forked from rushter/MLAlgorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlinear_models.py
136 lines (105 loc) · 4.03 KB
/
linear_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# coding:utf-8
import logging
import autograd.numpy as np
from autograd import grad
from mla.base import BaseEstimator
from mla.metrics.metrics import mean_squared_error, binary_crossentropy
np.random.seed(1000)
class BasicRegression(BaseEstimator):
def __init__(self, lr=0.001, penalty="None", C=0.01, tolerance=0.0001, max_iters=1000):
"""Basic class for implementing continuous regression estimators which
are trained with gradient descent optimization on their particular loss
function.
Parameters
----------
lr : float, default 0.001
Learning rate.
penalty : str, {'l1', 'l2', None'}, default None
Regularization function name.
C : float, default 0.01
The regularization coefficient.
tolerance : float, default 0.0001
If the gradient descent updates are smaller than `tolerance`, then
stop optimization process.
max_iters : int, default 10000
The maximum number of iterations.
"""
self.C = C
self.penalty = penalty
self.tolerance = tolerance
self.lr = lr
self.max_iters = max_iters
self.errors = []
self.theta = []
self.n_samples, self.n_features = None, None
self.cost_func = None
def _loss(self, w):
raise NotImplementedError()
def init_cost(self):
raise NotImplementedError()
def _add_penalty(self, loss, w):
"""Apply regularization to the loss."""
if self.penalty == "l1":
loss += self.C * np.abs(w[1:]).sum()
elif self.penalty == "l2":
loss += (0.5 * self.C) * (w[1:] ** 2).sum()
return loss
def _cost(self, X, y, theta):
prediction = X.dot(theta)
error = self.cost_func(y, prediction)
return error
def fit(self, X, y=None):
self._setup_input(X, y)
self.init_cost()
self.n_samples, self.n_features = X.shape
# Initialize weights + bias term
self.theta = np.random.normal(size=(self.n_features + 1), scale=0.5)
# Add an intercept column
self.X = self._add_intercept(self.X)
self._train()
@staticmethod
def _add_intercept(X):
b = np.ones([X.shape[0], 1])
return np.concatenate([b, X], axis=1)
def _train(self):
self.theta, self.errors = self._gradient_descent()
logging.info(" Theta: %s" % self.theta.flatten())
def _predict(self, X=None):
X = self._add_intercept(X)
return X.dot(self.theta)
def _gradient_descent(self):
theta = self.theta
errors = [self._cost(self.X, self.y, theta)]
# Get derivative of the loss function
cost_d = grad(self._loss)
for i in range(1, self.max_iters + 1):
# Calculate gradient and update theta
delta = cost_d(theta)
theta -= self.lr * delta
errors.append(self._cost(self.X, self.y, theta))
logging.info("Iteration %s, error %s" % (i, errors[i]))
error_diff = np.linalg.norm(errors[i - 1] - errors[i])
if error_diff < self.tolerance:
logging.info("Convergence has reached.")
break
return theta, errors
class LinearRegression(BasicRegression):
"""Linear regression with gradient descent optimizer."""
def _loss(self, w):
loss = self.cost_func(self.y, np.dot(self.X, w))
return self._add_penalty(loss, w)
def init_cost(self):
self.cost_func = mean_squared_error
class LogisticRegression(BasicRegression):
"""Binary logistic regression with gradient descent optimizer."""
def init_cost(self):
self.cost_func = binary_crossentropy
def _loss(self, w):
loss = self.cost_func(self.y, self.sigmoid(np.dot(self.X, w)))
return self._add_penalty(loss, w)
@staticmethod
def sigmoid(x):
return 0.5 * (np.tanh(0.5 * x) + 1)
def _predict(self, X=None):
X = self._add_intercept(X)
return self.sigmoid(X.dot(self.theta))