-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
256 lines (203 loc) · 9.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import sys
print(sys.executable)
import os
import time
import argparse
import datetime
import numpy as np
import subprocess
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from timm.utils import AverageMeter
from config import get_config
from models import build_model
from datasets import build_loader
from lr_scheduler import build_scheduler
from optimizer import build_optimizer
from logger import create_logger
from utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, plot_curve, set_seed
def get_args_parser():
parser = argparse.ArgumentParser('Counting Everything training and evaluation script', add_help=False)
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
# easy config modification
parser.add_argument('--batch-size', type=int, help="batch size for single GPU")
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--output', default='output', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--device', default='cuda:0', help='device name')
args, unparsed = parser.parse_known_args()
config = get_config(args)
return args, config
def main_worker(config):
data_loader_train, data_loader_val = build_loader(config.DATA, mode='train'), build_loader(config.DATA, mode='val')
logger.info(f"Creating model: {config.MODEL.NAME}")
model, criterion = build_model(config.MODEL)
model.cuda()
criterion.cuda()
optimizer = build_optimizer(config, model)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"number of params: {n_parameters}")
if hasattr(model_without_ddp, 'flops'):
flops = model_without_ddp.flops()
logger.info(f"number of GFLOPs: {flops / 1e9}")
lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train))
max_accuracy = [1e6] * 3
if config.TRAIN.AUTO_RESUME:
resume_file = auto_resume_helper(config.OUTPUT)
if resume_file:
if config.MODEL.RESUME:
logger.warning(f"auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}")
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume')
if config.MODEL.RESUME:
max_accuracy = load_checkpoint(config, model_without_ddp, optimizer, lr_scheduler, logger)
mae, mse, loss = validate(config, data_loader_val, model, criterion)
max_accuracy = (mae, mse, loss)
logger.info(f"Accuracy of the network on the test images: {mae:.2f} | {mse:.2f}")
if config.EVAL_MODE:
return
logger.info("Start training")
start_time = time.time()
maestack, msestack, lossstack = [], [], []
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
train_one_epoch(config, model, criterion, data_loader_train, optimizer, epoch, lr_scheduler)
mae, mse, loss = validate(config, data_loader_val, model, criterion)
maestack.append(mae)
msestack.append(mse)
lossstack.append(loss)
plot_curve('mae', maestack, os.path.join('exp', config.TAG, 'train.log', 'mae_curve.png'))
plot_curve('mse', msestack, os.path.join('exp', config.TAG, 'train.log', 'mse_curve.png'))
plot_curve('loss', lossstack, os.path.join('exp', config.TAG, 'train.log', 'loss_curve.png'))
logger.info(f"Accuracy of the network on the test images: {loss:.6f}")
if mae < max_accuracy[0]:
if epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1):
save_checkpoint(config, "best", model_without_ddp, max_accuracy, optimizer, lr_scheduler, logger)
max_accuracy = (mae, mse, loss)
logger.info(f'Min total MAE|MSE|Loss: {max_accuracy[0]:.6f} | {max_accuracy[1]:.2f} | {max_accuracy[2] * 1e5:.2f}')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
def train_one_epoch(config, model, criterion, data_loader, optimizer, epoch, lr_scheduler):
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
batch_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = AverageMeter()
start = time.time()
end = time.time()
for idx, (samples, boxes, targets, imgids) in enumerate(data_loader):
samples = samples.cuda(non_blocking=True)
boxes = boxes.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
sdenmap = model(samples, boxes)
bsize = torch.stack((boxes[:, 4] - boxes[:, 2], boxes[:, 3] - boxes[:, 1]), dim=-1)
bs_mean = bsize.view(-1, 3, 2).float().mean(dim=1)
loss = criterion(sdenmap, targets, box_size=bs_mean)
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(model.parameters())
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
optimizer.step()
optimizer.zero_grad()
if lr_scheduler is not None:
lr_scheduler.step_update(epoch * num_steps + idx)
torch.cuda.synchronize()
loss_meter.update(loss.item(), targets.size(0))
norm_meter.update(grad_norm)
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr*1e5:.3f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'loss {loss_meter.val * 1e3 :.3f} ({loss_meter.avg *1e3 :.3f})\t'
f'grad_norm {norm_meter.val * 1e2 :.3f} ({norm_meter.avg * 1e2 :.3f})\t'
f'mem {memory_used:.0f}MB')
# if smask is not None:
# logger.info(f'den_loss={loss_den.item()} | mask_loss={loss_mask.item()}')
epoch_time = time.time() - start
logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")
@torch.no_grad()
def validate(config, data_loader, model, criterion):
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
mae_meter = AverageMeter()
mse_meter = AverageMeter()
end = time.time()
for idx, (images, boxes, target, imgids) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
boxes = boxes.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
bsize = target.size(0)
# compute output
with torch.no_grad():
output = model(images, boxes)
output = F.relu(output, inplace=True)
output = output / config.MODEL.FACTOR
tarsum = target.sum(dim=(1,2,3))
loss = criterion(output * config.MODEL.FACTOR, target)
diff = torch.abs(output.sum(dim=(1, 2, 3)) - tarsum)
mae, mse = diff.mean(), (diff ** 2).mean()
loss_meter.update(loss.item(), bsize)
mae_meter.update(mae.item(), bsize)
mse_meter.update(mse.item(), bsize)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}] '
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
f'Loss {loss_meter.val:.6f} ({loss_meter.avg:.6f}) '
f'MAE {mae_meter.val:.3f} ({mae_meter.avg:.3f}) '
f'MSE {mse_meter.val ** 0.5:.3f} ({mse_meter.avg ** 0.5:.3f}) '
f'Mem {memory_used:.0f}MB')
logger.info(f' * MAE {mae_meter.avg:.3f} MSE {mse_meter.avg ** 0.5:.3f}')
return mae_meter.avg, mse_meter.avg ** 0.5, loss_meter.avg
if __name__ == '__main__':
#torch.cuda.set_per_process_memory_fraction(0.5, 0)
args, config = get_args_parser()
torch.cuda.set_device(args.device)
set_seed(config.SEED)
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
config.defrost()
config.TRAIN.BASE_LR *= config.TRAIN.ACCUMULATION_STEPS
config.TRAIN.WARMUP_LR *= config.TRAIN.ACCUMULATION_STEPS
config.TRAIN.MIN_LR *= config.TRAIN.ACCUMULATION_STEPS
config.freeze()
os.makedirs(config.OUTPUT, exist_ok=True)
logger = create_logger(output_dir=config.OUTPUT, name=f"{config.MODEL.NAME}")
path = os.path.join(config.OUTPUT, "config.json")
with open(path, "w") as f:
f.write(config.dump())
logger.info(f"Full config saved to {path}")
# print config
logger.info(config.dump())
main_worker(config)