinstance(return_stages, list):
if max(return_stages) > len(stages_pattern) or min(
return_stages) < 0:
msg = f"The 'return_stages' set error. Illegal value(s) have been ignored. The stages' pattern list is {stages_pattern}."
logger.warning(msg)
return_stages = [
val for val in return_stages
if val >= 0 and val < len(stages_pattern)
]
return_patterns = [stages_pattern[i] for i in return_stages]
def forward(self, x):
x = self.conv(x)
feat_list = []
for idx, block in enumerate(self.blocks):
x = block(x)
if idx in self.out_index:
feat_list.append(x)
return feat_list
class ConvBNLayer(nn.Layer):
def __init__(self,
in_c,
out_c,
filter_size,
stride,
padding,
num_groups=1,
if_act=True,
act=None,
dilation=1):
super().__init__()
self.conv = Conv2D(
in_channels=in_c,
out_channels=out_c,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
bias_attr=False,
dilation=dilation)
self.bn = BatchNorm(
num_channels=out_c,
act=None,
param_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
self.if_act = if_act
self.act = _create_act(act)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
x = self.act(x)
return x
class ResidualUnit(nn.Layer):
def __init__(self,
in_c,
mid_c,
out_c,
filter_size,
stride,
use_se,
act=None,
dilation=1):
super().__init__()
self.if_shortcut = stride == 1 and in_c == out_c
self.if_se = use_se
self.expand_conv = ConvBNLayer(
in_c=in_c,
out_c=mid_c,
filter_size=1,
stride=1,
padding=0,
if_act=True,
act=act)
self.bottleneck_conv = ConvBNLayer(
in_c=mid_c,
out_c=mid_c,
filter_size=filter_size,
stride=stride,
padding=int((filter_size - 1) // 2) * dilation,
num_groups=mid_c,
if_act=True,
act=act,
dilation=dilation)
if self.if_se:
self.mid_se = SEModule(mid_c)
self.linear_conv = ConvBNLayer(
in_c=mid_c,
out_c=out_c,
filter_size=1,
stride=1,
padding=0,
if_act=False,
act=None)
def forward(self, x):
identity = x
x = self.expand_conv(x)
x = self.bottleneck_conv(x)
if self.if_se:
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
x = paddle.add(identity, x)
return x
# nn.Hardsigmoid can't transfer "slope" and "offset" in nn.functional.hardsigmoid
class Hardsigmoid(nn.Layer):
def __init__(self, slope=0.2, offset=0.5):
super().__init__()
self.slope = slope
self.offset = offset
def forward(self, x):
return nn.functional.hardsigmoid(
x, slope=self.slope, offset=self.offset)
class SEModule(nn.Layer):
def __init__(self, channel, reduction=4):
super().__init__()
self.avg_pool = AdaptiveAvgPool2D(1)
self.conv1 = Conv2D(
in_channels=channel,
out_channels=channel // reduction,
kernel_size=1,
stride=1,
padding=0)
self.relu = nn.ReLU()
self.conv2 = Conv2D(
in_channels=channel // reduction,
out_channels=channel,
kernel_size=1,
stride=1,
padding=0)
self.hardsigmoid = Hardsigmoid(slope=0.2, offset=0.5)
def forward(self, x):
identity = x
x = self.avg_pool(x)
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.hardsigmoid(x)
return paddle.multiply(x=identity, y=x)
@manager.BACKBONES.add_component
def MobileNetV3_small_x0_35(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["small"],
scale=0.35,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
out_index=OUT_INDEX["small"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_small_x0_5(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["small"],
scale=0.5,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
out_index=OUT_INDEX["small"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_small_x0_75(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["small"],
scale=0.75,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
out_index=OUT_INDEX["small"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_small_x1_0(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["small"],
scale=1.0,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
out_index=OUT_INDEX["small"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_small_x1_25(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["small"],
scale=1.25,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
out_index=OUT_INDEX["small"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_large_x0_35(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["large"],
scale=0.35,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
out_index=OUT_INDEX["large"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_large_x0_5(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["large"],
scale=0.5,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"],
out_index=OUT_INDEX["large"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_large_x0_75(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["large"],
scale=0.75,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"],
out_index=OUT_INDEX["large"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_large_x1_0(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["large"],
scale=1.0,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"],
out_index=OUT_INDEX["large"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_large_x1_25(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["large"],
scale=1.25,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"],
out_index=OUT_INDEX["large"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_large_x1_0_os8(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["large_os8"],
scale=1.0,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"],
out_index=OUT_INDEX["large"],
**kwargs)
return model
@manager.BACKBONES.add_component
def MobileNetV3_small_x1_0_os8(**kwargs):
model = MobileNetV3(
config=NET_CONFIG["small_os8"],
scale=1.0,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"],
out_index=OUT_INDEX["small"],
**kwargs)
return model