-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathComplete_I_V_avg.m
753 lines (728 loc) · 46.3 KB
/
Complete_I_V_avg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
function Complete_I_V_avg()
format shortG
%%%%%%%---Define parameters---%%%%%%%%
rel_permittivity =25*8.85*10^(-12);%[Nm^2/C^2]
boltzmann_constant = 1.381e-23;%[J/K]
%%%______Circuitary_______%%%
ramp_rate =[1e2];
%define source voltage
V_pos_amp = 1.25;%[V]
V_neg_amp = -1.75;%[V]
step_volt = 0.05;%[V]
%%%_____Electric Conductivity_____%%%
alpha_fil=-0.05;EC_HfO2x=5e3;%[kS/m]
alpha_gap=0.05;EC_gap=3e3;%[kS/m]
atomic_vibration=1e-13;%[s]
%%%_____Thermal Conductivity_____%%%
k_eff=10;
%%%______Chemical Energy______%%%
surface_tension = 0.01;%[J/m^2]
delta_mu_SET_J = 100e8;%[GJ/m^3]
delta_mu_RESET_J = 65e8;%[GJ/m^3]
beta_1 = 3.5e8;%[GJ/m^3]
beta_2 = 5e8;%[GJ/m^3]
delta_W_uc = 1;%eV
delta_W_i = 0.1;%eV
delta_W_mc = 0.3;%eV
%%%______filament Nucleation_____%%%
height_filament = 5e-9;%[m]
nucleation_barrier = 2.5*1.6e-19;%[J]
lambda = 6.6487; %following e-field of 1V/5nm
critical_nucleation_radius = 2.9e-9;%[m]
min_filament_radius = 0.6e-9;%[m]
alpha = min_filament_radius/critical_nucleation_radius;
%%%____create tables for database___%%%
DATA_OFF = table;
DATA_ON = table;
DATA_OFF_neg = table;
DATA_ON_neg = table;
I_V = table;
DATA_SET = table;
DATA_RESET = table;
DATA_min_SET = table;
DATA_min_RESET = table;
%define # of cycles
cycle = 2;
%set ramp rate (pulse length)
for ramp_rate_loop = 1 : length(ramp_rate)
%loop for cycle
%s_g and s_r are the manually picked stable gap length and filament radius for
%the inital OFF state and doesnot follow thermodyanmics
%trick is to run the program twice so that in the second cycle the
%program starts with thermodynamically choosen gap and filament size
s_g=2.7e-9;%[m]
s_r=2.5e-9;%[m]
for cycle_loop = 1 : cycle
%%%%%%%%%%%%%%%%%%%%%%%%%Positive Voltage%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%OFF_MODE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model_OFF= RRAM_OFF;
model_OFF.hist.disable;
%model_OFF.param.set('delta_E',random_E);
model_OFF.param.set('V_amp', V_pos_amp);
model_OFF.param.set('h_g',s_g);
model_OFF.param.set('r_f',s_r);
model_OFF.param.set('alpha_fil',alpha_fil);
model_OFF.param.set('alpha_gap',alpha_gap);
model_OFF.param.set('k_eff',k_eff);
model_OFF.param.set('EC_HfO2x', EC_HfO2x);
model_OFF.param.set('EC_gap', EC_gap);
model_OFF.param.set('R',ramp_rate(1,ramp_rate_loop));
model_OFF.param.set('t_rise',V_pos_amp/ramp_rate(1,ramp_rate_loop));
model_OFF.study('std1').feature('time').set('tunit', 's');
model_OFF.study('std1').feature('time').set('tlist', 'range(0,t_rise/30, 3/2*t_rise)');
model_OFF.study('std1').run;
time = 0 : (V_pos_amp/ramp_rate(1,ramp_rate_loop))/30 :3/2*V_pos_amp/ramp_rate(1,ramp_rate_loop);
time_s = time(:);
avg_gap_Temperature = mphmean(model_OFF, 'T', 2, 'selection',[3]);
avg_gap_Temperature_K = avg_gap_Temperature(:);
device_VoltageOFF_V = mphglobal(model_OFF, 'cir.IvsU1_v');
device_CurrentOFF_uA = 1e6*abs(mphglobal(model_OFF, 'cir.IvsU1_i'));
source_VoltageOFF_V = mphglobal(model_OFF, 'cir.V1_v');
load_VoltageOFF_V = mphglobal(model_OFF, 'cir.R1_v');
Threshold_Voltage_V = zeros(length(time),1);
Voltage_wiggle_V = zeros(length(time),1);
%find pulse length and temperaute dependent threshold voltage
for j = 1 : length(time)
Voltage_wiggle_V(j,1) = (height_filament*nucleation_barrier)/(boltzmann_constant*avg_gap_Temperature_K(j,1))*sqrt((3*pi^3*alpha^3*lambda*nucleation_barrier)/(32*rel_permittivity*critical_nucleation_radius^3));
Threshold_Voltage_V(j,1) = Voltage_wiggle_V(j,1)/ log(Voltage_wiggle_V(j,1)/(ramp_rate(1,ramp_rate_loop)*atomic_vibration));
end
