-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmvtec_dataset.py
225 lines (191 loc) · 8.07 KB
/
mvtec_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from PIL import Image
import os
import os.path
import sys
import torch
import torch.utils.data as data
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp',
'.pgm', '.tif', '.tiff', '.webp')
def has_file_allowed_extension(filename, extensions):
"""Checks if a file is an allowed extension.
Args:
filename (string): path to a file
extensions (tuple of strings): extensions to consider (lowercase)
Returns:
bool: True if the filename ends with one of given extensions
"""
return filename.lower().endswith(extensions)
def is_image_file(filename):
"""Checks if a file is an allowed image extension.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
return has_file_allowed_extension(filename, IMG_EXTENSIONS)
class MVTec_AD(data.Dataset):
"""A generic data loader where the samples are arranged in this way: ::
root/class_x/xxx.ext
root/class_x/xxy.ext
root/class_x/xxz.ext
root/class_y/123.ext
root/class_y/nsdf3.ext
root/class_y/asd932_.ext
Args:
root (string): Root directory path.
loader (callable): A function to load a sample given its path.
extensions (tuple[string]): A list of allowed extensions.
both extensions and is_valid_file should not be passed.
transform (callable, optional): A function/transform that takes in
a sample and returns a transformed version.
E.g, ``transforms.RandomCrop`` for images.
target_transform (callable, optional): A function/transform that takes
in the target and transforms it.
is_valid_file (callable, optional): A function that takes path of an Image file
and check if the file is a valid_file (used to check of corrupt files)
both extensions and is_valid_file should not be passed.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
samples (list): List of (sample path, class_index) tuples
targets (list): The class_index value for each image in the dataset
"""
def make_dataset(self, dir, class_to_idx, extensions=None, is_valid_file=None):
images = []
dir = os.path.expanduser(dir)
if self.phase == 'test':
gt_dir = os.path.join(dir, 'ground_truth')
dir = os.path.join(dir, self.phase)
if not ((extensions is None) ^ (is_valid_file is None)):
raise ValueError(
"Both extensions and is_valid_file cannot be None or not None at the same time")
if extensions is not None:
def is_valid_file(x):
return has_file_allowed_extension(x, extensions)
for target in sorted(class_to_idx.keys()):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
path = os.path.join(root, fname)
if self.phase == 'test':
if target == 'good':
gt_path = None
else:
gt_fname = fname.split('.')[0] + '_mask.png'
gt_path = os.path.join(gt_dir, target, gt_fname)
if is_valid_file(path):
if self.phase == 'test':
item = (path, gt_path, class_to_idx[target])
else:
item = (path, class_to_idx[target])
images.append(item)
return images
def __init__(self, root, transform=None,
mask_transform=None, extensions=IMG_EXTENSIONS,
is_valid_file=None, phase='train'):
if isinstance(root, torch._six.string_classes):
root = os.path.expanduser(root)
self.root = root
if phase not in ('train', 'test'):
raise (RuntimeError(
'phase of MVTec_AD dataset must be "train" or "test".'))
self.phase = phase
data_dir = os.path.join(self.root, phase)
classes, class_to_idx = self._find_classes(data_dir)
samples = self.make_dataset(
self.root, class_to_idx, extensions, is_valid_file)
if len(samples) == 0:
raise (RuntimeError("Found 0 files in subfolders of: " + data_dir + "\n"
"Supported extensions are: " + ",".join(extensions)))
self.extensions = extensions
self.transform = transform
self.mask_transform = mask_transform
self.classes = classes
self.class_to_idx = class_to_idx
self.samples = samples
self.imgs = self.samples
self.targets = [s[1] for s in samples]
def pil_loader(self, path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def _find_classes(self, dir):
"""
Finds the class folders in a dataset.
Args:
dir (string): Root directory path.
Returns:
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
Ensures:
No class is a subdirectory of another.
"""
if sys.version_info >= (3, 5):
# Faster and available in Python 3.5 and above
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
else:
classes = [d for d in os.listdir(
dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
if self.phase == 'train':
path, target = self.samples[index]
sample = self.pil_loader(path)
if self.transform is not None:
sample = self.transform(sample)
# if self.target_transform is not None:
# target = self.target_transform(target)
return sample, target
else:
path, gt_path, target = self.samples[index]
sample = self.pil_loader(path)
if gt_path is None:
gt_mask = Image.new('L', sample.size)
else:
gt_mask = Image.open(gt_path)
if self.transform is not None:
sample = self.transform(sample)
if self.mask_transform is not None:
gt_mask = self.mask_transform(gt_mask)
# if self.target_transform is not None:
# target = self.target_transform(target)
return sample, gt_mask, target
def __len__(self):
return len(self.samples)
if __name__ == "__main__":
from torchvision import transforms
from torch.utils.data import DataLoader
imH = 512
imW = 512
class_dir = 'leather/'
test_dataset_dir = '/home/cly/data_disk/MVTec_AD/data/' + class_dir
std = [0.229, 0.224, 0.225]
mean = [0.485, 0.456, 0.406]
trans = transforms.Compose([
# transforms.RandomCrop((imH, imW)),
transforms.Resize((imH, imW)),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
trans2 = transforms.Compose([
# transforms.RandomCrop((imH, imW)),
transforms.Resize((imH, imW), Image.NEAREST),
transforms.ToTensor(),
# transforms.Normalize(mean, std)
])
test_dataset = MVTec_AD(test_dataset_dir, transform=trans,
mask_transform=trans2, phase='test')
test_dataloader = DataLoader(test_dataset, batch_size=1)
img, gt_mask, _ = next(iter(test_dataloader))
print(img.shape)
print(gt_mask.shape)