forked from BryanPlummer/cite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
289 lines (251 loc) · 13.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import sys
import argparse
import pickle
from tqdm import tqdm
import numpy as np
import tensorflow as tf
from collections import Counter
from model import CITE
from data_loader import DataLoader, load_word_embeddings
parser = argparse.ArgumentParser(description='Conditional Image-Text Similarity Network')
parser.add_argument('--name', default='Conditional_Image-Text_Similarity_Network', type=str,
help='name of experiment')
parser.add_argument('--dataset', default='flickr', type=str,
help='name of the dataset to use')
parser.add_argument('--datadir', default='data', type=str,
help='directory containing the hdf5 data files')
parser.add_argument('--language_model', default='avg', type=str,
help='type of language model to use, types: avg (default), attend, gru')
parser.add_argument('--r_seed', type=int, default=42,
help='random seed (default: 42)')
parser.add_argument('--info_iterval', type=int, default=1000,
help='number of batches to process before outputing training status')
parser.add_argument('--resume', default='', type=str,
help='filename of model to load (default: none)')
parser.add_argument('--cca_parameters', default='', type=str,
help='filename of cca parameters to load (default: none)')
parser.add_argument('--test', dest='test', action='store_true', default=False,
help='Run model on test set')
parser.add_argument('--batch-size', type=int, default=6,
help='input batch size for training (default: 6)')
parser.add_argument('--lr', type=float, default=5e-5, metavar='LR',
help='learning rate (default: 5e-5)')
parser.add_argument('--embed_l1', type=float, default=5e-5,
help='weight of the L1 regularization term used on the concept weight branch (default: 5e-5)')
parser.add_argument('--max_epoch', type=int, default=0,
help='maximum number of epochs, less than 1 indicates no limit (default: 0)')
parser.add_argument('--no_gain_stop', type=int, default=5,
help='number of epochs used to perform early stopping based on validation performance (default: 5)')
parser.add_argument('--neg_to_pos_ratio', type=int, default=2,
help='ratio of negatives to positives used during training (default: 2)')
parser.add_argument('--minimum_gain', type=float, default=5e-4, metavar='N',
help='minimum performance gain for a model to be considered better (default: 5e-4)')
parser.add_argument('--cca_weight_reg', type=float, default=5e-5,
help='learning rate (default: 1)')
parser.add_argument('--train_success_thresh', type=float, default=0.6,
help='minimum training intersection-over-union threshold for success (default: 0.6)')
parser.add_argument('--test_success_thresh', type=float, default=0.5,
help='minimum testing intersection-over-union threshold for success (default: 0.5)')
parser.add_argument('--dim_embed', type=int, default=256,
help='how many dimensions in the final embedding (default: 256)')
parser.add_argument('--max_boxes', type=int, default=300,
help='maximum number of edge boxes per image (default: 300)')
parser.add_argument('--max_phrases', type=int, default=-1,
help='maximum number of phrases per image, values of less than will use all of them (default: -1)')
parser.add_argument('--max_tokens', type=int, default=10,
help='maximum number of words allowed in a phrase (default: 10)')
parser.add_argument('--num_embeddings', type=int, default=4,
help='number of embeddings to train (default: 4)')
parser.add_argument('--region_norm_axis', type=int, default=1,
help='axis=1 treats all regions like a single image (better for localization-only) and for axis=2 L2 norm is done for each region')
parser.add_argument('--spatial', dest='spatial', action='store_true', default=False,
help='flag indicating whether to use spatial features')
