Paper - https://ieeexplore.ieee.org/document/10079326
git clone https://github.com/DoManhQuang/intrusion-detection.git
cd intrusion-detection
pip install -r setup.txt
python tools/dl-train.py \
-train "./dataset/full_data_std.data" \
-test "./dataset/full_data_test_std.data" \
-v "std-v1.0-relu" -ep 1000 -bsize 64 -verbose 1 \
--result_path "./runs/results" \
--training_path "./runs/training" \
-activation_block "relu" \
-status_ckpt True -status_early_stop True \
-name "model-relu-std-v1.0"
python tools/ml-train.py -v "ml-tree-norm-v1" \
-train "./dataset/full_data_norm.data" \
-test "./dataset/full_data_test_norm.data" \
--result_path "./runs/results" \
--training_path "./runs/training" \
-name "tree"
├── intrusion-detection
│ ├── core
│ │ ├── deep_model.py
│ │ └── machine_model.py
│ │ └── utils.py
│ ├── dataset
│ │ ├── train.data
│ │ └── test.data
│ ├── docs
│ ├── tools
│ │ ├── dl-train.py
│ │ ├── ml-train.py
│ ├── LICENSE
│ ├── README.md
@INPROCEEDINGS{10079326,
author={Vu, Viet-Thang and Thi, Thanh Quyen Bui and Gan, Hong-Seng and Vu, Viet-Vu and Quang, Do Manh and Duc, Vu Thanh and Pham, Dinh-Lam},
booktitle={2023 25th International Conference on Advanced Communication Technology (ICACT)},
title={Activation functions for deep learning: an application for rare attack detection in wireless local area network (WLAN)},
year={2023},
volume={},
number={},
pages={59-64},
doi={10.23919/ICACT56868.2023.10079326}}