tbl_OFF = table(time_s,avg_gap_Temperature_K,Threshold_Voltage_V,device_VoltageOFF_V,device_CurrentOFF_uA,source_VoltageOFF_V,load_VoltageOFF_V);
% when the device voltage exceeds the threshold voltage
% the device switches
count_c = 0;
count_b = 0;
Threshold_coloumn = zeros(length(time),1);
for loop = 1: length(time)
count_c = count_c+1;
if Threshold_Voltage_V(loop)<device_VoltageOFF_V(loop)
count_b = count_b+1;
Threshold_coloumn(count_b) = count_c;
end
end
% store device I-V upto threshold voltage then switch
device_Voltage_V = device_VoltageOFF_V(1:Threshold_coloumn(1),1);
device_current_uA = device_CurrentOFF_uA(1:Threshold_coloumn(1),1);
I_V_OFF = table(device_Voltage_V,device_current_uA);
DATA_OFF = vertcat(DATA_OFF,tbl_OFF);
I_V = vertcat(I_V,I_V_OFF);
%%%%%%%%%%%%%%%%%%%%%%%%Postitive Voltage%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%SET_MODE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model_SET = RRAM_SET;
model_SET.hist.disable;
format shortG
%Assign all the constant value
height_filament = 5e-9;
%Assign the range of source voltage with step increament strting from
%threshold voltage
I_V_SET1 = table;
min_Current = 100e-6;
max_Current = 230e-6;
step_increament_Current = 10e-6;
%Sweeps source current from minimum to maximum current values in step increament
for Current_Source_loop = min_Current:step_increament_Current:max_Current
min_fil_radius =0.5e-9;max_fil_radius =9e-9; step_increament_radius = 2.5e-9;
row = min_fil_radius:step_increament_radius:max_fil_radius;
FE_diff_SET = zeros(length(row),1);
DATA3 = table;
stable_radius = [];
%%%%________Locate Minimium__________%%%%%%%%
for radius_filament_loop = min_fil_radius:step_increament_radius:max_fil_radius
r_f=radius_filament_loop; I_S= Current_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA1,source_VoltageSET_V,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] = FE_SET(r_f,I_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
radius_filament_m = r_f;Source_Current_A=Current_Source_loop;
tbl=table(ramp_rate(1,ramp_rate_loop),Source_Current_A,source_VoltageSET_V,device_current_uA1,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,radius_filament_m,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Free_Energy_eV,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu);
DATA_SET = vertcat(DATA_SET,tbl);
DATA3 = vertcat(DATA3,tbl);
[num2str(ramp_rate(1,ramp_rate_loop)),'|',num2str(Source_Current_A),'|',num2str(device_Resistance_Ohm),'|', num2str(device_current_uA1),'|',num2str(device_Voltage_V1),'|',num2str(radius_filament_m),'|',num2str(max_filament_Temperature_K),'|',num2str(avg_dielectric_Temperature_K),'|',num2str(delta_mu)]
end
for count_e = 1 : length(row)-1
FE_diff_SET(count_e,1) = (DATA3.Free_Energy_eV(count_e+1)-DATA3.Free_Energy_eV(count_e));
end
%locates the minimum in free energy using the difference and records the row corresponding to it
for count_f = 1 : length(row)-2
if (FE_diff_SET(count_f)<0) && (FE_diff_SET(count_f+1)>0)
stable_radius = DATA3.radius_filament_m(count_f+1);
end
end
%if minimum exist then uses Brents minimization for speedy
%convergence
if (isempty(stable_radius)==0)
min_fil_radius =stable_radius - step_increament_radius;
max_fil_radius =stable_radius + step_increament_radius;
ITMAX=20; tol=1e-2; ZEPS=1e-11; CGOLD=0.3819660;
ax=min_fil_radius; cx=max_fil_radius; bx=0.5*(min_fil_radius+max_fil_radius)+1e-9;
a=ax; b=cx; v=bx;
w=v; x=v; e=0;
r_f=x; I_S=Current_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA1,source_VoltageSET_V,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] =FE_SET(r_f,I_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
fx=Free_Energy_eV; fv=fx; fw=fx;
radius_filament_m = r_f ;
Source_Current_A=Current_Source_loop;
for iter = 1:ITMAX
