forked from giulia-berto/app-classifyber
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
131 lines (115 loc) · 5.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import print_function, division
import os
import time
import numpy as np
import nibabel as nib
from dipy.tracking.utils import length
from dipy.tracking.streamline import set_number_of_points
from dipy.tracking.distances import bundles_distances_mam, bundles_distances_mdf
from nibabel.affines import apply_affine
from sklearn.neighbors import KDTree
from scipy.spatial.distance import cdist
from dissimilarity import compute_dissimilarity
from distances import parallel_distance_computation
from functools import partial
def bundle2roi_distance(bundle, roi_mask, distance='euclidean'):
"""Compute the minimum euclidean distance between a
set of streamlines and a ROI nifti mask.
"""
data = roi_mask.get_data()
affine = roi_mask.affine
roi_coords = np.array(np.where(data)).T
x_roi_coords = apply_affine(affine, roi_coords)
result=[]
for sl in bundle:
d = cdist(sl, x_roi_coords, distance)
result.append(np.min(d))
return result
def resample_tract(tract, step_size):
"""Resample the tract with the given step size.
"""
lengths=list(length(tract))
tract_res = []
for i, f in enumerate(tract):
if lengths[i]>step_size:
nb_res_points = np.int(np.ceil(lengths[i]/step_size))
tmp = set_number_of_points(f, nb_res_points)
else:
tmp = f
tract_res.append(tmp)
tract_res = nib.streamlines.array_sequence.ArraySequence(tract_res)
return tract_res
def streamlines_idx(target_tract, kdt, prototypes, distance_func=bundles_distances_mam, nb_points=20, warning_threshold=1.0e-1):
"""Retrieve indexes of the streamlines of the target tract.
"""
if distance_func==bundles_distances_mdf:
print("Resampling the tract with %s points" %nb_points)
target_tract = set_number_of_points(target_tract, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
dm_target_tract = distance(target_tract, prototypes)
D, I = kdt.query(dm_target_tract, k=1)
if (D > warning_threshold).any():
print("WARNING (streamlines_idx()): for %s streamlines D > 1.0e-1 !!" % (D > warning_threshold).sum())
#print(D)
target_tract_idx = I.squeeze()
return target_tract_idx
def compute_superset(true_tract, kdt, prototypes, k=2000, distance_func=bundles_distances_mam, nb_points=20):
"""Compute a superset of the true target tract with k-NN.
"""
if distance_func==bundles_distances_mdf:
#print("Resampling the tract with %s points" %nb_points)
true_tract = set_number_of_points(true_tract, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
true_tract = np.array(true_tract, dtype=np.object)
dm_true_tract = distance(true_tract, prototypes)
D, I = kdt.query(dm_true_tract, k=k)
superset_idx = np.unique(I.flat)
return superset_idx
def compute_kdtree_and_dr_tractogram(tractogram, num_prototypes=40,
distance_func=bundles_distances_mam, nb_points=20):
"""Compute the dissimilarity representation of the target tractogram and
build the kd-tree.
"""
t0 = time.time()
if distance_func==bundles_distances_mdf:
print("Resampling the tractogram with %s points" %nb_points)
tractogram = set_number_of_points(tractogram, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
tractogram = np.array(tractogram, dtype=np.object)
print("Computing dissimilarity matrices using %s prototypes..." % num_prototypes)
dm_tractogram, prototype_idx = compute_dissimilarity(tractogram,
distance,
num_prototypes,
prototype_policy='sff',
verbose=False)
prototypes = tractogram[prototype_idx]
print("Building the KD-tree of tractogram.")
kdt = KDTree(dm_tractogram)
print("Time spent to compute the DR of the tractogram: %.2f seconds" %(time.time()-t0))
return kdt, prototypes
def save_trk(streamlines, out_file, affine=np.zeros((4,4)), vox_sizes=np.array([0,0,0]), vox_order='LAS', dim=np.array([0,0,0])):
"""
This function saves tracts in Trackvis '.trk' format.
The default values for the parameters are the values for the HCP data.
"""
if affine.any()==0:
affine = np.array([[ -1.25, 0. , 0. , 90. ],
[ 0. , 1.25, 0. , -126. ],
[ 0. , 0. , 1.25, -72. ],
[ 0. , 0. , 0. , 1. ]],
dtype=np.float32)
if (vox_sizes==[0,0,0]).all():
vox_sizes = np.array([1.25, 1.25, 1.25], dtype=np.float32)
if (dim==[0,0,0]).all():
dim = np.array([145, 174, 145], dtype=np.int16)
if out_file.split('.')[-1] != 'trk':
print("Format not supported.")
# Create a new header with the correct affine
hdr = nib.streamlines.trk.TrkFile.create_empty_header()
hdr['voxel_sizes'] = vox_sizes
hdr['voxel_order'] = vox_order
hdr['dimensions'] = dim
hdr['voxel_to_rasmm'] = affine
hdr['nb_streamlines'] = len(streamlines)
t = nib.streamlines.tractogram.Tractogram(streamlines=streamlines, affine_to_rasmm=np.eye(4))
nib.streamlines.save(t, out_file, header=hdr)