This document describes the steps taken to investigate a real memory leak
discovered by heap profiling in the wild. For investigators less familiar with
the code base, Navigating the Stack Trace
should be enough information to
determine the relevant component, and to forward the bug to a component OWNER.
The opening comment of Issue 834033 contains a heap dump summary. The highlights are:
- 315723 calls to malloc without corresponding call to free.
- 806MB of memory.
- The common stacktrace for all 315723 allocations.
Usually, anything that uses over 10MB of memory is a red flag. With the exception of large image resources, most code in Chrome should use much less than 10MB. Anything that has over 100k allocations is also a red flag.
Let's take a look at the stack trace:
profiling::(anonymous namespace)::HookAlloc(base::allocator::AllocatorDispatch const*, unsigned long, void*)
base::allocator::MallocZoneFunctionsToReplaceDefault()::$_1::__invoke(_malloc_zone_t*, unsigned long)
<???>
<???>
base::allocator::UncheckedMallocMac(unsigned long, void**)
sk_malloc_flags(unsigned long, unsigned int)
SkMallocPixelRef::MakeAllocate(SkImageInfo const&, unsigned long)
SkBitmap::tryAllocPixels(SkImageInfo const&, unsigned long)
IPC::ParamTraits<SkBitmap>::Read(base::Pickle const*, base::PickleIterator*, SkBitmap*)
ExtensionAction::ParseIconFromCanvasDictionary(base::DictionaryValue const&, gfx::ImageSkia*)
extensions::ExtensionActionSetIconFunction::RunExtensionAction()
extensions::ExtensionActionFunction::Run()
ExtensionFunction::RunWithValidation()
extensions::ExtensionFunctionDispatcher::DispatchWithCallbackInternal(ExtensionHostMsg_Request_Params const&, content::RenderFrameHost*, int, base::RepeatingCallback<void (ExtensionFunction::ResponseType, base::ListValue const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, extensions::functions::HistogramValue)> const&)
extensions::ExtensionFunctionDispatcher::Dispatch(ExtensionHostMsg_Request_Params const&, content::RenderFrameHost*, int)
bool IPC::MessageT<ExtensionHostMsg_Request_Meta, std::__1::tuple<ExtensionHostMsg_Request_Params>, void>::Dispatch<extensions::ExtensionWebContentsObserver, extensions::ExtensionWebContentsObserver, content::RenderFrameHost, void (extensions::ExtensionWebContentsObserver::*)(content::RenderFrameHost*, ExtensionHostMsg_Request_Params const&)>(IPC::Message const*, extensions::ExtensionWebContentsObserver*, extensions::ExtensionWebContentsObserver*, content::RenderFrameHost*, void (extensions::ExtensionWebContentsObserver::*)(content::RenderFrameHost*, ExtensionHostMsg_Request_Params const&))
extensions::ExtensionWebContentsObserver::OnMessageReceived(IPC::Message const&, content::RenderFrameHost*)
extensions::ChromeExtensionWebContentsObserver::OnMessageReceived(IPC::Message const&, content::RenderFrameHost*)
content::WebContentsImpl::OnMessageReceived(content::RenderFrameHostImpl*, IPC::Message const&)
content::RenderFrameHostImpl::OnMessageReceived(IPC::Message const&)
IPC::ChannelProxy::Context::OnDispatchMessage(IPC::Message const&)
base::debug::TaskAnnotator::RunTask(char const*, base::PendingTask*)
base::MessageLoop::RunTask(base::PendingTask*)
base::MessageLoop::DoWork()
base::MessagePumpCFRunLoopBase::RunWork()
base::mac::CallWithEHFrame(void () block_pointer)
base::MessagePumpCFRunLoopBase::RunWorkSource(void*)
<???>
<???>
<???>
<???>
<???>
<???>
<???>
<???>
<???>
__71-[BrowserCrApplication nextEventMatchingMask:untilDate:inMode:dequeue:]_block_invoke
base::mac::CallWithEHFrame(void () block_pointer)
-[BrowserCrApplication nextEventMatchingMask:untilDate:inMode:dequeue:]
<???>
base::MessagePumpNSApplication::DoRun(base::MessagePump::Delegate*)
base::MessagePumpCFRunLoopBase::Run(base::MessagePump::Delegate*)
<name omitted>
ChromeBrowserMainParts::MainMessageLoopRun(int*)
content::BrowserMainLoop::RunMainMessageLoopParts()
content::BrowserMainRunnerImpl::Run()
content::BrowserMain(content::MainFunctionParams)
content::ContentMainRunnerImpl::Run()
service_manager::Main(service_manager::MainParams const&)
content::ContentMain(content::ContentMainParams const&)
ChromeMain
main
<???>
The first step is to divide the stack trace into smaller segments to get a better understanding of what's happening at the time of allocations. The best way to do this is to segment by name space and/or function prefixes.
