-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDataReader.py
1026 lines (887 loc) · 34.8 KB
/
DataReader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Data File Reader
# Author: dujung@kaist.ac.kr
#
import unittest
import gzip, csv, io
#import dateutil.parser as dp
import numpy as np # for matrix handling.
from datetime import datetime, timedelta
##############################
# class: GzCsvReader
# - for reading ~.csv.gz file in data folder.
class GzCsvReader:
def __init__(self, filename):
self._filename = filename
self._gzname = 'data/'+filename
self._gzfile = io.BufferedReader(gzip.open(self._gzname, "r"))
self._reader = csv.reader(io.TextIOWrapper(self._gzfile, newline=""))
self._header = self._reader.next() # header information.
self.build_header_map()
# header()
def header(self):
return self._header
# make column map index.
def build_header_map(self):
#class ColInd( object ):
# pass
#ret = ColInd()
ret = self
for i, name in enumerate(self._header):
#print('> %s=%d'%(name, i))
setattr(ret, name, i)
return ret
# next
def next(self):
try:
return self._reader.next()
except:
return None
# iterate support like (for x in self)
def __iter__(self):
return self._reader.__iter__()
# close file.
def close(self):
self._gzfile.close()
##############################
# Common Data Conversion Func
#B = lambda x:True if int(x) != 0 else False # boolean (better than int)
B = lambda x:1 if int(x) != 0 else 0 # boolean
I = lambda x:int(x) if x != '' else 0 # integer
F = lambda x:float(x) if x != '' else 0 # float
S = lambda x:x # string
#D = lambda x:dp.parse(x + ' 12:00:00') # date (yyyy-MM-dd)
T = lambda x:x # time (hh:mm:ss)
#DT = lambda x:dp.parse(x) # date-time (yyyy-MM-dd hh:mm:ss) !WARN! EASY BUT TOO SLOW FUNCTION.
#------------------------------
# IMPROVE DATETIME PARSER.
Dd = lambda x: [int(i) for i in x.split('-')] # date (yyyy-MM-dd)
Dt = lambda x: [int(i) for i in x.split(':')] # time (hh:mm:ss)
EPOCH = datetime(1970, 1, 1) # use POSIX epoch
def DT(x): # DT Datetime parser to seconds since EPOCH
if x=='': return 0
try:
y = x.split(' ')
d,t = [Dd(y[0]), Dt(y[1])]
t0 = datetime(d[0], d[1], d[2], t[0], t[1], t[2])
td = (t0 - EPOCH) # timedelta
return td.total_seconds()
except:
return -1 # -1 means invalid-time-data.
def D(x):
if x == '': return 0
return DT(x + ' 12:00:00')
def DTR(timestamp): # DT Reverse from second to Datetme.
utc_time = EPOCH + timedelta(seconds=int(timestamp))
return utc_time
MAX_ROW = -1 # maximum number of row to be read from csv (-1 means the unlimited)
#------------------------------
# time-usage print
# WARN! DO NOT USE RETURN VALUE IF @time_usage() used.
import time
def time_usage(func):
def wrapper(*args, **kwargs):
beg_ts = time.time()
func(*args, **kwargs)
end_ts = time.time()
print("%s - elapsed time: %f" % (func.func_name, end_ts - beg_ts))
return wrapper
##############################
# class: MatrixStack
# - to handle large size of matrix in stack for cut/merge
MATSTACK_GRP_SIZE = 100 # 255
class MatrixStack():
def __init__(self, name = "def"):
self._name = name # used in file saving.
self._matrix = None # one-single large matrix (it will merged one with merge_one() call)
self._matrix_y = None
self._matrix_list = [] # to save group of matrix in array.
self._matrix_list_y = [] # to save group of matrix-y in array.
self._grp_list = [] # sub-group
self._grp_list_y = [] # sub-group with Y.
self._count = 0 # number of rows in matrix.
