forked from mit-pdos/xv6-public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
proc.c
534 lines (454 loc) · 11.4 KB
/
proc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "x86.h"
#include "proc.h"
#include "spinlock.h"
struct {
struct spinlock lock;
struct proc proc[NPROC];
} ptable;
static struct proc *initproc;
int nextpid = 1;
extern void forkret(void);
extern void trapret(void);
static void wakeup1(void *chan);
void
pinit(void)
{
initlock(&ptable.lock, "ptable");
}
// Must be called with interrupts disabled
int
cpuid() {
return mycpu()-cpus;
}
// Must be called with interrupts disabled to avoid the caller being
// rescheduled between reading lapicid and running through the loop.
struct cpu*
mycpu(void)
{
int apicid, i;
if(readeflags()&FL_IF)
panic("mycpu called with interrupts enabled\n");
apicid = lapicid();
// APIC IDs are not guaranteed to be contiguous. Maybe we should have
// a reverse map, or reserve a register to store &cpus[i].
for (i = 0; i < ncpu; ++i) {
if (cpus[i].apicid == apicid)
return &cpus[i];
}
panic("unknown apicid\n");
}
// Disable interrupts so that we are not rescheduled
// while reading proc from the cpu structure
struct proc*
myproc(void) {
struct cpu *c;
struct proc *p;
pushcli();
c = mycpu();
p = c->proc;
popcli();
return p;
}
//PAGEBREAK: 32
// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and initialize
// state required to run in the kernel.
// Otherwise return 0.
static struct proc*
allocproc(void)
{
struct proc *p;
char *sp;
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == UNUSED)
goto found;
release(&ptable.lock);
return 0;
found:
p->state = EMBRYO;
p->pid = nextpid++;
release(&ptable.lock);
// Allocate kernel stack.
if((p->kstack = kalloc()) == 0){
p->state = UNUSED;
return 0;
}
sp = p->kstack + KSTACKSIZE;
// Leave room for trap frame.
sp -= sizeof *p->tf;
p->tf = (struct trapframe*)sp;
// Set up new context to start executing at forkret,
// which returns to trapret.
sp -= 4;
*(uint*)sp = (uint)trapret;
sp -= sizeof *p->context;
p->context = (struct context*)sp;
memset(p->context, 0, sizeof *p->context);
p->context->eip = (uint)forkret;
return p;
}
//PAGEBREAK: 32
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];
p = allocproc();
initproc = p;
if((p->pgdir = setupkvm()) == 0)
panic("userinit: out of memory?");
inituvm(p->pgdir, _binary_initcode_start, (int)_binary_initcode_size);
p->sz = PGSIZE;
memset(p->tf, 0, sizeof(*p->tf));
p->tf->cs = (SEG_UCODE << 3) | DPL_USER;
p->tf->ds = (SEG_UDATA << 3) | DPL_USER;
p->tf->es = p->tf->ds;
p->tf->ss = p->tf->ds;
p->tf->eflags = FL_IF;
p->tf->esp = PGSIZE;
p->tf->eip = 0; // beginning of initcode.S
safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/");
// this assignment to p->state lets other cores
// run this process. the acquire forces the above
// writes to be visible, and the lock is also needed
// because the assignment might not be atomic.
acquire(&ptable.lock);
p->state = RUNNABLE;
release(&ptable.lock);
}
// Grow current process's memory by n bytes.
// Return 0 on success, -1 on failure.
int
growproc(int n)
{
uint sz;
struct proc *curproc = myproc();
sz = curproc->sz;
if(n > 0){
if((sz = allocuvm(curproc->pgdir, sz, sz + n)) == 0)
return -1;
} else if(n < 0){
if((sz = deallocuvm(curproc->pgdir, sz, sz + n)) == 0)
return -1;
}
curproc->sz = sz;
switchuvm(curproc);
return 0;
}
// Create a new process copying p as the parent.
// Sets up stack to return as if from system call.
// Caller must set state of returned proc to RUNNABLE.
int
fork(void)
{
int i, pid;
struct proc *np;
struct proc *curproc = myproc();
// Allocate process.
if((np = allocproc()) == 0){
return -1;
}
// Copy process state from proc.
if((np->pgdir = copyuvm(curproc->pgdir, curproc->sz)) == 0){
kfree(np->kstack);
np->kstack = 0;
np->state = UNUSED;
return -1;
}
np->sz = curproc->sz;
np->parent = curproc;
*np->tf = *curproc->tf;
// Clear %eax so that fork returns 0 in the child.
np->tf->eax = 0;
for(i = 0; i < NOFILE; i++)
if(curproc->ofile[i])
np->ofile[i] = filedup(curproc->ofile[i]);
np->cwd = idup(curproc->cwd);
safestrcpy(np->name, curproc->name, sizeof(curproc->name));
pid = np->pid;
acquire(&ptable.lock);
np->state = RUNNABLE;
release(&ptable.lock);
return pid;
}
// Exit the current process. Does not return.
// An exited process remains in the zombie state
// until its parent calls wait() to find out it exited.
void
exit(void)
{
struct proc *curproc = myproc();
struct proc *p;
int fd;
if(curproc == initproc)
panic("init exiting");
// Close all open files.
for(fd = 0; fd < NOFILE; fd++){
if(curproc->ofile[fd]){
fileclose(curproc->ofile[fd]);
curproc->ofile[fd] = 0;
}
}
begin_op();
iput(curproc->cwd);
end_op();
curproc->cwd = 0;
acquire(&ptable.lock);
// Parent might be sleeping in wait().
wakeup1(curproc->parent);
// Pass abandoned children to init.