[num2str(cycle_loop),'|',num2str(ramp_rate(1,ramp_rate_loop)),'|',num2str(Source_Current_A),'|',num2str(device_Resistance_Ohm),'|', num2str(device_current_uA1),'|',num2str(device_Voltage_V1),'|',num2str(radius_filament_m),'|',num2str(max_filament_Temperature_K),'|',num2str(avg_dielectric_Temperature_K),'|',num2str(delta_mu)]
tbl=table(ramp_rate(1,ramp_rate_loop),Source_Current_A,source_VoltageSET_V,device_current_uA1,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,radius_filament_m,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Free_Energy_eV,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu);
DATA_SET = vertcat(DATA_SET,tbl);
xm = 0.5*(a+b); tol1=tol*abs(x)+ZEPS; tol2=2*tol1;
if (abs(x-xm)<=(tol2-0.5*(b-a))) %CONDITION 1
r_f=x; I_S=Current_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA1,source_VoltageSET_V,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] =FE_SET(r_f,I_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
radius_filament_m = r_f ;
tbl=table(ramp_rate(1,ramp_rate_loop),Source_Current_A,source_VoltageSET_V,device_current_uA1,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,radius_filament_m,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Free_Energy_eV,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu);
DATA_SET = vertcat(DATA_SET,tbl);
[num2str(ramp_rate(1,ramp_rate_loop)),'|',num2str(Source_Current_A),'|',num2str(device_Resistance_Ohm),'|', num2str(device_current_uA1),'|',num2str(device_Voltage_V1),'|',num2str(radius_filament_m),'|',num2str(max_filament_Temperature_K),'|',num2str(avg_dielectric_Temperature_K),'|',num2str(delta_mu)]
break
end
if (abs(e)>tol1) %CONDITION 2
r=(x-w)*(fx-fw); q=(x-v)*(fx-fw); p=(x-v)*q-(x-w)*r; q = 2*(q-r);
if (q > 0)
p=-p;
end
q = abs(q); etemp=e; e=d;
if (abs(p)>=abs(0.5*q*etemp))||(p<=q*(a-x))||(p>=q*(b-x)) %CONDITON 2.1
if (x>=xm)
e=a-x;
else
e=b-x;
end
d=CGOLD*e;
if(abs(d)>=tol1)
u=x+d;
else
u=x+abs(tol1)*sign(d);
end
r_f=u; I_S=Current_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA1,source_VoltageSET_V,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] = FE_SET(r_f,I_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
fu=Free_Energy_eV; radius_filament_m=r_f;
if (fu<fx)
if(u>=x)
a=x;
else
b=x;
end
v=w; fv=fw; w=x; fw=fx; x=u; fx=fu;
else
if (u<x)
a=u;
else
b=u;
end
if(fu<=fw)||(w==x)
v=w; fv=fw; w=u; fw=fu;
elseif (fu<=fv)||(v==x)||(v==w)
v=u; fv=fu;
end
continue
end
else
d=p/q; u=x+d;
if (u-a<tol2)||(b-u<tol2)
d=abs(tol1)*sign(xm-x);
end
if(abs(d)>=tol1)
u=x+d;
else
u=x+abs(tol1)*sign(d);
end
r_f=u; I_S=Current_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA1,source_VoltageSET_V,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] = FE_SET(r_f,I_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
fu=Free_Energy_eV; radius_filament_m =r_f;
if (fu<fx)
if(u>=x)
a=x;
else
b=x;
end
v=w; fv=fw; w=x; fw=fx; x=u; fx=fu;
else
if (u<x)
a=u;
else
b=u;
end
if(fu<=fw)||(w==x)
v=w; fv=fw; w=u; fw=fu;
elseif (fu<=fv)||(v==x)||(v==w)
v=u; fv=fu;
end
continue
end
end
end
if (x>=xm) %CONDITION 3
e=a-x;
else
e=b-x;
end
d = CGOLD*e;
if(abs(d)>=tol1) %CONDITON 4
u=x+d;
else
u=x+abs(tol1)*sign(d);
end
r_f=u;I_S =Current_Source_loop;R= ramp_rate(1,ramp_rate_loop);
[device_current_uA1,source_VoltageSET_V,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] = FE_SET(r_f,I_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
fu=Free_Energy_eV; radius_filament_m =r_f;
if (fu<fx)
if(u>=x)
a=x;
else
b=x;
end
v=w; fv=fw; w=x; fw=fx; x=u; fx=fu;
else
if (u<x)
a=u;
else
b=u;
end
if(fu<=fw)||(w==x)
v=w; fv=fw; w=u; fw=fu;
elseif (fu<=fv)||(v==x)||(v==w)
v=u; fv=fu;
end
end
end
end
I_V_tbl = tbl;
%ends the current loop if the total voltage exceed the input
%voltage
if source_VoltageSET_V<=V_pos_amp
I_V_SET1 = vertcat(I_V_SET1,I_V_tbl);
