-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnew_student.py
415 lines (374 loc) · 14.2 KB
/
new_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import torch
from transformer import Transformer
from pencoder import NestedTensor, nested_tensor_from_tensor_list, PositionEmbeddingLearned
import torch.nn as nn
import numpy as np
from torch import nn
from fast_dense_feature_extractor import *
class _Teacher17(nn.Module):
"""
T^ net for patch size 17.
"""
def __init__(self):
super(_Teacher17, self).__init__()
self.net = nn.Sequential(
# Input n*3*17*17
# ???? kernel_size=5????
nn.Conv2d(3, 128, kernel_size=6, stride=1),
nn.LeakyReLU(5e-3),
# n*128*12*12
nn.Conv2d(128, 256, kernel_size=5, stride=1),
nn.LeakyReLU(5e-3),
# n*256*8*8
nn.Conv2d(256, 256, kernel_size=5, stride=1),
nn.LeakyReLU(5e-3),
# n*256*4*4
nn.Conv2d(256, 128, kernel_size=4, stride=1),
# n*128*1*1
)
self.decode = nn.Linear(128, 512)
# nn.Sequential(
# # nn.LeakyReLU(5e-3),
# # # n*128*1*1
# # nn.Conv2d(128, 512, kernel_size=1, stride=1),
# # output n*512*1*1
# )
def forward(self, x):
x = self.net(x)
x = x.view(-1, 128)
x = self.decode(x)
return x
class _Teacher33(nn.Module):
"""
T^ net for patch size 33.
"""
def __init__(self):
super(_Teacher33, self).__init__()
self.net = nn.Sequential(
# Input n*3*33*33
nn.Conv2d(3, 128, kernel_size=3, stride=1),
# nn.BatchNorm2d(128),
nn.LeakyReLU(5e-3),
# n*128*29*29
nn.MaxPool2d(kernel_size=2, stride=2),
# n*128*14*14
nn.Conv2d(128, 256, kernel_size=5, stride=1),
# nn.BatchNorm2d(256),
nn.LeakyReLU(5e-3),
# n*256*10*10
nn.MaxPool2d(kernel_size=2, stride=2),
# n*256*5*5
nn.Conv2d(256, 256, kernel_size=2, stride=1),
# nn.BatchNorm2d(256),
nn.LeakyReLU(5e-3),
# n*256*4*4
nn.Conv2d(256, 128, kernel_size=4, stride=1),
# n*128*1*1
)
self.decode = nn.Linear(128, 512)
def forward(self, x):
x = self.net(x)
x = x.view(-1, 128)
x = self.decode(x)
return x
class _Teacher65(nn.Module):
"""
T^ net for patch size 65.
"""
def __init__(self):
super(_Teacher65, self).__init__()
self.net = nn.Sequential(
# Input n*3*65*65
nn.Conv2d(3, 128, kernel_size=5, stride=1),
nn.LeakyReLU(5e-3),
# n*128*61*61
nn.MaxPool2d(kernel_size=2, stride=2),
# n*128*30*30
nn.Conv2d(128, 128, kernel_size=5, stride=1),
nn.LeakyReLU(5e-3),
# n*128*26*26
nn.MaxPool2d(kernel_size=2, stride=2),
# n*128*13*13
nn.Conv2d(128, 128, kernel_size=5, stride=1),
nn.LeakyReLU(5e-3),
# n*128*9*9
nn.MaxPool2d(kernel_size=2, stride=2),
# n*256*4*4
nn.Conv2d(128, 256, kernel_size=4, stride=1),
nn.LeakyReLU(5e-3),
# n*256*1*1
# ???? kernel_size=3????
nn.Conv2d(256, 128, kernel_size=1, stride=1),
# n*128*1*1
)
self.decode = nn.Linear(128, 512)
def forward(self, x):
x = self.net(x)
x = x.view(-1, 128)
x = self.decode(x)
return x
class PoseRegressor(nn.Module):
""" A simple MLP to regress a pose component"""
def __init__(self, decoder_dim, output_dim, use_prior=False):
super().__init__()
ch = 256
self.fc_h = nn.Linear(decoder_dim, ch)
self.use_prior = use_prior
if self.use_prior:
self.fc_h_prior = nn.Linear(decoder_dim * 2, ch)
self.fc_o = nn.Linear(ch, output_dim)
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, x):
"""
Forward pass
"""
if self.use_prior:
x = F.gelu(self.fc_h_prior(x))
else:
x = F.gelu(self.fc_h(x))
return self.fc_o(x)
class Teacher17(nn.Module):
"""
Teacher network with patch size 17.
It has same architecture as T^17 because with no striding or pooling layers.
