From 9a52ad2ac6a1449657de92495b7efea6baf7be36 Mon Sep 17 00:00:00 2001 From: Yuning Date: Fri, 8 Nov 2024 16:14:57 +0100 Subject: [PATCH] fix docs --- docs/src/manual.md | 4 ++++ src/stochastics.jl | 34 +++++++++++++++++++++++----------- 2 files changed, 27 insertions(+), 11 deletions(-) diff --git a/docs/src/manual.md b/docs/src/manual.md index 729eab4..8f39a63 100644 --- a/docs/src/manual.md +++ b/docs/src/manual.md @@ -65,6 +65,10 @@ RandomFunction CompositeRandomFunction ``` +```@docs +initialize! +``` + ```@docs characteristicfunction ``` diff --git a/src/stochastics.jl b/src/stochastics.jl index 83a6abe..dbc9b28 100644 --- a/src/stochastics.jl +++ b/src/stochastics.jl @@ -27,22 +27,22 @@ struct PinkLorentzianField <: GaussianRandomField γ::Tuple{<:Real,<:Real} # cutoffs of 1/f end -""" -Similar type of `RandomFunction` in Mathematica. -Can be used to generate a time series on a given time array subject to -a Gaussian random process traced from a Gaussian random field. - -# Arguments -- `μ::Vector{<:Real}`: mean of the process -- `P::Vector{<:Point}`: time-position array -- `Σ::Symmetric{<:Real}`: covariance matrices -- `L::Matrix{<:Real}`: lower triangle matrix of Cholesky decomposition -""" mutable struct RandomFunction μ::Vector{<:Real} P::Vector{<:Point} # sample trace Σ::Symmetric{<:Real} # covariance matrices L::Union{Matrix{<:Real}, Nothing} # Lower triangle matrix of Cholesky decomposition + """ + Create a new `RandomFunction` instance. + + # Arguments + - `P::Vector{<:Point}`: Sample trace. + - `process::GaussianRandomField`: The Gaussian random field process. + - `initialize::Bool=true`: Whether to initialize the Cholesky decomposition of the covariance matrix. + + # Returns + A new `RandomFunction` instance. + """ function RandomFunction(P::Vector{<:Point}, process::GaussianRandomField; initialize::Bool=true) μ = process.μ isa Function ? process.μ(P) : repeat([process.μ], length(P)) Σ = covariancematrix(P, process) @@ -55,6 +55,18 @@ mutable struct RandomFunction return new(μ, P, Σ, L) end + """ + Create a new `RandomFunction` instance with precomputed values. + + # Arguments + - `μ::Vector{<:Real}`: Mean vector. + - `P::Vector{<:Point}`: Sample trace. + - `Σ::Symmetric{<:Real}`: Covariance matrix. + - `L::Matrix{<:Real}`: Lower triangle matrix of Cholesky decomposition. + + # Returns + A new `RandomFunction` instance. + """ function RandomFunction(μ::Vector{<:Real}, P::Vector{<:Point}, Σ::Symmetric{<:Real}, L::Matrix{<:Real}) new(μ, P, Σ, L) end