else
break
end
end
fil_temp = I_V_SET1.max_filament_Temperature_K;
SET_Temp = fil_temp(end);
device_Voltage_V = I_V_SET1.device_Voltage_V1;
device_current_uA = I_V_SET1.device_current_uA1;
I_V_SET=table(device_Voltage_V,device_current_uA);
DATA_min_SET=vertcat(DATA_min_SET,I_V_SET1);
I_V = vertcat(I_V,I_V_SET);
s_r=I_V_SET1.radius_filament_m(end);
%%%%%%%%%%%%%%%%%%%%%%%%Postitive Voltage%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%ON MODE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model_ON = RRAM_ON;
model_ON.hist.disable;
format shortG
model_ON.param.set('r_f',s_r);
model_ON.param.set('alpha_fil',alpha_fil);
model_ON.param.set('EC_HfO2x', EC_HfO2x);
model_ON.param.set('R',ramp_rate(1,ramp_rate_loop));
model_ON.param.set('V_amp', V_pos_amp);
model_ON.param.set('t_rise',V_pos_amp/ramp_rate(1,ramp_rate_loop));
model_ON.geom('geom1').run;
model_ON.study('std1').feature('time').set('tunit', 's');
model_ON.study('std1').feature('time').set('tlist', 'range(0,t_rise/30, 3/2*t_rise)');
model_ON.study('std1').run;
time = 0:(V_pos_amp/ramp_rate(1,ramp_rate_loop))/30:3/2*V_pos_amp/ramp_rate(1,ramp_rate_loop);
time_row = time(:);time_s=flip(time_row);
V_D_ON = mphglobal(model_ON, 'cir.IvsU1_v'); device_VoltageON_V = flip(V_D_ON);
I_D_ON= 1e6*abs(mphglobal(model_ON, 'cir.IvsU1_i'));device_CurrentON_uA = flip(I_D_ON);
V_S_ON = mphglobal(model_ON, 'cir.V1_v'); source_VoltageON_V = flip(V_S_ON);
V_L_ON= mphglobal(model_ON, 'cir.R1_v');load_VoltageON_V = flip(V_L_ON);
tbl_ON=table(time_s,device_VoltageON_V,device_CurrentON_uA,source_VoltageON_V,load_VoltageON_V);
device_Voltage_V=device_VoltageON_V; device_current_uA=device_CurrentON_uA;
I_V_ON = table(device_Voltage_V,device_current_uA);
DATA_ON = vertcat(DATA_ON,tbl_ON);
I_V = vertcat(I_V,I_V_ON);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%Negative voltage%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ON MODE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model_ON_neg = RRAM_ON;
model_ON_neg.hist.disable;
format shortG
model_ON_neg.param.set('r_f',s_r);
model_ON_neg.param.set('alpha_fil',alpha_fil);
model_ON_neg.param.set('EC_HfO2x', EC_HfO2x);
model_ON_neg.param.set('R',ramp_rate(1,ramp_rate_loop));
model_ON_neg.param.set('V_amp', V_neg_amp)
model_ON_neg.param.set('t_rise',abs(V_neg_amp/ramp_rate(1,ramp_rate_loop)));
model_ON_neg.geom('geom1').run;
model_ON_neg.study('std1').feature('time').set('tunit', 's');
model_ON_neg.study('std1').feature('time').set('tlist', 'range(0,t_rise/30, 3/2*t_rise)');
model_ON_neg.study('std1').run;
device_VoltageON_neg_V = mphglobal(model_ON_neg, 'cir.IvsU1_v');
device_CurrentON_neg_uA = -1e6*abs(mphglobal(model_ON_neg, 'cir.IvsU1_i'));
source_VoltageON_neg_V = mphglobal(model_ON_neg, 'cir.V1_v');
load_VoltageON_neg_V = mphglobal(model_ON_neg, 'cir.R1_v');
max_fil_TempON_neg_K = mphmax(model_ON_neg, 'T', 2, 'selection',3);
time_neg = 0 : abs(V_neg_amp/ramp_rate(1,ramp_rate_loop))/30 :3/2*abs(V_neg_amp/ramp_rate(1,ramp_rate_loop));
time_neg_s = time_neg(:);
tbl_ON_neg=table(time_neg_s,device_VoltageON_neg_V,device_CurrentON_neg_uA,source_VoltageON_neg_V,load_VoltageON_neg_V);
ON_negcount_coloumn = zeros(length(time_neg),1);
count_i = 0;
count_j2 = 0;
%include voltages that corresponds to filament temperature smaller
%than temperature corresponding to I_SET
for loop = 1: length(time_neg)
count_i = count_i+1;
if max_fil_TempON_neg_K(loop)< SET_Temp
count_j2 = count_j2+1;
ON_negcount_coloumn(count_j2) = count_i;
else
break
end
end
if count_j2 > 0
ON_negcount_nonzero = nonzeros(ON_negcount_coloumn);
start_neg = ON_negcount_nonzero(length(ON_negcount_nonzero),1);
else
[~, start_neg] = min(device_VoltageON_neg_V);
end
RESET_Voltage_V = device_VoltageON_neg_V(start_neg,1);
