-
Notifications
You must be signed in to change notification settings - Fork 0
/
ExampleRadiatorReturnTemperature.m
51 lines (35 loc) · 1.33 KB
/
ExampleRadiatorReturnTemperature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
%% Example_RadiatorReturnTemperature
% Example Script: shows how to use the Matlab functions
% prepared by Tol, Hakan ibrahim
%% Radiator Emprical Exponent
n=1.3;
%% Design Parameter of a Radiator Unit (9 kW at 90|70|20 degC)
qo=1; % [kW] Heat demand
Tso=90; % [degC] Supply temperature
Tro=70; % [degC] Return temperature
Tio=20; % [degC] Indoor temperature
%% Calculation starts
% Example 1
% for an actual condition: 0.5 kW heat demand Ts = 90 degC & Ti = 20 degC
% Based on LMTD
Tr_L = Tr_LMTD(0.5,90,20,qo,Tso,Tro,Tio,n);
% Based on GMTD
Tr_G = Tr_GMTD(0.5,90,20,qo,Tso,Tro,Tio,n);
% Based on AMTD
Tr_A = Tr_AMTD(0.5,90,20,qo,Tso,Tro,Tio,n);
% Based on AMTD with Schlapmann factors
Tr_As = Tr_AMTD_Schlapmann(0.5,90,20,qo,Tso,Tro,Tio,n);
Exp1=[Tr_L Tr_G Tr_A Tr_As]';
% Example 2
% for an actual condition: 0.3 kW heat demand Ts = 50 degC & Ti = 20 degC
% Based on LMTD
Tr_L = Tr_LMTD(0.3,50,20,qo,Tso,Tro,Tio,n);
% Based on GMTD
Tr_G = Tr_GMTD(0.3,50,20,qo,Tso,Tro,Tio,n);
% Based on AMTD
Tr_A = Tr_AMTD(0.3,50,20,qo,Tso,Tro,Tio,n);
% Based on AMTD with Schlapmann factors
Tr_As = Tr_AMTD_Schlapmann(0.3,50,20,qo,Tso,Tro,Tio,n);
Exp2=[Tr_L Tr_G Tr_A Tr_As]';
Description={'Tr_LMTD','Tr_GMTD','Tr_AMTD','Tr_AMTD & Schlapmann'}';
T=table(Description,Exp1,Exp2)