"""
def __init__(self, base_net: _Teacher17):
super(Teacher17, self).__init__()
self.multiPoolPrepare = multiPoolPrepare(17, 17)
self.net = base_net.net
def forward(self, x):
x = self.multiPoolPrepare(x)
x = self.net(x)
x = x.permute(0, 2, 3, 1)
return x
# class Student17(nn.Module):
# def __init__(self, ):
# super(Student17, self).__init__()
# self.multiprocess=multiPoolPrepare(17,17)
# self.unfold = nn.Unfold(17,1)
# self.input_proj = nn.Conv2d(3, 128, kernel_size=1)
# self.query_embed = nn.Embedding(15, 128)
# self.position_embedding = PositionEmbeddingLearned(64)
# self.log_softmax = nn.LogSoftmax(dim=1)
#
# self.scene_embed = nn.Linear(128, 1)
# self.regressor_head_t = nn.Sequential(*[PoseRegressor(128, 128) for _ in range(15)])
# self.transformer=Transformer()
#
#
# def forward(self, x,label):
# x = self.multiprocess(x)
# b=x.size(0)
# x = self.unfold(x)
# x = x.transpose(2,1)
# x = x.view(b,512*512,3,17,17).contiguous()
# batchsize=128
# out=[]
# for i in range(512*512//batchsize):
# xseg = x[:,i*batchsize:i*batchsize+batchsize]
# xsegnew=xseg.view(b*batchsize,3,17,17)
# xsamples = nested_tensor_from_tensor_list(xsegnew)
# x1 = xsamples.tensors
# mask = xsamples.mask
# x_proj = self.input_proj(x1)
# pos =self.position_embedding(x_proj)
# local_descs = self.transformer(x_proj, mask, self.query_embed.weight, pos)[0][0]
# scene_log_distr = self.log_softmax(self.scene_embed(local_descs)).squeeze(2)
# _, max_indices = scene_log_distr.max(dim=1)
# w = local_descs * 0
# w[range(batchsize*b), max_indices, :] = 1
# global_desc_t = torch.sum(w * local_descs, dim=1)
# if label is not None:
# max_indices = label.repeat(b*batchsize)
#
# expected_pose = torch.zeros((batchsize*b, 128)).to(global_desc_t.device).to(global_desc_t.dtype)
# for i1 in range(batchsize*b):
# x_t = self.regressor_head_t[max_indices[i1]](global_desc_t[i1].unsqueeze(0))
# expected_pose[i, :] = x_t
# return x
# 框架功能基本参照pose
# 对17*17/33*33/65*65的patch进行操作
class StudentTrans(nn.Module):
def __init__(self, ):
super(StudentTrans, self).__init__()
# 3转128维度
self.input_proj = nn.Conv2d(3, 128, kernel_size=1)
# 15类-15个learnable query
self.query_embed = nn.Embedding(15, 128)
# 64:编码维度
self.position_embedding = PositionEmbeddingLearned(64)
# 类别选择log_softmax
self.log_softmax = nn.LogSoftmax(dim=1) # 维度1上元素相加=1
# 将每个像素的[128维描述向量]变成[1维类别向量]备选
self.scene_embed = nn.Linear(128, 1)
# 构建单独15个回归器 (多层fc—)
self.regressor_head_t = nn.Sequential(*[PoseRegressor(128, 128) for _ in range(15)])
self.transformer = Transformer()
def forward(self, x, label=None):
b = x.size(0)
# nested tensor mask
xsamples = nested_tensor_from_tensor_list(x)
x1 = xsamples.tensors
mask = xsamples.mask
# 3->128
x_proj = self.input_proj(x1)
# +positional Embedding
pos = self.position_embedding(x_proj)
# transformer输入:(x_proj, mask, self.query_embed.weight, pos)
local_descs = self.transformer(x_proj, mask, self.query_embed.weight, pos)[0][0]
# local_descs局部描述输出即为:[1, 15, 128]
out = self.scene_embed(local_descs)
scene_log_distr = self.log_softmax(out).squeeze(2) #去掉多余维度只要第3维信息
# return最大值类别索引序号
_, max_indices = scene_log_distr.max(dim=1)
# train------------------------------------------------------------------------------
#权重向量 选出对应类输出 没用的置0
w = local_descs * 0
w[range(b), max_indices, :] = 1
# 全局描述
global_desc_t = torch.sum(w * local_descs, dim=1)
# 标签,训练加,测试可加可不加。
if label is not None:
max_indices = label
# 输出期望类别的128维向量(pixel info)
expected_vec = torch.zeros((b, 128)).to(global_desc_t.device)
for i1 in range(b):
x_t = self.regressor_head_t[max_indices[i1]](global_desc_t[i1].unsqueeze(0))
expected_vec[i1, :] = x_t
return expected_vec,out
# ------------------------------------------------------------------------------
class Teacher33(nn.Module):
"""
Teacher network with patch size 33.
