-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert_base_model.py
35 lines (30 loc) · 1.27 KB
/
bert_base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import os
import torch.nn as nn
from transformers import BertModel
class BaseModel(nn.Module):
def __init__(self, bert_dir, dropout_prob):
super(BaseModel, self).__init__()
config_path = os.path.join(bert_dir, 'config.json')
assert os.path.exists(bert_dir) and os.path.exists(config_path), \
'pretrained bert file does not exist'
self.bert_module = BertModel.from_pretrained(
bert_dir,
output_hidden_states=True,
hidden_dropout_prob=dropout_prob
)
self.bert_config = self.bert_module.config
@staticmethod
def _init_weights(blocks, **kwargs):
"""
Parameter initialization, initialize Linear / Embedding / LayerNorm the same as Bert
"""
for block in blocks:
for module in block.modules():
if isinstance(module, nn.Linear):
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0, std=kwargs.pop('initializer_range', 0.02))
elif isinstance(module, nn.LayerNorm):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)