device_Voltage_V = device_VoltageON_neg_V(1:start_neg,1);
device_current_uA = device_CurrentON_neg_uA(1:start_neg,1);
I_V_ON_neg = table(device_Voltage_V,device_current_uA);
DATA_ON_neg = vertcat(DATA_ON_neg,tbl_ON_neg);
I_V = vertcat(I_V,I_V_ON_neg);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%RESET MODE%%%%%%%%%%%%%%%%%%%%%%%%%%%
model_RESET = RRAM_RESET;
model_RESET.hist.disable;
format shortG
%Assign the range of source voltage with step increament
min_Voltage = RESET_Voltage_V;
max_Voltage = V_neg_amp;
step_increament_Voltage = -step_volt;
%create empty table for database
I_V_RESET1 = table;
%Sweeps source voltage from minimum to maximum voltages in step increament
for Voltage_Source_loop = min_Voltage:step_increament_Voltage:max_Voltage
min_gap_length = 1e-9; max_gap_length = 4e-9; step_increament_gap = 1e-9;
row = min_gap_length:step_increament_gap:max_gap_length;
FE_diff_RESET = zeros(length(row),1);
DATA2 = table;
stable_length = [];
for length_gap_loop = min_gap_length:step_increament_gap:max_gap_length
h_g=length_gap_loop; V_S= Voltage_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] =FE_RESET(h_g,s_r,V_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
length_gap_m = h_g; Source_Voltage_V=Voltage_Source_loop;
tbl=table(ramp_rate(1,ramp_rate_loop),Source_Voltage_V,device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,length_gap_m,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,Free_Energy_eV,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu);
DATA_RESET = vertcat(DATA_RESET,tbl);
DATA2 = vertcat(DATA2,tbl);
[num2str(cycle_loop),'|',num2str(ramp_rate(1,ramp_rate_loop)),'|',num2str(Source_Voltage_V),'|',num2str(device_Resistance_Ohm),'|', num2str(device_current_uA2),'|',num2str(device_Voltage_V2),'|',num2str(length_gap_m),'|',num2str(max_filament_Temperature_K),'|',num2str(avg_gap_Temperature_K),'|',num2str(delta_mu)]
end
for count_e = 1 : length(row)-1
FE_diff_RESET(count_e,1) = (DATA2.Free_Energy_eV(count_e+1)-DATA2.Free_Energy_eV(count_e));
end
%locates the minimum in free energy using the difference and records the row corresponding to it
for count_f = 1 : length(row)-2
if (FE_diff_RESET(count_f)<0) && (FE_diff_RESET(count_f+1)>0)
stable_length = DATA2.length_gap_m(count_f+1);
end
end
%if minimum exist then uses Brents minimization for speedy
%convergence
if (isempty(stable_length)==0)
min_gap_length = stable_length - step_increament_gap;
max_gap_length = stable_length + step_increament_gap;
ITMAX=20; tol=1e-2; ZEPS=1e-11; CGOLD=0.3819660;
ax=min_gap_length; cx=max_gap_length; bx=0.5*(min_gap_length+max_gap_length)+0.2e-9;
a=ax; b=cx; v=bx;
w=v; x=v; e=0;
h_g=x; V_S=Voltage_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] =FE_RESET(h_g,s_r,V_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
fx=Free_Energy_eV; fv=fx; fw=fx;
length_gap_m = h_g ;
Source_Voltage_V=Voltage_Source_loop;
for iter = 1:ITMAX
[num2str(ramp_rate(1,ramp_rate_loop)),'|',num2str(Source_Voltage_V),'|',num2str(device_Resistance_Ohm),'|', num2str(device_current_uA2),'|',num2str(device_Voltage_V2),'|',num2str(length_gap_m),'|',num2str(avg_filament_Temperature_K),'|',num2str(avg_gap_Temperature_K),'|',num2str(delta_mu)]
tbl=table(ramp_rate(1,ramp_rate_loop),Source_Voltage_V,device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,length_gap_m,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,Free_Energy_eV,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu);
DATA_RESET = vertcat(DATA_RESET,tbl);
xm = 0.5*(a+b); tol1=tol*abs(x)+ZEPS; tol2=2*tol1;
if (abs(x-xm)<=(tol2-0.5*(b-a))) %CONDITION 1
h_g=x; V_S=Voltage_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] =FE_RESET(h_g,s_r,V_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
length_gap_m = h_g ;
