-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathutil.py
73 lines (66 loc) · 3.53 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import json
import argparse
class Dictionary(object):
def __init__(self, path=''):
self.word2idx = dict()
self.idx2word = list()
if path != '': # load an external dictionary
words = json.loads(open(path, 'r').readline())
for item in words:
self.add_word(item)
def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.word2idx[word] = len(self.idx2word) - 1
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--emsize', type=int, default=300,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=300,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=2,
help='number of layers in BiLSTM')
parser.add_argument('--attention-unit', type=int, default=350,
help='number of attention unit')
parser.add_argument('--attention-hops', type=int, default=1,
help='number of attention hops, for multi-hop attention model')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--clip', type=float, default=0.5,
help='clip to prevent the too large grad in LSTM')
parser.add_argument('--nfc', type=int, default=512,
help='hidden (fully connected) layer size for classifier MLP')
parser.add_argument('--lr', type=float, default=.001,
help='initial learning rate')
parser.add_argument('--epochs', type=int, default=40,
help='upper epoch limit')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, default='',
help='path to save the final model')
parser.add_argument('--dictionary', type=str, default='',
help='path to save the dictionary, for faster corpus loading')
parser.add_argument('--word-vector', type=str, default='',
help='path for pre-trained word vectors (e.g. GloVe), should be a PyTorch model.')
parser.add_argument('--train-data', type=str, default='',
help='location of the training data, should be a json file')
parser.add_argument('--val-data', type=str, default='',
help='location of the development data, should be a json file')
parser.add_argument('--test-data', type=str, default='',
help='location of the test data, should be a json file')
parser.add_argument('--batch-size', type=int, default=32,
help='batch size for training')
parser.add_argument('--class-number', type=int, default=2,
help='number of classes')
parser.add_argument('--optimizer', type=str, default='Adam',
help='type of optimizer')
parser.add_argument('--penalization-coeff', type=float, default=1,
help='the penalization coefficient')
return parser.parse_args()