"""
def __init__(self, base_net: _Teacher33, imH, imW):
super(Teacher33, self).__init__()
self.imH = imH
self.imW = imW
self.sL1 = 2
self.sL2 = 2
# image height and width should be multiples of sL1∗sL2∗sL3...
# self.imW = int(np.ceil(imW / (self.sL1 * self.sL2)) * self.sL1 * self.sL2)
# self.imH = int(np.ceil(imH / (self.sL1 * self.sL2)) * self.sL1 * self.sL2)
assert imH % (self.sL1 * self.sL2) == 0, \
"image height should be multiples of (sL1∗sL2) which is " + \
str(self.sL1 * self.sL2)
assert imW % (self.sL1 * self.sL2) == 0, \
"image width should be multiples of (sL1∗sL2) which is " + \
str(self.sL1 * self.sL2)
self.outChans = base_net.net[-1].out_channels
self.net = nn.Sequential(
multiPoolPrepare(33, 33),
base_net.net[0],
base_net.net[1],
multiMaxPooling(self.sL1, self.sL1, self.sL1, self.sL1),
base_net.net[3],
base_net.net[4],
multiMaxPooling(self.sL2, self.sL2, self.sL2, self.sL2),
base_net.net[6],
base_net.net[7],
base_net.net[8],
unwrapPrepare(),
unwrapPool(self.outChans, imH / (self.sL1 * self.sL2),
imW / (self.sL1 * self.sL2), self.sL2, self.sL2),
unwrapPool(self.outChans, imH / self.sL1,
imW / self.sL1, self.sL1, self.sL1),
)
def forward(self, x):
x = self.net(x)
x = x.view(x.shape[0], self.imH, self.imW, -1)
x = x.permute(3, 1, 2, 0)
return x
class Teacher65(nn.Module):
"""
Teacher network with patch size 65.
"""
def __init__(self, base_net: _Teacher65, imH, imW):
super(Teacher65, self).__init__()
self.imH = imH
self.imW = imW
self.sL1 = 2
self.sL2 = 2
self.sL3 = 2
# image height and width should be multiples of sL1∗sL2∗sL3...
# self.imW = int(np.ceil(imW / (self.sL1 * self.sL2)) * self.sL1 * self.sL2)
# self.imH = int(np.ceil(imH / (self.sL1 * self.sL2)) * self.sL1 * self.sL2)
assert imH % (self.sL1 * self.sL2 * self.sL3) == 0, \
'image height should be multiples of (sL1∗sL2*sL3) which is ' + \
str(self.sL1 * self.sL2 * self.sL3) + '.'
assert imW % (self.sL1 * self.sL2 * self.sL3) == 0, \
'image width should be multiples of (sL1∗sL2*sL3) which is ' + \
str(self.sL1 * self.sL2 * self.sL3) + '.'
self.outChans = base_net.net[-1].out_channels
self.net = nn.Sequential(
multiPoolPrepare(65, 65),
base_net.net[0],
base_net.net[1],
multiMaxPooling(self.sL1, self.sL1, self.sL1, self.sL1),
base_net.net[3],
base_net.net[4],
multiMaxPooling(self.sL2, self.sL2, self.sL2, self.sL2),
base_net.net[6],
base_net.net[7],
multiMaxPooling(self.sL3, self.sL3, self.sL3, self.sL3),
base_net.net[9],
base_net.net[10],
base_net.net[11],
unwrapPrepare(),
unwrapPool(self.outChans, imH / (self.sL1 * self.sL2 * self.sL3),
imW / (self.sL1 * self.sL2 * self.sL3), self.sL3, self.sL3),
unwrapPool(self.outChans, imH / (self.sL1 * self.sL2),
imW / (self.sL1 * self.sL2), self.sL2, self.sL2),
unwrapPool(self.outChans, imH / self.sL1,
imW / self.sL1, self.sL1, self.sL1),
)
def forward(self, x):
x = self.net(x)
# print(x.shape)
x = x.view(x.shape[0], self.imH, self.imW, -1)
x = x.permute(3,1,2,0)
return x
def _Teacher(patch_size):
if patch_size == 17:
return _Teacher17()
if patch_size == 33:
return _Teacher33()
if patch_size == 65:
return _Teacher65()
else:
print('No implementation of net wiht patch_size: ' + str(patch_size))
return None
# 加载teacher
def TeacherOrStudent(patch_size, base_net, imH=None, imW=None):
if patch_size == 17:
return Teacher17(base_net)
if patch_size == 33:
if imH is None or imW is None:
print('imH and imW are necessary.')
return None
return Teacher33(base_net, imH, imW)
if patch_size == 65:
if imH is None or imW is None:
print('imH and imW are necessary.')
return None
return Teacher65(base_net, imH, imW)
else:
print('No implementation of net wiht patch_size: '+str(patch_size))
return None
if __name__ == "__main__":
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '6'
net = StudentTrans()
net = nn.DataParallel(net).cuda()
imH = 17
imW = 17
batch_size=2048
#
x = torch.ones((batch_size, 3, imH, imW)).cuda()
y=torch.ones((batch_size)).long().cuda()
out=net(x,y)
print(out.shape)