Skip to content

Commit

Permalink
Add an iris-esmf-regrid based regridding scheme (#2457)
Browse files Browse the repository at this point in the history
Co-authored-by: Manuel Schlund <32543114+schlunma@users.noreply.github.com>
  • Loading branch information
bouweandela and schlunma authored Sep 4, 2024
1 parent 343368e commit a35d50d
Show file tree
Hide file tree
Showing 17 changed files with 790 additions and 207 deletions.
11 changes: 6 additions & 5 deletions doc/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -438,20 +438,21 @@

# Configuration for intersphinx
intersphinx_mapping = {
'cf_units': ('https://cf-units.readthedocs.io/en/latest/', None),
'cf_units': ('https://cf-units.readthedocs.io/en/stable/', None),
'cftime': ('https://unidata.github.io/cftime/', None),
'esmvalcore':
(f'https://docs.esmvaltool.org/projects/ESMValCore/en/{rtd_version}/',
None),
'esmvaltool': (f'https://docs.esmvaltool.org/en/{rtd_version}/', None),
'esmpy': ('https://earthsystemmodeling.org/esmpy_doc/release/latest/html/',
None),
'dask': ('https://docs.dask.org/en/stable/', None),
'distributed': ('https://distributed.dask.org/en/stable/', None),
'iris': ('https://scitools-iris.readthedocs.io/en/latest/', None),
'iris-esmf-regrid': ('https://iris-esmf-regrid.readthedocs.io/en/latest',
None),
'iris': ('https://scitools-iris.readthedocs.io/en/stable/', None),
'esmf_regrid': ('https://iris-esmf-regrid.readthedocs.io/en/stable/', None),
'matplotlib': ('https://matplotlib.org/stable/', None),
'numpy': ('https://numpy.org/doc/stable/', None),
'pyesgf': ('https://esgf-pyclient.readthedocs.io/en/latest/', None),
'pyesgf': ('https://esgf-pyclient.readthedocs.io/en/stable/', None),
'python': ('https://docs.python.org/3/', None),
'scipy': ('https://docs.scipy.org/doc/scipy/', None),
}
Expand Down
31 changes: 8 additions & 23 deletions doc/quickstart/find_data.rst
Original file line number Diff line number Diff line change
Expand Up @@ -398,32 +398,17 @@ ESMValCore can automatically make native ICON data `UGRID
loading the data.
The UGRID conventions provide a standardized format to store data on
unstructured grids, which is required by many software packages or tools to
work correctly.
work correctly and specifically by Iris to interpret the grid as a
:ref:`mesh <iris:ugrid>`.
An example is the horizontal regridding of native ICON data to a regular grid.
While the built-in :ref:`nearest scheme <built-in regridding
schemes>` can handle unstructured grids not in UGRID format, using more complex
regridding algorithms (for example provided by the
:doc:`iris-esmf-regrid:index` package through :ref:`generic regridding
schemes`) requires the input data in UGRID format.
The following code snippet provides a preprocessor that regrids native ICON
data to a 1°x1° grid using `ESMF's first-order conservative regridding
algorithm <https://earthsystemmodeling.org/regrid/#regridding-methods>`__:

.. code-block:: yaml
preprocessors:
regrid_icon:
regrid:
target_grid: 1x1
scheme:
reference: esmf_regrid.schemes:ESMFAreaWeighted
While the :ref:`built-in regridding schemes <built-in regridding schemes>`
`linear` and `nearest` can handle unstructured grids (i.e., not UGRID-compliant) and meshes (i.e., UGRID-compliant),
the `area_weighted` scheme requires the input data in UGRID format.
This automatic UGRIDization is enabled by default, but can be switched off with
the facet ``ugrid: false`` in the recipe or the extra facets (see below).
This is useful for diagnostics that do not support input data in UGRID format
(yet) like the :ref:`Psyplot diagnostic <esmvaltool:recipes_psyplot_diag>` or
if you want to use the built-in :ref:`nearest scheme <built-in
regridding schemes>` regridding scheme.
This is useful for diagnostics that act on the native ICON grid and do not
support input data in UGRID format (yet), like the
:ref:`Psyplot diagnostic <esmvaltool:recipes_psyplot_diag>`.