# push single array ..........................................
def push(self, row, row_y, dtype=np.float32):
np_row = np.array(row, dtype)
row_y = int(row_y)
self._grp_list.append(np_row)
self._grp_list_y.append(row_y)
# increase count
self._count += 1
# check if
if self._count%MATSTACK_GRP_SIZE == 0: # matrix_256 must be full.
self.pack()
# the count of array in _matrix (# of group of 256 matrix)
def count(self):
return max(self._count/MATSTACK_GRP_SIZE, len(self._matrix_list))
# get np.array() matrix from to .............................
def get(self, start, end=None):
max = self.count()
end = start+1 if end is None else end
end = max if end < 0 else end
list = []
list_y = []
for i in range(start, end):
(m, m_y) = (self._matrix_list[i], self._matrix_list_y[i]) if i < max else None
if m is None:
break
list.append(m)
list_y.append(m_y)
matrix = np.vstack(list)
matrix_y = np.concatenate(list_y)
return (matrix, matrix_y)
# clear buffer...............................................
def reset(self):
self._matrix = None
self._matrix_y = None
self._matrix_list = []
self._matrix_list_y = []
self._grp_list = []
self._grp_list_y = []
self._count = 0
# pack _matrix_256 into _matrix..............................
def pack(self):
if len(self._grp_list) > 0:
(mat, mat_y) = (np.vstack(self._grp_list),self._grp_list_y)
self._matrix_list.append(mat)
self._matrix_list_y.append(mat_y)
self._grp_list = []
self._grp_list_y = []
# get filename from given name
def as_filename(self, name = None):
name = name if name else self._name
#name = name if name else "def"
filename = "data/mstack-"+name+".dat"
return filename
# save matrix into file......................................
# @return True if saved
def save_to_file(self, name=None):
filename = self.as_filename(name)
print("mstack.save_to_file(%s)...."%(filename))
self.pack()
if self._matrix_list is not None:
from six.moves import cPickle
f = open(filename, 'wb')
try:
cPickle.dump((self._count, self._matrix_list, self._matrix_list_y), f, protocol=cPickle.HIGHEST_PROTOCOL)
finally:
f.close()
print('matrix-stack: saved to file :'+filename+', count='+str(self._count))
return True
else:
return False
# load matrix object from file...............................
# @return True if load (and file exists)
def load_from_file(self, name=None):
import os.path
filename = self.as_filename(name)
print("mstack.load_from_file(%s)...."%(filename))
self.reset()
matrix_list = None
matrix_list_y = None
count = 0
# check if file exists.
if os.path.isfile(filename):
from six.moves import cPickle
f = open(filename, 'rb')
try:
(count, matrix_list, matrix_list_y) = cPickle.load(f)
finally:
f.close()
else:
return False
# check if data loaded.
if matrix_list is not None:
self._count = count
self._matrix_list = matrix_list
self._matrix_list_y = matrix_list_y
print('matrix-stack: loaded from file :'+filename+", count="+str(count))
return True
else:
return False
# matrix merge into single one...............................
def merge_one(self):
if len(self._matrix_list) > 0:
(mat, mat_y) = (np.vstack(self._matrix_list), np.concatenate(self._matrix_list_y))
self.reset()
self._matrix = mat
self._matrix_y = mat_y
return (self._matrix, self._matrix_y)
# test data itself ..........................................
@time_usage
def test(self, print_deep=False):
# print current matrix status.
cnt = lambda x: len(x) if x is not None else 0
print('mstack[%s] count=%d, matrix_list.cnt=%d, grp_list.cnt=%d ' % (self._name, self._count, cnt(self._matrix_list), cnt(self._grp_list)))
if print_deep:
for i,m in enumerate(self._matrix_list):
print('--------- : [%d/%d]' % (i, cnt(self._matrix_list)))
print(m[0:10,0:9])
print(self._matrix_list_y[i][0:9])
if self._matrix_256 is not None:
print('--------- : [last]')
print(self._grp_list[0:10,0:9])
print(self._grp_list_y[0:9])
##############################
# class: DataSheet
# - Abstract data-sheet (convert all string-valued value to int, float or datatime)
class DataSheet(GzCsvReader):
def __init__(self, filename):
#super(self.__class__, self).__init__(filename) - SEEMS NOT WORK IN VER 2.x
GzCsvReader.__init__(self, filename)
# filter function for each column data.
self._filters = [self.def_filter(i,name) for i,name in enumerate(self._header)]
# flag to auto-convert
self._is_conv = True
# move next(), and return the converted [] array.
def next(self):
#list = super(self.__class__, self).next()
list = GzCsvReader.next(self)
if list is None:
return []
else:
return self.filter(list)
# clear this matrix buffer to release memory.
def reset(self):
self._matrix = None
def filter(self, list):
#out = [self.conv(x) for x in list]
if self._is_conv:
out = [self.conv(i,v) for i,v in enumerate(list)]
else:
out = list
return out
# find out the target filter function.
def find_filter(self, col):
return self._filters[col]
# define filter by col-index
def def_filter(self, col, name):
print(':[%d] %s '%(col, name))
i = lambda x: int(x)
s = lambda x: x
return i if col < 1 else s
# execute conversion by id & value,
def conv(self, i, v):
try:
f = self.find_filter(i)
return f(v) if f else v
except:
print('ERR! convert colume %s - "%s" '%(i,str(v)))
raise
return v
# print next row with column name
def next_print(self):
row = self.next()
print('------------------------------------------------------')
for i,name in enumerate(self._header):
if isinstance(row[i], basestring):
print("[%02d] %30s = '%s'"%(i, self._header[i], str(row[i])))
else:
print("[%02d] %30s = %s"%(i, self._header[i], str(row[i])))
# populate all data into matrix.
def populate(self, force_reload = False):
return self.populate_4(force_reload)
# populate all data into matrix.
# Time - 3k => 1.2s ,4k => 2s, 5k => 3.8s
def populate_1(self):
list = self.next()
matrix = np.array(list)
for i,row in enumerate(self):
matrix = np.vstack((matrix, row)) # array push
if(MAX_ROW > 0 and i > MAX_ROW): break
self._matrix = matrix
return True
# populate all data into matrix. (stack up every 100 list)
# Time2 - 5k => 0.24s
def populate_2(self):
list = self.next()
matrix = np.array(list)
matrix_100 = np.array([])
for i,row in enumerate(self):
if(MAX_ROW > 0 and i > MAX_ROW): break
if i%100 == 0:
if matrix_100.size > 0:
matrix = np.vstack((matrix, matrix_100)) # array push
matrix_100 = np.array(row)
continue
matrix_100 = np.vstack((matrix_100, row)) # array push
if matrix_100.size > 0:
matrix = np.vstack((matrix, matrix_100)) # array push
self._matrix = matrix
return True
# populate all data into matrix. (stack up every 1000 list)
# Time3 - 5k => 0.66s (at 1000), 0.22s at 200, 0.32 at 500
# Time3 - 10k => 9.9s (1024), 6.43s (512), 6.36 (256)
def populate_3(self):
list = self.next()
matrix = np.array(list, dtype=np.float32)
matrix_256 = np.array([])
for i,row in enumerate(self):
list = self.filter(row)
if(MAX_ROW > 0 and i > MAX_ROW): break
if i%256 == 0:
if matrix_256.size > 0:
matrix = np.vstack((matrix, matrix_256)) # array push
print("Rows:%d"%(matrix.shape[0]))
print(list)
matrix_256 = np.array(list, dtype=np.float32)
continue
list_1 = np.array(list, dtype=np.float32)
matrix_256 = np.vstack((matrix_256, list_1)) # array push
if matrix_256.size > 0:
matrix = np.vstack((matrix, matrix_256)) # array push
self._matrix = matrix
return True
# populate#4 - save intermitent file every 1M lines. then rebuild.
# Time: 290ms for 2048 data-read.
@time_usage
def populate_4(self, force_build = False):
import os.path
# merge back splited file into one file with vstack.
@time_usage
def merge_split_to_matrix(thiz, max):
#- rebuild whole matrix from temp-file.
matrix_list = []
for fid in range(0, max):
filename = "data/%s-%04d"%(thiz._filename, fid)
is_file = os.path.isfile(filename)
if not is_file: break
thiz._matrix = None
thiz.load_from_file(filename)
print("> [%d] loaded matrix.count = %d "%(fid, len(thiz._matrix)))
if thiz._matrix is not None:
matrix_list.append(thiz._matrix)
matrix = np.vstack(matrix_list) # array push input matrix
print(">> Total matrix Count = %d"%(len(matrix)))
thiz._matrix = matrix
return True
# check if the temp-file exists already.
if not force_build:
filename = "data/%s-%04d"%(self._filename, 0)
is_file = os.path.isfile(filename)
if is_file:
print("INFO - start populating from cached files : "+filename)
merge_split_to_matrix(self, 999)
return True
############
# Build temp files.
RCOUNT = 256*4
PACK_ROW = RCOUNT*1024 # 4k * 256 = 1M
#PACK_ROW = RCOUNT*16 #TODO:XENI - for test.
