forked from BryanPlummer/cite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
330 lines (279 loc) · 16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import pickle
import numbers
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import standard_ops
from tensorflow.python.ops import nn
from tensorflow.python.platform import tf_logging as logging
from tensorflow.contrib.layers.python.layers import batch_norm
from tensorflow.contrib.layers.python.layers import convolution2d
from tensorflow.contrib.layers.python.layers import fully_connected
from tensorflow.contrib.layers.python.layers import l2_regularizer
def add_fc(x, outdim, train_phase_plh, scope_in):
"""Returns the output of a FC-BNORM-ReLU sequence.
Arguments:
x -- input tensor
outdim -- desired output dimensions
train_phase_plh -- indicator whether model is in training mode
scope_in -- scope prefix for the desired layers
"""
l2_reg = tf.contrib.layers.l2_regularizer(0.0005)
fc = tf.contrib.layers.fully_connected(x, outdim, activation_fn = None,
weights_regularizer = l2_reg,
scope = scope_in + '/fc')
fc_bnorm = batch_norm_layer(fc, train_phase_plh, scope_in + '/bnorm')
return tf.nn.relu(fc_bnorm, scope_in + '/relu')
def concept_layer(x, outdim, train_phase_plh, concept_id, weights):
"""Returns the weighted value of a fully connected layer.
Arguments:
x -- input tensor
outdim -- desired output dimensions
train_phase_plh -- indicator whether model is in training mode
concept_id -- identfier for the desired concept layer
weights -- vector of weights to be applied the concept outputs
"""
concept = add_fc(x, outdim, train_phase_plh, 'concept_%i' % concept_id)
weighted_concept = concept * tf.expand_dims(tf.expand_dims(weights[:, :, concept_id-1], 2), 2)
return weighted_concept
def batch_norm_layer(x, train_phase, scope_bn):
"""Returns the output of a batch norm layer."""
bn = tf.contrib.layers.batch_norm(x, decay=0.99, center=True, scale=True,
is_training=train_phase,
reuse=None,
trainable=True,
updates_collections=None,
scope=scope_bn)
return bn
def embedding_branch(x, embed_dim, train_phase_plh, scope_in, do_l2norm = True, outdim = None, norm_axis = 1):
"""Applies a pair of fully connected layers to the input tensor.
Arguments:
x -- input_tensor
embed_dim -- dimension of the input to the second fully connected layer
train_phase_plh -- indicator whether model is in training mode
scope_in -- scope prefix for the desired layers
do_l2norm -- indicates if the output should be l2 normalized
outdim -- dimension of the output embedding, if None outdim=embed_dim
"""
embed_fc1 = add_fc(x, embed_dim, train_phase_plh, scope_in + '_embed_1')
if outdim is None:
outdim = embed_dim
l2_reg = tf.contrib.layers.l2_regularizer(0.001)
embed_fc2 = fully_connected(embed_fc1, outdim, activation_fn = None,
weights_regularizer = l2_reg,
scope = scope_in + '_embed_2')
if do_l2norm:
embed_fc2 = tf.nn.l2_normalize(embed_fc2, norm_axis)
return embed_fc2
def extract_axis_1(data, ind):
"""
Get specified elements along the first axis of tensor.
:param data: Tensorflow tensor that will be subsetted.
:param ind: Indices to take (one for each element along axis 0 of data).
:return: Subsetted tensor.
function copied from - https://stackoverflow.com/questions/41273361/get-the-last-output-of-a-dynamic-rnn-in-tensorflow
"""
batch_range = tf.range(tf.shape(data)[0])
indices = tf.stack([batch_range, ind], axis=1)
res = tf.gather_nd(data, indices)
return res
def weight_l2_regularizer(initial_weights, scale, scope=None):
"""Returns a function that can be used to apply L2 regularization to weights.
Small values of L2 can help prevent overfitting the training data.
Args:
scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
scope: An optional scope name.
Returns:
A function with signature `l2(weights)` that applies L2 regularization.
Raises:
ValueError: If scale is negative or if scale is not a float.
"""
if isinstance(scale, numbers.Integral):
raise ValueError('scale cannot be an integer: %s' % (scale,))
if isinstance(scale, numbers.Real):
if scale < 0.:
raise ValueError('Setting a scale less than 0 on a regularizer: %g.' %
scale)
if scale == 0.:
logging.info('Scale of 0 disables regularizer.')
return lambda _: None
def l2(weights):
"""Applies l2 regularization to weights."""