For 3D ICON variables, ESMValCore tries to add the pressure level information
(from the variables `pfull` and `phalf`) and/or altitude information (from the
Expand Down
52 changes: 32 additions & 20 deletions doc/recipe/preprocessor.rst
Original file line number Diff line number Diff line change
Expand Up @@ -890,15 +890,15 @@ The arguments are defined below:
Regridding (interpolation, extrapolation) schemes
-------------------------------------------------

ESMValCore has a number of built-in regridding schemes, which are presented in
:ref:`built-in regridding schemes`. Additionally, it is also possible to use
third party regridding schemes designed for use with :doc:`Iris
<iris:index>`. This is explained in :ref:`generic regridding schemes`.
ESMValCore provides three default regridding schemes, which are presented in
:ref:`default regridding schemes`. Additionally, it is also possible to use
third party regridding schemes designed for use with :meth:`iris.cube.Cube.regrid`.
This is explained in :ref:`generic regridding schemes`.

Grid types
~~~~~~~~~~

In ESMValCore, we distinguish between three grid types (note that these might
In ESMValCore, we distinguish between various grid types (note that these might
differ from other definitions):

* **Regular grid**: A rectilinear grid with 1D latitude and 1D longitude
Expand All @@ -907,30 +907,34 @@ differ from other definitions):
longitude coordinates with common dimensions.
* **Unstructured grid**: A grid with 1D latitude and 1D longitude coordinates
with common dimensions (i.e., a simple list of points).
* **Mesh**: A mesh as supported by Iris and described in :ref:`iris:ugrid`.

.. _built-in regridding schemes:
.. _default regridding schemes:

Built-in regridding schemes
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Default regridding schemes
~~~~~~~~~~~~~~~~~~~~~~~~~~

* ``linear``: Bilinear regridding.
For source data on a regular grid, uses :obj:`~iris.analysis.Linear` with
`extrapolation_mode='mask'`.
For source data on an irregular grid, uses
:class:`~esmvalcore.preprocessor.regrid_schemes.ESMPyLinear`.
For source and/or target data on an irregular grid or mesh, uses
:class:`~esmvalcore.preprocessor.regrid_schemes.IrisESMFRegrid` with
`method='bilinear'`.
For source data on an unstructured grid, uses
:class:`~esmvalcore.preprocessor.regrid_schemes.UnstructuredLinear`.
* ``nearest``: Nearest-neighbor regridding.
For source data on a regular grid, uses :obj:`~iris.analysis.Nearest` with
`extrapolation_mode='mask'`.
For source data on an irregular grid, uses
:class:`~esmvalcore.preprocessor.regrid_schemes.ESMPyNearest`.
For source and/or target data on an irregular grid or mesh, uses
:class:`~esmvalcore.preprocessor.regrid_schemes.IrisESMFRegrid` with
`method='nearest'`.
For source data on an unstructured grid, uses
:class:`~esmvalcore.preprocessor.regrid_schemes.UnstructuredNearest`.
* ``area_weighted``: First-order conservative (area-weighted) regridding.
For source data on a regular grid, uses :obj:`~iris.analysis.AreaWeighted`.
For source data on an irregular grid, uses
:class:`~esmvalcore.preprocessor.regrid_schemes.ESMPyAreaWeighted`.
For source and/or target data on an irregular grid or mesh, uses
:class:`~esmvalcore.preprocessor.regrid_schemes.IrisESMFRegrid` with
`method='conservative'`.
Source data on an unstructured grid is not supported.

.. _generic regridding schemes:
Expand All @@ -950,7 +954,9 @@ afforded by the built-in schemes described above.