# read rows
def read_rows(count):
mat = None
rows = []
for i in range(0, count):
row = self.next()
row = np.array(row, dtype=np.float32) # convert to float
if row.size < 1: break; # it must be EOL
rows.append(row)
if len(rows) < 1:
return None
mat = np.vstack(rows)
return mat
# enumerate all rows.
matrix_list = []
next_id = 0
i = 0
while(True):
mat = read_rows(RCOUNT)
if mat is None: break # must be EOL
# increase row number
i += mat.shape[0]
# check max-row.
if(MAX_ROW > 0 and i >= MAX_ROW):
matrix_list.append(mat) # array push
break
# print status every 1k
if i%(RCOUNT*4) == 0:
print("Rows: %d"%(i))
# do every 1M lines
if i%PACK_ROW == 0:
# add into list and clear current.
matrix = np.vstack(matrix_list)
matrix_list = []
if matrix is not None:
#save to temp file.
filename = "data/%s-%04d"%(self._filename, next_id)
self._matrix = matrix
self.save_to_file(filename)
next_id = next_id + 1
matrix = None
# init or push next-list
matrix_list.append(mat) # array push
# for the remained data.
if len(matrix_list) > 0:
# add into list and clear current.
matrix = np.vstack(matrix_list)
matrix_list = []
if matrix is not None:
#save to temp file.
filename = "data/%s-%04d"%(self._filename, next_id)
self._matrix = matrix
self.save_to_file(filename)
next_id = next_id + 1
matrix = None
# merge all temp-file to single
merge_split_to_matrix(self, next_id)
return True
# find-out all value for column
def cols(self, name):
try:
i = self._header.index(name)
return self._matrix[:,i]
except:
return np.array([])
# find-out all value for row
def rows(self, line):
try:
return self._matrix[line]
except:
return np.array([])
# save matrix to file
def save_to_file(self, filename=None):
print("save_to_file(%s)...."%(filename))
filename = filename if filename else (self._filename + ".dat")
matrix = self._matrix if hasattr(self, '_matrix') else None
try:
#! by using cPickle
if matrix is not None:
from six.moves import cPickle
f = open(filename, 'wb')
try:
cPickle.dump(matrix, f, protocol=cPickle.HIGHEST_PROTOCOL)
finally:
f.close()
print('> saved to file :'+filename)
#end of cPickle
return True
except:
print('WARN! failed to save to file, then try to delete :'+filename)
try:
import os
os.remove(filename)
except:
return False
return False
# load matrix object from file.
def load_from_file(self, filename=None):
print("load_from_file(%s)...."%(filename))
import os.path
filename = filename if filename else (self._filename + ".dat")
matrix = None
#! by using cPickle
if os.path.isfile(filename):
from six.moves import cPickle
f = open(filename, 'rb')
matrix = cPickle.load(f)
f.close()
#end of cPickle
if matrix is not None:
self._matrix = matrix
print('> loaded from file :'+filename)
return True
# clear all matrix data.
def clear(self):
self._matrix = np.array([])
# count of rows in matrix
def count(self):
cnt = lambda x: len(x) if x is not None else 0
return cnt(self._matrix)
# auto-loading (or populating & save back to file from matrix)
# Time Measure: 1.62s -> 0.08s with 1k data.
def load_auto(self, force_populate = False):
import os.path
fname = "data/"+self._filename+".0.dat"
print("INFO - load-auto : "+fname)
#- if there is no 0.dat file, then start populate.
is_file = os.path.isfile(fname)
if not is_file or force_populate:
print("INFO - started populating from gz-file"+self._gzname)
self.populate(force_populate)
is_file = False
#- ok! now save back to file if not found.
if not is_file:
self.save_to_file(fname)
else:
self.load_from_file(fname)
return fname
##############################
# class: SubmissionSheet
# - submisssion data type handling.
class SubmissionSheet(DataSheet):
def __init__(self):
DataSheet.__init__(self, "sample_submission.csv.gz")
#! override def_filter()
def def_filter(self, col, name):
#print('> [%d] %s '%(col, name))
#define filter-LUT
LUT = {'id':lambda x:int(x)}
try:
return LUT[name]
except:
return lambda x:x
##############################
# class: DestinationSheet
# - Destination data type handling.
class DestinationSheet(DataSheet):
def __init__(self):
DataSheet.__init__(self, "destinations.csv.gz")
self._map = None
self._missed = {} # not-found count of destination_id
#! override def_filter()
def def_filter(self, col, name):
#print('> [%d] %s '%(col, name))
#define filter-LUT
LUT = {'srch_destination_id':lambda x:int(x)}
try:
return LUT[name]
except:
return (lambda x:float(x)) if 1>0 else (lambda x:x)
#! build internal map from array.