profiling::(anonymous namespace)::HookAlloc(base::allocator::AllocatorDispatch const*, unsigned long, void*)
base::allocator::MallocZoneFunctionsToReplaceDefault()::$_1::__invoke(_malloc_zone_t*, unsigned long)
<???>
<???>
base::allocator::UncheckedMallocMac(unsigned long, void**)
The top of each stack will always contain some base
and/or profiling
code. This is the code responsible for allocating and recording the memory.
sk_malloc_flags(unsigned long, unsigned int)
SkMallocPixelRef::MakeAllocate(SkImageInfo const&, unsigned long)
SkBitmap::tryAllocPixels(SkImageInfo const&, unsigned long)
Next, we three 3 frames with the prefix sk
. Searching for
sk_malloc_flags
on
codesearch
reveals that the component is third_party/skia
. Looking at the
README reveals
that Skia is a 2D graphics library.
IPC::ParamTraits<SkBitmap>::Read(base::Pickle const*, base::PickleIterator*, SkBitmap*)
Next we see a templated function called Read
in the namespace IPC
.
IPC
stands for inter-process communication. This suggests that the
function is responsible for reading an IPC Message, perhaps concerning an
SkBitmap
.
ExtensionAction::ParseIconFromCanvasDictionary(base::DictionaryValue const&, gfx::ImageSkia*)
extensions::ExtensionActionSetIconFunction::RunExtensionAction()
extensions::ExtensionActionFunction::Run()
ExtensionFunction::RunWithValidation()
extensions::ExtensionFunctionDispatcher::DispatchWithCallbackInternal(ExtensionHostMsg_Request_Params const&, content::RenderFrameHost*, int, base::RepeatingCallback<void (ExtensionFunction::ResponseType, base::ListValue const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, extensions::functions::HistogramValue)> const&)
extensions::ExtensionFunctionDispatcher::Dispatch(ExtensionHostMsg_Request_Params const&, content::RenderFrameHost*, int)
bool IPC::MessageT<ExtensionHostMsg_Request_Meta, std::__1::tuple<ExtensionHostMsg_Request_Params>, void>::Dispatch<extensions::ExtensionWebContentsObserver, extensions::ExtensionWebContentsObserver, content::RenderFrameHost, void (extensions::ExtensionWebContentsObserver::*)(content::RenderFrameHost*, ExtensionHostMsg_Request_Params const&)>(IPC::Message const*, extensions::ExtensionWebContentsObserver*, extensions::ExtensionWebContentsObserver*, content::RenderFrameHost*, void (extensions::ExtensionWebContentsObserver::*)(content::RenderFrameHost*, ExtensionHostMsg_Request_Params const&))
extensions::ExtensionWebContentsObserver::OnMessageReceived(IPC::Message const&, content::RenderFrameHost*)
extensions::ChromeExtensionWebContentsObserver::OnMessageReceived(IPC::Message const&, content::RenderFrameHost*)
Next, we see many frames with the extension
prefix. Extensions are exactly
what they sound like - Chrome extensions like AdBlock are used to modify the
behavior of the browser.
content::WebContentsImpl::OnMessageReceived(content::RenderFrameHostImpl*, IPC::Message const&)
content::RenderFrameHostImpl::OnMessageReceived(IPC::Message const&)
content
is the name of code that glues together web code [like extensions] and
the rest of Chrome.
IPC::ChannelProxy::Context::OnDispatchMessage(IPC::Message const&)
More IPC
code.
base::debug::TaskAnnotator::RunTask(char const*, base::PendingTask*)
base::MessageLoop::RunTask(base::PendingTask*)
base::MessageLoop::DoWork()
base::MessagePumpCFRunLoopBase::RunWork()
base::mac::CallWithEHFrame(void () block_pointer)
base::MessagePumpCFRunLoopBase::RunWorkSource(void*)
More base
code. The bottom of most stack traces should go back to
MessageLoop
, a primitive Chrome construct used to run tasks.
- The top and bottom of the stack should generally be the same and are not very interesting.