To facilitate this, the :func:`~esmvalcore.preprocessor.regrid` preprocessor
allows the use of any scheme designed for Iris. The scheme must be installed
and importable. To use this feature, the ``scheme`` key passed to the
and importable. Several such schemes are provided by :mod:`iris.analysis` and
:mod:`esmvalcore.preprocessor.regrid_schemes`.
To use this feature, the ``scheme`` key passed to the
preprocessor must be a dictionary instead of a simple string that contains all
necessary information. That includes a ``reference`` to the desired scheme
itself, as well as any arguments that should be passed through to the
Expand Down Expand Up @@ -996,10 +1002,13 @@ module, the second refers to the scheme, i.e. some callable that will be called
with the remaining entries of the ``scheme`` dictionary passed as keyword
arguments.

One package that aims to capitalize on the :ref:`support for unstructured grids
introduced in Iris 3.2 <iris:ugrid>` is :doc:`iris-esmf-regrid:index`.
One package that aims to capitalize on the :ref:`support for meshes
introduced in Iris 3.2 <iris:ugrid>` is :doc:`esmf_regrid:index`.
It aims to provide lazy regridding for structured regular and irregular grids,
as well as unstructured grids.
as well as meshes. It is recommended to use these schemes through
the :obj:`esmvalcore.preprocessor.regrid_schemes.IrisESMFRegrid` scheme though,
as that provides more efficient handling of masks.

An example of its usage in a preprocessor is:

.. code-block:: yaml
Expand All @@ -1009,16 +1018,19 @@ An example of its usage in a preprocessor is:
regrid:
target_grid: 2.5x2.5
scheme:
reference: esmf_regrid.schemes:ESMFAreaWeighted
reference: esmvalcore.preprocessor.regrid_schemes:IrisESMFRegrid
method: conservative
mdtol: 0.7
use_src_mask: true
collapse_src_mask_along: ZT
Additionally, the use of generic schemes that take source and target grid cubes as
arguments is also supported. The call function for such schemes must be defined as
`(src_cube, grid_cube, **kwargs)` and they must return `iris.cube.Cube` objects.
The `regrid` module will automatically pass the source and grid cubes as inputs
of the scheme. An example of this usage is
the :func:`~esmf_regrid.schemes.regrid_rectilinear_to_rectilinear`
scheme available in :doc:`iris-esmf-regrid:index`:
scheme available in :doc:`esmf_regrid:index`:

.. code-block:: yaml
Expand Down
2 changes: 1 addition & 1 deletion environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ dependencies:
- geopy
- humanfriendly
- iris >=3.10.0
- iris-esmf-regrid >=0.10.0 # github.com/SciTools-incubator/iris-esmf-regrid/pull/342
- iris-esmf-regrid >=0.11.0
- iris-grib
- isodate
- jinja2
Expand Down
121 changes: 58 additions & 63 deletions esmvalcore/preprocessor/_regrid.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,9 @@
from esmvalcore.cmor.table import CMOR_TABLES
from esmvalcore.exceptions import ESMValCoreDeprecationWarning
from esmvalcore.iris_helpers import has_irregular_grid, has_unstructured_grid
from esmvalcore.preprocessor._shared import (
get_dims_along_axes,
)
from esmvalcore.preprocessor._shared import (
get_array_module,
preserve_float_dtype,
Expand All @@ -39,10 +42,8 @@
add_cell_measure,
)
from esmvalcore.preprocessor.regrid_schemes import (
ESMPyAreaWeighted,
ESMPyLinear,
ESMPyNearest,
GenericFuncScheme,
IrisESMFRegrid,
UnstructuredLinear,
UnstructuredNearest,
)
Expand Down Expand Up @@ -91,9 +92,17 @@
# curvilinear grids; i.e., grids that can be described with 2D latitude and 2D
# longitude coordinates with common dimensions)
HORIZONTAL_SCHEMES_IRREGULAR = {
'area_weighted': ESMPyAreaWeighted(),
'linear': ESMPyLinear(),
'nearest': ESMPyNearest(),
'area_weighted': IrisESMFRegrid(method='conservative'),
'linear': IrisESMFRegrid(method='bilinear'),
'nearest': IrisESMFRegrid(method='nearest'),
}