def build_map(self, rebuild = False):
print("Destination.build_map(rebuild=%s)...."%("True" if rebuild else "False"))
if ((not rebuild) and self._map is not None):
return True
map_dest = {}
for m in self._matrix:
map_dest[m[0]] = m.tolist()
self._map = None if len(map_dest) < 1 else map_dest
return True if self._map is not None else False
#! lookup dest_id from map
def lookup(self, dest_id):
try:
return self._map[dest_id]
except:
if self._missed.has_key(dest_id):
self._missed[dest_id] = self._missed[dest_id] + 1
else:
self._missed[dest_id] = 0
if self._missed[dest_id] % 100 == 0:
print('- WARN! dest not found id:%d (missed %d)'%(dest_id, self._missed[dest_id]+1))
return None
##############################
# class: TestSheet
# - Test data handling.
# Rows:2,528,001
# [2528001, datetime.datetime(2015, 11, 13, 7, 29, 43), 2, 3, 66, 348, 18487, 251.7068, 1198021, False, False, 10, datetime.datetime(2015, 11, 25, 12, 0), datetime.datetime(2015, 11, 29, 12, 0), 1, 0, 1, 9524, 1, 2, 50, 561]
# --- hotel_market
# [27 1540 699 ..., 628 905 1490]
# > count=2115, min=0, max=2117 ---
# [('0', 55) ('1', 222) ('2', 17208) ..., ('2115', 37) ('2116', 72)
# ('2117', 634)]
class TestSheet(DataSheet):
def __init__(self):
DataSheet.__init__(self, "test.csv.gz")
#! override def_filter()
def def_filter(self, col, name):
LUT = {'id':I, 'date_time':DT, 'site_name':I ,'posa_continent':I
,'user_location_country':I, 'user_location_region':I, 'user_location_city':I,'orig_destination_distance':F
,'user_id':I, 'is_mobile':B, 'is_package':B, 'channel':I
,'srch_ci':D, 'srch_co':D, 'srch_adults_cnt':I,'srch_children_cnt':I,'srch_rm_cnt':I
,'srch_destination_id':I,'srch_destination_type_id':I
,'hotel_continent':I,'hotel_country':I,'hotel_market':I}
# LUT = {}
try:
return LUT[name]
except:
return lambda x:x
##############################
# class: TrainSheet is same as TestSheet
# - Train data handling.
# ['date_time', 'site_name', 'posa_continent', 'user_location_country', 'user_location_region', 'user_location_city', 'orig_destination_distance', 'user_id', 'is_mobile', 'is_package', 'channel', 'srch_ci', 'srch_co', 'srch_adults_cnt', 'srch_children_cnt', 'srch_rm_cnt', 'srch_destination_id', 'srch_destination_type_id', 'is_booking', 'cnt', 'hotel_continent', 'hotel_country', 'hotel_market', 'hotel_cluster']
class TrainSheet(DataSheet):
def __init__(self):
DataSheet.__init__(self, "train.csv.gz")
#! override def_filter()
def def_filter(self, col, name):
LUT = {'id':I, 'date_time':DT, 'site_name':I ,'posa_continent':I
,'user_location_country':I, 'user_location_region':I, 'user_location_city':I,'orig_destination_distance':F
,'user_id':I, 'is_mobile':B, 'is_package':B, 'channel':I
,'srch_ci':D, 'srch_co':D, 'srch_adults_cnt':I,'srch_children_cnt':I,'srch_rm_cnt':I
,'srch_destination_id':I,'srch_destination_type_id':I,'is_booking':B
,'cnt':I,'hotel_continent':I,'hotel_country':I,'hotel_market':I,'hotel_cluster':I}
# LUT = {}
try:
return LUT[name]
except:
return lambda x:x
##############################
# Factory Class to load all required data-sheet
class DataFactory():
instance = None
def __init__(self, reload):
print("make DataFactory()")
self._reload = reload
self._map = None
self.init_sheets()
def init_sheets(self):
map = {}
#TODO:XENI - not yet use submission
#map['submission'] = SubmissionSheet()
map['destination'] = DestinationSheet()
map['train'] = TrainSheet()
#map['test'] = TestSheet()
self._map = map
for k,o in map.iteritems():
print("--------------------------------")
print("Loading: "+str(k)+" -> "+str(o))
if self._reload:
o.load_auto(True) # force to reload data.
else:
o.load_auto() # normal loading.