- The prefixes of frames can be used to get a rough idea of the components involved.
- Function names can be used to get a rough idea of what's going on.
In this case, extension code is calling ParseIconFromCanvasDictionary
- so
it's probably trying to parse an icon. This calls into Skia code. Given that
Skia is a 2D drawing library, and the function is tryAllocPixels
, Skia is
allocating some pixels for the icon. This process is being repeated 315 thousand
times, and the icon is being leaked every time.
Now that we have a rough idea of what's happening, let's look at the code for ParseIconFromCanvasDictionary.
bool ExtensionAction::ParseIconFromCanvasDictionary(
const base::DictionaryValue& dict,
gfx::ImageSkia* icon) {
for (base::DictionaryValue::Iterator iter(dict); !iter.IsAtEnd();
iter.Advance()) {
std::string binary_string64;
IPC::Message pickle;
if (iter.value().is_blob()) {
pickle = IPC::Message(iter.value().GetBlob().data(),
iter.value().GetBlob().size());
} else if (iter.value().GetAsString(&binary_string64)) {
std::string binary_string;
if (!base::Base64Decode(binary_string64, &binary_string))
return false;
pickle = IPC::Message(binary_string.c_str(), binary_string.length());
} else {
continue;
}
base::PickleIterator pickle_iter(pickle);
SkBitmap bitmap;
if (!IPC::ReadParam(&pickle, &pickle_iter, &bitmap))
return false;
CHECK(!bitmap.isNull());
// Chrome helpfully scales the provided icon(s), but let's not go overboard.
const int kActionIconMaxSize = 10 * ActionIconSize();
if (bitmap.drawsNothing() || bitmap.width() > kActionIconMaxSize)
continue;
float scale = static_cast<float>(bitmap.width()) / ActionIconSize();
icon->AddRepresentation(gfx::ImageSkiaRep(bitmap, scale));
}
return true;
}
There's a lot going on here, but we can use the information we have to focus. The leak happens in IPC::ReadParam, so the relevant lines are:
SkBitmap bitmap;
if (!IPC::ReadParam(&pickle, &pickle_iter, &bitmap))
return false;
The IPC
message is being decoded into bitmap
.
icon->AddRepresentation(gfx::ImageSkiaRep(bitmap, scale));
Looking at subsequent consumers of bitmap
, we see that it is being added as a
representation to icon
. icon
is an output parameter of this function, so we
have to look at the calling frame,
ExtensionActionSetIconFunction::RunExtensionAction
.
ExtensionFunction::ResponseAction
ExtensionActionSetIconFunction::RunExtensionAction() {
...
EXTENSION_FUNCTION_VALIDATE(
ExtensionAction::ParseIconFromCanvasDictionary(*canvas_set, &icon));
if (icon.isNull())
return RespondNow(Error("Icon invalid."));
extension_action_->SetIcon(tab_id_, gfx::Image(icon));
...
}
In this case, I've already focused on the code that calls
ParseIconFromCanvasDictionary
. Let's look at SetIcon
.
void ExtensionAction::SetIcon(int tab_id, const gfx::Image& image) {
SetValue(&icon_, tab_id, image);
}
template<class T>
void SetValue(std::map<int, T>* map, int tab_id, const T& val) {
(*map)[tab_id] = val;
}
The icon is being added to a map icon_
, with tab_id
as the key. Ah ha!
Adding elements to a container [and never removing them] is one of the most
common sources of memory issues.
There are two ways for this memory to be released - the container icon_
can be
destroyed, or the element can be removed from the container.
icon_
is a member of ExtensionAction
, whose documentation reads:
// ExtensionAction encapsulates the state of a browser action or page action.
// Instances can have both global and per-tab state. If a property does not have
// a per-tab value, the global value is used instead.
This suggests that the lifetime of icon_
is tied to the lifetime of the
ExtensionAction, which we can guess is tied to the lifetime of the Extension. As
long as the extension stays installed and enabled, icon_
will not be
destroyed.
Next, we use codesearch to look at all code that removes elements from icon_
.
The only place that performs removal is
void ExtensionAction::ClearAllValuesForTab(int tab_id) {
...
icon_.erase(tab_id);
...
}
This is called by ExtensionActionAPI::ClearAllValuesForTab
, which is called by
TabHelper::DidFinishNavigation
. The name of this method suggests that each
time a tab is navigated, the previous tab-specific icon is cleared. However,
that means that if a tab is closed, then the icon is leaked forever.