parser.add_argument('--npa', action='store_true', default=False,
help='use hard-negative phrase mining')
parser.add_argument('--use_augmented', dest='use_augmented', action='store_true', default=False,
help='flag indicating whether to use augmented positive phrases (default: use gt only)')
parser.add_argument('--ifs', action='store_true', default=False,
help='uses inverse frequency sampling when training with augmented phrases')
parser.add_argument('--word_embedding', type=str, default='data/hglmm_6kd.txt',
help='full path to space separated language embedding features to load')
parser.add_argument('--embedding_ft', dest='embedding_ft', action='store_true', default=False,
help='flag indicating whether to fine-tune the language features')
parser.add_argument('--embed_weight', type=float, default=1e-5,
help='L2 regularization weight for fine-tuning language features (default: 1e-5)')
def main():
global args
args = parser.parse_args()
assert args.language_model in ['avg', 'attend', 'gru']
np.random.seed(args.r_seed)
tf.set_random_seed(args.r_seed)
phrase_feature_dim = 6000
region_feature_dim = 2048
tok2idx, vecs = load_word_embeddings(args.word_embedding, phrase_feature_dim)
if args.spatial:
region_feature_dim += 5
test_loader, train_loader, val_loader = get_data_loaders(region_feature_dim, tok2idx)
model_constructor = CITE(args, vecs, test_loader.max_length, region_feature_dim)
model = model_constructor.setup_model()
plh = model_constructor.get_placeholders()
if args.test:
test(model, test_loader, plh, model_name=args.resume)
sys.exit()
save_model_directory = os.path.join('runs', args.dataset, args.name)
if not os.path.exists(save_model_directory):
os.makedirs(save_model_directory)
# training with Adam
acc, best_adam = train(model, train_loader, val_loader, plh, args.resume)
# finetune with SGD after loading the best model trained with Adam
best_model_filename = os.path.join('runs', args.dataset, args.name, 'model_best')
acc, best_sgd = train(model, train_loader, val_loader, plh,
best_model_filename, False, acc)
best_epoch = best_adam + best_sgd
# get performance on test set
test_acc = test(model, test_loader, plh, model_name=best_model_filename)
print('best model at epoch {}: {:.2f}% (val {:.2f}%)'.format(
best_epoch, round(test_acc*100, 2), round(acc*100, 2)))
def test(model, test_loader, plh, sess=None, model_name = None):
if sess is None:
sess = tf.Session()
saver = tf.train.Saver()
saver.restore(sess, model_name)
region_weights = model[3]
correct = 0.0
total = 0.0
n_iterations = test_loader.num_batches()
for batch_id in range(n_iterations):
feed_dict, gt_labels, num_phrases = test_loader.get_batch(batch_id, plh)
scores = sess.run(region_weights, feed_dict = feed_dict)
total += np.sum(num_phrases)
for i, num_pairs in enumerate(num_phrases):
for pair_index in range(num_pairs):
best_region_index = np.argmax(scores[i, pair_index, :])
correct += gt_labels[i, pair_index, best_region_index]
acc = correct/total
print('\n{} set localization accuracy: {:.2f}% for {:d} instances\n'.format(
test_loader.split, round(acc*100, 2), int(total)))
return acc
def update_confusion_table(model, test_loader, train_loader, plh, sess):
region_weights = model[3]
correct = 0.0
n_iterations = test_loader.num_batches_confusion()
feeds = []
ims = []
num_boxes = []
for batch_id in range(n_iterations):
feed_dict, ii, jj = test_loader.get_batch_confusion(batch_id, plh, train_loader.max_phrases)
feeds.append(feed_dict)
ims += ii
num_boxes.append(jj)
train_loader.confusion_table = {}
n_phrase_iters = train_loader.num_batches_phrases()
for batch_id in tqdm(range(n_phrase_iters), desc='updating confusion table', total=n_phrase_iters):
phrase_features, num_phrases, all_phrase = train_loader.get_phrase_batch(batch_id)
all_scores = []
