forked from unslothai/unsloth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunsloth-cli.py
229 lines (195 loc) · 11.9 KB
/
unsloth-cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env python3
"""
🦥 Starter Script for Fine-Tuning FastLanguageModel with Unsloth
This script is designed as a starting point for fine-tuning your models using unsloth.
It includes configurable options for model loading, PEFT parameters, training arguments,
and model saving/pushing functionalities.
You will likely want to customize this script to suit your specific use case
and requirements.
Here are a few suggestions for customization:
- Modify the dataset loading and preprocessing steps to match your data.
- Customize the model saving and pushing configurations.
Usage: (most of the options have valid default values this is an extended example for demonstration purposes)
python unsloth-cli.py --model_name "unsloth/llama-3-8b" --max_seq_length 8192 --dtype None --load_in_4bit \
--r 64 --lora_alpha 32 --lora_dropout 0.1 --bias "none" --use_gradient_checkpointing "unsloth" \
--random_state 3407 --use_rslora --per_device_train_batch_size 4 --gradient_accumulation_steps 8 \
--warmup_steps 5 --max_steps 400 --learning_rate 2e-6 --logging_steps 1 --optim "adamw_8bit" \
--weight_decay 0.005 --lr_scheduler_type "linear" --seed 3407 --output_dir "outputs" \
--report_to "tensorboard" --save_model --save_path "model" --quantization_method "f16" \
--push_model --hub_path "hf/model" --hub_token "your_hf_token"
To see a full list of configurable options, use:
python unsloth-cli.py --help
Happy fine-tuning!
"""
import argparse
import os
def run(args):
import torch
from unsloth import FastLanguageModel
from datasets import load_dataset
from transformers.utils import strtobool
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
import logging
logging.getLogger('hf-to-gguf').setLevel(logging.WARNING)
# Load model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=args.model_name,
max_seq_length=args.max_seq_length,
dtype=args.dtype,
load_in_4bit=args.load_in_4bit,
)
# Configure PEFT model
model = FastLanguageModel.get_peft_model(
model,
r=args.r,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"],
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias=args.bias,
use_gradient_checkpointing=args.use_gradient_checkpointing,
random_state=args.random_state,
use_rslora=args.use_rslora,
loftq_config=args.loftq_config,
)
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return {"text": texts}
use_modelscope = strtobool(os.environ.get('UNSLOTH_USE_MODELSCOPE', 'False'))
if use_modelscope:
from modelscope import MsDataset
dataset = MsDataset.load(args.dataset, split="train")
else:
# Load and format dataset
dataset = load_dataset(args.dataset, split="train")
dataset = dataset.map(formatting_prompts_func, batched=True)
print("Data is formatted and ready!")
# Configure training arguments
training_args = TrainingArguments(
per_device_train_batch_size=args.per_device_train_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
warmup_steps=args.warmup_steps,
max_steps=args.max_steps,
learning_rate=args.learning_rate,
fp16=not is_bfloat16_supported(),
bf16=is_bfloat16_supported(),
logging_steps=args.logging_steps,
optim=args.optim,
weight_decay=args.weight_decay,
lr_scheduler_type=args.lr_scheduler_type,
seed=args.seed,
output_dir=args.output_dir,
report_to=args.report_to,
)
# Initialize trainer
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=args.max_seq_length,
dataset_num_proc=2,
packing=False,
args=training_args,
)
# Train model
trainer_stats = trainer.train()
# Save model
if args.save_model:
# if args.quantization_method is a list, we will save the model for each quantization method
if args.save_gguf:
if isinstance(args.quantization, list):
for quantization_method in args.quantization:
print(f"Saving model with quantization method: {quantization_method}")
model.save_pretrained_gguf(
args.save_path,
tokenizer,
quantization_method=quantization_method,
)
if args.push_model:
model.push_to_hub_gguf(
hub_path=args.hub_path,
hub_token=args.hub_token,
quantization_method=quantization_method,
)
else:
print(f"Saving model with quantization method: {args.quantization}")
model.save_pretrained_gguf(args.save_path, tokenizer, quantization_method=args.quantization)
if args.push_model:
model.push_to_hub_gguf(
hub_path=args.hub_path,
hub_token=args.hub_token,
quantization_method=quantization_method,
)
else:
model.save_pretrained_merged(args.save_path, tokenizer, args.save_method)
if args.push_model:
model.push_to_hub_merged(args.save_path, tokenizer, args.hub_token)
else:
print("Warning: The model is not saved!")
if __name__ == "__main__":
# Define argument parser
parser = argparse.ArgumentParser(description="🦥 Fine-tune your llm faster using unsloth!")
model_group = parser.add_argument_group("🤖 Model Options")
model_group.add_argument('--model_name', type=str, default="unsloth/llama-3-8b", help="Model name to load")
model_group.add_argument('--max_seq_length', type=int, default=2048, help="Maximum sequence length, default is 2048. We auto support RoPE Scaling internally!")