tbl=table(ramp_rate(1,ramp_rate_loop),Source_Voltage_V,device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,length_gap_m,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,Free_Energy_eV,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu);
DATA_RESET = vertcat(DATA_RESET,tbl);
[num2str(ramp_rate(1,ramp_rate_loop)),'|',num2str(Source_Voltage_V),'|',num2str(device_Resistance_Ohm),'|', num2str(device_current_uA2),'|',num2str(device_Voltage_V2),'|',num2str(length_gap_m),'|',num2str(avg_filament_Temperature_K),'|',num2str(avg_gap_Temperature_K),'|',num2str(delta_mu)]
break
end
if (abs(e)>tol1) %CONDITION 2
r=(x-w)*(fx-fw); q=(x-v)*(fx-fw); p=(x-v)*q-(x-w)*r; q = 2*(q-r);
if (q > 0)
p=-p;
end
q = abs(q); etemp=e; e=d;
if (abs(p)>=abs(0.5*q*etemp))||(p<=q*(a-x))||(p>=q*(b-x)) %CONDITON 2.1
if (x>=xm)
e=a-x;
else
e=b-x;
end
d=CGOLD*e;
if(abs(d)>=tol1)
u=x+d;
else
u=x+abs(tol1)*sign(d);
end
h_g=u; V_S=Voltage_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] = FE_RESET(h_g,s_r,V_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
fu=Free_Energy_eV; length_gap_m=h_g;
if (fu<fx)
if(u>=x)
a=x;
else
b=x;
end
v=w; fv=fw; w=x; fw=fx; x=u; fx=fu;
else
if (u<x)
a=u;
else
b=u;
end
if(fu<=fw)||(w==x)
v=w; fv=fw; w=u; fw=fu;
elseif (fu<=fv)||(v==x)||(v==w)
v=u; fv=fu;
end
continue
end
else
d=p/q; u=x+d;
if (u-a<tol2)||(b-u<tol2)
d=abs(tol1)*sign(xm-x);
end
if(abs(d)>=tol1)
u=x+d;
else
u=x+abs(tol1)*sign(d);
end
h_g=u; V_S=Voltage_Source_loop; R=ramp_rate(1,ramp_rate_loop);
[device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] = FE_RESET(h_g,s_r,V_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
fu=Free_Energy_eV; length_gap_m =h_g;
if (fu<fx)
if(u>=x)
a=x;
else
b=x;
end
v=w; fv=fw; w=x; fw=fx; x=u; fx=fu;
else
if (u<x)
a=u;
else
b=u;
end
if(fu<=fw)||(w==x)
v=w; fv=fw; w=u; fw=fu;
elseif (fu<=fv)||(v==x)||(v==w)
v=u; fv=fu;
end
continue
end
end
end
if (x>=xm) %CONDITION 3
e=a-x;
else
e=b-x;
end
d = CGOLD*e;
if(abs(d)>=tol1) %CONDITON 4
u=x+d;
else
u=x+abs(tol1)*sign(d);
end
h_g=u;V_S =Voltage_Source_loop;R= ramp_rate(1,ramp_rate_loop);
[device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] = FE_RESET(h_g,s_r,V_S,R);
Free_Energy_eV=Thermal_energy_filament_eV+Thermal_energy_dielectric_eV+Electro_Static_Energy_eV+Surface_Energy_eV+Volume_Energy_eV;
fu=Free_Energy_eV; length_gap_m =h_g;
if (fu<fx)
if(u>=x)
a=x;
else
b=x;
end
v=w; fv=fw; w=x; fw=fx; x=u; fx=fu;
else
if (u<x)
a=u;
else
b=u;
end
if(fu<=fw)||(w==x)
v=w; fv=fw; w=u; fw=fu;
elseif (fu<=fv)||(v==x)||(v==w)
v=u; fv=fu;
end
end
end
I_V_tbl = tbl;
I_V_RESET1 = vertcat(I_V_RESET1,I_V_tbl);
end
end
if (isempty(I_V_RESET1)==0)
device_Voltage_V = I_V_RESET1.device_Voltage_V2;
device_current_uA = I_V_RESET1.device_current_uA2;
I_V_RESET=table(device_Voltage_V,device_current_uA);
DATA_min_RESET=vertcat(DATA_min_RESET,I_V_RESET1);
I_V = vertcat(I_V,I_V_RESET);
s_g = I_V_RESET1.length_gap_m(end);
else
s_g = 1e-9;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%Negative voltage%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%OFF_MODE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model_OFF_neg= RRAM_OFF;
model_OFF_neg.hist.disable;
model_OFF_neg.param.set('V_amp', V_neg_amp);
model_OFF_neg.param.set('r_f',s_r);
model_OFF_neg.param.set('h_g',s_g);
model_OFF_neg.param.set('EC_HfO2x', EC_HfO2x);
model_OFF_neg.param.set('EC_gap', EC_gap);
model_OFF_neg.param.set('alpha_fil',alpha_fil);
model_OFF_neg.param.set('alpha_gap',alpha_gap);
model_OFF_neg.param.set('k_eff',k_eff);
model_OFF_neg.param.set('R',ramp_rate(1,ramp_rate_loop));
model_OFF_neg.param.set('t_rise',abs(V_neg_amp/ramp_rate(1,ramp_rate_loop)));
model_OFF_neg.study('std1').feature('time').set('tunit', 's');
