-
Notifications
You must be signed in to change notification settings - Fork 39
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #120 from Tier123/main
fs_pso implementation
- Loading branch information
Showing
1 changed file
with
159 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
# -------------------------------------------------------------------------------------- | ||
# 1. This code implements algorithms described in the following papers: | ||
# | ||
# Title: Feature Selection Based on Hybridization of Genetic Algorithm and Particle Swarm Optimization | ||
# Link: https://ieeexplore.ieee.org/document/6866865 | ||
# -------------------------------------------------------------------------------------- | ||
|
||
from functools import partial | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import copy | ||
|
||
from evox.utils import * | ||
from evox import Algorithm, State, jit_class | ||
|
||
|
||
# FS-PSO: Feature Selection PSO | ||
@jit_class | ||
class FSPSO(Algorithm): | ||
def __init__( | ||
self, | ||
lb, # lower bound of problem | ||
ub, # upper bound of problem | ||
pop_size, # population size | ||
inertia_weight=0.6, # w | ||
cognitive_coefficient=2.5, # c | ||
social_coefficient=0.8, # s | ||
mean=None, | ||
stdev=None, | ||
mutate_rate=0.01, # mutation ratio | ||
): | ||
self.dim = lb.shape[0] | ||
self.lb = lb | ||
self.ub = ub | ||
self.pop_size = pop_size | ||
self.w = inertia_weight | ||
self.phi_p = cognitive_coefficient | ||
self.phi_g = social_coefficient | ||
self.mean = mean | ||
self.stdev = stdev | ||
self.mutate_rate = mutate_rate | ||
|
||
def setup(self, key): | ||
state_key, init_pop_key, init_v_key = jax.random.split(key, 3) | ||
if self.mean is not None and self.stdev is not None: | ||
population = self.stdev * jax.random.normal( | ||
init_pop_key, shape=(self.pop_size, self.dim) | ||
) | ||
population = jnp.clip(population, self.lb, self.ub) | ||
velocity = self.stdev * jax.random.normal( | ||
init_v_key, shape=(self.pop_size, self.dim) | ||
) | ||
else: | ||
length = self.ub - self.lb | ||
population = jax.random.uniform( | ||
init_pop_key, shape=(self.pop_size, self.dim) | ||
) | ||
population = population * length + self.lb | ||
velocity = jax.random.uniform(init_v_key, shape=(self.pop_size, self.dim)) | ||
velocity = velocity * length * 2 - length | ||
|
||
return State( | ||
population=population, | ||
velocity=velocity, | ||
local_best_location=population, | ||
local_best_fitness=jnp.full((self.pop_size,), jnp.inf), | ||
global_best_location=population[0], | ||
global_best_fitness=jnp.array([jnp.inf]), | ||
key=state_key, | ||
) | ||
|
||
def ask(self, state): | ||
return state.population, state | ||
|
||
def tell(self, state, fitness): | ||
key, rg_key, rp_key, tn_key, mu_key, ma_key = jax.random.split(state.key, 6) | ||
|
||
# --------------Enhancement------------ | ||
ranked_index = jnp.argsort(fitness) | ||
elite_index = ranked_index[: self.pop_size // 2] | ||
ranked_population = state.population[ranked_index] | ||
ranked_velocity = state.velocity[ranked_index] | ||
elite_population = state.population[elite_index] | ||
elite_velocity = state.velocity[elite_index] | ||
elite_fitness = fitness[elite_index] | ||
elite_lbest_location = state.local_best_location[elite_index] | ||
elite_lbest_fitness = state.local_best_fitness[elite_index] | ||
rg = jax.random.uniform(rg_key, shape=(self.pop_size // 2, self.dim)) | ||
rp = jax.random.uniform(rp_key, shape=(self.pop_size // 2, self.dim)) | ||
|
||
compare = elite_lbest_fitness > elite_fitness | ||
lbest_location = jnp.where( | ||
compare[:, jnp.newaxis], elite_population, elite_lbest_location | ||
) | ||
lbest_fitness = jnp.minimum(elite_lbest_fitness, elite_fitness) | ||
|
||
global_best_location, global_best_fitness = min_by( | ||
[state.global_best_location[jnp.newaxis, :], elite_population], | ||
[state.global_best_fitness, elite_fitness], | ||
) | ||
|
||
global_best_fitness = jnp.atleast_1d(global_best_fitness) | ||
|
||
updated_elite_velocity = ( | ||
self.w * elite_velocity | ||
+ self.phi_p * rp * (elite_lbest_location - elite_population) | ||
+ self.phi_g * rg * (global_best_location - elite_population) | ||
) | ||
updated_elite_population = elite_population + updated_elite_velocity | ||
updated_elite_population = jnp.clip(updated_elite_population, self.lb, self.ub) | ||
# ----------------Crossover---------------- | ||
tournament1 = jax.random.choice( | ||
tn_key, | ||
jnp.arange(0, elite_index.shape[0]), | ||
(1, self.pop_size - (self.pop_size // 2)), | ||
) | ||
tournament2 = jax.random.choice( | ||
tn_key, | ||
jnp.arange(0, elite_index.shape[0]), | ||
(1, self.pop_size - (self.pop_size // 2)), | ||
) | ||
compare = elite_fitness[tournament1] < elite_fitness[tournament2] | ||
mutating_pool = jnp.where(compare, tournament1, tournament2) | ||
# -Extend (mutate and create new generation)- | ||
unmutated_population = elite_population[mutating_pool.flatten()] | ||
offspring_velocity = elite_velocity[mutating_pool.flatten()] | ||
|
||
offset = jax.random.uniform( | ||
key=mu_key, | ||
shape=(unmutated_population.shape[0], self.dim), | ||
minval=-1, | ||
maxval=1, | ||
) * (self.ub - self.lb) | ||
mp = jax.random.uniform(ma_key, (unmutated_population.shape[0], self.dim)) | ||
mask = mp < self.mutate_rate | ||
offspring_population = unmutated_population + jnp.where( | ||
mask, offset, jnp.zeros((unmutated_population.shape[0], self.dim)) | ||
) | ||
offspring_population = jnp.clip(offspring_population, self.lb, self.ub) | ||
offspring_lbest_location = offspring_population | ||
offspring_lbest_fitness = jnp.full((offspring_population.shape[0],), jnp.inf) | ||
|
||
new_population = jnp.concatenate( | ||
(updated_elite_population, offspring_population) | ||
) | ||
new_velocity = jnp.concatenate((updated_elite_velocity, offspring_velocity)) | ||
new_lbest_location = jnp.concatenate((lbest_location, offspring_lbest_location)) | ||
new_lbest_fitness = jnp.concatenate((lbest_fitness, offspring_lbest_fitness)) | ||
|
||
return state.update( | ||
population=new_population, | ||
velocity=new_velocity, | ||
local_best_location=new_lbest_location, | ||
local_best_fitness=new_lbest_fitness, | ||
global_best_location=global_best_location, | ||
global_best_fitness=global_best_fitness, | ||
key=key, | ||
) |