# Supported horizontal regridding schemes for meshes
# https://scitools-iris.readthedocs.io/en/stable/further_topics/ugrid/index.html
HORIZONTAL_SCHEMES_MESH = {
'area_weighted': IrisESMFRegrid(method='conservative'),
'linear': IrisESMFRegrid(method='bilinear'),
'nearest': IrisESMFRegrid(method='nearest'),
}

# Supported horizontal regridding schemes for unstructured grids (i.e., grids,
Expand Down Expand Up @@ -533,29 +542,7 @@ def _get_target_grid_cube(
return target_grid_cube


def _attempt_irregular_regridding(cube: Cube, scheme: str) -> bool:
"""Check if irregular regridding with ESMF should be used."""
if not has_irregular_grid(cube):
return False
if scheme not in HORIZONTAL_SCHEMES_IRREGULAR:
raise ValueError(
f"Regridding scheme '{scheme}' does not support irregular data, "
f"expected one of {list(HORIZONTAL_SCHEMES_IRREGULAR)}")
return True


def _attempt_unstructured_regridding(cube: Cube, scheme: str) -> bool:
"""Check if unstructured regridding should be used."""
if not has_unstructured_grid(cube):
return False
if scheme not in HORIZONTAL_SCHEMES_UNSTRUCTURED:
raise ValueError(
f"Regridding scheme '{scheme}' does not support unstructured "
f"data, expected one of {list(HORIZONTAL_SCHEMES_UNSTRUCTURED)}")
return True


def _load_scheme(src_cube: Cube, scheme: str | dict):
def _load_scheme(src_cube: Cube, tgt_cube: Cube, scheme: str | dict):
"""Return scheme that can be used in :meth:`iris.cube.Cube.regrid`."""
loaded_scheme: Any = None

Expand Down Expand Up @@ -586,23 +573,27 @@ def _load_scheme(src_cube: Cube, scheme: str | dict):
logger.debug("Loaded regridding scheme %s", loaded_scheme)
return loaded_scheme

# Scheme is a dict -> assume this describes a generic regridding scheme
if isinstance(scheme, dict):
# Scheme is a dict -> assume this describes a generic regridding scheme
loaded_scheme = _load_generic_scheme(scheme)

# Scheme is a str -> load appropriate regridding scheme depending on the
# type of input data
elif _attempt_irregular_regridding(src_cube, scheme):
loaded_scheme = HORIZONTAL_SCHEMES_IRREGULAR[scheme]
elif _attempt_unstructured_regridding(src_cube, scheme):
loaded_scheme = HORIZONTAL_SCHEMES_UNSTRUCTURED[scheme]
else:
loaded_scheme = HORIZONTAL_SCHEMES_REGULAR.get(scheme)

if loaded_scheme is None:
raise ValueError(
f"Got invalid regridding scheme string '{scheme}', expected one "
f"of {list(HORIZONTAL_SCHEMES_REGULAR)}")
# Scheme is a str -> load appropriate regridding scheme depending on
# the type of input data
if has_irregular_grid(src_cube) or has_irregular_grid(tgt_cube):
grid_type = 'irregular'
elif src_cube.mesh is not None or tgt_cube.mesh is not None:
grid_type = 'mesh'
elif has_unstructured_grid(src_cube):
grid_type = 'unstructured'
else:
grid_type = 'regular'

schemes = globals()[f"HORIZONTAL_SCHEMES_{grid_type.upper()}"]
if scheme not in schemes:
raise ValueError(
f"Regridding scheme '{scheme}' not available for {grid_type} "
f"data, expected one of: {', '.join(schemes)}")
loaded_scheme = schemes[scheme]

logger.debug("Loaded regridding scheme %s", loaded_scheme)