# get DataReader instance for the given name
def get(self, name):
try:
return self._map[name]
except:
return None
# resert all members.
def reset_all(self):
if self._map is None: return
for k,o in self._map.iteritems():
print("--------------------------------")
print("Reset: "+str(k)+" -> "+str(o))
o.reset()
#@staticmethod
@classmethod
def load(cls, reload=False):
#global instance
if cls.instance is None:
cls.instance = DataFactory(reload)
return cls.instance
'''
------------------------------------------------------------------------------------------------------------------------
Transform Class
- transform each row of traint/test data to vector
'''
##############################
# class: TransTrain Case00
class TransTrain00(MatrixStack):
def __init__(self):
MatrixStack.__init__(self, "train00")
# transform test-date to temporal matrix-stack array.
def transform(self, train = None, dest = None, force = False):
print("TransTrain00.transform(force=%s)...."%("True" if force else "False"))
fact = DataFactory.load()
train = train if train else fact.get('train')
dest = dest if dest else fact.get('destination')
# transform the input date to array [msec, week, holiday?]
# @arg dmsec date-second since EPOCH (see DT() function)
def trans_date(dsec, isSeason = False):
ret = []
d = DTR(dsec)
#weekday : Monday is 0 and Sunday is 6
HOLIDAY = [0,0,0,0,0.5,1,1]
SEASON = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
SEASON_KEY = [0,0,1,1,1,2,2,2,3,3,3,0] # season key by month.
#ret.extend([d.year, d.month, d.day, d.weekday(), HOLIDAY[d.weekday()], d.hour])
#ret += [d.year, HOLIDAY[d.weekday()]]
ret += [HOLIDAY[d.weekday()]]
if isSeason:
ret += SEASON[SEASON_KEY[d.month-1]]
return ret
def diff_date(co, ci):
dx = [(co - ci)/(60*60*24)]
#if True: print(str(DTR(co))+" - "+str(DTR(ci))+" = "+str(dx))
return dx
# transform each row of train/test data to single array.
def trans_train_row(i, R, train):
row = []
#row = [i] #for test in order to track row number.
# date-time (only save the 1st click-date, and difference from now)
row += trans_date(R[train.date_time]) + trans_date(R[train.srch_ci], True) # + trans_date(R[train.srch_co], True)
row += diff_date(R[train.srch_ci], R[train.date_time]) # ci - time (in day)
row += diff_date(R[train.srch_co], R[train.srch_ci]) # co - ci (in day)
# count
row += [R[train.channel], R[train.is_mobile], R[train.is_package]]
row += [R[train.srch_adults_cnt], R[train.srch_children_cnt], R[train.srch_rm_cnt]]
# locations
#row += [R[train.posa_continent], R[train.user_location_country], R[train.user_location_region], R[train.user_location_city]]
#row += [R[train.srch_destination_type_id], R[train.hotel_continent], R[train.hotel_country], R[train.hotel_market]]
dest_row = dest.lookup(R[train.srch_destination_id])
#TODO:XENI - dest_row can be None, for now ignore this case (TODO IMPROVE)
if dest_row is None:
return (None, None)
row += dest_row
return (row, R[train.hotel_cluster])
@time_usage
def run_transform(mstack):
total_count = 0
total_ignored = 0
#test-case : enumerate each set.
for i,R in enumerate(train._matrix):
total_count+=1
(row, row_y) = trans_train_row(i, R, train)
if row is None:
total_ignored+=1
continue
#if i > 1000: break #TODO:XENI - for test
#mstack.push(row, row_y, np.int32)
mstack.push(row, row_y, np.float32)
#print(str(DTR(R[train.date_time]))+':'+str(row))
print("transform: total = %d, ignored=%d (%f %%)"%(total_count, total_ignored, 100.*total_ignored/total_count))
# MatrixStack
#mstack = MatrixStack()
mstack = self
if force:
run_transform(mstack)
mstack.save_to_file()
else: # if failed to load
loaded = self.load_from_file()
if not loaded:
run_transform(mstack)
mstack.save_to_file()
return True
'''
------------------------------------------------------------------------------------------------------------------------
Test Functions to verify each function method.