model_OFF_neg.study('std1').feature('time').set('tlist', 'range(0,t_rise/30, 3/2*t_rise)');
model_OFF_neg.study('std1').run;
% max_dielec_Temperature_neg= mphmax(model_OFF_neg, 'T', 2, 'selection',[4 9]);
% max_dielec_Temperature_neg_K = max_dielec_Temperature_neg(:);
V_D_OFFneg = mphglobal(model_OFF_neg, 'cir.IvsU1_v'); device_VoltageOFF_neg_V = flip(V_D_OFFneg);
I_D_OFFneg = -1e6*abs(mphglobal(model_OFF_neg, 'cir.IvsU1_i'));device_CurrentOFF_neg_uA = flip(I_D_OFFneg);
V_S_OFFneg = mphglobal(model_OFF_neg, 'cir.V1_v');source_VoltageOFF_neg_V = flip(V_S_OFFneg);
V_L_OFFneg = mphglobal(model_OFF_neg, 'cir.R1_v');load_VoltageOFF_neg_V =flip(V_L_OFFneg);
time = 0:(V_pos_amp/ramp_rate(1,ramp_rate_loop))/30:3/2*V_pos_amp/ramp_rate(1,ramp_rate_loop);
time_row = time(:);time_s=flip(time_row);
tbl_OFF = table(time_s,device_VoltageOFF_neg_V,device_CurrentOFF_neg_uA,source_VoltageOFF_neg_V,load_VoltageOFF_neg_V);
device_Voltage_V = device_VoltageOFF_neg_V;
device_current_uA = device_CurrentOFF_neg_uA;
I_V_OFF_neg = table(device_Voltage_V,device_current_uA);
DATA_OFF_neg = vertcat(DATA_OFF_neg,tbl_OFF);
I_V = vertcat(I_V,I_V_OFF_neg);
end
end
save('Complete_I_V_avg_DATA.mat','I_V','DATA_OFF','DATA_min_SET','DATA_SET','DATA_ON','DATA_ON_neg','DATA_min_RESET','DATA_RESET','DATA_OFF_neg')
%%%%%%%%%%%%%%%%SET Control%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [device_current_uA1,source_VoltageSET_V,Load_VoltageSET_V,device_Voltage_V1,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] = FE_SET(r_f,I_S,R)
%sets the Source voltage and filament radius in COMSOL file and solves the problem
model_SET.param.set('I_S',I_S);
model_SET.param.set('r_f',r_f);
A=exp(-alpha_fil*log((V_pos_amp)/(R*atomic_vibration)));
model_SET.param.set('A',A);
model_SET.param.set('EC_HfO2x', EC_HfO2x);
model_SET.geom('geom1').run;
model_SET.study('std1').run;
%asks COMSOL to calculate mean filament temperature, temperature distribution in the device, potential distribution, current density, and electric field in cylindrical coordinate
avg_filament_Temperature_K = mphmean(model_SET, 'T' , 2,'selection',3);
max_filament_Temperature_K = mphmax(model_SET, 'T', 2, 'selection',3);
avg_dielectric_Temperature_K = mphmean(model_SET, 'T' , 2,'selection',7);
max_dielectric_Temperature_K = mphmax(model_SET, 'T', 2, 'selection',7);
device_Voltage_V1 = mphglobal(model_SET, 'cir.IvsU1_v');
device_current_uA1 = 1e6*(mphglobal(model_SET, 'cir.IvsU1_i'));
Load_VoltageSET_V = mphglobal(model_SET, 'cir.R1_v');
device_Resistance_Ohm = 1e6*device_Voltage_V1/device_current_uA1;
source_VoltageSET_V = device_Voltage_V1+Load_VoltageSET_V;
delta_mu = delta_mu_SET_J+beta_1*(1/delta_W_uc-1/delta_W_i)*(1/1.6e-19)*boltzmann_constant*avg_dielectric_Temperature_K*log(V_pos_amp/(R*atomic_vibration));
if delta_mu < 1e7
delta_mu = 1e7;
end
Electro_Static_Energy_eV = 6.2415e+18*mphint2(model_SET,'((ec.Er)^2+(ec.Ez)^2+(ec.Ephi)^2)*8.85*10^(-12)*25*2*pi*r*(1/2)',2,'selection',7);
Thermal_energy_electrode_eV = 6.2415e+18*mphint2(model_SET,'2*pi*5.22e3*545.33*r*(T-293.15)',2,'selection',[2,5]);
Thermal_energy_OEL_eV= 6.2415e+18*mphint2(model_SET,'2*pi*13.31e3*144*r*(T-293.15)',2,'selection',4);
Thermal_energy_filament_eV = 6.2415e+18*mphint2(model_SET,'2*pi*12e3*140*r*(T-293.15)',2,'selection',3);
Thermal_energy_dielectric_eV = 6.2415e+18*mphint2(model_SET,'2*pi*10e3*120*r*(T-293.15)',2,'selection',7);
Surface_Energy_eV = 6.2415e+18* 2*pi*r_f*height_filament*surface_tension;
Volume_Energy_eV= 6.2415e+18*pi*r_f^2*height_filament*delta_mu;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%RESET control%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [device_current_uA2,Load_VoltageSET_V,device_Voltage_V2,device_Resistance_Ohm,max_filament_Temperature_K,avg_filament_Temperature_K,...