Expand Down Expand Up @@ -676,14 +667,14 @@ def _get_regridder(
return regridder

# Regridder is not in cached -> return a new one and cache it
loaded_scheme = _load_scheme(src_cube, scheme)
loaded_scheme = _load_scheme(src_cube, tgt_cube, scheme)
regridder = loaded_scheme.regridder(src_cube, tgt_cube)
_CACHED_REGRIDDERS.setdefault(name_shape_key, {})
_CACHED_REGRIDDERS[name_shape_key][coord_key] = regridder

# (2) Weights caching disabled
else:
loaded_scheme = _load_scheme(src_cube, scheme)
loaded_scheme = _load_scheme(src_cube, tgt_cube, scheme)
regridder = loaded_scheme.regridder(src_cube, tgt_cube)

return regridder
Expand Down Expand Up @@ -860,36 +851,40 @@ def _cache_clear():

def _rechunk(cube: Cube, target_grid: Cube) -> Cube:
"""Re-chunk cube with optimal chunk sizes for target grid."""
if not cube.has_lazy_data() or cube.ndim < 3:
# Only rechunk lazy multidimensional data
if not cube.has_lazy_data():
# Only rechunk lazy data
return cube

lon_coord = target_grid.coord(axis='X')
lat_coord = target_grid.coord(axis='Y')
if lon_coord.ndim != 1 or lat_coord.ndim != 1:
# This function only supports 1D lat/lon coordinates.
return cube
# Extract grid dimension information from source cube
src_grid_indices = get_dims_along_axes(cube, ["X", "Y"])
src_grid_shape = tuple(cube.shape[i] for i in src_grid_indices)
src_grid_ndims = len(src_grid_indices)

lon_dim, = target_grid.coord_dims(lon_coord)
lat_dim, = target_grid.coord_dims(lat_coord)
grid_indices = sorted((lon_dim, lat_dim))
target_grid_shape = tuple(target_grid.shape[i] for i in grid_indices)
# Extract grid dimension information from target cube.
tgt_grid_indices = get_dims_along_axes(target_grid, ["X", "Y"])
tgt_grid_shape = tuple(target_grid.shape[i] for i in tgt_grid_indices)
tgt_grid_ndims = len(tgt_grid_indices)

if 2 * np.prod(cube.shape[-2:]) > np.prod(target_grid_shape):
if 2 * np.prod(src_grid_shape) > np.prod(tgt_grid_shape):
# Only rechunk if target grid is more than a factor of 2 larger,
# because rechunking will keep the original chunk in memory.
return cube

# Compute a good chunk size for the target array
# This uses the fact that horizontal dimension(s) are the last dimension(s)
# of the input cube and also takes into account that iris regridding needs
# unchunked data along the grid dimensions.
data = cube.lazy_data()
tgt_shape = data.shape[:-src_grid_ndims] + tgt_grid_shape
tgt_chunks = data.chunks[:-src_grid_ndims] + tgt_grid_shape

# Compute a good chunk size for the target array
tgt_shape = data.shape[:-2] + target_grid_shape
tgt_chunks = data.chunks[:-2] + target_grid_shape
tgt_data = da.empty(tgt_shape, dtype=data.dtype, chunks=tgt_chunks)
tgt_data = tgt_data.rechunk({i: "auto" for i in range(cube.ndim - 2)})
tgt_data = da.empty(tgt_shape, chunks=tgt_chunks, dtype=data.dtype)
tgt_data = tgt_data.rechunk(
{i: "auto"
for i in range(tgt_data.ndim - tgt_grid_ndims)})

# Adjust chunks to source array and rechunk
chunks = tgt_data.chunks[:-2] + data.shape[-2:]
chunks = tgt_data.chunks[:-tgt_grid_ndims] + data.shape[-src_grid_ndims:]
cube.data = data.rechunk(chunks)

return cube
Expand Down
Loading

0 comments on commit a35d50d

Please sign in to comment.