From 74dfdb3199a6f045cef4c6b7901b88381b3b0c9a Mon Sep 17 00:00:00 2001 From: Rui Campos Date: Thu, 21 Mar 2024 13:33:26 +0000 Subject: [PATCH] Update README.md Signed-off-by: Rui Campos --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 499223c..8ace235 100644 --- a/README.md +++ b/README.md @@ -58,7 +58,7 @@ $$\rho^{nul} = \delta^{f(u)g(u)} p^{nf(u)f(l)} p^{nf(u)g(l)} + 2 \tilde \delta^ Substituting this back, while attending to the relevant substitution on the first term of the original expression, -$$q^{nul} _ {l} = \delta_{f(l)g(l)} \bar M^n_{l} \left [ \delta^{f(u)g(u)} p^{nf(u)f(l)} p^{nf(u)f(l)} + 2 \tilde \delta^{f(u)g(u)} p^{nf(u)f(l)} p^{ng(u)f(l)} \right ] + 2 \tilde \delta_{f(l)g(l)} \bar M^n_l \left [ \delta^{f(u)g(u)} p^{nf(u)f(l)} p^{nf(u)g(l)} + 2 \tilde \delta^{f(u)g(u)} p^{nf(u)f(l)} p^{ng(u)g(l)} \right ]$$ +$$q^{nul} _ {l} = \delta^{f(l)g(l)} \bar M^n_{l} \left [ \delta^{f(u)g(u)} p^{nf(u)f(l)} p^{nf(u)f(l)} + 2 \tilde \delta^{f(u)g(u)} p^{nf(u)f(l)} p^{ng(u)f(l)} \right ] + 2 \tilde \delta^{f(l)g(l)} \bar M^n_l \left [ \delta^{f(u)g(u)} p^{nf(u)f(l)} p^{nf(u)g(l)} + 2 \tilde \delta^{f(u)g(u)} p^{nf(u)f(l)} p^{ng(u)g(l)} \right ]$$ which we'll now group according to the $\delta$'s