forked from angelomorgado/CARLA-GymDrive
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_sb3_dqn_training.py
51 lines (42 loc) · 1.65 KB
/
example_sb3_dqn_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
'''
This is an example script to train a DQN agent in the Carla environment using the stable-baselines3 library.
This is just a simple example to show that it is possible to train an agent using the stable-baselines3 library.
If you want to train an agent for a more real-life problem, you should consider using more complex models and hyperparameters; or even using other RL libraries compatible with the gym interface.
'''
from src.env.environment import CarlaEnv # It is mandatory to import the environment even if it is not used in this script
from stable_baselines3 import DQN
import gymnasium as gym
from stable_baselines3.common.vec_env import DummyVecEnv, VecTransposeImage
def make_env():
env = gym.make('carla-rl-gym-v0', time_limit=30, initialize_server=True, random_weather=False, synchronous_mode=True, continuous=False, show_sensor_data=True, has_traffic=True, verbose=False)
env = DummyVecEnv([lambda: env])
env = VecTransposeImage(env)
return env
def main():
# Create the environment
env = make_env()
# Create the agent
model = DQN(
policy="MultiInputPolicy",
env=env,
learning_rate=1e-4,
buffer_size=10000,
learning_starts=1000,
batch_size=32,
tau=0.005,
gamma=0.99,
train_freq=4,
gradient_steps=1,
target_update_interval=2000,
exploration_fraction=0.1,
exploration_final_eps=0.01,
verbose=1,
)
# Learn 10000 steps
model.learn(total_timesteps=10000)
# Save the agent
model.save(f"dqn_example_agent")
# Close the environment
env.close()
if __name__ == '__main__':
main()