-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsxmReader.py
99 lines (86 loc) · 3.59 KB
/
sxmReader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import struct
import numpy as np
import pandas as pd
class NanonisSXM():
"""
Read all channels from Nanonis .sxm binary file and return requested data.
Parameters: img : rank2 numpy array with the same shape [0] and [1]
Input image.
Return: img_aug : rank3 numpy array
Data augmentation of 8 new images (mirror and/or rotate by 90/180/270 degrees).
"""
def __init__(self, fname):
self.fname = fname
assert self.fname.endswith('.sxm')
assert os.path.exists(self.fname)
self.header = {}
self.size = {}
self.channels = []
self.channels_name = []
self._read_file()
self._read_channel_names()
def _read_file(self):
"""
Read in both both header and data in Nanonis .sxm binary file.
"""
with open(self.fname, 'rb') as fs:
header_ended = False
line = ''
key = ''
while not header_ended:
line = fs.readline().rstrip()
if line == b':SCANIT_END:':
header_ended = True
else:
if line[:1] == b':':
key = line.split(b':')[1].decode('ascii')
self.header[key] = []
else:
if line: # remove empty lines
self.header[key].append(line.decode('ascii').split())
self.size['pixels'] = {
'x': int(self.header['SCAN_PIXELS'][0][0]),
'y': int(self.header['SCAN_PIXELS'][0][1]),
}
self.size['real'] = {
'x': float(self.header['SCAN_RANGE'][0][0]),
'y': float(self.header['SCAN_RANGE'][0][1]),
}
def _read_channel_names(self):
self.channels = pd.DataFrame(self.header['DATA_INFO'][1:],
columns=self.header['DATA_INFO'][0])
self.channels_name = self.channels['Name'].to_list()
def list_channels(self):
print('Available channels:')
print(self.channels_name)
def retrieve_channel_data(self, channel_name, direction='forward'):
"""Function for retrieving a specific channel data.
Args:
channel_name (str): Channel name
direction (str, optional): Scan direction. Defaults to 'forward'.
Returns:
str: Retrieved data.
"""
channel_pos = 0
df = self.channels
for i in range(df.shape[0]):
if df['Name'][i] == channel_name:
if df['Direction'][i] == 'both' and direction == 'backward':
channel_pos += 1
if df['Direction'][i] == 'both' or df['Direction'][i] == direction:
break
return None
elif df['Direction'][i] == 'both':
channel_pos += 2
else:
channel_pos += 1
data_per_channel = self.size['pixels']['x'] * self.size['pixels']['y']
fhandle = open(self.fname, 'rb')
read_all = fhandle.read()
offset = read_all.find(b'\x1A\x04')
fhandle.seek(offset+2+channel_pos*data_per_channel*4)
data = struct.unpack('<>'['MSBFIRST'==self.header['SCANIT_TYPE'][0][1]]+str(data_per_channel)+{'FLOAT':'f','INT':'i','UINT':'I','DOUBLE':'d'}[self.header['SCANIT_TYPE'][0][0]],
fhandle.read(4*data_per_channel))
data = np.array(data).reshape((self.size['pixels']['y'], self.size['pixels']['x']))
return data