Skip to content

Display-Lab/think-pudding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

Think Pudding

Description

Using a triple store to store and query spek output from candidate smasher. Determine which candidates are acceptable using causal pathways.

Use

Nebula Tripple Store

  1. Upload data to S3 Bucket

  2. Spin up Nebula cluster stack with bastion host

    aws cloudformation create-stack --stack-name $STACK_NAME\
      --capabilities "CAPABILITY_IAM" \
      --template-body file://nept_stack_cf.yaml \
      --parameters '[{"ParameterKey":"Env","ParameterValue":"test"},'\
      '{"ParameterKey":"DbInstanceType","ParameterValue":"db.r4.xlarge"},'\
      '{"ParameterKey":"KeyName","ParameterValue":"aws-growls-useast-1"}]'
  3. Assign IAM ROLE to cluster

    aws neptune add-role-to-db-cluster \
      --role-arn ${NeptuneLoadFromS3IAMRoleArn} \
      --db-cluster-identifier ${DBClusterId}
  4. Configure Bastion Host

    ansible-playbook -i ${BastionIp}, -u ec2-user bastion_play.yml
  5. Login to Bastion Host and Load Data

    ssh ec2-user@${BastionIp} scripts/neptune_load.sh

Fuseki Tripple Store

  1. Start in memory fuseki that allows for updates

    ${FUSEKI_HOME}/fuseki-server --mem --update /ds 1> fuseki.out 2>&1 &
  2. Input example spek

    ./insert_spek.sh
  3. Run ISR update to identify acceptable candidates

    ./update_isr.sh
  4. Run query to get results

    ./query_isr.sh

Requirements

  • fuseki

License

Creative Commons 3.0