with ops.name_scope(scope, 'l2_regularizer', [weights]) as name:
my_scale = ops.convert_to_tensor(scale,
dtype=weights.dtype.base_dtype,
name='scale')
weight_diff = initial_weights - weights
return standard_ops.multiply(my_scale, nn.l2_loss(weight_diff), name=name)
return l2
def setup_initialize_fc_layers(args, feats, parameters, scope_in, train_phase, norm_axis = 2):
for i, params in enumerate(parameters):
scaling = params['scaling']
outdim = len(scaling)
cca_mean, cca_proj = params[scope_in + '_mean'], params[scope_in + '_proj']
weights_init = tf.constant_initializer(cca_proj, dtype=tf.float32)
weight_reg = weight_l2_regularizer(params[scope_in + '_proj'], args.cca_weight_reg)
if (i + 1) < len(parameters):
activation_fn = tf.nn.relu
else:
activation_fn = None
feats = fully_connected(feats - cca_mean, outdim, activation_fn=activation_fn,
weights_initializer = weights_init,
weights_regularizer = weight_reg,
#trainable=False,
scope = scope_in + '_embed_' + str(i)) * scaling
feats = tf.nn.l2_normalize(feats, norm_axis, epsilon=1e-10)
return feats
class CITE():
def __init__(self, args, vecs = None, max_length = None, region_feature_dim = None):
self.args = args
self.embeddings = vecs
self.phrase_length = max_length
self.region_dim = region_feature_dim
self.final_embed = self.args.dim_embed
self.embed_dim = self.final_embed * 4
self.train_phase = None
self.labels = None
def compute_loss(self, region_scores, concept_loss, embed_l2reg):
labels = tf.reshape(self.labels, [self.args.batch_size, self.phrases_per_image, self.boxes_per_image])
ind_labels = tf.abs(labels)
eps = 1e-10
num_samples = tf.reduce_sum(ind_labels) + eps
region_loss = tf.reduce_sum(tf.log(1+tf.exp(-region_scores*labels))*ind_labels)/num_samples
total_loss = region_loss + concept_loss * self.args.embed_l1 + embed_l2reg * self.args.embed_weight
return total_loss, region_loss
def get_phrase_scores(self, phrase_embed, region_embed, concept_weights):
elementwise_prod = tf.expand_dims(phrase_embed, 2)*tf.expand_dims(region_embed, 1)
joint_embed_1 = add_fc(elementwise_prod, self.embed_dim, self.train_phase, 'joint_embed_1')
joint_embed_2 = concept_layer(joint_embed_1, self.final_embed, self.train_phase, 1, concept_weights)
for concept_id in range(2, self.args.num_embeddings+1):
joint_embed_2 += concept_layer(joint_embed_1, self.final_embed, self.train_phase,
concept_id, concept_weights)
joint_embed_3 = fully_connected(joint_embed_2, 1, activation_fn=None ,
weights_regularizer = l2_regularizer(0.005),
scope = 'joint_embed_3')
joint_embed_3 = tf.squeeze(joint_embed_3, [3])
region_prob = 1. / (1. + tf.exp(-joint_embed_3))
return region_prob, joint_embed_3
def get_max_phrase_scores(self, phrase_embed, concept_weights, region_embed):
if self.train_phase is None:
self.set_region_placeholders()
self.set_phrase_placeholders()
region_embed = tf.reshape(region_embed, shape=[self.args.batch_size, self.boxes_per_image, self.embed_dim])
phrase_embed = tf.reshape(phrase_embed, shape=[1, self.phrases_per_image, self.embed_dim])
concept_weights = tf.reshape(concept_weights, shape=[1, self.phrases_per_image, self.args.num_embeddings])
region_prob, _ = self.get_phrase_scores(phrase_embed, region_embed, concept_weights)
best_index = tf.reshape(tf.argmax(region_prob, axis=2), [-1])
ind = tf.stack([tf.cast(tf.range(self.phrases_per_image * self.args.batch_size), tf.int64), best_index], axis=1)
region_prob = tf.gather_nd(tf.reshape(region_prob, [self.phrases_per_image * self.args.batch_size, -1]), ind)
best_index = tf.reshape(best_index, [self.args.batch_size, self.phrases_per_image])
region_prob = tf.reshape(region_prob, [self.args.batch_size, self.phrases_per_image])
return region_prob, best_index
def encode_regions(self):
if self.train_phase is None:
self.set_region_placeholders()
region_plh = tf.reshape(self.regions, [-1, self.boxes_per_image, self.region_dim])
if self.args.cca_parameters:
parameters = pickle.load(open(self.args.cca_parameters, 'rb'))
region_embed = setup_initialize_fc_layers(self.args, self.regions, parameters, 'vis', self.train_phase, norm_axis=self.args.region_norm_axis)
else:
region_embed = embedding_branch(self.regions, self.embed_dim, self.train_phase, 'region', norm_axis=self.args.region_norm_axis)
return region_embed
def encode_phrases(self):
if self.train_phase is None:
self.set_phrase_placeholders()
phrase_plh = tf.reshape(self.phrases, [-1, self.phrases_per_image, self.phrase_length])
# sometimes finetuning word embedding helps (with l2 reg), but often doesn't
# seem to make a big difference
word_embeddings = tf.get_variable('word_embeddings', self.embeddings.shape, initializer=tf.constant_initializer(self.embeddings), trainable = self.args.embedding_ft)
embedded_words = tf.nn.embedding_lookup(word_embeddings, self.phrases)
