-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathutils.py
103 lines (74 loc) · 3.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
import pickle
import librosa
import sounddevice as sd
import tensorflow as tf
def inverse_stft_transform(stft_features, window_length, overlap):
return librosa.istft(stft_features, win_length=window_length, hop_length=overlap)
def revert_features_to_audio(features, phase, window_length, overlap, cleanMean=None, cleanStd=None):
# scale the outpus back to the original range
if cleanMean and cleanStd:
features = cleanStd * features + cleanMean
phase = np.transpose(phase, (1, 0))
features = np.squeeze(features)
features = features * np.exp(1j * phase) # that fixes the abs() ope previously done
features = np.transpose(features, (1, 0))
return inverse_stft_transform(features, window_length=window_length, overlap=overlap)
def play(audio, sample_rate):
# ipd.display(ipd.Audio(data=audio, rate=sample_rate)) # load a local WAV file
sd.play(audio, sample_rate, blocking=True)
def add_noise_to_clean_audio(clean_audio, noise_signal):
if len(clean_audio) >= len(noise_signal):
# print("The noisy signal is smaller than the clean audio input. Duplicating the noise.")
while len(clean_audio) >= len(noise_signal):
noise_signal = np.append(noise_signal, noise_signal)
## Extract a noise segment from a random location in the noise file
ind = np.random.randint(0, noise_signal.size - clean_audio.size)
noiseSegment = noise_signal[ind: ind + clean_audio.size]
speech_power = np.sum(clean_audio ** 2)
noise_power = np.sum(noiseSegment ** 2)
noisyAudio = clean_audio + np.sqrt(speech_power / noise_power) * noiseSegment
return noisyAudio
def read_audio(filepath, sample_rate, normalize=True):
audio, sr = librosa.load(filepath, sr=sample_rate)
if normalize is True:
div_fac = 1 / np.max(np.abs(audio)) / 3.0
audio = audio * div_fac
# audio = librosa.util.normalize(audio)
return audio, sr
def prepare_input_features(stft_features, numSegments, numFeatures):
noisySTFT = np.concatenate([stft_features[:, 0:numSegments - 1], stft_features], axis=1)
stftSegments = np.zeros((numFeatures, numSegments, noisySTFT.shape[1] - numSegments + 1))
for index in range(noisySTFT.shape[1] - numSegments + 1):
stftSegments[:, :, index] = noisySTFT[:, index:index + numSegments]
return stftSegments
def get_input_features(predictorsList):
predictors = []
for noisy_stft_mag_features in predictorsList:
# For CNN, the input feature consisted of 8 consecutive noisy
# STFT magnitude vectors of size: 129 × 8,
# TODO: duration: 100ms
inputFeatures = prepare_input_features(noisy_stft_mag_features)
# print("inputFeatures.shape", inputFeatures.shape)
predictors.append(inputFeatures)
return predictors
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
if isinstance(value, type(tf.constant(0))):
value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _float_feature(value):
"""Returns a float_list from a float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def _int64_feature(value):
"""Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def get_tf_feature(noise_stft_mag_features, clean_stft_magnitude, noise_stft_phase):
noise_stft_mag_features = noise_stft_mag_features.astype(np.float32).tostring()
clean_stft_magnitude = clean_stft_magnitude.astype(np.float32).tostring()
noise_stft_phase = noise_stft_phase.astype(np.float32).tostring()
example = tf.train.Example(features=tf.train.Features(feature={
'noise_stft_phase': _bytes_feature(noise_stft_phase),
'noise_stft_mag_features': _bytes_feature(noise_stft_mag_features),
'clean_stft_magnitude': _bytes_feature(clean_stft_magnitude)}))
return example