Skip to content

I create a neural network architecture to automatically generate captions from images from the Microsoft Common Objects in COntext datasets (Computer Vision and Deep Learning)

License

Notifications You must be signed in to change notification settings

Ezzat1198/udacity-CVND-Image-Captioning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CVND---Image-Captioning-Project

Instructions

  1. Clone this repo: https://github.com/cocodataset/cocoapi
git clone https://github.com/cocodataset/cocoapi.git  
  1. Setup the coco API (also described in the readme here)
cd cocoapi/PythonAPI  
make  
cd ..
  1. Download some specific data from here: http://cocodataset.org/#download (described below)
  • Under Annotations, download:

    • 2014 Train/Val annotations [241MB] (extract captions_train2014.json and captions_val2014.json, and place at locations cocoapi/annotations/captions_train2014.json and cocoapi/annotations/captions_val2014.json, respectively)
    • 2014 Testing Image info [1MB] (extract image_info_test2014.json and place at location cocoapi/annotations/image_info_test2014.json)
  • Under Images, download:

    • 2014 Train images [83K/13GB] (extract the train2014 folder and place at location cocoapi/images/train2014/)
    • 2014 Val images [41K/6GB] (extract the val2014 folder and place at location cocoapi/images/val2014/)
    • 2014 Test images [41K/6GB] (extract the test2014 folder and place at location cocoapi/images/test2014/)
  1. The project is structured as a series of Jupyter notebooks that are designed to be completed in sequential order (0_Dataset.ipynb, 1_Preliminaries.ipynb, 2_Training.ipynb, 3_Inference.ipynb).

About

I create a neural network architecture to automatically generate captions from images from the Microsoft Common Objects in COntext datasets (Computer Vision and Deep Learning)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published