max_gap_Temperature_K,avg_gap_Temperature_K,max_dielectric_Temperature_K,avg_dielectric_Temperature_K,Thermal_energy_electrode_eV,Thermal_energy_filament_eV,Thermal_energy_dielectric_eV,...
Thermal_energy_OEL_eV,Electro_Static_Energy_eV,Surface_Energy_eV,Volume_Energy_eV,delta_mu] = FE_RESET(h_g,s_r,V_S,R)
%sets the Source voltage and filament radius in COMSOL file and solves the problem
model_RESET.param.set('V_S',V_S);
model_RESET.param.set('h_g',h_g);
model_RESET.param.set('r_f',s_r);
A=exp(-alpha_fil*log(-V_neg_amp/(R*atomic_vibration)));
B=exp(-alpha_gap*log(-V_neg_amp/(R*atomic_vibration)));
model_RESET.param.set('A',A);
model_RESET.param.set('B',B);
model_RESET.param.set('k_eff',k_eff);
model_RESET.param.set('EC_HfO2x', EC_HfO2x);
model_RESET.param.set('EC_gap', EC_gap);
model_RESET.geom('geom1').run;
model_RESET.study('std1').run;
%asks COMSOL to calculate mean filament temperature, temperature distribution in the device, potential distribution, current density, and electric field in cylindrical coordinate
%multiple values of source voltage (-0.1,V_S/2,V_S) is required to solve thus taking the
%last value which corresponds to the voltage of interest
avgfilT = mphmean(model_RESET, 'T' , 2,'selection',4); avg_filament_Temperature_K = avgfilT(end);
maxfilT= mphmax(model_RESET, 'T', 2, 'selection',4); max_filament_Temperature_K =maxfilT(end);
avggapT= mphmean(model_RESET, 'T' , 2,'selection',3); avg_gap_Temperature_K = avggapT(end);
maxgapT= mphmax(model_RESET, 'T', 2, 'selection',3);max_gap_Temperature_K = maxgapT(end);
avgdielT= mphmean(model_RESET, 'T' , 2,'selection',8);avg_dielectric_Temperature_K=avgdielT(end);
max_dielT= mphmax(model_RESET, 'T', 2, 'selection',8);max_dielectric_Temperature_K=max_dielT(end);
devV= mphglobal(model_RESET, 'cir.IvsU1_v');device_Voltage_V2 = devV(end);
devI= 1e6*(mphglobal(model_RESET, 'cir.IvsU1_i'));device_current_uA2 =devI(end);
LoadV= mphglobal(model_RESET, 'cir.R1_v');Load_VoltageSET_V =LoadV(end);
device_Resistance_Ohm = 1e6*device_Voltage_V2/device_current_uA2;
delta_mu = delta_mu_RESET_J + beta_2*(1/delta_W_uc-1/delta_W_mc)*(1/1.6e-19)*boltzmann_constant*avg_filament_Temperature_K*log(abs(V_neg_amp)/(R*atomic_vibration));
if delta_mu < 1e7
delta_mu = 1e7;
end
El_Stat= 6.2415e+18*mphint2(model_RESET,'((ec.Er)^2+(ec.Ez)^2+(ec.Ephi)^2)*8.85*10^(-12)*25*2*pi*r*(1/2)',2,'selection',8);
Electro_Static_Energy_eV = El_Stat(end);
Th_El= 6.2415e+18*mphint2(model_RESET,'2*pi*5.22e3*545.33*r*(T-293.15)',2,'selection',[2,6]);
Thermal_energy_electrode_eV = Th_El(end);
Th_OEL= 6.2415e+18*mphint2(model_RESET,'2*pi*13.31e3*144*r*(T-293.15)',2,'selection',5);
Thermal_energy_OEL_eV = Th_OEL(end);
Th_fil= 6.2415e+18*mphint2(model_RESET,'2*pi*12e3*140*r*(T-293.15)',2,'selection',4);
Thermal_energy_filament_eV = Th_fil(end);
Th_di= 6.2415e+18*mphint2(model_RESET,'2*pi*10e3*120*r*(T-293.15)',2,'selection',[3,8]);
Thermal_energy_dielectric_eV=Th_di(end);
Surface_Energy_eV = 6.2415e+18* 2*pi*s_r*h_g*surface_tension;
Volume_Energy_eV= 6.2415e+18*pi*s_r^2*h_g*delta_mu;
end
end