forked from thu-ml/zhusuan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
iwae.py
125 lines (103 loc) · 4.2 KB
/
iwae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Importance Weighted Autoencoders, (Burda, 2015)
"""
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import time
import tensorflow as tf
from six.moves import range
import numpy as np
import zhusuan as zs
from examples import conf
from examples.utils import dataset
@zs.meta_bayesian_net(scope="gen", reuse_variables=True)
def build_gen(n, x_dim, z_dim, n_particles):
bn = zs.BayesianNet()
z_mean = tf.zeros([n, z_dim])
z = bn.normal("z", z_mean, std=1., group_ndims=1, n_samples=n_particles)
h = tf.layers.dense(z, 500, activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
x_logits = tf.layers.dense(h, x_dim)
bn.bernoulli("x", x_logits, group_ndims=1)
return bn
@zs.reuse_variables(scope="q_net")
def build_q_net(x, z_dim, n_particles):
bn = zs.BayesianNet()
h = tf.layers.dense(tf.cast(x, tf.float32), 500, activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
z_mean = tf.layers.dense(h, z_dim)
z_logstd = tf.layers.dense(h, z_dim)
bn.normal("z", z_mean, logstd=z_logstd, group_ndims=1,
n_samples=n_particles)
return bn
def main():
tf.set_random_seed(1234)
np.random.seed(1234)
# Load MNIST
data_path = os.path.join(conf.data_dir, "mnist.pkl.gz")
x_train, t_train, x_valid, t_valid, x_test, t_test = \
dataset.load_mnist_realval(data_path)
x_train = np.vstack([x_train, x_valid])
x_test = np.random.binomial(1, x_test, size=x_test.shape)
x_dim = x_train.shape[1]
# Define model parameters
z_dim = 40
# Build the computation graph
n_particles = tf.placeholder(tf.int32, shape=[], name="n_particles")
x_input = tf.placeholder(tf.float32, shape=[None, x_dim], name="x")
x = tf.cast(tf.less(tf.random_uniform(tf.shape(x_input)), x_input),
tf.int32)
n = tf.placeholder(tf.int32, shape=[], name="n")
model = build_gen(n, x_dim, z_dim, n_particles)
variational = build_q_net(x, z_dim, n_particles)
lower_bound = zs.variational.importance_weighted_objective(
model, {'x': x}, variational=variational, axis=0)
cost = tf.reduce_mean(lower_bound.sgvb())
lower_bound = tf.reduce_mean(lower_bound)
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
infer_op = optimizer.minimize(cost)
# Define training/evaluation parameters
lb_samples = 50
epochs = 3000
batch_size = 128
iters = x_train.shape[0] // batch_size
test_freq = 10
test_batch_size = 400
test_iters = x_test.shape[0] // test_batch_size
# Run the inference
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(1, epochs + 1):
time_epoch = -time.time()
np.random.shuffle(x_train)
lbs = []
for t in range(iters):
x_batch = x_train[t * batch_size:(t + 1) * batch_size]
_, lb = sess.run([infer_op, lower_bound],
feed_dict={x_input: x_batch,
n_particles: lb_samples,
n: batch_size})
lbs.append(lb)
time_epoch += time.time()
print("Epoch {} ({:.1f}s): IWAE bound = {}".format(
epoch, time_epoch, np.mean(lbs)))
if epoch % test_freq == 0:
time_test = -time.time()
test_lbs = []
for t in range(test_iters):
test_x_batch = x_test[t * test_batch_size:
(t + 1) * test_batch_size]
test_lb = sess.run(lower_bound,
feed_dict={x: test_x_batch,
n_particles: lb_samples,
n: test_batch_size})
test_lbs.append(test_lb)
time_test += time.time()
print(">>> TEST ({:.1f}s)".format(time_test))
print(">> Test IWAE bound = {}".format(np.mean(test_lbs)))
if __name__ == "__main__":
main()