'''
##############################
# Unit Test Class.
class TestReader(unittest.TestCase):
def test_sheet(self):
print('test_sheet()...')
test_timestamp()
#test_DataReader()
#test_Factory()
test_matstack()
#print (dr._matrix)
def print_col(dd, name):
from itertools import groupby
print ("--- " + name)
cols = dd.cols(name)
print ('Count:'+str(cols.size))
print (cols)
if cols.size < 1:
print (">WARN! - empty ");
return
cols.sort()
grps = ((k, len(list(g))) for k, g in groupby(cols)) # grouping
index = np.fromiter(grps, dtype='a8,u2') # a8 string len=8
print ("> count="+str(index.shape[0])+", min="+str(cols.min())+", max="+str(cols.max())+" --- ")
#print (cols)
print (index)
# group : see http://stackoverflow.com/questions/4651683/numpy-grouping-using-itertools-groupby-performance
##############################
# Unit Test Function.
# - test populate() and load() function
def test_DataReader(max=5, min=0):
gzfile="sample_submission.csv.gz"
print ("hello test DataReader --- ")
#dr = GzCsvReader(gzfile)
#dr = DataSheet(gzfile)
#dr = SubmissionSheet()
#dr = DestinationSheet()
#dr = TestSheet()
dr = TrainSheet()
# print header first
print(dr.header())
# for quick debugging.
global MAX_ROW
MAX_ROW = 2500
# enumerate by next()
#for i in range(min,10):
# print(dr.next())
# #dr.next_print()
#! use load_auto()
#dr.populate()
#print_col(dr, "hotel_cluster")
#print_col(dr, "site_name")
#print_col(dr, "user_location_country")
#print_col(dr, "orig_destination_distance")
#print_col(dr, "srch_destination_id")
print_col(dr, "srch_destination_type_id")
#print_col(dr, "hotel_continent")
#print_col(dr, "hotel_country")
print_col(dr, "hotel_market")
#print_col(dr, "hotel_cluster")
#save to file.
dr.save_to_file("data/test.dat")
#clear matrix data. => it must be empty [] array.
dr.clear()
print_col(dr, "hotel_market")
#load back from file. => it must print same result before saving.
dr.load_from_file("data/test.dat")
print_col(dr, "hotel_market")
#ok! auto-load preliminary data (which was converted from original gz file, then saved back to file)
#dr.load_auto(True)
dr.load_auto()
#print again.
print_col(dr, "hotel_market")
# test : timestamp
def test_timestamp():
# test - timestamp conversion
t1 = "2014-02-27 17:44:32"
t2 = DTR(DT(t1))
print(t1 + ' == ' + str(t2))
# test : matrix-stack (to read/write matrix from/into files)
def test_matstack():
print("============================ : test_matstack()")
fact = DataFactory.load()
print("---------------------------- : train")
train = fact.get('train')
print(train.header())
print("---------------------------- : destination")
dest = fact.get('destination')
print(dest.header())
#! step1. build-up lookuptable for destination.
dest.build_map()
mstack = TransTrain00()
mstack.transform()
mstack.test()
mstack.save_to_file()
mstack.reset()
mstack.test()
mstack.load_from_file()
mstack.test()
m2 = mstack.get(2)
print('---------: mstack.get(6)')
print(m2)
count = mstack.count()
print('count='+str(count))
matrix = mstack.merge_one()
print('maxtrix.count='+str(len(matrix)))
print('---------: train.get(6)')
t2 = train._matrix[20:30,20:]
print(t2.astype(dtype=np.int32))
(mx, my) = mstack.merge_one()
print('---------: train.merge_one(6)')
print(mx[20:30], my[20:30])
# test : factory
def test_Factory():
fact = DataFactory.load()
print(fact)
dest = fact.get('destination')
print("---------------------------- : destination")
print(dest.header())
#print(dest.rows(10))
#print_col(dest, 'srch_destination_id')
train = fact.get('train')
print("---------------------------- : train")
print(train.header())
print_col(train, 'hotel_cluster')
#print_col(train, 'srch_destination_id')
#print_col(train, 'channel')
test = fact.get('test')
print("---------------------------- : test")
print(test.header())