embed_l2reg = tf.squeeze(tf.zeros(1))
if self.args.embedding_ft:
embed_l2reg = tf.nn.l2_loss(word_embeddings - vecs)
eps = 1e-10
if self.args.language_model == 'gru':
phrases = tf.reshape(self.phrases, [-1, self.phrase_length])
source_sequence_length = tf.reduce_sum(tf.cast(phrases > 0, tf.int32), 1)
embedded_words = tf.reshape(embedded_words, [-1, self.phrase_length, self.embeddings.shape[1]])
encoder_cell = tf.nn.rnn_cell.GRUCell(self.final_embed)
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
encoder_cell, embedded_words, dtype=encoder_cell.dtype,
sequence_length=source_sequence_length)
final_outputs = extract_axis_1(encoder_outputs, source_sequence_length-1)
phrase_input = tf.reshape(final_outputs, [-1, self.phrases_per_image, self.final_embed])
outputs = fully_connected(phrase_input, self.embed_dim, activation_fn = None,
weights_regularizer = tf.contrib.layers.l2_regularizer(0.005),
scope = 'phrase_encoder')
phrase_embed = tf.nn.l2_normalize(outputs, 2, epsilon=eps)
else:
num_words = tf.reduce_sum(tf.to_float(self.phrases > 0), 2, keep_dims=True) + eps
phrase_input = tf.nn.l2_normalize(tf.reduce_sum(embedded_words, 2) / num_words, 2)
if self.args.language_model == 'attend':
context_vector = tf.tile(tf.expand_dims(phrase_input, 2), (1, 1, self.phrase_length, 1))
attention_inputs = tf.concat((context_vector, embedded_words), 3)
attention_weights = fully_connected(attention_inputs, 1,
weights_regularizer = l2_regularizer(0.0005),
scope = 'self_attend')
attention_weights = tf.nn.softmax(tf.squeeze(attention_weights))
phrase_input = tf.nn.l2_normalize(tf.reduce_sum(embedded_words * tf.expand_dims(attention_weights, 3), 2), 2)
phrase_input = tf.reshape(phrase_input, [-1, self.phrases_per_image, self.embeddings.shape[1]])
if self.args.cca_parameters:
parameters = pickle.load(open(self.args.cca_parameters, 'rb'))
phrase_embed = setup_initialize_fc_layers(self.args, phrase_input, parameters, 'lang', self.train_phase)
else:
phrase_embed = embedding_branch(phrase_input, self.embed_dim, self.train_phase, 'phrase')
concept_weights = embedding_branch(phrase_input, self.embed_dim, self.train_phase, 'concept_weight',
do_l2norm = False, outdim = self.args.num_embeddings)
concept_loss = tf.reduce_sum(tf.norm(concept_weights, axis=2, ord=1)) / self.phrase_count
concept_weights = tf.nn.softmax(concept_weights)
return phrase_embed, concept_weights, concept_loss, embed_l2reg
def get_placeholders(self, placeholders = {}):
placeholders['labels'] = self.labels
if self.train_phase is None:
self.set_phrase_placeholders()
self.set_region_placeholders()
placeholders = self.get_region_placeholders(placeholders)
placeholders = self.get_phrase_placeholders(placeholders)
return placeholders
def get_region_placeholders(self, placeholders = {}):
if self.train_phase is None:
self.set_region_placeholders()
placeholders['regions'] = self.regions
placeholders['train_phase'] = self.train_phase
placeholders['boxes_per_image'] = self.boxes_per_image
return placeholders
def get_phrase_placeholders(self, placeholders = {}):
if self.train_phase is None:
self.set_phrase_placeholders()
placeholders['phrases'] = self.phrases
placeholders['train_phase'] = self.train_phase
placeholders['phrases_per_image'] = self.phrases_per_image
placeholders['phrase_count'] = self.phrase_count
return placeholders
def set_region_placeholders(self):
if self.train_phase is None:
self.train_phase = tf.placeholder(tf.bool, name='train_phase')
self.boxes_per_image = tf.placeholder(tf.int32)
self.regions = tf.placeholder(tf.float32, shape=[None, None, None])
def set_phrase_placeholders(self):
if self.train_phase is None:
self.train_phase = tf.placeholder(tf.bool, name='train_phase')
self.phrases_per_image = tf.placeholder(tf.int32)
self.phrase_count = tf.placeholder(tf.float32)
self.phrases = tf.placeholder(tf.int32, shape=[None, None, None])
def setup_model(self):
"""
Defines the computational graph used for the CITE model
Returns:
total_loss -- weighted combination of the region and concept loss
region_loss -- logistic loss for phrase-region prediction
concept_loss -- L1 loss for the output of the concept weight branch
region_prob -- each row contains the probability a region is associated with a phrase
"""
self.set_region_placeholders()
self.set_phrase_placeholders()
self.labels = tf.placeholder(tf.float32, shape=[None, None, None])
phrase_embed, concept_weights, concept_loss, embed_l2reg = self.encode_phrases()
region_embed = self.encode_regions()
region_prob, region_scores = self.get_phrase_scores(phrase_embed, region_embed, concept_weights)
total_loss, region_loss = self.compute_loss(region_scores, concept_loss, embed_l2reg)
return total_loss, region_loss, concept_loss, region_prob