for nn, feed_dict in zip(num_boxes, feeds):
feed_dict[plh['phrase']] = phrase_features
s = sess.run(region_weights, feed_dict = feed_dict)
s[:, num_phrases:, :] = -np.inf
for i, n in enumerate(nn):
s[i, :, n:] = -np.inf
all_scores.append(s)
all_scores = np.concatenate(all_scores)[:len(ims)]
for phrase_id, phrase in enumerate(all_phrase):
scores = all_scores[:, phrase_id, :]
n_boxes = float(scores.shape[1])
order = np.argsort(scores.reshape(-1))[::-1]
N = 500
predicted_phrases = []
for i in order:
if N < 1:
break
index = int(np.floor(i / n_boxes))
im = ims[index]
box_idx = int(i - index * n_boxes)
if box_idx not in test_loader.im2phrase[im]:
continue
phrases = test_loader.im2phrase[im][box_idx]
if phrase not in phrases:
N -= 1
predicted_phrases += list(phrases)
train_loader.confusion_table[phrase] = predicted_phrases
def process_epoch(model, train_loader, plh, sess, train_step, epoch, suffix):
train_loader.shuffle()
# extract elements from model tuple
loss = model[0]
region_loss = model[1]
l1_loss = model[2]
n_iterations = train_loader.num_batches()
for batch_id in range(n_iterations):
feed_dict, _, _ = train_loader.get_batch(batch_id, plh)
(_, total, region, concept_l1) = sess.run([train_step, loss,
region_loss, l1_loss],
feed_dict = feed_dict)
if batch_id % args.info_iterval == 0:
print('loss: {:.5f} (region: {:.5f} concept: {:.5f}) '
'[{}/{}] (epoch: {}) {}'.format(total, region, concept_l1,
(batch_id*args.batch_size),
len(train_loader), epoch,
suffix))
def train(model, train_loader, test_loader, plh, model_weights, use_adam = True,
best_acc = 0.):
sess = tf.Session()
if use_adam:
optim = tf.train.AdamOptimizer(args.lr)
suffix = ''
else:
optim = tf.train.GradientDescentOptimizer(args.lr / 10.)
suffix = 'ft'
weights_norm = tf.losses.get_regularization_losses()
weights_norm_sum = tf.add_n(weights_norm)
loss = model[0]
train_step = optim.minimize(loss + weights_norm_sum)
saver = tf.train.Saver()
init = tf.global_variables_initializer()
epoch = 1
best_epoch = 0
with sess.as_default():
init.run()
if model_weights:
saver.restore(sess, model_weights)
if use_adam:
best_acc = test(model, test_loader, plh, sess)
if args.npa:
update_confusion_table(model, test_loader, train_loader, plh, sess)
# model trains until args.max_epoch is reached or it no longer
# improves on the validation set
while (epoch - best_epoch) < args.no_gain_stop and (args.max_epoch < 1 or epoch <= args.max_epoch):
update_table = args.npa and epoch > 1 and epoch % 3 == 0
if update_table:
update_confusion_table(model, test_loader, train_loader, plh, sess)
process_epoch(model, train_loader, plh, sess, train_step, epoch, suffix)
saver.save(sess, os.path.join('runs', args.dataset, args.name, 'checkpoint'),
global_step = epoch)
acc = test(model, test_loader, plh, sess)
# the first time we update the table localization accuracy may drop a lot
# so let's reset the baseline of what is good
if update_table and epoch - 3 == 0 and use_adam:
best_acc = acc
if acc > best_acc:
saver.save(sess, os.path.join('runs', args.dataset, args.name, 'model_best'))
if (acc - args.minimum_gain) > best_acc:
best_epoch = epoch
best_acc = acc
epoch += 1
return best_acc, best_epoch
def get_data_loaders(region_feature_dim, tok2idx):
test_loader = DataLoader(args, region_feature_dim, 'test', tok2idx)
if args.test:
return test_loader, None, None
max_length = test_loader.max_length
train_loader = DataLoader(args, region_feature_dim, 'train', tok2idx)
max_length = max(max_length, train_loader.max_length)
val_loader = DataLoader(args, region_feature_dim, 'val', tok2idx, set(train_loader.phrases))
max_length = max(max_length, val_loader.max_length)
test_loader.set_max_length(max_length)
train_loader.set_max_length(max_length)
val_loader.set_max_length(max_length)
return test_loader, train_loader, val_loader
if __name__ == '__main__':
main()