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent == curproc){
p->parent = initproc;
if(p->state == ZOMBIE)
wakeup1(initproc);
}
}
// Jump into the scheduler, never to return.
curproc->state = ZOMBIE;
sched();
panic("zombie exit");
}
// Wait for a child process to exit and return its pid.
// Return -1 if this process has no children.
int
wait(void)
{
struct proc *p;
int havekids, pid;
struct proc *curproc = myproc();
acquire(&ptable.lock);
for(;;){
// Scan through table looking for exited children.
havekids = 0;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->parent != curproc)
continue;
havekids = 1;
if(p->state == ZOMBIE){
// Found one.
pid = p->pid;
kfree(p->kstack);
p->kstack = 0;
freevm(p->pgdir);
p->pid = 0;
p->parent = 0;
p->name[0] = 0;
p->killed = 0;
p->state = UNUSED;
release(&ptable.lock);
return pid;
}
}
// No point waiting if we don't have any children.
if(!havekids || curproc->killed){
release(&ptable.lock);
return -1;
}
// Wait for children to exit. (See wakeup1 call in proc_exit.)
sleep(curproc, &ptable.lock); //DOC: wait-sleep
}
}
//PAGEBREAK: 42
// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - swtch to start running that process
// - eventually that process transfers control
// via swtch back to the scheduler.
void
scheduler(void)
{
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
// Enable interrupts on this processor.
sti();
// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c->proc = p;
switchuvm(p);
p->state = RUNNING;
swtch(&(c->scheduler), p->context);
switchkvm();
// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;
}
release(&ptable.lock);
}
}
// Enter scheduler. Must hold only ptable.lock
// and have changed proc->state. Saves and restores
// intena because intena is a property of this
// kernel thread, not this CPU. It should
// be proc->intena and proc->ncli, but that would
// break in the few places where a lock is held but
// there's no process.
void
sched(void)
{
int intena;
struct proc *p = myproc();
if(!holding(&ptable.lock))
panic("sched ptable.lock");
if(mycpu()->ncli != 1)
panic("sched locks");
if(p->state == RUNNING)
panic("sched running");
if(readeflags()&FL_IF)
panic("sched interruptible");
intena = mycpu()->intena;
swtch(&p->context, mycpu()->scheduler);
mycpu()->intena = intena;
}
// Give up the CPU for one scheduling round.
void
yield(void)
{
acquire(&ptable.lock); //DOC: yieldlock
myproc()->state = RUNNABLE;
sched();
release(&ptable.lock);
}
// A fork child's very first scheduling by scheduler()
// will swtch here. "Return" to user space.
void
forkret(void)
{
static int first = 1;
// Still holding ptable.lock from scheduler.
release(&ptable.lock);
if (first) {
// Some initialization functions must be run in the context
// of a regular process (e.g., they call sleep), and thus cannot
// be run from main().
first = 0;
iinit(ROOTDEV);
initlog(ROOTDEV);
}
// Return to "caller", actually trapret (see allocproc).
}
// Atomically release lock and sleep on chan.
// Reacquires lock when awakened.
void
sleep(void *chan, struct spinlock *lk)
{
struct proc *p = myproc();
if(p == 0)
panic("sleep");
if(lk == 0)
panic("sleep without lk");
// Must acquire ptable.lock in order to
// change p->state and then call sched.
// Once we hold ptable.lock, we can be
// guaranteed that we won't miss any wakeup
// (wakeup runs with ptable.lock locked),
// so it's okay to release lk.
if(lk != &ptable.lock){ //DOC: sleeplock0
acquire(&ptable.lock); //DOC: sleeplock1
release(lk);
}
// Go to sleep.
p->chan = chan;
p->state = SLEEPING;
sched();
// Tidy up.
p->chan = 0;
// Reacquire original lock.
if(lk != &ptable.lock){ //DOC: sleeplock2
release(&ptable.lock);
acquire(lk);
}
}
//PAGEBREAK!
// Wake up all processes sleeping on chan.
// The ptable lock must be held.
static void
wakeup1(void *chan)
{
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == SLEEPING && p->chan == chan)
p->state = RUNNABLE;
}
// Wake up all processes sleeping on chan.
void
wakeup(void *chan)
{
acquire(&ptable.lock);
wakeup1(chan);
release(&ptable.lock);
}
// Kill the process with the given pid.
// Process won't exit until it returns
// to user space (see trap in trap.c).
int
kill(int pid)
{
struct proc *p;
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->pid == pid){
p->killed = 1;
// Wake process from sleep if necessary.
if(p->state == SLEEPING)
p->state = RUNNABLE;
release(&ptable.lock);
return 0;
}
}
release(&ptable.lock);
return -1;
}
//PAGEBREAK: 36
// Print a process listing to console. For debugging.
// Runs when user types ^P on console.
// No lock to avoid wedging a stuck machine further.
void
procdump(void)
{
static char *states[] = {
[UNUSED] "unused",
[EMBRYO] "embryo",
[SLEEPING] "sleep ",
[RUNNABLE] "runble",
[RUNNING] "run ",
[ZOMBIE] "zombie"
};
int i;
struct proc *p;
char *state;
uint pc[10];
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state == UNUSED)
continue;
if(p->state >= 0 && p->state < NELEM(states) && states[p->state])
state = states[p->state];
else
state = "???";
cprintf("%d %s %s", p->pid, state, p->name);
if(p->state == SLEEPING){
getcallerpcs((uint*)p->context->ebp+2, pc);
for(i=0; i<10 && pc[i] != 0; i++)
cprintf(" %p", pc[i]);
}
cprintf("\n");
}
}