model_group.add_argument('--dtype', type=str, default=None, help="Data type for model (None for auto detection)")
model_group.add_argument('--load_in_4bit', action='store_true', help="Use 4bit quantization to reduce memory usage")
model_group.add_argument('--dataset', type=str, default="yahma/alpaca-cleaned", help="Huggingface dataset to use for training")
lora_group = parser.add_argument_group("🧠LoRA Options", "These options are used to configure the LoRA model.")
lora_group.add_argument('--r', type=int, default=16, help="Rank for Lora model, default is 16. (common values: 8, 16, 32, 64, 128)")
lora_group.add_argument('--lora_alpha', type=int, default=16, help="LoRA alpha parameter, default is 16. (common values: 8, 16, 32, 64, 128)")
lora_group.add_argument('--lora_dropout', type=float, default=0, help="LoRA dropout rate, default is 0.0 which is optimized.")
lora_group.add_argument('--bias', type=str, default="none", help="Bias setting for LoRA")
lora_group.add_argument('--use_gradient_checkpointing', type=str, default="unsloth", help="Use gradient checkpointing")
lora_group.add_argument('--random_state', type=int, default=3407, help="Random state for reproducibility, default is 3407.")
lora_group.add_argument('--use_rslora', action='store_true', help="Use rank stabilized LoRA")
lora_group.add_argument('--loftq_config', type=str, default=None, help="Configuration for LoftQ")
training_group = parser.add_argument_group("🎓 Training Options")
training_group.add_argument('--per_device_train_batch_size', type=int, default=2, help="Batch size per device during training, default is 2.")
training_group.add_argument('--gradient_accumulation_steps', type=int, default=4, help="Number of gradient accumulation steps, default is 4.")
training_group.add_argument('--warmup_steps', type=int, default=5, help="Number of warmup steps, default is 5.")
training_group.add_argument('--max_steps', type=int, default=400, help="Maximum number of training steps.")
training_group.add_argument('--learning_rate', type=float, default=2e-4, help="Learning rate, default is 2e-4.")
training_group.add_argument('--optim', type=str, default="adamw_8bit", help="Optimizer type.")
training_group.add_argument('--weight_decay', type=float, default=0.01, help="Weight decay, default is 0.01.")
training_group.add_argument('--lr_scheduler_type', type=str, default="linear", help="Learning rate scheduler type, default is 'linear'.")
training_group.add_argument('--seed', type=int, default=3407, help="Seed for reproducibility, default is 3407.")
# Report/Logging arguments
report_group = parser.add_argument_group("📊 Report Options")
report_group.add_argument('--report_to', type=str, default="tensorboard",
choices=["azure_ml", "clearml", "codecarbon", "comet_ml", "dagshub", "dvclive", "flyte", "mlflow", "neptune", "tensorboard", "wandb", "all", "none"],
help="The list of integrations to report the results and logs to. Supported platforms are: \n\t\t 'azure_ml', 'clearml', 'codecarbon', 'comet_ml', 'dagshub', 'dvclive', 'flyte', 'mlflow', 'neptune', 'tensorboard', and 'wandb'. Use 'all' to report to all integrations installed, 'none' for no integrations.")
report_group.add_argument('--logging_steps', type=int, default=1, help="Logging steps, default is 1")
# Saving and pushing arguments
save_group = parser.add_argument_group('💾 Save Model Options')
save_group.add_argument('--output_dir', type=str, default="outputs", help="Output directory")
save_group.add_argument('--save_model', action='store_true', help="Save the model after training")
save_group.add_argument('--save_method', type=str, default="merged_16bit", choices=["merged_16bit", "merged_4bit", "lora"], help="Save method for the model, default is 'merged_16bit'")
save_group.add_argument('--save_gguf', action='store_true', help="Convert the model to GGUF after training")
save_group.add_argument('--save_path', type=str, default="model", help="Path to save the model")
save_group.add_argument('--quantization', type=str, default="q8_0", nargs="+",
help="Quantization method for saving the model. common values ('f16', 'q4_k_m', 'q8_0'), Check our wiki for all quantization methods https://github.com/unslothai/unsloth/wiki#saving-to-gguf ")
push_group = parser.add_argument_group('🚀 Push Model Options')
push_group.add_argument('--push_model', action='store_true', help="Push the model to Hugging Face hub after training")
push_group.add_argument('--push_gguf', action='store_true', help="Push the model as GGUF to Hugging Face hub after training")
push_group.add_argument('--hub_path', type=str, default="hf/model", help="Path on Hugging Face hub to push the model")
push_group.add_argument('--hub_token', type=str, help="Token for pushing the model to Hugging Face hub")
args = parser.parse_args()
run(args)